
VMS

VMS 1/0 User's Reference Manual: Part I

Order Number: AA-LA84B-TE

VMS 1/0 User's Reference
Manual: Part I

Order Number: AA-LA84B-TE

June 1990

This document contains the information necessary to interface directly with
the 1/0 device drivers supplied as part of the VMS operating system. Several
examples of programming techniques are included. This document does not
contain information on 1/0 operations using the VMS Record Management
Services.

Revision/Update Information: This document supersedes the VMS 110
User's Reference Manual: Part I,
Version 5.0.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
·to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop-VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGI ReGIS VMS
DECnet HSC ULTRIX VT
DECUS Live link UNIBUS XUI
DECwindows LN03 VAX

mnmnnmn™ DECwriter MASS BUS VAXcluster

The following are third-party trademarks:

IBM is a registered trademark of the International Business Machines Corporation.

Postscript is a registered trademark of Adobe Systems Incorporated.

ZK4513

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LN03R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xx iii

CHAPTER 1 ACP-QIO INTERFACE 1-1

1.1 ACP FUNCTIONS AND ENCODING 1-2

1.2 FILE INFORMATION BLOCK (FIB} 1-3

1.3 ACP SUBFUNCTIONS 1-7
1.3.1 Directory Lookup 1-7
1.3.1.1 Input Parameters • 1-8
1.3.1.2 Operation • 1-9
1.3.1.3 Directory Entry Protection • 1-9
1.3.2 Access 1-10
1.3.2.1 Input Parameters • 1-10
1.3.2.2 Operation • 1-11
1.3.3 Extend 1-11
1.3.3.1 Input Parameters • 1-11
1.3.3.2 Operation • 1-13
1.3.4 Truncate 1-13
1.3.4.1 Input Parameters • 1-13
1.3.4.2 Operation • 1-14
1.3.5 Read/Write Attributes 1-14
1.3.5.1 Input Parameters • 1-14

1.4 ACP QIO RECORD ATTRIBUTES AREA 1-19

1.5 ACP-QIO ATTRIBUTES STATISTICS BLOCK 1-21

1.6 MAJOR FUNCTIONS 1-22
1.6.1 Create File 1-22
1.6.,1.1 Input Parameters • 1-23
1.6.1.2 Disk ACP Operation • 1-24
1.6.1.3 Directory Entry Creation • 1-26
1.6.1.4 Magnetic Tape ACP Operation • 1-26
1.6.2 Access File 1-26
1.6.2.1 Input Parameters • 1-26

v

Contents

1.6.2.2 Operation • 1-27
1.6.3 Deaccess File 1-28
1.6.3.1 Input Parameters • 1-28
1.6.3.2 Operation • 1-28
1.6.4 Modify File 1-28
1.6.4.1 Input Parameters • 1-29
1.6.4.2 Operation • 1-29
1.6.5 Delete File 1-29
1.6.5.1 Operation • 1-30
1.6.6 Mount 1-30
1.6.7 ACP Control 1-30
1.6.7.1 Input Parameters • 1-31
1.6.7.2 Magnetic Tape Control Functions • 1-31
1.6.7.3 Miscellaneous Disk Control Functions • 1-32
1.6.7.4 Disk Quotas • 1-33

1.7 1/0 STATUS BLOCK 1-35

CHAPTER2 CARD READER DRIVER 2-1

2.1 SUPPORTED CARD READER DEVICE 2-1

2.2 DRIVER FEATURES 2-1
2.2.1 Special Card Punch Combinations 2-1
2.2.1.1 End-of-File Condition • 2-2
2.2.1.2 Set Translation Mode • 2-2
2.2.2 Submitting Batch Jobs Through the Card Reader 2-2
2.2.3 Passing Data to Commands and Images 2-3
2.2.4 Error Recovery 2-3

2.3 CARD READER DRIVER DEVICE INFORMATION 2-5

2.4 CARD READER FUNCTION CODES 2-5
2.4.1 Read 2-6
2.4.2 Sense Mode 2-7
2.4.3 Set Mode 2-7
2.4.3.1 Set Mode • 2-8
2.4.3.2 Set Characteristic • 2-10

vi

Contents

2.5 1/0 STATUS BLOCK 2-11

CHAPTER 3 DISK DRIVERS 3-1

3.1 SUPPORTED DISK DEVICES AND CONTROLLERS 3-1
3.1.1 UDA50 UNIBUS Disk Adapter 3-3
3.1.2 KDA50 Disk Controller 3-3
3.1.3 KDB50 Disk Controller 3-3
3.1.4 HSC-Series Controllers 3-3
3.1.5 Sii Integral Adapter 3-4
3.1.6 KFQSA Adapter 3-5
3.1.7 RQDX3 Controller 3-5
3.1.8 RA70 and RA90 Disk Drives 3-5
3.1.9 RA60 Disk 3-5
3.1.10 RA80/RB80/RM80 and RA81 Fixed-Media Disks 3-5
3.1.11 RB02 and RL02 Cartridge Disk 3-6
3.1.12 RC25 Disk 3-6
3.1.13 RD-Series Disks 3-6
3.1.14 RF-Series Disks 3-7
3.1.15 RK06 and RK07 Cartridge Disks 3-7
3.1.16 RM03 and RM05 Pack Disks 3-7
3.1.17 RP05 and RP06 Disk 3-7
3.1.18 RP07 Fixed Media Disk 3-7
3.1.19 RRD40 and RRD50 Read-Only Memory (CDROM) 3-8
3.1.20 RX01 Console Disk 3-8
3.1.21 RX02 Disk 3-8
3.1.22 RX-Series Drives 3-9
3.1.22.1 RX23 • 3-9
3.1.22.2 RX33 • 3-10
3.1.22.3 RX50 • 3-10
3.1.23 AZ-Series Disks 3-10
3.1.24 TU58 Magnetic Tape (DECtape II) 3-10

3.2 DRIVER FEATURES 3-11
3.2.1 Dual-Pathed Disks 3-11
3.2.2 Dual Porting MASSBUS Disks 3-12
3.2.2.1 Port Selection and Access Modes • 3-12
3.2.2.2 Disk Use and Restrictions • 3-13
3.2.2.3 Restriction on Dual-Ported Non-DSA Disks in a VAXcluster • 3-13
3.2.3 Dual-Pathed DSA Disks 3-14
3.2.4 Dual-Porting HSC Disks 3-15
3.2.5 Dual-Pathed RF-Series Disks 3-15

vii

Contents

3.2.6 Data Check 3-15
3.2.7 Overlapped Seeks 3-16
3.2.8 Error Recovery 3-17
3.2.8.1 Skip Sectoring • 3-17
3.2.9 Logical-to-Physical Translation (RX01 and RX02) 3-18
3.2.10 DIGITAL Storage Architecture (DSA) Devices 3-19
3.2.10.1 Bad Block Replacement and Forced Errors for DSA Disks • 3-20
3.2.11 VAXstation 2000 and Micro VAX 2000 Disk Driver 3-21
3.2.12 SCSI Disk Class Driver 3-22

3.3 DISK DRIVER DEVICE INFORMATION 3-22

3.4 DISK FUNCTION CODES 3-24
3.4.1 Read 3-29
3.4.2 Write 3-30
3.4.3 Sense Mode 3-31
3.4.4 Set Density 3-31
3.4.5 Search 3-31
3.4.6 Pack Acknowledge 3-32
3.4.7 Unload 3-32
3.4.8 Available 3-33
3.4.9 Seek 3-33
3.4.10 Write Check 3-33
3.4.11 Set Preferred Path 3-34
3.4.11.1 Forcing a Path Change • 3-35
3.4.11.2 Using 10$_SETPRFPTH with Disks Dual Pathed Between

HSCs • 3-35
3.4.11.3 Using 10$_SETPRFPTH with Disks Dual Pathed Between VMS

Systems • 3-35
3.4.11.4 Using 10$_SETPRFPTH with Disks Accessed Through MSCP

Servers • 3-36
3.4.11.5 Using 10$_SETPRFPTH with Phase I Volume Shadowing • 3-36
3.4.11.6 Using 10$_SETPRFPTH with Phase II Volume Shadowing • 3-36

3.5 1/0 STATUS BLOCK 3-36

3.6 DISK DRIVER PROGRAMMING EXAMPLE 3-37

viii

Contents

CHAPTER4 LABORATORY PERIPHERAL ACCELERATOR DRIVER 4-1

4.1 SUPPORTED DEVICE 4-1
4.1.1 LPA 11-K Modes of Operation 4-1
4.1.2 Errors 4-2

4.2 SUPPORTING SOFTWARE 4-3

4.3 LPA 11-K DEVICE INFORMATION 4-5

4.4 LPA 11-K FUNCTION CODES 4-8
4.4.1 Load Microcode 4-8
4.4.2 Start Microprocessor 4-9
4.4.3 Initialize LPA 11-K 4-9
4.4.4 Set Clock 4-10
4.4.5 Start Data Transfer Request 4-11
4.4.6 LPA 11-K Data Transfer Stop Command 4-14

4.5 HIGH-LEVEL LANGUAGE INTERFACE 4-15
4.5.1 High-Level Language Support Routines 4-15
4.5.1.1 Buffer Queue Control • 4-16
4.5.1.2 Subroutine Argument Usage • 4-16
4.5.2 LPA$ADSWP - Initiate Synchronous AID Sampling Sweep 4-19
4.5.3 LPA$DASWP - Initiate Synchronous DI A Sweep 4-21
4.5.4 LPA$DISWP - Initiate Synchronous Digital Input Sweep -- 4-21
4.5.5 LPA$DOSWP - Initiate Synchronous Digital Output Sweep 4-22
4.5.6 LPA$LAMSKS- Set LPA11-K Masks and NUM Buffer 4-23
4.5.7 LPA$SETADC - Set Channel Information for Sweeps 4-24
4.5.8 LPA$SETIBF - Set IBUF Array for Sweeps 4-24
4.5.9 LPA$STPSWP - Stop In-Progress Sweep 4-25
4.5.10 LPA$CLOCKA - Clock A Control 4-26
4.5.11 LPA$CLOCKB - Clock B Control 4-26
4.5.12 LPA$XRATE - Compute Clock Rate and Preset Value 4-27
4.5.13 LPA$1BFSTS- Return Buffer Status 4-28
4.5.14 LPA$1GTBUF - Return Buffer Number 4-28
4.5.15 LPA$1NXTBF - Set Next Buffer to Use 4-29
4.5.16 LPA$1WTBUF - Return Next Buffer or Wait 4-30
4.5.17 LPA$RLSBUF - Release Data Buffer 4-31
4.5.18 LPA$RMVBUF - Remove Buffer from Device Queue 4-31
4.5.19 LPA$CVADF- Convert AID Input to Floating-Point 4-32
4.5.20 LPA$FLT16 - Convert Unsigned 16-Bit Integer to

Floating-Point 4-32

ix

Contents

4.5.21 LPA$LOADMC - Load Microcode and Initialize LPA 11-K 4-32

4.6 1/0 STATUS BLOCK 4-33

4.7 LOADING LPA11-K MICROCODE 4-34

4.7.1 Microcode Loader Process 4-34

4.7.2 Operator Process 4-35

4.8 RSX-11 M/M-PLUS AND VMS DIFFERENCES 4-35

4.8.1 General 4-35

4.8.2 Alignment and Length 4-36

4.8.3 Status Returns 4-36
4.8.4 Sweep Routines 4-36

4.9 LPA11-K PROGRAMMING EXAMPLES 4-37

4.9.1 LPA 11-K High-Level Language Program (Program. A) 4-37
4.9.2 LPA 11-K High-Level Language Program (Program B) 4-39

4.9.3 LPA 11-K QIO Functions Program (Program C) 4-44

CHAPTER 5 LINE PRINTER DRIVER 5-1

5.1 SUPPORTED LINE PRINTER DEVICES 5-1
5.1.1 LP11 Line Printer Controller 5-1
5.1.2 DMF32 and DMB32 Line Printer Controllers 5-1
5.1.3 LP27 Line Printer 5-1
5.1.4 LA11 DECprinter I 5-2
5.1.5 LN01 Laser Page Printer 5-2
5.1.6 LN03 Laser Page Printer 5-2

5.2 DRIVER FEATURES 5-2
5.2.1 Output Character Formatting 5-2
5.2.2 Error Recovery 5-3

5.3 LINE PRINTER DRIVER DEVICE INFORMATION 5-3

5.4 LINE PRINTER FUNCTION CODES 5-5
5.4.1 Write 5-5
5.4.1.1 Write Function Carriage Control • 5-6
5.4.2 Sense Printer Mode 5-9

x

Contents

5.4.3 Set Mode 5-9

5.5 1/0 STATUS BLOCK 5-10

5.6 LINE PRINTER DRIVER PROGRAMMING EXAMPLE 5-11

CHAPTERS MAGNETIC TAPE DRIVERS 6-1

6.1 SUPPORTED MAGNETIC TAPE CONTROLLERS 6-3
6.1.1 TM03 Magnetic Tape Controller 6-3
6.1.2 TS11 Magnetic Tape Controller 6-3
6.1.3 TM78 and TM79 Magnetic Tape Controllers 6-3
6.1.4 TU80 Magnetic Tape Subsystem 6-3
6.1.5 TU81 and TA81 Magnetic Tape Subsystems 6-3
6.1.6 TU81-Plus Magnetic Tape Subsystem 6-4
6.1.7 TA90 Magnetic Tape Subsystem 6-4
6.1.8 RV20 Write-Once Optical Drive 6-4
6.1.9 TK50 Cartridge Tape System 6-4
6.1.10 TK70 Cartridge Tape System 6-5
6.1.11 TZ30 Cartridge Tape System 6-5

6.1.12 Read and Write Compatibility Among Cartridge Tape Systems - 6-5

6.2 DRIVER FEATURES 6-6

6.2.1 Dual Path Tape Drives 6-7
6.2.2 Dynamic Failover and Mount Verification 6-7

6.2.3 Tape Caching 6-8
6.2.4 Master Adapters and Slave Formatters 6-8
6.2.5 Data Check 6-8
6.2.6 Error Recovery 6-9
6.2.7 Streaming Tape Systems 6-10

6.3 MAGNETIC TAPE DRIVER DEVICE INFORMATION 6-11

6.4 MAGNETIC TAPE FUNCTION CODES 6-13

6.4.1 Read 6-17
6.4.2 Write 6-18
6.4.3 Rewind 6-19
6.4.4 Skip File 6-19
6.4.5 Skip Record 6-20
6.4.5.1 Logical End-of-Volume Detection • 6-20

xi

Contents

6.4.6 Write End-of-File 6-21
6.4.7 Rewind Offline 6-21
6.4.8 Unload 6-22
6.4.9 Sense Tape Mode 6-22
6.4.10 Set Mode 6-23
6.4.11 Data Security Erase 6-27
6.4.12 Pack Acknowledge 6-27
6.4.13 Available 6-27
6.4.14 Flush 6-27

6.5 1/0 STATUS BLOCK 6-28

6.6 MAGNETIC TAPE DRIVER PROGRAMMING EXAMPLES 6-28
6.6.1 Magnetic Tape Data Program Example 6-28
6.6.2 Magnetic Tape Device Characteristic Program Example 6-33
6.6.3 Set Mode and Sense Mode Program Example 6-34

CHAPTER 7 MAILBOX DRIVER 7-1

7.1 MAILBOX OPERATIONS 7-1
7.1.1 Creating Mailboxes 7-1
7.1.2 Deleting Mailboxes 7-2
7.1.3 Mailbox Message Format 7-3
7.1.4 Mailbox Protection 7-4

7.2 MAILBOX DRIVER DEVICE INFORMATION 7-4

7.3 MAILBOX FUNCTION CODES 7-5
7.3.1 Read 7-5
7.3.2 Write 7-6
7.3.3 Write End-of-File Message 7-9
7.3.4 Set Attention AST 7-9
7.3.5 Set Protection 7-11

7.4 1/0 STATUS BLOCK 7-12

7.5 MAILBOX DRIVER PROGRAMMING EXAMPLE 7-14

xii

Contents

CHAPTERS TERMINAL DRIVER 8-1

8.1 SUPPORTED TERMINAL DEVICES 8-1

8.2 TERMINAL DRIVER FEATURES 8-2
8.2.1 Input Processing 8-3
8.2.1.1 Command Line Editing and Command Recall • 8-3
8.2.1.2 Control Characters and Special Keys • 8-4
8.2.1.3 Read Verify • 8-6
8.2.1.4 Escape and Control Sequences • 8-7
8.2.1.5 Type-Ahead Feature • 8-8
8.2.1.6 Line Terminators • 8-9
8.2.1.7 Special Operating Modes • 8-10
8.2.2 Output Processing 8-10
8.2.2.1 Duplex Modes • 8-10
8.2.2.2 Formatting of Output • 8-11
8.2.2.3 SET HOST Facility and Output Buffering • 8-11
8.2.3 Dial-Up Support 8-13
8.2.3.1 Modem Signal Control • 8-13
8.2.3.2 Hangup on Logging Out • 8-16
8.2.3.3 Preservation of a Process Across Hangups • 8-17
8.2.4 Terminal/Mailbox Interaction 8-17
8.2.5 Autobaud Detection 8-19
8.2.6 Out-of-Band Control Character Handling 8-19

8.3 TERMINAL DRIVER DEVICE INFORMATION 8-20
8.3.1 Terminal Characteristics Categories 8-25

8.4 TERMINAL FUNCTION CODES 8-26
8.4.1 Read 8-26
8.4.1.1 Function Modifier Codes for Read QIO Functions • 8-27
8.4.1.2 Read Function Terminators • 8-28
8.4.1.3 ltemlist Read Operations • 8-29
8.4.1.4 Read Verify Function • 8-33
8.4.2 Write 8-34
8.4.2.1 Function Modifier Codes for Write QIO Functions • 8-35
8.4.2.2 Write Function Carriage Control • 8-36
8.4.3 Set Mode 8-38
8.4.3.1 Hangup Function Modifier • 8-42
8.4.3.2 Enable CTRUC AST and Enable CTRUY AST Function

Modifiers • 8-42
8.4.3.3 Set Modem Function Modifier • 8-44
8.4.3.4 Loopback Function Modifier • 8-45

xiii

Contents

8.4.3.5 Enable Out-of-Band AST Function Modifier • 8-46
8.4.3.6 Broadcast Function Modifier • 8-46
8.4.4 LAT Port Driver QIO Interface 8-48
8.4.4.1 LAT Port Driver Functions • 8-49
8.4.4.2 Application Services Creation • 8-51
8.4.4.3 Hangup Notification • 8-52
8.4.5 Sense Mode and Sense Characteristics 8-53
8.4.5.1 Type-ahead Count Function Modifier • 8-54
8.4.5.2 Read Modem Function Modifier • 8-54
8.4.5.3 Broadcast Function Modifier • 8-55

8.5 1/0 STATUS BLOCK 8-56

8.6 TERMINAL DRIVER PROGRAMMING EXAMPLES 8-59
8.6.1 Terminal 1/0 Program Example 8-59
8.6.2 Read Verify Program Example 8-70
8.6.3 LAT Application Device Program Example 8-74

CHAPTER 9 PSEUDOTERMINAL DRIVER 9-1

9.1 PSEUDOTERMINAL OPERATIONS 9-1
9.1.1 Creating a Pseudoterminal 9-1
9.1.2 Canceling a Request 9-2
9.1.3 Deleting a Pseudoterminal 9-2

9.2 PSEUDOTERMINAL DRIVER FEATURES 9-3

9.3 PSEUDOTERMINAL DRIVER DEVICE INFORMATION 9-3

9.4 1/0 BUFFERS 9-4

9.5 PSEUDOTERMINAL FUNCTIONS 9-4
9.5.1 Reading Data 9-5
9.5.2 Writing Data 9-5
9.5.3 Using Write with Echo 9-5
9.5.4 Flow Control 9-6
9.5.5 Event Notification 9-6
9.5.5.1 Input Flow Control • 9-6
9.5.5.2 Output Stop • 9-7
9.5.5.3 Output Resume • 9-7

xiv

9.5.5.4
9.5.5.5
9.5.5.6

9.6
9.6.1

CHAPTER10

10.1

10.2

10.3
10.3.1
10.3.2

10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.4.7

10.5

Characteristics Changed • 9-7
Output Abort • 9-7
Terminal Driver Read Events • 9-7

PSEUDOTERMINAL DRIVER PROGRAMMING EXAMPLE
Design Overview

SHADOW-SET VIRTUAL UNIT DRIVER

INTRODUCTION

PHASE I AND PHASE II COMPATIBILITY

CONFIGURATIONS

Processors and Controllers
Compatible Disk Drives and Volumes

DRIVER FUNCTIONS

CRESHAD
ADDSHAD

COPYSHAD
REMS HAD
AVAILABLE
SENSE CHAR

Read and Write Functions

ERROR PROCESSING

CHAPTER 11 USING THE VMS GENERIC SCSI CLASS DRIVER

11.1 OVERVIEW OF SCSI

11.2 VMS SCSI CLASS/PORT ARCHITECTURE

Contents

9-8
9-8

10-1

10-1

10-2

10-2
10-2
10-3

10-4
10-4
10-5
10-6
10-7
10-8
10-8
10-9

10-9

11-1

11-1

11-2

xv

Contents

11.3 OVERVIEW OF THE VMS GENERIC SCSI CLASS DRIVER 11-2

11.4 ACCESSING THE VMS GENERIC SCSI CLASS DRIVER 11-6

11.5 SCSI PORT FEATURES UNDER APPLICATION CONTROL 11-6
11.5.1 Setting the Data Transfer Mode 11-7
11.5.2 Enabling Disconnection and Reselection 11-7
11.5.3 Disabling Command Retry 11-8
11.5.4 Setting Command Timeouts 11-8

11.6 CONFIGURING A DEVICE USING THE GENERIC CLASS DRIVER 11-9
11.6.1 Disabling the Autoconfiguration of a SCSI Device 11-10

11.7 ASSIGNING A CHANNEL TO GKDRIVER 11-10

11.8 ISSUING A $QIO REQUEST TO THE GENERIC CLASS DRIVER 11-11

11.9 GENERIC SCSI CLASS DRIVER DEVICE INFORMATION 11-14

11.10 GENERIC SCSI CLASS DRIVER PROGRAMMING EXAMPLE 11-15

APPENDIX A 1/0 FUNCTION CODES A-1

A.1 ACP-QIO INTERFACE DRIVER A-1

A.2 CARD READER DRIVER A-2

A.3 DISK DRIVERS A-2

A.4 LABORATORY PERIPHERAL ACCELERATOR DRIVER A-4

A.5 LINE PRINTER DRIVER A-5

xvi

Contents

A.6 MAGNETIC TAPE DRIVERS A-6

A.7 MAILBOX DRIVER A-7

A.8 TERMINAL DRIVER A-8

APPENDIX B TABLES 8-1

8.1 TERMINAL SEQUENCES AND MODES 8-9

APPENDIX C CONTROL CONNECTION ROUTINES C-1
PTD$CANCEL C-2
PTD$CREATE C-3
PTD$DELETE C-6
PTD$READ C-7
PTD$SET_EVENT_NOTIFICATION C-9
PTD$WRITE C-12

INDEX

EXAMPLES
3-1 Disk Program Example 3-38
4-1 LPA 11-K High-Level Language Program (Program A) 4-37
4-2 LPA 11-K High-Level Language Program (Program B) 4-40
4-3 LPA 11-K QIO Functions Program (Program C) 4-45
5-1 Line Printer Program Example 5-12
6-1 Magnetic Tape Data Program Example 6-29
6-2 Device Characteristic Program Example 6-33
6-3 Set Mode and Sense Mode Program Example 6-34

7-1 Mailbox Driver Program Example 7-14
8-1 Terminal Program Example 8-60
8-2 Read Verify Program Example 8-70
8-3 LAT Application Device Program 8-74
9-1 Sample Pseudocode for Pseudoterminal Driver Program 9-9

xvii

Contents

FIGURES
1-1 ACP-QIO Interface 1-1

1-2 ACP Device- or Function-Dependent Arguments 1-3

1-3 ACP Device/Function Argument Descriptor Format 1-3

1-4 File Information Block Format 1-4

1-5 Typical Short File Information Block 1-5

1-6 Attribute Control Block Format 1-15

1-7 ACP-QIO Record Attributes Area 1-19

1-8 ACP-QIO Attributes Statistics Block 1-21

1-9 Quota File Transfer Block 1-35

1-10 IOSB Contents - ACP-QIO Functions 1-35

2-1 A Card Reader Batch Job 2-3

2-2 Binary and Packed Column Storage 2-7

2-3 Set Mode Characteristics Buffer 2-8

2-4 Set Characteristic Buffer 2-11

2-5 IOSB Contents 2-11

3-1 Disk Physical Address 3-9

3-2 Dual-Ported Disk Drives 3-12

3-3 Starting Physical Address 3-28

3-4 Physical Cylinder Number Format 3-28

3-5 IOSB Contents 3-36

3-6 IOSB Contents for the Sense Mode Function 3-37

4-1 Relationship of Supporting Software to LPA11-K 4-5

4-2 Data Transfer Command Table 4-13

4-3 Buffer Queue Control 4-17

4-4 1/0 Functions IOSB Content 4-33

5-1 P4 Carriage Control Specifier 5-6

5-2 Write Function Carriage Control (Prefix and Postfix Coding) 5-8

5-3 Set Mode Buffer 5-9

5-4 Set Characteristics Buffer 5-10

5-5 IOSB Contents - Write Function 5-11

5-6 IOSB Contents - Set Mode Function 5-11

6-1 10$_SKIPFILE Argument 6-19

6-2 10$_SKIPRECORD Argument 6-20

6-3 Sense Mode P1 Buffer 6-23

6-4 Set Mode Characteristics Buffer 6-24

6-5 Set Characteristics Buffer 6-25

6-6 IOSB Contents 6-28

7-1 Multiple Mailbox Channels 7-3

xviii

Contents

7-2 Typical Mailbox Message Format 7-4

7-3 Read Mailbox 7-7

7-4 Write Mailbox 7-8

7-5 Write Attention AST (Read Unsolicited Data) 7-10

7-6 Read Attention AST 7-11

7-7 Protection Mask 7-12

7-8 IOSB Contents - Read Function 7-13

7-9 IOSB Contents - Write Function 7-13

7-10 IOSB Contents - Set Protection Function 7-13

8-1 Modem Control - Two-Way Simultaneous Operation 8-15

8-2 Terminal Mailbox Message Format 8-18

8-3 Short and Long Forms of Terminator Mask Quadwords 8-29

8-4 ltemlist Read Descriptor 8-30

8-5 P4 Carriage Control Specifier 8-36

8-6 Write Function Carriage Control (Prefix and Postfix Coding) 8-39

8-7 Set Mode and Set Characteristics Buffers 8-40

8-8 Set Mode P1 Block 8-44

8-9 Relationship of Out-of-Band Function with Control
Characters 8-47

8-10 10$M_LT_MAP _PORT Item List 8-51

8-11 Sense Mode Characteristics Buffer 8-53

8-12 Sense Mode Characteristics Buffer (type-ahead) 8-54

8-13 Sense Mode P1 Block 8-54

8-14 IOSB Contents-Read Function 8-56

8-15 IOSB Contents-ltemlist Read Function 8-56

8-16 IOSB Contents-Write Function 8-57

8-17 IOSB Contents-Set Mode, Set Characteristics, Sense Mode,
and Sense Characteristics Functions 8-57

8-18 IOSB Contents-LAT Port Driver Function 8-58

9-1 Buffer Layout 9-4

10-1 1/0 Status Block for Copy Operations 10-7

10-2 1/0 Status Block for Copy Information 10-9

11-1 VMS SCSI Class/Port Interface 11-3

11-2 Generic SCSI Class Driver Flow 11-5

11-3 SCSl_NOAUTO System Parameter 11-10

C-1 Device Characteristics Buffer C-4

xix

Contents

TABLES
1-1 Contents of the File Information Block 1-5

1-2 FIB Fields (Lookup Control) 1-8

1-3 FIB Fields (Access Control) 1-10

1-4 FIB Fields (Extend Control) 1-11

1-5 FIB Fields (Truncate Control) 1-13

1-6 Attribute Control Block Fields 1-15

1-7 ACP-QIO Attributes 1-16

1-8 File Characteristics Bits 1-19

1-9 ACP Record Attributes Values 1-20

1-10 Contents of the Statistics Block 1-21

1-11 10$_CREATE and the File Information Block 1-23

1-12 10$_ACCESS and the File Information Block 1-27

1-13 10$_ACPCONTROL and the File Information Block 1-31

1-14 Magnetic Tape Operations and the File Information Block 1-32

1-15 Disk Quota Functions (Enable/Disable) 1-33

1-16 Disk Quota Functions (Individual Entries) 1-34

2-1 Card Reader Device-Independent Characteristics 2-5

2-2 Device-Dependent Characteristics for Card Readers 2-5

2-3 Card Reader 1/0 Functions 2-6

2-4 Set Mode and Set Characteristic Card Reader
Characteristics 2-8

2-5 Card Reader Codes 2-8

3-1 Supported Disk Devices 3-1

3-2 Disk Device Characteristics 3-22

3-3 Disk 1/0 Functions 3-25

4-1 Minimum and Maximum Configurations per LPA11-K 4-2

4-2 LPA 11-K Device-Independent Characteristics 4-6

4-3 LPA 11-K Device-Dependent Characteristics 4-6

4-4 VAX Procedures for the LPA11-K 4-15

4-5 Subroutine Argument Usage 4-17

4-6 LPA$1GTBUF Call - IBUFNO and IOSB Contents 4-29

4-7 LPA$1WTBUF Call - IBUFNO and IOSB Contents 4-30

4-8 Program A Variables 4-37

4-9 Program B Variables 4-39

5-1 Printer Device-Independent Characteristics 5-4

5-2 Device-Dependent Characteristics for Line Printers 5-4

5-3 Write Function Carriage Control (FORTRAN: byte 0 not equal
to 0) 5-7

5-4 Write Function Carriage Control (P4 byte O equal to 0) -- 5-7

xx

Contents

6-1 Supported Magnetic Tape Devices 6-1

6-2 Magnetic Tape Device-Independent Characteristics 6-11

6-3 Device-Dependent Information for Tape Devices 6-11

6-4 Extended Device Characteristics for Tape Devices 6-12

6-5 Magnetic Tape 1/0 Functions 6-13

6-6 Set Mode and Set Characteristics Magnetic Tape
Characteristics 6-26

6-7 Extended Device Characteristics for Tape Devices 6-26

7-1 Mailbox Read and Write Operations 7-1

7-2 Mailbox Characteristics 7-5

8-1 Supported Terminal Devices 8-1

8-2 Terminal Control Characters 8-4

8-3 Control and Data Signals (Full Modem Mode Configuration) - 8-16

8-4 Terminal Device-Independent Characteristics 8-20

8-5 Terminal Characteristics 8-21

8-6 Extended Terminal Characteristics 8-22

8-7 Read QIO Function Modifiers for the Terminal Driver 8-27

8-8 Item Codes for ltemlist Read Operations for the Terminal
Driver 8-30

8-9 Write QIO Function Modifiers for the Terminal Driver 8-35

8-10 Write Function Carriage Control (FORTRAN: byte 0 not equal
to 0) 8-37

8-11 Write Function Carriage Control (P4 byte 0 = 0) 8-38

8-12 Broadcast Requester IDs 8-48

8-13 10$M_LT_CONNECT Request Status 8-50

8-14 10$M_LT_MAP _PORT and 10$M_LT_RATING Request
Status 8-51

8-15 Byte IOSB+5 Status Information 8-58

8-16 LAT Rejection Codes 8-58

10-1 Hardware Devices That Support Volume Shadowing 10-3

10-2 Functions of the Shadow Set Virtual Unit Driver 10-4

B-1 DEC Multinational Character Set B-1

B-2 Sequences and Modes B-10

C-1 Control Connection Routines ·C-1

C-2 Symbolic Names Defined by $PTDDEF Macro C-10

xxi

Preface

Intended Audience
This manual is intended for system programmers who want to take
advantage of the time and space savings that result from direct use of I/O
devices. Users of VMS who do not require such detailed knowledge of I/O
drivers can use the device-independent services described in the
VMS Record Management Services Manual.

Document Structure
This manual is organized into eleven chapters and three appendixes, as
follows:

• Chapter 1 describes the Queue I/O (QIO) interface to file system
ancillary control processes (ACPs).

• Chapters 2 through 11 describe the use of VMS file-structured and
real-time 1/0 device drivers, the drivers for storage devices such as
disks and magnetic tapes, and terminal devices supported by VMS:

Chapter 2 discusses the card reader driver.

Chapter 3 discusses disk drivers.

Chapter 4 discusses the LPAll-K driver.

Chapter 5 discusses the line printer drivers.

Chapter 6 discusses the magnetic tape drivers.

Chapter 7 discusses the mailbox driver.

Chapter 8 discusses the terminal driver.

Chapter 9 discusses the pseudoterminal driver.

Chapter 10 discusses the shadow-set virtual unit driver.

Chapter 11 discusses the VMS Generic Small Computer Systems
Interface (SCSI) class driver.

• Appendix A summarizes the QIO function codes, arguments, and
function modifiers used by the drivers listed above.

• Appendix B lists the DEC Multinational Character Set and the ANSI
and DIGITAL-private escape sequences for terminals.

• Appendix C describes the VAX calling standards for the control
connection routines.

xx iii

Preface

Associated Documents

Conventions

xx iv

The following documents provide additional information:

• VMS System Services Reference Manual

• VMS Software Information Management Handbook

• VMS Software VMS System Software Handbook

• Guide to VMS Programming Resources

• VMS Record Management Services Manual

• LPAll-K Laboratory Peripheral Accelerator User's Guide

• VMS Networking Manual

• VMS System Messages and Recovery Procedures Reference Manual

• VMS Device Support Manual

The following conventions are used in this manual:

Ctrl/x

PF1 x

()

A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

A sequence such as PF1 x indicates that you must
first press and release the key labeled PF1, then
press and release another key or a pointing device
button.

In examples, a key name is shown enclosed in a box
to indicate that you press a key on the keyboard. (In
text, a key name is not enclosed in a box.)

In examples, a horizontal ellipsis indicates one of the
following possibilities:

Additional optional arguments in a statement
have been omitted.

The preceding item or items can be repeated one
or more times.

Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

[]

{}

red ink

boldface text

italic text

UPPERCASE TEXT

numbers

Preface

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory
name in a file specification or in the syntax of a
substring specification in an assignment statement.)

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on.

For online versions of the book, user input is shown in
bold.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Boldface text is also used to show user input in online
versions of the book.

Italic text represents information that can vary
in system messages (for example, Internal error
number).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for
a system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-binary,
octal, or hexadecimal-are explicitly indicated.

xxv

1 ACP-QIO Interface

An ancillary control process (ACP) is a process that interfaces between the
user process and the driver, and performs functions that supplement the
driver's functions. Virtual I/O operations involving file-structured devices
(disks and magnetic tapes) often require ACP intervention. In most cases,
ACP intervention is requested by VMS Record Management Services
(RMS) and is transparent to the user process. However, user processes can
request ACP functions directly by issuing a QIO request and specifying an
ACP function code, as shown in Figure 1-1.

Executing physical and logical I/O operations on a device being managed
by a file ACP will interfere with the operation of the ACP and will result
in unpredictable consequences, including system failure in certain cases.

In addition to the ACP, the VMS operating system also provides the XQP
(extended QIO processor) facility to supplement the QIO driver's functions
when performing virtual I/O operations on file-structured devices (ACP
for Files-11 On-Disk Structure Level 1 and XQP for Files-11 On-Disk
Structure Level 2). However, rather than being a separate process, the
XQP executes as a kernel mode thread in the process of its caller.

This chapter describes the QIO interface to ACPs for disk and magnetic
tape devices (file system ACPs). The sample program in Chapter 6
performs QIO operations to the magnetic tape ACP.

Figure 1-1 ACP-QIO Interface

User
Process ACP

Driver

ZK-0635-GE

This section also describes a number of structures and field names of the
form xxx$name. A VAX MACRO program can define symbols of this form
by invoking the $xxxDEF macro.

The following macros are available in SYS$LIBRARY:STARLET.MLB:

$IO DEF
$FIB DEF
$ATRDEF
$SBKDEF

1-1

ACP-QIO Interface

The following macros are available in SYS$LIBRARY:LIB.MLB:

$FATDEF
$DQFDEF
$FCHDEF

Programs written in BLISS-32 can use these symbols by referencing
them and including the correct library, SYS$LIBRARY:STARLET.L32
(for the macros listed under SYS$LIBRARY:STARLET.MLB),
and SYS$LIBRARY:LIB.L32 (for the macros listed under
SYS$LIBRARY:LIB.MLB).

References to ANSI refer to the American National Standard Magnetic
Tape Labels and File Structures for Information Interchange, ANSI
X3.27-1978.

1.1 ACP Functions and Encoding

1-2

All VMS ACP functions can be expressed using seven function codes and
four function modifiers. The function codes are as follows:

• I0$_CREATE-Creates a directory entry or file

• I0$_ACCESS-Searches a directory for a specified file and accesses
the file, if found

• I0$_DEACCESS-Deaccesses a file and, if specified, writes the final
attributes in the file header

• IO$_MODIFY-Modifies the file attributes and file allocation

• I0$_DELETE-Deletes a directory entry and file header

• IO$_MOUNT-Informs the ACP when a volume is mounted; requires
MOUNT privilege

• IO$_ACPCONTROL-Performs miscellaneous control functions

The function modifiers are:

• I0$M_ACCESS-Opens a file on the user's channel

• I0$M_CREATE-Creates a file

• IO$M_DELETE-Deletes a file (or marks it for deletion)

• IO$M_DMOUNT-Dismounts a volume

In addition to the function codes and modifiers, VMS ACPs take five
device- or function-dependent arguments, as shown in Figure 1-2. The
first argument, Pl, is the address of the file information block (FIB)
descriptor. Section 1.2 describes the FIB in detail.

The second argument, P2, is an optional argument used in directory
operations. It specifies the address of the descriptor for the file name
string to be entered in the directory.

ACP-QIO Interface
1.1 ACP Functions and Encoding

Argument P3 is the address of a word to receive the resultant file name
string length. The resultant string is not padded. The actual length is
returned in P3. P4 is the address of a descriptor for a buffer to receive the
resultant file name string. Both of these arguments are optional.

Figure 1-2 ACP Device- or Function-Dependent Arguments

31 0

P1: Address of FIB Descriptor

P2: Address of File Name String Descriptor (Optional)

P3: Address of Word to Receive Resultant String Length (Optional)

P4: Address of Resultant String Descriptor (Optional)

P5: Address of Attribute Control Block (Optional)

ZK-0636-GE

The fifth argument, P5, is an optional argument containing the address
of the attribute control block. Section 1.3.5 describes the attribute control
block in detail.

All areas of memory specified by the descriptors must be capable of being
read or written to.

Figure 1-3 shows the format for the descriptors. The count field is the
length in bytes of the item described.

Figure 1-3 ACP Device/Function Argument Descriptor Format

31 16 15 0

Not Used Count

Address

ZK-0637-GE

1.2 File Information Block {FIB)
The file information block (FIB) contains much of the information that is
exchanged between the user process and the ACP. Figure 1-4 shows the
format of the FIB. The FIB must be writable. Because the FIB is passed
by a descriptor (see Figure 1-3), its length can vary. Thus, a short FIB can
be used in ACP calls that do not need arguments near the end of the FIB.
The ACP treats the omitted portion of the FIB as if it were 0. Figure 1-5
shows the format of a typical short FIB that would be used to open an

1-3

ACP-QIO Interface
1.2 File Information Block {FIB)

existing file. Table 1-1 gives a brief description of each of the FIB fields.
More detailed descriptions are provided in Sections 1.3 and 1.6.

Figure 1-4 File Information Block Format

31 24 23 16 15 87 0

FIB$B_WSIZE I FIB$L_ACCTL

FIB$W_FID l FIB$W_DID

FIB$L_WCC

FIB$W_CNTRLFUNC/FIB$W_EXCTL I FIB$W_NMCTL

FIB$L_CNTRLVAUFIB$L_EXSZ

FIB$L_EXVBN

l FIB$B_ALALIGN I FIB$B_ALOPTS

FIB$W_ALLOC

ReseNed l FIB$W_ VERLIMIT

FIB$L_ACLCTX

FIB$L_ACL_STATUS

FIB$L_STATUS

FIB$L_ACL_ACCESS

ZK-0638-GE

1-4

ACP-QIO Interface
1.2 File Information Block (FIB)

Figure 1-5 Typical Short File Information Block

31 24 23 16 15 8 7 0

FIB$B_WSIZE 1 FIB$L_ACCTL

FIB$W_FID

FIB$W_DID l
FIB$L_WCC

+--- 0 l FIB$W_NMCTL

+-0

ZK-0639-GE

Table 1-1 Contents of the File Information Block

Field

FIB$L_ACCTL

FIB$B_WSIZE

FIB$W_FID

FIB$W_DID

Subfields

FIB$W_FID_NUM

FIB$W_FID_SEQ

FIB$W_FID_RVN

FIB$B_FID_RVN

FIB$B_FID_NMX

FIB$W_DID_NUM

FIB$W_DID_SEQ

FIB$W_DID_RVN

Meaning

Contains flag bits that control the access to the file. Sections
1.3.1.1, 1.3.2.1, 1.6.1.1, 1.6.4.1, and 1.6.5 describe the
FIB$L_ACCTL field flag bits.

Controls the size of the file window used to map a disk file. If a
window size of 255 is specified, the file is mapped completely
through the use of segmented windows.

Specifies the file identification. You supply the file identifier
when it is known; the ACP returns the file identifier when
it becomes known, for example, as a result of a create or
directory lookup. A 0 file identifier can be specified when an
operation is performed on a file that is already open on a
particular channel. The ACP returns the file identifier of the
open file. The following subfields are defined:

File number.

File sequence number.

Relative volume number (only for magnetic tape devices).

Relative volume number (only for disk devices).

File number extension (only for disk devices).

Contains the file identifier of the directory file. The following
subfields are defined:

File number.

File sequence number.

Relative volume number (only for magnetic tape devices).

(continued on next page)

1-5

ACP-QIO Interface
1.2 File Information Block (FIB)

Table 1-1 (Cont.) Contents of the File Information Block

Field

FIB$L_WCC

Fl8$W_NMCTL

Fl8$W_EXCTL

Fl8$W_CNTRLFUNC

FIB$L_EXSZ

Fl8$L_CNTRLVAL

Fl8$L_EXVBN

Fl8$B_ALOPTS

Fl8$B_ALALIGN

Fl8$W_ALLOC

Fl8$W_ VERLIMIT

Fl8$L_ACLCTX

1-6

Subfields

Fl8$8_DID_RVN

Fl8$8_DID_NMX

FIB$C_USEREOT

FIB$W_LOC_FID

FIB$W_LOC_NUM

FIB$W_LOC_SEQ

FIB$B_LOC_RVN

FIB$B_LOC_NMX

FIB$L_LOC _ADDR

Meaning

Relative volume number (only for disk devices).

File number extension (only for disk devices).

Maintains position context when processing wildcard directory
operations.

Contains flag bits that control the processing of a name string
in a directory operation. Sections 1.3.1.1 and 1.6.1.1 describe
the Fl8$W_NMCTL field flag bits.

Contains flag bits that specify extend control for disk devices.
Sections 1.3.3.1 and 1.3.4.1 describe the Fl8$W_EXCTL field
flag bits.

In an 10$_ACPCONTROL function, this field contains the code
that specifies which ACP control function is to be performed
(see Section 1.6.7). This field overlays FIB$W_EXCTL.

User EOT mode. In an 10$_CREATE or 10$_ACCESS
function, you can set this mode on a per-file basis. (See
Sections 1.6.1 and 1.6.2.)

Specifies the number of blocks to be allocated in an extend
operation on a disk file.

Contains a control function value used in an 10$_
ACPCONTROL function (see Section 1.6.7). The interpretation
of the value depends on the control function specified in
Fl8$W_CNTRLFUNC. This field overlays FIB$L_EXSZ.

Specifies the starting disk file virtual block number at which a
file is to be truncated.

Contains option bits that control the placement of allocated
blocks. Section 1.3.3.1 describes the FIB$B_ALOPTS field flag
bits.

Contains the interpretation mode of the allocation
(Fl8$W_ALLOC) field.

Contains the desired physical location of the blocks being
allocated. Interpretation of the field is controlled by the
Fl8$B_ALALIGN field. The following subfields are defined:

Three-word related file ID for RFI placement.

Related file number.

Related file sequence number.

Related file RVN or placement RVN.

Related file number extension.

Placement LBN, cylinder, or VBN.

Contains the version limit of the directory entry.

Maintains position context when processing ACL attributes
from the attribute (P5) list.

(continued on next page)

ACP-QIO Interface
1.2 File Information Block (FIB)

Table 1-1 (Cont.) Contents of the File Information Block

Field Subfields Meaning

FIB$L_AGL_STATUS Status of the requested AGL attribute operation, if any. The
AGL attributes are included in Table 1-7. If no AGL attributes
are given, SS$_NORMAL is returned here.

FIB$L_STATUS Access status. Applies to all major functions. The following
bits are supported:

FIB$V_ALT_REQ Set to indicate whether the alternate access bit is required for
the current operation. If not set, the alternate access bit is
optional.

Fl8$V_ALT_GRANTED If Fl8$V_ALT_REQ = 0, the FIB bit returned from the file
system is set if the alternate access check succeeded.

FIB$L_ALT_AGGESS A 32-bit mask that represents an access mask to check against
file protection; for example, opens a file for read access and
checks whether it can be deleted. The mask has the same
configuration as the standard protection mask.

1.3 ACP Subfunctions

1.3.1

The operations that the ACP performs can be organized into two
categories: major ACP functions and subfunctions. Each ACP operation
performs one major function. That function is specified by an I/O function
code, such as IO$_ACCESS, IO$_CREATE, or IO$_MODIFY. While
executing the major function, one or more subfunctions can be performed.
A subfunction is an operation such as looking up, accessing, or extending
a file. Most subfunctions can be executed by more than one of the major
functions. Sections 1.3.1through1.3.5 describe the following subfunctions
in detail:

• Directory Lookup

• Access

• Extend

• Truncate

• Read Attributes

• Write Attributes

Section 1.6, which contains the descriptions of the major functions, lists
the subfunctions available to each major function.

Directory Lookup
The directory lookup subfunction is used to search for a file in a disk
directory or on a magnetic tape. This subfunction can be invoked using
the major functions IO$_ACCESS, IO$_MODIFY, IO$_DELETE, and
IO$_ACPCONTROL. A directory lookup occurs if the directory file ID field
in the FIB (FIB$W_DID) is a nonzero number.

1-7

ACP-QIO Interface
1.3 ACP Subfunctions

1.3.1.1 Input Parameters
Table 1-2 lists the FIB fields that control the processing of a lookup
subfunction.

Table 1-2 FIB Fields (Lookup Control)

Field

F18$W_NMCTL

Fl8$W_FID

Fl8$W_DID

FIB$L_WCC

F18$L_ACCTL

1-8

Field Values

F18$M_WILD

FIB$M_ALLNAM

FIB$M_ALLTYP

FIB$M_ALLVER

FIB$M_FINDFID

FIB$M_REWIND

Meaning

Name string control. The following name control bits are
applicable to a lookup operation:

Set if name string contains wildcards. Setting this bit causes
wildcard context to be returned in FIB$L_WCC.

Set to match all name field values.

Set to match all field type values.

Set to match all version field values.

Set to search a directory for the file identifier in FIB$W_FID.

File identification. The file ID of the file found is returned in this
field.

Contains the file identifier of the directory file. This field must be a
nonzero number.

Maintains position context when processing wildcard directory
operations.

The following access control flag is applicable to a lookup
subfunction:

Set to rewind magnetic tape before lookup. If not set, a magnetic
tape is searched from its current position.

QIO arguments P2 through P6 are passed as values. The second
argument, P2, specifies the address of the descriptor for the file name
string to be searched for in the directory.

The file name string must have one of the following two formats:

name.type;version

name.type.version

The name and type can be any combination of alphanumeric characters,
and the dollar sign ($), asterisk (*), and percent (%) characters. The
version must consist of numeric characters optionally preceded by a minus
sign(-) (only for disk devices) or a single asterisk. The total number of
alphanumeric and percent characters in the name field and in the type
field must not exceed 39. Any number of additional asterisks can be
present.

If any of the bits FIBM_ALLNAM, FIBM_ALLTYP, and FIB$M_
ALLVER are set, then the contents of the corresponding field in the
name string are ignored and the contents are assumed to be an asterisk.

Note that the file name string cannot contain a directory string. The
directory is specified by the FIB$W _DID field (see Table 1-1). Only VMS
RMS can process directory strings.

ACP-QIO Interface
1.3 ACP Subfunctions

Argument P3 is the address of a word to receive the resultant file name
string length.

Argument P4 is the address of a descriptor for a buffer to receive the
resultant file name string. The resultant string is not padded. The P3 and
P4 arguments are optional.

1.3.1.2 Operation
The system searches either the directory file specified by FIB$W _DID
or the magnetic tape for the file name specified in the P2 file name
parameter. The actual file name found and its length are returned in the
P3 and P4 length and result string buffers. The file ID of the file found is
returned in FIB$W _FID and can be used in subsequent operations as the
major function is processed.

Zero and negative version numbers have special significance in a disk
lookup operation. Specifying 0 as a version number causes the latest
version of the file to be found. Specifying -1 locates the second most recent
version, -2 the third· most recent, and so forth. Specifying a version of -0
locates the lowest numbered version of the file. For magnetic tape lookups,
a version number of 0 locates the first occurrence of the file encountered;
negative version numbers are not allowed.

Wildcard lookups are performed by specifying the appropriate wildcard
characters in the name string and setting FIB$M_ WILD. (The name
control bits FIBM_ALLNAM, FIBM_ALLTYP, and FIB$M_ALLVER
can also be used in searching for wildcard entries, but they are intended
primarily for compatibility mode use.) On the first lookup, FIB$L_ WCC
should contain zero entries. On each lookup, the ACP returns a nonzero
value in
FIB$L_ WCC, which must be passed back on the next lookup call. In
addition, you must pass the resultant name string returned by the
previous lookup using the P4 result string buffer, and its length in the
P3 result length word. This string is used together with FIB$L_ WCC to
continue the wildcard search at the correct position in the directory.

Perform a lookup by file ID by setting the name control bit FIB$M_
FINDFID. When this bit is set, the system searches the directory for an
entry containing the file ID specified in FIB$W _FID, and the name of the
entry found is returned in the P3 and P4 result parameters. Note that if
a directory contains multiple entries with the same file ID, only the first
entry can be located with this technique.

Lookups by file ID should be done only when the file name is not available,
because lookups by this method are often significantly slower than lookups
by file name.

1.3.1.3 Directory Entry Protection
A directory entry is protected with the same protection code as the file
itself. For example, if a file is protected against delete access, then the
file name has the same protection. Consequently, a nonprivileged user
(that is, a user who is not the volume owner or a user who does not have
SYSPRV) cannot rename a file because renaming a file is essentially the
same as deleting the file name. This protection is applied regardless of the
protection on the directory file.

1-9

1.3.2

ACP-QIO Interface
1.3 ACP Subfunctions

Access

Nonprivileged users can neither write directly into a .DIR;l directory file
nor tum off the directory bit in a directory file header.

The access subfunction is used to open a file so that virtual read or write
operations can be performed. This subfunction can be invoked using the
major functions IO$_CREATE and IO$_ACCESS (see Sections 1.6.1 and
1.6.2). An access subfunction is performed if the IO$M_ACCESS modifier
is specified in the I/O function code.

1.3.2.1 Input Parameters
Table 1-3 lists the FIB fields that control the processing of an access
subfunction.

Table 1-3 FIB Fields (Access Control)

Field

FIB$L_ACCTL

1-10

Field Values

FIB$M_WRITE

FIB$M_NOREAD

FIB$M_NOWRITE

FIB$M_NOTRUNC

FIB$M_DLOCK

FIB$M_UPDATE

FIB$M_READCK

FIB$M_WRITECK

FIB$M_EXECUTE

Meaning

Specifies field values that control access to the file. The following
access control bits are applicable to the access subfunction:

Set for write access; clear for read-only access.

Set to deny read access to others. (You must have write privilege
to the file to use this option.)

Set to deny write access to others.

Set to prevent the file from being truncated; clear to allow
truncation.

Set to enable deaccess lock (close check). Used only for disk
devices.

Used to flag a file as inconsistent if the program currently
modifying the file terminates abnormally. If the program
deaccesses the file without performing a write attributes operation,
the file is marked as locked and cannot be accessed until it is
unlocked.

Set to position at start of a magnetic tape file when opening file
for write; clear to position at end-of-file.

Set to enable read checking of the file. Virtual reads to the file
are performed using a data check operation.

Set to enable write checking of the file. Virtual writes to the file
are performed using a data check operation.

Set to access the file in execute mode. The protection check is
made against the EXECUTE bit instead of the READ bit. Valid
only for requests issued from SUPERVISOR, EXEC, or KERNEL
mode.

(continued on next page)

1.3.3

ACP-QIO Interface
1.3 ACP Subfunctions

Table 1-3 (Cont.) FIB Fields (Access Control)

Field

FIB$B_WSIZE

Field Values

FIB$M_NOLOCK

FIB$M_
NORE CORD

Meaning

Set to override exclusive access to the file, allowing you to access
the file when another user has the file open with FIB$M_NOREAD
specified. You must have SYSPRV privilege or ownership of the
volume to use this option. FIB$M_NOREAD and
FIB$M_NOWRITE must be clear for this option to work.

Set to inhibit recording of the file's expiration date. If not set,
the file's expiration date can be modified, depending on the file
retention parameters of the volume.

Controls the size of the file window used to map a disk file. The
ACP uses the volume default if FIB$B_WSIZE is 0. A value of 1
to 127 indicates the number of retrieval pointers to be allocated to
the window. A value of -1 indicates that the window should be as
large as necessary to map the entire file. Note that the window is
charged to the user's BYTELIM quota.

FIB$W_FID Specifies the file identification of the file to be accessed.

Extend

1.3.2.2 Operation
The file is opened according to the access control specified (see Table 1-3).

The extend subfunction is used to allocate space to a disk file. This
subfunction can be invoked using the major I/O functions IO$_CREATE
and I0$_MODIFY (see Sections 1.6.1 and 1.6.4). The extend subfunction
is performed if the bit FIB$M_EXTEND is set in the extend control word
FIB$W _EXCTL.

1.3.3.1 Input Parameters
Table 1-4 lists the FIB fields that control the processing of an extend
subfunction.

Table 1-4 Fl B Fields (Extend Control)

Field

FIB$W_EXCTL

Field Values

FIB$M_EXTEND

FIB$M_NOHDREXT

FIB$M_ALCON

FIB$M_ALCONB

Meaning

Extend control flags. The following flags are applicable to the
extend subfunction:

Set to enable extension.

Set to inhibit generation of extension file headers.

Allocates contiguous space. The extend operation fails if the
necessary contiguous space is not available.

Allocates the maximum amount of contiguous space.

(continued on next page)

1-11

ACP-QIO Interface
1.3 ACP Subfunctions

Table 1-4 (Cont.) FIB Fields (Extend Control)

Field

FIB$L_EXSZ

FIB$L_EXVBN

FIB$B_ALOPTS

FIB$B_ALALIGN

FIB$W_ALLOC

1-12

Field Values

FIB$M_FILCON

FIB$M_ALDEF

FIB$M_EXACT

FIB$M_ONCYL

(zero)

FIB$C_CYL

FIB$C_LBN

FIB$C_VBN

FIB$C_RFI

FIB$W_LOC_FID

FIB$W_LOC_NUM

Meaning

If both FIB$M_ALCON and FIB$M_ALCONB are set, a single
contiguous area, whose size is the largest available but not
greater than the size requested, is allocated.

Marks the file contiguous. This bit can only be set if the file does
not have space already allocated to it.

Allocates the extend size (FIB$L_EXSZ) or the system default,
whichever is greater.

Specifies the number of blocks to allocate to the file.

The number of blocks actually allocated for this operation is
returned in this longword. More blocks than requested can be
allocated to meet cluster boundaries.

Returns the starting virtual block number of the blocks allocated.
FIB$L_EXVBN must initially contain O blocks.

Contains option bits that control the placement of allocated blocks.
The following bits are defined:

Set to require exact placement; clear to specify approximate
placement. If this bit is set and the specified blocks are not
available, the extend operation fails.

Set to locate allocated space within a cylinder. This option
functions correctly only when FIB$M_ALCON or FIB$M_ALCONB
is specified.

Contains the interpretation mode of the allocation
(FIB$W_ALLOC) field. One of the following values can be
specified:

No placement data. The remainder of the allocation field is
ignored.

Location is specified as a byte relative volume number (RVN) in
FIB$B_LOC_RVN and a cylinder number in FIB$L_LOC_ADDR.

Location is specified as a byte RVN in FIB$B_LOC_RVN, followed
by a longword logical block number (LBN) in FIB$L_LOC_ADDR.

Location is specified as a longword virtual block number (VBN)
of the file being extended in FIB$L_LOC_ADDR. AO VBN or one
that fails to map indicates the end of the file.

Location is specified as a three-word file ID in FIB$W_LOC_FID,
followed by a longword VBN of that file in FIB$L_LOC_ADDR. A
O file ID indicates the file being extended. A 0 VBN or one that
fails to map indicates the end of that file.

Contains the desired physical location of the blocks being
allocated. Interpretation of the field is controlled by the
FIB$B_ALALIGN field. The following subfields are defined:

Three-word related file ID for RFI placement.

Related file number.

(continued on next page)

1.3.4

ACP-QIO Interface
1.3 ACP Subfunctions

Table 1-4 (Cont.) FIB Fields (Extend Control)

Field Field Values

FIB$W_LOC_SEQ

FIB$B_LOC_RVN

FIB$B_LOC_NMX

FIB$L_LOC _ADDR

Meaning

Aerated file sequence number.

Related file RVN or placement RVN.

Related file number extension.

Placement LBN, cylinder, or VBN.

1.3.3.2 Operation

Truncate

The specified number of blocks are allocated and appended to the file.
The virtual block number assigned to the first block allocated is returned
in FIB$L_EXVBN. The actual number of blocks allocated is returned in
FIB$L_EXSZ.

The actual number of blocks allocated is also returned in the second
longword of the user's I/O status block. If a contiguous allocation (FIB$M_
ALCON) fails, the size of the largest contiguous space available on the
disk is returned in the second longword of the user's I/O status block.

The truncate subfunction is used to remove space from a disk file. This
subfunction can be invoked by the major I/O functions IO$_DEACCESS
and 10$_MODIFY (see Sections 1.6.3 and 1.6.4). The truncate subfunction
is performed if the bit FIB$M_TRUNCATE is set in the extend control
word FIB$W _EXCTL.

1.3.4.1 Input Parameters
Table 1-5 lists the FIB fields that control the processing of a truncate
subfunction.

Table 1-5 FIB Fields (Truncate Control)

Field

FIB$W_EXCTL

FIB$L_EXSZ

Field Values

FIB$M_ TRUNC

FIB$M_MARKBAD

Meaning

Extend control flags. The following flags are applicable to the
truncate subfunction:

Must be set to enable truncation.

Set to append the truncated blocks to the bad block file, instead
of returning them to the free storage pool. Only one cluster can
be deallocated. This is most easily accomplished by specifying
the last VBN of the file in FIB$L_EXVBN. SYSPRV privilege or
ownership of the volume is required to deallocate blocks to the
bad block file.

Returns the actual number of blocks deallocated. FIB$L_EXSZ
must initially contain a value of 0.

(continued on next page)

1-13

1.3.5

ACP-QIO Interface
1.3 ACP Subfunctions

Table 1-5 (Cont.) FIB Fields (Truncate Control)

Field Field Values Meaning

FIB$L_EXVBN Specifies the first virtual block number to be removed from the file.

1.3.4.2 Operation

The actual starting virtual block number of the truncate operation
is returned in this field.

Blocks are deallocated from the file, starting with the virtual block
specified in FIB$L_EXVBN and continuing through the end of the file.
The actual number of blocks deallocated is returned in FIB$L_EXSZ. The
virtual block number of the first block actually deallocated is returned in
FIB$L_EXVBN. Because of cluster round-up, this value might be greater
than the value specified. If FIB$M_MARKBAD is specified, the truncation
VBN is rounded down instead of up, and the value returned in FIB$L_
EXVBN might be less than that specified.

The number of blocks by which FIB$L_EXVBN was rounded up is
returned in the second longword of the I/O status block.

The truncate subfunction normally requires exclusive access to the file at
run time. This means, for example, that a file cannot be truncated while
multiple writers have access to it.

An exception occurs when a truncate subfunction is requested for a write
accessed file that allows other readers. Although the truncate subfunction
returns success status in this instance, the actual file truncation (the
return of the truncated blocks to free storage) is deferred until the
last reader deaccesses the file. If a new writer accesses the file after
the truncate subfunction is requested, but before the last deaccess, the
deferred truncation is ignored.

Read/Write Attributes

1-14

The read and write attributes subfunctions are used for operations such
as reading and writing file protection and creating and revising dates. A
read or write attributes operation is invoked by specifying an attribute list
with the QIO parameter P5. A read attributes operation can be invoked by
the major I/O function IO$_ACCESS (see Section 1.6.2); a write attributes
operation can be invoked by the major I/O functions IO$_CREATE, 10$_
DEACCESS, and IO$_MODIFY (see Sections 1.6.1, 1.6.3, and 1.6.4).

1.3.5.1 Input Parameters
The read or write attributes subfunction is controlled by the attribute list
specified by P5. The list consists of a variable number of two longword
control blocks, terminated by a 0 longword, as shown in Figure 1-6. The
maximum number of attribute control blocks in one list is 30. Table 1-6
describes the attribute control block fields.

ACP-QIO Interface
1.3 ACP Subfunctions

Figure 1-6 Attribute Control Block Format

31

-L...-

T

16 15 0

ATR$W_TYPE 1 ATR$W_SIZE

ATR$L_ADDR

.. -Jo., (Add1t1onal Control Blocks)

J 0

ZK-0640-GE

Table 1-6 Attribute Control Block Fields

Field

ATR$W_SIZE

ATR$W_TYPE

ATR$L_ADDR

Meaning

Specifies the number of bytes of the attribute to be
transferred. Legal values are from O to the maximum size of
the particular attribute (see Table 1-7).

Identifies the individual attribute to be read or written.

Contains the buffer address of the memory space to or from
which the attribute is to be transferred. The attribute buffer
must be writable.

Table 1-7 lists the valid attributes for ACP-QIO functions. The maximum
size (in bytes) is determined by the required attribute configuration. For
example, the Radix-50 file name (ATR$S_FILNAM) uses only 6 bytes, but
it is always accompanied by the file type and file version, so a total of 10
bytes is required. Each attribute has two names: one for the code (for
example, ATR$C_UCHAR) and one for the size (for example,
ATR$S_UCHAR).

1-15

ACP-QIO Interface
1.3 ACP Subfunctions

1-16

Table 1-7 ACP-QIO Attributes

Maximum
Size

Attribute Name1 (bytes) Meaning

ATR$C_UCHAR2 4 4 4-byte file characteristics. (The file
characteristics bits are listed following
this table.)

ATR$C_RECATTR3 32 Record attribute area. Section 1 .4
describes the record attribute area in
detail.

ATR$C_FILNAM 10 6-byte Radix-50 file name plus
ATR$C_FILTYP and ATR$C_FILVER.

ATR$C_FILTYP 4 2-byte Radix-50 file type plus
ATR$C_FILVER.

ATR$C_FILVER 2 2-byte binary version number.

ATR$C_EXPDAT2 7 Expiration date in ASCII. Format:
DDMMMYY.

ATR$C_STATBLK5 32 Statistics block. Section 1 .5
describes the statistics block in
detail.

ATR$C_HEADER5 512 Complete file header.

ATR$C_BLOCKSIZE 2 Magnetic tape block size.

ATR$C_USERLABEL6 80 User file label.

ATR$C_ASCDATES2 4 35 Revision count (2 binary bytes),
revision date, creation date, and
expiration date, in ASCII. Format:
DDMMMYY (revision date), HHMMSS
(time), DDMMMYY (creation date),
HHMMSS (time), DDMMMYY
(expiration date). (The format
contains no embedded spaces or
commas.)

ATR$C_ALCONTROL 14 Compatibility mode allocation data.

ATR$C_ENDLBLAST 4 End of magnetic tape label
processing; provides AST control
block.

1 Attributes with an ATR$C_ prefix have two names: one with the ATR$C_ prefix for the code
and one with an ATR$S_ prefix for the size, which is not included in the list.

2 Protected (can be written to only by system or owner).

3Locked (cannot be written to while the file is locked against writers).

4Not supported on write operations to MTAACP; defaults are returned on read operations.

5 Read only.

6Not supported for disk devices.

(continued on next page)

Table 1-7 (Cont.) ACP-QIO Attributes

Attribute Name 1

ATR$C_ASCNAME

ATR$C _ CREDATE2

ATR$C_REVDATE2 3

ATR$C_EXPDATE2

ATR$C_BAKDATE3 10

ATR$C_UIC2

ATR$C_FPR02 3

ATR$C_RPR010

ATR$C_ACLEVEL2 3 10

ATR$C_SEMASK10

ATR$C_UIC_R05

ATR$C_DIRSEQ10

ATR$C_BACKLINK10

ATR$C _JOURNAL 10

ATR$C_HDR1_ACC

ATR$C_ADDACLENT7 10 11

ATR$C_DELACLENT7 10 11

ATR$C_MODACLENT7 10 11

Maximum
Size
(bytes)

20

8

8

8

8

4

2

2

1

8

4

2

6

2

1

255

255

255

ACP-QIO Interface
1.3 ACP Subfunctions

Meaning

Disk: file name, type, and version, in
ASCII, including punctuation. Format:
name. type;version.

Magnetic tape: contains 17-character
file identifier (ANSI a); no version
number. Overrides all other file name
and file type specifications if supplied
on input operations. If specified on
an access operation and you want
only a value to be returned, specify
(in ATR$W_SIZE) a buffer of greater
than 17 bytes.

64-bit creation date and time.

64-bit revision date and time.

64-bit expiration date and time.

64-bit backup date and time.

4-byte file owner UIC.

File protection.

2-byte record protection.

File access level.

File security mask and limit.

4-byte file owner UIC.

Directory update sequence count.

File back link pointer.

Journal control flags.

ANSI magnetic tape header label
accessibility character.

Add one or more access control
entries.

Remove an access control entry.

Modify an ACL entry.

1 Attributes with an ATR$C_ prefix have two names: one with the ATR$C_ prefix for the code
and one with an ATR$S_ prefix for the size, which is not included in the list.

2Protected (can be written to only by system or owner).

3 Locked (cannot be written to while the file is locked against writers).

5 Read only.

7Exclusive access required. This operation does not complete successfully if other readers or
writers are allowed.
10Not supported for Files-11 On-Disk Structure Level 1 or magnetic tapes.

11 The status from this attribute operation is returned in FIB$L_ACL_STATUS.

(continued on next page)

1-17

ACP-QIO Interface
1.3 ACP Subfunctions

1-18

Table 1-7 (Cont.) ACP-QIO Attributes

Maximum
Size

Attribute Name 1 (bytes) Meaning

ATR$C_FNDACLENT10 11 255 Locate an ACL entry.

ATR$C_FNDACETYP10 11 255 Find a specific type of ACE.

ATR$C_DELETEACL7 10 11 255 Delete the entire ACL, retaining any
unprotected entries.

ATR$C_READACL10 11 512 Read the entire ACL or as much as
will fit in the supplied buffer. Only
complete ACEs are transferred.
Thus, the supplied buffer can not be
completely filled.

ATR$C_ACLLENGTH 10 11 4 Return the length of the ACL.

ATR$C_READACE10 11 255 Read a single ACE.

ATR$C_RESERVED9 10 380 Modify reserve area.

ATR$C_HIGHWATER10 4 High-water mark (user read-only).

ATR$C_PRIVS_USED8 10 4 Privileges used to gain access.

ATR$C_MATCHING_ACE8 10 255 ACE used to gain access (if any).

ATR$C_ACCESS_MODE Access mode for following attribute
descriptors.

ATR$C_FILE_SPEC10 512 Convert FID to file specification.

ATR$C_BUFFER_OFFSET4 2 Offset ·length for ANSI magnetic tape
header label buffer.

ATR$C_DELETE_ALL71011 255 Delete the entire ACL.

ATR$C_GRANT_ACE1011 255 Return an ACE which grants or
denies access.

ATR$C_NEXT _ACE1011 4 Step on to point to the next ACE in
the ACL.

1 Attributes with an ATR$C_ prefix have two names: one with the ATR$C_ prefix for the code
and one with an ATR$S_ prefix for the size, which is not included in the list.

4 Not supported on write operations to MTAACP; defaults are returned on read operations.

7Exclusive access required. This operation does not complete successfully if other readers or
writers are allowed.
8This attribute can only be retrieved on the initial file access or create operation.

9The actual length available can decrease if the file is extended in a noncontiguous manner or if
an ACL is applied to the file.

10Not supported for Files-11 On-Disk Structure Level 1 or magnetic tapes.

11 The status from this attribute operation is returned in FIB$L_ACL_STATUS.

Table 1-8 lists the bits contained in the file characteristics longword,
which is read with the ATR$C_UCHAR attribute.

ACP-QIO Interface
1.3 ACP Subfunctions

Table 1-8 File Characteristics Bits

FCHNOBACKUP

FCH$M_READCHECK

FCH$M_WRITCHECK

FCH$M_CONTIGB

FCH$M_LOCKED

FCH$M_CONTIG

FCH$M_BADACL

FCH$M_SPOOL

FCH$M_DIRECTORY

FCH$M_BADBLOCK

FCH$M_MARKDEL

FCH$M_ERASE

1.4 ACP QIO Record Attributes Area

File is not to be backed up.

Verify all read operations.

Verify all write operations.

Keep file as contiguous as possible.

File is deaccess-locked.

File is contiguous.

File's ACL is corrupt.

File is an intermediate spool file.

File is a directory.

File contains bad blocks.

File is marked for deletion.

Erase file contents before deletion.

Figure 1-7 shows the format of the record attributes area.

Figure 1-7 ACP-QIO Record Attributes Area

31 24 23 16 15 8 7 0

FAT$W_RSIZE FAT$B_RATTRIB l FAT$B_RTYPE*

FAT$L_HIBLK

FAT$L_EFBLK

FAT$B_VFCSIZE I FAT$B_BKTSIZE FAT$W_FFBYTE

FAT$W_DEFEXT FAT$W_MAXREC

FAT$W_GBC

(6 Bytes ReseNed for Future Use)

FAT$W_VERSIONS Not Used

*FAT$V_RTYPE Bits 0-3; FAT$V_FILEORG Bits 4-7

4

8

12

16

20

24

28

ZK-0641-GE

1-19

ACP-QIO Interface
1.4 ACP QIO Record Attributes Area

1-20

Table 1-9 lists the record attributes values and their meanings.

Table 1-9 ACP Record Attributes Values

Field Value

FAT$B_RTYPE

FAT$V _RTYPE

FAT$V _FILEORG

FAT$B_RATTRIB

FAT$W_RSIZE

FAT$L_HIBLK2

FAT$L_EFBLK2 3

FAT$W _FFBYTE3

FAT$B_BKTSIZE

Meaning

Record type. Contains FAT$V_RTYPE and
FAT$V _FILEORG.

Record type. The following bit values are defined:

FAT$C_FIXED Fixed-length record

FAT$C_ VARIABLE Variable-length record

FAT$C_ VFC Variable-length record with fixed
control

FAT$C_UNDEFINED Undefined record format (stream
binary)

FAT$C_STREAM RMS stream format

FAT$C_STREAMLF Stream terminated by LF

FAT$C_STREAMCR Stream terminated by CR

File organization. The following bit values are defined:

FAT$C_DIRECT Direct file organization1

FAT$C_INDEXED

FAT$C_RELATIVE

Indexed file organization

Relative file organization

FAT$C_SEQUENTIAL Sequential file organizatioo

Record attributes. The following bit values are defined:

FAT$M_FORTRANCC FORTRAN carriage control

FAT$M_IMPLIEDCC

FAT$M_PRINTCC

FAT$M_NOSPAN

Record size in bytes.

Implied carriage control

Print file carriage control

No spanned records

Highest allocated VBN. The ACP maintains this field when
the file is extended or truncated. Attempts to modify this field
in a write attributes operation are ignored.

FAT$W_HIBLKH High-order 16 bits

FAT$W_HIBLKL Low-order 16 bits

End-of-file VBN

FAT$W_EFBLKH High-order 16 bits

FAT$W_EFBLKL Low-order 16 bits

First free byte in FAT$L_EFBLK.

Bucket size in blocks.

1 Defined but not implemented.

2 1nverted format field. The high- and low-order 16 bits are transposed for compatibility with
PDP-11 software.
3When the end-of-file position corresponds to a block boundary, by convention
FAT$L_EFBLK contains the end-of-file VBN plus 1, and FAT$W_FFBYTE contains 0.

(continued on next page)

ACP-QIO Interface
1.4 ACP QIO Record Attributes Area

Table 1-9 (Cont.) ACP Record Attributes Values

Field Value

FAT$8_ VFCSIZE

FAT$W_MAXREC

FAT$W_DEFEXT

FAT$W_GBC

FAT$W_ VERSIONS

Meaning

Size in bytes of fixed-length control for VFC records.

Maximum record size in bytes.

Default extend quantity.

Global buffer count.

Default version limit; valid only if the file is a directory.

1.5 ACP-QIO Attributes Statistics Block
Figure 1-8 shows the format of the attributes statistics block. Table 1-10
lists the contents of this block.

Figure 1-8 ACP-QIO Attributes Statistics Block

31 16 15 87 0

SBK$L_STLBN

SBK$L_FILESIZE

[SBK$L_FCB SBK$B_LCNT I SBK$B_ACNT

(Not Used)

SBK$W_LCNT SBK$W_ACNT

SBK$W_TCNT SBK$W_WCNT

SBK$L_READS

SBK$L_WRITES

ZK-0642-GE

Table 1-10 Contents of the Statistics Block

Field Field Values

SBK$L_STLBN

Meaning

Contains the starting LBN of the file if the file is contiguous. If the
file is not contiguous, this field contains a value of 0. The LBN
appears as an inverted longword (the high- and low-order 16 bits
are transposed for PDP-11 compatibility). The following subfields
are defined:

(continued on next page)

1-21

ACP-QIO Interface
1.5 ACP-QIO Attributes Statistics Block

Table 1-10 (Cont.) Contents of the Statistics Block

Field

SBK$L_FILESIZE

SBK$B_ACNT1

SBK$B_LCNT1

SBK$L_FCB

SBK$W_ACNT1

SBK$W _LCNT1

SBK$W_WCNT1

SBK$W_ TCNT1

SBK$L_READS

SBK$L_WRITES

Field Values

SBK$W_STLBNH

SBK$W_STLBNL

SBK$W_FILESIZH

SBK$W_FILESIZL

Meaning

Starting LBN (high-order 16 bits).

Starting LBN (low-order 16 bits).

Contains the size of the file in blocks. The file size appears as an
inverted longword (the high- and low-order 16 bits are transposed
for PDP-11 compatibility). The following subfields are defined:

File size (high-order 16 bits).

File size (low-order 16 bits).

Access count (low byte). Field is for PDP-11 compatibility.

Lock count (low byte). Field is for PDP-11 compatibility.

System pool address of the file's file control block.

Access count (number of channels with file open currently).

Lock count (the number of access operations that have locked the
file against writers).

Writer count (the number of channels that currently have the file
open for write).

Truncate lock count (the number of access operations that have
locked the file against truncation).

Number of read operations executed for file on this channel.

Number of write operations executed for file on this channel.

1 Accesses from processes on the local node in a cluster are counted.

1.6 Major Functions

1.6.1 Create File

1-22

The following sections describe the operation of the major ACP functions.
Each section describes the required and optional parameters for a
particular function, as well as the sequence in which the function is
performed. For clarity, when a major function invokes a subfunction, the
input parameters used by the subfunction are omitted.

Create file is a virtual 1/0 function that creates a directory entry or a file
on a disk device, or a file on a magnetic tape device.

The following is the function code:

• 10$_CREATE

The following are the function modifiers:

• 10$M_CREATE-Creates a file.

ACP-QIO Interface
1.6 Major Functions

• 10$M_ACCESS-Opens the file on your channel.

• 10$M_DELETE-Marks the file for deletion (applicable only to disk
devices).

1.6.1.1 Input Parameters
The following are the device- or function-dependent arguments for
IO$_ CREATE:

• Pl-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional).

• P3-The address of the word that is to receive the length of the
resultant file name string (optional).

• P4-The address of a descriptor for a buffer that is to receive the
resultant file name string (optional).

• P5-The address of a list of attribute descriptors (optional).

Table 1-11 lists fields in the FIB that are applicable to the IO$_CREATE
operation.

Table 1-11 10$_CREATE and the File Information Block

Field Field Values Meaning

FIB$L_ACCTL Specifies field values that control access to the file. The
following bits are applicable to the 10$_CREATE function:

FIB$M_REWIND Set to rewind magnetic tape before creating the file. Any data
currently on the tape is overwritten.

FIB$M_CURPOS Set to create magnetic tape file at the current tape position.
(Note: a magnetic tape file is created at the end of the volume
set if neither FIB$M_REWIND nor FIB$M_CURPOS is set.) If
the tape is not positioned at the end of a file, FIB$M_CURPOS
creates a file at the next file position. Any data currently on the
tape past the current file position is overwritten.

FIB$M_WRITETHRU Specifies that the file header is to be written back to the disk. If
not specified and the file is opened, writing of the file header can
be deferred to some later time.

FIB$W_CNTRLFUNC Specifies the following value, which allows you to control actions
subsequent to EOT detection on a magnetic tape file.

(continued on next page)

1-23

ACP-QIO Interface
1.6 Major Functions

Table 1-11 (Cont.) 10$_CREATE and the File Information Block

Field

FIB$W_FID

Fl8$W_DID

FIB$W_NMCTL

Fl8$W_ VERLIMIT

Fl8$L_ACL_STATUS

Field Values

FIB$C _ USEREOT

Fl8$M_NEWVER

FIB$M_SUPERSEDE

FIB$M_LOWVER

Fl8$M_H IGHVER

Meaning

Set on a per-file basis to specify user EOT mode. If this
bit is set, user EOT handling is enabled. When writing, if
EOT has been detected (considered a "serious exception")
and user EOT handling is enabled, then the magnetic tape
system returns the alternate success code SS$_ENDOFTAPE.
When reading, if EOV is reached, then the alternate success
code SS$_ENDOFVOLUME is returned. In either case, all
subsequent 1/0 requests for the volume are completed with a
failure status return of SS$_SERIOUSEXCP. The driver does not
execute any 1/0 functions until the serious exception has been
explicitly cleared by issuing an 10$_ACPCONTROL function
(see Section 1.6.7). If the file is deaccessed or closed, the user
EOT mode is cleared after further processing of the magnetic
tape.

Contains the file ID of the file created or entered.

Contains the file identifier of the directory file.

Controls the processing of the file name in a directory operation.
The following bits are applicable to the 10$_CREATE function:

Set to create file of same name with next higher version number.
Only for disk devices.

Set to supersede an existing file of the same name, type, and
version. Only for disk devices.

Set on return if a lower numbered version of the file exists. Only
for disk devices.

Set on return if a higher numbered version of the file exists.
Only for disk devices.

Specifies the version limit for the directory entry created. Used
only for disk devices and only when the first version of a new
file is created. If 0, the directory default is used. If a directory
operation was performed, FIB$W_ VERLIMIT always contains
the actual version limit of the file.

Status of the requested ACL attribute operation, if any. The ACL
attributes are included in Table 1-7. If no ACL attributes are
given, SS$_NORMAL is returned here.

1.6.1.2 Disk ACP Operation

1-24

If the modifier IO$M_CREATE is specified, a file is created. The file ID of
the file created is returned in FIB$W _FID. If the modifier IO$M_DELETE
is specified, the file is marked for deletion.

If a nonzero directory ID is specified in FIB$W_DID, a directory entry
is created. The file name specified by parameter P2 is entered in the
directory, together with the file ID in FIB$W_FID. (Section 1.3.1.1
describes the format for the file name string.) Wildcards are not permitted.
Negative version numbers are treated as equivalent to a 0 version number.
If a result string buffer and length are specified by P3 and P4, the actual
file name entered, and its length, are returned.

ACP-QIO Interface
1.6 Major Functions

The version number of the file receives the following treatment:

• If the version number in the specified file name is 0 or negative, the
directory entry created gets a version number one greater than the
highest previously existing version of that file (or version 1 if the file
did not previously exist).

• If the version number in the specified file name is a nonzero number
and FIB$M_NEWVER is set, the directory entry created gets a version
number one greater than the highest previously existing version of
that file, or the specified version number, whichever is greater.

• If the version number in the specified file name is a nonzero number
and the directory already contains a file of the same name, type,
and version, the previously existing file is set aside for deletion if
FIB$M_SUPERSEDE is specified. If FIB$M_SUPERSEDE is not
specified, the create operation fails with an SS$_DUPFILNAM status.

• If, after creating the new directory entry, the number of versions of the
file exceeds the version limit, the lowest numbered version is set aside
for deletion.

• If the file did not previously exist, the new directory entry is
given a version limit as follows: the version limit is taken from
FIB$W _ VERLIMIT if it is a nonzero number; if it is 0, the version
limit is taken from the default version limit of the directory file; if the
default version limit of the directory file is 0, the version limit is set to
32,767 (the highest possible number).

The file name string entered in the directory is returned using the P3
and P4 result string parameters, if present. The file name string is
also written into the header. If no directory operation was requested
(FIB$W _DID is 0), the file name string specified by P2, if any, is written
into the file header.

If an attribute list is specified by P5, a write attributes subfunction is
performed (see Section 1.3.5).

If the modifier 10$M_ACCESS is specified, the file is opened (see
Section 1.3.2).

If the extend enable bit FIB$M_EXTEND is specified in the FIB, an extend
subfunction is performed (see Section 1.3.3).

Finally, if a file was set aside for deletion (10$M_DELETE is specified),
that file is deleted. If the file is deleted because the FIB$M_SUPERSEDE
bit was set, the alternate success status SS$_SUPERSEDE is returned in
the 1/0 status block. If the file is deleted because the version limit was
exceeded, the alternate success status SS$_FILEPURGED is returned.

If an error occurs in the operation of an 10$_CREATE function, all actions
performed to that point are reversed (the file is neither created nor
changed), and the error status is returned to the user in the 1/0 status
block.

1-25

1.6.2

ACP-QIO Interface
1.6 Major Functions

1.6.1.3 Directory Entry Creation
Creating a new version of a file eliminates default access to the previously
highest version of the file. For example, creating RESUME. TXT;4 masks
RESUME.TXT;3 so that the DCL command TYPE RESUME.TXT yields
the contents of version 4, not version 3. To protect the contents of the
earlier version of a file, the creator of a file must have write access to the
previous version of a file of the same name.

1.6.1.4 Magnetic Tape ACP Operation
No operation is performed unless the IO$M_CREATE modifier is specified.
The magnetic tape is positioned as specified by FIB$M_REWIND and
FIB$M_CURPOS, and the file is created. The name specified by the P2
parameter is written into the file header label.

If P5 specifies an attribute list, a write attributes subfunction is performed
(see Section 1.3.5).

If the modifier IO$M_ACCESS is specified, the file is opened (see
Section 1.3.2).

Access File

1-26

This virtual I/O function searches a directory on a disk device or a
magnetic tape for a specified file and accesses that file if found.

The following is the function code:

• I0$_ACCESS

The following are the function modifiers:

• I0$M_CREATE-Creates a file.

• IO$M_ACCESS-Opens the file on your channel.

1.6.2.1 Input Parameters
The following are the device- or function-dependent arguments for
IO$_ACCESS:

• Pl-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional).

• P3-The address of the word that is to receive the length of the
resultant file name string (optional).

• P4-The address of a descriptor for a buffer that is to receive the
resultant file name string (optional).

• P5-The address of a list of attribute descriptors (optional).

Table 1-12 lists FIB fields that are applicable to the IO$_ACCESS
operation.

Table 1-12 10$_ACCESS and the File Information Block

ACP-QIO Interface
1.6 Major Functions

Field Field Values Meaning

FIB$W _ CNTRLFUNC

FIB$W_ VERLIMIT

FIB$L_ACL_STATUS

FIB$L_STATUS

FIB$L_ALT _ACCESS

FIB$C_USEREOT

FIB$V _ALT _REQ

FIB$V_ALT_
GRANTED

Specifies the value that allows the user to control actions
subsequent to EOT detection on a magnetic tape file.

Set on a per-file basis to specify user EOT mode. If this bit
is set, the magnetic tape driver notifies the magnetic tape
system when EOT has been detected (considered a "serious
exception") when a file is accessed. In turn, the magnetic tape
system returns the alternate success code SS$_ENDOFTAPE
or SS$_ENDOFVOLUME. All subsequent 1/0 requests are
completed with a failure status return of SS$_SERIOUSEXP.
The driver does not execute any 1/0 functions until the serious
exception has been explicitly cleared by issuing an
10$_ACPCONTROL function (see Section 1.6.7). If the file
is deaccessed or closed, the user EOT mode is cleared after
further processing of the magnetic tape.

Receives the version limit for the file. Applicable only if
FIB$W_DID is a nonzero number (if a directory lookup is done).
Used only for disk devices.

Status of the requested ACL attribute operation, if any. The ACL
attributes are included in Table 1-7. If no ACL attributes are
given, SS$_NORMAL is returned here.

Alternate access status. The following bits are supported:

Set to indicate whether the alternate access bit is required for
the current operation. If not set, the alternate access bit is
optional.

If FIB$V_ALT_REQ = O and the alternate access check
succeeded, the FIB bit returned from the file system is set.

A 32-bit mask that represents an access mask to check against
file protection; for example, to open a file for read and to check
whether it can be deleted. The mask has the same configuration
as the standard protection mask.

1.6.2.2 Operation
If a nonzero directory file ID is specified in FIB$W _DID, a lookup
subfunction is performed (see Section 1.3.1.) The version limit of the
file found is returned in FIB$W _ VERLIMIT.

If the directory search fails with a 'file not found' condition and the
IO$M_CREATE function modifier is specified, the function is reexecuted as
a CREATE. In that case, the argument interpretations for IO$_CREATE,
rather than those for IO$_ACCESS, apply.

If IO$M_ACCESS is specified, an access subfunction is performed to open
the file (see Section 1.3.2).

If P5 specifies an attribute list, a read attributes subfunction is performed
(see Section 1.3.5).

1-27

1.6.3

1.6.4

ACP-QIO Interface
1.6 Major Functions

Deaccess File
Deaccess file is a virtual I/O function that deaccesses a file and, if specified,
writes final attributes in the file header.

The following is the function code:

• I0$_DEACCESS

IO$_DEACCESS takes no function modifiers.

1.6.3.1 Input Parameters
The following are the device- or function-dependent arguments for
IO$_DEACCESS:

• Pl-The address of the file information block (FIB) descriptor.

• P5-The address of a list of attribute descriptors (optional).

The following FIB field is applicable to a IO$_DEACCESS function:

Field Meaning

FIB$W_FID File identification of the file being deaccessed. This field can
contain a value of 0. If it does not, it must match the file
identifier of the accessed file.

FIB$L_AGL_STATUS Status of the requested AGL attribute operation, if any. The
AGL attributes are included in Table 1-7. If no AGL attributes
are given, SS$_NORMAL is returned here.

1.6.3.2 Operation

Modify File

1-28

For disk files, if P5 specifies an attribute control list and the file was
accessed for a write operation, a write attributes subfunction is performed
(see Section 1.3.5). If the file was opened for write, no attributes were
specified, and FIB$M_DLOCK was set when the file was accessed, the
deaccess lock bit is set in the file header, inhibiting further access to that
file.

For disk files, if the truncate enable bit FIB$M_TRUNCATE is specified in
the FIB, a truncate subfunction is performed (see Section 1.3.4).

Finally, the file is closed. Trailer labels are written for a magnetic tape file
that was opened for write.

Modify file is a virtual I/O function that modifies the file attributes or
allocation of a disk file. The IO$_MODIFY function is not applicable to
magnetic tape.

The following is the function function code:

• I0$_MODIFY

IO$_MODIFY takes no function modifiers.

1.6.5

ACP-QIO Interface
1.6 Major Functions

1.6.4.1 Input Parameters

Field

FIB$L_ACCTL

FIB$W_ VERLIMIT

FIB$L_ACL_STATUS

The following are the device- or function-dependent arguments for
10$_MODIFY:

• Pl-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional). If
specified, the directory is searched for the name.

• P3-The address of the word that is to receive the length of the
resultant file name string (optional).

• P4-The address of a descriptor for a buffer that is to receive the
resultant file name string (optional).

• P5-The address of a list of attribute descriptors (optional).

The following FIB fields are applicable to the 10$_MODIFY function:

Field Values

FIB$M_WRITETHRU

Meaning

Specifies field values that control access to the file. The
following bits are applicable to the 10$_MODIFY function:

Specifies that the file header is to be written back to the disk.
If not specified and the file is currently open, writing of the file
header can be deferred to some later time.

If a nonzero number, specifies the version limit for the file.

Status of the requested ACL attribute operation, if any. The ACL
attributes are included in Table 1-7. If no ACL attributes are
given, SS$_NORMAL is returned here.

1.6.4.2 Operation

Delete File

If a nonzero directory ID is specified in FIB$W_DID, a lookup subfunction
is executed (see Section 1.3.1). If a nonzero version limit is specified in
FIB$W _ VERLIMIT and the directory entry found is the latest version of
that file, the version limit is set to the value specified.

If P5 specifies an attribute list, a write attributes subfunction is performed
(see Section 1.3.5).

The file can be either extended or truncated. If FIB$M_EXTEND is
specified in the FIB, an extend subfunction is performed (see Section 1.3.3).
If FIB$M_TRUNCATE is specified in the FIB, a truncate subfunction is
performed (see Section 1.3.4). Extend and truncate operations cannot be
performed at the same time.

Delete file is a virtual 1/0 function that removes a directory entry or file
header from a disk volume.

The following is the function code:

• 10$_DELETE

1-29

1.6.6

1.6.7

ACP-QIO Interface
1.6 Major Functions

Field

FIB$L_ACCTL

FIB$W_FID

The following is the function modifier:

• IO$M_DELETE-Deletes the file (or marks it for deletion).

The following are the device- or function-dependent arguments for
10$_DELETE:

• Pl-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional).

• P3-The address of the word that is to receive the length of the
resultant file name string (optional).

• P4-The address of a descriptor for a buffer that is to receive the
resultant file name string (optional).

The following FIB fields are applicable to the IO$_DELETE function:

Field Values Meaning

Specifies field values that control access to the file. The
following bit is applicable to the 10$_DELETE function:

FIB$M_WRITETHRU Specifies that the file header is to be written back to the disk.
If not specified and the file is currently open, writing of the file
header can be deferred to some later time.

Specifies the file identification to be deleted.

1.6.5.1 Operation

Mount

ACP Control

1-30

If a nonzero directory ID is specified in FIB$W _DID, a lookup subfunction
is performed (see Section 1.3.1). The file name located is removed from the
directory.

If the function modifier IO$M_DELETE is specified, the file is marked for
deletion. If the file is not currently open, it is deleted immediately. If the
file is open, it is deleted when the last accessor closes it.

Mount is a virtual I/O function that informs the ACP when a disk or
magnetic tape volume is mounted. MOUNT privilege is required.
10$_MOUNT takes no arguments or function modifiers. This function
is a part of the volume mounting operation only, and it is not meant for
general use. Most of the actual processing is performed by the MOUNT
command or the Mount Volume ($MOUNT) system service.

ACP Control is a virtual I/O function that performs miscellaneous control
functions, depending on the arguments specified.

The following is the function code:

• IO$_ACPCONTROL

The following is the function modifier:

• IO$M_DMOUNT-Dismounts a volume.

ACP-QIO Interface
1.6 Major Functions

1.6. 7 .1 Input Parameters
The following are the device- or function-dependent arguments for
IO$_ACPCONTROL:

• Pl-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional).

• P3-The address of the word that is to receive the length of the
resultant file name string (optional).

• P4-The address of a descriptor for a buffer that is to receive the
resultant file name string (optional).

Table 1-13 lists FIB fields that control the processing of the
IO$_ACPCONTROL function.

Table 1-13 10$_ACPCONTROL and the File Information Block

Field Field Values

FIB$W_CNTRLFUNC

FIB$L_CNTRLVAL

FIB$L_ACL_STATUS

FIB$L_STATUS

FIB$V _ALT _REQ

FIB$V_ALT_GRANTED

FIB$L_ALT_ACCESS

Meaning

Specifies the control function to be performed. This field
overlays FIB$W_EXCTL.

Specifies additional function-dependent data. This field
overlays FIB$L_EXSZ.

Status of the requested ACL attribute operation, if any.
The ACL attributes are included in Table 1-7. If no ACL
attributes are given, SS$_NORMAL is returned here.

Alternate access status. The following bits are supported:

Set to indicate whether the alternate access bit is required
for the current operation. If not set, the alternate access bit
is optional.

If FIB$V _ALT _REQ = 0 and the alternate access check
succeeded, the FIB bit returned from the file system is set.

A 32-bit mask that represents an access mask to check
against file protection; for example, to open a file for read
and to check whether it can be deleted or not. The mask
has the same configuration as the standard protection
mask.

1.6.7.2 Magnetic Tape Control Functions
Table 1-14 lists FIB field applicable to magnetic tape operations.

1-31

ACP-QIO Interface
1.6 Major Functions

Table 1-14 Magnetic Tape Operations and the File Information Block

Field Field Values Meaning

FIB$W_CNTRLFUNC

FIB$C_REWINDFIL

FIB$C_REWINDVOL

FIB$C _POSEN D

FIB$C_NEXTVOL

FIB$C_SPACE

FIB$C_CLSEREXCP

Several ACP control functions are used for magnetic tape
positioning. These functions are specified by supplying a FIB
with P1 containing the FIB descriptor address. Modifiers and
parameters P2, P3, and P4 are not allowed. These functions
clear serious exceptions in magnetic tape drivers. The following
control functions can be specified tb control magnetic tape
positioning:

Rewind to beginning-of-file.

Rewind to beginning-of-volume set.

Position to end-of-volume set.

Force next volume.

Space n blocks forward or backward. The FIB$L_CNTRLVAL
field specifies the number of magnetic tape blocks to space
forward if positive or to space backward if negative.

If set, clears the serious exception in the magnetic tape driver
(see FIB$C_USEREOT in Section 1.6.1 and Section 1.6.2). If
writing, this allows the user to write data blocks beyond the EOT
marker, which can result in the magnetic tape not conforming
to the ANSI standard for magnetic tapes (see ANSI Standard
X3.27-1978). If reading, this allows the user to handle the move
to the next volume or to stop reading the tape. The user should
not attempt to read past EOV.

1.6. 7 .3 Miscellaneous Disk Control Functions

1-32

Several ACP control functions are available for disk volume control. The
following function does not use parameters P2, P3, and P4:

10$M_DMOUNT Specifying the dismount modifier on the 10$_ACPCNTRL
function executes a dismount QIO. No parameters in the
FIB are used; the FIB can be omitted. This function does
not perform a dismount by itself, but is used to synchronize
the ACP with the DISMOUNT command and the Dismount
Volume ($DISMOUNT) system service.

The FIB$W_CNTRLFUNC field of the FIB specifies the following
miscellaneous control functions (with no modifier on the 10$_
ACPCONTROL function code). These functions use no other parameters.

FIB$C_REMAP Remap a file. The file window for the file open on the user's
channel is remapped so that it maps the entire file.

Fl8$C_LOCK_ VOL

FIB$C_UNLK_ VOL

ACP-QIO Interface
1.6 Major Functions

Allocation lock the volume. Operations that change the file
structure, such as file creation, deletion, extension, and
deaccess, are not permitted. If such requests are queued to
the file system for an allocation-locked volume, they are not
processed until the Fl8$C_UNLK_VOL function is issued to
unlock the volume.

To issue the FIB$C_LOCK_VOL function, you must have
either a system UIC or SYSPRV privilege, or be the owner of
the volume.

Unlock the volume. Cancels FIB$C_LOCK_ VOL. To issue
this function, you must have either a system UIC or SYSPRV
privilege, or be the owner of the volume.

1.6. 7 .4 Disk Quotas
Disk quota enforcement is enabled by a quota file on the volume, or
relative volume 1 if the file is on a volume set. The quota file appears in
the volume's master file directory (MFD) under the name QUOTA.SYS;l.
This section describes the control functions that operate on the quota file.

Table 1-15 lists the enable and disable quota control functions.

Table 1-15 Disk Quota Functions (Enable/Disable)

Value

Fl8$C_ENA_QUOTA

Fl8$C_DSA_QUOTA

Meaning

Enable the disk quota file. If a nonzero directory file ID is specified in Fl8$W_DID, a
lookup subfunction is performed to locate the quota file (see Section 1.3.1). To issue
this function, you must have either a system UIC or SYSPRV privilege, or be the
owner of the volume.

The quota file specified by FIB$W_FID, if present, is accessed by the ACP, and quota
enforcement is turned on. By convention, the quota file is named [O,O]QUOTA.SYS;1.
Therefore, FIB$W_DID should contain the value 4,4,0 and the name string specified
with P2 should be "QUOTA.SYS;1".

Disable the disk quota file. The quota file is deaccessed and quota enforcement is
turned off. To issue this function, you must have either a system UIC or SYSPRV
privilege, or be the owner of the volume.

Table 1-16 lists the quota control functions that operate on individual
entries in the quota file. Each operation transfers quota file data to and
from the ACP using a quota data block. This block has the same format as
a record in the quota file. Figure 1-9 shows the format of this block.

10$_ACPCONTROL functions that transfer quota file data between
the caller and the ACP use the following device- or function-dependent
arguments:

• P2-The address of a descriptor for the quota data block being sent to
the ACP.

• P3-The address of a word that returns the data length.

• P4-The address of a descriptor for a buffer to receive the quota data
block returned from the ACP.

1-33

ACP-QIO Interface
1.6 Major Functions

Table 1-16 Disk Quota Functions (Individual Entries)

Value

FIB$C_ADD_QUOTA

FIB$C_EXA_QUOTA

FIB$C_MOD_QUOTA

FIB$C_REM_QUOTA

1-34

Meaning

Add an entry to the disk quota file, using the UIC and quota specified in the P2
argument block. FIB$C_ADD_QUOTA requires write access to the quota file.

Examine a disk quota file entry. The entry whose UIC is specified in the P2 argument
block is returned in the P4 argument block, and its length is returned in the P3
argument word. Using two flags in FIB$L_CNTRLVAL, it is possible to search
through the quota file using wildcards. The two flags are:
FIB$M_ALL_MEM Match all UIC members

FIB$M_ALL_GRP Match all UIC groups

The ACP maintains position context in FIB$L_WCC. On the first examine call, you
specify O in FIB$L_WCC; the ACP returns a nonzero value so that each succeeding
examine call returns the next matching entry.

Read access to the quota file is required to examine all non-user entries.

Modify a disk quota file entry. The quota file entry specified by the UIC in the P2
argument block is modified according to the values in the block, as controlled by
three flags in FIB$L_CNTRLVAL:

FIB$M_MOD_PERM Change the permanent quota

FIB$M_MOD_OVER Change the overdraft quota

FIB$M_MOD_USE Change the usage data

The usage data can be changed only if the volume is locked by FIB$C_LOCK_ VOL
(see Section 1.6.7.3). FIB$C_MOD_QUOTA requires write access to the quota file.

The P3 and P4 arguments return the modified quota entry to you.

By using the flags FIB$M_ALL_MEM and FIB$M_ALL_GRP, you can search through
the quota file using wildcards just as you would with the FIB$C_EXA_QUOTA
function.

Remove a disk quota file entry whose UIC is specified in the P2 argument block.
FIB$C_REM_QUOTA requires write access to the quota file.

The P3 and P4 arguments return the removed quota file entry to you.

By using the flags FIB$M_ALL_MEM and FIB$M_ALL_GRP, you can search through
the quota file using wildcards just as you would with the FIB$C_EXAQUOTA function.

1. 7 1/0 Status Block

Figure 1-9 Quota File Transfer Block

31 0

Flags Longword (DQF$L_FLAGS)

User Identification Code (DQF$L_UIC)

Current Usage (DQF$L_USAGE)

Permanent Quota (DQF$L_PERMQUOTA)

Overdraft Limit (DQF$L_OVERDRAFT)

1--- ---i

(Reserved for Future Use)
1--- ---i

ZK-0643-GE

ACP-QIO Interface
1.6 Major Functions

Figure 1-10 shows the I/O status block (IOSB) for ACP-QIO functions.
Appendix A lists the status returns for these functions. (The VMS
System Messages and Recovery Procedures Reference Manual provides
explanations and suggested user actions for these returns.)

The file ACP returns a completion status in the first longword of the IOSB.
In an extend operation, the second longword is used to return the number
of blocks allocated to the file. If a contiguous extend operation
(FIB$M_ALCON) fails, the second longword is used to return the size of
the file after truncation.

Values returned in the IOSB are most useful during operations in
compatibility mode. When executing programs in the native mode, use
the values returned in FIB locations.

Figure 1-10 IOSB Contents - ACP-QIO Functions

+2 IOSB
Not Used Status

+4

ZK-0644-GE

If an extend operation (including CREATE) was performed, IOSB+4
contains the number of blocks allocated, or the largest available contiguous
space if a contiguous extend operation failed. If a truncate operation was
performed, IOSB+4 contains the number of blocks added to the file size to
reach the next cluster boundary.

1-35

2 Card Reader Driver

This chapter describes the use of the VMS card reader driver that supports
the CRll card reader.

2.1 Supported Card Reader Device

2.2 Driver Features

The CRll card reader reads standard 80-column punched data cards.

The VMS card reader driver provides the following features:

• Support for multiple controllers of the same type; for example, more
than one CRll can be used on the system

• Binary, packed Hollerith, and translated 026 or 029 read modes

• Unsolicited interrupt support for automatic card reader input spooling

• Special card punch combinations to indicate an end-of-file condition
and to set the translation mode

• Error recovery

The following sections describe the read modes, special card punch
combinations, and error recovery in greater detail.

The VMS operating system provides the following card reader device- or
function-dependent modifier bits for read data operations:

• IO$M_PACKED-Read packed Hollerith code

• IO$M_BINARY-Read binary code

Ifl0$M_PACKED is set, the data is packed and stored in sequential bytes
of the input buffer. If IO$M_BINARY is set, the data is read and stored
in sequential words of the input buffer. IO$M_BINARY takes precedence
over IO$M_PACKED.

The read mode can also be set by a special card punch combination that
sets the translation mode (see Section 2.2.1.2), or by the set mode function
(see Section 2.4.3).

2.2.1 Special Card Punch Combinations
The VMS card reader driver recognizes three special card punch
combinations in column 1 of a card. One combination signals an end
of-file condition. The other two combinations set the current translation
mode.

2-1

2.2.2

Card Reader Driver
2.2 Driver Features

2.2.1.1 End-of-File Condition
A card with the 12-11-0-1-6-7-8-9 holes punched in column 1 signals an
end-of-file condition. If the read mode is binary, the first eight columns
must contain that punch combination.

2.2.1.2 Set Translation Mode
If the read mode is nonbinary, nonpacked Hollerith (the IO$M_BINARY
and IO$M_PACKED function modifiers are not set), the current
translation mode can be set to the 026 or 029 punch code. (Table 2-5 lists
the 026 and 029 punch codes.) A card with the 12-2-4-8 holes punched
in column 1 sets the translation mode to the 026 code. A card with the
12-0-2-4-6-8 holes punched in column 1 sets the translation mode to the
029 code. The translation mode can be changed as often as required.

If a translation mode card contains punched information in columns 2
through 80, it is ignored.

The system can read cards that were punched on an 026 punch or an 029
punch. By default, the translation mode is 029; that is, the system reads
cards from an 029 punch. However, you can change the translation mode
by using the following:

• The SET CARD_READER command

• Translation mode cards

Use the SET CARD_READER command, with the /026 or /029 qualifier,
to set the card reader to accept cards from either an 026 or an 029 card
punch.

Logical, virtual, and physical read functions result in only one card
being read. If a translation mode card is read, the read function is not
completed, and another card is read immediately.

Submitting Batch Jobs Through the Card Reader

2-2

When you submit a batch job through a system card reader, precede the
card deck containing the command procedure with cards containing JOB
and PASSWORD commands. These cards specify your user name and
password and, when executed, effect a login for you. The last card in
the deck must contain the EOJ (End of Job) command. The EOJ card is
equivalent to logging out. You can also use an overpunch card instead of
an EOJ card to signal the end of a job. To do this, use an EOF card
(12-11-0-1-6-7-8-9) overpunch or use the EOJ command. Figure 2-1
illustrates a card reader batch job.

2.2.3

2.2.4

Figure 2-1 A Card Reader Batch Job

$EOJ

... Command Input Stream ...

$ PASSWORD HENRY

$JOB HIGGINS

Card Reader Driver
2.2 Driver Features

ZK-0812-GE

When the system reads a job from the card reader, it validates the
user name and password specified on the JOB and PASSWORD cards.
Then, it copies the entire card deck into a temporary disk file named
INPBATCH. COM in your default disk and directory, and it queues the
job for batch execution. Thereafter, processing is the same as for jobs
submitted interactively with the SUBMIT command. When the batch job
is completed, the operating system deletes the INPBATCH.COM file.

You can prevent other users from seeing your password by suppressing
printing when you keypunch the PASSWORD card.

Passing Data to Commands and Images

Error Recovery

To pass data to commands and images in batch jobs that you submit
through a card reader, you can do the following:

• Include the data in the command procedure by placing the data on the
lines after the command or image that uses the data. Use the DECK
and EOD commands if the data lines begin with dollar signs.

• Temporarily redefine SYS$INPUT as a file by using the
DEFINE/USER_MODE command.

The VMS card reader driver performs the following error recovery
operations:

• If the card reader is offline for 30 seconds, a "device not ready"
message is sent to the system operator.

• If a recoverable card reader failure is detected, a "device not ready"
message is sent every 30 seconds to the system operator.

2-3

Card Reader Driver
2.2 Driver Features

2-4

• The current operation is retried every two seconds to test for a changed
situation, such as the removal of an error condition.

• The current I/O operation can be canceled at the next timeout without
the card reader being online. When the card reader comes online,
device operation resumes automatically.

When a recoverable card reader failure is detected and an error message
is displayed on the system operator console, examine the card reader
indicator lights to determine the reason for the failure. Any errors that
occur must be fixed manually. The recovery is transparent to the user
program issuing the I/O request.

The four categories of card reader failures and their respective recovery
procedures are as follows:

• Pick check-The next card cannot be delivered from the input hopper
to the read mechanism. To recover from this error, remove the next
card to be read from the input hopper and smooth the leading edge
(the edge that enters the read mechanism first). Replace the card
in the input hopper and press the RESET button. The card reader
operation resumes automatically. If a pick check error occurs again on
the same card, remove the card from the input hopper and repunch
it. Place the duplicate card in the input hopper and press the RESET
button. If the problem persists, either an adjustment is required, or
nonstandard cards are in the input hopper.

• Stack check-The card just read did not stack properly in the output
hopper. To recover from this error, remove the last card read from
the output hopper and examine it. If it is excessively worn or
mutilated, repunch it. Place either card in the read station of the
input hopper and press the RESET button. The card reader operation
resumes automatically. If the stack check error recurs immediately, an
adjustment is required.

• Hopper check-Either the input hopper is empty or the output hopper
is full. To recover from this error, examine the input hopper and,
if empty, either load the next deck of input cards or an end-of-file
card. If the input hopper is not empty, remove the cards that have
accumulated in the output hopper and press the RESET button. The
card reader operation resumes automatically.

• Read check-The last card was read incorrectly. To recover from this
error, remove the last card from the output hopper and examine it. If
it is excessively worn, mutilated, or contains punches before column
0 or after column 80, repunch the card. Place either card in the read
station of the input hopper and press the RESET button. The card
reader operation resumes automatically. If the read check error recurs
immediately, an adjustment is necessary.

Card Reader Driver
2.3 Card Reader Driver Device Information

2.3 Card Reader Driver Device Information
You can obtain information on card reader characteristics by using the
Get DeviceNolume Information ($GETDVI) system service. See the VMS
System Services Reference Manual.

$GETDVI returns card reader characteristics when you specify the item
codes DVI$_DEVCHAR and DVI$_DEVDEPEND. Tables 2-1and2-2
list these characteristics. The $DEVDEF macro defines the device
independent characteristics; the $CRDEF macro defines the device
dependent characteristics.

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and device
class names, which are defined by the $DCDEF macro. The device class
for card readers is DC$_CARD. The device type for the CRll is DT$_CR11.
DVI$_DEVBUFSIZ returns the buffer size. The default buffer size to be
used for all card reader devices is 80 bytes.

Table 2-1 Card Reader Device-Independent Characteristics

Characteristic 1

DEV$M_AVL

DEV$M_IDV

DEV$M_REC

Meaning

Dynamic Bit (Conditionally Set)

Device is online and available

Static Bits (Always Set)

Device is capable of input

Device is record-oriented

1 Defined by the $DEVDEF macro.

Table 2-2 Device-Dependent Characteristics for Card Readers

Value1 Meaning

CR$V_TMODE
CR$S_TMODE

Specifies the translation mode for nonbinary, nonpacked Hollerith
data transfers.2 Possible values are:
CR$K_ T026 Translate according to 026 punch code

CR$K_ T029 Translate according to 029 punch code

1 Defined by the $CRDEF macro.

2Section 2.2.1.2 describes the set translation mode punch code.

2.4 Card Reader Function Codes
The VMS card reader can perform logical, virtual, and physical I/O
functions. Table 2-3 lists these functions and their function codes. These
functions are described in more detail in the sections that follow.

2-5

2.4.1

Card Reader Driver
2.4 Card Reader Function Codes

Read

2-6

Table 2-3 Card Reader 1/0 Functions

Function Code and Function
Arguments Type1 Modifiers

10$_READLBLK P1 ,P2 L 10$M_BINARY
10$M_PACKED

10$_READVBLK P1 ,P2 v 10$M_BINARY
10$M_PACKED

10$_READPBLK P1 ,P2 p 10$M_BINARY
10$M_PACKED

10$_SENSEMODE L

10$_SETMODE P1 L

10$_SETCHAR P1 p

1 V = virtual; L = logical; P = physical

Function

Read logical block.

Read virtual block.

Read physical block.

Sense the card reader
characteristics and return
them in the 1/0 status
block.

Set card reader
characteristics for
subsequent operations.

Set card reader
characteristics for
subsequent operations.

Read is a function that reads data from the next card in the card reader
input hopper into the designated memory buffer in the specified format.
Only one card is read each time a read function is specified.

The VMS operating system provides the following read function codes:

• 10$_READVBLK-Read virtual block

• 10$_READLBLK-Read logical block

• 10$_READPBLK-Read physical block

The following function-dependent arguments are used with these codes:

• Pl-The starting virtual address of the buffer that is to receive the
data

• P2-The number of bytes that are to be read in the specified format

The read binary function modifier (10$M_BINARY) and the read packed
Hollerith function modifier (10$M_PACKED) can be used with all read
functions. If 10$M_BINARY is specified, successive columns of
data are stored in sequential word locations of the input buffer. If
10$M_PACKED is specified, successive columns of data are packed and
stored in sequential byte locations of the input buffer. If neither of these
function modifiers is specified, successive columns of data are translated
in the current mode (026 or 029) and are stored in sequential bytes of the
input buffer. Figure 2-2 shows how data is stored by IO$M_BINARY and
IO$M_PACKED.

2.4.2 Sense Mode

2.4.3 Set Mode

Card Reader Driver
2.4 Card Reader Function Codes

Figure 2-2 Binary and Packed Column Storage

Binary Column (10$M_BINARY):

15 12 11

*

*Bits 12-15 are 0.

0

11 o 1 2 s 4 s 6 7 s sl

Packed Column (10$M_PACKED):

7 3 2 0

I 12 11 a 9 8 I n· 1

*n = O if no punches in rows 1-7.
= 1 if a punch in row 1.
= 2 if a punch in row 2 .

• • •
= 7 if a punch in row 7.

ZK-0646-GE

Regardless of the byte count specified by the P2 argument, a maximum
of 160 bytes of data for binary read operations and 80 bytes of data for
nonbinary read operations (I0$M_PACKED, or 026 or 029 modes) are
transferred to the input buffer. If P2 specifies less than the maximum
quantity for the respective mode, only the number of bytes specified are
transferred; any remaining buffer locations are not filled with data.

Sense mode is a function that senses the current device-dependent card
reader characteristics and returns them in the second longword of the I/O
status block (see Table 2-2). No device- or function-dependent arguments
are used with IO$_SENSEMODE.

Set mode operations affect the operation and characteristics of the
associated card reader device. The VMS operating system defines the
following types of set mode functions:

• Set mode

• Set characteristic

2-7

Card Reader Driver
2.4 Card Reader Function Codes

2-8

2.4.3.1 Set Mode
The set mode function affects the characteristics of the associated card
reader. Set mode is a logical 1/0 function and requires the access privilege
necessary to perform logical 1/0. The following function code is provided.

• 10$_SETMODE

This function takes the following device- or function-dependent argument:

• Pl-The address of a characteristics buffer

Figure 2-3 shows the quadword set mode characteristics buffer.

Figure 2-3 Set Mode Characteristics Buffer

31 16 15 0

Buffer Size l Not Used

Card Reader Characteristics

ZK-0647-GE

Table 2-4 lists the card reader characteristics and their meanings. The
$CRDEF macro defines the characteristics values. Table 2-5 lists the 026
and 029 card reader codes.

Table 2-4 Set Mode and Set Characteristic Card Reader Characteristics

Value1

CR$V_TMODE
CR$S_TMODE

Meaning

Specifies the translation mode for nonbinary, nonpacked Hollerith
data transfers. Possible values are:

CR$K_ T026 Translate according to 026 punch code

CR$K_T029 Translate according to 029 punch code

1 If neither the 026 nor 029 mode is specified, the default mode can be set by the
SET CARD_READER command.

Table 2-5 Card Reader Codes

Character ASCII a DEC029 DEC026

173 12 0 12 0

175 11 0 11 0

SPACE 40 NONE NONE

(continued on next page)

Card Reader Driver
2.4 Card Reader Function Codes

Table 2-5 (Cont.) Card Reader Codes

Character ASClls DEC029 DEC026

41 11 8 2 12 8 7

42 87 085

43 83 086

$ 44 11 8 3 11 8 3

% 45 084 087

& 46 12 11 8 7

47 85 86

50 12 8 5 084

51 11 8 5 12 8 4

* 52 11 8 4 11 8 4

+ 53 12 8 6 12

54 083 083

55 11 11

56 12 8 3 12 8 3

I 57 0 1 0 1

0 60 0 0

1 61

2 62 2 2

3 63 3 3

4 64 4 4

5 65 5 5

6 66 6 6

7 67 7 7

8 70 8 8

9 71 9 9

72 82 11 8 2

73 11 8 6 082

< 74 12 8 4 12 8 6

75 86 83

> 76 086 11 8 6

? 77 087 12 8 2

@ 100 84 84

A 101 12 1 12 1

B 102 12 2 12 2

c 103 12 3 12 3

D 104 12 4 12 4

(continued on next page)

2-9

Card Reader Driver
2.4 Card Reader Function Codes

2-10

Table 2-5 (Cont.) Card Reader Codes

Character ASClla DEC029 DEC026

E 105 12 5 12 5

F 106 12 6 12 6

G 107 12 7 12 7

H 110 12 8 12 8

I 111 12 9 12 9

J 112 11 1 11 1

K 113 11 2 11 2

L 114 11 3 11 3

M 115 11 4 11 4

N 116 11 5 11 5

0 117 11 6 11 6
p 120 11 7 11 7
Q 121 11 8 11 8

R 122 11 9 11 9

s 123 02 02

T 124 03 03

u 125 04 04

v 126 05 05

w 127 06 06

x 130 07 07
y 131 08 08

z 132 09 09

133 12 8 2 11 8 5

\ 134 11 8 7 87

135 082 12 8 5

i or A 136 12 8 7 85

~or 137 085 82

Application programs that change specific card reader characteristics
should first use the I0$_SENSEMODE function to read the current
characteristics, modify them, and then use the set mode function to write
back the results. Failure to follow this sequence results in clearing any
previously set characteristic.

2.4.3.2 Set Characteristic
The set characteristic function also affects the characteristics of the
associated card reader device. Set characteristic is a physical I/O function,
and requires the access privilege necessary to perform physical I/O
functions. The following function code is provided:

• IO$_SETCHAR

2.5 1/0 Status Block

Card Reader Driver
2.4 Card Reader Function Codes

This function takes the following device- or function-dependent argument:

• Pl-The address of a characteristics buffer

Figure 2-4 shows the set characteristic characteristics buffer.

Figure 2-4 Set Characteristic Buffer

31 16 15 8 7 0

Buffer Size I Type I Class

Card Reader Characteristics

ZK-0648-GE

The device type value is DT$_CR11. The device class value is DC$_CARD.
Table 2-4 lists the card reader characteristics for the Set Characteristic
function.

The I/O status block (IOSB) format for QIO functions on the card reader
is shown in Figure 2-5. Appendix A lists the status returns for these
functions. (The VMS System Messages and Recovery Procedures Reference
Manual provides explanations and suggested user actions for these
returns.) Table 2-2 lists the device-dependent data returned in the second
longword. The I0$_SENSEMODE function can be used to obtain this
data.

Figure 2-5 IOSB Contents

31 16 15 0

Byte Count l Status

Device-Dependent Data

ZK-0649-GE

2-11

3 Disk Drivers

This chapter describes the use of VMS disk drivers. These drivers support
the devices listed in Table 3-1.

All disk drivers support Files-11 On-Disk Structure Level 1 and Level
2 file structures. Access to these file structures is through the DCL
commands INITIALIZE and MOUNT, followed by the VMS RMS calls
described in the VMS Record Management Services Manual. Files in
RT-11 format can be read or written with the file exchange facility
EXCHANGE.

3.1 Supported Disk Devices and Controllers
The following sections provide greater detail about the disk devices listed
in Table 3-1. To obtain additional information about a device, use
the DCL command SHOW DEVICE with the /FULL qualifier, the Get
DeviceNolume Information ($GETDVI) system service (from a program),
or the F$GETDVI lexical function (in a command line or command
procedure). Section 3.3 lists the information on disk devices returned
by $GETDVI.

Table 3-1 Supported Disk Devices

Disk Capacity
Device Code Type DSA (Logical Blocks/Drive)

RASO DJ Removable Yes 400,176

RA70 DU Fixed Yes 547,041

RASO DU Fixed Yes 236,964

RA81 DU Fixed Yes 891,072

RA82 DU Fixed Yes 1,216,665

RA90 DU Fixed Yes 2,343,750

RB02 DQ Cartridge No 20,480

RB80 DQ Fixed No 242,606

RC25 DA Fixed, Yes1 102,4002

Cartridge

RD32 DU Fixed Yes1
•
3 83,204

RD51 DU Fixed Yes1
•
3 21,600

1 Incompatible with the UDA50, KDA50, KDB50, HSC40, HSC50, and HSC70 disk controllers.

251,200 fixed; 51,200 cartridge.

3The RD series of disk drives conforms to DSA when used with the RQDX series of controllers.
RD-series disk drives do not conform to DSA when used on a VAXstation 2000.

(continued on next page)

3-1

Disk Drivers
3.1 Supported Disk Devices and Controllers

Table 3-1 (Cont.) Supported Disk Devices

Disk Capacity
Device Code Type DSA (Logical Blocks/Drive)

RD52 DU Fixed Yes1
•
3 60,480

RD53 DU Fixed Yes1
•3 138,672

RD54 DU Fixed Yes1
•
3 311,200

RF30 DI Fixed Yes1 292,968

RF71 DI Fixed Yes1 781,250

RL02 DL Cartridge No 20,480

RM03 DR Removable No 131,680

RM05 DR Removable No 500,384

RM80 DR Fixed No 242,606

RP05 DB Removable No 171,798

RP06 DB Removable No 340,670

RPO? DR Fixed No 1,008,000

RK06 DM Cartridge No 27,126

RK07 DM Cartridge No 53,790

RRD40 DU or Optical Yes1 1,669,400
DK4 Optical No 1,669,400

RRD50 DU Optical Yes1 1,669,400

RX01 DX Flexible No 494

RX02 DY Flexible No 4945

988 6

RX23 DU Flexible Yes1 2,734

RX33 DU Flexible Yes1 2,400

RX50 DU Flexible Yes1 800

RZ22 DK Fixed No 101,563

RZ23 DK Fixed No 203,125

RZ55 DK Fixed No 742,188

TU587 DD Cartridge No 512

1 Incompatible with the UDASO, KDASO, KDBSO, HSC40, HSCSO, and HSC70 disk controllers.

3The RD series of disk drives conforms to DSA when used with the RQDX series of controllers.
RD-series disk drives do not conform to DSA when used on a VAXstation 2000.
4SCSI interface RRD40 compact disc drive.

5Single density (See Section 3.3).

6 Double density (See Section 3.3).

7 A magnetic tape device, the TU58 operationally resembles a disk device. See Section 3.1.24
for a description of the TU58 in disk terms.

3-2

3.1.1

3.1.2

3.1.3

3.1.4

Disk Drivers
3.1 Supported Disk Devices and Controllers

UDA50 UNIBUS Disk Adapter
The UDA50 UNIBUS Disk Adapter (UDA50) is a microprocessor-based
disk controller for mass storage devices that implement the DIGITAL
Storage Architecture (DSA); for more information on the DSA, see
Section 3.2.3.

The UDA50 is used to connect any combination of four RA60, RASO, and
RA81 disk drives to the UNIBUS. Two UDA50 controllers can be attached
to a single UNIBUS for a maximum of eight disk drives per UNIBUS.
On the VAX-11/780 processor, the VMS operating system supports one
UDA50 on the first UNIBUS, which can accommodate certain other
options. Adding a second UDA50 requires a second UNIBUS. With the
exception of the first UNIBUS, a maximum of two UDA50s per UNIBUS
are supported. If two UDA50s are on a UNIBUS, no other options can
be placed on that UNIBUS. The VAX-11/730 processor supports only one
UDA50 per UNIBUS.

The UDA50, in implementing DSA, takes over the control of the physical
disk unit. The VMS operating system processes request virtual or logical
I/O on disks controlled by the UDA50. The VMS operating system maps
virtual block addresses into logical block addresses. The UDA50 then
resolves logical block addresses into physical block addresses on the disk.

The UDA50 corrects bad blocks on the disk by requesting that the disk
class driver revector a failing physical block to another, error-free
physical block on the disk; the logical block number is not changed (see
Section 3.2.10.1). Any bad blocks that might exist on a disk attached to a
UDA50 are transparent to the VMS operating system, which does logical
or virtual I/O to such a disk. The UDA50 also corrects most data errors.

KDA50 Disk Controller
The KDA50 disk controller is a two-module disk controller that allows the
RA-series DSA disk drives to be attached to Q-bus systems. The KDA50
performs the same functions as the UDA50 (see Section 3.1.1).

KDB50 Disk Controller
The KDB50 disk controller is a two-module disk controller that allows the
RA-series DSA disk drives to be attached to BI bus systems, such as the
VAX 8200 processor. The KDB50 performs the same functions as the
UDA50 (see Section 3.1.1).

HSC-Series Controllers
The HSC series of intelligent disk controllers consists of the HSC40,
HSC50, and the HSC70. HSC controllers are high-speed, high-availability
controllers for mass storage devices that implement the DIGITAL Storage
Architecture (DSA); for more information about the DSA, see Section 3.2.3.
An HSC controller is connected to a processor by a Computer Interconnect

3-3

3.1.5

Disk Drivers
3.1 Supported Disk Devices and Controllers

(Cl). The VMS operating system supports the use of the HSC40, HSC50,
HSC70 in controlling the RA family of disks.

The HSC40 can support up to 12 SDI disks from the SA or RA families
of disk drives or a combination of up to 12 SDI disk drives and TA-series
tape drives.

The HSC70 can support up to 32 SDI disks from the SA or RA families of
disk drives or a combination of SDI disk drives and TA-series tape drives.

HSC controllers, in implementing DSA, take over the control of the
physical disk unit. VMS operating system processes request virtual or
logical 1/0 on disks controlled by the HSC controller. The VMS operating
system maps virtual block addresses into logical block addresses. The
HSC controller then resolves logical block addresses into physical block
addresses on the disk.

HSC controllers correct bad blocks on the disk by revectoring a failing
physical block to another, error-free physical block on the disk; the logical
block number is not changed. The VMS operating system, which performs
logical or virtual 1/0 to such a disk, does not recognize that any bad blocks
might exist on a disk attached to an HSC controller. HSC controllers also
correct most data errors.

The HSC series of controllers provides access to disks despite most
hardware failures. Use of an HSC controller permits two or more
processors to access files on the same disk.

Note: Only one system should have write access to a Files-11 On-Disk
Structure Level 1 disk or to a foreign-mounted disk; all other
systems should only have read access to the disk. For Files-11
On-Disk Structure Level 2 volumes, the VMS operating system
enables read/write access to all nodes that are members of the
same VAXcluster.

HSC-series controllers allow you to add or subtract disks from the device
configuration without rebooting the system.

Sii integrai Adapter

3-4

The Sil integral adapter on the MicroVAX 3300/3400 provides access
through the DIGITAL Small Storage Interconnect (DSSI) bus to a
maximum of seven storage devices.

The term dual-host refers to pairs of CPUs connected to a bus. In dual
host configurations of pairs of MicroVAX 3300/3400 CPUs, the DSSI bus
must be connected between the Sil integral adapters present on both
CPUs.

A maximum of six devices can be connected to the Sil integral adapter in
dual-host configurations.

3.1.6

3.1.7

3.1.8

3.1.9

KFQSA Adapter

Disk Drivers
3.1 Supported Disk Devices and Controllers

The KFQSA adapter allows a maximum of seven storage devices for use
on Q-bus systems.

In dual-host configurations of pairs of MicroVAX 3800/3900 CPUs, the
DSSI bus must be connected between KFQSA adapters present on both
CPUs.

A maximum of six devices can be connected to the KFQSA adapter in
dual-host configurations.

RQDX3 Controller
The RQDX3 is a Q-bus controller used with the RD series of Winchester
type disk drives and the RX33 and RX50 flexible diskette drives.

RA70 and RA90 Disk Drives

RA60 Disk

The RA70 is a 5.25-inch 280-megabyte (MB) high-performance DSA disk
drive that uses thin-film media. It has an average access time of 27.0
milliseconds (ms) and average seek time of 19.5 ms. The RA 70 uses the
Standard Disk Interconnect (SDI) and the KDA50 controller, and can be
dual-ported.

The RA90 is a 1.2-gigabyte disk drive designed with thin-film heads and
9-inch thin-film media with an average seek time of 18.5 ms. The RA90
conforms to DSA and uses the SDI. Both the RA 70 and RA90 disk drives
can be connected to medium-sized systems with the HSC-series controllers,
KDB50, or UDA50 controllers.

The RA60 device uses high-capacity, removable media that provides 205
MB of usable storage (7 .5 million bits of data per square inch) with
transfer rates of 1.9 MB per second (burst) and 950 KB per second
(sustained). The RA60 belongs to the DIGITAL Storage Architecture
(DSA) family of disk devices (see Section 3.2.3). It is connected to either
a UNIBUS Disk Adapter (UDA50) or an HSC50 controller. Up to four
disk drives can be connected to each UDA50. l)p to 24 disk drives can be
connected to each HSC50.

3.1.10 RA80/RB80/RM80 and RA81 Fixed-Media Disks
The R80 disk drive is a high-capacity, moving-head disk whose
nonremovable media consists of 14 data surfaces. Depending on how it
is connected to the system, the R80 is identified internally as an RASO,
RBBO, or RM80, as follows:

• RASO-An RBO connected to the system through a UNIBUS disk
adapter (UDA50) or an HSC50 controller. Up to four disk drives can

3-5

Disk Drivers
3.1 Supported Disk Devices and Controllers

be connected to each UDA50. Up to 24 disk drives can be connected to
each HSC50.

• RB80-An R80 connected to the system through an RB730 controller
on a VAX 11/730 processor. Of the maximum of four drives that can be
connected to an RB 730 controller, only one can be an RB80.

• RM80-An R80 connected to the system through a MASSBUS adapter
(MBA). Up to eight disk drives can be connected to each MBA.

The RA81 is a high-capacity disk drive with nonremovable media that can
hold more than 890,000 blocks of data. This translates into more than
455 MB per spindle. The RA81 is connected to a UDA50 or an HSC50
controller. Up to four disk drives can be connected to each UDA50. Up to
24 drives can be connected to each HSC50.

The RASO and RA81 belong to the DIGITAL Storage Architecture (DSA)
family of disk devices (see Section 3.2.3).

3.1.11 RB02 and RL02 Cartridge Disk

3.1.12 RC25 Disk

3.1.13 RD-Series Disks

3-6

The RL02 cartridge disk is a removable, random-access mass storage
device with two data surfaces. The RL02 is connected to the system
by an RLll controller that interfaces with the UNIBUS adapter. Up
to four RL02 disk drives can be connected to each RLll controller. For
physical 1/0 transfers, the track, sector, and cylinder parameters describe
a physical 256-byte RL02 sector (see Section 3.4).

When the RL02 is connected to an RB730 controller on a VAX.-111730
processor, it is identified internally as an RB02 disk drive. Disk geometry
is unchanged and RL02 disk packs can be exchanged between drives on
different controllers. Up to four drives can be connected to the RB730
controller.

The RC25 disk is a self-contained, Winchester-type, mass storage device
that consists of a disk adapter module, a disk drive, and an integrated
disk controller. The drive contains two 8-inch, double-sided disks. One of
the disks (RCF25) is a sealed, nonremovable, fixed-media disk. The other
disk is a removable cartridge disk that is sealed until it is loaded into the
disk drive. The disks share a common drive spindle, and together they
provide 52 million bytes of storage. Adapter modules interface the RC25
with either a UNIBUS system or a Q-bus system.

The RD53 and RD54 are 5.25-inch, full-height, Winchester-type drives
with average access time of 38 ms and a data transfer rate of 0.625 MB
per second. The RD53 and RD54 have a formatted capacity of 71 MB and
159 MB, respectively. When used with the RQDX3 controller, the RD53
and RD54 are DSA disks.

3.1.14 RF-Series Disks

Disk Drivers
3.1 Supported Disk Devices and Controllers

See Section 3.2.11 for information about using RD series disks on the
VAXstation 2000.

The RF series of Winchester-type disk drives consists of the RF30 and
the RF71. The RF30 is a 150-MB, 5.25-inch, half-height disk drive
while the RF71 is a 400-MB full-height disk drive. The RF30 and RF71
include an embedded controller for multihost access and a Mass Storage
Communications Protocol (MSCP) server. The RF71 has a peak data
transfer rate of 1.5 MB per second with average seek and access time of
21 ms and 29 ms, respectively.

Both the RF30 and RF71 disks use DIGITAL Storage System Interconnect
(DSSI) bus and host adapters.

3.1.15 RK06 and RK07 Cartridge Disks
The RK06 cartridge disk is a removable, random-access, bulk storage
device with three data surfaces. The RK07 cartridge disk is a double
density RK06. The RK06 and RK07 are connected to the system by an
RK611 controller that interfaces to the UNIBUS adapter. Up to eight disk
drives can be connected to each RK611.

3.1.16 RM03 and RM05 Pack Disks
The RM03 and RM05 pack disks are removable, moving-head disks that
consist of five data surfaces for the RM03 and 19 data surfaces for the
RM05. These disks are connected to the system by a MASSBUS adapter
(MBA). Up to eight disk drives can be connected to each MBA.

3.1.17 RP05 and RP06 Disk
The RP05 and RP06 removable disks consist of 19 data surfaces and a
moving read/write head. The RP06 removable disk has approximately
twice the capacity of the RP05. These disks are connected to the system
by an MBA. Up to eight disk drives can be connected to each MBA.

3.1.18 RP07 Fixed Media Disk
The RP07 is a 516-MB, fixed media disk drive that attaches to the
MASSBUS of the VAX-11/780 system. The RP07 transfers data at 1.3
million bytes per second or as an option at a peak rate of 2.2 million
bytes per second. The nine platters rotate at 3600 rpm and their data
is accessed at an average speed of 31.3 milliseconds. These disks are
connected to the system by an MBA. Up to eight disk drives can be
connected to each MBA.

3-7

Disk Drivers
3.1 Supported Disk Devices and Controllers

3.1.19 RRD40 and RRD50 Read-Only Memory {CDROM)
The RRD40 and RRD50 are Compact Disc Read-Only Memory (CDROM)
devices that use replicated media with a formatted capacity of

. approximately 600 MB.

The RRD40 is a 5.25-inch half-height, front-loading table-top or embedded
device that attaches to the system using either the Small Computer
System Interface (SCSI) or Q-bus interface.

The RRD50 is a 5.25-inch, top-loading table-top device that attaches to the
system using a Q-bus interface.

The RRD40 has an average access time of 0.5 seconds while the average
access time for the RRD50 is 1.5 seconds. Both the RRD40 and RRD50
have a data transfer rate of 150 KB per second.

The media for the RRD40 and the RRD50 are removable 4. 7-inch
(120 mm) compact disks. However, the media for the RRD40 are enclosed
in protective self-loading carriers. The RRD40 with a SCSI interface
is also available as an embedded unit. The RRD40 and RRD50 Q-bus
subsystems are standard disk MSCP devices.

3.1.20 RX01 Console Disk

3.1.21 RX02 Disk

3-8

The RXOl disk uses a diskette. The disk is connected to the LSI console
on the VAX-111780, which the driver accesses using the MTPR and MFPR
privileged instructions.

For logical and virtual block I/O operations, data is accessed with one block
resolution (four sectors). The sector numbers are interleaved to expedite
data transfers. Section 3.2.9 describes sector interleaving in greater detail.

For physical block I/O operations, the track, sector, and cylinder
parameters describe a physical, 128-byte RXOl sector (see Figure 3-1
and Section 3.4). Note that the driver does not apply track-to-track skew,
cylinder offset, or sector interleaving to this physical medium address.

The RX02 disk is a mass storage device that uses removable diskettes.
The RX02 supports existing single-density, RXOl-compatible diskettes. A
double-density mode allows diskettes to be recorded at twice the linear
density. An entire diskette must be formatted in either single or double
density. Mixed mode diskettes are not allowed.

The RX02 is connected to the system by an RX211 controller that
interfaces with the UNIBUS adapter. Up to two disk drives can be
controlled by each RX211.

3.1.22 RX-Series Drives

Disk Drivers
3.1 Supported Disk Devices and Controllers

Figure 3-1 Disk Physical Address

31 16 15 8 7 0

P3: -'~~~C_y_lin_d_e_r~~--'----T_rack~~~l~_s_e_ci_o_r __ j
(Except RX01 and RX02)

31 16 15 0

P3: ~' ~~~n_ack_.~ __ __..l~--~s_ec_to_r~ __ _.I
(RX01 and RX02 Only)

ZK-0652-GE

For logical and virtual block I/O operations, data is accessed with
single block resolution (four single-density sectors or two double-density
sectors). The sector numbers are interleaved to expedite data transfers.
Section 3.2.9 describes this feature in greater detail.

For physical block I/O operations, the track and sector parameters shown
in Figure 3-1 describe a physical sector (128 bytes in single density; 256
bytes in double density). The driver does not apply track-to-track skew,
cylinder offset, or sector interleaving to the physical medium address.

The following sections describe the RX family of flexible diskette drives.

3.1.22.1 RX23
The RX23 device is a one-inch high, flexible diskette drive that uses
3.5-inch microfloppy diskettes. The RX23 drive can access standard
and high-density media. The following table summarizes capacities for
standard- and high-density media.

3-9

Disk Drivers
3.1 Supported Disk Devices and Controllers

Density

Standard

High

Unformatted

1.0 MB

2.0 MB

Formatted

700 KB

1.4 MB

The RX23 is backwardly compatible in that it can read 1-MB media. It
can also read and write 2.0-MB double-sided, high-density (135 tracks per
inch) media.

The RX23 communicates with the controller using the ST506 fixed disk
interconnect (FDI).

3.1.22.2 RX33
The RX33 is a 1.2 MB, 5.25-inch, half-height diskette drive. The RX33
can record in either standard- or high-density mode. High-density mode
provides 1.2 MB of storage using 96 tracks per inch using double-sided,
high-density diskettes.

In standard-density mode, the RX33 drive is read- and write-compatible
with single-sided, standard-density RX50 diskettes.

3.1.22.3 RXSO
The RX50 dual diskette drive stores data in fixed-length blocks on
5.25-inch 0.8-MB, flexible diskettes using preformatted headers. The RX50
can accommodate two diskettes simultaneously.

3.1.23 RZ-Series Disks
The RZ series of Winchester-type disk drives consists of the RZ22, RZ23,
and the RZ55. The RZ22 and RZ23 are 3.5-inch, half-height SCSI drives
with an average seek rate of 33 ms and an average data transfer rate of
1.25 MB per second. The RZ22 and RZ23 have a capacity of 52 MB and
104 MB, respectively.

The RZ55 is a 332-MB, 5.25-inch, full-height SCSI drive with an average
access rate of 24 ms.

3.1.24 TU58 Magnetic Tape (DECtape II)

3-10

The TU58 is a random-access, mass storage magnetic tape device capable
of reading and writing 256K bytes per drive of data on block-addressable,
preformatted cartridges at 800 bits per inch. Unlike conventional magnetic
tape systems, which store information at variable positions on the tape,
the TU58 stores information at fixed positions on the tape, as do magnetic
disk or floppy disk devices. Thus, blocks of data can be placed on tape
in a random fashion, without disturbing previously recorded data. In its
physical geometry, the tape is conceptually viewed as having one cylinder,
four tracks per cylinder, and 128 sectors per track. Each sector contains
one 512-byte block.

The TU58 uses two vectors. NUMVEC=2 is required on the CONNECT
command when specifying SYSGEN parameters.

3.2 Driver Features

Disk Drivers
3.1 Supported Disk Devices and Controllers

The TU58 interfaces with the UNIBUS adapter through a DLll-series
interface device. Both the TU58 and the DLll should be set to 9600
baud. (Because the TU58 is attached to a DLll, the user cannot directly
access the TU58 registers if the TU58 is on the UNIBUS.) The DIGITAL
Terminals and Communications Handbook provides additional information
on the DLll. The TU58, which has its own controller, can access either
one or two tape drives.

VMS disk drivers provide the following features:

• Multiple controllers of the same type (except RB730), for example,
more than one MBA or RK611 can be used on the system

• Multiple disk drives per controller (The exact number depends on the
controller.)

• Different types of disk drives on a single controller

• Static dual porting (MBA drives only)

• Overlapped seeks (except RL02, RXOl, RX02, and TU58)

• Data checks on a per-request, per-file, or per-volume basis (except
RXOl and RX02)

• Full recovery from power failure for online disk drives with volumes
mounted

• Extensive error recovery algorithms, such as error code correction and
offset (except RB02, RL02, RXOl, RX02, and TU58); for DSA disks,
these algorithms are implemented in the controller

• Dynamic, as well as static, bad block handling

• Logging of device errors in a file that can be displayed by field service
personnel or customer personnel

• Online diagnostic support for drive level diagnostics

• Multiple-block, noncontiguous, virtual I/O operations at the driver
level

• Logical-to-physical sector translation (RXOl and RX02 only)

The following sections describe the data check, overlapped seek, error
recovery, and logical-to-physical translation features in greater detail.

3.2.1 Dual-Pathed Disks
A dual-pathed disk is a dual-ported disk that is accessible to all
the CPUs in the VAXcluster, not just to the CPUs that are connected
physically to the disk. Dual-pathed disks can be any of the following:

• Dual-ported MASSBUS disks

• Dual-ported HSC disks

3-11

3.2.2

Disk Drivers
3.2 Driver Features

• Dual-pathed DSA disks on local UDA50, KDA50, and KDB50
controllers

• Dual-ported RF-series disks

The term dual-pathed refers to the two paths through which clustered
CPUs can access a disk to which they are not directly connected. If one
path fails, the disk is accessed over the other path. (Note that with a
dual-ported MASSBUS disk, a CPU directly connected to the disk always
accesses it locally.)

Dual Porting MASSBUS Disks

3-12

The VMS MASSBUS disk drivers, DBDRIVER and DRDRIVER, support
static dual porting. Dual porting allows two MASSBUS controllers to
access the same disk drive. Figure 3-2 shows this configuration. The
RP05, RP06, RP07, RM03, RM05, and RM80 disk drives can be ordered, or
upgraded in the field, with the MASSBUS dual port option.

Figure 3-2 Dual-Ported Disk Drives

VAX VAX
CPUA CPUB

Controller Controller

..... Disk ..._
Drive ~

ZK-0650-GE

3.2.2.1 Port Selection and Access Modes
The port select switches, on each disk drive, select the ports from which
the drive can be accessed. A drive can be in one of the following access
modes:

• Locked on Port A-The drive is in a single-port mode (Port A). It does
not respond to any request on Port B.

• Locked on Port B-The drive is in a single-port mode (Port B). It does
not respond to any request on Port A.

Disk Drivers
3.2 Driver Features

• Programmable A/B-The drive is capable of responding to requests on
either Port A or Port B. In this mode, the drive is always in one of the
following states:

The drive is connected and responding to a request on Port A. It is
closed to requests on Port B.

The drive is connected and responding to a request on Port B. It is
closed to requests on Port A.

The drive is in a neutral state. It is equally available to requests
on either port on a first-come, first-serve basis.

The operational condition of the drive cannot be changed with the port
select switches after the drive becomes ready. To change from one mode to
another, the drive must be in a nonrotating condition. After the new mode
selection has been made, the drive must be restarted.

If a drive is in the neutral state and a disk controller either reads or
writes to a drive register, the drive immediately connects a port to the
requesting controller. For read operations, the drive remains connected
for the duration of the operation. For write operations, the drive remains
connected until a release command is issued by the device driver or a
one second timeout occurs. After the connected port is released from
its controller, the drive checks the other port's request flag to determine
whether there has been a request on that port. If no request is pending,
the drive returns to the neutral state.

3.2.2.2 Disk Use and Restrictions
If the volume is mounted foreign, read/write operations can be performed
at both ports provided the user maintains control of where information is
stored on the disk.

The Autoconfigure Utility currently may not be able to locate the nonactive
port. For example, if a dual-ported disk drive is connected and responding
at Port A, the CPU attached to Port B might not be able to find Port B
with the Autoconfigure Utility. If this problem occurs, execute the
AUTOCONFIGURE ALULOG command after the system is running.

3.2.2.3 Restriction on Dual-Ported Non-DSA Disks in a VAXcluster
Do not use SYSGEN to AUTOCONFIGURE or CONFIGURE a dual
ported, non-DSA disk that is already available on the system through
use of an MSCP server. Establishing a local connection to the disk when
a remote path is already known creates two uncoordinated paths to the
same disk. Use of these two paths may corrupt files and data on any
volume mounted on the drive.

Note: If the disk is not dual-ported or is never served by an MSCP server
on the remote host, this restriction does not apply.

In a VAXcluster, dual-ported non-DSA disks (MASSBUS or UNIBUS) can
be connected between two nodes of the cluster. These disks can also be
made available to the rest of the cluster using the MSCP server on either
or both of the hosts to which a disk is connected.

3-13

3.2.3

Disk Drivers
3.2 Driver Features

If the local path to the disk is not found during the bootstrap, then the
MSCP server path from the other host will be the only available access
to the drive. The local path will not be found during a boot if any of the
following conditions exist:

• The port select switch for the drive is not enabled for this host.

• The disk, cable, or adapter hardware for the local path is broken.

• There is sufficient activity on the other port to hide the existence of
the port.

• The system is booted in such a way that the
SYSGEN AUTOCONFIGURE ALL command in the
SYS$SYSTEM:STARTUP.COM procedure was not executed.

Use of the disk is still possible through the MSCP server path.

After the configuration of the disk has reached this state, it is important
not to add the local path back into the system I/O database. Because the
VMS operating system does not provide an automatic method for adding
this local path, the only possible way that you can add this local path
is to use the Sysgen Utility (SYSGEN) qualifiers AUTOCONFIGURE or
CONFIGURE to configure the device. SYSGEN is currently not able to
detect the presence of the disk's MSCP path, and will incorrectly build a
second set of data structures to describe it. Subsequent events could lead
to incompatible and uncoordinated file operations, which might corrupt the
volume.

To recover the local path to the disk, it is necessary to reboot the system
connected to that local path.

See the VMS VAXcluster Manual for additional information on dual-ported
disk operation.

Dual-Pathed DSA Disks

3-14

A dual-ported DSA disk can be failed over between the two CPUs that
serve it to the VAXcluster under the following conditions: (1) the same
disk controller letter and allocation class are specified on both CPUs and
(2) both CPUs are running the MSCP server.

Note: Failure to observe these requirements can endanger data integrity.

However, because a DSA disk can be online to only one controller at a
time, only one of the CPUs can use its local connection to the disk. The
second CPU accesses the disk through the MSCP server. If the CPU
that is currently serving the disk fails, the other CPU detects the failure
and fails the disk over to its local connection. The disk is thereby made
available to the VAXcluster once more.

Note: A dual-ported DSA disk may not be used as a system disk.

3.2.4

3.2.5

3.2.6

Disk Drivers
3.2 Driver Features

Dual-Porting HSC Disks
By design, HSC disks are cluster accessible. Therefore, if they are dual
ported, they are automatically dual pathed. CI-connected CPUs can access
a dual-pathed HSC disk by way of a path through either HSC-connected
device.

For each dual-ported HSC disk, you can control failover to a specific port
using the port select buttons on the front of each drive. By pressing either
port select button (A or B) on a particular drive, you can cause the device
fail over to the specified port.

With the port select button, you can select alternate ports to balance the
disk controller workload between two HSC subsystems. For example, you
could set half of your disks to use port A and set the other half to
use port B.

The port select buttons also allow you to fail over all the disks to an
alternate port manually when you anticipate the shutdown of one of the
HSC subsystems.

Dual-Pathed RF-Series Disks

Data Check

In a dual-path configuration of pairs of MicroVAX 3300/3400 CPUs or
pairs of MicroVAX 3800/3900 CPUs using RF-series disks, CPUs have
concurrent access to any disk on the DSSI bus. A single disk is accessed
through two paths and can be served to all satellites by either CPU.

If either CPU fails, satellites can access their disks through the remaining
CPU. Note that failover occurs in the following situations: (1) when the
DSSI bus is connected between Sii integral adapters on both MicroVAX
3300/3400 CPUs or (2) when the DSSI bus is connected between the
KFQSA adapters on pairs of MicroVAX 3300/3400s or pairs of MicroVAX
3800/3900s.

Note: The DSSI bus should. not be connected between a KFQSA adapter
on one CPU and an Sil integral adapter on another.

A data check is made after successful completion of a read or write
operation and, except for the TU58, compares the data in memory with the
data on disk to make sure they match.

Disk drivers support data checks at the following levels:

• Per request-You can specify the data check function modifier
(10$M_DATACHECK) on a read logical block, write logical block, read
virtual block, write virtual block, read physical block, or write physical
block operation. IO$M_DATACHECK is not supported for the RXOl
and RXOl drivers.

3-15

3.2.7

Disk Drivers
3.2 Driver Features

• Per volume-You can specify the characteristics "data check all reads"
and "data check all writes" when the volume is mounted. The VMS
DCL Dictionary describes volume mounting and dismounting. The
VMS System Services Reference Manual describes the Mount Volume
($MOUNT) and Dismount Volume ($DISMOU) system services.

• Per file-You can specify the file access attributes "data check on read"
and "data check on write." File access attributes are specified when
the file is accessed. Chapter 1 of this manual and the VMS Record
Management Services Manual describe file access.

Offset recovery is performed during a data check but Error Code
Correctable (ECC) correction is not performed (see Section 3.2.8). For
example, if a read operation is performed and an ECC correction is
applied, the data check would fail even though the data in memory is
correct. In this case, the driver returns a status code indicating that the
operation was successfully completed, but the data check could not be
performed because of an ECC correction.

Data checks on read operations are extremely rare, and you can either
accept the data as is, treat the ECC correction as an error, or accept the
data but immediately move it to another area on the disk volume.

A data check operation directed to a TU58 does not compare the data in
memory with the data on tape. Instead, either a read check or a write
check operation is performed (see Sections 3.4.1 and 3.4.2).

Overlapped Seeks

3-16

A seek operation involves moving the disk read/write heads to a specific
place on the disk without any transfer of data. All transfer functions,
including data checks, are preceded by an implicit seek operation (except
when the seek is inhibited by the physical I/O function modifier
IO$M_INHSEEK). Seek operations can be overlapped except on RL02,
RXOl, RX02, TU58 drives, MicroVAX 2000, VAXstation 2000, or on
controllers with floppy disks (for example, RQDX3) when the disk is
executing I/O requests. That is, when one drive performs a seek operation,
any number of other drives can also perform seek operations.

During the seek operation, the controller is free to perform transfers
on other units. Thus, seek operations can also overlap data transfer
operations. For example, at any one time, seven seeks and one data
transfer could be in progress on a single controller.

This overlapping is possible because, unlike I/O transfers, seek operations
do not require the controller once they are initiated. Therefore, seeks
are initiated before UO transfers and other functions that require the
controller for extended periods.

All DSA controllers perform extensive seek optimization functions as part
of their operation; IO$M_INHSEEK has no effect on these controllers.

3.2.8 Error Recovery

Disk Drivers
3.2 Driver Features

Error recovery in the VMS operating system is aimed at performing
all possible operations to complete an I/O operation successfully. Error
recovery operations fall into the following categories:

• Handling special conditions such as power failure and interrupt
timeout.

• Retrying nonfatal controller and drive errors. For DSA and SCSI
disks, this function is implemented by the controller.

• Applying error correction information (not applicable for RB02, RL02,
RXOl, RX02, and TU58). For DSA and SCSI disks, error correction is
implemented by the controller.

• Offsetting read heads to try to obtain a stronger recorded signal (not
applicable for RB02, RL02, RB80, RM80, RXOl, RX02, and TU58). For
DSA and SCSI disks, this function is implemented by the controller.

The error recovery algorithm uses a combination of these four types of
error recovery operations to complete an I/O operation.

Power failure recovery consists of waiting for mounted drives to spin up
and come online, followed by reexecution of the I/O operation that was in
progress at the time of the power failure.

Device timeout is treated as a nonfatal error. The operation that was in
progress when the timeout occurred is reexecuted up to eight times before
a timeout error is returned.

Nonfatal controller/drive errors are executed up to eight times before a
fatal error is returned.

All normal error recovery procedures (nonspecial conditions) can be
inhibited by specifying the inhibit retry function modifier (I0$M_
INHRETRY). If any error occurs and this modifier is specified, the virtual,
logical, or physical I/O operation is immediately terminated, and a failure
status is returned. This modifier has no effect on power recovery and
timeout recovery.

3.2.8.1 Skip Sectoring
Skip sectoring is a bad block treatment technique implemented on R80
disk drives (the RB80 and RM80 drives). In each track of 32 sectors,
one sector is reserved for bad block replacement. Consequently, an R80
drive has available only 31 sectors per track. The Get DeviceNolume
Information ($GETDVI) system service returns this value.

You can detect bad blocks when a disk is formatted. Most formatters
place these blocks in a bad block file. On an R80 drive, the first bad block
encountered on a track is designated as a skip sector. This is accomplished
by setting a flag in the sector header on the disk and placing the block in
the skip sector file.

3-17

3.2.9

Disk Drivers
3.2 Driver Features

When a skip sector is encountered during a data transfer, it is skipped
over, and all remaining blocks in the track are shifted by one physical
block. For example, if block number 10 is a skip sector, and a transfer
request was made beginning at block 8 for four blocks, then blocks 8, 9, 11,
and 12 will be transferred. Block 10 will be "skipped."

Because skip sectors are implemented at the device driver level, they are
not visible to you. The device appears to have 31 contiguous sectors per
track. Sector 32 is not directly addressable, although it is accessed if a
skip sector is present on the track.

Logical-to-Physical Translation {RX01 and RX02)

3-18

Logical block-to-physical sector translation on RXOl and RX02 drives
adheres to the standard VMS format. For each 512-byte logical block
selected, the driver reads or writes four 128-byte physical sectors (or
two 256-byte physical sectors if an RX02 is in double-density mode).
To minimize rotational latency, the physical sectors are interleaved.
Interleaving allows the processor time to complete a sector transfer before
the next sector in the block reaches the read/write heads. To allow for
track-to-track switch time, the next logical sector that falls on a new track
is skewed by six sectors. (There is no interleaving or skewing on read
physical block and write physical block 1/0 operations.) Logical blocks are
allocated starting at track 1; track 0 is not used.

The translation procedure, in more precise terms, is as follows:

1 Compute an uncorrected medium address using the following
dimensions:

Number of sectors per track = 26

Number of tracks per cylinder = 1

Number of cylinders per disk = 77

2 Correct the computed address for interleaving and track-to-track
skew (in that order) as shown in the following VAX FORTRAN
statements. ISECT is the sector address and ICYL is the cylinder
address computed in step 1:

Interleaving:

ITEMP = ISECT*2
IF (ISECT .GT. 12) ITEMP = ITEMP-25
ISECT = ITEMP

Skew:

ISECT = ISECT +(6*1CYL)
ISECT = MOD (ISECT, 26)

3 Set the sector number in the range of 1 through 26 as required by the
hardware:

ISECT = ISECT + 1

Disk Drivers
3.2 Driver Features

4 Adjust the cylinder number to cylinder 1 (cylinder 0 is not used):

ICYL = ICYL+ 1

3.2.10 DIGITAL Storage Architecture {DSA) Devices
The DIGITAL Storage Architecture (DSA) is a collection of specifications
that cover all aspects of a mass storage product. The specifications are
grouped into the following general categories:

• Media format-Describes the structure of sectors on a disk and the
algorithms for replacing bad blocks

• Drive-to-controller interconnect-Describes the connection between a
drive and its controller

• Controller-to-host communications-Describes how hosts request
controllers to transfer data

Because the VMS operating system supports all DSA disks, it supports all
controller-to-host aspects of DSA. Some of these disks, such as the RA60,
RASO, and RA81, use the standard drive-to-controller specifications. Other
disks, such as the RC25, RD51, RD52, RD53, and RX50, do not. Disk
systems that use the standard drive-to-controller specifications employ
the same hardware connections and use the HSC50, KDA50, KDB50,
and UDA50 interchangeably. Disk systems that do not use the drive
to-controller specifications provide their own internal controller, which
conforms to the controller-to-host specifications.

DSA disks differ from MASSBUS and UNIBUS disks in the following
ways:

• DSA disks contain no bad blocks. The hardware and the disk class
driver (DUDRIVER) function to ensure a logically contiguous range
of good blocks. If any block in the user area of the disk develops a
defective area, all further access to that block is revectored to a spare
good block. Consequently, it is never necessary to run the Bad Block
Locator Utility (BAD) on DSA disks. There is no manufacturer's bad
block list and the file BADBLK.SYS is empty. (The Verify Utility,
which is invoked by the ANALYZE IDISK_STRUCTURE /READ_
CHECK command, can be used to check the integrity of newly received
disks.) See Section 3.2.10.1 for additional information about bad block
replacement for DSA disks.

• Insert a WAIT statement in your SYSTARTUP _ V5.COM file prior to
the first MOUNT statement for a DSA disk. The wait period should
be about two to four seconds for the UDA50 and about 30 seconds for
the HSC50. The wait time is controller-dependent and can be as much
as several minutes if the controller is offline or otherwise inoperative.
If this wait is omitted, the MOUNT request may fail with a "no such
device" status.

• The DUDRIVER and the DSA device controllers allow multiple,
concurrently outstanding QIO requests. The order in which these
requests complete might not be in the order in which they were issued.

3-19

Disk Drivers
3.2 Driver Features

• All DSA disks can be dual-ported, but only one HSC/UDA controller
can control a disk at a time (see Section 3.2.3).

• In many cases, you can attach a DSA disk to its controller on a
running VMS operating system and then use it without manual
intervention.

• DSA disks and the DUDRNER do not accept physical QIO data
transfers or seek operations.

3.2.10.1 Bad Block Replacement and Forced Errors for DSA Disks

3-20

Disks that are built according to the DSA specifications appear to be error
free. Some number of logical blocks are always capable of recording data.
When a disk is formatted, every user-addressable logical block is mapped
to a functioning portion of the actual disk surface, which is known as
a physical block. The physical block has the true data storage capacity
represented by the logical block.

Additional physical blocks are set aside to replace blocks that fail
during normal disk operations. These extra physical blocks are called
replacement blocks. Whenever a physical block to which a logical
block is mapped begins to fail, the associated logical block is remapped
(revectored) to one of the replacement blocks. The process that revectors
logical blocks is called a bad block replacement operation. Bad block
replacement operations use data stored in a special area of the disk called
the Replacement and Caching Table (RCT).

When a drive-dependent error threshold is reached, the need for a bad
block replacement operation is declared. Depending on the controller
involved, the bad block replacement operation is performed either by
the controller itself (as is the case with HSCs) or by the host (as is the
case with UDAs). In either case, the same steps are performed. After
inspecting and altering the RCT, the failing block is read and its contents
are stored in a reserved section of the RCT.

The design goal of DSA disks is that this read operation proceeds without
error and that the RCT copy of the data is correct (as it was originally
written). The failing block is then tested with one or more data patterns.
If no errors are encountered in this test, the original data is copied back
to the original block and no further action is taken. If the data-pattern
test fails, the logical block is revectored to a replacement block. After
the block is revectored, the original data is copied back to the revectored
logical block. In all these cases, the original data is preserved and the bad
block replacement operation occurs without the user being aware that it
happened.

However, if the original data cannot be read from the failing block, a
best attempt copy of the data is stored in the RCT and the bad block
replacement operation proceeds. When the time comes to write-back the
original data, the best attempt data (stored in the RCT) is written back
with the forced error flag set. The forced error flag is a signal that the
data read is questionable. Reading a block that contains a forced error
flag causes the status SS$_FORCEDERROR to be returned. This status is
displayed by the following message:

%SYSTEM-F-FORCEDERROR, forced error flagged in last sector read

3.2.11

Disk Drivers
3.2 Driver Features

Writing into a block always clears the forced error flag.

Note that most VMS utilities and DCL commands treat the forced error
flag as a fatal error and terminate operation when they encounter it.
However, the Backup Utility (BACKUP) continues to operate in the
presence of most errors, including the forced error. BACKUP continues
to process the file, and the forced error flag is lost. Thus, data that was
formerly marked as questionable may become "correct" data.

System managers (and other users of BACKUP) should assume that forced
errors reported by BACKUP signal possible degradation of the data.

To determine what, if any, blocks on a given disk volume have the forced
error flag set, use the ANALYZE /DISK_STRUCTURE /READ_CHECK
command, which invokes the Verify Utility. The Verify Utility reads every
logical block allocated to every file on the disk and then reports (but
ignores) any forced error blocks encountered.

VAXstation 2000 and MicroVAX 2000 Disk Driver
The VAXstation 2000 and MicroVAX. 2000 disk driver supports some DSA
disk operation. In particular, the driver supports block revectoring and
bad block replacement. This provides the system with a logically perfect
disk medium.

Like other DSA disks, if a serious error occurs during a replacement
operation, the disk is write-locked to prevent further changes. This is done
to preserve data integrity and minimize damage that could be caused by
failing hardware. Unlike other DSA disks, there is no visible indication
on the drive itself that the disk is write-locked. However, the following
indicators help you determine that the disk has become write-protected:

• ERRFMT messages show that the disk is write-locked.

• The disk enters mount verification and hangs.

• DCL command SHOW DEVICE output shows that the disk is write
locked.

• Error messages from programs and utilities attempting to write to the
disk.

If the disk becomes write-locked, you should use the following procedure:

1 Shut down the system.

2 Use standalone BACKUP to create a full backup of the disk.

3 Format the disk with the disk formatter.

4 Restore the disk from the backup using standalone BACKUP. Note
that any files with sectors flagged with a forced error may be corrupted
and may need to be restored from a previous backup.

If errors occurring during replacement operations persist, call Digital
Customer Services.

3-21

Disk Drivers
3.2 Driver Features

3.2.12 SCSI Disk Class Driver
The VAXstation 3100, 3520, and 3540 contain a SCSI bus that provides
access to as many as seven SCSI disks. The SCSI disk class driver controls
SCSI disks on all of the above systems. Although, SCSI disks do not
conform to DSA, they do support the following error recovery features:

• Static and dynamic bad block replacement (BBR)

• Error correcting code (ECC)

• Reexecution of read or write operations within the SCSI drive

• Reexecution of read or write operations by the SCSI disk class driver

All SCSI disks supplied by Digital implement the REASSIGN BLOCKS
command which relocates data for a specific logical block to a different
physical location on the disk. The SCSI disk class driver reassigns the
block in the following instances: (1) when the retry threshold is exceeded
during an attempt to read or write a block of data on the disk or (2) when
an irrecoverable error occurs during a write operation.

Unlike DSA, there is no forced error flag in SCSI. Blocks that produce
irrecoverable errors during read operations are not reassigned in order to
prevent undetected loss of user data. Instead, the SCSI disk class driver
returns the SS$_PARITY status whenever a read operation results in an
irrecoverable error.

3.3 Disk Driver Device Information

3-22

You can obtain information on all disk device characteristics by using the
Get DeviceNolume Information ($GETDVI) system service (see the VMS
System Services Reference Manual).

$GETDVI returns disk characteristics when you specify the item codes
DVI$_DEVCHAR and DVI$_DEVCHAR2. Table 3-2 lists the possible
characteristics for disk devices.

Table 3-2 Disk Device Characteristics

Characteristic 1 Meaning

Dynamic Bits (Conditionally Set)

DEV$M_AVL

DEV$M_CDP2•3

DEV$M_CLU2

DEV$M_2P2

DEV$M_FOR

1 Defined by the $DEVDEF macro.

Device is online and available.

Dual-path device with two UCBs.

Device is available clusterwide.

Device is dual-pathed.

Device is foreign.

2These bits are located in DVl$_DEVCHAR2.

3MASSBUS only.

(continued on next page)

Disk Drivers
3.3 Disk Driver Device Information

Table 3-2 (Cont.) Disk Device Characteristics

Characteristic 1

DEV$M_MNT

DEV$M_RCK

DEV$M_WCK

DEV$M_MSCP2

DEV$M_RCT

DEV$M_SRV2

DEV$M_FOD

DEV$M_IDV

DEV$M_ODV

DEV$M_RND

DEV$M_SHR

Meaning

Dynamic Bits (Conditionally Set)

Volume is mounted.

Perform data check all reads.

Perform data check all writes.

Device is accessed using the mass storage control
protocol.

Disk contains Replacement and Caching Table.

For a VAXcluster, device is served by the MSCP
server.

Static Bits (Always Set)

Device is file-oriented.

Device is capable of input.

Device is capable of output.

Device is capable of random access.

Device is shareable.

1 Defined by the $DEVDEF macro.

2These bits are located in DVl$_DEVCHAR2.

DVI$_DEVBUFSIZ returns the buffer size. The buffer size is the default
to be used for disk transfers (this default is normally 512 bytes). DVI$_
DEVTYPE and DVI$_DEVCLASS return the device type and class names,
which are defined by the $DCDEF macro. The disk model determines
the device type. For example, the device type for the RA81 is DT$_RA81.
(Foreign device types take the form DT$_FD1 through DT$_FD8.) The
device class for disks is DC$_DISK

DVI$_CYLINDERS returns the number of cylinders per volume (that is,
per disk), DVI$_TRACKS returns the number of tracks per cylinder, and
DVI$_SECTORS returns the number of sectors per track. Values are
returned as four-byte decimal numbers.

DVI$_MAXBLOCK returns the maximum number of blocks (1 block= 512
bytes) that can be contained on the volume (that is, on the disk). Values
are returned as four-byte decimal numbers. This information can be used,
for example, to determine the density of an RX02 diskette (single
density= 494 blocks, double density= 988 blocks).

3-23

Disk Drivers
3.4 Disk Function Codes

3.4 Disk Function Codes

3-24

VMS disk drivers can perform logical, virtual, and physical I/O functions.
Foreign-mounted devices do not require privilege to perform logical and
virtual I/O requests.

Logical and physical I/O functions allow access to volume storage and
require only that the issuing process have access to the volume. However,
DSA disks and the disk class driver (DUDRIVER) do not accept physical
QIO data transfers or seek operations.

Note: The results of logical and physical 1/0 operations are
unpredictable if an ancillary control process (ACP) or extended
QIO processing (XQP) is present.

Virtual I/O functions require an ACP for Files-11 On-Disk Structure
Level 1 files or an XQP for Files-11 On-Disk Structure Level 2 files.
Virtual I/O functions must be executed in a prescribed order. First, you
create and access a file, then you write information to that file, and lastly
you deaccess the file. Subsequently, when you access the file, you read
the information, and then deaccess the file. Delete the file when the
information is no longer useful.

Non-DSA disk devices can read or write up to 65,535 bytes in a single
request. DSA devices connected to an HSC50 can transfer up to 4 billion
bytes in a single request. In all cases, the maximum size of the transfer
is limited by the number of pages that can be faulted into the process's
working set, and then locked into physical memory. (The disk driver is
responsible for any memory management functions of this type.) The
size of the transfer does not affect the applicable quotas (direct I/O count,
buffered I/O count, and AST count limit). These quotas refer to the
number of outstanding 1/0 operations of each type, not the size of the I/O
operation being performed.

The volume to which a logical or virtual function is directed must be
mounted for the function actually to be executed. If it is not mounted,
either a "device not mounted" or "invalid volume" status is returned in the
I/O status block.

Table 3-3 lists the logical, virtual, and physical disk I/O functions and
their function codes. Chapter 1 describes the QIO level interface to the
disk device ACP.

Table 3-3 Disk 1/0 Functions

Function Code Arguments

10$_ACCESS P1, [P2],[P3],[P4],[P5]

10$_ACPCONTROL P1 ,[P2],[P3],[P4],[P5]

10$_AVAILABLE

10$_CREATE P1 ,[P2],[P3],[P4],[P5]

10$_DEACCESS P1 ,[P2],[P3],[P4],[P5]

10$_DELETE P1 ,[P2],[P3],[P4],[P5]

10$_FORMAT P1

10$_MODIFY P1 ,[P2], [P3],[P4],[P5]

10$_PACKACK

10$_READLBLK P1,P2,P3

10$_READPBLK P1,P2,P3

10$_READVBLK P1,P2,P3

10$_SEARCH P1

10$_SEEK P1

10$_SENSECHAR

10$_SENSEMODE

1 V = virtual; L = logical; P = physical

2 Not for RX01 and RX02
3Not for TU58, RX01, RX02, RB02, and RL02

5Not for DSA and SCSI disks

Type1

v

v

p

v

v

v

p

v

p

L

p

v

p

p

p

L

Disk Drivers
3.4 Disk Function Codes

Function
Modifiers Function

10$M_CREATE Search a directory for a
10$M_ACCESS specified file and access the

file if found.

10$M_DMOUNT Perform miscellaneous
control functions.

Clear volume valid; make
DSA units available.

10$M_CREATE Create a directory entry or a
10$M_ACCESS file.
10$M_DELETE

Deaccess a file and,
if specified, write final
attributes in the file header.

10$M_DELETE Remove a directory entry or
file header, or both.

Set density (RX02 only).

Modify the file .attributes or
allocation, or both.

Update UCB fields if RX02;
initialize volume valid on
other devices. Bring DSA
units online.

10$M_DATACHECK2 Read logical block.
10$M_INHRETRY

10$M_DATACHECK2 Read physical block. 5

10$M_INHRETRY
10$M_IN HSEEK3

10$M_DATACHECK2 Read virtual block.
10$M_INHRETRY

Search for specified block or
sector (only for TU58).

Seek to specified cylinder.5

Sense the device-dependent
characteristics and return
them in the 1/0 status block.

Sense the device-dependent
characteristics and return
them in the 1/0 status block.

(continued on next page)

3-25

Disk Drivers
3.4 Disk Function Codes

Table 3-3 (Cont.) Disk 1/0 Functions

Function Code Arguments Type1

10$_SETPRFPTH P1 p

10$_UNLOAD p

10$_WRITECHECK P1 ,P2,P3 p

10$_WRITELBLK P1 ,P2,P3 L

10$_WRITEPBLK P1 ,P2,P3 p

10$_WRITEVBLK P1 ,P2,P3 v

Function
Modifiers

10$M_FORCEPTH

10$M_DATACHECK2

10$M_ERASE
10$M_INHRETRY

10$M_DATACHECK2

10$M_ERASE
10$M INHRETRY
10$M -INHSEEK3

10$M=DELDATA4

10$M_DATACHECK2

10$M_ERASE
10$M_INHRETRY

Function

Specifies a preferred path
for DSA disks.

Clear volume valid; make
DSA units available and spin
down the volume.

Verify data written to disk by
a previous write QI0.2

Write logical block.

Write physical block. 5

Write virtual block.

1 V = virtual; L = logical; P = physical

2Not for RX01 and RX02

3Not for TU58, RX01, RX02, RB02, and RL02

4RX02 only

5Not for DSA and SCSI disks

3-26

The function-dependent arguments for IO$_CREATE, IO$_ACCESS,
I0$_DEACCESS, IO$_MODIFY, and I0$_DELETE are as follows:

• Pl-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional). If
specified, the name is entered in the directory specified by the FIB.

• P3-The address of the word that is to receive the length of the
resulting file name string (optional).

• P4-The address of a descriptor for a buffer that is to receive the
resulting file name string (optional).

• P5-The address of a list of attribute descriptors (optional). If
specified, the indicated attributes are read (I0$_ACCESS) or written
(I0$_CREATE, IO$_DEACCESS, and IO$_MODIFY).

See Chapter 1 for more information on these functions.

The function-dependent arguments for IO$_READVBLK, IO$_
READLBLK, 10$_ WRITEVBLK, and 10$_ WRITELBLK are as follows:

• Pl-The starting virtual address of the buffer that is to receive the
data from a read operation; or, in the case of a write operation, the
virtual address of the buffer that is to be written on the disk.

Disk Drivers
3.4 Disk Function Codes

• P2-The number of bytes that are to be read from the disk, or written
from memory to the disk. An even number must be specified if the
controller is an RK611, RLll, RX211, or UDA50.

• P3-The starting virtual/logical disk address of the data to be
transferred in a read operation; or, in a write operation, the disk
address of the area that is to receive the data.

In a virtual read or write operation, the address is expressed as a
block number within the file, that is, block 1 of the file is virtual block
1. (Virtual block numbers are converted to logical block numbers using
mapping windows that are set up by the file system ACP process.)

In a logical read or write operation, the address is expressed as a block
number relative to the start of the disk. For example, the first sector
on the disk contains block 0 (or at least the beginning of block 0).

The function-dependent arguments for 10$_ WRITEVBLK,
10$_ WRITELBLK, and 10$_ WRITEPBLK functions that include the
I0$M_ERASE function modifier are as follows:

• Pl-The starting virtual address of the buffer that contains a four
byte, user-specified erase pattern. If the Pl address is 0, a longword of
0 will be used for the erase pattern. If the Pl address is nonzero, the
contents of the four bytes starting at that address will be used as the
erase pattern. Digital recommends that the user specify a Pl address
of 0 to lower system overhead.

Note: DSA disk controllers provide controlled, assisted erasing for
the 10$M_ERASE modifier (with virtual and logical write
functions) only when the erase pattern is all Os. If a nonzero
erase pattern is used, there is a significant performance
degradation with these disks. DSA disks do not accept physical
QIO transfers.

• P2-The number of bytes of erase pattern to write to the disk. The
number specified is rounded up to the next highest block boundary
(512 bytes).

• P3-The starting virtual, logical, or physical disk address of the data
to be erased.

The function-dependent arguments for 10$_ WRITECHECK,
IO$_READPBLK, and 10$_ WRITEPBLK are as follows:

• Pl-The starting virtual address of the buffer that is to receive the
data in a read operation; or, in a write operation, the starting virtual
address of the buffer that is to be written on the disk. Passed by
reference.

• P2-The number of bytes that are to be read from the disk, or written
from memory to the disk. Passed by value. An even number must be
specified if the controller is an RK611, RLll, or UDA50.

3-27

Disk Drivers
3.4 Disk Function Codes

3-28

• P3-The starting physical disk address of the data to be read in a
read operation; or, in a write operation, the starting physical address
of the disk area that is to receive the data. Passed by value. The
address is expressed as sector, track, and cylinder in the format shown
in Figure 3-3. (On the RXOl and RX02, the high word specifies the
track number rather than the cylinder number.) Check the UCB of a
currently mounted device to determine the maximum physical address
value for that type of device.

Note: On the RBSO and RMSO, do not address cylinders 560 and 561.
These two cylinders are used for diagnostic testing only.

The function-dependent argument for I0$_SEARCH is as follows:

• Pl-The physical disk address where the tape is positioned. The
address is expressed as sector, track, and cylinder in the format shown
in Figure 3-3.

Figure 3-3 Starting Physical Address

31 16 15 8 7 0

P3:l ~~~~C_y_li_nd_e_r~~~~l~_T_ra_ck~--=-l~_s_ec_t_o_r___.l
(Except RX01 and RX02)

31 16 15 0

P3: 1--~~T_ra_ck~~--l~~-S_e_cto_r~~-I
(RX01 and RX02 Only)

ZK-0652-GE

The function-dependent argument for IO$_SEEK is as follows:

• Pl-The physical cylinder number where the disk heads are
positioned. The address is expressed in the format shown in
Figure 3-4.

Figure 3-4 Physical Cylinder Number Format

31 16 15 0

Not Used Cylinder

ZK-0653-GE

3.4.1 Read

Disk Drivers
3.4 Disk Function Codes

The function dependent argument for IO$_FORMAT is as follows:

• Pl-The density at which an RX02 diskette is reformatted (see
Section 3.4.4).

The read function reads data into a specified buffer from disk starting at a
specified disk address.

The VMS operating system provides the following read function codes:

• IO$_READVBLK-Read virtual block

• IO$_READLBLK-Read logical block

• IO$_READPBLK-Read physical block

If a read virtual block function is directed to a volume that is mounted
foreign, that function is converted to read logical block. If a read virtual
block function is directed to a volume that is mounted structured, the
volume is handled in the same way as for a file-structured device.

Three function-dependent arguments are used with these codes: Pl, P2,
and P3. These arguments are described in Section 3.4.

The data check function modifier (l0$M_DATACHECK) can be used with
all read functions. If this modifier is specified, a data check operation is
performed after the read operation completes. A data check operation is
also performed if the volume that has been read, or the volume on which
the file resides (virtual read), has the characteristic "data check all reads."
Furthermore, a data check is performed after a virtual read if the file has
the attribute "data check on read." The RXOl and RX02 drivers do not
support the data check function.

If I0$M_DATACHECK is specified with a read function code to a TU58,
or if the volume read has the characteristic "data check all reads," a
read check operation is performed. This alters certain TU58 hardware
parameters when the tape is read. (The read threshold in the data
recovery circuit is increased; if the tape has any weak spots, errors are
detected.)

The data check function modifier to a disk or tape can return five error
codes in the I/O status block:

SS$_CTRLERR SS$_DRVERR SS$_MEDOFL

SS$_NONEXDRV SS$_NORMAL

If no errors are detected, the disk or tape data is considered reliable.

The inhibit retry function modifier (l0$M_INHRETRY) can be used
with all read functions. If this modifier is specified, all error recovery
attempts are inhibited. I0$M_INHRETRY takes precedence over IO$M_
DATACHECK. If both are specified and an error occurs, there is no
attempt at error recovery and no data check operation is performed. If
an error does not occur, the data check operation is performed.

3-29

3.4.2

Disk Drivers
3.4 Disk Function Codes

Write

3-30

The write function writes data from a specified buffer to disk starting at a
specified disk address.

The VMS operating system provides the following write function codes:

• 10$_WRITEVBLK-Write virtual block

• 10$_WRITELBLK-Write logical block

• IO$_WRITEPBLK-Write physical block

If a write virtual block function is directed to a volume that is mounted
foreign, the function is converted to write logical block. If a write virtual
block function is directed to a volume that is mounted structured, the
volume is handled in the same way as for a file-structured device.

Three function-dependent arguments are used with these codes: Pl, P2,
and P3. These arguments are described in Section 3.4.

The data check function modifier (10$M_DATACHECK) can be used with
all write operations. If this modifier is specified, a data check operation
is performed after the write operation completes. A data check operation
is also performed if the volume written, or the volume on which the file
resides (virtual write), has the characteristic "data check all writes."
Furthermore, a data check is performed after a virtual write if the file has
the attribute "data check on write." The RXOl and RX02 drivers do not
support the data check function.

If 10$M_DATACHECK is specified with a write function code to a TU58,
or if the volume written has the characteristic "data check all writes," a
write check operation is performed. The write check verifies data written
on the tape. First, the specified data is written on the tape. Then the tape
is reversed and the TU58 controller reads the data internally to perform
a checksum verification. If the checksum verification is unsuccessful after
eight attempts, the write check operation is aborted and an error status is
returned.

The inhibit retry function modifier (10$M_INHRETRY) can be used
with all write functions. If that modifier is specified, all error recovery
attempts are inhibited. 10$M_INHRETRY takes precedence over
10$M_DATACHECK. If both 10$M_INHRETRY and 10$M_DATACHECK
are specified and an error occurs, there is no attempt at error recovery,
and no data check operation is performed. If an error does not occur, the
data check operation is performed. 10$M_INHRETRY has no affect on
DSA disks.

The write deleted data function modifier (10$M_DELDATA) can be used
with the write physical block (10$_ WRITEPBLK) function to the RX02.
If this modifier is specified, a deleted data address mark instead of the
standard data address mark is written preceding the data. Otherwise,
the operation of the 10$_ WRITEPBLK function is the same; write data is
transferred to the disk. When a successful read operation is performed on
this data, the status code SS$_RDDELDATA is returned in the I/O status
block rather than the usual SS$_NORMAL status code.

3.4.3 Sense Mode

3.4.4 Set Density

3.4.5 Search

Disk Drivers
3.4 Disk Function Codes

The IO$M_ERASE function modifier can be used with all write function
codes to erase a user-selected part of a disk. This modifier propagates an
erase pattern through the specified range. Section 3.4 describes the write
function arguments to be used with 10$M_ERASE.

Sense mode operations obtain current disk device-dependent
characteristics that are returned to the caller in the second longword of
the 1/0 status block (see Figure 3-6). The VMS operating system provides
the following function codes:

• 10$_SENSEMODE-Sense characteristics

• 10$_SENSECHAR-Sense characteristics

10$_SENSEMODE is a logical function. 10$_SENSECHAR is a physical
1/0 function and requires the access privilege necessary to perform
physical 1/0. No device- or function-dependent arguments are used with
either function.

The set density function assigns a new density to an entire RX02 floppy
diskette. The diskette is also reformatted: new data address marks
are written (single or double density) and all data fields are zeroed.
Set density is a physical 1/0 function and requires the access privilege
necessary to perform physical 1/0. The following function code is provided:

• I0$_FORMAT

10$_FORMAT takes the following function-dependent argument:

• Pl-The density at which the diskette is reformatted:

0 = single density (default)
1 =single density
2 = double density

The set density operation should not be interrupted before it is completed
(about 15 seconds). If the operation is interrupted, the resulting diskette
might contain illegal data address marks in both densities. The diskette
must then be completely reformatted and the function reissued.

The search function positions a TU58 magnetic tape to the block specified.
Search is a physical 1/0 function and requires the access privilege
necessary to perform physical 1/0. The VMS operating system provides
a single function code:

• 10$_SEARCH

3-31

3.4.6

3.4.7

Disk Drivers
3.4 Disk Function Codes

This function code takes the following function-dependent argument:

• Pl-Specifies the block where the read/write head will be positioned.
The low byte contains the sector number in the range 0 to 127; the
high byte contains the track number in the range 0 to 3.

IO$_SEARCH can save time between read and write operations. For
example, nearly 30 seconds are required to completely rewind a tape. If
the last read or write operation is near the end of the tape and the next
operation is near the beginning of the tape, the search operation can begin
after the last operation completes, and the tape will rewind while the
process is otherwise occupied. (The search QIO is not completed until the
search is completed. Consequently, if a $QIOW system service request is
issued, the process will be held up until the search is completed.)

Pack Acknowledge

Unload

3-32

The pack acknowledge function sets the volume valid bit for all disk
devices. Pack acknowledge is a physical I/O function and requires the
access privilege to perform physical I/O. If directed to an RX02 drive,
pack acknowledge also determines the diskette density and updates
the device-dependent information returned by $GETDVI item codes
DVI$_CYLINDERS, DVI$_TRACKS, DVI$_SECTORS, DVI$_DEVTYPE,
DVI$_CLASS, and DVI$_MAXBLOCK. If directed to a DSA disk, pack
acknowledge also sends the online packet to the controller. The following
function code is provided:

• I0$_PACKACK

This function code takes no function-dependent arguments.

IO$_PACKACK must be the first function issued when a volume (pack,
cartridge, or diskette) is placed in a disk drive. IO$_PACKACK is issued
automatically when the DCL commands INITIALIZE or MOUNT are
issued.

For DSA disks, the IO$_PACKACK function locks the drive's port selector
on the port that initiated the pack acknowledge function.

In addition, the IO$_PACKACK function updates device-dependent
information about DSA disks returned by $GETDVI.

The unload function clears the volume valid bit for all disk drives, makes
DSA disks available, and issues an unload command to the drive (spins
down the volume). The unload function reverses the function performed
by pack acknowledge (see Section 3.4.6). The following function code is
provided:

• IO$_UNLOAD

This function takes no function-dependent arguments.

3.4.8 Available

3.4.9 Seek

3.4.10 Write Check

Disk Drivers
3.4 Disk Function Codes

The available function clears the volume valid bit for all disk drives;
that is, it reverses the function performed by pack acknowledge (see
Section 3.4.6). No unload function is issued to the drive. Therefore, those
drives capable of spinning down do not spin down. The following function
code is provided:

• IO$_AVAILABLE

This function takes no function-dependent arguments.

The seek function directs the read/write heads to move to the cylinder
specified in the Pl argument (see Sections 3.2. 7 and 3.4, and Figure 3-4).

The write check function verifies that data was written to disk
correctly. The data to be checked is addressed using physical disk
addressing (sector, track, and cylinder) (see Figure 3-3). If the request
is directed to a DSA disk, you must specify a logical block number, even
though 10$_ WRITECHECK is a physical I/O function. The following
function code is provided:

• 10$_ WRITECHECK

A write QIO must be used to write data to disk before you enter this
command. 10$_ WRITECHECK then reads the same block of data and
compares it with the data in the specified buffer. Three function-dependent
arguments are used with this code: Pl, P2, and P3. These arguments are
described in Section 3.4.

10$_ WRITECHECK is similar to the IO$M_DATACHECK function
modifier for write QI Os, except that 10$_ WRITECHECK does not write
the data to disk; it is specified after data is written by a separate write
QIO. Nonprivileged processes can use the IO$M_DATACHECK modifier
with 10$_ WRITEVBLK (which does not require access privilege) to
determine whether data is written correctly. The RXOl and RX02 drivers
do not support the write check function.

The write check function and the data check function modifier to a TU58
can return six error codes in the I/O status block: SS$_NORMAL,
SS$_CTRLERR, SS$_DRVERR, SS$_MEDOFL, SS$_NONEXDRV, and
SS$_WRTLCK.

3-33

3.4.11

Disk Drivers
3.4 Disk Function Codes

Set Preferred Path

3-34

The set preferred path function specifies a preferred path for DSA disks.
This includes RA-series disks and disks accessed through the MSCP
server. If a preferred path is specified for a disk, the MSCP disk class
drivers (DUDRIVER and DSDRIVER) use the path as their first attempt
to locate the disk and bring it on line as a result of a DCL command
MOUNT or failover of an already mounted disk. In addition, you can
initiate failover of a mounted disk in order to force the disk to the
preferred path, or to use load-balancing information for disks accessed
through MSCP servers.

The function code is:

IO$_SETPRFPTH

The following is the function modifier:

• I0$M_FORCEPATH-causes the disk class driver to select the server
path with the highest load available rating.

The Pl parameter contains the address of a counted ASCII string
(.ASCIC). This string is the node name of the HSC or VMS system that
is the preferred path. The node name must match an existing node that
is known to the local node and if the node is a VMS system, it must be .
running the MSCP server. This function does not move the disk to the
preferred path.

The PHYS_IO privilege is required for IO$_SETPRFPTH and
IO$M_FORCEPATH.

The following example shows the use of IO$_SETPRFPTH:

dev:

chnl:

node:

done:

$assigndef
$qiodef
$iodef
$exitdef

.ascid /254DUA48:/

.word 0

.ascic /HSCOOl/

.entry start,O

$assign_s

blbc rO,done

devnam=dev,
chan=chnl

$qiow_s chan=chnl,-

$exit_s rO

.end start

func=#IO$_SETPRFPTH,
pl=node

This updates the local node I/O database to indicate that node HSCOOl is
the preferred path for DUA48.

3.4.11.1 Forcing a Path Change

Disk Drivers
3.4 Disk Function Codes-

You can move a disk that is already mounted to its preferred path by
specifying the IO$M_FORCEPATH modifier. If a preferred path has not
been specified for a disk that is accessed through the MSCP server, the
IO$M_FORCEPATH function causes the disk class driver to use load
balancing information to select the server path with the highest load
available rating.

I0$M_FORCEPATH does not accept any arguments. If you intend to
move a disk to its preferred path, you must specify the preferred path in a
separate $QIO function.

The following example shows use of the IO$M_FORCEPATH function
modifier:

$assigndef
$qiodef
$iodef
$exitdef

dev: .ascid /254DUA197:/

chnl: .word 0

.entry start,O

$assign_s

blbc rO,done

devnam=dev,
chan=chnl

$qiow_s chan=chnl,-
func=#<IO$_SETPRFPTH!IO$M_FORCEPATH>

done:
$exit_s rO

.end start

Note that forcing a path change places the disk in mount verification. New
I/O requests are suspended until mount verification is complete.

3.4.11.2 Using 10$_SETPRFPTH with Disks Dual Pathed Between HSCs
You can use the IO$_SETPRFPTH and IO$M_FORCEPATH functions
to load balance disks that are dual pathed between HSCs. The IO$M_
FORCEPATH function initiates failover of the disk on all nodes that
have it mounted and that have a direct path to the HSCs. Since the
node that issues the IO$M_FORCEPATH might not be the first one to
attempt failover of the disk, it is essential that all nodes that have direct
connections to the HSCs specify the same preferred path for the disk.
Only one node should issue the IO$M_FORCEPATH request.

3.4.11.3 Using 10$_SETPRFPTH with Disks Dual Pathed Between VMS Systems
You can use I0$M_FORCEPATH to load balance RA-series disks that
are dual pathed between VMS systems running the MSCP server. Both
serving nodes should specify the same preferred path. In order to move
the disk between VMS systems, the system that currently has the disk
on line through its local controller should issue the IO$M_FORCEPATH
request. The disk must be mounted on both serving nodes.

3-35

Disk Drivers
3.4 Disk Function Codes

3.4.11.4 Using 10$_SETPRFPTH with Disks Accessed Through MSCP Servers
You can specify a preferred path for disks that are accessed through MSCP
servers. However, this specification overrides any load-balancing decisions.

Note that if a disk can be accessed through both HSC and MSCP servers,
you need not specify the HSC as a preferred path. HSC paths are always
preferred to server paths.

Using IO$M_FORCEPATH without a preferred path causes the disk class
driver to move the disk to the server with the highest available capacity.

3.4.11.5 Using 10$_SETPRFPTH with Phase I Volume Shadowing
You can specify IO$_SETPRFPTH for shadow set members, but not
for virtual units. I0$M_FORCEPATH is not supported for shadow set
members or virtual units.

3.4.11.6 Using 10$_SETPRFPTH with Phase II Volume Shadowing
I0$_SETPRFPTH and IO$M_FORCEPATH are supported for shadow set
members but not for virtual units.

3.5 1/0 Status Block

3-36

Figure 3-5 shows the I/O status block (IOSB) for all disk device QIO
functions except Sense Mode. Figure 3-6 shows the I/O status block
for the Sense Mode function. Appendix A lists the status messages for
all functions and devices. (The VMS System Messages and Recovery
Procedures Reference Manual provides explanations and suggested user
actions for these messages.)

Figure 3-5 IOSB Contents

31 16 15 0

Byte Count
(Low-Order Word) Status

0 Byte Count
(High-Order Word)

ZK-0656-GE

The byte count is a 32-bit integer that gives the actual number of bytes
transferred to or from the process buffer.

Disk Drivers
3.5 1/0 Status Block

Figure 3-6 IOSB Contents for the Sense Mode Function

31 16 15 8 7 0

0 Status

Cylinders Tracks 1 Sectors

ZK-0657-GE

The second longword of the 1/0 status block for the Sense Mode function
returns information about the cylinder, track, and sector configurations for
the particular device.

3.6 Disk Driver Programming Example
This sample program (Example 3-1) provides an example of optimizing
access time to a disk file. The program creates a file using VMS RMS,
stores information concerning the file, and closes the file. The program
then accesses the file and reads and writes to the file using the Queue 1/0
($QIO) system service.

3-37

Disk Drivers
3.6 Disk Driver Programming Example

Example 3-1 Disk Program Example

**

.TITLE Disk Driver Programming Example

.IDENT /01/

Define necessary symbols.

$FIBDEF
$IODEF
$RMSDEF

;Define file information block Offsets
;Define. I/O function codes
;Define RMS-32 Return Status Values

Local storage

Define number of records to be processed.

NUM RECS=lOO ;One hundred records

Allocate storage for necessary data structures.

Allocate File Access Block.

A file access block is required by RMS-32 to open and close a
file.

FAB BLOCK:
$FAB ALQ 100,- ;Initial file size is to be

;100 blocks
FAC PUT,- ;File Access Type is output
FNA FILE_NAME,- ;File name string address
FNS FILE SIZE,- ;File name string size
FOP CTG,- ;File is to be contiguous
MRS 512,- ;Maximum record size is 512

;bytes
NAM NAM_BLOCK,- ;File name block address
ORG SEQ,- ;File organization is to be

;sequential
REM FIX ;Record format is fixed length

Allocate file information block.

A file information block is required as an argument in the
Queue I/O system service call that accesses a file.

FIB BLOCK:
.BLKB FIB$K_LENGTH

Allocate file information block descriptor.

FIB DESCR:
.LONG

.LONG

3-38

FIB$K_LENGTH

FIB BLOCK

;Length of the file
;information block
;Address of the file
;information block

{continued on next page)

Disk Drivers
3.6 Disk Driver Programming Example

Example 3-1 (Cont.) Disk Program Example

Allocate File Name Block

A file name block is required by RMS-32 to return information
concerning a file (for example, the resultant file name string
after logical name translation and defaults have been applied) .

NAM BLOCK:
- $NAM

Allocate Record Access Block

A record access block is required by RMS-32 for record
operations on a file.

RAB BLOCK:
- $RAB FAB

RAC

RBF
RSZ

FAB_BLOCK,
SEQ,-

RECORD_BUFFER,-
512

Allocate direct address buffer

BLOCK BUFFER:
.BLKB 1024

;File access block address
;Record access is to be
;sequential
;Record buffer address
;Record buffer size

;Direct access buffer is 1024
;bytes

Allocate space to store channel number returned by the $ASSIGN
Channel system service.

DEVICE CHANNEL:
.BLKW 1

Allocate device name string and descriptor.

DEVICE DESCR:
.LONG 20-10
.LONG 10$

10$: .ASCII /SYS$DISK/

20$:

;Length of device name string
;Address of device name string
;Device on which created file
;will reside
;Reference label to calculate
;length

Allocate file name string and define string length symbol.

FILE NAME:
.ASCII /SYS$DISK:MYDATAFIL.DAT/ ;File name string

FILE SIZE=.-FILE NAME - - ;File name string length

Allocate I/O status quadword storage.

(continued on next page}

3-39

Disk Drivers
3.6 Disk Driver Programming Example

Example 3-1 (Cont.) Disk Program Example

IO STATUS:
.BLKQ 1

Allocate output record buffer.

RECORD BUFFER:
.BLKB 512 ;Record buffer is 512 bytes

**

Start Program

**

The purpose of the program is to create a file called MYDATAFIL.DAT
using RMS-32; store information concerning the file; write 100
records, each containing its record number in every byte;
close the file; and then access, read, and write the file directly,
using the Queue I/O system service. If any errors are detected, the
program returns to its caller with the final error status in
register RO .

. ENTRY DISK_EXAMPLE,AM<R2,R3,R4,R5,R6> ;Program starting
;address

First create the file and open it, using RMS-32.

PART 1:
$CREATE FAB = FAB BLOCK
BLBC R0,20$

;First part of example
;Create and open file
;If low bit = O, creation
;failure

Second, connect the record access block to the created file.

$CONNECT RAB = RAB BLOCK

BLBC R0,30$

;Connect the record access
;block
;If low bit = 0, creation
;failure

Now write 100 records, each containing its record number.

MOVZBL #NUM_RECS,R6 ;Set record write loop count

Fill each byte of the record to be written with its record number.

10$: SUBB3

MOVC5

R6,#NUM_RECS+l,R5 ;Calculate record number

#0, (R6),R5,#512,RECORD_BUFFER ;Fill record buffer

Now use RMS-32 to write the record into the newly created file.

3-40

(continued on next page)

Disk Drivers
3.6 Disk Driver Programming Example

Example 3-1 (Cont.) Disk Program Example

$PUT
BLBC
SOBGTR

RAB = RAB BLOCK
R0,30$
R6,10$

;Put record in file
;If low bit = O, put failure
;Any more records to write?

The file creation part of the example is almost complete. All that
remains to be done is to store the file information returned by
RMS-32 and close the file.

20$

MOVW

MOVW

MOVW

NAM_BLOCK+NAM$W_FID,FIB_BLOCK+FIB$W_FID ;Save file
;identification

NAM_BLOCK+NAM$W_FID+2,FIB_BLOCK+FIB$W_FID+2 ;Save
;sequence number

NAM_BLOCK+NAM$W_FID+4,FIB_BLOCK+FIB$W_FID+4 ;Save

$CLOSE FAB = FAB BLOCK
;relative volume
;Close file

BLBS R0,PART_2

RET

;If low bit set, successful
;close
;Return with RMS error status

Record stream connection or put record failure.

Close file and return status.

30$: PUSHL
$CLOSE
POPL
RET

RO
FAB
RO

FAB BLOCK
;Save error status
;Close file
;Retrieve error status
;Return with RMS error status

The second part of the example illustrates accessing the previously
created file directly using the Queue I/O system service, randomly
reading and writing various parts of the file, and then deaccessing
the file.

First, assign a channel to the appropriate device and access the
file.

PART 2:
$ASSIGN_S DEVNAM = DEVICE_DESCR,- ;Assign a channel to file

CHAN = DEVICE CHANNEL ;device
BLBC R0,20$;If low bit = 0, assign

;failure
MOVL #FIB$M_NOWRITE!FIB$M_WRITE,- ;Set for read/write

FIB_BLOCK+FIB$L_ACCTL ;access
$QIOW_S CHAN DEVICE CHANNEL,- ;Access file on device channel

FUNC #I0$_ACCESS!I0$M_ACCESS,- ;I/O function is

IOSB IO_STATUS,-

Pl = FIB DESCR

BLBC R0,10$

MOVZWL IO_STATUS,RO

;access file
;Address of I/O status
;quadword
;Address of information block
;descriptor
;If low bit = 0, access
;failure
;Get final I/O completion
;status

(continued on next page)

3-41

Disk Drivers
3.6 Disk Driver Programming Example

Example 3-1 (Cont.) Disk Program Example

10$:

20$:

BLBS R0,30$

PUSHL RO
$DASSGN_S CHAN
POPL RO
RET

;If low bit set, successful
;I/O function
;Save error status

DEVICE CHANNEL ;Deassign file device channel
;Retrieve error status
;Return with I/0 error status

The file is now ready to be read and written randomly. Since the
records are fixed length and exactly one block long, the record
number corresponds to the virtual block number of the record in the
file. Thus a particular record can be read or written simply by
specifying its record number in the f'ile.

The following code reads two records at a time and checks to see
that they contain their respective record numbers in every byte.
The records are then written back into the file in reverse order.
This results in record 1 having the old contents of record 2 and
record 2 having the old contents of record 1, and so forth. After
the example has been run, it is suggested that the file dump
utility be used to verify the change in data positioning.

30$ MOVZBL #1,R6 ;Set starting record (block)
;number

Read next two records into block buffer.

40$: $QIO_S CHAN DEVICE_CHANNEL,- ;Read next two records from
;file channel

BSBB

FUNC #IO$_READVBLK,- ;I/O function is read virtual
;block

IOSB IO_STATUS,-

Pl BLOCK BUFFER,
P2 #1024:--
P3 R6

50$

;Address of I/0 status
;quadword
;Address of I/O buffer
;Size of I/O buffer
;Starting virtual block of
;transfer
;Check I/0 completion status

Check each record to make sure it contains the correct data.

SKPC

BNEQ

ADDL3

SKPC

BNEQ

R6,#512,BLOCK_BUFFER

60$

#l,R6,R5

;Skip over equal record
;numbers in data

;If not equal, data match
;failure
;Calculate even record number

R5,#512,BLOCK_BUFFER+512 ;Skip over equal record

60$
;numbers in data
;If not equal, data match
;failure

Record data matches.

Write records in reverse order in file.

3-42

(continued on next page)

Disk Drivers
3.6 Disk Driver Programming Example

Example 3-1 (Cont.) Disk Program Example

$QIOW_S CHAN DEVICE_CHANNEL,- ;Write even-numbered record in
;odd slot

BSBB
ADDL3
$QIOW_S

BSBB
ACBB

FUNC #IO$_WRITEVBLK,- ;I/O function is write virtual
;block

IOSB IO_STATUS,- ;Address of I/O status

Pl
P2
P3

BLOCK_BUFFER+512,
#512,-
R6

50$
#l,R6,R5
CHAN DEVICE_ CHANNEL,-

FUNC

IOSB

Pl
P2
P3

#IO$_WRITEVBLK,-

IO_STATUS,-

BLOCK BUFFER,
#512, =
RS

50$
#NUM_RECS-l,#2,R6,40$

;quadword
;Address of even record buffer
;Length of even record buffer
;Record number of odd record
;Check I/O completion status
;Calculate even record number
;Write odd numbered record in
;even slot
;I/O function is write virtual
;block
;Address of I/O status
;quadword
;Address of odd record buffer
;Length of odd record buffer
;Record number of even record
;Check I/O completion status
;Any more records to be read?

BRB 70$

Check I/O completion status.

50$: BLBC

MOVZWL

BLBC
RSB

Record number

60$: MNEGL

R0,70$

IO_STATUS,RO

R0,70$

mismatch in

#4,RO

data.

;If low bit = O, service
;failure
;Get final I/O completion
;status
;If low bit = 0, I/O function
;failure

;Set dummy error status value

; All records have been read, verified, and odd/even pairs inverted

70$: PUSHL RO
$QIOW_S CHAN

FUNC
$DASSGN_S CHAN
POPL RO
RET

DEVICE_CHANNEL,
#I0$_DEACCESS

DEVICE CHANNEL

.END DISK EXAMPLE

;Save final status
;Deaccess file
;I/O function is deaccess file
;Deassign file device channel
;Retrieve final status

3-43

4 Laboratory Peripheral Accelerator Driver

This chapter describes the VMS laboratory peripheral accelerator
(LPAll-K) driver and the high-level language procedure library that
interfaces with it. The procedure library is implemented with callable
assembly language routines that translate arguments into the format
required by the LPAll-K driver and that handle buffer chaining
operations. Routines for loading the microcode and initializing the device
are also described.

Refer to the LPAll-K Laboratory Peripheral Accelerator User's Guide for
additional information.

4.1 Supported Device

4.1.1

The LPAll-K is a peripheral device that controls analog-to-digital (AID)
and digital-to-analog (D/A) converters, digital I/O registers, and real-time
clocks. It is connected to the VAX processor through the UNIBUS adapter.

The LPAll-K is a fast, flexible microprocessor subsystem designed for
applications requiring high-speed, concurrent data acquisition and data
reduction. The LPAll-K allows aggregate analog input and output rates of
up to 150,000 samples per second. The maximum aggregate digital input
and output rate is 15,000 samples per second.

Table 4-1 lists the useful minimum and maximum LPAll-K configurations
supported by the VMS operating system.

LPA 11-K Modes of Operation
The LPAll-K operates in two modes: dedicated and multirequest.

In dedicated mode, only one user (one request), can be active at a time, and
only analog I/O data transfers are supported. Up to two AID converters
can be controlled simultaneously. One DIA converter can be controlled at a
time. Sampling is initiated either by an overflow of the real-time clock or
by an externally supplied signal. Dedicated mode provides sampling rates
of up to 150,000 samples per second.

4-1

4.1.2

Laboratory Peripheral Accelerator Driver
4.1 Supported Device

Errors

4-2

Table 4-1 Minimum and Maximum Configurations per LPA 11-K

Minimum

1 DD11-Cx or Dx backplane

1 KW11-K real-time clock

1 of the following:

AD11-K AID converter

AA 11-K AID converter

DR11-K digital 1/0 register

Maximum

2 DD11-Cx or Dx backplanes

1 KW11-K real-time clock

2 AD11-K AID converters

2 AM11-K multiplexers for AD11-K converters

1 AA 11-K D/ A converter

5 DR11-K digital 1/0 registers

In multirequest mode, sampling from all of the devices listed in Table 4-1
is supported. The LPAll-K operates like a multicontroller device; up to
eight requests (from one through eight users) can be active simultaneously.
The sampling rate for each user is a multiple of the common real-time
clock rate. Independent rates can be maintained for each user. Both
the sampling rate and the device type are specified as part of each data
transfer request. Multirequest mode provides a maximum aggregate
sampling rate of 15,000 samples per second.

The LPAll-K returns the following classes of errors:

1 Errors associated with the issuance of a new LPAll-K command
(SS$_DEVCMDERR)

2 Errors associated with an active data transfer request
(SS$_DEVREQERR)

3 Fatal hardware errors that affect all LPAll-K activity
(SS$_CTRLERR)

The LPAll-K Laboratory Peripheral Accelerator User's Guide lists these
three classes of errors and the specific error codes for each class. The
LPAll-K aborts all active requests if any of the following conditions occur:

• Power failure

• Device timeout

• Fatal error

Power failure is reported to any active users when power is recovered.

The LADRIVER times out all $QIOs after two seconds if they have not
completed. The driver does not provide any parameters that allow the
user to change the length of the timeout.

Laboratory Peripheral Accelerator Driver
4.1 Supported Device

The timeout period applied to all $QIOs can be changed with the following
PATCH commands executed from a privileged account:

$ PATCH SYS$SYSTEM:LADRIVER.EXE/OUTPUT=SYS$SYSTEM:LADRIVER.EXE
PATCH> SET ECO 25
PATCH> REPLACE/INSTRUCTION LA$TIMEOUT_VALUE
OLD> 'PUSHL IA#00000002'
OLD> EXIT
NEW> 'PUSHL IA#0000003C'
NEW> EXIT
PATCH> UPDATE
PATCH> EXIT

Substitute the desired timeout value for the "0000003C" in the example
above. When you reboot, the system loads the new copy of the driver
containing the new timeout value.

Device timeouts are monitored only when a new command is issued. For
data transfers, the time between buffer full interrupts is not defined.
Thus, no timeout errors are reported on a buffer-to-buffer basis.

If a required resource is not available to a process, an error message
is returned immediately. The driver does not place the process in the
resource wait mode.

4.2 Supporting Software
The LPAll-K is supported by a device driver, a high-level language
procedure library of support routines, and routines for loading the
microcode and initializing the device. The system software and support
routines provide a control path for synchronizing the use of buffers,
specifying requests, and starting and stopping requests; the actual data
algorithms for the laboratory data acquisition 1/0 devices are accomplished
by the LPAll-K.

The LPAll-K driver and the associated 110 interface have the following
features:

• They permit multiple LPAll-K subsystems on a single UNIBUS
adapter.

• They operate as an integral part of the VMS operating system.

• Th~y can be loaded on a running VMS operating system without
relinking the executive.

• They handle 1/0 requests, function dispatching, UNIBUS adapter
map allocation, interrupts, and error reporting for multiple LPAll-K
subsystems.

• The LPAll-K functions as a multibuffered device. Up to eight buffer
areas can be defined per request. Up to eight requests can be handled
simultaneously. Buffer areas can be reused after the data they contain
is processed.

4-3

Laboratory Peripheral Accelerator Driver
4.2 Supporting Software

4-4

• Because the LPAll-K chains buffer areas automatically, a start data
transfer request can transfer an infinite and noninterrupted amount of
data.

• Multiple ASTs are dynamically queued by the driver to indicate when
a buffer has been filled (the data is available for processing) or emptied
(the buffer is available for new data).

The high-level language support routines have the following features:

• They translate arguments provided in the high-level language calls
into the format required for the Queue I/O interface.

• They provide a buffer chaining capability for a multibuffering
environment by maintaining queues of used, in use, and available
buffers.

• They adhere to all VMS conventions for calling sequences, use of
shareable resources, and reentrancy.

• They can be part of a resident global library, or they can be linked into
a process image as needed.

The routines for loading microcode and initializing devices have the
following features:

• They execute, as separate processes, images that issue I/O requests.
These I/O requests initiate microcode image loading, start the
LPAll-K subsystem, and automatically configure the peripheral
devices on the LPAll-K internal I/O bus.

• They can be executed at the request of the user or an operator.

• They can be executed at the request of other processes.

• They can be executed automatically when the system is initialized and
on power recovery.

Figure 4-1 shows the relationship of the supporting software to the
LPAll-K.

Laboratory Peripheral Accelerator Driver
4.2 Supporting Software

Figure 4-1 Relationship of Supporting Software to LPA11-K

µCode Loading
and Device
Initialization

Routines

VMS Operating System

QIO Re_guests QIO
Interface

LPA11-K
Driver

_I -• LPA11-K . , ~ ..

High-Level Buffer Language -- _ .. Chaining Support
Routines Routines

4~

1
High-Level I Data I Data
Application I Buffer

I
Program I Areas

I
I

ZK-0658-GE

4.3 LPA11-K Device Information
You can obtain information on all peripheral data acquisition devices
on the LPAll-K internal 1/0 bus by using the Get Volume Information
($GETDVI) system service. (See the VMS System Services Reference
Manual.)

$GETDVI returns device characteristics when you specify the item
codes DVI$_DEVCHAR and DVI$_DEVDEPEND. Tables 4-2 and 4-3
list these characteristics. The $DEVDEF macro defines the device
independent characteristics; the $LADEF macro defines the device
dependent characteristics. Device-dependent characteristics are set by
the set clock, initialize, and load microcode I/O functions to any one of, or
a combination of, the values listed in Table 4-3.

4-5

Laboratory Peripheral Accelerator Driver
4.3 LPA 11-K Device Information

4-6

DVI$_DEVCLASS and DVI$_DEVTYPE return the device class and device
type names, which are defined by the $DCDEF macro. The device class for
the LPAll-K is DC$_REALTIME; the device type is DT$_LPA11.
DVI$_DEVBUFSIZ is not applicable to the LPAll-K.

Table 4-2 LPA 11-K Device-Independent Characteristics

Characteristic 1

DEV$M_AVL

DEV$M_IDV

DEV$M_ODV

DEV$M_RTM

DEV$M_SHR

Meaning

Dynamic Bit (Conditionally Set)

Device is online and available.

Static Bits (Always Set)

Device is capable of input.

Device is capable of output.

Device is real-time.

Device is shareable.

1 Defined by the $DEVDEF macro.

Table 4-3 LPA 11-K Device-Dependent Characteristics

Field1

LA$M_MCVALID
LA$V _MCVALID

LA$V _MCTYPE
LA$S_MCTYPE

Meaning

The load microcode 1/0 function (10$_LOADMCODE) was
performed successfully. LA$M_MCVALID is set by
10$_LOADMCODE. Each microword is verified by reading it
back and comparing it with the specified value.
LA$M_MCVALID is cleared if there is no match.

The microcode type, set by the load microcode 1/0 function
(10$_LOADMCODE), is one of the following values:

Value

LA$K_MRMCODE

LA$K_ADMCODE

LA$K_DAMCODE

Meaning

Microcode type is in multirequest
mode.

Microcode type is in dedicated AID
mode.

Microcode type is in dedicated DIA
mode.

1 Defined by the $LADEF macro.

(continued on next page)

Laboratory Peripheral Accelerator Driver
4.3 LPA 11-K Device Information

Table 4-3 (Cont.) LPA11-K Device-Dependent Characteristics

Field1

LA$V_CONFIG
LA$S_CONFIG

LA$V_RATE
LA$S_RATE

Meaning

The bit positions, set by the initialize 1/0 function
(10$_1NITIALIZE), for the peripheral data acquisition devices
on the LPA 11-K internal 1/0 bus are one or more of the
following:

Value Meaning

LA$V _ CLOCKA Clock A
LA$M_CLOCKA

LA$V _ CLOCKB Clock B
LA$M_CLOCKB

LA$V_AD1 AID device 1
LA$M_AD1

LA$V_AD2 AID device 2
LA$M_AD2

LA$V_DA DIA device 1
LA$M_DA

LA$V_DI01 Digital 1/0 buffer 1
LA$M_DI01

LA$V_DI02 Digital 1/0 buffer 2
LA$M_DI02

LA$V_DI03 Digital 1/0 buffer 3
LA$M_Dl03

LA$V_DI04 Digital 1/0 buffer 4
LA$M_DI04

LA$V_DI05 Digital 1/0 buffer 5
LA$M_DI05

The Clock A rate, which is set by the set clock function
(10$_SETCLOCK), is one of the following values:

Value Meaning

0 Stopped

1 1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger

7 Line frequency

1 Defined by the $LADEF macro.

(continued on next page)

4-7

Laboratory Peripheral Accelerator Driver
4.3 LPA 11-K Device Information

Table 4-3 {Cont.) LPA11-K Device-Dependent Characteristics

Field1

LA$V _PRESET
LA$S_PRESET

Meaning

The Clock A preset value set by the set clock function
(10$_SETCLOCK). (The value is in two's complement form in
the range 0 through 65,535.) The clock rate divided by the
clock preset value yields the clock overflow rate.

1 Defined by the $LADEF macro.

4.4 LPA11-K Function Codes

4.4.1 Load Microcode

4-8

The LPAll-K I/O functions are as follows:

• Load the microcode into the LPAll-K.

• Start the LPAll-K microprocessor.

• Initialize the LPAll-K subsystem.

• Set the LPAll-K real-time clock rate.

• Start a data transfer request.

The first three functions are normally performed by the loader process, not
by the user's data transfer program. See Section 4.5.21 for a description of
the loader process interface.

The Cancel I/O on Channel ($CANCEL) system service is used to abort
data transfers.

This I/O function resets the LPAll-K and loads an image of LPAll-K
microcode. Physical 1/0 privilege is required. The following function code
is provided:

• IO$_LOADMCODE-Load microcode

The load microcode function takes the following device- or function
dependent arguments:

• Pl-The starting virtual address of the microcode image that is to be
loaded into the LPAll-K

• P2-The number of bytes (usually 2048) that are to be loaded

• P3-The starting microprogram address (usually 0) in the LPAll-K
that is to receive the microcode

If any data transfer requests are active at the time a load microcode
request is issued, the load request is rejected and SS$_DEVACTIVE is
returned in the 1/0 status block.

4.4.2

4.4.3

Laboratory Peripheral Accelerator Driver
4.4 LPA11-K Function Codes

Each microword is verified by comparing it with the specified value in
memory. If all words match (the microcode was loaded successfully)
the driver sets the microcode valid bit (LA$V_MCVALID) in the device
dependent characteristics longword (see Table 4-3). If there is no
match, SS$_DATACHECK is returned in the 1/0 status block and
LA$V _MCVALID is cleared to indicate that the microcode was not properly
loaded. If the microcode was loaded ·successfully, the driver stores one of
the microcode type values (LAK_MRCODE, LAK_ADCODE, or
LA$K_DAMCODE) in the characteristics longword.

After a load microcode function is completed, 'the second word of the 1/0
status block contains the number of bytes loaded.

Start Microprocessor
This 1/0 function resets the LPAll-K and starts (or restarts) the LPAll-K
microprocessor. Physical 1/0 privilege is required. The following function
code is provided:

• IO$_STARTMPROC-Start microprocessor

This function code takes no device- or function-dependent arguments.

The start microprocessor function can return five error codes in the 1/0
status block (see Section 4.6):

SS$_CTRLERR

SS$_POWERFAIL

SS$_DEVACTIVE

SS$_ TIMEOUT

SS$_MCNOTVALID

The LPAll-K Laboratory Peripheral Accelerator User's Guide provides
additional information on error codes.

Initialize LPA11-K
This I/O function issues a subsystem initialize command to the LPAll-K.
This command specifies LPAll-K laboratory I/O device addresses and
other table information for the subsystem. It is issued only once after
restarting the subsystem and before any other LPAll-K command is given.
Physical I/O privilege is required. The VMS operating system defines the
following function code:

• IO$_INITIALIZE-Initialize LPAll-K

The initialize LPAll-K function takes the following device- or function
dependent arguments:

• Pl-The starting, word-aligned, virtual address of the initialize
command table in the user process. This table is read once by the
LPAll-K during the execution of the initialize command. See the
LPA11-K Laboratory Peripheral Accelerator User's Guide for additional
information.

• P2-Length of the initialize command buffer (always 278 bytes).

4-9

4.4.4

Laboratory Peripheral Accelerator Driver
4.4 LPA 11-K Function Codes

Set Clock

4-10

If the initialize function is completed successfully, the appropriate device
configuration values are set in the device-dependent characteristics
longword (see Table 4-3).

The initialize function can return the following 10 error codes in the 1/0
status block:

SS$_BUFNOTALIGN SS$_CANCEL

SS$_DEVCMDERR SS$_1NCLENGTH

SS$_1VMODE SS$_MCNOTVALID

SS$_ TIMEOUT

SS$_CTRLERR

SS$_1NSFMAPREG

SS$_POWERFAIL

If a device specified in the initialize command table is not in the
LPAll-K configuration, an error condition (SS$_DEVCMDERR) occurs
and the address of the first device not found is returned in the LPAll-K
maintenance status register (see Section 4.6). A program can use this
characteristic to poll the LPAll-K and determine the current device
configuration.

This virtual function issues a clock control command to the LPAll-K The
clock control command specifies information necessary to start, stop, or
change the sample rate at which the real-time clock runs on the LPAll-K
subsystem.

Note: If the LPAll-K has more than one user, caution should be
exercised when the clock rate is changed. In multirequest mode, a
change in the clock rate affects all users.

The following function code is provided:

• IO$_SETCLOCK-Set clock

The set clock function takes the following device- or function-dependent
arguments:

• P2-Mode of operation. The VMS operating system defines the
following clock start mode word (hexadecimal) values:

Value Meaning

1 KW11-K Clock A

11 KW11-K Clock B

• P3-Clock control and status. The VMS operating system defines the
following clock status word (hexadecimal) values:

4.4.5

Laboratory Peripheral Accelerator Driver
4.4 LPA11·K Function Codes

Value Meaning

0 Stop clock

143 1 MHz clock rate

145 100 kHz clock rate

147 1 O kHz clock rate

149 1 kHz clock rate

148 1 00 Hz clock rate

140 Clock rate is Schmidt trigger 1

14F Clock rate is line frequency

• P4-The two's complement of the real-time clock preset value. The
range is 16 bits for the K.Wll-K Clock A and 8 bits for the K.Wll-K
Clock B.

The LPAll-K Laboratory Peripheral Accelerator User's Guide describes the
clock start mode word and the clock status word in greater detail.

If the set clock function is completed successfully for Clock A, the clock
rate and preset values are stored in the device-dependent characteristics
longword (see Table 4-3).

The set clock function can return six error codes in the I/O status block
(see Section 4.6):

SS$_CANCEL

SS$_MCNOTVALID

SS$_CTRLERR

SS$_POWERFAIL

SS$~DEVCMDERR

SS$_ TIMEOUT

The LPAll-K Laboratory Peripheral Accelerator User's Guide provides
additional information on error codes.

Start Data Transfer Request
This virtual I/O function issues a data transfer start command that
specifies the buffer addresses, sample mode, and sample parameters used
by the LPAll-K. This information is passed to the data transfer command
table. The following function code is provided:

• IO$_STARTDATA-Start data transfer request

The start data transfer request function takes the following function
modifier:

• I0$M_SETEVF-Set event flag

The start data transfer request function takes the following device- or
function-dependent arguments:

• Pl-The starting virtual address of the data transfer command table
in the user's process.

• P2-The length in bytes (always 40) of the data transfer command
table.

4-11

Laboratory Peripheral Accelerator Driver
4.4 LPA 11-K Function Codes

4-12

• P3-The AST address of the normal buffer completion AST routine
(optional).

• P4-The AST address of the buffer overrun completion AST routine
(optional). This argument is used only when the buffer overrun bit
(LA$M_BFROVRN) is set, that is, when a buffer overrun condition is
classified as a nonfatal error.

A buffer overrun condition differs from a data overrun condition. The
LPAll-K fetches data from, or stores data in, memory. If data cannot be
fetched quickly enough (for example, when there is too much UNIBUS
activity) a data underrun condition occurs. If data cannot be stored
quickly enough, a data overrun condition occurs. After each buffer is filled
or emptied, the LPAll-K obtains the index number of the next buffer to
process from the user status word (USW). (See the LPAll-K Laboratory
Peripheral Accelerator User's Guide.) A buffer overrun condition occurs if
the LPAll-K fills or empties buffers faster than the application program
can supply new buffers. For example, buffer overrun can occur when the
sampling rate is too high, the buffers are too small, or the system load is
too heavy.

The LPAll-K driver accesses the 10-longword data transfer command
table, shown in Figure 4-2, when the data transfer start command is
processed. After the command is accepted and data transfers begin, the
driver does not access the table.

In the first longword of the data transfer command table, the first two
bytes contain the LPAll-K start data transfer request mode word. (The
LPAll-K Laboratory Peripheral Accelerator User's Guide describes the
functions of this word.)

The third byte contains the number (0-7) of the highest buffer available
and the buffer overrun flag bit (bit 23; values: LA$M_BFROVRN and
LA$V _BFROVRN). If this bit is set, a buffer overrun condition is a
nonfatal error.

The second longword contains the user status word address (see the
LPA11-K Laboratory Peripheral Accelerator User's Guide). This virtual
address points to a two-byte area in the user-process space and must be
word aligned.

The third longword contains the size (in bytes) of the overall buffer area.
The virtual address in the fourth longword is the beginning address of
this area. This address must be longword aligned. The overall buffer area
contains a specified number of buffers (the number of the highest available
buffer specified in the first longword plus one). Individual buffers are
subject to length restrictions: in multirequest mode the length must be in
multiples of two bytes; in dedicated mode the length must be in multiples
of four bytes. All data buffers are virtually contiguous for each data
transfer request.

Laboratory Peripheral Accelerator Driver
4.4 LPA 11-K Function Codes

Figure 4-2 Data Transfer Command Table

31 24 23 16 15 87 0

Highest Available
Buffer and Buffer Mode

Overrun Bit

User Status Word Address

Overall Data Buffer Length

Overall Data Buffer Address

Random Channel List Length

Random Channel List Address

Channel Start

Increment Channel Delay
Number

Dwell Number of Channels

Event Digital
Digital Trigger Mask Mark Trigger

Channel Channel

Event Mark Mask

ZK-0660-GE

The fifth and sixth longwords contain the random channel list (RCL)
length and address, respectively. The RCL address must be word aligned.
The last word in the RCL must have bit 15 set. (See the LPAll-K
Laboratory Peripheral Accelerator User's Guide for additional information
on the RCL.)

The seventh through tenth longwords contain LPAll-K-specific sample
parameters. The driver passes these parameters directly to the LPAll-K.
(See the LPAll-K Laboratory Peripheral Accelerator User's Guide for a
detailed description of their functions.)

4-13

4.4.6

Laboratory Peripheral Accelerator Driver
4.4 LPA 11-K Function Codes

The start data transfer request function can return the following 15 error
codes in the I/O status block (see Section 4.6):

SS$_ABORT

SS$_CTRLERR

SS$_EXQUOTA

SS$_1NSFMAPREG

SS$_PARITY

SS$_BUFNOTALIGN SS$_CANCEL

SS$_DEVCMDERR SS$_DEVREQERR

SS$_1NCLENGTH SS$_1NSFBU FOP

SS$_1NSFMEM SS$_MCNOTVALID

SS$_POWERFAIL SS$_ TIMEOUT

Data buffers are chained and reused as the LPAll-K and the user process
dispose of the data. As each buffer is filled or emptied, the LPAll-K driver
notifies the application process either by setting the event flag specified by
the QIO request efn argument or by queuing an AST. Since buffer use is
a continuing process, the event flag is set or the AST is queued a number
of times. The user process must clear the event flag (or receive the AST),
process the data, and specify the next buffer for the LPAll-K to use.

If the set event flag function modifier (I0$M_SETEVF) is specified, the
event flag is set repeatedly: when the data transfer request is started,
after each buffer completion, and when the request completes. If IO$M_
SETEVF is not specified, the event flag is set only when the request
completes.

ASTs are preferred over event flags for synchronizing a program with the
LPAll-K, because AST delivery is a queued process, while the setting of
event flags is not. If only event flags are used, buffer status may be lost.

Three AST addresses can be specified. For normal data buffer transactions
the AST address specified in the P3 argument is used. If the buffer
overrun bit in the data transfer command table is set and an overrun
condition occurs, the AST address specified in the P4 argument is used.
The AST address specified in the astadr argument of the QIO request is
used when the entire data transfer request is completed. The astprm
argument specified in the QIO request is passed to all three AST routines.

If insufficient dynamic memory is available to allocate an AST block, an
error (SS$_INSFMEM) is returned. If the user does not have sufficient
AST quota remaining to allocate an AST block, an error (SS$_EXQUOTA)
is returned. In either case, the request is stopped. Normally, there are
never more than three outstanding ASTs per LPAll-K request.

LPA 11-K Data Transfer Stop Command

4-14

The Cancel I/O on Channel ($CANCEL) system service is used to abort
data transfers for a particular process. When the LPAll-K driver receives
a $CANCEL request, a data transfer stop command is issued to the
LPAll-K.

To stop a data transfer, set bit 14 of the user status word. If this bit is
set, the transfer stops at the end of the next buffer transaction (see the
LPA11-K Laboratory Peripheral Accelerator User's Guide).

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4.5 High-Level Language Interface

4.5.1

The VMS operating system supports several program-callable procedures
that provide access to the LPAll-K. The formats of these calls are
documented in this manual for VAX FORTRAN users. VAX MACRO users
must set up a standard VMS argument block and issue the standard
CALL procedure. (VAX MACRO users can also access the LPAll-K
directly through the use of the device-specific QIO functions described
in Section 4.4.) Users of other high-level languages must specify the
proper subroutine or procedure invocation.

High-Level Language Support Routines
The VMS operating system provides 20 high-level language procedures for
the LPAll-K. These _procedures are divided into four classes. Table 4--4
lists the classes and the VAX procedures for the LPAll-K.

Table 4-4 VAX Procedures for the LPA11-K

Class

Sweep Control

Clock control

Data Buffer

Control

Miscellaneous

Subroutine Function

LPA$ADSWP Start AID converter sweep

Start DI A converter sweep

Start digital input sweep

Start digital output sweep

LPA$DASWP

LPA$DISWP

LPA$DOSWP

LPA$LAMSKS Specify LPA 11-K controller and digital mask
words

LPA$SETADC

LPA$SETIBF

LPA$STPSWP

LPA$CLOCKA

Specify channel select parameters

Specify buffer parameters

Stop sweep

Set Clock A rate

LPA$CLOCKB Set Clock B rate

LPA$XRATE Compute clock rate and preset value

LPA$1BFSTS Return buffer status

LPA$1GTBUF Return next available buffer

LPA$1NXTBF Alter buffer order

LPA$1WTBUF Return next buffer or wait

LPA$RLSBUF Release buffer to LPA 11-K

LPA$RMVBUF

LPA$CVADF

LPA$FLT16

LPA$LOADMC

Remove buffer from device queue

Convert AID input to floating point

Convert unsigned integer to floating point

Load microcode and initialize LPA 11-K

4-15

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4-16

4.5.1.1 Buffer Queue Control
This section is provided for informational purposes only.

Buffer queue control for data transfers by LPAll-K subroutines involves
the use of the following queues:

• Device queue (DVQ)

• User queue (USQ)

• In-use queue (IUQ)

Each data transfer request can specify from one through eight data buffer
areas. The user specifies these buffers by address. During execution of the
request, the LPAll-K assigns an index from 0 through 7 when a buffer is
referenced.

The DVQ contains the indexes of all the buffers that the user has released
(buffers made available to be filled or emptied by the LPAll-K). For output
functions (D/A and digital output), these buffers contain data to be output
by the LPAll-K. For input functions (AID and digital input), these buffers
are empty and waiting to be filled by the LPAll-K.

The USQ contains the indexes of all buffers that are waiting to be returned
to the user. The LPA$IWTBUF and LPA$IGTBUF calls are used to return
the index of the next buffer in the USQ. For output functions (D/ A and
digital output), these buffers are empty and waiting to be filled by the
application program. For input functions (AID and digital input), these
buffers contain data to be processed by the application program.

The IUQ contains the indexes of all buffers that are currently being
processed by the LPAll-K. Normally, the IUQ contains the indexes of the
following buffers:

• The buffer currently being filled or emptied by the LPAll-K

• The next buffer to be filled or emptied by the LPAll-K. (This is the
buffer specified by the next buffer index field in the user status word.)

Because the LPAll-K driver requires that at least one buffer be ready
when the input or output sweep is started, the user must call the
LPA$RLSBUF subroutine before the sweep is initiated.

Figure 4-3 shows the flow between the buffer queues.

4.5.1.2 Subroutine Argument Usage
Table 4-5 describes the general use of the subroutine arguments. The
subroutine descriptions in the following sections contain additional
information on argument usage. The (IBUF), (BUF), and (ICHN) (random
channel list address) arguments must be aligned on specific boundaries.

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Figure 4-3 Buffer Queue Control

Buffer O

1 Buffer Overrun
AST Handler

Normal Buffer
AST Handler

[
Head

Device
Queue

Tail

1

• l
Normal Buffer
AST Handler

Head

In-Use
Queue

Tail

j

LPA$1WTBUF
LPA$1GTBUF
(To Application

Program)
.....

l
......

Head

User
Q.Jeue

Tail

J
LPA$RLSBUF

(From Application
Program)

ZK-0661-GE

Table 4-5 Subroutine Argument Usage

Argument

IBUF

LBUF

Meaning

A 50-longword array initialized by the LPA$SETIBF subroutine. IBUF is the impure area used by
the buffer management subroutines. A unique IBUF array is required for each simultaneously
active request. IBUF must be longword aligned.

The first quadword in the IBUF array is an 110 status block (IOSB) for high-level language
subroutines. The LPA$1GTBUF and LPA$1WTBUF subroutines fill this quadword with the current
and completion status (see Section 4.6).

Specifies the size of each data buffer in words (must be even for dedicated mode sweeps).
All buffers are the same size. The minimum value for LBUF is 6 for multirequest mode data
transfers and 258 for dedicated mode data transfers. The aggregate size of the assigned buffers
must be less than 32,768 words. Thus, the maximum size of each buffer (in words) is limited to
32,768 divided by the number of buffers. The LBUF argument length is one word.

(continued on next page)

4-17

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Table 4-5 (Cont.) Subroutine Argument Usage

Argument

NBUF

MODE

IRATE

IP RS ET

DWELL

4-18

Meaning

Specifies the number of times the buffers are to be filled during the life of the request. If
O (default) is specified, sampling is indefinite and must be stopped with the LPA$STPSWP
subroutine. The NBUF argument length is one longword.

Specifies sampling options. MODE bit values are listed in the appropriate subroutine descriptions.
The default is 0. MODE values can be added to specify several options. No options are mutually
exclusive, although not all bits can be applicable at the same time. The MODE argument length
is one word.

Specifies the clock rate as follows:

Value Meaning

-1 Direct-coupled Schmidt trigger 1 (Clock A only)

0 Clock B overflow or no rate

1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger

7 Line frequency

The IRATE argument length is one longword.

Specifies the hardware clock preset value. This value is the two's complement of the desired
number of clock ticks between clock interrupts. (The maximum value is 0, the two's complement
of 65,536.) IPRSET can be computed by the LPA$XRATE subroutine. The JPRSET argument
length is one word.

Specifies the number of hardware clock overflows between sample sequences in multirequest
mode. For example, if DWELL is 20 and NCHN is 3, then after 20 clock overflows one channel
is sampled on each of the next three successive overflows; no sampling occurs for the next 20
clock overflows. This allows different users to use different sample rates with the same hardware
clock overflow rate. In dedicated mode, the hardware clock overflow rate controls sampling and
DWELL is not accessed. Default for DWELL is 1. The DWELL argument length is one word.

(continued on next page)

4.5.2

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Table 4-5 {Cont.) Subroutine Argument Usage

Argument

IEFN

LDELAY

ICHN

NCHN

IND

Meaning

Specifies the event flag number or completion routine address. The selected event flag is set at
the end of each buffer transaction. If IEFN is O (default), event flag 22 is used.

IEFN can also specify the address of a completion routine. This routine is called by the buffer
management routine when a buffer is available and when the request is terminated, either
successfully or with an error. The standard VMS calling and return sequences are used. The
completion routine is called from an AST routine and is therefore at AST level.

If IEFN specifies the address of a completion routine, the program must call the LPA$1GTBUF
subroutine to obtain the next buffer. If IEFN specifies an event flag, the program must call the
LPA$1WTBUF subroutine to obtain the next buffer and must use the %VAL operator:

,%VAL(3),

, BFRFULL,

(Event flag 3)

(Address of completion
routine)

The IEFN argument length is one longword.

If multiple sweeps are initiated, they must use different event flags. The software does not
enforce this policy.

Event flag 23 is reserved for use by the LPA$CLOCKA and LPA$CLOCKB subroutines. If either
of these subroutines is included in the user program, event flag 23 cannot be used. Also, if IEFN
is defaulted, event flag 22 cannot be used in the user program.

Specifies the delay, in IRATE units, from the start event until the first sample is taken. The
maximum value is 65,535; default is 1. The LDELAY argument length is one word. The LPA 11-K
supports the LDELAY argument in multirequest mode only.

Specifies the number of the first 1/0 channel to be sampled. Default is channel 0. The ICHN
argument length is one byte. The channel number is not the same as the channel assigned to
the device by the $ASSIGN system service. The LPA 11-K uses the channel number to specify
the multiplexer address of an AID, DIA, or digital 1/0 device on the LPA11-K internal 1/0 bus.

Specifies the number of 1/0 device channels to sample in a sample sequence. Default is 1. If
the NCHN argument is 1, the single channel bit is set in the mode word of the start request
descriptor array (RDA) when the sweep is started. The RDA contains the information needed
by the LPA11-K for each command (see the LPA11-K Laboratory Peripheral Accelerator User's
Guide). The NCHN argument length is one word.

Receives the VMS success or failure code of the call. The IND argument length is one longword.

LPA$ADSWP - Initiate Synchronous A/D Sampling Sweep
The LPA$ADSWP subroutine initiates AID sampling through an ADll-K.

The format of the LPA$ADSWP subroutine call is as follows:

CALL LPA$ADSWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN],
[LDELAY],[ICHN],[NCHN],[IND])

4-19

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4-20

Arguments are as described in Section 4.5.1.2, with the following
additions:

MODE Specifies sampling options. The VMS operating system defines the
following sampling option values:

Value Meaning

32 Parallel AID conversion sample algorithm is used if dual AID
converters are specified (value = 8192). Absence of this bit
implies the serial AID conversion sample algorithm.

64 Multirequest mode request. Absence of this bit implies a
dedicated mode request.

512 External trigger (Schmidt trigger 1). Dedicated mode only. This
value is used when a user-supplied external sweep trigger
is desired. The external trigger is supplied by the KW11-K
(Schmidt trigger 1 output) to the AD11-K (external start input).
If MODE=512, the user process must specify a Clock A rate of
-1 for proper AID sampling. This is nonclock-driven sampling
(see Section 4.5.10). (The LPA 11-K Laboratory Peripheral
Accelerator User's Guide provides additional information on the
use of external triggers.)

1024 Time stamped sampling with Clock B. The double word consists
of one data word followed by the value of the LPA 11-K's internal
16-bit counter at the time of the sample (see the LPA 11-K
Laboratory Peripheral Accelerator User's Guide). Multirequest
mode only.

2048 Event marking. Multirequest mode only. (The LPA11-K
Laboratory Peripheral Accelerator User's Guide describes
event marking.)

4096 Start method. If selected, the digital input start method is used.
If not selected, the immediate start method is used. Multirequest
mode only.

8192 Dual AID converters are to be used. Dedicated mode only.

16384 Buffer overrun is a nonfatal error. The LPA 11-K will automatically
default to fill buffer 0 if a buffer overrun condition occurs.

If MODE is defaulted, AID sampling starts immediately with absolute
channel addressing in dedicated mode. The LPA 11-K does not support
delays in dedicated mode.

IND Returns the success or failure status as follows:

O = Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPA$RLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed by
the LPA$SETIBF subroutine call.

1 =successful sweep started

nnn = VMS status code

4.5.3

4.5.4

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

LPA$DASWP- Initiate Synchronous D/A Sweep
The LPA$DASWP subroutine initiates DIA output to an AAll-K.

The format for the LPA$DASWP subroutine call is as follows:

CALL LPA$DASWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN],
[LDELAY],[ICHN],[NCHN],[IND])

Arguments are as described in Section 4.5.1.2, with the following
additions:

MODE Specifies the sampling options. The VMS operating system defines the
following start criteria values:

Value Meaning

O Immediate start. This is the default value for MODE.

64 Multirequest mode. If not selected, this request is for dedicated
mode.

4096 Start method. If selected, the digital input start method is used.
If not selected, the immediate start method is used. Multirequest
mode only.

16384 Buffer overrun is a nonfatal error. The LPA 11-K will automatically
default to empty buffer O if a buffer overrun condition occurs.

IND Returns the success or failure status as follows:

O = Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPA$RLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed by
the LPA$SETIBF subroutine call.

1 =successful sweep started

nnn = VMS status code

LPA$DISWP - Initiate Synchronous Digital Input Sweep
The LPA$DISWP subroutine initiates digital input through a DRll-K. It
is applicable in multirequest mode only.

The format of the LPA$DISWP subroutine call is as follows:

CALL LPA$DISWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN],
[LDELAY],[ICHN],[NCHN],[IND])

4-21

4.5.5

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Arguments are as described in Section 4.5.1.2, with the following
additions:

MODE Specifies sampling options. The VMS operating system defines the
following sampling option values:

Value Meaning

O Immediate start. This is the default value for MODE.

512 External trigger for DR11-K. (The LPA11-K Laboratory Peripheral
Accelerator User's Guide describes the use of external triggers.)

1024 Time stamped sampling with Clock B. The double word
consists of one data word followed by the value of the internal
LPA 11-K 16-bit counter at the time of the sample (see the
LPA 11-K Laboratory Peripheral Accelerator User's Guide).

2048 Event marking. (The LPA 11-K Laboratory Peripheral Accelerator
User's Guide describes event marking.)

4096 Start method. If selected, the start method is digital input. If not
selected, the start method is immediate. Multirequest mode only.

16384 Buffer overrun is a nonfatal error. The LPA 11-K will automatically
default to fill buffer 0 if a buffer overrun condition occurs.

IND Returns the success or failure status as follows:

O = Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPA$RLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed by
the LPA$SETIBF subroutine call.

1 =successful sweep started

nnn = VMS status code

LPA$DOSWP - Initiate Synchronous Digital Output Sweep

4-22

The LPA$DOSWP subroutine initiates digital output through a DRll-K. It
is applicable in multirequest mode only.

The format of the LPA$DOSWP subroutine call is as follows:

CALL LPA$DOSWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN],
[LDELAY],[ICHN],[NCHN],[IND])

4.5.6

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Arguments are as described in Section 4.5.1.2, plus the following:

MODE Specifies sampling options. The VMS operating system defines the
following values:

Value Meaning

O Immediate start. This is the default value for MODE.

512 External trigger for DR11-K. (The LPA 11-K Laboratory Peripheral
Accelerator User's Guide describes the use of external triggers.)

4096 Start method. If selected, digital input start. If not selected,
immediate start.

16384 Buffer overrun is a nonfatal error. The LPA 11-K will automatically
default to empty buffer 0 if a buffer overrun condition occurs.

IND Returns the success or failure status as follows:

O = Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPA$RLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed by
the LPA$SETIBF subroutine call.

1 =successful sweep started

nnn = VMS status code

LPA$LAMSKS- Set LPA11-K Masks and NUM Buffer
The LPA$LAMSKS subroutine initializes a user buffer that contains a
number to append to the logical name LPA11$, a digital start word mask,
an event mark mask, and channel numbers for the two masks.

The LPA$LAMSKS subroutine must be called in the following cases:

• If users intend to use digital input starting or event marking

• If users do not want to use the default of LAAO assigned to LPA11$0

• If multiple LPAll-Ks are used

The format of the LPA$LAMSKS subroutine call is as follows:

CALL LPA$LAMSKS (LAMSKB,[NUM],[IUNIT],[IDSC],[IEMC],[IDSW],[IEMW],[IND])

Argument descriptions are as follows:

LAMS KB

NUM

IUNIT

IDSC

IEMC

IDSW

Specifies a four-word array.

Specifies the number appended to LPA 11 $. The sweep is started on
the LPA 11-K assigned to LPA 11 $num.

Not used. This argument is present for compatibility only.

Specifies the digital START word channel. Range is O through 4.
The IDSC argument length is one byte.

Specifies the event MARK word channel. Range is O through 4. The
IEMC argument length is one byte.

Specifies the digital START word mask. The IDSW argument length
is one word.

4-23

4.5.7

4.5.8

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

IEMW Specifies the event MARK word mask. The IEMW argument length
is one word.

IND Always equal to 1 (success). This argument is present for
compatibility only.

LPA$SETADC - Set Channel Information for Sweeps
The LPA$SETADC subroutine establishes channel start and increment
information for the sweep control subroutines (see Table 4-4). It must be
called to initialize IBUF before the LPA$SETADC subroutine is called.

The LPA$SETADC subroutine can be called in either of the following
formats:

CALL LPA$SETADC (IBUF,[IFLAG],[ICHN],[NCHN],[INC],[IND])

or

IND=LPA$SETADC (IBUF,[IFLAG],[ICHN],[NCHN],[INC])

Argument descriptions are as follows:

IND Returns the success or failure status as follows:

0 = LPA$SETIBF was not called prior to the LPA$SETADC call

1 = LPA$SETADC call successful

IBUF The IBUF array specified in the LPA$SETIBF call.

IFLAG Reserved. This argument is present for compatibility only.

ICHN Specifies the first channel number. Range is 0 through 255; default
is 0. The ICHN argument length is one longword.

If INC = 0, ICHN is the address of a random channel list. This
address must be word aligned.

NCHN Specifies the number of samples taken per sample sequence.
Default is 1.

INC Specifies the channel increment. Default is 1 . If INC is 0, ICHN is
the address of a random channel list. The INC argument length is
one longword.

LPA$SETIBF - Set IBUF Array for Sweeps

4-24

The LPA$SETIBF subroutine initializes the IBUF array for use with the
following subroutines:

LPA$ADSWP

LPA$DOSWP

LPA$1NXTBF

LPA$RMVBUF

LPA$DASWP

LPA$1BFSTS

LPA$1WTBUF

LPA$SETADC

LPA$DISWP

LPA$1GTBUF

LPA$RLSBUF

LPA$STPSWP

The format of the LPA$SETIBF subroutine call is as follows:

CALL LPA$SETIBF (IBUF,[IND],[LAMSKB],BUFO,[BUF1 , ... ,BUF7])

4.5.9

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Arguments are as described in Section 4.5.1.2, with the following
additions:

IBUF

IND

LAMS KB

BUFO, ...

Specifies a 50-longword array that is initialized by this subroutine.
IBUF must be longword-aligned. (See Table 4-5 for additional
information on IBUF.)

Returns the success or failure status as follows:

O = Error in call. Possible causes are the following: incorrect number
of arguments; IBUF array not longword-aligned; buffer addresses not
equidistant.

1 = IBUF initialized successfully

Specifies the name of a four-word array. This array allows the use of
multiple LPA 11-Ks within the same program because the argument
used to start the sweep is specified by the LPA$LAMSKS subroutine
call. (See Section 4.5.6 for a description of the LPA$LAMSKS
subroutine.)

Specify the names of the buffers. A maximum of eight buffers can
be specified. At least two buffers must be specified to provide
continuous sampling. The LPA 11-K driver requires that all buffers
be contiguous. To ensure this, the LPA$SETIBF subroutine verifies
that all buffer addresses are equidistant. Buffers must be longword
aligned.

LPA$STPSWP - Stop In-Progress Sweep
The LPA$STPSWP subroutine allows you to stop a sweep that is in
progress.

The format of the LPA$STPSWP subroutine call is as follows:

CALL LPA$STPSWP (IBUF,[IWHEN],[IND])

Arguments are as described in Section 4.5.1.2, with the following
additions:

IBUF

IWHEN

IND

The IBUF array specified in the LPA$ADSWP, LPA$DASWP,
LPA$DISWP, or LPA$DOSWP subroutine call that initiated the
sweep.

Specifies when to stop the sweep. The VMS operating system
defines the following values:

O = Abort sweep immediately. Uses the $CANCEL system service.
This is the default sweep stop.

1 = Stop sweep when the current buffer transaction is completed.
(This is the preferred way to stop requests.)

Receives a success or failure code in the standard VMS format:

1 =Success

nnn = VMS error code issued by the $CANCEL system service

Note that when the LPA$STPSWP subroutine is returned, the sweep
cannot. be stopped. If it is necessary to wait until the sweep has stopped,
you can call the LPA$IWTBUF subroutine in a loop until it returns
IBUFNO = -1 (see Section 4.5.16).

4-25

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4.5.10 LPA$CLOCKA - Clock A Control
The LPA$CLOCKA subroutine sets the clock rate for Clock A.

The format of the LPA$CLOCKA subroutine call is as follows:

CALL LPA$CLOCKA (IRATE,IPRSET,[IND],[NUM])

Arguments are as described in Section 4.5.1.2, with the following
additions:

IRATE Specifies the clock rate. One of the following values must be
specified:

IP RS ET

IND

NUM

Value Meaning

-1 Direct-coupled Schmidt trigger 1 . Used only for AID
sweeps in dedicated mode, that is, MODE= 512 (see
Section 4.5.2).

O Clock B overflow or no rate

1 1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger 1

7 Line frequency

Specifies the clock preset value. Maximum of 16 bits. The
LPA$XRATE subroutine can be used to calculate this value. The
clock rate divided by the clock preset value yields the clock overflow
rate.

Receives a success or failure code as follows:

1 = Clock A set successfully

nnn = VMS error code indicating an 1/0 error

Specifies the number to be appended to the logical name LPA 11 $.
The default value is 0. This subroutine sets Clock A on the LPA 11-K
assigned to LPA 11 $num.

4.5.11 LPA$CLOCKB - Clock B Control

4-26

The LPA$CLOCKB subroutine provides the user with control of the
K.Wll-K Clock B.

The format of the LPA$CLOCKB subroutine call is as follows:

CALL LPA$CLOCKB ([IRATE],IPRSET,MODE,[IND],[NUM])

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Arguments are as described in Section 4.5.1.2, with the following
additions:

IRATE Specifies the clock rate. One of the following must be specified:

IP RS ET

MODE

IND

NUM

Value Meaning

0 Stops Clock B

1 1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger 3

7 Line frequency

If IRATE is O (default), the clock is stopped and the IPRSET and
MODE arguments are ignored.

Specifies the preset value by which the clock rate is divided to yield
the overflow rate. Maximum of eight bits. Overflow events can be
used to drive Clock A. The LPA$XRATE subroutine can be used to
calculate the IPRSET value.

Specifies options. The VMS operating system defines the following:

1 =Clock B operates in noninterrupt mode.

2 =The feed B to A bit in the Clock B status register will be set (see
the LPA11-K Laboratory Peripheral Accelerator User's Guide).

Receives a success or failure code as follows:

1 = Clock B set successfully

nnn = VMS error code indicating an 1/0 error

Specifies the number to be appended to the logical name LPA 11 $.
The default value is 0. This subroutine sets Clock B on the LPA 11-K
assigned to LPA 11 $num.

4.5.12 LPA$XRATE- Compute Clock Rate and Preset Value
The LPA$XRATE subroutine computes the clock rate and preset value
for the LPA$CLOCKA and LPA$CLOCKB subroutines using the specified
intersample interval (AINTRVL).

The LPA$XRATE subroutine can be called in either of the following
formats:

CALL LPA$XRATE (AINTRVL,IRATE,IPRSET,IFLAG)

ACTUAL=LPA$XRATE(AINTRVL, IRATE, IP RS ET, IFLAG)

4-27

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Arguments are as described in Section 4.5.1.2, with the following
additions:

AINTRVL

IRATE

IP RS ET

IFLAG

ACTUAL

Specifies the intersample time selected by the user. The time is
expressed in decimal seconds. Data type is floating point.

Receives the computed clock rate as a value from 1 through 5.

Receives the computed clock preset value.

If the computation is for Clock A, IFLAG is O; if for Clock B, IFLAG
is not O (the maximum preset value is 255). The IFLAG argument
length is one byte.

Receives the actual intersample time if called as a function. Data
type is floating point. If there are truncation and round-off errors,
the resulting intersample time can be different from the specified
intersample time. Note that when the LPA$XRATE subroutine is
called from VAX FORTRAN IV-PLUS programs as a function, it must
be explicitly declared a real function. Otherwise, the LPA$XRATE
subroutine defaults to an integer function.

If AINTRVL is either too large or too small to be achieved, both IRATE
and ACTUAL are returned to 0.

4.5.13 LPA$1BFSTS - Return Buffer Status
The LPA$IBFSTS subroutine returns information on the buffers used in a
sweep.

The format of the LPA$IBFSTS subroutine call is as follows:

CALL LPA$1BFSTS (IBUF,ISTAn

Argument descriptions are as follows:

IBUF The IBUF array specified in the call that initiated the sweep.

ISTAT Specifies a longword array with as many elements as there are
buffers involved in the sweep (maximum of eight). LPA$1BFSTS fills
each array element with the status of the corresponding buffer:

+2 =Buffer in device queue. LPA$RLSBUF has been called for this
buffer.

+ 1 = Buffer in user queue. The LPA 11-K has filled (data input) or
emptied (data output) this buffer.

O = Buffer is not in any queue.

-1 = Buffer is in the in-use queue; that is, it is either being filled or
emptied, or it is the next to be filled or emptied by the LPA 11-K.

4.5.14 LPA$1GTBUF - Return Buffer Number

4-28

The LPA$IGTBUF subroutine returns the number of the next buffer to be
processed by the application program, the buffer at the head of the user
queue (see Figure 4-3). It should be called by a completion routine

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

at AST level to determine the next buffer to process. If an event flag was
specified in the start sweep call, the LPA$IWTBUF, not the LPA$IGTBUF
subroutine, should be called.

The LPA$IGTBUF subroutine can be called in one of these formats:

CALL LPA$1GTBUF (IBUF,IBUFNO}

IBUFNO=LPA$1GTBUF(IBUF}

Arguments are as described in Section 4.5.1.2, plus the following:

IBUF

IBUFNO

The IBUF array specified in the call that initiated the sweep.

Returns the number of the next buffer to be filled or emptied by the
application program.

Table 4-6 lists the possible combinations of IBUFNO and IOSB contents
on the return from a call to the LPA$IGTBUF subroutine. The first four
words of the IBUF array contain the I/O status block (IOSB). If IBUFNO
is -1, the IOSB must be checked to determine the reason.

Table 4-6 LPA$1GTBUF Call - IBUFNO and IOSB Contents

IBUFNO IOSB(1) IOSB(2) IOSB(3),(4) Meaning

n

-1

-1

-1

0

0

VMS
error
code

(byte
count)

0

0

0

0

0

0

LPA 11-K ready-out and
maintenance registers
(only if SS$DEVREQERR,
SS$_CTRLERR, or
SS$DEVCMDERR is
returned}

Normal buffer complete.

No buffers in queue. Request still active.

No buffers in queue. Sweep terminated
normally.

No buffers in queue. Sweep terminated due
to error condition. Section 4.6 describes the
VMS error codes; the LPA 11-K Laboratory
Peripheral Accelerator User's Guide lists
the LPA 11-K error codes.

4.5.15 LPA$1NXTBF - Set Next Buffer to Use
The LPA$INXTBF subroutine alters the normal buffer selection algorithm
so that you can specify the next buffer to be filled or emptied. The specified
buffer is reinserted at the head of the device queue.

The LPA$INXTBF subroutine can be called in one of these formats:

CALL LPA$1NXTBF (IBUF,IBUFNO,IND}

IND=LPA$1NXTBF(IBUF,IBUFNO}

4-29

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Arguments are as described in Section 4.5.1.2, plus the following:

IBUF

IBUFNO

IND

The IBUF array specified in the call that initiated the sweep.

Specifies the number of the next buffer to be filled or emptied. The
buffer must already be in the device queue.

Returns the result of the call as follows:

0 = Specified buffer not in the device queue

1 = Next buffer successfully set

4.5.16 LPA$1WTBUF - Return Next Buffer or Wait
The LPA$IWTBUF subroutine returns the next buffer to be processed by
the application program, the buffer at the head of the user queue. If the
user queue is empty, the LPA$IWTBUF subroutine waits until a buffer is
available. If a completion routine was specified in the call that initiated
the sweep, LPA$IGTBUF, not LPA$IWTBUF, should be called.

The LPA$IWTBUF subroutine can be called in either of the following
formats:

CALL LPA$1WTBUF (IBUF,[IEFN],IBUFNO)

IBUFNO=LPA$1WTBUF(IBUF,[IEFN])

Arguments are as described in Section 4.5.1.2, with the following
additions:

IBUF

IEFN

IBUFNO

The IBUF array specified in the call that initiated the sweep.

Not used. This argument provides compatibility with the operating
system. (The event flag is the one specified in the start sweep call.)

Returns the number of the next buffer to be filled or emptied by the
application program.

Table 4-7 lists the possible combinations of IBUFNO and I/O status block
contents on the return from a call to the LPA$IWTBUF subroutine. The
first four words of the IBUF array contain the I/O status block. If IBUFNO
is -1, the I/O status block must be checked to determine the reason.

Table 4-7 LPA$1WTBUF Call - IBUFNO and IOSB Contents

IBUFNO IOSB(1) IOSB(2) IOSB(3),(4) Meaning

n

-1

-1

4-30

0

VMS
error
code

(byte
count)

0

0

0

0

LPA 11-K ready-out and
maintenance registers
(only if SS$_DEVREQERR
SS$_CTRLERR,orSS$_
DEVCMDERR is returned)

Normal buffer complete.

No buffers in queue. Sweep terminated
normally.

No buffers in queue. Sweep terminated due
to error condition. Section 4.6 describes the
VMS error codes; the LPA 11-K Laboratory
Peripheral Accelerator User's Guide lists
the LPA 11-K error codes.

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4.5.17 LPA$RLSBUF - Release Data Buffer
The LPA$RLSBUF subroutine declares one or more buffers available to
be filled or emptied by the LPAll-K. It inserts the buffer at the tail of the
device queue (see Figure 4-3).

The format of the LPA$RLSBUF subroutine call is as follows:

CALL LPA$RLSBUF (IBUF,[IND],INDEXO,INDEX1, ... ,INDEXN)

Arguments are as described in Section 4.5.1.2, with the following
additions:

IBUF

IND

The IBUF array specified in the call that initiated the sweep.

Returns the success or failure status as follows:

0 = Buffer number was illegal, the number of arguments specified
was incomplete, or a double buffer overrun occurred. A double
buffer overrun can occur only if buffer overrun was specified as
a nonfatal error, a buffer overrun occurs, and buffer 0 was not
released (probably on the user queue after a previous buffer
overrun).

1 = Buffer(s) released successfully.

INDEXO, . . . Specify the indexes (0-7) of the buffers to be released. A
maximum of eight indexes can be specified.

The LPA$RLSBUF subroutine must be called to release a buffer
(or buffers) to the device queue before the sweep is initiated. (See
Section 4.5.1.1 for a discussion of buffer management.) Note that the
LPA$RLSBUF subroutine does not verify whether the specified buffers are
already in a queue. If a buffer is released when it is already in a queue,
the queue pointers are invalidated and unpredictable results can occur.

If buffer overrun is specified as a nonfatal error, buffer 0 should not be
released before the sweep is initiated. However, if either the LPA$IGTBUF
or LPA$IWTBUF subroutine returns buffer 0, it should be released. In
this case, buffer 0 is set aside (not placed on a queue) until the buffer
overrun occurs. If a buffer overrun occurs and buffer 0 was not released,
the LPA$RLSBUF subroutine returns an error the next time buffer 0 is
released.

4.5.18 LPA$RMVBUF -. Remove Buffer from Device Queue
The LPA$RMVBUF subroutine removes a buffer from the device queue.

The format of the LPA$RMVBUF subroutine call is as follows:

CALL LPA$RMVBUF (IBUF,IBUFNO,[IND])

Arguments are as described in Section 4.5.1.2, with the following
additions:

IBUF

IBUFNO

The IBUF array specified in the call that initiated the sweep.

Specifies the number of the buffer to remove from the device queue.

4-31

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

IND Returns the success or failure status as follows:

O = Buffer not found in the device queue

1 = Buffer successfully removed from the device queue

4.5.19 LPA$CVADF- Convert A/D Input to Floating-Point
The LPA$CVADF subroutine converts AID input values to floating-point
numbers. It is supported to provide compatibility with the VMS operating
system.

The LPA$CVADF subroutine can be called in either of the following
formats:

CALL LPA$CVADF (IVAL,VAL)

VAL=LPA$CVADF(IVAL)

Argument descriptions are as follows:

IVAL Contains the value (bits 11 :O) read from the AID input. Bits 15:12
are 0.

VAL Receives the floating-point value.

4.5.20 LPA$FLT16 - Convert Unsigned 16-Bit Integer to Floating-Point
The LPA$FLP16 subroutine converts unsigned 16-bit integers to floating
point. It is supported to provide compatibility with the VMS operating
system.

The LPA$FLT16 subroutine can be called in either of the following
formats:

CALL LPA$FLT16 (IVAL,VAL)

VAL=LPA$FLT16(1VAL)

Argument descriptions are as follows:

IVAL An unsigned 16-bit integer.

VAL Receives the converted value.

4.5.21 LPA$LOADMC- Load Microcode and Initialize LPA11-K

4-32

The LPA$LOADMC subroutine provides a program interface to the
LPAll-K microcode loader. It sends a load request through a mailbox
to the loader process to load microcode and to initialize an LPAll-K.
(Section 4. 7 .1 describes the microcode loader process.)

The format of the LPA$LOADMC subroutine call is as follows:

CALL LPA$LOADMC ([ITYPE][,NUM][,IND][,IERROR])

4.6 110 Status Block

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Argument descriptions are as follows:

ITYPE The type of microcode to be loaded. The VMS operating system

NUM

IND

defines the following values: ·

Value Meaning

Multirequest mode; default value

2 Dedicated AID mode

3 Dedicated DI A mode

The number to be appended to the logical name LPA 11 $. The
default value is 0.

Receives the completion status as follows:

1 = Microcode loaded successfully

nnn = VMS error code

I ERROR Provides additional error information. Receives the second longword
of the 1/0 status block if SS$_CTRLERR, SS$_DEVCMDERR, or
SS$_DEVREQERR is returned in IND. Otherwise, the contents of
IERROR are undefined.

The 1/0 status block (IOSB) format for the load microcode, start
microprocessor, initialize LPAll-K, set clock, and start data transfer
request QIO functions is shown in Figure 4-4.

Figure 4-4 1/0 Functions IOSB Content

31

Byte Count

LPA11-K
Maintenance Status

16 15 0

Status

LPA 11-K Ready-Out

ZK-0662-GE

VMS status values and the byte count are returned in the first longword.
Status values are defined by the $SSDEF macro. The byte count is the
number of bytes transferred by a 10$_LOADMCODE request. If
SS$_CTRLERR, SS$_DEVCMDERR, or SS$_DEVREQERR is returned
in the status word, the second longword contains the LPAll-K ready
out register and LPAll-K maintenance status register values present at
the completion of the request. The high byte of the ready-out register
contains the specific LPAll-K error code (see the LPA11-K Laboratory
Peripheral Accelerator User's Guide). Appendix A of this manual lists the
status returns for LPAll-K 1/0 functions. (The VMS System Messages

4-33

Laboratory Peripheral Accelerator Driver
4.6 1/0 Status Block

and Recovery Procedures Reference Manual provides explanations and
suggested user actions for these returns.)

If high-level language library procedures are used, the status returns
listed in Appendix A can be returned from the resultant QIO functions.
Since buffers are filled by these procedures asynchronously, two 1/0 status
blocks are provided in the IBUF array: one for the high-level language
procedures and one for the LPAll-K driver. The first four words of the
IBUF array contain the 1/0 status block for the high-level language
procedures.

4.7 Loading LPA11-K Microcode

4.7.1

The microcode loading and device initialization routines automatically
load microcode during system initialization (if specified in the system
manager's startup file) and during power recovery. These routines also
allow a nonprivileged user to load microcode and to restart the system.

The LPAll-K loader and initialization routines consist of the following
parts:

• A microcode loader process that loads any of the three microcode
versions, initializes the LPAll-K, and sets the clock rate. Loading is
initiated by either a mailbox request or a power recovery AST. This
process requires permanent mailbox (PRMMBX) and physical 1/0
privileges.

• An operator process that accepts operator commands or indirect file
commands to load microcode and to initialize an LPAll-K. This process
uses a mailbox to send a load request to the loader process; temporary
mailbox (TMPMBX) privilege is required.

• An LPAll-K procedure library routine that provides a program
interface to the LPAll-K microcode loader. The procedure sends a
load request through a mailbox to the loader process to load microcode
and to initialize an LPAll-K. Section 4.5.21 describes that routine in
greater detail.

Microcode Loader Process

4-34

The microcode loader process loads microcode, initializes a specific
LPAll-K, and sets the clock at the default rate (10 kHz interrupt rate). A
bit set in a controller bit map indicates that the specified controller was
loaded. The process specifies a power recovery AST, creates a mailbox
whose name (LPA$LOADER) is entered in the system logical name table,
and then hibernates.

The correct device configuration is determined automatically. When
LPAll-K initialization is performed, every possible device (see Table 4--1)
is specified as present on the LPAll-K. If the LPAll-K returns a "device
not found" error, the LPAll-K is reinitialized with that device omitted.

4.7.2

Laboratory Peripheral Accelerator Driver
4. 7 Loading LPA 11-K Microcode

On receipt of a power recovery AST, the loader process examines the
controller bit map to determine which LPAll-Ks have been loaded. For
each LPAll-K, the loader process performs the following functions:

• Obtains device characteristics

• Reloads the microcode previously loaded

• Reinitializes the LPAll-K

• Sets Clock A to the previous rate and preset value

Operator Process
The operator process loads microcode and initializes an LPAll-K through
either terminal or indirect file commands. To run the operator process,
type RUN SYS$SYSTEM:LALOAD. The command input syntax is as
follows:

devname/type

In the preceding example, devname is the device name of the LPAll-K
to be loaded. A logical name can be specified. However, only one level of
logical name translation is performed. If devname is omitted, LAAO is the
default name. If I type appears, it specifies one of the following types of
microcode to load:

• /MULTI_REQUEST-Multirequest mode

• /ANALOG_DIGITAL-Dedicated AID mode

• /DIGITAL_ANALOG-Dedicated DI A mode

If I type type is omitted, /MULTI_REQUEST is the default.

After receiving the command, the operator process formats a message and
sends it to the loader process. Completion status is returned through a
return mailbox.

4.8 RSX-11 M/M-PLUS and VMS Differences

4.8.1 General

This section lists those areas of the VMS high-level language support
routines that differ from the RSX-llM LPAll-K routines. The
RSX-11M IM-PLUS I I 0 Drivers Reference Manual provides a detailed
description of the RSX-llM LPAll-K support routines. Differences
between the VMS and RSX-llM/M-PLUS routines can be determined
by comparing the descriptions in the RSX-11M IM-PLUS I I 0 Drivers
Reference Manual with the descriptions for the VMS routines in the
preceding sections of this chapter.

The following are general features of VMS high-level support routines:

• The LUN argument is not used. The NUM argument specifies the
number to be appended to the logical name LPA11$.

4-35

4.8.2

4.8.3

4.8.4

Laboratory Peripheral Accelerator Driver
4.8 RSX-11 M/M-PLUS and VMS Differences

• All routine names have the prefix LPA$.

• In the LPA$SETIBF routine, buffer addresses are checked for
contiguity.

• In the LPA$LAMSKS routine, the !UNIT argument is not used.

• In the LPA$IWTBUF routine, the IEFN argument is not used. The
event flag specified in the sweep routine is used.

• The combinations of IBUFNO and I/O status block (IOSB) values
returned by the LPA$IWTBUF and LPA$IGTBUF subroutines are
different.

Alignment and Length

Status Returns

Sweep Routines

4-36

The following are features of alignment and length in VMS high-level
support routines:

• Buffers must be contiguous.

• Buffers must be longword-aligned.

• The random channel list (RCL) must be word-aligned.

• The IBUF array length is 50 longwords and must be longword-aligned.

The following are features of status returns in VMS high-level support
routines:

• The I/O status block (IOSB) length is eight bytes; numeric values of
errors differ.

• Several routines return the following:

1 =Success

0 =Failure detected in support routine

nnn = VMS status code; failure detected in system service

The following are features of sweep routines in VMS high-level support
routines:

• If an event flag is specified, it must be within a %VAL() construction.

• A tenth argument, IND, is added to return the success or failure
status.

Laboratory Peripheral Accelerator Driver
4.9 LPA11-K Programming Examples

4.9 LPA11-K Programming Examples

4.9.1

The following programming examples use LPAll-K high-level language
procedures and LPAll-K Queue 1/0 functions.

The VMS Device Support Manual volume contains information that is
applicable to LPAll-K programming.

LPA11-K High-Level Language Program (Program A)
This sample program (Example 4-1) is an example of how the LPAll-K
high-level language procedures perform an AID sweep using three buffers.
The program uses default arguments whenever possible to illustrate
the simplest possible calls. The program assumes that dedicated mode
microcode has previously been loaded into the LPAll-K. Table 4-8 lists
the variables used in this program.

Table 4-8 Program A Variables

Variable

BUFFER

IBUF

BUFNUM

ISTAT

Description

The data buffer array. BUFFER is a common area to guarantee
longword alignment.

The LPA11-K high-level language procedures use the IBUF array for
local storage.

BUFNUM contains the buffer number returned by LPA$1WTBUF. In
this example, the possible values are O, 1, and 2.

ISTAT contains the status return from the high-level language calls.

Example 4-1 LPA11-K High-Level Language Program (Program A)

c ***
c
C PROGRAM A
c
c ***

INTEGER*2
INTEGER*4

BUFFER(1000,0:2),IOSB(4)
IBUF(SO),ISTAT,BUFNUM

COMMON/AREAl/BUFFER

EQUIVALENCE (IOSB(l),IBUF(l))

(continued on next page)

4-37

Laboratory Peripheral Accelerator Driver
4.9 LPA11-K Programming Examples

Example 4-1 (Cont.) LPA11-K High-Level Language Program (Program A)

c
C Set clock rate to 1 khz, clock preset to -10.
c

c

CALL LPA$CLOCKA(4,-10,ISTAT)
IF (.NOT. ISTAT) GO TO 950

C Initialize IBUF array for sweep.
c

CALL LPA$SETIBF(IBUF,ISTAT,,BUFFER(l,0),BUFFER(l,1),BUFFER(l,2))
IF (.NOT. ISTAT) GO TO 950

c
C Release all the buffers. Note use of· buffer numbers rather than
C buffer names.
c

c

CALL LPA$RLSBUF(IBUF,ISTAT,0,1,2)
IF (.NOT. ISTAT) GO TO 950

C Start A/D sweep
c

c

CALL LPA$ADSWP(IBUF,1000,50,,,,,,,ISTAT)
IF (.NOT. ISTAT) GO TO 950

C Get next buffer filled with data. If BUFNUM is negative, there
C are no more buffers and the sweep is stopped.
c
100 BUFNUM = LPA$IWTBUF(IBUF)

IF (BUFNUM .LT. 0) GO TO 800
c
C Process data in buffer (1,BUFNUM) to buffer (1000,BUFNUM).

(Application-dependent code is inserted at this point.)

C Release buffer is filled again.
c
200 CALL LPA$RLSBUF(IBUF,ISTAT,BUFNUM)

IF (.NOT. ISTAT) GO TO 950
GO TO 100

c
C There are no more buffers to process. Check to ensure that the
C sweep ended successfully. IOSB(l) contains either 1 or a
C VMS status code.
c
800 IF (.NOT. IOSB(l)) CALL LIB$STOP(%VAL(IOSB(l)))

PRINT *,'SUCCESSFUL COMPLETION'
GO TO 2000

c
C Error return from subroutine. ISTAT contains either 0 or a
C VMS error code.
c

4-38

(continued on next page)

4.9.2

Laboratory Peripheral Accelerator Driver
4.9 LPA11-K Programming Examples

Example 4-1 (Cont.) LPA11-K High-Level Language Program (Program A)

950 IF (ISTAT .NE. 0) CALL LIB$STOP(%VAL(ISTAT))
PRINT *,'ERROR IN LPAll-K SUBROUTINE CALL'

2000 STOP
END

c **

LPA11-K High-Level Language Program (Program B)
This program (Example 4-2) is a more complex example of LPAll-K
operations performed by the LPAll-K high-level language procedures. The
following operations are demonstrated:

• Program-requested loading of LPAll-K microcode

• Setting the clock at a specified rate

• Use of nondefault arguments whenever possible

• An AID sweep that uses an event flag

• A DIA sweep that uses a completion routine

• Buffer overrun set (buffer overrun is a nonfatal error)

• Random channel list (RCL) addressing

• Sequential channel addressing

Table 4-9 lists the variables used in this program.

Table 4-9 Program B Variables

Variable Description

AD

DA

I BU FAD

I BU FDA

RCL

ADIOSB

An array of buffers for an AID sweep (8 buffers of 500 words each)

An array of buffers for a DIA sweep (2 buffers of 2000 words each)

The IBUF array for an AID sweep

DAIOSB

ISTAT

The IBU F array for a DI A sweep

The array that contains the random channel list (RCL)

The array that contains the 110 status block for the AID sweep.
Equivalenced to the beginning of IBUFAD

The array that contains the 110 status block for the DI A sweep.
Equivalenced to the beginning of IBUFDA

Contains the status return from the high-level language calls

4-39

Laboratory Peripheral Accelerator Driver
4.9 LPA11-K Programming Examples

Example 4-2 LPA11-K High-Level Language Program (Program B)

c ***
c
C Program B
c
c ***

c

EXTERNAL FILLBF
REAL*4 LPA$XRATE

INTEGER*2 AD(500,0:7),DA(2000,0:1),RCL(5),MODE,IPRSET
INTEGER*2 ADIOSB(4),DAIOSB(4)

INTEGER*4 IBUFAD(50),IBUFDA(50),LAMSKB(2)
INTEGER*4 ISTAT,IERROR,IRATE,BUFNUM

REAL*4 PERIOD

COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

EQUIVALENCE (IBUFAD(l),ADIOSB(l)), (IBUFDA(l),DAIOSB(l))

PARAMETER MULTI=l, HBIT='8000'X, LSTCHN=HBIT+7

C Set up random channel list. Note that the last word must have bit
C 15 set.
c

DATA RCL/2,6,3,4,LSTCHN/

c ***
c
C Load multirequest mode microcode and set the clock overflow rate
C to 5 khz.
c
c ***
c
C Load microcode on LPAll-K assigned to LPA11$3.
c

c

CALL LPA$LOADMC(MULTI,3,ISTAT,IERROR)
IF (.NOT. ISTAT) GO TO 5000

C Compute clock rate and preset. Set clock 'A' on LPAll-K
C assigned to LPA11$3.
c

PERIOD= LPA$XRATE(.0002,IRATE,IPRSET,0)
IF (PERIOD .EQ. 0.0) GO TO 5500

CALL LPA$CLOCKA(IRATE,IPRSET,ISTAT,3)
IF (.NOT. ISTAT) GO TO 5000

c ***
c
C Set up for A/D sweep
c
c ***
c
C Initialize IBUF array. Note the use of the LAMSKB argument because
C the LPAll-K assigned to LPA11$3 is used.
c

CALL LPA$SETIBF(IBUFAD,ISTAT,LAMSKB,AD(l,O),AD(l,l),AD(l,2),
1 AD(l,3),AD(l,4),AD(l,5),AD(l,6),AD(l,7))
IF (.NOT. ISTAT) GO TO 5000

4-40

(continued on next page)

Laboratory Peripheral Accelerator Driver
4.9 LPA 11-K Programming Examples

Example 4-2 (Cont.) LPA 11-K High-Level Language Program (Program B)

CALL LPA$LAMSKS(LAMSKB,3)
c
C Set up random channel list sampling (20 samples in a sample
C sequence) .
c

c

CALL LPA$SETADC(IBUFAD,,RCL,20,0,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

C Release buffers for A/D sweep. Note that buffer 0 is not
C released because buffer overrun will be specified as nonfatal.
c

CALL LPA$RLSBUF(IBUFAD,ISTAT,1,2,3,4,5,6,7)
IF (.NOT. ISTAT) GO TO 5000

c ***
c
C Set up for D/A sweep
c
c ***
c
C Note that the same LAMSKB array can be used because the LAMSKB
C contents apply to both A/D and D/A sweeps.
c

c

CALL LPA$SETIBF(IBUFDA,ISTAT,LAMSKB,DA(l,0),DA(l,1))
IF (.NOT. ISTAT) GO TO 5000

C Set up sampling parameters as follows: initial channel = 1.
C Number of channels sampled each sample sequence = 2, channel
C increment = 2, that is, sample channels 1 and 3 each sample
C sequence.
c

c

CALL LPA$SETADC(IBUFDA,,1,2,2,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

C Fill buffers with data for output to D/A.
c

(Application-dependent code is inserted here to fill buffers
DA(l,0) through DA(2000,0) and DA(l,1) through DA(2000,1) with data).

(continued on next page)

4-41

Laboratory Peripheral Accelerator Driver
4.9 LPA11-K Programming Examples

Example 4-2 (Cont.) LPA 11-K High-Level Language Program (Program B)

c
C Release buffers for D/A sweep.
c

CALL LPA$RLSBUF (IBUFDA,ISTAT,0,1)
IF (.NOT. ISTAT) GO TO 5000

c ***
c
C Start both sweeps
c
c ***
c
C Start A/D sweep. Mode bits specify buffer overrun is nonfatal and
C multirequest mode. Sweep arguments specify 500 samples/buffer,
C Indefinite sampling, dwell = 10 clock overflows, synchronize using
c event flag 15, and a delay of 50 clock overflows.
c

c

MODE = 16384 + 64
CALL LPA$ADSWP(IBUFAD,500,0,MODE,10,%VAL(l5),50,,,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

C Start D/A sweep. Mode specifies multirequest mode. Other
C arguments specify 2000 samples/buffer, fill 15 buffers, dwell = 25
C clock overflows, synchronize by calling the completion routine
C 'FILLBF', and delay= 10 clock overflows. (See the FILLBF listing
C after the program B listing.)
c

MODE = 64
CALL LPA$DASWP(IBUFDA,2000,15,MODE,25,FILLBF,10,,,ISTAT)
(.NOT. ISTAT) GO TO 5000

c ***
c
C Wait for an A/D buffer and then process the data it contains. D/A
C buffers are filled asynchronously by the completion routine FILLBF.
c
c ***
c
C Wait for a buffer to be filled by A/D. If BUFNUM is less than
C zero, the sweep has stopped (either successfully or with an error) .
c
100 BUFNUM = LPA$IWTBUF(IBUFAD)

IF (BUFNUM .LT. 0) GO TO 1000
c
c There is A/D data in AD(l,BUFNUM) through AD(500,BUFNUM)
c

(Process the A/D data with the application-dependent code inserted
here.)

4-42

(continued on next page)

Laboratory Peripheral Accelerator Driver
4.9 LPA11-K Programming Examples

Example 4-2 (Cont.) LPA11-K High-Level Language Program (Program B)

c
C Assume sweep should be stopped when the last sample in buff er
C equals 0. Note that the sweep actua1ly stops when the buffer
C currently being filled is full. Also note that LPA$IWTBUF
C continues to be called until there are no more buffers to process.
c

c

IF (AD(500,BUFNUM) .NE. 0) GO TO 200
CALL LPA$STPSWP(IBUFAD,1,ISTAT)
IF (.NOT. !STAT) GO TO 5000

C After the data is processed, the buff er is released to be
C filled again. Then the next buffer is obtained from A/D.
c
200 CALL LPA$RLSBUF(IBUFAD,ISTAT,BUFNUM)

IF (.NOT. ISTAT) GO TO 5000
GO TO 100

c
C Enter here when A/D sweep has ended. Check for error or
C successful end. (Note: Assume that the D/A sweep has already
C ended - see completion routine FILLBF.)
c
1000 IF(ADIOSB(l)) GO TO 6000

CALL LIB$STOP(%VAL(ADIOSB(l)))

c
c
c
c

Enter here if there was an error returned from one of the
LPAll-K high-level language calls. !STAT contains either 0
or a VMS status code.

c
5000
5500

IF (ISTAT .NE. 0) CALL LIB$STOP (%VAL(ISTAT))
PRINT *,'ERROR IN LPAll-K SUBROUTINE CALL'
GO TO 7000

6000 PRINT *,'SUCCESSFUL COMPLETION'
7000 STOP

END
c ***
c
C Subroutine FILLBF
c
c ***
c
C The FILLBF subroutine is called whenever the D/A has emptied a
C buffer, and that buffer is available to be refilled. This
C subroutine gets the buffer, fills it, and releases it back to the
C LPAll-K. Note that the D/A sweep is stopped automatically after
C 15 buffers have been filled. Also note that FILLBF is called by
C an AST handler. It is therefore called asynchronously from the
C main program at AST level. Care should be exercised when accessing
C variables that are common to both levels.
c

INTEGER*2 AD(500,0:7),DA(2000,0:l),DAIOSB(4)
INTEGER*4 IBUFAD(50),IBUFDA(50),BUFNUM,ISTAT
EQUIVALENCE (IBUFDA(l),DAIOSB(l))
COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

(continued on next page)

4-43

4.9.3

Laboratory Peripheral Accelerator Driver
4.9 LPA11-K Programming Examples

Example 4-2 (Cont.) LPA11-K High-Level Language Program (Program B)

c
C Get buffer number of next buffer to fill.
c

BUFNUM = LPA$IGTBUF(IBUFDA)
IF (BUFNUM .LT. 0) GO TO 3000

c
C Fill buffer with data for output to D/A.

(Application-dependent code is inserted here to fill buffer
DA(l,BUFNUM) through DA(2000,BUFNUM) with data.)

c
C Release buff er
c

CALL LPA$RLSBUF(IBUFDA,ISTAT,BUFNUM)
GO TO 4000

c
C Check for successful end of sweep.
c
3000 IF(DAIOSB(l)) GO TO 4000

c
C Error in sweep
c

CALL LIB$STOP(%VAL(DAIOSB(l)))

4000 RETURN
END

c ***

LPA11-K QIO Functions Program (Program C)

4-44

This sample program (Example 4-3) uses QIO functions to start an AID
data transfer from an LPAll-K. (The program assumes multirequest mode
microcode has been loaded.) Sequential channel addressing is used. The
data transfer is stopped after 100 buffers have been filled; no action is
taken with the data as the buffers are filled. Note that this program starts
the data transfer and then waits until the QIO operation completes.

Laboratory Peripheral Accelerator Driver
4.9 LPA 11-K Programming Examples

Example 4-3 LPA 11-K QIO Functions Program {Program C)

Program C

.TITLE LPAll-K EXAMPLE PROGRAM

. IDENT /VOl/

.PSECT LADATA,LONG

IOSB: .BLKQ 1 I/O status block
COUNT: .LONG 0 Count of buffers filled

CBUFF: Command buff er for start
Data QIO

.WORD AX20A Mode = Sequential channel
Addressing, A/D,
multirequest mode

.WORD 3 Valid buffer mask
(4 buffers)

.LONG usw User Status Word address

.LONG 4000 Aggregate buffer length

.LONG DATA BUFFERO Address of data buffers

.LONG 0 No random channel list
length

.LONG 0 No random channel list
address

.WORD 10 Delay

.BYTE 0 Start channel

.BYTE 1 Channel increment

.WORD 16 Number of samples in
sample sequence

.WORD 1 Dwell

.BYTE 0 Start word number

.BYTE 0 Event mark word

.WORD 0 Start word mask

.WORD 0 Event mark mask

.WORD 0 Fills out command buffer

USW: .WORD 0 User Status Word

.ALIGN LONG Buffers must be
longword aligned

DATA BUFFERO: .BLKW 500 Data buffers
DATA BUFFERl: .BLKW 500
DATA BUFFER2: .BLKW 500
DATA BUFFER3: .BLKW 500

(continued on next page)

4-45

Laboratory Peripheral Accelerator Driver
4.9 LPA11-K Programming Examples

Example 4-3 (Cont.) LPA 11-K QIO Functions Program (Program C)

DEVNAME: .ASCID /LAAO/

CHANNEL: .BLKW 1 Contains channel number

.PSECT LACODE,NOWRT

START: .ENTRY START,Am<>
$ASSIGN S DEVNAM=DEVNAME,CHAN=CHANNEL ; Assign channel
BLBS -R0,5$ No error
BRW ERROR Error

5$: Set clock overflow rate
To 2 khz. (1 mhz rate
divided by 500 preset)

$QIOW_S ,CHAN=CHANNEL,FUNC=#IO$ SETCLOCK,-
IOSB=IOSB,,, ,P2=#1,P3=#AX143,P4#-500

BLBC RO,ERROR Error
MOVZWL IOSB,RO Pick up I/O status
BLBC RO,ERROR Error

Start data transfer
CLRW USW Clear USW (start with

buffer 0)
MOVL #100,COUNT Fill 100 buffers
$QIOW_S ,CHANNEL,#IO$ STARTDATA,-

IOSB=IOSB,, ,Pl=CBUFF,P2=#40,P3=#BFRAST
BLBC RO,ERROR ; Error

Note that the QIO waits until it finishes. Normally, the data is
processed here as the buffers are filled. Check for error when
the QIO completes.

ERROR:

MOVZWL
BLBC
RET

PUSHL
CALLS

IOSB,RO
RO,ERROR

RO
#1,G"LIB$STOP

BFRAST: BFRAST,mA<>

10$:

20$:

.WORD 0
INCB
CMPZV

BLEQ
CLRB
DECL
BGTR
BISB

BICB
RET

USW+l
#0,#3,USW+l,#3

10$
USW+l
COUNT
20$
#AX40,USW+l

#AX80,USW+l

.END START

Pick up I/O status
Error
All done - exit

Enter here if error
status in RO
Push onto stack
Signal error

Buffer AST routine
BFRAST is called whenever

; a buffer is filled

Add 1 to buff er number
Handle wraparound

Use buffer 0
Decrement buff er count

Enough buffers filled -
Set stop bit
Clear done bit

4-46

5 Line Printer Driver

This chapter describes the use of the line printer drivers LPDRIVER and
LC DRIVER.

5.1 Supported Line Printer Devices

5.1.1

5.1.2

5.1.3

The following sections describe the line printer controllers and line
printers supported by the VMS operating system.

LP11 Line Printer Controller
The LPll line printer controller provides an interface between the
VAX UNIBUS adapter and the line printer. The LPll performs the
following functions:

• Synchronizes single-character data transfers from the UNIBUS to the
printer

• Informs the VMS operating system about printer status

• Enables the printer to gain control of the UNIBUS to report interrupts

DMF32 and DMB32 Line Printer Controllers
The DMF32 and DMB32 line printer controllers provide a direct memory
access (DMA) interface between the VAX UNIBUS adapter (for the
DMF32), or the VAXBI adapter (for the DMB32), and the line printer.
The DMF32/DMB32 optionally perform the following functions:

• Tab expansion

• Carriage control

• Line wrapping and truncation

• Case conversion

• Passall mode

• Printall mode

LP27 Line Printer
The LP27 line printer is a high-speed, 132-column line printer, available
with either a 64- or 96-character ASCII print set. The LP27-U is a fully
buffered model that operates at a standard speed of up to 1200 lines per
minute. Forms with up to six parts can be used for multiple copies. A
version of the LP27 is available for operation of the printer up to 24.5
meters (1000 feet) from the host.

5-1

5.1.4

5.1.5

5.1.6

Line Printer Driver
5.1 Supported Line Printer Devices

LA11 DECprinter I
The LAll DECprinter I is a medium-speed printer that operates at a
standard speed of 180 characters per second. It provides a forms length
switch to set the top of form to any of 11 common lengths, a paper-
out switch and alarm, and a variable forms width. The LAU uses a
96-character ASCII set; the column width is 132 characters.

LN01 Laser Page Printer
The LNOl laser page printer is a nonimpact printer that employs laser
technology to produce high-quality print. Using electrophotographic
imaging and xerographic printing, the LNOl prints one page at a time
at a rate of 12 pages per minute. The print resolution of 300 x 300 dots
per square inch produces characters of even density and alignment. The
LNOl uses two, 188-character, fixed-space fonts; the column width is 132
characters.

LN03 Laser Page Printer
The LN03 laser page printer is a table-top, nonimpact page printer that
uses laser imaging and xerographic printing techniques. The LN03 has a
printing speed of 8 pages per minute with a print resolution of 300 x 300
dots per square inch. Four built-in fonts are available. Several column
widths, including 80 or 132 characters, are also available.

5.2 Driver Features

5.2.1

The line printer drivers provide output character formatting and error
recovery. These features are described in the following sections.

Output Character Formatting

5-2

In write virtual and write logical block operations, user-supplied
characters are output as follows (write physical block data is not
formatted, but output directly):

• Rubouts are discarded.

• Tabs move the horizontal print position to the next MODULO (8)
position unless the LP$M_TAB characteristic is clear.

• All lowercase alphabetic characters are converted to uppercase before
printing (unless the characteristic specifying lowercase characters is
set; see Section 5.4.3 and Table 5-2).

• On printers where the line-feed, form-feed, vertical-tab, and carriage
return characters empty the printer buffer, returns are held back
and output only if the next character is not a form feed, line feed, or
vertical tab. Carriage returns are always output on units that have
the LP$M_CR characteristic set (see Section 5.4.3 and Table 5-2).

5.2.2 Error Recovery

Line Printer Driver
5.2 Driver Features

• The horizontal print position is incremented on the output of all
characters, including the space character. Characters are discarded if
the horizontal print position is equal to or greater than the carriage
width, unless the LP$M_ WRAP characteristic is set or the
LP$M_TRUNCATE characteristic is clear (see Section 5.3).

• On printers without a mechanical form feed (the form-feed function
characteristic is not set; see Section 5.4.3 and Table 5-2), a form feed
is converted to multiple line feeds. The number of line feeds is based
on the current line count and the page length.

• Print lines are counted and returned to the caller in the second
longword of the I/O status block.

The VMS line printer drivers perform the following error recovery
operations:

• If the printer is off line for 30 seconds, a "device not ready" message is
sent to the system operator process.

• If the printer runs out of paper or has a fault condition, a "device
not ready" message is sent to the system operator after 30 seconds.
Successive messages, if they occur, are sent 1, 2, 4, 8, ... minutes
after the initial message.

• The current operation is retried every two seconds to test for a changed
situation, such as the printer coming on line.

• The current 1/0 operation can be canceled at the next timeout without
the printer being on line.

• When the printer comes on line, device operation resumes
automatically.

5.3 Line Printer Driver Device Information
You can obtain information on printer characteristics by using the Get
DeviceNolume Information ($GETDVI) system service. (See the VMS
System Services Reference Manual.)

$GETDVI returns line printer characteristics when you specify the item
codes DVI$_DEVCHAR and DVI$_DEVDEPEND. Tables 5-1 and 5-2
list these characteristics. The $DEVDEF macro defines the device
independent characteristics; the $LPDEF macro defines the device
dependent characteristics. DVI$_DEVDEPEND returns a longword field
that contains the device-dependent characteristics in the three low-order
bytes and the page length in the high-order byte. Maximum page length is
255.

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and class
names, which are defined by the $DCDEF macro. The device type is a
value that corresponds to the printer, for example, LP$_LP27 or LP$_
LAll. The device class for printers is DC$_LP. DVI$_DEVBUFSIZ returns

5-3

Line Printer Driver
5.3 Line Printer Driver Device Information

5-4

the page width, which is a value in the range of 0 through 255 on a DMF32
controller and 0 through 65535 on an LPll or a DMB32 controller.

Table 5-1 Printer Device-Independent Characteristics

Characteristic 1

DEV$M_SPL

DEV$M_AVL

DEV$M_REC

DEV$M_CCL

DEV$M_ODV

Meaning

Dynamic Bits (Conditionally Set)

Device is spooled.

Printer is on line and available.

Static Bits (Always Set)

Device is record-oriented.

Carriage control is enabled.

Device is capable of output.

1 Defined by the $DEVDEF macro.

Table 5-2 Device-Dependent Characteristics for Line Printers

Value1

LP$M_CR

LP$M_FALLBACK

LP$M_LOWER

LP$M_MECHFORM

LP$M_PASSALL

LP$M_PRINTALL

LP$M_TAB

LP$M_ TRUNCATE

Meaning

Printer requires carriage return. (See Section 5.2.1).

Printer translates multinational characters to a seven-
bit equivalent representation if possible. Otherwise, an
underscore character(_) replaces the character. LPM$M_
FALLBACK has no effect on physical block operations. See
Appendix B for a list of multinational characters.

Printer can print lowercase characters. If this value is not set,
all lowercase characters are converted to uppercase when
output. (LP$M_LOWER has no effect on write physical block
operations.)

Printer has mechanical form feed. This characteristic is
used when variable form length is required, such as in
check printing. Driver sends ASCII form feed (decimal 12).
Otherwise, multiple line feeds are generated. The page
length determines the number of line feeds.

All output data is in binary (no data interpretation occurs).
Data termination occurs when the buffer is full (default buffer
size is 132 bytes). Character formatting is disabled.

All printing and nonprinting characters are transferred to the
printer, while character formatting remains enabled.

Printer enables tab expansion.

Printer truncates records that are larger than the carriage
width.

1 Defined by the $LPDEF macro.

(continued on next page)

Line Printer Driver
5.3 Line Printer Driver Device Information

Table 5-2 (Cont.) Device-Dependent Characteristics for Line Printers

Value1

LP$M_WRAP

Meaning

Printer wraps records that are larger than the carriage width.
If a string of text is longer than the width specified in the
second longword, the string is continued on the next line.

1 Defined by the $LPDEF macro.

5.4 Line Printer Function Codes

5.4.1 Write

The basic line printer l/O functions are write, sense mode, and set mode.
None of the function codes take function modifiers.

The line printer write functions print the contents of the user buffer on
the designated printer.

The write functions and their QIO function codes are:

• IO$_WRITEVBLK-Write virtual block

• IO$_WRITELBLK-Write logical block

• 10$_ WRITEPBLK-Write physical block (the data is not formatted,
but output directly, as in PASSALL mode on terminals)

The write function codes can take the following device- or function
dependent arguments:

• Pl-The starting virtual address of the buffer that is to be written

• P2-The number of bytes that are to be written

• P4--Carriage control specifier except for write physical block
operations (Write function carriage control is described in
Section 5.4.1.1.)

P3, P5, and P6 are not meaningful for line printer write operations.

In write virtual block and write logical block operations, the buffer
specified by Pl and P2 is formatted for the selected line printer and
includes the carriage control information specified by P4. The default
buffer size is 132 bytes.

If the printer is not set spooled, write virtual block and write logical block
operations perform the same function. If the printer is set spooled, a write
logical block function queues the I/O to the printer, and a write virtual
block function queues the I/O to the intermediate device, usually a disk.

All lowercase characters are converted to uppercase if the characteristics
of the selected printer do not include LP$M_LOWER. (This does not apply
to write physical block operations.)

5-5

Line Printer Driver
5.4 Line Printer Function Codes

5-6

Multiple line feeds are generated for form feeds only if the printer does
not have a mechanical form feed (LP$M_MECHFORM) characteristic. The
number of line feeds generated depends on the current page position and
the page length.

Section 5.2.1 describes character formatting in greater detail.

5.4.1.1 Write Function Carriage Control
The P4 argument is a longword that specifies carriage control. Carriage
control determines the next printing position on the line printer. (P4 is
ignored in a write physical block operation.) Figure 5-1 shows the P4
longword format.

Figure 5-1 P4 Carriage Control Specifier

3 2 0

P4: I POS1FIX PREFIX (NotUsed) FORTRAN

ZK-0664-GE

Only bytes 0, 2, and 3 in the longword are used. Byte 1 is ignored. If
the low-order byte (byte 0) is not 0, the contents of the longword are
interpreted as a FORTRAN carriage control specifier. Table 5-3 lists the
possible byte 0 values (in hexadecimal) and their meanings.

If the low-order byte (byte 0) is 0, bytes 2 and 3 of the P4 longword
are interpreted as the prefix and postfix carriage control specifiers. The
prefix (byte 2) specifies the carriage control before the buffer contents are
printed. The postfix (byte 3) specifies the carriage control after the buffer
contents are printed. The sequence is as follows:

1 Prefix carriage control

2 Print

3 Postfix carriage control

The prefix and postfix bytes, although interpreted separately, use the same
encoding scheme. Table 5-4 shows this encoding scheme in hexadecimal
format.

Line Printer Driver
5.4 Line Printer Function Codes

Table 5-3 Write Function Carriage Control (FORTRAN: byte 0 not equal
to 0)

Byte O Value
(hexadecimal)

20

30

31

28

24

All other
values

ASCII
Character

(space)

0

+

$

Meaning

Single-space carriage control (Sequence:
carriage-return/line-feed combination 1, print
buffer contents, return)

Double-space carriage control (Sequence:
carriage-return/line-feed combination, carriage
return/line-feed combination, print buffer
contents, return)

Page eject carriage control (Sequence: form
feed, print buffer contents, return)

Overprint carriage control; allows double printing
for emphasis or for special effects (Sequence:
print buffer contents, return)

Prompt carriage control (Sequence: carriage
return/line-feed combination, print buffer
contents)

Same as ASCII space character: single-space
carriage control

1 A carriage-return/line-feed combination is a carriage return followed by a line feed.

Table 5-4 Write Function Carriage Control (P4 byte O equal to 0)

Prefix/Postfix Bytes (Hexadecimal)

Bit 7

0

0

Bit 7 Bit 6

0

Bits
0-6

0

1-7F

Bit 5

0

0

Bits 0--4

1-1F

1-1F

Meaning

No carriage control is specified, that is,
NULL.

Bits 0 through 6 are a count of carriage
return/line-feed combinations.

Meaning

Output the single ASCII control character
specified by the configuration of bits O
through 4 (seven-bit character set).

Output the single ASCII control character
specified by the configuration of bits O
through 4, which are translated as ASCII
characters 128 through 159 (eight-bit
character set; see Appendix B).

Figure 5-2 shows the prefix and postfix hexadecimal coding that produces
the carriage control functions listed in Table 5-3. Prefix and postfix coding
provides an alternative way to achieve these controls.

5-7

Line Printer Driver
5.4 Line Printer Function Codes

In the first example, the prefix/postfix hexadecimal coding for a single
space carriage control (carriage-return/line-feed combination, print buffer
contents, carriage-return) is obtained by placing the value (1) in the
second (prefix) byte and the sum of the bit 7 value (80) and the return
value (D) in the third (postfix) byte:

80 (bit 7 = 1)
+ D (return)

SD (postfix = return)

Figure 5-2 Write Function Carriage Control {Prefix and Postfix Coding)

(Space) Sequence:

P4: I SD I
Prefix= NL

0 Print _______ ____ __._ ____ ___._ ____ ____, Postfix= CR

"O" Sequence:

SD 2 0 P4: I I
Prefix = NL, NL
Print _____ ...___ _______________ Postfix= CR

"1"
Sequence:

SD BC 0 P4: I I
Prefix= FF
Print _______ ____ __._ ____ ___._ ____ ____, Postfix= CR

"+"
Sequence:

SD 0 0 P4: I I
Prefix = NULL
Print ________ ____ __._ ____ ___._ ____ ____, Postfix = CR

"$"

P4: I
Sequence:

r-----~-------------T"-------. Prefix = NL
o I Print 0

-----------"""-------------...... Postfix= NULL

Example: Skip 24 lines before printing . Sequence:

.--------------T"------------. Prefix= 24NL
P4: I SD 18 O Print

-· --------------------- Postfix= CR

ZK-0665-GE

5-8

5.4.2

5.4.3

Line Printer Driver
5.4 Line Printer Function Codes

Sense Printer Mode

Set Mode

The sense printer mode function senses the current device-dependent
printer characteristics and returns them in the second longword of the I/O
status block. No device- or function-dependent arguments are used with
IO$_SENSEMODE.

Set mode operations affect the operation and characteristics of the
associated line printer. The VMS operating system provides two types
of set mode functions: set mode and set characteristics. Set mode requires
logical I/O privilege. Set characteristics requires physical I/O privilege.
The following function codes are provided:

• IO$_SETMODE

• IO$_SETCHAR

These functions take the following device- or function-dependent argument
(other arguments are not valid):

Pl-The address of a characteristics buffer

Figure 5-3 shows the quadword Pl characteristics buffer for 10$_
SETMODE. Figure 5-4 shows the same buffer for IO$_SETCHAR.

Figure 5-3 Set Mode Buffer

31 24 23 16 15 0

Page Width l Not Used

Page Length l Printer Characteristics

ZK-0666-GE

In the buffer, the device class is DC$_LP. The printer type is a value that
corresponds to the printer: DT$_LP27 or DT$_LA11. The type can be
changed by the IO$_SETCHAR function. The page width is a value in the
range of 0 through 255 on a DMF32 controller and 0 through 65535 on an
LPll or DMB32 controller.

The printer characteristics part of the buffer can contain any of the values
listed in Table 5-2.

5-9

Line Printer Driver
5.4 Line Printer Function Codes

5.5 1/0 Status Block

5-10

Figure 5-4 Set Characteristics Buffer

31 24 23 16 15 8 7 0

Page Width l Type l Class

Page Length l Printer Characteristics

ZK-0667-GE

Application programs that change specific line printer characteristics
should perform the following steps:

1 Use the IO$_SENSEMODE function to read the current
characteristics.

2 Modify the characteristics.

3 Use the set mode function to write back the results.

Failure to follow this sequence will result in clearing any previously set
characteristic.

The I/O status blocks (IOSB) for the write and set mode I/O functions
are shown in Figures 5-5 and 5-6. Appendix A lists· the status returns
for these functions. (The VMS System Messages and Recovery Procedures
Reference Manual provides explanations and suggested user actions for
these returns.)

Line Printer Driver
5.5 1/0 Status Block

Figure 5-5 IOSB Contents - Write Function

31 16 15 0

Byte Count I Status

Number of Lines the Paper Moved*

* 0 if 10$_WRITEPBLK

ZK-0668-GE

Figure 5-6 IOSB Contents - Set Mode Function

31 16 15 0

I

0 I Status

I
0

ZK-0669-GE

5.6 Line Printer Driver Programming Example
The following sample program (Example 5-1) is an example of 1/0 to the
line printer that shows how to use the different carriage control formats.
This program prints out the contents of the output buffer (OUT_BUFFER)
10 times using 10 different carriage control formats. The formats are held
in location OUTPUT_FORMAT.

5-11

Line Printer Driver
5.6 Line Printer Driver Programming Example

Example 5-1 Line Printer Program Example

**

.TITLE

. IDENT
LINE PRINTER PROGRAMMING EXAMPLE
/01/

Define necessary symbols.

$IODEF ;Define I/O function codes

Allocate storage for the necessary data structures.

Allocate output buffer and fill with required output text.

OUT BUFFER:
.ASCII "VAX PRINTER EXAMPLE" - -

OUT_BUFFER_SIZE=.-OUT_BUFFER ;Define size of output string

; Allocate device name string and descriptor.

DEVICE DESCR:

10$:
20$:

.LONG 20-10

.LONG 10$

.ASCII /LINE_PRINTER/

;Length of name string
;Address of name string
;Name string of output device
;Reference label to calculate
;length

Allocate space to store assigned channel number.

DEVICE CHANNEL:
.BLKW 1 ;Channel number

Now set up the carriage control formats.

OUTPUT FORMAT:
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

O,O,O,O
32,0,0,0
48,0,0,0
49,0,0,0
43,0,0,0
36,0,0,0

;No carriage control
;Blank=LF+ ... TEXT ... +CR
;Zero=LF+LF+ ... TEXT ... +CR
;One=FF+ ... TEXT ... +CR
;Plus=Overprint ... +CR
;Dollar=LF+TEXT(Prompt)

Now set up the prefix-postfix carriage control formats.

5-12

.BYTE

.BYTE

.BYTE

.BYTE

0,0,1,141
0,0,24,141
0,0,2,141
0,0,140,141

;LF+ ... TEXT ... +CR
;24LF+ ... TEXT ... +CR
;LF+LF+ ... TEXT ... +CR
;FF+ ... TEXT ... +CR

(continued on next page)

Line Printer Driver
5.6 Line Printer Driver Programming Example

Example 5-1 (Cont.) Line Printer Program Example

**

Start Program

**

The program assigns a channel to the output device, sets up a loop
count for the number of times it wishes to print, and performs ten
QIO and wait ($QIOW) system service requests. The channel is then
deassigned .

. ENTRY PRINTER_EXAMPLE,AM<R2,R3> ;Program starting address

First, assign a channel to the output device.

$ASSIGN_S DEVNAM=DEVICE_DESCR,-

BLBC
MOVL
MO VAL

CHAN=DEVICE CHANNEL
R0,50$
#11, R3
OUTPUT_FORMAT,R2

Start the printing loop.

30$:

40$:
50$:

$QIOW_S CHAN=DEVICE CHANNEL,
FUNC=#IO$_WRITEVBLK,
Pl=OUT_BUFFER,
P2=#0UT_BUFFER_SIZE,
P4=(R2)+

BLBC R0,40$
SOBGTR R3,30$
$DASSGN_S CHAN=DEVICE_CHANNEL
RET

.END PRINTER EXAMPLE

;Assign a channel to printer

;If low bit = 0, assign failure
;Set up loop count
;Set up o/p format address
;in R2

;Print on device channel
;I/O function is write virtual
;Address of output buffer
;Size of buffer to print
;Format control in R2
;will autoincrement
;If low bit = 0, I/O failure
;Branch if not finished
;Deassign channel
;Return

5-13

6 Magnetic Tape Drivers

This chapter describes the use of the VMS magnetic tape drivers, drives,
and controllers. These drivers support the devices listed in Table 6-1.

Table 6-1 Supported Magnetic Tape Devices

Recording Density (bpi) Tape Max. Data Transfer
No. of Speed Rate Recording

Drive1 Code Tracks 800 1600 6250 (ips) (bps) Method2

HSC-Series Controllers

TA78 MU 9 No Yes Yes 125 200,000 (1600 bpi) PE or GCA
781,250 (6250 bpi)

TA793 MU 9 No Yes Yes 125 769,000 PE or GCA

TA81 MU 9 No Yes Yes 25 or 120,000 (1600 bpi) PE or GCA
75 468, 750 (6250 bpi)

TA903 MU 18 No No 38,000 79 2,100,0006 X385

LESI Adapters

AV20 MU 9 No No Yes N/A 1.33 MB Write-once
optical disk

TQ81 MU 9 No Yes Yes 25 or 120,000 (1600 bpi) PE or GCA
75 468, 750 (6250 bpi)

TU81 3 MU 9 No Yes Yes 25 or 120,000 (1600 bpi) PE or GCA
75 468,750 (6250 bpi)

TU81- MU 9 No Yes Yes 25 or 120,000 (1600 bpi) PE or GCA
Plus 75 468,750 (6250 bpi)

TM03 Controller

TE16 MT 9 Yes Yes No 45 36,000 (800 bpi) NAZI or PE
72,000 (1600 bpi)

TU45 MT 9 Yes Yes No 75 60,000 (800 bpi) NAZI or PE
120,000 (1600 bpi)

1The RV20, TK70, TQK50, TUK50, TU81, TU81-Plus, TA78, TU78, TA81, and TA90 are tape mass storage control protocol
(TMSCP) drives.

2NRZI = non-return-to-zero-inverted; PE = phase encoded; GCR = group-coded recording; MFM = modified frequency
modulation; HDMFM = high density modified frequency modulation; X3B5 =format adheres to the proposed ANSI standard
X385.
3Has a self-contained controller.
6 Dependent upon host system capabilities. Has a data collection and transfer rates of 2.1 MB per second.

(continued on next page)

6-1

Magnetic Tape Drivers

Table 6-1 (Cont.) Supported Magnetic Tape Devices

Recording Density (bpi) Tape Max. Data Transfer
No. of Speed Rate Recording

Drive1 Code Tracks 800 1600 6250 (ips) (bps) Method2

TM03 Controller

TU77 MT 9 Yes Yes No 125 100,000 (800 bpi) NRZI or PE
200,000 (1600 bpi)

TM78 Controller

TU78 MF 9 No Yes Yes 125 200,000 (1600 bpi) PE or GCR
781,250 (6250 bpi)

TM79 Controller

TU79 MF 9 No Yes Yes 125 769,000 PE or GCR

TBK70 and TQK70 Controllers

TK70 MU 48 No No 10000 100 90,000 HDMFM

TUK50, TQK50, and TZK50 Controllers

TK505 MU 224 No No 6666 75 45,000 MFM

TZ303 MU 224 No No 6666 75 45,000 MFM

TS11 Controller

TS04 MS 9 No Yes No 45 72,000 PE

TS05 MS 9 No Yes No 25 40,000 PE

TU803 MS 9 No Yes No 25 or 160,000 PE
100

1The RV20, TK70, TQKSO, TUKSO, TU81, TU81-Plus, TA78, TU78, TA81, and TA90 are tape mass storage control protocol
(TMSCP) drives.

2NRZI = non-return-to-zero-inverted; PE = phase encoded; GCR = group-coded recording; MFM = modified frequency
modulation; HDMFM = high density modified frequency modulation; X385 =format adheres to the proposed ANSI standard
X385.
3 Has a self-contained controller.
4Each track written separately-not in parallel.

5The TKSO is a tape mass storage control protocol (TMSCP) device when configured on (... BA23 BA123 w/s) systems. The
TKSO has a self-contained controller when configured on VAXstation 2000 and MicroVAX 2000 systems.

6-2

Magnetic Tape Drivers
6.1 Supported Magnetic Tape Controllers

6.1 Supported Magnetic Tape Controllers

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

The following sections describe the VMS magnetic tape controllers.

TM03 Magnetic Tape Controller
The TM03 magnetic tape controller supports up to eight TE16, TU45, or
TU77 tape drives. These dual-density (800 or 1600 bpi) drives differ in
speed: the TE16, TU45, and TU77 read and write data at 45, 75, and 125
inches per second, respectively. Each drive can hold one 2400-foot, 9-track
reel with a capacity of approximately 40 million characters. The TM03
controller is connected to the MASSBUS through a MASSBUS adapter.

TS11 Magnetic Tape Controller
The TSU magnetic tape controller connects to the UNIBUS through a
UNIBUS adapter and supports one TS04 tape drive. The TS11/TS04
is a single-density tape system that supports 1600-bpi, phase-encoded
recording.

The TSU05 and the TSV05 magnetic tape drives are used with UNIBUS
and Q-bus systems, respectively.

TM78 and TM79 Magnetic Tape Controllers
The TM78 and TM79 magnetic tape controllers support up to four TU78
tape drives. These high-performance, dual-density drives (1600 or 6250
bpi) operate at 125 inches per second (ips) using a 2400-foot reel of tape
with a capacity of approximately 146 million characters when recorded in
the GCR (6250 bpi) mode. The TM78 and TM79 controllers are connected
to the MASSBUS through a MASSBUS adapter.

TUSO Magnetic Tape Subsystem
The TU80 is a single-density, dual-speed (25 or 100 ips) magnetic tape
subsystem that uses streaming tape technology (see Section 6.2. 7). It
supports one drive per subsystem. The TU80 connects to the UNIBUS
through a UNIBUS adapter and completely emulates the TSll magnetic
tape controller.

TU81 and TA81 Magnetic Tape Subsystems
The TU81 and the TA81 are high-performance, dual-density (1600 or
6250 bpi), dual-speed (25 or 75 ips) magnetic tape subsystems that use
streaming tape technology (see Section 6.2. 7). The TU81 connects to the
UNIBUS through a UNIBUS adapter. The TA81 attaches to an HSC50
controller. Both drives are managed with the tape mass storage control
protocol (TMSCP).

6-3

6.1.6

6.1.7

6.1.8

6.1.9

Magnetic Tape Drivers
6.1 Supported Magnetic Tape Controllers

TU81-Plus Magnetic Tape Subsystem
The TU81-PLUS is an enhanced version of the TU81 streaming tape
subsystem. It is a 9-track, dual-speed, dual-density, ANSI-standard, half
inch magnetic tape subsystem. In addition, it has a 256-kilobyte (KB)
cache buffer that temporarily stores commands and data moving to and
from the tape unit. The buffer increases the amount of time the tape
drive is able to stream, thereby increasing performance. The TU81-PLUS
connects to all VAXBI, UNIBUS, and Q-bus systems using the KLESI-B,
KLESI-U, and KLESI-Q adapters.

TA90 Magnetic Tape Subsystem
The TA90 is a 5- by 4-inch, 200-MB cartridge tape, fully read- and write
compatible with the IBM® 3480 format. The TA90 includes a master
controller and a dual transport unit. As many as three additional dual
transport slave units can be connected to a single TA90 master controller
for a total of eight drives. The controller connects to the HSC 5X-DA
high-speed channel card in the HSC.

TA90 tape drives can be equipped with optional stack loaders for
unattended backup operations. Each TA90 master has two dual-port
STI connections to the HSC. Such dual pathing allows each control
unit to service two HSC controllers which significantly increases tape
drive availability. The TA90 subsystem includes a 2-MB cache which
allows the controller to prefetch upcoming commands and store them
while completing current data transfers. This behavior helps optimize
performance. The TA90 is a TMSCP device.

RV20 Write-Once Optical Drive
The RV20, a 2-gigabyte, double-sided, write-once optical (WORM) disk
drive is accessed sequentially similar to a tape. A 100-bit error correction
code (ECC) protects user data. The controller performs bad block
replacement. Three RV20 slaves can be daisy-chained to the subsystem
controller in the RV20 master for a total of four drives.

RV02 cartridges can be used on any DIGITAL RV20 optical subsystem.

The average access time is 212.5 ms with an average seek rate of 150 ms.
The maximum data transfer rate is 262 KB per second (formatted and
sustained) with a burst rate of 1.33 MB per second.

TKSO Cartridge Tape System

6-4

The TK50 is a 95-MB, 5.25-inch cartridge tape system that uses streaming
tape technology (see Section 6.2. 7). The TK50 records data serially on
22 tracks using serpentine recording, rather than on separate (parallel)
tracks. Data written to tape is automatically read as it is written. A CRC
check is performed and the controller is notified immediately if an error
occurs on the tape.

Magnetic Tape Drivers
6.1 Supported Magnetic Tape Controllers

The TQK50 is a dual-height Q-bus controller for the TK50 tape drive. The
TUK50 is a UNIBUS controller for the same drive. The TZK50 is a SCSI
controller for the TK50 tape. Both the TQK50 and the TUK50 are TMSCP
devices.

Section 6.1.12 describes compatibility among the TK50, TK70, and TZ30
magnetic tape cartridge systems.

6.1.1 O TK70 Cartridge Tape System
The TK70 is a 295-MB, 5.25-inch, streaming cartridge tape system. (See
Section 6.2. 7 for information about streaming tape technology.) The
TK70 tape drive records data serially on 48 tracks using serpentine
recording, rather than separate (parallel) tracks. Data written to the tape
is automatically read as it is written. A CRC check is performed and the
controller is notified immediately if an error occurs on the tape.

The TQK70 is a dual-height, Q-bus controller for the TK70 magnetic
tape drive. The TK70 subsystem includes a 38~KB cache to optimize
performance. The TBK70 is a VAXBl-bus controller for the same drive.
Section 6.1.12 describes compatibility between the TK50 and TK70
magnetic tape cartridge systems.

6.1.11 TZ30 Cartridge Tape System
The TZ30 is a 95-MB, 5.25-inch, half-height cartridge streaming tape drive
with an embedded SCSI controller. See Section 6.2. 7 for information
about streaming tape technology. The TZ30 uses TK50 cartridge
tapes. It records data serially on 22 tracks using serpentine recording.
Section 6.1.12 describes compatibility between the TK50, TK70, and TZ30
magnetic tape cartridge systems.

6.1.12 Read and Write Compatibility Among Cartridge Tape Systems
When you insert a cartridge tape into the TZ30, TK50, and TK70 tape
drives, the hardware initializes the media to a device-specific recording
density automatically.

Depending on the type of cartridge and the type of drive on which it is
formatted (inserted and initialized), full read and write access to tape
cartridges may not be permitted.

Formatting a Blank TK50 Cartridge Tape

A blank, unformatted TK50 cartridge can be formatted on the TK50,
TK70, and TZ30 cartridge systems. For example, a TK70 tape drive has
full read and write access to a TK50 cartridge formatted on a TK70 drive.
Once the cartridge tape is formatted on a particular tape drive, the tape
drive has full read and write access to the cartridge tape.

6-5

Magnetic Tape Drivers
6.1 Supported Magnetic Tape Controllers

6.2 Driver Features

6-6

Formatting a Previously Initialized TK50 Cartridge Tape

If a TK50 cartridge tape is formatted on a TZ30 or TK50 cartridge tape
drive, the TZ30 and TK50 drives initialize the TK50 cartridge to TK50
density. The following table summarizes the types of access available:

Controller

TZ301

TQK50

TQK70

1 Has an internal controller.

Read

Yes
Yes
Yes

TK50

Write

Yes
Yes
No

The TK70 tape drive can read data on a TK50 cartridge formatted on a
TK50 or TZ30 tape drive.

Formatting a TK50 Cartridge Tape on a TK70 Tape Drive

If a TK50 or TK52 cartridge tape is formatted on a TK70 tape drive, the
TK70 cartridge tape drive initializes the TK50 or TK52 cartridge tape
to TK70 density. The following table summarizes the types of access
available:

TK50 TK52

Controller Read Write Read Write

TZ301 No No No No
TQK50 No No No No
TQK70 Yes Yes Yes Yes

1 Has an internal controller.

The TK50 and TZ30 tape drives cannot read or write data on a TK50
cartridge tape formatted on a TK70 drive.

The VMS magnetic tape drivers provide the following features:

• Multiple master adapters and slave formatters

• Different types of devices on a single MASSBUS adapter; for example,
an RP05 disk and a TM03 tape formatter

• Reverse read function (except for the TZ30 and TK50 on TUK50 and
TQK50 controllers)

• Reverse data check function (except for TZ30, TSU, and TK50 on
TUK50 and TQK50 controllers)

• Data checks on a per-request, per-file, or per-volume basis (except for
TSU)

6.2.1

6.2.2

Magnetic Tape Drivers
6.2 Driver Features

• Full recovery from power failure for online drives with volumes
mounted, including repositioning by the driver (except on VAXstation
2000 and MicroVAX 2000 systems)

• Extensive error recovery algorithms; for example, non-return-to-zero
inverted (NRZI) error correction

• Logging of device errors in a file that may be displayed by field service
or customer personnel

• Online diagnostic support for drive level diagnostics

The following sections describe master and slave controllers, and data
check and error recovery capabilities in greater detail.

Dual Path Tape Drives
A dual-path HSC tape drive is a drive that connects to two HSCs, both
of which have the same nonzero tape allocation class. The VMS operating
system recognizes the dual-pathed capability of such a tape drive under
the following circumstances: (1) the VMS operating system has access to
both HSCs and (2) select buttons for both ports are depressed on the tape
drive.

If one port fails, the VMS operating system switches access to the
operational port automatically, provided that the allocation class
information has been defined correctly.

Dynamic Failover and Mount Verification
Dynamic failover occurs on dual-pathed tape drives if mount verification is
unable to recover on the current path and an alternate path is available.
The failover occurs automatically and transparently and then mount
verification proceeds.

A device enters mount verification when I/O request fails because
the device has become inoperative. This might occur in the following
instances:

• The device is place offline accidentally.

• The active port of an RSC-connected drive fails.

• A hardware error occurs.

• The device is set to write protected during a write operation.

When the device comes back online, either through automatic failover or
operator intervention, the VMS operating system validates the volume,
restores the tape to the position when the I/O failure occurred, and retries
the failed request.

6-7

6.2.3

6.2.4

6.2.5

Magnetic Tape Drivers
6.2 Driver Features

Tape Caching
The RV20, TA90, TK70, and TU81-Plus contain write-back volatile
caches. The host enables write-back volatile caches explicitly, either on
a per-unit basis or on a per-command basis. To enable caching on a per
unit basis, the user can enter the DCL MOUNT command specifying the
qualifier /CACHE=TAPE_DATA.

The VMS Backup Utility enables caching on a per-command basis. The
user can implement caching on a per-command basis at the QI 0 level
by using the I0$M_NOWAIT function modifiers on commands where it
is legal. (See Table 6-5.) In the unlikely event that cached data is lost,
the system returns a fatal error and the device accepts no further I/O
requests. The IO$M_FLUSH function code can be used to ensure that all
write-back-cached data has been written out to the specified tape unit. The
I0$_PACKACK, I0$_UNLOAD, I0$_REWINDOFF, and IO$_AVAILABLE
function codes also flush the cache.

Master Adapters and Slave Formatters

Data Check

6-8

The VMS operating system supports the use of many master adapters
of the same type on a system. For example, more than one MASSBUS
adapter (MBA) can be used on the same system. A master adapter is a
device controller capable of performing and synchronizing data transfers
between memory and one or more slave formatters.

The VMS operating system also supports the use of multiple slave
formatters per master adapter on a system. For example, more than
one TM03 or TM78 magnetic tape formatter per MBA can be used on a
system. A slave formatter accepts data and commands from a master
adapter and directs the operation of one or more slave drives. The TM03
and the TM78 are slave formatters. The TE16, TU45, TU77, and TU78
magnetic tape drives are slave drives.

After successful completion of an I/O operation, a data check is made to
compare the data in memory with that on the tape. After a write or read
(forward) operation, the tape drive spaces backward, and then performs a
write check data operation. After a read operation in the reverse direction,
the tape drive spaces forward, and then performs a write check data
reverse operation. With the exception of TS04 and TU80 drives, magnetic
tape drivers support data checks at the following three levels:

• Per request-You can specify the data check function modifier
(I0$M_DATACHECK) on a read logical block, write logical block, read
virtual block, write virtual block, read physical block, or write physical
block I/O function.

• Per volume-You can specify the characteristics "data check all reads"
and "data check all writes" when the volume is mounted. The VMS
DCL Dictionary describes volume mounting and dismounting. The

6.2.6

Magnetic Tape Drivers
6.2 Driver Features

VMS System Services Reference Manual describes the Mount Volume
($MOUNT) and Dismount Volume ($DISMOU) system services.

• Per file-You can specify the file attributes "data check on read"
or "data check on write." File access attributes are specified when
the file is accessed. Chapter 1 of this manual and the VMS Record
Management Services Manual both describe file access.

Data check is distinguished from a BACKUPNERIFY operation, which
writes an entire save set, rewinds, and then compares the tape to the
original tape.

See Section 6.1.9 for information on TK50 data check.

Note: Read and write operations with data check can result in very slow
performance on streaming tape drives.

Error Recovery
Error recovery in the VMS operating system is aimed at performing all
possible operations that enable an I/O operation to complete successfully.
Magnetic tape error recovery operations fall into the following two
categories:

• Handling special conditions, such as power failure and interrupt
timeout

• Retrying nonfatal controller or drive errors

The error recovery algorithm uses a combination of these types of error
recovery operations to complete an I/O operation.

Power failure recovery consists of repositioning the reel to the position
held at the start of the I/O operation in progress at the time of the power
failure, and then reexecuting this operation. This repositioning might
or might not require operator intervention to reload the drives. When
such operator intervention is required, "device not ready" messages are
sent to the operator console to solicit reloading of mounted drives. Power
failure recovery is not supported on VAXstation 2000 and MicroVAX 2000
systems.

Device timeout is treated as a fatal error, with a loss of tape position. A
tape on which a timeout has occurred must be dismounted and rewound
before the drive position can be established.

If a nonfatal controller/drive error occurs, the driver (or the controller,
depending on the type of drive) attempts to reexecute the I/O operation up
to 16 times before returning a fatal error. The driver repositions the tape
before each retry.

The inhibit retry function modifier (l0$M_INHRETRY) inhibits all normal
(nonspecial conditions) error recovery. If an error occurs, and the request
includes that modifier, the operation is immediately terminated and the
driver returns a failure status. IO$M_INHRETRY has no effect on power
failure and timeout recovery.

6-9

6.2.7

Magnetic Tape Drivers
6.2 Driver Features

The driver can write up to 16 extended interrecord gaps during the
error recovery for a write operation. For the TE16, TU45, and TU77,
writing these gaps can be suppressed by specifying the inhibit extended
interrecord gap function modifier (I0$M_INHEXTGAP). This modifier is
ignored for the other magnetic tape drives.

Streaming Tape Systems

6-10

Streaming tape systems, such as the TK50, TK70,TU80, TU81, TU81-Plus,
TA81, and TZ30, use the supply and takeup reel mechanisms to control
tape speed and tension directly, thereby eliminating the need for more
complex and costly tension and drive components. Streaming tapes have a
very simple tape path, much like a home audio reel-to-reel recorder.

Note: Read and write operations with data check can result in very slow
performance on streaming tape drives.

Because the motors driving the reels are low-powered and because there
is no tape buffering, streaming tape drives are not capable of starting and
stopping in the interrecord gaps like conventional tape drives. When a
streaming tape does have to stop, the following events occur:

1 The tape slowly coasts forward to a stop.

2 It backs up over a section previously processed.

3 It halts to await the next command.

4 It accelerates so that, when the original interrecord gap is encountered,
the tape is moving at full speed.

These steps, allowing the tape to reposition, require approximately one
half second to complete on TU8x tapes and about three seconds on TK50
tapes. If the operating system is not capable of writing to, or reading from,
a streaming tape drive at a rate that will keep the drive in constant motion
(streaming) the drive repositions itself when it runs out of commands to
execute. That produces a situation known as thrashing, in which the
relatively long reposition times exceed the time spent processing data and
the result is lower-than-expected data throughput.

Thrashing is entirely dependent on how fast the system can process
data relative to the tape drive speed while streaming. Consequently, the
greatest efficiency is obtained when you provide sufficient buffering to
ensure continuous tape motion. Some streaming tape drives supported
by the VMS operating system (TU80, TU81, TU81-Plus, and TA81) are
dual-speed devices that automatically adjust the tape speed to maximize
data throughput and minimize thrashing.

The TK50 writes up to seven filler records to keep the tape in motion.
These records are ignored when the data is read.

Magnetic Tape Drivers
6.3 Magnetic Tape Driver Device Information

6.3 Magnetic Tape Driver Device Information
You can obtain information on all magnetic tape device characteristics by
using the Get DeviceNolume Information ($GETDVI) system service. (See
the VMS System Services Reference Manual.)

$GETDVI returns magnetic tape characteristics when you specify the item
codes DVI$_DEVCHAR, DVI$_DEVCHAR2, DVI$_DEVDEPEND, and
DVI$_DEVDEPEND2. Tables 6-2, 6-3, and 6-4 list these characteristics.
The $DEVDEF macro defines the device-independent characteristics,
the $MTDEF macro defines the device-dependent characteristics, and
the $MT2DEF macro defines the extended device characteristics. The
extended device characteristics apply only to the TU81-Plus.

Table 6-2 Magnetic Tape Device-Independent Characteristics

Characteristic 1

DEV$M_AVL

DEV$M_FOR

DEV$M_MNT

DEV$M_RCK

DEV$M_WCK

DEV$M_FOD

DEV$M_IDV

DEV$M_ODV

DEV$M_SQD

DEV$M_WBC2

Meaning

Dynamic Bits (Conditionally Set)

Device is online and available.

Volume is foreign.

Volume is mounted.

Perform data check on all read operations.

Perform data check on all write operations.

Static Bits (Always Set)

Device is file-oriented.

Device is capable of input.

Device is capable of output.

Device is capable of sequential access.

Device is capable of write-back caching.

1 Defined by the $DEVDEF macro.

2This bit is located in DVl$_DEVCHAR2.

Table 6-3 Device-Dependent Information for Tape Devices

Characteristic 1 Meaning

If set, the current tape position is unknown.

If set, the selected drive is hardware write-locked.

MT$M_LOST

MT$M_HWL

MT$M_EOT If set, an end-of-tape (EOT) condition was encountered by
the last operation to move the tape in the forward direction.

1 Defined by the $MTDEF macro.

(continued on next page)

6-11

Magnetic Tape Drivers
6.3 Magnetic Tape Driver Device Information

6-12

Table 6-3 (Cont.) Device-Dependent Information for Tape Devices

Characteristic 1

MT$M_EOF

MT$M_BOT

MT$M_PARITY

MT$V _DENSITY
MT$S_DENSITY

MT$V _FORMAT
MT$S_FORMAT

Meaning

If set, a tape mark was encountered by the last operation to
move tape.

If set, a beginning-of-tape (BOT) marker was encountered by
the last operation to move tape in the reverse direction.

If set, all data transfers are performed with even parity. If
clear (normal case), all data transfers are performed with odd
parity. Only non-return-to-zero-inverted recording at 800 bpi
can have even parity.

Specifies the density at which all data transfer operations are
performed. Possible density values are as follows:
MT$K_GCR_6250 Group-coded recording, 6250 bpi

MT$K_PE_ 1600

MT$K_NRZl_800

Phase-encoded recording, 1600 bpi

Non-return-to-zero-inverted recording,
800 bpi

MT$K_BLK_833 Cartridge block mode recording2

Specifies the format in which all data transfers are performed.
A possible format value is as follows:
MT$K_NORMAL 11 Normal PDP-11 format. Data bytes

are recorded sequentially on tape
with each byte occupying exactly one
frame.

1 Defined by the $MTDEF macro.

20nly for the TKSO and TZ30.

Table 6-4 Extended Device Characteristics for Tape Devices

Characteristic 1

MT2$V _WBC_ENABLE

MT2$V _RDC_DISABLE

Meaning

If set, write-back caching is enabled for this unit.

If set, read caching is disabled for this unit.

1 Defined by the $MT2DEF macro. Only for the TU81-Plus. Initial device status will show both
of these bits cleared; write-back caching will be disabled, read caching will be enabled.

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and class
names, which are defined by the $DCDEF macro. DVI$_DEVBUFSIZ
returns the buffer size. The buffer size is the default to be used for tape
transfers (normally 2048 bytes). The device class for magnetic tapes is
$DCTAPE, and the device type is determined by the magnetic tape model.
For example, the device type for the TA78 is DT$_TA78, for the TA81 it is
DT$_TA81.

6.4 Magnetic Tape Function Codes

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

The VMS magnetic tape driver can perform logical, virtual, and physical
1/0 functions. Foreign-mounted devices do not require privilege to perform
logical and virtual 1/0 requests.

Logical and physical 1/0 functions to magnetic tape devices allow
sequential access to volume storage and require only that the requesting
process have direct access to the device. The results of logical and physical
1/0 operations are unpredictable if an ACP is present.

Virtual 1/0 functions require intervention by an ACP and must be executed
in a prescribed order. The normal order is to create and access a file, write
information to that file, and deaccess the file. Subsequently, when you
access tLe file, you read the information and then deaccess the file. You
can write over the file when the information it contains is no longer useful
and the file has expired.

Any number of bytes (from a minimum of 14 to a maximum of 65,535)
can be read from or written into a single block by a single request. The
number of bytes itself has no effect on the applicable quotas (direct 1/0,
buffered 1/0, and AST). Reading or writing any number of bytes subtracts
the same amount from a quota.

The volume to which a logical or virtual function is directed must be
mounted for the function actually to be executed. If it is not, either a
"device not mounted" or "invalid volume" status is returned in the 1/0
status block.

Table 6-5 lists the logical, virtual, and physical magnetic tape 1/0
functions and their function codes. These functions are described in
more detail in the following paragraphs. Chapter 1 describes the QIO
level interface to the magnetic tape device ACP.

Table 6-5 Magnetic Tape 1/0 Functions

Function Code Arguments Type1

10$_ACCESS P1 ,[P2],[P3],[P4],[P5] V

10$_ACPCONTROL P1 ,[P2],[P3],[P4], [P5] V

10$_AVAILABLE P

10$_CREATE P1 ,[P2[,[P3],[P4],[P5] V

1 V = virtual; L = logical; P = physical.

9See Section 1.6.7 for additional information.

Function Modifiers

10$M_CREATE
10$M_ACCESS

10$M_DMOUNT

10$M_CREATE
10$M_ACCESS

Function

Search a tape for a specified
file and access the file if found
and 10$M_ACCESS is set.
If the file is not found and
10$M_CREATE is set, create
a file at end-of-tape (EOT)
marker.

Perform miscellaneous control
functions.9

Clear volume valid bit.

Create a file.

(continued on next page)

6-13

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Table 6-5 (Cont.) Magnetic Tape 110 Functions

Function Code Arguments

10$_DEACCESS P1 ,[P2],[P3],[P4],[P5]

10$_DSE2

10$_FLUSH

10$_MODIFY P1 ,[P2],[P3],[P4],[P5]

10$_PACKACK

10$_READLBLK P1,P2

10$_READPBLK P1,P2

10$_READVBLK P1,P2

10$_REWIND

10$_REWINDOFF

10$_SENSECHAR [P1] [P2]8

10$_SENSEMODE [P1][P2]8

10$_SETCHAR P1 ,[P2]8

10$_SETMODE P1 ,[P2]8

10$_SKIPFILE P1

1 V = virtual; L = logical; P = physical.

2Qnly for TMSCP drives, TZKSO, and TZ30.

3Not for TS04 and TU80.
4Not for TUK50 and TQK50.

5Qnly for RV20, TA90, TK70, and TU81-Plus drives.

Type1

v

p

L

v
p

L

p

v

L

L

p

L

p

L

L

Function Modifiers Function

Deaccess a file and, if the file
has been written, write out
trailer records.

10$M_NOWAIT Erase a prescribed section of
the tape.

Flush the controller cache to
tape.

Write user labels.

Initialize volume valid bit.

10$M_DATACHECK3 Read logical block.
10$M_INHRETRY
10$M_REVERSE4

10$M_DATACHECK3 Read physical block.
10$M_INHRETRY
10$M_REVERSE4

10$M_DATACHECK3 Read virtual block.
10$M_INHRETRY
10$M_REVERSE4

10$M_INHRETRY Reposition tape to the
10$M_NOWAIT beginning-of-tape (Bon

marker.

10$M_INHRETRY Rewind and unload the tape
10$M_NOWAIT on the selected drive.

10$M_INHRETRY Sense the tape characteristics
and return them in the 1/0
status block.

10$M_INHRETRY Sense the tape characteristics
and return them in the 1/0
status block.

Set tape characteristics for
subsequent operations.

Set tape characteristics for
subsequent operations.

10$M_INHRETRY Skip past a specified number
10$M_NOWAIT5 of tape marks in either a

forward or reverse direction.

8The P1 and P2 arguments for 10$_SENSEMODE and 10$_SENSECHAR and the P2 argument for 10$_SETMODE and
10$_SETCHAR are for TMSCP drives only.

(continued on next page)

6-14

Table 6-5 {Cont.) Magnetic Tape 110 Functions

Function Code Arguments Type1

10$_SKIPRECORD P1 L

10$_UNLOAD L

10$_WRITELBLK P1,P2 L

10$_WRITEOF L

10$_WRITEPBLK P1,P2 p

10$_WRITEVBLK P1,P2 v

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Function Modifiers

10$M_INHRETRY
10$M_NOWAIT5

10$M_INHRETRY
10$M_NOWAIT

10$M_ERASE6

10$M_DATACHECK3

10$M_INHRETRY
10$M_INHEXTGAP7

10$M_NOWAIT5

10$M_INHRETRY
10$M_INHEXTGAP7

10$M_NOWAIT5

10$M_ERASE6

10$M_DATACHECK3

10$M_INHRETRY
10$M_INHEXTGAP7

10$M_NOWAIT5

10$M_DATACHECK3

10$M_INHRETRY
10$M_INHEXTGAP7

10$M_NOWAIT5

Function

Skip past a specified number
of blocks in either a forward
or reverse direction.

Rewind and unload the tape
on the selected drive.

Write logical block.

Write an extended interrecord
gap followed by a tape mark.

Write physical block.

Write virtual block.

1V =virtual; L =logical; P =physical.

3Not for TS04 and TUSO.
50nly for RV20, TA90, TK70, and TU81-Plus drives.

6Takes no arguments; valid only for TMSCP drives, TZK50, and TZ30.

70nly for TE16, TU45, and TU77.

The function-dependent arguments for IO$_CREATE, IO$_ACCESS,
IO$_DEACCESS, IO$_MODIFY, IO$_ACPCONTROL are as follows:

• Pl-The address of the file information block (FIB) descriptor.

• P2-0ptional. The address of the file name string descriptor. If
specified with IO$_ACCESS, the name identifies the file being sought.
If specified with IO$_ CREATE, the name is the name of the created
file.

• PS-Optional. The address of the word that is to receive the length of
the resultant file name string.

• P4-0ptional. The address of a descriptor for a buffer that is to receive
the resultant file name string.

• P5-0ptional. The address of a list of attribute descriptors. If specified
with IO$_ACCESS, the attributes of the file are returned to the user.
If specified with IO$_ CREATE, P5 is the address of the attribute
descriptor list for the new file. All file attributes for 10$_MODIFY are
ignored.

6-15

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

6-16

See Chapter 1 for more information on these functions.

The function-dependent arguments for IO$_READVBLK,
IO$_READLBLK, IO$_READPBLK, 10$_ WRITEVBLK,
10$_ WRITELBLK, and 10$_ WRITEPBLK are as follows:

• Pl-The starting virtual address of the buffer that is to receive the
data in the case of a read operation; or, in the case of a write operation,
the virtual address of the buffer that is to be written on the tape.

• P2-The length of the buffer specified by Pl

The function-dependent argument for IO$_SKIPFILE and
I0$_SKIPRECORD is:

• Pl-The number of tape marks to skip over in the case of a skip file
operation; or, in the case of a skip record operation, the number of
blocks to skip over. If a positive number is specified, the tape moves
forward; if a negative number is specified, the tape moves in reverse.
(The maximum number of tape marks or records that Pl can specify is
32,767.)

The following example shows the correct method of defining the Pl
parameter in a IO$_SKIPRECORD QIO.

TAPE CHAN:
.WORD 0

IOSB: .WORD 0
.WORD 0
.LONG 0

DEVICE: .ASCID /127MUAO:/
RECORD: .LONG 2000

.PSECT CODE,EXE,NOWRT

.ENTRY MT_IO,"M<>

$ASSIGN_S CHAN=TAPE_CHAN,-
DEVNAM=DEVICE

BLBC RO,EXIT_ERROR

$QIOW_S CHAN=TAPE_CHAN,-
FUNC=UO$ SKIPRECORD,-
IOSB=IOSB,-
Pl=RECORD

BLBC RO,EXIT_ERROR
$EXIT_S RO

EXIT ERROR:
$EXIT_S RO
.END MT IO

6.4.1 Read

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

The read function reads data into a specified buffer in the forward or
reverse direction starting at the next block position.

The VMS operating system provides the following read function codes:

• IQ$_READVBLK-Read virtual block

• IQ$_READLBLK-Read logical block

• IQ$_READPBLK-Read physical block

If a read virtual block function is directed to a volume that is mounted
foreign, it is converted to a read logical block function. If a read virtual
block function is directed to a volume that is mounted structured, the
volume is handled the same way as a file-structured device.

Two function-dependent arguments are used with these codes: Pl and P2.
These arguments are described in Section 6.4.

If the read function code includes the reverse function modifier
(IQ$M_REVERSE), the drive reads the tape in the reverse direction
instead of the forward direction. IQ$M_REVERSE cannot be specified for
the TUK50 and TQK50 devices.

The data check function modifier (IQ$M_DATACHECK) can be used with
all read functions. If this modifier is specified, a data check operation is
performed after the read operation completes. (The drive performs a space
reverse or space forward between the read and data check operations.) A
data check operation is also performed if the volume that was read, or the
volume on which the file resides (virtual read), has the characteristic "data
check all reads." Furthermore, a data check is performed after a virtual
read ifthe file has the attribute "data check on read." The TS04 and TU80
tape drives do not support the data check function.

For read physical block and read logical block functions, the drive returns
the status SS$_NQRMAL (not end-of-tape status) if either of the following
conditions occurs and no other error condition exists:

• The tape is positioned past the end-of-tape (EQT) position at the start
of the read (forward or reverse) operation.

• The tape enters the EQT region as a result of the read (forward)
operation.

The transferred byte count reflects the actual number of bytes read.

If the drive reads a tape mark during a logical or physical read operation
in either the forward or reverse direction, any of the following conditions
can return an end-of-file status:

• The tape is positioned past the EQT position at the start of the read
operation.

• The tape enters the EOT region as a result of the read operation.

• The drive reads a tape mark as a result of a read operation but the
tape does not enter the EOT region.

6-17

6.4.2

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Write

6-18

An end-of-file status is also returned if the drive attempts a read operation
in the reverse direction when the tape is positioned at the beginning-of
tape (BOT) marker. All conditions that cause an end-of-file status result
in a transferred byte count of zero.

If the drive attempts to read a block that is larger than the specified
memory buffer during a logical or physical read operation, a data overrun
status is returned. The buffer receives only the first part of the block. On
a read in the reverse direction (on drives other than the TK50 and TZ30)
the buffer receives only the latter part of the block. The transferred byte
count is equal to the actual size of the block. Read reverse starts at the
top of the buffer. Thus, the start of the block is at Pl plus P2 minus the
length read. The TUK50 and TZ30 cannot actually perform read reverse
operations; they must be simulated by the driver. Therefore, the data
returned are those that would have been returned had the block been read
in the forward direction.

It is not possible to read a block that is less than 14 bytes in length.
Records that contain less than 14 bytes are termed "noise blocks" and are
completely ignored by the driver.

The write function writes data from a specified buffer to tape in the
forward direction starting at the next block position.

The VMS operating system provides the following write function codes:

• I0$_WRITEVBLK-Write virtual block

• IO$_WRITELBLK-Write logical block

• 10$_ WRITEPBLK-Write physical block

If a write virtual block function is directed to a volume that is mounted
foreign, the function is converted to a write logical block. If a write virtual
block function is directed to a volume that is mounted structured, the
volume is handled the same way as a file-structured device.

Two function-dependent arguments are used with these codes: Pl and P2.
These arguments are described in Section 6.4.

The I0$M_ERASE function modifier can be used with the
10$_ WRITELBLK and 10$_ WRITEPBLK function codes to erase a user
selected part of a tape. This modifier propagates an erase pattern of all
zeros from the current tape position to 10 feet past the EOT position and
then rewinds to the BOT marker.

The data check function modifier (I0$M_DATACHECK) can be used with
all write functions. If this modifier is specified, a data check operation
is performed after the write operation completes. (The drive performs
a space reverse between the write and the data check operations.) The
driver forces a data check operation when an error occurs during a
write operation. This ensures that the data can be reread. A data check
operation is also performed if the volume written, or the volume on which
the file resides (virtual write), has the characteristic "data check all
writes." Furthermore, a data check is performed after a virtual write if

6.4.3 Rewind

6.4.4 Skip File

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

the file has the attribute "data check on write." The TS04 and TU80 tape
drives do not support the data check function.

If the 10$M_NOWAIT function modifier is specified, write-back caching
is enabled on a per command basis. I0$M_NOWAIT is applicable only to
TU81-Plus drives.

If the drive performs a write physical block or a write logical block
operation, an EOT status is returned if either of the following conditions
occurs and no other error condition exists:

• The tape is positioned past the EOT position at the start of the write
operation.

• The tape enters the EOT region as a result of the write operation.

The transferred byte count reflects the size of the block written. It is not
possible to write a block less than 14 bytes in length. An attempt to do so
results in the return of a bad parameter status for the QIO request.

The rewind function repositions the tape to the beginning-of-tape (BOT)
marker. If the IO$M_NOWAIT function modifier is specified, the I/O
operation is completed when the rewind is initiated. Otherwise, I/O
completion does not occur until the tape is positioned at the BOT marker.
10$_REWIND has no function-dependent arguments.

The skip file function skips past a specified number of tape marks in
either a forward or reverse direction. A function-dependent argument (Pl)
is provided to specify the number of tape marks to be skipped, as shown
in Figure 6-1. If a positive file count is specified, the tape moves forward;
if a negative file count is specified, the tape moves in reverse. (The actual
number of files skipped is returned as an unsigned number in the I/O
status block.)

Figure 6-1 10$_SKIPFILE Argument

31 16 15 0

P1:I ________ N_o_t_u_s_e_d _________ l ________ Fi_le_c_o_u_m ______ __.I
ZK-0671-GE

6-19

6.4.5

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Skip Record

Only tape marks (when the tape moves in either direction) and the BOT
marker (when the tape moves in reverse) are counted during a skip file
operation. The BOT marker terminates a skip file function in the reverse
direction. The end-of-tape (EOT) marker does not terminate a skip file
function in either the forward or reverse direction. A negative skip file
function leaves the tape positioned just before a tape mark (at the end of
a file) unless the BOT marker is encountered, whereas a positive skip file
function leaves the tape positioned just past the tape mark.

A skip file function in the forward direction can also be terminated if two
consecutive tape marks are encountered. Section 6.4.5.1 describes this
feature.

The skip record function skips past a specified number of physical tape
blocks in either a forward or reverse direction. A device- or function
dependent argument (Pl) specifies the number of blocks to skip, as
shown in Figure 6-2. If a positive block count is specified, the tape moves
forward; if a negative block count is specified, the tape moves in reverse.
The actual number of blocks skipped is returned as an unsigned number
in the 1/0 status block. If a tape mark is detected, the count is the number
of blocks skipped, plus 1 (forward tape motion) or minus 1 (reverse tape
motion).

Figure 6-2 10$_SKIPRECORD Argument

31 16 15 0

P1: ~l _______ N_o_t_u_s_e_d ________ l _______ s_1o_c_k_c_o_un_t ______ ~I
ZK-0672-GE

A skip record operation is terminated by the end-of-file marker when the
tape moves in either direction, by the BOT marker when the tape moves
in reverse, and by the EOT marker when the tape moves forward.

A skip record function in the forward direction can also be terminated if
the tape was originally positioned between two tape marks. Section 6.4.5.1
describes this feature.

6.4.5.1 Logical End-of-Volume Detection

6-20

A skip file or skip record operation is terminated when two consecutive
tape marks are encountered when the tape moves in the forward direction.

6.4.6 Write End-of-File

6.4.7 Rewind Offline

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

After the operation terminates, the tape remains positioned between the
two tape marks that were detected. The I/O status block (IOSB) returns
the status SS$_ENDOFVOLUME and the actual number of files (or
records) skipped during the operation prior to the detection of the second
tape mark. The skip count is returned in the high-order word of the first
longword of the IOSB.

Subsequent skip record (or skip file) requests terminate immediately when
the tape is positioned between the two tape marks, producing no net tape
movement and returning the SS$_ENDOFVOLUME status with a skip
count of zero.

To move the tape beyond the second tape mark, you must employ another
I/O function. For example, the IO$_READLBLK function, if issued after
receipt of the SS$_ENDOFVOLUME status return, terminates with an
SS$_ENDOFFILE status and with the tape positioned just past the second
tape mark. From this new position, other skip functions could be issued
to produce forward tape motion (assuming there is additional data on the
tape).

If three consecutive tape marks are encountered during a skip file function,
you must issue two IO$_READLBLK functions, the first to get the
SS$_ENDOFFILE return, the second to position the tape past the third
tape mark.

The write-end-of-file function writes an extended interrecord gap (of
approximately 3 inches for non-return-to-zero-inverted (NRZI) recording
and 1.5 inches for phase-encoded (PE) recording) followed by a tape mark.
No device- or function-dependent arguments are used with IO$_WRITEOF.

An end-of-tape (EOT) status is returned in the I/O status block if either of
the following conditions is present and no other error conditions occur:

• A write end-of-file function is executed while the tape is positioned
past the EOT marker.

• A write end-of-file function causes the tape position to enter the EOT
region.

The rewind offline function rewinds and unloads the tape on the selected
drive. If the IO$M_NOWAIT function modifier is specified, the I/O
operation is completed as soon as the rewind operation is initiated. No
device- or function-dependent arguments are used with IO$_REWINDOFF.

6-21

6.4.8

6.4.9

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Unload
The unload function rewinds and unloads the tape on the selected drive.
The unload function is functionally the same as the rewind offl.ine function.
If the IO$M_NOWAIT function modifier is specified, the 1/0 operation is
completed as soon as the rewind operation is initiated. No device- or
function-dependent arguments are used with IO$_UNLOAD.

Sense Tape Mode

6-22

The sense tape mode function senses the current device-dependent and
extended device characteristics (see Tables 6-3 and 6-4).

The VMS operating system provides the following function codes:

• I0$_SENSEMODE-Sense mode

• I0$_SENSECHAR-Sense characteristics

Sense mode requires logical 1/0 privilege. Sense characteristics requires
physical 1/0 privilege. For TMSCP drives the sense mode function returns
magnetic tape information in a user-supplied buffer, which is specified by
the following function-dependent arguments:

• Pl-Optional. Address of a user-supplied buffer.

• P2-0ptional. Length of a user-supplied buffer.

If Pl is not zero, the sense mode buffer returns the tape characteristics.
(If P2=8, the second longword of the buffer contains the device-dependent
characteristics. If P2=12, the second longword contains the device
dependent characteristics and the third longword contains the tape
densities that the drive supports and the extended tape characteristics.)
The extended characteristics are identical to the information returned by
DVI$_DEVDEPEND2 (see Table 6-4). Figure 6-3 shows the contents of
the Pl buffer.

Regardless of whether the Pl buffer is specified, the 1/0 status block
returns the device-dependent characteristics in the second longword
(see Figure 6-6). These characteristics are identical to the information
returned by DVI$_DEVDEPEND (see Table 6-3 in Section 6.3).

6.4.1 O Set Mode

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Figure 6-3 Sense Mode P1 Buffer

P2=8:
31 16 15 8 7 0

Buffer Size l Type 1 Class

Tape Characteristics *

* From UCB$L_DEVDEPEND

P2=12:
31 16 15 8 7 0

Buffer Size l Type l Class

Tape Characteristics*

Extended Tape Characteristics * * J Supported Densities * *

* From UCB$L_DEVDEPEND
** From UCB$L_DEVDEPND2

ZK-4854-GE

Set mode operations affect the operation and characteristics of the
associated magnetic tape device. The VMS operating system defines
two types of set mode functions: set mode and set characteristics.

Set mode requires logical I/O privilege. Set characteristics requires
physical I/O privilege. The following function codes are provided:

• I0$_SETMODE-Set mode

• I0$_SETCHAR-Set characteristics

These functions take the following device- or function-dependent
arguments (other arguments are ignored):

• Pl-The address of a characteristics buffer

• P2-0ptional. The length of the characteristics buffer. Default is eight
bytes. If a length of 12 bytes is specified, the third longword (which is
for TMSCP drives only) specifies the extended tape characteristics.

6-23

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

6-24

Figure 6-4 shows the Pl characteristics buffer for IO$_SETMODE.
Figure 6-5 shows the same buffer for I0$_SETCHAR.

Figure 6-4 Set Mode Characteristics Buffer

P2=8:
31

P2=12:
31

Buffer Size

Buffer Size

16 15

I
Tape Characteristics

16 15

l
Tape Characteristics

Extended Tape Characteristics 1

0

Not Used

0

Not Used

Reserved

ZK-4856-GE

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Figure 6-5 Set Characteristics Buffer

P2=8:
31

P2=12:
31

Buffer Size

Buffer Size

16 15

l Type

Tape Characteristics

16 15

I Type

Tape Characteristics

Extended Tape Characteristics l

8 7 0

l Class

8 7 0

I Class

Reseived

ZK-4855-GE

The first longword of the Pl buffer for the set characteristics function
contains information on device class and type, and the buffer size. The
device class for tapes is DC$_TAPE.

The $DCDEF macro defines the device type and class names. The buffer
size is the default to be used for tape transfers (this default is normally
2048 bytes).

The second longword of the Pl buffer for both the set mode and set
characteristics functions contains the tape characteristics. Table 6-6 lists
the tape characteristics and their meanings. The $MTDEF macro defines
the symbols listed. If P2=12, the third longword contains the extended
tape characteristics for TMSCP drives, which are listed in Table 6-7. The
extended tape characteristics are defined by the $MT2DEF macro and are
identical to the information returned by DVI$_DEVDEPEND2.

6-25

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

6-26

Table 6-6 Set Mode and Set Characteristics Magnetic Tape
Characteristics

Characteristic 1

MT$M_PARITY

MT$V _DENSITY
MT$S_DENSITY

MT$V _FORMAT
MT$S_FORMAT

Meaning

If set, all data transfers are performed with even parity. If
clear (normal case), all data transfers are performed with
odd parity. Even parity can be selected only for non-return
to-zero-inverted recording at 800 bpi. Even parity cannot
be selected for phase-encoded recording (tape density is
MT$K_PE_ 1600) or group-coded recording (tape density is
MT$K_GCR_6250) and is ignored.

Specifies the density at which all data transfers are
performed. Tape density can be set only when the selected
drive's tape position is at the BOT marker. Possible density
values are as follows:
MT$K_DEFAULT Default system density.

MT$K_ GCR_6250

MT$K_PE_ 1600

MT$K_NRZl_800

MT$K_BLK_833

Group-coded recording, 6250 bpi.

Phase-encoded recording, 1600 bpi.

Non-return-to-zero-inverted recording,
800 bpi.

Cartridge block mode recording2•

Specifies the format in which all data transfers are performed.
Possible format values are as follows:

MT$K_DEFAULT Default system format.

MT$K_NORMAL 11 Normal PDP-11 format. Data bytes
are recorded sequentially on tape
with each byte occupying exactly one
frame.

1 Defined by the $MTDEF macro

20nly for the TK50 and TZ30

Table 6-7 Extended Device Characteristics for Tape Devices

Characteristic1

MT2$V _WBC_ENABLE

MT2$V _RDC_DISABLE

Meaning

Enable write-back caching on a per unit basis.

Disable read caching on a per unit basis.

1 Defined by the $MT2DEF macro. Only for TU81-Plus drives.

Application programs that change specific magnetic tape characteristics
should perform the following steps, as shown in Example 6-2 in
Section 6.6:

1 Use the I0$_SENSEMODE function to read the current
characteristics.

2 Modify the characteristics.

3 Use the set mode function to write back the results.

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Failure to follow this sequence will result in clearing any previously set
characteristic. ,

6.4.11 Data Security Erase
The data security erase function erases all data from the current position
of the volume to 10 feet beyond the EQT reflective strip and then rewinds
the tape to the BOT marker. It is a physical l/O function and requires
the access privilege necessary to perform physical l/O functions. It is
applicable only for the TA78, TU78, TA81, TK50, TU81, TU81-Plus, and
TZ30 drives. The following function code is provided:

• IO$_DSE

If the function is issued when a tape is positioned at the BOT marker, all
data on the tape will be erased.

I0$_DSE takes no device- or function-dependent arguments.

6.4.12 Pack Acknowledge

6.4.13 Available

6.4.14 Flush

The pack acknowledge function sets the volume valid bit for all magnetic
tape devices. It is a physical l/O function and requires the access privilege
to perform physical l/O. The following function code is provided:

• IO$_PACKACK

This function code takes no function-dependent arguments.

I0$_PACKACK must be the first function issued when a volume is placed
in a magnetic tape drive. IO$_PACKACK is issued automatically when
the DCL commands INITIALIZE or MOUNT are issued.

The available function clears the volume valid bit for all magnetic tape
drives, that is, it reverses the function performed by the pack acknowledge
function (see Section 6.4.12). A rewind of the tape is performed (applicable
to all tape drives). No unload function is issued to the drive. The following
function code is provided:

• IO$_AVAILABLE

This function takes no function-dependent arguments.

The flush function is used to ensure that all previously issued cached
commands have fully completed. Normally, hosts use this function to
establish or maintain synchronization with write-back cached commands
issued to the specified tape unit. The l/O request does not complete until
all cached data is written successfully to the media in the exact order that
the user specified.

6-27

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

• 10$_FLUSH

This function code takes no function-dependent arguments.

6.5 1/0 Status Block
The I/O status block (IOSB) for QIO functions on magnetic tape devices
is shown in Figure 6-6. Appendix A lists the status returns for these
functions. (The VMS System Messages and Recovery Procedures Reference
Manual provides explanations and suggested user actions for these
returns.) Table 6-3 (in Section 6.3) lists the device-dependent data
returned in the second longword. The IO$_SENSEMODE function can
be used to return that data.

Figure 6-6 IOSB Contents

31 16 15 0

Byte Count l Status

Device-Dependent Data

ZK-0675-GE

The byte count is the actual number of bytes transferred to or from the
process buffer or the number of files or blocks skipped. (If a
IO$_SKIPRECORD function is terminated by the detection of a tape mark,
the count returned in the IOSB is an unsigned number reflecting the
number of blocks skipped, plus 1.

6.6 Magnetic Tape Driver Programming Examples

6.6.1

This section presents three magnetic tape driver programming examples.

Magnetic Tape Data Program Example

6-28

Example 6-1 shows how data is written to and read from magnetic tape.
In the example, QIO operations are performed through the magnetic
tape ACP. These operations could have been performed directly on the
device using a magnetic tape driver. However, this would have involved
additional programming such as writing header labels and trailer labels.

Magnetic Tape Drivers
6.6 Magnetic Tape Driver Programming Examples

Example 6-1 Magnetic Tape Data Program Example

.TITLE MAGTAPE PROGRAMMING EXAMPLE

.IDENT /01/

Define n~cessary symbols.

$FIBDEF

$IODEF

;Define file information block
;symbols
;Define I/O function codes

Allocate storage for the necessary data structures.

Allocate magtape device name string and descriptor.

TAPENAME:
.LONG
.LONG

10$: .ASCII
20$:

20-10
10$
/TAPE/

;Length of name string
;Address of name string
;Name string
;Reference label

; Allocate space to store assigned channel number.

TAPECHAN:
.BLKW 1 ;Tape channel number

Allocate space for the I/O status quadword.

IOSTATUS:
.BLKQ 1 ;I/O status quadword

Allocate storage for the input/output buffer.

BUFFER:
.REPT 256
.ASCII /A/
.ENDR

;Initialize buffer to
; contain 'A'

Now define the file information block (FIB), which the ACP uses
in accessing and deaccessing the file. Both the user and the ACP
supply the information required in the FIB to perform these
functions.

(continued on next page)

6-29

Magnetic Tape Drivers
6.6 Magnetic Tape Driver Programming Examples

Example 6-1 {Cont.) Magnetic Tape Data Program Example

FIB DESCR: ;Start of FIB
.LONG ENDFIB-FIB ;Length of FIB
.LONG FIB ;Address of FIB

FIB: .LONG FIB$M_WRITE!FIB$M_NOWRITE ; Read/write access allowed
.WORD 0,0,0 ;File ID
.WORD 0,0,0 ;Directory ID
.LONG 0 ;Context
.WORD 0 ;Name flags
.WORD 0 ;Extend control

ENDFIB: ;Reference label

; Now define the file name string and descriptor.

NAME DESCR:
.LONG
.LONG

NAME: .ASCII
END NAME:

END NAME-NAME
NAME
"MYDATA.DAT;l"

;File name descriptor
;Address of name string
;File name string
;Reference label

Start Program

The program first assigns a channel to the magnetic tape unit and
then performs an access function to create and access a file called
MYDATA.DAT. Next, the program writes 26 blocks of data (the letters
of the alphabet) to the tape. The first block contains all A's, the
next, all B's, and so forth. The program starts by writing a block of
256 bytes, that is, the block of A's. Each subsequent block is reduced
in size by two bytes so that by the time the block of Z's is written,
the size is only 206 bytes. The magtape ACP does not allow the reading
of a file that has been written until one of three events occurs:

1. The file is deaccessed.
2. The file is rewound.
3. The file is backspaced.

In this example the file is backspaced zero blocks and then read in
reverse (incrementing the block size every block); the data is
checked against the data that is supposed to be there. If no data
errors are detected, the file is deaccessed and the program exits .

. ENTRY MAGTAPE_EXAMPLE,AM<R3,R4,R5,R6,R7,R8>

First, assign a channel to the tape unit.

$ASSIGN S TAPENAME,TAPECHAN
CMPW -#SS$_NORMAL,RO
BSBW ERR CHECK

;Assign tape unit
;Success?
;Find out

Now create and access the file MYDATA.DAT.

6-30

(continued on next page)

Magnetic Tape Drivers
6.6 Magnetic Tape Driver Programming Examples

Example 6-1 (Cont.) Magnetic Tape Data Program Example

$QIOW_S CHAN=TAPECHAN,- ;Channel is magtape

CMPW
BSBW

FUNC=#IO$_CREATE!IO$M_ACCESS!IO$M_CREATE,-;Function

IOSB=IOSTATUS,-

Pl=FIB DESCR,
P2=#NAME DESCR
#SS$_NORMAL,RO
ERR CHECK

;is create
;Address of I/O status
;word
;FIB descriptor
;Name descriptor
;Success?
;Find out

LOOPl consists of writing the alphabet to the tape (see previous
description) .

LOOPl:

MOVL
MOVL

#2 6, RS
#256,R3

$QIOW_S CHAN=TAPECHAN,
FUNC=#IO$_WRITEVBLK,-

CMPW
BSBW

Pl=BUFFER,
P2=R3
#SS$_NORMAL,RO
ERRCHECK

;Set up loop count
;Set up initial byte count
; in R3
; Start of loop
;Perform QIOW to tape channel
;Function is write virtual
;block
;Buffer address
;Byte count
;Success?
;Find out

Now decrement the byte count in preparation for the next write
operation and set up a loop count for updating the character
written; LOOP2 performs the update.

SUBL2 #2,R3 ;Decrement byte count for
;next write

MOVL R3,R8 ;Copy byte count to RB for
;LOOP2 count

MO VAL BUFFER,R7 ;Get buffer address in R7
LOOP2: INCB (R7)+ ;Increment character

SOBGTR R8,LOOP2 ; Until finished
SO BG TR R5,LOOP1 ;Repeat LOOPl until alphabet

;complete

The alphabet is now complete. Fall through LOOPl and update the
byte count so that it reflects the actual size of the last block
written to tape.

ADDL2 #2,R3 ;Update byte count

The tape is now read, but first the program must perform one of
the three functions described previously before the ACP allows
read access. The program performs an ACP control function,
specifying skip zero blocks. This is a special case of skip reverse
and causes the ACP to allow read access.

(continued on next page)

6-31

Magnetic Tape Drivers
6.6 Magnetic Tape Driver Programming Examples

Example 6-1 (Cont.) Magnetic Tape Data Program Example

CLRL
MOVW

FIB+FIB$L CNTRLVAL ;Set up to space zero blocks
#FIB$C_SPACE,FIB+FIB$W_CNTRLFUNC ;Set up for space

$QIOW_S CHAN=TAPECHAN,
FUNC=#IO$_ACPCONTROL,-

CMPW
BSBW

Pl=FIB DESCR
#SS$_NORMAL,RO
ERR CHECK

;function
;Perform QIOW to tape channel
;Perform an ACP control
;function
;Define the FIB
;Success?
;Find out

Read the file in reverse.

LOOP3:

MOVL
MOVB

MO VAL
$QIOW_S

CMPW
BSBW

#26,RS ;Set up loop count
#"A/Z/,R6 ;Get first character in R6

BUFFER,R7 ;And buffer address to R7
CHAN=TAPECHAN,- ;Channel is magtape
FUNC=#IO$_READVBLK!IO$M_REVERSE,- ;Function is read

IOSB=IOSTATUS,
Pl=BUFFER,
P2=R3
#SS$_NORMAL,RO
ERRCHECK

;reverse
;Define I/O status quadword
;And buffer address
;R3 bytes
;Success?
;Find out

Check the data read to verify that it matches the data written.

MOVL
CHECKDATA:

CMPB
BNEQ
SO BG TR

R3,R4

(R7)+,R6
MISMATCH
R4,CHECKDATA

;Copy R3 to R4 for loop count

;Check each character
;If error, print message
;Continue until finished

DECB
ADDL2

R6
#2,R3

;Go through alphabet in reverse
;Update byte count by 2 for
;next block

SOBGTR RS,LOOP3

Now deaccess the file.

$QIOW_S CHAN=TAPECHAN,-
FUNC=#I0$_DEACCESS,-
IOSB=IOSTATUS

Deassign the channel and exit.

EXIT: $DASSGN_S CHAN=TAPECHAN
RET

;Read next block

;Channel is magtape
;Deaccess function
;I/O status

;Deassign channel
;Exit

If an error had been detected, a program would normally
generate an error message here. But for this example the
program simply exits.

6-32

(continued on next page)

6.6.2

Magnetic Tape Drivers
6.6 Magnetic Tape Driver Programming Examples

Example 6-1 (Cont.) Magnetic Tape Data Program Example

MISMATCH:
BRB

ERRCHECK:
BNEQ
RSB

EXIT

EXIT

;Exit

;If not success, exit
;Otherwise, return

.END MAGTAPE EXAMPLE

Magnetic Tape Device Characteristic Program Example
Example 6-2 illustrates the recommended sequence for changing a
device characteristic. Retrieve the current characteristics using a
I0$_SENSEMODE request, set the new characteristics bits, and then use
IO$_SETMODE to set the new characteristics.

Example 6-2 Device Characteristic Program Example

$QIOW_S -
FUNC
CHAN
IOSB
Pl
P2

(Check for errors)

= #IO$_SENSEMODE,
= CHANNEL,-
= IO_STATUS,
= BUFFER,-
= #12

(Set desired characteristics bits)

$QIOW_S -
FUNC
CHAN
IOSB
Pl
P2

(Check for errors)

#IO$_SETMODE, -
CHANNEL,
IO_STATUS,
BUFFER,-
#12

Get current characteristics.
- Sensemode
- Channel
- IOSB
- User buff er supplied
- Buffer length = 12

Set new characteristics.
- Set Mode
- Channel
- IOSB
- User buff er address
- Buffer length = 12

6-33

6.6.3

Magnetic Tape Drivers
6.6 Magnetic Tape Driver Programming Examples

Set Mode and Sense Mode Program Example
Example 6-3 shows ways of specifying sense mode and set mode, both
with and without a user buffer specified, and with user buffers of different
lengths.

Example 6-3 Set Mode and Sense Mode Program Example

.PSECT

$IODEF

IMPURE, NOEXE, NOSHR

DEVICE NAME:
.ASCID

CHANNEL:
.WORD

BUFFER: . BLKL

IO STATUS:
.QUAD

0

3

0

/MUAO/
Name of device

VMS channel to device

Set/Sense characteristics
buff er

Final I/O status

.PSECT CODE, RD, NOWRT, EXE

6-34

.ENTRY MAIN, AM<>

$ASSIGN_S - Assign a channel to device

BSBW

DEVNAM
CHAN

ERR CHECK2

$QIOW_S -
FUNC
CHAN
IOSB

BSBW ERR CHECK

$QIOW_S -
FUNC
CHAN
IOSB
Pl

BSBW ERR CHECK

$QIOW_S -
FUNC
CHAN
IOSB
Pl
P2

BSBW ERR CHECK

DEVICE_NAME,
CHANNEL

Check for errors

Get current characteristics
#IO$_SENSEMODE,-; No user buffer supplied
CHANNEL,-
IO STATUS

Check for errors

Get current characteristics
#IO$_SENSEMODE,-; User buffer supplied, length
CHANNEL,- defaulted
IO_STATUS,-
BUFFER

Check for errors

Get current characteristics
#IO$_SENSEMODE,-; User buffer supplied, length
CHANNEL,- = 8
IO_STATUS,-
BUFFER,-
#8

Check for errors

(continued on next page}

Magnetic Tape Drivers
6.6 Magnetic Tape Driver Programming Examples

Example 6-3 (Cont.) Set Mode and Sense Mode Program Example

$QIOW_S -
FUNC
CHAN
IOSB
Pl
P2

BSBW ERR CHECK

$QIOW_S -
FUNC
CHAN
IOSB
Pl

BSBW ERR CHECK

$QIOW_S -
FUNC
CHAN
IOSB
Pl
P2

BSBW ERR CHECK

$QIOW_S -
FUNC
CHAN
IOSB
Pl
P2

BSBW ERR_CHECK

RET

.ENABLE LSB

ERR CHECK:

Get extended characteristics
#IO$_SENSEMODE,-; User buffer supplied, length
CHANNEL,- = 12
IO_STATUS,-

BUFFER,
= #12

UO$_SETMODE,
CHANNEL,
IO_STATUS,
BUFFER

#IO$_SETMODE,
CHANNEL,
IO_STATUS,
BUFFER,-
#8

#IO$_SETMODE,
CHANNEL,
IO_STATUS,-

BUFFER,
#12

Check for errors

Set new characteristics
Length defaulted

Check for errors

Set new characteristics
Length = 8

Check for errors

Set extended characteristics
Length = 12

Check for errors

BLBS
MOVZWL

IO STATUS,ERR_CHECK2
IO STATUS,-(SP)

Continue if good IOSB
Otherwise, set up for stop
Branch to common code BRB 10$

ERR CHECK2:
BLBS R0,20$
PUSHL RO

10$: CALLS #l,GALIB$STOP

20$: RSB

.DISABLE LSB

.END MAIN

Continue if good status
Otherwise, set up for stop
Stop execution

6-35

7 Mailbox Driver

The VMS operating system supports a virtual device, called a mailbox,
that is used for communication between processes. Mailboxes provide
a controlled and synchronized method for processes to exchange data.
Although mailboxes transfer information much like other I/O devices, they
are not hardware devices. Rather, mailboxes are a software-implemented
way to perform read and write operations.

Multiport memory mailboxes function in the same way as regular
mailboxes. They can also be used by processes on different processors
connected to an MA 780 multiport memory option.

The Guide to VMS Programming Resources and the VMS System Services
Reference Manual contain additional information on the use of mailboxes.

7.1 Mailbox Operations

7.1.1

Table 7-1 lists the different operations that software mailboxes perform.

Table 7-1 Mailbox Read and Write Operations

Operation Description

Receive mail

Receive notification
of mail

Send mail (without
notification of
receipt)

Send mail (with
notification of
receipt)

Reject mail

Creating Mailboxes

A process initiates a read request to a mailbox
to obtain data sent by another process. The
process reads the data if a message was previously
transmitted to the mailbox.

A process specifies that it be notified through an AST
when a message is sent to the mailbox.

A process initiates a write request to another mailbox
to transmit data to second process. The sending
process does not wait until the data is read by the
receiving process before completing the 1/0 operation.

A process initiates a write request to another mailbox
to transmit data to second process. The sending
process waits until the receiving process reads the
data before completing the 1/0 operation.

The receiving process reads messages from the
mailbox, sorts out unwanted messages, and responds
only to useful messages.

To create a mailbox and assign a channel and logical name to it, a process
uses the Create Mailbox and Assign Channel ($CREMBX) system service.
The system enters the logical name in the job logical name table and gives
it an equivalence name ofMBAn, where n is a unique unit number.

7-1

7.1.2

Mailbox Driver
7 .1 Mailbox Operations

$CREMBX also establishes the characteristics of the mailbox. These
characteristics include a protection mask, permanence indicator, maximum
message size, and buffer quota. A mailbox is created as either a temporary
mailbox or a permanent mailbox; both types of mailboxes require
privilege to create. Applications and restrictions on use of temporary
and permanent mailboxes are described in the sections that follow. (See
the VMS System Services Reference Manual for additional information on
creating mailboxes.)

Other processes can assign additional channels to the mailbox using either
$CREMBX or the Assign 1/0 Channel ($ASSIGN) system service. The
mailbox is identified by its logical name both when it is created and when
it is assigned channels by cooperating processes.

Figure 7-1 illustrates the use of $CREMBX and $ASSIGN.

If sufficient dynamic memory for the mailbox data structure is not
available when a mailbox is created, a resource wait occurs if resource
wait mode is enabled.

When a mailbox is created, a certain amount of space is specified for
buffering messages that have been written to the mailbox, but they have
not yet been read. The bufquo argument to the $CREMBX system service
specifies this amount or quota. If that argument is omitted, its value
defaults to the system generation parameter DEFMBXBUFQUO.

A message written to a mailbox, in the absence of an outstanding read
request, is queued to the mailbox, and the size of the message (the QIO
P2 argument) is subtracted from the available buffering space. After the
message is read, it is added back to the available buffering space.

If a process attempts to write to a mailbox that is full or has insufficient
buffering space, and if the process has resource wait enabled (which is the
default case), the process is placed in miscellaneous resource wait mode
until sufficient space is available in the mailbox. If resource wait is not
enabled, the I/O completes with the status return SS$_MBFULL in the I/O
status block (IOSB).

The programming example at the end of this chapter (Example 7-1)
illustrates mailbox creation and interprocess communication.

Deleting Mailboxes

7-2

As each process :finishes using a mailbox, it deassigns the channel using
the Deassign I/O Channel ($DASSGN) system service. The channel count
is decremented by 1. The system maintains a count of all channels and
automatically deletes the mailbox when no more channels are assigned to
it (that is, when the channel count reaches 0).

If a mailbox channel is deassigned, all messages sent through that channel
are deleted unless the IO$M_NOW function modifier was specified with
the write request.

7.1.3

Mailbox Driver
7 .1 Mailbox Operations

Figure 7-1 Multiple Mailbox Channels

User or
system
process
creates
mailbox.

Process

Mailbox

Process

Cooperating
processes use

$ASSIGN or $CREMBX
to define additional

channels.

Process

ZK-0676-GE

Permanent mailboxes must be explicitly deleted using the Delete Mailbox
($DELMBX) system service. An explicit deletion can occur at any time.
However, the mailbox is actually deleted when no processes have channels
assigned to it.

When a temporary mailbox is deleted, its message buffer quota is returned
to the process that created it. (No quota charge is made for permanent
mailboxes.)

Mailbox Message Format
There is no standardized format for mailbox messages and none is imposed
on users. Figure 7-2 shows a typical mailbox message format. Other types
of messages can take different formats; for an example, see Figure 8-2 in
Section 8.2.4.

7-3

7.1.4

Mailbox Driver
7 .1 Mailbox Operations

Figure 7-2 Typical Mailbox Message Format

31 16 15 0

Not Used l Message Type

Data

ZK-0677-GE

Mailbox Protection
Mailboxes (both temporary and permanent) are protected by a code, or
mask, that is similar to the code used in protecting volumes. As with
volumes, four types of users (defined by UIC) can gain access to a mailbox:
SYSTEM, OWNER, GROUP, and WORLD. However, only three types of
access-logical I/O, read, and write-are meaningful to users of a mailbox.
Thus, when creating a mailbox, you can specify_logical I/O, read, and write
access to the mailbox separately for each type of user. Logical I/O access
is required for any mailbox operation. The set protection function modifier
provides additional control of mailbox access (see Section 7.3.5).

For additional information on temporary mailboxes and mailbox
protection, see the description of the $CREMBX system service in the
VMS System Services Reference Manual.

7.2 Mailbox Driver Device Information

7-4

You can obtain information on mailbox characteristics by using the Get
DeviceNolume Information ($GETDVI) system service. (See the VMS
System Services Reference Manual.)

$GETDVI returns mailbox characteristics when you specify the item code
DVI$_ DEVCHAR. Table 7-2 lists these characteristics, which are defined
by the $DEVDEF macro.

Mailbox Driver
7 .2 Mailbox Driver Device Information

Table 7-2 Mailbox Characteristics

Characteristic 1 Meaning

Dynamic Bits (Conditionally Set)

DEV$M_SHR
DEV$M_AVL

DEV$M_REC
DEV$M_IDV
DEV$M_ODV
DEV$M_MBX

1 Defined by the $DEV DEF macro.

Device is shareable.

Device is available.

Static Bits (Always Set)

Device is record-oriented.

Device is capable of input.

Device is capable of output.

Device is a mailbox.

DVI$_DEVCLASS and DVI$_DEVTYPE return the device class and device
type names, which are defined by the $DCDEF macro. The device class
for mailboxes is DC$_MAILBOX. The device type is DT$_MBX (or DT$_
SHRMBX if the mailbox is a shared memory mailbox). DVI$_DEVBUFSIZ
returns the buffer size, which is the maximum message size in bytes.
DVI$_DEVDEPEND returns a longword field in which the two low-order
bytes contain the number of messages in the mailbox. (The two high-order
bytes are not used and should be ignored.)

DVI$_UNIT returns the mailbox unit number. Use of a mailbox to hold a
termination message for a subprocess or a detached process requires that
the parent process obtain this number to pass to the mbxunt argument of
the $CREPRC system service.

7.3 Mailbox Function Codes

7.3.1 Read

The VMS mailbox I/O functions are read, write, write end-of-file, and set
attention AST.

No buffered I/O byte count quota checking is performed on mailbox I/O
messages. Instead, the byte count or buffer quota of the mailbox is
checked for sufficient space to buffer the message being sent. The buffered
I/O quota and AST quota are also checked.

Read mailbox functions are used to obtain messages written by other
processes. The VMS operating system provides the following mailbox
function codes:

• I0$_READVBLK-Read virtual block

• IO$_READLBLK-Read logical block

7-5

7.3.2

Mailbox Driver
7 .3 Mailbox Function Codes

Write

7-6

• IO$_READPBLK-Read physical block

The following device- or function-dependent arguments are used with
these codes:

• Pl-The starting virtual address of the buffer that is to receive the
message read. If P2 specifies a zero-length buffer, Pl is ignored.

• P2-The size of the buffer in bytes (limited by the maximum message
size for the mailbox). A zero-length buffer may be specified. If a
message longer than the buffer is read, the alternate success status
SS$_BUFFEROVF is returned in the I/O status block. In such cases,
the message is truncated to fit the buffer. The driver does not provide
a means for recovering the deleted portion of the message.

The following function modifier can be specified with a read request:

• IO$M_NOW-Complete the I/O operation immediately with no wait
for a write request from another process

Figure 7-3 illustrates the read mailbox functions. In this figure, process
A reads a mailbox message written by process B. As the figure indicates,
a mailbox read request requires a corresponding mailbox write request
(except in the case of an error). The requests can be made in any sequence;
the read request can either precede or follow the write request.

If process A issues a read request before process B issues a write request,
one of two events can occur. If process A did not specify the function
modifier I0$M_NOW, process Ns request is queued before process B issues
the write request. When this request occurs, the data is transferred from
process B, through the system buffers, to process A to complete the I/O
operation.

However, if process A did specify the IO$M_NOW function modifier, the
read operation is completed immediately. That is, process Ns request
is not queued until process B issues the write request, and no data is
transferred from process B to process A. In this case, the I/O status
returned to process A.is SS$_ENDOFFILE.

If process B sends a message (with no function modifier; see Section 7.3.2)
before process A issues a read request (with or without a function
modifier), process A finds a message in the mailbox. The data is
transferred and the I/O operation is completed immediately.

To issue the read request, process A can specify any of the read function
codes; all perform the same operation.

Write mailbox functions are used to transfer data from a process to a
mailbox. The VMS operating system provides the following mailbox
function codes:

• IO$_ WRITEVBLK-Write virtual block

Mailbox Driver
7.3 Mailbox Function Codes

Figure 7-3 Read Mailbox

(i)or@

Process
A

ReadQIO

Data

0

Mailbox

Ci) or@

WriteQIO

Data

G)

Process
B

Note: Numbers indicate order of events.

ZK-0679-GE

• IO$_WRITELBLK-Write logical block

• IO$_WRITEPBLK-Write physical block

These function codes take the following device- or function-dependent
arguments:

• Pl-The starting virtual address of the buffer that contains the
message being written. If P2 specifies a zero-length buffer, Pl is
ignored.

• P2-The size of the buffer in bytes (limited by the maximum message
size for the mailbox). A zero-length buffer produces a zero-length
message to be read by the mailbox reader.

The following function modifiers can be specified with a write request:

• IO$M_NOW-Complete the I/O operation immediately with no wait
for another process to read the mailbox message

• I0$M_NORSWAIT-lf the mailbox is full, the I/O operation fails with
a status return of SS$_MBFULL rather than placing the process in
resource wait mode

Figure 7-4 illustrates the write mailbox function. In this figure, process A
writes a message to be read by process B. As in the read request example,
a mailbox write request requires a corresponding mailbox read request
(unless an error occurs), and the requests can be made in any sequence.

7-7

Mailbox Driver
7 .3 Mailbox Function Codes

7-8

If process A issues a write request before process B issues a read request,
one of two events can occur. If process A did not specify the function
modifier I0$M_NOW, process Ns write request is queued before process B
issues a read request. When this request occurs, the data is transferred
from process A to process B to complete the I/O operation.

However, if process A did specify the IO$M_NOW function modifier, the
write operation is completed immediately. The data is available to process
B and is transferred when process B issues a read request.

If process B issues a read request (with no function modifier) before
process A issues a write request (with or without the function modifier),
process A finds a request in the mailbox. The data is transferred and the
I/O operation is completed immediately.

To issue the write request, process A can specify any of the write function
codes; all perform the same operation.

Figure 7-4 Write Mailbox

CD or@

Process
A

WriteQIO

Data

0

Mailbox

CD or@

ReadQIO

Data

0

Process
B

Note: Numbers indicate order of events.

ZK-0680-GE

7.3.3

7.3.4

Mailbox Driver
7.3 Mailbox Function Codes

Write End-of-File Message
Write end-of-file message functions are used to insert a special message
in the mailbox. The process that reads the end-of-file message is returned
the status code SS$_ENDOFFILE in the I/O status block. No data is
transferred. This function takes no arguments. The VMS operating
system provides the following function code:

• 10$_ WRITEOF-Write end-of-file message

The following function modifier can be specified with a write end-of-file
request:

• IO$M_NOW-Complete the I/O operation immediately

Set Attention AST
Set attention AST functions are used to specify that an AST be delivered
to the requesting process when a cooperating process places an unsolicited
read or write request in a designated mailbox. If a message exists in the
mailbox when a request to enable a write attention AST is issued, the
AST routine is activated immediately. If no message exists, the AST is
delivered when a read or write message arrives. Thus the requesting
process need not repeatedly check the mailbox status. You must have
both logical I/O and read access to the mailbox prior to performing a set
attention AST function.

The VMS operating system provides the following function codes:

• IO$_SETMODE!IO$M_READATTN-Read attention AST

• IO$_SETMODE!IO$M_ WRTATTN-Write attention AST

These function codes take the following device- or function-dependent
arguments:

• Pl-AST address (request notification is disabled if the address is 0)

• P2-AST parameter returned in the argument list when the AST
service routine is called

• P3-Access mode to deliver AST; maximized with requester's mode

These functions are enabled only once; they must be explicitly reenabled
after the AST has been delivered if you desire notification of the next
unsolicited request. Both types of enable functions, and more than one of
each type, can be set at the same time. The number of enable functions is
limited only by the AST quota for the process.

Figure 7-5 illustrates the write attention AST function. In this figure,
an AST is set to notify process A when process B sends an unsolicited
message.

Process A uses the I0$_SETMODE!IO$M_WRTATTN function to request
an AST. When process B sends a message to the mailbox, the AST is
delivered to process A. Process A responds to the AST by issuing a read
request to the mailbox. The function modifier IO$M_NOW is included

7-9

Mailbox Driver
7 .3 Mailbox Function Codes

in the read request. The data is then transferred to complete the I/O
operation.

If several requesting processes have set ASTs for unsolicited messages
at the same mailbox, all ASTs are delivered when the first unsolicited
message is placed in the mailbox. However, only the first process to
respond to the AST with a read request receives the data. Thus, when the
next process to respond to an AST issues a read request to the mailbox, it
might find the mailbox empty. If this request does not include the function
modifier IO$M_NOW, it is queued before the next message arrives in the
mailbox.

Figure 7-5 Write Attention AST (Read Unsolicited Data)

0
AST Specified by
10$ SETMODE

!10$M_WRTA1TN

7-10

AST

Process
A Mailbox

Data

0
Note: Numbers indicate order of events.

0
Unsolicited
WriteQIO

Data

0

Process
B

ZK-0681-GE

Figure 7-6 illustrates the read attention AST function. In this figure, an
AST is set to notify process A when process B issues a read request for
which no message is available.

Process A uses the IO$_SETMODE!IO$M_READATTN function to specify
an AST. When process B issues a read request to the mailbox, the AST
is delivered to process A. Process A responds to the AST by sending a

7.3.5

Mailbox Driver
7.3 Mailbox Function Codes

message to the mailbox. The data is then transferred to complete the 1/0
operation.

If several requesting processes set ASTs for read requests for the same
mailbox, all ASTs are delivered when the first read request is placed in the
mailbox. Only the first process to respond with a write request is able to
transfer data to process B.

Figure 7-6 Read Attention AST

0
AST Specified by
10$ SETMODE

!10$M_READATTN

Set Protection

AST

0

Process
A Mailbox

Data

@

Note: Numbers indicate order of events.

0
ReadQIO

Data

©

Process
B

ZK-0682-GE

Set protection functions allow the user to set volume protection on a
mailbox (see Section 7 .1.4). The requester must either be the owner of the
mailbox or have BYPASS privilege. The VMS operating system provides
the following function code:

• IO$_SETMODE!IO$M_SETPROT-Set protection

7-11

Mailbox Driver
7 .3 Mailbox Function Codes

7.4 1/0 Status Block

7-12

This function code takes the following device- or function-dependent
argument:

• P2-A volume protection mask

The protection mask specified by P2 is a 16-bit mask with four bits for
each class of owner: SYSTEM, OWNER, GROUP, and WORLD, as shown
in Figure Figure 7-7.

Figure 7-7 Protection Mask

15 11 7 3 0

I World .) Group I Owner I System I
' , , .. , .. , .. , ' ' ,

' ,
' ,
' ' ,

' ,
' ,
' ' ,

' , .. ,
' ' ,

' ,
' ,
' , ' ' ,

' ,
' ,

11 10 9 8 ' '

r
'

·1 Log 1/0 * Write Read

*Not Used

ZK-0683-GE

Only logical I/O, read, and write functions have meaning for mailboxes. A
clear (0) bit implies that access is allowed. If P2 is 0 or unspecified, the
mask is set to allow all read, write, and logical operations.

The I/O status block for the set protection function (see Figure 7-10)
returns SS$_NORMAL in the first word if the request was successful. If
the request was not successful, the $QIO system service returns SS$_
NOPRIV and both longwords of the I/O status block are returned as zeros.

The I/O status blocks (IOSB) for mailbox read, write, and set protection
QIO functions are shown in Figures 7-8, 7-9, and 7-10.

Appendix A lists the I/O status returns for these functions. In addition to
these returns, the system services status returns SS$_ACCVIO,
SS$_INSFMEM, SS$_MBFULL, SS$_MBTOOSML, and SS$_NOPRIV can
be returned in RO. (The VMS.System Messages and Recovery Procedures
Reference Manual provides explanations and suggested user actions for
both types of returns.)

Mailbox Driver
7 .4 1/0 Status Block

Figure 7-8 IOSB Contents - Read Function

+2 IOSB

Byte Count I Status

Sender Process Identification (PID) *

* 0 if the sender was a system process.
+4

ZK-0684-GE

Figure 7-9 IOSB Contents - Write Function

+2 IOSB

Status Byte Count * l .,__ ___ .__.._ ____ --t+4

Receiver Process Identification (PID) * *

* Equals P2 buffer size if successful request.

* * O if 10$M_NOW was specified.

ZK-0685-GE

Figure 7-10 IOSB Contents - Set Protection Function

+2 IOSB

0 I Status

Protection Mask (P2) Value +4

ZK-1201-GE

7-13

Mailbox Driver
7.5 Mailbox Driver Programming Example

7.5 Mailbox Driver Programming Example
The following program (Example 7-1) creates a mailbox and puts mail
into it; no matching read is pending on the mailbox. First, the program
illustrates that if the function modifier IO$M_NOW is not used when mail
is deposited, the write function waits until a read operation is performed.
In this case, IO$M_NOW is specified and the program continues after the
mail is left in the mailbox.

Next, the mailbox is read. If there is no mail in the mailbox, the program
waits because I0$M_NOW is not specified. IO$M_NOW should be
specified if there is any doubt about the availability of data in the mailbox,
and it is important for the program not to wait.

It is up to the user to coordinate the data that goes into and out of
mailboxes. In this example the process reads its own message. Normally,
two mailboxes are used for interprocess communication: one for sending
data from process A to process B, and one for sending data from process
B to process A. If a program is arranged in this manner, there is no
possibility of a process reading its own message.

Example 7-1 Mailbox Driver Program Example

.TITLE MAILBOX DRIVER PROGRAM EXAMPLE

.IDENT /01/

Define necessary symbols.

$IODEF ;Define I/O function codes

Allocate storage for necessary data structures.

Allocate output device name string and descriptor.

DEVICE DESCR:

10$:
20$:

.LONG 20-10

.LONG 10$

.ASCII /SYS$0UTPUT/

;Length of name string
;Address of name string
;Name string of output device
;Reference label

; Allocate space to store assigned channel number.

DEVICE CHANNEL:
.BLKW 1 ;Channel number

Allocate mailbox name string and descriptor.

7-14

(continued on next page)

Mailbox Driver
7.5 Mailbox Driver Programming Example

Example 7-1 (Cont.) Mailbox Driver Program Example

MAILBOX NAME:
.LONG ENDBOX-NAMEBOX
.LONG NAMEBOX

NAMEBOX: .ASCII /146_MAIN_ST/
ENDBOX:

;Length of name string
;Address of name string
;Name string
;Reference label

Allocate space to store assigned channel number.

MAILBOX CHANNEL:
.BLKW 1 ;Channel number

Allocate space to store the outgoing and incoming messages.

IN BOX BUFFER:
.BLKB 40

IN LENGTH=.-IN BOX BUFFER

OUT BOX BUFFER:
.ASCII /SHEEP ARE VERY DIM/
OUT LENGTH=.-OUT BOX BUFFER - - -

;Allocate 40 bytes for
;received message
;Define input buffer length

;Message to send
;Define length of message to
;send

Finally, allocate space for the I/O status quadword.

STATUS:
.QUAD 1 ;I/O status quadword

Start Program

The program first creates a mailbox and assigns a channel to the
process output device. Then a message is placed in the mailbox and
a message is received from the mailbox (the same message). Finally,
the program prints the contents of the mailbox on the process output
device.

(continued on next page)

7-15

Mailbox Driver
7.5 Mailbox Driver Programming Example

Example 7-1 (Cont.) Mailbox Driver Program Example

START: .WORD 0 ;Entry mask
$CREMBX S CHAN=MAILBOX CHANNEL,- ;Channel is the mailbox

-PROMSK=#AXOOOO~- ;No protection
BUFQUO=#AX0060,- ;Buffer quota is hex 60
LOGNAM=MAILBOX NAME,- ;Logical name descriptor
MAXMSG=#AX0060- ;Maximum message is hex 60

CMPW #SS$_NORMAL,RO ;Successful mailbox creation?
BSBW ERROR CHECK ;Find out
$ASSIGN_S - ;Assign channel

DEVNAM=DEVICE_DESCR,- ;Device descriptor
CHAN=DEVICE CHANNEL ;Channel

CMPW #SS$_NORMAL~RO ;Successful channel assign?
BSBW ERROR CHECK ;Find out

The program now writes to the mailbox using a write request that
includes the function modifier IO$M_NOW so that it need not wait for
a read request to the mailbox before continuing to the next step in
the program.

$QIOW_S FUNC=#I0$_WRITEVBLK!IO$M_NOW,- ;Write message NOW
CHAN=MAILBOX_CHANNEL,- ;to the mailbox channel
Pl=OUT BOX BUFFER,- ;Write buffer
P2=#0UT LENGTH ;Buffer length

CMPW #SS$ NORMAL,RO ;Successful write request?
BSBW ERROR_CHECK ;Find out

Read the mailbox.

$QIOW_S FUNC=#I0$_READVBLK,
CHAN=MAILBOX_CHANNEL,
IOSB=STATUS,-

CMPW
BSBW

Pl=IN BOX BUFFER,
P2=#IN LENGTH
#SS$_NORMAL,RO
ERROR CHECK

;Read the message
;in the mailbox channel
;Define status block to
;receive message length
;Read buffer
;Buffer length
;Successful read request?
;Find out

The program now determines how much mail is in the mailbox (this
information is in STATUS+2) and then prints the mailbox message on
the process output device.

7-16

MOVZWL
$QIOW_S

STATUS+2,R2
FUNC=#IO$_WRITEVBLK,
CHAN=DEVICE_CHANNEL,
Pl=IN_BOX_BUFFER,
P2=R2,-
P4=#32

;Byte count into R2
;Write function to the
;output device channel
;Address of buffer to write
;How much to write
;Carriage control

(continued on next page)

Mailbox Driver
7.5 Mailbox Driver Programming Example

Example 7-1 (Cont.) Mailbox Driver Program Example

Finally, deassign the channel and exit.

EXIT: $DASSGN_S CHAN=DEVICE CHANNEL
RET

;Deassign channel
;Return

This is the error checking part of the program. Normally, some kind
of error recovery would be attempted at this point if an error was
detected. However, this example program simply exits.

ERROR CHECK:
BNEQ
RSB

EXIT

.END START

;System service failure, exit
;Otherwise, return

7-17

8 Terminal Driver

This chapter describes the use of the VMS terminal driver (TTDRIVER)
and the LAT port driver (LTDRIVER). The terminal driver supports
the asynchronous, serial line multiplexers listed in Table 8-1. The
terminal driver also supports the console terminal. The LAT port driver
accommodates I/O requests from application programs, for example to
make connections to remote devices, such as a printer, on a server (see
Section 8.4.4).

8.1 Supported Terminal Devices
In addition to the multiplexers listed in Table 8-1, the terminal driver
supports serial line interfaces that are included as part of all VAX.
processors. At least one such interface is always provided and is used
to attach the system console terminal. This interface does not allow the
setting of multiple terminal speeds, parity, or any maintenance functions,
with the exception of the interface included with the VAX. 8200 processor.
The terminal devices supported by the VMS operating system for this
interface are included in Table 8-1.

The remote command terminal, used by the DCL command SET HOST,
also makes use of the features listed in Section 8.2.

Table 8-1 Supported Terminal Devices

Terminal No. of
Output

Split International

Interface Lines Silo OMA Speed Bus Modem Control

CXY08 8 Yes1 Yes Yes Q-bus Full

CXA16 16 Yes1 Yes Yes Q-bus No

CXB16 16 Yes1 Yes Yes Q-bus No

DZQ11 4 No No Yes Q-bus No

DZQ11-CR 4 No No Yes Q-bus No

MicroVAX 2000 4 No No Yes None No

MicroVAX 3100 4 No No Yes None No

DZV11 4 No No No Q-bus No

DHQ11 8 Yes1 Yes Yes Q-bus Full

DHU11 16 Yes Yes Yes UNIBUS Full

DHV11 8 No Yes Yes Q-bus Full

DMB32 8 No Yes Yes VAXBI bus Full

1 Depends on whether the DHV or DHU mode is selected when the board is installed

(continued on next page)

8-1

Terminal Driver
8.1 Supported Terminal Devices

Table 8-1 (Cont.) Supported Terminal Devices

Terminal No. of
Output

Split International
Interface Lines Silo OMA Speed Bus Modem Control

DHB32 16 No Yes Yes VAXBI bus Full

DSH32 8 Yes No Yes MicroVAX 2000, No
MicroVAX 3100

DMF32 8 Yes Yes2 Yes2 UNIBUS Yes

DMZ32 24 Yes Yes Yes UNIBUS Full

DZ11 8/16 No No No UNIBUS No

DZ32 8 No No Limited UNIBUS No

LAT 3 No Yes 3 NIA 3

VAX 8200 4 No No No4 None No
serial lines

VAXstation 3100 4 No No Yes None No

2Lines o and 1.

sserver dependent.

4The VMS operating system always supports the first serial line as a console interface. The first serial line and the remaining
three serial lines are also supported as user terminal interfaces at a maximum speed of 1200 baud in configurations that can
include a LAT terminal interface but do not include other terminal interfaces.

8.2 Terminal Driver Features

8-2

The VMS terminal driver provides the following features:

• Input processing

Command line editing and command recall

Control characters and special keys

Input character validation (read verify)

American National Standard (ANSI) escape sequence detection

Type-ahead feature

Specifiable or default input terminators

Special operating modes, such as NOECHO and PASTHRU

• Output processing

Efficiency

Limited full-duplex operation

Formatted or unformatted output

• Dial-up support

Modem control

Hangup on logging out

Preservation of process across hangups

8.2.1 Input Processing

• Miscellaneous

Terminal/mailbox interaction

Autobaud detection

Terminal Driver
8.2 Terminal Driver Features

Out-of-band control character handling

The VMS terminal driver defines many terminal characteristics and read
function modifiers, which provide a wide range of options to an application
program. These options allow multiple levels of control over the terminal
driver's input process, ranging from the default of command line editing
that provides a highly flexible user interface, to the PASTHRU mode,
which inhibits input process interpretation of data.

8.2.1.1 Command Line Editing and Command Recall
The terminal driver input process defines a bounded set of line editing
functions. These functions are available through control keys on all
keyboards, and through some special keys on certain keyboards as well.
Cursor movement is provided in single-character increments (left arrow
or CTRL/D, right arrow or CTRUF), or in multicharacter increments, to
beginning of the line (CTRL/H), or end of the line (CTRL/E). The terminal
driver supports both insert character and overstrike character modes.
The insert/overstrike mode is the terminal's default characteristic1 at
the beginning of a read operation, but it can be changed dynamically
with the toggle insert/overstrike key (CTRL/A). Deletion of characters is
supported in both word (CTRL/J or line feed), and to the beginning of the
line (CTRUU) increments.

When you use the terminal driver's editing functions, the following
restrictions result:

• The cursor cannot be moved to a previous line after a line wrap.

• A character cannot be inserted if the insertion would force a line wrap
or if a tab follows the current cursor position.

• A word cannot be deleted at the beginning of a line after a line wrap.

• The line editing function cannot be assigned to other keys.

Command recall, initiated by CTRL/B or the up arrow, returns the last
line entered to the command line buffer. At this point, the line can be
edited or reentered by pressing the Return key. DCL extends command
recall to the last 20 commands by using the TRM$M_TM_NORECALL
modifier to disable the terminal driver's recall mechanism.

Any control key that is not defined by line editing is ignored. For
application programs that require control key input but do not perform
QIO functions with special read modifiers, the DCL command SET
TERMINAL/NOLINE_EDIT restores most of the terminal driver behavior
described under VMS Versions 3.0 through 3.7.

1 It is suggested that new users specify overstrike mode.

8-3

Terminal Driver
8.2 Terminal Driver Features

8.2.1.2 Control Characters and Special Keys
A control character is a character that controls action at the terminal
rather than passing data to a process. An ASCII control character has
a code between 0 and 31, and 127 (hexadecimal 0 through lF, and 7F);
that is, all normal control characters plus DELETE. (Table B-1 lists the
numeric values for all control characters.)

Some control characters are entered at the terminal by simultaneously
pressing the CTRL key and a character key, such as CTRL/x. Table 8-2
lists the VMS terminal control characters. Control character echo strings
(CTRUC, CTRL/Y, CTRUO, and CTRUZ) can be changed on a systemwide
basis (see the VMS System Generation Utility Manual). Special keys, such
as RETURN, LINE FEED, and ESCAPE, are entered by pressing a single
key.

Several of the control characters do not function as described if the SET
TERMINAL/LINE_EDIT DCL command is not specified. See the VMS
DCL Dictionary for information on line editing function keys and the SET
TERMINAL command.

Table 8-2 Terminal Control Characters

Control Character

Cancel
(CTRUC - F61

)

Delete character
(DELETE)

Meaning

Gains the attention of the enabling process if the user program has enabled a
CTRUC AST. If a CTRUC AST is not enabled, CTRUC is converted to CTRUY
(see Section 8.4.3.2).

The terminal performs a carriage-return/line-feed combination (carriage return followed
by a line feed), echoes CANCEL, and performs another carriage-return/line-feed
combination. If the terminal has the ReGIS characteristic or if CTRUY is pressed, the
cancel ReGIS escape sequence is sent.

Additional consequences of CTRUC are as follows:

The type-ahead buffer is emptied.

CTRUS and CTRUO are reset.
All queued and in-progress write operations and all in-progress read operations
are successfully completed. The status return is SS$_CONTROLC, or
SS$_CONTROLY if CTRUC is converted to CTRUY.

Removes the last character entered from the input stream.

DELETE (decimal 127 or hexadecimal 7F) is ignored if there are currently no input
characters. Hardcopy terminals echo the deleted character enclosed in backslashes.
For example, if the character z is deleted, \z\ is echoed (the second backslash is
echoed after the next non-DELETE character is entered). Terminals that have the
TI$M_SCOPE characteristic echo DELETE by removing the character.

1 F6 on the LK201 is lnterrupVCancel.

(continued on next page)

8-4

Terminal Driver
8.2 Terminal Driver Features

Table 8-2 (Cont.) Terminal Control Characters

Control Character

Delete line
(CTRUU)

Delete word
(CTRUJ or F13)
(Line feed)

Discard output
(CTRUO)

End of line
(CTRUE)

Exit
(CTRUZ or F10)

Interrupt
(CTRUY)

Move cursor left
(CTRUD <--)

Move cursor right
(CTRUF ~)

Meaning

Purges current input data. When CTRUU is entered before the end of a read
operation, the current input line is deleted. (In the case of a line-wrap, CTRUU
deletes only a line at a time.) If line editing is enabled (SET TERMINAULINE_EDIT
is specified), the data from the beginning of the line to the current cursor position is
deleted.

Delete word before cursor. Word terminators are all control characters, space, comma,
dash, period, and ! " # $ & ' () + @ [\] " { I I : ; <> = ? (see Appendix B).

Discards output. Action is immediate. All output is discarded until the next read
operation, the next write operation with a 10$M_CANCTRLO modifier, or the receipt of
the next CTRUO. The terminal echoes OUTPUT OFF. The current write operation (if
any) and write operations performed while CTRUO is in effect are completed with a
status return of SS$_CONTROLO.

A second CTRUO, which reenables output, echoes OUTPUT ON. CTRUC, CTRUY,
and CTRL/T cancel CTRUO.

Moves the cursor to the end of the line.

Echoes EXIT when CTRUZ is entered as a read terminator. By convention, CTRUZ
constitutes end-of-file.

CTRUY is a special interrupt or attention character that is used to invoke the command
interpreter for a logged-in process. CTRUY can be enabled with an 10$M_CTRLYAST
function modifier to an 10$_SETCHAR or 10$_SETMODE function code. The
command interpreter's CTRUY AST handler always takes precedence over a user
program's CTRUY AST handler.

Entering CTRUY results in an AST to an enabled process to signify that the user
entered CTRUY from the terminal. The terminal performs a carriage-return/line-feed
combination, echoes INTERRUPT, and performs another carriage-return/line-feed
combination if the AST and echo are enabled. CTRUY is ignored (and not echoed) if
the process is not enabled for the AST.

Additional consequences of CTRUY are as follows:

The type-ahead buffer is flushed.

CTRUS and CTRUO are reset.
All queued and in-progress write operations and all in-progress read operations
are successfully completed with a 0 transfer count. The status return is
SS$_CONTROLY.

The cancel ReGIS escape sequence is sent.

Moves the cursor one position to the left.

Moves the cursor one position to the right.

(continued on next page)

8-5

Terminal Driver
8.2 Terminal Driver Features

Table 8-2 (Cont.) Terminal Control Characters

Control Character

Move cursor to
beginning of line
(CTRUH or F12)
(Back space)

Purge type ahead
(CTRUX)

Recall
(CTRUB or
up arrow)

Redisplay input
(CTR UR)

Restart output
(CTRUQ)

RET
(RETURN)

Stop output
(CTRUS)

TAB
(CTRUI)

Status
(CTR UT)

Toggle
insert/overstrike
(CTRUA or F14)

8.2.1.3

8-6

Meaning

Moves the cursor to the beginning of the line.

Purges the type-ahead buffer and performs a CTRUU operation. Action is immediate.
If a read operation is in progress, the operation is equivalent to CTRUU.

Recalls last command entered. DCL extends recall to several commands.

Redisplays current input. When CTRUR is entered during a read operation, a carriage
return/line-feed combination is echoed on the terminal, and the current contents of the
input buffer are displayed. If the current operation is a read with prompt (10$_
READPROMPT) operation, the current prompt string is also displayed. CTRUR has ·
no effect if the characteristic TT$M_NOECHO is set.

Controls data flow; used by terminals and the driver. Restarts data flow to and from a
terminal if previously stopped by CTRUS. The action occurs immediately with no echo.
CTRUQ is also used to solicit read operations.

CTRUQ is meaningless if the line does not have the characteristic TT$M_ TTSYNC,
the characteristic TT$M_READSYNC, or is not currently stopped by CTRUS.

If used during a read (input) operation, RET echoes a carriage-return/line-feed
combination. All carriage returns are filled on terminals with TT$M_CRFILL specified.

Controls data flow; used by both terminals and the terminal driver. CTRUS stops all
data flow; the action occurs immediately with no echo. CTRUS is also used to stop
read operations. CTRUS is meaningful only if the terminal has either the
TT$M_ TTSYNC characteristic or the TT$M_READSYNC characteristic.

Tabs horizontally. Advances to the next tab stop on terminals with the characteristic
TT$M_MECHTAB, but the terminal driver assumes tab stops on MODULO 8 (multiples
of 8) cursor positions. On terminals without this characteristic, enough spaces are
output to move the cursor to the next MODULO 8 position.

Displays the current time. CTRUT also displays the current node and user name, the
name of the image that is running, and information about system resources that have
been used during the current terminal session.

Changes current edit mode from insert to overstrike, or from overstrike to insert. The
default mode (as set with SET TERMINAULINE_EDIT) is reset at the beginning of
each line.

Read Verify
The read verify instructions provided by the terminal driver allow
validation of data as each character is entered. Invalid characters are
not echoed and terminate the operation. The terminal driver does not
support full function field processing. Large data entry applications should
use one of the DECforms, VAX FMS, or VAX TDMS layered products,
which support the entire data entry environment. Section 8.4.1.4 describes
the supported primitives.

Terminal Driver
8.2 Terminal Driver Features

8.2.1.4 Escape and Control Sequences
Escape and control sequences provide additional terminal control not
furnished by the control characters and special keys (see Section 8.2.1.2).
Escape sequences are strings of two or more characters, beginning with
the escape character (decimal 27 or hexadecimal lB), which indicate
that control information follows. Many terminals send and respond to
such escape sequences to request special character sets or to indicate the
position of a cursor.

The set mode characteristic TT$M_ESCAPE (see Table 8-5) is used to
specify that VMS terminal lines can generate valid escape sequences.
Also, the read function modifier IO$M_ESCAPE allows any read operation
to terminate on an escape sequence regardless of whether TT$M_ESCAPE
is set. If either TT$M_ESCAPE or I0$M_ESCAPE is set, the terminal
driver verifies the syntax of the escape sequences. The sequence is always
considered a read function terminator and is returned in the read buffer;
a read buffer can contain other characters that are not part of an escape
sequence, but a complete escape sequence always terminates a read
operation. The return information in the read buffer and the 1/0 status
block includes the position and size of the terminating escape sequence in
the data record (see Section 8.5).

Any escape sequence received from a terminal is checked for correct
syntax. If the syntax is not correct, SS$_BADESCAPE is returned as the
status of the 1/0. If the escape sequence does not fit in the user buffer,
SS$_PARTESCAPE is returned. If SS$_PARTESCAPE is returned, the
application program must issue enough single-character read requests,
without timeout, to read the remaining characters in the escape sequence,
while parsing the syntax of the rest of the escape sequence. Use of the
TRM$_ESCTRMOVR item code prevents SS$_PARTESCAPE errors. No
syntax integrity is guaranteed across read operations. Escape sequences
are never echoed. Valid escape sequences take any of the following forms
(hexadecimal notation):

ESC <int> ... <int> <fin>

CSI <int> ... <int> <fin>

(7-bit environment)

(8-bit environment)

The keywords in the escape sequences indicate the following:

ESC The ESC key, a byte (character) of 18. This character introduces the escape
sequence in a 7-bit environment.

CSI The Control Sequence Introducer, a byte (character) of 98. This character
introduces the escape sequence in a 8-bit environment.

<int> An "intermediate character" in the range of 20 to 2F. This range includes
the space character and 15 punctuation marks. An escape sequence can
contain any number of intermediate characters, or none.

<fin> A "final character" in the range of 30 to 7E. This range includes uppercase
and lowercase letters, numbers, and 13 punctuation marks.

Three additional escape sequence forms are as follows:

ESC <;> <20-2F> ... <30-7E>
ESC <?> <20-2F> ... <30-7E>
ESC <O> <20-2F> ... <40-7E>

8-7

Terminal Driver
8.2 Terminal Driver Features

8-8

Control sequences, as defined by the ANSI standard, are escape sequences
that include control parameters. Control sequences have the following
format:

ESC [<par> ... <par> <int> ... <int> <fin> (7-bit environment)

CSI <par> ... <par> <int> ... <int> <fin> (8-bit environment)

The keywords in the escape sequences indicate the following:

ESC The ESC key, a byte (character) of 18.

[A control sequence, a byte (character) of 58.

CSI The Control Sequence Introducer, a byte (character) of 98.

<par> A parameter specifier in the range of 30 to 3F.

<int> An "intermediate character" in the range of 20 to 2F.

<fin> A "final character" in the range of 40 to 7E.

For example, the position cursor control sequence is ESC [Pl; Pc H. Pl is
the desired line position and Pc is the desired column position.

The user guides for the various terminals list valid escape and control
sequences. For example, the VT100 User Guide lists the escape and
control sequences for VTlOO terminals.

Section 8.2.1.2 describes control character functions during escape
sequences.

Table B-2 lists the valid ANSI and DIGITAL-private escape sequences
for terminals that have the TT2$M_ANSICRT, TT2$M_DECCRT,
TT2$M_DECCRT2, TT2$M_AVO, TT2$M_EDIT, and TT2$M_BLOCK
characteristics (see Table 8-6). Table B-2 also lists assumed and selectable
ANSI modes and selectable DIGITAL-private modes. Only the names of
the escape sequences and modes are listed (for more information see the
specific user guide for any of the various terminals). Unless otherwise
noted, the operation of escape sequences and modes is identical to the
particular terminals that implement these features.

8.2.1.5 Type-Ahead Feature
Input (data received) from a VMS terminal is always independent of
concurrent output (data sent) to a terminal. This feature is called type
ahead. Type-ahead is allowed on all terminals, unless explicitly disabled
by the set mode characteristic, inhibit type-ahead (TT$M_NOTYPEAHD;
see Table 8-5 and Section 8.4.3).

Data entered at the terminal is retained in the type-ahead buffer until
the user program issues an I/O request for a read operation. At that time,
the data is transferred to the program buffer and echoed at the terminal
where it was typed.

Deferring the echo until the read operation is active allows the user
process to specify function code modifiers that modify the read operation.
These modifiers can include, for example, noecho (I0$M_NOECHO)
and convert lowercase characters to uppercase (I0$M_CVTLOW) (see
Table 8-7).

If a read operation is already in progress when the data is typed at the
terminal, the data transfer and echo are immediate.

Terminal Driver
8.2 Terminal Driver Features

The action of the driver when the type-ahead buffer fills depends on the set
mode characteristic TT$M_HOSTSYNC (see Table 8-5 and Section 8.4.3).
If TT$M_HOSTSYNC is not set, CTRL/G (BELL) is returned to inform
you that the type-ahead buffer is full. If characters are entered when the
type-ahead buffer is full, the next read operation completes with a status
return of SS$_DATAOVERUN. If TT$M_HOSTSYNC is set, the driver
stops input by sending a CTRL/S and the terminal responds by sending no
more characters. These warning operations begin eight characters before
the type-ahead buffer fills unless the TT2$M_ALTYPEAHD characteristic
is set. In that case, the system generation parameter TTY _ALTALARM
is used. The driver sends a CTRL/Q to restart transmission when the
type-ahead buffer empties completely.

The type-ahead buffer length is variable, with possible values in the
range from 0 through 32,767. The length can be set on a systemwide
basis through use of the system generation parameter TTY_TYPAHDSZ.
Terminal lines that do a large amount of bulk input should use the
characteristic TT2$M_ALTYPEAHD, which allows the use of a larger
type-ahead buffer specified by the system generation parameters TTY_
ALTYPAHD and TTY_ALTALARM. (TTY_ALTYPAHD specifies the total
size of the alternate type-ahead buffer; TTY_ALTALARM specifies the
threshold at which a CTRL/S is sent.)

Certain input-intensive applications, such as block mode input terminals,
can take advantage of an optimization in the driver. If a terminal has the
characteristic TT2$M_PASTHRU and the read function modifier
IO$M_NOECHO is specified, data is placed directly into the read buffer
and thereby eliminates the overhead for moving the data from the type
ahead buffer.

8.2.1.6 Line Terminators
A line terminator is the control sequence that you type at the terminal to
indicate the end of an input line. Optionally, the application can specify a
particular line terminator or class of terminators for read operations.

Terminators are specified by an argument to the QIO request for a read
operation. By default, they can be any ASCII control character except
FF, VT, LF, TAB, or BS (see Appendix B). If line editing is enabled, the
only terminators are CR, CTRL/Z, or an escape sequence. Control keys
that do not have an editing function are nonfunctioning keys. If included
in the request, the argument is a user-selected group of characters (see
Section 8.4.1.2).

All characters are 7-bit ASCII characters unless data is input on an
8-bit terminal (see Section 8.4.1). The characteristic TT$M_EIGHTBIT
determines whether a terminal uses the 7-bit or 8-bit character set;
see Table 8-5. All input characters (except some special keys; see
Section 8.2.1.2) are tested against the selected terminators. The input
is terminated when a match occurs or your input buffer fills.

The terminal driver notifies the job controller to initiate login when it
detects a carriage return terminator on a line with no current process
(provided the line is not a secure server or the type-ahead feature has not
been disabled). A bell character is sent when the notification occurs. A

8-9

8.2.2

Terminal Driver
8.2 Terminal Driver Features

notification character other than the bell character may be specified by
setting the system generation parameter TTY_AUTOCHAR.

8.2.1. 7 Special Operating Modes
The VMS terminal driver suppbrts many special operating modes for
terminal lines. (Tables 8-5 and 8-6 in Section 8.3 list these modes.)
All special modes are enabled or disabled by the set mode and set
characteristics functions (see Section 8.4.3).

Output Processing

8-10

Output handling is designed to be very efficient in the terminal driver. For
example, on multiplexers that support both silo and direct memory access
CDMA) ouput, the driver considers record size to decide dynamically which
mode will result in the least overhead. The block size specified by the
system generation parameter TTY_DMASIZE is the minimum size block
that can be used in a DMA operation.

8.2.2.1 Duplex Modes
The VMS terminal driver can execute in either half- or full-duplex
mode. These modes describe the terminal driver software, specifically
the ordering algorithms used to service read and write requests, not the
terminal communication lines.

In half-duplex mode, all read and write requests are inserted onto one
queue. The terminal driver removes requests from the head of this queue
and executes them one at a time; all requests are executed sequentially in
the order in which they were issued.

In full-duplex mode, read requests (and all other requests except write
requests) are inserted onto one queue and write requests onto another.
The existence of two queues allows the driver to recognize the presence
of two requests, such as a read request and a write request at the same
time. However, the driver does not execute the read request and the write
request simultaneously. When it is ready to service a request, the driver
decides which request-the read request or the write request-to process
next.

In the VMS terminal driver, write requests usually have priority. A write
request can interrupt a current, but inactive, read request. A read request
is current when the terminal driver removes that request from the head
of the read queue. In a read operation, the read request becomes active
when the first input character is received and echoed. Once a read request
becomes active, all write requests are queued until the read completes.
However, during a read operation many write requests can be executed
before the first input character is entered at the terminal. Terminal
lines that have the TT$M_NOECHO characteristic, or read functions
that include the IO$M_NOECHO function modifier, do not inhibit write
operations in full-duplex mode.

If a write function specifies the I0$M_BREAKTHRU modifier, the write
operation is not blocked, even by an active read operation.
IO$M_BREAKTHRU does not change the order in which write operations
are queued.

Terminal Driver
8.2 Terminal Driver Features

When all 1/0 requests are entered using the Queue 1/0 Request and Wait
($QIOW) system service, there can be only one current 1/0 request at a
time. In this case, the order in which requests are serviced is the same for
both half- and full-duplex modes.

The type-ahead buffer always buffers input data for which there is no
current read request, in both half- and full-duplex modes.

8.2.2.2 Formatting of Output
By default,. output data is subject to formatting by the terminal driver.
This formatting includes actions such as wrapping, tab expansion,
uppercase, and fallback conversions. Applications that do not require
formatting of data can write with the IO$M_NOFORMAT modifier and
thereby reduce overhead. IO$M_NOFORMAT overrides all formatting
except fallback translation. Setting the PASTHRU mode (TT2$M_
PASTHRU) is equivalent to writing with the noformat modifier.

Fallback conversions occur regardless of formatting mode.

8.2.2.3 SET HOST Facility and Output Buffering
The SET HOST facility emulates the VMS terminal driver in the way it
writes data to the terminal by stopping the display as soon as the abort
character is entered. However, the SET HOST facility behaves differently
from the VMS terminal driver in that it buffers output data from the
program that is executing. Occasionally, this causes a perception problem
for the user when the program is aborted with a CTRUC, CTRL/Y, or an
out-of-band abort character. The user expects the program to terminate
and the display to stop immediately.

CTDRIVER and RTPAD

When used between two systems running the VMS operating system, the
SET HOST facility consists of two components: RTPAD on the local VAX
node and CTDRIVER on the remote VAX node. Both components buffer
output data to enhance performance when using wide area networks.
CTDRIVER performs the initial buffering, queues the buffers for network
transfer, and returns a successful write status. The user should note that
the local terminal display reflects the output of the executing program
after the data has been buffered and transferred over the network-not as
the output buffers are filled on the remote node.

The delay between execution of an application and the display of its
output can lead to several anomalies in the effects of CTRL/C, CTRL/Y,
and out-of-band abort characters.

Output Line Not in Sequence Following an Abort Character

After you enter an abort character (CTRL/C, CTRL/Y or an out-of-band
abort character) that causes the input or output to be aborted, it is possible
to receive an additional line of output. This occurs when the application
program calls $QIO (either directly or indirectly through VMS RMS or
language support routines) to output data to a buffer at the same time the
abort character is entered.

8-11

Terminal Driver
8.2 Terminal Driver Features

8-12

When CTDRIVER receives the abort character (CTRL/C, CTRUY, or an
out-of-band abort character) from the network, it flushes the current
output buffers and aborts any pending read operations. However, if the
application program calls $QIO with a write operation when the abort
character is entered, the $QIO write data is still buffered and then
displayed. The data may not be the next output in sequence from the
user's point of view, since all the previous output buffers in CTDRIVER
were flushed and the data in them was not displayed.

When using the VMS terminal driver, the effect of an abort character on
the display screen is different. The VMS terminal driver does not buffer
output from the application during program execution. If the application
program has just called $QIO with a write operation when the abort
character is entered, then the $QIO write data is displayed. Because all
write operations are sequential and do not complete until the output is
actually displayed, the additional line displayed is in sequence. There is
no break in the data. Normally, the user will not notice that there is an
additional line.

Extra Input Prompt Following an Abort Character

For connections between systems running the VMS operating system, the
CTERM protocol allows CTDRIVER to synchronize with RTPAD before
displaying any more data on the terminal.

Note: Prior to VMS version 5.2, a control character entered during
program execution to abort input and output could cause the
system to display more than one input prompt.

If the SET HOST facility is used between systems running VMS
version 5.2 and an earlier version, the extra input prompt is still
displayed.

Processing Abort Characters

The abort character AST is delivered after the message describing the
aborted read operation has been received. Thus, the read status should
be set very shortly after the abort character AST is delivered to the
application. Note, however, these are still two asynchronous events, and
the application must still synchronize with the completing read operation.

Note: Prior to VMS Version 5.2, if an application had a read operation
pending and had queued a CTRL/C, CTRUY, and out-of-band abort
character AST, it was possible to queue multiple read operations
unknowingly when the read operation was aborted.

Captive Command Procedures and CTRL/Y

CTDRIVER and RTPAD emulate the VMS terminal driver in that the
current read operation and all pending write operations abort when
CTRUY is entered. However, the pending write operations also include all
the buffered output that occurred and that would have been output before
the CTRL/Y was entered but due to the buffering was not.

8.2.3 Dial-Up Support

Terminal Driver
8.2 Terminal Driver Features

The effect of the buffering can be confusing if a CTRL/Y is entered when
a captive command procedure is executing. During execution of captive
command procedures, DCL has a CTRL/Y pending. When this AST is
delivered, DCL only reenables it; no other action is performed. In that
case, if the program being executed only performs output, it appears
that the program was aborted by the CTRL/Y. Actually, the program
completed execution before the CTRL/Y was entered, and the CTRL/Y
merely discarded all the buffered output.

The VMS operating system supports modem control (for example, Bell
103A, Bell 113, or equivalent) for all supported multiplexers in autoanswer,
full-duplex mode. The terminal driver does not support half-duplex
operations on modems such as the Bell 202. Also not supported are
modems that use circuit 108/1 (connect data set to line signal) in place of
the data terminal ready (DTR) signal. Most U.S. and European modems
use the data terminal ready signal, which is the signal supported by the
VMS operating system.

8.2.3.1 Modem Signal Control
Dial-up lines with the characteristic TT$M_MODEM are monitored
periodically to detect a change in the modem carrier signals data set
ready (DSR), calling indicator (RING), or request to send (RTS). The
system generation parameter TTY_SCANDELTA establishes the dial-up
monitoring period for multiplexers that do not support modem signal
transition interrupts (see Table 8-1).

If a line's carrier signal is lost, the driver waits two seconds for the
carrier signal to return. If bit 0 of the system generation parameter TTY_
DIALTYPE is set to 1, the driver does not wait. Bit 0 is 0 by default for
countries with Bell System standards, but that bit should be set to 1 for
countries with Comite Consultatif Internationale (CCITT) standards. If
the carrier signal is not detected during this time, the line is hung up.
The hangup action can signal the owner of the line, through a mailbox
message, that the line is no longer in use. (No dial-in message is sent; the
unsolicited character message is sufficient when the first available data
is received.) The line is not available for a minimum of two seconds after
the hangup sequence begins. The hangup sequence is not reversible. If
the line hangs up, all enabled CTRL/Y and out-of-band ASTs are delivered;
the CTRL/Y AST P2 argument is overwritten with SS$_HANGUP. The 1/0
operation in progress is canceled, and the status value SS$_HANGUP is
returned in the 1/0 status block. DCL is responsible for process deletion
after CTRL/Y is delivered. If the process is suspended, DCL cannot run,
and therefore deletion cannot occur, until the process is resumed.

Note: Some systems, such as the VAXstation 3100, provide built-in serial
lines using 6-pin modular jacks. These lines do not provide the
minimum required modem signals. Although, the hardware may
allow a dial-out connection to be established, hangup cannot be
detected and process deletion will not occur on these lines.

8-13

Terminal Driver
8.2 Terminal Driver Features

8-14

For terminals with the TT$M_MODEM characteristic, TT$M_REMOTE
reflects the state of the carrier signal. TT$M_REMOTE is set when the
carrier signal changes from off to on, and cleared when the carrier signal
is lost.

A line that does not have TT$M_MODEM set does not respond to
modem signals or set the DTR signal. Modem signals can be set and
sensed manually through use of the IO$M_MAINT function modifier (see
Section 8.4.3.3).

The VMS terminal driver default modem protocol meets the requirements
of the United States and of European countries. This protocol is capable of
working in automatic answer mode and can also perform manually dialed
outgoing calls. The protocol supports the requirements of most known
international telephone networks. Enhanced modem features are used on
multiplexers that support them; processor polling is not necessary. The
protocol also functions in a subset mode for the multiplexers that do not
support full modem signals (see Table 8-1).

Table 8-3 lists the control and data signals used in a full modem control
mode configuration (in a two-way simultaneous, symmetrical transmit
mode). Figure 8-1 is a flowchart that shows a typical signal sequence for
a terminal operation in this mode. The flowchart shows the states that the
modem transition code goes through to detect different types of transitions
in modem state. These transitions allow the driver to detect loss of lines
that have been idle for several minutes. Modem states do not affect the
ability of the system to transmit characters.

Set mode function modifiers are provided to allow a process to activate or
deactivate modem control signals (see Section 8.4.3.3).

Bit 1 of the system generation parameter TTY_DIALTYPE enables
alternate modem protocol on a systemwide basis. If bit 1 is 0 (the default),
the RING signal is not used. If bit 1 is 1, the modem protocol delays
setting the DTR signal until the RING signal is detected.

Remote terminal connections have a timeout feature for the security of
dial-up lines. If no channel is assigned to the port within 30 seconds, or a
port with an assigned channel is not allocated, the DTR signal is dropped.
Such action prevents an unused terminal from tying up a line. However,
there are configuratfons (such as a printer connected to a remote line)
in which the line should not be dropped even though it is not being used
interactively. To bypass the 30-second timeout, set the system generation
parameter TTY_DIALTYPE to 4. (Note that ifTTY_DIALTYPE is equal
to 4, all dial-up lines will skip the timeout waiting for a channel to be
assigned.)

Terminal Driver
8.2 Terminal Driver Features

Figure 8-1 Modem Control - Two-Way Simultaneous Operation

DTR-+ OFF
_ .. . Idle RfS -+ OFF

1X -+ MARK

TIY DIAL TYPE=2 RING-+ ON
Delay2sec - -• RING Wait

DTR-+ ON DZ-11
Wait

_.
DZ-11 Wait

RfS -+ON

DSR-+ ON RING -+oN CARRIER -+ ON

lnit1 Delay1 sec

DTR-+ ON
i.._

Timeout r--....._
lnit2 RfS -+ ON I"""

i..
Start 30-sec timer r'

CARRIER+ CTS + DSR-+ ON

• Reference Icaasmi10
.... Count=O

Start 30-sec timer ...-
PORT _RESUME

Reference Count>O TIY _DIAL TYPE::4
't_ j

Transmit
.... DSR-+ OFF ~

r...- Transmit and receive data ,..

CARRIER -+ OFF

Transmit1 CARRIER -+ ON

Start 2-sec timer

TIY_DIALTYPE=1J J Timeout DSR-+ OFF

~ Shutdown DTR-+ OFF

Delay 1 sec

..... Timeout

.....- Shut1

..... DSR-+ OFF Start 2-sec timer

ZK-0687-GE

8-15

Terminal Driver
8.2 Terminal Driver Features

Table 8-3 Control and Data Signals (Full Modem Mode Configuration)

Signal

Transmitted
data (TxD)

Received data
(RxD)

Request to
send (ATS)

Clear to send
(CTS)

Data set ready
(DSR)

Data channel
received line
signal detector
(CARRIER)

Data terminal
ready (DTR)

Calling
indicator
(RING)

Source

Computer

Modem

Computer

Modem

Modem

Modem

Computer

Modem

MUX1

All

All

Full

Full

Full

All

All

All

Meaning

The data originated by the computer and transmitted through
the modem to one or more remote terminals.

The data generated by the modem in response to telephone
line signals received from a remote terminal and transferred to
the computer.

If present (ON condition), ATS directs the modem to assume
the transmit mode. If not present (OFF condition), ATS directs
the modem to assume the nontransmit mode after all transmit
data has been transmjtted.

Indicates whether the modem is ready (ON condition) or not
ready (OFF condition) to transmit data on the telephone line.

If present (ON condition), DSR indicates that the modem is
ready to transmit and receive; that is, the modem is connected
to the line and is ready to exchange further control signals with
the computer to initiate the exchange of data.

If DSR is not present (OFF condition), the modem is not ready
to transmit and receive. If DSR. is detected, the VMS operating
system initiates a 30-second timer. This ensures that the
phone line will be disconnected if CARRIER is not detected.

If present (ON condition), CARRIER indicates that the received
data channel line signal is within appropriate limits, as specified
by the modem. If not present (OFF condition), the received
signal is not within appropriate limits.

If present (ON condition), DTR indicates that the computer
is ready to operate, prepares the modem to connect to the
telephone line, and maintains the connection after it has been
made by other means. DTR can be present whenever the
computer is ready to transmit or receive data. If DTR is not
present (OFF condition), the modem disconnects the modem
from the line.

Indicates whether a calling signal is being received by the
modem. Bit 1 of the system generation parameter TIY _
DIALTYPE must be set (=1). If RING is detected, the VMS
operating system initiates a 30-second timer. This ensures
that the phone line will be disconnected if CARRIER is not
detected.

1 Multiplexers (All = any supported controller; Full = DZ32, DMF32, DMB32, DMZ32, DHU11, DHV11, and CXY08)

8-16

8.2.3.2 Hangup on Logging Out
By default, logging out on a line with modem signals will not break the
connection. If TT2$M_HANGUP is set, modem signals are dropped when
the process logs out. If TT2$M_MODHANGUP is set, no privilege is
required to change the state ofTT2$M_HANGUP. By setting
TT2M_HANGUP, system managers can prevent nonprivileged users who
are not logged in from tying up a dial-in line.

8.2.4

Terminal Driver
8.2 Terminal Driver Features

8.2.3.3 Preservation of a Process Across Hangups
Disconnectable terminals allow a connection to a physical terminal line to
be broken without losing the job. The following SYSGEN command allows
terminals to be disconnectable terminals:

SYSGEN> CONNECT VTAO/NOADAPTER/DRIVER=TTDRIVER

After this command is entered, a terminal with the TT2$M_DISCONNECT
characteristic logs in as VTAn:, rather than with the physical terminal
name. When a terminal is set up in this manner, no input or output
operations are allowed to the physical device; I/O is automatically
redirected to the appropriate virtual terminal.

Following are four ways in which a terminal can become disconnected:

• Modem signals between the host and the terminal are lost.

• A user presses the BREAK key on a terminal that has the
TT2$M_SECURE characteristic.

• A user issues the DCL command DISCONNECT.

• A user issues the DCL command CONNECT/CONTINUE.

After being validated as a user, you can connect to a disconnected process
in either of the following ways:

• Allow the login process to make the connection.

• Issue the DCL command CONNECT.

Terminal/Mailbox Interaction
Mailboxes are virtual I/O devices used to communicate between processes.
The terminal I/O driver can use a mailbox to communicate with a user
process. Chapter 7 describes the mailbox driver.

A user program can use the Assign I/O Channel ($ASSIGN) system service
to associate a mailbox with one or more terminals. The terminal driver
sends messages to this mailbox when terminal-related events that require
the attention of the user image occur.

Mailboxes used in this way carry status messages, not terminal data, from
the driver to the user program. For example, when data is received from
a terminal for which no read request is outstanding (unsolicited data), a
message is sent to the associated mailbox to indicate data availability. On
receiving this message, the user program reads the channel assigned to
the terminal to obtain the data. Messages are sent to mailboxes under the
following conditions:

• Unsolicited data in the type-ahead buffer. The use of the associated
mailbox can be enabled and disabled as a subfunction of the read
and write requests (see Sections 8.4.1 and 8.4.2). (Initially, mailbox
messages are enabled on all terminals. This is the default state.)
Thus, the user process can enter into a dialogue with the terminal
after an unsolicited data message arrives. Then, after the dialogue
is over, the user process can reenable the unsolicited data message

8-17

Terminal Driver
8.2 Terminal Driver Features

function on the last 1/0 exchange. Only one message is sent between
read operations.

• Terminal hangup. When a remote line loses the carrier signal, it hangs
up; a message is sent to the mailbox. When hangup occurs on lines
that have the characteristic TT$M_REMOTE set, the line returns to
local mode.

• Broadcast messages. If the characteristic TT2$M_BRDCSTMBX is
set, broadcasts sent to a terminal are placed in the mailbox (this is
independent of the state of TT$M_NOBRDCST).

Messages placed in the mailbox have the following content and format (see
Figure 8-2):

• Message type. The codes MSG$_TRMUNSOLIC (unsolicited data),
MSG$_TRMHANGUP (hangup), and MSG$_TRMBRDCST (terminal
broadcast) identify the type of message. Message types are identified
by the $MSGDEF macro.

• Device unit number to identify the terminal that sent the message.

• Counted string to specify the device name.

• Controller name.

• Message (for broadcasts).

Figure 8-2 Terminal Mailbox Message Format

31 16 15 87

Unit Number l Message Type

Controller Name * l Counted String

l Broadcast Message Length

-v

T

0

0

4

8

1

1

2

2

6

0

.....i L,.,

J
Broadcast
Message

*Does not include the colon(:) character.

8-18

ZK-0686-GE

Interaction with a mailbox associated with a terminal occurs through
standard QIO functions and ASTs. Therefore, the process need not have
outstanding read requests to an interactive terminal to respond to the
arrival of unsolicited data. The process need only respond when the

8.2.5

8.2.6

Terminal Driver
8.2 Terminal Driver Features

mailbox signals the availability of unsolicited data. Chapter 7 contains an
example of mailbox programming.

The ratio of terminals to mailboxes is not always one to one. One user
process can have many terminals associated with a single mailbox.

Autobaud Detection
If you specify the /AUTOBAUD qualifier with the SET TERMINAL
command, automatic baud rate detection is enabled, allowing the terminal
baud rate to be set when you log in. The baud rate is set at login by
pressing the Return key two or more times separated by an interval of
at least one second. (Pressing a key other than Return might detect the
wrong baud rate; if this occurs, wait for the login procedure to time out
before continuing.) The supported baud rates are 110, 150, 300, 600, 1200,
1800, 2400, 3600, 4800, 9600, and 19200. Parity is allowed on these lines.

The autobaud function works with either even parity or no parity, but not
with odd parity. If a line is set to even parity and has seven bits of data,
the line automatically switches to no parity if a terminal not generating
parity attempts to log in.

The SET TERMINAL qualifier /EIGHT_BIT specifies that the terminal
uses eight-bit ASCII code. /NOEIGHT_BIT, which is the default, specifies
seven-bit ASCII code. (If parity is specified, the parity bit is separate from
the data bits.) The optimal settings for automatic baud rate detection on
Digital terminals are /NOEIGHT_BIT/PARITY=EVEN or /EIGHT_BIT
/NOPARITY, although automatic baud rate detection also works with other
combinations, such as /NOEIGHT_BIT/NOPARITY.

Table 8-6 describes the terminal characteristic TT2$M_AUTOBAUD,
which allows the baud rate to be set automatically at login.

Specifying the /FRAME qualifier with the SET TERMINAL command
is not usually recommended. The terminal driver selects the frame size
(the number of data bits that the device can transmit) based on how the
/PARITY and /EIGHT_BIT qualifiers are set. It might be necessary to
change these values if the terminal is not made by Digital.

Out-of-Band Control Character Handling
All control characters (0 through lF hexadecimal) can be enabled as out
of-band characters. Typing one of these characters immediately delivers
an AST to the requesting process. DCL uses this mechanism to sense
whether CTRL/T has been entered. Out-of-band character options allow
using the IO$M_INCLUDE function modifier to include the character in
the data stream and the IO$M_TT_ABORT function modifier to abort the
current input or output operation.

8-19

Terminal Driver
8.3 Terminal Driver Device Information

8.3 Terminal Driver Device Information

8-20

You can obtain information on terminal characteristics by using the Get
DeviceNolume Information ($GETDVI) system service. (See the VMS
System Services Reference Manual.) The sense mode function provides an
alternative means to obtain terminal characteristics; see Section 8.4.5.

$GETDVI returns terminal characteristics when you specify the item codes
DVI$_DEVCHAR, DVI$_DEVDEPEND, and DVI$_DEVDEPEND2. Tables
8-4, 8-5 and 8-6 list these characteristics. Terminal characteristics are
normally set during system generation to any one of, or a combination of,
the values listed in Table 8-5. DVI$_DEVDEPEND returns a longword
field in which the three low-order bytes contain the device-dependent
characteristics and the high-order byte contains the page length. Page
length can have a value in the range of 0 through 255. The $DEVDEF
macro defines the device-independent characteristics, the $TTDEF macro
defines the device-dependent characteristics, and the $TT2DEF macro
defines the extended device-dependent characteristics.

DVI$_DEVCLASS and DVI$_DEVTYPE return the device class and device
type names, which are defined by the $DCDEF and $TTDEF macros,
respectively. The device class for terminals is DC$_TERM. The terminal
model determines the device type. For example, the device type for the
VT240 is TT$_ VT200_SERIES. DVI$_DEVBUFSIZ returns the page
width, which can be a value in the range of 1through511. The driver does
not accept a value of 0.

Table 8-4 Terminal Device-Independent Characteristics

Characteristic

DEV$M_AVL

DEV$M_CCL

DEV$M_DET

DEV$M_IDV

DEV$M_ODV

DEV$M_OPR

DEV$M_REC

DEV$M_RTT

DEV$M_SPL

DEV$M_TRM

DEV$M_NET

Meaning

Terminal is on line and available.

Carriage control is enabled.

Terminal is detached.

Terminal is capable of input.

Terminal is capable of output.

Terminal is enabled as an operator console.

Device is record-oriented.

Terminal has remote terminal UCB extension.

Device is spooled.

Device is a terminal.

Terminal line is allocated for VAX-DECnet use.

Terminal Driver
8.3 Terminal Driver Device Information

Table 8-5 Terminal Characteristics

Value1

TT$M_CRFILL

TT$M_EIGHTBIT

TT$M_ESCAPE

TT$M_HALFDUP

TT$M_HOSTSYNC

TT$M_LFFILL

TT$M_LOWER

TT$M_MBXDSABL

TT$M_MECHFORM

TT$M_MECHTAB

TT$M_MODEM

TT$M_NOBRDCST

TT$M_NOECHO

TT$M_NOTYPEAHD

Meaning

Terminal requires fill after the Return key is pressed (the fill type can be specified by the
set mode function P4 argument).

Terminal uses the eight-bit ASCII character set (see Appendix 8). Terminals without this
characteristic use the seven-bit ASCII code. In this case, the eighth bit is masked out on
received characters and is ignored on output characters. The eighth bit is meaningful only
if TT$M_EIGHTBIT is set.

Terminal generates escape sequences (see Section 8.2.1.4). Escape sequences are
validated for syntax.

Terminal is in half-duplex mode (see Section 8.2.2.1). All read and write requests are
executed sequentially.

The host system is synchronized to the terminal. CTRUQ and CTRUS are used to control
data flow and thus keep the type-ahead buffer from filling. TT$M_HOSTSYNC should
always be set on LAT terminals.

Terminal requires fill after the line-feed character is processed. (The fill can be specified
by the set mode P4 argument.)

Terminal has the lowercase character set. Unless the terminal is in the PASTHRU
mode or 10$M_NOFORMAT is specified, all input and echoed lowercase characters
(hexadecimal 61 to 7 A) are converted to uppercase if TT$M_LOWER is not set. (The
character ALTMODE {decimal 125 and 126, or hexadecimal 7D and ?E) converts to
ESCAPE on terminals that do not have the lowercase characteristic TT$M_LOWER set.)

Mailboxes associated with the terminal do not receive notification of unsolicited input
or hangup {see Section 8.2.3). This bit can be set by the 10$M_DSABLMBX function
modifier for read requests and cleared by the 10$M_ENABLMBX function modifier for
write requests.

Terminal has mechanical form feed. The terminal driver passes form feeds directly to the
terminal instead of expanding to line feeds.

Terminal has mechanical tabs and is capable of tab expansion. To accomplish correct line
wrapping, the terminal driver assumes there are eight spaces between tab stops.

Terminal line is connected to a modem. If TT$M_MODEM is set, the terminal driver
automatically handles modem control. If TT$M_MODEM is not set, all modem signals are
ignored. If TT$M_MODEM is set and then cleared, a hangup is declared on the terminal
line if that line is in the remote state (TT$M_REMOTE is set). If DTR and ATS are set
with 10$_SETMODE!IO$M_SET_MODEM!IO$M_MAINT on a nonmodem port, DTR and
RTS goes off and then back on when the port is set for modem.

TT$M_MODEM is not supported for LAT devices.

Terminal does not receive any broadcast messages.

Input characters are not echoed on this terminal line (see Section 8.2.1.5).

Data must be solicited by a read operation. Data is lost if received in the absence of
an outstanding read request (if it is unsolicited data). Disables type-ahead feature (see
Section 8.2.1.5). If this characteristic is set, login attempts on this line are disabled. See
Section 8.2.3.1 for information on modem signal control.

1 Defined by the $TTDEF macro. The prefix can be TT$M_ or TT$V _. TT$M_ is a bit mask whose bit corresponds to the
specific field; TT$V_ is a bit number.

(continued on next page)

8-21

Terminal Driver
8.3 Terminal Driver Device Information

Table 8-5 (Cont.) Terminal Characteristics

Value1

TT$M_READSYNC

TT$M_REMOTE

TT$M_SCOPE

TT$M_TTSYNC

TT$M_WRAP

Meaning

Read synchronization is enabled. The host explicitly solicits all read operations by
entering a CTRUQ and terminates the operation by entering a CTRUS.
TT$M_READSYNC is not applicable to LAT terminals.

Dial-up characteristic is enabled. The terminal returns to local mode when a hangup
occurs on the terminal line (see Section 8.2.3). This characteristic cannot be changed; it
is only informational.

Terminal is a video screen display (CRT terminal), for example, the VT100 or VT240.

The terminal is synchronized to the host system. Output to the terminal is controlled
by terminal-generated CTRUQ and CTRUS. TT$M_ TTSYNC is not applicable to LAT
terminals unless TT$M_PASTH RU is set and TT$M_ TTSYNC is disabled, in which case
the LAT session is placed in PASSALL mode.

A carriage-return/line-feed combination should be inserted if the cursor moves beyond the
right margin. If TT$M_WRAP is not set, no carriage-return/line-feed combination is sent.
The VMS operating system does not support hardware-provided wrapping functions.

1 Defined by the $TTDEF macro. The prefix can be TT$M_ or TT$V _. TT$M_ is a bit mask whose bit corresponds to the
specific field; TT$V_ is a bit number.

Table 8-6 Extended Terminal Characteristics

Value1

TT2$M_ALTYPEAHD

TT2$M_ANSICRT

TT2$M_APP_KEYPAD

TT2$M_AUTOBAUD

Meaning

Alternate type-ahead buffer size is enabled. Use the alternate type-ahead buffer
size specified during system generation (see Section 8.2.1.5). If a type-ahead buffer
already exists for a terminal line, there is no effect when this characteristic is set
for that line. TT2$M_ALTYPEAHD should be set prior to using the terminal, such
as in the startup command procedure. You can only set TT2$M_ALTYPEAHD; this
characteristic cannot be cleared until the system is rebooted.

ANSI CRT terminal is enabled. This characteristic is set by the SET TERMINAL
command. TT2$M_ANSICRT is a subset of the ANSI standard with no DIGITAL
private escape sequences (see Appendix B). It is also a subset of the VT100-family
terminals (because TT2$M_ANSICRT is a subset of TT2$M_DECCRT) and the
VT100. Terminals with this characteristic must provide a display of at least 24 lines,
each with 80 columns.

Notifies application programs of state to set the keypad to when exiting.

Automatic baud rate detection is enabled. This characteristic allows the baud rate
to be set automatically when you log in. (The baud rate is set when one or more
carriage returns are entered during the login procedure.) Terminals are set to a
permanent speed of 9600 baud. If TT2$M_AUTOBAUD is specified, the permanent
speed must not be changed while this characteristic is in use on a given terminal
line. See Section 8.2.5 for additional information on automatic baud rate detection.

1 Defined by the $TT2DEF MACRO. The prefix can be TT2$M_ or TT2$V _. TT2$M_ is a bit mask in which the bit set
corresponds to the specific field; TT2$V_ is a bit number.

(continued on next page)

8-22

Terminal Driver
8.3 Terminal Driver Device Information

Table 8-6 (Cont.) Extended Terminal Characteristics

Value1

TT2$M_AVO

TT2$M_BLOCK

TT2$M_BRDCSTMBX

TT2$M_DECCRT

TT2$M_DECCRT2

TT2$M_DIALUP

TT2$M_DISCONNECT

TT2$M_DMA

TT2$M_DRCS

TT2$M_EDIT

TT2$M_EDITING

Meaning

Advanced video is enabled. This characteristic provides the terminal with blink,
bold, and flashing fields as well as a full screen of 132 character lines.
TT2$M_AVO is set by the SET TERMINAL command. Appendix B lists the valid
escape sequences for terminals with the TT2$M_AVO characteristic.

Block mode is enabled. This characteristic is set by the SET TERMINAL command.
TT2$M_BLOCK defines additional ANSI-defined and DIGITAL-private escape
sequences (see Appendix B). Terminals with this characteristic are capable of local
editing and block mode transmission (XON/XOFF flow control must be honored),
and have protected fields. If the terminal is used for large amounts of block input,
TT2$M_ALTYPEAHD should also be specified.

Mailbox broadcasts messages. Broadcast messages are sent to an associated
mailbox, if one exists.

DIGITAL CRT terminal. This characteristic is set by the SET TERMINAL command
for all terminals that are upward-compatible with VT100-family terminals.
TT2$M_DECCRT is a superset of TT2$M_ANSICRT. Additional ANSI-defined as
well as most DIGITAL-private escape sequences are allowed for terminals with
this characteristic (see Appendix B); maintenance modes, VT52 mode, and the
use of the LED displays are not defined by TT2$M_DECCRT. Not all VT100-family
terminals implement these features. The presence of the advanced video feature
cannot be assumed because it is a VT100 option. This restricts the use of graphics
attributes. However, the TT2$M_AVO characteristic can be used to determine
whether additional graphic attributes are available.

DIGITAL CRT terminal. This characteristic is set by the SET TERMINAL command
for all terminals that are upward-compatible with VT200-family terminals.
TT2$M_DECCRT2 is a superset of TT2$M_DECCRT.

Terminal is a dial-up line. Used by LOGINOUT for the disable dial-up control.

Allows terminal disconnect when a hangup occurs (that is, when modem signals
are lost, when the DCL commands DISCONNECT, or CONNECT/CONTINUE are
entered, or when the BREAK key is pressed on a terminal that has the
TT2$M_SECURE characteristic). These terminals are created as VTAn:. (See
the description for the DCL command CONNECT/DISCONNECT in the VMS DCL
Dictionary.)

OMA mode. This characteristic enables the use of OMA mode for asynchronous
OMA multiplexers. It is ignored by non-OMA controllers.

Terminal supports loadable character fonts. This characteristic is set with the DCL
command SET TERMINAUSOFT_CHARACTERS.

Terminal edit. This characteristic is set by the SET TERMINAL command for all
terminals that support ANSI-defined advanced editing functions. These functions
include the ability to insert or delete a line and the ability to insert or delete
characters in an existing line. Terminals with this characteristic are a superset of
TT2$M_DECCRT. Appendix B lists the valid escape sequences for terminals with
the TT2$M_EDIT characteristic.

Line editing is allowed.

1 Defined by the $TT2DEF MACRO. The prefix can be TT2$M_ or TT2$V _. TT2$M_ is a bit mask in which the bit set
corresponds to the specific field; TT2$V _ is a bit number.

(continued on next page)

8-23

Terminal Driver
8.3 Terminal Driver Device Information

Table 8-6 (Cont.) Extended Terminal Characteristics

Value1

TT2$M_FALLBACK2

TT2$M_HANGUP

TT2$M_INSERT

TT2$M_LOCALECHO

TT2$M_MODHANGUP

TT2$M_PASTHRU

TT2$M_PRINTER

TT2$M_REGIS

TT2$M_SIXEL

TT2$M_SECURE

TT2$M_SETSPEED

TT2$M_SYSPWD

TT2$M_XON

Meaning

Output is transformed· from the eight-bit multinational character set to a seven-bit
ASCII character set on terminals that do not support the eight-bit character set (see
Appendix B).

Terminal hangup. Terminal lines connected through modems are hung up when a
process logs out or is deleted. The state of this characteristic cannot be changed
unless TT2$M_MODHANGUP is enabled or the process has either LOG_IO or
PHY _10 privilege.

Sets default mode for insert or overstrike at the beginning of each read operation.

Local echo. This characteristic is used with TT$M_NOECHO. If both characteristics
are set, only terminators and special control characters are echoed. Use of this
mode is restricted to command line read operations. Application programs
that use the 10$M_NOECHO function modifier will not necessarily work if
TT2$M_LOCALECHO is set. Local echo is also not compatible with line editing
(TT2$M_EDITING).

Modify hangup. If specified, TT2$M_HANGUP can be modified without privilege.
Otherwise, logical or physical 1/0 privilege is required.

Terminal is in PASTHRU mode; all input and output data is in seven- or eight-
bit binary format (no data interpretation occurs). Data is terminated when the
buffer is full or when the data that is read matches the specified terminator. If
the characteristic TT$M_ TTSYNC is set, CTRUS and CTRUQ interpretation does
occur.

DIGITAL CRT terminal with a local printer port.

ReGIS graphics. The terminal supports the ReGIS graphics instruction set.

SIXEL graphics. The terminal supports the SIXEL graphics instruction set.

For use with nonmodem, nonautobaud lines. This characteristic guarantees
that no process is connected to the terminal after the BREAK key is pressed.
If TT2$M_SECURE is not set, BREAK is a null key.

Set speed. If specified, either LOG_IO or PHY _10 privilege is required to change
terminal speed. TT2$M_SETSPEED is not supported for LAT devices.

System password. This characteristic specifies that the login procedure should
require the system password before the user name prompt is displayed.

XON/XOFF control. If a set mode function is performed on a terminal in the
CTRUS state, and if TT2$M_XON is set, output is resumed. Users should note
that the driver will attempt to resume stopped (XOFF) output on the line. However,
restarting the output may not be successful in all cases. The XON/XOFF feature
does not work on all terminals, for example, the VT220.

1 Defined by the $TT2DEF MACRO. The prefix can be TT2$M_ or TT2$V _. TT2$M_ is a bit mask in which the bit set
corresponds to the specific field; TT2$V _ is a bit number.

2 1f an attempt is made to turn on TT2$V_FALLBACK for a disconnected virtual terminal LVTAx:) or if the Terminal Fallback
Facility (TFF) has not been activated, the status code SS$_BADPARAM is returned. For more information on TFF, refer to the
VMS Terminal Fallback Utility Manual.

8-24

8.3.1

Terminal Driver
8.3 Terminal Driver Device Information

Terminal Characteristics Categories
The set mode and set characteristics functions (see Section 8.4.3) and
the DCL command SET TERMINAL are used to change terminal
characteristics. The VMS DCL Dictionary describes the SET TERMINAL
command.

To customize terminal behavior and usage, the VMS operating system
divides terminal characteristics into the following categories:

• Format effectors-The following characteristics allow the user to
specify terminal-dependent formatting requirements:

TT$M_CRFILL

TT$M_LOWER

TT$M_MECHTAB

TT$M_WRAP

TT$M_EIGHTBIT

TT2$M_LOCALECHO

TT$M_NOECHO

TT$M_LFFILL

TT$M_MECHFORM

TT$M_SCOPE

• Generic terminal capabilities-The following characteristics specify
generic terminal features available to applications programs:

TT2$M_ANSICRT

TT2$M_DECCRT

TT2$M_EDIT

TT2$M_SIXEL

TT2$M_AVO

TT2$M_DECCRT2

TT2$M_PRINTER

TT2$M_BLOCK

TT2$M_DRCS

TT2$M_REGIS

Their use allows execution of these programs without knowledge of the
actual terminal type. For example, a program should check for
TT2$M_DECCRT rather than for VTlOO or VT101.

• Protocol-The following characteristics control protocols used by the
terminal:

TT$M_ESCAPE

TT2$M_PASTHRU

TT$M_HALFDUP

TT$M_ TTSYNC

TT$M_HOSTSYNC

• System management-The following characteristics, normally set only
at system startup, allow the system manager to regulate terminal
usage:

TT2$M_AL TYPEAHD

TT2$M_DISCONNECT

TT$M_MODEM

TT2$M_SECURE

TT2$M_AUTOBAUD

TT2$M_DMA

TT$M_NOTYPEAHD

TT2$M_SETSPEED

TT2$M_DIALUP

TT2$M_HANGUP

TT2$M_MODHANGUP

TT2$M_SYSPWD

• User preference-The following characteristics allow you to customize
the terminal operating mode:

TT2$M_APP_KEYPAD

TT2$M_INSERT

TT2$M_FALLBACK

TT$M_NOBRDCST

TT2$M_EDITING

• Miscellaneous-The following characteristics provide greater program
control of terminal operations:

TT2$M_BRDCSTMBX TT$M_MBXDSABL TT2$M_XON

8-25

Terminal Driver
8.4 Terminal Function Codes

8.4 Terminal Function Codes

8.4.1 Read

8-26

The basic terminal I/O functions are read, write, set mode, set
characteristics, sense mode, and sense characteristics. All I/O functions
can take function modifiers.

When a read function code is issued, the user-specified buffer is filled
with characters from the associated terminal. The VMS operating system
provides the following read function codes:

• IO$_READVBLK-Read virtual block

• IO$_READLBLK-Read logical block

• IO$_READPROMPT-Read with prompt

Read operations are terminated if either of the following two conditions
occurs:

• The user buffer is full.

• The received character is included in a specified terminator mask (see
Section 8.4.1.2).

The following device- or function-dependent arguments are used with the
read function codes. The codes can take all six arguments (Pl through
P6) on QIO requests. The descriptions for these arguments differ when
itemlist read operations are performed (see Section 8.4.1.3).

• Pl-The starting virtual address of the buffer that is to receive the
data read.

• P2-The size of the buffer that is to receive the data read in bytes. (A
system generation parameter, MAXBUF, limits the maximum size of
the buffer.)

• P3-Read with timeout, timeout count (see Table 8-7, IO$M_TIMED).

• P4-The read terminator descriptor block address (see Section 8.4.1.2).

• P5-The starting virtual address of the prompt buffer that is to be
written to the terminal; for read with prompt operations using the
IO$_READPROMPT function code. (This argument is specified as a
value, rather than an address as in the Pl argument.)

• P6-The size of the prompt buffer that is to be written to the terminal;
for read with prompt operations using the IO$_READPROMPT
function code.

In a read with prompt operation, the P5 and P6 arguments specify the
address and size of a prompt string buffer containing data to be written
to the terminal before the input data is read. In a read with prompt
operation, both read and write operations are performed on the specified
terminal. The prompt string buffer is formatted like any other write
buffer. If cursor position specifiers are supplied, they are not interpreted
by the driver but passed to the terminal.

Terminal Driver
8.4 Terminal Function Codes

During a read with prompt operation, pressing CTRUO (which is turned
off at the start of any read operation) stops the prompt string. If you press
either CTRUU or CTRI.JX, the entire prompt string is written out again,
and the current input is ignored. If you press CTRUR, the current prompt
string and input are written to the terminal.

Depending on the terminal type and your input, the prompt string can be
very simple or quite complex-from single command prompts to screen fills
followed by input data. Digital recommends that prompt strings contain
only one leading line feed.

In PASTHRU mode, data received from the associated terminal is placed
in the user buffer as binary information without interpretation. (Prompts
are not refreshed after a broadcast in PASTHRU mode.)

8.4.1.1 Function Modifier Codes for Read QIO Functions
Eight function modifiers can be specified with 10$_READVBLK,
10$_READLBLK, and 10$_READPROMPT. Table 8-7 lists these function
modifiers and 10$_EXTEND, which is described in Section 8.4.1.3. All
read function modifiers are supported for LAT devices.

Table 8-7 Read QIO Function Modifiers for the Terminal Driver

Code

10$M_CVTLOW

10$M_DSABLMBX

10$M_ESCAPE

10$M_EXTEND

10$M_NOECHO

10$M_NOFILTR

10$M_PURGE

10$M_TIMED

Consequence

Lowercase alphabetic characters (hexadecimal 61 to 7 A) are converted to uppercase
when transferred to the user buffer or echoed. This characteristic is used only for
10$_READLBLK, 10$_READVBLK, and 10$_READPROMPT.

The mailbox is disabled for unsolicited data.

A valid ANSI escape sequence is recognized as a valid delimiter for the read operation.
The TT$M_ESCAPE characteristic is overridden by this modifier for the current read
operation.

This characteristic provides additional functionality for read operations (see
Section 8.4.1.3). Do not specify 10$M_EXTEND with other function modifiers.

Characters are not echoed as they are entered at the keyboard. The terminal line can
also be set to a "no echo" mode by the set mode characteristic TT$M_NOECHO, which
inhibits all read operation echoing. Setting 10$M_NOECHO also disables line editing.

The terminal does not interpret CTRUU, CTRUR, or DEL. They are passed to the user.
10$M_NOFILTR explicitly disables line editing.

The type-ahead buffer is purged before the read operation begins.

The P3 argument specifies the maximum time (seconds) that can elapse between
characters received from the terminal (the timeout value for the operation). Because
driver timing operates on a one-second timer, a two-second timeout must be specified to
guarantee a one-second wait. The timer starts when the prompt echo is started. If the
read time exceeds the time specified in P3, a timeout error (SS$_ TIMEOUT) is returned
in the read IOSB. All input characters received before the read operation timed out are
returned in the user's buffer.

(continued on next page)

8-27

Terminal Driver
8.4 Terminal Function Codes

Table 8-7 (Cont.) Read QIO Function Modifiers for the Terminal Driver

Code Consequence

A read with timeout operation, in which the timeout value is 0, empties the type-ahead
buffer into the user buffer until the proper termination condition is reached (buffer full,
termination character detected, or type-ahead buffer empty). The read operation then
returns the count of characters read and, if a terminator is read, SS$_NORMAL; SS$_
TIMEOUT is returned if no terminator is read. In either case the offset to terminator in the
IOSB always indicates the number of characters read. Note that the timer starts when the
prompt echo is started.

If a read operation is interrupted by either a broadcast write or a synchronous write
request, the timer operation is restarted.

10$M_ TRMNOECHO The termination character (if any) is not echoed. There is no formal terminator if the
buffer is filled before the terminator is typed.

8-28

8.4.1.2 Read Function Terminators
The P4 argument to a read QIO function either specifies the terminator
set for the read function or points to the location containing the terminator
set. If P4 is 0, all ASCII characters with a code in the range 0 through
31 (hexadecimal 0 through lF) except LF, VT, FF, TAB, and BS, are
terminators (see Appendix B). This is the VMS RMS standard terminator
set. The delete character (hexidecimal 7F) and eight-bit controls in the
range 128 through 159, and 255 (hexidecimal 80 through 9F, and FF) are
also terminators. If line editing is enabled, only RETURN, CTRUZ, or an
escape sequence terminates a read operation.

If P4 does not equal 0, it contains the address of a quadword that either
specifies a terminator character bit mask or points to a location containing
that mask. (Note that if P4 references an address in a MACRO program,
a number sign (#) must precede the address, for example, P4=#TMASK.)
The quadword has a short form and a long form, as shown in Figure 8-3.
In the short form, the correspondence is between the bit number and the
binary value of the character; the character is a terminator if the bit is
set. For example, if bit 0 is set, NULL is a terminator; if bit 9 is set, TAB
is a terminator. If a character is not specified, it is not a terminator. Since
ASCII control characters are in the range 0 through 31, the short form can
be used in most cases.

The long form allows use of a more comprehensive set of terminator
characters. Any mask equal to or greater than one byte is acceptable. For
example, a mask size of 16 bytes allows all seven-bit ASCII characters
to be used as terminators; a mask size of 32 bytes allows all eight-bit
characters to be used as terminators for eight-bit terminals.

If the terminator mask is all zeros, there are no specified terminators. The
read operation ends when the specified number of bytes (characters) have
been transferred to the input buffer.

Certain control keys will not act as terminators unless 10$M_NOFILTR
is specified or the line has the TT2$M_PASTHRU characteristic (see
Section 8.2.1.2.).

Terminal Driver
8.4 Terminal Function Codes

Figure 8-3 Short and Long Forms of Terminator Mask Quadwords

31 0

SHORT: 0

Terminator Character Bit Mask

31 16 15 0

LONG: (Not Used) I Mask Size in Bytes

Address of Mask

ZK-0689-GE

8.4.1.3 ltemlist Read Operations
Itemlist read operations provide expanded software features to read QIO
requests. The VMS operating system provides the following combination
of function code and modifier:

• 10$_READVBLK!IO$M_EXTEND-ltemlist read virtual block

No other function modifiers can be specified in an itemlist read request.

Note: Item.list read features supported by the terminal driver are not
supported by all DECNET terminal emulators.

The itemlist read function code and modifier combination takes the
following device- or function-dependent arguments:

• Pl-The starting virtual address of the buffer that is to receive the
data read

• P2-The size of the buffer that is to receive the data read in bytes. If
required, the P2 size includes additional space for an overflow buffer
to hold an escape sequence terminator (see item code
TRM$_ESCTRMOVR in Table 8-8).

• P3-The access mode at which the itemlist is to be probed (optional)

• P5-The address of the itemlist buffer

• P6-The length in bytes of the itemlist buffer

8-29

Terminal Driver
8.4 Terminal Function Codes

P4 is not meaningful for itemlist read operations. P5 points to a series of
item descriptors. Figure 8-4 shows the format for these descriptors. You
cannot repeat the same item code in the same item list.

Figure 8-4 ltemlist Read Descriptor

31 16 15 0

Item Code I Buffer Length

Buffer Address or Immediate Data

Return Address *

* Must be zero.

ltemlist Read - PS Buffer

ZK-1305-GE

Table 8-8 lists the item codes that can be specified in the first longword of
the item descriptors.

Table 8-8 Item Codes for ltemlist Read Operations for the Terminal Driver

Item Code Meaning

TRM$_ALTECHSTR Alternate echo string. The buffer length word contains the length of the string. The data
address word contains the address of the string. The alternate echo string is written to
the terminal after the first character is entered.

Note: This item code for character validating read mode (TRM$K_EM_
RDVERIFY) editing only.

TRM$_EDITMODE Extended editing modes. The immediate data longword specifies extended editing mode
values. The buffer length word must be zero. The following editing modes are supported:
TRM$K_EM_DEFAULT Normal read mode. This is the default if TRM$_EDITMODE

is not present in the itemlist.

TRM$K_EM_RDVERIFY Character validating read mode. See Section 8.4.1.4.

TRM$_ESCTRMOVR Escape terminator overflow size. Specifies the number of bytes that may be used to
hold an escape sequence terminator. This number should be included in P2, the buffer
size argument, in addition to the space required for the data to be read. Note that this
overflow area is for the terminator only; it is not available for user data.

8-30

TRM$_ESCTRMOVR is useful in preventing partial escape errors, which return
SS$_PARTESCAPE. This overflow buffer ensures that all the characters in an escape
sequence terminator will fit in the user buffer, thus eliminating the need for additional
single-character read operations.

(continued on next page)

Terminal Driver
8.4 Terminal Function Codes

Table 8-8 (Cont.) Item Codes for ltemlist Read Operations for the Terminal Driver

Item Code

TRM$_FILLCHR

Meaning

A two-byte value that indicates the fill and clear character for TRM$K_EM_RDVERIFY.
The first byte of the immediate data longword specifies the clear character; the second
byte specifies the fill character.

Note: This item code for character validating read mode (TRM$K_EM_
RDVERIFY) editing only.

TRM$_1NIOFFSET

TRM$_1NISTRNG

TRM$_MODIFIERS

Indicates the character in the initial string where echoing starts. The immediate data
longword specifies the character.

Specifies a string to preload into the read buffer (P1). The buffer length word contains the
length of the string. The data longword contains the address of the string.
TRM$_1NISTRNG must be specified if the edit mode is TRM$K_EM_RDVERIFY, and
must be the same length as specified by TRM$_PICSTRNG.

Read modifiers. The immediate data longword contains a 32-bit value that specifies
modifiers to read operations. The read operations are defined in $TRMDEF. The buffer
length word must be zero. The following bits are defined:

TRM$M_ TM_ARROWS The terminal interprets the left and right arrow keys
(TRM$K_EM_RDVERIFY mode only). The arrow keys
are not put in the buffer and do not terminate the read.
TRM$_ESCTRMOVR must be greater than or equal to 5.

TRM$M_TM_AUTO_TAB

TRM$M_ TM_CVTLOW

TRM$M_TM_DSABLMBX

TRM$M_TM_ESCAPE

TRM$M_ TM_NOCLEAR

TRM$M_TM_NOECHO

TRM$M_ TM_NOEDIT

TRM$M_ TM_NOFILTR

This bit creates an auto-tab mode field (TRM$K_EM_
RDVERIFY mode only).

Lowercase alphabetic characters (hexadecimal 61 to 7 A)
are converted to uppercase when transferred to the user
buffer or echoed.

The mailbox is disabled for unsolicited data and for
receiving hangup messages.

A valid ANSI escape sequence is recognized as a valid
delimiter for the read operation.

Fill characters are not replaced with clear characters
after a nonfill character occurs (TRM$K_EM_RDVERIFY
mode only).

Characters are not displayed as they are entered at the
keyboard.

This bit inhibits advanced editing for this read operation.

The terminal does not interpret DEL, CTRUU, or
CTRUR, but passes them to you. This characteristic
explicitly disables line editing.

(continued on next page)

8-31

Terminal Driver
8.4 Terminal Function Codes

Table 8-8 (Cont.) Item Codes for ltemlist Read Operations for the Terminal Driver

Item Code

8-32

Meaning

TRM$M_ TM_NORECALL This bit inhibits command recall (CTRUB) by the terminal
driver.

TRM$M_TM_OTHERWAY This bit sets left-justify fields to insert mode and right
justify fields to overstrike mode (TRM$K_EM_RDVERIFY
mode only). TRM$M_ TM_ TOGGLE must equal 1.

TRM$M_ TM_PURGE The type-ahead buffer is purged before the read
operation begins.

TRM$M_ TM_R_JUST This bit creates a right-justified field (TRM$K_EM_
RDVERIFY mode only).

TRM$M_ TM_ TERM_ARROW The read operation is terminated when the left arrow key
is pressed at the left margin or when the right arrow key
is pressed at the right margin (TRM$K_EM_RDVERIFY
mode only). TRM$M_ TM_ARROWS must be enabled.

TRM$M_ TM_ TERM_DEL The read operation is terminated when the DELETE key
is pressed at the left margin (TRM$K_EM_RDVERIFY
mode only).

TRM$M_ TM_ TOGGLE Enables CTRUA to function as a toggle key between
insert mode and overstrike mode (TRM$K_EM_
RDVERIFY mode only). Left-justify insert mode shifts
characters to the right; right-justify insert mode shifts
characters to the left. Shifted characters are not checked
for validity in their new positions.

TRM$M_ TM_ TIMED TAM$_ TIMEOUT specifies the maximum time (seconds)
that can elapse between characters received from the
terminal; that is, the timeout value for the operation.
TRM$M_TM_TIMED is assumed set if TRM$_TIMEOUT
is included in the itemlist.

TRM$M_ TM_ TRMNOECHO The termination character (if any) is not displayed. There
is no formal terminator if the buffer is filled before the
terminator is typed.

Note: All other bits must be zero.

(continued on next page)

Terminal Driver
8.4 Terminal Function Codes

Table 8-8 {Cont.) Item Codes for ltemlist Read Operations for the Terminal Driver

Item Code Meaning

TRM$_PICSTRNG Character validation string. The buffer length word contains the length of the string, which
must be the same as the length specified by TRM$_1NISTRNG. The data address word
contains the address of the string. TRM$_PICSTRNG must be specified if the edit mode
is TRM$K_EM_RDVERIFY.

Note: This item code for character validating read mode (TRM$K_EM_
RDVERIFY) editing only.
The format of the character validation string is one byte per input character. Each byte is
a bit mask. The following values are provided:

Value

TRM$M_CV_UPPER

TRM$M_CV _LOWER

TRM$M_CV _NUMERIC

TRM$M_CV_NUMPUNC

TRM$M_CV _PRINTABLE

TRM$M_CV_ANY

Meaning

Uppercase alphabetic

Lowercase alphabetic

Numeric (0 - 9)

Numeric punctuation (+ - .)

Printable ASCII character

Any character

If no values are set, the corresponding character specified by TRM$_1NISTRNG is used.
Appendix B lists the multinational character set.

TRM$_PROMPT Specifies a prompt string. The buffer length word contains the length of the prompt.
The data address word contains the address of the prompt string. See Section 8.4.1 for
information on how carriage control specifiers in a prompt string are handled.

TAM$_ TERM The buffer length word determines the format of the nondefault terminator mask. If the
buffer length word is zero, then the data longword is used as a short form mask. If the
buffer length word is nonzero, then a mask n bytes long is available at the specified
address.

TRM$_ TIMEOUT Read timeout. See the description of 10$M_ TIMED in Table 8-7.

8.4.1.4 Read Verify Function
When using the read verify function, the terminal driver performs input
validation based on character attributes.1 Validation is performed one
character at a time as data is entered. Invalid characters are not echoed,
and cause the read operation to complete. It is then up to the application
program to handle the error appropriately.

The initial string describes the initial contents of the input field. This
string may consist of data and marker characters. The clear character
is displayed on the screen for each occurrence of the fill character in the
initial string buffer.

The picture string is a string of bytes where each byte corresponds to one
character of the field being entered. Each byte specifies a mask of legal
character types for that character position. If the byte is left as zero, then
that position is a marker character, and the character from the initial
string is echoed for that position.

1 Read verification bypasses the optionally specified termination mask (TRM$_TERM).

8-33

8.4.2

Terminal Driver
8.4 Terminal Function Codes

Write

8-34

For left-justified fields, the prompt data is output to the terminal, followed
by an optional number (TRM$_INIOFFSET) of initial string characters.
Leading marker characters are always output following the prompt,
leaving the cursor at the leftmost data position. As each character is
entered, it is validated and then echoed, advancing the cursor position.
Additional marker characters are skipped as they are encountered. If an
input character fails the validation, the read operation is completed with
the invalid character as the terminator.

For right-justified fields, the prompt is output and is followed by the initial
string. (In general, TRM$_INIOFFSET is set to the length of
TRM$_INISTRNG for right-justified fields.) The cursor position remains
one position to the right of the initial string. For proper operation, right
justified fields cannot have mixed picture definitions. After each character
is input, the entire prompt and input fields are output. Therefore, the
prompt should include a cursor positioning escape sequence.

The definition of full field is different for left- and right-justified read
operations. For left-justified fields, full field is detected when the character
corresponding to the last nonmarker position in the picture string has been
entered. For right-justified fields, full field is detected when a character
other than the fill character is shifted into the leftmost, nonmarker
position in the field.

If the modifier TRM$M_TM_AUTO_TAB is set in TRM$_MODIFIERS,
then detection of a full field terminates the read operation. In the event
of autotab termination, the terminator character in the IOSB is null. If
the autotab option is not selected, then termination occurs when one more
character is typed to a full field. Applications can detect this condition
when the terminating character index is one character beyond the end
of the field. The extra character is reported as the terminator. In a
left-justified field the IOSB index to the terminator is zero-based; in a
right-justified field this index is one-based.

If a read verify function is interrupted by an asynchronous write operation,
the read verify is completed with status SS$_0PINCOMPL.

No line editing functions other than the delete character function are
supported for read verify.

Write operations display the : contents of a user-specified buffer on the
associated terminal. The VMS operating system provides the following
write 1/0 functions, which are listed with their function codes:

• 10$_ WRITEVBLK-Write virtual block

• 10$_WRITELBLK-Write logical block

• 10$_ WRITEPBLK-Write physical block

The write function codes can take the following device- or function
dependent arguments:

• Pl-The starting virtual address of the buffer that is to be written to
the terminal

Terminal Driver
8.4 Terminal Function Codes

• P2-The number of bytes that are to be written to the terminal (A
system generation parameter, MAXBUF, limits the maximum size of
the buffer.)

• P4-carriage control specifier except for write physical block operations
(Write function carriage control is described in Section 8.4.2.2.)

P3, P5, and P6 are not meaningful for terminal write operations.

In write virtual block and write logical block operations, the buffer (Pl and
P2) is formatted for the selected terminal and includes the carriage control
information specified by P4.

Unless TT$M_MECHFORM is specified, multiple line feeds are generated
for form feeds. The number of line feeds generated depends on the current
page position and the length of the page. By producing a carriage return
after the last line feed, a form feed also moves the cursor to the left
margin. Multiple spaces are generated for tabs if the characteristics of the
selected terminal do not include TT$M_MECHTAB (this does not apply to
write physical block operations). Tab stops occur every eight characters or
positions.

CTDRIVER and Buffered Output

CTDRIVER, a component of the SET HOST facility, buffers output from
remote terminals in order to package multiple output requests into a
single network transfer. As a result, control is returned early to the user
with a status of SS$_NORMAL when the output buffer has been filled and
successfully queued.

Note that this output might not be displayed if the user enters an abort
character or a CTRUO.

8.4.2.1 Function Modifier Codes for Write QIO Functions
Five function modifiers can be specified with 10$_ WRITEVBLK,
10$_ WRITELBLK, and 10$_ WRITEPBLK. Table 8-9 lists these function
modifiers. All write function modifiers are supported for LAT devices.

Table 8-9 Write QIO Function Modifiers for the Terminal Driver

Code

10$M_BREAKTHRU

10$M_CANCTRLO

10$M_ENABLMBX

10$M_NOFORMAT

Consequence

Allows breakthrough read regardless of the current active
state.

Turns off CTRUO (if it is in effect) before the write operation.
Otherwise, the data cannot be displayed.

Enables use of the mailbox associated with the terminal for
notification that unsolicited data is available.

Allows you to specify write functions without interpretation or
format; in effect, the terminal line is in a temporary PASTHRU
mode.

(continued on next page)

8-35

Terminal Driver
8.4 Terminal Function Codes

8-36

Table 8-9 (Cont.) Write QIO Function Modifiers for the Terminal Driver

Code

10$M_REFRESH

Consequence

If a read operation is interrupted by a write operation (by
either a write breakthrough 1 or any other type of write),
the terminal displays the current read data when the read
function is restarted.

1 Any interruption caused by the execution of the $BRDCST or the $BRKTHRU system service
broadcasting messages to terminals is referred to as a "write breakthrough."

8.4.2.2 Write Function Carriage Control
The P4 argument is a longword that specifies carriage control. Carriage
control determines the next printing position on the terminal. P4 is
ignored in a write physical block operation. Figure 8-5 shows the P4
longword format.

Only bytes 0, 2, and 3 in the longword are used. Byte 1 is ignored. If
the low-order byte (byte 0) is not 0, the contents of the longword are
interpreted as a FORTRAN carriage control specifier. Table 8-10 lists the
possible byte 0 values (in hexadecimal) and their meanings.

Figure 8-5 P4 Carriage Control Specifier

3 2 1 0

P4: POSTFIX PREFIX (NotUsed)I FORTRAN

ZK-0690-GE

Terminal Driver
8.4 Terminal Function Codes

Table 8-10 Write Function Carriage Control (FORTRAN: byte 0 not
equal to 0)

Byte O Value
(hexadecimal)

20

30

31

28

24

All other
values

ASCII
Character

(space)

0

+

$

Meaning

Single-space carriage control. (Sequence:
carriage-return/line-feed combination, print
buffer contents, return 1)

Double-space carriage control. (Sequence:
carriage-return/line-feed combination, carriage
return/line-feed combination, print buffer
contents, return 1)

Page eject carriage control. (Sequence: form
feed, print buffer contents, return)

Overprint carriage control; allows double printing
for emphasis or special effects. (Sequence:
print buffer contents, return)

Prompt carriage control. (Sequence: carriage
return/line-feed combination, print buffer
contents)

Same as ASCII space character:
single-space carriage control

1 A carriage-return/line-feed combination is a carriage return followed by a line feed.

If the low-order byte (byte 0) is 0, bytes 2 and 3 of the P4 longword
are interpreted as the prefix and postfix carriage control specifiers. The
prefix (byte 2) specifies the carriage control before the buffer contents are
printed. The postfix (byte 3) specifies the carriage control after the buffer
contents are printed. The sequence is as follows:

1 Prefix carriage control

2 Print

3 Postfix carriage control

The prefix and postfix bytes, although interpreted separately, use the same
encoding scheme. Table 8-11 shows this encoding scheme in hexadecimal.

With several exceptions, Figure 8-6 shows the prefix and postfix
hexadecimal coding that produces the carriage control functions listed
in Table 8-10. Prefix and postfix coding provides an alternative way to
achieve these controls.

In the first example in Figure 8-6, the prefix/postfix hexadecimal coding
for a single-space carriage control (carriage-return/line-feed combination,
print buffer contents, return) is obtained by placing the value 1 in the

8-37

8.4.3

Terminal Driver
8.4 Terminal Function Codes

Set Mode

second (prefix) byte and the sum of the bit 7 value (80) and the return
value (D) in the third postfix byte.

80 (bit 7 = 1)
+ D (return)

8D (postfix = return)

Table 8-11 Write Function Carriage Control (P4 byte 0 = 0)

Prefix/Postfix Bytes (Hexadecimal)

Bit 7

0

0

Bit 7 Bit 6

0

Bits
0-6

0

1-7F

Bit 5

0

0

Bits 0-4

1-1F

1-1F

Meaning

No carriage control is specified (NULL).

Bits O through 6 are a count of carriage
return/line-feed combinations.

Meaning

Output the single ASCII control character
specified by the configuration of bits O
through 4 (seven-bit character set).

Output the single ASCII control character
specified by the configuration of bits O
through 4, which are translated as ASCII
characters 128 through 159 (eight-bit
character set; see Appendix B).

Set mode operations affect the operation and characteristics of the
associated terminal line. The VMS operating system provides two types of
set mode functions: set mode and set characteristics.

The set mode function affects the mode and temporary characteristics
of the associated terminal line. Set mode is a logical I/O function and
requires no privilege. 1 The following function code is provided:

• IO$_SETMODE

The set characteristics function affects the permanent characteristics of
the associated terminal line. Set characteristics is a physical I/O function
and requires the privilege necessary to perform physical I/O. The following
function code is provided:

• IO$_SETCHAR

1 If you do not have LOG_IO or PHY _IO privilege, the terminal driver does not accept a set mode request to
a terminal that does not have the extended terminal characteristic TT2$M_SETSPEED-even if no request
for a change of speed is made. Privilege is not required if TT2$M_SETSPEED is set but no attempt to
change the speed is made.

8-38

Terminal Driver
8.4 Terminal Function Codes

Figure 8-6 Write Function Carriage Control (Prefix and Postfix Coding)

P4: I

P4: I

P4: I

P4: I

P4: I

P4: I

(Space) Sequence:

80 0
I Prefix= NL

Print
Postfix= CR

"O" Sequence:

80 2 0
I Prefix= NL, NL

Print
Postfix= CR

"1"
Sequence:

80 BC 0
I Prefix= FF

Print
Postfix= CR

"+"
Sequence:

80 0 0
I Prefix = NULL

Print
Postfix= CR

"$"
Sequence:

Prefix= NL
0 1 0 Print I Postfix= NULL

Example: Skip 24 lines before printing. Sequence:

80 18 0
I Prefix= 24NL

Print
Postfix= CR

ZK-0665-GE

The set mode and set characteristics functions take the following device
or function-dependent arguments if no function modifiers are specified:

• Pl-Address of characteristics buffer

• P2-Length of characteristics buffer (default length is 8 bytes)

• P3-Speed specifier (bits 0 through 7 =transmit; 8 through 15 =
receive)

• P4-Fill specifier (bits 0 through 7 = CR fill count; bits 8 through 15 =
LF fill count)

• P5-Parity flags

8-39

Terminal Driver
8.4 Terminal Function Codes

8-40

The Pl argument points to a variable length block, as shown in
Figure 8-7. With the exception of terminal characteristics, the contents
of the block are the same for both the set mode and set characteristics
functions.

Figure 8-7 Set Mode and Set Characteristics Buffers

31 24 23 16 15 8 7 0

Page Width I Type I Class

Page Length I Basic Terminal Characteristics

P2 = 8 (Default)

31 24 23 16 15 87 0

Page Width I Type I Class

Page Length I Basic Terminal Characteristics

Extended Terminal Characteristics

P2= 12

ZK-0691-GE

In the buffer, the device class is DC$_TERM, which is defined by the
$DCDEF macro. The terminal type is defined by the $TTDEF macro,
for example, TT$_LA36. The page width is a value in the range of 1
through 511. The page length is a value in the range of 0 through 255.
Table 8-5 lists the values for terminal characteristics. Table 8-6 lists the
extended terminal characteristics. Characteristics values are defined by
the $TTDEF and $TT2DEF macros.

Note: Make sure that the selected device is a terminal before performing
any set mode function, particularly when using SYS$INPUT or
SYS$0UTPUT.

The P3 argument defines the device speed, such as TT$C_BAUD_300. The
low eight bits specify the transmit speed, and the 'high eight bits specify
the receive speed. If no receive speed is specified, the indicated transmit
speed is used for both transmitting and receiving. If neither the transmit
nor the receive speed is specified (P3 = 0), the baud rate is not changed.
The terminal driver ignores the receive speed bits for interfaces that do
not support split-speed operation. While speeds up to 19.2K baud can
be specified, not all controllers support all speed combinations. Refer to

Terminal Driver
8.4 Terminal Function Codes

the associated hardware documentation to determine which speeds are
supported by your controller.

P4 contains fill counts for the carriage-return and line-feed characters.
Bits 0 through 7 specify the number of fill characters used after a carriage
return. Bits 8 through 15 specify the number of fill characters used after a
line feed.

P4 is applicable only if TT$M_CRFILL or TT$M_LFFILL is specified as a
terminal characteristic for the current QIO request; see Table 8-5.

Several parity flags can be specified in the P5 argument:

• TT$M_ALTRPAR-Alter parity. If set, check the state of
TT$M_PARITY and TT$M_ODD and, if indicated, change the parity.
Otherwise, ignore these bits. TT$M_ALTRPAR is not supported for
LAT devices.

• TT$M_PARITY-Enable parity on terminal line if set, disable if clear.

• TT$M_ODD-Parity is odd if set.

• TT$M_ALTDISPAR-Alter dismiss parity errors. If set, check the
state of TT$M_DISPARERR.

• TT$M_DISPARERR-Dismiss parity errors. If this mode is set,
input errors with a parity error flagged are discarded and no error
is reported.

Note: If parity is enabled, the DZll generates a parity check bit to
detect parity mismatch. Unless TT$M_DISPARERR is enabled,
parity errors that occur during an 1/0 read operation are fatal
to the operation. Parity errors that occur on input characters
(that is, keys pressed on the keyboard) when no 1/0 operation
is in progress might result in a character loss.

• TT$M_BREAK-Generate a break if set. The break is in effect until
this bit is turned off. TT$M_BREAK is supported by the LTDRIVER
for terminal servers that support the break capability, such as the
DECserver 200 and DECserver 500. However, in the case of LAT
terminals, the terminal server controls the duration of the break.

• TT$M_ALTFRAME-If set, the four low-order bits of P5 become
the frame size. Note that the frame size is for data bits only and
is exclusive of parity. TT$M_ALTFRAME is not supported for LAT
devices.

To take the existing parity settings, modify them, and use them in the set
mode or set characteristic function, move the byte starting at the second
nibble of the buffer that is going to be used in the P5 argument. For
example, the following instructions change the parity from even to odd:

insv iosb+6, #4, #8, flags
bisl #tt$m_altrpar!tt$m_odd!tt$m_parity, flags

The following instruction then resets the parity to its original state:

bicl #tt$m_odd!tt$m_parity, flags

8-41

Terminal Driver
8.4 Terminal Function Codes

8-42

See Section 8.2.5 for information about the SET TERMINAL/FRAME
command.

Application programs that change terminal characteristics should perform
the following steps:

1 Use the 10$_SENSEMODE function to read the current
characteristics.

2 Modify the characteristics.

3 Use the set mode function to write back the results.

4 If the characteristic is intended to be reset when the image exits, the
application must perform this operation.

Failure to .follow this sequence will result in clearing any previously set
characteristic.

Two stop bits are used only for data rates less than or equal to 150 baud;
higher data rates default to one stop bit.

The set mode and set characteristics functions can take the enable
CTRUC AST, enable CTRL/Y AST, enable out-of-band AST, hangup, set
modem, broadcast, and loopback function modifiers that are described in
the next several sections.

Note: If an attempt is made to turn on TT2$V _FALLBACK for a
disconnected virtual terminal (_ VTAx:) or if the Terminal Fallback
Facility has not been activated, the status code SS$_BADPARAM
will be returned. For more information on TFF, refer to the VMS
Terminal Fallback Utility Manual.

8.4.3.1 Hangup Function Modifier
The hangup function disconnects a terminal that is on a dial-up line.
(Dial-up lines are described in Section 8.2.3.) The following combinations
of function code and modifier are provided:

• 10$_SETMODE!IO$M_HANGUP

• 10$_SETCHAR!IO$M_HANGUP

The hangup function modifier takes no arguments. SS$_NORMAL is
returned in the 1/0 status block.

Note: For remote terminals, the hangup function breaks the network
connection to the local system ending the remote terminal session.

8.4.3.2 Enable CTRL/C AST and Enable CTRL/V AST Function Modifiers
Both set mode functions can take the enable CTRUC AST and enable
CTRL/Y AST function modifiers. These function modifiers request the
terminal driver to queue an AST for the requesting process when you
press CTRIJC or CTRL/Y. The following combinations of function code and
modifier are provided:

• 10$_SETMODE!I0$M_CTRLCAST-Enable CTRL/C AST

• 10$_SETMODE!IO$M_CTRLYAST-Enable CTRL/Y AST

Terminal Driver
8.4 Terminal Function Codes

These function code modifier pairs take the following device- or function
dependent arguments:

• Pl-Address of the AST service or 0 if the corresponding AST is
disabled

• P2-AST parameter

• P3-Access mode to deliver AST (maximized with caller's access mode)

If the respective enabling is in effect, pressing CTRL/C or CTRL/Y gains
the attention of the enabling process (see Table 8-2).

Enable CTRL/C and CTRUY AST are one-time enabling function
modifiers. After the AST occurs, it must be explicitly reenabled by one
of the two function code combinations before an AST can occur again. This
function code is also used to disable the AST. The function is subject to
AST quotas.

You can have more than one CTRL/C or CTRL/Y enabled; pressing
CTRL/C, for example, results in the delivery or'all CTRL/C ASTs. ASTs
are queued and delivered to the user process on a first-in/first-out basis
for each access mode. However, ASTs are processed in the reverse order
of the CTRL/C AST or CTRL/Y AST requests that have been issued to the
terminal driver (on a last-in/first-out basis).

If no enable CTRL/C AST is present, the holder of an enable CTRL/Y
AST receives an AST when CTRL/C is pressed; carriage-return/line-feed
combination, AY, and RETURN are echoed.

Figure 8-9 shows the relationship of CTRL/C and CTRL/Y with the out-of
band function. If CTRL/C or CTRL/Y is an enabled out-of-band character,
any out-of-band ASTs specified for this character are delivered. If the
IO$M_INCLUDE function modifier is included in the out-of-band AST
request for this character, an enabled CTRL/C or CTRL/Y AST is also
delivered.

Enable CTRL/C AST requests are flushed by the Cancel I/O on Channel
($CANCEL) system service. Enable CTRL/Y AST requests are flushed by
the Deassign I/O Channel ($DASSGN) system service.

CTRL/Y is normally used to gain the attention of the command interpreter
and to input special commands such as DEBUG, STOP, and CONTINUE.
Programs that are run from a command interpreter should not enable
CTRL/Y. Because ASTs are delivered on a first-in/first-out basis, the
command interpreter's AST routine gets control first, and might not allow
the program's AST to be delivered at all. Programs that require the use of
CTRL/Y should use the LIB$DISABLE_CTRL RTL routine to disable DCL
recognition of CTRUY.

Section 8.2.1.2 describes other effects of CTRL/C and CTRUY.

8-43

Terminal Driver
8.4 Terminal Function Codes

8-44

8.4.3.3 Set Modem Function Modifier
The set modem function modifier is used in maintenance operations to
allow a process to activate and deactivate modem control signals. Both set
mode and set characteristics functions can take the set modem function
modifier. The following combinations of function code and modifier are
provided:

• IO$_SETMODE!IO$M_SET_MODEM!I0$M_MAINT

• 10$_SETCHAR!IO$M_SET_MODEM!IO$M_MAINT

These function code modifier pairs take the following device- or function
dependent argument:

• Pl-The address of a quadword block that specifies which modem
control signals to activate or deactivate

Figure 8-8 shows the format of this block.

Figure 8-8 Set Mode P1 Block

31 24 23 16 15

I Modem 00 I MOOem On I
8 7 0

ZK-0692-GE

The modem on and modem off fields, in combination or separately, can
specify one or more of the following values:

• TT$M_DS_RTS-Request to send (RTS)

• TT$M_DS_DTR-Data terminal ready (DTR)

• TT$M_DS_SECTX-Transmitted backward channel data (Sec Txd)

The $TTDEF macro defines which of these values the modem on and
modem off fields specify. These values can only be specified if the terminal
characteristic TT$M_MODEM is not set. Otherwise, an error (SS$_
ABORT) will result.

Note 1: The set modem function is not supported for remote terminals.
The status SS$_DEVREQERR is returned in the 1/0 status block.

Note 2: Because the DMF32 does not provide the secondary transmitted
data signal (Sec Txd), the driver sets the secondary request to send
the signal. Users should connect a jumper cable between pins 14
and 19 on the DMF32.

Terminal Driver
8.4 Terminal Function Codes

8.4.3.4 Loopback Function Modifier
The loopback function modifier is used in maintenance operations to place
the terminal line in a hardware loopback mode. Data transmitted to a line
in this mode is returned as receive data. If the controller does not support
loopback mode or the terminal line has the TT$M_MODEM characteristic
set, an error status (SS$_ABORT) is returned. Both set mode functions
can take the loopback function modifier.

Note: The loopback function is not supported for remote terminals. The
status SS$_DEVREQERR is returned in the 1/0 status block.

The following combinations of function code and modifier are provided:

• 10$_SETMODE!IO$M_LOOP!IO$M_MAINT

• 10$_SETCHAR!IO$M_LOOP!IO$M_MAINT

Data transmitted in the loopback mode should only be written in records
less than or equal to the size of the type-ahead buffer (see Section 8.2.1.5).
Programs that use the loopback function modifier should incorporate a
one-second delay to allow the controller to enable the loopback mode after
the request is posted. Write requests should also include the
10$M_NOFORMAT function modifier to prevent the terminal driver from
formatting input or output data.

Note: The serial line interfaces for the VAX 8200 processor implement
an internal loopback bus that is common to all four serial lines.
The hardware allows all serial lines operating in loopback mode to
transmit data to the bus at the same time. If more than one serial
line writes data to the bus, all of the transmitted data is combined
and made available to the receiving end of those same serial lines.
Thus, the received data may be different from the transmitted data
if more than one serial line is operating in loopback mode at the
same time. To prevent receiving such spurious data, you must not
operate multiple serial lines in loopback mode.

The VMS operating system provides another function modifier to reset
a terminal line previously placed in loopback mode. The following
combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_UNLOOP!IO$M_MAINT

• I0$_SETCHAR!I0$M_UNLOOP!IO$M_MAINT

Programs that use the unloop function modifier should incorporate a one
second delay to allow the controller to reset the loopback mode after the
request is posted.

Note: 10$M_LOOP and 10$M_UNLOOP are not supported for LAT
devices.

8-45

Terminal Driver
8.4 Terminal Function Codes

8-46

8.4.3.5 Enable Out-of-Band AST Function Modifier
The enable out-of-band AST function modifier requests that the terminal
driver queue an AST for the requesting process when you enter any one
of 32 control characters. The following combinations of function code and
modifier are provided:

• 10$_SETMODElI0$M_OUTBAND-Enable out-of-band AST

• 10$_SETCHAR!IO$M_OUTBAND-Enable out-of-band AST

These function code modifier pairs take the following device- or function
dependent arguments:

• Pl-Address of the AST service or 0 if the AST entered on this
channel is to be canceled. (The AST parameter will be the out-of-band
character.)

• P2-Address of a character mask with the same format as the short
form terminator mask (see Section 8.4.1.2).

• P3-Access mode to deliver AST (maximized with the caller's access
mode).

The IO$_SETMODE!I0$M_OUTBAND function can optionally take the
following function modifiers:

• IO$M_INCLUDE-Include the character typed in the data stream.

• 10$M_TT_ABORT-Allow current read and write operations to be
aborted. (The IOSB for aborted operations returns the status
SS$_CONTROLC.)

If an out-of-band AST is in effect, pressing any control character specified
in the P2 mask gains the attention of the enabling process. Figure 8-9
shows the relationship of the out-of-band function with some of the control
characters.

You can have only one out-of-band AST enabled per channel.

Out-of-band ASTs are repeating ASTs; they continue to be delivered until
specifically disabled. Out-of-band AST enables are flushed by the Cancel
1/0 on Channel ($CANCEL) system service.

8.4.3.6 Broadcast Function Modifier
The broadcast function modifier allows you to turn on or turn off selected
broadcast requester identifiers (IDs). The following combination of
function code and modifier is provided:

• 10$_SETMODE!IO$M_BRDCST

This function code modifier pair takes the following device- or function
dependent arguments:

• Pl-A buffer that contains the bits that specify the requester IDs to be
broadcast

Terminal Driver
8.4 Terminal Function Codes

Figure 8-9 Relationship of Out-of-Band Function with Control Characters

No

Yes

Deliver
Control/C

AST.

One-Shot

Done

Yes

No

Character Typed
on Keyboard

Deliver
Control/Y

/>ST.

One-Shot

Done

Done

Done

Deliver
out-of-band

/>ST.

Done

CTRIJS

No

CTRLJQ

Put character
in type-ahead

buffer.

Done

Resume
output
stream.

Done

Other

ZK-1202-GE

8-47

8.4.4

Terminal Driver
8.4 Terminal Function Codes

• P2-The length of the Pl buffer (default is eight bytes)

The first longword of Pl is reserved for use by Digital facilities, as shown
in Table 8-12. The symbols are defined in the system macro library
($BRKDEF). The second longword is for customer use to specify selected
bits. If any bit is set in the Pl buffer, that particular requester ID is
turned off for broadcast.

Table 8-12 Broadcast Requester IDs

Bit Meaning

BRK$C_DCL Disables broadcasts by CTRUT

BRK$C_GENERAL Disables broadcasts by the DCL command REPLY and the
SYS$BRDCST system service

BRK$C_MAIL Disables broadcasts by the Mail Utility

BRK$C_PHONE Disables broadcasts by the Phone Utility

BRC$C_QUEUE Disables broadcasts about batch and print queues

BRK$C_SHUTDOWN Disables broadcasts about system shutdown

BRK$C_URGENT Disables broadcasts labeled URGENT by the REPLY
command

BRK$C_USERn Disables broadcasts by images associated with the specified
value; n can be any decimal integer between 1 and 16

LAT Port Driver QIO Interface

8-48

The LAT (Local Area Transport) port driver accommodates 1/0 requests
from application programs for connections to remote devices on one or
more terminal servers, and 1/0 requests that support other miscellaneous
functions. A remote device, such as a printer, can be shared in a LAT
configuration. Before an application program can access a remote
device, the VMS system manager must create logical devices on the VMS
operating system and map them to physical devices connected to terminal
servers. Creating and mapping these logical devices can be done either
with the LAT Control Program (LATCP) Utility or with a $QIO request
from a program that has PHYS_IO privilege. Once mapped, application
programs can establish and terminate connections to these remote devices.

This section describes the QIO interface to the LAT port driver
(LTDRIVER) and the functions and function modifiers you use to establish
and terminate connections to remote devices. The QIO interface allows
application programs to access and modify information contained in the
LTDRIVER data structures and to initiate events and obtain status
information. You must use these QIO functions to establish a connection
to a remote device from an application program. Digital does not support
any other methods of connection.

The LTDRIVER responds to TEST SERVICE commands issued at
terminal servers that support the TEST SERVICE command, such as
the DECserver 200 and DECserver 500.

Terminal Driver
8.4 Terminal Function Codes

LAT devices can use all read and write function modifiers listed for the
terminal driver function codes except those modifiers that apply to modems
(see Sections 8.4.1 and 8.4.2).

The VMS operating system does not support the following set mode or set
characteristics function code modifiers for LAT devices:

• IO$M_LOOP

• IO$M_UNLOOP

• TT$M_ALTRPAR

• TT$M_ALTFRAME

• TT$M_MODEM

• TT$M_READSYNC

• TT2$M_SETSPEED

With LAT devices, the terminal server, rather than the VMS host, handles
flow control to the physical device. A separate flow control mechanism
exists between the server and the host.

8.4.4.1 LAT Port Driver Functions
The VMS operating system provides the following combinations of function
code and modifier:

• IO$_TTY_PORT!IO$M_LT_CONNECT-Requests the LAT port driver
make a connection to a remote device on a server.

• IO$_TTY_PORT!IO$M_LT_DISCON-Requests the LAT port driver
terminate the LAT connection to the remote device.

• IO$_TTY_PORT!IO$M_LT_MAP _PORT-Associates a specific port
on a terminal server with a LAT (LTAxxx:) device. Equivalent
to the LATCP command SET PORT LTAxxxx:/NODE=server-name
/PORT=port-name.

• IO$_TTY_PORT!IO$M_LT_RATING-Sets a static rating for a VMS
service. This QIO is equivalent to the LATCP command
SET SERVICE/STATIC_RATING=n.

The LAT port driver can only connect to a remote device if it is currently
not in use. Table 8-13 lists the conditions that can occur when an
application program issues an IO$M_LT_CONNECT request for a
connection to a remote device. After a request for a connection is
queued on the terminal server, the QIO request is not completed until
the connection is established, rejected, or timed out.

8-49

Terminal Driver
8.4 Terminal Function Codes

8-50

Table 8-13 10$M_LT_CONNECT Request Status

Event

Connection established

Connection timeout

Connection rejected

Connection request
invalid

Connection already
established on port

IOSB Status

SS$_NORMAL

SS$_ TIMEOUT

SS$_ABORT.
IOSB+2 contains
LAT rejection code.

No status.
SS$_1LLIOFUNC
returned in Register
0.

No status.
SS$_DEVACTIVE
returned in Register
0.

Explanation

The connection is successful, and
the device is ready to use.

The connection timed out. The
server is not available, or an
incorrect server name was
specified. The timeout period
is 5 seconds.

The connection cannot be made.
See Table 8-14 for possible
reasons. The LAT port driver
updates the 1/0 status block.

The QIO request is not to an
applications port. The LAT
port driver rejects the request
immediately.

The QIO request is for an
applications port already in use.
The LAT port driver rejects the
request immediately.

After you enter a disconnect request (10$_TTY_PORT!IO$M_LT_
DISCON), the applications port's UCB goes off line momentarily. A
connect request (I0$_TTY_PORT!IO$M_LT_CONNECT) may return a
SS$_DEVACTIVE status if the connect request was immediately preceded
by a disconnect request. In this case, reenter the connect request.

The IO$M_LT_MAP_PORT modifier accepts two arguments: Pl and P2.
Pl is the address of an item list, which must contain the node name, and
either the port name or the service name of the remote terminal server
port. (These names must be defined locally on the terminal server.) The
item list can also contain the VMS link name and the terminal server
Ethernet address. The item list, which must be in type 3 format (see
Figure 8-10), is terminated by a longword of 0. The item list contains the
following parameters:

• IO$V _LT_MAP _NODNAM-The node name. The node name is the
name of the terminal server where the application device is located.

• I0$V _LT_MAP _PORNAM-The port name.

• IO$V_LT_MAP _SRVNAM-The service name.

• IO$V_LT_MAP_LNKNAM-The Ethernet link name, which is always
required.

• IO$V _LT_MAP _NETADR-The address of the 6-byte word containing
the Ethernet address of the terminal server. IO$V _LT_MAP _NETADR
can be substituted for IO$V _LT_MAP _NODNAM.

Terminal Driver
8.4 Terminal Function Codes

Figure 8-10 10$M_LT_MAP _PORT Item List

31

-L,_.

1

16 15 0

Item Code l String Length

String Address

0
-<

-i., >

l 0

Item 1

Item 2 ... n

ltemlist Terminating
Longword

ZK-6315-GE

The P2 argument for 10$M_LT_MAP _PORT is a longword that passes
queued status. Bit 0 cleared means nonqueued; bit 0 set means queued.

The IO$M_LT_RATING modifier accepts two arguments: Pl and P2. Pl is
the address of the string descriptor that contains the service name, which
must already exist. P2 is the rating to assign the service. Ratings range
from 0 to 255 (decimal).

Table 8-14 lists the possible status of the I/O Status Block after a
10$M_LT_MAP _PORT or 10$M_LT_RATING request.

Table 8-14 10$M_LT_MAP _PORT and 10$M_LT _RATING Request Status

Event

Operation successful

Illegal or incomplete parameter list;
non-existent service

Access violation in one of the
arguments

No privilege

8.4.4.2 Application Services Creation

Contents of 1/0 Status Block and RO

SS$_NORMAL

SS$_BADPARAM

SS$_ACCVIO

SS$_NOPRIV

Rather than the normal timesharing service offered by the VMS operating
system, VMS application programs can make use of LAT application
services that allow terminal server users to connect to a specialized
application. To do this, the system manager must create LAT ports that
are dedicated to a particular application service. When a terminal server
user uses the terminal server CONNECT command to connect to an
application service, the connection is directly to the VMS application
program that controls a LAT port (LTA device) associated with that
service. In this case the VMS prompt Username: is not received. Digital

8-51

Terminal Driver
8.4 Terminal Function Codes

8-52

recommends that you create application services for VMS service nodes in
the following order:

1 Define the dedicated ports in LTLOAD.COM and execute the command
procedure in SYSTARTUP _ V5.COM. (Refer to the VMS LAT Control
Program (LATCP) Manual and Guide to Setting Up a VMS System for
additional information.)

2 Run the application program. Within the application program
allocate dedicated ports with the same name as those defined in
LTLOAD.COM. Use the Assign I/O Channel ($ASSIGN) system service
to assign service channels to the ports.

3 Post a read request to the dedicated ports. When the terminal user
connects to the service and presses the Return key, the application
program can perform I/O to the dedicated port.

4 To break the connection, use the Deassign I/O Channel ($DASSGN)
system service to deassign the channel and the Deallocate Device
($DALLOC) system service to deallocate the device. The application
program must reallocate the port and reassign the channel in
preparation for the next connection.

An example of the application service concept is a VMS program that
provides the time of day. For this example, the system manager includes
the following lines in LTLOAD.COM (or enters them manually in the
LATCP program):

CREATE SERVICE TIME/ID="At the tone, the time will be"
CREATE PORT LTA99:/DEDICATED
SET PORT LTA99:/DEDICATED/SERVICE=TIME

An application program then assigns a channel to device LTA99. When
a terminal server user types CONNECT TIME, the user is connected to
this application program, and the program prints out the time of day. The
program then deassigns the channel, which disconnects the server user.

A system manager may associate more than one LAT port with the same
service. In that case, the application program that offers the service
should assign channels to all of the LTA devices created for that service.

8.4.4.3 Hangup Notification
To allow notification by the terminal driver of abnormal termination
during write operations, you should enable a CTRIJY AST on the channel
(see Section 8.4.3.2). This ensures that the terminal driver notifies
application programs, which are writing data, of an abnormal connection
termination. Note that the VMS operating system does not return an AST
parameter to the CTRUY AST routine.

When an application program with a pending read request has an
abnormal LAT connection termination, the VMS terminal driver returns a
SS$_HANGUP status in the first word of the IOSB.

8.4.5

Terminal Driver
8.4 Terminal Function Codes

Sense Mode and Sense Characteristics
The sense mode and sense characteristics functions sense the
characteristics of the terminal and return them to the caller in the 1/0
status block. The following function codes are provided:

• IO$_SENSEMODE

• IO$_SENSECHAR

I0$_SENSEMODE returns the temporary characteristics of the terminal
(the characteristics associated with the current process), and 10$_
SENSECHAR returns the permanent characteristics of the terminal.
IO$_SENSEMODE is a logical 1/0 function and requires no privilege.
IO$_SENSECHAR is a physical 1/0 function and requires the privilege
necessary to perform physical 1/0.

These function codes take the following device- or function-dependent
arguments:

• Pl-Address of a characteristics buffer

• P2-Length of characteristics buffer (default length is 8 bytes)

For remote terminals, specify a P2 value of 8 or 12 only.

The Pl argument points to a variable-length block, as shown in
Figure 8-11.

Figure 8-11 Sense Mode Characteristics Buffer

31 24 23 16 15 87 0

Buffer Size * l Type l Class

Page Length I Basic Terminal Characteristics

Extended Terminal Characteristics

*Page Width P2= 12

ZK-0693-GE

In the buffer, the device class is DC$_ TERM, which is defined by the
$DCDEF macro. The terminal type is defined by the $TTDEF macro, such
as TT$_LA36. The maximum entry for buffer size (page width) is 255.
Table 8-5 lists the values for terminal characteristics. Table 8-6 lists the
extended terminal characteristics. Characteristics values are defined by
the $TTDEF macro.

The sense mode and sense characteristics functions can take the type
ahead count, read modem, and broadcast function modifiers described in
the next few sections.

8-53

Terminal Driver
8.4 Terminal Function Codes

8.4.5.1 Type-ahead Count Function Modifier
The type-ahead count function modifier returns the count of characters
presently in the type-ahead buffer and a copy of the first character in the
buffer. In this case, the Pl argument points to a characteristics buffer
returned by IO$M_TYPEAHDCNT. Figure 8-12 shows the format of this
buffer.

Figure 8-12 Sense Mode Characteristics Buffer (type-ahead)

31 24 23 16 15 0

8-54

(ReseNed)] First Character l Number of Characters in Type-Ahead Buffer

(ReseNed)

ZK-0694-GE

8.4.5.2 Read Modem Function Modifier
The read modem function modifier allows access to controller-dependent
information. The following combinations of function code and modifier are
provided:

• I0$_SENSEMODE!I0$M_RD_MODEM

• IO$_SENSECHAR!I0$M_RD_MODEM

These function code modifier pairs take the following device- or function
dependent argument:

• Pl-The address of a quadword block

Figure 8-13 shows the format of this block.

Figure 8-13 Sense Mode P1 Block

31 24 23 16 15

P1: Receive Modem

8 7 0

Controller Type

ZK-0695-GE

Terminal Driver
8.4 Terminal Function Codes

The receive modem field returns the value of the current input modem
signals. Any or all of the following signals can be returned:

• TT$M_DS_DSR-Data set ready (DSR)

• TT$M_DS_RING-Calling indicator (RING)

• TT$M_DS_CARRIER-Data channel received line signal detector
(CARRIER)

• TT$M_DS_CTS-Ready for sending (CTS)

• TT$M_DS_SECREC-Received backward channel data (Sec RxD)

The $TTDEF macro defines the symbols for the receive modem field.

The controller type field returns the type of terminal controller in use
by the currently active terminal line. The $DCDEF macro defines the
symbols for the following types of controllers:

• DT$_DZ11-DZ11 and DZVll

• DT$_DZ32-DZ32

• DT$_DMF32-DMF32

• DT$_DMB32-DMB32

• DT$_DMZ32-DMZ32

• DT$_DHV-DHV11

• DT$_DHU-DHU11

• DT$_LAT-LAT server

Note 1: The 10$M_RD_MODEM function modifier is not supported for LAT
devices.

Note 2: The 10$M_RD_MODEM function modifier is not supported for
remote terminals. The status SS$_DEVREQERR is returned in the
1/0 status block.

8.4.5.3 Broadcast Function Modifier
The broadcast function modifier returns those bits that have been set
by the set mode function modifier 10$M_BRDCST (see Table 8-12 in
Section 8.4.3.6). The following combination of function code and modifier
is provided:

• IO$_SENSEMODE!IO$M_BRDCST

This function code modifier pair takes the following device- or function
dependent arguments:

• Pl-A buffer that contains the bits that specify the requester IDs to
be broadcast. (If the bit is set in the first longword, that particular
command is turned off for broadcast.)

• P2-The length of the Pl buffer.

8-55

Terminal Driver
8.5 1/0 Status Block

8.5 1/0 Status Block

8-56

The I/O status block (IOSB) formats for the read, write, set mode, set
characteristics, sense mode, sense characteristics, and LAT port driver I/O
functions are shown in Figures 8-14, 8-16, 8-17, and 8-18. Figure 8-15
shows the IOSB format for the itemlist read function. Appendix A lists
the status returns for these functions. (The VMS System Messages
and Recovery Procedures Reference Manual provides explanations and
suggested user actions for these returns.)

Figure 8-14 IOSB Contents-Read Function

+2 IOSB

Offset to Terminator Status

Terminator Size Terminator

+6 +4

ZK-0696-GE

Figure 8-15 IOSB Contents-ltemlist Read Function

Offset to Terminator Status

Cursor Position Terminator (Reserved) Terminator
from EOL Length Character

IOSB Contents: ltemlist Read Function

ZK-1306-GE

Terminal Driver
8.5 1/0 Status Block

Figure 8-16 IOSB Contents-Write Function

Byte Count Status

0 0

IOSB Contents: Write Function

ZK-1307-GE

Figure 8-17 IOSB Contents-Set Mode, Set Characteristics, Sense
Mode, and Sense Characteristics Functions

Receive Speed * Transmit Speed Status

0 Parity Flags LF Fill Count l CR Fill Count

* Only specified if different than transmit speed.
ZK-0698-GE

In Figure 8-14, the offset to terminator at IOSB+2 is the count of
characters before the terminator character (see Section 8.4.1.2). The
terminator character is in the buffer at the offset specified in IOSB+2.
When the buffer is full, the offset at IOSB+2 is equal to the requested
buffer size. At the same time, IOSB+4 is equal to 0. In the case
of multiple character escape sequences that act as terminators, the
terminator at IOSB+4 is the first character (ESC) of the escape sequence.
IOSB+6 contains the size of the terminator string, usually 1. However,
in an escape sequence, IOSB+6 contains the size of the validated escape
sequence (see Section 8.2.1.4). The sum of IOSB+2 and IOSB+6 is the
number of characters in the buffer.

In Figure 8-15 the terminator position word contains a number, the
character of which is determined by the mode of operation. For itemlist
read operations that do not specify TRM$K_EM_RDVERIFY, this word
contains the number of characters from the end of the buffer to the cursor
location at the time the terminator character was received. If TRM$K_
EM_RDVERIFY is specified, the terminator position word contains the
offset into the buffer from the nonverified character.

The byte at IOSB+5 passes the status information listed in Table 8-15 on
TRM$K_EM_RDVERIFY operations in which TRM$M_TM_ARROWS or
TRM$M_TM_TOGGLE is set in TRM$_MODIFIERS.

8-57

Terminal Driver
8.5 1/0 Status Block

8-58

Table 8-15 Byte IOSB+5 Status Information

Bit

7 (sign bit)

6-2

1 TRM$V_ST_OTHERWAY

0 TRM$V _ST _FIELD_FULL

Interpretation

Oto indicate rest of bits valid. This applies to
insert/overstrike and arrow key read verify functionality
only.

Always 0 if bit 7 is equal to 0. Not used; reserved for
future use.

Set to indicate that read is terminated in left-justify
insert mode or right-justify overstrike mode.

Read terminated on an auto-tab field full condition.
IOSB+7 contains an index to the cursor.

In Figure 8-16, the remote terminal driver does not return the number of
lines output or the cursor position.

When an application program makes an I/O request for a connection to
a remote device on a terminal server, the LAT port driver places status
information about the request into the first word of the I/O status block,
as shown in Figure 8-18. Tables 8-13 and 8-14 list the possible status
returns.

If the server rejects the request, the LAT port driver returns a numeric
LAT rejection code in the second word of the I/O status block. Table 8-16
lists the LAT rejection codes.

Figure 8-18 IOSB Contents-LAT Port Driver Function

+2 0

Rejection Code Status

(Reserved) (Reserved)

ZK-6135-GE

Table 8-16 LAT Rejection Codes

Value Reason

0 Unknown.

2 System shutdown in progress.

5 Insufficient resources at server.

6 Port or service in use.

(continued on next page)

Table 8-16 (Cont.) LAT Rejection Codes

Value Reason

7 No such service.

8 Service is disabled.

9 Service is not offered on the requested port.

10 Port name is unknown.

13 Immediate access rejected.

14 Access denied.

15 Corrupted request.

16 Requested function is not supported.

17 Session cannot be started.

18 Queue entry deleted by server.

19 Illegal request parameters.

Terminal Driver
8.5 1/0 Status Block

8.6 Terminal Driver Programming Examples

8.6.1

This section contains the following programming examples:

• Example 8-1 shows several I/O operations using the full-duplex
capabilities of the terminal.

• Example 8-2 shows a typical read verify operation.

• Example 8-3 shows how to connect to an applications (LT) device.

Terminal 1/0 Program Example
Example 8-1 illustrates some important concepts about terminal driver
programming: assigning an I/O channel, performing full-duplex I/O
operations, enabling CTRUC AST requests, and itemlist read operations.
The program is designed to run with a terminal set to full-duplex mode.
The initialization code queues a read request to the terminal and enables
CTRUC AST requests. The main loop then prints out a random message
every three seconds. When you enter a message on the terminal, the read
AST routine prints an acknowledgment message and queues another read
request. If you press CTRUC, the associated AST routine cancels the I/O
operation on the assigned channel and exits to the command interpreter.

8-59

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-1 Terminal Program Example

.TITLE FULL DUPLEX TERMINAL PROGRAMMING EXAMPLE

.IDENT /05/-

**

TERMINAL PROGRAM

**

.SBTTL DECLARATIONS

.DISABLE GLOBAL

Declare the external symbols and MACRO libraries.

.EXTERNAL

.LIBRARY

.LIBRARY

Define symbols

LIB$GET_EF
'SYS$LIBRARY:LIB.MLB'
'SYS$LIBRARY:STARLET.MLB'

Define I/O function codes
Define QIO definition codes

$IODEF
$QIODEF
$SSDEF
$TRMDEF
$TTDEF

Define the system service status codes
Define itemlist read codes
Terminal characteristic definitions

Define macros

.SHOW

.MACRO ITEM LEN=O,CODE,VALUE

.WORD

.WORD

.LONG

.LONG

.ENDM

.NOSHOW

LEN
TRM$_'CODE'
VALUE
0
ITEM

Declare exit handler control block

EXIT_HANDLER_BLOCK:
.LONG 0
.LONG
.LONG
.LONG

STATUS: .BLKL

EXIT HANDLER
1
STATUS
1

System uses this for pointer
Address of exit handler
Argument count for handler
Destination of status code
Status code from $EXIT

Allocate terminal descriptor and channel number storage

TT DESC:
.ASCID /SYS$INPUT/

TT CHAN:
.BLKW 1

8-60

Logical name of terminal

TT channel number storage

(continued on next page)

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-1 (Cont.) Terminal Program Example

Define acknowledgment message. This is done right above input buffer
so that we can concatenate the two together when the acknowledgment
message is issued.

ACK MSG:
.ASCII <CR><LF>/Following input acknowledged: I

ACK_MSGLEN=.-ACK_MSG ; Calculate length of message

; Allocate input buff er

IN BUFLEN = 20
IN BUF:

.BLKB
IN IOSB:

.BLKQ

IN BUFLEN

1

Set length of buff er

Allocate character buffer

Input I/O status block

Define out-of-band ast character mask

CNTRLA MASK:
.LONG
.LONG

0
"BOOlO ; Control A mask

Define old terminal characteristics buffer

OLDCHAR BUF LEN = 12
OLDCHAR BUF:

.BLKB OLDCHAR BUF LEN

Define new terminal characteristics buff er

NEWCHAR BUF LEN = 12
NEWCHAR BUF:

.BLKB NEWCHAR BUF LEN

Define carriage control symbols

CR="XOD
LF="XOA

Define output messages

Carriage return
Line feed

Output messages are accessed by indexing into a table of
longwords with each message described by a message address and
message length

(continued on next page)

8-61

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-1 (Cont.) Terminal Program Example

ARRAY:

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

10$
15$
20$
25$
30$
35$
40$
45$

Table of message addresses and
lengths
First message address
First message length

Define messages

10$: .ASCII <CR><LF>/RED ALERT!!! RED ALERT! ! ! /
15$=.-10$

20$: .ASCII <CR><LF>/ALL SYSTEMS GO/
25$=.-20$

30$: .ASCII <CR><LF>/WARNING INTRUDER ALARM/
35$=.-30$

40$: .ASCII <CR><LF>/***** SYSTEM OVERLOAD *****/
45$=.-40$

; Static QIO packet for message output using QIO$_G form

WRITE QIO:
- $QIO EFN=SYNC EFN, - ; QIO packet

FUNC=IO$=WRITEVBLK!IO$M_BREAKTHRU!IO$M_REFRESH, -
IOSB=SYNC IOSB

Declare the required I/O status blocks.

SYNC IOSB:: .BLKQ 1 I/O status block for synchronous terminal processing.

Declare the required event flags.

ASYNC EFN::
SYNC EFN
TIMER EFN::

Timer storage

WAITIME:
.LONG

TIME:
.BLKQ

8-62

.BLKL

.BLKL

1 Event flag for asynchronous terminal processing.
WRITE_QIO + 4 ; Event flag for sync terminal processing.
1 Event flag for timer processing.

-10*1000*1000*3,-1 ; 3 second delta time

1 Current storage time used for
random number

(continued on next page)

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-1 (Cont.) Terminal Program Example

;++

.PAGE

.SBTTL START - MAIN ROUTINE

.ENABLE LOCAL BLOCK

Functional description:

**

Start program

**

The following code performs initialization functions.
It is assumed that the terminal is already in
FULL-DUPLEX mode.

NOTE: When doing QIO_S calls, parameters Pl and P3-P6 should be
passed by value, while P2 should be passed by reference.

Input parameters:
None

Output parameters:

;--

10$:

None

.ENTRY START

Get the required event flags.

PUS HAL ASYNC EFN
CALLS # 1, G"' LIB$GET_EF Get EFN for async terminal operations.
BLBC RO, 10$ Error - branch.
PUSHAL SYNC EFN
CALLS # 1, G" LIB$GET_EF Get EFN for sync terminal operations.
BLBC RO, 10$ Error - branch.
PUS HAL TIMER EFN
CALLS # 1, G" LIB$GET_EF Get EFN for timer operations.
BLBC RO, 10$ Error - branch.

Initialize the terminal characteristics.

$ASSIGN_S DEVNAM=TT_DESC,-;
CHAN=TT CHAN

BLBC
BSBW

BSBW
BSBW
BSBW
MOVZWL
BRB

RO, 10$
CHANGE CHARACTERISTICS

ENABLE CTRLCAST
ENABLE OUTBANDAST
ENABLE READ
TT_CHAN, WRITE_QI0+8
LOOP

BRW ERROR

Assign terminal channel using
logical name and channel number
Error - branch.
Change the characteristics of
terminal
Allow CTRL/C traps
Enable CTRL/A out-of-band AST
Queue read
Insert channel into
static QIO packet

(continued on next page)

8-63

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-1 (Cont.) Terminal Program Example

This loop outputs a message based on a random number and then
delays for 3 seconds

LOOP:
$GETTIM_S TIMADR=TIME
BLBC RO, 10$

Get random time
Error - branch.

EXTZV #6, #2, TIME, RO
MOVQ ARRAY[RO], -

WRITE_QIO+QIO$_Pl

Load random bits into switch
Load message address
and size into QIO
packet

Issue QIO write using packet defined in data area

$QIOW_G WRITE_QIO
BLBC RO, 10$ QIO error - branch.
MOVZWL SYNC_IOSB, RO
BLBC RO, 10$

Get the terminal driver status.
Terminal driver error - branch.

Delay for 3 seconds before issuing next message

$SETIMR_S

BLBC RO, 10$

EFN=TIMER_EFN,
DAYTIM=WAITIME

$WAITFR_S EFN=TIMER EFN
BLBS RO, LOOP
BRB 10$

. DISABLE LOCAL BLOCK

.PAGE

Timer service
will set event flag
in 3 seconds
Error - branch.
Wait for event flag
No error if set
Error - branch .

.SBTTL CHANGE CHARACTERISTICS - CHANGE CHARACTERISTICS OF TERMINAL
;++

Functional description:

Routine to change the characteristics of the terminal.

Input parameters:
None

Output parameters:

8-64

RO - status from $QIO call.
Rl - RS destroyed

(continued on next page)

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-1 (Cont.) Terminal Program Example

CHANGE CHARACTERISTICS:

10$:

$QIOW_S EFN=SYNC_EFN, -
CHAN=TT_CHAN, -
FUNC=#IO$_SENSEMODE, -
IOSB=SYNC_IOSB, -
Pl=OLDCHAR BUF, -
P2=#0LDCHAR_BUF_LEN

BLBC RO, 10$
MOVZWL SYNC IOSB, RO
BLBC RO, l0$

$DCLEXH_S EXIT HANDLER BLOCK

BLBC RO, 10$
MOVC3 #OLDCHAR_BUF LEN, -

OLDCHAR_BUF, -
NEWCHAR BUF

BISL2 #TT$M_NOBRDCST, -
NEWCHAR BUF+4

$QIOW_S EFN=SYNC_EFN, -
CHAN=TT CHAN, -
FUNC=#IO$_SETMODE, -
IOSB=SYNC_IOSB, -
Pl=NEWCHAR BUF, -
P2=#NEWCHAR_BUF_LEN

BLBC RO, 10$
MOVZWL SYNC IOSB, RO
BLBC RO, l0$
RSB

BRW ERROR

.PAGE

Get current terminal characteristics

Error if clear
Get the terminal driver status.
Error - branch

Declare exit handler to reset
characteristics
Error - branch.
Move old characteristics into
new characteristics buff er

Set nobroadcast bit

Set current terminal characteristics

QIO error - branch.
Get the terminal driver status.
Terminal driver error - branch.

.SBTTL ENABLE CTRLCAST - ENABLE CTRL/C AST
;++

Functional description:

Routine to allow CTRL/C recognition.

Input parameters:
None

Output parameters:
None

(continued on next page)

8-65

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-1 (Cont.) Terminal Program Example

ENABLE CTRLCAST:
$QIOW_S EFN=SYNC_EFN, -

CHAN=TT_CHAN, -
FUNC=#IO$_SETMODE!IO$M_CTRLCAST, -
IOSB=SYNC_IOSB, -
Pl=CTRLCAST, -
P3=#3

BLBC RO, 10$

AST routine address
User mode
Error - branch.

MOVZWL SYNC_IOSB, RO
BLBC RO, 10$

Get the terminal driver status.
Terminal driver error - branch.

RSB

10$:
BRW ERROR

.PAGE

.SBTTL ENABLE OUTBANDAST - ENABLE CTRL/A AST
;++

Functional description:

Routine to allow CNTRL/A recognition.

Input parameters:
None

Output parameters:
None

ENABLE OUTBANDAST:
$QIOW_S EFN=SYNC_EFN, -

CHAN=TT_CHAN, -
FUNC=#I0$_SETMODE!IO$M_OUTBAND, -
IOSB=SYNC_IOSB, -
Pl=CTRLAAST, -
P2=#CNTRLA MASK, -
P3=#3 -

BLBC RO, 10$

AST routine address
Character mask
User mode
QIO error - branch.

MOVZWL SYNC_IOSB, RO
BLBC RO, 10$

Get the terminal driver status.
Terminal driver error - branch.

RSB

10$:
BRW ERROR

(continued on next page)

8-66

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-1 (Cont.) Terminal Program Example

.PAGE

.SBTTL ENABLE READ - QUEUE A READ TO THE TERMINAL.
;++

Functional description:

Routine to queue a read operation to the terminal.

Input parameters:
None

Output parameters:
None

Define item list for itemlist read

ITEM LST:
ITEM

ITEM

ITEM LEN
MASK ADDR:

.LONG

.WORD
ENABLE READ:

- $QIO_S

BLBC

0, MODIFIERS, -
TRM$M_TM_CVTLOW!TRM$M_TM_NOEDIT
6, TERM,MASK_ADDR

Convert lowercase to
upper and inhibit line
editing

- ITEM LST

Set up terminator mask

Terminator mask is <CR>
and "$"

EFN=ASYNC_EFN, - Must not be QIOW form or read will block
CHAN=TT CHAN, - process
FUNC=#IO$_READVBLK!IO$M_EXTEND, -
IOSB=IN_IOSB, -
ASTADR=READAST, -
Pl=IN_BUF, -
P2=#IN_BUFLEN, -
P5=#ITEM_LST, -
P6=#ITEM LEN
RO, 10$ -

AST routine to execute
on

., Itemlist read address
Itemlist read size
QIO error - branch.

The queued read operation will not affect write operations due
to the fact that breakthru has been set for the write operations.

RSB

10$:
BRW ERROR

(continued on next page)

8-67

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-1 (Cont.) Terminal Program Example

.PAGE

.SBTTL READAST - AST ROUTINE FOR READ COMPLETION

.ENABLE LOCAL BLOCK
;++

Functional description:

AST routine to execute on read completion.

Input parameters:
None

Output parameters:
None

10$:
MOVZWL IN_IOSB, RO Get the terminal driver status

20$:
BRW ERROR Exit with error status.

.ENTRY READAST AM < R2, R3, R4, RS > Procedure entry mask

BLBC
MOVZWL
ADDL2
$QIO_S

BLBC

IN_IOSB, 10$
IN IOSB+2, RO
#ACK_MSGLEN, RO
EFN=ASYNC_EFN, -
CHAN=TT CHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=ACK_MSG, -
P2=RO

RO, 20$

Process read message

Terminal driver error - branch
Get number of characters read into RO
Add size of fixed acknowledge message
Issue acknowledge message
Note, ACK must be asynchronous (QIO)
and the terminal driver write status
is ignored (no IOSB and AST routine) .
Specify IOSB and AST routine if output
must be displayed on the terminal.
QIO error - branch

; (user-provided code to decode command inserted here)

BSBW ENABLE READ Queue next read
RET Return to mainline loop

.DISABLE LOCAL BLOCK

.PAGE

.SBTTL CTRLAAST - AST ROUTINE FOR CTRL/A

.SBTTL CTRLCAST - AST ROUTINE FOR CTRL/C

.SBTTL ERROR - EXIT ROUTINE

(continued on next page)

8-68

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-1 (Cont.) Terminal Program Example

;++

Functional description:

AST routine to execute when CTRL/C or CTRL/A is entered.

Input parameters:
None

Output parameters:
None

CTRLCAST::
CTRLAAST::

.WORD
MOVL

ERROR::

"M < >
#SS$_NORMAL, RO

$EXIT_S RO
RSB

.PAGE

Procedure entry mask
Put success in RO

Exit

.SBTTL EXIT HANDLER - EXIT HANDLER ROUTINE
;++

Functional description:

Exit handler routine to execute when image exits. It cancels
any outstanding I/O on this channel and resets the terminal
characteristics to their original state.

Input parameters:
None

Output parameters:

10$:

None

.ENTRY EXIT HANDLER "M< >
$CANCEL S - CHAN=TT CHAN
$QIOW_S-EFN=SYNC_EFN, -

CHAN=TT CHAN, -
FUNC=#IO$_SETMODE, -
IOSB=SYNC_IOSB, -
Pl=OLDCHAR BUF, -
P2=#0LDCHAR BUF LEN

BLBC RO, 10$ - -
MOVZWL SYNC_IOSB, RO

RET

.END START

Flush any I/O on queue
Reset terminal characteristics

QIO error - branch.
Get the terminal driver status.

8-69

8.6.2

Terminal Driver
8.6 Terminal Driver Programming Examples

Read Verify Program Example
Example 8-2 is an example of the read verify function. The program
shows a typical build of itemlists (both the right and left fields), channel
assignment, a right- and left-justified read verify operation, and then the
read QIO operation.

Example 8-2 Read Verify Program Example

.TITLE READ VERIFY - Read Verify Coding Example

.IDENT 'VOS-000'

.SBTTL DECLARATIONS

.DISABLE GLOBAL

Declare the external system routines and MACRO libraries.

.EXTERNAL

.EXTERNAL

.LIBRARY

.LIBRARY

Include files:

$IODEF
$TRMDEF

Macros:

LIB$GET EF
SCR$ERASE_PAGE

'SYS$LIBRARY:LIB.MLB'
'SYS$LIBRARY:STARLET.MLB'

.MACRO ITEM LEN=O,CODE,VALUE
.WORD LEN
.WORD TRM$_'CODE'
.LONG VALUE
.LONG 0

.ENDM ITEM

; Equated symbols:

INBUF LEN = 20
ESC = AXlB

Own storage:

Build item lists for the read verify QIO

Right-justified field

R ITEM LIST: - -
ITEM CODE = MODIFIERS, -

VALUE TRM$M_TM_R_JUST

ITEM CODE EDITMODE, -
VALUE TRM$K_EM_RDVERIFY

8-70

Right justify

Enable read verify

(continued on next page)

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-2 (Cont.) Read Verify Program Example

ITEM CODE PROMPT, -
VALUE R_PROMPT_ADDR, -
LEN R PROMPT LEN - - Set up prompt

ITEM CODE INISTRNG, -
VALUE R_INISTR_ADDR, -
LEN R INISTR LEN Set up initial string

ITEM CODE INIOFFSET, -
VALUE R INISTR LEN - -

ITEM CODE PICSTRNG, -
VALUE R_PICSTR_ADDR, -
LEN R PICSTR LEN ; Set up picture string

ITEM CODE FILLCHR, -
VALUE <"A/* /> clear *' fill space

R ITEM LIST LEN = .-R ITEM LIST - - - -
R PROMPT ADDR: - -

.ASCII <ESC>/[12;12H$/
R PROMPT LEN = .-R PROMPT ADDR - -
R INISTR ADDR:

.ASCII I I
R INISTR LEN = .-R INISTR ADDR - -

MASK = TRM$M_CV_NUMERIC!TRM$M_CV_NUMPUNC

R PICSTR ADDR:
.BYTE MASK
.BYTE MASK
.BYTE MASK
.BYTE 0 Marker character
.BYTE MASK
.BYTE MASK
.BYTE MASK

R PICSTR LEN = .-R PICSTR - -

; Left-justified field

L ITEM LIST: - -
ITEM

ITEM

ITEM

ITEM

ITEM

CODE
VALUE

CODE
VALUE

CODE
VALUE
LEN

CODE
VALUE
LEN

CODE
VALUE

ADDR

MODIFIERS, -
TRM$M_TM_CVTLOW!TRM$M_TM AUTO TAB

Upcase input and
complete on field full

EDITMODE, -
TRM$K_EM_RDVERIFY Enable read verify

PROMPT, -
L_PROMPT_ADDR, -
L PROMPT LEN Set up prompt

INISTRNG, -
L_INISTR_ADDR, -
L INISTR LEN - - Set up initial string

INIOFFSET, -
0

(continued on next page)

8-71

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-2 (Cont.) Read Verify Program Example

ITEM CODE PICSTRNG, -
VALUE L_PICSTR_ADDR, -
LEN L PICSTR LEN - -

ITEM CODE FILLCHR, -
VALUE </\A/* />

L ITEM LIST LEN = .-L ITEM LIST - -
L PROMPT ADDR: - -

.ASCII <ESC>/[13;12H Enter Date: I
L PROMPT LEN = .-L PROMPT ADDR - -
L INISTR ADDR: - -

.ASCII I I
L INISTR LEN = .-L INISTR ADDR - -
MASKl = TRM$M CV NUMERIC
MASK2 = TRM$M=CV=UPPER!TRM$M_CV_LOWER

L PICSTR ADDR:
.BYTE MASKl
.BYTE MASKl
.BYTE 0
.BYTE MASK2
.BYTE MASK2
.BYTE MASK2
.BYTE 0
.BYTE MASKl
.BYTE MASKl

L PICSTR LEN .-L PICSTR ADDR

.BLKL 2

.BLKW 1

- -
IN IOSB:
TT CHAN:

Marker character

marker character

INBUF:
SYSINPUT:
SYNC EFN:

.BLKB INBUF LEN

.ASCID /SYS$INPUT/

.BLKL 1

.PAGE

.ENTRY READ VERIFY /\M < >

Get the required event flags.

PUSHAL SYNC EFN
CALLS # 1,-G/\ LIB$GET_EF
BLBC RO, ERROR

Assign the channel to SYS$INPUT

$ASSIGN_S -

BLBC

CHAN = TT CHAN -
DEVNAM = SYSINPUT
RO, ERROR

Clear the screen

8-72

Set up picture string

clear *' fill

Error - branch

SYS$INPUT
Branch on error

space

(continued on next page)

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-2 (Cont.) Read Verify Program Example

CLRQ
CALLS
BLBC

-(SP)
#2, GA SCR$ERASE_PAGE
RO, ERROR

Do the right-justified read operation

PUSHL #R_ITEM_LIST_LEN
PUSHAB R ITEM LIST
CALLS #2, DO READ
BLBC RO, ERROR

Do the left-justified read operation

ERROR:

;++

PUSHL #L_ITEM_LIST LEN
PUSHAB L ITEM LIST
CALLS #2, DO READ
BLBC RO, ERROR

RET

.PAGE

DO READ - do the actual QIO

Inputs:

4(AP)
8 (AP)

the address of the itemlist
the length of the itemlist

.ENTRY DO_READ, AM<>

$QIOW_S EFN=SYNC_EFN, -
CHAN TT CHAN, -
FUNC = #<IO$_READVBLK!IO$M_EXTEND>, -
IOSB = IN IOSB, -
pl inbuf, -
p2 = #inbuf _len, -
p5 = 4(AP), -
P6 = 8(AP)

BLBC RO, 10$ QIO error - branch
MOVZWL IN_IOSB, RO Get the terminal driver status.
BLBC RO, 10$ Terminal driver error - branch

Handle the input ...

10$:
RET

.END READ VERIFY

8-73

8.6.3

Terminal Driver
8.6 Terminal Driver Programming Examples

LAT Application Device Program Example
Example 8-3 requests a connection to an applications (LT) device. The
program uses the terminal port function code (10$_TTY_PORT) and the
function code modifiers for the LAT port driver to solicit the connection
to the applications device. (Note that the 10$_TTY_PORT function is not
specific to LAT operations.)

Example 8-3 also illustrates the use of the set rating (10$M_LT_RATING)
and map port (10$M_LT_MAP _PORT) functions (see Section 8.4.4.1).

See Section 8.4.4.2 for additional information on LAT application
programming.

Example 8-3 LAT Application Device Program

.TITLE

.IDENT
LAT APPLICATION DEVICE PROGRAMMING EXAMPLE
/1. 3/

;***

LAT Application Device Program

;***

.SBTTL DECLARATIONS

.DISABLE GLOBAL

Declare the external system routines and libraries.

.EXTERNAL

.LIBRARY

.LIBRARY

Define symbols

LIB$GET_EF

'SYS$LIBRARY:LIB.MLB'
'SYS$LIBRARY:STARLET.MLB'

I/O function codes
QIO definition codes

$IODEF
$QIODEF
$SSDEF System Service completion codes

Declare the required event flags

SYNC EFN::
ASYNC EFN::

.BLKL

.BLKL
1
1

; Declare exit handler control block

EXIT HANDLER BLOCK: - -
.LONG 0

STATUS:

8-74

.LONG

.LONG

.LONG

EXIT HANDLER
1
STATUS
.BLKL 1

System uses this for pointer
Address of exit handler
Argument count for handler
Destination of status code
Status code from $EXIT

(continued on next page)

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

Allocate terminal descriptor and channel number storage

TT DESC: .ASCID /SYS$INPUT/
TT CHAN: .BLKW 1
LT DESC: .ASCID /LAT$PORT/

LT CHAN: .BLKW 1

Define carriage control symbols

CR="XOD
LF="XOA

Define I/O buffer sizes

IN BUFLEN = 80
OUT MSGLEN = 2

Name of terminal
TT channel number storage
Logical name of LT device,
define this to be the application
port created in LATCP

LT channel number storage

Carriage return
Line feed

Input buff er size
Initial length of output message

Allocate I/O buffers; OUT MSG must appear before IN BUF. The effect of this
is to prefix <CR><LF> to the bytes read from the TT device. By adding two
to the number of bytes read, and using the buffer starting at OUT MSG, the
message written to the LTA device will be the message read from the TT device
prefixed with <CR><LF>.

OUT MSG:
IN BUF:

.ASCII <CR><LF>

.BLKB IN BUFLEN

Allocate I/O status blocks (IOSBs)

IN IOSB:
OUT IOSB:
SOL IOSB:
MAP IOSB:
RATING IOSB:
SYNC IOSB:
ASYNC IOSB:

1
1
1
1
1
1
1

Start address of output buffer
Allocate character input buffer

Input I/O status block (IOSB)
Output I/O status block (IOSB)
Solicitation connect IOSB
Map IOSB
Rating IOSB
IOSB for synchronous operations .
IOSB for asynchronous operations.

SERVICE DESC:

.BLKQ

.BLKQ

.BLKQ

.BLKQ

.BLKQ

. BLKQ

.BLKQ

.LONG SERVICE NAME LENGTH

.ADDRESS SERVICE NAME

SERVICE NAME: .ASCII
SERVICE NAME LENGTH

/TIMESHARING/
- SERVICE NAME

; Service that was created by LATCP

(continued on next page)

8-75

Terminal Driver
8.6 Terminal ~:-iver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

NEW RATING: .LONG 100 ; The new static rating value for it

LATNOD: . ASCII

NODLEN= .-LATNOD

/PLUTO/

LATPORT: .ASCII /APPLIC_DEVICE/

PORTLEN= .-LATPORT
LINKNAM: .ASCII /LAT$LINK/

LINKLEN= .-LINKNAM

MAP ITEMLIST:
.WORD
.WORD

NOD LEN
IO$V_LT_MAP NODNAM

.ADDRESS LATNOD

.LONG 0

.WORD PORTLEN

.WORD IO$V_LT_MAP PORNAM

.ADDRESS LATPORT

.LONG 0

.WORD

.WORD
LINKLEN
IO$V_LT_MAP LNKNAM

.ADDRESS LINKNAM

.LONG 0

.LONG 0

Define output messages

Messages are accessed by indexing into a table of longwords
with each message described by a message address and length.
Although not done here, this table should be large enough
to accornodate all possible reject reasons.

MSG TABLE:

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

8-76

01$
05$
10$
15$
20$
25$
30$
35$
40$
45$
50$
55$
60$
65$
190$
195$

Table of message address
and length
First message address
First message length
Message address
Message length
Message address
Message length
Message address
Message length
Message address
Message length
Message address
Message length
Message address
Message length
Message address
Message length

(continued on next page)

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

Messages (Refer to the list of LAT rejection codes in Table 8-16.)

01$: .ASCII /REASON UNKNOWN/
05$=.-01$

10$: .ASCII <CR><LF>/CONNECTION ESTABLISHED/
15$=.-10$

20$: .ASCII /SYSTEM SHUTDOWN IN PROGRESS/
25$=.-20$

30$: .ASCII /REASON UNKNOWN/
35$=.-30$

40$: .ASCII /REASON UNKNOWN/
45$=.-40$

50$: .ASCII /INSUFFICIENT RESOURCES/
55$=.-50$

60$: .ASCII /PORT OR SERVICE IN USE/
65$=.-60$
190$: .ASCII /ILLEGAL REQUEST PARAMETERS/
195$=.-190$

NOTCON: .ASCII <CR><LF>/CONNECTION REJECTED - /
NOTCONL=.-NOTCON

; Static QIO packets for message output using QIO$_G form

WRITE QIO:
- $QIO

ERROR_QIO:
$QIO

FUNC=IO$_WRITEVBLK!IO$M_BREAKTHRU!IO$M_REFRESH,
EFN=l

FUNC=IO$_WRITEVBLK!IO$M_BREAKTHRU!IO$M_REFRESH,
EFN=l

(continued on next page)

8-77

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

;++

.PAGE

.SBTTL MAIN ROUTINE

; Functional description:

•*** ,

Main Program Routine

;***

The following code assigns a channel to the LTAxxx:
application device and attempts to create a connection to
that device. The connection status is displayed on
the user's terminal. Input from the user's terminal
is output on the LTAxxx device: CTRL/C entered by the
user terminates the program.

Input parameters:
None

output parameters:
None

.ENTRY START "M <>

Get the required event flags.

PUS HAL
CALLS
BLBC
PUS HAL
CALLS
BLBC

Assign channels

$ASSIGN_S

BLBC
$ASSIGN_S

BLBC

ASYNC EFN
#1, G"LIB$GET EF -
R0,20$
SYNC EFN
#1, G"LIB$GET EF -
R0,20$

DEVNAM=TT_DESC, -
CHAN=TT CHAN
RO, 20$
DEVNAM=LT_DESC, -
CHAN=LT CHAN
RO, 20$-

Entry mask

Error - branch

Error - branch

Assign channel to user's
terminal
Error - branch
Assign channel to LT device

Error - branch

Declare an exit handler which will execute at image exit.

8-78

$DCLEXH_S
BLBC

DESBLK=EXIT HANDLER BLOCK
RO, 20$; Error - branch

(continued on next page)

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

10$:

20$:

;++

Perform the privileged operations of changing a static service
rating (an operation unrelated to the use of application devices but
included here strictly as an example) and remapping the applications
port.

BSBW
BLBC
BSBW
BLBC

LAT SET RATING
RO, 20$
LAT MAP PORT
RO, -20$-

Change a static service rating
Error - branch
Change the application port mapping
Error - branch

Enable CTRL/C on user terminal and CTRL/Y on LTA device. Solicit
connection to application device and post read to user's terminal.
The CTRL/Y AST enable is done in the solicit connection AST so
that a CTRL/Y is not returned before the solicit AST. This
prevents the rejection errors from being displayed.

BSBW
BLBC
BSBW
BLBC

$HIBER_S
BLBS

ENABLE CTRLCAST
RO, 20$
SOL CONNECT
RO, 20$

RO, 10$

BRW ERROR

.PAGE

Enable CTRL/C ASTs
Error - branch
Try to connect to LT device
Error - branch

Wait for a while.
Keep looping until CTRL/C

.SBTTL ENABLE CTRLYAST - Enable CTRLYAST on LTAxxx device

Functional description:

Routine to allow hangup notification. This routine enables
CTRL/Y AST delivery for the LTAxxx: device. The CTRL/Y AST
is called if an abnormal termination occurs to the remote
application device.

Input parameters:

None

Output parameters:

RO = QIO status.

ENABLE CTRLYAST:
$QIO_S CHAN=LT_CHAN,

FUNC=#IO$_SETMODE!IO$M_CTRLYAST,-

BLBC
RSB

IOSB=ASYNC_IOSB,
ASTADR=START_READ,
Pl=HANGUP,-
P3=#3
RO, 10$

Start Read at completion of QIO
AST routine address
User mode
QIO error - branch

(continued on next page)

8-79

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

10$:
BRW ERROR

.PAGE

.SBTTL HANGUP - AST Routine for CTRL/Y
;++

Functional description:

AST routine to execute when CTRL/Y status is returned for the
application device. This status is returned when the
connection to the remote device is abnormally terminated.

Input parameters:

None

Output parameters:

None

HANGUP:

;++

.WORD
MOVZWL
BRW

.PAGE

.SBTTL

AM<>
#SS$_HANGUP,RO
ERROR

Indicate hangup
and exit

START READ - Start reads on the TT device

Functional description:

This routine executes at completion of the SETMODE QIO to set the CTRL/Y
AST. It checks the completion status of the QIO, and starts reads on the
TT device by calling ENABLE_READ.

Input parameters:

None

Output parameters:

None

,

START READ:
.WORD AM<>
BLBC ASYNC IOSB,10$ Terminal driver error - branch
BSBW ENABLE READ
RET

10$:
MOVZWL ASYNC_IOSB, RO Put error status in RO
BRW ERROR

(continued on next page}

8-80

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

;++

.PAGE

.SBTTL ENABLE READ - QUEUE A READ TO THE TERMINAL

Functional description:

Routine to queue a read to the terminal. The queued
read will not affect writes due to the fact that
breakthru has been set for writes.

Input parameters:

None

Output parameters:

RO = Successful QIO status.

ENABLE READ:
$QIO_S

10$:

BLBC
RSB

EFN=ASYNC_EFN, -
CHAN=TT CHAN, -
FUNC=#IO$_READVBLK, -
IOSB=IN_IOSB, -
ASTADR=READAST, -
Pl=IN_BUF, -
P2=#IN BUFLEN
RO, 10$

BRW ERROR

.PAGE

Must not be QIOW form

QIO error - branch

.SBTTL READAST - AST Routine for Read Completion
;++

Functional description:

AST routine to execute on read completion. The data that
was input from the users terminal is output on the
application device. Another read request is then posted.

Input parameters:

None

Output parameters:

None

;--

(continued on next page)

8-81

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

.ENTRY
BLBC
MOVZWL
ADDL2
$QIO_S

READAST "M < R2,
IN_IOSB, 10$

R3, R4, R5 > Procedure entry mask

10$:

20$:

;++

BLBC
BSBW
RET

IN IOSB+2, RO
#OUT_MSGLEN, RO
EFN=ASYNC_EFN, -
CHAN=LT CHAN, -
FUNC=#IO$_WRITEVBLK, -
IOSB=OUT_IOSB, -
ASTADR=WRITEAST, -
Pl=OUT_MSG, -
P2=RO
RO, 20$
ENABLE READ

MOVZWL IN_IOSB, RO

ERROR

Terminal driver error - branch
Get number of characters read
Add size of fixed ack
Output message to LT device
Must be asynchronous (QIO)

QIO error - branch
Queue next read

Put error status in RO

Exit with error BRW

.PAGE

.SBTTL WRITEAST - AST Routine for Write Completion

Functional description:

AST routine to execute on write completion. Check the status
of the write.

Input parameters:

None

Output parameters:

None

;--

.ENTRY WRITEAST "M < R2, R3, R4, R5 > ; Procedure entry mask
BLBC OUT_IOSB, 10$; Terminal driver error - branch
RET

10$:
MOVZWL OUT_IOSB, RO Put error status in RO
BRW ERROR

(continued on next page)

8-82

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

;++

.PAGE

.SBTTL ENABLE CTRLCAST - ENABLE CTRL/C AST

Functional description:

Routine to allow CTRL/C recognition on user's terminal

Input parameters:

None

Output parameters:

RO = QIO/Terminal driver status.

ENABLE CTRLCAST:

10$:

;++

- $QIOW_S EFN=SYNC_EFN, -
CHAN=TT CHAN, -
FUNC=#IO$_SETMODE!IO$M_CTRLCAST, -
IOSB=SYNC_IOSB, -
Pl=CTRLCAST, -
P3=#3

BLBC RO, 10$
MOVZWL SYNC_IOSB, RO

AST routine address
User mode
QIO error - branch
Get the terminal driver status.

RSB

.PAGE

.SBTTL CTRLCAST - AST Routine for CTRL/C

Functional description:

AST routine to execute when CTRL/C is received. The connection
to the application device is stopped and the program is terminated
with normal completion status.

Input parameters:

None

Output parameters:

None

CTRLCAST:
.WORD
$QIO_S

BLBC
RET

"M<>
EFN=ASYNC_EFN, - ; Disconnect session to LT device
CHAN=LT CHAN, -
FUNC=#IO$_TTY_PORT!I0$M_LT DISCON, -
IOSB = ASYNC_IOSB,-
ASTADR = DISCONNECTAST
RO, 10$ QIO error - branch

(continued on next page)

8-83

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

10$:
BRW ERROR

.PAGE

.SBTTL DISCONNECTAST - AST Routine for disconnect status
;++

Functional description

AST routine to execute when disconnect is complete. The image
will exit with the status from the disconnect QIO by moving the
value in the status field of the IOSB into RO.

Input parameters:

None

Output parameters:

None

DISCONNECTAST:
.WORD "M<>
MOVZWL ASYNC_IOSB, RO Save disconnect status

ERROR:
$EXIT_S CODE=RO Exit
RET
.PAGE
.SBTTL SOL CONNECT - Solicit Connection to LT Device

;++

Functional description:

This routine issues the QIO to the LT driver to solicit
the connection to the LT device.

Input parameters:

None

Output parameters:

RO = QIO status.

;--

SOL CONNECT:
- $QIO_S EFN=SYNC_EFN, -

CHAN=LT CHAN, -
FUNC=#IO$_TTY_PORT!I0$M_LT_CONNECT, -
IOSB=SOL_IOSB, -
ASTADR=SOLAST

RSB

.PAGE

.SBTTL SOLAST - AST Routine for connection solicitation status

(continued on next page)

8-84

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

;++

Functional description:

AST routine to execute when connection solicitation is
complete. If status is success, print success message and
return. If status is rejection, print reject message,
reject reason, and exit. If status is otherwise, exit.

Input parameters:

None

Output parameters:

None

SOLAST:
.WORD

MOVZWL
BLBC
MOVL
JSB
BSBW
RET

10$: CMPW
BNEQ
MOVZWL
$QIOW_G
MOVZWL
BSBB
BRW

WRITE STATUS:
MOVQ

MOVZWL
$QIOW_G
RSB

"M<>
SOL_IOSB,RO
R0,10$
RO,Rl
WRITE STATUS
ENABLE CTRLYAST

RO,#SS$_ABORT
ERROR
TT CHAN,ERROR_QI0+8
ERROR_QIO
SOL_IOSB+2,Rl
WRITE STATUS
ERROR

MSG TABLE[Rl],
WRITE_QIO+QIO$_Pl
TT_CHAN,WRITE_QI0+8
WRITE_QIO

Get return status
If clear, error
Copy success code for index
Output success message
Enable CTRL/Y ASTs

Is this a rejected connection?
If eq, output error message
Insert channel into QIO packet
Output error message first
Set Rl for off set into table
Output error reason
Exit

Put message into QIO

Insert channel into QIO packet

(continued on next page)

8-85

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

;++

.PAGE

.SBTTL EXIT HANDLER:

Functional description:

Exit handler routine to execute when image exits. It will
cancel any outstanding I/O on these channels.

Input parameters:

None

Output parameters:

None

;--

EXIT HANDLER:
.WORD
$CANCEL_S CHAN=TT CHAN
$CANCEL_S CHAN=LT CHAN
RET

Flush any output

.PAGE

.SBTTL LAT MAP PORT Map Port QIO
;++

Functional description:

The following code performs a map port QIO. It uses an item
list that specifies the names for the target server and port
that is associated with the application port.

Input parameters:

None

Output parameters:

RO = QIO/Terminal driver status.

LAT MAP PORT:

8-86

$QIOW_S EFN = SYNC_EFN, -
CHAN LT CHAN, -
FUNC #<I0$_TTY_PORT!IO$M_LT_MAP PORT>, -
IOSB MAP_IOSB, -
Pl = MAP ITEMLIST

BLBC RO, 10$ -
MOVZWL MAP_IOSB, RO

(continued on next page)

Terminal Driver
8.6 Terminal Driver Programming Examples

Example 8-3 (Cont.) LAT Application Device Program

10$:

;++

RSB

.PAGE

.SBTTL LAT SET RATING

Functional description:

The following code performs the set rating QIO.
In this example, the rating for the service "TIMESHARING"
is set to a static rating of 100.

Input parameters:
None

Output parameters:
RO = QIO/Terminal driver status.

LAT SET RATING:

10$:

$QIOW_S EFN = SYNC_EFN, -
CHAN LT CHAN, -
FUNC #<IO$_TTY_PORT!IO$M_LT_RATING>, -
IOSB RATING_IOSB,-
Pl = SERVICE_DESC,-
P2 = NEW RATING

BLBC RO, 10$ Error - branch
MOVZWL RATING_IOSB, RO

RSB

.END START

8-87

g Pseudoterminal Driver

This chapter describes the use of the VMS pseudoterminal driver
(FTDRIVER) and the VMS pseudoterminal software.

A pseudoterminal is a software device that appears as a real terminal
to an application communicating with it but that does not require the
existence of a physical terminal. A pseudoterminal consists of two
components: the pseudoterminal device and a control program. The
control program acts like a keyboard; that is, anything written to the
control program appears on the pseudoterminal device as if the keystrokes
had been typed in at a physical terminal. The control program also acts
like a viewport to the pseudoterminal device; that is, the control program
reads anything that is written by the system to the pseudoterminal device.

A pseudoterminal allows an application to be set up on the control
side of the link to communicate with another application that is on the
pseudoterminal side. This arrangement allows development of applications
that either simulate users or monitor the communication between a real
user (at a physical terminal) and an application. As with other devices,
the work of the pseudoterminal is performed by a device driver and is
tightly coupled to the operating system.

The VMS pseudoterminal driver software includes a set of control
connection routines. Applications can use these routines to perform
pseudoterminal operations and functions. Appendix C provides the VAX
calling standards for these routines.

9.1 Pseudoterminal Operations

9.1.1

This section contains information on the following pseudoterminal
operations:

• Creating a pseudoterminal

• Canceling a request

• Deleting a pseudoterminal

Creating a Pseudoterminal
To create a pseudoterminal, use the PTD$CREATE routine described in
Appendix C. When a pseudoterminal is created, it inherits the current
system terminal default attributes unless you specify an alternate set of
characteristics. In either case, you cannot use PTD$CREATE to alter the
following startup attributes:

• TT$M_ CRFILL is cleared. To change this attribute, issue the SET
MODE $QIO function.

• TT$M_LFFILL is cleared. To change this attribute, issue the SET
MODE $QIO function.

9-1

9.1.2

9.1.3

Pseudoterminal Driver
9.1 Pseudoterminal Operations

• TT$M_MODEM is cleared. This attribute cannot be changed.

• TT$M_REMOTE is cleared. This attribute cannot be changed.

• TT$M_HOSTSYNC is set. To change this attribute, issue the SET
MODE $QIO function.

• TT$M_TTSYNC is set. To change this attribute, issue the SET MODE
$QIO function.

• TT2$M_DMA is cleared. To change this attribute, issue the SET
MODE $QIO function. Changing it does not alter the behavior of
TTDRIVER or the pseudoterminal.

• TT2$M_AUTOBAUD is cleared. To change this attribute, issue the
SET MODE $QIO function. Changing it does not alter the behavior of
TTDRIVER or the pseudoterminal.

• TT2$M_FALLBACK is cleared. To change this attribute, issue the SET
MODE $QIO function.

• TT2$M_HANGUP is cleared. To change this attribute, issue the SET
MODE $QIO function.

• TT2$M_DCL_MAILBX is cleared. This attribute cannot be changed.

When you create a pseudoterminal, you can specify a repeating
asynchronous system trap (AST) to be delivered when the terminal
connection is freed. This AST can be supplied only when the
pseudoterminal is created, and it cannot be deleted. A terminal is freed
when a process logs out or deassigns the last channel to the device. The
AST allows the control program to determine whether or not a user of a
pseudoterminal is using it. At this point, the control program can reuse or
delete the pseudoterminal by deassigning the control channel.

Canceling a Request
To cancel a queued control connection request, the control program uses
the PTD$CANCEL routine. This routine enables the pseudoterminal
driver to differentiate between control requests and terminal requests that
are being canceled. This routine cannot be used to flush event notification
ASTs.

Deleting a Pseudoterminal

9-2

To delete the pseudoterminal, the control program uses the PTD$DELETE
routine. When a pseudoterminal is deleted, any process that is using the
pseudoterminal (except the control process) is disconnected. If you have
the TT2$M_DISCONNECT bit set in the default terminal characteristics
parameter (TTY_DEFCHAR2) and virtual terminals have been enabled
(see Section 8.2.2.3), you get a virtual terminal upon logging in to a
pseudoterminal. In this case, the process is not logged out, but the virtual
terminal is disconnected from the pseudoterminal.

Pseudoterminal Driver
9.1 Pseudoterminal Operations

The PTD$DELETE request causes any pending I/O for the control program
to be aborted. It deletes any queued event notification ASTs and returns
the I/O buffers to the application. It also causes the pseudoterminal unit
control block (UCB) to be deleted once the reference count returns to zero.

Note: H an application exits without calling PTD$DELETE, the
pseudoterminal is still deleted.

9.2 Pseudoterminal Driver Features
The terminal portion of a pseudoterminal is similar to a regular VMS
terminal. The pseudoterminal driver provides the following features:

• Type-ahead

• Specifiable or default line terminators

• Special operating modes, such as NOECHO and PASTHRU

• Escape sequence detection

• Terminal/mailbox interaction

• Terminal control characters, such as Ctrl/S and Ctrl/Q for starting and
stopping output, Ctrl/O for discarding output, and all other special
characters that are handled by the standard VMS terminal driver

• Limited full-duplex operation (simultaneously active read and write
requests)

For more information on these features, see Section 8.2.

9.3 Pseudoterminal Driver Device Information
The pseudoterminal inherits its device characteristics from the system
default parameters, with the following exceptions:

• The device inherits initial device characteristics from the SYSGEN
supplied default values. You can modify the device characteristics
during device creation by supplying new characteristics.

• The HOSTSYNC terminal characteristic is always set.

• The device is set to NOMODEM and cannot be set to MODEM.

• The device is set not to time output character transmission. Hardware
controllers time output character transmission to determine whether
the controller is broken.

You can obtain information on pseudoterminal characteristics by using the
Get DeviceNolume Information ($GETDVI) system service, as described
in Section 8.3, and the VMS System Services Reference Manual. For
pseudoterminals other than the template unit FTAO, you can also use
the sense mode functions described in Section 8.4.5 to read terminal
characteristics, and the set mode function described in Section 8.4.3 to
change terminal characteristics.

9-3

Pseudoterminal Driver
9.4 1/0 Buffers

9.4 1/0 Buffers
When you create a pseudoterminal, you must provide at least one page to
be used as an I/O buffer. You should allocate no more than six I/O buffers
for each pseudoterminal. Each page becomes one I/O buffer, and no read
or write request can reference more than one I/O buffer at a time. The
I/O buffers must be page aligned; therefore, you should create these pages
with the $EXPREG system service or the LIB$GET_VM_PAGE routine.
These pages are owned by the driver until you delete the pseudoterminal.
The application is responsible for managing these pages. The application
cannot use buffers that are owned by another pseudoterminal; it must
decide whether to delete the buffers when they are freed by the driver or
to reuse them.

The I/O buffers must be valid pages in virtual address space. Creating
or deleting an I/O buffer does not alter the contents of the pages. An
application is free to use these buffers in any way that it chooses. A
request must fit within one I/O buffer. Attempts to span an I/O buffer
result in an error. Additionally, a longword of status information must fit
into the I/O buffer; this limits the largest request to 508 bytes. The low
order word of the status information longword contains the status of the
request. The high-order word of the status information longword contains
the actual number of bytes that are read or written.

Assume that an I/O buffer starting at 200 hexadecimal is available for
use. If you want to read 20 bytes from the pseudoterminal, the readbuf
address would be 200, and the readbuf_len would be 20. An application
can use the rest of this buffer for other purposes, including reading or
writing to the pseudoterminal. Figure 9-1 shows how the buffer would
look.

Figure 9-1 Buffer Layout

1---------B_y_te __ c_o_un_t ________ ~l __________ s_t_ru_us ________ ----1 200 16
20416

Data

21816

f
ZK-9656-GE

9.5 Pseudoterminal Functions

9-4

This section discusses the following pseudoterminal functions:

• Reading data

9.5.1

9.5.2

9.5.3

Reading Data

Writing Data

• Writing data

• Using write with echo

• Flow control

• Event notification

Pseudoterminal Driver
9.5 Pseudoterminal Functions

To read data from the pseudoterminal, the control program uses the
PTD$READ routine. The read request completes with a minimum of 1
character and a maximum of the number of characters requested. The
read operation completes when the pseudoterminal has characters to
output. If a read request is issued and no data is available, the read
request is queued and then completed at a later time.

An application that issues an asynchronous pseudoterminal read can use
the $SYNCH system service to find out when the read completed. The efn
argument for the $SYNCH service must be the same as the efn specified
in the original PTD$READ call, and the iosb for the $SYNCH service
must match the readbuf of the PTD$READ call.

To write data to the pseudoterminal, the control program uses the
PTD$WRITE routine. The largest write possible is 508 bytes. The write
request allows you to specify a buffer to receive any output generated
by the write; you do not need to issue a separate read request to read
this data. Using an echo buffer allows a control application to reduce
significantly the number of I/O requests required.

An application can issue only one write request at a time. Once the write
request completes, the application must check the write buffer status
longword to see whether all the data supplied was written. If not, the
application must issue additional write requests until all the data has
been accepted.

Using Write with Echo
If a read request is pending when a write-with-echo request is issued, the
echo data is placed in the echo buffer. If more data is echoed than can
fit in the echo buffer, the remaining data is placed in the pending read
requests buffer. If no pending read exists, the data is held by the driver
until another request that can take the data is issued. Both the read and
the write with echo must use completion ASTs to allow the driver to report
request completions to the application in the correct order.

If an application is not using the write-with-echo capability, the application
should avoid using completion ASTs if possible. Unnecessary use of
completion ASTs significantly increases the number of instructions needed
to complete a read or write operation.

9-5

9.5.4

9.5.5

Pseudoterminal Driver
9.5 Pseudoterminal Functions

Flow Control

When using write with echo, both the wrtbuf and echobuf arguments
contain 1/0 status information. An application must check both of these
status longwords if the PTD$WRITE completes successfully. If a write
operation wrote no characters, characters might still be in the echo buffer.
If no data was echoed, the status in the echobuf is SS$_NORMAL with
zero bytes transferred.

By default, the driver attempts to notify the control program of data
overrun or loss. The pseudoterminal sends an XOFF AST when the type
ahead buffer is getting full. Once the pseudoterminal delivers an XOFF
AST, the pseudoterminal also returns a status of SS$_DATAOVERUN
with the actual number of characters input. This prevents a single request
from flooding the type-ahead buffer. If a control program makes repeated
attempts to insert data after receiving the SS$_DATAOVERUN message,
it can flood the terminal type-ahead buffer. When the type-ahead buffer
has filled, the pseudoterminal returns the status of SS$_DATALOST.

If the control program is writing to the terminal or terminal driver, it
should let the terminal and terminal driver handle flow control. To do
this, the application should enable all three input flow control notification
ASTs. The control program should write a DCl to the terminal if an XON
AST is delivered. It should write a DC3 to a terminal if an XOFF AST
is delivered, and write a bell character to the terminal if the bell AST is
delivered. These signals allow the terminal to decide what to do with the
flow control data. The application should ignore the SS$_DATAOVERUN
and SS$_DATALOST return status and continue writing data to the
pseudoterminal.

Event Notification

9-6

This section describes how the pseudoterminal driver provides notification
of important driver events.

9.5.5.1 Input Flow Control
The driver provides three ways to indicate when the class driver wants to
stop input and one way to signal when it is safe to resume output.

1 The driver returns a status of SS$_DATAOVERUN and the number of
characters input for the control program write.

2 The control program can enable a BELL attention AST to be
delivered when the class driver calls the PTD$SET_TERMINAL_
NOTIFICATION routine. This AST is delivered if the pseudoterminal
does not have the HOSTSYNC attribute set. If only a BELL or only an
XOFF AST event is enabled and an XOFF or a BELL AST needs to be
delivered, the AST that is available is delivered.

3 The control program can enable an XOFF attention AST to be
delivered when the class driver calls the PTD$SET_TERMINAL_
NOTIFICATION routine. This AST is delivered if the pseudoterminal
has the HOSTSYNC attribute set.

Pseudoterminal Driver
9.5 Pseudoterminal Functions

4 The control program can enable an XON attention AST to be
delivered when the class driver calls the PTD$SET_TERMINAL_
NOTIFICATION routine. This AST is delivered only if the
pseudoterminal has the HOSTSYNC attribute set.

9.5.5.2 Output Stop
The Output Stop AST tells the control program that the terminal driver is
stopping output. This keeps the control program from having to determine
whether an XOFF written to the control side is being treated by the
terminal driver as flow control or data.

9.5.5.3 Output Resume
The Output Resume AST tells the control program that the terminal driver
wants to resume output. This AST can be delivered at any time, even if
output is active or has previously been stopped. The control program
should always restart output processing when it receives this AST.

9.5.5.4 Characteristics Changed
The Characteristics Changed AST tells the control program that
the terminal driver has called the pseudoterminal CHANGE
CHARACTERISTICS routine. This routine is called whenever the
terminal driver has changed the device characteristics. The control
program should then read the pseudoterminal characteristics to determine
what has changed.

9.5.5.5 Output Abort
The Output Abort AST tells the control program that the terminal driver
has called the pseudoterminal ABORT OUTPUT routine. This routine is
called when the terminal driver wants to flush any outstanding output
data. The control program should flush any internally buffered data when
this AST is received.

9.5.5.6 Terminal Driver Read Events
Three special event types notify the control program when a terminal
read request starts and finishes. By default, the pseudoterminal does
not deliver the read notification ASTs associated with these events. The
PTD$SET_EVENT_NOTIFICATION routine must be used explicitly to
enable or disable their delivery.

• Start Read-Tells the control program that the terminal driver is
starting a read request. Some applications require this in order to
know when to start inputting a logged session script.

• Middle Read-Tells the control program that the terminal driver has
finished writing the prompt string if one was supplied.

• End Read-Tells the control program that the terminal driver has
finished a read request.

Once an event notification AST is enabled, it continues to be delivered
until it is canceled, or until the device is deleted. This characteristic allows
the control program to enable the AST once, thus greatly reducing the risk
of missing multiple rapid occurrences of an event. If the driver cannot
get sufficient resources to deliver the notification AST, that report is lost.

9-7

Pseudoterminal Driver
9.5 Pseudoterminal Functions

Only one AST per event is allowed, and attempts to specify multiple ASTs
result in use of the last one specified.

To enable or disable event notification, the control program uses the
PTD$SET_EVENT_NOTIFICATION routine, which is described in
Appendix C.

9.6 Pseudoterminal Driver Programming Example

9.6.1 Design Overview

9-8

Example 9-1 illustrates how to use the pseudoterminal. This section
begins with a brief overview of the example. The example itself briefly
discusses each module; the pseudocode for that module follows its
discussion.

The scenario chosen for this example is a simple terminal session logging
utility that uses most of the pseudoterminal capabilities. This example
also illustrates how to use the write-with-echo capability, which provides a
significant gain in performance.

The design approach writes the log record in a main loop that hibernates
when it has no work to do. The loop uses ASTs to read keystrokes from
the terminal, write to the pseudoterminal, and write data to the terminal.
When a block of characters is written to the terminal, that block is placed
into a queue of blocks to be written to the log file, and a wake request is
issued. Logging is stopped if you log out of the subprocess, if you enter
the stop logging character Ctrl\, or if a severe error occurs during data
processing. When any of these events occur, all outstanding log records
are written before the program exits.

One major design consideration is how flow control should be handled
either by attempting to enforce flow control, or by letting the terminal and
terminal driver handle it. In this example, the terminal and terminal
driver handle flow control; the driver sends XON, XOFF, or BELL
characters to the terminal as necessary.

One of the six I/O buffers is permanently reserved as the terminal read
buffer. This buffer is passed directly to the terminal read $QIO. This
eliminates having to move data that is read from the terminal into the
read buffer. The other five buffers are placed in a queue and are allocated
and deallocated as needed. This pool of buffers reserves the first two
longwords to be used as queue headers and traditional IOSBs. The third
longword and the I/O status longwords are used by the pseudoterminal
driver.

Pseudoterminal Driver
9.6 Pseudoterminal Driver Programming Example

Example 9-1 Sample Pseudocode for Pseudoterminal Driver Program

I*
** Main Routine
**
** Function: Intitializes the environment and then hibernates, waiting
** to be awakened. When awakened, the program checks to see whether it
** is exiting, or whether more log data is available. If more data is
** available, the data is appended to the current log record and checked
** to see whether a log record should be written. A log record is written
** either when maxbuf characters are in the log buffer,
** or when it finds a <CR><LF> character pair. The algorithm
** allows an unlimited number of <NULL> fill characters to occur
** between the <CR> and the <LF>. If the program is
** exiting, it closes the log file, deletes the pseudoterminal, resets the
** terminal, and exits.
*/
Initialize environments (This includes creating pseudoterminal, the log file

and starting up the subprocess.)

If (Initialization OK) Then
Do

while (I/O buffer to log)
Data size = number of bytes in I/O buff
For all data in I/O buffer

If (cr_seen) Then
If (current char == <LF>) Then

write current log buffer
reset er seen
point to start of log buff er

Else if (current char != <NULL>) Then
insert <CR> and current char into log buff er
move log buff er ptr over 2 characters
reset er seen

End if -
Else if (current character != <CR>) Then

insert character into log buff er
move log buff er ptr over 1 character

Else
set er seen

End if

If (log buffer ptr >= IOC$GW_MAX-48) Then
write log buffer
reset log buff er pointer
reset er seen

End if
Endloop
Free I/O buffer call free io buffers

Endwhile
If (not exiting) Then

Wait for more to do call SYS$HIBER
Endif

Until ((exiting) and (no I/O buffers to log))

(continued on next page)

9-9

Pseudoterminal Driver
9.6 Pseudoterminal Driver Programming Example

Example 9-1 (Cont.) Sample Pseudocode for Pseudoterminal Driver Program

close log file
If ((close failed) and (exit reason is SS$_NORMAL)) Then

set exit to status to failure reason
Endif
If (subprocess still running) Then

call SYS$FORCEX to run down the subprocess
Endif
call PTD$CANCEL to flush all pending pseudoterminal read requests
call SYS$CANCEL to flush all terminal requests
call PTD$DELETE to delete the pseudoterminal
If ((delete failed) and (exit reason is SS$_NORMAL)) Then

set exit to status to failure reason
Endif
reset terminal to startup condition using SYS$QIOW
If ((terminal reset failed) and (exit reason is SS$_NORMAL)) Then

exit to status to failure reason
Endif

Endif
call LIB$SIGNAL and report exit reason
Exit
/*
**
** Initialization Code
**
** Function: This routine sets the terminal characteristics, creates the
** pseudoterminal, starts up the subprocess, and opens the log file. If
** any of these steps fail, the program undoes any steps already done and
** returns to the main routine.
**
*/

read the maximum buffer size from IOC$GW_MAXBUF
Assign a channel to SYS$INPUT
If (assign ok) Then

Read the terminal characteristics from the terminal
If (read of terminal characteristics ok) Then

9-10

Open log file with maximum record size of IOC$GW_MAXBUF
If (open ok) Then

Create the pseudoterminal with characteristics of terminal
If (create ok) then

Place 4 of the buffers on the queue of free I/O buffers
Copy terminal characteristics and modify them to NOECHO and PASTHRU
Set the terminal characteristics use modified value
If (set ok) Then

Get device name of pseudoterminal use SYS$GETDVI
If (get ok) Then

Create subprocess
If (create ok) Then

Enable XON, XOFF, BELL, SET_LINE event notification ASTs
If (AST setup OK) Then

Call PTD$READ to start reading from the pseudoterminal
ASTADR = ft read ast
ASTPRM = buffer address
READBUF = I/O buffer + 8
READBUF LEN = 500

If (read ok) Then
Call SYS$QIO and read a single character from the

keyboard ASTADR = kbd read ast

(continued on next page)

Pseudoterminal Driver
9.6 Pseudoterminal Driver Programming Example

Example 9-1 (Cont.) Sample Pseudocode for Pseudoterminal Driver Program

If (read failed) Then
Call PTD$CANCEL to flush queued pseudoterminal read
Call PTD$DELETE to delete pseudoterminal
Reset terminal to original state
Close log file and delete it

Endif
Else

Call PTD$DELETE to delete pseudoterminal
Reset terminal to original state
Close log file and delete it

Endif
Else

Call PTD$DELETE to delete pseudoterminal
Reset terminal to original state
Close log file and delete it

Endif
Else

Call PTD$DELETE to delete pseudoterminal
Reset terminal to original state
Close log file and delete it

Endif
Else

Call PTD$DELETE to delete pseudoterminal
Reset terminal to original state
Close log file and delete it

Endif
Else

Call PTD$DELETE to delete pseudoterminal
Close log file and delete it

Endif
Else

Close log file and delete it
Endif

End if
Endif

Endif
/*
** kbd read ast
**
** Function: This routine is called every time data is read from the terminal.
** If the program is exiting, then the routine exits without restarting the
** read. The character read is checked to see if the terminate processing
** character Ctrl\ was entered. If the terminate processing character was
** entered, the exiting state is set and a SYS$WAKE is issued to start the
** main routine. Now an attempt is made to obtain an I/O buffer in which
** to store echoed output. If an I/O buffer is unavailable, a simple
** PTD$WRITE is issued; a PTD$WRITE with echo is issued if a buffer is
** available. If the write completes successfully, another read is issued
** to the keyboard.
**
*/

(continued on next page)

9-11

Pseudoterminal Driver
9.6 Pseudoterminal Driver Programming Example

Example 9-1 (Cont.) Sample Pseudocode for Pseudoterminal Driver Program

If (not exiting) Then
If (read ok) Then

Search input data for Ctrl\
Allocate a read buff er call allocate io buffer
If (got a buffer) Then

Call PTD$WRITE to write characters to pseudoterminal
ASTADR ft echo ast

Else

ASTPRM = allocated I/O buffer
WRTBUF = read I/O buffer
WRTBUF LEN = number of characters read
ECHOBUF = allocated I/O buff er
ECHOBUF LEN = 500

Call PTD$WRITE to write characters to pseudoterminal
WRTBUF = read I/O buffer
WRTBUF LEN = number of characters read

End if
If (write setup ok)

If ((write status is ok) or (write status is SS$ DATALOST))
Issue another single character read to terminal with

ASTADR = kbd_read_ast, with data going to read I/O buffer
If (read setup failed) Then

Set exit flag
Set exiting reason to SS$_NORMAL

Endif
Else

Set exit flag
Set exiting reason to SS$_NORMAL

Endif
Else

Set exit flag
Set exiting reason to SS$_NORMAL

End if
Else

Set exit flag
Set exiting reason to read failure status

End if
If (exiting) Then

Wake the mainline call SYS$WAKE
Endif

End if

9-12

(continued on next page)

Pseudoterminal Driver
9.6 Pseudoterminal Driver Programming Example

Example 9-1 (Cont.) Sample Pseudocode for Pseudoterminal Driver Program

/*
** terminal_output_ast
**
** Function: This routine is called every time an I/O buffer is written
** to the terminal. If the terminal write request completes successfully,
** it inserts the I/O buffer into the queue of I/O buffers to be logged.
** If the I/O buffer is the only entry on the queue, it issues a SYS$WAKE
** to start the main routine. To prevent spurious wake requests,
** SYS$WAKE is not issued if multiple entries are already on
** the queue. If a terminal write error occurs, the routine sets the
** exit flag and wakes the main routine.
**
*/
If (terminal write completed ok) Then

insert I/O buffer onto logging queue
If (this is only entry on queue) Then

wake the mainline call SYS$WAKE
Endif

Else
set exit flag
set exiting reason to terminal write error reason
wake the mainline call SYS$WAKE

Endif
/*
**
** ft read ast - -
**
** Function: This routine is called when a pseudoterminal read request
** completes. It writes the buffer to the terminal and attempts to start
** another read from the pseudoterminal. If the program is not exiting,
** this routine writes the buffer to the terminal and does not start another
** pseudoterminal read.
**
*I
If (not exiting)

If (Pseudoterminal read ok) Then
write buffer to the terminal ASTADR = terminal_output_ast
If (write setup ok) Then

Allocate another read buffer call allocate io buffer
If (got a buffer) Then

Call PTD$READ to restart reads from the pseudoterminal.
ASTADR = ft read ast
ASTPRM = buffer address
READBUF = I/0 buffer + 8
READBUF LEN = 500

If (read setup failed) Then
Set exit flag
Set exiting reason to read failure reason
Wake the mainline call SYS$WAKE

Endif
Else

Set read stopped flag
End if

Else
Set exit flag
Set exiting reason to terminal write failure reason
Wake the mainline call SYS$WAKE

Endif

(continued on next page)

9-13

Pseudoterminal Driver
9.6 Pseudoterminal Driver Programming Example

Example 9-1 (Cont.) Sample Pseudocode for Pseudoterminal Driver Program

Else
Set exit flag
Set exiting reason to terminal read failure reason
Wake the mainline call SYS$WAKE

Endif
Endif
I*
**
** ft echo ast - -
**
** Function: This routine is called if a write to the pseudoterminal used
** an ECHO buffer. If any data was echoed, the output is written to the
** terminal. If no data was echoed, .the I/O buffer is freed so it can be
** used later. If the program is exiting, this routine exits.
**
*/
If (not exiting) Then

If (ECHO buffer has data) Then
Write the buffer to the terminal with ASTADR terminal_output_ast
If (error setting up write) Then

Set exit flag
Set exiting reason to write failure reason
Wake mainline call SYS$WAKE

Endif
Else

Free I/O buffer call free io buffers
Endif

Endif
/*
** free io buffers
**
** Function: This routine places a free· I/O buffer on the queue of available
** I/O buffers. It also restarts any stopped read operations from the
** pseudoterminals. This routine disables AST delivery while it is running
** in order to synchronize reading and resetting the read stopped flag.
**
*/
If (not exiting) Then

Disable AST deliver using SYS$SETAST
If (Pseudoterminal reads not stopped) Then

Insert I/0 buffer on the interlocked queue of free I/O buffers
Else

Call PTD$READ to restart reads from the pseudoterminal.
ASTADR = ft read ast
ASTPRM = buffer address
READBUF = I/0 buffer + 8
READBUF LEN = 500

If (no error starting read) Then
Clear read stopped flag

Else
Set exit flag
Set exit reason to read setup reason

Endif
End if
Enable AST delivery using SYS$SETAST

Endif

9-14

(continued on next page)

Pseudoterminal Driver
9.6 Pseudoterminal Driver Programming Example

Example 9-1 (Cont.) Sample Pseudocode for Pseudoterminal Driver Program

/*
**
** allocate io buffer
**
** Function: This routine obtains a free I/O buffer from the queue of
** available I/O buffers. If the program is exiting, this routine
** returns an SS$_FORCEDEXIT error.
**
*/
If (not exiting) Then

remove a I/O buffer from the interlocked queue of I/O buffers
If (queue empty) Then

exit with reason LIB$_QUEWASEMP
else

exit with reason SS$_FORCEDEXIT
Endif
/*
** subprocess_exit
**
** Function: This routine is called when the subprocess has completed
** and exited. This routine checks whether the program is already exiting.
** If not, then the routine indicates that the program is exiting and wakes
** up the main program.
**
*/
If (not exiting) Then

indicate subprocess no longer running
set exit status to SS$ NORMAL
indicate exiting -
call SYS$WAKE to start up main loop

Endif
I*
** xon ast
**
** Function: This routine is called for the pseudoterminal driver to signal
** that it is ready to accept keyboard input. The routir.e attempts to send
** an XON character to the terminal by sending XON DCl using SYS$QIO.
** If the attempt fails, it is not retried.
**
*/
If (not exiting) Then

call SYS$QIO to send a <DCl> character to the terminal
Endif
/*
** bell ast
**
** Function: This routine is called when the pseudoterminal driver wants
** to warn the user to stop sending keyboard data. The routine attempts
** to ring the terminal bell by sending the BELL character to the terminal
** using SYS$QIO. If the attempt fails, it is not retried.
**
*/
If (not exiting) Then

call SYS$QIO to send a <BELL> character to the terminal
Endif

(continued on next page)

9-15

Pseudoterminal Driver
9.6 Pseudoterminal Driver Programming Example

Example 9-1 (Cont.) Sample Pseudocode for Pseudoterminal Driver Program

/*
** xoff ast
**
** Function: This routine is called when the pseudoterminal driver wants to
** signal that it will stop accepting keyboard input. The routine attempts
** to send an XOFF character to the terminal by sending XOFF DC3 to the
** terminal using SYS$QIO. If the attempt fails, it is not retried.
**
*/
If (not exiting) Then

call SYS$QIO to send a <DC3> character to the terminal
Endif
/*
** set line ast - -
**
** Function: This routine is called when the pseudoterminal device
** characteristics change. The routine reads the current pseudoterminal
** characteristics, changes the characteristics to set PASTHRU and NOECHO,
** and applies the characteristics to the input terminal. If the attempt
** to alter the terminal characteristics fails, it is not retried.
**
*/
If (not exiting) Then

call SYS$QIOW to read the pseudoterminals characteristics
If (not error) Then

Set the alter the just read characteristics to have PASTHRU and NOECHO
attributes
call SYS$QIO to set the terminal characteristics.

Endif
Endif

9-16

10

10.1

Shadow-Set Virtual Unit Driver

Introduction

This chapter describes the use of the shadow-set virtual unit driver
(SHDRIVER) and provides an overview of VMS Phase II Volume
Shadowing. For more detailed information on VMS Phase II Volume
Shadowing, see the VMS Volume Shadowing Manual.

VMS Phase II Volume Shadowing allows shadowing on the same
configurations as phase I volume shadowing described in the VAX Volume
Shadowing Manual. In addition, phase II supports clusterwide shadowing
of all MSCP (mass storage control protocol) compliant DSA (DIGITAL
Storage Architecture) disks that have the same physical geometry, on a
single system or located anywhere in a VAXcluster system.

Phase II volume shadowing supports clusterwide shadowing of all DSA
devices. Phase II is not limited to HSC (hierarchical storage controller)
disks, but extends volume shadowing capabilities to all DSA disks
including those on local adapters, all DSSI (DIGITAL Small Systems
Interconnect) RF-series disk devices on any VAX computer, all interfaces
(computer interconnect [CI], Ethernet, mixed-interconnect), and across
VMS MSCP servers.

SHDRIVER is the driver that controls the virtual unit functions described
in Section 10.4.

Like phase I shadowing, any given phase II shadow set can have a
maximum of three shadow set members. Phase II shadowing also
provides more flexibility regarding shadow set membership because phase
II shadowing does not limit the number of shadow sets or shadow set
members for each controller or pair of controllers.

Note: Phase II volume shadowing places no restrictions on the total
number of shadow set members; however, interconnect or adapter
bandwidths during shadow-set copy operations might force
shadow set limits.

Other phase II volume shadowing features include:

• Controller independence. Shadow set members can be located on any
node in a VAXcluster system that has volume shadowing enabled.

• Clusterwide, homogeneous shadow-set maintenance functions.

• Ability to survive controller, disk, and media failures transparently.

• Shadowing functions do not affect application I/O.

• Coexistence with phase I volume shadowing. Shadow sets are
differentiated by virtual-unit name format.

10-1

10.2

10.3

10.3.1

Shadow-Set Virtual Unit Driver
10.2 Phase I and Phase II Compatibility

Phase I and Phase II Compatibility

Configurations

You can use both phase I and phase II shadowing on a standalone system
or a VAXcluster system. For example, you can use phase I shadowing on
one node and phase II shadowing on another node. Note, however, that
members in a given shadow set must be either phase I or phase II; they
cannot be of mixed types. Also, using two types of shadowing on the same
system complicates system management because:

• The method of naming virtual units differs between the phase I and
phase II products.

• The SYSGEN parameter settings for a given node must be set to the
shadowing mode you choose to use for that node.

Although the underlying design of phase II volume shadowing is different
from that of phase I, the user interface for the two shadowing products
is very similar. The VMS Mount Utility commands, SHOW commands,
and system services for both shadowing products are very similar, and
application I/O semantics for shadow set manipulation is the same for
both. Phase II shadowing supports a new MOUNT qualifier that is useful
for automating the rebuilding of former shadow sets.

For discussions of phase II SYSGEN parameters, booting, system
upgrades, and migration and compatibility considerations, see the VMS
Volume Shadowing Manual.

VMS Phase II Volume Shadowing does not depend on specific hardware
in order to operate. All shadowing functions can be performed on VAX
computers running the VMS operating system. Shadowing capabilities
are supported on all VMS MSCP devices, including RF devices, and on all
types of DSA-compliant disks. Shadow set members must have the same
physical geometry (that is, the same number of identical logical blocks
[LBN s]), and members can be located anywhere in a VAXcluster system.

Processors and Controllers

10-2

Volume shadowing requires a minimum of one VAX computer, one MSCP
compliant mass storage controller, and at least two DSA disk drives and
volumes.

Digital provides shadowing capabilities on:

• All DSA and MSCP-compliant drives:

On the same local controller

On different local controllers

On controllers local to different VMS hosts and to VMS MSCP
served to the VAXcluster system over CI, Ethernet, DSSI, and
mixed-interconnect configurations

Shadow-Set Virtual Unit Driver
10.3 Configurations

• DSA- and MSCP-compliant integrated storage elements (ISEs) on the
same DSSI as the VMS hosts

• DSA- and MSCP-compliant ISEs that are VMS MSCP served to the
VAXcluster system on the same or different DSSis

• All DSA disks having the same physical geometry

• All interfaces for DSA devices

Devices that cannot be shadowed include:

•
•

Small Comput.er System Interface (SCSI) devices

MicroVAX 2000 RD disks

• Pre-DSA disk devices (such as MASSBUS, RK07, RL02, RP06, and
RP07)

Table 10-1 lists the hardware supported by VMS Volume Shadowing.

Table 10-1 Hardware Devices That Support Volume Shadowing

Disk Controllers and Adapters

HSC40,HSC50, HSC70
KDASO

KDBSO

KDM70
RQDX2, RQDX31

UDASO

Disks

ESE20
RAGO, RA70, RASO, RA81, RA82, RA90, RA92

RD51, RD52, RD53, RD54 (when connected to RQDX)

RF30, RF31, RF71, RF72

1 Shadow set members should be on different RQDX controllers.

10.3.2 Compatible Disk Drives and Volumes
Volume shadowing requires compatibility among the physical units (disk
drives and volumes) that form a shadow set. For instance:

• Units must have the same geometry, including the same number of
sectors per track, the same number of tracks per cylinder, and the
same number of cylinders per volume.

• Units and controllers must conform to DSA and MSCP.

10-3

10.4

Shadow-Set Virtual Unit Driver
10.3 Configurations

Driver Functions

• Units should not have hardware write protection enabled. Hardware
write protection stops the volume shadowing software from
maintaining identical volumes.

This section describes the major virtual unit functions supported by
SHDRIVER. In addition to the virtual unit functions described in this
section, SHDRIVER supports all VMS disk functions. SHDRIVER receives
QIO operations from application programs and is a client of the disk class
drivers DUDRIVER and DSDRIVER. Applications access the shadow set
as they would access a standard VMS disk.

Table 10-2 summarizes the major SHDRIVER functions. The subsections
that follow describe these functions in detail.

Table 10-2 Functions of the Shadow Set Virtual Unit Driver

Function Description

CRESHAD Creates a virtual unit

ADDSHAD Evaluates a physical member and adds members

COPYSHAD Triggers and controls copy operations

REMSHAD Removes a physical member

AVAILABLE Virtual unit dissolution

SENSECHAR Verifies shadow set status

READ Directs 1/0 to a physical member

WRITE Propagates a write operation to all physical members

10.4.1 CRESHAD

10-4

The CRESHAD function creates a virtual unit, and establishes a
clusterwide lock. This function is internal and can be issued only by
the MOUNT utility, from either DCL or the $MOUNT system service.

The function code is:

IO$_CRESHAD

IO$_CRESHAD takes the function modifier IO$M_EXISTS. When
I0$M_EXISTS is specified, the virtual unit exists in the cluster and
IO$_CRESHAD creates an identical, multimember set. If IO$M_EXISTS
is not set, the shadow set does not exist yet and IO$_CRESHAD creates a
single member shadow set.

I0$_CRESHAD also validates the shadow-set virtual unit, enables
distributed locking protocols, and creates or updates the unit control
block (UCB) and shadow set (SHAD) structures for the virtual unit.

10.4.2 ADDSHAD

Shadow-Set Virtual Unit Driver
10.4 Driver Functions

The following are the device-dependent or function-dependent arguments
for I0$_CRESHAD. (Note that these arguments are internal; they cannot
be accessed by user programs.)

• Pl-The address of the shadow-set virtual unit name string, or zero.

• P2-If Pl does not equal zero, this parameter is the size of the shadow
set virtual unit name string. If Pl equals zero, this parameter is the
unit number of the shadow-set virtual unit.

• P3-The storage control block (SCB) logical block number (LBN) from
the first member listed in the MOUNT command.

I0$_CRESHAD can return the following status codes:

• SS$_NORMAL-Normal successful completion.

• SS$_ACCVIO-An access violation occurred because the shadow-set
virtual unit name string is not readable.

• SS$_INSFMEM-N ot enough memory exists to allocate the UCB or
SHAD structure.

• SS$_IVDEVNAM-The unit number for the shadow set virtual unit is
greater than 9999.

• SS$_INCSHAMEM-The specified shadow set member cannot be a
member of the existing shadow set because it is the quorum disk or is
of incompatible geometry.

• SS$_DUPINIT-The specified shadow set already exists.

The ADDSHAD function is an internal control function that validates
the channel number and unit control block (UCB) address for a proposed
shadow-set virtual unit member. This function also validates the specified
copy-type information for the shadow-set virtual unit member and
performs a clusterwide update. IO$_ADDSHAD then adds the member to
the shadow set by updating the disk data structure and notifying other
shadow set members.

The function code is:

IO$_ADDSHAD

I0$_ADDSHAD takes no function modifiers.

The following are the device-dependent or function-dependent arguments
for IO$_ADDSHAD:

• P2-The channel number assigned to the proposed shadow set member

• P3-The copy type (full or merge) of the member

IO$_ADDSHAD can return the following status codes:

• SS$_NORMAL-Normal successful completion.

• SS$_BADPARAM-The UCB is not a virtual unit UCB.

10-5

Shadow-Set Virtual Unit Driver
10.4 Driver Functions

10.4.3 COPYSHAD

10-6

• SS$_1LLIOFUNC-The unit is not a shadow set virtual unit, or P2
points to a shadow set virtual unit.

• SS$_NOPRIV-The user has no access to the channel specified in P2.

• SS$_IVCHAN-The channel number specified in P2 is invalid.

• SS$_IVMODE-The copy-type mode specified in P3 is invalid.

• SS$_INSFMEM-Insufficient memory is available to allocate the
shadow set member VCB, and resource wait mode is disabled.

• SS$_INCSHAMEM-The physical unit cannot be added to the shadow
set for one of the following reasons:

The shadow set is already fully populated.

The device being added is not a VMS MSCP device.

The geometry or hardware properties of the physical unit do not
match those of the other shadow set members.

The proposed shadow set member is the quorum disk.

The physical unit is already a member of another shadow set.

The COPYSHAD function triggers and controls copy operations. It should
be issued only by the MOUNT utility or the shadow server process.

The function code is:

10$_COPYSHAD

10$_COPYSHAD takes the following function modifiers:

• 10$M_COPYOP-Requests a copy operation. This modifier is issued
by the shadow server when the server requests a copy operation.

• 10$M_STEPOVER-Provides for protection of the volume storage
control block (SCB) during copy operations.

The following are the device-dependent or function-dependent arguments
for 10$_COPYSHAD:

• P2-The request. }?yt~ count

• P3-The starting LBN

• P4-The copy mode

10$_COPYSHAD can return an SS$_ILLIOFUNC status for one of the
following reasons:

• A COPY 1/0 command was issued by a process other than the shadow
server.

• Another copy operation was attempted while a copy operation was
already in progress.

10.4.4 REMSHAD

Shadow-Set Virtual Unit Driver
10.4 Driver Functions

• A COPY I/O command was issued while a copy operation was not in
progress.

Figure 10-1 illustrates the I/O status block returned for copy operations.

Figure 10-1 1/0 Status Block for Copy Operations

Copy Byte Count Status

Stream Copy LBN

ZK-9699-GE

IO$_COPYSHAD receives copy initiation I/O request packets (IRPs) during
a copy operation. IO$_COPYSHAD then performs the full or merge copy
operation; upon completion, IO$_COPYSHAD receives I0$_COPYSHAD
IRPs from the shadow server. A SS$_RESET message is returned if a
copy-state reconciliation is needed because the copy initialization process
has triggered a state change. The shadow server then issues an
IO$_SENSECHAR function (see Section 10.4.6).

The REMSHAD function removes a device from a shadow set virtual unit.
The REMSHAD function can be issued only by the $DISMOUNT system
service to a physical device.

The function code is:

I0$_REMSHAD

The IO$_REMSHAD function takes no modifiers.

I0$_REMSHAD verifies that the unit to be removed is a valid physical
volume and a member of a shadow set. If either of these conditions
is not true, SH$REMSHAD_FDT returns an SS$_ILLIOFUNC status.
IQ$_REMSHAD then removes the specified device from a shadow set by
breaking the links between the device UCB and the other shadow-set
data structures; clears device status fields; and removes references to the
device from the device array in the SHAD structure. IO$_REMSHAD also
updates the SCBs of disks that remain in the shadow set after changes are
made to the local data structures.

If the shadow set has too few members to remove one, a SS$_BADPARAM
status code is returned. Otherwise, SH$START_REMSHAD returns
SS$_NORMAL to indicate a normal successful completion. Upon
successful completion, I0$_REMSHAD notifies the remaining shadow
set members.

10-7

Shadow-Set Virtual Unit Driver
10.4 Driver Functions

10.4.5 AVAILABLE

10.4.6 SENSECHAR

10-8

The AVAILABLE function makes a virtual unit available by eliminating
local control of the unit. AVAILABLE also makes the necessary changes to
the local shadowing I/O database for disassembling the shadow set on the
node, and releases cluster shadowing locks.

The function code is:

IO$_AVAILABLE

The IO$_AVAILABLE function takes no modifiers.

IO$_AVAILABLE first unloads the FDT (function decision table) for
shadowing. If the specified unit is a member of a shadow set, or if
IO$V _DISSOLVE is present for a physical unit, IO$_AVAILABLE returns
an SS$_ILLIOFUNC status code. IO$_AVAILABLE then makes all
changes to the local shadowing I/O database that are necessary to
dismount the shadow set on the node.

The SENSECHAR function verifies the existence and membership status
of a shadow set.

The function code is:

I0$_SENSECHAR

This function code takes the following function modifiers:

• IO$M_SHADOW

• IO$M_COPYOP

When the IO$M_SHADOW modifier is specified, the IO$_SENSECHAR
verifies the presence of a properly prepared VCB, initializes the VCB
if necessary, and passes the request to the driver start I/O routine. If
the IO$M_SHADOW modifier is not specified, the routine returns to the
FDT processing loop. An SS$_BADPARAM status code is returned if the
shadow-set virtual unit VCB is not present or is set up incorrectly.

IO$_SENSECHAR processing then begins. If specified, the modifiers
IO$M_SHADOW and IO$M_COPYOP are used by the shadow server
to determine whether or not to do any more copy operations before
deallocating its resources.

IO$_SENSECHAR then ensures that the VCB address information in the
SHAD data structure is up to date.

Finally, IO$_SENSECHAR determines whether any copy requests were
previously suspended. A status code of SS$_NORMAL indicates that no
copy operations were suspended. A status code of SS$_RESET indicates
that copy operations are to continue; the LBN and mode data are supplied
in the I/O status block, as shown in Figure 10-2.

Shadow-Set Virtual Unit Driver
10.4 Driver Functions

Figure 10-2 1/0 Status Block for Copy Information

New Copy Mode SS$_RESET

New Copy LBN

ZK-9698-GE

10.4.7 Read and Write Functions

10.5 Error Processing

With just minor changes, the read and write functions for SHDRIVER
operate the same as for the disk class driver (see Sections 3.4.1 and 3.4.2).

During an SHDRIVER read operation, the VAX host directs the read to
the member volume with the shortest path.

During a write operation, SHDRIVER directs the write to each member
volume. The write operations for each member volume usually proceed
in parallel; the virtual unit write operation terminates when all writes
have completed. The write function for SHDRIVER takes the IO$M_FC_
VUEX function modifier; this modifier should not be used by application
programs.

The read and write SHDRIVER functions, as well as all user functions, are
issued by user programs. All other SHDRIVER functions are invoked by
MOUNT and DISMOUNT commands, or the $MOUNT and $DISMOUNT
system services.

Shadow set recovery and repair are handled by volume processing, which
replaces mount verification for shadow sets. The main difference in phase
II shadowing is that membership failure decisions are made by the VAX
hosts. Device errors that result in inaccessibility of physical member units
first utilize the class driver's connection walking algorithm. If that fails, a
local decision is made on the shadow set membership. The rules are:

• If some, but not all, members of the set are accessible, then the local
node sequentially adjusts the membership and notifies the other hosts.

• If no members are accessible, no modifications to the set membership
are made.

There are two types of volume processing: active and passive. Active
volume processing handles error processing on a local node. Triggered
by a failed I/O operation, active volume processing also controls mount
verification functions, member removal, and failover. Passive volume
processing is triggered by lock messages or by a cluster event. Passive
volume processing revalidates shadow set membership, ensures that the
shadow set reflects changes made outside the shadow set, and handles the
following functions:

• Member additions from other nodes

10-9

Shadow-Set Virtual Unit Driver
10.5 Error Processing

• Member removals from other nodes

• A new node mounting the shadow set

• A node dismounting the shadow set

• A system crash on a node that has the shadow set mounted

For more information, see the VMS Volume Shadowing Manual.

10-10

11 Using the VMS Generic SCSI Class Driver

This chapter describes the use of the VMS Generic Small Computer
Systems Interface (SCSI) class driver.

11 .1 Overview of SCSI
The American National Standard for information systems-Small
Computer System Interface-2 (SCSI-2) specification defines mechanical,
electrical and functional requirements for connecting small computers to
a wide variety of intelligent devices, such as rigid disks, flexible disks,
magnetic tape devices, printers, optical disks, and scanners. It specifies
standard electrical bus signals, timing, and protocol, as well as a standard
packet interface for sending commands to devices on the SCSI bus.

Certain VAXstation and MicroVAX systems employ the SCSI bus as an
I/O bus. For these systems, Digital offers SCSI-compliant disk and tape
drives, such as the RZ55 300MB read/write disk, the RRD40 600MB
compact disk, and the TZK50 95MB streaming tape drive. The VMS
operating system also allows non-Digital-supplied devices including disk
drives, tape drives, and scanners to be connected to the SCSI bus of such a
system.

SCSI has been widely adopted by manufacturers for a variety of peripheral
devices. However, because the ANSI SCSI standard is broad in scope, not
all devices that implement its specifications can fully interrelate on the
bus. Digital fully supports SCSI-compliant equipment sold or supplied
by Digital. Proper operation of products not sold or supplied by Digital
cannot be assured.

For more information, refer to the following documents:

• American National Standard for Information Systems-Small
Computer System Interface-2 (SCSI-2) specification (X3T9.2/86-109)

The SCSI-2 specification is a draft of a proposed standard. Until it
is finally approved, copies of this document may be purchased from:
Global Engineering Documents, 2805 McGaw, Irvine, California 92714,
United States; or (800) 854-7179 or (714) 261-1455. Please refer to
document X3.131-198X.

• American National Standard for Information Systems-Small
Computer System Interface specification (X3.131-1986)

Copies of this document may be obtained from: American National
Standards Institute, Inc., 1430 Broadway, New York, New York, 10018.
This document is now known as the SCSI-1 standard.

11-1

11.2

11.3

Using the VMS Generic SCSI Class Driver
11.1 Overview of SCSI

Digital publishes two additional documents to help third-party vendors
prepare SCSI peripherals and peripheral software for use with Digital's
workstations and MicroVAX systems.

• The Small Computer System Interface: An Overview
(EK-SCSISOV-001) provides a general description of Digital's SCSI
third-party support program.

• The Small Computer System Interface: A Developer's Guide
(EK.-SCSIS-SP-001) presents the details of Digital's implementation
of SCSI within its operating systems.

VMS SCSI Class/Port Architecture
The VMS operating system employs a class/port driver architecture to
communicate with devices on the SCSI bus. The class/port design allows
the responsibilities for communication between the operating system and
the device to be cleanly divided between two separate driver modules (see
Figure 11-1).

The SCSI port driver transmits and receives SCSI commands and data. It
knows the details of transmitting data from the local processor's SCSI port
hardware across the SCSI bus. Although it understands SCSI bus phases,
protocol, and timing, it has no knowledge of which SCSI commands the
device supports, what status messages it returns, or the format of the
packets in which this information is delivered. Strictly speaking, the port
driver is a communications path. When directed by a SCSI class driver,
the port driver forwards commands and data from the class driver onto
the SCSI bus to the device. On any given MicroVAX/VAXstation system,
a single SCSI port driver handles bus-level communications for all SCSI
class drivers that may exist on the system.

The SCSI class driver acts as an interface between the user and the SCSI
port, translating an I/O function as specified in a user's $QIO request
to a SCSI command targeted to a device on the SCSI bus. Although the
class driver knows about SCSI command descriptor buffers, status codes,
and data, it has no knowledge of underlying bus protocols or hardware,
command transmission, bus phases, timing, or messages. A single class
driver can run on any given MicroVAX/VAXstation system, in conjunction
with the SCSI port driver that supports that system. The VMS operating
system supplies a standard SCSI disk class driver and a standard SCSI
tape class driver to support its disk and tape SCSI devices.

Overview of the VMS Generic SCSI Class Driver

11-2

The VMS generic SCSI class driver provides a mechanism by which an
application program can control a non-Digital-supplied SCSI device that
cannot be controlled by the standard VMS disk and tape class drivers.
By means of a Queue I/O Request ($QIO) system service call, a program
can pass to the generic SCSI class driver a preformatted SCSI command
descriptor block. The generic SCSI class driver, in conjunction with the

Using the VMS Generic SCSI Class Driver
11.3 Overview of the VMS Generic SCSI Class Driver

Figure 11-1 VMS SCSI Class/Port Interface

$010

,,

Class

Device-Level Operations
Driver

• Handles SCSI commands
• Handles SCSI status

Bus-Level Operations

,,
• Handles SCSI phases and timing l SCSI Port Interface J
• Handles SCSI messages
• Handles data movement •

Port
Driver

t_

Port Hardware

ZK-1366A-G E

standard VMS SCSI port driver, delivers this SCSI command to the device,
manages any transfer of data from the device to a user buffer, and returns
SCSI status to the application.

In effect, an application using the generic SCSI class driver implements
details of device control usually managed within device driver code.
The programmer of such an application must understand which SCSI
commands the device supports and which SCSI status values the device
returns. The programmer must also be aware of the device's timeout
requirements, data transfer capabilities, and command retry behavior.

The application program sets up the characteristics of the connection the
generic SCSI class driver uses when delivering commands to, exchanging
data with, and receiving status from the device. The program associates
each I/O operation the device can perform with a specific SCSI command.
When it receives a request for a particular operation, the application

11-3

Using the VMS Generic SCSI Class Driver
11.3 Overview of the VMS Generic SCSI Class Driver

11-4

program creates the specific command descriptor block that, when passed
to the device, causes it to perform that operation.

The application initiates all transactions to the SCSI device by means of
a $QIO call to the generic SCSI class driver, supplying the address and
length of the SCSI command descriptor block, plus the parameters of any
data transfer operation, in the call. When the transaction completes and
the application program regains control, it interprets the returned status
value, processes any returned data, and services any failure. To avoid
conflicts with other applications accessing the same device, an application
may need to explicitly allocate the device.

Because the generic SCSI class driver has no knowledge of specific device
errors, it neither logs device errors nor implements error recovery. An
application using the driver must manage device-specific errors itself. To
service an error returned on a single transaction, the application must
issue additional $QIO requests and initiate further transactions to the
device. If more precise or more efficient error recovery is required for a
device, the developer should consider writing a third-party SCSI class
driver, as described in VMS Device Support Manual. A third-party SCSI
class driver can log errors associated with device activity by using the
method described in the VMS Device Support Manual.

A third-party class driver is the only means of supporting devices that
themselves generate transactions on the SCSI bus, such as notification
of a device selection event to the host processor. See the description
of asynchronous event notification (AEN) in the VMS Device Support
Manual.

Figure 11-2 illustrates the flow of a $QIO request through the generic
SCSI class driver and the port driver.

When direct access to a target device on the SCSI bus is required,
the generic SCSI class driver is loaded for that device, as described
in Section 11.6. An application program using the generic class driver
performs the following tasks to issue a command to the target device:

1 Calls the Assign I/O Channel ($ASSIGN) system service to assign a
channel to the generic SCSI class driver, and allocate the device for
the application's exclusive use

2 Formats a SCSI command descriptor block

3 Formats any data to be transferred to the device

4 Calls the Queue I/O Request ($QIO) system service to request the
generic SCSI class driver to send the SCSI command descriptor block
to the port driver

5 Upon completion of the I/O request, interprets the SCSI status byte
and any data returned from the target device

Using the VMS Generic SCSI Class Driver
11.3 Overview of the VMS Generic SCSI Class Driver

Figure 11-2 Generic SCSI Class Driver Flow

Class

Port

User
Interface

Application
Program

$010

GKDRIVER

SCSI Port Interface

Port
Driver

Port Hardware

ZK-1370A-GE

11-5

11.4

11.5

Using the VMS Generic SCSI Class Driver
11.3 Overview of the VMS Generic SCSI Class Driver

These operations are described in subsequent sections.

Note: Because incorrect or malicious use of the generic SCSI class
driver can result in SCSI bus hangs and lead to SCSI bus resets,
DIAGNOSE and PHY_IO or LOG_IO privileges are required to
access the driver. An application program can be designed in such
a way as to filter user 1/0 requests, thus allowing nonprivileged
users access to some device functions.

Accessing the VMS Generic SCSI Class Driver
Interactive commands and procedure calls can use the VMS generic SCSI
class driver to access devices on the SCSI bus. However, it is unlikely that
a user application would access a device on the SCSI bus by directly using
the $QIO interface of the generic SCSI class driver. First of all, any user
process directly using the $QIO interface would require DIAGNOSE and
PHY_IO or LOG_IO privileges. Under normal circumstances, it would
be a system security risk to grant DIAGNOSE and PHY_IO or LOG_IO
privileges to many system users. Secondly, it would be cumbersome for
end users of the device to identify, format, and issue SCSI commands to
the device. Rather, it would be more efficient to develop an interface that
hides these details.

A utility program, installed with the DIAGNOSE and PHY_IO or LOG_IO
privileges, can provide nonprivileged users with a command line interface
to a SCSI device. The utility translates interactive commands provided
by the user into the appropriate set of SCSI commands and sends them
to the device using the $QIO interface provided by the generic SCSI class
driver. The utility checks user commands to ensure that only valid SCSI
commands are sent to the device. See the Guide to VMS Programming
Resources and the VMS Install Utility Manual for information about
installing images with privileges.

A privileged shareable image can provide system applications with a
procedure interface to a SCSI device. The image contains a set of
procedures that translate operations specified by the caller into the
appropriate set of SCSI commands. The SCSI commands are sent to the
device through the $QIO interface of the generic SCSI class driver. The
privileged shareable image checks its caller's parameters to ensure that
only valid SCSI commands are sent to the device. See the Introduction to
VMS System Services for information about creating shareable images.

SCSI Port Features Under Application Control

11-6

The standard VMS SCSI port driver provides mechanisms by which the
generic SCSI class driver can control the nature of data transfers and
command transmission across the SCSI bus. An application uses the $QIO
interface to tailor these mechanisms to the specific device it supports.
Among the features under application program control are the following:

• Data transfer mode

• Disconnection and reselection

• Command retry

11.5.1

Using the VMS Generic SCSI Class Driver
11.5 SCSI Port Features Under Application Control

• Command timeouts

The following sections discuss these features.

Setting the Data Transfer Mode
The SCSI bus defines two data transfer modes, asynchronous and
synchronous. In asynchronous mode, for each REQ from a target there is
an ACK from the host prior to the next REQ from the target. Synchronous
mode allows higher data transfer rates by allowing a pipelined data
transfer mechanism where, for short bursts (defined by the REQ-ACK
offset), the target can pipeline data to an initiator without waiting for the
initiator to respond.

Whether or not a port or a target device allows synchronous data
transfers, it is harmless for the program to set up the connection to
use such transfers. If synchronous mode is not supported, the port driver
automatically uses asynchronous mode.

To use synchronous mode in a transfer, a programmer using the generic
SCSI class driver must ensure that both the SCSI port and the SCSI
device involved in the transfer support synchronous mode. The SCSI
port of the VAXstation 3520/3540 system allows both synchronous and
asynchronous transfers, whereas that of MicroVAXNAXstation 3100
systems supports only asynchronous transfers.

To set up a connection to use synchronous data transfer mode, a program
using the generic SCSI class driver sets the syn bit in the flags field of
the generic SCSI descriptor, the address of which is passed to the driver in
the pl argument to the $QIO request.

11.5.2 Enabling Disconnection and Reselection
The ANSI SCSI specification defines a disconnection facility that allows
a target device to yield ownership of the SCSI bus while seeking or
performing other time-consuming operations. When a target disconnects
from the SCSI bus, it sends a sequence of messages to the initiator that
cause it to save the state of the I/O transfer in progress. Once this is done,
the target releases the SCSI bus. When the target is ready to complete
the operation, it reselects the initiator and sends to it another sequence
of messages. This sequence uniquely identifies the target and allows the
initiator to restore the context of the suspended I/O operation.

Whether disconnection should be enabled or disabled on a given connection
depends on the nature and capabilities of the device involved in the
transfer, as well as on the configuration of the system. In configurations
where there is a slow device present on the SCSI bus, enabling
disconnection on connections that transfer data to the device can increase
bus throughput. By contrast, systems where most of the I/O activity
is directed towards a single device for long intervals can benefit from
disabling disconnection. By disabling disconnection when there is no
contention on the SCSI bus, port drivers can increase throughput and
decrease the processor overhead for each I/O request.

11-7

Using the VMS Generic SCSI Class Driver
11.5 SCSI .. Port Features Under Application Control

By default, the VMS class/port interface disables the disconnect facility on
a connection. To enable disconnection, an application program using the
generic SCSI class driver sets the dis bit of the flags field of the generic
SCSI descriptor, the address of which is passed to the driver in the pl
argument to the $QIO call.

11.5.3 Disabling Command Retry
The SCSI port driver implements a command retry mechanism, which is
enabled on a given connection by default.

When the command retry mechanism is enabled, the port driver retries
up to three times any I/O operation that fails during the COMMAND,
Message, Data, or STATUS phases. For instance, if the port driver detects
a parity error during the Data phase, it aborts the I/O operation, logs
an error, and retries the I/O operation. It repeats this sequence twice
more, if necessary. If the 1/0 operation completes successfully during a
retry attempt, the port driver returns success status to the class driver.
However, if all retry attempts fail, the port driver returns failure status to
the class driver.

An application may .need to disable the command retry mechanism under
certain circumstances. For example, repeated execution of a command on
a sequential device may produce different results than are intended by a
single command request. A tape drive could perform a partial write and
then repeat the write without resetting the tape position.

An application program using the generic SCSI class driver can disable
the command retry mechanism by setting the dpr bit of the flags field of
the generic SCSI descriptor, the address of which is passed to the driver in
the pl argument to the $QIO request.

11.5.4 Setting Command Timeouts

11-8

The SCSI port driver implements several timeout mechanisms, some
governed by the ANSI SCSI specification and others required by the VMS
operating system. The timeouts required by the VMS operating system ·
include the following:

Timeout Description

Phase change timeout Maximum number of seconds for a target to change the
SCSI bus phase or complete a data transfer. (This value is
also known as the OMA timeout.)

Upon sending the last command byte, the port driver waits
this many seconds for the target to change the bus phase
lines and assert REQ (indicating a new phase). Or, if the
target enters the DATA IN or DATA OUT phase, the transfer
must be completed within this interval.

11.6

Using the VMS Generic SCSI Class Driver
11.5 SCSI Port Features Under Application Control

Timeout Description

Disconnect timeout Maximum number of seconds, from. the time the initiator
receives the DISCONNECT message, for a target to
reselect the initiator so that it can proceed with the
disconnected 1/0 transfer.

An application program using the generic SCSI class driver is responsible
for maintaining both of these timeout values. It has the following options:

• Accepting a connection's default value. The default value for both
timeouts is 20 seconds.

• Altering the connection's default value. To modify the default values,
the class driver specifies nonzero values for the phase change
timeout and disconnect timeout fields of the generic SCSI
descriptor, the address of which is passed to the driver in the pl
argument to the $QIO system service call.

Configuring a Device Using the Generic Class Driver
The System Generation Utility (SYSGEN) loads the generic SCSI class
driver into system virtual memory, creates additional data structures for
the device unit, and calls the driver's controller initialization routine
and unit initialization routine. SYSGEN automatically loads and
autoconfigures the SCSI port driver at system initialization. As part of
autoconfiguration, SYSGEN polls each device on each SCSI bus. If the
device identifies itself as a direct-access device, direct-access CDROM
device, or flexible disk device, SYSGEN automatically loads the VMS disk
class driver (DKDRIVER); if the device identifies itself as a sequential
access device, SYSGEN automatically loads the VMS tape class driver
(MKDRIVER). If the autoconfiguration facility does not recognize the type
of the SCSI device, it loads no driver.

Consequently, if a non-Digital-supplied SCSI device requires that the
generic class driver be loaded, it must be configured by an explicit
SYSGEN CONNECT command, as follows:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT GKpdOu /NOADAPTER

In this command, GK is the device mnemonic for the generic SCSI class
driver (GKDRIVER); p represents the SCSI port ID (for instance, the
controller ID A or B); d represents the SCSI device ID (a digit from 0 to 7);
0 signifies the digit zero; and u represents the SCSI logical unit number (a
digit from 0 to 7).

Multiple devices residing on any SCSI bus in the system can share
GKDRIVER as a class driver, as long as a SYSGEN CONNECT command
is issued for each target device that requires the driver.

Because just one connection can exist through the SCSI port driver to each
target, the generic class driver cannot be used for a target if a different
SCSI class driver is already connected to that target. For example, if the
SCSI disk class driver has a connection to device ID 2 on the SCSI bus
identified by SCSI port IDB (DKB200), the generic class driver cannot be

11-9

Using the· VMS Generic SCSI Class Driver
11.6 Configuring a Device Using the Generic Class Driver

used to communicate with this disk. An attempt to connect GKDRIVER
for this target results in GKB200 being placed off line.

11.6.1 Disabling the Autoconfiguration of a SCSI Device
Note that, in special cases, you may need to prevent SYSGEN's
autoconfiguration facility from loading the VMS disk or tape class driver
for a device with a specific port ID and device ID. This would be the case
if a non-Digital-supplied SCSI device should identify itself as either a
random-access or sequential-access device and were to be controlled by the
generic SCSI class driver.

To disable the loading of a VMS disk or tape driver for any given device ID,
VMS Version 5.4 defines the special SYSGEN parameter SCSI_NOAUTO.

The SCSI_NOAUTO system parameter, as shown in Figure 11-3, stores
a bit mask of 32 bits in which the low-order byte corresponds to the first
SCSI bus (PKAO), the second byte corresponds to the second SCSI bus
(PKBO), and so on. For each SCSI bus, setting the low-order bit inhibits
automatic configuration of the device with SCSI device ID O; setting the
second low-order bit inhibits automatic configuration of the device with
SCSI device ID 1, and so forth. For instance, the value 0000200016 would
prevent the device with SCSI ID 5 on the bus identified by SCSI port ID B
from being configured. By default, all of the bits in the mask are cleared,
allowing all devices to be configured.

Figure 11-3 SCSl_NOAUTO System Parameter

7 0 7 0 7 0 7 0 +SCSI Device ID

llll:::t:::::t:l ll :::11
~~~~ 

D c B A + SCSI Port ID 

ZK-1371 A-GE 

11.7 Assigning a Channel to GKDRIVER 

11-10 

An application program assigns a channel to the generic SCSI class driver 
using the standard call to the $ASSIGN system service, as described in the 
VMS System Services Reference Manual. The application program specifies 
a device name and a word to receive the channel number. 



Using the VMS Generic SCSI Class Driver 
11.8 Issuing a $QIO Request to the Generic Class Driver 

11.8 Issuing a $QIO Request to the Generic Class Driver 
The format of the Queue I/O Request ($QIO) system service that initiates 
a request to the SCSI generic class driver is as follows. This explanation 
concentrates on the special elements of a $QIO request to the SCSI generic 
class driver. For a detailed description of the $QIO system service, see the 
VMS System Services Reference Manual. 

VAX MACRO Format 

$QIO [efn] ,chan ,func ,iosb ,[astadr] ,[astprm] -
,p1 ,p2 [,p3] [,p4] [,p5] [,p6] 

High-Level Language Format 

SYS$QIO ([efn] ,chan ,func ,iosb ,[astadr] ,[astprm] 
,p1 ,p2 [,p3] [,p4] [,p5] [,p6]} 

Arguments 

ch an 
I/O channel assigned to the device to which the request is directed. The 
chan argument is a word value containing the number of the channel, as 
returned by the Assign I/O Channel ($ASSIGN) system service. 

func 
Longword value containing the IO$_DIAGNOSE function code. Only the 
IO$_DIAGNOSE function code is implemented in the generic SCSI class 
driver. 

iosb 
I/O status block. The iosb argument is required in a request to the generic 
SCSI class driver; it has the following format: 

31 

31 

Transfer count 
(low-order) 

2423 

SCSISTS 

1615 

1615 

VMS status code 

Transfer count 
(high-order) 

0 

10881 

0 

10882 

ZK-1372A-GE 

The VMS status code provides the final status indicating the success or 
failure of the SCSI command. The SCSI status byte contains the status 
value returned from the target device, as defined in the ANSI SCSI 
specification. The transfer count field specifies the actual number of bytes 
transferred during the SCSI bus DATA IN or DATA OUT phase. 

11-11 



Using the VMS Generic SCSI Class Driver 
11.8 Issuing a $QIO Request to the Generic Class Driver 

11-12 

[efn] 
[astadr] 
[astprm] 
These arguments apply to $QIO system service completion. For an 
explanation of these arguments, see the VMS System Services Reference 
Manual. 

p1 
Address of a generic SCSI descriptor of the following format: 

31 

opcode 

flags 

SCSI command address 

SCSI command length 

SCSI data address 

SCSI data length 

SCSI pad length 

phase change timeout 

disconnect timeout 

reserved 

0 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

56 

ZK-1373A-GE 

p2 
Length of the generic SCSI descriptor. 

Descriptor Fields 

opcode 
Currently, the only supported opcode is 1, indicating a pass-through 
function. Other opcode values are reserved for future expansion. 

flags 
Bit map having the following format: 

31 4 3 2 0 

reserved 

ZK-1374A-GE 



Using the VMS Generic SCSI Class Driver 
11.8 Issuing a $QIO Request to the Generic Class Driver 

Bits in the flags bit map are defined as follows: 

Field Definition 

dir Direction of transfer. 

If this bit is set, the target is expected at some time to enter the DATA IN phase 
to send data to the host. To facilitate this, the port driver maps the specified 
data buffer for write access. 

If this bit is clear, the target is expected at some time to enter the DATA OUT 
phase to receive data from the host. To facilitate this, the port driver maps the 
specified data buffer for read access. 

The generic SCSI class driver ignores the dir flag if either the SCSI data 
address or SCSI data length field of the generic SCSI descriptor is zero. 

dis Enable disconnection. 

If this bit is set, the target device is allowed to disconnect during the execution 
of the command. 

If this bit is clear, the target cannot disconnect during the execution of the 
command. 

Note that targets that hold on to the bus for long periods of time without 
disconnecting can adversely affect system performance. See Section 11.5.2 for 
additional information. 

syn Enable synchronous mode. 

If this bit is set, the port driver uses synchronous mode for data transfers, if 
both the host and target allow this mode of operation. 

If this bit is clear, or synchronous mode is not supported by either the host or 
target, the port driver uses asynchronous mode for data transfers. 

See Section 11.5.1 for additional information. 

dpr Disable port retry. 

If this bit is clear, the port driver retries, up to three times, any command that 
fails with a timeout, bus parity, or invalid phase transition error. 

If this bit is set, the port driver does not retry commands for which it detects 
failure. 

See Section 11.5.3 for additional information. 

SCSI command address 
Address of a buffer containing a SCSI command. 

SCSI command length 
Length of the SCSI command. The maximum length of the SCSI command 
is 128 bytes. 

SCSI data address 
Address of a data buffer associated with the SCSI command. 

If the dir bit is set in the flags field, data is written into this buffer during 
the execution of the command. Otherwise, data is read from this buffer 
and sent to the target device. 

If the SCSI command requires no data to be transferred, then the SCSI 
data address field should be clear. 

11-13 



Using the VMS Generic SCSI Class Driver 
11.8 Issuing a $QIO Request to the Generic Class Driver 

SCSI data length 
Length in bytes of the data buffer pointed to by the SCSI data address 
field. For the MicroVAX/VAXstation 3100 and VAXstation 3520/3540 
systems, the maximum data buffer size is 65,535 bytes. 

If the SCSI command requires no data to be transferred, then this field 
should be clear. 

SCSI pad length 
This field is used to accommodate SCSI device classes that require that the 
transfer length be specified in terms of a larger data unit than the count 
of bytes expressed in the SCSI data length field. If the total amount of 
data requested in the SCSI command does not match that specified in the 
SCSI data length field, this field must account for the difference. 

For example, suppose an application program is using the generic class 
driver to read the first 2 bytes of a disk block. The length field in the SCSI 
READ command contains 1 (indicating one logical block, or 512 bytes), 
while the SCSI data length field contains a 2. The SCSI pad length 
field must contain the difference, 510 bytes. 

For most transfers, this field should contain 0. Failure to initialize the 
SCSI pad length field properly causes port driver timeouts and SCSI bus 
resets. 

phase change timeout 
Maximum number of seconds for a target to change the SCSI bus phase 
or complete a data transfer. A value of 0 causes the SCSI port driver's 
default phase change timeout value of 4 seconds to be used. 

See Section 11.5.4 for additional information. 

disconnect timeout 
Maximum number of seconds for a target to reselect the initiator to 
proceed With a disconnected I/O transfer. A value of 0 causes the SCSI 
port driver's default disconnect timeout value of 4 seconds to be used. 

See Section 11.5.4 for additional information. 

11.9 Generic SCSI Class Driver Device Information 

11-14 

A call to the Get DeviceNolume Information ($GETDVI) system service 
returns the following information for any device serviced by the generic 
SCSI class driver. (See the description of the $GETDVI system service in 
the VMS System Services Reference Manual.) 

$GETDVI returns the following device characteristics when you specify 
the item code DVI$_DEVCHAR: 

DEV$M_AVL Available device 

DEV$M_IDV Input device 

DEV$M_ODV 

DEV$M_SHR 

DEV$M_RND 

Output device 

Shareable device 

Random-access device 

DVI$DEVCLASS returns the device class, which is DC$_MISC; 
DVI$DEVTYPE returns the device type, which is DT$_GENERIC_SCSI. 



11.10 

Using the VMS Generic SCSI Class Driver 
11.10 Generic SCSI Class Driver Programming Example 

Generic SCSI Class Driver Programming Example 
The following application program uses the generic SCSI class driver to 
send a SCSI INQUIRY command to a device. 

/* 
GKTEST.C 

This program uses the SCSI generic class driver to send an inquiry command 
to a device on the SCSI bus. 

*I 

#include ctype 

/* Define the descriptor used to pass the SCSI information to GKDRIVER */ 

#define OPCODE 0 
#define FLAGS 1 
#define COMMAND ADDRESS 2 
#define COMMAND LENGTH 3 
#define DATA ADDRESS 4 
#define DATA LENGTH 5 
#define PAD LENGTH 6 
#define PHASE TIMEOUT 7 
#define DISCONNECT TIMEOUT 8 

#define FLAGS READ 1 
#define FLAGS DISCONNECT 2 

#define GK EFN 1 

#define SCSI STATUS MASK OX3E 

#define INQUIRY_OPCODE Oxl2 
#define INQUIRY_DATA_LENGTH Ox30 

global value 
IO$_DIAGNOSE; 

short 

int 

char 

main () 

gk_chan, 
transfer_length; 

i, 
status, 
gk_device_desc[2], 
gk_iosb[2], 
gk_desc[l5]; 

scsi status, 
inquiry command[6] = {INQUIRY OPCODE, O, 0, O, INQUIRY_DATA_LENGTH, 0}, 
inquiry-data[INQUIRY DATA LENGTH], 
gk_device [ J = { "GKAO"}; -

I* Assign a channel to GKAO */ 

gk_device_desc[O] = 4; 
gk~device_desc[l] = &gk_device[O]; 
status= sys$assign (&gk_device_desc[O], &gk_chan, 0, 0); 
if (!(status & 1)) sys$exit (status); 

/* Set up the descriptor with the SCSI information to be sent to the target */ 

11-15 



Using the VMS Generic SCSI Class Driver 
11.10 Generic SCSI Class Driver Programming Example 

gk_desc[OPCODE] = 1; 
gk desc[FLAGS] =FLAGS READ + FLAGS DISCONNECT; 
gk=desc[COMMAND_ADDRESS] = &inquiry=cormnand[O]; 
gk desc[COMMAND LENGTH] = 6; 
gk=desc[DATA_ADDRESS] = &inquiry_data[O]; 
gk desc[DATA LENGTH] = INQUIRY DATA LENGTH; 
gk=desc[PAD_LENGTH] = 0; - -
gk_desc[PHASE_TIMEOUT] = 0; 
gk desc[DISCONNECT TIMEOUT] = 0; 
for (i=9; i<15; i++> gk_desc[i] = 0; /* Clear reserved fields */ 

/* Issue the QIO to send the inquiry command and receive the inquiry data */ 

status = sys$qiow (GK EFN, gk chan, IO$ DIAGNOSE, gk iosb, 0, 0, 
&gk_desc[OJ, 15*4, O~ 0, 0, 0); -

/* Check the various returned status values */ 

if ( ! (status & 1)) sys$exit (status); 
if (! (gk iosb[O] & 1)) sys$exit (gk iosb[O] & Oxffff); 
scsi_status = (gk_iosb[l] >> 24) & SCSI_STATUS_MASK; 
if (scsi_status) { 

printf ("Bad SCSI status returned: %02.2x\n", scsi_status); 
sys$exit (1); 

/* The cormnand succeeded. Display the SCSI data returned from the target */ 

transfer length = gk iosb[O] >> 16; 
printf ("scsI inquiry data returned: "); 
for (i=O; i<transfer length; i++) { 

if (isprint (inquiry data[i])) 
printf ("%c"~ inquiry_data[i]); 

else 
printf (". "); 

printf ("\n"); 

11-16 



A 110 Function Codes 

This appendix lists the function codes and function modifiers defined in 
the $IODEF macro. The arguments for these fu,nctions are also listed. 

A.1 ACP-QIO Interface Driver 

Functions 

10$_CREATE 
10$_ACCESS 
10$_DEACCESS 
10$_MODIFY 
10$_DELETE 
10$_ACPCONTROL 

10$_MOUNT 

Arguments 

P1 - FIB descriptor 
address 

P2 - file name string 
address 

P3 - result string length 
address 

P4 - result string 
descriptor address 

PS - attribute list 
address 

(none) 

1 Only for 10$_CREATE and 10$_ACCESS 
20nly for 10$_CREATE and 10$_DELETE 

3Qnly for 10$_ACPCONTROL 

QIO Status Returns 

SS$_ACCONFLICT SS$_ACPVAFUL 

SS$_BADCHKSUM SS$_BADFILEHDR 

SS$_BADFILEVER SS$_BADIRECTORY 

SS$_BADQFILE SS$_BLOCKCNTERR 

SS$_DEVICEFULL SS$_DIRFULL 

SS$_DUPDSKQUOTA SS$_DU PFILENAM E 

SS$_EXBYTLM SS$_EXDISKQUOTA 

SS$_FCPREWNDERR SS$_FCPSPACERR 

SS$_FILELOCKED SS$_FILENUMCHK 

SS$_FILESEQCHK SS$_FILESTRUCT 

SS$_HEADERFULL SS$_1BCERROR1 

SS$_1LLCNTRFUNC SS$_NODISKQUOTA 

SS$_NOPRIV SS$_NOQFILE 

Modifiers 

10$M CREATE1 

10$M - ACCESS1 

10$M - DELETE2 

10$M - DMOUNT3 

(none) 

SS$_BADATIRIB 

SS$_BADFILENAME 

SS$_BADPARAM 

SS$_ CREATED 

SS$_DIRNOTEMPTY 

SS$_ENDOFFILE 

SS$_FCPREADERR 

SS$_FCPWRITERR 

SS$_FILEPURGED 

SS$_FILNOTEXP 

SS$_1DXFILEFULL 

SS$_NOMOREFILES 

SS$_NOSUCHFILE 

1The second longword of the IOSB contains a job controller status code. 

A-1 



A.2 

1/0 Function Codes 
A.1 ACP-QIO Interface Driver 

QIO Status Returns 

SS$_NOTAPEOP 

SS$_NOTVOLSET 

SS$_QFNOTACT 

SS$_ TAPEPOSLOST 

SS$_WRONGACP 

SS$_NOTLABELMT 

SS$_0VRDSKQUOTA 

SS$_SERIOUSEXCP 

SS$_ TOOMANYVER 

SS$_NOTPRINTED1 

SS$_QFACTIVE 

SS$_SUPERSEDE 

SS$_WRITLCK 

1 The second longword of the IOSB contains a job controller status code. 

Card Reader Driver 
Functions Arguments Modifiers 

10$_READLBLK P1 - buffer address 10$M_BINARY 
10$_READVBLK P2 - byte count 10$M_PACKED 
10$_READPBLK 

10$_SETMODE P 1 - characteristics (none) 
10$_SETCHAR buffer address 

10$_SENSEMODE (none) (none) 

QIO Status Returns 

SS$_ABORT SS$_DATAOVERUN SS$_ENDOFFILE SS$_NORMAL 

A.3 Disk Drivers 

A-2 

Functions 

10$_READVBLK 
10$ READLBLK 
10$=READPBLK4 

10$_WRITEVBLK 
10$ WRITELBLK 
10$= WRITEPBLK4 

10$_WRITECHECK2 

Arguments 

P1 - buffer address 
P2 - byte count 
P3 - disk address 

P1 - buffer address 
P2 - byte count 
P3 - disk address 

Modifiers 

10$M_INHSEEK1 

10$M_DATACHECK2 

10$M_DELDATA3 

10$M_INHRETRY 
10$M_ERASE5 

(none) 

1 Only for 10$READPBLK and 10$_WRITEPBLK (not for TU58, RX01, RX02, RB02, or RL02) 

2Not for RX01 and RX02 
30nly for 10$_WRITEPBLK on RX02 

4Not for DSA disks 
50nly for write functions 



Functions 

10$_SENSECHAR 
10$_SENSEMODE 
10$_PACKACK 
10$_AVAILABLE 
10$_UNLOAD 

10$_SEARCH 

10$_SEEK4 

10$_FORMAT 

10$_CREATE 
10$_ACCESS 
10$_DEACCESS 
10$_MODIFY 
10$_DELETE 
10$_ACPCONTROL 

4Not for DSA disks 

Arguments 

(none) 

P 1 - read/write 
head position 

P1 - seek to 
specified 
cylinder 

P 1 - RX02 density 

P1 - FIB descriptor 
address 

P2 - file name string 
address 

P3 - result string 
length address 

P4 - result string 
descriptor 
address 

P5 - attribute list 
address 

sonly for 10$_CREATE and 10$_ACCESS 

70nly for 10$_CREATE and 10$_DELETE 

80nly for 10$_ACPCONTROL 

QIO Status Returns 

SS$_ABORT SS$_CANCEL 

SS$_DATACHECK SS$_DATAOVERUN 

SS$_FORCEDERR SS$_FORMAT 

SS$_1VADDR SS$_1VBUFLEN 

SS$_NONEXDRV SS$_NORMAL 

SS$_PARITY SS$_RCT 

SS$_ TIMEOUT SS$_UNSAFE 

SS$_WASECC SS$_WRITLCK 

1/0 Function Codes 
A.3 Disk Drivers 

Modifiers 

(none) 

(none) 

(none) 

(none) 

10$M CREATES 
10$M - ACCESSs 
10$M - DELETE7 

10$M=DMOUNT8 

SS$_CTRLERR 

SS$_DRVERR 

SS$_1LLIOFUNC 

SS$_MEDOFL 

SS$_0PINCOMPL 

SS$_RDDELDATA 

SS$_VOLINV 

A-3 



1/0 Function Codes 
A.4 Laboratory Peripheral Accelerator Driver 

A.4 Laboratory Peripheral Accelerator Driver 

A-4 

~~~~~~~~~~~~~~~~~~~~~~~~~~~-

Functions

10$_LOADMCODE

10$_STARTMPROC

10$_1N ITIALIZE

10$_SETCLOCK

10$_STARTDATA

High-Level Language
Subroutines

LPA$ADSWP

LPA$DASWP

LPA$DISWP

LPA$DOSWP

LPA$LAMSKS

LPA$SETADC

LPA$SETIBF

LPA$STPSWP

LPA$CLOCKA

LPA$CLOCKB

LPA$XRATE

LPA$1BFSTS

LPA$1GTBUF

Arguments

P1 - starting address of
microcode to be loaded

P2 - load byte count
P3 - starting microprogram

address to receive
microcode

(none}

P1 - address of initialize
command table

P2 - initialize command
buffer length

P2 - mode of operation
P3 - clock control and

status
P4 - real-time clock preset

value (two's complement}

P1 - data transfer command
table address

P2 - data transfer command
table length

P3 - normal completion AST
address

P4 - overrun completion AST
address

Functions

Start AID converter sweep.

Start DI A converter sweep.

Start digital input sweep.

Start digital output sweep.

Modifiers

(none)

(none)

(none)

(none)

10$_SETEVF

Specify LPA 11-K controller and digital mask words.

Specify channel select parameters.

Specify buffer parameters.

Stop sweep.

Set Clock A rate.

Set Clock B rate.

Compute clock rate and preset value.

Return buffer status.

Return next available buffer.

A.5

1/0 Function Codes
A.4 Laboratory Peripheral Accelerator Driver

High-Level Language
Subroutines Functions

LPA$1NXTBF

LPA$1WTBUF

LPA$RLSBUF

LPA$RMVBUF

LPA$CVADF

LPA$FLT16

LPA$LOADMC

QIO Status Returns

SS$_ABORT

SS$_ CANCEL

SS$_DEVACTIVE

SS$_EXQUOTA

SS$_1NSFMEM

SS$_MCNOTVALID

SS$_ TIMEOUT

Line Printer Driver

Functions

10$_WRITEVBLK
10$_WRITELBLK
10$_WRITEPBLK

10$_SENSEMODE

10$_SETMODE
10$_SETCHAR

Alter buffer order.

Return next buffer or wait.

Release buffer to LPA 11-K.

Remove buffer from device queue.

Convert AID input to floating point.

Convert unsigned integer to floating point.

Load microcode and initialize LPA 11-K.

SS$_8ADPARAM SS$_8U FNOTALIGN

SS$_CTRLERR SS$_DATACHECK

SS$_DEVCMDERR SS$_DEVREQERR

SS$_1NSFBUFDP SS$_1NSFMAPREQ

SS$_1VBUFLEN SS$_1VMODE

SS$_PARITY SS$_POWERFAIL

Arguments Modifiers

P1 - buffer address (none)
P2 - buffer size
P3 - (ignored)
P4 - carriage control

specifier1

(none) (none)

P1 - characteristics (none)
buffer address

1 Only for 10$_WRITEVBLK and 10$_WRITELBLK

QIO Status Returns

SS$_ABORT SS$_ACCVIO SS$_CANCEL SS$_NORMAL

A-5

1/0 Function Codes
A.6 Magnetic Tape Drivers

A.6 Magnetic Tape Drivers

Functions

10$_READVBLK
10$_READLBLK
10$_READPBLK

10$_WRITEVBLK
10$_ WRITELBLK
10$_WRITEPBLK

10$_SETMODE
10$_SETCHAR

10$_CREATE
10$_ACCESS
10$_DEACCESS
10$_MODIFY
10$_ACPCONTROL

10$_SKIPFILE

10$_SKIPRECORD

10$_REWIND
10$_REWINDOFF
10$_UNLOAD

10$_WRITEOF

10$_SENSEMODE
10$_SENSECHAR

1 Not for TS04 and TU80

Arguments

P1 - buffer address
P2 - byte count

P1 - buffer address
P2 - byte count

P1 - characteristics buffer
address

P2 - characteristics buffer
length9

P1 - FIB descriptor
address

P2 - file name string
address

P3 - result string length
address

P4 - result string
descriptor address

PS - attribute list address

P 1 - skip n tape marks

P1 - skip n blocks

(none)

(none)

P1 - characteristics
buffer address9

P2 - characteristics
buffer length9

20nly for TE16, TU45, and TU77

3Not for TKSO
40nly for 10$_CREATE and 10$_ACCESS

sonly for 10$_ACPCONTROL

Modifiers

10$M_DATACHECK1

10$M_INHRETRY
10$M_REVERSE3

10$M_DATACHECK1

10$M_INHRETRY
10$M_INHEXTGAP2

10$M_NOWAIT8

10$M_ERASE7

10$M_CREATE4

10$M_ACCESS4

10$M_DMOUNT5

10$M_INHRETRY
10$M_NOWAIT8

10$M_INHRETRY
10$M_NOWAIT8

10$M_INHRETRY
10$M_NOWAIT

10$M_INH EXTGAP2

10$M_INHRETRY
10$M_NOWAIT8

10$M_INHRETRY

710$M_ERASE takes no arguments; only for 10$_WRITELBLK and 10$_WRITEPBLK on
TMSCP drives.
80nly for TU81-Plus drives

90nly for TMSCP drives

A-6

A.7 Mailbox Driver

1/0 Function Codes
A.6 Magnetic Tape Drivers

Functions

10$_DSE6

10$_PACKACK
10$_AVAILABLE

Arguments

(none)

Modifiers

(none)

60nly for TU78, TU81, TA81, and TA78

QIO Status Returns

SS$_ABORT

SS$_DATACHECK

SS$_DRVERR

SS$_ENDOFVOLUME

SS$_MEDOFL

SS$_0PINCOMPL

SS$_ TIMEOUT

SS$_WRITLCK

Functions

10$_READVBLK
10$_READLBLK
10$_READPBLK
10$_ WRITEVBLK
10$_WRITELBLK
10$_WRITEPBLK

SS$_CANCEL SS$_CTRLERR

SS$_DATAOVERUN SS$_DEVOFFLINE

SS$_ENDOFFILE SS$_ENDOFTAPE

SS$_FORMAT SS$_1LLIOFUNC

SS$_NONEXDRV SS$_NORMAL

SS$_PARITY SS$_SERIOUSEXCP

SS$_UNSAFE SS$_VOLINV

Arguments Modifiers

P1 - buffer
address

P2 - buffer size

10$M_NOW
10$M
NORSWAIT1

10$_WRITEOF

10$_SETMODE!IO$M_READATTN
10$_SETMODE!IO$M_WRTATTN

(none)

P1 - AST address
P2 - AST parameter
P3 - access mode

10$M_NOW

(none)

10$_SETMODE!IO$M_SETPROT

1 Only for write functions

QIO Status Returns

P2 - volume
protection
mask

(none)

SS$_ABORT SS$_BUFFEROVF SS$_ENDOFFILE SS$_NORMAL

A-7

1/0 Function Codes
A.8 Terminal Driver

A.8 Terminal Driver

Functions

10$_READVBLK
10$_READLBLK
10$_READPROMPT

10$_READVBLK

10$_ WRITEVBLK
10$_ WRITELBLK
10$_WRITEPBLK

10$_SETMODE
10$_SETCHAR

10$_SETMODE
10$_SETCHAR

10$_SETMODE

10$_SETMODE
10$_SETCHAR

Arguments

P1 - buffer address
P2 - buffer size
P3 - timeout
P4 - read terminator

block address
PS - prompt string

buffer address
P6 - prompt string

buffer size 1

P1 - buffer address
P2 - buffer size
P3 - access mode to

probe itemlist
P4 - (zero)
PS - itemlist buffer

address
P6 - itemlist buffer

size

P1 - buffer address
P2 - buffer size
P3 - (ignored)
P4 - carriage control

specifier3

P1 - characteristics
buffer address

P2 - characteristics
buffer size

P3 - speed specifier
P4 - fill specifier
PS - parity flags

(none)

P1 - buffer address
P2 - buffer size

P1 - AST service
routine address

P2 - AST parameter
P3 - access mode to

deliver AST

1 Only for 10$_READPROMPT

Modifiers

10$M_NOECHO
10$M_CVTLOW
10$M_NOFILTR
10$M_TIMED
10$M_PURGE
10$M_DSABLMBX
10$M_ TRMNOECHO
10$M_ESCAPE

10$M_EXTEND2

10$M_CANCTRLO
10$M_ENABLMBX
10$M_NOFORMAT
10$M_REFRESH
10$M_BREAKTHRU

10$M_HANGUP

10$M_BRDCST

10$M_CTRLCAST
10$M_CTRLYAST

20nly for itemlist read function. Do not specify with other modifiers.

30nly for 10$_WRITELBLK and 10$_WRITEVBLK

A-8

Functions

10$_SETMODE
10$_SETCHAR

10$_SETMODE
10$_SETCHAR

10$_SETMODE
10$_SETCHAR

10$_ TTY _PORT

10$_ TTY _PORT

10$_ TTY _PORT

10$_SENSEMODE
10$_SENSECHAR

10$_SENSEMODE
10$_SENSECHAR

10$_SENSEMODE

40nly with 10$M_OUTBAND

sonly with 10$M_MAINT

Arguments

P1 - AST service
routine address

P2 - character mask
address

P3 - access mode to
deliver AST

P1 - address of
control signals

(none)

P1 - item list6

address
P2 - queued status

P1 - service name
descriptor
address

P2 - service rating

P1 - characteristics
buffer address

P2 - characteristics
buffer size

P1 - address of input
modem signal
block

P1 - buffer address
P2 - buffer size

1/0 Function Codes
A.8 Terminal Driver

Modifiers

10$M OUTBAND
10$M - TT ABORT4
10$M=INCLUDE4

10$M_SET _MODEMs
10$M_MAINT

10$M LOOPS
10$M=UNLOOPs
10$M_MAINT

10$M_LT_CONNECT
10$M_LT _DISCON

10$M_LT _MAP _PORT

10$M_LT _RATING

10$M_ TYPEAHDCNT

10$M_RD_MODEM

10$M_BRDCST

6ttem list: 10$V_LT_MAP _NODNAM, 10$V_LT_MAP _PORNAM, 10$V_LT_MAP _SRVNAM,
10$V_LT_MAP _LNKNAM, and 10$V_LT_MAP _NETADR.

QIO Status Returns

SS$_ABORT

SS$_CANCEL

SS$_CONTROLY

SS$_NORMAL

SS$_ TIMEOUT

SS$_BADESCAPE

SS$_CONTROLC

SS$_DATAOVERUN

SS$_PARITY

SS$_BADPARAM

SS$_CONTROLO

SS$_1NCOMPAT

SS$_PARTESCAPE

A-9

B Tables

Table B-1 lists the DEC Multinational Character Set. The DEC
Multinational Character set is an eight-bit character set with 256
characters. The first 128 characters in the set correspond to the ASCII
character set. The VAX EDT Reference Manual lists the graphics for
these characters and describes how to enter them from various types of
terminals.

Table B-1 DEC Multinational Character Set

Octal Decimal Char or
Hex Code Code Code Abbrev. Description

ASCII Control Characters 1

00 000 000 NUL null character

01 001 001 SOH start of heading (CTRUA)

02 002 002 STX start of text (CTRUB)

03 003 003 ETX end of text (CTRUC)

04 004 004 EOT end of transmission (CTRUD)

05 005 005 ENQ enquiry (CTRUE)

06 006 006 ACK acknowledge (CTRUF)

07 007 007 BEL bell (CTRUG)

08 010 008 BS backspace (CTRUH)

09 011 009 HT horizontal tabulation (CTRUI)

OA 012 010 LF line feed (CTRUJ)

OB 013 011 VT vertical tabulation (CTRUK)

oc 014 012 FF form feed (CTRUL)

OD 015 013 CR carriage return (CTRUM)

OE 016 014 so shift out (CTRUN)

OF 017 015 SI shift in (CTRUO)

10 020 016 OLE data link escape (CTRUP)

11 021 017 DC1 device control 1 (CTRUQ)

12 022 018 DC2 device control 2 (CTRUR)

13 023 019 DC3 device control 3 (CTRUS)

14 024 020 DC4 device control 4 (CTRUT)

15 025 021 NAK negative acknowlege (CTRUU)

1The ALTMODE and DELETE characters (decimal 125, 126, and 127) are also control
characters.

(continued on next page)

B-1

Tables

Table B-1 (Cont.) DEC Multinational Character Set

Octal Decimal Char or
Hex Code Code Code Abbrev. Description

ASCII Control Characters 1

16 026 022 SYN synchronous idle (CTRUV)

17 027 023 ETB end of transmission block
(CTRUW)

18 030 024 CAN cancel (CTRUX)

19 031 025 EM end of medium (CTRUY)

1A 032 026 SUB substitute (CTRUZ)

18 033 027 ESC escape

1C 034 028 FS file separator

10 035 029 GS group separator

1E 036 030 RS record separator

1F 037 031 us unit separator

ASCII Special and Numeric Characters

20 040 032 SP space

21 041 033 exclamation point

22 042 034 quotation marks (double quote)

23 043 035 # number sign

24 044 036 $ dollar sign

25 045 037 % percent sign

26 046 038 & ampersand

27 047 039 apostrophe (single quote)

28 050 040 opening parenthesis

29 051 041 closing parenthesis

2A 052 042 * asterisk

28 053 043 + plus

2C 054 044 comma

20 055 045 hyphen or minus

2E 056 046 period or decimal point

2F 057 047 I slash

30 060 048 0 zero

31 061 049 one

32 062 050 2 two

33 063 051 3 three

1The ALTMODE and DELETE characters (decimal 125, 126, and 127) are also control
characters.

(continued on next page)

B-2

Tables

Table B-1 (Cont.) DEC Multinational Character Set

Octal Decimal Char or
Hex Code Code Code Abbrev. Description

ASCII Special and Numeric Characters

34 064 052 4 four

35 065 053 5 five

36 066 054 6 six

37 067 055 7 seven

38 070 056 8 eight

39 071 057 9 nine

3A 072 058 colon

38 073 059 semicolon

3C 074 060 < less than

30 075 061 equals

3E 076 062 > greater than

3F 077 063 ? question mark

ASCII Alpha Characters

40 100 064 @ commercial at sign

41 101 065 A uppercase A

42 102 066 8 uppercase 8

43 103 067 c uppercase C

44 104 068 D uppercase D

45 105 069 E uppercase E

46 106 070 F uppercase F

47 107 071 G uppercase G

48 110 072 H uppercase H

49 111 073 uppercase I

4A 112 074 J uppercase J

48 113 075 K uppercase K

4C 114 076 L uppercase L

40 115 077 M uppercase M

4E 116 078 N uppercase N

4F 117 079 0 uppercase 0

50 120 080 p uppercase P

51 121 081 Q uppercase Q

52 122 082 R uppercase R

53 123 083 s uppercase S

(continued on next page)

B-3

Tables

Table B-1 (Cont.) DEC Multinational Character Set

Octal Decimal Char or
Hex Code Code Code Abbrev. Description

ASCII Alpha Characters

54 124 084 T uppercase T

55 125 085 u uppercase U

56 126 086 v uppercase V

57 127 087 w uppercase W

58 130 088 x uppercase X

59 131 089 y uppercase Y

5A 132 090 z uppercase Z

58 133 091 [left bracket

5C 134 092 backslash

50 135 093 right bracket

5E 136 094 A circumflex

5F 137 095 underscore

60 140 096 grave accent

61 141 097 a lowercase a

62 142 098 b lowen•1se b

63 143 099 c lowercase c

64 144 100 d lowercased

65 145 101 e lowercase e

66 146 102 lowercase f

67 147 103 g lowercase g

68 150 104 h lowercase h

69 151 105 lowercase i

6A 152 106 lowercase j

68 153 107 k lowercase k

6C 154 108 lowercase I

60 155 109 m lowercase m

6E 156 110 n lowercase n

6F 157 111 0 lowercase o

70 160 112 p lowercase p

71 161 113 q lowercase q

72 162 114 lowercase r

73 163 115 s lowercases

74 164 116 lowercase t

75 165 117 u lowercase u

(continued on next page)

B-4

Tables

Table B-1 (Cont.) DEC Multinational Character Set

Octal Decimal Char or
Hex Code Code Code Abbrev. Description

ASCII Alpha Characters

76 166 118 v lowercase v

77 167 119 w lowercase w

78 170 120 x lowercase x

79 171 121 y lowercase y

7A 172 122 z lowercase z

78 173 123 { left brace

7C 174 124 I vertical line

70 175 125 } right brace (ALTMODE)

7E 176 126 tilde (ALTMODE)

7F 177 127 DEL rubout (DELETE)

80 200 128 [reserved]

81 201 129 [reserved]

82 202 130 [reserved]

83 203 131 [reserved]

84 204 132 IND index

85 205 133 NEL next line

86 206 134 SSA start of selected area

87 207 135 ESA end of started area

88 210 136 HTS horizontal tab set

89 211 137 HTJ horizontal tab set with
justification

BA 212 138 VTS vertical tab set

88 213 139 PLO partial line down

BC 214 140 PLU partial line up

80 215 141 RI reverse index

SE 216 142 SS2 single shift 2

SF 217 143 SS3 single shift 3

90 220 144 DCS device control string

91 221 145 PU1 private use 1

92 222 146 PU2 private use 2

93 223 147 STS set transmit state

94 224 148 CCH cancel character

95 225 149 MW message waiting

96 226 150 SPA start of protected area

97 227 151 EPA end of protected area

(continued on next page)

B-5

Tables

Table B-1 (Cont.) DEC Multinational Character Set

Octal Decimal Char or
Hex Code Code Code Abbrev. Description

ASCII Alpha Characters

98 230 152 [reserved]

99 231 153 [reserved]

9A 232 154 [reserved]

98 233 155 CSI control sequence introducer

9C 234 156 ST string terminator

9D 235 157 osc operating system command

9E 236 158 PM privacy message

9F 237 159 APC application

AO 240 160 [reserved]

A1 241 161 inverted exclamation point

A2 242 162 ¢ cent sign

A3 243 163 £ pound sign

A4 244 164 [reserved]

A5 245 165 ¥ yen sign

A6 246 166 [reserved]

A7 247 167 § section sign

AS 250 168 D general currency sign

A9 251 169 © copyright sign

AA 252 170 feminine ordinal indicator

AB 253 171 ((angle quotation mark left

AC 254 172 [reserved]

AD 255 173 [reserved]

AE 256 174 [reserved]

AF 257 175 [reserved]

BO 260 176 0 degree sign

B1 261 177 ± plus/minus sign

B2 262 178 2 superscript 2

B3 263 179 3 superscript 3

B4 264 180 [reserved]

B5 265 181 µ micro sign

B6 266 182 ~ paragraph sign, pilcrow

B7 267 183 middle dot

B8 270 184 [reserved]

B9 271 185 superscript 1

(continued on next page)

B-6

Tables

Table 8-1 (Cont.) DEC Multinational Character Set

Octal Decimal Char or
Hex Code Code Code Abbrev. Description

ASCII Alpha Characters

BA 272 186 Q masculine ordinal indicator

BB 273 187)) angle quotation mark right

BC 274 188 'IA fraction one-quarter

BO 275 189 1/2 fraction one-half

BE 276 190 [reseNed]

BF 277 191 l inverted question mark

co 300 192 A uppercase A with grave
accent

C1 301 193 A uppercase A with acute
accent

C2 302 194 A uppercase A with circumflex

C3 303 195 A uppercase A with tilde

C4 304 196 A uppercase A with umlaut,
(diaeresis)

C5 305 197 A uppercase A with ring

C6 306 198 A: uppercase AE diphthong

C7 307 199 c; uppercase C with cedilla

cs 310 200 E uppercase E with grave
accent

C9 311 201 E uppercase E with acute
accent

CA 312 202 E uppercase E with circumflex

CB 313 203 E uppercase E with umlaut,
(diaeresis)

cc 314 204 uppercase I with grave
accent

CD 315 205 uppercase I with acute
accent

CE 316 206 uppercase I with circumflex

CF 317 207 uppercase I with umlaut,
(diaeresis)

DO 320 208 [reseNed]

01 321 209 N uppercase N with tilde

02 322 210 0 uppercase 0 with grave
accent

03 323 211 6 uppercase 0 with acute
accent

(continued on next page}

8-7

Tables

Table B-1 (Cont.) DEC Multinational Character Set

Octal Decimal Char or
Hex Code Code Code Abbrev. Description

ASCII Alpha Characters

D4 324 212 6 uppercase 0 with circumflex

D5 325 213 6 uppercase 0 with tilde

D6 326 214 b uppercase 0 with umlaut,
(diaeresis)

D7 327 215 CE uppercase OE ligature

D8 330 216 0 uppercase 0 with slash

D9 331 217 u uppercase U with grave
accent

DA 332 218 (J uppercase U with acute
accent

DB 333 219 0 uppercase U with circumflex

DC 334 220 0 uppercase U with umlaut,
(diaeresis}

DD 335 221 y uppercase Y with umlaut,
(diaeresis}

DE 336 222 [reserved]

DF 337 223 B German lowercase sharp s

EO 340 224 a lowercase a with grave
accent

E1 341 225 a lowercase a with acute
accent

E2 342 226 a. lowercase a with circumflex

E3 343 227 a lowercase a with tilde

E4 344 228 a lowercase a with umlaut,
(diaeresis}

E5 345 229 a lowercase a with ring

E6 346 230 m lowercase ae diphthong

E7 347 231 <; lowercase c with cedilla

E8 350 232 e lowercase e with grave
accent

E9 351 233 e lowercase e with acute
accent

EA 352 234 e lowercase e with circumflex

EB 353 235 e lowercase e with umlaut,
(diaeresis)

EC 354 236 lowercase i with grave
accent

(continued on next page)

B-8

Tables

Table B-1 (Cont.) DEC Multinational Character Set

Octal Decimal Char or
Hex Code Code Code Abbrev. Description

ASCII Alpha Characters

ED 355 237 lowercase i with acute
accent

EE 356 238 lowercase i with circumflex

EF 357 239 lowercase i with umlaut,
(diaeresis}

FO 360 240 [reserved]

F1 361 241 ri lowercase n with tilde

F2 362 242 0 lowercase o with grave
accent

F3 363 243 6 lowercase o with acute
accent

F4 364 244 6 lowercase o with circumflex

F5 365 245 6 lowercase o with tilde

F6 366 246 0 lowercase o with umlaut,
(diaeresis}

F7 367 247 ca lowercase oe ligature

F8 370 248 0 lowercase o with slash

F9 371 249 u lowercase u with grave
accent

FA 372 250 u lowercase u with acute
accent

FB 373 251 u lowercase u with circumflex

FC 374 252 0 lowercase u with umlaut,
(diaeresis)

FD 375 253 y lowercase y with umlaut,
(diaeresis)

FE 376 254 [reserved]

FF 377 255 [reserved]

B.1 Terminal Sequences and Modes
Table B-2 lists the valid ANSI and Digital-private escape sequences
for terminals that have the TT2$M_ANSICRT, TT2$M_DECCRT,
TT2$M_AVO, TT2$M_EDIT, and TT2$M_BLOCK characteristics (see
Section 8). Table B-2 also lists assumed and selectable ANSI modes
and selectable Digital-private modes. Only the names of the escape
sequences and modes are listed (for more information see the specific
VTlOO-, VT200-, or VT300- family user's guide). Unless otherwise
noted, the operation of escape sequences and modes is identical to the
particular VTlOO-, VT200-, or VT300- family terminals that implement
these features.

B-9

Tables
B.1 Terminal Sequences and Modes

Table B-2 Sequences and Modes

Name Valid Parameters ANSI CRT DE CC RT AVO EDIT BLOCK1

ANSI-Defined Escape Sequences

CPR All x x

CUB All x x

CUD All x x

CUF All x x

CUP All x x

cuu All x x

DSR 0,3,5,6 x x

ED 0,1,2 x x

EL 0,1,2 x x

HVP All x x

IND x x

NEL x x

RI x x

RIS x x

scs UK,ASCll,O x

scs UK,ASCll x x

SGR 0,4,7 x x

SGR 0, 1,4,5,7 x
DA Terminal specific x
HTS x
RM Class specific x
SM Class specific x

TBC 0,3 x
OCH All x x
DL All x x
IL All x x

Digital-Private Escape Sequences

DECDHDL 2,3 x

DECDWL 6 x

DECKPAM x

DECKPNM x

DECRC 8 x
DECSC, 7 x

1 Terminal characteristics. Prefix is TT2$M_.

(continued on next page)

B-10

Tables
B.1 Terminal Sequences and Modes

Table B-2 (Cont.) Sequences and Modes

Name Valid Parameters ANSICRT DE CC RT AVO EDIT

Digital-Private Escape Sequences

DECSTBM All x
DECSWL 5 x
DEC PRO 0, 1,4,5,7,254

DECTTC 0,1

DECXMIT 5

ANSI Selectable Modes (Set with ANSI SM/RM)

IRM
GATM
ERM
TIM

4

1

6

16

x

x

Digital-Private Selectable Modes (Set with ANSI SM/RM)

DECCKM'
DECANM
DECCOLM
DECSCLM
DECSCNM
DE COM
DECAWM
DECARM
DECEDM
DECEKEM
DECLTM
DECSCFDM
DECTEM

CRM
EBM
ERM
FEAM

2

3

4

5

6

7

8

10

16

11

13

14

1 Terminal characteristics. Prefix is TT2$M_.
2Selectable mode.

ANSI Assumed Modes

Reset

Reset

Set

Reset

Reset

Reset

Set

Reset

x

x

x

x
x

x

x

x

2

BLOCK1

x
x
x

x

x

x

x

x

x
x
x
x

(continued on next page)

B-11

Tables
B.1 Terminal Sequences and Modes

Table B-2 (Cont.) Sequences and Modes

Name Valid Parameters ANSI CRT DECCRT AVO EDIT BLOCK1

ANSI Assumed Modes

FETM Reset Reset

GATM NIA NIA 2

HEM NIA NIA

IRM Reset Reset 2 2

KAM Reset Reset

MATH NIA NIA

PUM Reset Reset

SATM NIA NIA

SRTM Reset Reset

TSM Reset Reset

TTM NIA NIA 2

VEM NIA NIA

1 Terminal characteristics. Prefix is TT2$M_.

2Selectable mode.

B-12

C Control Connection Routines

This appendix lists and describes the VAX calling standards for the
pseudoterminal driver control connection routines. The routines appear in
this section in alphabetical order. Table C-1 lists the control connection
routines and their functions.

Table C-1 Control Connection Routines

Routine Name

PTD$CANCEL

PTD$CREATE

PTD$DELETE

PTD$READ

PTD$SET _EVENT _NOTIFICATION

PTD$WRITE

Description

Cancels a queued control connection read
request

Creates a pseudoterminal

Deletes a pseudoterminal

Reads data from the pseudoterminal

Enables or disables terminal event notification
AS Ts

Writes data to the pseudoterminal

C-1

PTD$CANCEL

PTD$CANCEL Cancel Queued Request

FORMAT

RETURNS

ARGUMENTS

RETURN
VALUES

C-2

Cancels a queued control connection read request.

PTD$CANCEL chan

VMS usage: cond_value
type: longword {unsigned)
access: write only
mechanism: by value

ch an
VMS usage: channel
type: word {unsigned)
access: read only
mechanism: by value
Number of the I/O channel assigned to the pseudoterminal.

SS$_NORMAL

SS$_DEVOFFLINE

SS$_1VCHAN

SS$_NOPRIV

Normal successful completion.

Device is off line and request cannot proceed.

Illegal channel.

Insufficient privilege to perform request.

PTD$CREATE

PTD$CREATE Create a Pseudoterminal

FORMAT

RETURNS

ARGUMENTS

Creates a new pseudoterminal with a unique device name.

PTD$CREATE chan [,acmode] [,charbuff] [,buflen]
[,astadr] [astprm] [,ast_acmode], inadr

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

ch an
VMS usage: channel
type: word (unsigned)
access: write only
mechanism: by reference
Number of the channel that is assigned to the new pseudoterminal. This
argument is the address of a word into which PTD$CREATE writes the
channel number.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value
Access mode to be associated with the channel. The most privileged access
mode is the access mode of the caller. I/O operations on the channel can
be performed only from equal and more privileged access modes.

charbuff
VMS usage: device_characteristics
type: longword (unsigned)
access: read only
mechanism: by reference
Address of buffer containing the device characteristics. This information is
used to set up the pseudoterminal's initial characteristics. This buffer can
be 12, 16, or 20 bytes long.

Figure C-1 shows the format of this buffer.

C-3

PTD$CREATE

C-4

Figure C-1 Device Characteristics Buffer

Page Width l Type J Class

Page Length I Basic Terminal Characteristics

Extended Terminal Characteristics

Reserved

Reserved

ZK-9573-GE

buflen
VMS usage: word_unsigned
type: word {unsigned)
access: read only
mechanism: by value
Length of the characteristics buffer (either 12, 16, or 20 bytes). This
argument is required if you supply the charbuff argument.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference
AST service routine to be executed when the terminal connection deassigns
the last channel to the pseudoterminal. This argument is the address of
the entry mask of this routine. This is a repeating AST and is active until
the control connection deletes the pseudoterminal.

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
AST parameter to be passed to the AST service routine specified by
astadr.

ast_acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value
Access mode for which the AST is to be declared. The most privileged
access mode is the access mode of the caller. The resulting mode is the
access mode at which the AST is declared.

DESCRIPTION

RETURN
VALUES

PTD$CREATE

inadr
VMS usage: address_range
type: longword {unsigned)
access: read only
mechanism: by reference
Address of a two-longword array containing the starting and ending
virtual address in the virtual address space of the process (either PO
or Pl regions) to be used as I/O buffers. The array contains, in order,
the starting and ending virtual addresses. The address must specify an
integral number of pages; that is, the low-order nine bits of each address
must be 0. The pages must already exist and must be fully contained in
either PO or Pl space. All pages in the range must:

• Have identical page protection

• Be writable in the mode of the caller

• Be owned by the same access mode

• Be owned in a mode equal to or less privileged than the caller

• Be of the same page type (process or global)

PTD$CREATE creates a new pseudoterminal with a unique device name.
This device name is in the form FTAn:, where n is the unit number. This
unit number is a VMS channel number that is used for control operations.

When a pseudoterminal is created, it inherits the current system terminal
default attributes unless you specify an alternate set of characteristics.

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXBYTLM

SS$_EXQUOTA

SS$_EXASTLM

SS$_1NSFMEM

SS$_1NSFWSL

SS$_1VSECFLG

SS$_NOPRIV

SS$_PAGOWNVIO

SS$_ VA_IN_USE

Normal successful completion.

Unable to read one of the arguments.

Bad parameter value.

Insufficient BYTLM to create device or map buffers.

Insufficient quota to create device.

Insufficient AST quota for notification AST.

Insufficient memory to create device.

Insufficient working set limit to map buffers.

Invalid process or global section flags.

No privilege for attempted operation.

Page owner violation.

Virtual address already in use.

C-5

PTD$DELETE

PTD$DELETE Delete a Pseudoterminal

Forces the pseudoterminal to be deleted and frees the channel.

FORMAT PTD$CANCEL chan

RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS ch an
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value
Number of the I/O channel assigned to the pseudoterminal.

DESCRIPTION PTD$DELETE forces the pseudoterminal to be deleted and frees the
channel assigned to the pseudoterminal. When a pseudoterminal is
deleted, any process using the pseudoterminal (except the control program)
is disconnected. PTD$DELETE request causes any pending I/O for the
control program to be aborted. It deletes any queued event notification
ASTs and returns the I/O buffers back to the application. It also causes the
pseudoterminal unit control block (UCB) to be deleted once the reference
count returns to zero.

RETURN
VALUES

C-6

SS$_NORMAL

SS$_DEVOFFLINE

SS$_1VCHAN

SS$_NOPRIV

Normal successful completion.

Device is off line and request cannot proceed.

Illegal channel.

Insufficient privilege to perform request.

PTD$READ

PTD$READ Read Data from Pseudoterminal

FORMAT

RETURNS

ARGUMENTS

Reads data from the pseudoterminal.

PTD$READ [efn], chan [,astadr] [,astprm] readbuf,
readbuf_len

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

ef n
VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value
Number of the event flag to be set when PTD$READ returns the requested
information. If you do not specify this argument, event flag 0 is used.
When PTD$READ begins execution, it clears this flag.

ch an
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value
Number of the I/O channel assigned to the pseudoterminal.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference
AST service routine to be executed when PTD$READ completes. If you
specify astadr, the AST routine executes at the same access mode as the
caller of the PTD$READ routine.

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
AST parameter to be passed to the AST service routine specified by the
astadr argument.

C-7

PTD$READ

readbuf
VMS usage: char_string
type: character coded text string
access: write only
mechanism: by reference
Address of the read I/O status longword. The first character position in
an I/O buffer to receive all output is this address plus 4. The readbuf
argument must be in the range specified in the inadr argument of the
PTD$CREATE routine, otherwise an SS$_ACCVIO status is returned.

readbuf_len
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value
Number of characters that can be read from the pseudoterminal and
stored in the buffer specified by readbuf. The low-order nine bits of the
starting address plus readbuf_len must be less than or equal to 508.
SS$_IVBUFLEN is returned if the value of readbuf_len is less than 0 or
more than 508.

DESCRIPTION The PTD$READ routine reads data from the pseudoterminal. The read
request completes with a minimum of one character and a maximum of the
number of characters specified by the readbuf_len argument. The read
operation completes when the pseudoterminal has characters to output.

RETURN
VALUES

C-8

If a read request is issued and no data is available, the read request is
queued and then completed at a later time.

SS$_NORMAL

SS$_ACCVIO

SS$_DEVOFFLINE

SS$_EXASTLM

SS$_1LLEFC

SS$_1NSFMEM

SS$_1VBUFLEN

SS$_1VCHAN

SS$_NOPRIV

SS$_UNASEFC

Normal successful completion.

Unable to read an argument, or invalid read buffer
address.

Device is off line and request cannot proceed.

Insufficient AST quota for notification AST.

Illegal event flag cluster.

Insufficient memory.

Buffer size supplied is illegal.

Illegal channel.

Insufficient privilege to perform request.

Unassociated event flag cluster.

PTD$SET _EVENT _NOTIFICATION

PTD$SET _EVENT _NOTIFICATION Enable or Disable
Terminal Event
Notification ASTs

FORMAT

RETURNS

ARGUMENTS

Enables or disables a number of repeating terminal event notification ASTs.

PTD$SET _EVENT _NOTIFICATION chan, astadr
[,astprm]
[,acmode], type

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

ch an
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value
Number of the I/O channel assigned to the pseudoterminal.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference
Address of the notification AST service routine, or zero if the AST is to be
canceled.

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
AST parameter to be passed to the AST service routine specified by the
astadr argument.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

C-9

PTD$SET _EVENT _NOTIFICATION

Access mode for which the AST is to be declared. The most privileged
access mode is the access mode of the caller. The resulting mode is the
access mode at which the AST is declared.

type
VMS usage: type_longword
type: longword (unsigned)
access: read only
mechanism: by value
Value that indicates which notification AST to enable. The $PTDDEF
macro defines the symbolic names listed in Table C-2.

Table C-2 Symbolic Names Defined by $PTDDEF Macro

Symbolic Name

PTD$C_SEND_XON

PTD$C_SEND_BELL

PTD$C_SEND_XOFF

Description

Deliver notification AST when pseudoterminal is ready to accept input. This AST
is not delivered if the pseudoterminal is set to NO HOSTSYNC.

Deliver notification AST when pseudoterminal wants to stop input and signal it with
a bell character.

Deliver notification AST when pseuc:foterminal wants to stop input and signal it with
a DC3 character. ·

PTD$C_STOP_OUTPUT

PTD$C_RESUME_OUTPUT

PTD$C_CHAR_CHANGED

Deliver notification AST when pseudoterminal is stopping output.

Deliver notification AST when pseudoterminal is resuming output.

Deliver notification AST when pseudoterminal has changed some device
characteristic.

PTD$C_ABORT_OUTPUT

PTD$C_START_READ

PTD$C_MIDDLE_READ

PTD$C_END_READ

PTD$C_ENABLE_READ

PTD$C_DISABLE_READ

DESCRIPTION

C-10

Deliver notification AST when pseudoterminal wants to abort output.

Deliver notification AST when pseudoterminal is starting an application's read
request. This AST is delivered only if read event notification has been enabled.

Deliver notification AST when pseudoterminal has finished sending an application's
read request prompt string. This AST is delivered only if read event notification
has been enabled.

Deliver notification AST when pseudoterminal has finished an application's read
request. This AST is delivered only if read event notification has been enabled.

Enable terminal read event AST delivery. If this code is u~ed, you cannot supply
the astadr argument.

Disable terminal read event AST delivery. If this code is used, you cannot supply
the astadr argument.

PTD$SET~EVENT_NOTIFICATION enables or disables the repeating
terminal event notification ASTs listed in Table C-2. Once an event
notification AST in enabled, it remains in effect until it is disabled or until
the device is deleted.

RETURN
VALUES

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DEVOFFLIN E

SS$_EXASTLM

SS$_1NSFMEM

SS$_1VCHAN

SS$_NOPRIV

PTD$SET _EVENT _NOTIFICATION

Normal successful completion.

Unable to read an argument, or invalid 1/0 buffer
address.

An astadr, astprm, or acmode argument was not
zero when enabling or disabling read notification.

Device is off line and request cannot proceed.

Insufficient AST quota for notification AST.

Insufficient memory.

Illegal channel.

Insufficient privilege to perform request.

C-11

PTD$WRITE

PTD$WRITE Write Data to Pseudoterminal

FORMAT

RETURNS

ARGUMENTS

C-12

Inputs data to the pseudoterminal and reads any immediately echoed
characters.

PTD$WRITE chan [,astadr] [,astprm], wrtbuf,
wrtbuf_Jen [,echobuf] [,echobuf_len]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

ch an
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value
Number of I/O channel assigned to the pseudoterminal.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference
AST service routine to be executed when PTD$WRITE completes. If
astadr is specified, the AST routine executes at the same access mode as
the caller of the PTD$WRITE routine.

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
AST parameter to be passed to the AST service routine specified by the
astadr argument.

wrtbuf
VMS usage: char_string
type: character coded text string
access: read only
mechanism: by reference
Address of the write I/O status longword. The first character in an I/O
buffer to be written is this address plus 4. The wrtbuf must be in the
range specified by the inadr argument of the PTD$CREATE routine;
otherwise an SS$_ACCVIO status is returned.

PTD$WRITE

wrtbuf_len
VMS usage: word_unsigned
type: word {unsigned)
access: read only
mechanism: by value
Number of characters to be written to the pseudoterminal. These
characters appear as input to the terminal side of the pseudoterminal.
The low-order nine bits of the starting address plus wrtbuf_len must
be less than or equal to 508. SS$_IVBUFLEN is returned if the value of
wrtbuf_len is less than 0 or more than 508.

echo but
VMS usage: char_string
type: character coded text string
access: write only
mechanism: by reference
Address of the echo I/O status longword. The first character position in an
I/O buffer to receive all output is this address plus 4. The echobuf must
be in the range specified by the inadr argument of the PTD$CREATE
routine; otherwise an SS$_ACCVIO status is returned.

echobuf /en
VMS usage: word_unsigned
type: word {unsigned)
access: read only
mechanism: by value
Number of characters that can be read from the pseudoterminal. If an
echo buffer is specified, up to echobuf_len characters can be stored in it.
The low-order nine bits of the starting address plus echobuf_len must be
less than or equal to 508. SS$_IVBUFLEN is returned if 0 characters or
more than 508 characters are specified.

DESCRIPTION PTD$WRITE inputs data to the pseudoterminal and reads any
immediately echoed characters. PTD$WRITE allows you to specify a
buffer to receive any output generated by the write; you do not need to
issue a separate read request to read this data.

RETURN
VALUES

SS$_NORMAL

SS$_ACCVIO

SS$_DATALOST

SS$_DATAOVERUN

SS$_DEVOFFLINE

SS$_EXASTLM

Normal successful completion.

Unable to read an argument, or invalid 1/0 buffer
address.

The terminal driver type-ahead buffer is full and
character written was lost.

The terminal driver type-ahead buffer is getting full;
attempts to send more data might result in loss of
characters.

Device is off line and request cannot proceed.

Insufficient AST quota for notification AST.

C-13

PTD$WRITE

C-14

SS$_1NSFMEM

SS$_1VBUFLEN

SS$_1VCHAN

SS$_NOPRIV

Insufficient memory.

Buffer size supplied is illegal.

Illegal channel.

Insufficient privilege to perform request.

Index

A
ACP control function • 1-30

disk quotas • 1-33
magnetic tape positioning• 1-31
miscellaneous disk • 1-32
quota file transfer block • 1-33

ACP function • 1-2
arguments• 1-2
attributes• 1-16 to 1-18
10$_ACCESS • 1-7, 1-10, 1-14, 1-26
10$_ACPCONTROL • 1-7, 1-30
10$_CREATE • 1-10, 1-11, 1-14, 1-22
10$_DEACCESS • 1-13, 1-14, 1-28
10$_DELETE • 1-7, 1-29
10$_MODIFY • 1-7, 1-11, 1-13, 1-14, 1-28
10$_MOUNT • 1-30
major• 1-22

ACP-QIO interface
access file function • 1-26
access subfunction • 1-10
ACP control function • 1-30
ANSI standard• 1-2, 1-32
arguments • 1-2

disk quota • 1-33
attribute control block • 1-14
attributes• 1-16 to 1-18
attributes statistics block• 1-21
BLISS-32 programming • 1-2
create file function • 1-22

disk• 1-24
magnetic tape • 1-26

deaccess file function • 1-28
delete file function • 1-29
description• 1-1
directory entries• 1-9, 1-26
FIB (file information block) • 1-3

See also FIB (file information block)
file characteristics • 1-18
function codes • A-1
function modifiers • 1-2

10$M_ACCESS • 1-10, 1-23, 1-25, 1-26
10$M_CREATE • 1-23, 1-24, 1-25, 1-26
10$M_DELETE • 1-23, 1-24, 1-30
10$M_DMOUNT • 1-31, 1-32

1/0 operations • 1-1

ACP-QIO interface (Cont.)

1/0 status block • 1-35
record attributes area • 1-19

values• 1-20
serious exception (EOT) • 1-23, 1-27, 1-32
status returns • A-1
VAX MACRO programming• 1-1
XQP (extended QIO processor)• 1-1

ACP subfunction • 1-7
access • 1-10
directory lookup• 1-7
extend• 1-11, 1-35
read/write attributes • 1-14
truncate• 1-13

ALTMODE key• 8-21
ANSI escape sequence• B-9
Application programs

connecting to LAT ports• 8-48
Argument

device- or function-dependent • 1-2
list• A-1 to A-9
LPA 11-K subroutine • 4-16

ASCII (8-bit) code • 2-8
ASCII character set

See DEC Multinational Character Set
AST (asynchronous system trap)

quota•3-24, 4-14, 6-13, 7-5, 8-43
Asynchronous SCSI data transfer mode

enabling• 11-7, 11-13
Attention AST

mailbox• 7-9
terminal • 8-42

Autoconfiguration
of SCSI device• 11-9

B
Batch job command procedure

using a card reader• 2-2
Baud rate

terminal • 8-40
BOT (beginning-of-tape)

See Magnetic tape, BOT marker
Broadcast message• 8-18, 8-21, 8-23, 8-46
Buffered 1/0 quota • 3-24, 6-13, 7-5

lndex-1

Index

Buffer overrun

with LPA11-K • 4-12

c
Cache

tape• 6-8
write-back volatile • 6-8

Card reader
card punch combinations• 2-1
026 card reader code• 2-2, 2-8
029 card reader code • 2-2, 2-8
code•2-8
device characteristics • 2-5
driver• 2-1
end-of-file status • 2-2
error recovery • 2-3
failure categories • 2-4
f eatures • 2-1
for batch job command procedures• 2-2
function codes • 2-5, A-2
function modifiers

10$M_BINARY • 2-1, 2-6
10$M_PACKED • 2-1, 2-6

1/0 functions
10$_READLBLK • 2-6
10$_READPBLK • 2-6
10$_READVBLK • 2-6
10$_SENSEMODE • 2-7
10$_SETCHAR • 2-10
10$_SETMODE • 2-8

1/0 status block • 2-11
read function • 2-6
read modes • 2-1
sense mode function• 2-7
set mode function• 2-7
set translation mode • 2-2
status returns • A-2
supported device • 2-1
SYS$GETDVI returns • 2-5

Carriage control
line printer • 5-6
terminal • 8-36

CD ROM
See Disk

Character
formatting on line printer • 5-2
terminal terminator• 8-28

Character set
See DEC Multinational Character Set

lndex-2

Character set (Cont.)

terminal lowercase • 8-21
Clock rate

with LPA11-K • 4-10
Compact Disc Read-Only Memory (CDROM)

See Disk
CONNECT command• 8-17
Console disk

See RX01 console disk
Console terminal • 8-1
Control character

list• B-1
terminal • 8-4 to 8-6, 8-9

Control connection routines• C-1
PTD$CANCEL • C-2
PTD$CREATE • C-3
PTD$DELETE • C-6
PTD$READ • C-7
PTD$SET _EVENT _NOTIFICATION • C-9
PTD$WRITE • C-12

Control sequence
terminal • 8-8

Create file function • 1-22
directory entry creation • 1-26

CTDRIVER • 8-11, 8-35
CTRUx

See Terminal, control characters

D
Data buffer, LPA 11-K • 4-14
Data check

disk• 3-15, 3-29, 3-30
magnetic tape• 6-8, 6-17, 6-18

Data security erase
magnetic tape • 6-27

Data transfer command table
LPA11-K • 4-11

Data transfer mode
as controlled by the generic SCSI class driver•

11-7, 11-13
asynchronous• 11-7, 11-13
synchronous• 11-7, 11-13

Data transfer start command
LPA 11-K • 4-12

Data transfer stop command
LPA 11-K • 4-14

Data underrun/overrun
with LPA 11-K • 4-12

Deaccess file function • 1-28

DEC026 card reader code • 2-2, 2-8
DEC029 card reader code • 2-2, 2-8
DEC Multinational Character Set • B-1
Delete file function • 1-29
DELETE key• 8-4
Device characteristics

card reader • 2-5
disk•3-22
line printer• 5-3
LPA 11-K device • 4-5
magnetic tape • 6-11
mailbox• 7-4
pseudoterminal • 9-3
terminal • 8-20

DH U 11 device • 8-1
DHV11 device• 8-1
Dial-up line • 8-13
Digital-private escape sequence • 8-9
Direct 1/0 quota • 3-24, 6-13
Directory entry

creation • 1-26
protection • 1-9

Directory lookup subfunction • 1-7
directory entry protection • 1-9

DISCONNECT command• 8-17
Disconnect feature

enabling• 11-13
Disk

See also DSA disk
ACP control function • 1-32
ACP operation

creating file • 1-24
deaccessing file• 1-28

available function • 3-33
Backup Utility • 3-21
compact disc • 3-8
data check• 3-15, 3-29, 3-30
device characteristics • 3-22
driver• 3-1

SCSI •3-22
VAXstation 2000 and MicroVAX 2000 • 3-21

dual-pathed • 3-11
DSA disks• 3-14

dual-ported • 3-12
dual porting

DSA disks • 3-14
HSC disks • 3-15
restrictions for use • 3-13

error recovery • 3-17
features • 3-11
file attributes • 3-16

Disk (Cont.)

function codes • 3-25, A-2
function modifiers

Index

10$M_DATACHECK • 3-15, 3-29, 3-30
10$M_DELDATA • 3-30
10$M_ERASE • 3-27, 3-31
10$M_INHRETRY • 3-17, 3-29, 3-30

HSC40 controller • 3-3
HSC50 controller • 3-3
HSC70 controller • 3-3
1/0 functions • 3-24

See also ACP-QIO interface
arguments • 3-26 to 3-29
10$_ACPCONTROL • 1-32
10$_AVAILABLE • 3-33
10$_FORMAT • 3-31
10$_PACKACK • 3-32
10$_READLBLK • 3-29
10$_READPBLK • 3-29
10$_READVBLK • 3-29
10$_SEARCH • 3-31
10$_SEEK • 3-33
10$_SENSECHAR • 3-31
10$_SENSEMODE • 3-31
10$_SETPRFPTH • 3-34
10$_UNLOAD • 3-32
10$_WRITECHECK • 3-33
10$_WRITELBLK • 3-30
10$_WRITEPBLK • 3-30
10$_WRITEVBLK • 3-30

1/0 status block • 3-36
KDA50 controller • 3-3
KDB50 controller • 3-3
KFQSA adapter • 3-5
offset recovery • 3-16
pack acknowledge function • 3-32
port access mode • 3-12
port selection • 3-12
programming example • 3-37
quotas • 1-33 to 1-34, 3-24
RA60•3-5
RA70•3-5
RA90 •3-5
RB02 •3-6
RC25 •3-6
RCT (replacement and caching table)• 3-20
RD53 •3-6
RD54 •3-6
read function • 3-29
RF30 •3-7

lndex-3

Index

Disk (Cont.)

RF31
failover • 3-15

RF70
failover • 3-15

RF71•3-7
RM03 • 3-7
RM05•3-7
RP05 •3-7
RP06 •3-7
RP07 •3-7
RQDX3 controller • 3-5
RRD40 CDROM • 3-8
RRD50 CDROM • 3-8
RX02 •3-8
RX06 cartridge • 3-7
RX07 cartridge• 3-7
RX23 flexible • 3-9
RX33 flexible • 3-1 O
RX50 flexible • 3-1 O
RZ22 • 3-10
RZ23 • 3-10
RZ55 •3-10
SDI •3-5
search function• 3-31
sector translation • 3-18
seek operations • 3-16, 3-33
sense mode function• 3-31
set density function • 3-31
set preferred path function • 3-34
Sil integral adapter• 3-4
skip sectoring • 3-17
status returns• A-3
supported devices • 3-1 to 3-11
SYS$GETDVI returns • 3-22
TU58 magnetic tape• 3-10, 3-16, 3-29, 3-30,

3-31, 3-33
UDA50 disk adapter• 3-3
unload function • 3-32
use with Verify Utility • 3-19, 3-21
VAXstation 2000 and MicroVAX 2000 driver• 3-21
write check function• 3-33
write function • 3-30

Disk class driver
disabling the loading of• 11-10

Disk drive
compatibility for volume shadowing • 10-3

DISMOUNT command• 1-32
DMB32 device • 8-1
DMF32 device• 8-1
DMZ32 device • 8-1

lndex-4

Driver

card reader • 2-1
disk• 3-1
LAT port• 8-1
line printer • 5-1
LPA 11-K device • 4-1
magnetic tape • 6-1
mailbox• 7-1
pseudoterminal • 9-1
SCSI •3-22
shadow set virtual unit • 10-1
terminal • 8-1
VAXstation 2000 and MicroVAX 2000 disk• 3-21

DSA (DIGITAL Storage Architecture)

See DSA disk
DSA32 device • 8-1
DSA disk• 3-1, 3-14

See also Disk
bad block• 3-19, 3-21
bad block replacement • 3-20, 3-21
forced error • 3-20
forced error flag• 3-21
use with Verify Utility • 3-19, 3-21

Dual host
definition of • 3-4

Dual path
definition of• 3-11

Dual-pathed disk • 3-11
DSA disk• 3-14

Dual-ported disk • 3-12
DSA disk• 3-14
HSC disk• 3-15
restrictions for use • 3-13

Duplex mode

See also Half-duplex mode
terminal • 8-1 O

DZ11 device • 8-1
DZ32 device • 8-1
DZV11 device• 8-1

E
End-of-file

See EOF
End-of-tape

See EOT
End-of-volume

detection on magnetic tape • 6-20

EOF (end-of-file)

status
card reader • 2-2
magnetic tape • 6-17

write mailbox message• 7-9
EOJ command

in card reader batch job • 2-2
EQT (end-of-tape)

status
magnetic tape• 6-17, 6-19, 6-21

Error recovery
disk• 3-17
line printer • 5-3
magnetic tape • 6-9
shadow set virtual unit driver • 10-9

Escape sequence
ANSI• B-9
Digital-private • B-9
terminal• 8-7, 8-21

Event notification
pseudoterminal • 9-6

Extend subfunction • 1-11

F
FIB (file information block) • 1-3

See also ACP function
access control• 1-10
contents • 1-5 to 1-7
descriptor• 1-2, 1-3
directory lookup• 1-8
disk quota• 1-33 to 1-34
extend control • 1-11
format• 1-5
10$_ACCESS • 1-26
10$_ACPCONTROL • 1-31 to 1-34
10$_CREATE • 1-23
10$_DEACCESS • 1-28
10$_DELETE • 1-30
10$_MODIFY • 1-29
truncate control • 1-13

File characteristics
ACP-QIO attributes• 1-18

Floppy disk

See Diskette
Form feed

line printer• 5-4
mechanical • 5-4
terminal • 8-21

Full-duplex mode• 8-1 O
Function code

See also 1/0 function
10$_ACCESS • 1-26
10$_ACPCONTROL • 1-30, 6-15
10$_ADDSHAD • 10-5
10$_AVAILABLE•3-33, 6-27, 10-8
10$_COPYSHAD • 10-6
10$_CREATE • 1-22
10$_CRESHAD • 10-4
10$_DEACCESS • 1-28
10$_DELETE • 1-29
10$_DSE • 6-27
10$_FORMAT • 3-31
10$_1NITIALIZE • 4-9
10$_LOADMCODE • 4-8
10$_MODIFY • 1-28

Index

10$_PACKACK • 3-32
10$_READLBLK•2-6,3-29, 6-17, 7-5,8-26
10$_READPBLK •2-6, 3-29, 6-17, 7-5
10$_READPROMPT • 8-26
10$_READVBLK • 2-6, 3-29, 6-17, 7-5, 8-26
10$_REMSHAD • 10-7
10$_REWIND • 6-19
10$_REWINDOFF • 6-21
10$_SEARCH • 3-31
10$_SEEK • 3-33
10$_SENSECHAR • 3-31, 8-53, 10-8
10$_SENSEMODE • 2-7, 3-31, 5-9, 6-22, 8-53
10$_SETCHAR • 2-10, 5-9, 6-23, 8-38
10$_SETCLOCK •4-10
10$_SETMODE • 2-8, 5-9, 6-23, 8-38
10$_SETPRFPTH • 3.:..34
10$_SKIPFILE • 6-19
10$_SKIPRECORD • 6-20
10$_STARTDATA • 4-11
10$_UNLOAD • 3-32, 6-22
10$_WRITECHECK • 3-33
10$_WRITELBLK•3-30, 5-5,6-18, 7-6,8-34
10$_WRITEOF • 6-21
10$ WRITEPBLK • 3-30, 5-5, 6-18, 7-6, 8-34
10$=WRITEVBLK • 3-30, 5-5, 6-18, 7-6, 8-34
list of • A-1 to A-9

Function modifier
10$M_ACCESS • 1-23, 1-26, 6-13
10$M_BINARY • 2-6
10$M_BRDCST • 8-46, 8-55
10$M_BREAKTHRU • 8-10, 8-35
10$M_CANCTRLO • 8-5, 8-35
10$M_CREATE • 1-23, 1-26, 6-13
10$M_ CTRLCAST • 8-42

lndex-5

Index

Function modifier (Cont.)

10$M_CTRLYAST • 8-5, 8-42
10$M_CVTLOW • 8-27
10$M_DATACHECK • 3-15, 3-29, 3-30, 6-8,

6-17,6-18
10$M_DELDATA • 3-30
10$M_DELETE • 1-23, 1-30
10$M_DMOUNT • 1-31
10$M_DSABLMBX • 8-27
10$M_ENABLMBX • 8-35
10$M_ERASE • 3-27, 3-31, 6-18
10$M_ESCAPE • 8-7, 8-27
10$M_EXTEND • 8-27, 8-29
10$M_HANGU P • 8-42
10$M_INCLUDE • 8-43, 8-46
10$M_INHEXTGAP • 6-10
10$M_INHRETRY • 3-29, 6-9
10$M_MAINT • 8-44, 8-45
10$M_NOECHO • 8-10, 8-24, 8-27
10$M_NOFILTR • 8-27
10$M_NOFORMAT • 8-11, 8-35
10$M_NORSWAIT • 7-7
10$M_NOW • 7-6, 7-7
10$M_NOWAIT • 6-19, 6-21, 6-22
10$M_OUTBAND • 8-46
10$M_PACKED • 2-6
10$M_PURGE • 8-27
10$M_RD_MODEM • 8-54
10$M_READATTN • 7-9
10$M_REFRESH • 8-36
10$M_REVERSE • 6-17
10$M_SETEVF • 4-11
10$M_SETPROT • 7-11
10$M_SET _MODEM • 8-44
10$M_ TIMED • 8-27
10$M_ TRMNOECHO • 8-28
10$M_ TT _ABORT• 8-46
10$M_ TYPEAHDCNT • 8-54
10$M_UNLOOP • 8-45
list of • A-1 to A-9

G
Generic SCSI class driver • 11-1 to 11-16

assigning a channel to• 11-10
flow of• 11-4 to 11-6
1/0 status block returned by• 11-11
loading • 11-9
obtaining device information from • 11-14
programming example • 11-15 to 11-16

lndex-6

Generic SCSI class driver (Cont.)

$010 system service format for • 11-11 to 11-14
security considerations • 11-6

Generic SCSI descriptor
format of • 11-12 to 11-14

H
Half-duplex mode• 8-10, 8-21

See also Duplex mode
Hang up

function modifier • 8-42
terminal • 8-18, 8-24

HSC40 disk controller • 3-3
HSC50 disk controller • 3-3
HSC70 disk controller • 3-3
HSC disk• 3-15

I
1/0 buffers

pseudoterminal • 9-4
1/0 function

See also Function code
ACP-QIO interface • 1-2
card reader • 2-5
codes •A-1
disk • 1-2, 3-24
line printer • 5-5
list of• A-1 to A-9
LPA 11-K device • 4-8
magnetic tape • 1-2, 6-13
terminal • 8-26

1/0 status block
ACP-QIO interface • 1-35
card reader • 2-11
disk• 3-36
LAT port driver• 8-56
line printer • 5-1 O
LPA 11-K device • 4-33
magnetic tape • 6-28
mailbox• 7-12
returned by generic SCSI class driver• 11-11
terminal • 8-56

INITIALIZE command• 6-27
Initialize command table

LPA 11-K device • 4-9
ltemlist read operations • 8-29

J
JOB command

in card reader batch job • 2-2

K
KDA50 disk controller • 3-3
KDB50 disk controller • 3-3
Keyboard control character • 8-4 to 8-6, 8-9
KFQSA adapter • 3-5

L
Laboratory Peripheral Accelerator

See LPA 11-K device
LAT port driver (LTDRIVER) • 8-1
Line printer

carriage control • 5-6, 5-8
character case • 5-4
character formatting • 5-2
device characteristics • 5-3
driver• 5-1
error recovery • 5-3
form feed • 5-4
function codes • 5-5, A-5
1/0 functions

10$_SENSEMODE • 5-9
10$_SETCHAR • 5-9
10$_SETMODE • 5-9
10$_WRITELBLK • 5-5
10$_WRITEPBLK • 5-5
10$_WRITEVBLK • 5-5

1/0 status block • 5-1 O
printall mode • 5-4
programming example • 5-11
sense mode function • 5-9
set characteristics • 5-9
set mode function• 5-9
status returns • A-5
supported devices • 5-1
SYS$GETDVI returns • 5-3
write function • 5-5

carriage control • 5-6
Line terminator

terminal• 8-9

LPA 11-K device
AST

address • 4-12, 4-14
quota• 4-14
synchronization • 4-14

buffer management • 4-16
buffer overrun• 4-12, 4-14, 4-31
buffer queue control • 4-16
clock rate • 4-1 O
data buff er • 4-14
data sampling • 4-1
data transfer command table • 4-11
data transfer start command • 4-12
data transfer stop command • 4-14
data underrun/overrun • 4-12
device characteristics • 4-5 to 4-8
device configuration • 4-2, 4-10, 4-34

Index

device initialization • 4-4, 4-8 to 4-9, 4-32, 4-34
driver• 4-1
errors• 4-2
features• 4-3
function codes • 4-8, A-4
function modifier

10$M_SETEVF•4-11, 4-14
high-level language support routines • 4-15
1/0 functions

10$_1NITIALIZE • 4-9
10$_LOADMCODE • 4-8
10$_SETCLOCK • 4-10
10$_STARTDATA • 4-11
10$_STARTMPROC • 4-9

1/0 status block • 4-33
initialize command table • 4-9
initialize function • 4-9
load microcode function • 4-8
maintenance status register• 4-10, 4-33
microcode loading • 4-4, 4-8, 4-32, 4-34
modes of operation • 4-1
operator process • 4-35
programming examples• 4-37, 4-39, 4-44
RSX-11 M/M-PLUS and VMS differences • 4-35
set clock function • 4-10
start data transfer request function • 4-11
start microprocessor function • 4-9
status returns • 4-9, 4-10, 4-11, 4-14, 4-33, A-5
stop command • 4-14
subroutines

argument usage • 4-16 to 4-19
list• 4-15

supported device • 4-1
supporting software • 4-3

lndex-7

Index

LPA 11-K device (Cont.)

SYS$CANCEL routine • 4-14
SYS$GETDVI returns• 4-5
timeout error • 4-2

M
Magnetic tape

ACP control function • 1-30, 6-15
ACP create file operation • 1-26
available function • 6-27
BOT marker• 6-19, 6-20
byte count

read• 6-17
write• 6-19

data check• 6-8, 6-17, 6-18
data security erase function • 6-27
density • 6-26
device characteristics • 6-11 to 6-12
driver• 6-1
end-of-volume detection • 6-20
EOF status • 6-17
EQT

marker• 6-20 to 6-21
status• 6-17, 6-19, 6-21

error recovery • 6-9
extended characteristics • 6-12
features • 6-6
file attributes • 6-9
function codes• 6-13, A-6
function modifiers

10$M_DATACHECK • 6-8, 6-17, 6-18
10$M_ERASE • 6-18
10$M_INHEXTGAP • 6-10
10$M_INHRETRY • 6-9
10$M_NOWAIT • 6-19, 6-21, 6-22
10$M_REVERSE • 6-17

1/0 functions• 6-13
See also ACP-QIO interface
arguments • 6-15
10$_ACCESS • 6-13
10$_ACPCONTROL • 1-31, 6-15
10$_AVAILABLE • 6-27
10$_CREATE • 6-13
10$_DEACCESS • 6-13
10$_DSE • 6-13, 6-27
10$_FLUSH • 6-13
10$_MODIFY • 6-13
10$_PACKACK • 6-27
10$_READLBLK • 6-17

lndex-8

Magnetic tape
1/0 functions (Cont.)

10$_READPBLK • 6-17
10$_READVBLK • 6-17
10$_REWIND • 6-19
10$_REWINDOFF • 6-21
10$_SENSEMODE • 6-22
10$_SETCHAR • 6-23
10$_SETMODE • 6-23
10$_SKIPFILE • 6-19
10$_SKIPRECORD • 6-20
10$_UNLOAD • 6-22
10$_WRITELBLK • 6-18
10$_WRITEOF • 6-21
10$_WRITEPBLK • 6-18
10$_WRITEVBLK • 6-18

1/0 status block • 6-28
master adapters • 6-8
pack acknowledge function • 6-27
parity • 6-26
positioning• 1-31
programming example • 6-28
quotas • 6-13
read function • 6-17
read reverse function• 6-17, 6-18
rewind function• 6-19
rewind offline function • 6-21
sense mode function• 6-22
set characteristics function • 6-23
set mode function • 6-23

characteristics • 6-25
skip file function • 6-19
skip record function• 6-20
slave formatter • 6-8
status returns• A-7
streaming tape systems• 6-10
supported devices • 6-1
SYS$GETDVI returns• 6-11
tape controllers • 6-3
tape mark• 6-17, 6-20
thrashing • 6-1 O
TMSCP magnetic tapes• 6-1
TU58 magnetic tape

See Disk, TU58
unload function• 6-22
write end-of-file function • 6-21
write function• 6-18

Mailbox
See also Terminal
creating• 7-1
deleting• 7-2

Mailbox (Cont.)

device characteristics • 7-4
disable terminal • 8-21
driver• 7-1
function codes• 7-5, A-7
function modifiers

10$M_NORSWAIT • 7-7
10$M_NOW • 7-2, 7-6, 7-7, 7-9, 7-10
10$M_READATTN•7-9
10$M_SETPROT • 7-11

1/0 functions
10$_READLBLK • 7-5
10$_READPBLK • 7-5
10$_READVBLK • 7-5
10$_WRITELBLK • 7-6
10$_WRITEOF • 7-9
10$_WRITEPBLK • 7-6
10$_WRITEVBLK • 7-6

1/0 status block• 7-12
list of operations • 7-1
message format• 7-3

terminal• 8-18
message size • 7-2
multiport memory• 7-1
permanent• 7-2, 7-3, 7-4
programming example• 7-14
protection• 7-2, 7-4, 7-11
read attention AST function• 7-9
read function• 7-5
set attention AST function• 7-9
set protection function• 7-11
status returns• A-7
SYS$GETDVI returns • 7-4
temporary • 7-2, 7-4
terminal/mailbox interaction• 8-17
volume protection• 7-11
write attention AST function• 7-9
write end-of-file message function• 7-9
write function • 7-6

Master adapter • 6-8
Message format

See Mailbox
Mode card

026 punch mode • 2-2
029 punch mode • 2-2

Modify file function • 1-28
MOUNT command • 6-27
Mount function • 1-30
Multinational character set

See DEC Multinational Character Set

Multiplexer

DMB32 device• 8-1
DMF32 device• 8-1
DZ11 device • 8-1
DZ32 device • 8-1

0
Out-of-band AST• 8-13, 8-46

p
Parity flag • 8-41
Passall mode • 5-4
PASSWORD command

in card reader batch job• 2-2
Pasthru mode • 8-9, 8-11 , 8-24, 8-27
Permanent mailbox

See Mailbox
Port access mode • 3-12
Port selection • 3-12
Printer

See Line printer
Protection

See also Mailbox
directory entry • 1-9

Pseudoterminal
canceling request• 9-2
control connection routines• C-1
creating • 9-1
deleting • 9-2
device characteristics • 9-3
driver• 9-1
event notification • 9-6
featu res • 9-3
flow control • 9-6
1/0 buffers • 9-4
programming example • 9-8
reading data• 9-5
using write with echo • 9-5
writing data • 9-5

Index

PTD$CANCEL control connection routine • C-2
PTD$CREATE control connection routine • C-3
PTD$DELETE control connection routine• C-6
PTD$READ control connection routine• C-7
PTD$SET _EVENT _NOTIFICATION control

connection routine • C-9
PTD$WRITE control connection routine • C-12

lndex-9

Index

Q
Quota

AST•3-24,4-14, 6-13, 7-5, 7-9, 8-43
buffered 1/0 • 3-24, 6-13, 7-5
BYTELIM • 1-11
direct 1/0 • 3-24, 6-13
disk• 1-33 to 1-34
mailbox buffer• 7-2, 7-3, 7-5

Quota file transfer block• 1-33

R
RAGO disk • 3-5
RA70 disk• 3-5
RA90 disk • 3-5
RB02 disk • 3-6
RC25 disk • 3-6
RD53 disk • 3-6
RD54 disk • 3-6
Read attention AST function• 7-9
Read/write attributes subfunction • 1-14
Record attributes value • 1-20
RETURN key• 8-6
Rewind offline function • 6-21
RF30 disk • 3-7
RF71 disk• 3-7
RK06 cartridge disk• 3-7
RK07 cartridge disk• 3-7
RM03 disk • 3-7
RM05 disk• 3-7
RP05 disk• 3-7
RP06 disk• 3-7
RP07 disk• 3-7
RQDX3 disk controller• 3-5
RSX-11 M/M-PLUS

differences from VMS • 4-35
RTPAD • 8-11
RX01 console disk• 3-8
RX02 Diskette • 3-8
RX23 diskette • 3-9
RX33 diskette • 3-1 O
RX50 diskette • 3-1 O
RX-series • 3-9
RZ22 disk • 3-10
RZ23 disk • 3-10
RZ55 disk• 3-10

lndex-10

s
SCSI

disk
class driver • 3-22
error recovery• 3-17, 3-22

SCSI Class driver• 11-2
SCSI class/port architecture • 11-2
SCSI command

disabling retry• 11-8
enabling retry • 11-13
padding, when required • 11-14
setting disconnect timeout for• 11-8, 11-14
setting OMA timeout for • 11-8, 11-14
setting phase change timeout for • 11-8, 11-14

SCSI disconnect feature
enabling • 11-7

SGS I port driver • 11-2
SCSl_NOAUTO system parameter• 11-10
Sector translation • 3-18
Seek operation • 3-16
Sense tape mode function • 6-22
Serial line multiplexer• 8-1
Set attention AST

See Attention AST
SET CARD_READER command• 2-2
Set characteristic

card reader• 2-7
line printer• 5-9
magnetic tape • 6-23
terminal • 8-38

SET HOST facility• 8-11
Set mode

card reader• 2-7
line printer• 5-9
magnetic tape • 6-23
mailbox• 7-9
terminal • 8-38

SET TERMINAL command •8-4, 8-19, 8-25
Set translation mode • 2-2
Shadow set virtual unit driver• 10-1

functions • 10-4
hardware configurations • 10-2
system configuration • 1 0-2

SHDRIVER.EXE • 10-1
Sii integral adapter• 3-4
Skip file function • 6-20
Skip sectoring • 3-17
Slave formatter • 6-8

Small Computer System Interface (SCSI)

See SCSI
SS$_ABORT return• 8-45, 8-50, A-2, A-3, A-5,

A-7, A-9
SS$_ACCONFLICT return• A-1
SS$_ACCVIO return• 7-12, 8-51
SS$_ACPVAFUL return• A-1
SS$_BADATTRIB return• A-1
SS$_BADCHKSUM return• A-1
SS$_BADESCAPE return • 8-7, A-9
SS$_BADFILEHDR return• A-1
SS$_BADFILENAME return• A-1
SS$_BADFILEVER return• A-1
SS$ BADIRECTORY return• A-1
SS$=BADPARAM return •8-51, A-1, A-5, A-9
SS$_BADQFILE return• A-1
SS$_BLOCKCNTERR return • A-1
SS$_BUFFEROVF return• 7-6, A-7
SS$ BUFNOTALIGN return• A-5
SS$= CANCEL return• A-3, A-5, A-7, A-9
SS$_CONTROLC return • 8-46, A-9
SS$_CONTROLO return• A-9
SS$_CONTROLY return• A-9
SS$_CREATED return• A-1
SS$ CTRLERR return • A-3, A-5, A-7
SS$-DATACHECK return• A-3, A-5, A-7
SS$=DATAOVERUN return• 8-9, A-2, A-3, A-7,

A-9
SS$_DEVACTIVE return • 8-50, A-5
SS$_DEVCMDERR return • A-5
SS$_DEVICEFULL return• A-1
SS$_DEVOFFLINE return • A-7
SS$_DEVREQERR return • A-5
SS$_DIRFULL return• A-1
SS$_DIRNOTEMPTY return• A-1
SS$_DRVERR return • A-3, A-7
SS$_DUPDSKQUOTA return• A-1
SS$ DUPFILENAME return• A-1
SS$=ENDOFFILE return• 6-21, 7-6, 7-9, A-1, A-2,

A-7
SS$_ENDOFTAPE return• A-7
SS$_ENDOFVOLUME return• 6-21, A-7
SS$_EXBYTLM return • A-1
SS$_EXDISKQUOTA return• A-1
SS$_EXQUOTA return • A-5
SS$_FCPREADERR return• A-1
SS$_FCPREWNDERR return• A-1
SS$_FCPSPACERR return• A-1
SS$_FCPWRITERR return • A-1
SS$_FILELOCKED return• A-1
SS$_FILENUMCHK return• A-1
SS$_FILEPURGED return• A-1

SS$_FILESEQCHK return• A-1
SS$_FILESTRUCT return• A-1
SS$_FILNOTEXP return• A-1
SS$_FORCEDERR return• A-3
SS$_FORMAT return· A-3, A-7
SS$_HANGUP return• 8-13
SS$_HEADERFULL return• A-1
SS$_1BCERROR return• A-1
SS$_1DXFILEFULL return• A-1
SS$ ILLCNTRFUNC return• A-1
SS$=1LLIOFUNC return • 8-50, A-3, A-7
SS$_1NCOMPAT return • A-9
SS$_1NSFBUFDP return • A-5
SS$_1NSFMAPREQ return • A-5
SS$_1NSFMEM return• 7-12, A-5
SS$_1VADDR return• A-3
SS$_1VBUFLEN return• A-3, A-5
SS$ IVMODE return • A-5
SS$=MBFULL return• 7-2, 7-7, 7-12
SS$_MBTOOSML return • 7-12
SS$ MCNOTVALID return• A-5
SS$=MEDOFL return• A-3, A-7
SS$ NODISKQUOTA return• A-1
SS$-NOMOREFILES return• A-1
SS$ NONEXDRV return• A-3, A-7
SS$=NOPRIV return• 7-12, 8-51, A-1
SS$_NOQFILE return• A-1

Index

SS$_NORMAL return• 8-50, 8-51, A-2, A-3, A-7,
A-9

SS$_NOSUCHFILE return• A-1
SS$_NOTAPEOP return • A-2
SS$_NOTLABELMT return • A-2
SS$_NOTPRINTED return • A-2
SS$_NOTVOLSET return • A-2
SS$_0PINCOMPL return• A-3, A-7
SS$_0VRDSKQUOTA return• A-2
SS$_PARITY return• A-3, A-5, A-7, A-9
SS$_PARTESCAPE return• 8-7, 8-30, A-9
SS$_POWERFAIL return • A-5
SS$_QFACTIVE return• A-2
SS$_QFNOTACT return• A-2
SS$_RCT return • A-3
SS$_RDDELDATA return • A-3
SS$_SERIOUSEXCP return • A-2, A-7
SS$_SUPERSEDE return • A-2
SS$ TAPEPOSLOST return • A-2
SS$= TIMEOUT return• 8-27, 8-50, A-3, A-5, A-7,

A-9
SS$_ TOOMANYVER return • A-2
SS$_ UNSAFE return• A-3, A-7
SS$_ VOLINV return • A-3, A-7

lndex-11

Index

SS$_WASECC return • A-3
SS$_WRITLCK return • A-2, A-3, A-7
SS$_WRONGACP return • A-2
Standard Disk Interconnect (SDI)• 3-5
Synchronous SCSI data transfer mode

enabling• 11-7, 11-13
SYS$ASSIGN routine• 7-2, 8-17, 8-52
SYS$CANCEL routine • 4-14
SYS$CREMBX routine• 7-1
SYS$DASSGN routine• 7-2
SYS$DELMBX routine• 7-3
SYS$DISMOUNT routine• 1-32
SYS$GETDVI

SCSI generic class driver• 11-14
SYS$GETDVI routine• 6-11

card reader • 2-5
disk •3-22
line printer• 5-3
LPA 11-K device • 4-5
mailbox• 7-4
terminal • 8-20

SYS$QIO
format for request to SCSI generic class driver•

11-11
System console terminal • 8-1
System Generation Utility (SYSGEN)

configuring SCSI devices• 11-9

T
Tab

CTRUI •8-6
terminal mechanical • 8-21
terminal tab stops• 8-35

Tape

See Magnetic tape
Tape class driver

disabling the loading of• 11-1 O
Tape mark• 6-17, 6-20
Temporary mailbox• 7-4
Terminal

ANSI CRT terminal • 8-22
autobaud detection • 8-19, 8-22
baud rate • 8-19, 8-22, 8-40
bell (CTRUG) • 8-9
broadcast message • 8-18, 8-21, 8-23, 8-46
carriage control • 8-36
characteristic

See Terminal characteristic

lndex-12

Terminal (Cont.)

command line editing • 8-3, 8-34
command recall (CTRUB) • 8-3, 8-6
control and data signals • 8-16
control characters • 8-4 to 8-6, 8-9, 8-27

numeric values • B-1
control sequences • 8-8
cursor movement • 8-3, 8-5, 8-22
delete character • 8-3
delete line (CTRUU) • 8-5, 8-27
device characteristics • 8-20

categories • 8-25
changing • 8-42
extended • 8-22

dial-up
characteristic• 8-22
lines• 8-13, 8-23, 8-42
support • 8-13

DIGITAL CRT terminal• 8-23
discard output (CTRUO) • 8-5, 8-27, 8-35
driver• 8-1
duplex modes• 8-10, 8-13
enable CTRUC AST• 8-42
enable CTRUY AST• 8-42
escape sequences• 8-7, 8-57

ANSI• B-9
Digital-private • B-9
overflow size (item code) • 8-30

extended characteristics • 8-22
fallback conversion • 8-11 , 8-24, 8-42
features• 8-2
form feed • 8-21, 8-35
frame size • 8-41
function codes • 8-26, A-8
function modifiers

See also Terminal, item codes
10$M_BRDCST • 8-46, 8-55
10$M_BREAKTHRU • 8-10, 8-35
10$M_CANCTRLO • 8-5, 8-35
10$M_CTRLCAST•8-42
10$M_ CTRLYAST • 8-5, 8-13, 8-42
10$M_ CVTLOW • 8-27
10$M_DSABLMBX • 8-27
10$M_ENABLM!3X • 8-35
10$M_ESCAPE • 8-7, 8-27
10$M_EXTEND • 8-27, 8-29
10$M_HANGUP • 8-42
10$M_INCLUDE • 8-19, 8-43, 8-46
10$M_LOOP • 8-45
10$M_LT_CONNECT • 8-49
10$M_LT_DISCON • 8-49

Terminal
function modifiers (Cont.)

10$M_LT _MAP _PORT• 8-49
P 1 parameters • 8-50

10$M_LT_RATING • 8-49
10$M_MAINT • 8-44, 8-45
10$M_NOECHO • 8-9, 8-10, 8-24, 8-27
10$M_NOFILTR • 8-27
10$M_NOFORMAT • 8-11, 8-35, 8-45
10$M_OUTBAND • 8-46
10$M_PURGE • 8-27
10$M_RD_MODEM • 8-54
10$M_REFRESH•8-36
10$M_SET_MODEM • 8-44
10$M_ TIMED• 8-27
10$M_ TRMNOECHO • 8-28
10$M_TT_ABORT • 8-19, 8-46
10$M_ TYPEAHDCNT • 8-54
10$M_UNLOOP • 8-45

hang up• 8-13, 8-17, 8-18, 8-23, 8-24, 8-42,
8-52

1/0 functions
CTDRIVER • 8-35
10$_READLBLK • 8-26
10$_READPROMPT • 8-26, 8-27
10$_READVBLK•8-26
10$_SENSECHAR • 8-53
10$_SENSEMODE • 8-53
10$_SETCHAR • 8-38
10$_SETMODE • 8-38
10$_ TTY _PORT • 8-49
10$_WRITELBLK • 8-34
10$_WRITEPBLK • 8-34
10$_WRITEVBLK • 8-34

1/0 status block • 8-56
initiate login • 8-9
input processing • 8-3
insert/overstrike (CTRUA) • 8-3, 8-6
interrupt (CTRUY) • 8-5
item codes • 8-30 to 8-33
itemlist read • 8-29

example• 8-70
item codes • 8-30 to 8-33
item descriptor• 8-30

LAT line• 8-1
LAT port driver• 8-48

application services creation • 8-51
example• 8-74
1/0 functions • 8-49

LAT rejection codes• 8-58
line editing • 8-3, 8-23

See also Terminal, item codes

Terminal (Cont.)

line feed• 8-35
line terminators • 8-9
mailbox• 8-17, 8-35

message format • 8-18
message types • 8-18

modem
characteristic• 8-21
control signals • 8-16
data signals • 8-16
protocol • 8-14
sense signals • 8-54
signal control • 8-13

no type-ahead• 8-21
out-of-band

See also Out-of-band AST
characters • 8-19

output
CTDRIVER • 8-11
RTPAD •8-11
SET HOST• 8-11

output formatting • 8-11 , 8-25
output processing• 8-1 O
page length and width• 8-40, 8-53
parity flag • 8-41
pasthru mode • 8-9, 8-11, 8-24, 8-27
process preservation • 8-17
programming examples • 8-59
protocol • 8-14
read function • 8-26

arguments • 8-26
function modifiers • 8-27
itemlist read • 8-29
terminating • 8-26
terminators • 8-28
with timeout • 8-26, 8-27

read verify • 8-6, 8-33
example • 8-70

receive speed • 8-40
redisplay data (CTRUR) • 8-6, 8-27
ReGIS graphics• 8-24
restart data (CTRUQ) • 8-6
sense characteristics function • 8-53
sense mode function • 8-53
serial line multiplexer• 8-1
set characteristics function• 8-38

arguments • 8-39
set mode function • 8-38

arguments • 8-39

Index

SET TERMINAL DCL command• 8-4, 8-19, 8-25
SIXEL graphics• 8-24

lndex-13

Index

Terminal (Cont.)

special operating modes • 8-1 O
status (CTRL/T) • 8-6
status returns• A-9
stop data (CTRUS) • 8-6
supported devices • 8-1
SYS$GETDVI returns • 8-20
system password • 8-24
tab

CTRUI •8-6
mechanical • 8-21
stops• 8-35

terminator mask• 8-28, 8-29
time (CTRL/T) • 8-6
transmit speed • 8-40
TIY_DIALTYPE SYSGEN parameter•8-13, 8-14,

8-16
type-ahead• 8-8, 8-17, 8-21, 8-54

alternate buffer • 8-22
unsolicited data• 8-17
write breakthrough function • 8-36
write function • 8-34

carriage control • 8-36
function modifiers • 8-35

XON/XOFF control • 8-24
Terminal characteristic

ANSI CRT• 8-22
ASCII (8-bit) code• 8-21
baud rate • 8-22
block mode • 8-23
dial-up line • 8-23
dial-up terminal • 8-22
DIGITAL CRT• 8-23
OMA mode • 8-23
edit• 8-23
extended characteristics• 8-22
local echo • 8-24
modem •8-21
modify hang up • 8-24
no echo • 8-21
no type ahead • 8-21
pasthru mode• 8-24
ReGIS graphics• 8-24
remote terminal • 8-22
secure• 8-24
set speed • 8-24
SIXEL graphics • 8-24
system password • 8-24
XON/XOFF • 8-24

Terminator character bit mask• 8-28

lndex-14

Thrashing

magnetic tape • 6-1 0
Timeout

for SCSI device• 11-8, 11-14
Translation

logical to physical • 3-18
Translation mode card

026 punch mode • 2-2
029 punch mode • 2-2

Truncate subfunction • 1-13
TU58 magnetic tape

See Disk
Type-ahead

See Terminal, type-ahead

u
UDA50 disk adapter• 3-3
Unload function

disk• 3-32
magnetic tape • 6-22

w
Write attention AST function• 7-9
Write breakthrough function • 8-36
Write end-of-file function

magnetic tape• 6-21
message • 7-9

Write protection
hardware • 10-4

x
XQP (extended QIO processor)• 1-1

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS 1/0 User's Reference
Manual: Part I
AA-LA84B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

-;;~t;;~;:d Here ~d Tape ------------------~lllf-------;~~;~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. I 1I11 .1.11 .. 1

- Do Not Tear - Fold Here --

I
I
I
I
I

Reader's Comments VMS 1/0 User's Reference
Manual: Part I
AA-LA848-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

Ill 11111II1 11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

·- Do Not Tear - Fold Here --

