

VMS Debugger Manual

Order Number: AA-LA59C-TE

June 1990

This manual explains the features of the VMS Debugger for programmers in
high-level languages and assembly language.

Revision/Update Information: This manual supersedes the VYMS
Debugger Manual, Version 5.2.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop—VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GlGl ReGIS VMS
DECnet HSC ULTRIX vT

DECUS LiveLink UNIBUS XUl
DECwindows LNO3 VAX "
DECwriter MASSBUS VAXcluster dilglilt]al1]

The following is a third-party trademark:

PostScript is a registered trademark of Adobe Systems Incorporated.

ZK4538

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LNO3 laser printer
and PostScript printers (PrintServer 40 or LNO3R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE XXV

PARTI USING THE DEBUGGER: DECWINDOWS

INTERFACE
CHAPTER 1 INTRODUCTION TO THE DEBUGGER: DECWINDOWS

INTERFACE 1-1
1.1 OVERVIEW OF THE DEBUGGER 1-1
1.2 STARTING A DEBUGGING SESSION 1-2
1.2.1 Compiling and Linking a Program to Prepare for Debugging __ 1-2
1.2.2 Establishing the Debugging Configuration 1-3
1.2.3 Invoking the Debugger 1-4
1.3 DEBUGGER WINDOWS AND MENUS 1-6
1.3.1 Debugger Main Window 1-6
1.3.2 Debugger Predefined Windows 1-9
1.3.2.1 Predefined Source Window (SRC) « 1-10
1.3.2.2 Predefined Output Window (OUT) « 1-10
1.3.2.3 Predefined Automatic Window (AUTO) « 1-11
1.3.2.4 Predefined Instruction Window (INST) « 1-11
1.3.2.5 Predefined Register Window (REG) « 1-12
1.3.3 Using the Pop-Up Menu 1-12
14 GETTING STARTED WITH THE DEBUGGER 1-13
1.4.1 Setting a Breakpoint 1-13
1.4.2 Executing the Program to the Breakpoint 1-14
14.3 Executing the Program into a Called Routine 1-15
14.4 Displaying the Current Value of a Variable 1-15
145 Assigning a Value to the Variable 1-17

14.6 Displaying Source Code for the Calling Routine 1-18

Contents

vi

1.5 USING THE DEBUGGER 1-19
1.5.1 Displaying Online Help About the Debugger 1-19
1.5.1.1 Displaying Context-Sensitive Help « 1-19
1.5.1.2 Displaying the Overview Help Topic and Subtopics « 1-20
1.5.1.3 Displaying Help About the Debugger’s Command Interface « 1-20
1.5.2 Debugger Diagnostic Messages 1-20
153 Interrupting Program Execution and Aborting Debugger
Operations 1-21

1.5.4 Ending a Debugging Session 1-21
15.5 Displaying Source Code 1-21
1.5.6 Displaying Decoded VAX Instructions 1-22
15.7 Specifying Address Expressions in Dialog Boxes 1-23
1.5.8 Controlling and Monitoring Program Execution 1-23
1.5.8.1 Starting or Resuming Program Execution « 1-24
1.5.8.2 Executing the Program by Step Unit « 1-24
1.5.8.3 Suspending and Tracing Execution with Breakpoints and

Tracepoints « 1~24
1.5.8.4 Monitoring Changes in Variables with Watchpoints « 1-25
159 Examining and Manipulating Program Data 1-25
1.5.9.1 Operations with Variables « 1-25
1.5.9.2 Operations with Code Locations * 1-26
1.5.9.3 Operations with Addresses or Registers * 1-26
1.5.9.4 Evaluating Language Expressions « 1-27
1.5.10 Controlling Access to Symbols in Your Program 1-27
1.5.10.1 Setting and Canceling Modules « 1-27
1.5.10.2 Resolving Symbol Ambiguities ¢« 1-28
1.5.11 Using the Debugger’s Command Interface 1-28
1.5.12 Using Log Files, Initialization Files, Command Procedures ____ 1-29
1.5.13 Debugging Multilanguage Programs 1-29
1.5.14 Debugging Shareable Images and Ada Tasking Programs ____ 1-30
1.5.15 Debugging Multiprocess Programs 1-30
1.5.16 Debugging Vectorized Programs 1-30
1.5.17 Using the Keypad to Enter Commands 1-31
1.6 ADDITIONAL OPTIONS FOR INVOKING THE DEBUGGER 1-33
1.6.1 Invoking the Debugger from a FileView Window 1-33
1.6.2 Invoking the Debugger with the DCL DEBUG Command 1-34
1.6.3 Overriding the Debugger’s Default Interface 1-34
1.6.3.1 Displaying the Debugger’'s DECwindows Interface on Another

Workstation « 1-35
1.6.3.2 Displaying the Command Interface in a DECterm Window « 1-35
1.6.3.3 Displaying the Command Interface and Program Input/Output in

Separate DECterm Windows « 1-36
1.6.3.4 Explanation of DBG$DECWS$DISPLAY and

DECWS$DISPLAY - 1-37

Contents

1.7 SAMPLE PROGRAM EIGHTQUEENS 1-38
PARTII USING THE DEBUGGER: COMMAND
INTERFACE
CHAPTER 2 INTRODUCTION TO THE DEBUGGER: COMMAND

INTERFACE 2-1
2.1 OVERVIEW OF THE DEBUGGER 2-1
211 Functional Features 2-2
21.2 Convenience Features 2-4
22 GETTING STARTED WITH THE DEBUGGER 2-5
221 Compiling and Linking a Program to Prepare for Debugging __ 2-6
222 Establishing the Debugging Configuration 2-6
223 Invoking the Debugger 2-7
224 Ending a Debugging Session 2-7
225 Interrupting Program Execution and Aborting Debugger

Commands 2-8

22,6 Entering Debugger Commands 2-8
227 Displaying Source Code 2-9
22741 Noscreen Mode * 2-9
2272 Screen Mode « 2-12
2.2.8 Controlling and Monitoring Program Execution 2-13
2.2.8.1 Starting or Resuming Program Execution « 2-13
2.28.2 Executing the Program by Step Unit « 2-14
2.2.8.3 Determining Where Execution Is Suspended + 2-15
2.28.4 Suspending Program Execution with Breakpoints ¢« 2-15
2285 Tracing Program Execution with Tracepoints « 2-16
2.2.8.6 Monitoring Changes in Variables with Watchpoints « 2-17
229 Examining and Manipulating Program Data 2-18
2.2.9.1 Displaying the Value of a Variable « 2-19
2292 Assigning a Value to a Variable « 2-20
2293 Evaluating Language Expressions « 2-20
22.10 Controlling Access to Symbols in Your Program 2-21
2.2.10.1 Setting and Canceling Modules « 2-21
2.2.10.2 Resolving Symbol Ambiguities « 2-22

vii

Contents

23 A SAMPLE DEBUGGING SESSION 2-23
24 DEBUGGER COMMAND SUMMARY 2-27
241 Starting and Ending a Debugging Session 2-27
24.2 Controliing and Monitoring Program Execution 2-27
243 Examining and Manipulating Data 2-28
244 Controlling Type Selection and Radix 2-28
24.5 Controlling Symbol Lookup and Symbolization 2-28
2.4.6 Displaying Source Code 2-29
247 Using Screen Mode 2-29
24.8 Editing Source Code 2-30
24.9 Defining Symbols 2-30
24.10 Using Keypad Mode 2-30
2.4.11 Using Command Procedures, Log Files, and Initialization Files 2-31
24.12 Using Control Structures 2-31
2413 Debugging Multiprocess Programs 2-31
2.4.14 Additional Commands 2-32

CHAPTER 3 CONTROLLING AND MONITORING PROGRAM

viii

EXECUTION 3-1

3.1 STARTING AND ENDING A DEBUGGING SESSION 3-1
3.1.1 Invoking the Debugger with the DCL RUN Command 3-1
3.1.2 Invoking the Debugger with the DCL DEBUG Command 3-4
3.1.3 Ending a Debugging Session 3-5
3.2 INTERRUPTING AND RESUMING A DEBUGGING SESSION 3-5
3.3 COMMANDS USED TO EXECUTE THE PROGRAM 3-6
34 EXECUTING THE PROGRAM BY STEP UNIT 3-7
3.4.1 Changing the STEP Command Behavior 3-8
3.4.2 Stepping into and over Routines 3-8
35 SUSPENDING AND TRACING EXECUTION WITH BREAKPOINTS AND

TRACEPOINTS 3-9
3.5.1 Setting Breakpoints or Tracepoints on Individual Program

Locations 3-11
3.5.1.1 Specifying Symbolic Addresses * 3-11
3.5.1.2 Specifying Locations in Memory « 3-13

Contents

3.5.1.3 Obtaining and Symbolizing Memory Addresses « 3-13
3.5.2 Setting Breakpoints or Tracepoints on Lines or Instructions __ 3-14
3.5.3 Controlling Debugger Action at Breakpoints or Tracepoints ___ 3-14
3.5.4 Setting Breakpoints or Tracepoints on Exceptions 3-16
3.5.5 Setting Breakpoints or Tracepoints on Language-Specific

Events 3-16
3.5.6 Canceling Breakpoints or Tracepoints 3-17
3.6 MONITORING CHANGES IN VARIABLES AND OTHER PROGRAM

LOCATIONS 3-17
3.6.1 Watchpoint Options 3-19
3.6.2 Watching Nonstatic Variables 3-20
3.6.2.1 Execution Speed « 3-20
3.6.2.2 Setting a Watchpoint on a Nonstatic Variable « 3-21
3.6.2.3 Options for Watching Nonstatic Variables * 3-21
3.6.2.4 Setting Watchpoints in Installed Writeable Shareable

Images « 3-22
3.7 HOW THE DEBUGGER CONTROLS PROGRAM EXECUTION 3-22
CHAPTER 4 EXAMINING AND MANIPULATING PROGRAM DATA 4-1

4.1 GENERAL CONCEPTS 4-1
4.1.1 Accessing Variables While Debugging 4-1
4.1.2 Using the EXAMINE Command 4-2
4.1.3 Using the DEPOSIT Command 4-3
414 Address Expressions and Their Associated Types 4-4
41.5 Evaluating Language Expressions 4-5
41.5.1 Using Variables in Language Expressions « 4-6
4152 Numeric Type Conversion by the Debugger « 4-7
4.1.6 Address Expressions Compared to Language Expressions ____ 4-8
41.7 Specifying the Current, Previous, and Next Entity 4-8
4.1.8 Language Dependencies and the Current Language 4-10
41.9 Specifying a Radix for Entering or Displaying Integer Data ___ 4-11
4.1.10 Obtaining and Symbolizing Memory Addresses 4-13
4.2 EXAMINING AND DEPOSITING INTO VARIABLES 4-15
421 Scalar Types 4-15
422 ASCII String Types 4-16
423 Array Types 4-17
424 Record Types 4-18
425 Pointer (Access) Types 4-19

Contents

4.3 EXAMINING AND DEPOSITING VAX INSTRUCTIONS 4-20
4.3.1 Examining VAX Instructions 4-20
432 Depositing VAX Instructions 4-22
44 EXAMINING AND DEPOSITING INTO REGISTERS 4-23
4.4.1 The Processor Status Longword (PSL) 4-24
4.5 SPECIFYING A TYPE WHEN EXAMINING AND DEPOSITING 4-25
4.5.1 Defining a Type for Locations Without a Symbolic Name 4-25
45.2 Overriding the Current Type 4-26
4.5.2.1 Integer Types « 4-27
4522 ASCII String Type « 4-28
4523 User-Declared Types * 4-28
CHAPTER 5 CONTROLLING ACCESS TO SYMBOLS IN YOUR
PROGRAM 5-1

5.1 CONTROLLING SYMBOL INFORMATION WHEN COMPILING AND

LINKING 5-2
5.1.1 Compiling 5-3
5.1.2 Local and Global Symbols 5-4
5.1.3 Linking 54
5.1.4 Controlling Symbol Information in Debugged Images 5-6
5.2 SETTING AND CANCELING MODULES 5-6
5.3 RESOLVING SYMBOL AMBIGUITIES 5-7
5.3.1 Symbol Lookup Conventions 5-8
5.3.2 Using SHOW SYMBOL and Path Names to Specify Symbols

Uniquely 5-9
5.3.2.1 Simplifying Path Names » 5-10
5.3.2.2 Specifying Symbols in Routines on the Call Stack « 5-10
5.3.2.3 Specifying Global Symbols « 5-10
5.3.24 Specifying Routine Invocations « 5-11
53.3 Using SET SCOPE to Specify a Symbol Search Scope 5-11
54 DEBUGGING SHAREABLE IMAGES 5-12
5.4.1 Compiling and Linking Shareable Images for Debugging — 5-12
54.2 Accessing Symbols in Shareable Images 5-14
5.4.2.1 Accessing Symbols in the PC Scope (Dynamic Mode) + 514

5.4.2.2
5.4.2.3

Accessing Symbols in Arbitrary Images * 5-15

Accessing Universal Symbols in Run-Time Libraries and System

Images + 5-16

Contents

CHAPTER 6 CONTROLLING THE DISPLAY OF SOURCE CODE 6-1
6.1 HOW THE DEBUGGER OBTAINS SOURCE CODE INFORMATION 6-1
6.2 SPECIFYING THE LOCATION OF SOURCE FILES 6-2
6.3 DISPLAYING SOURCE CODE BY SPECIFYING LINE NUMBERS 6-3
6.4 DISPLAYING SOURCE CODE BY SPECIFYING CODE ADDRESS

EXPRESSIONS 6-5
6.5 DISPLAYING SOURCE CODE BY SEARCHING FOR STRINGS 6—6
6.6 CONTROLLING SOURCE DISPLAY AFTER STEPPING AND AT EVENT

POINTS 6-7
6.7 SETTING MARGINS FOR SOURCE DISPLAY 6-9

CHAPTER 7 USING SCREEN MODE 7-1
7.1 CONCEPTS AND TERMINOLOGY 7-2
7.2 DEBUGGER PREDEFINED DISPLAYS 7-4
7.21 Predefined Source Display (SRC) 7-4
7.2.1.1 Displaying Source Code in Arbitrary Program Locations ¢ 7-6
7.21.2 Displaying Source Code for a Routine on the Call Stack « 7-7
7.2.2 Predefined Output Display (OUT) 7-7
7.2.3 Predefined Prompt Display (PROMPT) 7-7
7.24 Predefined Instruction Display (INST) 7-8
7.2.41 Displaying the Instruction Display « 7-9
7.242 Displaying Instructions in Arbitrary Program Locations ¢« 7-10
7.2.4.3 Displaying Instructions for a Routine on the Call Stack « 7-10
7.25 Predefined Register Display (REG) 7-10

xi

Contents

7.3 MANIPULATING EXISTING DISPLAYS 7-11
7.3.1 Scrolling a Display 7-12
7.3.2 Showing, Hiding, Removing, and Canceling a Display 7-12
7.3.3 Moving a Display Across the Screen 7-13
7.34 Expanding or Contracting a Display 7-14
7.4 CREATING A NEW DISPLAY 7-14
7.5 SPECIFYING A DISPLAY WINDOW 7-15
7.5.1 Specifying a Window in Terms of Lines and Columns 7-15
7.5.2 Predefined Windows 7-15
7.5.3 Creating a New Window Definition 7-16
7.6 SPECIFYING THE DISPLAY KIND 7-16
7.6.1 DO (command[; . . .]) Display Kind 7-17
7.6.2 INSTRUCTION Display Kind 7-18
7.6.3 INSTRUCTION (command) Display Kind 7-18
7.6.4 OUTPUT Display Kind 7-19
7.6.5 REGISTER Display Kind 7-19
7.6.6 SOURCE Display Kind 7-20
7.6.7 SOURCE (command) Display Kind 7-20
7.6.8 PROGRAM Display Kind 7-21
7.7 ASSIGNING DISPLAY ATTRIBUTES 7-21
7.8 A SAMPLE DISPLAY CONFIGURATION 7-23
7.9 SAVING DISPLAYS AND THE SCREEN STATE 7-24
7.10 CHANGING THE SCREEN HEIGHT AND WIDTH 7-24
CHAPTER 8 ADDITIONAL CONVENIENCE FEATURES 8-1
8.1 USING DEBUGGER COMMAND PROCEDURES 8-1
8.11 Basic Conventions 8-1
8.1.2 Passing Parameters to Command Procedures 8-2

xii

Contents

8.2 USING A DEBUGGER INITIALIZATION FILE 84
8.3 LOGGING A DEBUGGING SESSION INTO A FILE 8-5
84 DEFINING SYMBOLS FOR COMMANDS, ADDRESS EXPRESSIONS, AND

VALUES 8-6
8.4.1 Defining Symbols for Commands 87
8.4.2 Defining Symbols for Address Expressions 8-7
8.4.3 Defining Symbols for Values 8-8
8.5 ASSIGNING COMMANDS TO FUNCTION KEYS 8-8
8.5.1 Basic Conventions 8-8
8.5.2 Advanced Techniques 8-9
8.6 USING CONTROL STRUCTURES TO ENTER COMMANDS 8-10
8.6.1 FOR Command 8-10
8.6.2 IF Command 8-10
8.6.3 REPEAT Command 8-11
8.6.4 WHILE Command 811
8.6.5 EXITLOOP Command 8-11
8.7 CALLING ROUTINES INDEPENDENTLY OF PROGRAM

EXECUTION 8-11

CHAPTER 9 DEBUGGING SPECIAL CASES 9-1

9.1 DEBUGGING OPTIMIZED CODE 9-1
9.1.1 Eliminated Variables 9-2
9.1.2 Changes in Coding Order 9-3
9.1.3 Use of Registers 9-4
9.14 Use of Condition Codes 9-5
9.2 DEBUGGING SCREEN-ORIENTED PROGRAMS 9-5
9.2.1 Setting the Protection to Allocate a Terminal 9-7
9.3 DEBUGGING MULTILANGUAGE PROGRAMS 9-7
9.3.1 Controlling the Current Debugger Language 9-8
9.3.2 Specific Differences Among Languages 9-9
9.3.2.1 Default Radix « 9-9

xiii

Contents

9.3.2.2 Evaluating Language Expressions « 9-9

9.3.2.3 Arrays and Records « 9-10

9.3.24 Case Sensitivity + 9-10

9.3.25 Initialization Code + 9-10

9.3.2.6 Ada Predefined Breakpoints + 9—11

9.4 DEBUGGING EXCEPTIONS AND CONDITION HANDLERS 9-11

9.4.1 Setting Breakpoints or Tracepoints on Exceptions 9-12

9.4.2 Resuming Execution at an Exception Breakpoint 9-12

9.4.3 Effect of Debugger on Condition Handling 9-14

9.4.3.1 Primary Handler « 9-15

9.4.3.2 Secondary Handler « 9-15

9.4.3.3 Call-Frame Handlers (Application-Declared) « 9-15

9.4.34 Final and Last-Chance Handlers » 9-16

9.44 Exception-Related Built-In Symbols 9-16

9.5 DEBUGGING EXIT HANDLERS 9-17

9.6 DEBUGGING AST-DRIVEN PROGRAMS 9-18

9.6.1 Disabling and Enabling the Delivery of ASTs 9-18

9.6.2 Call Frames Associated with ASTs in SHOW CALLS Display 9-18
CHAPTER 10 DEBUGGING MULTIPROCESS PROGRAMS 10-1

10.1 GETTING STARTED 10-1

10.1.1 Establishing a Multiprocess Debugging Configuration 10-1

10.1.2 Invoking the Debugger 10-1

10.1.3 Visible Process and Process-Specific Commands 10-2

10.1.4 Obtaining Information about Processes 10-3

10.1.5 Bringing a Spawned Process Under Debugger Control 104

10.1.6 Broadcasting Commands to Specified Processes 10-5

101.7 Controlling Execution 10-6

10.1.7.1 Controlling Execution with SET MODE NOINTERRUPT - 10-7

10.1.7.2 Putting Specified Processes on Hold « 10-7

10.1.8 Changing the Visible Process 10-8

10.1.9 Dynamic Process Setting 10-8

10.1.10 Monitoring the Termination of Images 10-9

10.1.11 Ending the Debugging Session 10-9

10.1.12 Terminating Specified Processes 10-10

10.1.13 Interrupting Program Execution 10-10

Xiv

Contents

10.2 SUPPLEMENTAL INFORMATION 10-10
10.2.1 Debugging Configurations and Process Relationships 10-10
10.2.1.1 Establishing a Default Debugging Configuration « 10-11
10.2.1.2 Establishing a Multiprocess Debugging Configuration « 10-11
10.2.1.3 Process Relationships When Debugging « 10-12
10.2.2 Specifying Processes in Debugger Commands 10-12
10.2.3 Monitoring Process Activation and Termination 10-14
10.2.4 Interrupting the Execution of an Image to Connect it to the

Debugger 10-14
10.2.4.1 Using the CTRL/Y—DEBUG Sequence to Invoke the

Debugger « 10-14
10.2.4.2 Using the CONNECT Command to Interrupt an Image « 10-15
10.25 Screen Mode Features for Multiprocess Debugging 10-16
10.2.6 Setting Watchpoints in Global Sections i 10-17
10.2.7 Using Multiprocess Commands with the Default Configuration 10-18
10.2.8 Advanced Concepts and Possible Errors 10-18
10.2.9 System Requirements For Multiprocess Debugging 10-19
10.2.9.1 User Quotas « 10-19
10.2.9.2 System Resources ¢ 10-20
CHAPTER 11 DEBUGGING VECTORIZED PROGRAMS 11-1

11.1 OBTAINING INFORMATION ABOUT THE VECTOR PROCESSOR 11-2
11.2 CONTROLLING AND MONITORING THE EXECUTION OF VECTOR

INSTRUCTIONS 11-2
11.2.1 Executing the Program to the Next Vector Instruction 11-3
11.2.2 Setting Breakpoints and Tracepoints on Vector Instructions __ 11-3
11.2.3 Setting Watchpoints on Vector Registers 11-3
11.3 EXAMINING AND DEPOSITING INTO VECTOR REGISTERS 11-4
11.3.1 Specifying the Vector Registers and Vector Control Registers _ 114
11.3.2 Examining and Depositing into the Vector Count Register

(VCR) 114
11.3.3 Examining and Depositing into the Vector Length Register

(VLR) 11-5
11.34 Examining and Depositing into the Vector Mask Register

(VMR) 11-6
11.35 Examining and Depositing into the Vector Registers (VO to

V15) 11-7

XV

Contents

11.4 EXAMINING AND DEPOSITING VECTOR INSTRUCTIONS 11-8
11.4.1 Examining Vector Instructions and Their Operands 11-9
11.4.2 Depositing Vector Instructions 11-13
11.5 USING A MASK WHEN EXAMINING VECTOR REGISTERS OR

INSTRUCTIONS 11-13
11.5.1 Using VMR as the Default Mask 11-14
11.5.2 Using a Slice of VMR as the Mask 11-15
1153 Using a Mask Other than VMR 11-16
11.6 EXAMINING COMPOSITE VECTOR ADDRESS EXPRESSIONS 11-18
1.7 DISPLAYING THE RESULTS OF VECTOR FLOATING-POINT

EXCEPTIONS 11-20
11.8 CONTROLLING SCALAR-VECTOR SYNCHRONIZATION 11-21
1.9 CALLING ROUTINES THAT MIGHT AFFECT THE PROGRAM’S VECTOR

STATE 11-24
11.10 DISPLAYING VECTOR REGISTER DATA IN SCREEN MODE 11-24
1 DEBUGGER COMMAND FORMAT CD-3
1.1 General Format CD-3
1.2 Entering Commands at the Keyboard cD4
1.3 Entering Commands in Command Procedures CD-5
2 DEBUGGER DIAGNOSTIC MESSAGES CD-5
3 COMMANDS RECOGNIZED ONLY ON WORKSTATIONS RUNNING

VWS CD-6

Xvi

Contentis

DEBUGGER COMMAND DICTIONARY CD-6
@ (EXECUTE PROCEDURE) CD-7
ATTACH CD-9
CALL CD-10
CANCEL ALL CD-15
CANCEL BREAK CD-17
CANCEL DISPLAY CD-20
CANCEL IMAGE CD-22
CANCEL MODE CD-23
CANCEL MODULE CD-24
CANCEL RADIX CD-26
CANCEL SCOPE CD-27
CANCEL SOURCE CD-28
CANCEL TRACE CD-30
CANCEL TYPE/OVERRIDE CD-33
CANCEL WATCH CD-34
CANCEL WINDOW CD-35
CONNECT CD-36
CTRL/C CD-38
CTRL/W, CTRL/Z CD-40
CTRL/Y CD-41
DECLARE CD-44
DEFINE CD-47
DEFINE/KEY CD-50
DEFINE/PROCESS_GROUP CD-54
DELETE CD-57
DELETE/KEY CD--59
DEPOSIT CD-61
DISABLE AST CD-68
DISPLAY CD-69
DO CD-76
EDIT CD-78
ENABLE AST CD-80
EVALUATE CD-81
EVALUATE/ADDRESS CD-83
EXAMINE CD-85
EXIT CD-94
EXITLOOP CD-97
EXPAND CD-98
EXTRACT CD-101
FOR CD-103
GO CD-105
HELP CD-107
IF CD-109

MOVE Ccbh-110

xvii

Contents

xviii

QuIT

REPEAT

SAVE

SCROLL
SEARCH
SELECT

SET ABORT_KEY
SET ATSIGN

SET BREAK

SET DEFINE

SET EDITOR

SET EVENT_FACILITY
SET IMAGE

SET KEY

SET LANGUAGE
SET LOG

SET MARGINS

SET MAX_SOURCE_FILES

SET MODE

SET MODULE

SET OUTPUT

SET PROCESS

SET PROMPT

SET RADIX

SET SCOPE

SET SEARCH

SET SOURCE

SET STEP

SET TASK

SET TERMINAL

SET TRACE

SET TYPE

SET VECTOR_MODE
SET WATCH

SET WINDOW
SHOW ABORT_KEY
SHOW AST

SHOW ATSIGN
SHOW BREAK
SHOW CALLS
SHOW DEFINE
SHOW DISPLAY
SHOW EDITOR
SHOW EVENT_FACILITY
SHOW EXIT_HANDLERS

CD-112
CD-115
CD-116
CD-118
CD-120
CD-123
CD-127
CD-129
CD-130
CD-138
CD-139
CD-141
CD-142
CD-144
CD-145
CD-147
CD-148
CD-151
CD-152
CD-156
CD-159
CD-161
CD-165
CD-168
CD-170
CD-174
CD-176
CD-179
CD-182
CD-185
CD-187
CD-195
CD-198
CD-200
CD-207
CD-209
CD-210
CD-211
CD-212
CD-214
CD-216
CD-217
CD-219
CD-220
CD-221

Contents

SHOW IMAGE CD-222
SHOW KEY CD-223
SHOW LANGUAGE CD-226
SHOW LOG CD-227
SHOW MARGINS CD-228
SHOW MAX_SOURCE_FILES CD-229
SHOW MODE CD-230
SHOW MODULE CD--231
SHOW OUTPUT CD-234
SHOW PROCESS CD-235
SHOW RADIX CD-240
SHOW SCOPE CD-241
SHOW SEARCH CD-243
SHOW SELECT CD-244
SHOW SOURCE CD-246
SHOW STACK CD-248
SHOW STEP CD-249
SHOW SYMBOL CD-250
SHOW TASK CD-253
SHOW TERMINAL CD-256
SHOW TRACE CD-257
SHOW TYPE CD-259
SHOW VECTOR_MODE CD-260
SHOW WATCH CD-261
SHOW WINDOW CD-262
SPAWN CD-263
STEP CD-265
SYMBOLIZE CD-271
SYNCHRONIZE VECTOR_MODE CD-273
TYPE CD-275
WHILE CD-277
APPENDIX A COMMAND DEFAULTS A-1
APPENDIX B PREDEFINED KEY FUNCTIONS B-1
B.1 DEFAULT, GOLD, BLUE FUNCTIONS B-1

xix

Contents

B.2 KEY DEFINITIONS SPECIFIC TO LK201 KEYBOARDS B-3
B.3 KEYS THAT SCROLL, MOVE, EXPAND, CONTRACT DISPLAYS B-3
B.4 ONLINE KEYPAD KEY DIAGRAMS B-5
B.5 DEBUGGER KEY DEFINITIONS B-6
APPENDIX C SCREEN MODE REFERENCE INFORMATION C-1
C.1 DISPLAY KINDS C-1
c.2 DISPLAY ATTRIBUTES Cc-2
C3 PREDEFINED DISPLAYS Cc-3
C.3.1 SRC (Source Display) CcC-4
C.3.2 OUT (Output Display) Cc-4
C.33 PROMPT (Prompt Display) c4
Cc34 INST (Instruction Display) C-5
C.3.5 REG (Register Display) C-5
C4 SCREEN-RELATED BUILT-IN SYMBOLS Cc-6
C.4.1 Screen Height and Width C-6
Cc4.2 Display Built-In Symbols C-6
C5 SCREEN DIMENSIONS AND PREDEFINED WINDOWS Cc-7
APPENDIX D BUILT-IN SYMBOLS AND LOGICAL NAMES D-1
D.1 SS_DEBUG CONDITION D-1
D.2 LOGICAL NAMES D-1

XX

Contents

D.3 BUILT-IN SYMBOLS D-3
D.3.1 Specifying the VAX Registers D-4
D.3.2 Constructing Identifiers D4
D.3.3 Counting Parameters Passed to Command Procedures D-5
D.3.4 Controlling the Input Radix D-5
D.3.5 Specifying Program Locations and the Current Value of an
Entity D-5
D.3.6 Using Symbols and Operators in Address Expressions D-7
D.3.7 Obtaining Information About Exceptions D-10
D.3.8 Specifying Ada Tasks D-11
D.3.9 Specifying the Current, Next, and Previous Scope on the Call
Stack D-11
APPENDIX E SUMMARY OF DEBUGGER SUPPORT FOR LANGUAGES E~-1
E.1 ADA E-1
E.2 BASIC E-7
E.3 BLISS E-9
E.4 C E-10
E.5 COBOL E-12
E.6 DIBOL E-14
E.7 FORTRAN E-15
E.8 MACRO E-17
E.9 PASCAL E-19
E.10 PL/I E-22

xxi

Contents

E.11 RPG E-24
E.12 SCAN E-25
E.13 LANGUAGE UNKNOWN E-27
INDEX
EXAMPLES T
1-1 Command Procedure SEPARATE_WINDOW.COM 1-37
1-2 Sample Program EIGHTQUEENS 1-38
2-1 Sample Program SQUARES 2-23
2-2 Sample Debugging Session Using Program SQUARES _____ 2-24
FIGURES
1-1 Debugger Windows at Startup 1-5
1-2 Debugger Main Window 1-6
1-3 Main Window Pull-Down Menus 1-7
14 Data Menu and Submenus 1-7
1-5 Customize Menu and Submenus 1-8
1-6 Pop-Up Menu Over Source Window 1-12
1-7 Source Window at Debugger Startup 1-13
1-8 Setting a Breakpoint with the Pop-Up Menu 1-14
1-9 Execution Suspended at Line 60 1-14
1-10 Stepping into a Called Routine 1-15
1-11 Execution Suspended Within the Called Routine 1-15
1-12 Examining a Selected Variable with the Pop-Up Menu 1-16
1-13 Assigning a Value to a Variable 1-17
1-14 Displaying Source Code in the Calling Routine 1-18
1-15 Keypad Key Functions Predefined by the
Debugger—DECwindows Interface 1-32
2-1 Keypad Key Functions Predefined by the
Debugger-—Command Interface 2-10
2-2 Default Screen Mode Display Configuration 2-12
7-1 Default Screen Mode Display Configuration 7-2
7-2 Screen Mode Source Display When Source Code Is Not
Available 7-6

xxii

Contents

7-3 Screen Mode Instruction Display 7-9
7-4 Screen Mode Register Display 7-11
11-1 Masked Loading of Array Elements from Memory into a

Vector Register 11-12
B-1 Keypad Key Functions Predefined by the

Debugger—Command Interface B-2

TABLES

1-1 Main Window Pull-Down Menus 1-8
1-2 Main Window Status Region 1-9
1-3 Main Window Buttons 1-9
3-1 Controlling Debugger Activation with the LINK and RUN

Commands 3-3
5-1 Compiler Options for DST Symbol Information 5-3
5-2 Effect of Compiler and Linker on DST and GST Symbol

Information 5-5
10-1 Debugging States 10-3
10-2 Process Specifications 10-13
CD-1 Debugging States CD-237
B-1 Key Definitions Specific to LK201 Keyboards B-3
B-2 Keys that Change the Key State B-4
B-3 Keys that Invoke Online Help to Display Keypad Diagrams _ B-~5
B4 Debugger Key Definitions B-6

xxiii

Preface

Intended Audience

This manual is for programmers at all levels of experience. It covers both
user interfaces of the debugger:

* The VMS DECwindows interface, for workstations

* The command interface, for terminals and workstations

The debugger can be used with most VAX languages (language support
is summarized in Appendix E). This manual emphasizes usage that is
common to all or most languages. For additional information that is
specific to a particular language, see the documentation furnished with
that language.

Note that you can use the VMS Debugger only to debug code in user mode.
You cannot debug any code in supervisor, executive, or kernel modes.

If you need to debug code in other than user mode, refer to the VMS
Delta [XDelta Utility Manual, which describes the VMS DELTA/XDELTA
Utility.

Document Structure

This manual is organized in two parts:

e Part I introduces the debugger’s DECwindows interface. Additional
information about the DECwindows interface is available through
online help, as explained in Chapter 1.

¢ Part IT completely describes the debugger’s command interface:
— Chapter 2 introduces the command interface.

— The remaining chapters provide task-oriented and conceptual
information. To simplify the discussions, many details about the
debugger commands are not included in these chapters.

— The command dictionary provides complete information about the
debugger commands.

— The appendixes provide reference details about specific subjects.

Associated Documents

General information about the VMS DECwindows interface is available in
the VMS DECwindows User’s Guide.

Information about compiling and debugging that is specific to a particular
language is available in the documentation furnished with that language.

Information about VAX assembly-language instructions and the VAX
MACRO assembler is available in the VAX MACRO and Instruction Set
Reference Manual.

XXv

Preface

Information about the linking of programs and about shareable images is
available in the VMS Linker Utility Manual.

Conventions

The following conventions are used in this manual:

mouse

MB1, MB2, MB3

Ctrl/x

PF1 x

red ink

xxvi

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middie mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

A sequence such as Cirl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

A sequence such as PF1 x indicates that you must
first press and release the key labeled PF1, then
press and release another key or a pointing device
button.

In examples, a key name is shown enclosed in a box
to indicate that you press a key on the keyboard. (In
text, a key name is not enclosed in a box.)

In examples, a horizontal ellipsis indicates one of the
following possibilities:

» Additional optional arguments in a statement
have been omitted.

* The preceding item or items can be repeated one
or more times.

« Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important o the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory
name in a file specification or in the syntax of a
substring specification in an assignment statement.)

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on.

For online versions of the book, user input is shown in
bold.

Preface

boldface text Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Boldface text is also used to show user input in online
versions of the book.

UPPERCASE TEXT Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for
a system privilege.

numbers Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes—binary,
octal, or hexadecimal—are explicitly indicated.

xxvii

Partl Usingthe Debugger: DECwindows Interface

This part introduces the VMS debugger’s DECwindows interface. Additional
information about the DECwindows interface is available through online help.

For information about the debugger’s command interface, see Part Il.

1 Introduction to the Debugger: DECwindows Interface

This chapter introduces the VMS Debugger’s DECwindows interface and
provides enough information to get you started. For information about the

debugger’s command interface, see Part II of this manual, which starts
with Chapter 2.

The following information is provided in this chapter:
¢ An overview of the debugger’s main features

¢ Instructions to prepare your program for debugging and start a
debugging session

e An overview of the debugger windows and menus
¢ A sample session to get you started with the debugger v

e Introductions to most of the functions you can perform with the
debugger.

Many topics are covered very briefly. The documentation for the debugger’s
DECwindows interface consists mainly of online help, and this chapter
includes numerous references to specific topics in the debugger’s Help
menu, in the main window. The debugger’s online help system is explained
in Section 1.5.1.

To use this chapter most effectively, read it while running the debugger on
your workstation.

It is assumed that you are familiar with the general DECwindows
environment as described in the VMS DECwindows User’s Guide—
that is, you should know how to use the pointer cursor and keyboard
to manipulate windows, menus, dialog boxes, online help, and so on.

If you are already familiar with the debugger’s command interface,
including how to invoke the debugger from DCL level (as described in
Part II of this manual), you can start with Section 1.2.3.

1.1 Overview of the Debugger

The debugger is a tool that helps you locate run-time programming or logic
errors, also known as bugs. You use the debugger with a program that
has been compiled and linked successfully but does not run correctly. For
example, the program might give incorrect output, go into an infinite loop,
or terminate prematurely.

You locate errors with the debugger by observing and manipulating your
program interactively as it executes. The debugger enables you to do the
following tasks:

¢ Control the program’s execution—start the program, stop at points of
interest, resume execution, and so on

Introduction to the Debugger: DECwindows Interface
1.1 Overview of the Debugger

¢ Trace the execution path of the program

¢ Monitor changes in variables and other program entities

¢ Monitor exception conditions and language-specific events

e Examine and modify the values of variables, or force events to occur

¢ In some cases, test the effect of modifications without having to edit
the source code, recompile, and relink

These are the basic debugging techniques. After you are satisfied that
you have found the error in the program, you can edit the source code and
compile, link, and execute the corrected version.

As you use the debugger and its documentation (particularly the online
help) you will discover variations on the basic techniques. You can also
tailor the debugger for your own needs.

The debugger is a symbolic debugger. You can specify variable names,
routine names, and so on, precisely as they appear in your source code.
You do not need to specify memory addresses or VAX registers when
referring to program locations, although you can, if you want.

You can use the debugger with the following VAX languages: Ada, BASIC,
BLISS, C, COBOL, DIBOL, FORTRAN, MACRO-32, Pascal, PL/I, RPG II,
and SCAN.

The debugger recognizes the syntax, data typing, operators, expressions,
scoping rules, and other constructs of a given language. If your program is
written in more than one language, you can change the debugging context
from one language to another during a debugging session.

1.2 Starting a Debugging Session

The usual way to invoke the debugger from a DECterm window is as
follows:

1 Compile and link the program with the /DEBUG DCL command
qualifier

2 Make sure that the debugging configuration (default or multiprocess)
is appropriate for the kind of program you are going to debug

3 Invoke the debugger by entering the DCL RUN command

These steps are explained in the following sections. Additional options for
invoking the debugger are discussed in Section 1.6.

1.2.1 Compiling and Linking a Program to Prepare for Debugging

Before you can use the debugger, you must compile and link the modules
(compilation units) of your program as explained in this section. The
following example shows how to compile and link a Pascal program,
consisting of a single compilation unit named EIGHTQUEENS, before
using the debugger.

1.2.2

Introduction to the Debugger: DECwindows Interface
1.2 Starting a Debugging Session

Note: The /DEBUG and /NOOPTIMIZE qualifiers are compiler command

defaults for some languages. These qualifiers are used in the
example for emphasis.

$ PASCAL/DEBUG/NOOPTIMIZE EIGHTQUEENS
$ LINK/DEBUG EIGHTQUEENS

The /DEBUG qualifier on the compiler command (PASCAL in this

case) directs the compiler to write the symbol information associated
with EIGHTQUEENS into the object module, EIGHTQUEENS.OBJ, in
addition to the code and data for the program. This symbol information
enables you to use the names of variables and other symbols declared

in EIGHTQUEENS in debugger dialog boxes and commands. If your
program has several compilation units, you must compile each unit whose
symbols you want to reference with the /DEBUG qualifier.

Some compilers optimize the object code to reduce the size of the program
or to make it run faster. In such cases you should compile your program
with the /NOOPTIMIZE command qualifier (or equivalent). Otherwise, the
contents of some program locations might be inconsistent with what you
would expect from viewing the source code.

The /DEBUG qualifier on the LINK command causes the linker to include
all symbol information that is contained in EIGHTQUEENS.OBJ in the
executable image. The qualifier also causes the VMS image activator

to start the debugger at run time. If your program has several object
modules, you need to specify those modules in the LINK command, for
most languages.

Establishing the Debugging Configuration

Before invoking the debugger as explained in Section 1.2.3, check that the
debugging configuration is appropriate for the kind of program you are
going to debug.

You can invoke the debugger in either the default configuration or the
multiprocess configuration to debug programs that run in either one or
several processes, respectively. The configuration depends on the current
definition of the logical name DBG$PROCESS. Thus, before invoking the
debugger, enter the DCL command SHOW LOGICAL DBG$PROCESS to
determine the definition of DBG$PROCESS.

Most of this chapter covers programs that run in only one process. For
such programs, DBG$PROCESS either should be undefined, as in the
following example, or should have the value DEFAULT:

$ SHOW LOGICAL DBGS$SPROCESS
$SHOW-S-NOTRAN, no translation for logical name DBGSPROCESS

If DBG$PROCESS has the value MULTIPROCESS, and you want to
debug a program that runs in only one process, enter the following
command:

$ DEFINE DBGSPROCESS DEFAULT

For more information about multiprocess debugging, see Section 1.5.15,

Introduction to the Debugger: DECwindows Interface
1.2 Starting a Debugging Session

1.2.3 Invoking the Debugger

1-4

After you compile and link your program and establish the appropriate
debugging configuration, you can then invoke the debugger. To do so, enter
the DCL command RUN, specifying the executable image of your program
as the parameter. For example, enter the following command to debug the
program EIGHTQUEENS:

$ RUN EIGHTQUEENS

By default, the debugger comes up in the following three windows,
arranged as shown in Figure 1-1:

¢ The main window.

¢ The predefined source window SRC, which shows the source code of
the module you are debugging. The numbers shown at the left of the
source code are compiler-generated line numbers, as they might appear
in a compiler-generated listing file.

¢ The predefined output window OUT, which displays the debugger’s
output. For example, it shows the value of a variable that you are
examining.

Introduction to the Debugger: DECwindows Interface
1.2 Starting a Debugging Session

Figure 1-1 Debugger Windows at Startup

"4 VAX DEBUG: Copyright @ Digital Equipment Corporation. 1989. All Rights Reserved
m@ Current Entity: |[(no current entity)
@L‘Q] Call Frame: 0] (EIGHTQUEENS)
visible Process: |]1 (JONES_TwWad)
] Go J I Step J lExamlneI

e DEBUG: SRC — module EIGHTQUEENS

File Edit C d
[1: DROGRAM Eightqueens (QUTPUT) ; O
2 VAR
3 I : INTEGER;
4 A : ARRAY[1..8] OF BOOLEAN;
S5: B : ARRAY[2..16] OF BOOLEAN;
6: C : ARRAY[-7..7] OF BOOLEAN;
7: X : ARRAY[1..8] OF INTEGER;
8 Safe : BOOLEAN; K: INTEGER;
9:
10: PROCEDURE Print;
11 BEGIN (* Print *) v
[+

VAX DEBUG: OUT
File Edit
%DEBUG-I-INITIAL, language is PASCAL, module set to EIGHTQUEENS

I

=

4 e — | 3

ZK-0963A-GE

Windows SRC and OUT are two examples of the kinds of debugger
windows you can use to capture and display different types of data.

The message that is displayed in window OUT at debugger startup
indicates that this debugging session is initialized for a Pascal program
and that the name of the main program unit (the module containing the
image transfer address) is EIGHTQUEENS. The initialization sets up
language-dependent debugger parameters.

By default, the boxed line in window SRC indicates where execution is
currently suspended. When you start a debugging session, the debugger
usually suspends execution at the beginning of the main program (line 1,
in this example). For Ada programs and certain other kinds of programs,
execution is initially suspended at the beginning of initialization code,
before the main program, so that you can choose to execute that code
under debugger control. To execute to the beginning of the main program
in such cases, click on the Go button in the main window. See your
language documentation for more information.

You can now use the debugger to start execution, set breakpoints,
examine variables, and so on, as explained in Section 1.4 and Section 1.5.
Section 1.3 gives an overview of the debugger’s windows and menus.

1-5

13

1.3.1

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

Debugger Windows and Menus

The debugger windows consist of a main window and several predefined
windows that capture and display different kinds of data. The following
sections briefly describe these windows and the pop-up menu, which is
available from any debugger window.

For more information, choose Overview from the Help menu, then choose
Debugger Windows and Menus.

Debugger Main Window

The debugger’s main window (see Figure 1-2) includes a menu bar, a
status region, and four buttons that are labeled Go, Step, Examine, and
Stop.

Figure 1-2 Debugger Main Window

F810 call Frame: |of (E1cHTQUEENS)
Visible Process: "1 (JONES_TWA4)
I Go | l Step I | Examine I

ZK-0964A-GE

* Figure 1-3 shows the menus on the main window’s menu bar.
Figure 1-4 and Figure 1-5 show the submenus of the Data and
Customize menus, respectively. Table 1-1 summarizes the functions of
these menus and submenus.

¢ Table 1-2 summarizes the type of information displayed in the status
region fields and the functions of the associated arrow buttons.

¢ Table 1-3 summarizes the functions of the Go, Step, Examine, and
Stop buttons.

Note that the functions of the Go, Step, and Examine buttons can also be
performed through other means, such as the pop-up menu, Control menu,
or Data menu.

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

Figure 1-3 Main Window Pull-Down Menus

Quit Alt/Q || Copy Al/C | Go.. Variables 4 Show Command... Overview
Exit Ctrl/z || Paste Alt/V | gqp. . Code B || " windows... about
Break... Language Expressions... window Setups > || Using Debugger Help
Watch... Addresses or Registers > Multiprocess Window Setups >
Call.. callstack.. | Radix ..
Synchronize Modules... Language B
Vector Processor
Images... Source Files...
Exit Handlers Logging
Processes... Datatype Defaults...
Tasks... Miscellaneous Settings...
ZK-0941A-GE
Figure 1-4 Data Menu and Submenus
0 e 0 0 98 eserve E
Control D Custemize Help
Variables (=4 :
L— Examine Variable...
Code =

Deposit into Variable...

Language Expressions... :
guag v Show Variable...

Addresses or Registers >

Call stack... '——| Examine Code...
Modules... Deposit Code...
Images... Show Address...
Exit Handlers

Processes... Examine Address or Register...
Tasks... Deposit into Address or Register...
Symbolize Address or Register...

ZK-0942A-GE

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

Figure 1-5 Customize Menu and Submenus

i1 Digital Fquipment Corporation. 1989. All Rights Reserved

Data Customize

Al

Show Cl?mmand...
Windows...
Window Setups o3
..... Multlpracess Window Setups > " i)
Radix Source
Language | @ ada
Source Files... BASIC
Logging... BUISS
Datatype Defaults... ¢
Other Attributes... CcoBOL
DIBOL
FORTRAN
MAGRO
pascal [nst | Feg]
)
RPG
SCAN
Unknown

ZK-0843A-GE

Table 1-1

Main Window Pull-Down Menus

Menu

Description

File
Edit

Control

Data

Customize

Help

End the debugging session.

Copy text to the clipboard, or paste text from the clipboard to a
debugger dialog box or the COMMAND box.

Start, stop, and monitor the execution of your program under debugger
control. For example: execute to the next line or to the next

VAX assembly-language instruction; set breakpoints, tracepoints,

and watchpoints; call a routine. For vectorized programs, force
synchronization between the scalar and vector processors.

Display or manipulate data that is associated with your program. For
example: examine variables and arbitrary program locations; assign
new values to variables; evaluate language expressions; control access
to variable names, routine names, and other symbols; manipulate
multiprocess programs and Ada tasking programs. Note that the Tasks
menu item is dimmed unless you are debugging a VAX Ada program.

Tailor your debugging environment and establish default conditions.
For example: create and manipulate debugger windows; change the
programming language context; establish defaults for manipulating data
and for accessing symbols; open the COMMAND box to access the
debugger’s command interface.

Obtain conceptual and task-oriented information about the debugger.
This is an alternative to obtaining context-sensitive help on individual
itemns that are displayed on the screen (menus, buttons, dialog boxes,
and so on).

1-8

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

Table 1-2 Main Window Status Region

Label Description

Current Entity Identifies the last entity that was examined or whose value was
changed (for example, a variable or a code location). Use the
arrow buttons to display consecutive logical entities—for example,
consecutive elements of an array variable.

Call Frame Identifies the routine that the debugger uses as reference when
displaying source code in the source window or instructions in
the instruction window, or when searching for symbols that are
associated with your program (variable names, routine names,
and so on). Use the arrow buttons to reset the reference to
another call frame on the call stack.

Visible Process For a one-process program, identifies the process that is
running the program. For a multiprocess program, identifies
the process that is currently the context for entering process-
specific commands. Use the arrow buttons to reset the visible
process to another process that is under debugger control.

Table 1-3 Main Window Buttons

Button Description
Go Start execution from the current program location.
Step Execute the program one step unit of execution. By default, this is one

executable line of source code.

Examine Display the value of a variable or other entity whose name is selected in
a window, or the value of the entity last examined, if no text was selected.

Stop Interrupt program execution or a debugger operation without ending the
debugging session.

1.3.2 Debugger Predefined Windows

The debugger provides the following predefined windows that you can use
to capture and display different kinds of data:

SRC, the predefined source window

OUT, the predefined output window

AUTO, the predefined automatic window (a special output window)
INST, the predefined instruction window

REG, the predefined register window

Of these windows, only SRC and OUT are displayed, by default, at
debugger startup.

The basic features of the predefined windows are described in the next
sections. You can change certain characteristics of these windows, such as
buffer size or window attributes. You can also create additional windows
similar to the predefined windows. For more information, choose Overview
from the Help menu, then choose Debugger Windows and Menus, then
choose Debugger Predefined Windows (SRC, OUT, INST, REG, AUTO).

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

1-10

1.3.2.1

Predefined Source Window (SRC)

You can use window SRC to display source code in two basic ways:

* By default, SRC automatically displays the source code for the module
in which execution is currently suspended. This enables you to quickly
determine your current debugging context.

¢ In addition, you can use SRC to display the source code for any part of
your program.

The name of the module whose source code is displayed is shown at the

right of the window name, SRC. The numbers displayed at the left of the
source code are the compiler-generated line numbers, as they might appear
in a compiler-generated listing file.

The next paragraphs describe the behavior of SRC when it is displaying
the current location. Section 1.5.5 explains how to display source code in
arbitrary locations.

As you execute the program under debugger control, window SRC is
updated automatically whenever execution is suspended. The boxed line
indicates the next line to be executed.

If the debugger cannot locate source lines for the routine in which
execution is suspended (because, for example, the routine is a run-time
library routine), it tries to display source lines in the next routine down
on the call stack for which source lines are available. If the debugger can
display source lines for such a routine, it issues the following message:

$DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
Displaying source in a caller of the current routine.

In such cases, the boxed line in the source window identifies the line to
which execution returns after the routine call. Depending on the source
language and coding style, this might be the line that contains the call

statement or the next line.

If your program was optimized during compilation, the source code
displayed in window SRC might not always represent the code that is
actually executing. The predefined instruction window INST is useful in
such cases, because it shows the exact VAX instructions that are executing.
See Section 1.3.2.4.

1.3.2.2 Predefined Output Window (OUT)

Window OUT is a general purpose output window. By default, it displays
the following information:

¢ Any debugger output that is not directed to windows SRC, INST, or
AUTO. For example, if window INST is not displayed or does not have

the instruction attribute, any output that would otherwise update
window INST is displayed in window OUT.

* Debugger diagnostic messages. Messages with a severity level greater
than I (informational) are also displayed in a message box (see
Section 1.5.2).

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

Note that, when displaying variable names, routine names, and other
symbolic address expressions, the debugger adds a path name prefix to
the name. The path name prefix identifies the nesting program elements
in which the entity was declared in the program. For example, if you
examined a variable K, whose value was 26, in routine SWAP of module
SWAP_PACK, the debugger might display the following output:

SWAP_PACK\SWAP\K: 26
In this case, SWAP_PACK\ SWAP\ is the path name prefix.

In most cases, you do not need to include a path name prefix when
specifying symbolic address expressions (see Section 1.5.10.2).

1.3.2.3 Predefined Automatic Window (AUTO)
Window AUTO is an automatically updating window that can be used
instead of window OUT to display the output from the following dialog
boxes, which are accessible from the Data menu:

Examine Variable
Examine Address or Register
Language Expressions

Window AUTO is created when you first click on the Display button in any
one of these dialog boxes. Thereafter, AUTO remains open until you close
it.

AUTO includes a debugger command list in its definition. Every time the
debugger gains control, AUTO is updated with the output of that command
list.

When AUTO is created, its command list consists of the Examine or
Evaluate command that was generated when you clicked on the Display
button, and it displays the output of that command.

Subsequently, every time you click on the Display button in any of the
three dialog boxes listed, the debugger appends the new command
generated to the current command list and updates AUTO to display
the output from the entire command list.

1.3.24 Predefined Instruction Window (INST)
Window INST displays the decoded VAX assembly-language instruction
stream of your program. This is the exact code that is executing, including
the effects of any compiler optimization.

You can use INST in two basic ways:

¢ By default, INST automatically displays the instructions for the
routine in which execution is currently suspended. This enables you to
quickly determine your current debugging context.

* In addition, you can use INST to display the instructions for any part
of your program.

By default, INST is not displayed on the screen. To open INST, choose
Window Setups from the Customize menu. Clicking on a window layout
of the Window Setups submenu enables you to place INST next to either
window SRC or window REG.

1-11

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

If your program was optimized during compilation, the window layout that
places windows SRC and INST side by side enables you to readily compare
the source code and the decoded instruction stream.

See Section 1.5.6 for more information about displaying instructions.

1.3.2.5 Predefined Register Window (REG)
Window REG displays the current values, in hexadecimal format, of the
VAX general registers (RO to R11, AP, FP, SP, PC), the four condition code
bits (C, V, Z, and N) of the processor status longword (PSL), and as many
of the top stack values as can be displayed through the window.

The values contained in the registers are updated each time the debugger
gains control.

By default, REG is not displayed on the screen. To open REG, choose
Window Setups from the Customize menu. Clicking on the third layout
of the Window Setups submenu enables you to place REG next to window
INST.

1.3.3 Using the Pop-Up Menu

The debugger’s pop-up menu (see Figure 1-6) enables you to perform
several common operations without having to pull down a menu in the
main window.

Figure 1-6 Pop-Up Menu Over Source Window

VAX DEBUG: SRC — module EIGHTQUEENS
File Edit Commands
37: REPEAT <
38: I := I+1;
39: Safe := A[I] AND B[I+J] AND C[I-J];
40: 1F FES THEN p——
41: BEGIN
I 'V Setqueen: Evaluate
43: X[J] = I; Step Into Routine
a4: IF J < 8 THEN
as: Trycol (J+1) Step Over Routine l
46 ELSE Step To Return
47: Print; Step By Instruction Le
Qi] Step By Line ——————»
e
Set Break
View Current Location
Go

For an explanation of the pop-up menu items, use the pop-up menu’s
context-sensitive help (see Section 1.5.1). All pop-up menu functions can
also be performed through other means.

To use the pop-up menu, proceed as follows:
1 Position the pointer cursor within a debugger window.

2 Press and hold MB2 to display the pop-up menu, then drag to the
desired menu item and release MB2.

1-12

Introduction to the Debugger: DECwindows Interface

1.3 Debugger Windows and Menus

Note that the behavior of the Examine, Evaluate, and Set Break menu
items depends on whether you selected text before invoking the pop-up
menu.

14 Getting Started with the Debugger

This section walks you through the following basic steps with a sample
program, EIGHTQUEENS. The complete source code for the program is
shown in Section 1.7.

1
2
3
4

5
6

Set a breakpoint to suspend execution at a routine call statement.
Execute the program to the breakpoint.
Execute the program into the called routine.

While execution is suspended within the routine, display the current
value of a variable.

Assign another value to the variable.

Display source code in the calling routine.

Figure 1-7 shows the source window, SRC, at debugger startup. Execution
is suspended at line 1 (the boxed line) of module EIGHTQUEENS.

Figure 1-7 Source Window at Debugger Startup

VAX DEBUG: SRC — module EIGHTQUEENS JEH|E

File Edit Commands

: PROGRAM Eightqueens (OUTPUT); O

1

2

3 I : INTEGER;

4 A : ARRAY[1..8] OF BOOLEAN;

5: B : ARRAY[2..16] OF BOOLEAN;
6: C : ARRAY[-7..7] OF BOOLEAN;
T: X : ARRAY[1..8] OF INTEGER;

8 safe : BOOLEAN; K: INTEGER;

9

0

1

10: PROCEDURE Print;
1

BEGIN (* Print *) O

A

1

1.4.1 Setting a Breakpoint

In this section, a breakpoint is set on line 60 of module EIGHTQUEENS.
Line 60, which is hidden below the window border in Figure 1-7, contains
a call to routine TRYCOL (see Figure 1-8).

Proceed as follows:

1

Scroll the source window to display line 60.

1-13

Introduction to the Debugger: DECwindows Interface
1.4 Getting Started with the Debugger

2 Double click on any part of line 60. When setting a breakpoint, you
can select any portion of a line in the source window. For example,
you could select the number 60, as shown in Figure 1-8, or the word
TRYCOL. The breakpoint would be set on line 60 in either case.

3 Choose Set Break from the pop-up menu.

A breakpoint is now set on line 60—specifically, at the beginning of line
60, before the call to routine TRYCOL is executed.

Figure 1-8 Setting a Breakpoint with the Pop-Up Menu

”ﬁ VaAX DEBUG: SRC -~ module EIGHTQUEENS
File Edit Commands
S2: Examine o
§3: BEGIN (* Eightqueens #)
S4: FOR I :=1 TO 8 DO Evaluate
55: A[I] := TRUE; Step Into Routine
ggf Fogti]:?=2T§gE%6 Do Step Over Routine
58: FOR I := -7 TO 7 DO Step To Return
59: C[I] := TRUE; Step By Instruction
Trycol(1l); Step By Li
61: WRITELN; ep Ty Line |
62: END. (* Eightqueens *) Set Break I
Al I View Current Location B
Go

1.4.2 Executing the Program to the Breakpoint

1-14

To execute the program from the current location (line 1) to the breakpoint
at line 60, click on the Go button in the main window.

When execution reaches the breakpoint, the source window is updated
automatically: line 60 is boxed, indicating that execution is now suspended
at the call statement to routine TRYCOL (see Figure 1-9).

Whenever the source window is updated as a result of program execution,
the boxed line indicates the line to be executed next.

Figure 1-9 Execution Suspended at Line 60

VAX DEBUG: SRC - module EIGHTQUEENS

File Edit C d
52:
53: BEGIN (* Eightqueens *)
54: FOR I :=1 TO 8 DO

55: A[I} := TRUE;
56: FOR I := 2 TO 16 DO
57: B{I] := TRUE;
58: FOR I := -7 TO 7 DO
59: C{1] := TRUE;

| 60: Trycol(l);
61: WRITELN;
62: END. (* Eightqueens *)

kel T 10>

L] i ————— 03

Introduction to the Debugger: DECwindows Interface
1.4 Getting Started with the Debugger

1.4.3 Executing the Program into a Called Routine

While execution is suspended at line 60, at the call statement to routine
TRYCOL, choose Step Into Routine from the pop-up menu to execute the
program one step unit into the routine (see Figure 1-10).

After this Step command has been entered, the source window is updated,
showing that execution is now suspended at line 36, within routine
TRYCOL (see Figure 1-11).

The Step command is used in this section and the next to execute the
program one source line at a time. Note that, in this mode of operation,
the Step command executes one or more executable lines at a time,
skipping over any other lines. Executable lines are those for which
instructions were generated by the compiler.

Figure 1-10 Stepping into a Called Routine

Fd VAX DEBUG: SRC - module EIGHTQUEENS
File Edit C d
521 Examine ©
53: BEGIN (* Eightqueens *)
54: FOR I :=1 TO 8 DO Evaluate
55: A[I] := TRUE; [Step Into Routine |
56: FOR I :=2 TO 16 DO Step Over Routine
57: B[I] := TRUE; s To Ret
58: FOR I := -7 TO 7 DO tep To Return
59: C[I] := TRUE; Step By Instruction
[60 Trycol(1); Step By Line
61: WRITELN; set Break
62: END. (* Eightqueens *) O
View Current Location
A { | —— 9
Go

Figure 1-11 Execution Suspended Within the Called Routine

e VAX DEBUG: SRC — module EIGHTQUEENS HE
File Edit Commands
32: C[I-J] := TRUE; O
33: END; (* Removequeen *)
34:
35: BEGIN (* Trycol *)
| 36: T :=0;
37: REPEAT
38: I := I+1;
39: safe := A[I] AND B[I+J] AND C[I-J];
40: IF Safe THEN
41: BEGIN
42: Setqueen; I
[e] | I 10>

1.4.4 Displaying the Current Value of a Variable

The value of the Boolean variable SAFE is obtained in this section. It is
obtained after the assignment statement at line 39, in routine TRYCOL,
has been executed (see Figure 1-11).

1-15

Introduction to the Debugger: DECwindows Interface
1.4 Getting Started with the Debugger

1-16

To execute the program from the current location at line 36 past line 39
(for example, to line 42), click on the Step button repeatedly until line 42
is boxed (see Figure 1-12).

To display the current value of the variable SAFE, proceed as follows:

1 Double click on the word SAFE in the source window to select that
word.

2 Choose Examine from the pop-up menu.

The value of SAFE (True) is now displayed in window OUT. The
debugger displays the variable name using its full path name
(EIGHTQUEENS\ SAFE), indicating that SAFE is declared in module
EIGHTQUEENS.

Note that the Current Entity field in the main window is now updated to
identify the last entity that was examined, namely the variable SAFE.

Figure 1-12 Examining a Selected Variable with the Pop-Up Menu

| VAX DEBUG: Process JONES_TWA4 %
File Edit Control Data Customize Help
.. Current Entity: [[gIGHTQUEENS\SAFE
(1 (F] can Frame: 0 (EIGHTQUEENS\TRYCOL)
.. [=>] Vvisible Process: |11 (JoNES_TWA4)
I Go |] Step I |Examine| | Stop I
VAX DEBUG: “‘i,,’"”““"—’ EIGHTQUEENS N A
File Edit Commands
37: REPEAT O
38: I t= I41;
39: Safe := A[I] AND B[I+J] AND C[I-J];
40: IF EE THEN >
a1: BEGIN [Examine
az: Setqueen;: Evaluate
22: X[J] = I; Step Into Routine
: IF J < § THEN
45: Trycol (J+1) Step Over Routine
46 ELSE Step To Return
47: Print; Step By Instruction O
4 Step By Line ——————0
VAX DEBUG: OUT Set Break
File Edit View Current Location
stepped to EIGHTQUEENS\TRYCOL\SLINE 39 | go O
39: Safe := A[I] AND B[I+J] END~CTTT=0Tv
stepped to EIGHTQUEENS\TRYCOL\%LINE 40
40 IF Safe THEN
stepped to EIGHTQUEENS\TRYCOL\%LINE 42
42: Setqueen;
EIGHTQUEENS\SAFE: True O
Q|] —]

2K-0965A-0E

Introduction to the Debugger: DECwindows Interface
1.4 Getting Started with the Debugger

1.4.5 Assigning a Value to the Variable

Assume that the variable SAFE is still selected in the source window.
To change the value of SAFE from True to False, proceed as follows (see
Figure 1-13):

1 Choose Variables from the Data menu in the main window, then choose
Deposit into Variable... from the submenu.

When the Deposit into Variable dialog box is displayed, note that the
selected word, SAFE, fills the Variable text-entry field. Thus, you do
not have to enter the variable name from the keyboard.

2 Enter the word False in the Language Expression field. This is the
value to be assigned to (deposited into) the variable.

3 Click on OK or Apply.

Variable SAFE now has the value False. You can verify this by choosing
Examine from the pop-up menu.

Figure 1-13 Assigning a Value to a Variable

|)§§| VAX DEBUG: Process JONES_TWA4 EHiR

File Edit Control Customize Help

Current Entity: l Examine Variable...

H} call Frame: Code E[peposit into Variable... |
“‘J ’ l 1 Expressi Show Variabl

Visible Process: l Addresses or Registers E
Ty ——— | Call stack...
L__-lco L_Istep Modules...

File Edit Commandy ExitHandlers

Images...

37: REPEAT Processes... N
38: I :=| Tashs..
39: Safe 1= A[I] &ND B[I+J] &RD C[I-J];
40: IF THEN
41: BEGIN
[4c: Deposit into Variable
& | =
44: Variable lsafé
45: -
46: Language Expression |palsé
47: -

A

Target Datatvpel Compiler Generated ”

Length i

User Type I

| OK | Apply I r(:ancel I

ZK-0966A-GE

1-17

Introduction to the Debugger: DECwindows Interface
1.4 Getting Started with the Debugger

1.4.6 Displaying Source Code for the Calling Routine

1-18

By default, the source window shows the source code for the routine in
which execution is suspended, and the name of the routine is identified in
the Call Frame field of the main window.

In this example, execution is currently suspended within routine TRYCOL
of module EIGHTQUEENS. The Call Frame field in Figure 1-12 displays
the routine path name, EIGHTQUEENS\ TRYCOL.

The number 0 in the Call Frame field indicates that the routine whose
source code is displayed is the routine at the top of the call stack (where
execution is suspended).

If, as in this example, execution is suspended within a called routine, you
can display the source code for the calling routine by clicking once on the
Call Frame down-arrow button.

Clicking once displays the source code for routine EIGHTQUEENS (the
main program), as shown in Figure 1-14. The boxed line identifies the line
where execution will continue in that routine (line 61, which follows the
call statement). The Call Frame field now displays the number 1, followed
by the name of that routine. The number indicates the level, relative

to the top of the call stack (level 0), of the routine whose source code is
displayed.

Figure 1-14 Displaying Source Code in the Calling Routine

P4 vAX DEBUG: Process JONES_THA4 LHE]
File Edit Control Data Customize Help
Current Entity: |[EIGHTQUEENS\SAFE
{1 call Frame: Iﬁ (EIGHTQUEENS)
Visible Process: ,1 (JONES_TWa4)
l Go l | Step I I Examine I
2] VAX DEBUG: SRC — module EIGHTQUEENS 5]
File Edit Commands
52: O

53: BEGIN (* Eightgueens *)
54: FOR I :=1 TO § DO
55: A[I] := TRUE;

56: FOR I := 2 TO 16 DO
57: B[I] := TRUE;
58: FOR I := -7 TO 7 DO
59: C[I] := TRUE;

60: Trycol{l);
[61: WRITELN;
62: END. (* Eightqueens *)
Q{ I 10>

ZK-0967A-0F

vl

In general, clicking on the Call Frame arrow buttons enables you to
display the source code for any routine up or down the call stack.

A Call Frame arrow button that is dimmed indicates that the scope
reference is at the end of the call stack.

Introduction to the Debugger: DECwindows Interface

1.5 Using the Debugger

1.5 Using the Debugger

The remaining sections of this chapter explain how to use the debugger to
perform basic functions. After an introduction, most sections point to an
online help topic for additional information.

1.5.1 Displaying Online Help About the Debugger

Note: When you first invoke the debugger’s online help system, it might
take up to a minute to display the first help topic. Subsequent
help topics are displayed within a few seconds after you request
them.

Three kinds of online help about the debugger and debugging are available
during a debugging session:

Context sensitive help, which is available for any item in a debugger
window, menu, or dialog box.

Conceptual and task-oriented help, which consists of an introductory
help topic named Overview and several subtopics on specific subjects.

Help about the debugger’s command interface, which is available
through the COMMAND box.

The technique for displaying each kind of online help is described in the
following sections.

1.5.1.1 Displaying Context-Sensitive Help
Context-sensitive help about the debugger is available for any item in a
debugger window, menu, or dialog box.

To display context-sensitive help:

1
2
3
4

Point to an item.

Press and hold the Help key.

Click on either MB1, MB2, or MB3.
Release the Help key.

Context-sensitive help for dialog boxes is structured in the following way:

The same help text is displayed for any location of the pointer cursor
within a dialog box.

The introductory help text describes how to use the dialog box for a
typical operation.

In most cases, a separate additional topic is devoted to each item in
the dialog box (button, menu, and so on). These topics are listed in the
order that the items they describe appear in the dialog box, from top
to bottom.

Other topics provide task-oriented and conceptual discussions, where
applicable.

1-19

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

When using context-sensitive help, you should also display the Overview
help topic and look for related information in the list of additional topics.

1.5.1.2 Displaying the Overview Help Topic and Subtopics

The Overview help topic and subtopics provide conceptual and task-
oriented help about the debugger and debugging. These topics supplement
the information that is available through context-sensitive help.

To display the Overview topic, use any one of the following techniques:
* Choose Overview from the Help menu in the main window.

¢ Ensure that a debugger window has the input focus, then press and
release the Help key.

* Choose Go To Overview from the View menu of a debugger help
window.

Then, to obtain information about a particular subject, choose a topic from
the list of additional topics.

1.5.1.3 Displaying Help About the Debugger’'s Command Interface

Help about the debugger’s command interface is available through the
COMMAND box.

¢ To open the COMMAND box, choose Show Command... from the

Customize menu.
¢ To list the help topics, enter the command HELP at the DBG> prompt.

¢ For an explanation of the command-interface help system, enter the
command HELP HELP.

1.5.2 Debugger Diagnostic Messages

1-20

Debugger diagnostic messages include numerous informational messages
(severity level I) that provide feedback during a debugging session. (For
an explanation of severity levels, choose Overview from the Help menu,
then choose Debugger Diagnostic Messages.)

To reduce the time involved in acknowledging informational messages,
only those debugger messages that have severity levels of W, E, or F are
displayed in a message box.

You can get context-sensitive help on any debugger message that is
displayed in a message box.

By default, all debugger messages (including those of severity level I)
are displayed in window OUT. Thus, debugger messages of severity level
greater than I are displayed both in a message box and in window OUT.

Messages displayed in a message box show only the message text.
Messages displayed in window OUT show the message text, identifier,
severity, and facility.

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

1.5.3 Interrupting Program Execution and Aborting Debugger Operations

To interrupt program execution during a debugging session, click on
the Stop button in the main window. This is useful if, for example, the
program is in an infinite loop.

To abort a debugger operation that is in progress, click on the Stop
button in the main window. This is useful if, for example, the debugger is
displaying a long stream of data.

Clicking on the Stop button does not end the debugging session. Clicking
on the Stop button when the program is not running or when the debugger
is not performing an operation has no effect.

1.5.4 Ending a Debugging Session

To end a debugging session, choose either Exit or Quit from the File menu
in the main window.

If your program has application-declared exit handlers, Exit executes these
handlers. Quit gives you the option of executing application-declared exit
handlers (a dialog box is displayed in such cases).

Unless you are debugging a multiprocess program, you can also end the
debugging session by choosing Exit or Quit from any debugger window
(not just the main window).

For multiprocess programs, choosing Exit or Quit from a debugger window
other than the main window has the following effect:

¢ If the window is not process specific, terminates the visible process

e If the window is process specific, terminates the process associated
with that window

The following message, displayed in the output window during a debugging
session, indicates that your program has completed normally:

$DEBUG-I-EXITSTATUS, is ’'%SYSTEM-S-NORMAL, normal successful completion’

If you want to continue debugging after seeing this message, it is usually
best to end the session and start a new one. You can restart execution
from within the debugging session (by choosing Go... from the Control
menu and then specifying a location in the Go dialog box). However, this
technique can produce unexpected results if, for example, some variables
have different values from when you first ran the program.

1.5.5 Displaying Source Code

By default, window SRC automatically displays the source code for the
module in which execution is currently suspended.

1-21

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

In addition, window SRC has the source attribute by default. Therefore,
you can also use SRC to display the source code for any part of your
program (if source code is available for display):

* You can display the source code for any routine on the call stack by
clicking on the Call Frame arrow buttons in the main window.

The number shown in the Call Frame field indicates the relative level
of the routine on the call stack. Call frame 0 denotes the routine at
the top of the call stack, where execution is suspended. Call frame 1
denotes the calling routine, and so on.

* You can display arbitrary source lines in any module by choosing View
Source... from the Commands menu of window SRC.

* You can display the source line associated with a code location (for
example, a routine declaration) by choosing Examine Code... from the
Code submenu of the Data menu.

After manipulating the contents of window SRC, you can display the
location at which execution is suspended by choosing View Current
Location from the pop-up menu.

If the debugger cannot locate source lines for display, it issues a diagnostic
message.

For more information, choose Overview from the Help menu, then choose
Displaying Source Code.

1.5.6 Displaying Decoded VAX Instructions

1-22

By default, window INST automatically displays the decoded instruction
stream for the routine in which execution is currently suspended.

If window INST has the instruction attribute, it is also updated by any
command that you enter to display instructions. If no window has the
instruction attribute, the output of such commands is directed at window
OUT. Note that opening window INST through the Window Setups
submenu of the Customize menu automatically assigns the instruction
attribute to that window.

You can display instructions in window INST as follows:

* You can display the instruction stream for any routine that is on the
call stack by clicking on the Call Frame arrow buttons in the main
window.

* You can display the instructions that are associated with a code
location (for example, a routine declaration) by choosing View
Instructions from the Commands menu of window INST, or by choosing
Examine Code... from the Code submenu of the Data menu.

When you choose Examine Code..., you have the option of displaying
detailed information about the instruction operands.

After manipulating the contents of window INST, you can display the
location at which execution is suspended by choosing View Current
Location from the pop-up menu.

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

For more information, choose Overview from the Help menu, then choose
Displaying Decoded VAX Instructions.

1.5.7 Specifying Address Expressions in Dialog Boxes

Several dialog boxes (for example, the Break dialog box) require you to
enter an address expression. An address expression is an entity that
denotes a memory address or a register. Do not confuse an address
expression with a language expression, which denotes a value (see
Section 1.5.9.4).

The debugger is a symbolic debugger. Therefore, although you can specify
a memory address or register directly in a dialog box, you usually specify
symbolic address expressions. These include routine names, variable
names, program labels, and source line numbers. The debugger associates
a symbolic address expression with a unique memory address, range

of addresses, or register. The debugger also recognizes the compiler-
generated type that is associated with a symbolic address expression.

Address expressions are associated with either code (VAX assembly-
language instructions) or data. The kind of address expression you need
to specify in a dialog box depends on the action you are about to perform
and is indicated in the help text for that dialog box. For example, when
setting a breakpoint, you specify an address expression that is associated
with code; when setting a watchpoint, you specify an address expression
that is associated with data (a variable name, in most cases).

You can fill the Address Expression field of a dialog box in two ways:

¢ By selecting text in a window. If you select the text before you open
the dialog box, the text is automatically inserted in the Address
Expression field.

* By entering text directly from the keyboard.
The help text for a dialog box explains the conventions for filling the
Address Expression field.

For more information, choose Overview from the Help menu, then choose
Specifying Address Expressions.

1.5.8 Controlling and Monitoring Program Execution
This section explains how to perform the following tasks:
* Start or resume program execution

* Execute the program to the next source line, instruction, or other step
unit

¢ Use breakpoints to suspend execution at points of interest

¢ Use tracepoints to trace the execution path of your program through
specified locations

* Use watchpoints to monitor changes in the values of variables

1-23

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

1-24

To determine where execution is suspended at any time during a
debugging session, use the techniques described in Section 1.5.5 and
Section 1.5.6. You can also choose Call Stack... from the Data menu to
display the sequence of routine calls that are currently active on the call
stack and to obtain detailed information about the call stack.

Starting or Resuming Program Execution

Use the Go command to start or resume program execution.

To start execution from the current location, click on the Go button in the
main window.

To start execution from another location, choose Go... from the Control
menu and specify the location in the Go dialog box.

After it is started with the Go command, program execution continues
until one of the following events occurs:

¢ The program completes execution
* A breakpoint is reached

¢ A watchpoint is activated

* An exception is signaled

* You click on the Stop button in the main window

For more information, choose Overview from the Help menu, then choose
Starting and Resuming Execution (Go Command).

1.5.8.2 Executing the Program by Step Unit

Use the Step command to execute the program one or more step units at a
time.

By default, a step unit is one line of source code; and, by default, the
debugger notifies you of the completion of a Step command by displaying a
"stepped to..." message and the source line where execution is suspended.

To execute one step unit, click on the Step button in the main window.

You can use the pop-up menu for some common step options (for example,
step into routine, step by instruction).

To execute these and other step options, or to change the step unit or
any Step command default, choose Step... from the Control menu.
For example, you can make the default step unit signify "execute one
instruction".

For more information, choose Overview from the Help menu, then choose
Executing the Program by Step Unit (Step Command).

1.5.8.3 Suspending and Tracing Execution with Breakpoints and Tracepoints

A breakpoint is a location in your program at which execution is to be
suspended. Typical locations are routine declarations, program labels, and
specific lines of source code. At a breakpoint, you can step into a routine,
check the current value of a variable, and so on. .

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

In addition to specifying unique locations, you can set breakpoints on every
source line or on certain classes of VAX assembly-language instructions.
You can also set breakpoints on certain kinds of events, such as exceptions
and Ada tasking events. And you can set conditional breakpoints that
trigger only when a specified expression is evaluated to be true.

A tracepoint is like a breakpoint, except that execution continues after the
debugger reports that the tracepoint has been reached. Tracepoints enable
you to monitor the path of execution of your program through specified
locations (for example, through routine calls). As with breakpoints,

you can trace through classes of instructions, monitor events, and set
conditional tracepoints.

In general, to set, identify, or cancel breakpoints or tracepoints, choose
Break... from the Control menu

For more information, choose Overview from the Help menu, then choose
Using Breakpoints and Tracepoints.

1.5.8.4 Monitoring Changes in Variables with Watchpoints
A watchpoint is a memory address, register, or (typically) a variable
declared in the program whose value is monitored during program
execution. If the value changes, the debugger suspends execution and
reports the old and new values.

Note that you can set a watchpoint on a nonstatic (stack or register)
variable only when program execution is currently suspended within the
scope of its defining routine—that is, when the defining routine is active
on the call stack.

To set, identify, or cancel watchpoints, choose Watch... from the Control
menu. As with breakpoints and tracepoints, you have several options for
setting watchpoints.

For more information, choose Overview from the Help menu, then choose
Using Watchpoints.

1.5.9 Examining and Manipulating Program Data

The debugger enables you to manipulate variables declared in your
program, code locations (locations containing VAX instructions), memory
addresses, registers, and language expressions.

1.5.9.1 Operations with Variables
To manipulate variables in your program, choose Variables from the Data
menu. The Variables submenu provides the following operations:

¢ Choose Examine Variable... to display the value of a variable.
* Choose Deposit into Variable... to assign a value to a variable.

¢ Choose Show Variable... to display information about a variable, such
as its type, memory address or register, and path name.

1-25

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

1-26

Note that you can examine a nonstatic (stack or register) variable only

when program execution is currently suspended within the scope of its

defining routine—that is, when the defining routine is active on the call
stack. '

For more information, choose Overview from the Help menu, then choose
Examining and Manipulating Program Data, then choose Operations with
Variables.

1.5.9.2 Operations with Code Locations

To manipulate code locations in your program (locations with VAX
assembly-language instructions) choose Code from the Data menu. The
Code submenu provides the following operations:

¢ Choose Examine Code... to display the following:

— The source line for a code location (for example, for a routine
declaration).

— The VAX instructions at a code location (for example, the
instruction at the current PC value, where execution is suspended).
The program counter (PC) is a VAX register that contains the
address of the instruction to be executed next.

* Choose Deposit Code... to deposit a VAX instruction at a memory
address or into a register.

®* Choose Show Address... to display the memory address of a routine,
line number, or other code location.

For more information, choose Overview from the Help menu, then choose
Examining and Manipulating Program Data, then choose Operations with
Code Locations.

See also Section 1.3.2.4 and Section 1.5.6 for information about displaying
instructions associated with your program.

1.5.9.3 Operations with Addresses or Registers

To manipulate memory addresses or registers, choose Addresses or
Registers from the Data menu. The Addresses or Registers submenu
provides the following operations:

¢ Choose Examine Address or Register... to display the value stored at
an address or in a register.

® Choose Deposit into Address or Register... to change the value stored
at an address or in a register.

* Choose Symbolize Address or Register... to display the symbol (if any)
that is associated with an address or register.

For more information, choose Overview from the Help menu, then choose
Examining and Manipulating Program Data, then choose Operations with
Addresses or Registers.

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

1.5.9.4 Evaluating Language Expressions
To evaluate a language expression, choose Language Expressions... from
the Data menu.

The debugger recognizes the operators and expression syntax of the
currently set language. For example, if your program has an integer
variable named WIDTH, you can use the Language Expressions dialog
box to evaluate the expression WIDTH + 7. The debugger adds 7 to the
current value of WIDTH and displays the result.

For more information, choose Overview from the Help menu, then choose
Specifying and Evaluating Language Expressions. See also Section 1.5.13
for information about debugging multilanguage programs.

1.5.10 Controlling Access to Symbols in Your Program

To have full access to the symbols that are associated with your program
(variable names, routine names, source code, line numbers, and so on), you
must compile and link the program using the /DEBUG command qualifier,
as explained in Section 1.2.1.

Under these conditions, the way in which the debugger handles these
symbols is transparent to you, in most cases. However, the following two
areas might require action:

* Setting and canceling modules
* Resolving symbol ambiguities
These two subjects are discussed in the next sections. For more

information, choose Overview from the Help menu, then choose Controlling
Access to Symbols in Your Program.

1.5.10.1 Setting and Canceling Modules
To facilitate symbol searches, the debugger loads symbol information
from the executable image into a run-time symbol table (RST), where
that information can be accessed efficiently. Unless symbol information
is in the RST, the debugger does not recognize or properly interpret the
associated symbols.

Because the RST takes up memory, the debugger loads it dynamically,
anticipating what symbols you might want to reference in the course of
program execution. The loading process is called module setting, because
all symbol information for a given module is loaded into the RST at one
time. '

At dehugger startup, only the module containing the image transfer
address is set. Subsequently, whenever execution of the program is
interrupted, the debugger sets the module that contains the routine in
which execution is suspended. This enables you to reference the symbols
that should be visible at that location.

If you try to reference a symbol in a module that has not been set, the
debugger warns you that the symbol is not in the RST. For example:

%$DEBUG-W-NOSYMBOL, symbol 'X’ is not in symbol table

1-27

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

You must then set the module containing that symbol explicitly. To set a
module, choose Modules... from the Data menu. The Modules dialog box
lists the modules of your program and identifies which modules are set.

For more information, choose Overview from the Help menu, then choose
Controlling Access to Symbols in Your Program, then choose Setting and
Canceling Modules.

1.5.10.2 Resolving Symbol Ambiguities
Symbol ambiguities can occur when a symbol (for example, a variable
name X) is defined in more than one routine or other program unit.

In most cases, the debugger resolves symbol ambiguities automatically.
First it uses the scope and visibility rules of the currently set language. In
addition, because the debugger permits you to specify symbols in arbitrary
modules (to set breakpoints and so on), the debugger uses the ordering of
routine calls on the call stack to resolve symbol ambiguities.

In some cases, however, the debugger might respond as follows when you
specify a symbol that is defined multiple times:

* It might issue a "symbol not unique" message because it is not able to
determine the particular declaration of the symbol that you intended.

* It might reference a symbol declaration other than the one you want.

To resolve such problems, you must specify a scope where the debugger
should search for the particular declaration of the symbol. There are two
techniques:

* Specify a path name prefix with the symbol. For example, if the
variable X is defined in two modules named COUNTER and SWAP,
the path name SWAP\X uniquely specifies the declaration of X in
module SWAP. This technique can always be used to resolve symbol
ambiguities.

¢ If the different declarations of the symbol are within routines that are
currently active on the call stack, use the Call Frame arrow buttons in
the main window to reset the reference for looking up symbols to the
appropriate call frame. With this technique you do not need to specify
a path name prefix.

For more information, choose Overview from the Help menu, then choose
Controlling Access to Symbols in Your Program, then choose Resolving
Symbol Ambiguities.

1.5.11 Using the Debugger’s Command Interface

The debugger is available in a command interface that runs on terminals
and workstations (see Part II of this manual). When using that interface,
you interact with the debugger by entering commands at the debugger
prompt (DBG>).

1-28

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

When using the debugger’s DECwindows interface, you can open the
COMMAND box, which enables you to enter debugger commands at the
DBG> prompt:

e To open the COMMAND box for just one command, press the DO key.

* To open the COMMAND box indefinitely, choose Show Command...
from the Customize menu. Choosing Hide Command from that menu
closes the COMMAND box.

You can also enter debugger commands in debugger command procedures
and initialization files for execution under the DECwindows environment
(see Section 1.5.12).

For more information, choose Overview from the Help menu, then choose
The Debugger’s Command Interface.

1.5.12 Using Log Files, Initialization Files, Command Procedures

When you use the debugger’s DECwindows interface, each of your actions
results in one or more debugger commands. These commands are echoed
in the COMMAND box by default.

You can record in a log file the debugger commands that you enter directly
or indirectly during a debugging session and the debugger’s responses to
those commands. You can use log files to keep a record of your debugging
sessions, or you can use them as command procedures in subsequent
sessions. For more information, choose Overview from the Help menu,
then choose Logging a Debugging Session into a File.

You can create an initialization file containing debugger commands to
set your default debugging modes, debugger window characteristics,
and so on. When you invoke the debugger, those commands are
executed automatically to tailor your debugging environment. For more
information, choose Overview from the Help menu, then choose Using a
Debugger Initialization File.

You can direct the debugger to execute a command procedure (a file
containing a sequence of debugger commands) to recreate a debugging
session, to continue a previous session, or to avoid typing the same
debugger commands many times during a debugging session. You can
pass parameters to command procedures. For more information, choose
Overview from the Help menu, then choose Using Debugger Command
Procedures.

1.5.13 Debugging Multilanguage Programs

Within the same debugging session, you can debug modules whose source
code is written in different languages.

By default, the debugger language remains set to the language of the main
program throughout the debugging session, even if execution is suspended
within a module written in another language. To take full advantage of
symbolic debugging with such modules, you can set the debugging context
to another language by choosing Language from the Customize menu.

1-29

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

For more information, choose Overview from the Help menu, then choose
Debugging Multilanguage Programs and Debugger Support for Languages.

When debugging in any language, be sure also to consult the
documentation supplied with that language.

1.5.14 Debugging Shareable Images and Ada Tasking Programs

The Data menu gives you access to operations related to debugging
shareable images and VAX Ada tasking programs.

By setting your debugging context to a shareable image that is linked with
your program, you have access to the symbols declared in that image. By
default, the main (executable) image is your debugging context. Choose
Images... from the Data menu to set your debugging context to another
image. For more information, choose Overview from the Help menu, then
choose Debugging Shareable Images.

When using the debugger with a VAX Ada tasking program, you can
control the execution of individual tasks and display information about one
or more tasks or the entire tasking system. Choose Tasks... from the Data
menu to manipulate tasks. See also the VAX Ada documentation.

1.5.15 Debugging Multiprocess Programs

To debug a multiprocess program (a program that runs in more than one
process), you must establish a multiprocess debugging configuration before
invoking the debugger. That configuration enables you to interact with
several processes from one debugging session.

Enter the following command to establish a multiprocess debugging
configuration:

$ DEFINE/JOB DBGS$PROCESS MULTIPROCESS

After you have invoked the debugger, you can control the execution of
individual processes, examine data associated with specific processes,
display information in process-specific windows, and so on.

Choose Processes... from the Data menu to manipulate processes. For
more information, choose Overview from the Help menu, then choose
Debugging Multiprocess Programs.

1.5.16 Debugging Vectorized Programs

1-30

When using the debugger with a vectorized program (a program that uses
VAX vector instructions) you can perform tasks such as the following:

¢ Control and monitor the execution of vector instructions with
breakpoints, watchpoints, and so on

* Examine and deposit into the vector control registers (VCR, VLR, and
VMR) and the vector registers (VO to V15)

* Examine and deposit vector instructions and their operands

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

¢ Perform masked operations on vector registers to display only certain
register elements or override the masking associated with a vector
instruction

¢ Control synchronization between the scalar and vector processors

For more information, choose Overview from the Help menu, then choose
Debugging Vectorized Programs.

1.5.17 Using the Keypad to Enter Commands

When you invoke the debugger, a few commonly used debugger command
sequences are automatically assigned to the keys on the numeric keypad
(to the right of the main keyboard). Thus, you can perform certain
functions either by choosing an item from a menu or by pressing a keypad
key.

The predefined key functions are identified in Figure 1-15.

1-31

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

1-32

Figure 1-15 Keypad Key Functions Predefined by the Debugger—
DECwindows Interface

/" PF1 PF2 PF3 PF4)
GOLD HELP DEFAULT | SET MODE SCREEN BLUE
GOLD HELPGOLD |SETMODE NOSCR BLUE
GOLD HELPBLUE | DISPIGENERATE BLUE
7 8 9 -
DISP SRC,NST.OUT| SCROLL/UP DISPLAY pext | DISP nextatFS
DISP INST.REGOUT| SCROLLITOP SET PROC next
DISP2SRC,2INST | SCROLLUP... DISP 2 SRC DISP SRC, OUT
4 5 6)
SCROLULEFT EX/SOU.0%PC | SCROLURIGHT | GO
SCROLULEFT:255 | SHOWCALLS | SCROLL/RIGHT:255 | SEL/SOURCE next
SCROLULEFT.. | SHOWCALLS3 |SCROLLRIGHT.. | SELANST next
1 2 3 ENTER
EXAMINE SCROLUDOWN | SEL SCROLL next
EXAMA(prev) SCROLL/BOTTOM | SEL OUTPUT next
DISP 3 SRC, 3INST | SCROLUDOWN... | DISP 3 SRC
ENTER
0
STEP RESET
STEP/NTO RESET
STEP/OVER RESET
N J

ZK-0957A-GE

Most keypad keys have three predefined functions—DEFAULT, GOLD,
and BLUE.

¢ To enter a key’s DEFAULT function, press the key.

¢ To enter its GOLD function, first press and release the PF1 (GOLD)
key, and then press the key.

* To obtain its BLUE function, first press and release the PF4 (BLUE)
key, and then press the key.

In Figure 1-15, the DEFAULT, GOLD, and BLUE functions are listed

within each key’s outline, from top to bottom, respectively. For example:

¢ Pressing keypad key 0 enters the STEP command (like clicking on the
Step button in the main window).

* DPressing key PF1 and then keypad key 0 enters the STEP/INTO
command (like choosing Step Into Routine from the pop-up menu).

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

* Pressing key PF4 and then keypad key 0 enters the STEP/OVER
command (like choosing Step Over routine from the pop-up menu).
You can redefine keypad-key functions.

For more information, choose Overview from the Help menu, then choose
Entering Debugger Commands from the Keypad.

1.6 Additional Optlons for Invoking the Debugger

Section 1.2 describes how to compile and link your program prior to
debugging, establish the default debugging configuration for one-process
programs, and invoke the debugger in the usual way from a DECterm
window.

The sections that follow describe other options for invoking the debugger:
¢ Invoke the debugger from a FileView window

¢ Interrupt a program that is executing freely and then invoke the
debugger

* Override the debugger’s default (DECwindows) interface to achieve the
following:

— Display the debugger’s DECwindows interface on another
workstation

— Display the debugger’s command interface in a DECterm window,
along with any program input/output

— Display the debugger’s command interface and program input
/output in separate DECterm windows

In all cases, before invoking the debugger, first compile and link the
modules of your program and establish the appropriate debugging
configuration as explained in Section 1.2.1, Section 1.2.2, and
Section 1.5.15.

Note: You cannot run a program under debugger control over a DECnet
link. Both the image to be debugged and the debugger must reside
on the same node.

For more information, including details on compilation and linking options
that affect debugging, choose Overview from the Help menu, then choose
Options for Invoking the Debugger.

1.6.1 Invoking the Debugger from a FileView Window
To invoke the debugger from a FileView window, proceed as follows:
1 Choose Run from the FileView Files menu. A dialog box is displayed.
2 Specify the executable image file to be debugged.
3 Choose the Debug option.
4 Click on OK.

1-33

Introduction to the Debugger: DECwindows Interface
1.6 Additional Options for Invoking the Debugger

1.6.2 Invoking the Debugger with the DCL DEBUG Command

You can invoke the debugger while your program is executing freely (for
example, if you suspect that the program might be in an infinite loop or if
you see erroneous output).

To invoke the debugger in this manner, proceed as follows:

1 Enter the DCL command RUN/NODEBUG to execute the program
without debugger control.

2 Press CTRL/Y to interrupt the executing program. Control then passes
to the DCL command interpreter.

3 Enter the DCL command DEBUG to activate the debugger. When the
debugger comes up, it displays the main, source, and output windows,
sets the language-dependent parameters to the language of the module
where execution was interrupted, and executes any user-defined
initialization file.

For example:

$ PASCAL/DEBUG/NOOPTIMIZE EIGHTQUEENS
$ LINK/DEBUG EIGHTQUEENS
$ RUN/NODEBUG EIGHTQUEENS

Interrupt
$ DEBUG

[invokes debugger]

To help you identify where execution was interrupted, look at the source
window and choose Call Stack... from the Data menu to identify the
sequence of routine calls on the call stack.

1.6.3 Overriding the Debugger’s Default Interface

1-34

By default, if your workstation is running VMS DECwindows,
the debugger comes up in the DECwindows interface on the

workstation specified by the DECwindows application-wide logical name
DECW$DISPLAY.

This section explains how to override the debugger’s default DECwindows
interface to achieve the following:

¢ Display the debugger’s DECwindows interface on another workstation

¢ Display the debugger’s command interface in a DECterm window,
along with any program input/output

* Display the debugger’s command interface and program input/output
in separate DECterm windows

The logical name DBG$DECW$DISPLAY enables you to override the
default interface of the debugger. Note that, in most cases, there is no
need to define DBG$DECW$DISPLAY, because the default implies the
desired action. :

Introduction to the Debugger: DECwindows Interface
1.6 Additional Options for Invoking the Debugger

Section 1.6.3.4 provides more information about the logical names
DBG$DECWS$DISPLAY and DECW$DISPLAY.

1.6.3.1 Displaying the Debugger’s DECwindows Interface on Another Workstation
If you are debugging a DECwindows application that uses most of the
screen, you might find it useful to run the program on one workstation
and display the debugger’s DECwindows interface on another. To do so,
proceed as follows:

1 Enter a logical definition with the following syntax in the DECterm
window from which you plan to run the program:

DEFINE/JOB DBG$DECWSDISPLAY workstation_pathname

where workstation_pathname is the path name for the workstation
where the debugger’s DECwindows interface is to come up. See the
description of the SET DISPLAY command in the VMS DCL Dictionary
for the syntax of this path name.

It is recommended that you use a job definition. If you use a process
definition, it must not have the CONFINE attribute.

2 Run the program from that DECterm window. The debugger’s
DECwindows interface comes up on the workstation specified by
DBG$DECWS$DISPLAY. The application’s windowing interface comes
up on the workstation display where it normally does.

1.6.3.2 Displaying the Command Interface in a DECterm Window
To display the debugger’s command interface in a DECterm window, along
with any program input/output, proceed as follows:

1 Enter the following definition in the DECterm window from which you
plan to run the program:

S DEFINE/JOB DBGSDECW$SDISPLAY " "

You can specify one or more space characters between the quotation
marks. It is recommended that you use a job definition for the logical
name. If you use a process definition, it must not have the CONFINE
attribute.

2 Run the program from that DECterm window. The debugger’s
command interface comes up in the same window.

For example:

$ DEFINE/JOB DBGSDECWSDISPLAY ™ "

$ PASCAL/DEBUG/NOOPTIMIZE EIGHTQUEENS
$ LINK/DEBUG EIGHTQUEENS

$ RUN EIGHTQUEENS

VAX DEBUG Version 5.4

$DEBUG-I-INITIAL, language is PASCAL, module set to EIGHTQUEENS
DBG>

You can now enter debugger commands as described in Part II of this
manual, which starts with Chapter 2.

1-35

Introduction to the Debugger: DECwindows Interface
1.6 Additional Options for Invoking the Debugger

1-36

1.6.3.3 Displaying the Command Interface and Program Input/Output in Separate
DECterm Windows
This section describes how to display the debugger’s command interface
in a separate DECterm window from the DECterm window from which
you invoke the debugger. This separate window is useful when using the
command interface to debug a screen-oriented program:

The program’s input/output is displayed in the window from which you
invoke the debugger.

The debugger’s input/output, including any screen-mode display, is
displayed in the separate window.

The effect is the same as entering the debugger command SET MODE
SEPARATE at the DBG> prompt on a workstation running VWS rather
than DECwindows. (The command SET MODE SEPARATE is not valid
when used in a DECterm window.)

The following example shows how to display the debugger’s command
interface in a separate debugger window titled “Debugger”.

1

Create the command procedure SEPARATE_WINDOW.COM shown in
Example 1-1.

Execute the command procedure:

$ @SEPARATE_WINDOW
$DCL~I-ALLOC, _MYNODE$TWA8: allocated

A new DECterm window is created with the attributes specified in
SEPARATE_WINDOW.COM.

Follow the steps in Section 1.6.3.2 to display the debugger’s command
interface. The interface is displayed in the new window.

You can now enter debugger commands in the debugger window.
Program input/output is displayed in the DECterm window from which
you invoked the debugger.

When you end the debugging session with the EXIT command, control
returns to the DCL prompt in the program input/output window, but
the debugger window remains open.

To display the debugger’s command interface in the same window as
the program’s input/output (as in Section 1.6.3.2), enter the following
commands: |

$ DEASSIGN/JOB DBGSINPUT
$ DEASSIGN/JOB DBGSOQUTPUT

The debugger window remains open until you close it explicitly.

Introduction to the Debugger: DECwindows Interface
1.6 Additional Options for Invoking the Debugger

Example 1-1 Command Procedure SEPARATE_WINDOW.COM

$! Simulates effect of SET MODE SEPARATE from a DECterm window
$!
$ CREATE/TERMINAL/NOPROCESS -

/WINDOW__ATTRIBUTES= (TITLE="Debugger", -

ICON_NAME="Debugger", ROWS=40) -

/DEF INE_LOGICAL= (TABLE=LNMS$JOB, DBGSINPUT, DBGSOUTPUT)
ALLOCATE DBGS$OUTPUT
EXIT
1
The command CREATE/TERMINAL/NOPROCESS creates a DECterm
window without a process.

The /WINDOW_ATTRIBUTES qualifier specifies the window’s
title (Debugger), icon name (Debugger), and the number
of rows in the window (40).

The /DEFINE_LOGICAL qualifier assigns the logical names
DBGSINPUT and DBGSOUTPUT to the window, so that it becomes
the debugger input and output device.

The command ALLOCATE DBGS$OUTPUT causes the separate window
to remain open when you end the debugging session.

RGO OO NG GO OIEOROIE OGO (IO

1.6.3.4 Explanation of DBGSDECWS$DISPLAY and DECW$DISPLAY
By default, if your workstation is running VMS DECwindows,
the debugger comes up in the DECwindows interface on the
workstation specified by the DECwindows application-wide logical name
DECW$DISPLAY. DECW$DISPLAY is defined in the job table by FileView
or DECterm. It points to the display device for the workstation.

For information about DECW$DISPLAY, see the description of the
DCL commands SET DISPLAY and SHOW DISPLAY in the VMS DCL
Dictionary.

The logical name DBG$DECW$DISPLAY is the debugger-specific
equivalent of DECW$DISPLAY. DBG$DECW$DISPLAY is analogous

to the debugger-specific logical names DBG$INPUT and DBG$OUTPUT.
These enable you to reassign SYS$INPUT and SYS$OUTPUT, respectively,
to specify the device on which debugger input and output are to appear.

The default user interface of the debugger results when
DBG$DECW$DISPLAY is undefined or has the same translation as
DECWS$DISPLAY. By default, DBG$DECW$DISPLAY is undefined.

The algorithm that the debugger follows when using the logical definitions
of DECW$DISPLAY and DBG$DECW$DISPLAY is as follows:

1 If the logical name DBG$DECWS$DISPLAY is defined, then use it.
Otherwise, use the logical name DECW$DISPLAY.

2 Translate the logical name. If its value is not null Gf the string
contains characters other than space characters), the DECwindows
interface comes up on the specified workstation. If the value is null (if
the string consists only of space characters), the command interface
comes up in the DECterm window.

1-37

Introduction to the Debugger: DECwindows Interface
1.7 Sample Program EIGHTQUEENS

1.7 Sample Program EIGHTQUEENS

Example 1-2 is the Pascal program, EIGHTQUEENS, that is used in
Section 1.4. Line numbers correspond to the compiler assigned line
numbers as displayed in a debugger source window.

The program prints out the possible locations on a chess board at which
each of eight queens can be positioned safely, without threatening each
other. A queen can be threatened by another queen on the same row, in
the same column, or along a diagonal.

When executed, the program produces several lines of integers. For

example:

15863724
16837425
17468253
17582463
24683175
25713864
37286415
384716235
41582736
41586372
8 2 31746
83162574
84136275

Each line of output represents a possible safe configuration of the eight
queens on a standard 8-row by 8-column chess board. For example, the
output line 41582736 indicates that queens can be positioned safely at
rows 4,1, 5, 8, 2, 7, 3, and 6 of columns 1 to 8, respectively.

Example 1-2 Sample Program EIGHTQUEENS

1: PROGRAM Eightqueens (OUTPUT) ;

2: VAR

3 I : INTEGER;

4: A : ARRAY[1..8] OF BOOLEAN;
5: B : ARRAY[2..16] OF BOOLEAN;
6: C : ARRAY[-7..7] OF BOOLEAN;

7 X : ARRAY[1..8] OF INTEGER;

8 Safe : BOOLEAN; K: INTEGER;
9

10 PROCEDURE Print;

11: BEGIN (* Print *)

12 FOR K := 1 TO 8 DO

13 WRITE (X[K]: 2);

14: WRITELN;

15: END; (* Print *)

(continued on next page)

1-38

Introduction to the Debugger: DECwindows Interface
1.7 Sample Program EIGHTQUEENS

Example 1-2 (Cont.) Sample Program EIGHTQUEENS

16:

17: PROCEDURE Trycol (J : INTEGER);
18: VAR

19: I : INTEGER;

20:

21: PROCEDURE Setqueen;

22: BEGIN (* Setqueen *)
23: A[I] := FALSE;

24: B[I+J] := FALSE;

25: C[I-J] := FALSE;

26: END; (* Setgueen *)
27:

28: PROCEDURE Removequeen;
29: BEGIN (* Removequeen *)
30: A[I] := TRUE;

31: B[I+J] := TRUE;

32: C[I-J] := TRUE;

33: END; (* Removequeen *)
34:

35: BEGIN (* Trycol *)

36: I :=20;

37: REPEAT

38: I := I+1;

39: Safe := A[I] AND B[I+J] AND C[I-J);
40: IF Safe THEN

41: BEGIN

42: Setqueen;

43: X[J) := I;

44: IF J < 8 THEN
45: Trycol (J+1)
46: ELSE

47 Print;

48: Removequeen;

49: END;

50: UNTIL I = 8;

51: END; (* Trycol *)

52:

53: BEGIN (* Eightqueens *)
54: FOR I := 1 TO 8 DO

55: A[I] := TRUE;
56: FOR I := 2 TO 16 DO
57: B[I] := TRUE;
58: FOR I := -7 TO 7 DO
59: C[I] := TRUE;

60: Trycol(l);
61: WRITELN;
62: END. (* Eightqueens *)

1-39

Partll Usingthe Debugger: Command Interface

This part contains complete information about the VMS debugger’s command
interface.

For information about the debugger’'s DECwindows interface, see Part |.

2

2.1

Introduction to the Debugger: Command Interface

This chapter introduces the VMS Debugger’s command interface. For
information about the debugger’s DECwindows interface, see Chapter 1.

The following information is provided in this chapter:

* An overview of the debugger’s features (Section 2.1)

¢ Enough information to get you started (Section 2.2)

e A sample debugging session (Section 2.3)

¢ A list of the debugger commands, by function (Section 2.4)

After you have read this chapter, consult the rest of this manual for
additional details about the command interface.

Overview of the Debugger

The debugger is a tool that helps you locate run-time programming or logic
errors, also known as bugs. You use the debugger with a program that
has been compiled and linked successfully but does not run correctly. For
example, the program might give incorrect output, go into an infinite loop,
or terminate prematurely.

You locate errors with the debugger by observing and manipulating your
program interactively as it executes. By entering debugger commands at
the terminal, you can do the following tasks:

¢ Control the program’s execution—start the program, stop at points of
interest, resume execution, and so on

¢ Trace the execution path of the program

¢ Monitor changes in variables and other program entities

¢ Monitor exception conditions and language-specific events

¢ Examine and modify the values of variables, or force events to occur

* In some cases, test the effect of modifications without having to edit
the source code, recompile, and relink

These are the basic debugging techniques. After you are satisfied that
you have found the error in the program, you can edit the source code and
compile, link, and execute the corrected version.

As you use the debugger and its documentation, you will discover
variations on the basic techniques. You can also tailor the debugger
for your own needs. The next section summarizes the debugger features.

2-1

Introduction to the Debugger: Command Interface
2.1 Overview of the Debugger

2.1.1 Functional Features

2-2

Programming Language Support

You can use the debugger with the following VAX languages: Ada, BASIC,
BLISS, C, COBOL, DIBOL, FORTRAN, MACRO-32, Pascal, PL/I, RPG II,
and SCAN. The debugger recognizes the syntax, data typing, operators,
expressions, scoping rules, and other constructs of a given language. If
your program is written in more than one language, you can change the
debugging context from one language to another during a debugging
session with the SET LANGUAGE command.

Symbolic Debugging

The VMS Debugger is a symbolic debugger. You can refer to program
locations by the symbols you used for them in your program—the names of
variables, routines, labels, and so on. You do not need to specify memory
addresses or VAX registers when referring to program locations, although
you can, if you want.

Support for All Data Types

The debugger understands all compiler generated data types, such as
integer, floating point, enumeration, record, array, and so on. It displays
the values of program variables according to their declared type.

Flexible Data Format

The debugger permits a variety of data forms and types for entry and
display. By default, the source language of the program determines

the format used for the entry and display of data. You can also impose
other formats. For example, by using a type or radix qualifier with the
EXAMINE command, you can display the contents of a program location
in ASCII, word-integer, or floating-point format.

Starting or Resuming Program Execution

You start or resume program execution with the GO or STEP commands.
The GO command causes the program to execute until a breakpoint

is reached, a watchpoint is modified, an exception is signaled, or the
program terminates. The STEP command enables you to execute a
specified number of lines or instructions, or up to the next instruction
of a specified class.

Breakpoints

By setting breakpoints with the SET BREAK command, you can suspend
program execution at specified locations and check the current status

of your program. Rather than specify a location, you can also suspend
execution on certain classes of instructions or on every source line. Also
you can suspend execution on certain kinds of events, such as exceptions
and Ada tasking events.

Introduction to the Debugger: Command Interface
2.1 Overview of the Debugger

Tracepoints

By setting tracepoints with the SET TRACE command, you can monitor
the path of program execution through specified locations. When a
tracepoint is triggered, the debugger reports that the tracepoint was
reached and then continues execution. As with the SET BREAK command,
you can also trace through classes of instructions and monitor events.

Watchpoints

By setting a watchpoint with the SET WATCH command, you can cause

execution to stop whenever a particular variable or other memory location
has been modified. When a watchpoint is triggered, the debugger suspends
execution at that point and reports the old and new values of the variable.

Manipulation of Variables and Program Locations

With the EXAMINE command, you can determine the value of a variable
or program location. The DEPOSIT command enables you to change that
value. You can then continue execution to see the effect of the change,
without having to recompile, relink, and rerun the program.

Evaluation of Expressions

With the EVALUATE command, you can compute the value of a source-
language expression or an address expression. You specify expressions and
operators in the syntax of the language to which the debugger is currently
set.

Control Structures

You can use logical control structures (FOR, IF, REPEAT, WHILE) in
commands to control the execution of other commands.

Shareable Image Debugging

You can debug shareable images (images that are not directly executable).
The SET IMAGE command enables you to reference the symbols declared
in a shareable image.

Multiprocess Debugging

You can debug multiprocess programs (programs that run in more than
one VMS process). The commands SHOW PROCESS and SET PROCESS
enable you to display process information and control the execution of
images in individual processes.

Vector Debugging

You can debug vectorized programs (programs that use VAX vector
instructions). You can control and monitor execution at the vector
instruction level, examine and deposit vector instructions, manipulate the
contents of vector registers, use a mask to display specific vector elements,
and control synchronization between the scalar and vector processors.

2-3

Introduction to the Debugger: Command Interface
2.1 Overview of the Debugger

Terminal and Workstation Support

The debugger supports all VT-series terminals and MicroVAX
workstations.

2.1.2 Convenience Features

2-4

Online Help

Online help is always available during a debugging session. Online help
contains information about all debugger commands and selected topics.

Source Code Display

You can display lines of source code for all supported languages during a
debugging session.

Screen Mode

In screen mode, you can display and capture various kinds of information
in scrollable windows that can be moved around the screen and resized.
Automatically updated source, instruction, and register displays are
available. You can selectively direct debugger input, output, and diagnostic
messages to displays. You can also create "DO" displays that capture the
output of specific command sequences.

Keypad Mode

When you invoke the debugger, several commonly used debugger command
sequences are assigned by default to the keys of the numeric keypad (f
you have a VT52, VT100, or LK201 keyboard). Thus, you can enter these
commands with fewer keystrokes than if you were to type them at the
keyboard. You can also create your own key definitions. '

Source Editing

As you find errors during a debugging session, you can use the EDIT
command to invoke any editor available on your system. You specify the
editor you wish with the SET EDITOR command. If you use the VAX
Language-Sensitive Editor, the editing cursor is automatically positioned
within the source file whose code appears in the screen-mode source
display.

Command Procedures

You can direct the debugger to execute a command procedure (a file

of debugger commands) to recreate a debugging session, to continue a
previous session, or to avoid typing the same debugger commands many
times during a debugging session. You can pass parameters to command
procedures.

Introduction to the Debugger: Command Interface
2.1 Overview of the Debugger

Initialization Files

You can create an initialization file containing commands to set your
default debugging modes, screen display definitions, keypad key
definitions, symbol definitions, and so on. When you invoke the debugger,
those commands are executed automatically to tailor your debugging
environment.

Log Files

You can record in a log file the commands you enter during a debugging
session and the debugger’s responses to those commands. You can use
log files to keep track of your debugging efforts, or you can use them as
command procedures in subsequent debugging sessions.

Symbol Definitions

You can define your own symbols to represent lengthy commands, address
expressions, or values in abbreviated form.

2.2 Getting Started with the Debugger

The way you use the debugger depends on several factors: the kind of
program you are working on, the kinds of errors you are looking for, and
your own personal style and experience with the debugger. This section
explains the following basic functions that apply to most situations.

¢ Compiling and linking your program to prepare for debugging

¢ Establishing the debugging configuration

¢ Invoking the debugger

* Ending a debugging session

¢ Interrupting program execution and aborting debugger coinmands

¢ Entering debugger commands and getting online help

¢ Viewing your source code with the TYPE command and in screen mode

¢ Controlling program execution with the GO, STEP, and SET BREAK
commands, and monitoring execution with the SHOW CALLS, SET
TRACE, and SET WATCH commands

¢ Examining and manipulating data with the EXAMINE, DEPOSIT, and
EVALUATE commands

* Controlling symbol references with path names and the SET MODULE
and SET SCOPE commands

Several examples are language specific. However, the general concepts are
readily adaptable to all supported languages.

The sample debugging session in Section 2.3 illustrates how to use some of
this information to locate an error and correct it.

2-5

2.2.1

2.2.2

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

Compiling and Linking a Program to Prepare for Debugging

Note:

Before you can use the debugger, you must compile and link the modules
(compilation units) of your program as explained in this section. The
following example shows how to compile and link a FORTRAN program,
consisting of a single compilation unit named FORMS, before using the
debugger.

The /DEBUG and /NOOPTIMIZE qualifiers are compiler command
defaults for some languages. These qualifiers are used in the
example for emphasis.

$ FORTRAN/DEBUG/NOOPTIMIZE FORMS
$ LINK/DEBUG FORMS

The /DEBUG qualifier on the compiler command (FORTRAN in this case)
directs the compiler to write the symbol information associated with
FORMS into the object module, FORMS.OBJ, in addition to the code and
data for the program. This symbol information enables you to use the
names of variables and other symbols declared in FORMS in debugger
commands. If your program has several compilation units, you must
compile each unit whose symbols you want to reference with the /DEBUG
qualifier.

Some compilers optimize the object code to reduce the size of the program
or to make it run faster. In such cases you should compile your program
with the /NOOPTIMIZE command qualifier (or equivalent). Otherwise, the
contents of some program locations might be inconsistent with what you
would expect from viewing the source code.

The /DEBUG qualifier on the LINK command causes the linker to include
all symbol information that is contained in FORMS.OBJ in the executable
image. The qualifier also causes the VMS image activator to start the
debugger at run time. If your program has several object modules, you
need to specify those modules in the LINK command, for most languages.

Establishing the Debugging Configuration

2-6

Before invoking the debugger as explained in Section 2.2.3, check that the
debugging configuration is appropriate for the kind of program you are
going to debug.

You can invoke the debugger in either the default configuration or the
multiprocess configuration to debug programs that run in either one or
several processes, respectively. The configuration depends on the current
definition of the logical name DBG$PROCESS. Thus, before invoking the
debugger, enter the DCL command SHOW LOGICAL DBG$PROCESS to
determine the definition of DBG$PROCESS.

Most of this chapter covers programs that run in only one process. For
such programs, DBG$PROCESS either should be undefined, as in the
following example, or should have the value DEFAULT:

$ SHOW LOGICAL DBGSPROCESS
$SHOW-S-NOTRAN, no translation for logical name DBGSPROCESS

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

If DBG$PROCESS has the value MULTIPROCESS, and you want to
debug a program that runs in only one process, enter the following
command:

$ DEFINE DBG$PROCESS DEFAULT

For more information about multiprocess debugging, see Chapter 10.

2.2.3 Invoking the Debugger

After you compile and link your program and establish the appropriate
debugging configuration, you can then invoke the debugger. To do so,
enter the DCL command RUN, specifying the executable image of your
program as the parameter. The following example shows how the debugger
identifies itself after you invoke it:

$ RUN FORMS
VAX DEBUG Version 5.4

$DEBUG-I-INITIAL, language is FORTRAN, module set to FORMS
DBG>

The diagnostic message that is displayed at debugger startup indicates
that this debugging session is initialized for a FORTRAN program and
that the name of the main program unit (the module containing the image
transfer address) is FORMS. The initialization sets up language-dependent
debugger parameters.

At this point, execution is suspended at the beginning of the main
program. The DBG> prompt, which is displayed whenever the debugger
suspends execution, indicates that you can now enter debugger commands,
as explained in Section 2.2.6.

224 Ending a Debugging Session

To end a debugging session and return to DCL level, type EXIT or press
CTRL/Z:

DBG> EXIT
$

The following message, displayed during a debugging session, indicates
that your program has completed normally:

$DEBUG-I--EXITSTATUS, is '$%SYSTEM-S~NORMAL, normal successful completion’
DBG>

If you want to continue debugging after seeing this message, type EXIT
and start a new debugging session with the DCL RUN command. You
could also restart execution from within the debugging session with a
command such as GO %LINE 1. However, this can produce unexpected
results if, for example, some variables have different values from when
you first ran the program.

2-7

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2.2.5 Interrupting Program Execution and Aborting Debugger Commands

If your program goes into an infinite loop during a debugging session
so that the debugger prompt does not reappear, press CTRL/C. This
interrupts program execution and returns you to the debugger prompt
(pressing CTRL/C does not end the debugging session). For example:

DBG> GO

DBG>

You can also press CTRL/C to abort the execution of a debugger command.
This is useful if a command takes a long time to complete.

Pressing CTRL/C when the program is not running or when the debugger
is not performing an operation has no effect.

If your program already has a CTRL/C AST service routine enabled, use
the SET ABORT_KEY command to assign the debugger’s abort function to
another CTRL—key sequence.

Pressing CTRL/Y from within a debugging session has the same effect as
pressing CTRL/Y during the execution of a program. Control is returned
to the DCL command interpreter ($ prompt).

2.2.6 Entering Debugger Commands

2-8

You can enter debugger commands any time you see the debugger prompt
(DBG>). To enter a command, type it at the keyboard and press RETURN.
See Section 1 of the command dictionary for complete rules on entering
debugger commands.

To obtain online help about debugger commands and specific subjects,
proceed as follows:

¢ To list the help topics, enter the command HELP.

¢ For an explanation of the help system, enter the command HELP
HELP.

For example:

¢ To display help about the STEP command, enter the command HELP
STEP.

¢ To display help about debugger diagnostic messages, enter the
command HELP MESSAGES.

Section 2 of the command dictionary explains the general format and
severity levels of debugger diagnostic messages. To obtain online help
about a debugger message, use the following general command format:

HELP MESSAGES message-identifier

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

For example, to display information about the message whose identifier is
NOSYMBOL, enter the following command:

DBG> HELP MESSAGES NOSYMBOL

When you invoke the debugger, a few commonly used command sequences
are automatically assigned to the keys on the numeric keypad (to the right
of the main keyboard). Thus, you can perform certain functions either by
typing a command or by pressing a keypad key.

The predefined key functions are identified in Figure 2-1.

Most keypad keys have three predefined functions—DEFAULT, GOLD,
and BLUE.

* To enter a key’s DEFAULT function, press the key.

* To enter its GOLD function, first press and release the PF1 (GOLD)
key, and then press the key.

* To enter its BLUE function, first press and release the PF4 (BLUE)
key, and then press the key.

In Figure 2-1, the DEFAULT, GOLD, and BLUE functions are listed

within each key’s outline, from top to bottom, respectively. For example:

* Pressing keypad key 0 enters the STEP command.

¢ Pressing key PF1 and then key 0 enters the STEP/INTO command.

* Pressing key PF4 and then key 0 enters the STEP/OVER command.

Normally, keys 2, 4, 6, and 8 scroll screen displays down, left, right,

or up, respectively. By putting the keypad in the MOVE, EXPAND, or

CONTRACT state, indicated in Figure 2-1, you can also use these keys to

move, expand, or contract displays in four directions. Enter the command
HELP KEYPAD to display the keypad key definitions.

You can redefine keypad key functions with the DEFINE/KEY command.

2.2.7 Displaying Source Code

The debugger provides two modes for displaying information: noscreen
mode and screen mode. By default, when you invoke the debugger, you are
in noscreen mode, but you might find that it is easier to view source code
in screen mode. The following sections briefly describe both modes.

2.27.1 Noscreen Mode
Noscreen mode is the default, line-oriented mode of displaying input
and output. The interactive examples throughout this chapter, excluding
Section 2.2.7.2, illustrate noscreen mode.

2-9

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

Figure 2-1 Keypad Key Functions Predefined by the Debugger—Command Interface

(F17 Y Fie F19 F20 ™
DEFAULT MOVE EXPAND CONTRACT
(SCROLL) (EXPAND +) (EXPAND -)

\ W, J

(PFi PF2 PF3 PF4)

GOLD HELP DEFAULT | SET MODE SCREEN BLUE

GOLD HELPGOLD | SETMODE NOSCR BLUE

GOLD HELP BLUE DISP/GENERATE BLUE
7 (s Y —

pisp sReNST.ouT] scroLLup DISPLAY next | DISP nextat FS

DISP INSTREG.OUT| SCROLL/TOP SET PROC next

DISP2SRC,2INST | SCROLLIUP... DISP 2 SRC DISP SRC, OUT

a N 5 (c N\

SCROLULEFT EX/SOU .0W%PC | SCROLLURIGHT Go
SCROLLLEFT:255 | SHOWCALLS | SCROLLRIGHT:255 | SEL/SOURCE next
SCROLULEFT.. | SHOWCALLS3 |SCROLLRIGHT.. | SEL/INST next

\ J . J

1 (> "\ ENTER
EXAMINE SCROLLUDOWN | SEL SCROLL next
EXAMA(prev) SCROLL/BOTTOM | SEL OUTPUT next
DISP 3 SRC, 3INST| SCROLL/DOWN... | DISP 3 SRC
\. J ENTER
5 :
STEP RESET
STEP/INTO RESET
STEPIOVER RESET
- 4
LK201 Keyboard:
Press Keys 24,68
F17 SCROLL
F18 MOVE
F19 EXPAND
F20 CONTRACT
VT-100 Keyboard:
Type Keys 2,4,6,8
SET KEV/STATE=DEFAULT SCROLL
SET KEY/STATE=MOVE MOVE
SET KEY/STATE=EXPAND EXPAND
SET KEY/STATE=CONTRACT CONTRACT

(s \

“MOVE" MOVE/UP
MOVE/UP:999
MOVEUP:S
) (o
MOVELEFT MOVE/RIGHT
MOVE/LEFT:999 MOVE/RIGHT:999
MOVELEFT:10 MOVE/RIGHT:10

(7)

MOVE/DOWN
MOVE/DOWN:999
MOVE/DOWN:S

./

"EXPAND"

EXPANDLEFT
EXPAND/LEFT:999
EXPAND/LEFT:10

v)

EXPAND/UP
EXPAND/UP:999
EXPAND/UP:5

2)

EXPAND/DOWN
EXPAND/DOWN:999
EXPAND/DOWN:5

—____/

EXPAND/RIGHT
EXPAND/RIGHT:999
EXPAND/RIGHT:10

"CONTRACT"

EXPAND/LEFT:-1

EXPAND/LEFT:-10

EXPAND/LEFT:-999

OB

EXPAND/UP:-1
EXPAND/UP:~-999
EXPAND/UP:-5

EXPAND/RIGHT:-1
EXPAND/RIGHT:-999)
EXPAND/RIGHT:-10

EXPAND/DOWN:-1
EXPAND/DOWN:-999
EXPAND/DOWN:-~5

ZK-0956A~GE

2-10

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

In noscreen mode, use the TYPE command to display one or more source
lines. For example, the following command displays line 7 of the module
in which execution is currently suspended:

DBG> TYPE 7
module SWAP_ROUTINES

7: TEMP := A;
DBG>
The display of source lines is independent of program execution. To
display source code from a module other than the one in which execution
is currently suspended, use the TYPE command with a path name to
specify the module. For example, the following command displays lines 16
to 21 of module TEST:

DBG> TYPE TEST\16:21

Path names are discussed in more detail in Section 2.2.8.1, in conjunction
with the STEP command.

You can also use the EXAMINE/SOURCE command to display the source
line for a routine or any other program location that is associated with an
instruction.

Note that the debugger also displays source lines automatically when
it suspends execution at a breakpoint or watchpoint or after a STEP
command, or when a tracepoint is triggered (see Section 2.2.8).

After displaying source lines at various locations in your program, you
can redisplay the location at which execution is currently suspended by
pressing keypad key 5.

If the debugger cannot locate source lines for display, it issues a diagnostic
message. Source lines might not be available for a variety of reasons. For
example:

¢ Execution is suspended within a module that was compiled or linked
without the /DEBUG command qualifier.

* Execution is suspended within a system or shareable image routine for
which no source code is available.

¢ The source file was moved to a different directory after it was compiled
(the location of source files is embedded in the object modules). In this
case, use the SET SOURCE command to specify the new location.

* The module might need to be "set" with the SET MODULE command.
Module setting is explained in Section 2.2.10.1.

To invoke noscreen mode from screen mode, press the keypad key sequence
GOLD-PF3 (or type SET MODE NOSCREEN). Note that you can use the
TYPE and EXAMINE/SOURCE commands in screen mode as well as
noscreen mode.

2-11

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2.2.7.2 Screen Mode

Screen mode provides the easiest way to view your source code. To invoke
screen mode, press keypad key PF3 (or type SET MODE SCREEN). In
screen mode, by default the debugger splits the screen into three displays
named SRC, OUT, and PROMPT, as illustrated in Figure 2-2.

Figure 2-2 Default Screen Mode Display Configuration

—SRC: module SWAP_ROUTINES= scroll-source

2: with Text IO; use TEXT IO;

ckage body SWAP ROUTINES is
procedure SWAPT (A,B: in out INTEGER) is
TEMP: INTEGER;

3: pa

4: P

5:

6: begin

7z TEMP
=> 8: A =

9: B :=

10: end;

11:

12:

— OUT-output
stepped to SWAP_ROUTINES\SWAP1\%LINE 8
SWAP_ROUTINES\SWAP1\A: 35

— PROMPT— error-program-prompt

DBG> STEP

procedure SWAP2 (A,B: in out COLOR) is

= A7
B;
TEMP;

DBG> EXAMINE A

DBG>

ZK-6502-GE

2-12

The SRC display shows the source code of the module in which execution is
currently suspended. An arrow in the left column points to the source line
corresponding to the current value of the program counter (PC). The PC
is a VAX register that contains the memory address of the instruction to
be executed next. The line numbers, which are assigned by the compiler,
match those in a listing file. As you execute the program, the arrow moves
down and the source code is scrolled vertically to center the arrow in the
display.

The OUT display captures the debugger’s output in response to the
commands that you enter. The PROMPT display shows the debugger
prompt, your input (the commands that you enter), debugger diagnostic
messages, and program output.

Both SRC and OUT are scrollable so you can see whatever information
might scroll beyond the display window’s edge. Use keypad key 3 to select
the display to be scrolled (by default, SRC is scrolled). Use keypad key 8
to scroll up and keypad key 2 to scroll down. Scrolling a display does not
affect program execution.

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

In screen mode, if the debugger cannot locate source lines for the routine
in which execution is currently suspended, it tries to display source lines
in the next routine down on the call stack for which source lines are
available. If the debugger can display source lines for such a routine, it
issues the following message:

%$DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
Displaying source in a caller of the current routine.

In such cases, the arrow in the SRC display identifies the line that
contains code following the call statement in the calling routine.

2.2.8 Controlling and Monitoring Program Execution
This section explains how to perform the following tasks:
e Start and resume program execution

¢ Execute the program to the next source line, instruction, or other step
unit

* Determine where execution is currently suspended
* TUse breakpoints to suspend program execution at points of interest

¢ Use tracepoints to trace the execution path of your program through
specified locations

* Use watchpoints to monitor changes in the values of variables

With this information you can pick program locations where you can then
test and manipulate the contents of variables as described in Section 2.2.9.

2.2.8.1 Starting or Resuming Program Execution
Use the GO command to start or resume program execution.

After it is started with the GO command, program execution continues
until one of the following events occurs:

¢ The program completes execution

¢ A breakpoint is reached

* A watchpoint is activated

* An exception is signaled

* You press CTRL/C

With most programming languages, when you invoke the debugger,
execution is initially suspended directly at the beginning of the main

program. Entering a GO command at this point quickly enables you to
test for an infinite loop or an exception.

If an infinite loop occurs during execution, the program does not terminate,
so the debugger prompt does not reappear. To obtain the prompt, interrupt
execution by pressing CTRL/C (see Section 2.2.5). If you are using screen
mode, the pointer in the source display indicates where execution stopped.
You can also use the SHOW CALLS command to identify the currently
active routine calls on the call stack (see Section 2.2.8.3).

2-13

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2-14

If an exception that is not handled by your program is signaled, the
debugger interrupts execution at that point so that you can enter
commands. You can then look at the source display and a SHOW CALLS
display to find where execution is suspended.

The most common use of the GO command is in conjunction with
breakpoints, tracepoints, and watchpoints, as described in Section 2.2.8.4,
Section 2.2.8.5, and Section 2.2.8.6, respectively. If you set a breakpoint
in the path of execution and then enter the GO command, execution is
suspended at that breakpoint. Similarly, if you set a tracepoint, execution
is monitored through that tracepoint. And if you set a watchpoint,
execution is suspended when the value of the "watched" variable changes.

2.2.8.2 Executing the Program by Step Unit

Use the STEP command to execute the program one or more step units at
a time.

By default, a step unit is one line of source code. In the following example,
the STEP command executes one line, reports the action ("stepped

to ... "), and displays the line number (27) and source code of the line

to be executed next:

DBG> STEP

stepped to TEST\COUNT\$LINE 27
27: X =X + 1;

DBG>

Execution is now suspended at the first machine code instruction for line
27 of module TEST. Line 27 is in COUNT, a routine within module TEST.

When displaying a program symbol (for example, a line number,
routine name, or variable name), the debugger always uses a path
name. A path name consists of the symbol plus a prefix that identifies
the symbol’s location. In the preceding example, the path name is
TEST\ COUNT\ %LINE 27. The leftmost element of a path name is
the module name. Moving toward the right, the path name lists any
successively nested routines and blocks that enclose the symbol. A
backslash character (\) is used to separate elements (except when the
language is Ada, where a period is used, to parallel Ada syntax).

A path name uniquely identifies a symbol of your program to the debugger.
In general, you need to use path names in commands only if the debugger
cannot resolve a symbol ambiguity in your program (see Section 2.2.10).

Usually the debugger can determine the symbol you mean from its context.

When using the STEP command, note that only those source lines for
which code instructions were generated by the compiler are recognized
as executable lines by the debugger. The debugger skips over any other
lines—for example, comment lines.

You can specify different stepping modes, such as stepping by instruction
rather than by line (SET STEP INSTRUCTION). Also, by default, the
debugger steps "over" called routines—execution is not suspended within
a called routine, although the routine is executed. By entering the SET
STEP INTO command, you direct the debugger to suspend execution
within called routines as well as within the routine in which execution is
currently suspended (SET STEP OVER is the default mode).

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2.28.3 Determining Where Execution Is Suspended
The SHOW CALLS command is useful when you are unsure where
execution is suspended during a debugging session (for example, after
a CTRL/C interruption).

The command displays a traceback that lists the sequence of calls
leading to the routine in which execution is suspended. For each routine
(beginning with the one in which execution is suspended), the debugger
displays the following information:

* The name of the module that contains the routine
¢ The name of the routine

®* The line number at which the call was made (or at which execution is
suspended, in the case of the current routine)

* The corresponding PC values (the relative PC address from the
beginning of the routine and the absolute PC address of the program)

For example:

DBG> SHOW CALLS

module name routine name line rel PC abs PC

*TEST PRODUCT 18 000000092 0000063C
*TEST COUNT 47 00000009 00000647
*MY_PROG MY PROG 21 0000000D 00000653
DBG>

This example indicates that execution is suspended at line 18 of routine
PRODUCT (in module TEST), which was called from line 47 of routine
COUNT (in module TEST), which was called from line 21 of routine
MY_PROG (in module MY_PROG).

2.28.4 Suspending Program Execution with Breakpoints
The SET BREAK command enables you to select locations at which to
suspend program execution (breakpoints). You can then enter commands
to check the call stack, examine the current values of variables, and so on.
You resume execution from a breakpoint with the GO or STEP commands.

The following example shows a typical use of the SET BREAK command:

DBG> SET BREAK COUNT
DBG> GO

break at routine PROG2\COUNT
54: procedure COUNT(X,Y:INTEGER) ;
DBG>

In the example, the SET BREAK command sets a breakpoint on routine
COUNT (at the beginning of the routine’s code); the GO command starts
execution; when routine COUNT is encountered, execution is suspended,
the debugger announces that the breakpoint at COUNT has been reached
("break at ... "), displays the source line (54) at which execution is
suspended, and prompts for another command. At this breakpoint, you
could use the STEP command to step through routine COUNT and then

2-15

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2-16

use the EXAMINE command (discussed in Section 2.2.9.1) to check on the
values of X and Y.

When using the SET BREAK command, you can specify program
locations using various kinds of address expressions (for example, line
numbers, routine names, memory addresses, byte offsets). With high
level languages, you typically use routine names, labels, or line numbers,
possibly with path names to ensure uniqueness.

Routine names and labels should be specified as they appear in the source
code. Line numbers can be derived from either a source code display

or a listing file. When specifying a line number, use the prefix %#LINE.
Otherwise the debugger interprets the line number as a memory location.
For example, the next command sets a breakpoint at line 41 of the module
in which execution is suspended. The breakpoint causes the debugger to
suspend further execution when the PC value is at the beginning of

line 41.

DBG> SET BREAK $LINE 41

Note that you can set breakpoints only on lines that resulted in machine
code instructions. The debugger warns you if you try to do otherwise (for
example on a comment line). To pick a line number in a module other than
the one in which execution is suspended, you must specify the module’s
name in a path name. For example:

DBG> SET BREAK SCREEN_IO\3%LINE 58

You can also use the SET BREAK command with a qualifier, but no
parameter, to break on every line, or on every CALL instruction, and so
on. For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

You can set breakpoints on events, such as exceptions, or state transitions
in Ada tasking programs.

You can conditionalize a breakpoint (with a "WHEN" clause) or specify
that a list of commands be executed at the breakpoint (with a "DO"
clause).

To display the currently active breakpoints, enter the command SHOW
BREAK.

To cancel a breakpoint, enter the command CANCEL BREAK, specifying
the program location exactly as you did when setting the breakpoint.
CANCEL BREAK/ALL cancels all breakpoints.

2.2.8.5 Tracing Program Execution with Tracepoints

The SET TRACE command enables you to select locations for tracing the
execution of your program (tracepoints), without stopping its execution.
After setting a tracepoint, you can start execution with the GO command
and then monitor the path of execution, checking for unexpected behavior.
By setting a tracepoint on a routine, you can also monitor the number of
times it is called.

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

As with breakpoints, every time a tracepoint is reached, the debugger
issues a message and displays the source line. But the program continues
executing, and the debugger prompt is not displayed. For example:

DBG> SET TRACE COUNT
DBG> GO

trace at routine PROG2\COUNT
54: procedure COUNT(X,Y:INTEGER)

This is the only difference between a breakpoint and a tracepoint. When
using the SET TRACE command, you specify address expressions,
qualifiers, and optional clauses exactly as with the SET BREAK command.

2.2.8.6 Monitoring Changes in Variables with Watchpoints
The SET WATCH command enables you to specify program variables that
the debugger monitors as your program executes. This process is called
setting watchpoints. If the program modifies the value of a "watched"
variable, the debugger suspends execution and displays information. The
debugger monitors watchpoints continuously during program execution.
(Note that the SET WATCH command can also be used to monitor
arbitrary program locations, not just variables.)

To set a watchpoint on a variable, specify the variable’s name with the
SET WATCH command. For example, the following command sets a
watchpoint on the variable TOTAL:

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the
watchpoint is triggered.

The next example shows what happens when your program modifies the
contents of a watched variable.

DBG> SET WATCH TOTAL
DBG> GO

watch of SCREEN_IO\TOTAL at SCREEN_IO\%LINE 13
13: TOTAL := TOTAL + 1;
old value: 16
new value: 17
break at SCREEN_IO\%LINE 14
14: POP (TOTAL) ;
DBG>

In this example, a watchpoint is set on the variable TOTAL and execution
is started. When the value of TOTAL changes, execution is suspended.
The debugger announces the event ("watch of . .. "), identifying where
TOTAL changed (the beginning of line 13) and the associated source

line. The debugger then displays the old and new values and announces
that execution has been suspended at the beginning of the next line (14).
Finally, the debugger prompts for another command. Note that when a

2-17

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

change in a variable occurs at a point other than the beginning of a source
line, the debugger gives the line number plus the byte offset from the
beginning of the line.

The technique previously described for setting watchpoints always applies
to static variables. A static variable is associated with the same memory
address throughout program execution.

A variable that is allocated on the stack or in a register (a nonstatic
variable) exists only when its defining routine is active (on the call stack).
If you try to set a watchpoint on a nonstatic variable when its defining
routine is not active, the debugger issues a warning:

DBG> SET WATCH Y
$DEBUG-W-SYMNOTACT, nonstatic variable 'Y’ is not active
DBG>

A convenient technique for setting a watchpoint on a nonstatic variable
is to set a tracepoint on the defining routine, also specifying a DO clause
to set the watchpoint whenever execution reaches the tracepoint. In
the following example, a watchpoint is set on the nonstatic variable Y
in routine ROUT3. After the tracepoint is triggered, the WPTTRACE
message indicates that the nonstatic watchpoint is set. And the
watchpoint is triggered when the value of Y changes:

DBG> SET TRACE/NOSOURCE ROUT3 DO (SET WATCH Y)
DBG> GO

trace at routine MOD4\ROUT3
$DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every
instruction

watch of MOD4\ROUT3\Y at MOD4\ROUT3\S$LINE 16

16: Y := 4
old value: 3
new value: 4
break at MOD4\ROUT3\$LINE 17
17: SWAP (X, Y) ;
DBG>

When execution returns to the calling routine, the nonstatic variable is no
longer active, so the debugger automatically cancels the watchpoint and
issues a message to that effect.

2.2.9 Examining and Manipulating Program Data

2-18

This section explains how to use the EXAMINE, DEPOSIT, and
EVALUATE commands to display and modify the contents of variables
and evaluate expressions. Note that before you can examine or deposit
into a nonstatic variable, as defined in Section 2.2.8.6, its defining routine
must be active (on the call stack).

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2.29.1 Displaying the Value of a Variable
To display the current value of a variable, use the EXAMINE command. It
has the following form:

EXAMINE variable-name

The debugger recognizes the compiler-generated data type of the variable
you specify and retrieves and formats the data accordingly. The following
examples show some uses of the EXAMINE command.

Examine a string variable:

DBG> EXAMINE EMPLOYEE_ NAME
PAYROLL\EMPLOYEE NAME: "Peter C. Lombardi"
DBG>

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA

SIZE\WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine a two-dimensional array of real numbers (three per dimension):

DBG> EXAMINE REAL_ ARRAY
PROG2\REAL_ARRAY

(1,1): 27.01000

(1,2): 31.00000

(1,3): 12.48000

(2,1): 15.08000

(2,2): 22.30000

(2,3): 18.73000
DBG>

Examine element 4 of a one-dimensional array of characters:
DBG> EXAMINE CHAR ARRAY (4)

PROG2\CHAR ARRAY (4): ’‘m’

DBG>

Examine a record variable (COBOL example):

DBG> EXAMINE PART

INVENTORY \PART :
ITEM: "WE-1247"
PRICE: 49.95
IN_STOCK: 24

DBG>

Examine a record component (COBOL example):

DBG> EXAMINE IN STOCK OF PART

INVENTORY\IN-STOCK of PART:
IN STOCK: 24

DBG>

Note that the EXAMINE command can be used with any kind of address
expression (not just a variable name) to display the contents of a program
location. The debugger associates certain default data types with untyped

locations. You can override the defaults for typed and untyped locations if
you want the data interpreted and displayed in some other data format.

2-19

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

DBG> DEPOSIT X =

2.29.2 Assigning a Value to a Variable

To assign a new value to a variable, use the DEPOSIT command. It has
the following form:

DEPOSIT variable-name = value

The DEPOSIT command is like an assignment statement in most
programming languages.

In the following examples, the DEPOSIT command assigns new values
to different variables. The debugger checks that the value assigned,
which can be a language expression, is consistent with the data type and
dimensional constraints of the variable.

Deposit a string value (it must be enclosed in quotation marks (") or
apostrophes ():

DBG> DEPOSIT PART NUMBER = "WG-7619.3-84"
DBG>

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENT WIDTH + 10
DBG>

Deposit element 12 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY(12) := 'K’
DBG>

Deposit a record component (you cannot deposit an entire record aggregate
with a single DEPOSIT command, only a component):

DBG> DEPOSIT EMPLOYEE.ZIPCODE = 02172
DBG>

Deposit an out-of-bounds value (X was declared as a positive integer):

$DEBUG-I-IVALOUTBNDS, value assigned is out of bounds at or near DEPOSIT

DBG>

2-20

As with the EXAMINE command, you can specify any kind of address
expression (not just a variable name) with the DEPOSIT command. You
can override the defaults for typed and untyped locations if you want the
data interpreted in some other data format.

2.29.3 Evaluating Language Expressions

To evaluate a language expression, use the EVALUATE command. It has
the following form:

EVALUATE language-expression

The debugger recognizes the operators and expression syntax of the
currently set language. In the following example, the value 45 is assigned
to the integer variable WIDTH; the EVALUATE command then obtains
the sum of the current value of WIDTH and 7:

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

DBG> DEPOSIT WIDTH := 45
DBG> EVALUATE WIDTH + 7
52

DBG>

In the next example, the values TRUE and FALSE are assigned to the
Boolean variables WILLING and ABLE, respectively; the EVALUATE
command then obtains the logical conjunction of these values:

DBG> DEPOSIT WILLING := TRUE
DBG> DEPOSIT ABLE := FAILSE
DBG> EVALUATE WILLING AND ABLE
False

DBG>

2.2.10 Controlling Access to Symbols in Your Program

To have full access to the symbols that are associated with your program
(variable names, routine names, source code, line numbers, and so on), you
must compile and link the program using the /DEBUG command qualifier,
as explained in Section 2.2.1.

Under these conditions, the way in which the debugger handles these
symbols is transparent to you, in most cases. However, the following two
areas might require action:

¢ Setting and canceling modules

* Resolving symbol ambiguities

2.210.1 Setting and Canceling Modules
To facilitate symbol searches, the debugger loads symbol information
from the executable image into a run-time symbol table (RST), where
that information can be accessed efficiently. Unless symbol information
is in the RST, the debugger does not recognize or properly interpret the
associated symbols.

Because the RST takes up memory, the debugger loads it dynamically,
anticipating what symbols you might want to reference in the course of
program execution. The loading process is called module setting, because
all symbol information for a given module is loaded into the RST at one
time.

At debugger startup, only the module containing the image transfer
address is set. Subsequently, whenever execution of the program is
interr