

VMS Utility Routines
Manual

Order Number: AA-LA67B-TE

June 1990

This manual describes the VMS utility routines, a set of routines that provides
a programming interface to various VMS utilities.

Revision/Update Information: This manual supersedes the VMS Ultility
Routines Manual, Version 5.2.

Software Version: VMS Version 5.4

digital equipment corporation
-maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’'s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: {

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop-VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGI ReGIS VMS
DECnet HSC ULTRIX vT

DECUS LiveLink UNIBUS XUI
DECwindows LNO3 VAX "
DECwriter MASSBUS VAXcluster dilolilt]all]

The following is a third-party trademark: \

PostScript is a registered trademark of Adobe Systems Incorporated.

ZK4493

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LNO3 laser printer
and PostScript printers (PrintServer 40 or LNO3R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

N

e

Contents

PREFACE

Xvii

CHAPTER 1 INTRODUCTION TO UTILITY ROUTINES

CHAPTER 2 ACCESS CONTROL LIST (ACL) EDITOR ROUTINE ACL-1
2.1 USING THE ACL EDITOR ROUTINE: AN EXAMPLE ACL-1
22 ACL EDITOR ROUTINE ACL-2
ACLEDITS$SEDIT ACL-3
CHAPTER 3 COMMAND LANGUAGE (CLI) ROUTINES CLI-1
3.1 INTRODUCTION TO CLI ROUTINES CLI-1
3.2 USING THE CLI ROUTINES:AN EXAMPLE CLI-2
3.3 CLI ROUTINES CLI-5
CLISDCL_PARSE CLI-6
CLISDISPATCH CLI-9
CLISGET_VALUE CLI-10
CLISPRESENT CLI-13
CHAPTER 4 CONVERT (CONV) ROUTINES CONV-1
41 INTRODUCTION TO CONVERT ROUTINES CONV-1
4.2 USING THE CONVERT ROUTINES: EXAMPLES CONV-1

Contents

4.3 CONVERT ROUTINES CONV-7
CONVS$CONVERT CONV-8
CONVS$PASS_FILES CONV-11
CONV$PASS_OPTIONS CONV-14
CONV$RECLAIM CONV-18

CHAPTER 5 DATA COMPRESSION/EXPANSION (DCX) ROUTINES DCX-1

5.1 INTRODUCTION TO DCX ROUTINES DCX-1

5.2 USING THE DCX ROUTINES: EXAMPLES DCX-2

5.3 DCX ROUTINES DCX-10
DCX$ANALYZE_DATA DCX-11
DCX$ANALYZE_DONE DCX-13
DCX$ANALYZE_INIT DCX-14
DCX$COMPRESS_DATA DCX-17
DCX$COMPRESS_DONE DCX-19
DCX$COMPRESS_INIT DCX-20
DCXS$EXPAND_DATA DCX-22
DCX$EXPAND_DONE DCX-24
DCXSEXPAND_INIT DCX-25
DCX$MAKE_MAP DCX-27

CHAPTER 6 EDT ROUTINES EDT-1

6.1 INTRODUCTION TO EDT ROUTINES EDT-1

6.2 USING EDT ROUTINES: AN EXAMPLE EDT-1

6.3 EDT ROUTINES EDT-2
EDTS$EDIT EDT-3
FILEIO EDT-7
WORKIO EDT-11
XLATE EDT-13

vi

Contents

CHAPTER 7 FILE DEFINITION LANGUAGE (FDL) ROUTINES FDL-1
71 INTRODUCTION TO FDL ROUTINES FDL-1
7.2 USING THE FDL ROUTINES: EXAMPLES FDL-1
7.3 FDL ROUTINES FDL-5

FDL$CREATE FDL-6
FDL$GENERATE FDL-11
FDL$PARSE FDL-14
FDL$RELEASE FDL-17

CHAPTER 8 LIBRARIAN (LBR) ROUTINES LBR-1
8.1 INTRODUCTION TO LBR ROUTINES LBR-1
8.1.1 Types of Library LBR-1
8.1.2 Structure of Libraries LBR-2
8.1.2.1 Library Headers « LBR-2
8.1.2.2 Modules - LBR-2
8.1.2.3 Indexes and Keys « LBR-2
8.1.2.4 Summary of Routines + LBR-5
8.2 USING THE LBR ROUTINES: EXAMPLES LBR-7
8.3 LBR ROUTINES LBR-19

LBR$CLOSE LBR-20
LBR$DELETE_DATA LBR-21
LBR$DELETE_KEY LBR-23
LBR$FIND LBR-25
LBR$FLUSH LBR-27
LBR$GET_HEADER LBR-29
LBR$GET_HELP LBR-31
LBR$GET_HISTORY LBR-34
LBR$GET_INDEX LBR-36
LBR$SGET_RECORD LBR-38
LBRS$INI_CONTROL LBR-40
LBRSINSERT_KEY LBR-42
LBR$LOOKUP_KEY LBR-44
LBR$OPEN LBR-46

vii

Contents

LBR$OUTPUT HELP
LBR$PUT_END
LBR$PUT_HISTORY
LBR$PUT_RECORD
LBR$REPLACE_KEY
LBR$RET_RMSSTV
LBR$SEARCH
LBR$SET_INDEX
LBR$SET_LOCATE
LBR$SET MODULE
LBR$SET_MOVE

LBR-50
LBR-55
LBR-56
LBR-58
LBR-60
LBR-62
LBR-63
LBR-65
LBR-67
LBR-68
LBR-70

CHAPTER 9 MAIL ROUTINES

viii

MAIL-1
9.1 INTRODUCTION TO MAIL ROUTINES MAIL-1
9.2 MESSAGES MAIL-1
9.3 FOLDERS MAIL-2
9.4 MAIL FILES MAIL-3
9.5 USER COMMON DATABASE MAIL-3
9.6 MAIL PROCESSING CONTEXTS MAIL4
9.6.1 Callable MAIL Routines MAIL-5
9.6.2 Single and Multiple Threads MAIL-5
9.7 PROGRAMMING CONSIDERATIONS MAIL-6
9.7.1 Condition Handling MAIL-6
9.7.2 Item Lists and ltem Descriptors MAIL-6
9.7.21 Structure of an ltem Descriptor + MAIL-7
9.7.2.2 Null item Lists « MAIL-8
9.7.2.3 Declaring ltem Lists and ltem Descriptors « MAIL-8
9.7.24 Terminating an Item List - MAIL-8
9.7.3 Action Routines MAIL-8
9.7.3.1 Types of Action Routines « MAIL-8

Contents

9.8 MAIL FILE CONTEXT MAIL-9
9.8.1 Managing Mail Files MAIL-10
9.8.1.1 Opening and Closing Mail Files - MAIL-10

9.8.1.1.1 Using the Default Specification for Mail Files + MAIL-10

9.8.1.1.2 Specifying an Alternate Mail File Specification « MAIL—10
9.8.1.2 Displaying Folder Names « MAIL-11
9.8.1.3 Purging Mail Files Using the Wastebasket Folder « MAIL-12

9.8.1.3.1 Reclaiming Disk Space *« MAIL-12

9.8.1.3.2 Compressing Mail Files « MAIL-12
9.9 MESSAGE CONTEXT MAIL-12
9.9.1 Selecting Messages MAIL-13
9.9.2 Reading and Printing Messages MAIL-14
9.9.3 Modifying Messages MAIL-14
9.9.4 Copying and Moving Messages MAIL-15
9.9.4.1 Creating Folders « MAIL-15
9.94.2 Deleting Folders « MAIL-15
9.94.3 Creating Mail Files « MAIL-15
9.9.5 Deleting Messages MAIL-16
9.10 SEND CONTEXT MAIL-16
9.10.1 Sending New Messages MAIL-17
9.10.1.1 Creating a Message *« MAIL-17

9.10.1.1.1 Constructing the Message Header + MAIL-17

9.10.1.1.2 Constructing the Body of the Message « MAIL—-17
9.10.1.2 Creating an Address List « MAIL-17
9.10.2 Sending Existing Messages MAIL-18
9.10.3 Send Action Routines MAIL-18
9.10.3.1 Success Action Routines « MAIL-18
9.10.3.2 Error Handling Routines « MAIL-18
9.10.3.3 Aborting a Send Operation + MAIL-18
9.11 USER PROFILE CONTEXT MAIL-19
9.11.1 User Profile Entries MAIL-19
9.11.1.1 Adding User Profile Entries to the User Common

Database « MAIL-20

9.11.1.2 Modifying or Deleting User Profile Entries « MAIL-20
9.12 INPUT ITEM CODES MAIL-21

ix

Contents

9.13 OUTPUT ITEM CODES MAIL-23
9.14 EXAMPLES OF USING MAIL ROUTINES MAIL-25
9.15 MAIL ROUTINES MAIL-33

MAIL$MAILFILE_BEGIN MAIL-34
MAIL$MAILFILE_CLOSE MAIL-38
MAIL$MAILFILE_COMPRESS MAIL-41
MAIL$MAILFILE_END MAIL-44
MAIL$MAILFILE_INFO_FILE MAIL-46
MAIL$MAILFILE_MODIFY MAIL-49
MAIL$MAILFILE_OPEN MAIL-52
MAILSMAILFILE_PURGE_WASTE MAIL-55
MAIL$MESSAGE_BEGIN MAIL-58
MAIL$MESSAGE_COPY MAIL-62
MAIL$MESSAGE_DELETE MAIL-67
MAIL$MESSAGE_END MAIL-69
MAIL$MESSAGE_GET MAIL-71
MAIL$MESSAGE_INFO MAIL-76
MAIL$MESSAGE_MODIFY MAIL-80
MAIL$MESSAGE_SELECT MAIL-83
MAIL$SEND_ABORT MAIL-87
MAIL$SEND_ADD_ADDRESS MAIL-89
MAIL$SEND_ADD_ATTRIBUTE MAIL-91
MAIL$SEND_BEGIN MAIL-94
MAIL$SEND_ADD_BODYPART MAIL-98
MAIL$SEND_END MAIL-101
MAIL$SEND_MESSAGE MAIL-103
MAIL$USER_BEGIN MAIL-105
MAIL$USER_DELETE_INFO MAIL-110
MAIL$USER_END MAIL-112
MAIL$USER_GET_INFO MAIL-114
MAIL$USER_SET_INFO MAIL-118

CHAPTER 10 NATIONAL CHARACTER SET (NCS) UTILITY ROUTINES NCS-1

10.1 INTRODUCTION TO NCS ROUTINES NCS-1

—

Contents

10.2 EXAMPLES OF HOW TO USE NCS UTILITY ROUTINES NCS-2
10.3 NCS ROUTINES NCS-6
NCS$COMPARE NCS-7
NCS$CONVERT NCS-9
NCS$END_CF NCS-11
NCS$END_CS NCS-12
NCS$GET_CF NCS-13
NCS$GET_CS NCS-15
NCS$RESTORE_CF NCS-17
NCS$RESTORE_CS NCS-19
NCS$SAVE_CF NCS-21
NCS$SAVE_CS NCS-23
CHAPTER 11 PRINT SYMBIONT MODIFICATION (PSM) ROUTINES PSM-1
1.1 INTRODUCTION TO PSM ROUTINES PSM-1
1.2 VMS PRINT SYMBIONT OVERVIEW PSM-2
11.21 Components of the VMS Print Symbiont PSM-2
11.2.2 Creation of the Print Symbiont Process PSM-2
11.2.3 Symbiont Streams PSM-3
11.2.4 Symbiont and Job Controller Functions PSM—4
11.2.5 Print Symbiont Internal Logic PSM-5
11.3 SYMBIONT MODIFICATION PROCEDURE PSM-7
11.3.1 Guidelines and Restrictions PSM-8
11.3.2 Writing an Input Routine PSM-10
11.3.2.1 Internal Logic of the Symbiont’'s Main Input Routine « PSM-11
11.3.2.2 Symbiont Processing of Carriage Control » PSM-12
11.3.3 Writing a Format Routine PSM-13
11.3.3.1 Internal Logic of the Symbiont's Main Format Routine « PSM-13
11.34 Writing an Output Routine PSM-14
11.3.4.1 Internal Logic of the Symbiont’s Main Output Routine « PSM-15
11.3.5 Other Function Codes PSM-15
11.3.6 Writing a Symbiont Initialization Routine PSM-16
11.3.7 integrating a Modified Symbiont PSM-17

xi

Contents

11.4 EXAMPLE OF USING THE PSM ROUTINES PSM-18
11.5 PSM ROUTINES PSM-22
PSM$PRINT PSM-23
PSM$READ_ITEM_DX PSM-25
PSM$REPLACE PSM-27
PSM$REPORT PSM-32
USER-FORMAT-ROUTINE PSM-35
USER-INPUT-ROUTINE PSM-40
USER-OUTPUT-ROUTINE PSM-46
CHAPTER 12 SYMBIONT/JOB CONTROLLER INTERFACE (SMB)
ROUTINES SMB-1
121 INTRODUCTION TO SMB ROUTINES SMB-1
12.11 Types of Symbiont SMB-1
12.12 Symbionts Supplied with the VMS Operating System SMB-1
12.1.3 Symbiont Behavior in the VMS Environment SMB-2
12.1.4 Writing a Symbiont SMB-3
12.1.5 Guidelines for Writing a Symbiont SMB-4
12.1.6 The Symbiont/Job-Controller Interface Routines SMB-5
1217 Choosing the Symbiont Environment SMB-5
12.1.7.1 Synchronous Versus Asynchronous Delivery of
Requests « SMB-5
12.1.7.2 Single-Streaming Versus Multistreaming + SMB-9
12.1.8 Reading Job Controller Requests SMB-10
12.1.9 Processing Job Controller Requests SMB-10
12.1.10 Responding to Job Controller Requests SMB-13
12.2 SMB ROUTINES SMB-14

Xii

SMB$CHECK_FOR_MESSAGE
SMBSINITIALIZE
SMB$READ_MESSAGE
SMB$READ_MESSAGE_ITEM
SMB$SEND_TO_JOBCTL

SMB-15
SMB-16
SMB-18
SMB-21
SMB-31

—

Contents

CHAPTER 13 SORT/MERGE (SOR) ROUTINES SOR-1
13.1 INTRODUCTION TO SOR ROUTINES SOR-1
13.1.1 Arguments to SOR Routines SOR-2
13.1.2 Interfaces to SOR Routines SOR-2
13.1.2.1 Sort Operation Using File interface + SOR-2
13.1.2.2 Sort Operation Using Record Interface + SOR-3
13.1.2.3 Merge Operation Using File Interface - SOR-3
13.1.2.4 Merge Operation Using Record Interface « SOR-3
13.1.3 Reentrancy SOR—4
13.2 EXAMPLES OF USING SOR ROUTINES SOR-4
13.3 SOR ROUTINES SOR-17

SOR$BEGIN_MERGE SOR-18
SORS$BEGIN_SORT SOR-25
SORS$DTYPE SOR-31
SORS$END_SORT SOR-34
SOR$PASS_FILES SOR-36
SOR$RELEASE_REC SOR—41
SORS$RETURN_REC SOR-43
SOR$SORT_MERGE SOR-45
SORS$SPEC_FILE SOR-48
SORS$STAT SOR--50

CHAPTER 14 VAX TEXT PROCESSING UTILITY (VAXTPU) ROUTINES TPU-1
141 INTRODUCTION TO VAXTPU ROUTINES TPU-1
14.1.1 Two Interfaces to Callable VAXTPU TPU-2
14.1.2 Shareable Image TPU-3
14.1.3 Passing Parameters to Callable VAXTPU Routines TPU4
14.1.4 Error Handling TPU-4
14.1.5 Return Values TPU4
14.2 THE SIMPLIFIED CALLABLE INTERFACE TPU-5
14.2.1 Examples of the Simplified Interface TPU-5

xiii

Contents

14.3 THE FULL CALLABLE INTERFACE TPU-6
14.3.1 Main Callable VAXTPU Utility Routines TPU-7
14.3.2 Other VAXTPU Utility Routines TPU-7
14.3.3 User-Written Routines TPU-8
144 EXAMPLES OF USING VAXTPU ROUTINES TPU-8
14.5 VAXTPU ROUTINES TPU-25
TPU$CLEANUP TPU-26
TPUSCLIPARSE TPU-29
TPU$CLOSE_TERMINAL TPU-30
TPU$CONTROL TPU-31
TPUSEDIT TPU-32
TPUSEXECUTE_COMMAND TPU-34
TPUSEXECUTE_INIFILE TPU-35
TPUSFILEIO TPU-37
TPUSHANDLER TPU-41
TPUSINITIALIZE TPU-43
TPUSMESSAGE TPU-48
TPUSPARSEINFO TPU-49
TPUSTPU TPU-50
FILEIO TPU-51
HANDLER TPU-53
INITIALIZE TPU-54
USER TPU-55
INDEX
EXAMPLES
2-1 Calling the ACL Editor with a VAX BLISS Program ACL-1
31 Using the CLI Routines to Retrieve Information About
Command Lines in a FORTRAN Program CLI-3
4-1 Using the Convert Routines in a FORTRAN Program CONV-2
4-2 Using the Convert Routines in a MACRO Program CONV-3
4-3 Using the CONV$RECLAIM Routine in a FORTRAN Program CONV-5
44 Using the CONV$RECLAIM Routine in a MACRO Program __ CONV-6
5-1 Compressing a File in a VAX FORTRAN Program DCX-2
5-2 Expanding a Compressed File in a VAX FORTRAN Program DCX-7

xiv

6-1
7-1
7-2

7-3

8-1
8-2
8-3

9-1
9-2
9-3
10-1
10-2
11-1

13-1

13-2

13-3

13-4

14-1
14-2
14-3
14-4

Using the EDT Routines in a VAX BASIC Program
Using FDL$CREATE in a FORTRAN Program

Using FDL$PARSE and FDL$RELEASE in a MACRO
Program

Using FDL$PARSE and FDLSGENERATE in a VAX Pascal
Program

Creating a New Library Using VAX Pascal

Inserting a Module Into a Library Using VAX Pascal

Extracting a Module from a Library Using VAX Pascal
Deleting a Module from a Library Using VAX Pascal

Sending a File
Displaying Folders
Displaying User Profile Information
Using NCS Routines in a FORTRAN Program
Using NCS Routines in a MACRO-32 Program

Using PSM Routines to Supply a Page Header Routine in a
MACRO Program

Using SOR Routines to Perform a Merge Using Record
Interface in a VAX FORTRAN Program

Using SOR Routines to Sort Using Mixed Interface in a VAX
FORTRAN Program

Using SOR Routines to Merge Three Input Files in a VAX
Pascal Program

Using SOR Routines to Sort Records from Two Input Files in
a VAX Pascal Program

Sample VAX BLISS Template for Callable VAXTPU
Normal VAXTPU Setup in VAX FORTRAN
Building a Callback Item List with VAX FORTRAN

Specifying a User-Written File /0O Routine in VAX C

Contents

EDT-2
FDL-2

FDL-2

FDL-4
LBR-8
LBR-11
LBR-14
LBR-17
MAIL-26
MAIL-28
MAIL-30
NCS-3
NCS-4

PSM-19
SOR—4
SOR-8

SOR-10

SOR-13

TPU-9
TPU-14
TPU-17
TPU-20

FIGURES
81
8-2
8-3
9-1
9-2
111
11-2
12-1
12-2

Structure of a Macro, Text, or Help Library
Structure-of an Object or Shareable Image Library
Structure of a User-Developed Library
Standard Message Format
Item Descriptor
Multithreaded Symbiont
Symbiont Execution Sequence or Flow of Control

Symbionts in the VMS Operating System Environment
Flowchart for a Single-Threaded, Synchronous Symbiont __

LBR~3
LBR-4
LBR-5
MAIL-2
MAIL-7
PSM—4
PSM-6
SMB-3
SMB-7

Xv

Contents

12-3 Fiow Chart for a Single-Threaded, Asynchronous Symbiont

(MAIN Routine) SMB-8
12-4 Flow Chart for a Single-Threaded, Asynchronous Symbiont

(AST Routine) SMB-9

TABLES T

9-1 Default Mail Folders MAIL-3
9-2 User Profile Information MAIL-3
9-3 Levels of MAIL Processing MAIL—4
9-4 Callable MAIL Routines MAIL-5
9-5 Mail File Routines MAIL-9
9-6 Message Routines MAIL-12
9-7 Send Routines MAIL-16
9-8 User Profile Context Routines MAIL-19
9-9 Input tem Codes MAIL-21
9-10 Output tem Codes MAIL-24
10-1 NCS Routines NCS-1
11-1 Routine Codes for Specification to PSM$REPLACE PSM-16

xvi

PN

Preface

Intended Audience

This manual is intended for programmers who want to invoke and
manipulate VMS utilities from a program.

Document Structure
This document contains the following chapters.

Chapter 1 introduces the utility routines and describes the documentation
format used to describe each set of utility routines, as well as the
individual routines in each set. Each subsequent chapter contains an
introduction to a set of utility routines, a programming example to
illustrate the use of the routines in the set, and a detailed description

of each routine.

This manual presents the utility routine sets as follows:

¢ Chapter 2 — ACL Editor routine.

¢ Chapter 3 — Command Language (CLI) routines

® Chapter 4 — Convert (CONV) routines

¢ Chapter 5 — Data Compression/Expansion routines

¢ Chapter 6 — EDT Editor routines

* Chapter 7 — File Definition Language (FDL) routines

¢ Chapter 8 — Librarian (LBR) routines

¢ Chapter 9 — Mail routines

¢ Chapter 10 — National Character Set (NCS) Utility routines

* Chapter 11 — Print Symbiont Modification (PSM) routines

* Chapter 12 — Symbiont/Job Controller Interface (SMB) routines
¢ Chapter 13 — Sort/Merge (SOR) routines

® Chapter 14 — VAX Text Processing Utility (VAXTPU) routines

Associated Documents

The VAX Procedure Calling and Condition Handling Standard, which

is documented in the Introduction to VMS System Routines, contains
useful information for all programmers. The Introduction to VMS System
Routines also describes in detail the documentation format of the routine
descriptions.

xvii

Preface

Some sets of utility routines documented in this manual invoke and
manipulate utilities that have a command level interface. Consult the
following manuals for a description of the command level interface:

* VMS Access Control List Editor Manual

o VMS Command Definition Utility Manual

* VMS Convert and Convert/Reclaim Utility Manual
e VAX EDT Reference Manual

* VMS File Definition Language Facility Manual

* VMS Librarian Utility Manual

s VMS Mail Utility Manual

* VMS Sort/Merge Utility Manual

* VAX Text Processing Utility Manual

® VMS National Character Set Utility Manual

Conventions

xviii

The documentation template for utility routines, which is described in the
Introduction to VMS System Routines, details the conventions used in this
manual, as well as the organizational approach used to document each

utility routine. \

The following table describes additional conventions that appear in this
manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must \
first press and release the key labeled PF1, then
press and release another key or a pointing device
button.

In examples, a key name is shown enclosed in
a box to indicate that you press a key on the
keyboard. (In text, a key name is not enclosed in a
box.)

In examples, a horizontal ellipsis indicates one of
the following possibilities:

« Additional optional arguments in a statement
have been omitted.

+ The preceding item or items can be repeated
one or more times.

« Additional parameters, values, or other
information can be entered.

Preface

Convention

Meaning

[l

{

red ink

boldface text

italic text

UPPERCASE TEXT

numbers

A vertical ellipsis indicates the omission of items
from a code example or command format; the
items are omitted because they are not important
to the topic being discussed. '

In format descriptions, parentheses indicate that,
if you choose more than one option, you must
enclose the choices in parentheses.

In format descriptions, brackets indicate that
whatever is enclosed within the brackets is
optional; you can select none, one, or all of the
choices. (Brackets are not, however, optional in
the syntax of a directory name in a file specification
or in the syntax of a substring specification in an
assignment statement.)

In format descriptions, braces surround a required
choice of options; you must choose one of the
options listed.

Red ink indicates information that you must enter
from the keyboard or a screen object that you must
choose or click on.

For online versions of the book, user input is
shown in bold.

Boldface text represents the introduction of a new
term or the name of an argument, an atiribute, or a
reason.

Boldface text is also used to show user input in
online versions of the book.

ltalic text represents information that can vary
in system messages (for example, Internal error
number).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or
they indicate the name of a routine, the name of
a file, the name of a file protection code, or the
abbreviation for a system privilege.

Hyphens in coding examples indicate that
additional arguments to the request are provided
on the line that follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes—
binary, octal, or hexadecimal—are explicitly
indicated.

xix

1

Introduction to Utility Routines

A set of utility routines performs a particular task or set of tasks. For
example, you can use the Print Symbiont Modification (PSM) routines to
modify the VMS print symbiont, and the EDT routines to invoke the EDT
editor from a program.

Some of the tasks performed by utility routines can also be performed

at the DIGITAL Command Language (DCL) level (for example, the DCL
command EDIT invokes the EDT editor). While DCL commands invoke
VMS utilities that allow you to perform tasks at your terminal, you can
perform some of these tasks at the programming level through the use of
the utility routines.

When using a set of utility routines that performs the same tasks as a
VMS utility, you should read the documentation for that utility; doing
so will provide additional information about the tasks the routines
can perform as a set. The following table lists VMS utilities and their
corresponding routines:

Utility or Editor Utility Routines
Access Control List Editor ACL Editor routine
Command Definition Utility CLI routines
Convert and Convert/Reclaim Utilities CONYV routines
EDT Editor EDT routines
File Definition Language Facility FDL routines
Library Utility LBR routines
MAIL Mail routines
VMS National Character Set Utility NCS routines
Sort/Merge Utility SOR routines
VAX Text Processing Utility VAXTPU routines

When a set of utility routines performs functions that you cannot perform
by invoking a VMS utility, the functions provided by that set of routines is
termed a facility. The following facilities have no other user interface
except the programming interface provided by the utility routines
described in this manual:

Facility Utility Routines
Data Compression/Expansion Facility DCX routines
Print Symbiont Modification Facility PSM routines
Symbiont/Job-Controller Interface Facility SMB routines

Introduction to Utility Routines

The utility routines described in this manual are called in the same way
as all other system routines in the VMS operating system environment,
which is to say that utility routines conform to the VAX Procedure Calling
and Condition Handling Standard.

Each chapter of this book documents one set of utility routines. Each
chapter has the following major components, documented as a major
heading:

* An introduction to the set of utility routines. This component discusses
the utility routines as a group and explains how to use them.

* A series of descriptions of each utility routine in the set.

Most of the chapters also include a programming example that illustrates
how the utility routines are used.

2 Access Control List (ACL) Editor Routine

This chapter describes the Access Control List (ACL) Editor routine,
ACLEDITS$EDIT. User-written applications can use this callable interface
of the ACL Editor to manipulate Access Control Lists.

The ACL Editor is a VMS utility that lets you create and maintain access
control lists. Using ACLs, you can fine-tune the type of access to files,
devices, global sections, logical name tables, or mailboxes available to
system users.

Currently, the ACL Editor provides one callable interface that allows the
application program to define an object for editing.

Note that the application program should declare referenced constants and
return status symbols as external symbols; these symbols will be resolved
upon linking with the utility shareable image.

See Introduction to VMS System Services for fundamental conceptual
information on the creation, translation, and maintenance of ACEs.

2.1 Using the ACL Editor Routine: An Example

Example 2-1 shows a VAX BLISS program that calls the ACL Editor
routine.

Example 2-1 Calling the ACL Editor with a VAX BLISS Program

MODULE MAIN (LANGUAGE (BLISS32), MAIN = STARTUP) =
BEGIN

LIBRARY ’SYSSLIBRARY:LIB';

ROUTINE STARTUP =

BEGIN

LOCAL

STATUS, ! Routine return status

ITMLST : BLOCKVECTOR [6, ITM$S_ITEM, BYTE];
! ACL editor item list

EXTERNAL LITERAL
ACLEDITS$V_JOURNAL,
ACLEDIT$V_PROMPT MODE,

ACLEDIT$C_OBJNAM,
ACLEDIT$C_ OBJTYP,
ACLEDIT$C OPTIONS;

EXTERNAL ROUTINE
ACLEDITSEDIT : ADDRESSING MODE (GENERAL), ! Main routine

(continued on next page)

ACL-1

2.2

Access Control List (ACL) Editor Routine
2.1 Using the ACL Editor Routine: An Example

Example 2-1 (Cont.) Calling the ACL Editor with a VAX BLISS Program

CLI$GET VALUE, ! Get qualifier value
CLISPRESENT, ! See if qualifier present
LIBSPUT_OUTPUT, ! General output routine
STRSCOPY_DX; ! Copy string by descriptor

! Set up the item list to pass back to TPU so it can figure out what to do.

CHSFILL (0, 6*ITM$S_ITEM, ITMLST):;

ITMLST([0, ITMSW_ITMCOD] ACLEDITSC_OBJNAM;

ITMLST [0, ITM$W_BUFSIZ] $CHARCOUNT (’/YOUR_OBJECT NAME') ;

ITMLST ([0, ITM$L_BUFADR] $DESCRIPTOR (’YOUR_OBJECT NAME');

ITMLST({1l, ITM$W_ITMCOD] = ACLEDITS$C_OBJTYP;

ITMLST([1, ITM$W_BUFSIZ] 4;

ITMLST({1, ITMSL_BUFADR] UPLIT (ACLSC_FILE);

ITMLST([2, ITM$W_ITMCOD] ACLEDITSC_OPTIONS;

ITMLST[2, ITM$W_BUFSIZ] 4;

ITMLST([2, ITM$L_BUFADR] UPLIT (1 ~ ACLEDIT$V_PROMPT_MODE OR
1 ~ ACLEDIT$V_JOURNAL) ;

o wnn

RETURN ACLEDITS$EDIT (ITMLST):;

END; ! End of routine STARTUP

END

ELUDOM

ACL Editor Routine (

The following pages describe the ACL Editor routine.

ACL-2

Access Control List (ACL) Editor Routine
ACLEDITS$EDIT

ACLEDITSEDIT Edit Access Control List

The ACLEDITS$EDIT routine is used to create and modify an Access Control
List (ACL) associated with any system object.

FORMAT

ACLEDITSEDIT item_list

RETURNS

I

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENT

item_list

VMS usage: item_list_3

type: longword (unsigned)

access: read only

mechanism: by descriptor

Item list used by the callable ACL Editor. The item_list argument is the
address of one or more descriptors of arrays, routines, or longword bit
masks that control various aspects of the editing session.

Each entry in an item list is in the standard format shown in the following
figure.

ltem Code Buffer Length
Buffer Address
Return Length Address

ZK-5012-GE

Following is a detailed description of each item list entry.

Item Identifier Description

ACLEDIT$C_OBJNAM Specifies the name of the object whose ACL is being
edited.

ACLEDIT$C_OBJTYP Specifies the type of the object whose ACL is being

edited. These type codes are defined in SACLDEF. The
default object type is a file (ACL$C_FILE).

ACL-3

Access Control List (ACL) Editor Routine

ACLEDITSEDIT

Item Identifier Description

ACLEDIT$C_OPTIONS Represents a longword bit mask of the various options
available to control the editing session.

Flag

Function

ACLEDIT$V_JOURNAL

ACLEDIT$V_RECOVER

ACLEDIT$V_KEEP_RECOVER

ACLEDIT$V_KEEP_JOURNAL

ACLEDIT$V_PROMPT_MODE

Indicates that the
editing session is
to be journaled.

Indicates that the
editing session is
to be recovered
from an existing
journal file.

Indicates that the
journal file used to
recover the editing
session is not to
be deleted when
the recovery is
complete.

Indicates that the
journal file used
for the editing
session is not to
be deleted when
the session ends.

Indicates that

the session is to
use automatic
text insertion
(prompting) to
build new access
control list entries
(ACEs).

ACLEDIT$C_BIT_TABLE Specifies a vector of 32 quadword string descriptors
of strings which define the names of the bits present
in the access mask. (The first descriptor defines the
name of Bit 0; the last descriptor defines the name
of Bit 31.) These descriptors are used in parsing or
formatting an ACE. The buffer address field of the item
descriptor contains the address of this vector.

DESCRIPTION

ACL-4

You use the ACLEDIT$EDIT routine to create and modify an ACL

associated with any system object.

Under normal circumstances, the application calls the ACL Editor to
modify an object’s ACL, and control is returned to the application when

you finish or abort the editing session.

~

Access Control List (ACL) Editor Routine
ACLEDITS$EDIT

If you also want to use a customized version of the ACL Editor section
file, the logical name ACLEDT$SECTION should be defined. See the VMS
Access Control List Editor Manual for more information.

CONDITION _
SS$_NORMAL Normal successful completion.
VALUES ,
RMS$_xxx See the VMS Record Management Services Manual
RETURNED for a description of RMS status codes.
TPU$_xxx See Chapter 14 for a description of the TPU-
specific condition values that may be returned by
ACLEDITSEDIT.

ACL-5

—

3 Command Language (CLI) Routines

You use the CLI routines to process command strings using information
from a command table. A command table contains command definitions
that describe the allowable formats for commands. To create or modify a
command table, you must write a command definition file and then process
this file with the Command Definition Utility (the SET COMMAND
command). For information about how to use the Command Definition
Utility, see the VMS Command Definition Utility Manual.

3.1 Introduction to CLI Routines
The CLI routines include the following:
* CLI$DCL_PARSE
e CLI$DISPATCH
* CLI$GET_VALUE
e CLI$PRESENT

When you use the Command Definition Utility to add a new command
to your process command table or to the DCL command table, use the
CLI$PRESENT and CLI$GET_VALUE routines in the program invoked
by the new command. These routines retrieve information about the
command string that invokes the program.

When you use the Command Definition Utility to create an object module
containing a command table and you link this module with a program,
you must use all four CLI routines. First, use CLI$DCL_PARSE and
CLI$DISPATCH to parse command strings and invoke routines. Then, use
CLI$PRESENT and CLI$GET_VALUE within the routines that execute
each command.

Note that the application program should declare referenced contants and
return status symbols as external symbols; these symbols are resolved
upon linking with utility shareable image.

A CLI must be present in order to use the CLI routines. If your application
might be run from a detached process, then the application should check
to verify that a CLI exists. For information about how to determine if a
CLI exists for a process, see the description of the SYS$GETJPI system
service in the VMS System Services Reference Manual.

CLI-1

3.2

Command Language (CLI) Routines
3.2 Using the CLI Routines:An Example

Using the CLI Routines:An Example

CLI-2

Example 3-1 contains a command definition file (SUBCOMMANDS.CLD)
and a FORTRAN program (INCOME.FOR). INCOME.FOR uses the
command definitions in SUBCOMMANDS.CLD to process commands. To
execute the example, enter the following commands:

$ SET COMMAND SUBCOMMANDS/OBJECT=SUBCOMMANDS
$ FORTRAN INCOME

$ LINK INCOME, SUBCOMMANDS

$ RUN INCOME

INCOME.FOR accepts a command string and parses it using
CLI$DCL_PARSE. If the command string is valid, the program

uses CLI$DISPATCH to execute the command. Each routine uses
CLI$PRESENT and CLI$GET_VALUE to obtain information about the
command string.

Command Language (CLI) Routines
3.2 Using the CLI Routines:An Example

Example 3-1 Using the CLI Routines to Retrieve Information About
Command Lines in a FORTRAN Program

KKKKKKRKRAKAKRKAKRKRKRRAKNKAKRAKA ARk AkhAXhkkhhhhhhhkkhhkhkhkhkhkhhhkk

SUBCOMMANDS . CLD

AKKKKAAKAAKKRAARARAA A Ak A A A kA bbbk khkhkhhkkkhhkkkkkkkhkkk

MODULE INCOME_SUBCOMMANDS

DEFINE VERB ENTER
ROUTINE ENTER

DEFINE VERB FIX
ROUTINE FIX
QUALIFIER HOUSE_NUMBERS, VALUE (LIST)

DEFINE VERB REPORT

ROUTINE REPORT

QUALIFIER OUTPUT, VALUE (TYPE = $FILE,
DEFAULT = "INCOME.RPT")
DEFAULT

KKK KK A AAIAAAK KA KA AN KA AAKAA IR A R AR AR Rk hkkkkkk

INCOME .FOR
hhkkhkkkhkhhhkhkkkhhhkhkhhhkhhhkkhkhhhkhkkhhkhhhhhhkhkkkkkhhkkk
PROGRAM INCOME
INTEGER STATUS,

2 CLI$DCL PARSE,

2 CLISDISPATCH
INCLUDE ’ ($RMSDEF) '

INCLUDE ’ ($STSDEF)’
EXTERNAL INCOME SUBCOMMANDS,
2 LIBSGET INPUT

! Write explanatory text

STATUS = LIBSPUT_QUTPUT

2 (’Subcommands: ENTER - FIX - REPORT’)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = LIBSPUT_OUTPUT

2 (’Press CTRL/Z to exit’)

IF (.NOT. STATUS) CALL LIBS$SIGNAL (%VAL (STATUS))
! Get first subcommand

STATUS = CLI$DCILPARSE (VAL (0),

2 INCOME SUBCOMMANDS, ! CLD module

2 LIB$GET_INPUT, ! Parameter routine
2 LIBSGET_INPUT, ! Command routine

2 ! INCOME> /) ! Command prompt

! Do it until user presses CTRL/Z
DO WHILE (STATUS .NE. RMSS$_EOF)
! If no error on dcl_parse
IF (STATUS) THEN
! Dispatch depending on subcommand
STATUS = CLISDISPATCH ()
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Do not signal warning again
ELSE IF (IBITS (STATUS, 0, 3) .NE. STS$K_WARNING) THEN
CALL LIBS$SIGNAL (%VAL (STATUS))
END IF

(continued on next page)

CLI-3

Command Language (CLI) Routines
3.2 Using the CLI Routines:An Example

CLI-4

Example 3-1 (Cont.) Using the CLI Routines to Retrieve Information
About Command Lines in a FORTRAN Program

! Get another subcommand
STATUS = CLISDCL_PARSE (%VAL (0),

2 INCOME_SUBCOMMANDS, ! CLD module

2 LIBSGET_INPUT, ! Parameter routine
2 LIB$GET _INPUT, ! Command routine

2 ' INCOME> ') ! Command prompt
END DO

END

INTEGER FUNCTION ENTER ()
INCLUDE ’ ($SSDEF)’

TYPE *, ’ENTER invoked’
ENTER = SS$_NORMAL

END

INTEGER FUNCTION FIX ()

INTEGER STATUS,

2 CLISPRESENT,

2 CLI$GET_VALUE

CHARACTER*15 HOUSE_NUMBER

INTEGER*2 HN_SIZE

INCLUDE ’ ($SSDEF)’

EXTERNAL CLI$_ABSENT

TYPE *, ’'FIX invoked’

! If user types /house_numbers=(n,...)
IF (CLISPRESENT (’HOUSE_NUMBERS’)) THEN
! Get first value for /house_numbers
STATUS = CLI$GET_VALUE (' HOUSE_NUMBERS' ,
2 HOUSE_NUMBER,
2 HN_SIZE)

! Do it until the list is depleted

DO WHILE (STATUS)

TYPE *, ‘House number = ’, HOUSE_NUMBER (1:HN_SIZE)
STATUS = CLI$GET VALUE (’HOUSE_NUMBERS’,

2 HOUSE_NUMBER,
2 HN_SIZE)
END DO

! Make sure termination status was correct
IF (STATUS .NE. $%LOC (CLI$_ABSENT)) THEN
CALL LIBSSIGNAL (%VAL (STATUS))

END IF

END IF

FIX = SS$_NORMAL

END

INTEGER FUNCTION REPORT ()
INTEGER STATUS,

2 CLI$GET VALUE
CHARACTER*64 FILENAME
INTEGER*2 FN_SIZE
INCLUDE ' ($SSDEF)’

TYPE *, 'REPORT entered’

(continued on next page)

3.3

Command Language (CLI) Routines
3.2 Using the CLI Routines:An Example

Example 3—-1 (Cont.) Using the CLI Routines to Retrieve Information
About Command Lines in a FORTRAN Program

! Get value for /output

STATUS = CLISGET_VALUE ('/OUTPUT’,

2 FILENAME,

2 FN_SIZE)

IF (.NOT. STATUS) CALL LIBS$SIGNAL (%VAL (STATUS))
TYPE *, ’Output file: ’, FILENAME (1:FN_SIZE)
REPORT = SS$_NORMAL

END

CLI Routines

The following pages describe the individual CLI routines.

CLI-5

Command Language (CLI) Routines

CLISDCL_PARSE

CLISDCL_PARSE Parse DCL Command String

The CLI$DCL_PARSE routine supplies a command string to DCL for parsing.
DCL separates the command string into its individual elements according to
the syntax specified in the command table.

FORMAT

CLI$SDCL_PARSE [command_string] ,table
[,param_routine] [,prompt_routine]
[,prompt_string]

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

CLI-6

command_string

VMS usage: char_string

type: character string

access: read only

mechanism: by descriptor—fixed length

Character string containing the command to be parsed. The command_
string argument is the address of a descriptor specifying the command
string to be parsed. If the command string includes a comment (delimited
by an exclamation mark), DCL ignores the comment.

If the command string contains a hyphen to indicate that the string is
being continued, DCL uses the routine specified in the prompt_routine
argument to obtain the rest of the string. The command string is limited
to 256 characters. However, if the string is continued with a hyphen,
CLI$DCL_PARSE can prompt for additional input until the total number
of characters is 1024.

If you specify the command_string argument as zero and specify a
prompt routine, then DCL prompts for the entire command string.
However, if you specify the command_string argument as zero and
also specify the prompt_routine argument as zero, then DCL restores
the parse state of the command string that originally invoked the image.

CLI$DCL_PARSE does not perform DCL-style symbol substitution on the
command string.

table

VMS usage: address
type: address
access: read only

mechanism: by value

Command Language (CLI) Routines
CLI$SDCL_PARSE

Address of the compiled command tables to be used for command parsing.
The command tables are compiled separately by the Command Definition
Utility using the DCL command SET COMMAND/OBJECT, and are then
linked with your program. A global symbol is defined by the Command
Definition Utility that provides the address of the tables. The global
symbol’s name is taken from the module name given on the MODULE
statement in the command definition file, or from the file name if no
MODULE statement is present.

param_routine

VMS usage: procedure

type: procedure entry mask

access: read only

mechanism: by reference

Name of a routine to obtain a required parameter not supplied in the
command text. The param_routine argument is the address of a routine
containing a required parameter that was not specified in the command_
string argument.

To specify the parameter routine, use the address of LIB§GET_INPUT or
the address of a routine of your own that has the same three-argument
calling format as LIB$GET _INPUT. See the description of LIB§GET_
INPUT in the VMS RTL Library (LIB$) Manual for information about
the calling format. If LIB§GET_INPUT returns error status, CLI$DCL,_
PARSE propagates the error status outward or signals RMS$_EOF in the
cases listed in the “Description” section.

You can obtain the prompt string for a required parameter from the
command table specified in the table argument.

prompt_routine

VMS usage: procedure

type: procedure entry mask

access: read only

mechanism: by reference

Name of a routine to obtain all or part of the text of a command. The
prompt_routine argument is the address of a routine to obtain the text
or the remaining text of the command depending on the command_string
argument. If you specify a zero in the command_string argument, DCL
uses this routine to obtain an entire command line. DCL uses this routine
to obtain a continued command line if the command string (obtained from
the command_string argument) contains a hyphen to indicate that the
string is being continued.

To specify the prompt routine, use the address of LIBSGET_INPUT or the
address of a routine of your own that has the same three-argument calling
format as LIB§GET_INPUT. See the description of LIB§GET_INPUT in
the VMS RTL Library (LIB$) Manual for information about the calling
format.

If LIBSGET_INPUT returns error status, CLISDCL_PARSE propagates
the error status outward or signals RMS$_EOF in the cases listed in the
“Description” section.

CLI-7

Command Language (CLI) Routines

CLI$SDCL_PARSE

DESCRIPTION

CONDITION
VALUES
RETURNED

CLI-8

prompt_string

VMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Character string containing a prompt. The prompt_string argument
is the address of a string descriptor pointing to the prompt string to be
passed as the second argument to the prompt_routine argument.

If DCL is using the prompt routine to obtain a continuation line, DCL
inserts an underscore character before the first character of the prompt
string to create the continuation prompt. If DCL is using the prompt
routine to obtain an entire command line (that is, a zero was specified as
the command_string argument), DCL uses the prompt string exactly as
specified.

The prompt string is limited to 32 characters. The string COMMAND:> is
the default prompt string.

_

The CLI$DCL_PARSE routine supplies a command string to DCL for
parsing. DCL parses the command string according to the syntax in the
command table specified in the table argument.

The CLI$DCL_PARSE routine can prompt for required parameters if you
specify a parameter routine in the routine call. In addition, the CLI$DCL_
PARSE routine can prompt for entire or continued command lines if you
supply the address of a prompt routine.

If you do not specify a command string to parse and the user enters a null
string in response to the DCL prompt for a command string, CLI$DCL_
PARSE immediately terminates and returns the status RMS$_EOF.

If DCL prompts for a required parameter and the user enters CTRL/Z,
CLI$DCL_PARSE immediately terminates and returns the status CLI$_
NOCMD, regardless of whether you specify or do not specify a command
string to parse. If DCL prompts for a parameter that is not required
and the user enters CTRL/Z, CLI$DCL_PARSE returns the status CLI$_
NORMAL.

Whenever CLI$DCL_PARSE encounters an error, it both signals and
returns the error.

CLI$IVVERB Invalid or missing verb.
CLI$_NORMAL Normal successful completion.
CLI$_NOCOMD Routine terminated. You entered a nuli string in

response to a prompt from the prompt_routine
argument, causing the CLI$DCL_PARSE routine to
terminate.

RMS$_EOF Routine terminated. You pressed CTRL/Z in response
to a prompt, causing the CLISDCL_PARSE routine to
terminate.

Command Language (CLI) Routines
CLI$SDISPATCH

CLISDISPATCH Dispatch to Action Routine

The CLI$DISPATCH routine invokes the subroutine associated with the verb
most recently parsed by a CLI$DCL_PARSE routine call.

FORMAT CLISDISPATCH [userarg]

RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. The condition value that this routine can return is listed under
CONDITION VALUE RETURNED.

ARGUMENT userarg
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value
Data to be passed to the action routine. The userarg argument is a
longword that contains the data to be passed to the action routine. This
data can be used in any way you want.

DESCRIPTION The CLI$DISPATCH routine invokes the subroutine associated with the
verb most recently parsed by a CLISDCL_PARSE routine call. If the
routine is successfully invoked, the return status is the status returned by
the action routine. Otherwise, a status of CLI$_INVROUT is returned.

CONDITION . :

VALUE CLI$_INVROUT le$p|SPATCH unabl.e. to !nvoke the routine. An

invalid routine is specified in the command table, or

RETURNED no routine is specified.

CLI-9

Command Language (CLI) Routines

CLI$GET_VALUE

CLISGET VALUE Get Value of Entity in Command

String

The CLISGET_VALUE routine retrieves a value associated with a specified
qualifier, parameter, keyword, or keyword path from the parsed command
string.

FORMAT

RETURNS

CLISGET_VALUE entity_desc,retdesc [,retlength]

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

CLI-10

entity_desc

VMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Character string containing the label (or name if no label is defined) of
the entity. The entity_desc argument is the address of a string descriptor
that points to an entity that may appear on a command line. The entity_
desc argument can be expressed as one of the following:

¢ A parameter, qualifier, or keyword name or label

¢ A keyword path

The entity_desc argument can contain qualifier, parameter, or keyword
names, or can contain labels that were assigned with the LABEL clause
in the command definition file. If you used the LABEL clause to assign a
label to an entity, you must specify the label in the entity_desc argument.
Otherwise, use the name of the entity.

You use a keyword path to reference keywords used as values of
parameters, qualifiers, or other keywords. A keyword path contains a
list of entity names or labels separated by periods. If the LABEL clause
was used to assign a label to an entity, you must specify the label in the
keyword path. Otherwise, you must use the name of the entity.

The following command string illustrates a situation where keyword paths
are needed to uniquely identify keywords. In this command string, you
can use the same keywords with more than one qualifier. (This is defined
in the command definition file by having two qualifiers refer to the same
DEFINE TYPE statement.)

$ NEWCOMMAND/QUALl= (START=5, END=10) /QUAL2=(START=2, END=5)

—

Command Language (CLI) Routines
CLISGET_VALUE

The keyword path QUAL1.START identifies the START keyword when

it is used with QUAL1; the keyword path QUAL2.START identifies the
keyword START when it is used with QUAL2. Because the name START
is an ambiguous reference if used alone, the keywords QUAL1 and QUAL2
are needed to resolve the ambiguity.

You can omit keywords from the beginning of a keyword path if they are
not needed to unambiguously resolve a keyword reference. A keyword
path can be no more than eight names long.

If you use an ambiguous keyword reference, DCL resolves the reference by
checking, in the following order:

1 The parameters in your command definition file, in the order they are
listed

2 The qualifiers in your command definition file, in the order they are
listed

3 The keyword paths for each parameter, in the order the parameters
are listed

4 The keyword paths for each qualifier, in the order the qualifiers are
listed

DCL uses the first occurrence of the entity as the keyword path. Note
that DCL does not issue an error message if you provide an ambiguous
keyword. However, because the keyword search order may change

in future releases of VMS, you should never use ambiguous keyword
references.

If the entity_desc argument does not exist in the command table,
CLI$GET_VALUE signals a syntax error (by means of the signaling
mechanism described in the VMS Run-Time Library Routines Volume).

retdesc

VMS usage: char_string
type: character string
access: write only

mechanism: by descriptor

Character string containing the value retrieved by CLISGET _VALUE.
The retdesc argument is the address of a string descriptor pointing to
the buffer to receive the string value retrieved by CLISGET_VALUE. The
string is returned using the STR$COPY_DX VAX-11 Run-Time Library
routine.

If there are errors in the specification of the return descriptor or in
copying the results using that descriptor, the STR§COPY_DX routine
will signal the errors. For a list of these errors, see the VMS RTL String
Manipulation (STR$) Manual.

retlength

VMS usage: word_unsigned

type: word (unsigned)

access: write only

mechanism: by reference

Word containing the number of characters DCL returns to retdesc. The
retlength argument is the address of the word containing the length of
the retrieved value.

CLI-11

Command Language (CLI) Routines

CLI$GET_VALUE

DESCRIPTION

The CLISGET_VALUE routine retrieves a value associated with a specified
qualifier, parameter, keyword, or keyword path from the parsed command
string.

You can use the following label names with CLISGET_VALUE to retrieve
special strings:

$VERB Describes the verb in the command string (the first four letters of the
spelling as defined in the command table, instead of the string that was
actually typed).

$LINE Describes the entire command string as stored internally by DCL. In the
internal representation of the command string, multiple spaces and tabs
are removed, alphabetic characters are converted to uppercase, and
comments are stripped. Integers are converted to decimal. If dates and
times are specified in the command string, DCL fills in any defaulted fields.
Also, if date-time strings (such as YESTERDAY) are used, DCL substitutes
the corresponding absolute time value.

To obtain the values for a list of entities, call CLISGET_VALUE repeatedly
until all values have been returned. After each CLI$GET_VALUE call, the
returned condition value indicates whether there are more values to be
obtained. You should call CLISGET_VALUE until you receive a condition
value of CLI$_ABSENT.

When you are using CLISGET_VALUE to obtain a list of qualifier or
keyword values, you should get all values in the list before starting to
parse the next entity.

CONDITION
VALUES
RETURNED

CLI-12

CLI$_COMMA Returned value terminated by a comma. This shows
there are additional values in the list.

CLI$_CONCAT Returned value concatenated to the next value with a
plus sign. This shows there are additional values in
the list.

SS$_NORMAL Returned value terminated by a blank or an end-of-
line. This shows that the value is the last, or only,
value in the list.

CLI$_ABSENT No value returned. The value is not present, or the
last value in the list was already returned.

Command Language (CLI) Routines
CLISPRESENT

CLISPRESENT Determine Presence of Entity in

Command String

The CLISPRESENT routine examines the parsed command string to
determine whether the entity referred to by the entity_desc argument is
present.

FORMAT

CLISPRESENT entity_desc

RETURNS

ARGUMENT

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

entity _desc

VMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Character string containing the label (or name if no label is defined) of
the entity. The entity_desc argument is the address of a string descriptor
that points to an entity that may appear on a command line. An entity
can be expressed as one of the following:

¢ A parameter, qualifier, or keyword name or label

* A keyword path

A keyword path is used to reference keywords that are accepted by
parameters, qualifiers, or other keywords. A keyword path contains a list
of entity names separated by periods. See the description of the entity_
desc argument in the CLISGET_VALUE routine for more information
about specifying keyword paths as arguments for CLI routines.

The entity_desc argument can contain parameter, qualifier, or keyword
names, or can contain labels that were assigned with the LABEL clause
in the command definition file. If the LABEL clause was used to assign a
label to a qualifier, parameter, or keyword, you must specify the label in
the entity_desc argument. Otherwise, you must use the actual name of
the qualifier, parameter, or keyword.

If the-entity_desc argument does not exist in the command table,
CLI$PRESENT signals a syntax error (by means of the signaling
mechanism described in the VMS Run-Time Library Routines Volume).

CLI-13

Command Language (CLI) Routines

The CLISPRESENT routine examines the parsed command string to
determine whether the entity referred to by the entity_desc argument is

When CLISPRESENT tests whether a qualifier is present, the condition
value indicates whether the qualifier is used globally or locally. You can
use a global qualifier anywhere in the command line; you use a local
qualifier only after a parameter. A global qualifier is defined in the
command definition file with PLACEMENT=GLOBAL; a local qualifier is
defined with PLACEMENT=LOCAL.

When you test for the presence of a global qualifier, CLISPRESENT
determines if the qualifier is present anywhere in the command string. If
the qualifier is present in its positive form, CLISPRESENT returns CLI$_
PRESENT; if the qualifier is present in its negative form, CLISPRESENT
returns CLI$_NEGATED.

You can test for the presence of a local qualifier when you are parsing
parameters that can be followed by qualifiers. After you call CLISGET_
VALUE to fetch the parameter value, call CLISPRESENT to determine
whether the local qualifier is present. If the local qualifier is present in
its positive form, CLISPRESENT returns CLI$_LOCPRES; if the local
qualifier is present in its negative form, CLISPRESENT returns CLI$_

A positional qualifier affects the entire command line if it appears after the
verb but before the first parameter. A positional qualifier affects a single
parameter if it appears after a parameter. A positional qualifier is defined
in the command definition file with the PLACEMENT=POSITIONAL

To determine whether a positional qualifier is used globally, call
CLI$PRESENT to test for the qualifier before you call CLISGET_VALUE
to fetch any parameter values. If the positional qualifier is used globally,
CLI$PRESENT returns either CLI$_PRESENT or CLI$_NEGATED.

To determine whether a positional qualifier is used locally, call
CLI$PRESENT immediately after a parameter value has been fetched

by CLISGET_VALUE. The most recent CLISGET_VALUE call to fetch

a parameter defines the context for a qualifier search. Therefore,
CLISPRESENT tests whether a positional qualifier was specified after
the parameter that was fetched by the most recent CLISGET_VALUE call.
If the positional qualifier is used locally, CLISPRESENT returns either
CLI$_LOCPRES or CLI$_LOCNEG.

CLI$_PRESENT Specified entity present in the command string. This
status is returned for all entities except local qualifiers

CLISPRESENT
DESCRIPTION
present.
LOCNEG.
clause.
CONDITION
VALUES
RETURNED

CLI-14

and positional qualifiers that are used locally.

CLI$_NEGATED Specified qualifier present in negated form (with /NO)
and used as a global qualifier.

Command Language (CLI) Routines

CLISPRESENT

CLI$_LOCPRES Specified qualifier present and used as a local
qualifier.

CLI$_LOCNEG Specified qualifier present in negated form (with /NO)
and used as a local qualifier.

CLI$_DEFAULTED Specified entity not present, but it is present by
default.

CLI$_ABSENT Specified entity not present, and it is not present by
default.

CLI-15

N

4

4.1

4.2

Convert (CONV) Routines

This chapter describes the Convert routines. These routines perform the
functions of both the VMS RMS Convert and Convert/Reclaim Utilities.

Introduction to Convert Routines

The Convert Utility copies records from one or more files to an output file,
changing the record format and file organization to that of the output file.
You can invoke the functions of the Convert Utility from within a program
by calling the following series of three routines, in this order:

1 CONV$PASS_FILES

2 CONV$PASS_OPTIONS

3 CONV$CONVERT

Note that the application program should declare referenced contants and

return status symbols as external symbols; these symbols are resolved
upon linking with utility shareable image.

The Convert/Reclaim Utility reclaims empty buckets in Prolog 3 indexed
files so that new records can be written in them. You can invoke the
functions of the Convert/Reclaim Utility from within a program by calling
the CONV$RECLAIM routine.

These routines cannot be called from AST level.

Using the Convert Routines: Examples

Example 4--1 shows how to use the Convert routines in a FORTRAN
program.

CONV-1

Convert (CONV) Routines
4.2 Using the Convert Routines: Examples

CONvV-2

Example 4-1 Using the Convert Routines in a FORTRAN Program

* % X ¥ * F X

*

* % O % X Ok

* % ¥ X

1000

This program calls the routines that perform the
functions of the Convert Utility. It creates an
indexed output file named CUSTDATA.DAT from the
specifications in an FDL file named INDEXED.FDL,
The program then loads CUSTDATA.DAT with records
from the sequential file SEQ.DAT. No exception
file is created. This program also returns all
the CONVERT statistics.

Program declarations
IMPLICIT INTEGER*4 (A - Z)

Set up parameter list: number of options, CREATE,
NOSHARE, FAST LOAD, MERGE, APPEND, SORT, WORK_FILES,
KEY=0, NOPAD, PAD CHARACTER, NOTRUNCATE,

NOEXIT, NOFIXED CONTROL, FILL_BUCKETS, NOREAD_CHECK,
NOWRITE CHECK, FDL, and NOEXCEPTION.

INTEGER*4 OPTIONS(19)
i /18,1,0,1,90,0,1,2,0,0,0,0,0,0,0,0,0,1,0/

Set up statistics list. Pass an array with the
number of statistics that you want. There are four
—-—-— number of files, number of records, exception
records, and good records, in that order.

INTEGER*4 STATSBLK(5) /4,0,0,0,0/

Declare the file names.

CHARACTER IN FILE*7 /’SEQ.DAT’/,
1 OUT_FILE*12 /’/CUSTDATA.DAT’/,
1 FDL_FILE*11 /’INDEXED.FDL'/

Call the routines in their required order.

STATUS = CONV$PASS FILES (IN_FILE, OUT_FILE, FDL_FILE)
IF (.NOT. STATUS) CALL LIBSSTOP (%VAL (STATUS))

STATUS = CONV$PASS_OPTIONS (OPTIONS)
IF (.NOT. STATUS) CALL LIBS$STOP (%VAL(STATUS))

STATUS = CONVS$CONVERT (STATSBLK)
IF (.NOT. STATUS) CALL LIBS$STOP (%VAL(STATUS))

Display the statistics information.

WRITE (6,1000) (STATSBLK(I),I=2,5)
FORMAT (1X,'’Number of files processed: ’,I5/,

1 1X, 'Number of recorxds: ’,I5/,

1 1X, 'Number of exception records: ’,I5/,
1 1X, 'Number of valid records: ’,I5)

END

Example 4-2 shows how to use the Convert routines in a MACRO

program,

Convert (CONV) Routines
4.2 Using the Convert Routines: Examples

Example 4-2 Using the Convert Routines in a MACRO Program

.TITLE CONVSTAT.MAR

; This module calls the routines that perform the functions

; of the Convert Utility.

It creates an indexed output file

; named CUSTDATA.DAT from the specifications in an FDL file

; named INDEXED.FDL, and loads CUSTDATA.DAT with records from
; the sequential file SEQ.DAT. No exception file is created.
; This module also returns all the CONVERT statistics.

; Declare the file names.

FILEIN: .ASCID
FILEOUT: .ASCID
FDLFILE: .ASCID

; Set up parameter list.

r

PARAM LIST: .LONG 1
. LONG
.LONG
.LONG
. LONG
.LONG
. LONG
.LONG
.LONG
. LONG
. LONG
.LONG
.LONG
.LONG
.LONG
.LONG
.LONG
.LONG
. LONG

ORPOO0OO0OO0OO0DO0OO0OOCONKFOOROR ®

.
’

/SEQ.DAT/
/CUSTDATA .DAT/
/INDEXED.FDL/

;NUMBER OF LONGWORDS FOLLOWING
;CREATE

; NOSHARE

;FAST LOAD

; MERGE

; APPEND

; SORT
;WORK_FILES
;KEY=0

; NOPAD

;PAD CHARACTER

; NOTRUNCATE
;NOEXIT

;NOFIXED CONTROL
;FILL_BUCKETS

; NOREAD_CHECK
;NOWRITE_CHECK
;FDL

; NOEXCEPTION

; Have to use Formatted ASCII Output (FAQO) conversion
; Declare FAO info for statistics

FAO_DESC: .LONG

.LONG
FAO_BUFFER: .BLKB
FAO_LEN: .BLKL
OUTSTUFF : .ASCID

Number of records: !UL !/-

Number of exception records:
Number of valid records: !UL

132
FAO_BUFFER

132

1

#Number of files processed: !UL !/-

UL /-
V/#

(continued on next page)

CONV-3

Convert (CONV) Routines
4.2 Using the Convert Routines: Examples

Example 4-2 (Cont.) Using the Convert Routines in a MACRO Program

Have to pass a longword to the CONVSCONVERT ROUTINE with the
number of statistics that we want. There are 4 —-- number of
files, number of records, exception records, good records,

TATSBLK:
STATS:

TIMES:
; Declare the

.EXTRN

.ENTRY

’
14
’
r
; in that order.
r
S

.LONG 4 ;The value 4 is the number of statistics
;that we want. we pass this value to
;the END_CONVERT routine.

.BLKL 4 ;Where we place the statistics. This block

;must follow the longword that tells how
;many stats we want.

.BLKL 5 ;Where we place the timing info.
external routines.

CONVS$PASS_FILES, CONVSPASS_OPTIONS, CONV$CONVERT, -
LIBPUT_OUTPUT,LIBINIT TIMER,LIB$SYS_FAOL

CONV, “M<R2,R3,R4,R5,R6,R7> ; SAVE THOSE REGISTERS;

; Perform operations. Push addresses on arg stack, call routines.

PUSHAL
CALLS

PUSHAL
PUSHAL
PUSHAL
CALLS
BLBC

PUSHAL
CALLS
BLBC
PUSHAL

CALLS
BLBC

; Now need an

TIMES

#1,G "LIBSINIT TIMER ;Start the timer

FDLFILE

FILEOUT

FILEIN ;Push filenames on arg stack
#3,G"CONVSPASS FILES ;Pass filenames

RO,10%

PARAM LIST ;Push parameter list
#1,G"CONV$PASS_OPTIONS ;Make the second call

RO,10$

STATSBLK ;Push address of the number of
;Statistics

#1, G*"CONVS$CONVERT ;Perform conversion

RO, 10%

FAO routine to format the counts

$FAQOL_S CTRSTR=OUTSTUFF, OUTLEN=FAO_LEN, OUTBUF=FAO_DESC, -

BLBC

PUSHAL
CALLS

BLBC

PRMLST=STATS

RO,10%
FAO_DESC ;Push output buffer on stack
#1,G "LIB$PUT_OUTPUT ;Send the output buffer to
; SYS$OUTPUT
RO, 10%

CONV-4

(continued on next page)

Convert (CONV) Routines
4.2 Using the Convert Routines: Examples

Example 4-2 (Cont.) Using the Convert Routines in a MACRO Program

.
’

; Display times

’

108:

PUSHAL
CALLS
BLBC
MOVL

TIMES

#1, G "LIB$SSHOW_TIMER
RO, 108
#SS$_NORMAL, RO

CONV

Example 4-3 shows how to use the CONV$RECLAIM routine in a
FORTRAN program.

Example 4-3 Using the CONV$SRECLAIM Routine in a FORTRAN

Program

* % % % & *

*

1000

This program calls the routine that performs the
function of the Convert/Reclaim Utility. It
reclaims empty buckets from an indexed file named
PROL3.DAT. It also returns all the CONVERT/RECLAIM

statistics.
Program declarations
IMPLICIT INTEGER*4 (A - 2)
Set up a statistics block. There are four --- data

buckets scanned, data buckets reclaimed, index
buckets reclaimed, total buckets reclaimed.

INTEGER*4 OUTSTATS (5) /4,0,0,0,0/
Declare the input file.

CHARACTER IN FILE*9 /’PROL3.DAT'/
Call the routine.

STATUS = CONVSRECLAIM (IN_FILE, OUTSTATS)
IF (.NOT. STATUS) CALL LIBS$STOP (%VAL(STATUS))

Display the statistics.

WRITE (6,1000) (OUTSTATS(I),I=2,5)
FORMAT (1X,’Number of data buckets scanned: ‘,I15/,

1 1X, 'Number of data buckets reclaimed: ’,I5/,
1 1X,’'Number of index buckets reclaimed: ’,I5/,
1 1X,’Total buckets reclaimed: ’,I5)

END

Example 44 shows how to use the CONV$RECLAIM routine in a MACRO

program.

CONV-5

Convert (CONV) Routines
4.2 Using the Convert Routines: Examples

Example 4-4 Using the CONV$RECLAIM Routine in a MACRO Program

.TITLE CONVREC.MAR

This module calls the routine that performs the

function of the CONVERT/RECLAIM Utility.

It reclaims

empty buckets from an indexed file named PROL3.DAT.

This module also returns all of the CONVERT/RECLAIM

statistics.

Declare

FILEIN:

’
.
’

r

Declare

OUTSTATS:

.
7
.
7

’

Declare

FAO_DESC:

FAQO_BUFFER:
FAO_LEN:
OUTSTUFF :

Data buckets reclaimed:
Index buckets reclaimed:

the file name.

.ASCID /PROL3.DAT/

statistics blocks

. LONG 4
.BLKL 4

FAO info for statistics

. LONG 132

. LONG FAQ_BUFFER

.BLKB 132

.BLKL 1

.ASCID #Data buckets scanned: !UL !/-
gL !/~
UL /-

Total buckets reclaimed: !'UL !/#

Looking for four statistics back from the end call.
Use FAO conversion.

Declare the external routines.

.EXTRN

.ENTRY

CONV$RECLAIM, LIBSPUT_OUTPUT

CONV, "M<>

Perform operations. Push addresses on arg stack, call

routines.

PUSHAL
PUSHAL
CALLS
BLBC

OUTSTATS

FILEIN . ;PUSH FILENAME ON ARG STACK
#2, G*"CONVSRECLAIM ;PASS FILENAME

RO, 108

CONV-6

(continued on next page)

4.3

Convert (CONV) Routines
4.2 Using the Convert Routines: Examples

Example 4-4 (Cont.) Using the CONV$SRECLAIM Routine in a MACRO Program

’
;
; Now need an FAO routine to format the counts.
H

SFAOL_S CTRSTR=OUTSTUFF,OUTLEN=FAC_LEN, OUTBUF=FAO_DESC, -
PRMLST=0UTSTATS+4

BLBC RO, 10$
PUSHAL FAO_DESC ;PUSH OUTPUT BUFFER ON STACK
CALLS #1, G*"LIBSPUT_ OUTPUT ;SEND THE OUTPUT BUFFER TO
; SYS$OUTPUT
BLBC RO, 108
MOVL #SS$_NORMAL, RO
108: RET
.END CONV

Convert Routines

The following pages describe the individual Convert routines.

CONV-7

Convert (CONV) Routines

CONV$CONVERT

CONVS$CONVERT Initiate Conversion

The CONV$CONVERT routine uses the Convert Utility to perform the actual
conversion begun with CONV$PASS_FILES and CONV$PASS_OPTIONS.
Optionally, the routine can return statistics about the conversion.

FORMAT

CONVS$CONVERT [status block address] [,flags]

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

CONV-8

status_block_address

VMS usage: vector_longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

The conversion statistics. The status_block_address argument is the
address of a variable-length array of longwords that receives statisties
about the conversion. The format of the array is as follows:

—

number of statistics

number of files

number of records

number of exception records (
number of valid records

flags

VMS usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument is interpreted
and how errors are signalled. The flags argument is the address of a
longword containing control flags (or a mask). If you omit the flags
argument or specify it as zero, no flags are set. The flags and their
meanings are described in the following table.

Convert (CONV) Routines
CONV$CONVERT

Flag

Function

CONV$V_FDL_STRING

CONV$V_SIGNAL

Interprets the fdl_filespec argument supplied in the call
to CONV$PASS_FILES as an FDL specification in string
form. By default, this argument is interpreted as a file
name of an FDL file.

Signals any error. By default, the status code is returned
to the calling image.

This argument is optional. By default, an error status is returned rather

than signalled.
CONDITION SS$_NORMAL Normal successful completion
ol .
VALUES CON_V$ BADBLK Invalid option block i
RETURNED - '

CONV$_BADLOGIC
CONV$_BADSORT
CONV$_CLOSEIN
CONV$_CLOSEOUT
CONV$_CONFQUAL
CONV$_CREA_ERR

CONV$_CREATEDSTM

CONV$_DELPRI
CONV$_DUP
CONV$_EXTN_ERR
CONV$_FATALEXC
CONV$_FILLIM
CONV$_IDX_LIM
CONV$_ILL_KEY
CONV$_ILL_VALUE
CONV$_INP_FILES
CONV$_INSVIRMEM
CONV$_KEY
CONV$_LOADIDX
CONV$_NARG
CONV$_NOKEY
CONV$_NOTIDX
CONV$_NOTSEQ
CONV$_NOWILD
CONV$_OPENEXC
CONV$_OPENIN
CONV$_OPENOUT
CONV$_ORDER

Internal logic error detected.

Error trying to sort input file.

Error closing file specification as input.
Error closing file specification as output.
Conflicting qualifiers.

Error creating output file.

File specification has been created in stream format.
Cannot delete primary key.

Duplicate key encountered.

Unable to extend output file.

Fatal exception encountered.

Exceeded open file limit.

Exceeded maximum index level.

llegal key or value out of range.

lllegal parameter value.

Too many input files.

Insufficient virtual memory.

Invalid record key.

Error loading secondary index n.

Wrong number of arguments.

No such key.

File is not an indexed file.

Output file is not a sequential file.

No wildcard permitted.

Error opening exception file specification.
Error opening file specification as input.
Error opening file specification as output.
Routine called out of order.

CONV-9

Convert (CONV) Routines
CONV$CONVERT

CONVS$_PAD
CONV$_PLV
CONV$_PROERR
CONV$_PROL_WRT
CONV$_READERR
CONV$_REX
CONV$_RMS
CONV$_RSK
CONV$_RSZ
CONVS$_RTL
CONV$_RTS
CONV$_SEQ
CONV$_UDF_BKS
CONV$_UDF_BLK
CONV$_VALERR
CONV$_VFC
CONV$_WRITEERR

CONV-10

PAD option ignored; output record format not fixed.
Unsupported prolog version.

Error reading prolog.

Prolog write error.

Error reading file specification.

Record already exists.

Record caused RMS severe error.

Record shorter than primary key.

Record does not fit in block/bucket.

Record longer than maximum record length.
Record too short for fixed record format file.
Record not in order.

Cannot convert UDF records into spanned file.
Cannot fit UDF records into single block bucket.
Specified value is out of legal range.

Record too short to fill fixed part of VFC record.
Error writing file specification.

Convert (CONV) Routines
CONV$PASS FILES

CONVS$PASS FILES Specify Conversion Files

The CONV$PASS_FILES routine specifies a file to be converted using the

CONV$CONVERT routine.
FORMAT CONVS$PASS_FILES input filespec ,output_filespec
,[fdl_filespec]
,[exception_filespec]
[flags]
RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only

mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS input_filespec
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor
The name of the file to be converted. The input_filespec argument is
the address of a string descriptor pointing to the name of the file to be
converted.

output_filespec

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

The name of the file that receives the records from the input file. The
output_filespec argument is the address of a string descriptor pointing to
the name of the file that receives the records from the input file.

fdl_filespec

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

The name of the FDL file that defines the output file. The fdl_filespec
argument is the address of a string descriptor pointing to the name of the
FDL file.

CONV-11

Convert (CONV) Routines
CONV$PASS_FILES

DESCRIPTION

CONV-12

exception_filespec

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

The name of the file that receives copies of records that cannot be written
to the output file. The exception_filespec argument is the address of a
string descriptor pointing to this name.

flags

VMS usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument is interpreted
and how errors are signalled. The flags argument is the address of a
longword containing the control flags (or mask). If you omit this argument
or specify it as zero, no flags are set. If you specify a flag, it remains in
effect until you explicitly reset it in a subsequent call to a Convert routine.

The flags and their meanings are described in the following table.

Flag Function

CONV$V_FDL_STRING Interprets the fdl_filespec argument as an FDL
specification in string form. By default, this argument
is interpreted as a file name of an FDL file.

CONVS$V_SIGNAL Signals any error. By default, the status code is returned
to the calling image.

This argument is optional. By default, an error status is returned rather
than signalled.

The CONV$PASS_FILES routine specifies a file to be converted using the
CONV$CONVERT routine. A single call to CONV$PASS_FILES allows
you to specify an input file, an output file, an FDL file, and an exception
file. If you have multiple input files, you must call CONV$PASS_FILES
once for each file. You need to specify only the input_filespec argument
for the additional files, as follows:

status = CONV$PASS FILES (input_filespec)

The additional calls must immediately follow the original call that
specified the output file specification. You may specify as many as 9
additional files for a maximum total of 10.

Wildcard characters are not allowed in the file specifications passed to the
Convert routines.

—

Convert (CONV) Routines
CONVS$PASS FILES

CONDITION _
SS$_NORMAL Normal successful completion.

VALUES -

RETURNED CONV$_INP_FILES Too many input files.
CONV$_INSVIRMEM Insufficient virtual memory.
CONV$_NARG Wrong number of arguments.
CONV$_ORDER Routine called out of order.

CONV-13

Convert (CONV) Routines
CONV$PASS_OPTIONS

CONVS$PASS OPTIONS Specify Processing Options

The CONV$PASS_OPTIONS routine specifies which qualifiers are to be used
by the Convert Utility (CONVERT).

FORMAT

CONVS$PASS_OPTIONS [parameter _list_address]
[flags]

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

CONV-14

parameter_list_address

VMS usage: vector_longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Parameter list specifying information about the CONVERT qualifiers. The

parameter_list_address argument is the address of a variable-length

array of longwords. The first longword in the array is the number of

parameters in the array. Each subsequent longword in the array (from the

second one on) is associated with one of the CONVERT qualifiers. These

Aﬁ}nctio?s are described in the VMS Convert and Convert /[Reclaim Utility
anual.

To set one of the CONVERT qualifiers, you place a I in the longword
associated with that qualifier. If you do not want to set one of the
qualifiers (which has the same effect as using the negative form of
the qualifier on the CONVERT command), you place a 0 in the correct
longword.

If you do not specify parameter_list_address, then the following default
values apply. You can also take all default values by passing the address of
a longword that contains 0, which means a parameter list of 0 longwords.

If you have specified all the values you want set, you may want to take the
default values for all subsequent qualifiers in the list. You may omit the
subsequent ones if you give the array length in the first longword. This is
why the first longword contains a count of the qualifiers.

The qualifiers must appear in the following order.

Convert (CONV) Routines
CONV$PASS_OPTIONS

Default Value (in

Qualifier Longwords) Default CONVERT Value
CREATE 1 /CREATE

SHARE 0 /NOSHARE

FAST_LOAD 1 /FAST_LOAD

MERGE 0 /NOMERGE

APPEND 0 /NOAPPEND

SORT 1 /SORT

WORK_FILES 2 /WORK_FILES=2

KEY 0 /KEY=0

PAD 0 /NOPAD

Pad character 0 Pad character=0
TRUNCATE 0 /NOTRUNCATE

EXIT 0 /NOEXIT
FIXED_CONTROL 0 /NOFIXED_CONTROL
FILL_BUCKETS 0 /NOFILL_BUCKETS
READ_CHECK 0 /NOREAD_CHECK
WRITE_CHECK 0 /NOWRITE_CHECK

FDL 0 /NOFDL

EXCEPTION 0 /NOEXCEPTION
PROLOG No default System or process default

If you want to use the default null character for the PAD qualifier, you
should specify 0 in the pad character longword. You can also specify the
default null character by omitting the pad character longword. However,
in this case, you must also take the default values for all subsequent
qualifiers. To specify a pad character other than 0, place the ASCII value
of the character you want to use in the PAD qualifier longword.

If you specify /EXIT and the utility encounters an exception record, then
CONVERT returns with a fatal exception status.

If you specify an FDL file specification in the CONV$PASS_FILES routine,
you must place a I in the FDL longword. If you also specify an exceptions
file specification in the CONV$PASS_FILES routine, you must place a 1
in the EXCEPTION longword. You may specify either, both, or neither of
these files, but the values in the CONV$PASS_FILES call must match the
values in the parameter list. If they do not, the routine returns an error.

If you specify the PROLOG longword, note that this overrides the KEY
PROLOG attribute supplied by the FDL file. You must supply one of three
values for the PROLOG longword if you use it. The three values are 0,

2, and 3. The value 0 means that you want to use the system or process
prolog type. The value 2 means that you want to create a Prolog 1 or 2
file in all instances, even when circumstances would allow you to create

a Prolog 3 file. The value 3 means that you want to create a Prolog 3 file
and, if circumstances do not allow you to, you want the conversion to fail.

CONV-15

Convert (CONV) Routines
CONV$PASS_OPTIONS

flags

VMS usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument is interpreted
and how errors are signalled. The flags argument is the address of

a longword containing the control flags (or a mask). If you omit this
argument or specify it as zero, no flags are set. If you specify a flag, it
remains in effect until you explicitly reset it in a subsequent call to a
Convert routine.

The flags and their meanings are described in the following table.

Flag Function

CONVS$V_FDL_STRING Interprets the fdl_filespec argument supplied in the call
to CONV$PASS_FILES as an FDL specification in string
form. By default, this argument is interpreted as a file
name of an FDL file.

FDL$V_SIGNAL Signals any error. By default, the status code is returned
to the calling image.

This argument is optional. By default, an error status is returned rather
than signalled. ,

DESCRIPTION The following example shows how to use the option array to reflect the

CONV-16

CONVERT command:
$ CONVERT/FAST LOAD/SORT/WORK FILES=6/EXIT
A:

Py
N

Specifies that 12 longwords follow
Specifies the /CREATE option
Specifies the /NOSHARE option (
Specifies the /FASTLOAD option
Specifies the /NOMERGE option
Specifies the /NOAPPEND option
Specifies the /SORT option
Specifies the /WORKFILES=6 option
Specifies the /KEY=0 option
Specifies the /NOPAD option
Specifies the null pad character
Specifies the /NOTRUNCATE option
Specifies the /EXIT option

- O O OO OO - O O = O =

Convert (CONV) Routines
CONV$PASS_OPTIONS

CONDITION
VALUES
RETURNED

SS$_NORMAL
CONV$_BADBLK
CONV$_CONFQUAL
CONV$_INSVIRMEM
CONV$_NARG
CONV$_OPENEXC
CONV$_ORDER

Normal successful completion.
Invalid option block.

Conflicting qualifiers.

Insufficient virtual memory.

Wrong number of arguments.

Error opening exception file filespec.
Routine called out of order.

CONV-17

Convert (CONV) Routines
CONVS$SRECLAIM

CONVS$RECLAIM Invoke Convert/Reclaim Utility

The CONVS$RECLAIM routine invokes the functions of the Convert/Reclaim

Utility.
FORMAT CONVSRECLAIM input_filespec [,statistics_blk]
RETURNS VMS usage: cond_;alue

type: longword (unsigned)

access: write only

mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS input_filespec
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor
Name of the Prolog 3 indexed file to be reclaimed. The input_filespec

argument is the address of a string descriptor pointing to the name of the
Prolog 3 indexed file.

siatistics_blk

VMS usage: vector_longword_unsigned

type: longword (unsigned)

access: modify

mechanism: by reference

Bucket reclamation statistics. The statistics_blk argument is the
address of a variable-length array of longwords to receive statistics on
the bucket reclamation. You can choose which statistics you want returned
by specifying a number in the first element of the array. This number
determines how many of the four possible statistics the routine returns.
Depending on the number chosen, the routine returns the statistics in the
statistics array in the order specified by the following format:

A: Number of statistics
Data buckets scanned
Data buckets reclaimed
Index buckets reclaimed
Total buckets reclaimed

CONV-18

Convert (CONV) Routines
CONVS$RECLAIM

CONDITION
VALUES
RETURNED

SS$_NORMAL
CONV$_BADLOGIC
CONV$_INSVIRMEM
CONV$_INVBKT
CONV$_NOTIDX
CONV$_OPENIN
CONV$_PLV
CONV$_PROERR
CONVS$_PROL_WRT
CONV$_READERR
CONV$_NOWILD
CONV$_WRITEERR

Normal successful completion.
Internal logic error detected.
Insufficient virtual memory.
Invalid bucket at VBN n.

File is not an index file.

Error opening filespec as input.
Unsupported prolog version.
Error reading prolog.

Prolog write error.

Error reading filespec.

No wildcard permitted.

Error writing output file.

CONV-19

5 Data Compression/Expansion (DCX) Routines

The set of routines described in this chapter comprises the VMS Data
Compression/Expansion (DCX) facility. There is no DCL-level interface to
this facility nor is there a DCX Utility.

5.1 Introduction to DCX Routines

Using the DCX routines described in this chapter, you can decrease the
size of text, binary data, images, and any other type of data. Compressed
data uses less space, but there is a trade-off in terms of access time to the
data. Compressed data must first be expanded to its original state before
it is usable. Thus, infrequently accessed data makes a good candidate for
data compression.

The DCX facility provides routines that analyze and compress data records
and expand the compressed records to their original state. In this process,
no information is lost. A data record that has been compressed and then
expanded is in the same state as it was before it was compressed.

Most collections of data can be reduced in size by DCX. However, there
is no guarantee that the size of an individual data record will always be
smaller after compression; in fact, some may grow larger.

The DCX facility allows for the independent analysis, compression, and
expansion of more than one stream of data records at the same time.
This capability is provided by means of a “context variable,” which is an
argument in each DCX routine. Most applications have no need for this
capability; for these applications, there is a single context variable.

The procedure for using the DCX routines to perform data compression
and expansion consists of three major steps. The list under each of the
following steps shows the DCX routines used to perform that step:

1 Analyze some or all of the data records in the data file to produce a
mapping function (or map).

DCX$ANALYZE_INIT
DCX$ANALYZE_DATA
DCX$MAKE_MAP
DCX$ANALYZE_DONE

2 Compress the data records in the file on the basis of the mapping
function.

DCX$COMPRESS_INIT
DCX$COMPRESS_DATA
DCX$COMPRESS_DONE

DCX-1

Data Compression/Expansion (DCX) Routines
5.1 Introduction to DCX Routines

3 Expand the compressed data records on the basis of the mapping
function.

DCX$EXPAND_INIT
DCX$EXPAND_DATA
DCX$EXPAND_DONE

Some of the DCX routines make calls to various Run-Time Library (RTL)
routines, LIB§GET_VM, for example. If any of these RTL routines should
fail, a return status code indicating the cause of the failure is returned. In
such a case, you must refer to the documentation of the appropriate RTL
routine to determine the cause of the failure. The status codes documented
in this chapter are primarily DCX status codes.

Note also that the application program should declare referenced constants
and return status symbols as external symbols; these symbols are resolved
upon linking with the utility shareable image.

5.2 Using the DCX Routines: Examples

DCX-2

Examples 5-1 and 5-2 show how to use the DCX routines in VAX
FORTRAN programs.

Example 5-1 Compressing a File in a VAX FORTRAN Program

PROGRAM COMPRESS_FILES
! COMPRESSION OF FILES

! status variable
INTEGER STATUS,

2 IOSTAT,
2 I0_OK,
2 STATUS_OK

PARAMETER (IO_OK = 0)
PARAMETER (STATUS_OK = 1)
INCLUDE ’ ($FORDEF) '’
EXTERNAL DCX$_AGAIN

! context variable

INTEGER CONTEXT

! compression/expansion function
INTEGER MAP,

2 MAP_LEN

! normal file name, length, and logical unit number
CHARACTER*256 NORM_NAME

INTEGER*2 NORM_LEN

INTEGER NORM_LUN

! compressed file name, length, and logical unit number
CHARACTER*256 COMP_NAME

INTEGER*2 COMP_LEN

INTEGER COMP_LUN

(continued on next page)

Data Compression/Expansion (DCX) Routines
5.2 Using the DCX Routines: Examples

Example 5-1 (Cont.) Compressing a File in a VAX FORTRAN Program

! Logical end-of-file

LOGICAL EOF

! record buffers; 32764 is maximum record size
CHARACTER*32764 RECORD,

2 RECORD2
INTEGER RECORD_LEN,
2 RECORD2_LEN

! user routine
INTEGER GET_MAP,
2 WRITE MAP

! Library procedures
INTEGER DCX$ANALYZE INIT,
DCX$ANALYZE DONE,
DCX$COMPRESS_INIT,
DCX$COMPRESS DATA,
DCX$COMPRESS_DONE,
LIBSGET_INPUT,
LIBSGET_LUN,
LIBSFREE_VM

MDNNDDNDNDNDDND

! get name of file to be compressed and open it
STATUS = LIB$GET_INPUT (NORM_NAME,

2 'File to compress: ’/,

2 NORM_LEN)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL(STATUS))
STATUS = LIB$GET_LUN (NORM_LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
OPEN (UNIT = NORM_LUN,

2 FILE = NORM NAME (1:NORM LEN),
2 CARRIAGECONTROL = ’NONE’,
2 STATUS = /OLD’)

khkkkkkhkkhkkkkk

* Kk Kk ok ok dkokkokkokk

!
! ANALYZE DATA
!
!

initialize work area
STATUS = DCX$ANALYZE_INIT (CONTEXT)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL(STATUS))
! get compression/expansion function (map)
STATUS = GET_MAP (NORM LUN,

2 CONTEXT,
2 MAP,
2 MAP_LEN)

DO WHILE (STATUS .EQ. $LOC(DCX$_AGAIN))
! go back to beginning of file
REWIND (UNIT = NORM_LUN)

! try map again
STATUS = GET_MAP (NORM_LUN,

2 CONTEXT,

2 MAP,

2 MAP_LEN)

END DO

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL(STATUS))

! clean up work area

STATUS = DCX$ANALYZE_DONE (CONTEXT)

(continued on next page)

DCX-3

Data Compression/Expansion (DCX) Routines
5.2 Using the DCX Routines: Examples

DCX-4

Example 5-1 (Cont.) Compressing a File in a VAX FORTRAN Program

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))
| kkkkkkkkdkkkkok

! COMPRESS DATA
1
1

% % %k Kk ok % Kook ok ook ok ke ok
! go back to beginning of file to be compressed
REWIND (UNIT = NORM LUN)
! open file to hold compressed records
STATUS = LIB$GET_LUN (COMP_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIBSGET_INPUT (COMP_NAME,
2 'File for compressed records: ’,
2 COMP_LEN)
IF (.NOT. STATUS) CALL LIBS$SIGNAL (%VAL(STATUS))
OPEN (UNIT = COMP_LUN,

2 FILE = COMP_NAME (1:COMP_LEN),
2 STATUS = ’NEW’,
2 FORM = ’UNFORMATTED')

! initialize work area

STATUS = DCX$COMPRESS INIT (CONTEXT,

2 MAP)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! write compression/expansion function to new file
CALL WRITE MAP (COMP_LUN,

2 $VAL (MAP) ,
2 MAP LEN)
! read record from file to be compressed
EQOF = ,FALSE.
READ (UNIT = NORM LUN,
2 FMT = ' (Q,A)’,
2 IOSTAT = IOSTAT) RECORD_LEN,
2 RECORD (1 :RECORD_LEN)
IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FORS_ENDDURREA) THEN
CALL LIBS$SSIGNAL (%VAL(STATUS))

ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF

END IF

(continued on next page)

Data Compression/Expansion (DCX) Routines
5.2 Using the DCX Routines: Examples

Example 5-1 (Cont.) Compressing a File in a VAX FORTRAN Program

DO WHILE (.NOT. EOF)
! compress the record
STATUS = DCX$COMPRESS DATA (CONTEXT,
2 RECORD (1:RECORD_LEN) ,
2 RECORD2,
2 RECORD2_LEN)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
! write compressed record to new file
WRITE (UNIT = COMP_LUN) RECORD2_LEN
WRITE (UNIT = COMP_LUN) RECORDZ2 (1:RECORDZ_LEN)
! read from file to be compressed
READ (UNIT = NORM_LUN,

2 FMT = ' (Q,A)’,
2 IOSTAT = IOSTAT) RECORD_LEN,
2 RECORD (1: RECORD_LEN)

IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FORS_ENDDURREA) THEN
CALL LIB$SIGNAL ($VAL(STATUS))
ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF
END IF
END DO

! close files and clean up work area

CLOSE (NORM_LUN)

CLOSE (COMP_LUN)

STATUS = LIBSFREE VM (MAP_LEN,

2 MAP)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = DCX$COMPRESS_DONE (CONTEXT)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

INTEGER FUNCTION GET MAP (LUN, ‘! passed
CONTEXT, ! passed
MAP, ! returned
MAP LEN) ! returned

Analyzes records in file opened on logical
unit LUN and then attempts to create a
compression/expansion function using
DCX$MAKE_MAP.

———— = N NN

! dummy arguments

! context variable

INTEGER CONTEXT

! logical unit number

INTEGER LUN

! compression/expansion function
INTEGER MAP,

2 MAP LEN

(conﬁnued on next page)

DCX-5

Data Compression/Expansion (DCX) Routines
5.2 Using the DCX Routines: Examples

DCX-6

Example 5-1 (Cont.) Compressing a File in a VAX FORTRAN Program

! status variable
INTEGER STATUS,

2 IOSTAT,
2 I0_OK,
2 STATUS OK

PARAMETER (IO OK = 0)
PARAMETER (STATUS OK = 1)
INCLUDE ’ (SFORDEF) '

! Logical end-of-file

LOGICAL EOF

! record buffer; 32764 is the maximum record size
CHARACTER*32764 RECORD

INTEGER RECORD_LEN

! library procedures
INTEGER DCX$ANALYZE_ DATA,
2 DCX$SMAKE_MAP

! analyze records
EOF = .FALSE.
READ (UNIT = LUN,
2 FMT = ' (Q,A7)',
2 IOSTAT = IOSTAT) RECORD_LEN, RECORD
IF (IOSTAT .NE. IO _OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN
CALL LIBS$SIGNAL (%VAL (STATUS))
ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF
END IF

DO WHILE (.NOT. EOF)

STATUS = DCX$ANALYZE_DATA (CONTEXT,

2 RECORD(l:RECORD_LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
READ (UNIT = LUN,

2 FMT = ' (Q,A)’,

2 IOSTAT = IQSTAT) RECORD_LEN, RECORD
IF (IOSTAT .NE. IO_OK) THEN

CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FORs_ENDDURREA) THEN
CALL LIBS$SIGNAL ($VAL(STATUS))
ELSE
EOF = .TRUE.

STATUS = STATUS_OK

END IF
END IF
END DO
STATUS = DCX$MAKE MAP (CONTEXT,
2 MAP,
2 MAP_LEN)

GET MAP = STATUS
END

{continued on next page)

Data Compression/Expansion (DCX) Routines
5.2 Using the DCX Routines: Examples

Example 5-1 (Cont.) Compressing a File in a VAX FORTRAN Program

SUBROUTINE WRITE_ MAP (LUN, ! passed
2 MAP, ! passed
2 MAP LEN) ! passed

IMPLICIT INTEGER (A-2)
! write compression/expansion function
! to file of compressed data

! dummy arguments

INTEGER LUN, ! logical unit of file
2 MAP_LEN ! length of function
BYTE MAP (MAP_LEN) ! compression/expansion function

! write map length

WRITE (UNIT = LUN) MAP_ LEN
! write map

WRITE (UNIT = LUN) MAP

END

Example 5-2 Expanding a Compressed File in a VAX FORTRAN
Program

PROGRAM EXPAND FILES
IMPLICIT INTEGER (A-Z)
! EXPANSION OF COMPRESSED FILES

! file names, lengths, and logical unit numbers
CHARACTER*256 OLD_FILE,

2 NEW_FILE

INTEGER*2 OLD_LEN,

2 NEW_LEN

INTEGER OLD_LUN,

2 NEW_LUN

! length of compression/expansion function
INTEGER MAP,
2 MAP LEN

! user routine
EXTERNAL EXPAND DATA

! library procedures
INTEGER LIBSGET_LUN,

2 LIBS$GET INPUT,
2 LIB$GET VM,
2 LIBSFREE VM

{continued on next page)

DCX-7

Data Compression/Expansion (DCX) Routines
5.2 Using the DCX Routines: Examples

DCX-8

Example 5-2 (Cont.) Expanding a Compressed File in a VAX FORTRAN
Program

! open file to expand

STATUS = LIB$GET LUN (OLD_LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LIB$SGET INPUT (OLD_FILE,

2 'File to expand: /,

2 OLD_LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
OPEN (UNIT = OLD_LUN,

2 STATUS = 'OLD’,
2 FILE = OLD_FILE(1:0LD_LEN),
2 FORM = ‘UNFORMATTED')

! open file to hold expanded data

STATUS = LIB$GET LUN (NEW_LUN)

IF (.NOT. STATUS) CALL LIBS$SIGNAL (%VAL(STATUS))

STATUS = LIBSGET INPUT (NEW_FILE,

2 'File to hold expanded data: ’,
2 NEW_LEN)

IF (.NOT. STATUS) CALL LIBS$SIGNAL (%VAL(STATUS))

OPEN (UNIT = NEW_LUN,

2 STATUS = 'NEW’,
2 CARRIAGECONTROL = ’LIST’,
2 FILE = NEW_FILE (1:NEW_LEN))

! expand file

! get length of compression/expansion function

READ (UNIT = OLD_LUN) MAP_LEN)
STATUS = LIBSGET VM (MAP LEN, \
2 MAP)

IF (.NOT. STATUS) CALL LIBS$SIGNAL (%VAL(STATUS))

! expand records

CALL EXPAND DATA (%VAL (MAP),

2 MAP_LEN, ! length of function
2 OLD_LUN, ! compressed data file
2 NEW_LUN) ! expanded data file

! delete virtual memory used for function
STATUS = LIB$FREE_VM (MAP_LEN,

2 MAP)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL(STATUS)) (
END

SUBROUTINE EXPAND_DATA (MAP, ! passed

2 MAP_LEN, ! passed

2 OLD_LUN, ! passed

2 NEW_LUN) ! passed

!

expand data program

! dummy arguments

INTEGER MAP_LEN, ! length of expansion function

2 OLD_LUN, ! logical unit of compressed file
2 NEW_LUN ! logical unit of expanded file
BYTE MAP (MAP_LEN) ! array containing the function

(continued on next page)

Data Compression/Expansion (DCX) Routines
5.2 Using the DCX Routines: Examples

Example 5-2 (Cont.) Expanding a Compressed File in a VAX FORTRAN
Program

! status variables
INTEGER STATUS,

2 IOSTAT,
2 I0_OK,
2 STATUS_OK

PARAMETER (IO_OK = 0)
PARAMETER (STATUS OK = 1)
INCLUDE ' (SFORDEF) '

! context variable
INTEGER CONTEXT

! logical end of file
LOGICAL EOF

! record buffers
CHARACTER*32764 RECORD,

2 RECORD2
INTEGER RECORD_LEN,
2 RECORD2_LEN

! library procedures

INTEGER DCX$EXPAND INIT,
2 DCX$EXPAND_DATA,
2 DCX$EXPAND DONE

! read data compression/expansion function

READ (UNIT = OLD_LUN) MAP

! initialize work area

STATUS = DCXS$EXPAND INIT (CONTEXT,

2 ¥LOC (MAP (1)))

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! expand records

EOF = .FALSE.

! read length of compressed record

READ (UNIT = OLD LUN,

2 IOSTAT = IOSTAT) RECORD_LEN
IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$_ENDDURREA) THEN
CALL LIBSSIGNAL ($VAL(STATUS))

ELSE
ECF = .TRUE.
STATUS = STATUS_OK
END IF

END IF

DO WHILE (.NOT. EOF)
! read compressed record
READ (UNIT = OLD LUN) RECORD (1:RECORD_LEN)
{ expand record
STATUS = DCX$EXPAND DATA (CONTEXT,
2 RECORD (1 :RECORD_LEN),
2 RECORD2,
2 RECORD2_LEN)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL(STATUS))
! write expanded record to new file
WRITE (UNIT = NEW_LUN,
2 FMT = '’ (A)’) RECORDZ2 (1:RECORD2_LEN)
! read length of compressed record

(continued on next page)

DCX-9

Data Compression/Expansion (DCX) Routines
5.2 Using the DCX Routines: Examples

Example 5-2 (Cont.) Expanding a Compressed File in a VAX FORTRAN
Program

READ (UNIT = OLD_LUN,
2 IOSTAT = IOSTAT) RECORD_LEN

IF (IOSTAT .NE. IO OK) THEN

CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIBS$SIGNAL (%VAL(STATUS))
ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF
END IF

END DO
! clean up work area
STATUS = DCX$EXPAND DONE (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

53 DCX Routines

The following pages describe the individual DCX routines.

DCX~-10

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_DATA

DCX$SANALYZE_DATA Perform Statistical Analysis

on a Data Record

The DCX$ANALYZE_DATA routine performs statistical analysis on a data
record.

The results of the analysis are accumulated internally in the context area and
are used by the DCX$MAKE_MAP routine to compute the mapping function.

FORMAT

DCX$ANALYZE_DATA context,record

RETURNS

ARGUMENTS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

context

VMS usage: context

type: longword (unsigned)

access: read only

mechanism: by reference

Value identifying the data stream that DCX$ANALYZE_DATA analyzes.
The context argument is the address of a longword containing this value.
DCX$ANALYZE_INIT initializes this value; you should not modify it. You
can define multiple context arguments to identify multiple data streams
that are processed simultaneously.

record

VMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Record to be analyzed. DCX$ANALYZE_DATA reads the record
argument, which is the address of a descriptor for the record string.
The maximum length of the record string is 65,535 characters.

DESCRIPTION

The DCX$ANALYZE_DATA routine performs statistical analysis on a
single data record. This routine is called once for each data record to be
analyzed.

DCX-11

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_DATA

During analysis, the data compression facility gathers information that
DCX$MAKE_MAP uses to create the compression/expansion function

for the file. After the data records have been analyzed, you call the
DCX$MAKE_MAP routine. Upon receiving the DCX$_AGAIN status code
from DCX$MAKE_MAP, you must again analyze the same data records (in
the same order) using DCX$ANALYZE_DATA and then call DCX$MAKE_
MAP again. On the second iteration, DCX$MAKE_MAP returns the
DCX$_NORMAL status code, and the data analysis is complete.

— —
CONDITION e
VALUES DCX$_INVCTX Error. The context variable is invalid, or the context
area is invalid or corrupted. This may be caused by
RETURNED a failure to call the appropriate routine to initialize the

DCX-12

context variable or by an application program error.
DCX$_NORMAL Successful completion.

This routine also returns any condition values returned by
LIB$ANALYZE_SDESC_R2.

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_DONE

DCX$ANALYZE_DONE Specify Analysis Completed

The DCX$ANALYZE_DONE routine deletes the context area and sets the
context variable to zero, thus undoing the work of the DCX$ANALYZE_INIT
routine.

You call DCX$ANALYZE_DONE after data records have been analyzed and
the DCX$MAKE_MAP routine has created the map.

FORMAT DCX$ANALYZE_DONE context
RETURNS VMS usage: cond_value
type: longword
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.
ARGUMENT context
VMS usage: context
type: longword
access: modify
mechanism: by reference
Value identifying the data stream that DCX$ANALYZE_DONE deletes.
The context argument is the address of a longword containing this value.
DCX$ANALYZE_INIT initializes this value; you should not modify it. You
can define multiple context arguments to identify multiple data streams
that are processed simultaneously.
R O —_—
CONDITION o
VALUES DCX$_INVCTX Error. The context variable is invalid, or the context
area is invalid or corrupted. This may be caused by
RETURNED a failure to call the appropriate routine to initialize the

context variable or by an application program error.
DCX$_NORMAL Successful completion.

This routine also returns any condition values returned by
LIB$FREE_VM.

DCX-13

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_INIT

DCX$ANALYZE INIT Initialize Analysis Context

The DCX$ANALYZE_INIT routine initializes the context area for a statistical
analysis of the data records to be compressed.

FORMAT DCX$ANALYZE_INIT context[,item_code ,item_value]
RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.
ARGUMENTS context
VMS usage: context
type: longword (unsigned)
access: write only

DCX-14

mechanism: by reference

Value identifying the data stream that DCX$ANALYZE_INIT initializes.
The context argument is the address of a longword containing this value.
DCX$ANALYZE_INIT writes this context into the context argument; you
should not modify its value. You can define multiple context arguments
to identify multiple data streams that are processed simultaneously.

item_code

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Item code specifying information that you want DCX$ANALYZE_INIT to
use in its analysis of data records and in its computation of the mapping
function. DCX$ANALYZE_INIT reads this item_code argument, which is
the address of the longword contained in the item code.

For each item_code argument specified in the call, you must also specify a
corresponding item_value argument. The item_value argument contains
the interpretation of the item_code argument.

The following symbolic names are the five legal values of the item_code
argument:

DCX$C_BOUNDED
DCX$C_EST_BYTES
DCX$C_EST_RECORDS
DCX$C_LIST
DCX$C_ONE_PASS

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_INIT

item_value

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Value of the corresponding item_code argument. DCX$ANALYZE_INIT
reads the item_value argument, which is the address of a longword
containing the item value.

The item_code and item_value arguments always occur as a pair, and
together they specify one piece of “advice” for the DCX routines to use in
computing the map function. Note that, unless stated otherwise in the list
of item codes and item values, no piece of “advice” is binding on DCX; that
is, DCX is free to follow or not to follow the “advice.”

The following table shows, for each item_code argument, the possible
values for the corresponding item_value argument.

Item Code Corresponding Item Value

DCX$C_BOUNDED A Boolean variable. If bit <0> is true (equals 1), you
are stating your intention to submit for analysis all data
records that will be compressed; doing so often enables
DCX to compute a better compression algorithm. If bit
<0> is false (equals 0) or if the DCX$C_BOUNDED item
code is not specified, DCX computes a compression
algorithm without regard for whether all records to be
compressed will also be submitted for analysis.

DCX$C_EST_BYTES A longword value containing your estimate of the
total number of data bytes that will be submitted for
compression. This estimate is useful in those cases
where fewer than the total number of bytes are presented
for analysis. If you do not specify the DCX$C_EST_
BYTES item code, DCX submits for compression the
same number of bytes that was presented for analysis.
Note that you may specify DCX$C_EST_RECORDS or
DCX$C_EST_BYTES, or both.

DCX$C_EST_RECORDS A longword value containing your estimate of the
total number of data records that will be submitted
for compression. This estimate is useful in those
cases where fewer than the total number of records
are presented for analysis. If you do not specify the
DCX$C_EST_RECORDS item code, DCX submits
for compression the same number of bytes that was
presented for analysis.

DCX-15

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_INIT '

Item Code Corresponding ltem Value

DCX$C_LIST Address of an array of 2*n+1 longwords. The first
longword in the array contains the value 2*n+1. The .
remaining longwords are paired; there are n pairs. The
first member of the pair is an item code, and the second
member of the pair is the address of its corresponding
item value. The DCX$C_LIST item code allows you to
construct an array of item-code and item-value pairs
and then to pass the entire array to DCX$ANALYZE_
INIT. This is useful when your language has difficulty
interpreting variable-length argument lists. Note that the
DCX$C_LIST item code may be specified, in a single
call, alone or together with any of the other item-code
and item-value pairs.

DCX$C_ONE_PASS A Boolean variable. If bit <0> is true (equals 1), you
make a binding request that DCX make only one
pass over the data to be analyzed. If bit <0> is false
(equals 0) or if the DCX$C_ONE_PASS item code is not
specified, DCX may make multiple passes over the data,
as required. Typically, DCX makes one pass.

DESCRIPTION

The DCX$ANALYZE_INIT routine initializes the context area for a
statistical analysis of the data records to be compressed. The first (and
typically the only) argument passed to DCX$ANALYZE_INIT is an integer
variable to contain the context value. The data compression facility
assigns a value to the context variable and associates the value with the
created work area. Each time you want a record analyzed in that area,
specify the associated context variable. You can analyze two or more files
at once by creating a different work area for each file, giving each area

a different context variable, and analyzing the records of each file in the
appropriate work area.

CONDITION
VALUES
RETURNED

DCX-16

DCX$_INVITEM Error; invalid item code. The number of arguments
specified in the call was incorrect (this number should
be odd), or an unknown item code was specified.

DCX$_NORMAL Successful completion.
This routine also returns any condition values returned by LIB§GET_VM.

——

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_DATA

DCX$COMPRESS DATA Compress a Data Record

The DCX$COMPRESS_DATA routine compresses a data record. You call this
routine for each data record to be compressed.

FORMAT

DCX$COMPRESS_DATA context,in_rec,out_rec
[out_length]

RETURNS

ARGUMENTS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

context

VMS usage: context

type: longword (unsigned)

access: read only

mechanism: by reference

Value identifying the data stream that DCX$COMPRESS_DATA
compresses. The context argument is the address of a longword
containing this value. DCX$COMPRESS_INIT initializes the value;
you should not modify it. You can define multiple context arguments to
identify multiple data streams that are processed simultaneously.

in_rec

VMS usage: char_string
type: character string
access: read only

mechanism: by descriptor
Data record to be compressed. The in_rec argument is the address of the
descriptor of the data record string.

out_rec

VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Data record that has been compressed. The out_rec argument is the
address of the descriptor of the compressed record that LIB§COMPRESS _
DATA returns.

DCX-17

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_DATA

out_length

VMS usage: word_signed

type: word integer (signed)

access: write only

mechanism: by reference

Length (in bytes) of the compressed data record. The out_length
argument is the address of a word into which LIBSCOMPRESS_DATA
returns the length of the compressed data record.

DESCRIPTION

The DCX$COMPRESS_DATA routine compresses a data record. You call
this routine for each data record to be compressed. As you compress
each record, write the compressed record to the file containing the
compression/expansion map. For each record, write the length of the
record and substring string containing the record to the same file. See the
COMPRESS DATA section in Example 5-1.

CONDITION
VALUES
RETURNED

DCX-18

DCX$_INVCTX Error. The context variable is invalid, or the context
area is invalid or corrupted. This may be caused by
a failure to call the appropriate routine to initialize the
context variable or by an application program error.

DCX$_INVDATA Error. You specified the item value DCX$C_ o
BOUNDED in the DCX$ANALYZE_INIT routine
and attempted to compress a data record (using
DCX$COMPRESS_DATA) that was not presented for
analysis (using DCX$ANALYZE_DATA). Specifying
the DCX$C_BOUNDED item value means that
you must analyze all data records that are to be

compressed.
DCX$_INVMAP Error; invalid map. The map argument was not

specified correctly or the context area is invalid. /
DCX$_NORMAL Successful completion. A

DCX$_TRUNC Error. The compressed data record has been
. truncated because the out_rec descriptor did not
specify enough memory to accommodate the record.

This routine also returns any condition values returned by
LIB$SANALYZE_SDESC_R2 and LIB$SCOPY_R_DX.

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_DONE

DCX$COMPRESS DONE Specify Compression

FORMAT

Complete

The DCX$COMPRESS_DONE routine deletes the context area and sets the
context variable to zero.

DCX$COMPRESS_DONE context

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENT

context

VMS usage: context

type: longword (unsigned)

access: write only

mechanism: by reference

Value identifying the data stream that DCX$COMPRESS_DONE deletes.
The context argument is the address of a longword containing this value.
DCX$COMPRESS_INIT writes the value into context; you should not
modify its value. You can define multiple context arguments to identify
multiple data streams that are processed simultaneously.

DESCRIPTION

The DCX$COMPRESS_DONE routine deletes the context area and

sets the context variable to zero, thus undoing the work of the
DCX$COMPRESS_INIT routine. You call DCX$COMPRESS_DONE
when all data records have been compressed (using DCX$COMPRESS_
DATA). After calling DCX$COMPRESS_DONE, call LIB§FREE_VM to
free the virtual memory that DCX$MAKE_MAP used for the compression
/expansion function.

CONDITION
VALUES
RETURNED

DCX$_INVCTX Error. The context variable is invalid or the context
area is invalid or corrupted. This may be caused by
a failure to call the appropriate routine to initialize the
context variable or by an application program error.

DCX$_NORMAL Successful completion.

This routine also returns any condition values returned by
LIB$FREE_VM.

DCX-19

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_INIT

DCX$COMPRESS INIT Initialize Compression
Context

The DCX$COMPRESS_INIT routine initializes the context area for the
compression of data records.

FORMAT DCX$COMPRESS_INIT context,map

RETURNS VMS usage: cond value
type: longword (unsigned)
access: write only

mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS context /
VMS usage: context '
type: longword (unsigned)
access: write only
mechanism: by reference
Value identifying the data stream that DCX$COMPRESS_INIT initializes.

The context argument is the address of a longword containing this value.
You should not modify the context value after DCX$COMPRESS_INIT
initializes it. You can define multiple context arguments to identify
multiple data streams that are processed simultaneously.

map :
VMS usage: address

type: longword (unsigned)

access: read only

mechanism: by reference
The function created by DCX$MAKE_MAP. The map argument is the
address of the compression/expansion function’s virtual address.

The map argument must remain at this address until data compression
is completed and the context is deleted by means of a call to
DCX$COMPRESS_DONE.

DESCRIPTION The DCX$COMPRESS_INIT routine initializes the context area for the
compression of data records.

You call the DCX$COMPRESS_INIT routine after the call to <
DCX$ANALYZE_DONE.

DCX-20

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_INIT

CONDITION i

VALUES DCX$_INVMAP Error; invalid map. The map argument was not
specified correctly, or the context area is invalid.

RETURNED DCX$_NORMAL Successful completion.

This routine also returns any condition values returned by LIB$§GET_VM
and LIB$FREE_VM.

DCX-21

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_DATA

DCXSEXPAND DATA Expand a Compressed Data

Record

The DCX$EXPAND_DATA routine expands (or restores) a compressed data
record to its original state.

FORMAT

DCXS$EXPAND DATA context,in_rec,out _rec
[out_length]

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in R0O. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

DCX-22

context

VMS usage: context

type: longword (unsigned)

access: read only

mechanism: by reference

Value identifying the data stream that DCX$EXPAND_DATA expands.

The context argument is the address of a longword containing this value.

DCX$EXPAND_INIT initializes this value; you should not modify it. You
can define multiple context arguments to identify multiple data streams
that are processed simultaneously.

in_rec

VMS usage: char_string
type: character string
access: read only

mechanism: by descriptor
Data record to be expanded. The in_rec argument is the address of the
descriptor of the data record string.

out_rec

VMS usage: char_string

type: character string

access: write only

mechanism: by descriptor

Data record that has been expanded. The out_rec argument is

the address of the descriptor of the expanded record returned by
DCX$EXPAND_DATA.

—

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_DATA

out_length

VMS usage: word_signed

type: word integer (signed)

access: write only

mechanism: by reference

Length (in bytes) of the expanded data record. The out_length argument
is the address of a word into which DCX$EXPAND_DATA returns the
length of the expanded data record.

DESCRIPTION The DCX$EXPAND_DATA routine expands (or restores) a compressed
data record to its original state. You call this routine for each data record
to be expanded.

CONDITION o

VALUES DCX$_INVCTX Error.' The qontext variable is |r?vahd, or the context

area is invalid or corrupted. This may be caused by

RETURNED a failure to call the appropriate routine to initialize the

context variable or by an application program error.

DCX$_INVDATA Error. A compressed data record is invalid (probably
truncated) and therefore cannot be expanded.

DCX$_INVMAP Error; invalid map. The map argument was not
specified correctly, or the context area is invalid.

DCX$_NORMAL Successful completion.

DCX$_TRUNC Warning. The expanded data record has been

truncated because the out_rec descriptor did not
specify enough memory to accommodate the record.

This routine also returns any condition values returned by
LIBSANALYZE_SDESC_R2 and LIB$SCOPY_R_DX.

DCX-23

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_DONE

DCX$EXPAND_DONE Specify Expansion Complete

The DCX$EXPAND_DONE routine deletes the context area and sets the
context variable to zero.

FORMAT

DCX$EXPAND_DONE context

RETURNS

ARGUMENT

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

context

VMS usage: context

type: longword (unsigned)

access: write only

mechanism: by reference

Value identifying the data stream that DCX$EXPAND_DONE deletes.
The context argument is the address of a longword containing this value.
DCX$EXPAND_INIT initializes this value; you should not modify it. You
can define multiple context arguments to identify multiple data streams
that are processed simultaneously.

DESCRIPTION

The DCX$EXPAND_DONE routine deletes the context area and sets the
context variable to zero, thus undoing the work of the DCX$EXPAND_
INIT routine. You call DCX$EXPAND_DONE when all data records have
been expanded (using DCX$EXPAND_DATA).

CONDITION
VALUES
RETURNED

DCX-24

DCX$_INVCTX Error. The context variable is invalid, or the context
area is invalid or corrupted. This may be caused by
a failure to call the appropriate routine to initialize the
context variable or by an application program error.

DCX$NORMAL Successful completion.

This routine also returns any condition values returned by
LIB$FREE_VM.

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_INIT

DCX$SEXPAND INIT Initialize Expansion Context

The DCX$EXPAND_INIT routine initializes the context area for the expansion
of data records.

FORMAT

DCXS$SEXPAND INIT context,map

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

DESCRIPTION

context

VMS usage: context

type: longword (unsigned)

access: write only

mechanism: by reference

Value identifying the data stream that DCX$EXPAND_INIT initializes.
The context argument is the address of a longword containing this value.
After DCX$EXPAND_INIT initializes this context value, you should not
modify it. You can define multiple context arguments to identify multiple
data streams that are processed simultaneously.

map

VMS usage: address

type: longword (unsigned)

access: read only

mechanism: by reference

Compression/expansion function (created by DCX$MAKE_MAP). The map
argument is the address of the compression/expansion function’s virtual
address.

The map argument must remain at this address until data expansion is
completed and context is deleted by means of a call to DCX$EXPAND_
DONE.

The DCX$EXPAND_INIT routine initializes the context area for the
expansion of data records.

You call the DCX$EXPAND_INIT routine as the first step in the expansion
(or restoration) of compressed data records to their original state.

DCX-25

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_INIT

Before you call DCX$EXPAND_INIT, read the length of the compressed file
from the compression/expansion function (the map). Invoke LIB§GET_VM
to get the necessary amount of storage for the function. LIB§GET_VM
returns the address of the first byte of the storage area.

CONDITION

VALUE DCX$_INVMAP Error; invalid map. The map argument was not
UES specified correctly, or the context area is invalid.

RETURNED DCX$_NORMAL Successful completion.

This routine also returns any condition values returned by LIB§GET_VM.

DCX-26

Data Compression/Expansion (DCX) Routines
DCX$MAKE_MAP

DCX$MAKE_MAP Compute the

Compression/Expansion
Function

The DCX$MAKE_MAP routine uses the statistical information gathered by
DCX$ANALYZE_DATA to compute the compression/expansion function.

FORMAT DCX$MAKE_MAP context,map_addr[,map_size]
RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.
ARGUMENTS context
VMS usage: context
type: longword (unsigned)
access: write only

mechanism: by reference

Value identifying the data stream that DCX$MAKE_MAP maps. The
context argument is the address of a longword containing this value.
DCX$ANALYZE_INIT initializes this value; you should not modify it. You
can define multiple context arguments to identify multiple data streams
that are processed simultaneously.

map_addr

VMS usage: address

type: longword (unsigned)

access: write only

mechanism: by reference

Starting address of the compression/expansion function. The map_addr
argument is the address of a longword into which DCX$MAKE_MAP
stores the virtual address of the compression/expansion function.

map_size

VMS usage: longword_signed

type: longword (unsigned)

access: write only

mechanism: by reference

Length of the compression/expansion function. The map_size argument
is the address of the longword into which DCX$MAKE_MAP writes

the length of the compression/expansion function. This is an optional

argument.
DCX-27

Data Compression/Expansion (DCX) Routines

DCX$MAKE_MAP

DESCRIPTION

The DCX$MAKE_MAP routine uses the statistical information gathered
by DCX$ANALYZE_DATA to compute the compression/expansion function.
In essence, this map is the algorithm used to shorten (or compress) the
original data records as well as to expand the compressed records to their
original form.

The map must be available in memory when any data compression or
expansion takes place; the address of the map is passed as an argument
to the DCX$COMPRESS_INIT and DCX$EXPAND_INIT routines, which
initialize the data compression and expansion procedures, respectively.

The map is stored with the compressed data records, because the
compressed data records are indecipherable without the map. When
compressed data records have been expanded to their original state and
no further compression is desired, you should delete the map using the
LIB$FREE_VM routine.

DCX requires that you submit data records for analysis and then call the
DCX$MAKE_MAP routine. Upon receiving the DCX$_AGAIN status code,
you must again submit data records for analysis (in the same order) and
call DCX$MAKE_MAP again; on the second iteration, DCX$MAKE_MAP
returns the DCX$_NORMAL status code.

CONDITION
VALUES
RETURNED

DCX-28

DCX$_AGAIN Informational. The map has not been created and the
map_addr and map_size arguments have not been
written because further analysis is required. The data
records must be analyzed (using DCX$ANALYZE_
DATA) again, and DCX$MAKE_MAP must be called
again before DCX$MAKE_MAP will create the map
and return the DCX$_NORMAL status code.

DCX$_INVCTX Error. The context variable is invalid, or the context
area is invalid or corrupted. This may be caused by
a failure to call the appropriate routine to initialize the
context variable or by an application program error.

DCX$_NORMAL Successful completion.

This routine also returns any condition values returned by LIB$GET VM
and LIB$FREE_VM.

6

6.1

6.2

EDT Routines

On VMS operating systems, the EDT editor can be called from a program.
Calling programs can be written in any VAX language that generates calls
using the VAX Procedure Calling and Condition Handling Standard.

You can set up your call to EDT so that the program handles all the
editing work, or you can make EDT run interactively so that you can edit
a file while the program is running.

This chapter on callable EDT assumes that you know how to call an
external facility from the language you are using. Callable EDT is a
shareable image, which means that you save physical memory and disk
space by having all processes access a single copy.

Introduction to EDT Routines

You must include a statement in your program accessing the EDT entry
point. This reference statement is similar to a library procedure reference
statement. The EDT entry point is referenced as EDT$EDIT. You can pass
arguments to EDT$EDIT; for example, you can pass EDT$FILEIO or your
own routine. When you refer to the routines you pass, call them FILEIO,
WORKIO, and XLATE. Therefore, FILEIO can be either a routine provided
by EDT (named EDT$FILEIO) or a routine that you write.

Using EDT Routines: An Example

Example 6-1 shows a VAX BASIC program that calls EDT. All three
routines (FILEIO, WORKIO, and XLATE) are called. Note the reference to
the entry point EDT$EDIT in line number 500. '

EDT-1

EDT Routines
6.2 Using EDT Routines: An Example

Example 6-1 Using the EDT Routines in a VAX BASIC Program

100 EXTERNAL INTEGER EDTS$FILEIO "
200 EXTERNAL INTEGER EDT$WORKIO

250 EXTERNAL INTEGER AXLATE

300 EXTERNAL INTEGER FUNCTION EDTSEDIT
400 DECLARE INTEGER RESULT

450 DIM INTEGER PASSFILE(1%) @
460 DIM INTEGER PASSWORK (1%)

465 DIM INTEGER PASSXLATE (1%)

470 PASSFILE(0%) = LOC(EDTSFILEIO)
480 PASSWORK (0%) = LOC (EDT$WORKIO)
485 DPASSXLATE (0%) = LOC (AXLATE)

500 RESULT = EDTS$EDIT(’'FILE.BAS’,’’,’EDTINI’,’’,0%, (3]
PASSFILE (0%)BY REF, PASSWORK(0%) BY REF,
PASSXLATE (0%) BY REF)
600 IF (RESULT AND 1%) = 0%
THEN
PRINT "SOMETHING WRONG"
CALL LIB$STOP (RESULT BY VALUE)
900 PRINT "EVERYTHING O.K."
1000 END

© The external entry points EDT$FILEIO, EDT$WORKIO, and AXLATE
are defined so that they can be passed to callable EDT.

@® Arrays are used to construct the two-longword structure needed for (
data type BPV.

© Here is the call to EDT. The input file is FILE.BAS, the output and
journal files are defaulted, and the command file is EDTINI. A 0 is
passed for the options word to get the default EDT options.

© The array PASSFILE points to the entry point for all file I/O, which is
set up in this example to be the EDT-supplied routine with the entry
point EDT$FILEIO. Similarly, the array PASSWORK points to the
entry point for all work I/O, which is the EDT-supplied routine with /
the entry point EDT$WORKIO. \

© PASSXLATE points to the entry point that EDT will use for all XLATE
processing. PASSXLATE points to a user-supplied routine with the
entry point AXLATE.

6.3 EDT Routines
The following pages describe the individual EDT routines.

EDT-2

EDT Routines

EDTS$EDIT

EDTSEDIT Edit a File

The EDTS$EDIT routine invokes the EDT editor.
FORMAT EDTSEDIT in_file [,out file] [,com_file] [,jou_file]

[,options] [fileio] [,workio] [, xlate]

RETURNS ms usage: c;d_value

type: longword (unsigned)

access: write only

mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS in file
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor
File specification of the input file that EDT$EDIT is to edit. The in_file
argument is the address of a descriptor pointing to this file specification.
The string that you enter in this calling sequence is passed to the FILEIO
routine to open the primary input file. This is the only required argument.

out file

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor

File specification of the output file that EDT$EDIT creates. The out_file
argument is the address of a descriptor pointing to this file specification.
The default is that the input file specification is passed to the FILEIO
routine to open the output file for the EXIT command.

com_file

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor

File specification of the startup command file to be executed when EDT is
invoked. The com_file argument is the address of a descriptor pointing
to this file specification. The com_file string is passed to the FILEIO
routine to open the command file. The default is the same as that for EDT
command file defaults.

EDT-3

EDT Routines
EDTSEDIT

EDT-4

Jou_file

VMS usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor

File specification of the journal file to be opened when EDT is invoked.
The jou_file argument is the address of a descriptor pointing to this file
specification. The jou_file string is passed to the FILEIO routine to open
the journal file. The default is to use the same file name as in_file.

optlons

VMS usage: mask_longword

type: aligned bit string

access: read only

mechanism: by reference

Bit vector specifying options for the edit operation. The options argument
is the address of an aligned bit string containing this bit vector. Only bits

<5:0> are currently defined; all others must be 0. The default options have

all bits set to 0. This is the same as the default setting when you invoke
EDT to edit a file from DCL.

Symbols and their descriptions follow:

EDT$M_RECOVER If set, bit <0> causes EDT to read the journal file and
execute the commands in it, except for the EXIT or QUIT
commands, which are ignored. After the journal file |
commands are processed, editing continues normally. [f
bit <0> is set, the FILEIO routine is asked to open the
journal file for both input and output; otherwise FILEIO
is asked only to open the journal file for output. Bit <0>
corresponds to the /RECOVER qualifier on the EDT
command line.

EDT$M_COMMAND If set, bit <1> causes EDT to signal if the startup command
file cannot be opened. When bit <1> is 0, EDT intercepts
the signal from the FILEIO routine indicating that the)
startup command file could not be opened. Then, EDT {
proceeds with the editing session without reading any
startup command file. If no command file name is supplied
with the call to the EDT$EDIT routine, EDT tries to open
SYS$LIBRARY:EDTSYS.EDT or, if that fails, EDTINLEDT.
Bit <1> corresponds to the /COMMAND qualifier on the
EDT command line. if EDT$M_NOCOMMAND (bit <4>) is
set, bit <1> is overridden because bit <4> prevents EDT
from trying to open a command file.

EDT$M_NOJOURNAL If set, bit <2> prevents EDT from opening the journal file.
Bit <2> corresponds to the /NOJOURNAL or /READ_
ONLY qualifier on the EDT command line.

EDT Routines
EDT$EDIT

EDT$M_NOOUTPUT If set, bit <3> prevents EDT from using the input file name
as the default output file name. Bit <3> corresponds to
the /NOOUTPUT or /READ_ONLY qualifier on the EDT
command line.

EDT$M_NOCOMMAND If set, bit <4> prevents EDT from opening a startup

command file. Bit <4> corresponds to the /NOCOMMAND
qualifier on the EDT command line.

EDT$M_NOCREATE If set, bit <5> causes EDT to return to the caller if the
input file is not found. The status returned is the error
code EDT$_INPFILNEX.

fileio

VMS usage: vector_longword_unsigned
type: bound procedure value
access: function call

mechanism: by reference

User-supplied routine called by EDT to perform file I/O functions. The
fileio argument is the address of a bound procedure value containing
the user-supplied routine. When you do not need to intercept any file
1/0, either use the entry point EDT$FILEIO for this argument or omit
it. When you only need to intercept some amount of file I/0, call the
EDT$FILEIO routine for the other cases.

To avoid confusion, note that EDT$FILEIO is a routine provided by EDT
whereas FILEIO is a routine that you provide.

In order to accommodate routines written in high-level languages that do
up-level addressing, this argument must have a data type of BPV (bound
procedure value). BPV is a two-longword entity in which the first longword
contains the address of a procedure entry mask and the second longword
is the environment value. When the bound procedure is called, EDT loads
the second longword into R1. If you use EDT$FILEIO for this argument,
set the second longword to <0>. You can pass a <0> for the argument,
and EDT will set up EDT$FILEIO as the default and set the environment
word

to 0.

workio

VMS usage: vector_longword_unsigned
type: bound procedure value
access: function call

mechanism: by reference

User-supplied routine called by EDT to perform I/O between the work file
and EDT. The workio argument is the address of a bound procedure value
containing the user-supplied routine. Work file records are addressed only
by number and are always 512 bytes long. If you do not need to intercept
work file I/0, you can either use the entry point EDT$WORKIO for this
argument or omit it.

In order to accommodate routines written in high-level languages that do
up-level addressing, this argument must have a data type of BPV (bound
procedure value). This means that EDT loads R1 with the second longword
addressed before calling it. If EDT$WORKIO is used for this argument,
set the second longword to 0. You can pass a 0 for this argument, and EDT
will set up EDT$WORKIO as the default and set the environment word

to 0.

EDT-5

EDT Routines
EDTSEDIT

Xlate

VMS usage: vector_longword_unsigned

type: bound procedure value

access: function call

mechanism: by reference

User-supplied routine that EDT calls when it encounters the nokeypad
command XLATE. The xlate argument is the address of a bound procedure
value containing the user-supplied routine. The XLATE routine allows you
to gain control of your EDT session. If you do not need control of EDT
during the editing session, you can either use the entry point EDT$XLATE
for this argument or omit it.

In order to accommodate routines written in high-level languages that do
up-level addressing, this argument must have a data type of BPV (bound
procedure value). This means that EDT loads R1 with the second longword
addressed before calling it. If EDT$XLATE is used for this argument, set
the second longword to 0. You can pass a 0 for this argument, and EDT
will set up EDT$XLATE as the default and set the environment word to 0.

DESCRIPTION

CONDITION
VALUES
RETURNED

EDT-6

If the EDT session is terminated by EXIT or QUIT, the status will be a
successful value (bit <0> = 1). If the session is terminated because the file
was not found and if the /NOCREATE qualifier was in effect, the failure
code EDT$_INPFILNEX is returned. In an unsuccessful termination
caused by an EDT error, a failure code corresponding to that error is
returned. Each error status from the FILEIO and WORKIO routines is
explained separately.

Three of the arguments to the EDT$EDIT routine, fileio, workio, and
xlate are the entry point names of user-supplied routines.

_
SS$_NORMAL Successful completion.
EDTS$_INPFILNEX /NOCREATE specified and input file does not exist.

This routine also returns any condition values returned by user-supplied
routines,

EDT Routines
FILEIO

FILEIO

The user-supplied FILEIO routine performs file I/O functions. You call it by
specifying it as an argument in the EDT$EDIT routine. It cannot be called
independently.

FORMAT FILEIO code ,stream ,record,rhb

RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
A VMS status code that your FILEIO routine returns to EDT$EDIT. The
fileio argument is a longword containing the status code. The only failure
code that is normally returned is RMS$_EOF from a GET call. All other
VMS RMS errors are signaled, not returned. The VMS RMS signal should
include the file name and both longwords of the RMS status. Any errors
detected with the FILEIO routine can be indicated by setting status to an
error code. That special error code will be returned to the program by the
EDT$EDIT routine. There is a special status value EDT$_NONSTDFIL
for nonstandard file opening.
Condition values are returned in RO.

ARGUMENTS code
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

A code from EDT that specifies what function the FILEIO routine is
to perform. The code argument is the address of a longword integer
containing this code. Following are the valid function codes:

Function Code Description

EDT$K_OPEN_INPUT The record argument names a file to be
opened for input. The rhb argument is the
default file name.

EDT$K_OPEN_OUTPUT_SEQ The record argument names a file to be
opened for output as a sequenced file. The
rhb argument is the default file name.

EDT$K_OPEN_OUTPUT_NOSEQ The record argument names a file to be
opened for output. The rhb argument is the
default file name.

EDT-7

EDT Routines
FILEIO

EDT-8

Function Code Description

EDT$K_OPEN_IN_OUT The record argument names a file to be
opened for both input and output. The rhb
argument is the default file name.

EDT$K_GET The record argument is to be filled with data
from the next record of the file. If the file has
record prefixes, rhb is filled with the record
prefix. If the file has no record prefixes, rhb
is not written. 'When you attempt to read past
the end of file, status is set to RMS$_EOF.

EDT$K_PUT The data in the record argument is to be
written to the file as its next record. If the file
has record prefixes, the record prefix is taken
from the rhb argument. For a file opened for
both input and output, EDT$K_PUT is valid
only at the end of the file, indicating that the
record is to be appended to the file.

EDT$K_CLOSE_DEL The file is to be closed and then deleted. The
record and rhb arguments are not used in the
call.

EDT$K_CLOSE The file is to be closed. The record and rhb
arguments are not used in the call.

stream

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A code from EDT that indicates which file is being used. The stream
argument is the address of a longword integer containing the code.
Following are the valid codes.

Function Code Description

EDT$K_COMMAND_FILE The command file.
EDT$K_INPUT_FILE The primary input file.

EDT$K_INCLUDE_FILE The secondary input file. Such a file is opened in
response to an INCLUDE command. It is closed
when the INCLUDE command is complete and will be
reused for subsequent INCLUDE commands.

EDT Routines
FILEIO

Function Code Description

EDT$K_JOURNAL_FILE The journal file. If bit 0 of the options is set, it
is opened for both input and output and is read
completely. Otherwise, it is opened for output only.
After it is read or opened for output only, it is used
for writing. On a successful termination of the editing
session, the journal file is closed and deleted. EXIT
/SAVE and QUIT/SAVE close the journal file without

deleting it.

EDT$K_OUTPUT_FILE The primary output file. It is not opened until you
enter the EXIT command.

EDT$K_WRITE_FILE The secondary output file. Such a file is opened

in response to a WRITE or PRINT command. It is
closed when the command is complete and will be
reused for subsequent WRITE or PRINT commands.

record

VMS usage: char_string

type: character-coded text string
access: modify

mechanism: by descriptor

Text record passed by descriptor from EDT to the user-supplied FILEIO
routine; the code argument determines how the record argument is
used. The record argument is the address of a descriptor pointing to
this argument. When the code argument starts with EDT$K_OPEN, the
record is a file name. When the code argument is EDT$K_GET, the
record is a place to store the record that was read from the file. For code
argument EDT$K_PUT, the record is a place to find the record to be
written to the file. This argument is not used if the code argument starts
with EDT$K_CLOSE.

Note that for EDT$K_GET, EDT uses a dynamic or varying string
descriptor; otherwise, EDT has no way of knowing the length of the
record being read. EDT uses only string descriptors that can be handled
by the Run-Time Library (RTL) routine STR$COPY_DX.

rhb

VMS usage: char_string

type: character-coded text string
access: modify

mechanism: by descriptor

Text record passed by descriptor from EDT to the user-supplied FILEIO
routine; the code argument determines how the rhb argument is used.
When the code argument starts with EDT$K_OPEN, the rhb argument
is the default file name. When the code is EDT$K_GET and the file has
record prefixes, the prefixes are put in this argument. When the code

is EDT$K_PUT and the file has record prefixes, the prefixes are taken
from this argument. Like the record argument, EDT uses a dynamic or
varying string descriptor for EDT$K_GET and uses only string descriptors
that can be handled by the RTL routine STR$COPY_DX.

EDT-9

EDT Routines
FILEIO

DESCRIPTION

CONDITION
VALUES
RETURNED

EDT-10

If you do not need to intercept any file I/O, you can use the entry point
EDT$FILEIO for this argument or you can omit it. If you need to intercept
only some file I/0, call the EDT$FILEIO routine for the other cases.

When you use EDT$FILEIO as a value for the fileio argument, files are
opened as follows:

¢ The record argument is always the RMS file name.
¢ The rhb argument is always the RMS default file name.
* There is no related name for the input file.

¢ The related name for the output file is the input file with OFP (output
file parse). EDT passes the input file name, the output file name, or
the name from the EXIT command in the record argument.

¢ The related name for the journal file is the input file name with the
output file parse (OFP) RMS bit set.

* The related name for the INCLUDE file is the input file name with the
OFP set. This is unusual because the file is being opened for input.

SS$_NORMAL Successful completion.
EDT$_NONSTDFIL File is not in standard text format. ‘
RMS$_EOF End of file on a GET. ‘

e

EDT Routines
WORKIO

WORKIO

The user-supplied WORKIO routine is called by EDT when it needs temporary
storage for the file being edited. You call it by specifying it as an argument in
the EDTS$EDIT routine. It cannot be called independently.

FORMAT

WORKIO code,recordno ,record

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by immediate value

Longword value returned as a VMS status code. It is generally a success
code, because all VMS RMS errors should be signaled. The signal should
include the file name and both longwords of the VMS RMS status. Any
errors detected within work I/O can be indicated by setting status to an
error code, which will be returned by the EDT$EDIT routine.

The condition value is returned in RO.

ARGUMENTS

code

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A code from EDT that specifies the operation to be performed. The code
argument is the address of a longword integer containing this argument.
The valid function codes are as follows:

Function Code Description

EDT$SK_OPEN_IN_OUT Open the work file for both input and output. Neither the
record nor recordno argument is used.

EDT$K_GET Read a record. The recordno argument is the number
of the record to be read. The record argument gives the
location where the record is to be stored.

EDT$K_PUT Write a record. The recordno argument is the number of
the record to be written. The record argument tells the
location of the record to be written.

EDT$K_CLOSE_DEL Close the work file. After a successful close, the file is
deleted. Neither the record nor recordno argument is
used.

EDT-11

EDT Routines
WORKIO

recordno

VMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Number of the record to be read or written. The recordno argument is
the address of a longword integer containing this argument. EDT always
writes a record before reading that record. This argument is not used for
open or close calls.

record

VMS usage: char_string
type: character string
access: modify

mechanism: by descriptor

Location of the record to be read or written. This argument always refers
to a 512-byte string during GET and PUT calls. This argument is not used
for open or close calls.

DESCRIPTION Work file records are addressed only by number and are always 512 bytes

long. If you do not need to intercept work file I/O, you can use the entry
point EDT$WORKIO for this argument or you can omit it.

CONDITION
VALUE
RETURNED

EDT-12

SS$_NORMAL Successful completion.

EDT Routines
XLATE

XLATE

The user-supplied XLATE routine is called by EDT when it encounters the
nokeypad command XLATE. You cause it to be called by specifying it as an
argument in the EDT$EDIT routine. 1t cannot be calied independently.

FORMAT XLATE string

RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword value returned as a VMS status code. It is generally a success
code. If the XLATE routine cannot process the passed string for some
reason, it sets status to an error code. Returning an error code from
the XLATE routine aborts the current key execution and displays the
appropriate error message.
The condition value is returned in RO.

ARGUMENT string
VMS usage: char_string
type: character-coded text string
access: modify
mechanism: by descriptor
Text string passed to the nokeypad command XLATE. You can use the
nokeypad command XLATE by defining a key to include the following
command in its definition:
XLATEtext"Z
The text is passed by the string argument. The string argument is one
that can be handled by the Run-Time Library (RTL) routine STR$COPY_
DX.
This argument is also a text string returned to EDT. The string is made
up of nokeypad commands that EDT is to execute.

DESCRIPTION The nokeypad command XLATE allows you to gain control of the EDT

session. (See the VAX EDT Reference Manual for more information about
the XLATE command.) If you do not need to gain control of EDT during
the editing session, you can use the entry point EDT$XLATE for this
argument or you can omit it.

EDT-13

EDT Routinés
XLATE

CONDITION
VALUE
RETURNED

SS$_NORMAL Successful completion.

EDT-14

7 File Definition Language (FDL) Routines

This chapter describes the File Definition Language (FDL) routines.
These routines perform many of the functions of the RMS File Definition
Language. '

7.1 Introduction to FDL Routines

The FDL$CREATE routine is the one most likely to be called from a high-
level language. It creates a file from an FDL specification and then closes
the file.

The following three FDL routines provide a way to specify all the options
RMS allows when it executes create, open, or connect operations. They
also allow you to specify special processing options required for your
applications.

The FDL$GENERATE routine produces an FDL specification by
interpreting a set of RMS control blocks. It then writes the FDL
specification either to an FDL file or to a character string.

The FDL$PARSE routine parses an FDL specification, allocates RMS
control blocks, and fills in the relevant fields.

The FDL$RELEASE routine deallocates the virtual memory used by the
RMS control blocks created by FDL$PARSE.

These routines cannot be called from AST level.

An FDL specification can be either in a file or in a character string.
When specifying an FDL specification in a character string, delimit the
statements of the FDL specification with semicolons.

7.2 Using the FDL Routines: Examples

Example 7-1 shows how to use the FDL$CREATE routine in a FORTRAN
program.

FDL-1

File Definition Language (FDL) Routines
7.2 Using the FDL Routines: Examples

Example 7-1 Using FDL$CREATE in a FORTRAN Program

* This program calls the FDL$CREATE routine. It
* creates an indexed output file named NEW_MASTER.DAT
* from the specifications in the FDL file named
* INDEXED.FDL. You can also supply a default filename
* and a result name (that receives the name of the
* created file). The program also returns all the
* statistics.
*
IMPLICIT INTEGER*4 (A - Z)
EXTERNAL LIBSGET LUN, FDL$CREATE
CHARACTER IN_FILE*11 /’ INDEXED.FDL'/,
1 OUT_FILE*14 /' NEW_MASTER.DAT'/,
1 DEF_FILE*11 /! DEFAULT.FDL’/,
1 RES_FILE*50
INTEGER*4 FIDBLK(3) /0,0,0/
I=1

STATUS = FDLSCREATE (IN_FILE,OUT FILE,
DEF_FILE,RES FILE,FIDBLK,,)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL (STATUS))

STATUS=LIBS$GET LUN (LOG_UNIT)
OPEN (UNIT=LOG_UNIT,FILE=RES_FILE, STATUS='OLD')
CLOSE (UNIT=LOG_UNIT, STATUS='KEEP’)

WRITE (6,1000) (RES_FILE)
WRITE (6,2000) (FIDBLK (I), I=1,3)

1000 FORMAT (1X,’The result filename is: ’,A50) (
2000 FORMAT (/1X,’/FID-NUM: /,I5/,

1 1X,’FID-SEQ: ’,I5/,
1 1X,’FID-RVN: ’,1I5)
END

Example 7-2 shows how to use the FDL$PARSE and FDL$RELEASE
routines in a MACRO program.

Example 7-2 Using FDL$PARSE and FDL$RELEASE in a MACRO Program

This program calls the FDL utility routines FDLS$PARSE and
FDLSRELEASE. ' First, FDLS$PARSE parses the FDL specification
PART.FDL. Then the data file named in PART.FDL is accessed
using the primary key. Last, the control blocks allocated
by FDL$PARSE are released by FDLSRELEASE.

Ne Yo Ne Ne N

(continued on next page)

FDL-2

File Definition Language (FDL) Routines
7.2 Using the FDL Routines: Examples

Example 7-2 (Cont.) Using FDL$PARSE and FDL$RELEASE in a MACRO Program

’

MY_FAB:
MY_RAB:
FDL_FILE:
REC_SIZE=80
LF=10
REC_RESULT:

REC_BUFFER:
HEADING:

’

’

.TITLE FDLEXAM

.PSECT DATA,WRT, NOEXE

.LONG 0
.LONG 0
.ASCID /PART.FDL/ ; Declare FDL file

.LONG REC_SIZE

.ADDRESS REC_BUFFER

.BLKB REC_SIZE

.ASCID /ID PART SUPPLIER COLOR / [EF]

.PSECT CODE

; Declare the external routines

.
’

.EXTRN

’

.ENTRY

KEYO:

GET_REC:

CLEAN:

FDLSPARSE, -

FDLSRELEASE

FDLEXAM, *M<> ; Set up entry mask

PUSHAL MY RAB ; Get set up for call with
~PUSHAL MY FAB ; addresses to receive the
PUSHAL FDL FILE ; FAB and RAB allocated by
CALLS #3, G "FDLSPARSE ; FDL$PARSE

BLBS RO, KEYO

BRW ERROR

MOVL MY FAB,R10 ; Move address of FAB to R10
MOVL MY RAB,R9 ; Move address of RAB to R9

MOVL #REC_SIZE, RABSW_USZ (R9)
MOVAB REC_BUFFER,RABSL_UBF (R9)

SOPEN FAB=(R10) ; Open the file

BLBC RO, ERROR

$CONNECT RAB=(R9) ; Connect to the RAB
BLBC RO, ERROR

PUSHAQ HEADING ; Display the heading

CALLS #1,G"LIBSPUT_OUTPUT
BLBC RO, ERROR

SGET RAB=(R9) ; Get a record
CMPL #RMSS_EOF, RO ; If not end of file,
BEQLU CLEAN ; continue

BLBC RO, ERROR
MOVZWL RABSW_RSZ (R9),REC_RESULT ; Move a record into

PUSHAL REC_RESULT ; the buffer

CALLS #1,G"LIB$PUT_OUTPUT ; Display the record
BLBC RO, ERROR

BRB GET_REC ; Get another record

SCLOSE FAB=(R10) Close the FAB

BLBC RO, ERROR

~e

PUSHAL MY RAB ; Push RAB addr on stack
PUSHAL MY FAB ; Push FAB addr on stack
CALLS #2, G "FDLSRELEASE ; Release control blocks
BLBC RO, ERROR

BRB FINI

(continued on next page)

FDL-3

File Definition Language (FDL) Routines
7.2'Usirig the FDL Routines: Examples

Example 7-2 (Cont.) Using FDL$PARSE and FDL$RELEASE in a MACRO Program

;
ERROR:

RAB_ERROR:

r
FAB_ERROR:

.
’

RMS_ERR:

FINI:

PUSHL
CALLS
$CLOSE

PUSHL

PUSHL
BRB

PUSHL
PUSHL

CALLS
BRB

RET

RO L3 ' .
#1,G "LIB$SIGNAL ’ i
FAB=(R10)

RABSL_STV (R9)
RABSL_STS (R9)
RMS_ERR

FABSL_STV(R10)
FABSL_STS (R10)

#2,G*LIBSSIGNAL
FINI

.END FDLEXAM

FDL-4

Example 7-3 shows how to use the FDL$PARSE and FDL$GENERATE
routines in a VAX Pascal program.

Example 7-3 Using FDL$PARSE and FDL$GENERATE in a VAX Pascal
Program

[INHERIT (’SYSSLIBRARY:STARLET')] /
PROGRAM FDLexample (input,output,order master); {

(* This program fills in its own FAB, RAB, and *)
(* XABs by calling FDL$PARSE and then generates *)
(* an FDL specification describing them. *)
(* It requires an existing input FDL file *)
(* (TESTING.FDL) for FDLS$PARSE to parse. *)
TYPE

(*+ *)
(* FDL CALL INTERFACE CONTROL FLAGS *)
(*=- *)

$BIT1 = [BIT(1l),UNSAFE] BOOLEAN; /

FDL2STYPE = RECORD CASE INTEGER OF

1: (FDL$_FDLDEF BITS : [BYTE(1l)] RECORD END;
)i

2: (FDL$V_SIGNAL : [POS(0)] $BITI1;

(* Signal errors; don’t return *)
FDL$V_FDL_STRING : [POS(1l)] $BIT1;

(* Main FDL spec is a char string *)
FDL$V_DEFAULT_STRING : [POS(2)] $BIT1;

(* Default FDL spec is a char string *)
FDLS$V_FULL OUTPUT : [POS(3)] $BIT1;

(* Produce a complete FDL spec *)

FDL$V_$CALLBACK : [POS(4)] $BIT1;
(* Used by EDIT/FDL on input (DEC only) ¥*)

)
END;

(continued on next page)

73

YooY
File Definition Language (FDL) Routines
7.2 Using the FDL Routines: Examples

Example 7-3 (Cont.) Using FDL$PARSE and FDL$GENERATE in a VAX
Pascal Program

mail_order = RECORD
order num : [KEY(0)] INTEGER;
name : PACKED ARRAY[1..20] OF CHAR;
address : PACKED ARRAY([1l..20] OF CHAR;
city : PACKED ARRAY([1..19] OF CHAR;
state : PACKED ARRAY[1l..2] OF CHAR;
zip code : [KEY(1l)] PACKED ARRAY[1l..5]

OF CHAR;

item num : [KEY(2)] INTEGER;
shipping : REAL;

END;

order file = [UNSAFE] FILE OF mail_order;
ptr_to FAB = “FABSTYPE;
ptr_to RAB = "“RABSTYPE;
byte = 0..255;

VAR
order_master : order_file;
flags : FDL2STYPE;
order_rec : mail order;
temp FAB : ptr_to_ FAB;
temp_RAB : ptr_to_RAB;
status : integer;

FUNCTION FDLSPARSE
($STDESCR FDL_FILE : PACKED ARRAY. [L..U:INTEGER]
OF CHAR;
VAR FAB_PTR : PTR_TO FAB;
VAR RAB_PTR : PTR_TO RAB) : INTEGER; EXTERN;

FUNCTION FDLSGENERATE
($REF FLAGS : FDL2S$TYPE;
FAB_PTR : PTR_TO_FAB;
RAB PTR : PTR_TO_RAB;
$STDESCR FDL_FILE_DST : PACKED ARRAY [L..U:INTEGER]
OF CHAR) : INTEGER;
EXTERN;

BEGIN

status := FDL$PARSE (’/TESTING’,TEMP_FAB,TEMP_ RAB);
flags::byte := 0;
status := FDLSGENERATE (flags,

temp FAB,

temp RAB,

’ SYSSOUTPUT: ') ;

END.

FDL Routines

The following pages describe the individual FDL routines.

FDL-5

File Definition Language (FDL) Routines

FDL$CREATE

FDL$CREATE Create a File from an FDL

Specification and Close the
File

The FDL$CREATE routine creates a file from an FDL specification and then
closes the file.

FORMAT FDLSCREATE fdl_desc [filename] [,default_name]
[,result_name] [,fid_block] [,flags]
[,stmnt_num] [,retlen] [,sts] [,stv]
RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.
ARGUMENTS fdl _desc
VMS usage: char_string
type: character-coded text string
access: read only

FDL-6

mechanism: by descriptor—fixed-length string descriptor

Name of a file that contains the FDL specification or the actual FDL
specification to be parsed. The fdl_desc argument is the address of a
character string descriptor pointing to this information.

If the FDL$V_FDL_STRING flag is set in the mask argument,
FDL$CREATE interprets this argument as an FDL specification in string
form. Otherwise, FDL$CREATE interprets this argument as a file name.

filename

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the VMS RMS file to be created using the FDL specification.
The filename argument is the address of a character string descriptor
pointing to the VMS RMS file name. This name overrides the default_
name parameter given in the FDL specification.

This argument is optional.

File Definition Language (FDL) Routines
FDL$CREATE

default_name

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Default name of the file to be created using the FDL specification. The
default_name argument is the address of a character string descriptor
pointing to the default file name. This name overrides any name given in
the FDL specification.

This argument is optional.

result_name

VMS usage: char_string

type: character-coded text string

access: write only

mechanism: by descriptor—fixed-length string descriptor

Resultant name of the file created by FDL$CREATE. The result_name
argument is the address of a character string descriptor that receives the
resultant file name.

This argument is optional.
fid_block

VMS usage: vector_longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

File identification of the VMS RMS file created by FDL$CREATE. The
fid_block argument is the address of an array of longwords that receives
the VMS RMS file identification information. The first longword contains
the FID_NUM; the second contains the FID_SEQ; and the third contains
the FID_RVN. They have the following definitions:

FID_NUM The location of the file on the disk. lts value can range from 7 up to the
number of files the disk can hold.

FID_SEQ The file sequence number, which is the number of times the file number
has been used.

FID_RVN The relative volume number, which is the volume number of the volume
on which the file is stored. If the file is not stored on a volume set, the
relative volume number is 0.

This argument is optional.

flags

VMS usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by reference

Flags (or masks) that control how the fdl_desc argument is interpreted
and how errors are signaled. The flags argument is the address of a
longword containing the control flags (or a mask). If you omit this
argument or specify it as zero, no flags are set. The table that follows
shows the flags and their meanings.

FDL-7

File Definition Language (FDL) Routines

FDL$CREATE

FDL-8

Flag ' : Description

FDL$V_FDL_STRING Interprets the fdl_desc argument as an FDL specification
in string form. By default, the fdl_desc argument is
interpreted as the file name of an FDL file.

FDL$V_SIGNAL Signals any error. By default, the status code is returned
to the calling image.

This argument is optional. By default, an error status is returned rather
than signaled.

stmnt_num

VMS usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

FDL statement number. The stmnt_num argument is the address of
a longword that receives the FDL statement number. If the routine
completes successfully, the stmnt_num argument is the number of
statements in the FDL specification. If the routine does not complete
successfully, the stmnt_num argument receives the number of the
statement that caused the error. In general, however, line numbers and
statement numbers are not the same. Null statements (blank lines) are
not counted. Also, an FDL specification in string form has no “lines.”

This argument is optional. \

retlen

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference
Number of characters returned in the result_name argument. The retlen
argument is the address of a longword that receives this number.

This argument is optional. X

sts

VMS usage: longword_unsigned
type: longword_unsigned
access: write only

mechanism: by reference

VMS RMS status value FAB$L_STS. The sts argument is the address of
a longword that receives the VMS RMS status value FAB$L_STS from
SYS$CREATE.

stv

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

VMS RMS status value FAB$L_STV. The stv argument is the address of (
a longword that receives the VMS RMS status value FAB$L_STV from
SYS$CREATE.

File Definition Language (FDL) Routines

FDL$CREATE

DESCRIPTION

FDL$CREATE calls the FDL$PARSE routine to parse the FDL
specification. The FDL specification can be either in a file or a character
string. FDL$CREATE opens (creates) the specified VMS RMS file, and
then closes it without putting any data in it.

FDL$CREATE does not create the output file if an error status is either

returned or signaled.

CONDITION
VALUES
RETURNED

SS$_NORMAL
FDL$_ABKW

FDL$_ABPRIKW

FDL$_BADLOGIC
FDL$_CLOSEIN
FDL$_CLOSEOUT
FDL$_CREATE
FDL$_CREATED
FDL$_CREATED_STM
FDL$_FDLERROR
FDL$_ILL_ARG
FDL$_INSVIREM
FDL$_INVBLK

FDL$_MULPRI
FDL$_OPENFDL
FDL$_OPENIN
FDL$_OPENOUT
FDL$_OUTORDER

FDL$_READERR
FDL$_RFLOC
FDL$_SYNTAX
FDL$_UNPRIKW

FDL$_UNQUAKW
FDL$_UNSECKW

FDL$_VALERR
FDL$_VALPRI
FDL$_WARNING

Normal successful completion.

Ambiguous keyword in statement
" number’ <CRLF>' reference-text’ .

Ambiguous primary keyword in statement
' number’ <CRLF>' reference-text”’ .

Internal logic error detected.

Error closing ’ filename’ as input.
Error closing ’ filename’ as output.
Error creating ' filename’.
rfilename’ created.

rfilename’ created in stream format.
Error parsing FDL file.

Wrong number of arguments.
Insufficient virtual memory.

Invalid VMS RMS control block at virtual address
’ hex-offset’ .

Multiple primary definition in statement " number’ .
Error opening ' filename-.

Error opening ’ filename’ as input.

Error opening ' filename’ as output.

Key or area primary defined out of order in statement
’ number’ .

Error reading ’ filename’.
Unable to locate related file.
Syntax error in statement ' number’ ’ reference-text’.

Unrecognized primary keyword in statement
" number’ <CRLF> ' reference-text’ .

Unrecognized qualifier keyword in statement
' number’ <CRLF> ' reference-text’ .

Unrecognized secondary keyword in statement
*number’ <CRLF> ' reference-text’ .

Specified value is out of legal range.
Value required on primary in statement ' number’.
Parsed with warnings.

FDL-9

File Definition Language (FDL) Routines

FDL$CREATE

FDL-10

FDL$_WRITEERR
RMS$_ACT
RMS$_CRE
RMS$_CREATED
RMS$_DNF
RMS$_DNR
RMS$_EXP
RMS$_FEX
RMS$_FLK
RMS$_PRV
RMS$_SUPERSEDE
RMS$_WLK

Error writing / filename’ .

File activity precludes operation.
ACP file create failed.

File was created, not opened.
Directory not found.

Device not ready or not mounted.

- File expiration date not yet reached.

File already exists, not superseded.

File currently locked by another user.
Insufficient privilege or file protection violation.
Created file superseded existing version.
Device currently write locked.

File Definition Language (FDL) Routines
FDL$GENERATE

FDL$GENERATE Generate an FDL Specification

The FDL$GENERATE routine produces an FDL specification and writes it to
either an FDL file or a character string.

FORMAT FDL$GENERATE flags ,fab_pointer ,rab_pointer
[fdl_file_dst] [fdl_file_resnam]
[fdl_str_dst] [,bad_blk_addr]

[retlen]
RETURNS VMS usage: cond value
type: longword (unsigned)
’ access: write only

mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference
Flags (or masks) that control how the fdl_str_dst argument is interpreted
and how errors are signalled. The flags argument is the address of
a longword containing the control flags (or a mask). If you omit this
argument or specify it as zero, no flags are set. The flags and their
meanings are as follows:

Flag Description

FDL$V_FDL_STRING Interprets the fdl_str_dst argument as an FDL
specification in string form. By default, the fdl_str_
dst argument is interpreted as a file name of an FDL file.

FDL$V_FULL_OUTPUT Includes the FDL attributes to describe all the bits and-
fields in the VMS RMS control blocks, including run-
time options. If this flag is set, every VMS RMS field
is inspected before being written. By default, only the
FDL attributes that describe permanent file attributes are
included (producing a much shorter FDL specification).

FDL$V_SIGNAL Signals any error. By default, the status code is returned
to the calling image.

This argument is optional. By default, an error status is returned rather
than signaled.

FDL-11

File Definition Language (FDL) Routines

FDL$GENERATE

FDL-12

fab_pointer

VMS usage: address

type: longword (unsigned)

access: read only

mechanism: by reference

VMS RMS file access block (FAB). The fab_pointer argument is the
address of a longword containing the address of a VMS RMS file access
block (FAB).

rab_pointer

VMS usage: address

type: longword (unsigned)

access: read only

mechanism: by reference

VMS RMS record access block (RAB). The rab_pointer argument is the
address of a longword containing the address of a VMS RMS record access
block (RAB).

fdl_file_dst

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor

Name of the FDL file to be created. The fdl_file_dst argument is the
address of a character string descriptor containing the file name of the
FDL file to be created. If the FDL$V_FDL_STRING flag is set in the flags
argument, this argument is ignored; otherwise, it is required. The FDL
specification is written to the file named in this argument.

fdl file_resnam

VMS usage: char_string

type: character-coded text string

access: write only

mechanism: by descriptor—fixed-length string descriptor

Resultant name of the FDL file created. The fdl_file_resnam argument
is the address of a variable character string descriptor that receives the
resultant name of the FDL file created (if FDL$GENERATE is directed to
create an FDL file).

This argument is optional.

fdl_str_dst

VMS usage: char_string

type: character-coded text string

access: write only

mechanism: by descriptor—fixed-length string descriptor

FDL specification. The fdl_str_dst argument is the address of a variable
character string descriptor that receives the FDL specification created. If
the FDL$V_FDL_STRING bit is set in the flags argument, this argument
is required; otherwise, it is ignored.

File Definition Language (FDL) Routines
FDL$GENERATE

bad_blk_addr

VMS usage: address

type: longword (unsigned)

access: write only

mechanism: by reference

Address of an invalid VMS RMS control block. The bad_blk_addr
argument is the address of a longword that receives the address of an
invalid VMS RMS control block. If an invalid control block (a fatal error)
is detected, this argument is returned; otherwise, it is ignored.

This argument is optional.

retlen

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

Number of characters received in either the fdl_file_resnam or the fdl_
str_dst argument. The retlen argument is the address of a longword that
receives this number.

CONDITION
VALUES
RETURNED

SS$_NORMAL
FDL$_INVBLK

RMS$_ACT
RMS$_CONTROLC
RMS$_CONTROLO
RMS$_CONTROLY
RMS$_DNR
RMS$_EXT
RMS$_OK_ALK
RMS$_OK_DUP
RMS$_OK_IDX
RMS$_PENDING
RMS$_PRV
RMS$_REX
RMS$_RLK
RMS$_RSA
RMS$_WLK
SS$_ACCVIO
STR$_FATINERR
STR$_ILLSTRCLA
STR$_INSVIRMEM

Normal successful completion.

Invalid VMS RMS control block at virtual address
' hex-offset’ .

File activity precludes operation.

Operation completed under CTRL/C.

Output completed under CTRL/O.

Operation completed under CTRL/Y.

Device not ready or mounted.

ACP file extend failed.

Record already locked.

Record inserted had duplicate key.

Index update error occurred.

Asynchronous operation pending completion.
Insufficient privilege or file protection violation.
Record already exists.

Target record currently locked by another stream.
Record stream currently active.

Device currently write locked.

Access violation.

Fatal internal error in Run-Time Library.

llegal string class.

Insufficient virtual memory.

FDL-13

File Definition Language (FDL) Routines
FDL$PARSE

FDL$PARSE Parse an FDL Specification

The FDL$PARSE routine parses an FDL specification, allocates VMS RMS
control blocks (FABs, RABs, or XABs), and fills in the relevant fields.

FORMAT FDL$PARSE fdl_spec,fdl_fab_pointer ,fdl_rab_pointer
[flags] [,dflt_fdl_spc] [,stmnt_num]
RETURNS VMS usage: cond_value -
type: longword (unsigned)
access: write only

mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS fdl_spec
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor
Name of the FDL file or the actual FDL specification to be parsed. The
fdl_spec argument is the address of a character string descriptor pointing
to either the name of the FDL file or the actual FDL specification to be
parsed. If the FDL$V_FDL_STRING flag is set in the flags argument,
FDL3$PARSE interprets this argument as an FDL specification in string
form. Otherwise, FDL$PARSE interprets this argument as a file name of
an FDL file.

fdl_fab_pointer

VMS usage: address

type: longword (unsigned)

access: write only

mechanism: by reference

Address of an RMS file access block (FAB). The fdl_fab_pointer argument

is the address of a longword that receives the address of an RMS file access

lf)ilci::ik (FAB). FDL$PARSE both allocates the FAB and fills in its relevant
elds.

fdl_rab_pointer

VMS usage: address

type: longword (unsigned)

access: write only

mechanism: by reference

Address of an RMS record access block (RAB). The fdl_rab_pointer
argument is the address of a longword that receives the address of an

FDL-14

.

File Definition Language (FDL) Routines
FDL$PARSE

RMS record access block (RAB). FDL$PARSE both allocates the RAB and
fills in its relevant fields.

flags

VMS usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by reference

Flags (or masks) that control how the dfit_fdl_spc argument is
interpreted and how errors are signaled. The flags argument is the
address of a longword containing the control flags. If you omit this
argument or specify it as zero, no flags are set. The flags and their
meanings are as follows:

Flag Description

FDL$V_DEFAULT_STRING Interprets the dfit_fdl_spc argument as an FDL
specification in string form. By default, the dfit_fdl_
spc argument is interpreted as a file name of an
FDL file.

FDL$V_FDL_STRING Interprets the fdl_spec argument as an FDL
specification in string form. By default, the fdl_
spec argument is interpreted as a file name of an
FDL file.

FDL$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

This argument is optional. By default, an error status is returned rather
than signaled.

dfit_fdl_spc

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the default FDL file or the default FDL specification itself. The
dfit_fdl_spc argument is the address of a character string descriptor
pointing to either the default FDL file or the default FDL specification.
If the FDL$V_DEFAULT_STRING flag is set in the flags argument,
FDL$PARSE interprets this argument as an FDL specification in string
form. Otherwise, FDL$PARSE interprets this argument as a file name of
an FDL file.

This argument allows you to specify default FDL attributes. In other
words, FDL$PARSE processes the attributes specified in this argument,
unless you override them with the attributes you specify in the fdl_spec

argument.

You can code the FDL defaults directly into your program, typically with
an FDL specification in string form.

This argument is optional.

FDL-15

File Definition Language (FDL) Routines
FDL$PARSE

stmnt_num

VMS usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

FDL statement number. The stmnt_num argument is the address of
a longword that receives the FDL statement number. If the routine
completes successfully, the stmnt_num argument is the number of
statements in the FDL specification. If the routine does not complete
successfully, the stmnt_num argument receives the number of the
statement that caused the error. In general, however, line numbers and
statement numbers are not the same.

This argument is optional. By default, an error status is returned rather
than signaled.

CONDITION

Y/ ALUES SS$ NORMAL Normal successful completion.
LIB$_BADBLOADR Bad block address.
RETURNED LIB$_BADBLOSIZ Bad block size.
LIB$_INSVIRMEM Insufficient virtual memory.
RMS$_DNF Directory not found.
RMS$_DNR Device not ready or not mounted.
RMS$_WCC Invalid wildcard context (WCC) value.

FDL-16

File Definition Language (FDL) Routines
FDL$RELEASE

FDLSRELEASE Free Virtual Memory Obtained By

FDL$PARSE

The FDL$RELEASE routine deallocates the virtual memory used by the VMS
RMS control blocks created by FDL$PARSE. You must use FDL$PARSE

to populate the control blocks if you plan to deallocate memory with
FDL$RELEASE later.

FORMAT

FDL$RELEASE [fab_pointer] [,rab_pointer] [,flags]
[,badblk_addr]

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

fab_pointer

VMS usage: address

type: longword (unsigned)

access: read only

mechanism: by reference

File access block (FAB) to be deallocated using the LIB§FREE_VM
system service. The fab_pointer argument is the address of a longword
containing the address of the file access block (FAB). The FAB must be
the same one returned by the FDL$PARSE routine. Any name blocks
(NAMs) and extended attribute blocks (XABs) connected to the FAB are
also released.

This argument is optional. If you omit this argument or specify it as zero,
the FAB (and any associated NAM blocks and XABs) is not released.

rab_pointer

VMS usage: address

type: longword (unsigned)

access: read only

mechanism: by reference

Record access block (RAB) to be deallocated using the LIB§FREE_VM
system service. The rab_pointer argument is the address of a longword
containing the address of the record access block (RAB). The address of
the RAB must be the same one returned by the FDL$PARSE routine. Any
XABs connected to the RAB are also released.

This argument is optional. If you omit this argument or specify it as zero,
the RAB (and any associated XABs) is not released.

FDL-17

File Definition Language (FDL) Routines

FDL$RELEASE

flags

VMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by reference

Flag (or mask) that controls how errors are signalled. The flags argument
is the address of a longword containing the control flag (or a mask). If you
omit this argument or specify it as zero, no flag is set. The flag is defined

as follows:

FDL$V_SIGNAL Signals any error. By default, the status code is returned to the
calling image.

This argument is optional.

badblk _addr

VMS usage: address

type: longword (unsigned)

access: write only

mechanism: by reference

Address of an invalid VMS RMS control block. The badblk_addr
argument is the address of a longword that receives the address of an
invalid VMS RMS control block. If an invalid control block (a fatal error)
is detected, this argument is returned; otherwise, it is ignored.

CONDITION
VALUES
RETURNED

FDL-18

SS$ _NORMAL Normal successful completion.

FDL$_INVBLK Invalid VMS RMS control block at virtual address
’ hex-offset’ .

LIB$_BADBLOADR Bad block address.

RMS$_ACT File activity precludes operation.
RMS$_RNL Record not locked.

RMS$_RSA Record stream currently active.
SS$_ACCVIO Access violation.

8 Librarian (LBR) Routines

Libraries are files that provide a convenient way to organize frequently
used modules of code or text. The librarian routines allow you to create
and maintain libraries and their modules and to use the data stored in
library modules.

8.1 Introduction to LBR Routines

You can also create and maintain libraries at the DCL level, using the
DCL command LIBRARY. For details, see the VMS DCL Dictionary.

8.1.1 Types of Library

You can use the librarian routines to maintain the following types of
library:

Object libraries, which contain the object modules of frequently called
routines. The VMS Linker Utility searches specified object module
libraries when it encounters a reference it cannot resolve in one of its
input files. For more information about how the linker uses libraries,
see the description of the VMS Linker Utility in the VMS Linker
Utility Manual.

An object library has a default file type of OLB and defaults the file
type of input files to OBJ.

Macro libraries, which contain macro definitions used as input to the
assembler. The assembler searches specified macro libraries when it
encounters a macro that is not defined in the input file. See the VAX
MACRO and Instruction Set Reference Manual for information about
defining macros.

A macro library has a default file type of MLB and defaults the file
type of input files to MAR.

Help libraries, which contain modules of help messages that provide
user information about a program. You can retrieve help messages

at DCL level by executing the DCL command HELP, or in your
program by calling the appropriate librarian routines. For information
about creating help modules for insertion into help libraries, see the
description of the Librarian Utility in the VMS Librarian Utility
Manual.

A help library has a default file type of HLB and defaults the file type
of input files to HLP.

Text libraries, which contain any sequential record files that you
want to retrieve as data for a program. For example, some compilers
can retrieve program source code from text libraries. Each text

file inserted into the library corresponds to one library module.

LBR-1

Librarian (LBR) Routines
8.1 Introduction to LBR Routines

Your programs can retrieve text from text libraries by calling the
appropriate librarian routines.

A text library has a default file type of TLB and defaults the file type
of input files to TXT.

* Shareable image libraries, which contain the symbol tables of
shareable images used as input to the linker. For information about
how to create a shareable image library, see the descriptions of the

- Librarian and Linker Utilities in the VMS Librarian Utility Manual
and the VMS Linker Utility Manual.

A shareable image library has a default type of OLB and defaults the
file type of input files to EXE.

* User-developed libraries, which have characteristics specified when you
call the LBR$OPEN routine to create a new library. User-developed
libraries allow you to use the librarian routines to create and maintain
libraries that are not structured in the form assigned by default to
the other library types. Note that you cannot use the DCL command
LIBRARY to access user-developed libraries.

8.1.2 Structure of Libraries

LBR-2

You create libraries by executing the DCL command LIBRARY or by
calling the LBR$OPEN routine. When object, macro, text, help, or
shareable image libraries are created, the Librarian Utility structures
them as described in Figures 8-1 and 8-2. You can create user-developed
libraries only by calling LBRSOPEN; they are structured as described in
Figure 8-3.

Library Headers

Every library contains a library header that describes the contents of

the library, for example, its type, size, version number, creation date, and
number of indexes. You can retrieve data from a library’s header by calling
the LBR$GET_HEADER routine.

8.1.2.2 Modules

Each library module consists of a header and data. The data is the

data you inserted into the library; the header associated with the data

is created by the librarian routine and provides information about the
module, including its type, attributes, and date of insertion into the library.
You can read and update a module’s header by calling the LBR$SET_
MODULE routine.

Indexes and Keys

Libraries contain one or more indexes, which can be thought of as
directories of the library’s modules. The entries in each index are keys,
and each key consists of a key name and a module reference. The module
reference is a pointer to the module’s header record and is called that
record’s file address (RFA). Macro, text, and help libraries (see Figure 8-1)
contain only one index, called the module name table. The names of the
keys in the index are the names of the modules in the library.

Librarian (LBR) Routines
8.1 Introduction to LBR Routines

Object and shareable image libraries (see Figure 8-2) contain two indexes:
the module name table and a global symbol table. The global symbol table
consists of all the global symbols defined in the modules in the library.
Each global symbol is a key in the index and points to the module in
which it was defined.

If you need to point to the same module with several keys, you should
create a user-developed library, which can have up to eight indexes
(see Figure 8-3). Each index consists of keys that point to the library’s
modules.

The librarian routines differentiate library indexes by numbering them,
starting with 1. For all but user-developed libraries, the module name
table is index number 1 and the global symbol table, if present, is index
number 2. You number the indexes in user-developed libraries. When you
access libraries that contain more than one index, you may have to call
LBR$SET_INDEX to tell the librarian routines which index to use.

Figure 8—1 Structure of a Macro, Text, or Help Library

Library Header
Index (Module Name Table)
Key-1 Key-2 Key-3 see Key-n

Each key in the index points to a module.

Modules

Header Header Header Header

Data Data Data Data

ZK-1871-GE

LBR-3

Librarian (LBR) Routines
8.1 Introduction to LBR Routines

LBR-4

Figure 8-2 Structure-of an Object or Shareable Image Library

Library Header
Index (Module Name Table)
Key-1 Key-2 Key-3 eoe Key-n

Each key in the index points to a module.

Index (Global Symbol Table)

Global Global Global Giobal Global
Symbol Symbol Symbol Symbol Symbol

Each global symbol is a key in the index, and points to the module in
which it was defined.

Modules

Header Header Header Header

Data Data Data Data

ZK-1872-GE

Librarian (LBR) Routines
8.1 Introduction to LBR Routines

Figure 8-3 Structure of a User-Developed Library

Library Header

Index

Key| Key Key| Key| Key| Key| Key

Each key in an index points to one module. More than one key (from
the same or a different index) may point to the same module.

Key Key Key Key, Key, Key| Key

Can have up to .
8 indexes. .
Index

Key| Key Key| |Key Key| Key| Key

Modules

Header Header Header Header

Data Data Data Data

ZK-1873-GE

8.1.2.4 Summary of Routines
All the librarian routines begin with the characters LBR$. Your programs
can call these routines by using the VMS Procedure Calling and Condition
Handling Standard, which is documented in the Introduction to VMS
System Routines. When you call a librarian routine, you must provide
whatever arguments the routine requires; when the routine completes
execution, it returns a status value to your program. In addition to the
condition values listed with the descriptions of each routine, some routines
may return the success code SS$_NORMAL as well as various RMS or
SS error codes. When you link programs that contain calls to librarian

LBR-5

Librarian (LBR) Routines
8.1 Introduction to LBR Routines

LBR-6

routines, the linker locates the routines during its default search of
SYS$SHARE:LBRSHR.

The following table lists the routines and summarizes their functions.

Routine Name

Function

LBR$CLOSE
LBR$DELETE_DATA
LBR$DELETE_KEY
LBR$FIND

LBR$FLUSH

LBR$GET_HEADER
LBR$GET_HELP
LBR$GET_HISTORY

LBR$GET_INDEX
LBR$GET_RECORD
LBRS$INI_CONTROL

LBRS$INSERT_KEY
LBR$LOOKUP_KEY
LBR$OPEN
LBR$OUTPUT_HELP

LBR$PUT_END

LBR$PUT_HISTORY
LBR$PUT_RECORD

LBR$REPLACE_KEY
LBR$RET_RMSSTV
LBR$SEARCH
LBR$SET_INDEX

LBR$SET_LOCATE
LBR$SET_MODULE
LBR$SET_MOVE

Closes an open library.
Deletes a specified module’s header and data,
Deletes a key from a library index.

Finds a module by using an address returned by a
preceding call to LBRSLOOKUP_KEY.

Wirites the contents of modified blocks to the library file and
returns the virtual memory that contained those blocks.

Retrieves information from the library header.
Retrieves help text from a specified library.

Retrieves library update history records and calls a user-
supplied routine with each record returned.

Calls a routine to process modules associated with some or
all of the keys in an index.

Reads a data record from the module associated with a
specified key.

Initializes a control index that the librarian uses to identify a
library.

Inserts a new key in the current library index.
Looks up a key in the current index.
Opens an existing Iibrafy or creates a new one.

Retrieves help text from an explicitly named library or from
user-supplied default libraries, and optionaily prompts you
for additional help queries.

Terminates a sequence of records written to a module with
LBR$PUT_RECORD.

Inserts a library update history record.

Writes a data record to the module associated with the
specified key.

Replaces an existing key in the current library index.
Returns the last VMS RMS status value.
Finds index keys that point to specified data.

Sets the index number to be used during processing of the
library.

Sets librarian subroutine record access to locate mode.
Reads and optionally updates a module header.
Sets librarian subroutine record access to move mode.

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

8.2 Using the LBR Routines: Examples

This section provides programming examples that show how to call LBR$
routines to create a library, insert a module into a library, extract a module
from a library, and delete a module from a library. Although the examples
do not use all of the librarian routines, they do provide an introduction to
the data structures needed and the calling syntax required to use any of
the routines.

For each library you want to work with, you must call LBR$INI_
CONTROL and LBR$OPEN before calling any other routine (except
LBR$OUTPUT_HELP).

When you call LBR$INI_CONTROL, this routine sets up a control index
(do not confuse this with a library index) that is used, in the calls to the
other librarian routines, to identify the library to which the routine applies
(because you may want your program to work with more than one library
at a time). LBR$INI_CONTROL also specifies whether you want to create,
read, or modify the library.

After you call LBR$INI_CONTROL, you call LBR$OPEN to open the
library and specify its type. When you finish working with a library,
you should call LBR$CLOSE to close it. Remember to call LBR$INI_
CONTROL again, if you want to reopen the library. LBR$CLOSE
deallocates all the memory associated with the library including the
control index. The order in which you call the routines between
LBR$OPEN and LBR$CLOSE depends upon the library operations

you need to perform. You may want to call LBR$LOOKUP_KEY or
LBR$GET_INDEX to find a key, then perform some operation on the
module associated with the key. You can think of a module as being both
the module itself and its associated keys. To access a module, you first
need to access a key that points to it; to delete a module, you first need to
delete any keys that point to it.

The examples are written in VAX Pascal. In VAX Pascal, all data items,
functions (such as the librarian routines), and procedures must be
declared at the beginning of the program. Following the declarations

is the executable section, which performs the actions of the program. The
executable section makes extensive use of the structured control constructs
IF-THEN-ELSE and WHILE-condition-DO. Note that code between a
BEGIN END pair is treated as a unit.

The listing of each example contains many comments (any code between a

pair of asterisks (* *) is a comment), and each listing is followed by notes

about the program. The highlighted numbers in the notes are keyed to the
highlighted numbers in the examples.

Example 8-1 illustrates the use of LBR routines to create a new library.

LBR-7

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

Example 8-1 Creating a New Library Using VAX Pascal

PROGRAM createlib (INPUT, OUTPUT) ;
(*This program creates a text library¥*)
(*Data type of*)

Create_Array = ARRAY [1..20] OF INTEGER; (*create options array¥*)
(*Constants and return status error
codes for LBR$_OPEN & LBR$INI_CONTROL.
These are defined in S$LBRDEF macro*)

LBRC_CREATE, LBRC_TYP_TXT, LBR$_ILLCREOPT, LBR$_ILLCTL,
LBR$_ILLFMT,LBR$_NOFILNAM,LBR$_OLDMISMCH,LBR$_TYPMISMCH
[EXTERNAL] INTEGER;
(*Create options array codes. These
are defined in $CREDEF macro*)
CRE$ILIYPE,CRE$L_KEYLEN,CREL_ALLOC,CREL_IDXMAX,CRE$L_ENTALL,
CRESL_LUHMAX, CRESL_VERTYP,CRE$L IDXOPT,CRE$C_MACTXTCAS,

TYPE

VAR

CRE$C_VMSV3 : [EXTERNAL] INTEGER;

Lib_Name : VARYING [128] OF CHAR; (*Name of library to create*)

Options : Create_Array; (*Create options array*)

File Type : PACKED ARRAY [1..4] (*Character string that is default¥)
OF CHAR := ' .TLB'; (*file type of created lib file¥)

lib_index ptr : UNSIGNED; (*Value returned in library init*)

status UNSIGNED; (*Return Status for function calls*)

(*=*-*-*-Function and Procedure Definitions—*-*-*-%)
(*Function that returns library
control index used by librarian¥*)

FUNCTION LBRSINI_CONTROL (VAR library index: UNSIGNED;
func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY[1l..u:INTEGER]
OF INTEGER := $IMMED 0):

INTEGER; EXTERN;
(*Function that creates/opens library¥*)

FUNCTION LBR$OPEN (library_index: UNSIGNED;
fns: [class_s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
create_options: Create_Array;
dns: [CLASS_S] PACKED ARRAY [13..u3:INTEGER] OF CHAR;
rlfna: ARRAY [14..u4:INTEGER] OF INTEGER := $IMMED O;
rns: [CLASS_S] PACKED ARRAY [15..u5:INTEGER] OF CHAR :=
$IMMED O;)
VAR rnslen: INTEGER := $IMMED O):
INTEGER; EXTERN;
(*Function that closes library¥*)
FUNCTION LBRSCLOSE (library_index: UNSIGNED) :

INTEGER; EXTERN;
(*Error handler to check error codes

if open/create not successful*)

(continued on next page)

LBR-8

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

Example 8-1 (Cont.) Creating a New Library Using VAX Pascal

PROCEDURE Open_Error; (4]
BEGIN
WRITELN (' Open Not Successful’); (*Now check specific error codes¥*)
IF status = IADDRESS(LBR$_ILLCREOPT) THEN
WRITELN (’ Create Options Not Valid Or Not Supplied’);
IF status = IADDRESS(LBR$_ILLCTL) THEN
WRITELN (' Invalid Library Index’);
IF status = IADDRESS(LBR$_ILLFMT) THEN
WRITELN (/ Library Not In Correct Format’);
IF status = IADDRESS(LBR$_NOFILNAM) THEN
WRITELN (' Library Name Not Supplied’);
IF status = IADDRESS (LBR$_OLDMISMCH) THEN
WRITELN (' 0ld Library Conflict’);
IF status = IADDRESS(LBRS_TYPMISMCH) THEN
WRITELN (’ Library Type Mismatch’)
END; (*of procedure Open_Error*)
BEGIN (* hhkkkhkhkkhkkkkkkkxk DECLARATIONS COMPLETE **X%kkkkkkkkkkhkkhkkrhkhkhkk
KAKAKRKAAK AKXk hhkk MAIN PROGRAM BEGINS HERE hhkkkkkkkhkkhkhkkhkkkhkkhkkk *)
(*Prompt for Library Name¥*)
WRITE (' Library Name: ’); READLN(Lib_Name);
(*Fill Create Options Array. Divide
by 4 and add 1 to get proper subscript¥)

Options [IADDRESS (CRESL TYPE) DIV 4 + 1] := IADDRESS (LBRSC_TYP_ TXT);
Options [IADDRESS (CRESL_KEYLEN) DIV 4 + 1] := 31; (5]

Options [IADDRESS (CRESL ALLOC) DIV 4 + 1] = 8;

Options [IADDRESS (CRESL_IDXMAX) DIV 4 + 1] := 1;

Options [IADDRESS (CRESL _ENTALL) DIV 4 + 1] := 96;

Options [IADDRESS (CRESL LUHMAX) DIV 4 + 1] := 20;

Options [IADDRESS (CRE$L _VERTYP) DIV 4 + 1] := IADDRESS (CRE$SC_VMSV3);
Options [IADDRESS (CRESL_IDXOPT) DIV 4 + 1] := IADDRESS (CRESC_MACTXTCAS);
(*Initialize library control index*)

status := LBRSINI_CONTROL (lib_index ptr,

IADDRESS (LBRSC_CREATE) , (*Create access*)
IADDRESS(LBR$C_TYP_TXT)); (*Text library*)
IF NOT ODD(status) THEN (*Check return status*)
WRITELN(’Initialization Failed’)
ELSE (*Initialization was successful%)
BEGIN (*Create and open the library*)
status := LBR$OPEN (lib_index_ptr,
Lib_Name,
Options, (7]

File_Type);
IF NOT ODD (status) THEN (*Check return status*)

Open_Error (*Call error handler¥) (8
ELSE (*Open/create was successful?)
BEGIN (*Close the library*)

status := LBRSCLOSE (lib_index ptr);
IF NOT ODD (status) THEN (*Check return status*)
WRITELN (' Close Not Successful’)
END
END
END. (*of program creatlib¥*)

Each item in the following list corresponds to a number highlighted in
Example 8-1.

LBR-9

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

LBR-10

To gain access to these LBR$ symbols in your program, write the
following two-line MACRO program:

SLBRDEF GLOBAL
.END

Then assemble the program into an object module by executing the
command:

MACRO program—name

Finally, link the resultant object module with the object module created
when your source program is compiled or assembled. (Note: Pascal
programmers alternatively may use the INHERIT attribute to include
these symbols from SYS$LIBRARY:STARLET.PEN.)

@ To gain access to the CRE$ symbols, write a two-line MACRO program

as described in item 1, substituting $CREDEF for $LBRDEF.

Start the declarations of the librarian routines that are used by the
program. Each argument to be passed to the librarian is specified

on a separate line and includes the name (which just acts as a
placeholder) and data type (for example: UNSIGNED, which means an
unsigned integer value, and PACKED ARRAY OF CHAR, which means
a character string). If the argument is preceded by VAR, then a value
for that argument is returned by the librarian to the program.

Declare the procedure Open_Error, which is called in the executable
section if the librarian returns an error when LBR$OPEN is called.
Open_Error checks the librarian’s return status value to determine the
specific cause of the error. The return status values for each routine
are listed in the descriptions of the routines.

Initialize the array called Options with the values the librarian needs
to create the library.

Call LBR$INI_CONTROL, specifying that the function to be performed
is create and that the library type is text.

Call LBR$OPEN to create and open the library; pass the Options
array initialized in item 5 to the librarian.

If the call to LBRSOPEN was unsuccessful, call the procedure Open_
Error (see item 4) to determine the cause of the error.

Example 8-2 illustrates the use of LBR routines to insert a new module
into a library.

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

Example 8-2 Inserting a Module Into a Library Using VAX Pascal

PROGRAM insertmod (INPUT, OUTPUT) ;
(*This program inserts a module into a library*)

TYPE
Rfa Ptr = ARRAY [0..1] OF INTEGER; (*Data type of RFA of module¥*)

VAR
LBR$C_UPDATE, (*Constants for LBRSINI_CONTROL*)
LBR$C_TYP_TXT, (*Defined in $LBRDEF macro¥*)
LBR$_KEYNOTFND : [EXTERNAL] INTEGER; (*Error code for LBR$LOOKUP_KEY*)
Lib Name : VARYING ([128] OF CHAR; (*Name of library receiving module¥*)
Module Name : VARYING [31] OF CHAR; (*Name of module to insert*)
Text_Data_ Record : VARYING [255] OF CHAR; (*Record in new module*)
Textin : FILE OF VARYING [255] OF CHAR; (*File containing new module¥*)

lib index_ptr : UNSIGNED; (*Value returned in library init¥)
status : UNSIGNED; (*Return status for function calls¥)
txtrfa_ptr : Rfa_Ptr; (*For key lookup and insertion*)

Key Not Found : BOOLEAN := FALSE; (*True if new mod not already in lib¥)

(*—*—*—*-Function Definitions—*-*—%-%)
(*Function that returns library
control index used by librarian¥)
FUNCTION LBR$INI_CONTROL (VAR library_index: UNSIGNED;
func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY[1l..u:INTEGER]
OF INTEGER := $IMMED O0):
INTEGER; EXTERN;
(*Function that creates/opens library¥*)
FUNCTION LBRSOPEN (library index: UNSIGNED;
fns: [class_s]PACKED ARRAY[1l..u:INTEGER] OF CHAR;
create_options: ARRAY [12..u2:INTEGER] OF INTEGER :=
$IMMED O;
dns: [CLASS_S] PACKED ARRAY [13..u3:INTEGER] OF CHAR
:= %IMMED O0;
rlfna: ARRAY [14..u4:INTEGER] OF INTEGER := $IMMED O0;
rns: [CLASS_S] PACKED ARRAY [15..u5:INTEGER] OF CHAR :=
$IMMED O;
VAR rnslen: INTEGER := $IMMED O0):
INTEGER; EXTERN;
(*Function that finds a key in index¥*)
FUNCTION LBR$LOOKUP_KEY (library_index: UNSIGNED;
key_name: [CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
CHAR;
VAR txtrfa: Rfa Ptr):
INTEGER; EXTERN;
(*Function that inserts key in index¥*)
FUNCTION LBRSINSERT_KEY (library index: UNSIGNED;
key_name: [CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
CHAR;
txtrfa: Rfa_Ptr):
INTEGER; EXTERN;
(*Function that writes data records¥)

(continued on next page)

LBR-11

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

Example 8-2 (Cont.) Inserting a Module Into a Library Using VAX Pascal

FUNCTION LBRSPUT RECORD (library index: UNSIGNED; (*to modules*)
textline: [CLASS S] PACKED ARRAY [l..u:INTEGER] OF
CHAR;

txtrfa: Rfa_Ptr):
INTEGER; EXTERN;
(*Function that marks end of a module¥*)
FUNCTION LBR$PUT_END (library_index: UNSIGNED) :
INTEGER; EXTERN;
(*Function that closes library*)
FUNCTION LBR$CLOSE (library index: UNSIGNED):
INTEGER; EXTERN;
BEGIN (* ***%kkkk*kx**x**x* DECLARATIONS COMPLETE ****kkkkkkkkhhrhkkkhxhkkk
kkkkkkkkkkkkxkx MATN PROGRAM BEGINS HERE **kkkkkkkkkkkkkkkkkkkx *)
(*Prompt for library name and
module to insert¥)
WRITE (‘ Library Name: ‘); READLN(Lib_ Name) ;
WRITE ('Module Name: ’); READLN (Module Name);
(*Initialize lib for update access¥*)

status := LBR$INI_CONTROL (1ib_index ptr,
IADDRESS (LBR$C_UPDATE) , (*Update access¥*)
IADDRESS (LBR$C_TYP_TXT)); (*Text library¥*)
IF NOT ODD (status) THEN {(*Check error status¥)
WRITELN (' Initialization Failed’)
ELSE (*Initialization was successful¥*)
BEGIN
status := LBR$OPEN (lib_index_ptr, (*Open the library*) ,
Lib_Name) ; .
IF NOT ODD(status) THEN (*Check error status*)
WRITELN (’/Open Not Successful’)
ELSE (*Open was successful¥)
BEGIN (*Is module already in the library?¥)
status := LBRSLOOKUP_KEY (lib_index ptr,

Module_Name,
txtrfa_ptr);
IF ODD(status) THEN (*Check status. Should not be odd¥*)
WRITELN (/ Lookup key was successful.’,
’The module is already in the library.’)
ELSE (*Did lookup key fail because key not found?*)
IF status = IADDRESS(LBR$_KEYNOTFND) THEN @’
Key Not_Found := TRUE

P

END
END;

(continued on next page)

P

LBR-12

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

Example 8-2 (Cont.) Inserting a Module Into a Library Using VAX Pascal

(****x*x*Tf LBR$LOOKUP_KEY failed because the key was not found
(as expected), we can open the file containing the new module,
and write the module’s records to the library file***x**x%x)
IF Key Not_ Found THEN
BEGIN
OPEN (Textin,Module_Name, old);
RESET (Textin) ;

WHILE NOT EOF (Textin) DO (*Repeat until end of file*)
BEGIN
READ (Textin, Text_Data_Record); (*Read record from
external file*)
status := LBRSPUT_RECORD (lib_index ptr, (*Write¥*)
Text_Data_Record, (*record to¥)
txtrfa ptr); (*library*)

IF NOT ODD(status) THEN
WRITELN (/Put Record Routine Not Successful’)
END; (*of WHILE statement¥*)
IF ODD(status) THEN (*True if all the records have been
successfully written into the library*)
BEGIN
status := LBR$PUT_END (lib_index ptr); (*Write end of
module record¥)
IF NOT ODD(status) THEN
WRITELN (/Put End Routine Not Successful’)
ELSE (*Insert key for new module¥*)
BEGIN
status := LBR$INSERT KEY (lib_index _ptr,
Module Name,
txtrfa ptr);
IF NOT ODD(status) THEN
WRITELN (’ Insert Key Not Successful’)
END
END
END;
status := LBR$CLOSE (lib_index ptr);
IF NOT ODD (status) THEN
WRITELN(’Close Not Successful’)
END. (*of program insertmod*)

Each item in the following list corresponds to a number highlighted in
Example 8-2.

© Call LBR$INI_CONTROL, specifying that the function to be performed
is update and that the library type is text.

® Call LBR$LOOKUP_KEY to see whether the module to be inserted is
already in the library.

© Call LBR$LOOKUP_KEY to see whether the lookup key failed because
the key was not found. (In this case, the status value is LBR$_
KEYNOTFND.)

O Read a record from the input file, then use LBR$PUT_RECORD to
write the record to the library. When all the records have been written
to the library, use LBR$PUT_END to write an end of module record.

LBR-13

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

© Use LBR$INSERT_KEY to insert a key for the module into the current
index.

Example 8-3 illustrates the use of LBR routines to extract a module from
a library.

Example 8-3 Extracting a Module from a Library Using VAX Pascal

PROGRAM extractmod (INPUT,OUTPUT, Textout) ;
(*This program extracts a module from a library¥*)
TYPE
Rfa Ptr = ARRAY [0..1] OF INTEGER; (*Data type of RFA of module¥*)
VAR

LBR$C_UPDATE, (*Constants for LBRSINI_CONTROL*)

LBR$Q_TYP_TXT, (*Defined in $LBRDEF macro¥*)

RMS$_EOF : [EXTERNAL] INTEGER; (*RMS return status; defined in

S$RMSDEF macro*)

Lib_Name : VARYING [128] OF CHAR; (*Name of library receiving module¥*)

Module_Name : VARYING [31] OF CHAR; (*Name of module to insert¥)

Extracted_File : VARYING [31] OF CHAR; (*Name of file to hold
extracted module¥*)

Outtext : PACKED ARRAY [1..255] OF CHAR; (*Extracted mod put here, *)

Outtext2 : VARYING [255] OF CHAR; (* then moved to here¥*)

i : INTEGER; (*For loop control¥%)

Textout : FILE OF VARYING [255] OF CHAR; (*File containing extracted
module*)

nullstring : CHAR; (*nullstring, pos, and len used to%*)

pos, len : INTEGER; (*find string in extracted file recd¥*)

lib_index_ptr : UNSIGNED; (*Value returned in library init¥)

status : UNSIGNED; (*Return status for function calls¥)

txtrfa ptr : Rfa_Ptr; (*For key lookup and insertion*)

(*—*-*—*-Function Definitions—*-*—*-%)
(*Function that returns library
control index used by librarian*)
FUNCTION LBR$INI_CONTROL (VAR library_ index: UNSIGNED;
func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY{l..u:INTEGER]
OF INTEGER := $IMMED O0):

N

INTEGER; EXTERN;
(*Function that creates/opens library¥*)
FUNCTION LBR$OPEN (library index: UNSIGNED;
fns: [class_s]PACKED ARRAY[1l..u:INTEGER] OF CHAR;
create_options: ARRAY [12..u2:INTEGER] OF INTEGER :
$IMMED O;
dns: [CLASS_S] PACKED ARRAY [13..u3:INTEGER] OF CHAR
:= $IMMED O;
rlfna: ARRAY [14..ud:INTEGER] OF INTEGER := $IMMED O;
rns: [CLASS_S] PACKED ARRAY [15..u5:INTEGER] OF CHAR :=
$IMMED O;
VAR rnslen: INTEGER := $IMMED O):
INTEGER; EXTERN;
(*Function that finds a key in an index¥*)
FUNCTION LBR$LOOKUP_KEY (library_index: UNSIGNED;
key name: [CLASS S] PACKED ARRAY [l..u:INTEGER] OF
CHAR;
VAR txtrfa: Rfa_Ptr):
INTEGER; EXTERN; <

(continued on next page)

LBR-14

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

Example 8-3 (Cont.) Extracting a Module from a Library Using VAX Pascal

(*Function that retrieves records from modules¥*)
FUNCTION LBRSGET RECORD (library index: UNSIGNED;
var textline: (CLASS_S] PACKED ARRAY [l..u:INTEGER)]) OF
CHAR) :
INTEGER;
EXTERN;
(*Function that closes library*)
FUNCTION LBRSCLOSE (library_index: UNSIGNED) :
INTEGER; EXTERN;
BEGIN (* % Kk Kk kok ok ok ok ok ok ok ok ok ok DECLARATIONS COMPLETE Akhkhkhhkhkhkkhhkkhkkhkhhhkhkkhkkk
% Kk Kk kK kK ke ok ok k ok ok ok MAIN PROGRAM BEGINS HERE * Kk %k %k kK Kk Kk ko ke ok ok vk kR ok ok ok ok ok *)
(* Get Library Name, Module To Extract, And File To Hold Extracted Module *)
WRITE (/' Library Name: ’); READLN(Lib_Name) ;
WRITE ('Module Name: ‘); READLN(Module_Name) ;
WRITE ('Extract Into File: ’); READLN(Extracted File);

status := LBRSINI_CONTROL (lib_index_ ptr, o
IADDRESS(LBR$C_UPDATE),
IADDRESS (LBR$C_TYP TXT));
IF NOT ODD (status) THEN
WRITELN('Initialization Failed’)
ELSE
BEGIN
status := LBR$OPEN (lib_index_ptr,
Lib_Name) ;
IF NOT ODD (status) THEN
WRITELN (/ Open Not Successful’)
ELSE
BEGIN (2]
status := LBR$LOOKUP_KEY (lib_index_ptr,
Module Name,
' txtrfa_ptr);
IF NOT ODD (status) THEN
WRITELN (/ Lookup Key Not Successful’)
ELSE
BEGIN 3]
OPEN (Textout,Extracted File,new);
REWRITE (Textout)
END
END
END;
WHILE ODD (status) DO
BEGIN
nullstring := '’ (0);
FOR i := 1 TO 255 DO 0o
Outtext{i] := nullstring;
status := LBR$GET_RECORD (lib_index ptr,
Outtext):;
IF NOT ODD (status) THEN
BEGIN (5]
IF status = IADDRESS(RMS$_EOF) THEN
WRITELN (' RMS end of file’)
END

(continued on next page)

LBR-15

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

Example 8-3 (Cont.) Extracting a Module from a Library Using VAX Pascal

ELSE
BEGIN
p

len

oS

INDEX (Outtext, nullstring); (*find first null
in OQuttext¥*)

:= pos - 1; (*length of Quttext to first null¥*)

IF len >= 1 THEN

END

BEGIN

Outtext2 := SUBSTR (Outtext,l,LEN);
WRITE (Textout, OQuttext2)

END

END; (*of WHILE¥)
status := LBRSCLOSE(lib index ptr);
IF NOT ODD(status) THEN
WRITELN (' Close Not Successful’)
END. (*of program extractmod*)

LBR-16

Each item in the following list corresponds to a number highlighted in
Example 8-3.

@ 6 606 o

Call LBR$INI_CONTROL, specifying that the function to be performed
is update and that the library type is text.

Call LBR$LOOKUP_KEY to find the key that points to the module you
want to extract.

Open an output file to receive the extracted module.

Initialize the variable that is to receive the extracted records to null
characters.

Call LBR$GET _RECORD to see if there are more records in the file
(module). A failure indicates that the end of the file has been reached.

Write the extracted record data to the output file. This record should
consist only of the data up to the first null character.

Example 8—4 illustrates the use of LBR routines to delete a library.

T

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

Example 84 Deleting a Module from a Library Using VAX Pascal

PROGRAM deletemod (INPUT, OUTPUT) ;

(*This program deletes a module from a library*)

TYPE

VAR

Rfa Ptr = ARRAY [0..1l] OF INTEGER; (*Data type of RFA of module¥*)
LBRS$C_UPDATE, (*Constants for LBR$INI_CONTROL*)
LBR$C_TYP_TXT, (*Defined in $LBRDEF macro¥*)
LBR$_KEYNOTFND : [EXTERNAL] INTEGER; (*Error code for LBR$LOOKUP_KEY*)
Lib Name : VARYING [128] OF CHAR; (*Name of library receiving module¥*)

Module Name : VARYING [31] OF CHAR; (*Name of module to insert*)
Text_Data Record : VARYING [255] OF CHAR; (*Record in new module¥*)
Textin : FILE OF VARYING [255] OF CHAR; (*File containing new module¥*)

lib_index_ptr : UNSIGNED; (*Value returned in library init¥)
status : UNSIGNED; (*Return status for function calls¥)
txtrfa ptr : Rfa_Ptr; (*For key lookup and insertion¥*)
Key_Not_Found : BOOLEAN := FALSE; (*True if new mod not already in lib*)

(¥*—*-*—*-Function Definitions-—*-*-%-%)
(*Function that returns library
control index used by librarian*)

FUNCTION LBRSINI_CONTROL (VAR library index: UNSIGNED;

func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY[1l..u:INTEGER]
OF INTEGER := $IMMED O):
INTEGER; EXTERN;
(*Function that creates/opens library¥*)

FUNCTION LBRSOPEN (library_ index: UNSIGNED;

fns: [class_s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
create_options: ARRAY [12..u2:INTEGER] OF INTEGER :=

$IMMED 0;
dns: [CLASS_S] PACKED ARRAY [13..u3:INTEGER] OF CHAR
= $IMMED O;

rlfna: ARRAY [14..ud4:INTEGER] OF INTEGER := $IMMED O;
rns: [CLASS_S] PACKED ARRAY [15..u5:INTEGER] OF CHAR :=
$IMMED O;
VAR rnslen: INTEGER := $%IMMED O0):
INTEGER; EXTERN;
(*Function that finds a key in index*)

FUNCTION LBRSLOOKUP_KEY (library index: UNSIGNED;

key name: [CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
CHAR;
VAR txtrfa: Rfa Ptr):
INTEGER; EXTERN; B
(*Function that removes a key from an index*)

FUNCTION LBR$DELETE_KEY (library index: UNSIGNED;

key name: [CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
CHAR) :
INTEGER;

EXTERN;

(continued on next page)

LBR-17

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

Example 84 (Cont.) Deleting a Module from a Library Using VAX Pascal

(*Function that deletes all the records
associated with a module*)
FUNCTION LBRSDELETE_DATA (library_index: UNSIGNED;
txtrfa: Rfa_Ptr):
INTEGER;
EXTERN;
(*Function that closes library¥*)
FUNCTION LBRSCLOSE (library_index: UNSIGNED) :
INTEGER; EXTERN;

BEGIN (* ***kkkkkkkxk**x* DECLARATIONS COMPLETE ***kkkkkkkkkkkkkkhkkkhkkk
kkkhkkkkkhkkkikkkkhkkhi kx MATN PROGRAM BEGINS HERE #***xkkkkkhkhkhhhhhhkrhhhid *)
(* Get Library Name and Module to Delete *)
WRITE (’/ Library Name: ’); READLN(Lib_Name);
WRITE (' Module Name: "y READLN(Module_Name);
(*Initialize lib for update access*)

status := LBR$INI_CONTROL (lib_index_ptr,
IADDRESS(LBRSC_UPDATE), (*Update access¥*)
IADDRESS(LBR$C_TYP_TXT)); (*Text library*)
IF NOT ODD (status) THEN (*Check error status¥*)
WRITELN (/Initialization Failed’)
ELSE (*Initialization was successful¥*)
BEGIN
status := LBR$SOPEN (lib_index_ptr, (*Open the library*)
Lib Name) ;
IF NOT ODD (status) THEN (*Check error status¥*)
WRITELN (/' Open Not Successful’)
ELSE (*Open was successful¥*)
BEGIN ® (*Is module in the library?*)
status := LBRSLOOKUP_KEY (lib_index ptr,

Module_ Name,

txtrfa ptr);

IF NOT ODD(status) THEN (*Check status¥*)
WRITELN (’ Lookup Key Not Successful’)

END
END;
IF ODD (status) THEN (*Key was found; delete it¥*)
BEGIN .
status := LBR$DELETE_KEY (lib_index ptr, (3]

Module Name) ;
IF NOT ODD(status) THEN
WRITELN ('Delete Key Routine Not Successful’)
ELSE (*Delete key was successful¥)
BEGIN (*Now delete module’s data records¥)
status := LBRSDELETE_DATA (lib_index_ptr,
txtrfa_ptr);
IF NOT ODD(status) THEN ’
WRITELN (' Delete Data Routine Not Successful’)
END
END;
status := LBR$CLOSE(lib_index ptr); (*Close the library*)
IF NOT ODD (status) THEN
WRITELN (' Close Not Successful’);
END. (*of program deletemod*)

LBR-18

8.3

Librarian (LBR) Routines
8.2 Using the LBR Routines: Examples

Each item in the following list corresponds to a number highlighted in
Example 8-4.

© Call LBR$INI_CONTROL, specifying that the function to be performed
is update and the library type is text.

® Call LBR$LOOKUP_KEY to find the key associated with the module
you want to delete.

© Call LBR$DELETE_KEY to delete the key associated with the module
you want to delete. If more than one key points to the module, you
need to call LBR$LOOKUP_KEY and LBR$DELETE_KEY for each

key.

© Call LBR$DELETE_DATA to delete the module (the module header
and data) from the library.

LBR Routines

The following pages describe the individual LBR routines.

LBR-19

Librarian (LBR) Routines

LBR$CLOSE

LBR$CLOSE Close a Library

The LBR$CLOSE routine closes an open library.

FORMAT

RETURNS

ARGUMENT

- I

LBR$CLOSE /ibrary_index

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

library_index

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
library_index argument is the address of the longword that contains the
index.

DESCRIPTION

When you are finished working with a library, you should call
LBR$CLOSE to close it. Upon successful completion, LBR§CLOSE closes
the open library and deallocates all of the memory used for processing it.

CONDITION
VALUES
RETURNED

LBR-20

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

Librarian (LBR) Routines
LBR$DELETE_DATA

LBRSDELETE DATA Delete a Module’s Data

The LBR$DELETE_DATA routine deletes the module header and data
associated with the specified module.

FORMAT

LBRSDELETE_DATA library_index ,txtrfa

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

library _index

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBRSINI_CONTROL routine. The
}il‘)irary_index argument is the address of the longword that contains the
index.

txtrfa

VMS usage: vector_longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Record’s file address (RFA) of the module header for the module you want
to delete. The txtrfa argument is the address of the 2-longword array that
contains the RFA. You can obtain the RFA of a module header by calling
LBR$LOOKUP_exit KEY or LBR$PUT_RECORD.

DESCRIPTION

If you want to delete a library module, you must first call LBR$DELETE_
KEY to delete any keys that point to it. If no library index keys are
pointing at the module header, LBR$DELETE_DATA deletes the module
header and associated data records; otherwise, this routine returns the
error LBR$_STILLKEYS.

Note that other librarian routines may reuse data blocks that contain no
data.

LBR-21

Librarian (LBR) Routines
LBR$DELETE_DATA

CONDITION LBR$_ILLCTL
VALUES -
RETURNED LBR$_INVRFA

LBR$_LIBNOTOPN
LBR$_STILLKEYS

LBR-22

Specified library control index not valid.
Specified RFA not valid.
Specified library not open.

Keys in other indexes still point at the module header.
Therefore, the specified module was not deleted.

Librarian (LBR) Routines
LBR$DELETE_KEY

LBRSDELETE_KEY Delete a Key

The LBR$DELETE_KEY routine deletes a key from a library index.

FORMAT

LBR$DELETE_KEY library_index ,key_name

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

library_index

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
library_index argument is the address of a longword containing the
index.

key_name

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Key to be deleted from the library index. For libraries with binary
keys, the key_name argument is the address of an unsigned longword
containing the key number.

For libraries with ASCII keys, the key_name argument is the address
of the string descriptor pointing to the key with the following argument
characteristics.

Argument

Characteristics Entry

VMS Usage Char_string
Type Character string
Access Read only
Mechanism By descriptor

LBR-23

Librarian (LBR) Routines

LBR$DELETE_KEY

DESCRIPTION

If LBR$DELETE_KEY finds the key specified by key_name in the current
index, it deletes the key. Note that, if you want to delete a library module,
you should first use LBR$DELETE_KEY to delete any keys that point

to it, then use LBR$DELETE_DATA to delete the module’s header and
associated data.

You cannot call LBR$DELETE_KEY from within the user-supplied routine
specified in LBR$SEARCH or LBR$GET_INDEX.

CONDITION
VALUES
RETURNED

LBR-24

LBR$_ILLCTL Specified library control index not valid.
LBR$_KEYNOTFND Specified key not found.
LBR$_LIBNOTOPN Specified library not open.

LBR$_UPDURTRAV Specified index update not valid in a user-supplied
routine specified in LBRSSEARCH or LBR$GET_
INDEX.

e

Librarian (LBR) Routines
LBR$FIND

LBRSFIND Look Up a Module by Its RFA

The LBR$FIND routine sets the current internal read context for the library to
the library module specified.

FORMAT

LBRS$FIND library_index ,txtrfa

RETURNS

ARGUMENTS

DESCRIPTION

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

library_index

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
!il()irary_index argument is the address of the longword that contains the
mndex.

txtrfa

VMS usage: vector_longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

RFA (record’s file address) of the module header for the module you want
to access. The txtrfa argument is the address of a 2-longword array
containing the RFA. You can obtain the RFA of a module header by calling
LBR$LOOKUP_KEY or LBR$PUT_RECORD.

You use the LBR$FIND routine to access a module that you had accessed
earlier in your program. For example, if you look up several keys with
LBR$LOOKUP_KEY, you can save the RFAs returned by LBR$LOOKUP_
KEY and later use LBR$FIND to reaccess the modules. Thus, you do not
have to look up the module header’s key every time you want to access the
module. If the specified RFA is valid, LBR$FIND initializes internal tables
so that you can read the associated data.

LBR-25

Librarian (LBR) Routines
LBRS$FIND

CONDITION ., . cn
RETURNED LBR$_INVRFA
u LBR$_LIBNOTOPN

LBR-26

Specified library control index not valid.
Specified RFA not valid.
Specified library not open.

Librarian (LBR) Routines
LBR$FLUSH

LBR$FLUSH Recover Virtual Memory

The LBR$FLUSH routine writes modified blocks back to the library file and
frees the virtual memory the blocks had been using.

FORMAT

LBR$FLUSH library_index ,block_type

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine ean return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

library_index

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
library_index argument is the address of the longword that contains the
index.

block_type

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Extent of the flush operation. The block_type argument contains the
longword value that indicates how the flush operation proceeds. If you
specify LBR$C_FLUSHDATA, the data blocks are flushed. If you specify
LBR$C_FLUSHALL, first the data blocks and then the current library
index are flushed.

The LBR$ symbols LBR$C_FLUSHDATA and LBR$C_FLUSHALL are
defined in the macro $LBRDEF (found in SYS$LIBRARY:STARLET.MLB),
which must be assembled and then linked with your program.

DESCRIPTION

LBR$FLUSH cannot be called from other librarian routines that reference
cache addresses or by routines called by librarian routines.

LBR-27

Librarian (LBR) Routines
LBR$FLUSH

CONDITION
VALUES LBR$_NORMAL
RETURNED LBR$_BADPARAM

LBR$_WRITERR

LBR-28

Operation completed successfully.

Error. A value passed to the LBR$FLUSH routine was
either out of range or an illegal value.

Error. An error occurred during the writing of the
cached update blocks to the library file.

Librarian (LBR) Routines
LBR$GET_HEADER

LBR$GET_HEADER Retrieve Library Header

Information

The LBR$GET_HEADER routine returns information from the library’s header
to the caller.

FORMAT LBR$GET_HEADER library_index ,retary

RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS library_index

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
library_index argument is the address of the longword that contains the
index.

retary

VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

Array of 128 longwords that receives the library header. The retary
argument is the address of the array that contains the header
information. The information returned in the array is listed in the
following table (the symbols are defined by the $LHIDEF macro in
SYS$LIBRARY:STARLET.MLB).

Oftset in

Longwords Symbolic Name Contents

0 LHISL_TYPE Library type (see LBRSOPEN for possible
values)

1 LHI$SL_NINDEX Number of indexes

2 LHI$L_MAJORID Library format major identification

3 LHISL_MINORID Library format minor identification

LBR-29

Librarian (LBR) Routines
LBR$GET_HEADER

Offset in
Longwords

Symbolic Name

Contents

4
12
14
16
17
18
19

21
22
23
24
25
26
27

28

29

30

31

32-128

LHI$T_LBRVER
LHI$L_CREDAT
LHI$L_UPDTIM
LHI$L_UPDHIS
LHI$L_FREEVBN
LHI$L_FREEBLK
LHI$B_NEXTRFA

LHI$L_NEXTVBN
LHI$L_FREIDXBLK
LHI$L_FREEIDX
LHISL_HIPREAL
LHI$L_IDXBLKS
LHISL_IDXCNT
LHI$L_MODCNT

LHI$L_MHDUSZ
LHI$L._MAXLUHREC
LHI$L_NUMLUHREC

LHI$L_LIBSTATUS

ASCIC version of Librarian
Creation date/time

Date/time of last update

VBN of start of update history
First logically deleted block
Number of deleted blocks

Record’s File Address (RFA) of end of
library

Next VBN to allocate at end of file
Number of free preallocated index blocks
Listhead for preallocated index blocks
VBN of highest preallocated block
Number of index blocks in use

Number of index entries (total)

Number of entries in index 1 (module
names)

Number of bytes of additional information
reserved in module header

Maximum number of library update history
records maintained

Number of library update history records in
history

Library status (false if there was an error
closing the library)

Reserved by Digital

DESCRIPTION On successful completion, LBRSGET_HEADER places the library header
information into the array of 128 longwords.
Note that the offset is the byte offset of the value into the header
structure. You can convert the offset to a longword subscript by
dividing the offset by 4 and adding 1 (assuming that subscripts in your
programming language begin with 1).

CONDITION LBR$_LIBNOTOPN Specified lib t

ecified library not open.
VALUES LBR$_ILLCTL Sgeciﬁed Iibraz contrzl index not valid
RETURNED - '

LBR-30

Librarian (LBR) Routines
LBR$GET_HELP

LBR$GET HELP Retrieve Help Text

The LBR$GET_HELP routine retrieves help text from a help library, displaying
it on SYS$OUTPUT or calling your routine for each record returned.

FORMAT

LBR$GET_HELP library_index [,line_width] [,routine]
[data] [key 1][key 2 ... ,key_10]

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

library_index

VMS usage: longword unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
!il()irary_index argument is the address of the longword that contains the
maex.

line_width

VMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by reference

Width of the help text line. The line_width argument is the address of a
longword containing the width of the listing line. If you do not supply a
%gne width or if you specify 0, the line width defaults to 80 characters per
ine.

routine

VMS usage: procedure

type: procedure entry mask
access: read only

mechanism: by reference
Routine called for each line of text you want output. The routine
argument is the address of the entry mask for this user-written routine.

If you do not supply a routine argument, LBRSGET_HELP calls the
Run-Time Library procedure LIB§PUT_OUTPUT to send the help text
lines to the current output device (SYS$OUTPUT). However, if you want
SYS$OUTPUT for your program to be a disk file rather than the terminal,
you should supply a routine to output the text.

LBR-31

Librarian (LBR) Routines

LBR$GET_HELP

LBR-32

The routine you specify is called with an argument list of four longwords:

1 The first argument is the address of a string descriptor for the output
line.

2 The second argument is the address of an unsigned longword
containing flag bits that describe the contents of the text being passed.
The possible flags are as follows:

HLP$SM_NOHLPTXT Specified help text cannot be found.

HLP$M_KEYNAMLIN Text contains key names of the printed text.

HLP$M_OTHERINFO Text is part of the information provided on additional
help available.

(The $HLPDEF macro in SYS$LIBRARY:STARLET.MLB defines these
flag symbols.)

Note that, if no flag bit is set, help text is passed.

3 The third argument is the address stipulated in the data argument
specified in the call to LBR§GET_HELP (or the address of a 0 constant
if the data argument is zero or was omitted).

4 The fourth argument is a longword containing the current key level.

The routine you specify must return with success or failure status. A
failure status (low bit = 0) terminates the current call to LBR§GET_HELP.

data

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference
Data passed to the routine specified in the routine argument. The data
argument is the address of data for the routine. The address is passed to
the routine specified in the routine argument. If you omit this argument
or specify it as zero, then the argument passed in your routine will be the
address of a zero constant.

key 1,key 2, ... ,key 10

VMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by descriptor

Level of the help text to be output. Each key_1,key_2, ... key_10
argument is the address of a descriptor pointing to the key for that level.

If the key_1 descriptor is 0 or if it is not present, LBR§GET_HELP
assumes that the key_1 name is HELP, and it ignores all the other keys.
For key_2 through key_10, a descriptor address of 0, or a length of 0, or a
string address of 0 terminates the list.

Librarian (LBR) Routines
LBR$GET_HELP

The key argument may contain any of the following special character
strings:

String Meaning
* Return all level 1 help text in the library.
KEY ... Return all help text associated with the specified key and its subkeys

(valid for level 1 keys only).
.. Return all help text in the library.

DESCRIPTION

LBR$GET_HELP returns all help text in the same format as the output
returned by the DCL command HELP; that is, it indents two spaces for
every key level of text displayed. (Because of this formatting, you may
want to make your help messages shorter than 80 characters, so they fit
on one line on terminal screens with the width set to 80.) If you do not
want the help text indented to the appropriate help level, you must supply
your own routine to change the format.

Note that most application programs use LBR$OUTPUT_HELP instead of
LBR$GET_HELP.

CONDITION
VALUES
RETURNED

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.
LBR$_NOTHLPLIB Specified library not a help library.

LBR-33

Librarian (LBR) Routines
LBR$GET_HISTORY

LBR$GET HISTORY Retrieve a Library Update

History Reccord

The LBR$GET_HISTORY routine returns each library update history record to
a user-specified action routine.

FORMAT

LBR$GET_HISTORY library index ,action_routine

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

library_index

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
!il()lrary_index argument is the address of the longword that contains the
index.

action_routine

VMS usage: procedure

type: procedure entry mask

access: modify

mechanism: by reference

User-supplied routine for processing library update history records. The
action_routine argument is the address of the entry mask of this user-
supplied routine. The routine is invoked once for each update history
record in the library. One argument is passed to the routine, namely, the
address of a descriptor pointing to a history record.

DESCRIPTION

LBR-34

This routine retrieves the library update history records written by the
routine LBR$PUT_HISTORY.

Librarian (LBR) Routines
LBR$GET_HISTORY

CONDITION .~ =
\lgél';"dER?‘l ED LBRS_EMPTYHIST

LBR$_NOHISTORY

LBR$_INTRNLERR

Normal exit from the routine.

History empty. This is an informational code, not an
error code.

No update history. This is an informational code, not
an error code.

Internal librarian routine error occurred.

LBR-35

Librarian (LBR) Routines

LBR$GET_INDEX

LBR$GET INDEX Call a Routine for Selected Index

Keys

The LBR$GET_INDEX routine calls a user-supplied routine for selected keys
in an index.

FORMAT

LBR$GET_INDEX library_index ,index_number
,routine_name [,match_desc]

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

LBR-36

library_index

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
library_index argument is the address of the longword that contains the
index.

index_number

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Number of the library index. The index_number argument is the address
of a longword containing the index number. This is the index number
associated with the keys you want to use as input to the user-supplied
routine (see Section 8.1.2.3).

routine_name

VMS usage: procedure

type: procedure entry mask

access: read only

mechanism: by reference

User-supplied routine called for each of the specified index keys. The
routine_name argument is the address of the entry mask for this user-
supplied routine.

Librarian (LBR) Routines
LBR$GET _INDEX

LBR$GET_INDEX passes two arguments to the routine:
* A key name.

— For libraries with ASCII keys, the key_name argument is the
address of a string descriptor pointing to the key. Note that the
string and the string descriptor passed to the routine are valid only
for the duration of that call. The string must be privately copied if
you need it again for more processing.

— For libraries with binary keys, the key_name argument is the
address of an unsigned longword containing the key number.

® The record’s file address (RFA) of the module’s header for this key
name. The RFA argument is the address of a 2-longword array that
contains the RFA.

The routine must return a value to indicate success or failure. If the
routine returns a false value (low bit = 0), LBR$GET_INDEX stops
searching the index and returns the status value of the user-specified
routine to the calling program.

The routine cannot contain calls to either LBR$DELETE_KEY or
LBR$INSERT KEY.

match_desc

VMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Key matching identifier. The match_desc argument is the address of a
string descriptor pointing to a string used to identify which keys result in
calls to the user-supplied routine. Wildcard characters are allowed in this
string. If you omit this argument, the routine is called for every key in

the index. The match_desc argument is valid only for libraries that have
ASCII keys.

L
DESCRIPTION LBRS$GET _INDEX searches through the specified index for a key that
matches the argument match_desc. Each time it finds a match, it calls
the routine specified by the routine_name argument. If you do not
specify the match_desc argument, it calls the routine for every key in the
index.
For example, if you call LBR$GET_INDEX with match_desc equal to TR*
and index_number set to 1 (module name table), then LBR$GET_INDEX
calls routine_name for each module whose name begins with TR.
I
CONDlTION LBR$_ILLCTL Specified lib! trol ind t valid
ecified library control index not valid.
VALUES - P .
RETURNED LBR$_ILLIDXNUM Specified index number not valid.
LBR$_LIBNOTOPN Specified library not open.
LBR$_NULIDX Specified library empty.

LBR-37

Librarian (LBR) Routines
LBR$GET_RECORD

LBR$GET _RECORD Read a Data Record

The LBR$GET_RECORD routine returns the next data record in the module
associated with a specified key.

FORMAT LBR$GET_RECORD library_index [,inbufdes]
[,outbufdes]

RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS library_index

LBR-38

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
library_index argument is the address of the longword that contains the
index. The library must be open and LBR$LOOKUP_KEY or LBR$FIND
must have been called to find the key associated with the module whose
records you want to read.

inbufdes

VMS usage: char_string

type: character string

access: write only

mechanism: by descriptor

User buffer to receive the record. The inbufdes argument is the address
of a string descriptor that points to the buffer that receives the record
from LBR$GET_RECORD. This argument is required when the librarian
subroutine record access is set to move mode (which is the default). This
argument is not used if the record access mode is set to locate mode. The
DESCRIPTION section contains more information about the locate and
move modes.

outbufdes

VMS usage: char_string

type: character string

access: write only

mechanism: by descriptor

String descriptor that receives the actual length and address of the data
for the record returned. The outbufdes argument is the address of the

P

Librarian (LBR) Routines
LBR$GET_RECORD

string descriptor for the returned record. The length and address fields
of the string descriptor are filled in by the LBR$GET_RECORD routine.
This parameter must be specified when Librarian subroutine record access
is set to locate mode. This parameter is optional if record access mode is
set to move mode. The DESCRIPTION section contains more information
about the locate and move modes.

DESCRIPTION

CONDITION
VALUES
RETURNED

Before calling LBR§GET_RECORD, you must first call LBR$LOOKUP_
KEY or LBR$FIND to set the internal library read context to the record’s
file address (RFA) of the module header of the module whose records you
want to read.

LBR$GET_RECORD uses two record access modes: locate mode and
move mode. Move mode is the default. The LBR$SET_LOCATE and
LBR$SET_MOVE subroutines set these modes. The record access modes
are mutually exclusive; that is, when one is set the other is turned off.
If move mode is set, LBR$GET_RECORD copies the record to the user-
specified buffer described by inbufdes. If you have optionally specified the
output buffer string descriptor, outbufdes, the librarian fills it with the
actual length and address of the data. If locate mode is set, LBR$GET_
RECORD returns the record by way of an internal subroutine buffer,
pointing the outbufdes descriptor to the internal buffer. The second
parameter, inbufdes, is not used when locate mode is set.

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.
LBR$_LKPNOTDON Requested key lookup not done.

RMS$_EOF Error. An attempt has been made to read past the
logical end of the data in the module.

LBR-39

Librarian (LBR) Routines
LBR$INI_CONTROL

LBRS$INI_CONTROL Initialize a Library Control

Structure

The LBR$INI_CONTROL routine initializes a control structure, called a library
control index, to identify the library for use by other Librarian routines.

FORMAT

LBRS$INI_CONTROL library_index ,func [,type]
[,namblk]

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in R0O. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

LBR-40

library_index

VMS usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

Library control index returned by the LBRSINI_CONTROL routine. The
l;lbralgr_index argument is the address of a longword that is to receive
the index.

func

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

Library function to be performed. The func argument is the address

of the longword that contains the library function. Valid functions are
LBRC_CREATE, LBRC_READ, and LBR$C_UPDATE. (These symbols
are defined by the $LBRDEF macro in SYS$LIBRARY:STARLET.MLB.)

type

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

Library type. The type argument is the address of the longword
containing the library type. Valid library types are LBR$C_TYP_OBJ
(object or shareable image), LBR$C_TYP_MLB (macro), LBR$C_TYP_
HLP (help), LBR$C_TYP_TXT (text), LBR$C_TYP_UNK (unknown), or,

DESCRIPTION

CONDITION
VALUES
RETURNED

Librarian (LBR) Routines
LBR$INI_CONTROL

for user-developed libraries, a type in the range of LBR$C_TYP_USRLW
through LBR$C_TYP_USRHLI.

namblk

VMS usage: nam

type: longword (unsigned)
access: read only

mechanism: by reference

VMS RMS name block (NAM). The namblk argument is the address of
a variable-length data structure containing an RMS NAM block. The
LBR$OPEN routine fills in the information in the NAM block so that

it can be used later to open the library. If the NAM block has this file
identification in it from previous use, the LBR$OPEN routine uses the
VMS RMS open-by-NAM block option. This argument is optional and
should be used if the library will be opened many times during a single
run of the program. For a detailed description of VMS RMS NAM blocks,
see the VMS Record Management Services Manual.

Except for the LBR$OUTPUT _HELP routine, you must call LBR$INI_
CONTROL before calling any other librarian routine. After you initialize
the library control index, you must open the library or create a new one
using the LBR$OPEN routine. You can then call other librarian routines
that you need. After you finish working with a library, close it with the
LBR$CLOSE routine.

LBR$INI_CONTROL initializes a library by filling the longword referenced
by the library_index argument with the control index of the library.
Upon completion of the call, the index can be used to refer to the current
library in all future routine calls. Therefore, your program must not alter
this value.

You can have up to 16 libraries open simultaneously in your program.

LBR$_NORMAL Library control index initialized successfully.
LBR$_ILLFUNC Requested function not valid.

LBR$_ILLTYP Specified library type not valid.

LBR$_TOOMNYLIB Error. An attempt was made to allocate more than 16

control indexes.

LBR-41

Librarian (LBR) Routines

LBRS$SINSERT_KEY

LBR$INSERT_KEY Insert a New Key

The LBRSINSERT_KEY routine inserts a new key in the current library index.

FORMAT LBRSINSERT_KEY library_index ,key_name ,txtrfa
RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write oniy
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.
ARGUMENTS library_index

LBR-42

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
library_index argument is the address of the longword that contains the
index.

key _name

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

Name of the new key you are inserting.

If the library uses binary keys, the key_name argument is the address of
an unsigned longword containing the value of the key.

If the library uses ASCII keys, the key_name argument is the address of
a string descriptor of the key with the following argument characteristics.

Argument

Characteristics Entry

VMS Usage Char_string
Type Character string
Access Read only
Mechanism By descriptor

Librarian (LBR) Routines
LBRS$INSERT_KEY

ixtrfa

VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify

mechanism: by reference

Record file address (RFA) of the module associated with the new key you
are inserting. The txtrfa argument is the address of a 2-longword array
containing the RFA. You can use the RFA returned by the first call to
LBR$PUT_RECORD.

DESCRIPTION You cannot call LBR$INSERT_KEY within the user-supplied routine
specified in LBR$SEARCH or LBR$GET_INDEX.
CONDITION L , ,
VALUES LBR$_ILLCTL Specified library control index not valid.
RETURNED LBR$_INVRFA Specified RFA does not point to valid data.
LBR$_DUPKEY Index already contains the specified key.
LBR$_LIBNOTOPN Specified library not open.
LBR$_UPDURTRAV LBR$INSERT_KEY was called by the user-defined
routine specified in LBRSSEARCH or LBR$GET_
INDEX.

LBR-43

Librarian (LBR) Routines
LBR$LOOKUP_KEY

LBR$LOOKUP_KEY Look Up a Library Key

The LBR$LOOKUP_KEY routine looks up a key in the library’s current index
and prepares to access the data in the module associated with the key.

FORMAT LBRSLOOKUP_KEY library_index ,key_name ,txtrfa
RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.
ARGUMENTS library_index

LBR-44

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
!il()irary_index argument is the address of the longword that contains the
index.

key_name

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Name of the library key. If the library uses binary keys, the key_name
argument is the address of the unsigned longword value of the key.

If the library uses ASCII keys, the key_name argument is the address of
a string descriptor for the key with the following argument characteristies.

Argument Characteristics Entry

VMS Usage Char_string
Type Character string
Access Read only
Mechanism By descriptor

Librarian (LBR) Routines
LBR$LOOKUP_KEY

txtrfa

VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

The record’s file address (RFA) of the library module header. The txtrfa
argument is the address of the 2-longword array that receives the RFA of
the module header.

DESCRIPTION

——

If LBR$LOOKUP_KEY finds the specified key, it initializes internal tables
so that you can access the associated data.

This routine returns the RFA (consisting of the virtual block number
(VBN) and the byte offset) to the 2-longword array referenced by txtrfa.
Note that the RFA is only 6 bytes long.

CONDITION
VALUES
RETURNED

- e

LBRS$_ILLCTL Specified library control index not valid.
LBR$_INVRFA RFA obtained not valid.
LBR$_KEYNOTFND Specified key not found.
LBR$_LIBNOTOPN Specified library not open.

LBR-45

Librarian (LBR) Routines

LBR$OPEN

LBR$OPEN Open or Create a Library

The LBR$OPEN routine opens an existing library or creates a new one.

FORMAT

LBR$OPEN library_index [,fns] [,create_options] [,dns]
[,rifna] [,rns] [,rnslen]

RETURNS

ARGUMENTS

LBR-46

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

library_index

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
library_index argument is the address of a longword containing the
index.

fns

VMS usage: char_string
type: character string
access: read only

mechanism: by descriptor

File specification of the library. The fns argument is the address of a
string descriptor pointing to the file specification. Unless the VMS RMS
NAM block address was previously supplied in the LBR$INI_CONTROL
routine and contained a file specification, this argument must be included.
Otherwise, the librarian returns an error (LBR$_NOFILNAM).

create_options

VMS usage: vector_longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library characteristics. The create_options argument is the address

of an array of 20 longwords that define the characteristics of the library
you are creating. If you are creating a library with LBR$C_CREATE, you
must include the create-options argument. The following table shows
the entries that the array must contain (the $LBRDEF and $CREDEF
macros in SYS$LIBRARY:STARLET.MLB define the symbols listed).

Librarian (LBR) Routines

LBR$OPEN
Offset in
Longwords Symbolic Name Contents
0 CRES$L_TYPE Library type:
LBR$C_TYP_UNK (0) Unknown/unspecified
LBR$C_TYP_OBJ (1) Object and/or shareable image
LBR$C_TYP_MLB (2) Macro
LBR$C_TYP_HLP (3) Help
LBR$C_TYP_TXT (4) Text
(5-127) Reserved by Digital
LBR$C_TYP_USR (128-255) User-defined
1 CRES$L_KEYLEN Maximum length of ASCII keys
or, if 0, indicates 32-bit unsigned
; keys (binary keys)
CRESL_ALLOC Initial library file allocation
3 CRES$L_IDXMAX Number of library indexes
(maximum of 8)
4 CRES$L_UHDMAX Number of additional bytes to
reserve in module header
5 CRES$L_ENTALL Number of index entries to
preallocate
6 CRES$L_LUHMAX Maximum number of library
update history records to
maintain
7 CRE$L_VERTYP Format of library to create:
CRES$C_VMSV2 VMS Version 2.0
CRE$C_VMSV3 VMS Version 3.0
8 CRES$L_IDXOPT Index key casing option:
CRE$C_HLPCASING Treat character case as it is for
help libraries
CRE$C_OBJCASING Treat character case as it is for
object libraries
CRE$C_MACTXTCAS Treat character case as it is for
macro and text libraries
9-20 Reserved by Digital

The input of uppercase and lowercase characters is treated differently for
help, object, macro, and text libraries. For details, see the VMS Librarian
Utility Manual.

dns

VMS usage: char_string
type: character string
access: read only

mechanism: by descriptor

Default file specification. The dns argument is the address of the string
descriptor that points to the default file specification. See the VMS Record
Management Services Manual for details about how defaults are processed.

LBR-47

Librarian (LBR) Routines

LBR$OPEN
rifna
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Related file name. The rlfna argument is the address of a VMS RMS
NAM block pointing to the related file name. If you do not specify rifna,
no related file name processing occurs. If a related file name is specified,
only the file name, type, and version fields of the NAM block are used
for related name block processing. The device and directory fields are not
used. See the VMS Record Management Services Manual for details on
processing related file names.
ns
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor
Resultant file specification returned. The rns argument is the address
of a string descriptor pointing to a buffer that is to receive the resultant
file specification string. If an error occurs during an attempt to open the
library, the expanded name string is returned instead.
rnslen
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference
Length of the resultant or expanded file name. The rnslen argument
is the address of a longword receiving the length of the resultant file
specification string (or the length of the expanded name string if there was
an error in opening the library).

R
DESCRIPTION You can call this routine only after you call LBR$INI_CONTROL and

LBR-48

before you call any other librarian routine except LBR$OUTPUT _HELP.

When the library is successfully opened, the librarian routine reads the
library header into memory and sets the default index to 1.

If the library cannot be opened because it is already open for a write
operation, LBR$OPEN retries the open operation every second for a
maximum of 30 seconds before returning the VMS RMS error, RMS$_FLK,
to the caller.

Librarian (LBR) Routines
LBR$SOPEN

CONDITION
VALUES
RETURNED

LBR$_OLDLIBRARY

LBR$_ERRCLOSE

LBR$_ILLCREOPT
LBR$_ILLCTL
LBRE_ILLFMT
LBR$_ILLFUNC
LBR$_LIBOPN
LBR$_NOFILNAM

LBR$_OLDMISMCH

LBR$_TYPMISMCH

Success. The specified library has been opened; the
library was created with an old library format.

Error. When the library was last modified while
opened for write access, the write operation was
interrupted. This left the library in an inconsistent
state.

Requested create options not valid or not supplied.
Specified library control index not valid.

Specified library format not valid.

Specified library function not valid.

Specified library already open.

Error. The fns argument was not supplied or the VAX
RMS NAM block was not filled in.

Requested library function conflicts with old library
type specified.

Library type does not match the requested type.

LBR-49

Librarian (LBR) Routines
LBR$OUTPUT_HELP

LBRSOUTPUT_HELP Output Help Messages

The LBR$OUTPUT_HELP routine outputs help text to a user-supplied
output routine. The text is obtained from an explicitly named help library

or, optionally, from user-specified default help libraries. An optional prompting
mode is available that enables LBR$OUTPUT_HELP to interact with you and
continue to provide help information after the initial help request has been
satisfied.

LBR$OUTPUT_HELP output_routine j,output_widthj
[line_desc] [,library_name]
[,flags] [,input_routine]

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS

LBR-50

output_routine

VMS usage: procedure

type: procedure entry mask

access: write only

mechanism: by reference

Name of a routine that writes help text a line at a time. The output_
routine argument is the address of the entry mask of the routine to call.
You should specify either the address of LIB$PUT_OUTPUT or a routine
of your own that has the same calling format as LIB§PUT_OUTPUT.

output width

VMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by reference

Width of the help-text line to be passed to the user-supplied output
routine. The output_width argument is the address of a longword
containing the width of the text line to be passed to the user-supplied
output routine. If you omit output_width or specify it as 0, the default
output width is 80 characters per line.

Librarian (LBR) Routines
LBR$OUTPUT_HELP

line_desc

VMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Contents of the help request line. The line_desc argument is the address
of a string descriptor pointing to a character string containing one or more
help keys defining the help requested, for example, the HELP command
line minus the HELP command and HELP command qualifiers. The
default is a string descriptor for an empty string.

library_name

VMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Name of the main library. The library_name argument is the address
of a string descriptor pointing to the main library file specification string.
The default is a null string, which means you should use the default help

libraries. If you omit the device and directory specifications, the default is
SYS$HELP. The default file type is HLB.

flags

VMS usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by reference
Flags specifying help output options. The flags argument is the address of
an unsigned longword that contains the following flags.

Flag Description

HLP$M_PROMPT When set, interactive help prompting is in effect.

HLP$M_PROCESS When set, the process logical name table is searched for
default help libraries.

HLP$M_GROUP When set, the group logical name table is searched for group
default help libraries.

HLP$M_SYSTEM When set, the system logical name table is searched for
system default help libraries.

HLP$M_LIBLIST When set, the list of default libraries available is output with the
list of topics available.
HLP$M_HELP When set, the list of topics available in a help library is

preceded by the major portion of the text on HELP.

(The $HLPDEF macro in SYS$LIBRARY:STARLET.MLB defines these flag
symbols.)

If you omit this longword, the default is for prompting and all default
library searching to be enabled, but no library list will be generated and
no help text will precede the list of topics.

LBR-51

Librarian (LBR) Routines
LBR$OUTPUT_HELP

input_routine

VMS usage: procedure

type: procedure entry mask

access: read only

mechanism: by reference

Routine used for prompting. The input_routine argument is the address
of the entry mask of the prompting routine. You should specify either the
address of LIB§GET_INPUT or a routine of your own that has the same
calling format as LIB§GET_INPUT. This argument must be supplied when
the HELP command is run in prompting mode (that is, HLP$M_PROMPT
is set or defaulted).

DESCRIPTION

LBR-52

The LBR$OUTPUT_HELP routine provides a simple, one-call method to
initiate an interactive help session. Help library bookkeeping functions,
such as LBR$INI_CONTROL and LBR$OPEN, are handled internally.
You should not call LBR$INI_CONTROL or LBR$OPEN before you issue a
call to LBR$OUTPUT_HELP.

LBR$OUTPUT_HELP accepts help keys in the same format as LBR$GET_
HELP, with the following qualifications:

e If the keyword HELP is supplied, help text on HELP is output,
followed by a list of HELP subtopics available.

If no help keys are provided or if the line_desc argument is 0, a list of
topics available in the root library is output.

¢ If the line_desc argument contains a list of help keys, then each key
must be separated from its predecessor by a slash (/) or by one or
more spaces.

* The first key can specify a library to replace the main library as the
root library (the first library searched) in which LBR$OUTPUT_HELP
searches for help. A key used for this purpose must have the form
<@filespec>, where filespec is subject to the same restrictions as the
library_name argument. If the specified library is an enabled user-
defined default library, then filespec can be abbreviated as any unique
substring of that default library’s logical name translation.

In default library searches, you can define one or more default libraries
for LBR§OUTPUT_HELP to search for help information not contained in
the root library. You do this by equating logical names (HLP$LIBRARY,
HLP$LIBRARY 1, ... ,HLP$LIBRARY_999) to the file specifications

of the default help libraries. You can define these logical names in the
process, group, or system logical name table.

If default library searching is enabled by the flags argument,
LBR$OUTPUT_HELP uses those flags to determine which logical name
tables are enabled and then automatically searches any user default
libraries that have been defined in those logical name tables. The library
search order proceeds as follows: root library, main library (if specified
and different from the root library), process libraries (if enabled), group
libraries (if enabled), system libraries (if enabled). If the requested help
information is not found in any of these libraries, LBR$OUTPUT_HELP
returns to the root library and issues a “help not found” message.

Librarian (LBR) Routines
LBR$OUTPUT_HELP

To enter an interactive help session (after your initial request for help
has been satisfied), you must set the HLP$M_PROMPT bit in the flags

argument.

You can encounter four different types of prompt in an interactive help
session. Each type represents a different level in the hierarchy of help
available to you:

1 If the root library is the main library and you are not currently
examining HELP for a particular topic, the prompt Topic? is output.

2 If the root library is a library other than the main library and if you
are not currently examining HELP for a particular topic, a prompt of
the form @<library-spec>Topic? is output.

3 If you are currently examining HELP for a particular topic (and
subtopics), a prompt of the form <keyword...>subtopic? is output.

4 A combination of 2 and 3.

When you encounter one of these prompt messages, you can respond
in any one of several ways. Each type of response and its effect on
LBR$OUTPUT_HELRP in each prompting situation is described in the
following table.

Response Action in the Current Prompt Environment'

keyword [...] (1,2) Search all enabled libraries for these keys.

(8,4) Search additional help for the current topic (and
subtopic) for these keys.

@filespec [keyword[. . .]] (1,2) Same as above, except that the root library is
the library specified by filespec. If the specified library
does not exist, treat @filespec as a normal key.

(8,4) Same as above; treat @filespec as a normal
key.

? (1,2) Display a list of topics available in the root
library.

(3,4) Display a list of subtopics of the current topic
(and subtopics) for which help exists.

Carriage Return (1) Exit from LBROUTPUT_HELP.
(2) Change root library to main library.

(8,4) Strip the last keyword from a list of keys defining
the current topic (and subtopic) environment.

CTRWZ (1,2,3,4) Exit from LBRSOUTPUT_HELP.

'Keyed to the prompt in the preceding list.

LBR-53

Librarian (LBR) Routines
LBR$OUTPUT_HELP

SA?E[?ErgON LBR$_ILLINROU
RETURNED LBR$_ILLOUTROU

LBR$_NOHLPLIS
LBR$_TOOMNYARG
LBR$_USRINPERR

LBR-54

Input routine improperly specified or omitted.
Output routine improperly specified or omitted.
Error. No default help libraries can be opened.
Error. Too many arguments were specified.

Error. An error status was returned by the user-
supplied input routine.

Librarian (LBR) Routines
LBR$PUT_END

LBR$SPUT_END Write an End-of-Module Record

The LBR$PUT_END routine marks the end of a sequence of records written
to a library by the LBR$PUT_RECORD routine.

FORMAT

LBR$PUT_END ibrary_index

RETURNS

VMS usage: cond_value

type: fongword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENT

DESCRIPTION

library_index

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
library_index argument is the address of a longword containing the
index.

Call LBR$PUT_END after you write data records to the library with the
LBR$PUT_RECORD routine. LBR$PUT_END terminates a module by
attaching a 3-byte logical end-of-file record (hexadecimal 77,00,77) to the
data.

CONDITION
VALUES
RETURNED

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

LBR-55

Librarian (LBR) Routines
LBR$PUT_HISTORY

LBR$PUT HISTORY Write an Update History

Record

The LBR$PUT_HISTORY routine adds an update history record to the end of
the update history list.

FORMAT LBR$PUT_HISTORY library_index ,record_desc
RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.
ARGUMENTS library_index
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Library control index returned by the LBR$INI_CONTROL routine. The
library_index argument is the address of the longword that contains the
index.
record_desc
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor
Library history record. The record_desc argument is the address of a
string descriptor pointing to the record to be added to the library update
history.
DESCRIPTION LBR$PUT_HISTORY writes a new update history record. If the library

LBR-56

already contains the maximum number of history records (as specified at
creation time by CRE$L_LUHMAX, see LBR$OPEN for details), the oldest
history record is deleted before the new record is added.

Librarian (LBR) Routines
LBR$PUT_HISTORY

CONDITION
VALUES
RETURNED

LBR$_NORMAL
LBR$_NOHISTORY

LBR$_INTRNLERR
LBR$_RECLNG

Normal exit from the routine.

No update history. This is an informational code, not
an error code.

Internal librarian error.

Record length greater than that specified by LBR$C_
MAXRECSIZ. The record was not inserted or
truncated.

LBR-57

Librarian (LBR) Routines
LBR$PUT_RECORD

LBR$PUT _RECORD Write a Data Record

The LBR$PUT_RECORD routine writes a data record beginning at the next
free location in the library.

FORMAT LBR$PUT_RECORD Iibfary_inqex ,bufdes ,ixtrfa
RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.
ARGUMENTS library_index

LBR-58

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
library_index argument is the address of the longword that contains the
index.

bufdes

VMS usage: char_string
type: character string
access: read only

mechanism: by descriptor
Record to be written to the library. The bufdes argument is the address
of a string descriptor pointing to the buffer containing the output record.

txtrfa

VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

Record’s file address (RFA) of the module header. The txtrfa argument is
the address of a 2-longword array receiving the RFA of the newly created
module header upon the first call to LBR$PUT_RECORD.

Librarian (LBR) Routines
LBR$PUT_RECORD

DESCRIPTION

If this is the first call to LBR$PUT_RECORD, this routine first writes a
module header and returns its RFA to the 2-longword array pointed to by
txtrfa. LBR$PUT_RECORD then writes the supplied data record to the
library. On subsequent calls to LBR$PUT_RECORD, this routine writes
the data record beginning at the next free location in the library (after the
previous record). The last record written for the module should be followed
by a call to LBR$PUT_END.

CONDITION
VALUES
RETURNED

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

L.BR-59

Librarian (LBR) Routines
LBR$REPLACE_KEY

LBR$REPLACE_KEY Replace a Library Key

The LBR$REPLACE_KEY routine inserts a key in an index by changing the
pointer associated with an existing key or by inserting a new key.

FORMAT LBRSREPLACE_KEY library_index ,key_name ,oldrfa
,newrfa

RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. Most utility routines return a condition value
in RO. Condition values that this routine can return are listed under
CONDITION VALUES RETURNED.

ARGUMENTS library_index

LBR-60

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The
!il()irary_index argument is the address of the longword that contains the
index.

key_name

VMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Library key (for libraries with ASCII keys). The key_name argument is
the address of a string descriptor for