
VMS

digit a I VMS Debugger Manual

Order Number: AA-LA59C-TE

VMS Debugger Manual

Order Number: AA-LA59C-TE

June 1990

This manual explains the features of the VMS Debugger for programmers in
high-level languages and assembly language.

Revision/Update Information: This manual supersedes the VMS
Debugger Manual, Version 5.2.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA
DDIF
DEC
DECdtm
DECnet
DECUS
DECwindows
DECwriter

DEQNA
Desktop-VMS
DIGITAL
GIGI
HSC
Livelink
LN03
MASSBUS

MicroVAX
PrintServer 40
Q-bus
ReGIS
ULTRIX
UNIBUS
VAX
VAXcluster

The following is a third-party trademark:

VAX RMS
VAXserver
VAXstation
VMS
VT
XUI

Postscript is a registered trademark of Adobe Systems Incorporated.

ZK4538

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LN03R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE

PARTI

CHAPTER 1

1.1

1.2
1.2.1
1.2.2
1.2.3

1.3
1.3.1
1.3.2
1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.4
1.3.2.5
1.3.3

1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6

USING THE DEBUGGER: DECWINDOWS
INTERFACE

INTRODUCTION TO THE DEBUGGER: DECWINDOWS
INTERFACE

OVERVIEW OF THE DEBUGGER

STARTING A DEBUGGING SESSION
Compiling and Linking a Program to Prepare for Debugging
Establishing the Debugging Configuration
Invoking the Debugger

DEBUGGER WINDOWS AND MENUS
Debugger Main Window
Debugger Predefined Windows

Predefined Source Window (SRC) • 1-10
Predefined Output Window (OUT) • 1-10
Predefined Automatic Window (AUTO) • 1-11
Predefined Instruction Window (INST) • 1-11
Predefined Register Window (REG) • 1-12

Using the Pop-Up Menu

GETTING STARTED WITH THE DEBUGGER
Setting a Breakpoint
Executing the Program to the Breakpoint
Executing the Program into a Called Routine
Displaying the Current Value of a Variable
Assigning a Value to the Variable
Displaying Source Code for the Calling Routine

xxv

1-1

1-1

1-2
1-2
1-3
1-4

1-6
1-6
1-9

1-12

1-13
1-13
1-14
1-15
1-15
1-17
1-18

v

Contents

1.5 USING THE DEBUGGER 1-19
1.5.1 Displaying Online Help About the Debugger 1-19
1.5.1.1 Displaying Context-Sensitive Help • 1-19
1.5.1.2 Displaying the Overview Help Topic and Subtopics • 1-20
1.5.1.3 Displaying Help About the Debugger's Command Interface • 1-20
1.5.2 Debugger Diagnostic Messages 1-20
1.5.3 Interrupting Program Execution and Aborting Debugger

Operations 1-21
1.5.4 Ending a Debugging Session 1-21
1.5.5 Displaying Source Code 1-21
1.5.6 Displaying Decoded VAX Instructions 1-22
1.5.7 Specifying Address Expressions in Dialog Boxes 1-23
1.5.8 Controlling and Monitoring Program Execution 1-23
1.5.8.1 Starting or Resuming Program Execution • 1-24
1.5.8.2 Executing the Program by Step Unit • 1-24
1.5.8.3 Suspending and Tracing Execution with Breakpoints and

Tracepoints • 1-24
1.5.8.4 Monitoring Changes in Variables with Watchpoints • 1-25
1.5.9 Examining and Manipulating Program Data 1-25
1.5.9.1 Operations with Variables • 1-25
1.5.9.2 Operations with Code Locations • 1-26
1.5.9.3 Operations with Addresses or Registers • 1-26
1.5.9.4 Evaluating Language Expressions• 1-27
1.5.10 Controlling Access to Symbols in Your Program 1-27
1.5.10.1 Setting and Canceling Modules • 1-27
1.5.10.2 Resolving Symbol Ambiguities • 1-28
1.5.11 Using the Debugger's Command Interface 1-28
1.5.12 Using Log Files, Initialization Files, Command Procedures 1-29
1.5.13 Debugging Multilanguage Programs 1-29
1.5.14 Debugging Shareable Images and Ada Tasking Programs 1-30
1.5.15 Debugging Multiprocess Programs 1-30
1.5.16 Debugging Vectorized Programs 1-30
1.5.17 Using the Keypad to Enter Commands 1-31

1.6 ADDITIONAL OPTIONS FOR INVOKING THE DEBUGGER 1-33
1.6.1 Invoking the Debugger from a FileView Window 1-33
1.6.2 Invoking the Debugger with the DCL DEBUG Command 1-34
1.6.3 Overriding the Debugger's Default Interface 1-34
1.6.3.1 Displaying the Debugger's DECwindows Interface on Another

Workstation • 1-35
1.6.3.2 Displaying the Command Interface in a DECterm Window • 1-35
1.6.3.3 Displaying the Command Interface and Program Input/Output in

Separate DECterm Windows • 1-36
1.6.3.4 Explanation of DBG$DECW$DISPLAY and

DECW$DISPLAY • 1-37

vi

1.7

PARTll

CHAPTER2

2.1
2.1.1
2.1.2

2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

2.2.6
2.2.7
2.2.7.1
2.2.7.2
2.2.8
2.2.8.1
2.2.8.2
2.2.8.3
2.2.8.4
2.2.8.5
2.2.8.6
2.2.9
2.2.9.1
2.2.9.2
2.2.9.3
2.2.10
2.2.10.1
2.2.10.2

SAMPLE PROGRAM EIGHTQUEENS

USING THE DEBUGGER: COMMAND
INTERFACE

INTRODUCTION TO THE DEBUGGER: COMMAND
INTERFACE

OVERVIEW OF THE DEBUGGER
Functional Features
Convenience Features

GETTING STARTED WITH THE DEBUGGER
Compiling and Linking a Program to Prepare for Debugging
Establishing the Debugging Configuration
Invoking the Debugger
Ending a Debugging Session
Interrupting Program Execution and Aborting Debugger
Commands
Entering Debugger Commands
Displaying Source Code

Noscreen Mode• 2-9
Screen Mode • 2-12

Controlling and Monitoring Program Execution
Starting or Resuming Program Execution • 2-13
Executing the Program by Step Unit • 2-14
Determining Where Execution Is Suspended • 2-15
Suspending Program Execution with Breakpoints • 2-15
Tracing Program Execution with Tracepoints • 2-16
Monitoring Changes in Variables with Watchpoints• 2-17

Examining and Manipulating Program Data
Displaying the Value of a Variable •. 2-19
Assigning a Value to a Variable • 2-20
Evaluating Language Expressions • 2-20

Controlling Access to Symbols in Your Program
Setting and Canceling Modules• 2-21
Resolving Symbol Ambiguities • 2-22

Contents

1-38

2-1

2-1
2-2
2-4

2-5
2-6
2-6
2-7
2-7

2-8
2-8
2-9

2-13

2-18

2-21

vii

Contents

2.3 A SAMPLE DEBUGGING SESSION 2-23

2.4 DEBUGGER COMMAND SUMMARY 2-27
2.4.1 Starting and Ending a Debugging Session 2-27
2.4.2 Controlling and Monitoring Program Execution 2-27
2.4.3 Examining and Manipulating Data 2-28
2.4.4 Controlling Type Selection and Radix 2-28
2.4.5 Controlling Symbol Lookup and Symbolization 2-28
2.4.6 Displaying Source Code 2-29
2.4.7 Using Screen Mode 2-29
2.4.8 Editing Source Code 2-30
2.4.9 Defining Symbols 2-30
2.4.10 Using Keypad Mode 2-30
2.4.11 Using Command Procedures, Log Files, and Initialization Files 2-31
2.4.12 Using Control Structures 2-31
2.4.13 Debugging Multiprocess Programs 2-31
2.4.14 Additional Commands 2-32

CHAPTER 3 CONTROLLING AND MONITORING PROGRAM
EXECUTION 3-1

3.1 STARTING AND ENDING A DEBUGGING SESSION 3-1
3.1.1 Invoking the Debugger with the DCL RUN Command 3-1
3.1.2 Invoking the Debugger with the DCL DEBUG Command 3-4
3.1.3 Ending a Debugging Session 3-5

3.2 INTERRUPTING AND RESUMING A DEBUGGING SESSION 3-5

3.3 COMMANDS USED TO EXECUTE THE PROGRAM 3-6

3.4 EXECUTING THE PROGRAM BY STEP UNIT 3-7
3.4.1 Changing the STEP Command Behavior 3-8
3.4.2 Stepping into and over Routines 3-8

3.5 SUSPENDING AND TRACING EXECUTION WITH BREAKPOINTS AND
TRACEPOINTS 3-9

3.5.1 Setting Breakpoints or Tracepoints on Individual Program
Locations 3-11

3.5.1.1 Specifying Symbolic Addresses • 3-11
3.5.1.2 Specifying Locations in Memory • 3-13

viii

Contents

3.5.1.3 Obtaining and Symbolizing Memory Addresses• 3-13
3.5.2 Setting Breakpoints or Tracepoints on Lines or Instructions 3-14

3.5.3 Controlling Debugger Action at Breakpoints or Tracepoints 3-14

3.5.4 Setting Breakpoints or Tracepoints on Exceptions 3-16

3.5.5 Setting Breakpoints or Tracepoints on Language-Specific
Events 3-16

3.5.6 Canceling Breakpoints or Tracepoints 3-17

3.6 MONITORING CHANGES IN VARIABLES AND OTHER PROGRAM
LOCATIONS 3-17

3.6.1 Watchpoint Options 3-19

3.6.2 Watching Nonstatic Variables 3-20
3.6.2.1 Execution Speed • 3-20
3.6.2.2 Setting a Watchpoint on a Nonstatic Variable • 3-21
3.6.2.3 Options for Watching Nonstatic Variables • 3-21
3.6.2.4 Setting Watchpoints in Installed Writeable Shareable

Images • 3-22

3.7 HOW THE DEBUGGER CONTROLS PROGRAM EXECUTION 3-22

CHAPTER 4 EXAMINING AND MANIPULATING PROGRAM DATA 4-1

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.5.1
4.1.5.2
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10

4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

GENERAL CONCEPTS
Accessing Variables While Debugging
Using the EXAMINE Command
Using the DEPOSIT Command
Address Expressions and Their Associated Types
Evaluating Language Expressions

Using Variables in Language Expressions • 4-6
Numeric Type Conversion by the Debugger • 4-7

Address Expressions Compared to Language Expressions
Specifying the Current, Previous, and Next Entity
Language Dependencies and the Current Language
Specifying a Radix for Entering or Displaying Integer Data
Obtaining and Symbolizing Memory Addresses

EXAMINING AND DEPOSITING INTO VARIABLES
Scalar Types
ASCII String Types
Array Types
Record Types
Pointer (Access) Types

4-1
4-1
4-2
4-3
4-4
4-5

4-8
4-8

4-10
4-11
4-13

4-15
4-15
4-16
4-17
4-18
4-19

ix

Contents

4.3 EXAMINING AND DEPOSITING VAX INSTRUCTIONS 4-20
4.3.1 Examining VAX Instructions 4-20
4.3.2 Depositing VAX Instructions 4-22

4.4 EXAMINING AND DEPOSITING INTO REGISTERS 4-23
4.4.1 The Processor Status Longword (PSL) 4-24

4.5 SPECIFYING A TYPE WHEN EXAMINING AND DEPOSITING 4-25
4.5.1 Defining a Type for Locations Without a Symbolic Name 4-25
4.5.2 Overriding the Current Type 4-26
4.5.2.1 Integer Types • 4-27
4.5.2.2 ASCII String Type • 4-28
4.5.2.3 User-Declared Types • 4-28

CHAPTERS CONTROLLING ACCESS TO SYMBOLS IN YOUR
PROGRAM 5-1

5.1 CONTROLLING SYMBOL INFORMATION WHEN COMPILING AND
LINKING 5-2

5.1.1 Compiling 5-3
5.1.2 Local and Global Symbols 5-4
5.1.3 Linking 5-4
5.1.4 Controlling Symbol Information in Debugged Images 5-6

5.2 SETTING AND CANCELING MODULES 5-6

5.3 RESOLVING SYMBOL AMBIGUITIES 5-7
5.3.1 Symbol Lookup Conventions 5-8
5.3.2 Using SHOW SYMBOL and Path Names to Specify Symbols

Uniquely 5-9
5.3.2.1 Simplifying Path Names • 5-10
5.3.2.2 Specifying Symbols in Routines on the Call Stack • 5-10
5.3.2.3 Specifying Global Symbols • 5-10
5.3.2.4 Specifying Routine Invocations • 5-11
5.3.3 Using SET SCOPE to Specify a Symbol Search Scope 5-11

5.4 DEBUGGING SHAREABLE IMAGES 5-12
5.4.1 Compiling and Linking Shareable Images for Debugging 5-12
5.4.2 Accessing Symbols in Shareable Images 5-14
5.4.2.1 Accessing Symbols in the PC Scope (Dynamic Mode) • 5-14

x

5.4.2.2
5.4.2.3

CHAPTER6

6.1

6.2

6.3

6.4

6.5

Accessing Symbols in Arbitrary Images • 5-15
Accessing Universal Symbols in Run-Time Libraries and System
Images • 5-16

CONTROLLING THE DISPLAY OF SOURCE CODE

HOW THE DEBUGGER OBTAINS SOURCE CODE INFORMATION

SPECIFYING THE LOCATION OF SOURCE FILES

DISPLAYING SOURCE CODE BY SPECIFYING LINE NUMBERS

DISPLAYING SOURCE CODE BY SPECIFYING CODE ADDRESS
EXPRESSIONS

DISPLAYING SOURCE CODE BY SEARCHING FOR STRINGS

Contents

6-1

6-1

6-2

6-3

6-5

6-6

6.6 CONTROLLING SOURCE DISPLAY AFTER STEPPING AND AT EVENT
POINTS

6.7 SETTING MARGINS FOR SOURCE DISPLAY

CHAPTER 7 USING SCREEN MODE

7.1

7.2
7.2.1
7.2.1.1
7.2.1.2
7.2.2
7.2.3
7.2.4
7.2.4.1
7.2.4.2
7.2.4.3
7.2.5

CONCEPTS AND TERMINOLOGY

DEBUGGER PREDEFINED DISPLAYS

Predefined Source Display (SRC)
Displaying Source Code in Arbitrary Program Locations • 7-6
Displaying Source Code for a Routine on the Call Stack• 7-7

Predefined Output Display (OUT)
Predefined Prompt Display (PROMPT)
Predefined Instruction Display (INST)

Displaying the Instruction Display • 7-9
Displaying Instructions in Arbitrary Program Locations • 7-10
Displaying Instructions for a Routine on the Call Stack• 7-10

Predefined Register Display (REG)

6-7

6-9

7-1

7-2

7-4
7-4

7-7
7-7
7-8

7-10

xi

Contents

7.3 MANIPULATING EXISTING DISPLAYS
7.3.1 Scrolling a Display
7.3.2 Showing, Hiding, Removing, and Canceling a Display
7.3.3 Moving a Display Across the Screen
7.3.4 Expanding or Contracting a Display

7.4 CREATING A NEW DISPLAY

7.5 SPECIFYING A DISPLAY WINDOW
7.5.1 Specifying a Window in Terms of Lines and Columns
7.5.2 Predefined Windows
7.5.3 Creating a New Window Definition

7.6 SPECIFYING THE DISPLAY KIND
7.6.1 DO (command[; ...]) Display Kind
7.6.2 INSTRUCTION Display Kind
7.6.3 INSTRUCTION (command) Display Kind
7.6.4 OUTPUT Display Kind
7.6.5 REGISTER Display Kind
7.6.6 SOURCE Display Kind
7.6.7 SOURCE (command) Display Kind
7.6.8 PROGRAM Display Kind

7.7 ASSIGNING DISPLAY ATTRIBUTES

7.8 A SAMPLE DISPLAY CONFIGURATION

7.9 SAVING DISPLAYS AND THE SCREEN STATE

7.10 CHANGING THE SCREEN HEIGHT AND WIDTH

CHAPTER 8 ADDITIONAL CONVENIENCE FEATURES

xii

8.1
8.1.1
8.1.2

USING DEBUGGER COMMAND PROCEDURES
Basic Conventions
Passing Parameters to Command Procedures

7-11
7-12
7-12
7-13
7-14

7-14

7-15
7-15
7-15
7-16

7-16
7-17
7-18
7-18
7-19
7-19
7-20
7-20
7-21

7-21

7-23

7-24

7-24

8-1

8-1
8-1
8-2

Contents

8.2 USING A DEBUGGER INITIALIZATION FILE 8-4

8.3 LOGGING A DEBUGGING SESSION INTO A FILE 8-5

8.4 DEFINING SYMBOLS FOR COMMANDS, ADDRESS EXPRESSIONS, AND
VALUES 8-6

8.4.1 Defining Symbols for Commands 8-7
8.4.2 Defining Symbols for Address Expressions 8-7
8.4.3 Defining Symbols for Values 8-8

8.5 ASSIGNING COMMANDS TO FUNCTION KEYS 8-8
8.5.1 Basic Conventions 8-8
8.5.2 Advanced Techniques 8-9

8.6 USING CONTROL STRUCTURES TO ENTER COMMANDS 8-10
8.6.1 FOR Command 8-10
8.6.2 IF Command 8-10
8.6.3 REPEAT Command 8-11
8.6.4 WHILE Command 8-11
8.6.5 EXITLOOP Command 8-11

8.7 CALLING ROUTINES INDEPENDENTLY OF PROGRAM
EXECUTION 8-11

CHAPTER9 DEBUGGING SPECIAL CASES 9-1

9.1 DEBUGGING OPTIMIZED CODE 9-1
9.1.1 Eliminated Variables 9-2
9.1.2 Changes in Coding Order 9-3
9.1.3 Use of Registers 9-4
9.1.4 Use of Condition Codes 9-5

9.2 DEBUGGING SCREEN-ORIENTED PROGRAMS 9-5
9.2.1 Setting the Protection to Allocate a Terminal 9-7

9.3 DEBUGGING MULTILANGUAGE PROGRAMS 9-7
9.3.1 Controlling the Current Debugger Language 9-8
9.3.2 Specific Differences Among Languages 9-9
9.3.2.1 Default Radix • 9-9

xiii

Contents

9.3.2.2 Evaluating Language Expressions • 9-9
9.3.2.3 Arrays and Records • 9-10
9.3.2.4 Case Sensitivity • 9-10
9.3.2.5 Initialization Code • 9-10
9.3.2.6 Ada Predefined Breakpoints • 9-11

9.4 DEBUGGING EXCEPTIONS AND CONDITION HANDLERS
9.4.1 Setting Breakpoints or Tracepoints on Exceptions
9.4.2 Resuming Execution at an Exception Breakpoint
9.4.3 Effect of Debugger on Condition Handling
9.4.3.1 Primary Handler • 9-15
9.4.3.2 Secondary Handler • 9-15
9.4.3.3 Call-Frame Handlers (Application-Declared) • 9-15
9.4.3.4 Final and Last-Chance Handlers • 9-16
9.4.4 Exception-Related Built-In Symbols

9.5 DEBUGGING EXIT HANDLERS

9.6 DEBUGGING AST-DRIVEN PROGRAMS
9.6.1 Disabling and Enabling the Delivery of ASTs
9.6.2 Call Frames Associated with ASTs in SHOW CALLS Display

CHAPTER 10 DEBUGGING MULTIPROCESS PROGRAMS

xiv

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.7.1
10.1.7.2
10.1.8
10.1.9
10.1.10
10.1.11
10.1.12
10.1.13

GETTING STARTED
Establishing a Multiprocess Debugging Configuration
Invoking the Debugger
Visible Process and Process-Specific Commands
Obtaining Information about Processes
Bringing a Spawned Process Under Debugger Control
Broadcasting Commands to Specified Processes
Controlling Execution

Controlling Execution with SET MODE NOINTERRUPT • 10-7
Putting Specified Processes on Hold • 10-7

Changing the Visible Process
Dynamic Process Setting
Monitoring the Termination of Images
Ending the Debugging Session
Terminating Specified Processes
Interrupting Program Execution

9-11
9-12
9-12
9-14

9-16

9-17

9-18
9-18
9-18

10-1

10-1
10-1
10-1
10-2
10-3
10-4
10-5
10-6

10-8
10-8
10-9
10-9

10-10
10-10

Contents

10.2 SUPPLEMENTAL INFORMATION 10-10
10.2.1 Debugging Configurations and Process Relationships 10-10
10.2.1.1 Establishing a Default Debugging Configuration • 10-11
10.2.1.2 Establishing a Multiprocess Debugging Configuration • 10-11
10.2.1.3 Process Relationships When Debugging • 10-12
10.2.2 Specifying Processes in Debugger Commands 10-12
10.2.3 Monitoring Process Activation and Termination 10-14
10.2.4 Interrupting the Execution of an Image to Connect it to the

Debugger 10-14
10.2.4.1 Using the CTRUY-DEBUG Sequence to Invoke the

Debugger• 10-14
10.2.4.2 Using the CONNECT Command to Interrupt an Image • 10-15
10.2.5 Screen Mode Features for Multiprocess Debugging 10-16
10.2.6 Setting Watchpoints in Global Sections 10-17
10.2.7 Using Multiprocess Commands with the Default Configuration 10-18
10.2.8 Advanced Concepts and Possible Errors 10-18
10.2.9 System Requirements For Multiprocess Debugging 10-19
10.2.9.1 User Quotas • 10-19
10.2.9.2 System Resources • 10-20

CHAPTER 11 DEBUGGING VECTORIZED PROGRAMS 11-1

11.1

11.2

11.2.1
11.2.2
11.2.3

11.3
11.3.1
11.3.2

11.3.3

11.3.4

11.3.5

OBTAINING INFORMATION ABOUT THE VECTOR PROCESSOR

CONTROLLING AND MONITORING THE EXECUTION OF VECTOR
INSTRUCTIONS
Executing the Program to the Next Vector Instruction
Setting Breakpoints and Tracepoints on Vector Instructions
Setting Watchpoints on Vector Registers

EXAMINING AND DEPOSITING INTO VECTOR REGISTERS
Specifying the Vector Registers and Vector Control Registers _
Examining and Depositing into the Vector Count Register
(VCR)

Examining and Depositing into the Vector Length Register
(VLR)

Examining and Depositing into the Vector Mask Register
(VMR)

Examining and Depositing into the Vector Registers (VO to
V15)

11-2

11-2
11-3
11-3
11-3

11-4
11-4

11-4

11-5

11-6

11-7

xv

Contents

11.4
11.4.1
11.4.2

11.5

11.5.1
11.5.2
11.5.3

11.6

11.7

11.8

EXAMINING AND DEPOSITING VECTOR INSTRUCTIONS
Examining Vector Instructions and Their Operands
Depositing Vector Instructions

USING A MASK WHEN EXAMINING VECTOR REGISTERS OR
INSTRUCTIONS
Using VMR as the Default Mask
Using a Slice of VMR as the Mask
Using a Mask Other than VMR

EXAMINING COMPOSITE VECTOR ADDRESS EXPRESSIONS

DISPLAYING THE RESULTS OF VECTOR FLOATING-POINT
EXCEPTIONS

CONTROLLING SCALAR-VECTOR SYNCHRONIZATION

11-8
11-9

11-13

11-13
11-14
11-15
11-16

11-18

11-20

11-21

11.9 CALLING ROUTINES THAT MIGHT AFFECT THE PROGRAM'S VECTOR
STATE 11-24

11.10 DISPLAYING VECTOR REGISTER DATA IN SCREEN MODE 11-24

DEBUGGER COMMAND DICTIONARY

1 DEBUGGER COMMAND FORMAT CD-3
1.1 General Format CD-3
1.2 Entering Commands at the Keyboard CD-4
1.3 Entering Commands in Command Procedures CD-5

2 DEBUGGER DIAGNOSTIC MESSAGES CD-5

3 COMMANDS RECOGNIZED ONLY ON WORKSTATIONS RUNNING
vws CD-6

xvi

Contents

4 DEBUGGER COMMAND DICTIONARY CD-6
@(EXECUTE PROCEDURE) CD-7
ATTACH CD-9
CALL CD-10
CANCEL ALL CD-15
CANCEL BREAK CD-17
CANCEL DISPLAY CD-20
CANCEL IMAGE CD-22
CANCEL MODE CD-23
CANCEL MODULE CD-24
CANCEL RADIX CD-26
CANCEL SCOPE CD-27
CANCEL SOURCE CD-28
CANCEL TRACE CD-30
CANCEL TYPE/OVERRIDE CD-33
CANCEL WATCH CD-34
CANCEL WINDOW CD-35
CONNECT CD-36
CTRL/C CD-38
CTRL/W, CTRL/Z CD-40
CTRL/Y CD-41
DECLARE CD-44
DEFINE CD-47
DEFINE/KEY CD-50
DEFINE/PROCESS_ GROUP CD-54
DELETE CD-57
DELETE/KEY CD-59
DEPOSIT CD-61
DISABLE AST CD-68
DISPLAY CD-69
DO CD-76
EDIT CD-78
ENABLE AST CD-80
EVALUATE CD-81
EVALUATE/ ADDRESS CD-83
EXAMINE CD-85
EXIT CD-94
EXITLOOP CD-97
EXPAND CD-98
EXTRACT CD-101
FOR CD-103
GO CD-105
HELP CD-107
IF CD-109
MOVE CD-110

xvii

Contents

QUIT CD-112
REPEAT CD-115
SAVE CD-116
SCROLL CD-118
SEARCH CD-120
SELECT CD-123
SET ABORT_KEY CD-127
SET ATSIGN CD-129
SET BREAK CD-130
SET DEFINE CD-138
SET EDITOR CD-139
SET EVENT _FACILITY CD-141
SET IMAGE CD-142
SET KEY CD-144
SET LANGUAGE CD-145
SET LOG CD-147
SET MARGINS CD-148
SET MAX_SOURCE_FILES CD-151
SET MODE CD-152
SET MODULE CD-156
SET OUTPUT CD-159
SET PROCESS CD-161
SET PROMPT CD-165
SET RADIX CD-168
SET SCOPE CD-170
SET SEARCH CD-174
SET SOURCE CD-176
SET STEP CD-179
SET TASK CD-182
SET TERMINAL CD-185
SET TRACE CD-187
SET TYPE CD-195
SET VECTOR_MODE CD-198
SET WATCH CD-200
SET WINDOW CD-207
SHOW ABORT_KEY CD-209
SHOW AST CD-210
SHOW ATSIGN CD-211
SHOW BREAK CD-212
SHOW CALLS CD-214
SHOW DEFINE CD-216
SHOW DISPLAY CD-217
SHOW EDITOR CD-219
SHOW EVENT_FACILITY CD-220
SHOW EXIT_HANDLERS CD-221

xviii

Contents

SHOW IMAGE CD-222

SHOW KEV CD-223

SHOW LANGUAGE CD-226

SHOW LOG CD-227
SHOW MARGINS CD-228
SHOW MAX_SOURCE_FILES CD-229

SHOW MODE CD-230

SHOW MODULE CD-231
SHOW OUTPUT CD-234
SHOW PROCESS CD-235
SHOW RADIX CD-240
SHOW SCOPE CD-241
SHOW SEARCH CD-243
SHOW SELECT CD-244

SHOW SOURCE CD-246
SHOW STACK CD-248
SHOW STEP CD-249
SHOW SYMBOL CD-250
SHOW TASK CD-253
SHOW TERMINAL CD-256
SHOW TRACE CD-257
SHOW TYPE CD-259
SHOW VECTOR_MODE CD-260
SHOW WATCH CD-261
SHOW WINDOW CD-262
SPAWN CD-263
STEP CD-265
SYMBOLIZE CD-271
SYNCHRONIZE VECTOR_MODE CD-273
TYPE CD-275
WHILE CD-277

APPENDIX A COMMAND DEFAULTS A-1

APPENDIX B PREDEFINED KEY FUNCTIONS B-1

B.1 DEFAULT, GOLD, BLUE FUNCTIONS B-1

xix

Contents

B.2 KEV DEFINITIONS SPECIFIC TO LK201 KEYBOARDS B-3

B.3 KEYS THAT SCROLL, MOVE, EXPAND, CONTRACT DISPLAYS B-3

B.4 ONLINE KEYPAD KEV DIAGRAMS B-5

B.5 DEBUGGER KEV DEFINITIONS B-6

APPENDIX C SCREEN MODE REFERENCE INFORMATION C-1

C.1 DISPLAY KINDS C-1

C.2 DISPLAY ATTRIBUTES C-2

C.3 PREDEFINED DISPLAYS C-3
C.3.1 SRC (Source Display) C-4
C.3.2 OUT (Output Display) C-4
C.3.3 PROMPT (Prompt Display) C-4
C.3.4 INST (Instruction Display) C-5
C.3.5 REG (Register Display) C-5

C.4 SCREEN-RELATED BUILT-IN SYMBOLS C-6
C.4.1 Screen Height and Width C-6
C.4.2 Display Built-In Symbols C-6

C.5 SCREEN DIMENSIONS AND PREDEFINED WINDOWS C-7

APPENDIX D BUILT-IN SYMBOLS AND LOGICAL NAMES D-1

D.1 SS$_DEBUG CONDITION D-1

D.2 LOGICAL NAMES D-1

xx

Contents

D.3 BUILT-IN SYMBOLS D-3
D.3.1 Specifying the VAX Registers D-4
D.3.2 Constructing Identifiers D-4
D.3.3 Counting Parameters Passed to Command Procedures D-5
D.3.4 Controlling the Input Radix D-5
D.3.5 Specifying Program Locations and the Current Value of an

Entity D-5
D.3.6 Using Symbols and Operators in Address Expressions D-7
D.3.7 Obtaining Information About Exceptions D-10
D.3.8 Specifying Ada Tasks D-11
D.3.9 Specifying the Current, Next, and Previous Scope on the Call

Stack D-11

APPENDIX E SUMMARVOFDEBUGGERSUPPORTFORLANGUAGES E-1

E.1 ADA E-1

E.2 BASIC E-7

E.3 BLISS E-9

E.4 c E-10

E.5 COBOL E-12

E.6 DIBOL E-14

E.7 FORTRAN E-15

E.8 MACRO E-17

E.9 PASCAL E-19

E.10 PL/I E-22

xxi

Contents

E.11

E.12

E.13

INDEX

EXAMPLES
1-1

1-2

2-1

2-2

FIGURES
1-1

1-2

1-3

1-4

1-5

1-6

1-7

1-8

1-9

1-10

1-11

1-12

1-13

1-14

1-15

2-1

2-2

7-1

7-2

xx ii

RPG

SCAN

LANGUAGE UNKNOWN

Command Procedure SEPARATE_WINDOW.COM

Sample Program EIGHTQUEENS

Sample Program SQUARES

Sample Debugging Session Using Program SQUARES

Debugger Windows at Startup

Debugger Main Window

Main Window Pull-Down Menus

Data Menu and Submenus

Customize Menu and Submenus

Pop-Up Menu Over Source Window

Source Window at Debugger Startup

Setting a Breakpoint with the Pop-Up Menu

Execution Suspended at Line 60

Stepping into a Called Routine

Execution Suspended Within the Called Routine

Examining a Selected Variable with the Pop-Up Menu

Assigning a Value to a Variable

Displaying Source Code in the Calling Routine

Keypad Key Functions Predefined by the
Debugger-DECwindows Interface

Keypad Key Functions Predefined by the
Debugger-Command Interface

Default Screen Mode Display Configuration

Default Screen Mode Display Configuration

Screen Mode Source Display When Source Code Is Not
Available

E-24

E-25

E-27

1-37

1-38

2-23

2-24

1-5

1-6

1-7

1-7

1-8

1-12

1-13

1-14

1-14

1-15

1-15

1-16

1-17

1-18

1-32

2-10

2-12

7-2

7-6

7-3

7-4

11-1

B-1

TABLES
1-1

1-2

1-3

3-1

5-1

5-2

10-1

10-2

CD-1

B-1

B-2

8-3

B-4

Screen Mode Instruction Display

Screen Mode Register Display

Masked Loading of Array Elements from Memory into a
Vector Register

Keypad Key Functions Predefined by the
Debugger-Command Interface

Main Window Pull-Down Menus

Main Window Status Region

Main Window Buttons

Controlling Debugger Activation with the LINK and RUN
Commands

Compiler Options for DST Symbol Information

Effect of Compiler and Linker on DST and GST Symbol
Information

Debugging States

Process Specifications

Debugging States

Key Definitions Specific to LK201 Keyboards

Keys that Change the Key State

Keys that Invoke Online Help to Display Keypad Diagrams

Debugger Key Definitions

Contents

7-9

7-11

11-12

B-2

1-8

1-9

1-9

3-3

5-3

5-5

10-3

10-13

CD-237

8-3

8-4

8-5

8-6

xx iii

Preface

Intended Audience
This manual is for programmers at all levels of experience. It covers both
user interfaces of the debugger:

• The VMS DECwindows interface, for workstations

• The command interface, for terminals and workstations

The debugger can be used with most VAX languages (language support
is summarized in Appendix E). This manual emphasizes usage that is
common to all or most languages. For additional information that is
specific to a particular language, see the documentation furnished with
that language.

Note that you can use the VMS Debugger only to debug code in user mode.
You cannot debug any code in supervisor, executive, or kernel modes.
If you need to debug code in other than user mode, refer to the VMS
Delta/XDelta Utility Manual, which describes the VMS DELTA/XDELTA
Utility.

Document Structure
This manual is organized in two parts:

• Part I introduces the debugger's DECwindows interface. Additional
information about the DECwindows interface is available through
online help, as explained in Chapter 1.

• Part II completely describes the debugger's command interface:

Chapter 2 introduces the command interface.

The remaining chapters provide task-oriented and conceptual
information. To simplify the discussions, many details about the
debugger commands are not included in these chapters.

The command dictionary provides complete information about the
debugger commands.

The appendixes provide reference details about specific subjects.

Associated Documents
General information about the VMS DECwindows interface is available in
the VMS DECwindows User's Guide.

Information about compiling and debugging that is specific to a particular
language is available in the documentation furnished with that language.

Information about VAX assembly-language instructions and the VAX
MACRO assembler is available in the VAX MACRO and Instruction Set
Reference Manual.

xxv

Preface

Conventions

xxvi

Information about the linking of programs and about shareable images is
available in the VMS Linker Utility Manual.

The following conventions are used in this manual:

mouse

MB1, MB2, MB3

Ctrl/x

PF1 x

()

[]

red ink

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

A sequence such as PF1 x indicates that you must
first press and release. the key labeled PF1, then
press and release another key or a pointing device
button.

In examples, a key name is shown enclosed in a box
to indicate that you press a key on the keyboard. (In
text, a key name is not enclosed in a box.)

In examples, a horizontal ellipsis indicates one of the
following possibilities:

Additional optional arguments in a statement
have been omitted.

The preceding item or items can be repeated one
or more times.

Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory
name in a file specification or in the syntax of a
substring specification in an assignment statement.)

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on.

For online versions of the book, user input is shown in
bold.

boldface text

UPPERCASE TEXT

numbers

Preface

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Boldface text is also used to show user input in online
versions of the book.

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ}, or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for
a system privilege.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-binary,
octal, or hexadecimal-are explicitly indicated.

xxvii

Part I Using the Debugger: DECwindows Interface
This part introduces the VMS debugger's DECwindows interface. Additional
information about the DECwindows interface is available through online help.

For information about the debugger's command interface, see Part II.

1 Introduction to the Debugger: DECwindows Interface

This chapter introduces the VMS Debugger's DECwindows interface and
provides enough information to get you started. For information about the
debugger's command interface, see Part II of this manual, which starts
with Chapter 2.

The following information is provided in this chapter:

• An overview of the debugger's main features

• Instructions to prepare your program for debugging and start a
debugging session

• An overview of the debugger windows and menus

• A sample session to get you started with the debugger

• Introductions to most of the functions you can perform with the
debugger.

Many topics are covered very briefly. The documentation for the debugger's
DECwindows interface consists mainly of online help, and this chapter
includes numerous references to specific topics in the debugger's Help
menu, in the main window. The debugger's online help system is explained
in Section 1.5.1.

To use this chapter most effectively, read it while running the debugger on
your workstation.

It is assumed that you are familiar with the general DECwindows
environment as described in the VMS DECwindows User's Guide
that is, you should know how to use the pointer cursor and keyboard
to manipulate windows, menus, dialog boxes, online help, and so on.

If you are already familiar with the debugger's command interface,
including how to invoke the debugger from DCL level (as described in
Part II of this manual), you can start with Section 1.2.3.

1.1 Overview of the Debugger
The debugger is a tool that helps you locate run-time programming or logic
errors, also known as bugs. You use the debugger with a program that
has been compiled and linked successfully but does not run correctly. For
example, the program might give incorrect output, go into an infinite loop,
or terminate prematurely.

You locate errors with the debugger by observing and manipulating your
program interactively as it executes. The debugger enables you to do the
following tasks:

• Control the program's execution-start the program, stop at points of
interest, resume execution, and so on

1-1

Introduction to the Debugger: DECwindows Interface
1.1 Overview of the Debugger

• Trace the execution path of the program

• Monitor changes in variables and other program entities

• Monitor exception conditions and language-specific events

• Examine and modify the values of variables, or force events to occur

• In some cases, test the effect of modifications without having to edit
the source code, recompile, and relink

These are the basic debugging techniques. After you are satisfied that
you have found the error in the program, you can edit the source code and
compile, link, and execute the corrected version.

As you use the debugger and its documentation (particularly the online
help) you will discover variations on the basic techniques. You can also
tailor the debugger for your own needs.

The debugger is a symbolic debugger. You can specify variable names,
routine names, and so on, precisely as they appear in your source code.
You do not need to specify memory addresses or VAX registers when
referring to program locations, although you can, if you want.

You can use the debugger with the following VAX languages: Ada, BASIC,
BLISS, C, COBOL, DIBOL, FORTRAN, MACR0-32, Pascal, PUI, RPG II,
and SCAN.

The debugger recognizes the syntax, data typing, operators, expressions,
scoping rules, and other constructs of a given language. If your program is
written in more than one language, you can change the debugging context
from one language to another during a debugging session.

1.2 Starting a Debugging Session

1.2.1

The usual way to invoke the debugger from a DECterm window is as
follows:

1 Compile and link the program with the /DEBUG DCL command
qualifier

2 Make sure that the debugging configuration (default or multiprocess)
is appropriate for the kind of program you are going to debug

3 Invoke the debugger by entering the DCL RUN command

These steps are explained in the following sections. Additional options for
invoking the debugger are discussed in Section 1.6.

Compiling and Linking a Program to Prepare for Debugging

1-2

Before you can use the debugger, you must compile and link the modules
(compilation units) of your program as explained in this section. The
following example shows how to compile and link a Pascal program,
consisting of a single compilation unit named EIGHTQUEENS, before
using the debugger.

1.2.2

Introduction to the Debugger: DECwindows Interface
1.2 Starting a Debugging Session

Note: The /DEBUG and /NOOPTIMIZE qualifiers are compiler command
defaults for some languages. These qualifiers are used in the
example for emphasis.

$ PASCAL/DEBUG/NOOPTIMIZE EIGHTQUEENS
$ LINK/DEBUG EIGHTQUEENS

The /DEBUG qualifier on the compiler command (PASCAL in this
case) directs the compiler to write the symbol information associated
with EIGHTQUEENS into the object module, EIGHTQUEENS.OBJ, in
addition to the code and data for the program. This symbol information
enables you to use the names of variables and other symbols declared
in EIGHTQUEENS in debugger dialog boxes and commands. If your
program has several compilation units, you must compile each unit whose
symbols you want to reference with the /DEBUG qualifier.

Some compilers optimize the object code to reduce the size of the program
or to make it run faster. In such cases you should compile your program
with the /NOOPTIMIZE command qualifier (or equivalent). Otherwise, the
contents of some program locations might be inconsistent with what you
would expect from viewing the source code.

The /DEBUG qualifier on the LINK command causes the linker to include
all symbol information that is contained in EIGHTQUEENS.OBJ in the
executable image. The qualifier also causes the VMS image activator
to start the debugger at run time. If your program has several object
modules, you need to specify those modules in the LINK command, for
most languages.

Establishing the Debugging Configuration
Before invoking the debugger as explained in Section 1.2.3, check that the
debugging configuration is appropriate for the kind of program you are
going to debug.

You can invoke the debugger in either the default configuration or the
multiprocess configuration to debug programs that run in either one or
several processes, respectively. The configuration depends on the current
definition of the logical name DBG$PROCESS. Thus, before invoking the
debugger, enter the DCL command SHOW LOGICAL DBG$PROCESS to
determine the definition of DBG$PROCESS.

Most of this chapter covers programs that run in only one process. For
such programs, DBG$PROCESS either should be undefined, as in the
following example, or should have the value DEFAULT:

$ SHOW LOGICAL DBG$PROCESS
%SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS

If DBG$PROCESS has the value MULTIPROCESS, and you want to
debug a program that runs in only one process, enter the following
command:

$ DEFINE DBG$PROCESS DEFAULT

For more information about multiprocess debugging, see Section 1.5.15.

1-3

1.2.3

Introduction to the Debugger: DECwindows Interface
1.2 Starting a Debugging Session

Invoking the Debugger

1-4

After you compile and link your program and establish the appropriate
debugging configuration, you can then invoke the debugger. To do so, enter
the DCL command RUN, specifying the executable image of your program
as the parameter. For example, enter the following command to debug the
program EIGHTQUEENS:

$ RUN EIGHTQUEENS

By default, the debugger comes up in the following three windows,
arranged as shown in Figure 1-1:

• The main window.

• The predefined source window SRC, which shows the source code of
the module you are debugging. The numbers shown at the left of the
source code are compiler-generated line numbers, as they might appear
in a compiler-generated listing file.

• The predefined output window OUT, which displays the debugger's
output. For example, it shows the value of a variable that you are
examining.

Introduction to the Debugger: DECwindows Interface
1.2 Starting a Debugging Session

Figure 1-1 Debugger Windows at Startup

~;~~ v,\X Dfl:lJG: Copyri9ht 1r1 Di9ital ffluipment Corporation. 1989. All Ri!Jhts Reserved [!'.i][:ill
- -- - --- - - - - - - - -

File Edit Control Data Customize Help

llJ fl) Current Entity: II<no current entity)

llJ fl) Call Frame: I 01 (EIGHTQUEENS)

~ ~ Vlslble Process: 111 (JONES_TWA4)

I Go I I Step I I Examine I I Stop I
~I VAX DEBUG: SRC - module EIGHTQUEENS lb!llfil

File Edit Commands

IL j_: PROGRAM Eiqh~ueensIOUTPUTl· 0
2: VAR r-i

3: I : INTEGER;
4: A: ARRAY[l .. 8] OF BOOLEAN;
5: B : ARRAY[2 .. 16] OF BOOLEAN;
6: c : ARRAY[-7 .. 7] OF BOOLEAN;
7: X: ARRAY[l .. 8] OF INTEGER;
8: Safe : BOOLEAN; K: INTEGER;
9:

10: PROCEDURE Print;
11: BEGIN (* Print *) Q

~[i>
~I VAX DEBUG: OUT lb!llliL

File Edit

%DEBUG-I-INITIAL, language is PASCAL, module set to EIGHTQUEENS 0
1

~
Q

<i l i>
ZK-09U'-·GI!

Windows SRC and OUT are two examples of the kinds of debugger
windows you can use to capture and display different types of data.

The message that is displayed in window OUT at debugger startup
indicates that this debugging session is initialized for a Pascal program
and that the name of the main program unit (the module containing the
image transfer address) is EIGHTQUEENS. The initialization sets up
language-dependent debugger parameters.

By default, the boxed line in window SRC indicates where execution is
currently suspended. When you start a debugging session, the debugger
usually suspends execution at the beginning of the main program (line 1,
in this example). For Ada programs and certain other kinds of programs,
execution is initially suspended at the beginning of initialization code,
before the main program, so that you can choose to execute that code
under debugger control. To execute to the beginning of the main program
in such cases, click on the Go button in the main window. See your
language documentation for more information.

You can now use the debugger to start execution, set breakpoints,
examine variables, and so on, as explained in Section 1.4 and Section 1.5.
Section 1.3 gives an overview of the debugger's windows and menus.

1-5

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

1.3 Debugger Windows and Menus

1.3.1

The debugger windows consist of a main window and several predefined
windows that capture and display different kinds of data. The following
sections briefly describe these windows and the pop-up menu, which is
available from any debugger window.

For more information, choose Overview from the Help menu, then choose
Debugger Windows and Menus.

Debugger Main Window

1-6

The debugger's main window (see Figure 1-2) includes a menu bar, a
status region, and four buttons that are labeled Go, Step, Examine, and
Stop.

Figure 1-2 Debugger Main Window

File Edit Control Data Customize Help

r~· lfil Current Entity: II(no current entity)
[I) Call Frame: l'-0.-i -(E-I-GH_T_Q_U-EE_N_S_) --------------

~ 1§3 Visible Process: 1!1 (JONES_TWA4)

Go I I Step I I Examine I Stop

ZK-096~A-GE

• Figure 1-3 shows the menus on the main window's menu bar.
Figure 1-4 and Figure 1-5 show the submenus of the Data and
Customize menus, respectively. Table 1-1 summarizes the functions of
these menus and submenus.

• Table 1-2 summarizes the type of information displayed in the status
region fields and the functions of the associated arrow buttons.

• Table 1-3 summarizes the functions of the Go, Step, Examine, and
Stop buttons.

Note that the functions of the Go, Step, and Examine buttons can also be
performed through other means, such as the pop-up menu, Control menu,
or Data menu.

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

Figure 1-3 Main Window Pull-Down Menus

Break ...

Watch ...
can ...
Synchronize
Vector Processor

Language Expressions ...

Addresses or Registers H

Call Stack ..•

Modules •.•
Images •••

Exit Handlers

Processes .••

Tasks •••

Window Setups H

Multiprocess Window Setups H

Radix •••

Language

Source Flies •••

Logging ...

Datatype Defaults ...

Miscellaneous Settings .•.

Using Debugger Help

ZK-0941A-GE

Figure 1-4 Data Menu and Submenus

Variables C:7

Code H

Language Expressions ...

Addresses or Registers C:7

Call Stack •••

Modules •••

Images •••

Exit Handlers

Processes •••

Tasks •••

Examine Variable •••

Deposit into Variable •••

Show Variable •••

Examine Code •••

Deposit Code •••

Show Address •••

Examine Address or Register •••

Deposit into Address or Register •••

Symbolize Address or Register •••

ZK-09~2A-GE

1-7

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

1-8

Figure 1-5 Customize Menu and Submenus

Help

Show command ••.

Windows ...
Window Setups C-+-t----------

Multlprocess Window Setups c-+----...
Radix ...
Language
Source Flies ...
Logging ...

Datatype Defaults ...
Other Attrtbutes ...

C.+ Cl Ada

BASIC
BUSS

c
COBOL

DIBOL

FORTRAN
MACRO
Pascal

Pl/I
RPC

SCAN
Unknown

Table 1-1 Main Window Pull-Down Menus

Menu Description

File End the debugging session.

Output

I Main j
Source Inst , ,
Source Inst z z

[Output J

Main

Source

Output

ZK-0943.t.-GE

Edit Copy text to the clipboard, or paste text from the clipboard to a
debugger dialog box or the COMMAND box.

Control Start, stop, and monitor the execution of your program under debugger
control. For example: execute to the next line or to the next
VAX assembly-language instruction; set breakpoints, tracepoints,
and watchpoints; call a routine. For vectorized programs, force
synchronization between the scalar and vector processors.

Data Display or manipulate data that is associated with your program. For
example: examine variables and arbitrary program locations; assign
new values to variables; evaluate language expressions; control access
to variable names, routine names, and other symbols; manipulate
multiprocess programs and Ada tasking programs. Note that the Tasks
menu item is dimmed unless you are debugging a VAX Ada program.

Customize Tailor your debugging environment and establish default conditions.
For example: create and manipulate debugger windows; change the
programming language context; establish defaults for manipulating data
and for accessing symbols; open the COMMAND box to access the
debugger's command interface.

Help Obtain conceptual and task-oriented information about the debugger.
This is an alternative to obtaining context-sensitive help on individual
items that are displayed on the screen (menus, buttons, dialog boxes,
and so on).

1.3.2

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

Table 1-2 Main Window Status Region

Label Description

Current Entity Identifies the last entity that was examined or whose value was
changed (for example, a variable or a code location). Use the
arrow buttons to display consecutive logical entities-for example,
consecutive elements of an array variable.

Call Frame Identifies the routine that the debugger uses as reference when
displaying source code in the source window or instructions in
the instruction window, or when searching for symbols that are
associated with your program (variable names, routine names,
and so on). Use the arrow buttons to reset the reference to
another call frame on the call stack.

Visible Process For a one-process program, identifies the process that is
running the program. For a multiprocess program, identifies
the process that is currently the context for entering process
specific commands. Use the arrow buttons to reset the visible
process to another process that is under debugger control.

Table 1-3 Main Window Buttons

Button Description

Start execution from the current program location. Go

Step Execute the program one step unit of execution. By default, this is one
executable line of source code.

Examine Display the value of a variable or other entity whose name is selected in
a window, or the value of the entity last examined, if no text was selected.

Stop Interrupt program execution or a debugger operation without ending the
debugging session.

Debugger Predefined Windows
The debugger provides the following predefined windows that you can use
to capture and display different kinds of data:

SRC, the predefined source window
OUT, the predefined output window
AUTO, the predefined automatic window (a special output window)
INST, the predefined instruction window
REG, the predefined register window

Of these windows, only SRC and OUT are displayed, by default, at
debugger startup.

The basic features of the predefined windows are described in the next
sections. You can change certain characteristics of these windows, such as
buffer size or window attributes. You can also create additional windows
similar to the predefined windows. For more information, choose Overview
from the Help menu, then choose Debugger Windows and Menus, then
choose Debugger Predefined Windows (SRC, OUT, INST, REG, AUTO).

1-9

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

1-10

1.3.2.1 Predefined Source Window (SRC)
You can use window SRC to display source code in two basic ways:

• By default, SRC automatically displays the source code for the module
in which execution is currently suspended. This enables you to quickly
determine your current debugging context.

• In addition, you can use SRC to display the source code for any part of
your program.

,rhe name of the module whose source code is displayed is shown at the
right of the window name, SRC. The numbers displayed at the left of the
source code are the compiler-generated line numbers, as they might appear
in a compiler-generated listing file.

The next paragraphs describe the behavior of SRC when it is displaying
the current location. Section 1.5.5 explains how to display source code in
arbitrary locations.

As you execute the program under debugger control, window SRC is
updated automatically whenever execution is suspended. The boxed line
indicates the next line to be executed.

If the debugger cannot locate source lines for the routine in which
execution is suspended (because, for example, the routine is a run-time
library routine), it tries to display source lines in the next routine down
on the call stack for which source lines are available. If the debugger can
display source lines for such a routine, it issues the following message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
Displaying source in a caller of the current routine.

In such cases, the boxed line in the source window identifies the line to
which execution returns after the routine call. Depending on the source
language and coding style, this might be the line that contains the call
statement or the next line.

If your program was optimized during compilation, the source code
displayed in window SRC might not always represent the code that is
actually executing. The predefined instruction window INST is useful in
such cases, because it shows the exact VAX instructions that are executing.
See Section 1.3.2.4.

1.3.2.2 Predefined Output Window (OUT)
Window OUT is a general purpose output window. By default, it displays
the following information:

• Any debugger output that is not directed to windows SRC, INST, or
AUTO. For example, if window INST is not displayed or does not have
the instruction attribute, any output that would otherwise update
window INST is displayed in window OUT.

• Debugger diagnostic messages. Messages with a severity level greater
than I (informational) are also displayed in a message box (see
Section 1.5.2).

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

Note that, when displaying variable names, routine names, and other
symbolic address expressions, the debugger adds a path name prefix to
the name. The path name prefix identifies the nesting program elements
in which the entity was declared in the program. For example, if you
examined a variable K, whose value was 26, in routine SWAP of module
SWAP _PACK, the debugger might display the following output:

SWAP_PACK\SWAP\K: 26

In this case, SWAP _PACK\ SWAP\ is the path name prefix.

In most cases, you do not need to include a path name prefix when
specifying symbolic address expressions (see Section 1.5.10.2).

1.3.2.3 Predefined Automatic Window (AUTO)
Window AUTO is an automatically updating window that can be used
instead of window OUT to display the output from the following dialog
boxes, which are accessible from the Data menu:

Examine Variable
Examine Address or Register
Language Expressions

Window AUTO is created when you first click on the Display button in any
one of these dialog boxes. Thereafter, AUTO remains open until you close
it.

AUTO includes a debugger command list in its definition. Every time the
debugger gains control, AUTO is updated with the output of that command
list.

When AUTO is created, its command list consists of the Examine or
Evaluate command that was generated when you clicked on the Display
button, and it displays the output of that command.

Subsequently, every time you click on the Display button in any of the
three dialog boxes listed, the debugger appends the new command
generated to the current command list and updates AUTO to display
the output from the entire command list.

1.3.2.4 Predefined Instruction Window (INST)
Window INST displays the decoded VAX assembly-language instruction
stream of your program. This is the exact code that is executing, including
the effects of any compiler optimization.

You can use INST in two basic ways:

• By default, INST automatically displays the instructions for the
routine in which execution is currently suspended. This enables you to
quickly determine your current debugging context.

• In addition, you can use INST to display the instructions for any part
of your program.

By default, INST is not displayed on the screen. To open INST, choose
Window Setups from the Customize menu. Clicking on a window layout
of the Window Setups submenu enables you to place INST next to either
window SRC or window REG.

1-11

1.3.3

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

If your program was optimized during compilation, the window layout that
places windows SRC and INST side by side enables you to readily compare
the source code and the decoded instruction stream.

See Section 1.5.6 for more information about displaying instructions.

1.3.2.5 Predefined Register Window (REG)
Window REG displays the current values, in hexadecimal format, of the
VAX general registers (RO to Rll, AP, FP, SP, PC), the four condition code
bits (C, V, Z, and N) of the processor status longword (PSL), and as many
of the top stack values as can be displayed through the window.

The values contained in the registers are updated each time the debugger
gains control.

By default, REG is not displayed on the screen. To open REG, choose
Window Setups from the Customize menu. Clicking on the third layout
of the Window Setups submenu enables you to place REG next to window
INST.

Using the Pop-Up Menu

1-12

The debugger's pop-up menu (see Figure 1-6) enables you to perform
several common operations without having to pull down a menu in the
main window.

Figure 1-6 Pop-Up Menu Over Source Window

File Edit Commands

37: REPEAT 0
38: I ·= I+l;
39: Safe := A[I] AND B[I+J] AND C[I-J];
40: IF :l!.llD THEN Examine
41: BEGIN

I 42: Setgueen£ Evaluate

43: X[J) := I; Step Into Routine
44: IF J < 8 THEN Step Over Routine
45: Trycol (J+1)
46: ELSE Step To Return

47: Print; Step By Instruction Q

<ir Step By Line 0
Set Break

View Current Location
·····································
Go

For an explanation of the pop-up menu items, use the pop-up menu's
context-sensitive help (see Section 1.5.1). All pop-up menu functions can
also be performed through other means.

To use the pop-up menu, proceed as follows:

1 Position the pointer cursor within a debugger window.

2 Press and hold MB2 to display the pop-up menu, then drag to the
desired menu item and release MB2.

Introduction to the Debugger: DECwindows Interface
1.3 Debugger Windows and Menus

Note that the behavior of the Examine, Evaluate, and Set Break menu
items depends on whether you selected text before invoking the pop-up
menu.

1.4 Getting Started with the Debugger

1.4.1

This section walks you through the following basic steps with a sample
program, EIGHTQUEENS. The complete source code for the program is
shown in Section 1. 7.

1 Set a breakpoint to suspend execution at a routine call statement.

2 Execute the program to the breakpoint.

3 Execute the program into the called routine.

4 While execution is suspended within the routine, display the current
value of a variable.

5 Assign another value to the variable.

6 Display source code in the calling routine.

Figure 1-7 shows the source window, SRC, at debugger startup. Execution
is suspended at line 1 (the boxed line) of module EIGHTQUEENS.

Figure 1-7 Source Window at Debugger Startup

"'I VAX DEBUG: SRC- module EIGHTQUEENS JQ!fill
File Edit Commands

I[1: PROGRAM E:!,_g_ht_g_ueensIOUTPUT_l;_ 0
2: VAR
3: I : INTEGER;
4: A: ARRAY[l .. 8] OF BOOLEAN;
5: B : ARRAY[2 .. 16] OF BOOLEAN;
6: c : ARRAY[-7 .. 7] OF BOOLEAN;
7: K : ARRAY[l .. 8] OF INTEGER;
a: Safe : BOOLEAN; K: INTEGER;
9:

10: PROCEDURE Print;
11: BEGIN (* Print *) 0

<i l 0

Setting a Breakpoint
In this section, a breakpoint is set on line 60 of module EIGHTQUEENS.
Line 60, which is hidden below the window border in Figure 1-7, contains
a call to routine TRYCOL (see Figure 1-8).

Proceed as follows:

1 Scroll the source window to display line 60.

1-13

1.4.2

Introduction to the Debugger: DECwindows Interface
1.4 Getting Started with the Debugger

2 Double click on any part of line 60. When setting a breakpoint, you
can select any portion of a line in the source window. For example,
you could select the number 60, as shown in Figure 1-8, or the word
TRYCOL. The breakpoint would be set on line 60 in either case.

3 Choose Set Break from the pop-up menu.

A breakpoint is now set on line 60-specifically, at the beginning of line
60, before the call to routine TRYCOL is executed.

Figure 1-8 Setting a Breakpoint with the Pop-Up Menu

File Edit Commands

52: 0
53: BEGIN (* Eightqueens *) Examine

54: FOR I := 1 TO 8 DO Evaluate
55: A[I] :a TRUE; Step Into Routine
56: FOR I := 2 TO 16 DO Step Over Routine 57: B[I] := TRUE;
58: FOR I ·= -7 TO 7 DO Step To Return

59: C[I] := TRUE; Step By Instruction
:D]: Trycol(1); Step By Line
61: WRITELN; I Set Break I
62: END. (* Eightqueens *) Q

<H View Current Location i>
Go

Executing the Program to the Breakpoint

1-14

To execute the program from the current location (line 1) to the breakpoint
at line 60, click on the Go button in the main window.

When execution reaches the breakpoint, the source window is updated
automatically: line 60 is boxed, indicating that execution is now suspended
at the call statement to routine TRYCOL (see Figure 1-9).

Whenever the source window is updated as a result of program execution,
the boxed line indicates the line to be executed next.

Figure 1-9 Execution Suspended at Line 60

File Edit Commands

52 0
53 BEGIN (* Eightqueens *)
54 FOR I := 1 TO 8 DO
55 A[I] := TRUE;
56 FOR I := 2 TO 16 DO
57 B[I] := TRUE;
58 FOR I := -7 TO 7 DO
59 C[I] := TRUE;

II 60 Tr_y_col_i1l ·
61 WRITELN;
62 END. (* Eightqueens *)

......
Q

<i [i>

1.4.3

1.4.4

Introduction to the Debugger: DECwindows Interface
1.4 Getting Started with the Debugger

Executing the Program into a Called Routine
While execution is suspended at line 60, at the call statement to routine
TRYCOL, choose Step Into Routine from the pop-up menu to execute the
program one step unit into the routine (see Figure 1-10).

After this Step command has been entered, the source window is updated,
showing that execution is now suspended at line 36, within routine
TRYCOL (see Figure 1-11).

The Step command is used in this section and the next to execute the
program one source line at a time. Note that, in this mode of operation,
the Step command executes one or more executable lines at a time,
skipping over any other lines. Executable lines are those for which
instructions were generated by the compiler.

Figure 1-10 Stepping into a Called Routine

~ VAX DEBUG: SRC - module EIGHTQUEENS ~m
~~~~~~~~~~~~~~~~~~~~~~~~~~~-

File Edit Commands 

52: Examine 0 
53: BEGIN (* Eightqueens *) 

Evaluate 54: FOR I : = 1 TO 8 DO 
55: A[I] := TRUE; I Step Into Routine I 
56: FOR I : = 2 TO 16 DO Step Over Routine 
57: B[ I] := TRUE; 

Step To Return 58: FOR I := -7 TO 7 DO 
59: C[I] := TRUE; Step By Instruction 

I 60: Trycol (1}; Step By Line 
61: WRITELN; 

Set Break '-
62: END. (* Eightqueens *) 0 

(If View Current Location 0 ..................................... 
Go 

Figure 1-11 Execution Suspended Within the Called Routine 

File Edit Commands 

32: C[I-J] := TRUE; 0 
33: END; (* Rernovequeen *) 
34: 
35: BEGIN (* Trycol *) 

I [ 36: I := O; 
37: REPEAT 
38: I := I+1; 
39: Safe := A[I] AND B[ I+J] AND C[I-J]; 
40: IF Safe THEN 
41: BEGIN 
42: Setqueen; 0 

(I ( 0 

Displaying the Current Value of a Variable 
The value of the Boolean variable SAFE is obtained in this section. It is 
obtained after the assignment statement at line 39, in routine TRYCOL, 
has been executed (see Figure 1-11). 

1-15 



Introduction to the Debugger: DECwindows Interface 
1.4 Getting Started with the Debugger 

1-16 

To execute the program from the current location at line 36 past line 39 
(for example, to line 42), click on the Step button repeatedly until line 42 
is boxed (see Figure 1-12). 

To display the current value of the variable SAFE, proceed as follows: 

1 Double click on the word SAFE in the source window to select that 
word. 

2 Choose Examine from the pop-up menu. 

The value of SAFE (True) is now displayed in window OUT. The 
debugger displays· the variable name using its full path name 
(EIGHTQUEENS\ SAFE), indicating that SAFE is declared in module 
EIGHTQUEENS. 

Note that the Current Entity field in the main window is now updated to 
identify the last entity that was examined, namely the variable SAFE. 

Figure 1-12 Examining a Selected Variable with the Pop-Up Menu 

~I VAX DEBUC: Process JONES TWA4 lb!lllil 
File Edit Control Data Customize Help 

fII IE Current Entity: j!E IGHTQUEENS \SAFE 

I]) IE Call Frame: lo (EIGH'lbUEENS\TRYCOL) 

~ §3 Visible Process: 111 (JONES_TWA4) 

I Co I I Step I I Examine I I Stop I 
~~~~~~~--~~---~~~~-----

~ VAX DEBUG: S~=-~odule _':IGHTQUE~------- _____________ ------~~rmi
File Edit Commands

37: REPEAT 0
38: I : .. !+1;
39: Safe :• A[I] AND B[I+J] AND C[I-J];
40: IF Jm:fE THEN I Examine I 41: BEGIN

I 42: Setgueen£ Evaluate
43: X[J] := I; Step Into Routine
44: IF J < 8 THEN Step over Routine
45: Trycol(J+1)
46: ELSE Step To Return
47: Print; Step By Instruction 0

<n Step By Line :::11>

YAl VAX DEBUC: OUT Set Break 101il
File Edit View Current Location

stepped to EIGHTQUEENS\TRYCOL\%LINE 39 Co 0
39: Safe := A[I] AND B[I+J] .,,.. "-l.L'"\JJ,

~
stepped to EIGHTQUEENS\TRYCOL\%LINE 40

40: IF Safe THEN
stepped to EIGHTQUEENS\TRYCOL\%LINE 42

42: Setqueen;
EIGHTQUEENS\SAFE: True 0
<i l i>

ZK-0965 ... -GE

1.4.5

Introduction to the Debugger: DECwindows Interface
1.4 Getting Started with the Debugger

Assigning a Value to the Variable
Assume that the variable SAFE is still selected in the source window.
To change the value of SAFE from True to False, proceed as follows (see
Figure 1-13):

1 Choose Variables from the Data menu in the main window, then choose
Deposit into Variable... from the submenu.

When the Deposit into Variable dialog box is displayed, note that the
selected word, SAFE, fills the Variable text-entry field. Thus, you do
not have to enter the variable name from the keyboard.

2 Enter the word False in the Language Expression field. This is the
value to be assigned to (deposited into) the variable.

3 Click on OK or Apply.

Variable SAFE now has the value False. You can verify this by choosing
Examine from the pop-up menu.

Figure 1-13 Assigning a Value to a Variable

~ VAX DEBUG: Process JONES TWA4

File Edit Control Customize

Variables IIJ I!) current Entity:

f]J III Call Frame: ~:::uage Expressions ..•

~ 133 Visible Process: Addresses or Registers

Go I Step I Call Stack ...
• Modules •••

Images .••

Exit Handlers
1----=-....;:.;;...R..;....EP..;....E..;....A;..;.;.:;Ti Processes ...

I : = Tasks, ..
Safe :=
IF &.Iii THEN

Examine Variable •..

i:: I Deposit into variable ... I
Show Variable ...

Help

~-~----=BEGI-N~~~~~~~~~~~~~~~~~~:.:...o;
Deposit into Variable

Variable ls_af_e_'. ------------
Language Expression l._F_ai_s_ej ___________ _

Target Datatype I Compiler Generated I
umoth L
Us(~r rype l

'-------~

I Cancel I
Z K-0966A-G E

1-17

1.4.6

Introduction to the Debugger: DECwindows Interface
1.4 Getting Started with the Debugger

Displaying Source Code for the Calling Routine

1-18

By default, the source window shows the source code for the routine in
which execution is suspended, and the name of the routine is identified in
the Call Frame field of the main window.

In this example, execution is currently suspended within routine TRYCOL
of module EIGHTQUEENS. The Call Frame field in Figure 1-12 displays
the routine path name, EIGHTQUEENS\ TRYCOL.

The number 0 in the Call Frame field indicates that the routine whose
source code is displayed is the routine at the top of the call stack (where
execution is suspended).

If, as in this example, execution is suspended within a called routine, you
can display the source code for the calling routine by clicking once on the
Call Frame down-arrow button.

Clicking once displays the source code for routine EIGHTQUEENS (the
main program), as shown in Figure 1-14. The boxed line identifies the line
where execution will continue in that routine (line 61, which follows the
call statement). The Call Frame field now displays the number 1, followed
by the name of that routine. The number indicates the level, relative
to the top of the call stack (level 0), of the routine whose source code is
displayed.

Figure 1-14 Displaying Source Code in the Calling Routine

File Edit Control Data Customize Help

13E1 I!) Current Entity: IIEIGHTQUEENS\SAFE

13E1 [:!EJ Call Frame: I 1j (EIGHTQUEENS)

0133 Visible Process: 111 (JONES_TWA4)

I Go I I Step I I Examine I I Stop I
1'AI VAK DEBUG: SRC - module EIGHTQUEENS lb!lllill

File Edit Commands

52: 0
53: BEGIN (* Eightqueens *)
54: FOR I := 1 TO 8 DO
55: A[I] := TRUE;
56: FOR I : = 2 TO 16 DO
57: B[I] := TRUE;
58: FOR I := -7 TO 7 DO
59: C[I] := TRUE;
60: Trycol (1);

Ir 61: WRITELN·
62: END. (* Eightqueens *) 0

(I (i>
ZK·0967A-OE

In general, clicking on the Call Frame arrow buttons enables you to
display the source code for any routine up or down the call stack.

A Call Frame arrow button that is dimmed indicates that the scope
reference is at the end of the call stack.

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

1.5 Using the Debugger

1.5.1

The remaining sections of this chapter explain how to use the debugger to
perform basic functions. After an introduction, most sections point to an
online help topic for additional information.

Displaying Online Help About the Debugger
Note: When you first invoke the debugger's online help system, it might

take up to a minute to display the first help topic. Subsequent
help topics are displayed within a few seconds after you request
them.

Three kinds of online help about the debugger and debugging are available
during a debugging session:

• Context sensitive help, which is available for any item in a debugger
window, menu, or dialog box.

• Conceptual and task-oriented help, which consists of an introductory
help topic named Overview and several subtopics on specific subjects.

• Help about the debugger's command interface, which is available
through the COMMAND box.

The technique for displaying each kind of online help is described in the
following sections.

1.5.1.1 Displaying Context-Sensitive Help
Context-sensitive help about the debugger is available for any item in a
debugger window, menu, or dialog box.

To display context-sensitive help:

1 Point to an item.

2 Press and hold the Help key.

3 Click on either MBl, MB2, or MB3.

4 Release the Help key.

Context-sensitive help for dialog boxes is structured in the following way:

• The same help text is displayed for any location of the pointer cursor
within a dialog box.

• The introductory help text describes how to use the dialog box for a
typical operation.

• In most cases, a separate additional topic is devoted to each item in
the dialog box (button, menu, and so on). These topics are listed in the
order that the items they describe appear in the dialog box, from top
to bottom.

• Other topics provide task-oriented and conceptual discussions, where
applicable.

1-19

1.5.2

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

When using context-sensitive help, you should also display the Overview
help topic and look for related information in the list of additional topics.

1.5.1.2 Displaying the Overview Help Topic and Subtopics
The Overview help topic and subtopics provide conceptual and task
oriented help about the debugger and debugging. These topics supplement
the information that is available through context-sensitive help.

To display the Overview topic, use any one of the following techniques:

• Choose Overview from the Help menu in the main window.

• Ensure that a debugger window has the input focus, then press and
release the Help key.

• Choose Go To Overview from the View menu of a debugger help
window.

Then, to obtain information about a particular subject, choose a topic from
the list of additional topics.

1.5.1.3 Displaying Help About the Debugger's Command Interface
Help about the debugger's command interface is available through the
COMMAND box.

• To open the COMMAND box, choose Show Command... from the
Customize menu.

• To list the help topics, enter the command HELP at the DBG> prompt.

• For an explanation of the command-interface help system, enter the
command HELP HELP.

Debugger Diagnostic Messages

1-20

Debugger diagnostic messages include numerous informational messages
(severity level I) that provide feedback during a debugging session. (For
an explanation of severity levels, choose Overview from the Help menu,
then choose Debugger Diagnostic Messages.)

To reduce the time involved in acknowledging informational messages,
only those debugger messages that have severity levels of W, E, or F are
displayed in a message box.

You can get context-sensitive help on any debugger message that is
displayed in a message box.

By default, all debugger messages (including those of severity level I)
are displayed in window OUT. Thus, debugger messages of severity level
greater than I are displayed both in a message box and in window OUT.

Messages displayed in a message box show only the message text.
Messages displayed in window OUT show the message text, identifier,
severity, and facility.

1.5.3

1.5.4

1.5.5

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

Interrupting Program Execution and Aborting Debugger Operations
To interrupt program execution during a debugging session, click on
the Stop button in the main window. This is useful if, for example, the
program is in an infinite loop.

To abort a debugger operation that is in progress, click on the Stop
button in the main window. This is useful if, for example, the debugger is
displaying a long stream of data.

Clicking on the Stop button does not end the debugging session. Clicking
on the Stop button when the program is not running or when the debugger
is not performing an operation has no effect.

Ending a Debugging Session
To end a debugging session, choose either Exit or Quit from the File menu
in the main window.

If your program has application-declared exit handlers, Exit executes these
handlers. Quit gives you the option of executing application-declared exit
handlers (a dialog box is displayed in such cases).

Unless you are debugging a multiprocess program, you can also end the
debugging session by choosing Exit or Quit from any debugger window
(not just the main window).

For multiprocess programs, choosing Exit or Quit from a debugger window
other than the main window has the following effect:

• If the window is not process specific, terminates the visible process

• If the window is process specific, terminates the process associated
with that window

The following message, displayed in the output window during a debugging
session, indicates that your program has completed normally:

%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion'

If you want to continue debugging after seeing this message, it is usually
best to end the session and start a new one. You can restart execution
from within the debugging session (by choosing Go... from the Control
menu and then specifying a location in the Go dialog box). However, this
technique can produce unexpected results if, for example, some variables
have different values from when you first ran the program.

Displaying Source Code
By default, window SRC automatically displays the source code for the
module in which execution is currently suspended.

1-21

1.5.6

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

In addition, window SRC has the source attribute by default. Therefore,
you can also use SRC to display the source code for any part of your
program (if source code is available for display):

• You can display the source code for any routine on the call stack by
clicking on the Call Frame arrow buttons in the main window.

The number shown in the Call Frame field indicates the relative level
of the routine on the call stack. Call frame 0 denotes the routine at
the top of the call stack, where execution is suspended. Call frame 1
denotes the calling routine, and so on.

• You can display arbitrary source lines in any module by choosing View
Source... from the Commands menu of window SRC.

• You can display the source line associated with a code location (for
example, a routine declaration) by choosing Examine Code ... from the
Code submenu of the Data menu.

After manipulating the contents of window SRC, you can display the
location at which execution is suspended by choosing View Current
Location from the pop-up menu.

If the debugger cannot locate source lines for display, it issues a diagnostic
message.

For more information, choose Overview from the Help menu, then choose
Displaying Source Code.

Displaying Decoded VAX Instructions

1-22

By default, window INST automatically displays the decoded instruction
stream for the routine in which execution is currently suspended.

If window INST has the instruction attribute, it is also updated by any
command that you enter to display instructions. If no window has the
instruction attribute, the output of such commands is directed at window
OUT. Note that opening window INST through the Window Setups
submenu of the Customize menu automatically assigns the instruction
attribute to that window.

You can display instructions in window INST as follows:

• You can display the instruction stream for any routine that is on the
call stack by clicking on the Call Frame arrow buttons in the main
window.

• You can display the instructions that are associated with a code
location (for example, a routine declaration) by choosing View
Instructions from the Commands menu of window INST, or by choosing
Examine Code... from the Code submenu of the Data menu.

When you choose Examine Code ... , you have the option of displaying
detailed information about the instruction operands.

After manipulating the contents of window INST, you can display the
location at which execution is suspended by choosing View Current
Location from the pop-up menu.

1.5.7

1.5.8

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

For more information, choose Overview from the Help menu, then choose
Displaying Decoded VAX Instructions.

Specifying Address Expressions in Dialog Boxes
Several dialog boxes (for example, the Break dialog box) require you to
enter an address expression. An address expression is an entity that
denotes a memory address or a register. Do not confuse an address
expression with a language expression, which denotes a value (see
Section 1.5.9.4).

The debugger is a symbolic debugger. Therefore, although you can specify
a memory address or register directly in a dialog box, you usually specify
symbolic address expressions.' These include routine names, variable
names, program labels, and source line numbers. The debugger associates
a symbolic address expression with a unique memory address, range
of addresses, or register. The debugger also recognizes the compiler
generated type that is associated with a symbolic address expression.

Address expressions are associated with either code (VAX assembly
language instructions) or data. The kind of address expression you need
to specify in a dialog box depends on the action you are about to perform
and is indicated in the help text for that dialog box. For example, when
setting a breakpoint, you specify an address expression that is associated
with code; when setting a watchpoint, you specify an address expression
that is associated with data (a variable name, in most cases).

You can fill the Address Expression field of a dialog box in two ways:

• By selecting text in a window. If you select the text before you open
the dialog box, the text is automatically inserted in the Address
Expression field.

• By entering text directly from the keyboard.

The help text for a dialog box explains the conventions for filling the
Address Expression field.

For more information, choose Overview from the Help menu, then choose
Specifying Address Expressions.

Controlling and Monitoring Program Execution
This section explains how to perform the following tasks:

• Start or resume program execution

• Execute the program to the next source line, instruction, or other step
unit

• Use breakpoints to suspend execution at points of interest

• Use tracepoints to trace the execution path of your program through
specified locations

• Use watchpoints to monitor changes in the values of variables

1-23

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

1-24

To determine where execution is suspended at any time during a
debugging session, use the techniques described in Section 1.5.5 and
Section 1.5.6. You can also choose Call Stack ... from the Data menu to
display the sequence of routine calls that are currently active on the call
stack and to obtain detailed information about the call stack.

1.5.8.1 Starting or Resuming Program Execution
Use the Go command to start or resume program execution.

To start execution from the current location, click on the Go button in the
main window.

To start execution from another location, choose Go... from the Control
menu and specify the location in the Go dialog box.

After it is started with the Go command, program execution continues
until one of the following events occurs:

• The program completes execution

• A breakpoint is reached

• A watchpoint is activated

• An exception is signaled

• You click on the Stop button in the main window

For more information, choose Overview from the Help menu, then choose
Starting and Resuming Execution (Go Command).

1.5.8.2 Executing the Program by Step Unit
Use the Step command to execute the program one or more step units at a
time.

By default, a step unit is one line of source code; and, by default, the
debugger notifies you of the completion of a Step command by displaying a
"stepped to ... " message and the source line where execution is suspended.

To execute one step unit, click on the Step button in the main window.

You can use the pop-up menu for some common step options (for example,
step into routine, step by instruction).

To execute these and other step options, or to change the step unit or
any Step command default, choose Step... from the Control menu.
For example, you can make the default step unit signify "execute one
instruction".

For more information, choose Overview from the Help menu, then choose
Executing the Program by Step Unit (Step Command).

1.5.8.3 Suspending and Tracing Execution with Breakpoints and Tracepoints
A breakpoint is a location in your program at which execution is to be
suspended. Typical locations are routine declarations, program labels, and
specific lines of source code. At a breakpoint, you can step into a routine,
check the current value of a variable, and so on.

1.5.9

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

In addition to specifying unique locations, you can set breakpoints on every
source line or on certain classes of VAX assembly-language instructions.
You can also set breakpoints on certain kinds of events, such as exceptions
and Ada tasking events. And you can set conditional breakpoints that
trigger only when a specified expression is evaluated to be true.

A tracepoint is like a breakpoint, except that execution continues after the
debugger reports that the tracepoint has been reached. Tracepoints enable
you to monitor the path of execution of your program through specified
locations (for example, through routine calls). As with breakpoints,
you can trace through classes of instructions, monitor events, and set
conditional tracepoints.

In general, to set, identify, or cancel breakpoints or tracepoints, choose
Break... from the Control menu

For more information, choose Overview from the Help menu, then choose
Using Breakpoints and Tracepoints.

1.5.8.4 Monitoring Changes in Variables with Watchpoints
A watchpoint is a memory address, register, or (typically) a variable
declared in the program whose value is monitored during program
execution. If the value changes, the debugger suspends execution and
reports the old and new values.

Note that you can set a watch point on a nonstatic (stack or register)
variable only when program execution is currently suspended within the
scope of its defining routine-that is, when the defining routine is active
on the call stack.

To set, identify, or cancel watchpoints, choose Watch... from the Control
menu. As with breakpoints and tracepoints, you have several options for
setting watchpoints.

For more information, choose Overview from the Help menu, then choose
Using Watchpoints.

Examining and Manipulating Program Data
The debugger enables you to manipulate variables declared in your
program, code locations (locations containing VAX instructions), memory
addresses, registers, and language expressions.

1.5.9.1 Operations with Variables
To manipulate variables in your program, choose Variables from the Data
menu. The Variables submenu provides the following operations:

• Choose Examine Variable... to display the value of a variable.

• Choose Deposit into Variable... to assign a value to a variable.

• Choose Show Variable... to display information about a variable, such
as its type, memory address or register, and path name.

1-25

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

1-26

Note that you can examine a nonstatic (stack or register) variable only
when program execution is currently suspended within the scope of its
defining routine-that is, when the defining routine is active on the call
stack.

For more information, choose Overview from the Help menu, then choose
Examining and Manipulating Program Data, then choose Operations with
Variables.

1.5.9.2 Operations with Code Locations
To manipulate code locations in your program (locations with VAX.
assembly-language instructions) choose Code from the Data menu. The
Code submenu provides the following operations:

• Choose Examine Code... to display the following:

The source line for a code location (for example, for a routine
declaration).

The VAX. instructions at a code location (for example, the
instruction at the current PC value, where execution is suspended).
The program counter (PC) is a VAX. register that contains the
address of the instruction to be executed next.

• Choose Deposit Code ... to deposit a VAX. instruction at a memory
address or into a register.

• Choose Show Address... to display the memory address of a routine,
line number, or other code location.

For more information, choose Overview from the Help menu, then choose
Examining and Manipulating Program Data, then choose Operations with
Code Locations.

See also Section 1.3.2.4 and Section 1.5.6 for information about displaying
instructions associated with your program.

1.5.9.3 Operations with Addresses or Registers
To manipulate memory addresses or registers, choose Addresses or
Registers from the Data menu. The Addresses or Registers submenu
provides the following operations:

• Choose Examine Address or Register... to display the value stored at
an address or in a register.

• Choose Deposit into Address or Register... to change the value stored
at an address or in a register.

• Choose Symbolize Address or Register ... to display the symbol (if any)
that is associated with an address or register.

For more information, choose Overview from the Help menu, then choose
Examining and Manipulating Program Data, then choose Operations with
Addresses or Registers.

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

1.5.9.4 Evaluating Language Expressions
To evaluate a language expression, choose Language Expressions... from
the Data menu.

The debugger recognizes the operators and expression syntax of the
currently set language. For example, if your program has an integer
variable named WIDTH, you can use the Language Expressions dialog
box to evaluate the expression WIDTH+ 7. The debugger adds 7 to the
current value of WIDTH and displays the result.

For more information, choose Overview from the Help menu, then choose
Specifying and Evaluating Language Expressions. See also Section 1.5.13
for information about debugging multilanguage programs.

1.5.10 Controlling Access to Symbols in Your Program
To have full access to the symbols that are associated with your program
(variable names, routine names, source code, line numbers, and so on), you
must compile and link the program using the /DEBUG command qualifier,
as explained in Section 1.2.1.

Under these conditions, the way in which the debugger handles these
symbols is transparent to you, in most cases. However, the following two
areas might require action:

• Setting and canceling modules

• Resolving symbol ambiguities

These two subjects are discussed in the next sections. For more
information, choose Overview from the Help menu, then choose Controlling
Access to Symbols in Your Program.

1.5.10.1 Setting and Canceling Modules
To facilitate symbol searches, the debugger loads symbol information
from the executable image into a run-time symbol table (RST), where
that information can be accessed efficiently. Unless symbol information
is in the RST, the debugger does not recognize or properly interpret the
associated symbols.

Because the RST takes up memory, the debugger loads it dynamically,
anticipating what symbols you might want to reference in the course of
program execution. The loading process is called module setting, because
all symbol information for a given module is loaded into the RST at one
time.

At degugger startup, only the module containing the image transfer
address is set. Subsequently, whenever execution of the program is
interrupted, the debugger sets the module that contains the routine in
which execution is suspended. This enables you to reference the symbols
that should be visible at that location.

If you try to reference a symbol in a module that has not been set, the
debugger warns you that the symbol is not in the RST. For example:

%DEBUG-W-NOSYMBOL, symbol 'X' is not in symbol table

1-27

1.5.11

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

You must then set the module containing that symbol explicitly. To set a
module, choose Modules... from the Data menu. The Modules dialog box
lists the modules of your program and identifies which modules are set.

For more information, choose Overview from the Help menu, then choose
Controlling Access to Symbols in Your Program, then choose Setting and
Canceling Modules.

1.5.10.2 Resolving Symbol Ambiguities
Symbol ambiguities can occur when a symbol (for example, a variable
name X) is defined in more than one routine or other program unit.

In most cases, the debugger resolves symbol ambiguities automatically.
First it uses the scope and visibility rules of the currently set language. In
addition, because the debugger permits you to specify symbols in arbitrary
modules (to set breakpoints and so on), the debugger uses the ordering of
routine calls on the call stack to resolve symbol ambiguities.

In some cases, however, the debugger might respond as follows when you
specify a symbol that is defined multiple times:

• It might issue a 11 symbol not unique 11 message because it is not able to
determine the particular declaration of the symbol that you intended.

• It might reference a symbol declaration other than the one you want.

To resolve such problems, you must specify a scope where the debugger
should search for the particular declaration of the symbol. There are two
techniques:

• Specify a path name prefix with the symbol. For example, if the
variable Xis defined in two modules named COUNTER and SWAP,
the path name SWAP\X uniquely specifies the declaration of X in
module SWAP. This technique can always be used to resolve symbol
ambiguities.

• If the different declarations of the symbol are within routines that are
currently active on the call stack, use the Call Frame arrow buttons in
the main window to reset the reference for looking up symbols to the
appropriate call frame. With this technique you do not need to specify
a path name prefix.

For more information, choose Overview from the Help menu, then choose
Controlling Access to Symbols in Your Program, then choose Resolving
Symbol Ambiguities.

Using the Debugger's Command Interface

1-28

The debugger is available in a command interface that runs on terminals
and workstations (see Part II of this manual). When using that interface,
you interact with the debugger by entering commands at the debugger
prompt (DBG>).

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

When using the debugger's DECwindows interface, you can open the
COMMAND box, which enables you to enter debugger commands at the
DBG> prompt:

• To open the COMMAND box for just one command, press the DO key.

• To open the COMMAND box indefinitely, choose Show Command ...
from the Customize menu. Choosing Hide Command from that menu
closes the COMMAND box.

You can also enter debugger commands in debugger command procedures
and initialization files for execution under the DECwindows environment
(see Section 1.5.12).

For more information, choose Overview from the Help menu, then choose
The Debugger's Command Interface.

1.5.12 Using Log Files, Initialization Files, Command Procedures
When you use the debugger's DECwindows interface, each of your actions
results in one or more debugger commands. These commands are echoed
in the COMMAND box by default.

You can record in a log file the debugger commands that you enter directly
or indirectly during a debugging session and the debugger's responses to
those commands. You can use log files to keep a record of your debugging
sessions, or you can use them as command procedures in subsequent
sessions. For more information, choose Overview from the Help menu,
then choose Logging a Debugging Session into a File.

You can create an initialization file containing debugger commands to
set your default debugging modes, debugger window characteristics,
and so on. When you invoke the debugger, those commands are
executed automatically to tailor your debugging environment. For more
information, choose Overview from the Help menu, then choose Using a
Debugger Initialization File.

You can direct the debugger to execute a command procedure (a file
containing a sequence of debugger commands) to recreate a debugging
session, to continue a previous session, or to avoid typing the same
debugger commands many times during a debugging session. You can
pass parameters to command procedures. For more information, choose
Overview from the Help menu, then choose Using Debugger Command
Procedures.

1.5.13 Debugging Multilanguage Programs
Within the same debugging session, you can debug modules whose source
code is written in different languages.

By default, the debugger language remains set to the language of the main
program throughout the debugging session, even if execution is suspended
within a module written in another language. To take full advantage of
symbolic debugging with such modules, you can set the debugging context
to another language by choosing Language from the Customize menu.

1-29

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

For more information, choose Overview from the Help menu, then choose
Debugging Multilanguage Programs and Debugger Support for Languages.

When debugging in any language, be sure also to consult the
documentation supplied with that language.

1.5.14 Debugging Shareable Images and Ada Tasking Programs
The Data menu gives you access to operations related to debugging
shareable images and VAX Ada tasking programs.

By setting your debugging context to a shareable image that is linked with
your program, you have access to the symbols declared in that image. By
default, the main (executable) image is your debugging context. Choose
Images... from the Data menu to set your debugging context to another
image. For more information, choose Overview from the Help menu, then
choose Debugging Shareable Images.

When using the debugger with a VAX Ada tasking program, you can
control the execution of individual tasks and display information about one
or more tasks or the entire tasking system. Choose Tasks... from the Data
menu to manipulate tasks. See also the VAX Ada documentation.

1.5.15 Debugging Multiprocess Programs
To debug a multiprocess program (a program that runs in more than one
process), you must establish a multiprocess debugging configuration before
invoking the debugger. That configuration enables you to interact with
several processes from one debugging session.

Enter the following command to establish a multiprocess debugging
configuration:

$ DEFINE/JOB DBG$PROCESS MULTIPROCESS

After you have invoked the debugger, you can control the execution of
individual processes, examine data associated with specific processes,
display information in process-specific windows, and so on.

Choose Processes... from the Data menu to manipulate processes. For
more information, choose Overview from the Help menu, then choose
Debugging Multiprocess Programs.

1.5.16 Debugging Vectorized Programs

1-30

When using the debugger with a vectorized program (a program that uses
VAX vector instructions) you can perform tasks such as the following:

• Control and monitor the execution of vector instructions with
breakpoints, watchpoints, and so on

• Examine and deposit into the vector control registers (VCR, VLR, and
VMR) and the vector registers (VO to Vl 5)

• Examine and deposit vector instructions and their operands

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

• Perform masked operations on vector registers to display only certain
register elements or override the masking associated with a vector
instruction

• Control synchronization between the scalar and vector processors

For more information, choose Overview from the Help menu, then choose
Debugging Vectorized Programs.

1.5.17 Using the Keypad to Enter Commands
When you invoke the debugger, a few commonly used debugger command
sequences are automatically assigned to the keys on the numeric keypad
(to the right of the main keyboard). Thus, you can perform certain
functions either by choosing an item from a menu or by pressing a keypad
key.

The predefined key functions are identified in Figure 1-15.

1-31

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

1-32

Figure 1-15 Keypad Key Functions Predefined by the Debugger
DECwindows Interface

f PF1 PF2 PF3 PF4 '
GOLD HELP DEFAULT SET MODE SCREEN BLUE
GOLD HELP GOLD SET MODE NOSCR BLUE
GOLD HELP BLUE DISP/GENERA TE BLUE

7 8 9 -
DISP SRC,INST,OUT SCROLUUP DISPLAY next DISP next at FS
DISP INST.REG.OUT SCROLL/TOP SET PROC next
DISP 2 SRC, 2 INST SCROLUUP ... DISP2 SRC DISP SRC, OUT

4 5 6 '
SCROLULEFT EX/SOU .O\%PC SCROLURIGHT GO
SCROLULEFT:255 SHOW CALLS SCROLURIGHT:255 SEUSOURCE next
SCROLULEFT ... SHOWCALLS3 SCROLURIGHT •.. SEUINST next

1 2 3 ENTER

EXAMINE SCROLUDOWN SEL SCROLL next
EXAM"(prev) SCROLUBOTIOM SEL OUTPUT next
DISP 3 SRC, 3 INST SCROLUDOWN ... DISP3SRC

ENTER
0 .

STEP RESET
STEP/INTO RESET
STEP/OVER RESET

\.
ZK-0957A-GE

Most keypad keys have three predefined functions-DEFAULT, GOLD,
and BLUE.

• To enter a key's DEFAULT function, press the key.

• To enter its GOLD function, first press and release the PFl (GOLD)
key, and then press the key.

• To obtain its BLUE function, first press and release the PF4 (BLUE)
key, and then press the key.

In Figure 1-15, the DEFAULT, GOLD, and BLUE functions are listed
within each key's outline, from top to bottom, respectively. For example:

• Pressing keypad key 0 enters the STEP command (like clicking on the
Step button in the main window).

• Pressing key PFl and then keypad key 0 enters the STEP/INTO
command (like choosing Step Into Routine from the pop-up menu).

Introduction to the Debugger: DECwindows Interface
1.5 Using the Debugger

• Pressing key PF4 and then keypad key 0 enters the STEP/OVER
command (like choosing Step Over routine from the pop-up menu).

You can redefine keypad-key functions.

For more information, choose Overview from the Help menu, then choose
Entering Debugger Commands from the Keypad.

1.6 Additional Options for Invoking the Debugger

1.6.1

Section 1.2 describes how to compile and link your program prior to
debugging, establish the default debugging configuration for one-process
programs, and invoke the debugger in the usual way from a DECterm
window.

The sections that follow describe other options for invoking the debugger:

• Invoke the debugger from a File View window

• Interrupt a program that is executing freely and then invoke the
debugger

• Override the debugger's default (DECwindows) interface to achieve the
following:

Display the debugger's DECwindows interface on another
workstation

Display the debugger's command interface in a DECterm window,
along with any program input/output

Display the debugger's command interface and program input
/output in separate DECterm windows

In all cases, before invoking the debugger, first compile and link the
modules of your program and establish the appropriate debugging
configuration as explained in Section 1.2.1, Section 1.2.2, and
Section 1.5.15.

Note: You cannot run a program under debugger control over a DECnet
link. Both the image to be debugged and the debugger must reside
on the same node.

For more information, including details on compilation and linking options
that affect debugging, choose Overview from the Help menu, then choose
Options for Invoking the Debugger.

Invoking the Debugger from a File View Window
To invoke the debugger from a FileView window, proceed as follows:

1 Choose Run from the File View Files menu. A dialog box is displayed.

2 Specify the executable image file to be debugged.

3 Choose the Debug option.

4 Click on OK.

1-33

1.6.2

1.6.3

Introduction to the Debugger: DECwindows Interface
1.6 Additional Options for Invoking the Debugger

Invoking the Debugger with the DCL DEBUG Command
You can invoke the debugger while your program is executing freely (for
example, if you suspect that the program might be in an infinite loop or if
you see erroneous output).

To invoke the debugger in this manner, proceed as follows:

1 Enter the DCL command RUN/NODEBUG to execute the program
without debugger control.

2 Press CTRL/Y to interrupt the executing program. Control then passes
to the DCL command interpreter.

3 Enter the DCL command DEBUG to activate the debugger. When the
debugger comes up, it displays the main, source, and output windows,
sets the language-dependent parameters to the language of the module
where execution was interrupted, and executes any user-defined
initialization file.

For example:

$ PASCAL/DEBUG/NOOPTIMIZE EIGHTQUEENS
$ LINK/DEBUG EIGHTQUEENS
$ RUN/NODEBUG EIGHTQUEENS

ICTRL/YI

Interrupt
$ DEBUG
[invokes debugger]

To help you identify where execution was interrupted, look at the source
window and choose Call Stack... from the Data menu to identify the
sequence of routine calls on the call stack.

Overriding the Debugger's Default Interface

1-34

By default, if your workstation is running VMS DECwindows,
the debugger comes up in the DECwindows interface on the
workstation specified by the DECwindows application-wide logical name
DECW$DISPLAY.

This section explains how to override the debugger's default DECwindows
interface to achieve the following:

• Display the debugger's DECwindows interface on another workstation

• Display the debugger's command interface in a DECterm window,
along with any program input/output

• Display the debugger's command interface and program input/output
in separate DECterm windows

The logical name DBG$DECW$DISPLAY enables you to override the
default interface of the debugger. Note that, in most cases, there is no
need to define DBG$DECW$DISPLAY, because the default implies the
desired action.

Introduction to the Debugger: DECwindows Interface
1.6 Additional Options for Invoking the Debugger

Section 1.6.3.4 provides more information about the logical names
DBG$DECW$DISPLAY and DECW$DISPLAY.

1.6.3.1 Displaying the Debugger's DECwindows Interface on Another Workstation
If you are debugging a DECwindows application that uses most of the
screen, you might find it useful to run the program on one workstation
and display the debugger's DECwindows interface on another. To do so,
proceed as follows:

1 Enter a logical definition with the following syntax in the DECterm
window from which you plan to run the program:

DEFINE/JOB DBG$DECW$DISPLAY workstation_pathname

where workstation_pathname is the path name for the workstation
where the debugger's DECwindows interface is to come up. See the
description of the SET DISPLAY command in the VMS DCL Dictionary
for the syntax of this path name.

It is recommended that you use a job definition. If you use a process
definition, it must not have the CONFINE attribute.

2 Run the program from that DECterm window. The debugger's
DECwindows interface comes up on the workstation specified by
DBG$DECW$DISPLAY. The application's windowing interface comes
up on the workstation display where it normally does.

1.6.3.2 Displaying the Command Interface in a DECterm Window
To display the debugger's command interface in a DECterm window, along
with any program inputloutput, proceed as follows:

1 Enter the following definition in the DECterm window from which you
plan to run the program:

$ DEFINE/ JOB DBG$DECW$DISPLAY II II

You can specify one or more space characters between the quotation
marks. It is recommended that you use a job definition for the logical
name. If you use a process definition, it must not have the CONFINE
attribute.

2 Run the program from that DECterm window. The debugger's
command interface comes up in the same window.

For example:

$ DEFINE/JOB DBG$DECW$DISPLAY
$ PASCAL/DEBUG/NOOPTIMIZE EIGHTQUEENS
$ LINK/DEBUG EIGHTQUEENS
$ RUN EIGHTQUEENS

VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is PASCAL, module set to EIGHTQUEENS
DBG>

You can now enter debugger commands as described in Part II of this
manual, which starts with Chapter 2.

1-35

Introduction to the Debugger: DECwindows Interface
1.6 Additional Options for Invoking the Debugger

1-36

1.6.3.3 Displaying the Command Interface and Program Input/Output in Separate
DECterm Windows

This section describes how to display the debugger's command interface
in a separate DECterm window from the DECterm window from which
you invoke the debugger. This separate window is useful when using the
command interface to debug a screen-oriented program:

• The program's input/output is displayed in the window from which you
invoke the debugger.

• The debugger's input/output, including any screen-mode display, is
displayed in the separate window.

The effect is the same as entering the debugger command SET MODE
SEPARATE at the DBG> prompt on a workstation running VWS rather
than DECwindows. (The command SET MODE SEPARATE is not valid
when used in a DECterm window.)

The following example shows how to display the debugger's command
interface in a separate debugger window titled "Debugger".

1 Create the command procedure SEPARATE_ WINDOW.COM shown in
Example 1-1.

2 Execute the command procedure:

$ @SEPARATE WINDOW
%DCL-I-ALLOC~ _MYNODE$TWA8: allocated

A new DECterm window is created with the attributes specified in
SEPARATE_ WINDOW.COM.

3 Follow the steps in Section 1.6.3.2 to display the debugger's command
interface. The interface is displayed in the new window.

4 You can now enter debugger commands in the debugger window.
Program input/output is displayed in the DECterm window from which
you invoked the debugger.

5 When you end the debugging session with the EXIT command, control
returns to the DCL prompt in the program input/output window, but
the debugger window remains open.

6 To display the debugger's command interface in the same window as
the program's input/output (as in Section 1.6.3.2), enter the following
commands: ·

$ DEASSIGN/JOB DBG$INPUT
$ DEASSIGN/ JOB DBG$0UTPUT

The debugger window remains open until you close it explicitly.

Introduction to the Debugger: DECwindows Interface
1.6 Additional Options for Invoking the Debugger

Example 1-1 Command Procedure SEPARATE_WINDOW.COM

$! Simulates effect of SET MODE SEPARATE from a DECterm window
$
$ CREATE/TERMINAL/NOPROCESS -

/WINDOW_ATTRIBUTES=(TITLE="Debugger",
ICON NAME="Debugger",ROWS=40)-

/DEFINE LOGICAL=(TABLE=LNMJOB,DBGINPUT,DBG$0UTPUT)
$ ALLOCATE-DBG$0UTPUT
$ EXIT

The command CREATE/TERMINAL/NOPROCESS creates a DECterm
window without a process.

The /WINDOW_ATTRIBUTES qualifier specifies the window's
title (Debugger), icon name (Debugger), and the number
of rows in the window (40).

$
$
$
$
$
$
$
$
$

$
$
$
$
$

The /DEFINE LOGICAL qualifier assigns the logical names
DBG$INPUT and DBG$0UTPUT to the window, so that it becomes
the debugger input and output device.

The command ALLOCATE DBG$0UTPUT causes the separate window
to remain open when you end the debugging session.

1.6.3.4 Explanation of DBG$DECW$DISPLAY and DECW$DISPLAY
By default, if your workstation is running VMS DECwindows,
the debugger comes up in the DECwindows interface on the
workstation specified by the DECwindows application-wide logical name
DECW$DISPLAY. DECW$DISPLAY is defined in the job table by File View
or DECterm. It points to the display device for the workstation.

For information about DECW$DISPLAY, see the description of the
DCL commands SET DISPLAY and SHOW DISPLAY in the VMS DCL
Dictionary.

The logical name DBG$DECW$DISPLAY is the debugger-specific
equivalent of DECW$DISPLAY. DBG$DECW$DISPLAY is analogous
to the debugger-specific logical names DBG$INPUT and DBG$0UTPUT.
These enable you to reassign SYS$INPUT and SYS$0UTPUT, respectively,
to specify the device on which debugger input and output are to appear.

The default user interface of the debugger results when
DBG$DECW$DISPLAY is undefined or has the same translation as
DECW$DISPLAY. By default, DBG$DECW$DISPLAY is undefined.

The algorithm that the debugger follows when using the logical definitions
of DECW$DISPLAY and DBG$DECW$DISPLAY is as follows:

1 If the logical name DBG$DECW$DISPLAY is defined, then use it.
Otherwise, use the logical name DECW$DISPLAY.

2 Translate the logical name. If its value is not null (if the string
contains characters other than space characters), the DECwindows
interface comes up on the specified workstation. If the value is null (if
the string consists only of space characters), the command interface
comes up in the DECterm window.

1-37

Introduction to the Debugger: DECwindows Interface
1.7 Sample Program EIGHTQUEENS

1.7 Sample Program EIGHTQUEENS

1-38

Example 1-2 is the Pascal program, EIGHTQUEENS, that is used in
Section 1.4. Line numbers correspond to the compiler assigned line
numbers as displayed in a debugger source window.

The program prints out the possible locations on a chess board at which
each of eight queens can be positioned safely, without threatening each
other. A queen can be threatened by another queen on the same row, in
the same column, or along a diagonal.

When executed, the program produces several lines of integers. For
example:

1 5 8 6 3 7 2 4
1 6 8 3 7 4 2 5
1 7 4 6 8 2 5 3
1 7 5 8 2 4 6 3
2 4 6 8 3 1 7 5
2 5 7 1 3 8 6 4

3 7 2 8 6 4 1 5
3 8 4 7 1 6 2 5
4 1 5 8 2 7 3 6
4 1 5 8 6 3 7 2

8 2 5 3 1 7 4 6
8 3 1 6 2 5 7 4
8 4 1 3 6 2 7 5

Each line of output represents a possible safe configuration of the eight
queens on a standard 8-row by 8-column chess board. For example, the
output line 41582736 indicates that queens can be positioned safely at
rows 4, 1, 5, 8, 2, 7, 3, and 6 of columns 1 to 8, respectively.

Example 1-2 Sample Program EIGHTQUEENS

1: PROGRAM Eightqueens(OUTPUT);
2: VAR
3: I INTEGER;
4: A ARRAY[l .. 8] OF BOOLEAN;
5: B ARRAY[2 .. 16] OF BOOLEAN;
6: C ARRAY[-7 .. 7] OF BOOLEAN;
7: X: ARRAY[l .. 8] OF INTEGER;
8: Safe : BOOLEAN; K: INTEGER;
9:

10: PROCEDURE Print;
11: BEGIN (* Print *)
12: FORK := 1 TO 8 DO
13: WRITE(X[K]: 2);
14: WRITELN;
15: END; (* Print *)

(continued on next page)

Introduction to the Debugger: DECwindows Interface
1.7 Sample Program EIGHTQUEENS

Example 1-2 (Cont.) Sample Program EIGHTQUEENS

16:
17: PROCEDURE Trycol(J: INTEGER);
18: VAR
19: I : INTEGER;
20:
21: PROCEDURE Setqueen;
22: BEGIN (* Setqueen *)
23: A[I] := FALSE;
24: B[I+J] :=FALSE;
25: C[I-J] :=FALSE;
26: END; (* Setqueen *)
27:
28: PROCEDURE Removequeen;
29: BEGIN (* Removequeen *)
3 0 : A [I] : = TRUE;
31 : B [I +J] : = TRUE;
32: C[I-J] :=TRUE;
33: END; (* Removequeen *)
34:
35: BEGIN (* Trycol *)
36: I := 0;
37: REPEAT
38: I := I+l;
39: Safe := A[I] AND B[I+J] AND C[I-J];
40: IF Safe THEN
41: BEGIN
42: Setqueen;
43: X[J] :=I;
44: IF J < 8 THEN
45: Trycol(J+l)
46: ELSE
47: Print;
48: Removequeen;
49: END;
50: UNTIL I = 8;
51: END; (* Trycol *)

52:
53: BEGIN (* Eightqueens *)
54: FOR I := 1 TO 8 DO
55: A[I] := TRUE;
56: FOR I := 2 TO 16 DO
57: B[I] := TRUE;
58: FOR I := -7 TO 7 DO
59: C[I] := TRUE;
60: Trycol(l);
61: WRITELN;
62: END. (* Eightqueens *)

1-39

Part II Using the Debugger: Command Interface
This part contains complete information about the VMS debugger's command
interface.

For information about the debugger's DECwindows interface, see Part I.

2 Introduction to the Debugger: Command Interface

This chapter introduces the VMS Debugger's command interface. For
information about the debugger's DECwindows interface, see Chapter 1.

The following information is provided in this chapter:

• An overview of the debugger's features (Section 2.1)

• Enough information to get you started (Section 2.2)

• A sample debugging session (Section 2.3)

• A list of the debugger commands, by function (Section 2.4)

After you have read this chapter, consult the rest of this manual for
additional details about the command interface.

2.1 Overview of the Debugger
The debugger is a tool that helps you locate run-time programming or logic
errors, also known as bugs. You use the debugger with a program that
has been compiled and linked successfully but does not run correctly. For
example, the program might give incorrect output, go into an infinite loop,
or terminate prematurely.

You locate errors with the debugger by observing and manipulating your
program interactively as it executes. By entering debugger commands at
the terminal, you can do the following tasks:

• Control the program's execution-start the program, stop at points of
interest, resume execution, and so on

• Trace the execution path of the program

• Monitor changes in variables and other program entities

• Monitor exception conditions and language-specific events

• Examine and modify the values of variables, or force events to occur

• In some cases, test the effect of modifications without having to edit
the source code, recompile, and relink

These are the basic debugging techniques. After you are satisfied that
you have found the error in the program, you can edit the source code and
compile, link, and execute the corrected version.

As you use the debugger and its documentation, you will discover
variations on the basic techniques. You can also tailor the debugger
for your own needs. The next section summarizes the debugger features.

2-1

2.1.1

Introduction to the Debugger: Command Interface
2.1 Overview of the Debugger

Functional Features

2-2

Programming Language Support

You can use the debugger with the following VAX languages: Ada, BASIC,
BLISS, C, COBOL, DIBOL, FORTRAN, MACR0-32, Pascal, PUI, RPG II,
and SCAN. The debugger recognizes the syntax, data typing, operators,
expressions, scoping rules, and other constructs of a given language. If
your program is written in more than one language, you can change the
debugging context from one language to another during a debugging
session with the SET LANGUAGE command.

Symbolic Debugging

The VMS Debugger is a symbolic debugger. You can refer to program
locations by the symbols you used for them in your program-the names of
variables, routines, labels, and so on. You do not need to specify memory
addresses or VAX registers when referring to program locations, although
you can, if you want.

Support for All Data Types

The debugger understands all compiler generated data types, such as
integer, floating point, enumeration, record, array, and so on. It displays
the values of program variables according to their declared type.

Flexible Data Format

The debugger permits a variety of data forms and types for entry and
display. By default, the source language of the program determines
the format used for the entry and display of data. You can also impose
other formats. For example, by using a type or radix qualifier with the
EXAMINE command, you can display the contents of a program location
in ASCII, word-integer, or floating-point format.

Starting or Resuming Program Execution

You start or resume program execution with the GO or STEP commands.
The GO command causes the program to execute until a breakpoint
is reached, a watchpoint is modified, an exception is signaled, or the
program terminates. The STEP command enables you to execute a
specified number of lines or instructions, or up to the next instruction
of a specified class.

Breakpoints

By setting breakpoints with the SET BREAK command, you can suspend
program execution at specified locations and check the current status
of your program. Rather than specify a location, you can also suspend
execution on certain classes of instructions or on every source line. Also
you can suspend execution on certain kinds of events, such as exceptions
and Ada tasking events.

Introduction to the Debugger: Command Interface
2.1 Overview of the Debugger

Tracepoints

By setting tracepoints with the SET TRACE command, you can monitor
the path of program execution through specified locations. When a
tracepoint is triggered, the debugger reports that the tracepoint was
reached and then continues execution. As with the SET BREAK command,
you can also trace through classes of instructions and monitor events.

Watchpoints

By setting a watchpoint with the SET WATCH command, you can cause
execution to stop whenever a particular variable or other memory location
has been modified. When a watchpoint is triggered, the debugger suspends
execution at that point and reports the old and new values of the variable.

Manipulation of Variables and Program Locations

With the EXAMINE command, you can determine the value of a variable
or program location. The DEPOSIT command enables you to change that
value. You can then continue execution to see the effect of the change,
without having to recompile, relink, and rerun the program.

Evaluation of Expressions

With the EVALUATE command, you can compute the value of a source
language expression or an address expression. You specify expressions and
operators in the syntax of the language to which the debugger is currently
set.

Control Structures

You can use logical control structures (FOR, IF, REPEAT, WHILE) in
commands to control the execution of other commands.

Shareable Image Debugging

You can debug shareable images (images that are not directly executable).
The SET IMAGE command enables you to reference the symbols declared
in a shareable image.

Multiprocess Debugging

You can debug multiprocess programs (programs that run in more than
one VMS process). The commands SHOW PROCESS and SET PROCESS
enable you to display process information and control the execution of
images in individual processes.

Vector Debugging

You can debug vectorized programs (programs that use VAX vector
instructions). You can control and monitor execution at the vector
instruction level, examine and deposit vector instructions, manipulate the
contents of vector registers, use a mask to display specific vector elements,
and control synchronization between the scalar and vector processors.

2-3

2.1.2

lntroductiQn to the Debugger: Command Interface
2.1 Overview of the Debugger

Terminal and Workstation Support

The debugger supports all VT-series terminals and Micro VAX
workstations.

Convenience Features
Online Help

2-4

Online help is always available during a debugging session. Online help
contains information about all debugger commands and selected topics.

Source Code Display

You can display lines of source code for all supported languages during a
debugging session.

Screen Mode

In screen mode, you can display and capture various kinds of information
in scrollable windows that can be moved around the screen and resized.
Automatically updated source, instruction, and register displays are
available. You can selectively direct debugger input, output, and diagnostic
messages to displays. You can also create 11 D0 11 displays that capture the
output of specific command sequences.

Keypad Mode

When you invoke the debugger, several commonly used debugger command
sequences are assigned by default to the keys of the numeric keypad (if
you have a VT52, VTl 00, or LK201 keyboard). Thus, you can enter these
commands with fewer keystrokes than if you were to type them at the
keyboard. You can also create your own key definitions. ·

Source Editing

As you find errors during a debugging session, you can use the EDIT
command to invoke any editor available on your system. You specify the
editor you wish with the SET EDITOR command. If you use the VAX
Language-Sensitive Editor, the editing cursor is automatically positioned
within the source file whose code appears in the screen-mode source
display.

Command Procedures

You can direct the debugger to execute a command procedure (a file
of debugger commands) to recreate a debugging session, to continue a
previous session, or to avoid typing the same debugger commands many
times during a debugging session. You can pass parameters to command
procedures.

Introduction to the Debugger: Command Interface
2.1 Overview of the Debugger

Initialization Files

You can create an initialization file containing commands to set your
default debugging modes, screen display definitions, keypad key
definitions, symbol definitions, and so on. When you invoke the debugger,
those commands are executed automatically to tailor your debugging
environment.

Log Files

You can record in a log file the commands you enter during a debugging
session and the debugger's responses to those commands. You can use
log files to keep track of your debugging efforts, or you can use them as
command procedures in subsequent debugging sessions.

Symbol Definitions

You can define your own symbols to represent lengthy commands, address
expressions, or values in abbreviated form.

2.2 Getting Started with the Debugger
The way you use the debugger depends on several factors: the kind of
program you are working on, the kinds of errors you are looking for, and
your own personal style and experience with the debugger. This section
explains the following basic functions that apply to most situations.

• Compiling and linking your program to prepare for debugging

• Establishing the debugging configuration

• Invoking the debugger

• Ending a debugging session

• Interrupting program execution and aborting debugger commands

• Entering debugger commands and getting online help

• Viewing your source code with the TYPE command and in screen mode

• Controlling program execution with the GO, STEP, and SET BREAK
commands, and monitoring execution with the SHOW CALLS, SET
TRACE, and SET WATCH commands

• Examining and manipulating data with the EXAMINE, DEPOSIT, and
EVALUATE commands

• Controlling symbol references with path names and the SET MODULE
and SET SCOPE commands

Several examples are language specific. However, the general concepts are
readily adaptable to all supported languages.

The sample debugging session in Section 2.3 illustrates how to use some of
this information to locate an error and correct it.

2-5

2.2.1

2.2.2

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

Compiling and Linking a Program to Prepare for Debugging
Before you can use the debugger, you must compile and link the modules
(compilation units) of your program as explained in this section. The
following example shows how to compile and link a FORTRAN program,
consisting of a single compilation unit named FORMS, before using the
debugger.

Note: The /DEBUG and /NOOPTIMIZE qualifiers are compiler command
defaults for some languages. These qualifiers are used in the
example for emphasis.

$ FORTRAN/DEBUG/NOOPTIMIZE FORMS
$ LINK/DEBUG FORMS

The /DEBUG qualifier on the compiler command (FORTRAN in this case)
directs the compiler to write the symbol information associated with
FORMS into the object module, FORMS.OBJ, in addition to the code and
data for the program. This symbol information enables you to use the
names of variables and other symbols declared in FORMS in debugger
commands. If your program has several compilation units, you must
compile each unit whose symbols you want to reference with the /DEBUG
qualifier.

Some compilers optimize the object code to reduce the size of the program
or to make it run faster. In such cases you should compile your program
with the /NOOPTIMIZE command qualifier (or equivalent). Otherwise, the
contents of some program locations might be inconsistent with what you
would expect from viewing the source code.

The /DEBUG qualifier on the LINK command causes the linker to include
all symbol information that is contained in FORMS.OBJ in the executable
image. The qualifier also causes the VMS image activator to start the
debugger at run time. If your program has several object modules, you
need to specify those modules in the LINK command, for most languages.

Establishing the Debugging Configuration

2-6

Before invoking the debugger as explained in Section 2.2.3, check that the
debugging configuration is appropriate for the kind of program you are
going to debug.

You can invoke the debugger in either the default configuration or the
multiprocess configuration to debug programs that run in either one or
several processes, respectively. The configuration depends on the current
definition of the logical name DBG$PROCESS. Thus, before invoking the
debugger, enter the DCL command SHOW LOGICAL DBG$PROCESS to
determine the definition of DBG$PROCESS.

Most of this chapter covers programs that run in only one process. For
such programs, DBG$PROCESS either should be undefined, as in the
following example, or should have the value DEFAULT:

$ SHOW LOGICAL DBG$PROCESS
%SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS

2.2.3

2.2.4

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

If DBG$PROCESS has the value MULTIPROCESS, and you want to
debug a program that runs in only one process, enter the following
command:

$ DEFINE DBG$PROCESS DEFAULT

For more information about multiprocess debugging, see Chapter 10.

Invoking the Debugger
After you compile and link your program and establish the appropriate
debugging configuration, you can then invoke the debugger. To do so,
enter the DCL command RUN, specifying the executable image of your
program as the parameter. The following example shows how the debugger
identifies itself after you invoke it:

$ RUN FORMS

VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is FORTRAN, module set to FORMS
DBG>

The diagnostic message that is displayed at debugger startup indicates
that this debugging session is initialized for a FORTRAN program and
that the name of the main program unit (the module containing the image
transfer address) is FORMS. The initialization sets up language-dependent
debugger parameters.

At this point, execution is suspended at the beginning of the main
program. The DBG> prompt, which is displayed whenever the debugger
suspends execution, indicates that you can now enter debugger commands,
as explained in Section 2.2.6.

Ending a Debugging Session
To end a debugging session and return to DCL level, type EXIT or press
CTRUZ:

DBG> EXIT
$

The following message, displayed during a debugging session, indicates
that your program has completed normally:

%DEBUG-I--EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion'
DBG>

If you want to continue debugging after seeing this message, type EXIT
and start a new debugging session with the DCL RUN command. You
could also restart execution from within the debugging session with a
command such as GO %LINE 1. However, this can produce unexpected
results if, for example, some variables have different values from when
you first ran the program.

2-7

2.2.5

2.2.6

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

Interrupting Program Execution and Aborting Debugger Commands
If your program goes into an infin.ite loop during a debugging session
so that the debugger prompt does not reappear, press CTRIJC. This
interrupts program execution and returns you to the debugger prompt
(pressing CTRL/C does not end the debugging session). For example:

DBG> GO

ICTRL/CI

DBG>

You can also press CTRL/C to abort the execution of a debugger command.
This is useful if a command takes a long time to complete.

Pressing CTRL/C when the program is not running or when the debugger
is not performing an operation has no effect.

If your program already has a CTRIJC AST service routine enabled, use
the SET ABORT_KEY command to assign the debugger's abort function to
another CTRL-key sequence.

Pressing CTRL/Y from within a debugging session has the same effect as
pressing CTRL/Y during the execution of a program. Control is returned
to the DCL command interpreter ($ prompt).

Entering Debugger Commands

2-8

You can enter debugger commands any time you see the debugger prompt
(DBG>). To enter a command, type it at the keyboard and press RETURN.
See Section 1 of the command dictionary for complete rules on entering
debugger commands.

To obtain online help about debugger commands and specific subjects,
proceed as follows:

• To list the help topics, enter the command HELP.

• For an explanation of the help system, enter the command HELP
HELP.

For example:

• To display help about the STEP command, enter the command HELP
STEP.

• To display help about debugger diagnostic messages, enter the
command HELP MESSAGES.

Section 2 of the command dictionary explains the general format and
severity levels of debugger diagnostic messages. To obtain online help
about a debugger message, use the following general command format:

HELP MESSAGES message-identifier

2.2.7

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

For example, to display information about the message whose identifier is
NOSYMBOL, enter the following command:

DBG> HELP MESSAGES NOSYMBOL

When you invoke the debugger, a few commonly used command sequences
are automatically assigned to the keys on the numeric keypad (to the right
of the main keyboard). Thus, you can perform certain functions either by
typing a command or by pressing a keypad key.

The predefined key functions are identified in Figure 2-1.

Most keypad keys have three predefined functions-DEFAULT, GOLD,
and BLUE.

• To enter a key's DEFAULT function, press the key.

• To enter its GOLD function, first press and release the PFl (GOLD)
key, and then press the key.

• To enter its BLUE function, first press and release the PF4 (BLUE)
key, and then press the key.

In Figure 2-1, the DEFAULT, GOLD, and BLUE functions are listed
within each key's outline, from top to bottom, respectively. For example:

• Pressing keypad key 0 enters the STEP command.

• Pressing key PFl and then key 0 enters the STEP/INTO command.

• Pressing key PF4 and then key 0 enters the STEP/OVER command.

Normally, keys 2, 4, 6, and 8 scroll screen displays down, left, right,
or up, respectively. By putting the keypad in the MOVE, EXPAND, or
CONTRACT state, indicated in Figure 2-1, you can also use these keys to
move, expand, or contract displays in four directions. Enter the command
HELP KEYPAD to display the keypad key definitions.

You can redefine keypad key functions with the DEFINE/KEY command.

Displaying Source Code
The debugger provides two modes for displaying information: noscreen
mode and screen mode. By default, when you invoke the debugger, you are
in noscreen mode, but you might find that it is easier to view source code
in screen mode. The following sections briefly describe both modes.

2.2. 7 .1 Noscreen Mode
N oscreen mode is the default, line-oriented mode of displaying input
and output. The interactive examples throughout this chapter, excluding
Section 2.2. 7 .2, illustrate noscreen mode.

2-9

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

Figure 2-1 Keypad Key Functions Predefined by the Debugger-Command Interface

rF17 "" F18 F19

DEFAULT MOVE EXPAND
(SCROLL) (EXPAND+)

\.. .J

/PF1 PF2 PF3

GOLD HELP DEFAULT SET MODE SCREEN
GOLD HELP GOLD SET MODE NOSCR
GOLD HELP BLUE DISP/GENERATE

7 18
""" 9

DISP SRC,INST,OUT SCROLUUP DISPLAY next
DISP INST.REG.OUT SCROWTOP SET PROC next
DISP 2 SRC, 2 INST SCROLUUP ... DISP2SRC

\.. ..)

~ "" 5 rs ""
SCROLULEFT EX/SOU .O\%PC SCROLURIGHT
SCROLULEFT:255 SHOW CALLS SCROLURIGHT:255
SCROLULEFT ... SHOWCALLS3 SCROLURIGHT ...

\.. ..I \.. ..)
1 r2

""' 3

EXAMINE SCROLUDOWN
EXAM"(prev) SCROLUBOlTOM
DISP 3 SRC, 3 INST SCROLUDOWN ...

0

\...

2-10

\..

STEP
STEP/INTO
STEP/OVER

LK201 Keyboard:

Press
F17
F18
F19
F20

VT -100 Keyboard:
Type

SET KEY/STATE=DEFAULT
SET KEY/STATE=MOVE
SET KEY/STATE=EXPAND
SET KEY/STATE=CONTRACT

.)

SEL SCROLL next
SEL OUTPUT next
DISP3SRC

RESET
RESET
RESET

Keys 2,4,6,8
SCROLL
MOVE
EXPAND
CONTRACT

Keys 2,4,6,8
SCROLL
MOVE
EXPAND
CONTRACT

F20 '
CONTRACT
(EXPAND-)

PF4 '
BLUE
BLUE
BLUE

-

DISP next at FS

DISP SRC, OUT

'
GO
SEUSOURCE next
SEUINST next

ENTER

ENTER

2

EXPAND/DOWN:-1
EXPAND/DOWN:-999
EXPAND/DOWN:-5

EXPAND/RIGHT:-1
EXPAND/RIGHT:-999
EXPAND/RIGHT:-10

ZK-0956A-GE

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

In noscreen mode, use the TYPE command to display one or more source
lines. For example, the following command displays line 7 of the module
in which execution is currently suspended:

DBG> TYPE 7
module SWAP ROUTINES

7: TEMP := A;
DBG>

The display of source lines is independent of program execution. To
display source code from a module other than the one in which execution
is currently suspended, use the TYPE command with a path name to
specify the module. For example, the following command displays lines 16
to 21 of module TEST:

DBG> TYPE TEST\16:21

Path names are discussed in more detail in Section 2.2.8.1, in conjunction
with the STEP command.

You can also use the EXAMINE/SOURCE command to display the source
line for a routine or any other program location that is associated with an
instruction.

Note that the debugger also displays source lines automatically when
it suspends execution at a breakpoint or watchpoint or after a STEP
command, or when a tracepoint is triggered (see Section 2.2.8).

After displaying source lines at various locations in your program, you
can redisplay the location at which execution is currently suspended by
pressing keypad key 5.

If the debugger cannot locate source lines for display, it issues a diagnostic
message. Source lines might not be available for a variety of reasons. For
example:

• Execution is suspended within a module that was compiled or linked
without the /DEBUG command qualifier.

• Execution is suspended within a system or shareable image routine for
which no source code is available.

• The source file was moved to a different directory after it was compiled
(the location of source files is embedded in the object modules). In this
case, use the SET SOURCE command to specify the new location.

• The module might need to be "set" with the SET MODULE command.
Module setting is explained in Section 2.2.10.1.

To invoke noscreen mode from screen mode, press the keypad key sequence
GOLD-PF3 (or type SET MODE NOSCREEN). Note that you can use the
TYPE and EXAMINE/SOURCE commands in screen mode as well as
noscreen mode.

2-11

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2.2. 7 .2 Screen Mode
Screen mode provides the easiest way to view your source code. To invoke
screen mode, press keypad key PF3 (or type SET MODE SCREEN). In
screen mode, by default the debugger splits the screen into three displays
named SRC, OUT, and PROMPT, as illustrated in Figure 2-2.

Figure 2-2 Default Screen Mode Display Configuration

2-12

-sRC: module SWAP ROUTINES- scroll-source----------------
2: with Text IO; use TEXT IO;
3 : package body SWAP ROUTINES is
4: procedure SWAPT (A,B: in out INTEGER) is
5: TEMP: INTEGER;
6: begin
7: TEMP :=A;

-> 8: A := B;
9: B := TEMP;

10: end;
11:
12: procedure SWAP2 (A,B: in out COLOR) is

- OUT-output
stepped to SWAP ROUTINES\SWAP1\%LINE 8
SWAP_ROUTINES\SWAPl\A: 35

- PROMPT- error-program-prompt --------------------
DBG> STEP
DBG> EXAMINE A
DBG>

ZK-6502-GE

The SRC display shows the source code of the module in which execution is
currently suspended. An arrow in the left column points to the source line
corresponding to the current value of the program counter (PC). The PC
is a VAX register that contains the memory address of the instruction to
be executed next. The line numbers, which are assigned by the compiler,
match those in a listing file. As you execute the program, the arrow moves
down and the source code is scrolled vertically to center the arrow in the
display.

The OUT display captures the debugger's output in response to the
commands that you enter. The PROMPT display shows the debugger
prompt, your input (the commands that you enter), debugger diagnostic
messages, and program output.

Both SRC and OUT are scrollable so you can see whatever information
might scroll beyond the display window's edge. Use keypad key 3 to select
the display to be scrolled (by default, SRC is scrolled). Use keypad key 8
to scroll up and keypad key 2 to scroll down. Scrolling a display does not
affect program execution.

2.2.8

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

In screen mode, if the debugger cannot locate source lines for the routine
in which execution is currently suspended, it tries to display source lines
in the next routine down on the call stack for which source lines are
available. If the debugger can display source lines for such a routine, it
issues the following message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .O\%PC.
Displaying source in a caller of the current routine.

In such cases, the arrow in the SRC display identifies the line that
contains code following the call statement in the calling routine.

Controlling and Monitoring Program Execution
This section explains how to perform the following tasks:

• Start and resume program execution

• Execute the program to the next source line, instruction, or other step
unit

• Determine where execution is currently suspended

• Use breakpoints to suspend program execution at points of interest

• Use tracepoints to trace the execution path of your program through
specified locations

• Use watchpoints to monitor changes in the values of variables

With this information you can pick program locations where you can then
test and manipulate the contents of variables as described in Section 2.2.9.

2.2.8.1 Starting or Resuming Program Execution
Use the GO command to start or resume program execution.

After it is started with the GO command, program execution continues
until one of the following events occurs:

• The program completes execution

• A breakpoint is reached

• A watchpoint is activated

• An exception is signaled

• You press CTRL/C

With most programming languages, when you invoke the debugger,
execution is initially suspended directly at the beginning of the main
program. Entering a GO command at this point quickly enables you to
test for an infinite loop or an exception.

If an infinite loop occurs during execution, the program does not terminate,
so the debugger prompt does not reappear. To obtain the prompt, interrupt
execution by pressing CTRUC (see Section 2.2.5). If you are using screen
mode, the pointer in the source display indicates where execution stopped.
You can also use the SHOW CALLS command to identify the currently
active routine calls on the call stack (see Section 2.2.8.3).

2-13

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2-14

If an exception that is not handled by your program is signaled, the
debugger interrupts execution at that point so that you can enter
commands. You can then look at the source display and a SHOW CALLS
display to find where execution is suspended.

The most common use of the GO command is in conjunction with
breakpoints, tracepoints, and watchpoints, as described in Section 2.2.8.4,
Section 2.2.8.5, and Section 2.2.8.6, respectively. If you set a breakpoint
in the path of execution and then enter the GO command, execution is
suspended at that breakpoint. Similarly, if you set a tracepoint, execution
is monitored through that tracepoint. And if you set a watchpoint,
execution is suspended when the value of the "watched" variable changes.

2.2.8.2 Executing the Program by Step Unit
Use the STEP command to execute the program one or more step units at
a time.

By default, a step unit is one line of source code. In the following example,
the STEP command executes one line, reports the action ("stepped
to . . . "), and displays the line number (27) and source code of the line
to be executed next:

DBG> STEP
stepped to TEST\COUNT\%LINE 27

27: x := x + 1;
DBG>

Execution is now suspended at the first machine code instruction for line
27 of module TEST. Line 27 is in .COUNT, a routine within module TEST.

When displaying a program symbol (for example, a line number,
routine name, or variable name), the debugger always uses a path
name. A path name consists of the symbol plus a prefix that identifies
the symbol's location. In the preceding example, the path name is
TEST\ COUNT\ %LINE 27. The leftmost element of a path name is
the module name. Moving toward the right, the path name lists any
successively nested routines and blocks that enclose the symbol. A
backslash character (\) is used to separate elements (except when the
language is Ada, where a period is used, to parallel Ada syntax).

A path name uniquely identifies a symbol of your program to the debugger.
In general, you need to use path names in commands only if the debugger
cannot resolve a symbol ambiguity in your program (see Section 2.2.10).
Usually the debugger can determine the symbol you mean from its context.

When using the STEP command, note that only those source lines for
which code instructions were generated by the compiler are recognized
as executable lines by the debugger. The debugger skips over any other
lines-for example, comment lines.

You can specify different stepping modes, such as stepping by instruction
rather than by line (SET STEP INSTRUCTION). Also, by default, the
debugger steps "over" called routines-execution is not suspended within
a called routine, although the routine is executed. By entering the SET
STEP INTO command, you direct the debugger to suspend execution
within called routines as well as within the routine in which execution is
currently suspended (SET STEP OVER is the default mode).

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2.2.8.3 Determining Where Execution Is Suspended
The SHOW CALLS command is useful when you are unsure where
execution is suspended during a debugging session (for example, after
a CTRUC interruption).

The command displays a traceback that lists the sequence of calls
leading to the routine in which execution is suspended. For each routine
(beginning with the one in which execution is suspended), the debugger
displays the following information:

• The name of the module that contains the routine

• The name of the routine

• The line number at which the call was made (or at which execution is
suspended, in the case of the current routine)

• The corresponding PC values (the relative PC address from the
beginning of the routine and the absolute PC address of the program)

For example:

DBG> SHOW CALLS

module name

*TEST
*TEST
*MY PROG

DBG>

routine name

PRODUCT
COUNT
MY PROG

line

18
47
21

rel PC

00000009
00000009
OOOOOOOD

abs PC

0000063C
00000647
00000653

This example indicates that execution is suspended at line 18 of routine
PRODUCT (in module TEST), which was called from line 4 7 of routine
COUNT (in module TEST), which was called from line 21 of routine
MY_PROG (in module MY_PROG).

2.2.8.4 Suspending Program Execution with Breakpoints
The SET BREAK command enables you to select locations at which to
suspend program execution (breakpoints). You can then enter commands
to check the call stack, examine the current values of variables, and so on.
You resume execution from a breakpoint with the GO or STEP commands.

The following example shows a typical use of the SET BREAK command:

DBG> SET BREAK COUNT
DBG> GO

break at routine PROG2\COUNT
54: procedure COUNT(X,Y:INTEGER);

DBG>

In the example, the SET BREAK command sets a breakpoint on routine
COUNT (at the beginning of the routine's code); the GO command starts
execution; when routine COUNT is encountered, execution is suspended,
the debugger announces that the breakpoint at COUNT has been reached
("break at ... "), displays the source line (54) at which execution is
suspended, and prompts for another command. At this breakpoint, you
could use the STEP command to step through routine COUNT and then

2-15

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2-16

use the EXAMINE command (discussed in Section 2.2.9.1) to check on the
values of X and Y.

When using the SET BREAK command, you can specify program
locations using various kinds of address expressions (for example, line
numbers, routine names, memory addresses, byte offsets). With high
level languages, you typically use routine names, labels, or line numbers,
possibly with path names to ensure uniqueness.

Routine names and labels should be specified as they appear in the source
code. Line numbers can be derived from either a source code display
or a listing file. When specifying a line number, use the prefix %LINE.
Otherwise the debugger interprets the line number as a memory location.
For example, the next command sets a breakpoint at line 41 of the module
in which execution is suspended. The breakpoint causes the debugger to
suspend further execution when the PC value is at the beginning of
line 41.

DBG> SET BREAK %LINE 41

Note that you can set breakpoints only on lines that resulted in machine
code instructions .. The debugger warns you if you try to do otherwise (for
example on a comment line). To pick a line number in a module other than
the one in which execution is suspended, you must specify the module's
name in a path name. For example:

DBG> SET BREAK SCREEN_IO\%LINE 58

You can also use the SET BREAK command with a qualifier, but no
parameter, to break on every line, or on every CALL instruction, and so
on. For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

You can set breakpoints on events, such as exceptions, or state transitions
in Ada tasking programs.

You can conditionalize a breakpoint (with a "WHEN" clause) or specify
that a list of commands be executed at the breakpoint (with a "D0 11

clause).

To display the currently active breakpoints, enter the command SHOW
BREAK.

To cancel a breakpoint, enter the command CANCEL BREAK, specifying
the program location exactly as you did when setting the breakpoint.
CANCEL BREAK/ALL cancels all breakpoints.

2.2.8.5 Tracing Program Execution with Tracepoints
The SET TRACE command enables you to select locations for tracing the
execution of your program (tracepoints), without stopping its execution.
After setting a tracepoint, you can start execution with the GO command
and then monitor the path of execution, checking for unexpected behavior.
By setting a tracepoint on a routine, you can also monitor the number of
times it is called.

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

As with breakpoints, every time a tracepoint is reached, the debugger
issues a message and displays the source line. But the program continues
executing, and the debugger prompt is not displayed. For example:

DBG> SET TRACE COUNT
DBG> GO

trace at routine PROG2\COUNT
54: procedure COUNT(X,Y:INTEGER);

This is the only difference between a breakpoint and a tracepoint. When
using the SET TRACE command, you specify address expressions,
qualifiers, and optional clauses exactly as with the SET BREAK command.

2.2.8.6 Monitoring Changes in Variables with Watchpoints
The SET WATCH command enables you to specify program variables that
the debugger monitors as your program executes. This process is called
setting watchpoints. If the program modifies the value of a "watched"
variable, the debugger suspends execution and displays information. The
debugger monitors watchpoints continuously during program execution.
(Note that the SET WATCH command can also be used to monitor
arbitrary program locations, not just variables.)

To set a watchpoint on a variable, specify the variable's name with the
SET WATCH command. For example, the following command sets a
watchpoint on the variable TOTAL:

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the
watchpoint is triggered.

The next example shows what happens when your program modifies the
contents of a watched variable.

DBG> SET WATCH TOTAL
DBG> GO

watch of SCREEN_IO\TOTAL at SCREEN_IO\%LINE 13
13: TOTAL := TOTAL + l;

old value: 16
new value: 17

break at SCREEN_IO\%LINE 14
14: POP(TOTAL);

DBG>

In this example, a watchpoint is set on the variable TOTAL and execution
is started. When the value of TOTAL changes, execution is suspended.
The debugger announces the event ("watch of . . . "), identifying where
TOTAL changed (the beginning of line 13) and the associated source
line. The debugger then displays the old and new values and announces
that execution has been suspended at the beginning of the next line (14).
Finally, the debugger prompts for another command. Note that when a

2-17

2.2.9

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

change in a variable occurs at a point other than the beginning of a source
line, the debugger gives the line number plus the byte offset from the
beginning of the line.

The technique previously described for setting watchpoints always applies
to static variables. A static variable is associated with the same memory
address throughout program execution.

A variable that is allocated on the stack or in a register (a nonstatic
variable) exists only when its defining routine is active (on the call stack).
If you try to set a watch point on· a nonstatic variable when its defining
routine is not active, the debugger issues a warning:

DBG> SET WATCH Y
%DEBUG-W-SYMNOTACT, nonstatic variable 'Y' is not active
DBG>

A convenient technique for setting a watchpoint on a nonstatic variable
is to set a tracepoint on the defining routine, also specifying a DO clause
to set the watchpoint whenever execution reaches the tracepoint. In
the following example, a watchpoint is set on the nonstatic variable Y
in routine ROUT3. After the tracepoint is triggered, the WPTTRACE
message indicates that the nonstatic watchpoint is set. And the
watchpoint is triggered when the value ofY changes:

DBG> SET TRACE/NOSOURCE ROUT3 DO (SET WATCH Y)
DBG> GO

trace at routine MOD4\ROUT3
%DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every

instruction

watch of MOD4\ROUT3\Y at MOD4\ROUT3\%LINE 16
16: y := 4
old value: 3
new value: 4

break at MOD4\ROUT3\%LINE 17
17: SWAP(X,Y);

DBG>

When execution returns to the calling routine, the nonstatic variable is no
longer active, so the debugger automatically cancels the watchpoint and
issues a message to that effect.

Examining and Manipulating Program Data

2-18

This section explains how to use the EXAMINE, DEPOSIT, and
EVALUATE commands to display and modify the contents of variables
and evaluate expressions. Note that before you can examine or deposit
into a nonstatic variable, as defined in Section 2.2.8.6, its defining routine
must be active (on the call stack).

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2.2.9.1 Displaying the Value of a Variable
To display the current value of a variable, use the EXAMINE command. It
has the following form:

EXAMINE variable-name

The debugger recognizes the compiler-generated data type of the variable
you specify and retrieves and formats the data accordingly. The following
examples show some uses of the EXAMINE command.

Examine a string variable:

DBG> EXAMINE EMPLOYEE NAME
PAYROLL\EMPLOYEE_NAME:- "Peter C. Lombardi"
DBG>

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\ WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine a two-dimensional array of real numbers (three per dimension):

DBG> EXAMINE REAL ARRAY
PROG2 \REAL_ ARRAY -

(1,1): 27.01000
(1,2): 31.00000
(1,3): 12.48000
(2,1): 15.08000
(2' 2) : 22. 30000
(2,3): 18.73000

DBG>

Examine element 4 of a one-dimensional array of characters:

DBG> EXAMINE CHAR ARRAY (4)
PROG2\CHAR ARRAY(4): 'm'
DBG> -

Examine a record variable (COBOL example):

DBG> EXAMINE PART
INVENTORY\PART:

ITEM: "WF-1247"
PRICE: 49. 95
IN STOCK: 24

DBG>

Examine a record component (COBOL example):

DBG> EXAMINE IN STOCK OF PART
INVENTORY\IN-STOCK of PART:

IN STOCK: 24
DBG>

Note that the EXAMINE command can be used with any kind of address
expression (not just a variable name) to display the contents of a program
location. The debugger associates certain default data types with untyped
locations. You can override the defaults for typed and untyped locations if
you want the data interpreted and displayed in some other data format.

2-19

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2.2.9.2 Assigning a Value to a Variable
To assign a new value to a variable, use the DEPOSIT command. It has
the following form:

DEPOSIT variable-name = value

The DEPOSIT command is like an assignment statement in most
programming languages.

In the following examples, the DEPOSIT command assigns new values
to different variables. The debugger checks that the value assigned,
which can be a language expression, is consistent with the data type and
dimensional constraints of the variable.

Deposit a string value (it must be enclosed in quotation marks (") or
apostrophes ('):

DBG> DEPOSIT PART NUMBER= "WG-7619.3-84"
DBG>

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENT WIDTH + 10
DBG>

Deposit element 12 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY(12) := 'K'
DBG>

Deposit a record component (you cannot deposit an entire record aggregate
with a single DEPOSIT command, only a component):

DBG> DEPOSIT EMPLOYEE.ZIPCODE = 02172
DBG>

Deposit an out-of-bounds value (X was declared as a positive integer):

DBG> DEPOSIT X = -14
%DEBUG-I-IVALOUTBNDS, value assigned is out of bounds at or near DEPOSIT
DBG>

2-20

As with the EXAMINE command, you can specify any kind of address
expression (not just a variable name) with the DEPOSIT command. You
can override the defaults for typed and untyped locations if you want the
data interpreted in some other data format.

2.2.9.3 Evaluating Language Expressions
To evaluate a language expression, use the EVALUATE command. It has
the following form:

EVALUATE language-expression

The debugger recognizes the operators and expression syntax of the
currently set language. In the following example, the value 45 is assigned
to the integer variable WIDTH; the EVALUATE command then obtains
the sum of the current value of WIDTH and 7:

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

DBG> DEPOSIT WIDTH : = 45
DBG> EVALUATE WIDTH + 7
52
DBG>

In the next example, the values TRUE and FALSE are assigned to the
Boolean variables WILLING and ABLE, respectively; the EVALUATE
command then obtains the logical conjunction of these values:

DBG> DEPOSIT WILLING := TRUE
DBG> DEPOSIT ABLE := FALSE
DBG> EVALUATE WILLING AND ABLE
False
DBG>

2.2.10 Controlling Access to Symbols in Your Program
To have full access to the symbols that are associated with your program
(variable names, routine names, source code, line numbers, and so on), you
must compile and link the program using the /DEBUG command qualifier,
as explained in Section 2.2.1.

Under these conditions, the way in which the debugger handles these
symbols is transparent to you, in most cases. However, the following two
areas might require action:

• Setting and canceling modules

• Resolving symbol ambiguities

2.2.10.1 Setting and Canceling Modules
To facilitate symbol searches, the debugger loads symbol information
from the executable image into a run-time symbol table (RST), where
that information can be accessed efficiently. Unless symbol information
is in the RST, the debugger does not recognize or properly interpret the
associated symbols.

Because the RST takes up memory, the debugger loads it dynamically,
anticipating what symbols you might want to reference in the course of
program execution. The loading process is called module setting, because
all symbol information for a given module is loaded into the RST at one
time.

At debugger startup, only the module containing the image transfer
address is set. Subsequently, whenever execution of the program is
interrupted, the debugger sets the module that contains the routine in
which execution is suspended. This enables you to reference the symbols
that should be visible at that location.

If you try to reference a symbol in a module that has not been set, the
debugger warns you that the symbol is not in the RST. For example:

DBG> EXAMINE K
%DEBUG-W-NOSYMBOL, symbol 'K' is not in symbol table
DBG>

2-21

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

2-22

You must then use the SET MODULE command to set the module
containing that symbol explicitly:

DBG> SET MODULE MOD3
DBG> F.XAMINE K
MOD3\ROUT2\K: 26
DBG>

The SHOW MODULE command lists the modules of your program and
identifies which modules are set.

Note that dynamic module setting can slow the debugger down as more
and more modules are set. If performance becomes a problem, you can use
the CANCEL MODULE command to reduce the number of set modules,
or you can disable dynamic module setting by entering the command SET
MODE NODYNAMIC (SET MODE DYNAMIC enables dynamic module
setting).

2.2.10.2 Resolving Symbol Ambiguities
Symbol ambiguities can occur when a symbol (for example, a variable
name X) is defined in more than one routine or other program unit.

In most cases, the debugger resolves symbol ambiguities automatically.
First it uses the scope and visibility rules of the currently set language. In
addition, because the debugger permits you to specify symbols in arbitrary
modules (to set breakpoints and so on), the debugger uses the ordering of
routine calls on the call stack to resolve symbol ambiguities.

If the debugger cannot resolve a symbol ambiguity, it issues a message.
For example:

DBG> EXAMINE Y
%DEBUG-W-NOUNIQUE, symbol 'Y' is not unique
DBG>

You can then use a path name prefix to uniquely specify a declaration of
the given symbol. First, use the SHOW SYMBOL command to identify
all path names associated with the given symbol (corresponding to all
declarations of that symbol) that are currently loaded in the RST. Then
use the desired path name prefix when referencing the symbol. For
example:

DBG> SHOW SYMBOL Y
data MOD7\ROUT3\BLOCK1\Y
data MOD4\ROUT2\Y
DBG> EXAMINE MOD4\ROUT2\Y
MOD4\ROUT2\Y: 12
DBG>

If you need to refer to a particular declaration of Y repeatedly, use the
SET SCOPE command to establish a new default scope for symbol lookup.
Then, references to Y without a path name prefix specify the declaration of
Y that is visible in the new scope. For example:

DBG> SET SCOPE MOD4 \ROUT2
DBG> EXAMINE Y
MOD4\ROUT2\Y: 12
DBG>

Introduction to the Debugger: Command Interface
2.2 Getting Started with the Debugger

To display the current scope for symbol lookup, use the SHOW SCOPE
command. To restore the default scope, use the CANCEL SCOPE
command.

2.3 A Sample Debugging Session
This section walks you through a debugging session with a simple
FORTRAN program which contains a logic error (see Example 2-1).
Compiler-assigned line numbers have been added in the example so that
you can identify the source lines referenced in the discussion.

The program, called SQUARES, performs the following functions:

1 Reads a sequence of integer numbers from a data file and saves these
numbers in the array INARR (lines 4 and 5).

2 Enters a loop in which it copies the square of each non-zero integer
into another array OUTARR (lines 8 through 13).

3 Prints the number of non-zero elements in the original sequence and
the square of each such element (lines 16 through 21).

Example 2-1 Sample Program SQUARES

1:
2: c
3: c
4:

INTEGER INARR(20), OUTARR(20)

---Read the input array from the data file.
OPEN(UNIT=8, FILE='DATAFILE.DAT', STATUS='OLD')
READ (8, *) N, (INARR(I), I=l,N) 5:

6: c
7: c
8:

---Square all non-zero elements and store in OUTARR.
K = 0

9:
10:
11:
12:
13:
14: c
15: c
16:
17:
18:
19:
20:
21:
22:

DO 10 I = 1, N
IF(INARR(I) .NE. 0) THEN

OUTARR(K) = INARR(I)**2
ENDIF

10 CONTINUE

---Print the squared output values. Then stop.
PRINT 20, K

20 FORMAT(' Number of non-zero elements is' ,I4)
DO 40 I = 1, K
PRINT 30, I, OUTARR(I)

30 FORMAT(' Element' ,I4,' has value' ,I6)
40 CONTINUE

END

When you run SQUARES, it produces the following output, regardless of
the number of non-zero elements in the data file:

$ RUN SQUARES
Number of non-zero elements is 0

The error in the program is that variable K, which keeps track of the
current index into OUTARR, is not incremented in the loop on lines 9
through 13. The statement K = K + 1 should be inserted just before
line 11.

2-23

Introduction to the Debugger: Command Interface
2.3 A Sample Debugging Session

Example 2-2 shows how to compile, link, and run the program to
invoke the debugger, and then how to use the debugger to find the error.
Comments, keyed to the callouts, follow the example.

Example 2-2 Sample Debugging Session Using Program SQUARES

$ FORTRAN/DEBUG/NOOPTIMIZE SQUARES 0
$ LINK/DEBUG SQUARES @
$ SHOW LOGICAL DBG$PROCESS 6)
%SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS

$ RUN SQUARES 8
VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is FORTRAN, module set to SQUARES$MAIN
DBG> STEP 4 @
stepped to SQUARES$MAIN\%LINE 9

9: DO 10 I = 1, N
DBG> EXAMINE N, K
SQUARES$MAIN\N:
SQUARES$MAIN\K:
DBG> STEP 2 @

(i)
9
0

stepped to SQUARES$MAIN\%LINE 11
11: OUTARR(K)

DBG> EXAMINE I, K @)
SQUARES$MAIN\I: 1
SQUARES$MAIN\K: 0
DBG> DEPOSIT K = 1 @>

INARR(I)**2

DBG> SET TRACE/SILENT %LINE 11 DO (DEPOSIT K K + 1) 8
DBG> GO 48
Number of non-zero elements is 4
Element 1 has value 16
Element 2 has value 36
Element 3 has value 9
Element 4 has value 49
%DEBUG-I-EXITSTATUS, is 'SYSTEM-S-NORMAL, normal successful completion'
DBG> EXIT 8
$ EDIT SQUARES. FOR 41)

10: IF(INARR(I) .NE. 0) THEN
11: K = K + 1
12: OUTARR(K) = INARR(I)**2
13: ENDIF

$ FORTRAN/DEBUG/NOOPTIMIZE SQUARES •
$ LINK/DEBUG SQUARES
$ RUN SQUARES

DBG> SET BREAK %LINE 12 DO (EXAMINE I, K) 8
DBG> GO 8

2-24

(continued on next page)

Introduction to the Debugger: Command Interface
2.3 A Sample Debugging Session

Example 2-2 (Cont.) Sample Debugging Session Using Program SQUARES

SQUARES$MAIN\I: 1
SQUARES$MAIN\K: 1
DBG> GO

SQUARES$MAIN\I: 2
SQUARES$MAIN\K: 2
DBG> GO

SQUARES$MAIN\I: 4
SQUARES$MAIN\K: 3
DBG>

The following comments apply to the callouts in Example 2-2.
Example 2-1 shows the program that is being debugged.

0 The /DEBUG qualifier on the FORTRAN command directs the compiler
to write the symbol information associated with SQUARES into the
object module, SQUARES.OBJ, in addition to the code and data for the
program.

The /NOOPTIMIZE qualifier disables optimization by the FORTRAN
compiler, to ensure that the executable code match the source code of
the program. Debugging optimized code can be confusing because the
contents of some program locations might be inconsistent with what
you would expect from viewing the source code.

8 The /DEBUG qualifier on the LINK command causes the linker to
include all symbol information that is contained in FORMS.OBJ in the
executable image. The qualifier also causes the VMS image activator
to start the debugger at run time.

8 The debugger can be invoked in either the default configuration or
the multiprocess configuration, depending on the definition of the
logical name DBG$PROCESS. In this example, the command SHOW
LOGICAL DBG$PROCESS shows that DBG$PROCESS is undefined,
indicating that the default configuration is in effect. This is the correct
configuration for a program like SQUARES that runs in only one
process.

8 The RUN command invokes the debugger (if you have used the
/DEBUG qualifier with the LINK command).

When the debugger is invoked, it displays an informational message
and the debugger prompt, DBG>. You can now enter debugger
commands. Execution is initially suspended at the start of the main
program unit (line 1 of program SQUARES, in this example).

0 You decide to test the values of variables N and K after the READ
statement has been executed and the value 0 has been assigned to K.

2-25

Introduction to the Debugger: Command Interface
2.3 A Sample Debugging Session

2-26

The command STEP 4 executes 4 source lines of the program.
Execution is now suspended at line 9. Note that the STEP command
ignores source lines that do not result in executable code; also, by
default, the debugger identifies the source line at which execution is
suspended.

0 The command EXAMINE N, K displays the current values of N and K.
Their values are correct at this point in the execution of the program.

8 The command STEP 2 executes the program into the loop that copies
and squares all non-zero elements of IN ARR into OUTARR.

(i) The command EXAMINE l,K displays the current values of I and K.

I has the expected value, 1. But K has the value 0 instead of 1, which
is the expected value. Now you can see the error in the program: K
should be incremented in the loop just before it is used in line 11.

CD The DEPOSIT command assigns K the value it should have now: 1.

G The SET TRACE command is now used to patch the program so that
the value of K is incremented automatically in the loop. The command
sets a tracepoint that triggers every time execution reaches line 11:

• The /SILENT qualifier suppresses the "trace at" message that
would otherwise appear each time line 11 is executed.

• The DO clause issues the command DEPOSIT K = K + 1 every
time the tracepoint is triggered.

• To test the patch, the GO command starts execution from the current
location.

The program output shows that the patched program works properly.
The EXITSTATUS diagnostic message shows that the program
executed to completion.

8 The EXIT command ends the debugging session, returning control to
DCL level.

8 The source file is edited to add K = K + 1 after line 10, as shown.
(Compiler-assigned line numbers have been added to clarify the
example.)

e The program is compiled, linked, and executed again under debugger
control, to check that it runs correctly.

• The SET BREAK command sets a breakpoint that triggers every time
line 12 is executed. The DO clause displays the values of I and K
automatically when the breakpoint triggers.

8 The GO command starts execution.

At the first breakpoint, the value of K is 1, indicating that the program
is running correctly so far. Each additional GO command shows the
current values of I and K. After two GO commands, K is now 3, as
expected, but note that I is 4. The reason is that one of the !NARR
elements was zero so that lines 11 and 12 were not executed (and K
was not incremented) for that iteration of the DO loop. This confirms
that the program is running correctly.

Introduction to the Debugger: Command Interface
2.4 Debugger Command Summary

2.4 Debugger Command Summary

2.4.1

2.4.2

The following sections list all the debugger commands and any related
DCL commands in functional groupings, along with brief descriptions.
During a debugging session, you can get online help on all debugger
commands and their qualifiers by typing HELP.

Starting and Ending a Debugging Session
The following commands are used to start, interrupt, and end a debugging
session:

RUN1

RUN/[NO]DEBUG1

EXIT, CTRUZ

QUIT

CTR UC

(SET,SHOW) ABORT _KEY

CTRUY-DEBUG1

ATTACH

SPAWN

Invokes the debugger if LINK/DEBUG was
used

Controls whether the debugger is invoked
when the program is executed

Ends a debugging session, executing all exit
handlers

Ends a debugging session without executing
any exit handlers declared in the program

Aborts program execution or a debugger
command without interrupting the debugging
session

Assigns the default CTRUC abort function to
another CTRL-key sequence, identifies the
CTRL-key sequence currently defined for the
abort function

Interrupts a program that is running without
debugger control and invokes the debugger

Passes control of your terminal from the
current process to another process

Creates a subprocess, enabling you to
execute DCL commands without ending a
debugging session or losing your debugging
context

1 This is a DCL command, not a debugger command.

Controlling and Monitoring Program Execution
The following commands are used to control and monitor program
execution:

GO

STEP

(SET.SHOW) STEP

(SET,SHOW,CANCEL) BREAK

Starts or resumes program execution

Executes the program up to the next line,
instruction, or specified instruction

(Establishes, displays) the default qualifiers for
the STEP command

(Sets, displays, cancels) breakpoints

2-27

2.4.3

2.4.4

2.4.5

Introduction to the Debugger: Command Interface
2.4 Debugger Command Summary

(SET,SHOW,CANCEL) TRACE

(SET,SHOW,CANCEL) WATCH

SHOW CALLS

SHOW STACK

CALL

(Sets, displays, cancels) tracepoints

(Sets, displays, cancels) watchpoints

Identifies the currently active routine calls

Gives additional information about the
currently active routine calls

Calls a routine

Examining and Manipulating Data
The following commands are used to examine and manipulate data:

EXAMINE

SET MODE [NO]OPERANDS

DEPOSIT

EVALUATE

Displays the value of a variable or the contents
of a program location

Controls whether the address and contents of
the instruction operands are displayed when
you examine an instruction

Changes the value of a variable or the
contents of a program location

Evaluates a language or address expression

Controlling Type Selection and Radix
The following commands are used to control type selection and radix:

(SET,SHOW,CANCEL) RADIX

(SET,SHOW,CANCEL) TYPE

SET MODE [NO]G_FLOAT

(Establishes, displays, restores) the radix for
data entry and display

(Establishes, displays, restores) the type for
program locations that are not associated with
a compiler generated type

Controls whether double-precision floating
point constants are interpreted as G_FLOAT
or D_FLOAT

Controlling Symbol Lookup and Symbolization

2-28

The following commands are used to control symbol lookup and
symbolization:

SHOW SYMBOL

(SET,SHOW,CANCEL) MODULE

(SET,SHOW,CANCEL) IMAGE

SET MODE [NO]DYNAMIC

Displays symbols in your program

Sets a module by loading its symbol
information into the debugger's symbol table,
identifies, cancels a set module

Sets a shareable image by loading data
structures into the debugger's symbol table,
identifies, cancels a set image

Controls whether or not modules and
shareable images are set automatically when
the debugger interrupts execution

2.4.6

2.4.7

Introduction to the Debugger: Command Interface
2.4 Debugger Command Summary

(SET,SHOW,CANCEL) SCOPE

SYMBOLIZE

SET MODE [NO]LINE

SET MODE [NO]SYMBOLIC

Displaying Source Code

(Establishes, displays, restores) the scope for
symbol lookup

Converts a memory address to a symbolic
address expression

Controls whether program locations are
displayed in terms of line numbers or routine
name + byte offset

Controls whether program locations are
displayed symbolically or in terms of numeric
addresses

The following commands are used to control the display of source code:

TYPE

EXAMINE/SOURCE

SEARCH

(SET.SHOW) SEARCH

SET STEP [NO]SOURCE

(SET.SHOW) MARGINS

(SET,SHOW,CANCEL) SOURCE

(SET, SHOW)
MAX_SOURCE_FILES

Using Screen Mode

Displays lines of source code

Displays the source code at the location
specified by the address expression

Searches the source code for the specified
string

(Establishes, displays) the default qualifiers for
the SEARCH command

Enables/disables the display of source code
after a STEP command has been executed or
at a breakpoint, tracepoint, or watchpoint

(Establishes, displays) the left and right margin
settings for displaying source code

(Creates, displays, cancels) a source directory
search list

(Establishes, displays) the maximum number
of source files that can be kept open at one
time (but does not limit the number of source
files that can be opened)

The following commands are used to control screen mode and screen
displays:

SET MODE [NO]SCREEN

DISPLAY

SCROLL

EXPAND

MOVE

(SHOW.CANCEL) DISPLAY

(SET,SHOW,CANCEL) WINDOW

Enables/disables screen mode

Creates or modifies a display

Scrolls a display

Expands or contracts a display

Moves a display across the screen

(Identifies, deletes) a display

(Creates, identifies, deletes) a window
definition

2-29

2.4.8

2.4.9

Introduction to the Debugger: Command Interface
2.4 Debugger Command Summary

SELECT

SHOW SELECT

SAVE

EXTRACT

(SET,SHOW) TERMINAL

SET MODE [NO]SCROLL

CTRUW,DISPLAY/REFRESH

Editing Source Code

Selects a display for a display attribute

Identifies the displays selected for each of the
display attributes

Saves the current contents of a display into
another display

Saves a display or the current screen state
into a file

(Establishes, displays) the terminal screen
height and width that the debugger uses when
it formats displays and other output

Controls whether an output display is updated
line by line or once per command

Refreshes the screen

The following commands are used to control source editing from a
debugging session:

EDIT

(SET.SHOW) EDITOR

Defining Symbols

Invokes an editor during a debugging session

(Establishes, identifies) the editor invoked by
the EDIT command

The following commands are used to define and delete symbols for
addresses, commands, or values:

DEFINE

DELETE

(SET.SHOW) DEFINE

SHOW SYMBOUDEFINED

Defines a symbol as an address, command, or
value

Deletes symbol definitions

(Establishes, displays) the default qualifier for
the DEFINE command

Identifies symbols that have been defined with
the DEFINE command

2.4.10 Using Keypad Mode

2-30

The following commands are used to control keypad mode and key
definitions:

SET MODE [NO)KEYPAD

DEFINE/KEY

DELETE/KEY

SET KEY

SHOW KEY

Enables/disables keypad mode

Creates key definitions

Deletes key definitions

Establishes the key definition state

Displays key definitions

2.4.11

Introduction to the Debugger: Command Interface
2.4 Debugger Command Summary

Using Command Procedures, Log Files, and Initialization Files
The following commands are used with command procedures and log files:

@file-spec

(SET.SHOW) ATSIGN

DECLARE

(SET.SHOW) LOG

SET OUTPUT [NO]LOG

SET OUTPUT [NO]SCREEN_LOG

SET OUTPUT [NO]VERIFY

SHOW OUTPUT

Executes a command procedure

(Establishes, displays) the default file
specification that the debugger uses to search
for command procedures

Defines parameters to be passed to command
procedures

(Specifies, identifies) the debugger log file

Controls whether a debugging session is
logged

Controls whether, in screen mode, the screen
contents are logged as the screen is updated

Controls whether debugger commands
are displayed as a command procedure is
executed

Identifies the current output options
established by the SET OUTPUT command

2.4.12 Using Control Structures
The following commands are used to establish conditional and looping
structures for debugger commands:

FOR

IF

REPEAT

WHILE

EXITLOOP

2.4.13 Debugging Multiprocess Programs

Executes a list of commands while
incrementing a variable

Executes a list of commands conditionally

Executes a list of commands a specified
number of times

Executes a list of commands while a condition
is true

Exits an enclosing WHILE, REPEAT, or FOR
loop

The following commands are used for debugging multiprocess programs:

CONNECT

DEFINE/PROCESS_GROUP

DO

Brings a process under debugger control

Assigns a symbolic name to a list of process
specifications

Executes commands in the context of one or
more processes

2-31

Introduction to the Debugger: Command Interface
2.4 Debugger Command Summary

SET MODE [NO]INTERRUPT

(SET,SHOW) PROCESS

2.4.14 Additional Commands

Controls whether execution is interrupted in
other processes when it is suspended in some
process

Modifies the multiprocess debugging
environment, displays process information

The following commands are used for miscellaneous purposes:

2-32

(DISABLE,ENABLE,SHOW) AST

(SET,SHOW) EVENT _FACILITY

(SET.SHOW) LANGUAGE

SET MODE [NO]SEPARATE

SET OUTPUT [NO]TERMINAL

SET PROMPT

(SET,SHOW) TASK

(SET,SHOW) VECTOR_MODE

SHOW EXIT_HANDLERS

SHOW MODE

SHOW OUTPUT

SYNCHRONIZE VECTOR_MODE

(Disables, enables) the delivery of ASTs in the
program, identifies whether delivery is enabled
or disabled

(Establishes, identifies) the current run-time
facility for language-specific events

(Establishes, identifies) the current language

Controls whether the debugger, when used
on a workstation running VWS, creates a
separate window for debugger input and
output

Controls whether debugger output, except
for diagnostic messages, is displayed or
suppressed

Specifies the debugger prompt

Modifies the tasking environment, displays
task information

Enables or disables a debugger vector mode
option, identifies the current vector mode
option (for vectorized programs).

Identifies the exit handlers declared in the
program

Identifies the current debugger modes
established by the SET MODE command
(for example, screen mode, step mode)

Identifies the current output options
established by the SET OUTPUT command

Forces immediate synchronization between the
scalar and vector processors (for vectorized
programs)

3 Controlling and Monitoring Program Execution

This chapter describes the options for invoking the debugger and for
controlling and monitoring program execution while debugging.

The chapter includes information that is common to all programs.

• See Chapter 10 for additional information specific to multiprocess
programs.

• See Chapter 11 for additional information specific to vectorized
programs.

3.1 Starting and Ending a Debugging Session

3.1.1

This section explains how to do the following:

• Compile and link your program so you can invoke the debugger

• Start, interrupt, resume, and end a debugging session

Invoking the Debugger with the DCL RUN Command
The usual way to invoke the debugger is as follows:

1 Compile your program using the /DEBUG and /NOOPTIMIZE (or
equivalent) qualifiers with the DCL compiler command (consult your
language documentation to determine the compiler command defaults).

2 Link your program using the /DEBUG qualifier with the DCL LINK
command.

3 Use the DCL command SHOW LOGICAL DBG$PROCESS to make
sure that the value of the logical name DBG$PROCESS is appropriate
for the type of program you are debugging (see Section 10.2.1):

• If you are debugging a program that runs in only one process,
DBG$PROCESS should be either undefined or should have the
value DEFAULT.

• If you are debugging a program that runs in more than one
process, DBG$PROCESS should have the value MULTIPROCESS.

4 Execute your program using the DCL RUN command. The debugger
initially takes control of the program and prompts for commands.

Note that you cannot run a program under debugger control over a
DECnet link. Both the image to be debugged and the debugger must
reside on the same node.

3-1

Controlling and Monitoring Program Execution
3.1 Starting and Ending a Debugging Session

3-2

The following example illustrates the previous steps with a simple Pascal
program, INVENTORY, that consists of two compilation units whose
source code is in two separate files, FORMS.PAS and INVENTORY.PAS.
INVENTORY is the main program unit.

$ PASCAL/DEBUG/NOOPTIMIZE FORMS, INVENTORY
$ LINK/DEBUG INVENTORY, FORMS
$ RUN INVENTORY

VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is PASCAL, module set to INVENTORY
DBG>

When the debugger first takes control, it does the following:

• Displays its banner.

• Sets the language-dependent parameters to the language of the main
program (the module that contains the image transfer address). The
11 INITIAL 11 message identifies the language to which the debugging
session is initialized and the name of the main program (Pascal and
INVENTORY, respectively, in the previous example). See Section 4:1.8
and Section 4.1.9 for more information about language-dependent
parameters.

• Executes any user-defined initialization file (see Section 8.2).

• Suspends execution at the beginning of the main program. The DBG>
prompt, which is displayed whenever the debugger suspends execution,
indicates that you can now enter debugger commands.

In some cases the debugger suspends execution before the beginning of the
main program and displays the following additional message:

%DEBUG-I-NOTATMAIN, type GO to get to start of main program

See Section 9.3 for an explanation of this message.

The effect of the qualifiers used with the compiler command (PASCAL, in
this example) and the LINK command is as follows.

The /DEBUG qualifier on the compiler command loads the debugger
symbol information associated with each compilation unit into its object
module. This symbol information enables you to use, in debugger
commands, the names of variables, routines, labels, and other symbols
as they appear in the source code. By specifying options with the /DEBUG
qualifier, you can control the level of symbolic information provided (see
Section 5.1.1). This qualifier does not affect whether the debugger is
invoked or how it is invoked.

Most compilers optimize code to.reduce the size of the program and make
it run faster. For example, invariant expressions are removed from DO
loops so that they are evaluated only once at run time; also, some memory
locations might be allocated to different variables at different points in
the program. The /NOOPTIMIZE (or equivalent) qualifier ensures that
the code is not optimized and, therefore, that the contents of all program
locations are consistent with what you would expect from looking at the
source code. Section 9.1 describes some of the effects of optimization.

Controlling and Monitoring Program Execution
3.1 Starting and Ending a Debugging Session

Note also another possible cause of unexpected behavior. The debugger
and your program share the same address space. In some rare cases, this
can cause the debugger to affect how your program executes. Section 3. 7
explains how the debugger controls execution and the possible sources of
interference.

The /DEBUG qualifier on the LINK command provides the following
functions:

• Copies the debugger symbol information from the object modules being
linked into the debug symbol table (DST) and puts the DST in the
executable image.

• Directs the image activator to pass control to the debugger when you
subsequently execute the image with the RUN command.

See Section 5.1.3 for more details on how the LINK command controls
symbol information.

Even if you have compiled and linked an image with the /DEBUG
command qualifier, you can execute that image normally, without it
being under debugger control. To do so, use the /NODEBUG qualifier on
the DCL RUN command. For example:

$ RUN/NODEBUG INVENTORY

This is convenient for checking your program after you think it is error
free. But the data required by the debugger still occupies space within
the executable image. So, when you think your program is correct, you
might want to link your program again without the /DEBUG qualifier.
This creates an image with only traceback data in the DST, to use less
disk space.

Table 3-1 summarizes how to control debugger activation by means of
LINK and RUN command qualifiers. Note that the LINK command
qualifiers /[NO]DEBtJG and /[NO]TRACEBACK affect not only debugger
activation but also the level of symbol information provided.

Table 3-1 Controlling Debugger Activation with the LINK and RUN Commands

LINK Command To Run Program To Run Program Maximum Symbol Information
Qualifier With Debugger Without Debugger Available1

/DEBUG RUN RUN/NODEBUG Full

/TRACEBACK or RUN/DEBUG RUN Only traceback3

/NODEBUG2

/NOTRACEBACK Cannot RUN None

1 The level of symbol information available while debugging is controlled both by the compile command qualifier and the LINK
command qualifier (see Section 5.1).

2LINK/TRACEBACK (or LINK/NODEBUG) is a LINK command default.

3Traceback information includes compiler-generated line numbers and the names of routines and modules (compilation units).
This symbol information is used by the VMS traceback condition handler to identify the PC value and the active calls when a
run-time error has occurred. The information is also used by the debugger SHOW CALLS command (see Section 2.2.8.3).

3-3

3.1.2

Controlling and Monitoring Program Execution
3.1 Starting and Ending a Debugging Session

Invoking the Debugger with the DCL DEBUG Command

3-4

You can invoke the debugger while your program is executing freely-for
example, if you suspect that the program might be in an infinite loop or if
you see erroneous output.

To invoke the debugger in this manner, proceed as follows:

1 Compile and link the program with the /DEBUG command qualifier,
as described in the previous section (you can also use LINK
/TRACEBACK, but only traceback symbols are then available while
you debug).

2 Enter the DCL command RUN/NODEBUG to execute the program
without debugger control.

3 Press CTRUY to interrupt the executing program. Control then passes
to the DCL command interpreter.

4 Enter the DCL command DEBUG to activate the debugger. It displays
its banner, sets the language-dependent parameters to the language
of the module where execution was interrupted, executes any user
defined initialization file, and prompts for commands. Usually you will
not know where execution was interrupted. Enter the SHOW CALLS
command to identify the current PC value and the sequence of routine
calls on the call stack (the SHOW CALLS command is described in
Section 2.2.8.3).

For example:

$ PASCAL/DEBUG/NOOPTIMIZE FORMS,INVENTORY
$ LINK/DEBUG INVENTORY,FORMS
$ RUN/NODEBUG INVENTORY

ICTRL/YI
Interrupt

$ DEBUG

VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is PASCAL, module set to INVENTORY
DBG> SHOW CALLS

Interrupting a running program with CTRL/Y and then invoking the
debugger with the DEBUG command is useful under the following
conditions:

• Your program is in an infinite loop.

• After entering the RUN/NODEBUG command, you decide that you
want debugger control.

3.1.3

Controlling and Monitoring Program Execution
3.1 Starting and Ending a Debugging Session

• You have not specified the /DEBUG command qualifier at compile
time, link time, or run time but want to debug your running program.
In this case, traceback information is the only symbol information
available for debugging.

Ending a Debugging Session
To end a debugging session in an orderly manner, use the EXIT or QUIT
commands, or press CTRUZ. These commands invoke the debugger exit
handlers to close log files, restore the screen and keypad states, and so on.

The EXIT command and CTRUZ have the same effect. The QUIT
command is like the EXIT command or CTRUZ, except that the EXIT
command and CTRUZ also execute any exit handlers that are declared in
your program; the QUIT command does not.

3.2 Interrupting and Resuming a Debugging Session
As explained in Section 2.2.5, use CTRUC (not CTRUY) to abort the
execution of a debugger command or to interrupt program execution. This
is useful if a command takes a long time to complete or your program is
in an infinite loop. Control is returned to the debugger rather than to the
DCL command interpreter.

The debugger SPAWN and ATTACH commands enable you to interrupt a
debugging session from the debugger prompt, enter DCL commands, and
return to the debugger prompt. These commands function essentially like
the DCL SPAWN and ATTACH commands.

Use the debugger SPAWN command to create a subprocess. Use
the debugger ATTACH command to attach to an existing process or
subprocess.

You can enter the SPAWN command with or without specifying a DCL
command as parameter. If you specify a DCL command, it is executed in a
subprocess (if the DCL command invokes a utility, that utility is invoked
in a subprocess). Control returns to the debugging session when the DCL
command terminates (or when you exit the utility). The following example
illustrates spawning the DCL DIRECTORY command.

DBG> SPAWN DIR [JONES.PROJECT2]*.FOR

%DEBUG-I-RETURNED, control returned to process JONES 1
DBG>

3-5

Controlling and Monitoring Program Execution
3.2 Interrupting and Resuming a Debugging Session

The next example illustrates spawning the DCL MAIL command, which
invokes the MAIL utility:

DBG> SPAWN MAIL
MAIL> READ/NEW

MAIL> EXIT
%DEBUG-I-RETURNED, control returned to process JONES_l
DBG>

If you enter the SPAWN command without specifying a parameter, a
subprocess is created, and you can then enter DCL commands. Either
logging out of the subprocess or attaching to the parent process (with
the DCL ATTACH command) returns you to the debugging session. For
example:

DBG> SPAWN
$ RUN PROG2

$ ATTACH JONES 1
%DEBUG-I-RETURNED, control returned to process JONES_l
DBG>

If you plan to go back and forth several times between your debugging
session and a spawned subprocess (which might be another debugging
session), use the debugger ATTACH command to attach to that subprocess.
Use the DCL ATTACH command to return to the parent process. Because
you do not create a new subprocess every time you leave the debugger, you
use system resources more efficiently.

If you are running two debugging sessions simultaneously, you can define
a new debugger prompt for one of the sessions with the SET PROMPT
command. This helps you to differentiate the sessions.

3.3 Commands Used to Execute the Program

3-6

Only four debugger commands can be used to execute your program: GO,
STEP, CALL, and EXIT (if your program has exit handlers).

As indicated in Section 2.2.8.1, GO and STEP are the basic commands
for starting and resuming program execution. The STEP command is
discussed further in Section 3.4.

During a debugging session, routines are executed as they are called
during the execution of a program. The CALL command enables you to
arbitrarily call and execute a routine that was linked with your program.
This command is discussed in Section 8.7.

The EXIT command was discussed in Section 3.1.3, in conjunction with
ending a debugging session. Because it executes any exit handlers in your
program, it is also useful for debugging exit handlers (see Section 9.5).

Controlling and Monitoring Program Execution
3.3 Commands Used to Execute the Program

When using any of these four commands, keep in mind that program
execution can be interrupted or stopped by any of the following events:

• The program terminates.

• A breakpoint is reached.

• A watchpoint is activated.

• An exception is signaled.

• You press CTRL/C.

3.4 Executing the Program by Step Unit
The STEP command (probably the most frequently used debugger
command) enables you to execute your program in small increments
called step units.

By default, a step unit is an executable line of source code. In the
following example, the STEP command executes one line, reports the
action (11 stepped to . . . 11

), and displays the line number (27) and source
code of the next line to be executed:

DBG> STEP
stepped to TEST\COUNT\%LINE 27

27: x := x + 1;
DBG>

Execution is now suspended at the first machine code instruction for line
27 of module TEST. Line 27 is in COUNT, a routine within module TEST.

The STEP command can also execute several source lines at a time. If
you specify a positive integer as a parameter, the STEP command executes
that number of lines. In the following example, the STEP command
executes the next three lines:

DBG> STEP 3
stepped to TEST\COUNT\%LINE 34

34: SWAP (X, Y) ;
DBG>

Note that only those source lines for which code instructions were
generated by the compiler are recognized as executable lines by the
debugger. The debugger skips over any other lines-for example, comment
lines. Also, if a line has more than one statement on it, the debugger
executes all the statements on that line as part of the single step.

Source lines are displayed by default after stepping if they are available
for the module being debugged. Source lines are not available if you are
stepping in code that has not been compiled or linked with the /DEBUG
qualifier (for example, a shareable image routine). If source lines are
available, you can control their display with the SET STEP [NO]SOURCE
command and the /[NO]SOURCE qualifier of the STEP command. See
Chapter 6 for information about how to control the display of source code
in general and in particular after stepping.

3-7

3.4.1

3.4.2

Controlling and Monitoring Program Execution
3.4 Executing the Program by Step Unit

Changing the STEP Command Behavior
The default behavior of the STEP command can be altered in the following
two ways:

• By specifying a STEP command qualifier-for example, STEP
/INSTRUCTION.

• By establishing a new default qualifier with the SET STEP
command-for example, SET STEP INSTRUCTION.

In the following example, the command STEP/INSTRUCTION executes
the next instruction rather than the next line (STEP/LINE is the default
behavior). The debugger displays the source line (10) associated with the
new PC value (instruction TSTL):

DBG> STEP/INSTRUCTION
stepped to SQUARES$MAIN\%LINE 10+4: TSTL W"-164 (Rl1) [RO]

10: IF(INARR(I) .NE. 0) THEN
DBG>

After the STEP/INSTRUCTION command executes, subsequent STEP
commands revert to the default behavior.

In contrast, the SET STEP command enables you to establish new defaults
for the STEP command. These defaults remain in effect until another
SET STEP command is entered. For example, the command SET STEP
INSTRUCTION causes subsequent STEP commands to behave like STEP
/INSTRUCTION (SET STEP LINE causes subsequent STEP commands to
behave like STEP/LINE).

There is a SET STEP command parameter for each STEP command
qualifier.

You can override the current STEP command defaults for the duration of
a single STEP command by specifying other qualifiers. Use the SHOW
STEP command to identify the current STEP command defaults.

Stepping into and over Routines

3-8

By default, when the PC is at a call statement and you enter the STEP
command, the debugger steps "over" the called routine. Although the
routine is executed, execution is not suspended within the routine but,
rather, on the beginning of the line that follows the call statement. When
stepping by instruction, execution is suspended on the instruction that
follows a called routine's RET (return from routine) instruction.

To step into a called routine when the PC is at a call statement, enter the
STEP/INTO command. The following example shows how to step into the
routine PRODUCT, which is called from routine COUNT of module TEST:

DBG> STEP
stepped to TEST\COUNT\%LINE 18

18: AREA:= PRODUCT(LENGTH, WIDTH);
DBG> STEP/ INTO
stepped to routine TEST\PRODUCT

6: function PRODUCT(X,Y : INTEGER) return INTEGER is
DBG>

DBG> STEP /RETURN

Controlling and Monitoring Program Execution
3.4 Executing the Program by Step Unit

To return to the calling routine from any point within the called routine,
use the STEP/RETURN command. It causes the debugger to step to
the RET instruction of the routine being executed. A subsequent STEP
command brings you back to the statement that follows the routine call.
For example:

stepped on return from TEST\PRODUCT\%LINE 11 to TEST\PRODUCT\%LINE 15+4
15: end PRODUCT;

DBG> STEP
stepped to TEST\COUNT\%LINE 19

DBG>
19: LENGTH := LENGTH + 1;

To step into several routines, enter the command SET STEP INTO to
change the default behavior of the STEP command from STEP/OVER to
STEP/INTO:

DBG> SET STEP INTO

As a result of this command, when the PC is at a call statement, a STEP
command suspends execution within the called routine. If you later want
to step over routine calls, enter the command SET STEP OVER.

When SET STEP INTO is in effect, you can qualify the kinds of called
routines that the debugger is stepping into by specifying any of the
following parameters with the SET STEP command:

• [NO]JSB-controls whether to step into routines called by JSB
instructions.

• [NO]SHARE-controls whether to step into called routines in
shareable images.

• [NO]SYSTEM-controls whether to step into called system routines.

These parameters make it possible to step into application-defined routines
and automatically step over system routines, and so on. For example, the
following command directs the debugger to step into called routines in
user space only. The debugger steps over routines in system space and in
shareable images.

DBG> SET STEP INTO, NOSYSTEM, NO SHARE

3.5 Suspending and Tracing Execution with Breakpoints and Tracepoints
This section discusses use of the SET BREAK and SET TRACE commands
to, respectively, suspend and trace program execution. The commands are
discussed together because of their similarities.

SET BREAK Command Overview

The SET BREAK command enables you to specify program locations or
events at which to suspend program execution (breakpoints). After setting
a breakpoint, you can start or resume program execution with the GO
command, letting the program run until the specified location or condition
is reached. When the breakpoint is triggered, the debugger suspends
execution, identifies the breakpoint, and displays the DBG> prompt. You

3-9

Controlling and Monitoring Program Execution
3.5 Suspending and Tracing Execution with Breakpoints and Tracepoints

3-10

can then enter debugger commands-for example, to determine where you
are (with the SHOW CALLS command), step into a routine, examine or
modify variables, and so on.

The syntax of the SET BREAK command is as follows:

SET BREAK[/qualifier[, . . .]] [address-expression[, . . .]]
[WHEN (conditional-expression)]
[DO (command[; . . .])]

The following example shows a typical use of the SET BREAK command
and illustrates the general default behavior of the debugger at a
breakpoint.

In this example, the SET BREAK command sets a breakpoint on routine
COUNT (at the beginning of the routine's code). The GO command
starts execution. When routine COUNT is encountered, execution is
suspended, the debugger announces that the breakpoint at COUNT
has been reached ("break at ... "), displays the source line (54) where
execution is suspended, and prompts for another command:

DBG> SET BREAK COUNT
DBG> GO

break at routine PROG2\COUNT
54: procedure COUNT(X,Y:INTEGER);

DBG>

SET TRACE Command Overview

The SET TRACE command enables you to select program locations or
events for tracing the execution of your program without stopping its
execution (tracepoints). After setting a tracepoint, you can start execution
with the GO command and then monitor that location, checking for
unexpected behavior. By setting a tracepoint on a routine, you can also
monitor the number of times it is called.

The debugger's default behavior at a tracepoint is identical to that at a
breakpoint, except that program execution continues past a tracepoint.
Thus, the DBG> prompt is not displayed when a tracepoint is reached and
announced by the debugger.

Except for the command name, the syntax of the SET TRACE command is
identical to that of the SET BREAK command:

SET TRACE[/qualifier[, . . .]] [address-expression[, . . .]]
[WHEN (conditional-expression)]
[DO (command[; . . .])]

The SET TRACE and SET BREAK commands have the same qualifiers.
When using the SET TRACE command, you specify address expressions,
qualifiers, and the optional WHEN and DO clauses exactly as with the
SET BREAK command.

Unless you use the /TEMPORARY qualifier on the SET BREAK (or SET
TRACE) command, breakpoints (and tracepoints) remain in effect until
you cancel them or exit the debugging session.

3.5.1

Controlling and Monitoring Program Execution
3.5 Suspending and Tracing Execution with Breakpoints and Tracepoints

To identify all of the breakpoints (or tracepoints) that are currently set, use
the SHOW BREAK (or SHOW TRACE) command. To cancel breakpoints
(or tracepoints), use the CANCEL BREAK (or CANCEL TRACE) command
(see Section 3.5.6).

The following sections describe how to specify program locations and
events with the SET BREAK and SET TRACE commands.

Setting Breakpoints or Tracepoints on Individual Program Locations
To set a breakpoint (or a tracepoint) on a particular program location,
specify an address expression with the SET BREAK (or SET TRACE)
command.

Fundamentally, an address expression specifies a memory address or a
VAX register. Because the debugger understands the symbols associated
with your program, the address expressions you typically use with the SET
BREAK (or SET TRACE) command are routine names, labels, or source
line numbers rather than memory addresses-the debugger converts these
symbols to addresses.

3.5.1.1 Specifying Symbolic Addresses
Note: In some cases, when using the SET BREAK or SET TRACE

command with a symbolic address expression, you might need
to set a module or specify a scope or a path name. Those concepts
are described in detail in Chapter 5. The examples in this section
assume that all modules are set and that all symbols referenced
are uniquely defined, unless otherwise indicated.

The following examples illustrate how to set a breakpoint (or a tracepoint)
on a routine (SWAP) and a label (LOOPl):

DBG> SET BREAK SWAP
DBG> SET TRACE LOOPl

The next command sets a breakpoint on the RET (return) instruction of
routine SWAP. 11 Breaking" on the RET instruction of a routine enables you
to inspect the local environment before the RET instruction removes the
routine's call frame from the call stack.

DBG> SET BREAK/RETURN SWAP

Some languages, for example FORTRAN, use numeric labels. To set a
breakpoint (or a tracepoint) on a numeric label, you must precede the
number with the built-in symbol %LABEL. Otherwise, the debugger
interprets the number as a memory address. For example, the following
command sets a tracepoint on label 20.

DBG> SET TRACE %LABEL 20

You can set a breakpoint (or a tracepoint) on a line of source code by
specifying the line number preceded by the built-in symbol %LINE. The
following command sets a breakpoint on line 14.

DBG> SET BREAK %LINE 14

3-11

Controlling and Monitoring Program Execution
3.5 Suspending and Tracing Execution with Breakpoints and Tracepoints

3-12

The preceding breakpoint causes execution to be suspended when the
PC value is on the first instruction of line 14. Note that you can set a
breakpoint (or a tracepoint) only on lines for which the compiler generated
instructions (lines that resulted in executable code). If you specify a line
number that is not associated with an instruction, such as a comment
line or a statement that declares but does not initialize a variable, the
debugger issues a diagnostic message. For example:

DBG> SET BREAK %LINE 6
%DEBUG-I-LINEINFO, no line 6, previous line is 5, next line is 8
%DEBUG-E-NOSYMBOL, symbol '%LINE 6' is not in the symbol table
DBG>

The preceding messages indicate that the compiler did not generate
instructions for lines 6 or 7 in this case.

Some languages, for example BASIC, allow more than one statement on
a line. In such cases, you can use statement numbers to differentiate
among statements on the same line. A statement number consists of a line
number, followed by a period (.) and a number indicating the statement.
The format is as follows:

%LINE line-number.statement-number

For example, the following command sets a tracepoint on the second
statement of line 38:

DBG> SET TRACE %LINE 38. 2

When searching for symbols that you reference in commands, the debugger
uses the conventions described in Section 5.3.1. That is, it first looks
within the module where execution is currently suspended, then in other
scopes associated with routines on the call stack, and so on. Therefore, to
specify a symbol that is defined in more than one module, such as a line
number, you might need to use a path name. For example, the following
command sets a tracepoint on line 27 of module MOD4:

DBG> SET TRACE MOD4 \%LINE 27

Remember the symbol lookup conventions when specifying a line number
in debugger commands. If that line number is not defined in the module
where execution is suspended (because it is not associated with an
instruction), the debugger uses the symbol lookup conventions to locate
another module where the line number is defined.

When specifying address expressions, you can combine symbolic addresses
with byte offsets. Thus, you can set a breakpoint (or a tracepoint) on a
particular assembly language instruction by specifying its line number
and the byte offset from the beginning of that line to the first byte of the
instruction. For example, the next command sets a breakpoint on the
address that is five bytes beyond the beginning of line 23.

DBG> SET BREAK %LINE 23+5

Controlling and Monitoring Program Execution
3.5 Suspending and Tracing Execution with Breakpoints and Tracepoints

3.5.1.2 Specifying Locations in Memory
To set a breakpoint (or a tracepoint) on a lo~ation in memory, specify its
numerical address in the currently set radix The default radix for both
data entry and display is decimal for all languages except BLISS and
MACRO. It is hexadecimal for BLISS and MACRO. For example, the
following command sets a breakpoint at address 2753, decimal (for all
languages except BLISS or MACRO), or at address 2753, hexadecimal (for
BLISS and MACRO):

DBG> SET BREAK 27 53

You can specify a radix when you enter an individual integer literal (such
as 2753) by using one of the built-in symbols %BIN, %OCT, %DEC, or
%HEX. For example, in the following command line the symbol %HEX
specifies that 2753 should be treated as a hexadecimal integer:

DBG> SET BREAK %HEX 2753

Note that when specifying a hexadecimal number that starts with a
letter rather than a number, you must add a leading 11 0 11

• Otherwise, the
debugger tries to interpret the entity specified as a symbol declared in
your program.

See Section 4.1.9 and Appendix D for additional information about
specifying radixes and on the built-in symbols %BIN, %DEC, %HEX,
and %OCT.

If a breakpoint (or a tracepoint) was set on a numerical address that
corresponds to a symbol in your program, the SHOW BREAK (or SHOW
TRACE) command identifies the breakpoint symbolically.

3.5.1.3 Obtaining and Symbolizing Memory Addresses
Use the EVALUATE/ADDRESS command to determine the memory
address associated with a symbolic address expression, such as a line
number, routine name, or label. For example:

DBG> EVALUATE/ADDRESS SWAP
1536
DBG> EVALUATE/ADDRESS %LINE 26
1629
DBG>

The address is displayed in the current radix. You can specify a radix
qualifier to display the address in another radix. For example:

DBG> EVALUATE/ADDRESS/HEX %LINE 26
0000065D
DBG>

The command SYMBOLIZE does the reverse of EVALUATE/ADDRESS. It
converts a memory address into its symbolic representation (including its
path name) if such a representation is possible. Chapter 5 explains how
to control symbolization. See Section 4.1.10 for more information about
obtaining and symbolizing addresses.

3-13

3.5.2

3.5.3

Controlling and Monitoring Program Execution
3.5 Suspending and Tracing Execution with Breakpoints and Tracepoints

Setting Breakpoints or Tracepoints on Lines or Instructions
Several SET BREAK (and SET TRACE) command qualifiers cause the
debugger to break on (or trace) every source line or every assembly
language instruction of a particular class:

/LINE
/BRANCH
/CALL
/INSTRUCTION
/INSTRUCTION=(opcode[, ...])

When using these qualifiers, do not specify an address expression.

For example, the following command causes the debugger to break on the
beginning of every source line encountered during execution:

DBG> SET BREAK/LINE

The instruction-related qualifiers are especially useful for opcode tracing,
which is the tracing of all instructions or the tracing of a class of
instructions. The next command causes the debugger to trace every
branch instruction encountered (for example BEQL, BGTR, and so on):

DBG> SET TRACE/BRANCH

Note that opcode tracing slows program execution.

By default, when you use the qualifiers discussed in this section, the
debugger breaks (or traces) within all called routines as well as within the
currently executing routine (this is equivalent to specifying SET BREAK
/INTO or SET TRACE/INTO). By specifying SET BREAK/OVER or SET
TRACE/OVER, you can suppress break (or trace) action within all called
routines. Or, you can use the /[NO]JSB, /[NO]SHARE, or /[NO]SYSTEM
qualifiers to specify the kinds of called routines where break (or trace)
action is to be suppressed. For example, the next command causes the
debugger to break on every line except within called routines that are in
shareable images or system space:

DBG> SET BREAK/LINE/NOSHARE/NOSYSTEM

Controlling Debugger Action at Breakpoints or Tracepoints

3-14

The SET BREAK and SET TRACE commands provide several options for
controlling the behavior of the debugger at breakpoints and tracepoints
the /AFTER, /[NO]SILENT, /[NO]SOURCE, and /TEMPORARY command
qualifiers, and the optional WHEN and DO clauses. The following
examples illustrate several of these options.

The next command sets a breakpoint on line 14 and specifies that the
breakpoint take effect after the fifth time that line 14 is executed:

DBG> SET BREAK/AFTER:5 %LINE 14

Controlling and Monitoring Program Execution
3.5 Suspending and Tracing Execution with Breakpoints and Tracepoints

The next command sets a tracepoint that is triggered at every line of
execution. The DO clause obtains the value of the variable X when each
line is executed:

DBG> SET TRACE/LINE DO (EXAMINE X)

The next example illustrates how the WHEN and DO clauses can be used
together. The command sets a breakpoint at line 27. The breakpoint is
triggered (execution is suspended) only when the value of SUM is greater
than 100 (not each time line 27 is executed). The DO clause causes the
value of TEST_RESULT to be examined whenever the breakpoint is
triggered-that is, whenever the value of SUM is greater than 100. If the
value of SUM is not greater than 100 when execution reaches line 27, the
breakpoint is not triggered and the DO clause is not executed.

DBG> SET BREAK %LINE 27 WHEN (SUM > 100) DO (EXAMINE TEST_RESULT)

See Section 4.1.5 and Section 9.3.2.2 for information about evaluating
language expressions, such as the expression 11 SUM > 10011

•

The /SILENT qualifier suppresses the break or trace message and source
code display. This is useful when, for example, you want to use the SET
TRACE command only to execute a debugger command at the tracepoint.
In the next example, the SET TRACE command is used to examine the
value of the Boolean variable STATUS at the tracepoint.

DBG> SET TRACE/SILENT %LINE 83 DO (EXAMINE STATUS)
DBG> GO

SCREEN_IO\CLEAR\STATUS: OFF

In the next example, the SET TRACE command is used to count the
number of times line 12 is executed. The first DEFINENALUE command
defines a symbol COUNT and initializes its value to zero. The DO
clause of the SET TRACE command causes the value of COUNT to be
incremented and evaluated whenever the tracepoint is triggered (whenever
execution reaches line 12).

DBG> DEFINE/VALUE COUNT=O
DBG> SET TRACE/SILENT %LINE 12 DO (DEF/VAL COUNT=COUNT+l;EVAL COUNT)

Source lines are displayed by default at breakpoints, tracepoints, and
watchpoints if they are available for the module being debugged. You can
also control their display with the SET STEP [NOJSOURCE command and
the /[NOJSOURCE qualifier of the SET BREAK, SET TRACE, and SET
WATCH commands. See Chapter 6 for information about how to control
the display of source code in general and in particular at breakpoints,
tracepoints, and watchpoints.

3-15

3.5.4

3.5.5

Controlling and Monitoring Program Execution
3.5 Suspending and Tracing Execution with Breakpoints and Tracepoints

Setting Breakpoints or Tracepoints on Exceptions
The SET BREAK/EXCEPTION and SET TRACE/EXCEPTION commands
direct the debugger to treat any exception generated by your program as
a breakpoint or tracepoint, respectively. The breakpoint (or tracepoint)
occurs before any application-declared exception handler is invoked. See
Section 9.4 for debugging techniques associated with exceptions and
condition handlers.

Setting Breakpoints or Tracepoints on Language-Specific Events
The SET BREAK and SET TRACE commands each have an
/EVENT=event-name qualifier. You can use this qualifier to set
breakpoints or tracepoints to be triggered by various language-specific
events (denoted by event-name keywords).

3-16

Note: Currently, event-name keywords are defined only for Ada and
SCAN. See the VAX Ada and VAX SCAN documentation for
complete information.

When you run a program under debugger control, the appropriate set
of event-name keywords is defined during the initialization of language
specific parameters. Use the SHOW EVENT_FACILITY command to
identify the event-name keywords that apply to the current language. The
SET EVENT_FACILITY command enables you to initialize the debugger
for events that are specific to another language.

The following examples briefly illustrate how to set event breakpoints
with Ada tasking programs and SCAN programs. When a breakpoint or
tracepoint is triggered, the debugger identifies the event that caused it to
be triggered and gives additional information.

The following command causes the debugger to break whenever any Ada
task enters the TERMINATED state.

DBG> SET BREAK/EVENT=TERMINATED

The next command sets two tracepoints, which are associated with the Ada
tasks CHECKIN and RESERVE, respectively. Each tracepoint is triggered
whenever its associated task makes a transition to the RUN state.

DBG> SET TRACE/EVENT=RUN CHECKIN,RESERVE

The next command causes the debugger to break whenever a SCAN token
is built, for any value.

DBG> SET BREAK/EVENT=TOKEN

See Section 9.3.2 for information about predefined Ada event breakpoints.

3.5.6

Controlling and Monitoring Program Execution
3.5 Suspending and Tracing Execution with Breakpoints and Tracepoints

Canceling Breakpoints or Tracepoints
Use the CANCEL BREAK and CANCEL TRACE commands to cancel
breakpoints and tracepoints, respectively. To cancel a breakpoint (or a
tracepoint), specify address expressions and qualifiers exactly as you
specified them when setting the breakpoint (or tracepoint).

Thus, to cancel breakpoints (or tracepoints) that were set at specific
address expressions, specify those same address expressions. For example:

DBG> CANCEL BREAK SWAP,MOD2\LOOP4,2753

To cancel breakpoints (or tracepoints) that were set with the following
command qualifiers, specify those same command qualifiers: /BRANCH,
/CALL, /EVENT=event-name, /EXCEPTION, /INSTRUCTION,
/INSTRUCTION=(opcode[, ...]), /LINE. If the qualifier requires one
or more keywords, include the keywords associated with the breakpoints
or tracepoints to be canceled. For example:

DBG> CANCEL BREAK/LINE
DBG> CANCEL TRACE/INSTRUCTION=(JSB,CALLS)
DBG> CANCEL TRACE/EVENT=RUN CHECKIN

3.6 Monitoring Changes in Variables and Other Program Locations
The SET WATCH command enables you to specify program variables (or
arbitrary memory locations) that the debugger monitors as your program
executes. This process is called setting watchpoints. If, during execution,
the program modifies the value of a "watched" variable (or memory
location), the watchpoint is triggered. The debugger then suspends
execution, displays information, and prompts for more commands. The
debugger monitors watchpoints continuously during program execution.

This section describes the general use of the SET WATCH command.
Section 3.6.2 gives additional information pertaining to setting
watchpoints on nonstatic variables-variables that are allocated on the
call stack or in registers.

Note: In some cases, when using the SET WATCH command with a
variable name (or any other symbolic address expression) you
might need to set a module or specify a scope or a path name.
Those concepts are described in Chapter 5. The examples in this
section assume that all modules are set and that all variable names
are uniquely defined.

H your program was optimized during compilation, certain
variables in the program might be removed by the compiler. H
you then try to set a watchpoint on such a variable, the debugger
issues a warning (see Section 9.1).

The syntax of the SET WATCH command is as follows:

SET WATCH[/qualifier[, . . .]] [address-expr!3ssion[, . . .]]
[WHEN (conditional-expression)]
[DO (command[; . . .])]

3-17

Controlling and Monitoring Program Execution
3.6 Monitoring Changes in Variables and Other ·Program Locations

3-18

Although any valid address expression can be specified, usually you specify
the name of a variable. The example that follows shows a typical use of
the SET WATCH command and illustrates the general default behavior of
the debugger at a watchpoint.

DBG> SET WATCH COUNT
DBG> GO

watch of MOD2\COUNT at MOD2\%LINE 24
24: COUNT := COUNT + 1;

old value: 27
new value: 28

break at MOD2\%LINE 25
25: END;

DBG>

In this example, the SET WATCH command sets a watchpoint on the
variable COUNT, and the GO command starts execution. When the
program changes the value of COUNT, execution is suspended. The
debugger then does the following:

• Announces the event ("watch of MOD2\ COUNT ... "), identifying
the location of the instruction that changed the value of the watched
variable (" ... at MOD2\ %LINE 2411

)

• Displays the associated source line (24)

• Displays the old and new values of the variable (27 and 28)

• Announces that execution has been suspended at the beginning of the
next line (11 break at MOD2\ %LINE 25 11

) and displays that source line

• Prompts for another command

When the address of the instruction that modified a watched variable is
not at the beginning of a source line, the debugger denotes the instruction's
location by displaying the line number plus the byte offset from the
beginning of the line. For example:

DBG> SET WATCH K
DBG> GO

watch of TEST\K at TEST\%LINE 19+5
19: DO 40 K = 1, J

old value: 4
new value: 5

break at TEST\%LINE 19+9
19: DO 40 K = 1, J

DBG>

In this example, the address of the instruction that modified variable K is
5 bytes beyond the beginning of line 19. Note that the breakpoint is on the
instruction that follows the instruction that modified the variable (not on
the beginning of the next source line as in the preceding example).

3.6.1

Controlling and Monitoring Program Execution
3.6 Monitoring Changes in Variables and Other Program Locations

You can set watchpoints on aggregates (that is, entire arrays or records).
A watchpoint set on an array or record triggers if any element of the array
or record changes. Thus, you do not need to set watchpoints on individual
array elements or record components. Note, however, that you cannot set
an aggregate watchpoint on a variant record. In the following example,
the watchpoint is triggered because element 3 of array ARR was modified:

DBG> SET WATCH ARR

DBG> GO

watch of SUBR\ARR at SUBR\%LINE 12
12: ARR(3) := 28

old value:
(1): 7
(2): 12
(3): 3
(4): 0

new value:
(1): 7
(2): 12
(3): 28
(4): 0

break at SUBR\%LINE 13
DBG>

You can also set a watchpoint on a record component, on an individual
array element, or on an array slice (a range of array elements). A
watchpoint set on an array slice triggers if any element within that
slice changes. When setting the watchpoint, use the syntax of the current
language. For example, the following command sets a watchpoint on
element 7 of array CHECK using Pascal syntax:

DBG> SET WATCH CHECK [7]

To identify all of the watchpoints that are currently set, use the SHOW
WATCH command. To cancel watchpoints, use the CANCEL WATCH
command.

Note that the SET BREAK/MODIFY command has the same effect as the
SET WATCH command.

Watchpoint Options
The SET WATCH command provides the same options for controlling the
behavior of the debugger at watchpoints that the SET BREAK and SET
TRACE commands provide for breakpoints and tracepoints-namely the
/AFTER, /[NO]SILENT, /[NO]SOURCE, and /TEMPORARY command
qualifiers, and the optional WHEN and DO clauses. See Section 3.5.3 for
examples.

3-19

3.6.2

Controlling and Monitoring Program Execution
3.6 Monitoring Changes in Variables and Other Program Locations

Watching Nonstatic Variables

DBG> SET WATCH Y

Storage for a variable in your program is allocated either statically or
nonstatically. A static variable is associated with the same memory
address throughout execution of the program. A nonstatic variable is
allocated on the call stack or in a register and has a value only when its
defining routine is active, on the call stack. As explained in this section,
the technique for setting a watchpoint, the watchpoint's behavior, and the
speed of program execution are different for the two kinds of variables.

To determine how a variable is allocated, use the EVALUATE/ADDRESS
command. A static variable generally has its address in PO space (0 to
3FFFFFFF, hexadecimal). A nonstatic variable generally has its address
in Pl space (40000000 to 7FFFFFFF, hexadecimal) or is in a register.
In the following Pascal code example, Xis declared as a static variable,
whereas Y is a nonstatic variable (by default). The EVALUATE/ADDRESS
command, entered while debugging, shows that X is allocated at memory
location 512, whereas Y is allocated in register RO:

VAR
X: [STATIC] INTEGER;
Y: INTEGER;

DBG> EVALUATE/ADDRESS X
512
DBG> EVALUATE/ADDRESS Y
%RO
DBG>

When using the SET WATCH command, note the following distinction.
You can set a watchpoint on a static variable regardless of the PC value
when you enter the command; but you can set a watchpoint on a nonstatic
variable only when the PC value is within the routine where that variable
is defined. Otherwise, the debugger issues a warning. For example:

%DEBUG-W-SYMNOTACT, nonstatic variable 'MOD4\ROUT3\Y' is not active
DBG>

3-20

Section 3.6.2.2 describes how to set a watchpoint on a nonstatic variable.

3.6.2.1 Execution Speed
When a watchpoint is set, the speed of program execution depends on
whether the variable is static or nonstatic. To watch a static variable,
the debugger write-protects the page containing the variable. If your
program attempts to write to that page (modify the value of that variable),
an access violation occurs and the debugger handles the exception. The
debugger temporarily unprotects the page to allow the instruction to
complete and then determines whether the watched variable was modified.
Except when writing to that page, the program executes at full speed.

Because problems arise if the call stack or registers are write-protected,
the debugger must use another technique to watch a nonstatic variable. It
traces every instruction in the variable's defining routine and checks the
value of the variable after each instruction has been executed. Because

Controlling and Monitoring Program Execution
3.6 Monitoring Changes in Variables and Other Program Locations

DBG> SET WATCH Y

this significantly slows down the execution of the program, the debugger
issues the following message when you set a nonstatic watchpoint:

%DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction
DBG>

3.6.2.2 Setting a Watchpoint on a Nonstatic Variable
To set a watchpoint on a nonstatic variable, make sure that the PC value is
within the defining routine. A convenient technique is to set a tracepoint
on that routine, also specifying a DO clause to set the watchpoint.
Thus, whenever the routine is called, the tracepoint is triggered and
the watchpoint is automatically set on the local variable. In the following
example, the WPTTRACE message indicates that a watchpoint has been
set on Y, a nonstatic variable that is local to routine ROUT3:

DBG> SET TRACE/NOSOURCE ROUT3 DO (SET WATCH Y)
DBG> GO

trace at routine MOD4\ROUT3
%DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction

watch of MOD4\ROUT3\Y at MOD4\ROUT3\%LINE 16
16: y := 4
old value: 3
new value: 4

break at MOD4\ROUT3\%LINE 17
17: SWAP(X,Y);

DBG>

When execution returns to the caller of routine ROUT3, variable Y is
no longer active. Therefore, the debugger automatically cancels the
watchpoint and issues the following messages:

%DEBUG-I-WATCHVAR, watched variable MOD4\ROUT3\Y has gone out of scope
%DEBUG-I-WATCHCAN, watchpoint now cancelled

3.6.2.3 Options for Watching Nonstatic Variables
The SET WATCH command qualifiers /OVER, /INTO, and /[NOJSTATIC
provide options for watching nonstatic variables.

When you set a watchpoint on a nonstatic variable, you can direct the
debugger to do one of two things at a routine call:

• Step over the called routine--executing it at full speed-and resume
instruction tracing after returning. This is the default (SET WATCH
/OVER).

• Trace instructions within the called routine, thereby monitoring the
variable instruction-by-instruction within the routine (SET WATCH
/INTO).

3-21

Controlling and Monitoring Program Execution
3.6 Monitoring Changes in Variables and Other Program Locations

Using the SET WATCH/OVER command results in better performance.
But it also means that, if the called routine modifies the watched variable,
the watchpoint is triggered only after execution returns from that routine.
The SET WATCH/INTO command slows down program execution but
enables you to monitor watchpoints more precisely within called routines.

The debugger determines whether a variable is static or nonstatic by
looking at its address (PO space, Pl space, or register). When entering
a SET WATCH command, you can override this decision with the
/[NO]STATIC qualifier. For example, if you have allocated nonstack
storage in Pl space, use the SET WATCH/STATIC command to specify that
a particular variable is static even though it is in Pl space. Conversely, if
you have allocated your own call stack in PO space, use the SET WATCH
/NOSTATIC command to specify that a particular variable is nonstatic
even though it is in PO space.

3.6.2.4 Setting Watchpoints in Installed Writeable Shareable Images
When setting a watchpoint in an installed writeable shareable image, use
the command SET WATCH/NOSTATIC (see Section 3.6.2.3).

The reason you must set a nonstatic watchpoint is as follows. Variables
declared in such shareable images are typically static variables. By
default, the debugger watches a static variable by write-protecting the
page containing that variable. However, the debugger cannot write
protect a page in an installed writeable shareable image. Therefore,
the debugger must use the slower method of detecting changes, as for
nonstatic variables-that is, by checking the value at the watched location
after each instruction has been executed (see Section 3.6.2.1).

Note that if any other process modifies the watched location's value, the
debugger may report that your program modified the watched location.

3.7 How the Debugger Controls Program Execution

3-22

This section is for readers who are interested in how the debugger
functions.

The debugger controls and monitors execution by causing exceptions to
occur at points of interest in your program. For example, it might put
a breakpoint fault instruction (BPT) in your code, causing a breakpoint
exception to occur when that instruction is executed. The debugger might
also set the trace enable bit (T bit) in the processor status longword (PSL),
thus causing a trace trap at the end of each instruction.

When you run your program with the debugger, the debugger is the
primary exception handler. Any exception resulting from the execution
of your program, whether or not it is caused by the debugger, is first
handled by the debugger. If the debugger did not cause the exception, it
resignals the exception (refer to Section 9.4 for information and debugging
techniques related to exceptions and condition handlers). If the debugger
caused the exception, it takes appropriate action. For example, in the case
of a tracepoint the debugger identifies the tracepoint and returns control to
the program. In the case of a breakpoint, the debugger maintains control
by identifying the breakpoint and then prompting for commands.

Controlling and Monitoring Program Execution
3. 7 How the Debugger Controls Program Execution

The following paragraphs illustrate the functioning of the debugger with
some typical commands-SET BREAK and STEP. See also Section 3.6.2
and Section 9.4 for implementation information about the SET WATCH
and SET BREAK/EXCEPTION commands, respectively.

When you set a breakpoint, specifying a particular address expression, the
debugger removes the opcode at that address and replaces it with the BPT
instruction. When execution reaches that address, the BPT instruction
causes a breakpoint fault, which gives control to the debugger:

1 The debugger announces the breakpoint and prompts for commands.
When you resume execution, the debugger performs the following
steps.

2 The debugger replaces the original opcode and sets the T bit of the
saved PSL on the call stack, so that a trace trap occurs when the
current instruction is executed.

3 The instruction is executed.

4 When the trace trap occurs, the debugger replaces the BPT instruction
at the original breakpoint address, so that the break fault occurs
whenever execution again reaches that address.

When you enter a STEP/INSTRUCTION command, the debugger sets the
T bit of the saved PSL, executes the next instruction, then, when the trace
trap occurs, issues a message and prompts for commands.

The STEP/LINE command is implemented similarly, except that the
debugger keeps track of line boundaries by correlating the low and high
PC values of each line with data stored in the symbol table. The debugger
completes the step and prompts for commands when you leave the current
line.

When you set a breakpoint on a class of instructions and then start
execution, the debugger traces (traps on) every 'instruction by setting the
T bit of the saved PSL. If the next instruction is of the desired class,
the debugger suspends execution on that instruction, announces the
breakpoint, and prompts for commands. If the instruction is not of the
desired class, the debugger continues to trace and execute instructions.

When you enter a STEP/OVER command at a routine call, the debugger
does the following:

1 Steps into the routine, then sets a reserved bit in the saved PSL.

2 Lets the program run. The routine is executed, but the RET
instruction causes a reserved-operand exception when it tries to
restore the modified PSL.

3 Lets the RET instruction complete but sets the T bit to suspend
execution after the RET instruction (in the calling routine) on the
instruction that follows the original call.

STEP/RETURN is also implemented by setting a reserved bit in the saved
PSL.

3-23

Controlling and Monitoring Program Execution
3. 7 How the Debugger Controls Program Execution

3-24

Because the debugger and your program share the same address
space, in some rare cases they can interfere with each other, causing
unexpected behavior. The following paragraphs highlight possible sources
of interference.

Effect of Debugger on Uninitialized Variables

Because the debugger acts as an exception handler, it uses the call
stack. This can cause uninitialized variables saved on the call stack to
be modified by the debugger.

If your program references an uninitialized variable that is in this state,
the execution of the program can be affected.

Effect of Debugger on Memory Usage

Another source of possible interference between the debugger and your
program is that they share memory. If your program is sensitive to
changes in memory usage, the execution of the program can be affected.

4 Examining and Manipulating Program Data

This chapter explains how to use the EXAMINE and DEPOSIT commands
to display and modify the values of symbols declared in your program
as well as the contents of arbitrary program locations. The chapter also
explains how to use the EVALUATE and other commands that evaluate
language expressions.

The topics covered in this chapter are organized as follows:

• General concepts related to using the EXAMINE, DEPOSIT, and
EVALUATE commands.

• Use of the commands with symbolic names-for example, the names
of variables and routines declared in your program. Such symbolic
address expressions are associated with compiler generated types.

• Use of the commands with program locations (memory addresses or
registers) that do not have symbolic names. Such address expressions
are not associated with compiler generated types.

• Specifying a type to override the type associated with an address
expression.

The examples in this chapter do not cover all language-dependent
behavior. When debugging in any language, be sure to consult the
documentation supplied with that language. The chapter devoted to
debugging in the user's guide contains all language-dependent information
for that language. The following sections of this manual also contain
language-related information:

• Appendix E tabulates the constructs and operators that are supported
by the debugger for each language.

• Section 9.3 highlights some important differences between languages
that you should be aware of when debugging multilanguage programs.

4.1 General Concepts

4.1.1

This section introduces the EXAMINE, DEPOSIT, and EVALUATE
commands and discusses concepts that are common to those commands.

Accessing Variables While Debugging
Before you try to examine or deposit into a nonstatic (stack-local or
register) variable, its defining routine must be active-that is, on the
call stack. That is, program execution must be suspended somewhere
within the defining routine. See Section 3.6.2 for more information about
nonstatic variables.

4-1

4.1.2

Examining and Manipulating Program Data
4.1 General Concepts

You can examine a static variable at any time during program execution,
and you can examine a nonstatic variable as soon as execution reaches its
defining routine. However, before you examine any variable, you should
step or otherwise execute the program beyond the point where the variable
is declared and initialized. The value contained in any uninitialized
variable should be considered invalid.

Many compilers optimize code to make the program run faster. If the
code that you are debugging has been optimized, some program locations
might not match what you would expect from looking at the source code.
In particular, some optimization techniques eliminate certain variables, so
that you no longer have access to them while debugging.

Section 9.1 explains the effect of several optimization techniques on the
executable code. When first debugging a program, it is best to disable
optimization, if possible, with the /NOOPTIMIZE (or equivalent) compiler
command qualifier.

Note that, in some cases, when using the EXAMINE or DEPOSIT
command with a variable name (or any other symbolic address expression)
you might need to set a module or specify a scope or a path name. Those
concepts are described in Chapter 5. The examples in this chapter assume
that all modules are set and that all variable names are uniquely defined.

Using the EXAMINE Command

4-2

For high-level language programs, the EXAMINE command is used mostly
to display the current value of variables, and it has the following form:

EXAMINE variable-name[, . . .]

Thus, for example, the following command displays the current value of
the integer variable X:

DBG> EXAMINE X

MOD3\X: 17
DBG>

When displaying the value, the debugger prefixes the variable name with
its path name-in this case, the name of the module where variable X is
declared (see Section 5.3.2).

More generally, the EXAMINE command displays the current value of the
entity denoted by an address expression, in the type associated with that
location (for example, integer, real, array, record, and so on). The basic
format of the EXAMINE command is as follows:

EXAMINE address-expression[, . . .]

When you enter an EXAMINE command, the debugger evaluates the
address expression to yield a program location (a memory address or a
register). The debugger then displays the value stored at that location as
follows:

• If the location has a symbolic name, the debugger formats the value
according to the compiler generated type associated with that symbol.

4.1.3

Examining and Manipulating Program Data
4.1 General Concepts

• If the location does not have a symbolic name, the debugger formats
the value in the type longword integer by default.

See Section 4.1.4 for more information about the types associated with
symbolic and nonsymbolic address expressions.

By default, when displaying the value, the debugger identifies the
address expression and its path name symbolically if symbol information
is available. See Section 4.1.10 for additional information about
symbolization of addresses.

Using the DEPOSIT Command
For high-level languages, the DEPOSIT command is used mostly to assign
a new value to a variable. The command is like an assignment statement
in most programming languages, and it has the following form:

DEPOSIT variable-name = value

Thus, for example, the following DEPOSIT command assigns the value 23
to the integer variable X:

DBG> EXAMINE X
MOD3\X: 17
DBG> DEPOSIT X = 23
DBG> EXAMINE X
MOD3\X: 23
DBG>

More generally, the DEPOSIT command evaluates a language expression
and deposits the resulting value into a program location denoted by an
address expression. The basic format of the DEPOSIT command is as
follows:

DEPOSIT address-expression = language-expression

When you enter a DEPOSIT command, the debugger does the following:

• It evaluates the address expression to yield a program location.

• If the program location has a symbolic name, the debugger associates
the location with the symbol's compiler generated type. If the location
does not have a symbolic name, the debugger associates the Jocation
with the type longword integer, by default (see Section 4.1.4).

• It evaluates the language expression in the syntax of the current
language and in the current radix to yield a value. This behavior is
identical to that of the EVALUATE command (see Section 4.1.5).

• It checks that the value and type of the language expression is
consistent with· the type of the address expression. If you try to
deposit a value that is incompatible with the type of the address
expression, the debugger issues a diagnostic message. If the value is
compatible, the debugger deposits the value into the location denoted
by the address expression.

4-3

4.1.4

Examining and Manipulating Program Data
4.1 General Concepts

Note that the debugger might do type conversion during a deposit
operation if the language rules allow it. For example, assume X is an
integer variable. In the following example, the real value 2.0 is converted
to the integer value 2, which is then assigned to X:

DBG> DEPOSIT X = 2. 0
DBG> EXAMINE X
MOD3\X: 2
DBG>

In general, the debugger tries to follow the assignment rules for the
current language.

Address Expressions and Their Associated Types

4-4

The symbols that are declared in your program (variable names, routine
names, and so on) are symbolic address expressions. They denote memory
addresses or registers. Symbolic address expressions (also called symbolic
names in this chapter) have compiler generated types, and the debugger
knows the type and location that are associated with symbolic names.
Section 4.1.10 explains how to obtain memory addresses and register
names from symbolic names and how to symbolize program locations.

Symbolic names include the following categories:

• Variables. The associated program locations contain the current values
of variables. Techniques for examining and depositing into variables
are described in Section 4.2.

• Routines, labels, and line numbers. The associated program
locations contain VAX assembly-language instructions. Techniques
for examining and depositing VAX instructions are described in
Section 4.3.

Program locations that do not have a symbolic name are not associated
with a compiler generated type. To enable you to examine and deposit
into such locations, the debugger associates them with the default type
longword integer. This means that, if you specify a location that does not
have a symbolic name, the EXAMINE command displays the contents
of 4 bytes starting at the address specified and formats the displayed
information as an integer value. In the following example, the memory
address 926 is not associated with a symbolic name (note that the address
is not symbolized when the EXAMINE command is executed). Therefore,
the EXAMINE command displays the value at that address as a longword
integer:

DBG> EXAMINE 926
926: 749404624
DBG>

Similarly, by default you can deposit up to 4 bytes of integer data into a
program location that does not have a symbolic name. And this data is
formatted as a longword integer. For example:

DBG> DEPOSIT 926 = 84
DBG> EXAMINE 9 2 6
926: 84
DBG>

4.1.5

Examining and Manipulating Program Data
4.1 General Concepts

Techniques for examining and depositing into locations that do not have a
symbolic name are described in Section 4.5.

The EXAMINE and DEPOSIT commands accept type qualifiers (!ASCII:n,
/BYTE, and so on) that enable you to override the type associated with a
program location. This is useful if you want the contents of the location
to be interpreted and displayed in another type, or if you want to deposit
some value of a particular type into a location that is associated with
another type. Techniques for overriding a type are described in Section 4.5.

Evaluating Language Expressions
A language expression consists of any combination of one or more
symbols, literals, and operators that is evaluated to a single value
in the syntax of the current language and in the current radix. (The
current language and current radix are defined in Section 4.1.8 and
Section 4.1.9, respectively.) Several debugger commands and constructs
evaluate language expressions:

• The EVALUATE and DEPOSIT commands, which are described in this
section and in Section 4.1.3, respectively.

• The IF, FOR, REPEAT, and WHILE commands (see Section 8.6).

• WHEN clauses, which are used with the SET BREAK, SET TRACE,
and SET WATCH commands (see Section 3.5.3).

Although this discussion applies to all commands and constructs that
evaluate language expressions, it focuses on the use of the EVALUATE
command.

The EVALUATE command evaluates one or more language expressions in
the syntax of the current language and in the current radix and displays
the resulting values. The command has the following form:

EVALUATE language-expression[, . . .]

One use of the EVALUATE command is as a calculator, to perform
arithmetic calculations that might be unrelated to your program. For
example:

DBG> EVALUATE (8+12)*6/4
30
DBG>

The debugger uses the rules of operator precedence of the current language
when evaluating language expressions.

You can also evaluate language expressions that include variables and
other constructs. For example, the following EVALUATE command
subtracts 3 from the current value of the integer variable X, multiplies
the result by 4, and displays the resulting value:

DBG> DEPOSIT X = 23
DBG> EVALUATE (X - 3) * 4
80
DBG>

4-5

Examining and Manipulating Program Data
4.1 General Concepts

4-6

If an expression contains symbols with different compiler generated types,
the debugger uses the type-conversion rules of the current language
to evaluate the expression. If the types are incompatible, a diagnostic
message is issued. Debugger support for operators and other constructs in
language expressions is tabulated in Appendix E for each language. You
can also obtain information by typing 11 HELP LANGUAGE
language-name".

The built-in symbol %CURVAL denotes the current value-the value last
displayed by an EVALUATE or EXAMINE command, or deposited by a
DEPOSIT command. The backslash (\) also denotes the current value
when used in that context. For example:

DBG> EXAMINE X
MOD3\X: 23
DBG> EVALUATE %CURVAL
23
DBG> DEPOSIT Y = 4 7
DBG> EVALUATE \
47
DBG>

4.1.5.1 Using Variables in Language Expressions
You can use variables in language expressions in much the same way that
you use them in the source code of your program.

Thus, the debugger generally interprets a variable used in a language
expression as the current value of that variable, not the address of the
variable. For example (Xis an integer variable):

DBG> DEPOSIT X ;::: 12
['BG> EXAMINE X
MOD4\X: 12
DBG> EVALUATE X

12
DBG> EVALUATE X + 4
16
DBG> DEPOSIT X ;::: X/2

DBG> EXAMINE X
MOD4\X: 6
DBG>

Assign the value 12 to X
Display the value of X

Evaluate and display the value of X

Add the value of X to 4

Divide the value of X by 2 and assign
the resulting value to X
Display the new value of X

Note that the use of a variable in a language expression as illustrated in
the previous examples is generally limited to single-valued, noncomposite
variables. Typically, you can specify a multi-valued, composite variable
(like an array or record) in a language expression only if the syntax
indicates that you are referencing only a single value (a single element of
the aggregate). For example, if ARR is the name of an array of integers,
the following command is invalid:

DBG> EVALUATE ARR
%DEBUG-W-NOVALUE, reference does not have a value
DBG>

Examining and Manipulating Program Data
4.1 General Concepts

However, the following commands are valid because only a single element
of the array is referenced:

DBG> EVALUATE ARR(2)
37
DBG> DEPOSIT K = 5 + ARR(2)
DBG>

! Evaluate element 2 of array ARR

! Deposit the sum of two integer
! values into an integer variable

Note also that, if the current language is BLISS, the debugger interprets
a variable in a language expression as the address of that variable. To
denote the value stored in a variable, you must use the contents-of
operator (period (.)). For example, when the language is set to BLISS:

DBG> EXAMINE Y
MOD4\Y: 3
DBG> EVALUATE Y
02475B
DBG> EVALUATE . Y
3
DBG> EVALUATE Y + 4
02475F
DBG> EVALUATE . Y + 4
7
DBG>

Display the value of Y.

Display the address of Y.

Display the value of Y.

Add 4 to the address of Y and
display the resulting value.
Add 4 to the value of Y and display
the resulting value.

For all languages, to obtain the address of a variable, use the EVALUATE
/ADDRESS command, as described in Section 4.1.10. The EVALUATE and
EVALUATE/ ADDRESS commands both display the address of an address
expression when the language is set to BLISS.

4.1.5.2 Numeric Type Conversion by the Debugger
When evaluating language expressions involving numeric types of
different precision, the debugger first converts lower-precision types to
higher-precision types before performing the evaluation. In the following
example, the debugger converts the integer 1 to the real 1. 0 before doing
the addition.

DBG> EVALUATE 1 . 5 + 1
2.5
DBG>

The basic rules are as follows. If integer and real types are mixed, the
integer type is converted to the real type. If integer types of different sizes
are mixed (for example, byte-integer and word-integer), the one with the
smaller size is converted to the larger size. If real types of different sizes
are mixed (for example, G_fl.oat and H_fl.oat), the one with the smaller size
is converted to the larger size.

In general, the debugger allows more numeric type conversion than
the programming language. In addition the hardware type used for a
debugger calculation (word, longwo~-d;G_fl.oat, and so on) might differ
from that chosen by the compiler. Because the debugger is not as strongly
typed or as precise as some languages, the evaluation of an expression
by the EVALUATE command might differ from the result that would be
calculated by compiler generated code and obtained with the EXAMINE
command.

4-7

4.1.6

4.1.7

Examining and Manipulating Program Data
4.1 General Concepts

Address Expressions Compared to Language Expressions
Do not confuse address expressions with language expressions. An
address expression specifies a program location, whereas a language
expression specifies a value. In particular, the EXAMINE command
expects an address expression as its parameter, and the EVALUATE
command expects a language expression as its parameter. These points
are illustrated in the next examples.

In the following example, the value 12 is deposited into the variable X.
This is confirmed by the EXAMINE command. The EVALUATE command
computes and displays the sum of the current value of X and the integer
literal 6:

DEG> DEPOSIT X = 12
DBG> EXAMINE X
MOD3\X: 12
DEG> EVALUATE X + 6
18
DEG>

In the next example, the EXAMINE command displays the value currently
stored at the memory location that is 6 bytes beyond the address of X.

DBG> EXAMINE X + 6
MOD3\X+6: 274903
DEG>

In this case the location is not associated with a compiler generated type.
Therefore, the debugger interprets and displays the value stored at that
location in the type longword integer (see Section 4.1.4).

In the next example, the value of X + 6 (that is, 18) is deposited into the
location that is 6 bytes beyond the address of X. This is confirmed by the
last EXAMINE command.

DBG> EXAMINE X
MOD3\X: 12
DBG> DEPOSIT X + 6 = X + 6
DEG> EXAMINE X
MOD3\X: 12
DEG> EXAMINE X + 6
MOD3\X+6: 18
DBG>

Specifying the Current, Previous, and Next Entity

4-8

When using the EXAMINE and DEPOSIT commands, you can use three
special built-in symbols (address expressions) to refer quickly to the
current, previous, and next data locations (logical entities). These are the
period (.),the circumflex ("),and the Return key.

The period (.), when used by itself with an EXAMINE or DEPOSIT
command, denotes the current entity-that is, the program location most
recently referenced by an EXAMINE or DEPOSIT command. For example:

Examining and Manipulating Program Data
4.1 General Concepts

DBG> EXAMINE X
SIZE\X: 7
DBG> DEPOSIT 12
DBG> EXAMINE
SIZE\X: 12
DBG>

The circumflex (") and Return key denote, respectively, the previous and
next logical data locations relative to the last EXAMINE or DEPOSIT
command (the logical predecessor and successor, respectively). The
circumflex and Return key are useful for referring to consecutive indexed
components of an array. The following example illustrates the use of these
operators with an array of integers, ARR:

DBG> EXAMINE ARR (5) Examine element 5 of array ARR
MAIN\ARR (5) : 448670
DBG> EXAMINE A Examine the previous element (4)
MAIN\ARR (4) : 792802
DBG> EXAMINE ~ Examine the next element (5)
MAIN\ARR (5) : 448670
DBG> EXAMINE ~ Examine the next element (6)
MAIN\ARR (6) : 891236
DBG>

The debugger uses the type associated with the current entity to determine
logical successors and predecessors.

You can also use the built-in symbols %CURLOC, %PREVLOC, and
%NEXTLOC to achieve the same purpose as the period, circumflex, and
Return key, respectively. These symbols are useful in command procedures
and also if your program uses the circumflex for other purposes. Moreover,
using the Return key to signify the logical successor does not apply to all
contexts. For example, you cannot press the Return key after typing the
command DEPOSIT to indicate the next location, whereas you can always
use the symbol %NEXTLOC for that purpose.

Note that, like EXAMINE and DEPOSIT, the command EVALUATE
I ADDRESS also resets the values of the current, previous, and next
logical-entity built-in symbols (see Section 4.1.10). However, you cannot
press the Return key after typing the command EVALUATE/ADDRESS
to indicate the next location. See Appendix D for more information about
debugger built-in symbols.

The previous examples illustrates the use of the built-in symbols after
referencing a symbolic name with the EXAMINE or DEPOSIT command.
If you examine or deposit into a memory address, that location might
or might not be associated with a compiler generated type. When you
reference a memory address, the debugger uses the following convention to
determine logical predecessors and successors:

• If the address has a symbolic name (the name of a variable, component
of a composite variable, routine, and so on), the debugger uses the
associated compiler generated type.

4-9

4.1.8

Examining and Manipulating Program Data
4.1 General Concepts

• If the address does not have a symbolic name, the debugger uses the
type longword integer by default.

As the current entity is reset with new examine or deposit operations, the
debugger associates each new location with a type in the manner indicated
to determine logical successors and predecessors. This is illustrated in the
next examples.

Assume that a FORTRAN program has declared three variables, ARY,
FLT, and BTE:

• ARY is an array of three word integers (2 bytes each).

• FLT is an F _floating type (4 bytes).

• BTE is a byte integer (1 byte).

Assume that storage for these variables has been allocated at consecutive
addresses in memory, starting with 1000. For example:

1000: ARY(l)
1002: ARY(2)
1004: ARY(3)
1006: FLT
1010: BTE
1011: undefined

Then, examining successive logical data locations would give the following
results:

DBG> EXAMINE 10 0 0
MOD3\ARY(l): 13
DBG> EXAMINE ~
MOD3\ARY(2): 7
DBG> EXAMINE ~
MOD3\ARY(3): 19
DBG> EXAMINE ~
MOD3\FLT: 1.9117807E+07
DBG> EXAMINE ~
MOD3\BTE: 43
DBG> EXAMINE ~
1011: 17694732
DBG>

! Examine ARY(l), associated with 1000.
Current entity is now ARY(l).
Examine next location, ARY(2),
using type of ARY(l) as reference.
Examine next location, ARY(3).
Current entity is now ARY(3).
Examine entity at 1006 (FLT) .
Current entity is now FLT.
Examine entity at 1010 (BTE) .
Current entity is now BTE.
Examine entity at 1011 (undefined) .
Interpret data as longword integer.
Location is not symbolized.

The same principles apply when you use type qualifiers with the
EXAMINE and DEPOSIT commands (see Section 4.5.2). The type specified
by the qualifier determines the data boundary of an entity and, therefore,

. any logical successors and predecessors.

Language Dependencies and the Current Language

4-10

The debugger enables you to set your debugging context to any one of
several VAX-supported languages. The setting of the current language
determines how the debugger parses and interprets the names, numbers,
operators, and expressions you specify in debugger commands, and how it
displays data.

4.1.9

Examining and Manipulating Program Data
4.1 General Concepts

By default, the current language is the language of the module containing
the main program, and it is identified when you invoke the debugger. For
example:

$ PASCAL/NOOPTIMIZE/DEBUG FORMS
$ LINK/DEBUG FORMS
$ RUN FORMS

VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is PASCAL, module set to 'FORMS'
DBG>

When debugging modules whose code is written in other languages, you
can use the SET LANGUAGE command to establish a new language
dependent context. Section 9.3 highlights some important language
differences. Appendix E identifies the operators and language constructs
that are supported for each language (these are also identified if you type
HELP LANGUAGE language-name at the debugger prompt). Be sure to
consult the user's guide of your language documentation for details on
debugger support for that language.

Specifying a Radix for Entering or Displaying Integer Data
The debugger can interpret and display integer data in any one of four
radixes: decimal, hexadecimal, octal, and binary. The default radix is
decimal for all languages except BLISS and MACRO, and it is hexadecimal
for BLISS and MACRO.

You can control the radix for the following kinds of integer data:

• Data that you specify in address expressions or language expressions.

• Data that is displayed by the EVALUATE and EXAMINE commands.

You cannot control the radix for other kinds of integer data. For example,
addresses are always displayed in hexadecimal radix in a SHOW CALLS
display. Or, when sp~cifying an integer n with various command qualifiers
(IAFTER:n, /UP:n, and so on) you must use decimal radix.

The technique you use to control radix depends on your objective. To
establish a new radix for all subsequent commands, use the SET RADIX
command. For example:

DBG> SET RADIX HEXADECIMAL

After this command is executed, all integer data that you enter in address
or language expressions is interpreted as being hexadecimal. Also, all
integer data displayed by EVALUATE and EXAMINE commands is given
in hexadecimal radix.

The SHOW RADIX command identifies the current radix (which is either
the default radix, or the radix last established by a SET RADIX command).
For example:

DBG> SHOW RADIX
input radix: hexadecimal
output radix: hexadecimal
DBG>

4-11

Examining and Manipulating Program Data
4.1 General Concepts

The SHOW RADIX command identifies both the input radix (for data
entry) and the output radix (for data display). The SET RADIX command
qualifiers /INPUT and /OUTPUT enable you to specify different radixes
for data entry and display. See the command dictionary for additional
information about the SET RADIX command.

Use the CANCEL RADIX command to restore the default radix.

The examples that follow show several techniques for displaying or
entering integer data in another radix without changing the current
radix.

To convert some integer data to another radix without changing the
current radix, use the EVALUATE command with a radix qualifier
(/BINARY, /DECIMAL, /HEXADECIMAL, /OCTAL). For example:

DBG> SHOW RADIX
input radix: decimal
output radix: decimal
DBG> EVALUATE 18 + 5
23
DBG> EVALUATE/HEX 18 + 5
00000017
DBG>

23 is decimal integer.

17 is hexadecimal integer.

The radix qualifiers do not affect the radix for data entry.

To display the current value of an integer variable (or the contents of
a program location that has an integer type) in another radix, use the
EXAMINE command with a radix qualifier. For example:

DBG> EXAMINE X
MOD4\X: 4398
DBG> EXAMINE/OCTAL
MOD4\X: 00000010456
DBG>

4398 is a decimal integer.
X is the current entity.
10456 is an octal integer.

To enter one or more integer literals in another radix without changing
the current radix, use one of the radix built-in symbols %BIN, %DEC,
%HEX, or %OCT. A radix built-in symbol directs the debugger to treat an
integer literal that follows (or all numeric literals in a parenthesized
expression that follows) as a binary, decimal, hexadecimal, or octal
number, respectively. These symbols do not affect the radix for data
display. For example:

DBG> SHOW RADIX
input radix: decimal
output radix: decimal
DBG> EVAL %BIN 10 Evaluate the binary integer 10.

2 is a decimal integer. 2
DBG> EVAL %HEX (10 + 10)
32
DBG> EVAL %HEX 20 + 33
65
DBG> EVAL/HEX %OCT 4672

4-12

Evaluate the hexadecimal integer 20.
32 is a decimal integer.
Treat 20 as hexadecimal, 33 as decimal.
65 is a decimal integer.
Treat 4672 as octal and display in hex.

000009BA

Examining and Manipulating Program Data
4.1 General Concepts

9BA is a hexadecimal number.
DBG> EXAMINE X + %DEC 12
MOD3\X+l2: 493847

Examine the location 12 decimal bytes
beyond the address of X.

DBG> DEPOS J = %OCT 7777777
DBG> EXAMINE .

Deposit an octal value.
Display that value in decimal radix.

MOD3\J: 2097151
DBG> EXAMINE/OCTAL Display that value in octal radix.
MOD3\J: 00007777777
DBG> EXAMINE %HEX OA34D
SHARE$LIBRTL+4941: 344938193
DBG>

Examine location A34D, hexadecimal.
344938193 is a decimal integer.

Note: When specifying a hexadecimal integer that starts with a letter
rather than a number (for example, A34D in the last example),
add a leading 11 0 11

• Otherwise, the debugger tries to interpret the
integer as a symbol declared in your program.

See Appendix D for more examples showing the use of the radix built-in
symbols.

4.1.10 Obtaining and Symbolizing Memory Addresses
Use the EVALUATE/ADDRESS command to determine the memory
address or the register name associated with a symbolic address
expression, such as a variable name, line number, routine name, or label.
For example:

DBG> EVALUATE/ADDRESS X
2476
DBG> EVALUATE/ADDRESS SWAP
1536
DBG> EVALUATE/ADDRESS %LINE 26
1629
DBG>

A variable name

A routine name

The address is displayed in the current radix (as defined in Section 4.1.9).
You can specify a radix qualifier to display the address in another radix.
For example:

DBG> EVALUATE/ADDRESS/HEX X
000009AC
DBG>

If a variable is associated with a register instead of a memory address,
the EVALUATE/ADDRESS command displays the name of the register,
regardless of whether a radix qualifier is used. The following command
indicates that variable K (a nonstatic variable) is associated with register
R2:

DBG> EVALUATE/ADDRESS K
%R2
DBG>

Like the EXAMINE and DEPOSIT commands, EVALUATE/ADDRESS
resets the values of the current, previous, and next logical-entity built-in
symbols (see Section 4.1.7). Unlike the EVALUATE command, EVALUATE
/ADDRESS does not affect the current-value built-in symbols, %CURVAL
and backslash (\).

4-13

Examining and Manipulating Program Data
4.1 General Concepts

4-14

The command SYMBOLIZE does the reverse of EVALUATE/ADDRESS,
but without affecting the current, previous, or next logical-entity built-
in symbols. It converts a memory address or a register name into its
symbolic representation (including its path name) if such a representation
is possible (Chapter 5 explains how to control symbolization). For example,
the following command shows that variable K is associated with register
R2:

DBG> SYMBOLIZE %R2
address MOD3\%R2:

MOD3\K
DBG>

By default, symbolic mode is in effect (SET MODE SYMBOLIC). Therefore
the debugger displays all addresses symbolically, if symbols are available
for the addresses. For example, if you specify a numeric address with the
EXAMINE command, the address is displayed in symbolic form if symbolic
information is available:

DBG> EVALUATE/ADDRESS X
2476
DBG> EXAMINE 2 4 7 6
MOD3\X: 16
DBG>

However, if you specify a register that is associated with a variable, the
EXAMINE command does not convert the register name to the variable
name. For example:

DBG> EVALUATE/ADDRESS K
%R2
DBG> EXAMINE %R2
MOD3\%R2: 78
DBG>

By entering the command SET MODE NOSYMBOLIC, you disable
symbolic mode and cause the debugger to display numeric addresses
rather than their symbolic names. When symbolization is disabled, the
debugger might process commands somewhat faster because it does not
need to convert numbers to names. The EXAMINE command has a
/[NO]SYMBOLIC qualifier that enables you to control symbolization for a
single EXAMINE command. For example:

DBG> EVALUATE/ADDRESS Y
512
DBG> EXAMINE 512
MOD3\Y: 28
DBG> EXAMINE/NOSYMBOLIC 512
512: 28
DBG>

Symbolic mode also affects the display of instructions. For example:

DBG> EXAMINE/INSTRUCTION .%PC
MOD5\%LINE 14+2: MOVAL LAMOD4\X,Rll
DBG> EXAMINE/NOSYMBOL/INSTRUCTION .%PC
1538: MOVAL LA1080,Rll
DBG>

Examining and Manipulating Program Data
4.2 Examining and Depositing into Variables

4.2 Examining and Depositing into Variables

4.2.1 Scalar Types

The examples in this section illustrate how to use the EXAMINE and
DEPOSIT commands with variables.

Languages differ in the types of variables they use, the names for these
types, and the degree to which different types can be intermixed in
expressions. The following generic types are discussed in this section.

• Scalars (such as integer, real, character, or Boolean)

• Strings

• Arrays

• Records

• Pointers (access types)

The most important consideration when examining and manipulating
variables in high-level language programs is that the debugger recognizes
the names, syntax, type constraints, and scoping rules of the variables in
your program. Therefore, when specifying a variable with the EXAMINE
or DEPOSIT command, you use the same syntax that is used in the source
code. The debugger processes and displays the data accordingly. Similarly,
when assigning a value to a variable, the debugger follows the typing
rules of the language. It issues a diagnostic message if you try to deposit
an incompatible value. The examples in this section show some of these
invalid operations and the resulting diagnostics.

When using the DEPOSIT command (or any other command), note the
following behavior. If the debugger issues a diagnostic message with
a severity level of I (informational), the command is still executed (the
deposit is made in this case). The debugger aborts an illegal command line
only when the severity level of the message is W (warning) or greater.

See your language documentation for additional examples and for
information concerning any language features that are not supported
by the debugger.

The following examples illustrate use of the EXAMINE, DEPOSIT, and
EVALUATE commands with some integer, real, and Boolean types.

Examine a list of three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENT WIDTH + 10
DBG>

4-15

4.2.2

Examining and Manipulating Program Data
4.2 Examining and Depositing into Variables

DBG> DEPOSIT X = -14

The debugger checks that a value to be assigned is compatible with the
data type and dimensional constraints of the variable. The following
example shows an attempt to deposit an out-of-bounds value (X was
declared as a positive integer):

%DEBUG-I-IVALOUTBNDS, value assigned is out of bounds at or near DEPOSIT
DBG>

If you try to mix numeric types (integer and real of varying precision)
in a language expression, the debugger generally follows the rules of
the language. Strongly typed languages do not allow much if any mixing.
With some languages, you can deposit a real value into an integer variable.
However, the real value is converted into an integer. For example:

DBG> DEPOSIT I
DBG> EXAMINE I
MOD3\I: 12345

12345

DBG> DEPOSIT I 123. 45
DBG> EXAMINE I
MOD3\I: 123
DBG>

Note that, if numeric types are mixed in an expression, the debugger
performs type conversion as discussed in Section 4.1.5.2. For example:

DBG> DEPOSIT Y = 2. 35 6
DBG> EXAMINE Y
MOD3\Y: 2.35600000000000
DBG> EVALUATE Y + 3
5.35600000000000

DBG> DEPOSIT R = 5. 35E3
DBG> EXAMINE R
MOD3\R: 5350.000
DBG> EVALUATE R*50

267500.0
DBG> DEPOSIT I = 22222
DBG> EVALUATE R/I

0.2407524
DBG>

! Y is of type D_floating point.

R is of type F_floating point.

The next example shows some operations with Boolean variables. The
values TRUE and FALSE are assigned to the variables WILLING and
ABLE, respectively. The EVALUATE command then obtains the logical
conjunction of these values:

DBG> DEPOSIT WILLING = TRUE
DBG> DEPOSIT ABLE = FALSE
DBG> EVALUATE WILLING AND ABLE
False
DBG>

ASCII String Types

4-16

When displaying an ASCII string value, the debugger encloses it within
quotation marks (") or apostrophes ('), depending on the language syntax.

4.2.3 Array Types

Examining and Manipulating Program Data
4.2 Examining and Depositing into Variables

For example:

DBG> EXAMINE EMPLOYEE NAME
PAYROLL \EMPLOYEE _NAME: "Peter C. Lombardi"
DBG>

To deposit a string value (including a single character) into a string
variable, you must enclose the value in quotation marks (") or apostrophes
('). For example:

DBG> DEPOSIT PART NUMBER = "WG-7619. 3-84"
DBG>

If the string has more ASCII characters (1 byte each) than can fit into the
location denoted by the address expression, the debugger truncates the
extra characters from the right and issues the following message:

%DEBUG-I-ISTRTRU, string truncated at or near DEPOSIT

If the string has fewer characters, the debugger pads the remaining
characters to the right of the string by inserting ASCII space characters.

You can examine an entire array aggregate, a single indexed element, or a
slice (a range of elements). But you can deposit into only one element at a
time. The following examples show typical operations with arrays.

The following command displays the values of all the elements of the array
variable ARRX, a one-dimensional array of integers:

DBG> EXAMINE ARRX
MOD3\ARRX

(1): 42
(2): 17
(3): 278
(4): 56
(5): 113
(6): 149

DBG>

The following command displays the value of element 4 of array ARRX
(depending on the language, parentheses or brackets are used to denote
indexed elements):

DBG> EXAMINE ARRX(4)
MOD3\ARRX(4): 56
DBG>

The following command displays the values of all the elements in a slice
of ARRX. This slice consists of the range of elements from element 2 to
element 5:

DBG> EXAMINE ARRX (2 : 5)
MOD3\ARRX

(2): 17
(3): 278
(4): 56
(5): 113

DBG>

4-17

4.2.4

Examining and Manipulating Program Data
4.2 Examining and Depositing into Variables

In general, a range of values to be examined is denoted by two values
separated by a colon (valuel :value2). Depending on the language, two
periods (..) can be used instead of a colon.

You can deposit a value to only a single array element at a time (you
cannot deposit to an array slice or an entire array aggregate with a single
DEPOSIT command). For example, the following command deposits the
value 53 into element 2 of ARRX:

DBG> DEPOSIT ARRX (2) = 53
DBG>

The following command displays the values of all the elements of array
REAL_ARRAY, a two-dimensional array of real numbers (three per
dimension):

DBG> EXAMINE REAL ARRAY
PROG2 \REAL_ ARRAY -

(1,1): 27.01000
(1,2): 31.00000
(1, 3) : 12. 48000
(2,1): 15.08000
(2, 2): 22. 30000
(2,3): 18.73000

DBG>

The debugger issues a diagnostic message if you try to deposit to an index
value that is out of bounds. For example:

DBG> DEPOSIT REAL ARRAY (1, 4) = 26 .13
%DEBUG-I-SUBOUTBND~ subscript 2 is out of bounds, value is 4, bounds are 1 •• 3
DBG>

Record Types

4-18

Note that, in the previous example the deposit operation was executed
because the diagnostic message is of I level. This means that the value
of some array element adjacent to (1,3), possibly (2,1) might have been
affected by the out-of-bounds deposit operation.

To deposit the same value to several components of an array, you can use a
looping command, such as FOR or REPEAT. For example, assign the value
RED to elements 1 to 4 of the array COLOR_ARRAY:

DBG> FOR I = 1 TO 4 DO (DEPOSIT COLOR_ARRAY(I) = RED)
DBG>

You can also use the built-in symbols (.)and (A) and the Return key to
step through array elements, as explained in Section 4.1. 7.

You can examine an entire record aggregate, a single record component,
or several components. But you can deposit into only one component at a
time. The following examples show typical operations with records.

4.2.5

Examining and Manipulating Program Data
4.2 Examining and Depositing into Variables

The following command displays the values of all the components of the
record variable PART:

DBG> EXAMINE PART
INVENTORY\PART:

ITEM: "WF-1247"
PRICE: 49. 95
IN STOCK: 24

DBG>

The following command displays the value of component IN_STOCK of
record PART (general syntax):

DBG> EXAMINE PART. IN_ STOCK
INVENTORY\PART.IN_STOCK: 24
DBG>

The following command displays the value of the same record component,
using COBOL syntax (the language must be set to COBOL):

DBG> EXAMINE IN_STOCK OF PART
INVENTORY\IN_STOCK of PART:

IN STOCK: 24
DBG>

The following command displays the values of two components of record
PART:

DBG> EXAMINE PART. ITEM, PART. IN_STOCK
INVENTORY\PART. ITEM: "WF-124 7"
INVENTORY\PART.IN_STOCK: 24
DBG>

The following command deposits a value into record component
IN_STOCK:

DBG> DEPOSIT PART.IN STOCK= 17
DBG>

Pointer (Access) Types
You can examine the entity designated (pointed to) by a pointer variable
and deposit a value into that entity. You can also examine a pointer
variable.

For example, the following Pascal code declares a pointer variable A that
designates a value of type real:

TYPE
T = "REAL;

VAR
A : T;

The following command displays the value of the entity designated by the
pointer variable A:

DBG> EXAMINE A A

MOD3\A": 1. 7
DBG>

4-19

Examining and Manipulating Program Data
4.2 Examining and Depositing into Variables

In the following example, the value 3.9 is deposited into the entity
designated by A:

DBG> DEPOSIT AA = 3.9
DBG> EXAMINE A A
MOD3\AA: 3.9
DBG>

When you specify the name of a pointer variable with the EXAMINE
command, the debugger displays the memory address of the object it
designates. For example:

DBG> EXAMINE/HEXADECIMAL A
SAMPLE\A: OOOOB2A4
DBG>

4.3 Examining and Depositing VAX Instructions

4.3.1

The debugger recognizes address expressions that are associated with VAX
assembly language instructions. This enables you to examine and deposit
instructions using the same basic techniques as with variables.

When debugging at the instruction level, you might find it convenient
to first enter the following command. It sets the default step mode to
stepping by instruction:

DBG> SET STEP INSTRUCTION
DBG>

There are other step modes that enable you to execute the program to
specific kinds of instructions (INSTRUCTION[=opcode], CALL, BRANCH,
and so on). Also you can set breakpoints to interrupt execution on
every instruction or on instructions of a particular class (SET BREAK
IINSTRUCTION[=opcode], /CALL, and so on).

In addition you can use a screen-mode instruction display (see
Section 7 .2.4), to display the actual decoded instruction stream of your
program.

Examining VAX Instructions

4-20

If you specify an address expression that is associated with an instruction
in an EXAMINE command (for example, a line number), the debugger
displays the first instruction at that location. You can then use the period
(.), Return key, and circumflex character (A) to display the current, next,
and previous instruction (logical entity), as described in Section 4.1.7. For
example:

DBG> EXAMINE %LINE 12
MOD3\%LINE 12: MOVL (Rll),BA16(Rll)
DBG> EXAMINE ~
MOD3\%LINE 12+4: MOVL SA#l,BA4(Rll) Next instruction.
DBG> EXAMINE ~
MOD3\%LINE 12+8: TSTL BA16(Rll) Next instruction.
DBG> EXAMINE A
MOD3\%LINE 12+4:
DBG>

Previous instruction.

Examining and Manipulating Program Data
4.3 Examining and Depositing VAX Instructions

Line numbers, routine names, and labels are symbolic address expressions
that are associated with instructions. In addition, instructions might be
stored at various other memory addresses and in certain registers during
the execution of your program.

The program counter (PC) is the register that contains the address of the
next instruction to be executed by your program. The command EXAMINE
. %PC displays that instruction. The period (.), when used directly in front
of an address expression, denotes the "contents of" operator-that is, the
contents of the location designated by the address expression. Note the
following distinction:

• EXAMINE %PC displays the current PC value, namely the address of
the next instruction to be executed.

• EXAMINE . %PC displays the contents of that address, namely the
next instruction to be executed by the program.

When you enter the command EXAMINE . %PC, you can control the
amount of information displayed by using the /OPERANDS qualifier. For
example:

DBG> EXAMINE .%PC
MOD3\%LINE 12: MOVL BA12(Rll),Rl
DBG> EXAMINE/OPERANDS .%PC
MOD3\%LINE 12: MOVL BA12(Rll),Rl

BA12(Rll) MOD3\K (address 1196) contains 1
Rl Rl contains 8

DBG> EXAMINE/OPERANDS=FULL .%PC
MOD3\%LINE 12: MOVL BA12(Rll),Rl

DBG>

BA12(Rll) Rll contains MOD3\N (address 1184), BA12(1184) evaluates to
MOD3\K (address 1196), which contains 1

Rl Rl contains 8

Use the /OPERANDS qualifier only when examining the current PC
instruction. The information might not be reliable if you specify other
locations. The command SET MODE [NO]OPERANDS enables you to
control the default behavior of the command EXAMINE . %PC.

As shown in the previous examples, the debugger knows whether
an address expression is associated with an instruction. If it is, the
EXAMINE command displays that instruction (you do not need to use
the /INSTRUCTION qualifier). You use the /INSTRUCTION qualifier
to display the contents of an arbitrary program location as a VAX
instruction-that is, the command EXAMINE/INSTRUCTION causes
the debugger to interpret and format the contents of any program location
as a VAX instruction (see Section 4.5.2).

Note that, when you examine consecutive instructions in a MACRO
program, the debugger might misinterpret data as instructions if storage
for the data is allocated in the middle of a stream of instructions. The

4-21

4.3.2

Examining and Manipulating Program Data
4.3 Examining and Depositing VAX Instructions

DBG> EXAMINE ~

following example shows some MACRO code with two longwords of data
storage allocated directly after the BRB instruction at line 7 (line numbers
have been added to the example for clarity):

module TEST
1: .TITLE TEST
2:
3: TEST$START::
4: .WORD 0
5:
6: MOVL #2,R2
7: BRB LABEL 2 -
8:
9: .LONG AX12345

10: .LONG AX14465
11:
12: LABEL 2:
13: MOVL #5,R5
14:
15: .END TEST$START

The following examine command displays the instruction at the start of
line 6:

DBG> EXAMINE %LINE 6
TEST\TEST$START\%LINE 6: MOVL
DBG>

SA#02,R2

The following examine command correctly interprets and displays the
logical successor entity as an instruction, at line 7:

DBG> EXAMINE ~
TEST\TEST$START\%LINE 7: BRB
DBG>

TEST\TEST$START\LABEL_2

However, the following three examine commands incorrectly interpret the
three logical successors as instructions:

TEST\TEST$START\%LINE 7+2: MULF3 SA#ll.OOOOO,SA#0.5625000,SA#0.5000000
DBG> EXAMINE ~
%DEBUG-W-ADDRESSMODE, instruction uses illegal or undefined addressing modes
TEST\TEST$START\%LINE 7+6: MULD3 SA#0.5625000[R4],SA#0.5000000,@WA5505(R0)
DBG> EXAMINE ~
TEST$START+12: HALT
DBG>

Depositing VAX Instructions

4-22

When depositing a VAX instruction, use the following command format:

DEPOSIT/INSTRUCTION address-expression = "VAX instruction"

You must enclose the instruction in either quotation marks or apostrophes.
You must also use the /INSTRUCTION qualifier with the DEPOSIT
command, to indicate that the delimited string is an instruction and not
an ASCII string. Or, if you plan to deposit several instructions, you can
first enter the command SET TYPE/OVERRIDE INSTRUCTION (see
Section 4.5.2). You then do not need to use the /INSTRUCTION qualifier
on the DEPOSIT command.

Examining and Manipulating Program Data
4.3 Examining and Depositing VAX Instructions

VAX instructions occupy different numbers of bytes, depending on their
operands. When depositing VAX instructions of arbitrary lengths into
successive memory locations, use the logical successor operator (Return
key) to establish the next unoccupied location where an instruction can be
deposited. The following example illustrates the technique.

DBG> SET TYPE/OVERRIDE/INST Set the default type to instruction.
DBG> DEPOSIT 730 = "MOVB #77, Rl" ! Deposit an instruction beginning at address 730.
DBG> EXAMINE . Examine the current entity to verify the deposit.
730: MOVB #77,Rl
DBG> EXAMINE ~
734: HALT
DBG> DEPOSIT . = "MOVB #66, R2"
DBG> EXAMINE
734: MOVB #66,R2
DBG>

Make the logical successor the new current entity.

Deposit the next instruction.
Display and verify the deposit.

When you replace an instruction, be sure that the new instruction,
including operands, is the same length in bytes as the old instruction.
If the new instruction is longer, you cannot deposit it without overwriting,
and thereby destroying, the next instruction. If the new instruction
occupies fewer bytes of memory than the old one, you must deposit NOP
instructions (instructions that cause "no operation") in bytes of memory
left unoccupied after the replacement. The debugger does not warn you if
an instruction you are depositing will overwrite a subsequent instruction,
nor does it remind you to fill in vacant bytes of memory with NOPs.

The following example illustrates how to replace an instruction with an
instruction of equal length.

DBG> SET STEP INSTRUCTION
DBG> STEP
stepped to 1584: PUSHAL (Rll)
DBG> STEP
stepped to 1586: CALLS #l,LA2224
DBG> EXAMINE . %PC
1586: CALLS #1,LA2224
DBG> EXAMINE ~
1593: CALLS #0,LA2216
DBG> DEPOSIT/INST 1586 = "CALLS

DBG> EXAMINE .
1586: CALLS #2,LA2224
DBG> EXAMINE ~
1593: CALLS #0,LA2216
DBG>

! Step by instruction.

Instruction to be replaced.

! Determine start of next
! instruction (1593) .
#2,LA2224"
! Deposit new instruction.
! Verify that instruction
! is deposited.
! Verify that the next

! instruction is unchanged.

4.4 Examining and Depositing into Registers

Note: See Chapter 11 for information about the VAX vector registers.

The VAX architecture provides 16 general registers, some of which are
used for temporary address and data storage. When referencing a register
in a debugger command, use the following built-in symbols (the register
name preceded by a percent sign (%)).

4-23

4.4.1

Examining and Manipulating Program Data
4.4 Examining and Depositing into Registers

Symbol Description

%RO ... %R11

%AP (%R12)

%FP (%R13)

%SP (%R14)

%PC (%R15)

%PSL

General purpose registers (RO ... R11)

Argument pointer (AP)

Frame pointer (FP)

Stack pointer (SP)

Program counter (PC)

Processor status longword (PSL)

You can omit the percent sign (%) prefix if your program has not declared
a symbol with the same name.

You can examine the contents of all the registers. You can deposit values
into all the registers except for SP. Use caution when depositing values
into FP.

The following examples show how to examine and deposit into registers.

DBG> SHOW TYPE
type: long integer
DBG> SHOW RADIX
input radix: decimal
output radix: decimal
DBG> EXAMINE %Rll
MOD3\%Rll: 1024
DBG> DEPOSIT %Rll = 444
DBG> EXAMINE %Rll
Rll: 444
DBG> EXAMINE %PC
MOD\%PC: 1553
DBG> EXAMINE %SP
O\%SP: 2147278720
DBG>

Show type for locations without
a compiler generated type.
Identify current radix.

Display value in Rll.

Deposit new value into Rll.
Check new value.

Display value in program counter.

Display value in stack pointer.

See Section 4.3.1 for·specific information about the PC.

The Processor Status Longword (PSL)

4-24

The PSL is a register whose value represents a number of processor
state variables. The first 16 bits of the PSL (referred to separately as the
processor status word, or PSW) contain unprivileged information about
the current processor state. The values of these bits can be controlled
by a user program. The latter 16 bits of the PSL, bits 16 to 31, contain
privileged information and cannot be altered by a user-mode program.

The following example shows how to examine the contents of the PSL:

DBG> EXAMINE %PSL
MOD3\PSL:

DBG>

CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV T N Z V C
n n n n mode mode lv n n n n n n n n

See the VAX Architecture Handbook for complete information about the
PSL, including the values of the various bits.

Examining and Manipulating Program Data
4.4 Examining and Depositing into Registers

You can also display the information in the PSL in other formats. For
example:

DBG> EXAMINE/LONG/HEX %PSL
MOD3\%PSL: 03C00010
DBG> EXAMINE/LONG/BIN %PSL
MOD3\%PSL: 00000011 11000000 00000000 00010000
DBG>

The command EXAMINE/PSL displays the value at any location in PSL
format. This is useful for examining saved PSLs on the call stack.

To disable all conditions in the PSL, clear bits 0 to 15 with the following
DEPOSIT command:

DBG> DEPOSIT/WORD PSL = 0
DBG> EXAMINE PSL
MOD3\PSL:

DBG>

CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV T N Z V C
0 0 0 0 USER USER 0 0 0 0 0 0 0 0 0

4.5 Specifying a Type When Examining and Depositing

4.5.1

The preceding sections explain how to use the EXAMINE and DEPOSIT
commands with program locations that have a symbolic name and,
therefore, are associated with a compiler generated type.

Section 4.5.1 describes how the debugger formats (types) data for program
locations that do not have a symbolic name and explains how you can
control the type for those locations.

Section 4.5.2 explains how to override the type associated with any
program location, including a location that has a symbolic name.

Defining a Type for Locations Without a Symbolic Name
Program locations that do not have a symbolic name and, therefore, are
not associated with a compiler generated type have the type longword
integer by default. Section 4.1.4 explains how to examine and deposit into
such locations using the default type.

The SET TYPE command enables you to change the default type. This
is useful if you want to examine and display the contents of a location in
another type, or if you want to deposit a value of some particular type
into a location that is associated with another type. The possible type
keywords are as follows:

ASCIC CONDITION_ VALUE INSTRUCTION QUADWORD

ASCID D_FLOAT LONGWORD TYPE=(type-expression)

ASCll:n DATE_ TIME OCTAWORD WORD

ASCIW FLOAT PACKED

ASCIZ G_FLOAT PSL

BYTE H_FLOAT PSW

4-25

4.5.2

Examining and Manipulating Program Data
4.5 Specifying a Type When Examining and Depositing

For example, the following commands set the type for locations without
a symbolic name to, respectively, byte integer, G_fioat, and ASCII with 6
bytes of ASCII data. Each successive SET TYPE command resets the type:

DBG> SET TYPE BYTE
DBG> SET TYPE G_FLOAT
DBG> SET TYPE ASCII:6

Note that the SET TYPE command, when used without the /OVERRIDE
qualifier, does not affect the type for program locations that have a
symbolic name (locations associated with a compiler generated type).

The SHOW TYPE command identifies the current type for locations
without a symbolic name. To restore the default type for such locations,
enter the command SET TYPE LONGWORD.

Overriding the Current Type

4-26

The SET TYPE/OVERRIDE command enables you to change the type
associated with any program location, thereby overriding any compiler
generated type. For example, after the following command is executed,
an unqualified EXAMINE command displays the contents of only the first
byte of the location specified and interprets the contents as byte integer
data. An unqualified DEPOSIT command modifies only the first byte of
the location specified and formats the data deposited as byte integer data.

DBG> SET TYPE/OVERRIDE BYTE

To identify the current override type, enter the command SHOW TYPE
/OVERRIDE. To cancel the current override type and restore the normal
interpretation of locations that have a symbolic name, enter the command
CANCEL TYPE/OVERRIDE.

Type qualifiers, used with the EXAMINE and DEPOSIT commands, enable
you to override the type currently associated with a program location for
the duration of a single EXAMINE or DEPOSIT command. The type
qualifiers are as follows:

/ASCIC /CONDITION_ VALUE /INSTRUCTION /QUADWORD

/ASCID /D_FLOAT /LONGWORD /TASK

/ASCll:n /DATE_ TIME /OCTAWORD /TYPE=(type-expression)

/ASCIW /FLOAT /PACKED /WORD

/ASCIZ /G_FLOAT /PSL

/BYTE /H_FLOAT /PSW

These qualifiers override any previous SET TYPE or SET TYPE
/OVERRIDE command as well as any compiler generated type.

Examining and Manipulating Program Data
4.5 Specifying a Type When Examining and Depositing

When used with a type qualifier, the EXAMINE command displays the
entity specified by the address expression in that type. For example:

DBG> EXAMINE %LINE 15 ! Display line 15 in compiler
MOD3\%LINE 15 : MOVL #1,BA44(Rll) ! generated type: instruction.
DBG> EXAMINE/BYTE . Type is byte integer.
MOD3\%LINE 15 : -48
DBG> EXAMINE/WORD . Type is word integer.
MOD3\%LINE 15 : 464
DBG> EXAMINE/LONG . Type is longword integer.
MOD3\%LINE 15 : 749404624
DBG> EXAMINE/QUAD . Type is quadword integer.
MOD3%LINE 15 : +0130653502894178768
DBG> EXAMINE/FLOAT . ! Type is F_floating.
MOD3%LINE 15 : l.9117807E-38
DBG> EXAMINE/G_FLOAT . ! Type is G_floating.
MOD3%LINE 15 : l.509506018605227E-300
DBG> EXAMINE/INSTRUCTION . ! Type is VAX instruction.
MOD3\%LINE 15 : MOVL #l,BA44(Rll)
DBG> EXAMINE/ASCII . ! Type is ASCII string.
MOD3\%LINE 15 :
DBG>

When used with a type qualifier, the DEPOSIT command deposits a
value of that type into the location specified by the address expression,
overriding the type associated with the address expression.

DBG>
type:
DBG>
724
DBG>

DBG>
724:
DBG>
724:
DBG>

DBG>
724:
DBG>

DBG>
724:
DBG>

The remaining sections provide examples of specifying integer, string, and
user-declared types with type qualifiers and the SET TYPE command.

4.5.2.1 Integer Types

SHOW TYPE
long integer

EVALU/ADDR

DEPO/BYTE

EXAM .
1280461057
EXAM/BYTE
1
DEPO/WORD

EXAM/WORD
2
DEPO/LONG 724

EXAM/LONG 724
999

1

2

The following examples illustrate the use of the EXAMINE and DEPOSIT
commands with integer type qualifiers (/BYTE, /WORD, /LONGWORD).
These qualifiers enable you to deposit a value of a particular integer type
into an arbitrary program location.

999

Show type for locations without
a compiler generated type.
Current location is 724.

Deposit the value 1 into one byte
of memory at address 724.
By default, 4 bytes are examined.

Examine one byte only.

Deposit the value 2 into first two
bytes (word) of current entity.
Examine a word of the current entity.

Deposit the value 999 into 4 bytes
! (a longword) beginning at address 724.

Examine 4 bytes (longword)
! beginning at address 724.

4-27

Examining and Manipulating Program Data
4.5 Specifying a Type When Examining and Depositing

4.5.2.2 ASCII String Type
The following examples illustrate the use of the EXAMINE and DEPOSIT
commands with the I ASCII:n type qualifier.

When used with the DEPOSIT command, this qualifier enables you to
deposit an ASCII string of length n into an arbitrary program location.
In the example, the location has a symbolic name (I) and, therefore, is
associated with a compiler generated integer type. The command format
is as follows:

DEPOSIT/ASCII:n address-expression = "ASCII string of length n"

The default value of n is 4 bytes.

DBG> DEPOSIT I = "abcde" ! I has compiler generated integer type.
%DEBUG-W-INVNUMBER, invalid numeric string 'abcde'

! So, cannot deposit string into I.
DBG> DEP I ASCII: 5 I "abcde" ! /ASCII qualifier overrides integer

type to deposit 5 bytes of

DBG> EXAMINE .
MOD3\I: 1146048327
DBG> EXAM/ASCII:5 .
MOD3\I: "abcde"
DBG>

ASCII data.
Display value of I in compiler
generated integer type.

! Display value of I as 5-byte
! ASCII string.

If you want to enter several DEPOSIT/ASCII commands, you can establish
an override ASCII type with the SET TYPE/OVERRIDE command.
Subsequent EXAMINE and DEPOSIT commands then have the effect
of specifying the /ASCII qualifier with these commands. For example:

DBG> SET TYPE/OVER ASCII:5 ! Establish ASCII:5 as override type.)
DBG> DEPOSIT I = "abcde" Can now deposit 5-byte string into I.)
DBG> EXAMINE I Display value of I as 5-byte)
MOD3\I: "abcde" ASCII string.
DBG> CANCEL TYPE/OVERRIDE Cancel ASCII override type.
DBG> EXAMINE I ! Display I in compiler generated type.
MOD3\I: 1146048327
DBG>

4.5.2.3 User-Declared Types

4-28

The following examples illustrate the use of the EXAMINE and DEPOSIT
commands with the !TYPE=(type-expression) qualifier. The qualifier
enables you to specify a user-declared override type when examining
or depositing.

For example, assume that a Pascal program contains the following code,
which declares the enumeration type COLOR with the three values RED,
GREEN, and BLUE:

TYPE
COLOR= (RED,GREEN,BLUE);

During the debugging session, the SHOW SYMBOL/TYPE command
identifies the type COLOR as it is known to the debugger:

DBG> SHOW SYMBOL/TYPE COLOR
data MOD3\COLOR

enumeration type (COLOR, 3 elements), size: 1 byte
DBG>

Examining and Manipulating Program Data
4.5 Specifying a Type When Examining and Depositing

The next command displays the value at address 1000, which is not
associated with a symbolic name. Therefore, the value 0 is displayed in
the type longword integer, by default:

DBG> EXAMINE 1000
1000: 0
DBG:;>

The next command displays the value at address 1000 in the type COLOR.
The preceding SHOW SYMBOL/TYPE command indicates that each
enumeration element is stored in 1 byte. Therefore, the debugger converts
the first byte of the longword integer value 0 at address 1000 to the
equivalent enumeration value, RED (the first of the three enumeration
values):

DBG> EXAMINE/TYPE=(COLOR) 1000
1000: RED
DBG>

The following DEPOSIT command deposits the value GREEN into address
1000 with the override type COLOR. The EXAMINE command displays
the value at address 1000 in the default type, longword integer:

DBG> DEPOSIT/TYPE=(COLOR) 1000 =GREEN
DBG> EXAMINE 1000
1000: 1
DBG>

The following SET TYPE command establishes the type COLOR for
locations, such as address 1000, that do not have a symbolic name. The
EXAMINE command now displays the value at 1000 in the type COLOR:

DBG>
DBG>
1000:
DBG>

SET TYPE TYPE=(COLOR)
EXAMINE 1000

GREEN

4-29

5 Controlling Access to Symbols in Your Program

Symbolic debugging enables you to specify variable names, routine names,
and so on, precisely as they appear in your source code. You do not need
to use numeric memory addresses or registers when referring to program
locations, although you can, if you want.

In addition, you can use symbols in the context that is appropriate for the
program and its source language. The debugger supports the language
conventions regarding data types, expressions, scope and visibility of
entities, and so on.

To have full access to the symbols that are associated with your program,
you must compile and link the program using the /DEBUG DCL command
qualifier.

Under these conditions, the way in which symbol information is passed
from your source program to the debugger and is processed by the
debugger is transparent to you in most cases. However, certain situations
might require some action.

For example, when you try to set a breakpoint on a routine named
COUNTER, the debugger might display the following diagnostic message:

DBG> SET BREAK COUNTER
%DEBUG-E-NOSYMBOL, symbol 'COUNTER' is not in the symbol table
DBG>

You must then set the module where COUNTER is defined, as explained
in Section 5.2.

Or, the debugger might display the following message if the same symbol
Xis defined (declared) in more than one module, routine, or other program
unit:

DBG> EXAMINE X
%DEBUG-E-NOUNIQUE, symbol 'X' is not unique
DBG>

You must then resolve the symbol ambiguity, perhaps by specifying a path
name for the symbol, as explained in Section 5.3.

This chapter explains how to handle these and other situations related to
accessing symbols in your program.

The chapter discusses only the symbols (typically address expressions)
that are derived from your source program, for example:

• The names of entities that you have declared in your source code, such
as variables, routines, labels, array elements, or record components.

• The names of modules (compilation units) and shareable images that
are linked with your program.

5-1

Controlling Access to Symbols in Your Program

• Elements that the debugger uses to identify source code-for example,
the specifications of source files, and source line numbers as they
appear in a listing file or when the debugger displays source code.

The following types of symbols are discussed in other chapters:

• The symbols you create during a debugging session with the DEFINE
command are covered in Section 8.4.

• The debugger's built-in symbols, such as the period (.) and %PC are
tabulated in Appendix D and discussed throughout this manual in the
appropriate context.

Also, see Section 4.1.10 for information about how to obtain the
memory addresses and register names associated with symbolic address
expressions and how to symbolize program locations.

Note: H your program was optimized during compilation, certain
variables in the program might be removed by the compiler. H
you then try to reference such a variable, the debugger issues a
warning (see Section 9.1).

Before you try to reference a nonstatic (stack-local or register)
variable, its defining routine must be active on the call stack. That
is, program execution must be suspended somewhere within the
defining routine (see Section 3.6.2).

5.1 Controlling Symbol Information When Compiling and Linking

5-2

To take full advantage of symbolic debugging, you must compile and
link your program with the /DEBUG qualifier. The following example
illustrates these steps with a simple Pascal program, INVENTORY, that
consists of two compilation units whose source code is in two separate files,
FORMS.PAS and INVENTORY.PAS. INVENTORY is the main program
unit:

$ PASCAL/NOOPTIMIZE/DEBUG FORMS, INVENTORY
$ LINK/DEBUG INVENTORY, FORMS

Note that the /NOOPTIMIZE qualifier is used with the compiler command
(PASCAL, in this example). If the compiler optimizes code by default, it is
best to disable this f~ature by specifying /NOOPTIMIZE (or the equivalent
qualifier, if any, for your compiler). Otherwise, the resulting object code is
optimized, possibly causing the contents of some program locations to be
inconsistent with what you might expect from looking at the source code.
(Section 9.1 describes some of the effects of optimization.)

The next sections describe how symbol information is created and passed
to the debugger when compiling and linking.

5.1.1 Compiling

Controlling Access to Symbols in Your Program
5.1 Controlling Symbol Information When Compiling and Linking

When you compile a source file using the /DEBUG qualifier, the compiler
creates symbol records for the debug symbol table (DST records) and
includes them in the object module being generated (such as the compiler
output file FORMS.OBJ, in the previous example).

DST records provide not only the names of symbols but also all relevant
information about their use. For example:

• Data types, ranges, constraints, and scopes associated with variables.

• Parameter names and parameter types associated with functions and
procedures.

• Source line correlation records, which associate source lines with line
numbers and source files.

Most compilers allow you to vary the amount of DST information put
in an object module by specifying different options with the /DEBUG
qualifier. Table 5-1 identifies the options for most compilers (refer to the
documentation supplied with your compiler for complete information).

Table 5-1 Compiler Options for DST Symbol Information

Compiler Command
Qualifier

/DEBUG1

DST Information in Object Module

Full

/DEBUG= TRACEBACK2 Traceback only (module names, routine names, and
line numbers)

/NODEBUG3 None

1/DEBUG, /DEBUG=ALL, and /DEBUG=(SYMBOLS,TRACEBACK) are equivalent.
2/DEBUG= TRACEBACK and DEBUG=(NOSYMBOLS,TRACEBACK) are equivalent.
3/NODEBUG, /DEBUG=NONE, and /DEBUG=(NOSYMBOLS,NOTRACEBACK) are equivalent.

The TRACEBACK option is a default for most compilers. That
is, if you omit the /DEBUG qualifier, most compilers assume
/DEBUG=TRACEBACK. The TRACEBACK option enables the VMS
traceback condition handler to translate memory addresses into routine
names and line numbers so that it can give a symbolic traceback if a
run-time error has occurred. For example:

$ RUN INVENTORY

%PAS-F-ERRACCFIL, error in accessing file PAS$0UTPUT
%PAS-F-ERROPECRE, error opening/creating file
%RMS-F-FNM, error in file name
%TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC

5-3

5.1.2

5.1.3

Controlling Access to Symbols in Your Program
5.1 Controlling Symbol Information When Compiling and Linking

PAS$IO_BASIC
PAS$IO_BASIC
PAS$IO_BASIC
INVENTORY
$

PAS$CODE
-PAS$CODE
~)AS$CODE
INVENTORY 59

00000192
0000054D
0000028B
00000020

OOOOlCED
000020A8
00001DE6
000005Al

Traceback information is also used by the debugger's SHOW CALLS
command.

Local and Global Symbols

Linking

5-4

DST records contain information about all of the symbols that are defined
in your program. These are either local or global symbols.

Typically, local symbols are symbols that are referenced only within the
module where they are defined; global symbols are symbols such as routine
names, procedure entry points, and global data names, that are defined in
one module but referenced in other modules.

Generally, the compiler resolves references to local symbols, and the linker
resolves references to global symbols.

The distinction between local and global symbols is discussed in this
chapter in connection with symbol lookup and with shareable images and
universal symbols.

When you enter the command LINK/DEBUG to link object modules and
produce an executable image, the linker performs several functions that
affect debugging:

• It builds a debug symbol table (DST) from the DST records contained
in the object modules being linked. The DST is the primary source of
symbol information during a debugging session.

• It resolves references to global symbols and builds a global symbol
table (GST). The GST duplicates some of the global symbol information
already contained in the DST, but the GST is used by the debugger for
symbol lookup under certain circumstances.

• It puts the DST and GST in the executable image.

• It sets flags in the executable image that cause the image activator to
pass control to the debugger when you enter the RUN command.

Table 5-2 summarizes the level of DST and GST information passed to
the debugger depending on the compiler or LINK command option. The
compiler command qualifier controls the level of DST and GST information
passed to the linker. The LINK command qualifier controls not only how
much of that information is passed to the debugger but also how (or iO you
can invoke the debugger.

Controlling Access to Symbols in Your Program
5.1 Controlling Symbol Information When Compiling and Linking

Table 5-2 Effect of Compiler and Linker on DST and GST Symbol Information

Compiler LINK Command to DST Data GST Data
Command DST Data in Command Invoke Passed Passed
Qualifier1 Object Module Qualifier Debugger to Debugger to Debugger

/DEBUG Full /DEBUG RUN Full Full

/DEBUG= TRACE Traceback only /DEBUG RUN Traceback only Full

/NODEBUG None /DEBUG RUN None Full

/DEBUG Full /TRACE2 RUN/DEBUG Traceback only Only universal
symbols3

/DEBUG= TRACE Traceback only /TRACE RUN/DEBUG Traceback only Only universal
symbols

/NODE BUG None /TRACE RUN/DEBUG None Only universal
symbols

/DEBUG Full /NOTRACE Cannot

1 See Table 5-1 for additional information.
2LINK/TRACEBACK and LINK/NODEBUG are equivalent. This is the default for the LINK command.

3A universal symbol is a symbol that is defined in one image and referenced in another. A universal symbol must be defined
as such at link time. See Section 5.4 for information about universal symbols and shareable images.

If you specify /NO DEBUG with the compiler command and subsequently
link and execute the image, the debugger issues the following message
when it is invoked:

%DEBUG-I-NOLOCALS, image does not contain local symbols

The preceding message, which occurs whether you linked with the
/TRACEBACK or /DEBUG qualifier, indicates that no DST has been
created for that image. Therefore, you have access only to global symbols
contained in the GST.

If you do not specify /DEBUG with the LINK command, the debugger
issues the following message when it is invoked:

%DEBUG-I-NOGLOBALS, some or all global symbols not accessible

The preceding message indicates that the only global symbol information
available during the debugging session is the following:

• Information about global symbols that is stored in the DST.

• Information about universal symbols that is stored in the GST.

These concepts are discussed in later sections. In particular, see
Section 5.4 for additional information related to debugging shareable
images.

5-5

5.1.4

Controlling Access to Symbols in Your Program
5.1 Controlling Symbol Information When Compiling and Linking

Controlling Symbol Information in Debugged Images
Symbol records occupy space within the executable image. After you have
debugged your program, you might want to link it again without using the
/DEBUG qualifier, to make the executable image smaller. This creates an
image with only traceback data in the DST.

The command LINK/NOTRACEBACK enables you to secure the contents
of an image from users after it has been debugged. Use this command
for images that are to be installed with privileges (see the Guide to VMS
System Security and the Guide to Setting Up a VMS System). When
you enter LINK/NOTRACEBACK, no symbolic information (including
traceback data) is passed to the image. Moreover, the debugger cannot be
invoked, either by the RUN/DEBUG command, or by a CTRL/Y-DEBUG
sequence while the program is running.

5.2 Setting and Canceling Modules

5-6

You need to set a module if the debugger is unable to locate a symbol that
you have specified (for example, a variable name X) and issues a message
as in the following example:

DBG> EXAMINE X
%DEBUG-E-NOSYMBOL, symbol 'X' is not in the symbol table
DBG>

This section explains module setting and the conditions under which
you might need to set or cancel a module, using the SET MODULE and
CANCEL MODULE commands.

Complete symbol information is passed from your program's source code to
the debugger when you compile and link the program using the /DEBUG
command qualifier, as explained in Section 5.1.

When you invoke the debugger, symbol information is contained in the
DST and GST, within the executable image. The DST contains detailed
information about local and global symbols. The GST duplicates some of
the global symbol information contained in the DST.

To facilitate symbol searches, the debugger loads symbol information from
the DST and GST into a run-time symbol table (RST), which is structured
for efficient symbol lookup. Unless symbol information is in the RST, the
debugger does not recognize or properly interpret the associated symbol.

Because the RST takes up memory, the debugger loads it dynamically,
anticipating what symbols you might want to reference in the course of
program execution. The loading process is called module setting, because
all symbol information for a given module is loaded into the RST at one
time.

At debugger startup, all GST records are loaded into the RST because
global symbols must be accessible throughout the debugging session. Also,
the debugger sets the module that contains the main program (the routine
specified by the image transfer address, where execution is suspended at
the start of a debugging session). You therefore have access to all global
symbols and to any local symbols that should be visible within the main
program.

Controlling Access to Symbols in Your Program
5.2 Setting and Canceling Modules

Subsequently, whenever execution of the program is interrupted, the
debugger sets the module that contains the routine in which execution
is suspended. This enables you to reference the symbols that should be
visible at the current PC value (in addition to the global symbols). This
default mode of operation is called 11 dynamic mode. 11

If you try to reference a symbol that is defined in a module that has not
been set, the debugger warns you that the symbol is not in the RST. You
must then use the SET MODULE command to set the module containing
that symbol explicitly. For example:

DBG> EXAMINE X
%DEBUG-E-NOSYMBOL, symbol 'X' is not in the symbol table
DBG> SET MODULE MOD3
DBG> EXAMINE X
MOD3\ROUT2\X: 26
DBG>

The SHOW MODULE command lists the modules of your program and
identifies which modules are set.

When a module is set, the debugger automatically allocates memory
as needed by the RST. This can eventually slow down the debugger as
more modules are set. If performance becomes a problem, you can use
the CANCEL MODULE command to reduce the number of set modules,
thereby automatically releasing memory. Or you can disable dynamic
mode by entering the command SET MODE NODYNAMIC. When dynamic
mode is disabled, the debugger does not set modules automatically. Use
the SHOW MODE command to determine whether dynamic mode is
enabled or disabled.

Section 5.4 explains how to set images and modules when debugging
shareable images.

5.3 Resolving Symbol Ambiguities
Symbol ambiguities can occur when a symbol (for example, a variable
name X) is defined in more than one routine or other program unit.

In most cases, the debugger resolves symbol ambiguities automatically,
using the scope and visibility rules of the currently set language and the
ordering of routine calls on the call stack, as explained in Section 5.3.1.

However, in some cases the debugger might respond as follows, when you
specify a symbol that is defined multiple times:

• It might not be able to determine the particular declaration of the
symbol that you intended. For example:

DBG> EXAMINE X
%DEBUG-W-NOUNIQUE, symbol 'X' is not unique
DBG>

• It might reference the declaration that is visible in the current scope,
not the one you want.

5-7

5.3.1

Controlling Access to Symbols in Your Program
5.3 Resolving Symbol Ambiguities

To resolve such problems, you must specify a scope where the debugger
should search for a particular declaration of the symbol. In the following
example, the path name COUNTER\X uniquely specifies a particular
declaration of X:

DBG> EXAMINE COUNTER \X
COUNTER\X: 14
DBG>

The next sections discuss scope concepts and explain how to resolve symbol
ambiguities.

Symbol Lookup Conventions

5-8

This section explains how the debugger searches for symbols, resolving
most potential symbol ambiguities using the scope and visibility rules
of the programming language and also its own rules. Section 5.3.2 and
Section 5.3.3 describe supplementary techniques that you can use when
necessary.

You can specify symbols in debugger commands by using either a path
name or the exact symbol.

If you use a path name, the debugger looks for the symbol in the scope
denoted by the path name prefix (see Section 5.3.2).

If you do not specify a path name prefix, by default, the debugger searches
the RST as explained in the following paragraphs (you can modify
this default behavior with the SET SCOPE command, as explained in
Section 5.3.3).

First, the debugger looks for symbols in the PC scope (also known as scope
0), according to the scope and visibility rules of the currently set language.
This means that, typically, the debugger first looks within the block or
routine surrounding the current PC value (where execution is currently
suspended). If the symbol is not found, the debugger searches the nesting
program unit, then its nesting unit, and so on. The precise manner, which
depends on the language, ensures that the correct declaration of a symbol
that is defined multiple times is chosen.

However, note that you can reference symbols throughout your program,
not just those that are visible in the PC scope as defined by the language.
This is necessary so you can set breakpoints in arbitrary areas, examine
arbitrary variables, and so on. Therefore, if the symbol is not visible in the
PC scope, the debugger continues searching as follows.

After the PC scope, the debugger searches the scope of the calling routine
(if any), then its caller, and so on. Symbolically, the complete scope search
list is denoted 0,1,2, ... ,n, where 0 denotes the PC scope and n is the
number of calls on the call stack. Within each scope (call frame), the
debugger uses the visibility rules of the language to locate a symbol.

This search list, based on the call stack, enables the debugger to
differentiate symbols that are defined multiple times in a convenient,
predictable way.

5.3.2

Controlling Access to Symbols in Your Program
5.3 Resolving Symbol Ambiguities

If the symbol is still not found, the debugger searches the rest of the RST
that is, the other set modules and the global symbol table (GST). At this
point the debugger does not attempt to resolve symbol any ambiguities.
Instead, if more than one occurrence of the symbol is found, the debugger
issues a message such as the following:

%DEBUG-W-NOUNIQUE, symbol 'Y' is not unique

If you have used a SET SCOPE command to modify the default symbol
search behavior, you can restore the default behavior with the CANCEL
SCOPE command.

Using SHOW SYMBOL and Path Names to Specify Symbols Uniquely
If the debugger indicates that a symbol reference is "not unique," use
the SHOW SYMBOL command to obtain all possible path names for that
symbol, then specify a path name to reference the symbol uniquely. For
example:

DBG> EXAMINE COUNT
%DEBUG-W-NOUNIQUE, symbol 'COUNT' is not unique

DBG> SHOW SYMBOL COUNT
data MOD7\ROUT3\BLOCK1\COUNT
data MOD4\ROUT2\COUNT
routine MOD2\ROUT1\ROUT3\COUNT

DBG> EXAMINE MOD 4 \ROUT 2 \COUNT
MOD4\ROUT2\COUNT: 12
DBG>

The command SHOW SYMBOL COUNT lists all declarations of the
symbol COUNT that exist in the RST. The first two declarations of
COUNT are variables (data). The last declaration listed is a routine.
Each declaration is shown with its path name prefix, which indicates the
path (search scope) the debugger must follow to reach that particular
declaration. For example, MOD4 \ ROUT2\ COUNT denotes the
declaration of the symbol COUNT in routine ROUT2 of module MOD4.

The path name format is as follows. The leftmost element of a path name
identifies the module containing the symbol. Moving toward the right, the
path name lists the successively nested routines and blocks that lead to
the particular declaration of the symbol (which is the rightmost element).

Although the debugger always displays symbols with their path names,
you need to use path names in debugger commands only to resolve an
ambiguity.

The debugger looks up line numbers like any other symbols you specify
(by default, it first looks in the module where execution is suspended). A
common use of path names is for specifying a line number in an arbitrary
module. For example:

DBG> SET BREAK QUEUE_MANAGER\%LINE 26

5-9

Controlling Access to Symbols in Your Program
5.3 Resolving Symbol Ambiguities

5-10.

Note that the SHOW SYMBOL command identifies global symbols twice,
because global symbols are included both in the DST and in the GST. For
example:

DBG> SHOW SYMBOL X
data ALPHA\X
data ALPHA\BETA\X
data X (global)
DBG>

5.3.2.1 Simplifying Path Names

global X
local X
same as ALPHA\X

Path names are often long. You can simplify the process of specifying path
names in three ways:

• Abbreviate a path name.

• Define a brief symbol for a path name.

• Set a new search scope so you do not have to use a path name.

To abbreviate a path name, delete the names of nesting program units
starting from the left, leaving enough of the path name to specify it
uniquely. For example, ROUT3\ COUNT is a valid abbreviated path name
for the routine in the first example of Section 5.3.2.

To define a symbol for a path name, use the DEFINE command. For
example:

DBG> DEFINE INTX = INT_STACK\CHECK\X
DBG> EXAMINE INTX

To set a new search scope, use the SET SCOPE command, which is
described in Section 5.3.3.

5.3.2.2 Specifying Symbols in Routines on the Call Stack
You can use a numeric path name to specify the scope associated with a
routine on the call stack (as identified in a SHOW CALLS display). The
path name prefix 11 0\ 11 denotes the PC scope, the path name prefix 11 1\ 11

denotes scope 1 (the scope of the caller routine), and so on.

For example, the following commands display the current values of
two distinct declarations of Y, which are visible in scope 0 and scope 2,
respectively.

DBG> EXAMINE 0 \ Y
DBG> EXAMINE 2 \ Y

By default, the command EXAMINE Y signifies EXAMINE 0\ Y.

See also the description of the command SET SCOPE/CURRENT in
Section 5.3.3. That command enables you to reset the reference for the
default scope search list relative to the call stack.

5.3.2.3 Specifying Global Symbols
To specify a global symbol uniquely, use a backslash (\) as a prefix to the
symbol. For example, the following command displays the value of the
global symbol X:

DBG> EXAMINE \X

5.3.3

Controlling Access to Symbols in Your Program
5.3 Resolving Symbol Ambiguities

5.3.2.4 Specifying Routine Invocations
When a routine is called recursively, you might need to distinguish among
several calls to the same routine, all of which generate new symbols with
identical names.

You can include an invocation number in a path name to indicate a
particular call to a routine. The number must be a nonnegative integer
and must follow the name of the rightmost routine in the path name. Zero
denotes the most recent invocation; 1 denotes the previous invocation,
and so on. For example, if PROG calls COMPUTE and COMPUTE
calls itself recursively, and each call creates a new variable SUM, the
following command displays the value of SUM for the most recent call to
COMPUTE:

DBG> EXAMINE PROG\COMPUTE 0\SUM

To refer to the variable SUM that was generated in the previous call to
COMPUTE, you would express the path name with a 1 in place of the 0.

When you do not include an invocation number, the debugger assumes
that the reference is to the most recent call to the routine (the default
invocation number is 0).

See also the description of the command SET SCOPE/CURRENT in
Section 5.3.3. That command enables you to reset the reference for the
default scope search list relative to the call stack.

Using SET SCOPE to Specify a Symbol Search Scope
By default, the debugger looks up symbols that you specify without a path
name prefix by using the scope search list described in Section 5.3.1.

The SET SCOPE command enables you to establish a new scope for symbol
lookup, so that you do not have to use a path name when referencing
symbols in that scope.

In the following example, the SET SCOPE command establishes the
path name MOD4\ROUT2 as the new scope for symbol lookup. Then,
references to Y without a path name prefix specify the declaration of Y
that is visible in the new scope.

DBG> EXAMINE Y
%DEBUG-E-NOUNIQUE, symbol 'Y' is not unique
DBG> SHOW SYMBOL Y
data MOD7\ROUT3\BLOCK1\Y
data MOD4\ROUT2\Y

DBG> SET SCOPE MOD4 \ROUT2
DBG> EXAMINE Y
MOD4\ROUT2\Y: 12
DBG>

After you have entered a SET SCOPE command, the debugger applies the
path name you specified in the command to all references that are not
individually qualified with path names.

5-11

Controlling Access to Symbols in Your Program
5.3 Resolving Symbol Ambiguities

You can specify numeric path names with SET SCOPE (see
Section 5.3.2.2). For example, the following command sets the current
scope to be three calls down from the PC scope.

DBG> SET SCOPE 3

You can also define a scope search list to specify the order in which the
debugger should search for symbols. For example, the following command
causes the debugger to look for symbols first in the PC scope (scope 0) and
then in the scope denoted by routine ROUT2 of module MOD4:

DBG> SET SCOPE 0, MOD4 \ROUT2

The debugger's default scope search list is equivalent to entering the
following command (if it existed):

DBG> SET SCOPE 0, 1, 2, 3, . . • , n

Here the debugger searches successively down the call stack to find a
symbol.

You can use the command SET SCOPE/CURRENT to reset the reference
for the default scope search list to another routine down the call stack.
For example, the following command sets the scope search list to be
2,3,4, ... ,n:

DBG> SET SCOPE/CURRENT 2

To display the current scope search list for symbol lookup, use the
SHOW SCOPE command. To restore the default scope search list (see
Section 5.3.1), use the CANCEL SCOPE command.

5.4 Debugging Shareable Images

5.4.1

By default, your program might be linked with several Digital-supplied
shareable images (for example, the run-time library image MTHRTL.EXE).
This section explains how to extend the concepts described in the previous
sections when debugging user-defined shareable images.

A shareable image is not intended to be directly executed. A shareable
image must first be included as input in the linking of an executable
image, and then the shareable image is loaded at run time when the
executable image is run. You do not have to install a shareable image to
debug it. Instead, you can debug your own private copy by assigning a
logical name to it.

See the VMS Linker Utility Manual for detailed information about linking
shareable images.

Compiling and Linking Shareable Images for Debugging

5-12

The basic steps in com piling and linking a shareable image for debugging
are as follows (an example follows the steps):

1 Compile the source files for the main image and for the shareable
image, using the /DEBUG qualifier.

Controlling Access to Symbols in Your Program
5.4 Debugging Shareable Images

2 Link the shareable image with the /SHAREABLE and /DEBUG
command qualifiers, declaring any universal symbols for that image
using the UNIVERSAL linker option. (A universal symbol is a symbol,
for example a routine name, that is defined in a shareable image and
referenced in another image.)

3 Link the shareable image against the main image, specifying the
shareable image with the /SHAREABLE file qualifier as a linker
option. Also specify the /DEBUG command qualifier.

4 Define a logical name to point to the local copy of the shareable
image. You must specify the device and directory as well as the
image name. Otherwise the VMS image activator looks for an
image of that name in the system default shareable image library
(SYS$LIBRARY:IMAGELIB.OLB).

5 Execute the main image to invoke the debugger. The shareable image
is loaded at run time.

These steps are illustrated next with a simple example. In the example,
MAIN.FOR and SUBl.FOR are the source files for the main image (the
executable image that you specify with the RUN command); SHRl.FOR
and SHR2.FOR are the source files for the shareable image to be
debugged.

You compile the source files for each image as described in Section 5.1:

$ FORTRAN/NOOPT/DEBUG MAIN,SUBl
$ FORTRAN/NOOPT/DEBUG SHR1,SHR2

You then use the LINK command to create the shareable image, also
specifying any universal symbols:

$ LINK/SHAREABLE/DEBUG SHR1,SHR2,SYS$INPUT:/OPTIONS
UNIVERSAL=SHR_ROUT jCTRL/ZI

$

In the preceding example, .

• The /SHAREABLE command qualifier creates the shareable image
SHRl.EXE from the object files SHRl.OBJ and SHR2.0BJ.

• The /OPTIONS qualifier appended to SYS$INPUT: enables you
to specify the global symbol SHR_ROUT as a universal symbol
interactively.

• The /DEBUG command qualifier builds a DST and a GST for
SHRl.EXE and puts them in that image. The GST contains the
universal symbol SHR_ROUT. Note that the linker puts universal
symbols in the GST unless you specify LINK/NOTRACEBACK,
because universal symbols must be global symbols as well.

You have now built the shareable image SHRl.EXE in your current default
directory. Because SHRl.EXE is a shareable image, you do not execute it
directly with the RUN command. Instead you link SHRl.EXE against the
main (executable) image:

$ LINK/DEBUG MAIN,SUB1,SYS$INPUT:/OPTION
SHRl.EXE/SHAREABLE jCTRL/Zj

$

5-13

5.4.2

Controlling Access to Symbols in Your Program
5.4 Debugging Shareable Images

In the preceding example,

• The LINK command creates the executable image MAIN.EXE from
MAIN.OBJ and SUBl.OBJ.

• The /DEBUG qualifier builds a DST and a GST for MAIN.EXE and
puts them in that image.

• The /SHAREABLE qualifier appended to SHRl.EXE specifies that
SHRl.EXE is to be linked against MAIN .EXE as a shareable image.

When you execute the resulting main image, MAIN.EXE, any shareable
images linked against it are loaded at run time. However, by default the
VMS image activator looks for shareable images in the system default
shareable image library (SYS$LIBRARY:IMAGELIB.OLB). Therefore, you
must define the logical name SHRl to point to SHRl.EXE in your current
default directory. Be sure to specify the device and directory:

$ DEFINE SHRl SYS$DISK: [] SHRl. EXE

You can now invoke the debugger to debug both MAIN and SHRl by
entering the following command:

$ RUN MAIN

Accessing Symbols in Shareable Images

5-14

All the concepts covered in Section 5.1, Section 5.2, and Section 5.3 apply
to the modules of a single image, namely the main (executable) image.
This section provides additional information that is specific to debugging
shareable images.

When you link shareable images for debugging as explained in
Section 5.4.1, the linker builds a DST and a GST for each image. To
conserve memory, the debugger builds an RST for an image only when
that image is "set," either dynamically by the debugger or when you enter
a SET IMAGE command.

The SHOW IMAGE command identifies all shareable images that are
linked with your program, shows which images are set, and identifies the
current image (see Section 5.4.2.2 for a definition of the current image).
Only the main image is set initially when you invoke the debugger.

The following sections explain how the debugger sets images dynamically
during program execution and how you can access symbols in arbitrary
images independently of execution.

Refer also to Section 3.6.2.4 for information about setting watchpoints in
installed writeable shareable images.

5.4.2.1 Accessing Symbols in the PC Scope (Dynamic Mode)
By default, dynamic mode is enabled. Therefore, whenever the debugger
interrupts execution, the debugger sets the image and module where
execution is suspended, if they are not already set (unless the image was
linked with the /NOTRACEBACK qualifier).

Controlling Access to Symbols in Your Program
5.4 Debugging Shareable Images

Dynamic mode gives you the following access to symbols automatically:

• You can reference symbols defined in all set modules in the image
where execution is suspended.

• You can reference symbols in the GST for that image, including any
universal symbols defined for that image.

• By setting other modules in that image, you can reference any symbol
defined in the image.

After an image is set, it remains set until you cancel it with the CANCEL
IMAGE command. If the debugger slows down as more images and
modules are set, use the CANCEL IMAGE command. You can also enter
the command SET MODE NODYNAMIC to disable dynamic mode.

5.4.2.2 Accessing Symbols in Arbitrary Images
The last image that you or the debugger sets is the current image. The
current image is the debugging context for symbol lookup. Therefore,
when using the following commands, you can reference only the symbols
that are defined in the current image:

• (SET, SHOW, CANCEL) MODULE

• SHOW SYMBOL

• EXAMINE, DEPOSIT, EVALUATE

• TYPE

• (SET, CANCEL) BREAK

• (SET, CANCEL) TRACE

• (SET, CANCEL) WATCH

• DEFINE/ADDRESS, DEFINENALUE

However, note that the commands SHOW BREAK, SHOW TRACE, and
SHOW WATCH identify any breakpoints, tracepoints, or watchpoints that
have been set in all images.

To reference a symbol in another image, use the SET IMAGE command to
make the specified image the current image, then use the SET MODULE
command to set the module where that symbol is defined (the SET IMAGE
command does not set any modules). The following example illustrates
these concepts.

The sample program consists of a main image PROG 1 and a shareable
image SHRl. Assume that you have just invoked the debugger and that
execution is suspended in image PROGl, within the main program. Now,
suppose you want to set a breakpoint on routine ROUT2, which is defined
in some module in image SHRl.

If you try to set a breakpoint on ROUT2, the debugger looks for ROUT2 in
the current image, PROGl:

DBG> SET BREAK ROUT2
%DEBUG-E-NOSYMBOL, symbol 'ROUT2' is not in symbol table
DBG>

5-15

Controlling Access to Symbols in Your Program
5.4 Debugging Shareable Images

5-16

The SHOW IMAGE command shows that image SHRl needs to be set:

DBG> SHOW IMAGE

image name set base address end address

*PROGl yes 00000200 000009FF
SHRl no 00001000 OOOOlFFF

total images: 2 bytes allocated: 32856
DBG> SET IMAGE SHRl

DBG> SHOW IMAGE

image name set base address end address

PROGl yes 00000200 000009FF
*SHRl yes 00001000 OOOOlFFF

total images: 2 bytes allocated: 41948
DBG>

SHRl is now set and is the current image. However, because the SET
IMAGE command does not set any modules, you must set the module
where ROUT2 is defined before you can set the breakpoint:

DBG> SET BREAK ROUT2
%DEBUG-E-NOSYMBOL, symbol 'ROUT2' is not in symbol table
DBG> SET MODULE/ALL
DBG> SET BREAK ROUT2
DBG> GO
break at routine ROUT2
10: SUBROUTINE ROUT2(A,B)
DBG>

Now that you have set image SHRl and all its modules and have reached
the breakpoint at ROUT2, you can debug using the normal method (for
example, step through the routine, examine variables, and so on).

After you have set an image and set modules within that image, the
image and modules remain set even if you establish a new current image.
However, you have access to symbols only in the current image at any one
time.

5.4.2.3 Accessing Universal Symbols in Run-Time Libraries and System Images
The following paragraphs describe how to access a universal symbol (such
as a routine name) in a run-time library or other shareable image for
which no symbol-table information was generated. With this information
you can, for example, use the CALL command to execute a run-time
library or system-service routine as explained in Section 8. 7.

If no symbol-table information was generated for a shareable image,
you cannot set the image with the SET IMAGE command. For example,
suppose you want to set image LIBRTL, which is linked with program
EIGHTQUEENS:

DBG> SHOW IMAGE

image name set base address end address

*EIGHTQUEENS yes 00000200 000009FF
DBGSSISHR no 00075000 000783FF
DEBUG no 00022200 00074FFF
LIBRTL no OOOOOAOO 000199FF
PASRTL no 00019AOO 000221FF

Controlling Access to Symbols in Your Program
5.4 Debugging Shareable Images

total images: 5 bytes allocated: 108560
DBG> SET IMAGE LIBRTL
%DEBUG-I-UNASETIMG, unable to set image LIBRTL because

it has no symbol table

To set the image in such cases, use the SET MODULE command with the
following command syntax:

SET MODULE SHARE$image-name

For example:

DBG> SET MODULE SHARE$LIBRTL

The debugger creates dummy modules for each shareable image in your
program. The names of these shareable "image modules" have the prefix
11 SHARE$ 11

• The command SHOW MODULE/SHARE identifies these
shareable image modules, as well as the modules in the current image.

Once a shareable image module has been set with the SET MODULE
command, you can access all of its universal symbols. For example, the
following command lists all of the universal symbols in LIBRTL:

DBG> SHOW SYMBOL * IN SHARE$LIBRTL

routine SHARE$LIBRTL\STR$APPEND
routine SHARE$LIBRTL\STR$DIVIDE
routine SHARE$LIBRTL\STR$ROUND

routine SHARE$LIBRTL\LIB$WAIT
routine SHARE$LIBRTL\LIB$GETDVI

You can then specify these universal symbols with, for example, the CALL
or SET BREAK command.

Setting a shareable image module with the SET MODULE command loads
the universal symbols for that image into the run-time symbol table so
that you can reference these symbols from the current image. However,
you cannot reference other (local or global) symbols in that image from the
current image. That is, your debugging context remains set to the current
image.

5-17

6 Controlling the Display of Source Code .

The term source code refers to statements in a programming language as
they appear in a source file. Each line of source code is also called a source
line.

This chapter covers the following topics:

• How the debugger obtains information about source files and source
lines.

• Specifying the location of a source file that has been moved to another
directory after it was compiled.

• Displaying source lines by specifying line numbers, code address
expressions, or search strings.

• Controlling the display of source code at breakpoints, tracepoints, and
watchpoints and after a STEP command has been executed.

• Using the SET MARGINS command to improve the display of source
lines under certain circumstances.

The techniques described in this chapter apply to screen mode as well as
line (noscreen) mode. Any difference in behavior between line mode and
screen mode is identified in this chapter and in the command dictionary
for the commands discussed. (Screen mode is described fully in Chapter 7.)

If your program has been optimized by the compiler, the code that is
executing as you debug might not always match your source code. See
Section 9.1 for information about that subject.

6.1 How the Debugger Obtains Source Code Information
When a compiler processes source files to generate object modules,
it assigns a line number to each source line sequentially. For most
languages, each compilation unit (module) starts with line 1. For others
like Ada, each source file, which might represent several compilation units,
starts with line 1.

Line numbers appear in a source listing obtained with the /LIST compile
command qualifier. They also appear whenever the debugger displays
source code, either in line mode or screen mode. Moreover, you can specify
line numbers with several debugger commands (for example, TYPE, SET
BREAK).

The debugger displays source lines only if you have specified the /DEBUG
command with both the compile command and the LINK command. Under
these conditions, the symbol information created by the compiler and
passed to the debug symbol table (DST) includes source-line correlation
records. For a given module, source-line correlation records contain the
full VMS file specification of each source file that contributes to that

6-1

Controlling the Display of Source Code
6.1 How the Debugger Obtains Source Code Information

module. In addition, they associate source records (symbols, types, and so
on) with source files and line numbers in the module.

6.2 Specifying the Location of Source Files
The debug symbol table (DST) contains the full VMS file specification of
each source file when it was compiled. Thus, by default, the debugger
expects a source file to be in the same directory it was in at compile time.
If a source file is moved to a different directory after it is compiled, the
debugger does not find it and displays a warning such as the following
when attempting to display source code from that file:

%DEBUG-W-UNAOPNSRC, unable to open source file DISK: [JONES.WORK]PRG.FOR;2

6-2

In such cases, use the SET SOURCE command to direct the debugger to
the new directory. The command can be applied to all source files for your
program or to only the source files for specific modules.

For example, after the following command line is entered, the debugger
looks for all source files in WORK$:[JONES.PROG3]:

DBG> SET SOURCE WORK$: [JONES. PROG3]

You can specify a directory search list with the SET SOURCE command.
For example, after the following command line is entered, the debugger
looks for source files first in the current default directory ([]) and then in
WORK$:[JONES.PROG3]:

DBG> SET SOURCE [] , WORK$: [JONES. PROG3]

If you want to apply the SET SOURCE command only to the source
files for a given module, use the /MODULE=module-name qualifier
and specify that module. For example, the following command line
specifies that the source files for module SCREEN_IO are. in the directory
DISK2:[SMITH.SHARE] (the search of source files for other modules is not
affected by this command):

DBG> SET SOURCE/MODULE=SCREEN_IO DISK2: [SMITH.SHARE]

In summary, the SET SOURCE/MODULE command specifies the location
of source files for a particular module, whereas the SET SOURCE
command specifies the location of source files for modules that were
not mentioned explicitly in SET SOURCE/MODULE commands.

Use the SHOW SOURCE command to display all source directory search
lists currently in effect. The command displays the search lists for
specific modules (as previously established by one or more SET SOURCE
/MODULE commands) and the search list for all other modules (as
previously established by a SET SOURCE command). For example:

Controlling the Display of Source Code
6.2 Specifying the Location of Source Files

DBG> SET SOURCE [PROJA], [PROJB],USER$: [PETER.PROJC]
DBG> SET SOURCE/MODULE=COBOLTEST [], DISK$2: [PROJD]
DBG> SHOW SOURCE
source directory search list for COBOLTEST:

[]
DISK$2: [PROJD]

source directory search list for all other modules:
[PROJA]
[PROJB]
USER$: [PETER.PROJC]

DBG>

If no SET SOURCE or SET SOURCE/MODULE command has been
entered, the SHOW SOURCE command indicates that no search list is
currently in effect.

Use the CANCEL SOURCE command to cancel the effect of a previous
SET SOURCE command. Use the CANCEL SOURCE/MODULE command
to cancel the effect of a previous SET SOURCE/MODULE command
(specifying the same module name).

When a source directory search list has been canceled, the debugger again
expects the source files corresponding to the designated modules to be in
the same directories they were in at compile time.

See the description of the SET SOURCE command in the command
dictionary for additional information about how the debugger locates
source files that have been moved to another directory after compile time.

Opening a source file requires the use of an I/O channel, a limited system
resource. Like the debugger, your program might need to open files. To
ensure that the debugger does not use all available I/O channels and thus
cause the program to fail, by default the debugger can keep a maximum
of 5 source files open at one time. To specify a different limit, use the SET
MAX_SOURCE_FILES command. For example, the following command
line sets the limit to 7 source files:

DBG> SET MAXIMUM_SOURCE_FILES 7

Note that the value specified limits only the number of source files that
can be kept open at any one time. If the debugger reaches this limit,
it closes a file in order to open another one. Note also that setting the
limit to a very small number can make the debugger's use of source files
inefficient.

The SHOW MAX_SOURCE_FILES command displays the number of
source files that the debugger can keep open at one time.

6.3 Displaying Source Code by Specifying Line Numbers
The TYPE command enables you to display source lines by specifying
compiler-assigned line numbers, where each line number designates a line
of source code.

6-3

Controlling the Display of Source Code
6.3 Displaying Source Code by Specifying Line Numbers

6-4

For example, the following command displays line 160 and lines 22 to 24
of the module being debugged:

DBG> TYPE 160, 22:24
module COBOLTEST

160: START-IT-PARA.
module COBOLTEST

22: 02 SC2V2
23: 02 SC2V2N
24: 02 CPP2

DBG>

PIC S99V99
PIC S99V99
PIC PP99

COMP VALUE 22.33.
COMP VALUE -22.33.
COMP VALUE 0.0012.

You can display all the source lines of a module by specifying a range of
line numbers starting from 1 and ending at a number equal to or greater
than the largest line number in the module.

After displaying a source line, you can display the next line in that module
by entering a TYPE command without a line number-that is, by entering
a TYPE command and then pressing the Return key. For example:

DBG> TYPE 160
module COBOLTEST

160: START-IT-PARA.
DBG> TYPE
module COBOLTEST

161: MOVE SCl TO ESO.
DBG>

You can then display the next line and successive l~nes by entering the
TYPE command repeatedly, in this way reading through your code one line
at a time.

To display source lines in an arbitrary module of your program, specify the
module name with the line numbers. Use standard path name notation
that is, first specify the module name, then a backslash (\), and finally
the line numbers (or the range of line numbers), without intervening
spaces. For example, the following command displays line 16 of module
TEST:

DBG> TYPE TEST\16

If you specify a module name with the TYPE command, the module
must be set. Use the SHOW MODULE command to determine whether
a particular module is set. Then use the SET MODULE command, if
necessary (see Section 5.2).

If you do not specify a module name with the TYPE command, the
debugger displays source lines for the module in which execution is
currently suspended, by default-that is, the module associated with
the PC scope. If you have specified another scope with the SET SCOPE
command the debugger displays source lines in the module associated with
the specified scope.

In screen mode, the output of a TYPE command updates the current
source display (see Section 7 .6.6).

After displaying source lines at various locations in your program, you can
redisplay the line at which execution is currently suspended by pressing
keypad key 5.

Controlling the Display of Source Code
6.4 Displaying Source Code by Specifying Code Address Expressions

6.4 Displaying Source Code by Specifying Code Address Expressions
The EXAMINE/SOURCE command enables you to display the source line
corresponding to a code address expression. A code address expression
denotes the address of a machine code instruction and, therefore, must be
one of the following:

• A line number associated with one or more instructions

• A label

• A routine name

• The memory address of an instruction

You cannot specify a variable name with the EXAMINE/SOURCE
command, because a variable name is associated with data, not with
instructions.

When you use the EXAMINE/SOURCE command, the debugger evaluates
the address expression to obtain a memory address, determines which
compiler-assigned line number corresponds to that address, and then
displays the source line designated by the line number.

For example, the following command line displays the source line
associated with the address (declaration) of routine SWAP:

DBG> EXAMINE/SOURCE SWAP
module MAIN

47: procedure SWAP(X,Y: in out INTEGER) is
DBG>

If you specify a line number that is not associated with an instruction, the
debugger issues a diagnostic message. For example:

DBG> EXAMINE/SOURCE %LINE 6
%DEBUG-I-LINEINFO, no line 6, previous line is 5, next line is 8
%DEBUG-E-NOSYMBOL, symbol '%LINE 6' is not in the symbol table
DBG>

When using the EXAMINE/SOURCE command, with a symbolic address
expression (a line number, label, or routine), you might need to set the
module in which the entity is defined, unless that module is already set.
Use the SHOW MODULE command to determine whether a particular
module is set. Then use the SET MODULE command, if necessary (see
Section 5.2).

The command EXAMINE/SOURCE . %PC displays the source line
corresponding to the current PC value (the line that is about to be
executed). For example:

DBG> EXAMINE/SOURCE .%PC
module COBOLTEST

162: DISPLAY ESO.
DBG>

Note the use of the "contents-of" operator (.), which specifies the contents
of the entity that follows the period. If you do not use the contents-of

6-5

Controlling the Display of Source Code
6.4 Displaying Source Code by Specifying Code Address Expressions

operator, the debugger tries to find a source line for the PC rather than for
the address currently stored in the PC:

DBG> EXAMINE/SOURCE %PC
!%DEBUG-W-NOSRCLIN, no source line for address 7FFF005C
DBG>

The following example shows the use of a numeric path name (1 \)to
display the source line at the PC value one level down the call stack (at
the call to the routine in which execution is suspended):

DBG> EXAMINE/SOURCE .1 \%PC

In screen mode, the output of an EXAMINE/SOURCE command updates
the current source display (see Section 7 .6.6).

The debugger uses the EXAMINE/SOURCE command in the following
contexts to display source code at the current PC value.

Keypad key 5 is bound to the following debugger command sequence:

EXAM/SOURCE .%SOURCE_SCOPE\%PC; EXAM/INST .%INST_SCOPE\%PC

This command sequence displays the source line and the instruction
at which execution is currently suspended in the current scope. Thus,
pressing keypad key 5 enables you to quickly determine your debugging
context.

The predefined source display SRC is an automatically updated display
that executes the following built-in command every time the debugger
interrupts execution and prompts for commands (see Section 7.2.1 and
Section C.3.1):

EXAMINE/SOURCE .%SOURCE_SCOPE\%PC

6.5 Displaying Source Code by Searching for Strings

6-6

The SEARCH command enables you to display any source lines that
contain an occurrence of a specified string.

The syntax of the SEARCH command is as follows:

SEARCH[/qualifier[, . . .]] [range] [string]

The range parameter can be a module name, a range of line numbers, or
a combination of both. If you do not specify a module name, the debugger
uses the current scope to find source lines, as with the TYPE command
(see Section 6.3).

By default, the SEARCH command displays the source line that contains
the first (next) occurrence of a string in a specified range (SEARCH
/NEXT). The command SEARCH/ALL displays all source lines that contain
an occurrence of a ·string in a specified range. For example, the following
command line displays the source line that contains the first occurrence of
the string "pro" in module SCREEN_IO:

DBG> SEARCH SCREEN_IO pro

The remaining examples use source lines from one COBOL module, in the
current scope, to illustrate various aspects of the SEARCH command.

Controlling the Display of Source Code
6.5 Displaying Source Code by Searching for Strings

The following command line displays all source lines within lines 40 to 50
that contain an occurrence of the string "D".

DBG> SEARCH/ALL 40:50 D
module COBOLTEST

40: 02 D2N COMP-2 VALUE -234560000000.
41: 02 D COMP-2 VALUE 222222.33.
42: 02 DN COMP-2 VALUE -222222.333333.
47: 02 DRO COMP-2 VALUE 0 .1.
48: 02 DRS COMP-2 VALUE 0. 000001.
49: 02 DRlO COMP-2 VALUE 0.00000000001.
50: 02 DR15 COMP-2 VALUE 0.0000000000000001.

DBG>

After you have found an occurrence of a string in a particular module, you
can enter the SEARCH command with no parameters to display the source
line containing the next occurrence of the same string in the same module.
This is analogous to using the TYPE command without a parameter to
display the next source line. For example:

DBG> SEARCH 42: 50 D
module COBOLTEST

42: 02 DN
DBG> SEARCH
module COBOLTEST

47: 02 DRO
DBG>

COMP-2 VALUE -222222.333333.

COMP-2 VALUE 0.1.

By default, the debugger searches for a string as specified and does not
interpret the context surrounding an occurrence of the string (this is
the behavior of SEARCH/STRING). If you want to locate occurrences of
a string that is an identifier in your program (for example, a variable
name) and exclude other occurrences of the string, use the /IDENTIFIER
qualifier. The command SEARCH/IDENTIFIER displays only those
occurrences of the string that are bounded on either side by a character
that cannot be part of an identifier in the current language.

The default qualifiers for the SEARCH command are /NEXT and /STRING.
If you want to establish different default qualifiers, use the SET SEARCH
command. For example, after the following command is executed, the
SEARCH command behaves like SEARCH/IDENTIFIER:

DBG> SET SEARCH IDENTIFIER

Use the SHOW SEARCH command to display the default qualifiers
currently in effect for the SEARCH command. For example:

DBG> SHOW SEARCH
search settings: search for next occurrence, as an identifier
DBG>

6.6 Controlling Source Display After Stepping and at Event Points
By default, the debugger displays the associated source line when a
breakpoint, tracepoint, or watchpoint is triggered and upon the completion
of a STEP command.

6-7

Controlling the Display of Source Code
6.6 Controlling Source Display After Stepping and at Event Points

6-8

When you enter a STEP command, the debugger displays the source line
at which execution is suspended after the step. For example:

DBG> STEP
stepped to MAIN\%LINE 16

16: RANGE := 500;
DBG>

When a breakpoint or tracepoint is triggered, the debugger displays the
source line at the breakpoint or tracepoint, respectively. For example:

DBG> SET BREAK SWAP
DBG> GO

break at MAIN\SWAP
47: procedure SWAP(X,Y: in out INTEGER) is

DBG>

When a watchpoint is triggered, the debugger displays the source
line corresponding to the instruction that caused the watchpoint to be
triggered.

The SET STEP [NO]SOURCE command enables you to control the
display of source code after a step and at breakpoints, tracepoints, and
watchpoints. SET STEP SOURCE, the default, enables source display.
SET STEP NOSOURCE suppresses source display. For example:

DBG> SET STEP NOSOURCE
DBG> STEP
stepped to MAIN\%LINE 16
DBG> SET BREAK SWAP
DBG> GO

break at MAIN\SWAP
DBG>

You can selectively override the effect of a SET STEP SOURCE command
or a SET STEP NOSOURCE command by using the qualifiers /SOURCE
and /NOSOURCE with the STEP, SET BREAK, SET TRACE, and SET
WATCH commands.

The command STEP/SOURCE overrides the effect of the command SET
STEP NOSOURCE, but only for the duration of that STEP command
(similarly, STEP/NOSOURCE overrides the effect of SET STEP SOURCE
for the duration of that STEP command). For example:

DBG> SET STEP NOSOURCE
DBG> STEP/SOURCE
stepped to MAIN\%LINE 16

16: RANGE := 500;
DBG>

The command SET BREAK/SOURCE overrides the effect of the command
SET STEP NOSOURCE, but only for the breakpoint set with that SET
BREAK command (similarly, SET BREAK/NOSOURCE overrides the
effect of SET STEP SOURCE for the breakpoint set with that SET

Controlling the Display of Source Code
6.6 Controlling Source Display After Stepping and at Event Points

BREAK command). The same conventions apply to the SET TRACE
and SET WATCH commands. For example:

DBG> SET STEP SOURCE
DBG> SET BREAK/NOSOURCE SWAP
DBG> GO

break at MAIN\SWAP
DBG>

6.7 Setting Margins for Source Display
The SET MARGINS command enables you to specify the leftmost and
rightmost source-line character positions at which to begin and end the
display of a source line (respectively, the left and right margins). This is
useful for controlling the display of source code when, for example, the
code is deeply indented or long lines wrap at the right margin. In such
cases, you can set the left margin to eliminate indented space in the source
display, and you can decrease the right margin setting to truncate lines
and prevent them from wrapping.

For example, the following command line sets the left margin to column
20 and the right margin to column 35.

DBG> SET MARGINS 20: 35

Subsequently, only that portion of the source code that is between columns
20 and 35 is displayed when you enter commands that display source
lines (for example, TYPE, SEARCH, STEP). Use the SHOW MARGINS
command to identify the current margin settings for the display of source
lines.

Note that the SET MARGINS command affects only the display of source
lines. It does not affect the display of other debugger output, as from an
EXAMINE command.

The SET MARGINS command is useful mostly in line (noscreen) mode. In
screen mode, the SET MARGINS command has no effect on the display of
source lines in a source display, such as the predefined display SRC.

6-9

7 Using Screen Mode

Screen mode enables you to see more information more conveniently than
the default, line-oriented, display mode. In screen mode, you display
different types of data in separate areas of the screen. You might, for
example, display your source code in the top left half of the screen, the
contents of the VAX registers in the top right half, debugger output in
the middle, and diagnostic messages at the bottom, near your interactive
input.

To enable screen mode, press keypad key PF3 (or type the command SET
MODE SCREEN). To return to line-oriented debugging, press GOLD
PF3 (or type the command SET MODE NOSCREEN). In screen mode,
to re-create the default layout of various windows, press the keypad-key
sequence BLUE-MINUS (PF4 followed by the MINUS key (-)).

Screen mode output is best displayed on VTlOO-, VT200-, or VT300-
series terminals and workstations running VWS. The larger screen of
workstations is particularly suitable to using a number of displays for
different purposes. You can use screen mode with VT52 terminals, but
they are less suited to the formatted screen displays because they do not
support the scrolling regions used in screen mode.

This chapter covers the following topics:

• Screen mode concepts and terminology used throughout the chapter.

• The predefined displays SRC, OUT, PROMPT, INST, and REG, which
are automatically available when you enter screen mode.

• Scrolling, hiding, deleting, moving, and resizing a display.

• Creating a new display.

• Specifying a display window.

• The different kinds of displays and how to use them.

• Directing various types of debugger output to different displays by
assigning display attributes.

• A sample display configuration that illustrates a possible use of screen
mode.

• Saving the current state of your screen displays.

• Changing your terminal screen's height and width during a debugging
session and the effect on display windows.

Many screen mode commands are bound to keypad keys. See Appendix B
for key definitions. Also, Appendix C contains screen mode information in
summary reference format.

7-1

Using Screen Mode

Note: This chapter provides information common to programs that
run in one or several processes. See Chapter 10 for additional
information specific to multiprocess programs.

7.1 Concepts and Terminology
A display is a group of text lines. The text might be lines from a source
file, assembly language instructions, the values contained in registers,
your input to the debugger, various types of debugger output, or program
input and output.

You view a display through its window, which can occupy any rectangular
area of the screen. Because a display's window is typically smaller than
the display, you can scroll the window up, down, right, and left across the
display text to view any part of the display.

Figure 7-1 is an example of screen mode that shows three displays. The
name of each display (SRC, OUT, and PROMPT) appears at the top left
corner of its window. It serves both as a tag on the display itself and as a
name for future reference in commands.

Figure 7-1 Default Screen Mode Display Configuration

7-2

- SRC: module SQUARES$MAIN - scroll-source-------------------
7: C -- Square all non-zero elements and store in output array
8: K = 0
9: DO 10 I = 1, N

10: IF(INARR(I) .NE. 0) THEN
-> 11: OUTARR(K) = INARR(I)**2

12: ENDIF
13: 10 CONTINUE
14: c
15: c
16:
17: 20

-- Print the squared output values. Then stop.
PRINT 20, K
FORMAT(' Number of non-zero elements is' ,I4)

-OUT-output------------------------------------
stepped to SQUARES$MAIN\%LINE 9

9: DO 10 I = 1, N
SQUARES$MAIN\N: 9
SQUARES$MAIN\K: 0
stepped to SQUARES$MAIN\%LINE 11

- PROMPT-error-program-prompt------------------------

g~g; ~~ ~' K
DGB>

ZK-6503-GE

• Display SRC is a source code display (it is displaying FORTRAN code
in the example shown in Figure 7-1). SRC's current window is the
upper half of the screen. Like other display windows, SRC's window
can be changed to accommodate different display layouts. The name
of the module whose source code is displayed, SQUARES$MAIN, is to
the right of the display name.

Using Screen Mode
7.1 Concepts and Terminology

• Display OUT, located in a window directly below SRC, shows the
output of debugger commands.

• Display PROMPT, at the bottom of the screen, shows the debugger
prompt and debugger input.

Figure 7-1 is the default display configuration that is established when
you first invoke screen mode. SRC, OUT, and PROMPT are three of the
five predefined displays that the debugger provides by default when you
enter screen mode (see Section 7 .2). You can create additional displays.

Every display has a memory buffer, whose size is independent of the
window size and can be adjusted. Displays that hold source code or
assembly language instructions enable you to see all of the lines of source
code of the associated module or all of the instructions of the associated
routine, regardless of the size of the memory buffer. This is because
the necessary information is paged into the buffer as needed. For other
displays, such as display OUT, the buffer size defines how much text the
display can hold. If you add more text to the display, the oldest text lines
are discarded to make room for the new text.

Conceptually, displays are placed on the screen as on a pasteboard. The
display that is most recently referenced in a command is put on top of the
pasteboard by default. Therefore, depending on the window locations, the
displays that you have referenced recently might overlay or hide other
displays (as on a pasteboard).

The debugger maintains a display list, which is the pasting order of
displays. Several keypad key definitions use the display list to cycle
through the displays currently on the pasteboard.

Every display belongs to a display kind (see Section 7 .6). The display kind
determines what type of information the display can capture and display;
for example, source code, assembly language instructions, debugger output
of various types. The display kind also determines how the contents of the
display are generated.

The contents of a display are generated in two ways. Some displays are
automatically updated. Their definition includes a command list that is
executed whenever the debugger gains control from the program. The
output of the command list forms the contents of those displays. Display
SRC belongs to that category: it is automatically updated so that an
arrow centered in the window shows the source line at which execution is
currently suspended.

Other displays, for example display OUT, derive their contents from
commands you enter interactively. If you create a display of this general
category, you must first select it (with the SELECT command) as the
target display for one or more types of output before anything can be
written to it. This is also known as assigning one or more attributes to a
display (see Section 7.7).

The names of any attributes assigned to a display appear to the right of
the display name, in lowercase letters. In Figure 7-1 SRC has the source
and scroll attributes (SRC is the current source display and the current
scrolling display), OUT has the output attribute (it is the current output
display), and so on. Note that, although SRC is automatically updated

7-3

Using Screen Mode
7 .1 Concepts and Terminology

by its own built-in command, it can also receive the output of certain
interactive commands (such as EXAMINE/SOURCE) because it has the
source attribute.

The concepts introduced in this section are developed in more detail in the
rest of this chapter.

7 .2 Debugger Predefined Displays

7.2.1

The debugger provides the following predefined displays that you can use
to capture and display different kinds of data:

SRC, the predefined source display
OUT, the predefined output display
PROMPT, the predefined prompt display
INST, the predefined instruction display
REG, the predefined register display

When you enter screen mode, the debugger puts SRC in the top half of
the screen, PROMPT in the bottom sixth, and OUT between SRC and
PROMPT, as illustrated in Figure 7-1. Displays INST and REG are
initially removed from the screen by default.

If, after rearranging displays and windows, you want to re-create this
default configuration, press the keypad-key sequence BLUE-MINUS (PF4
followed by the MINUS (-) key).

The basic features of the predefined displays are described in the
next sections. As explained in other parts of this chapter, you can
change certain characteristics of these displays, such as buffer size or
display attributes. You can also create additional displays similar to the
predefined displays.

Predefined Source Display (SRC)

7-4

Note: See Chapter 6 for information about how to make source code
available for display during a debugging session.

The predefined display SRC (see Figure 7-1) is an automatically updated
source display.

You can use SRC to display source code in two basic ways:

• By default, SRC automatically displays the source code for the module
in which execution is currently suspended. This enables you to quickly
determine your current debugging context.

• In addition, because SRC has the source attribute by default, you
can use it to display the source code for any part of your program as
explained in Section 7 .2.1.1.

The name of the module whose source code is displayed is shown at the
right of the display name, SRC. The numbers displayed at the left of the
source code are the compiler-generated line numbers, as they might appear
in a compiler-generated listing file.

Using Screen Mode
7 .2 Debugger Predefined Displays

As you execute the program under debugger control, SRC is updated
automatically whenever execution is suspended. The arrow in the
leftmost column indicates the source line to be executed next. Specifically,
execution is suspended at the first VAX instruction associated with that
source line. Thus, the line indicated by the arrow corresponds to the
current PC value. The PC (program counter) is a VAX register that
contains the memory address of the next instruction to be executed.

If the debugger cannot locate source code for the routine in which
execution is suspended (because, for example, the routine is a run-time
library routine), it tries to display source code in the next routine down on
the call stack for which source code is available. When displaying source
code for such a routine, the debugger issues the following message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .O\%PC.
Displaying source in a caller of the current routine.

Figure 7-2 illustrates this feature. The source display shows that a call
to routine TYPE is currently active. TYPE corresponds to a FORTRAN
run-time library procedure. No source code is available for that routine, so
the debugger displays the source code of the calling routine. The output
of a SHOW CALLS command, shown in the output display, identifies the
routine where execution is suspended and the call sequence leading to that
routine.

In such cases, the arrow in the source window identifies the line to which
execution returns after the routine call. Depending on the source language
and coding style, this might be the line that contains the call statement or
the next line.

7-5

Using Screen Mode
7 .2 Debugger Predefined Displays

Figure 7-2 Screen Mode Source Display When Source Code Is Not Available

- SRC: module TEST-scroll-source---------------------
%DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC

Displaying source in a caller of the current routine
3: CHARACTER*(*) ARRAYX

-> 4: TYPE *, ARRAYX
5: RETURN
6: END

-OUT-output------------------------------
stepped to SHARE$FORRTL+810

module name routine name
SHARE$FORRTL SHARE$FORRTL

line rel PC
0000032A
OOOOOOlE
00000011

abs PC
OOOOOB2A
00000436
00000411

*TEST TEST 4
3 *A A

- PROMPT-error-program-prompt ----------------------
DBG> STEP
DBG> SHOW CALLS
DBG>

ZK-6504-GE

If your program was optimized during compilation, the source code
displayed in SRC might not always represent the code that is actually
executing. The predefined instruction display INST is useful in such
cases, because it shows the exact VAX instructions that are executing. See
Section 7 .2.4.

The built-in command that automatically updates display SRC is
EXAMINE/SOURCE . %SOURCE_SCOPE\ %PC. The properties of this
command are described in Section C.3.1 and Section 6.4.

7 .2.1.1 Displaying Source Code in Arbitrary Program Locations

7-6

You can use display SRC to display source code throughout your program,
if source code is available for display:

• You can scroll through the entire source display by pressing keypad
keys 2 (scroll down) or 8 (scroll up) as explained in Section 7.3.1.
This enables you to view any source line within the module in which
execution is suspended.

• You can display the source code for any routine that is currently on
the call stack by using the command SET SCOPE/CURRENT (see
Section 7 .2.1.2).

• Because SRC has the source attribute, you can display source code
throughout your program by using the TYPE and EXAMINE/SOURCE
commands:

To display arbitrary source lines use the TYPE command (see
Section 6.3).

7.2.2

7.2.3

Using Screen Mode
7 .2 Debugger Predefined Displays

To display the source line associated with a code location (for
example, a routine declaration), use the EXAMINE/SOURCE
command (see Section 6.4).

When using the TYPE or EXAMINE/SOURCE command, make sure
that the module in which you want to view source code is set first.
Use the SHOW MODULE command to determine whether a particular
module is set. Then use the SET MODULE command, if necessary
(see Section 5.2).

After manipulating the contents of display SRC, you can redisplay the
location at which execution is currently suspended (the default behavior of
SRC) by pressing keypad key 5.

7 .2.1.2 Displaying Source Code for a Routine on the Call Stack
The command SET SCOPE/CURRENT enables you to display the source
code for any routine that is currently on the call stack. For example, the
following command updates display SRC so that it shows the source code
for the caller of the routine in which execution is currently suspended:

DBG> SET SCOPE/CURRENT 1

To reset the default scope for displaying source code, enter the command
CANCEL SCOPE. The command causes display SRC to show the source
code for the routine at the top of the call stack, where execution is
suspended.

Predefined Output Display (OUT)
Figure 7-1 and Figure 7-2 illustrate some typical debugger output in the
predefined display OUT.

Display OUT is a general purpose output display. By default, OUT has
the output attribute and therefore displays any debugger output that is
not directed to the source display SRC or the instruction display INST. For
example, if display INST is not displayed or does not have the instruction
attribute, any output that would otherwise update display INST is shown
in display OUT.

By default, OUT does not display debugger diagnostic messages (these
appear in the PROMPT display). You can assign attributes to OUT so that
it captures debugger input and diagnostics as well as normal output (see
Section 7.7).

Predefined Prompt Display (PROMPT)
The predefined display PROMPT is the display in which the debugger
prompts for input. Figure 7-1 and Figure 7-2 show PROMPT in its
default location, the bottom sixth of the screen.

By default, PROMPT has the program and error attributes, in addition to
the prompt attribute. Therefore, by default, the debugger forces program
output to PROMPT and prints diagnostic messages to that display.

7-7

7.2.4

Using Screen Mode
7 .2 Debugger Predefined Displays

PROMPT has different properties and restrictions than other displays.
This is to eliminate possible confusion when manipulating that display:

• The debugger always keeps PROMPT on top of the display pasteboard
so it cannot be hidden by another display. You cannot hide PROMPT
(with the DISPLAY/HIDE command), or remove PROMPT from the
pasteboard (with the DISPLAY/REMOVE command), or permanently
delete PROMPT (with the CANCEL DISPLAY command).

• PROMPT can have the scroll attribute, so that it can be made the
default target display for the MOVE and EXPAND commands. But
you cannot scroll PROMPT.

• You can move PROMPT anywhere on the screen, expand it to fill the
full screen height, and contract it down to two lines. But PROMPT
must always occupy the full width of the screen. Therefore, you cannot
move, expand, or contract PROMPT horizontally.

The debugger alerts you if you try to move or expand a display such that
it is hidden by PROMPT.

Predefined Instruction Display (INST)

7-8

Note: By default, the predefined instruction display INST is not shown
on the screen and does not have the instruction attribute (see
Section 7.2.4.1 and Section 7.2.4.2).

Display INST is an automatically updated instruction display. It shows the
decoded VAX assembly-language instruction stream of your program. This
is the exact code that is executing, including the effects of any compiler
optimization. An example is shown in Figure 7-3.

This type of display is useful when debugging code that has been
optimized. In such cases some of the code being executed might not
match the source code that is shown in a source display. See Section 9.1
for information about the effects of optimization.

You can use INST in two basic ways:

• By default, INST automatically displays the decoded instructions for
the routine in which execution is currently suspended. This enables
you to quickly determine your current debugging context.

• In addition, if INST has the instruction attribute, you can use it
to display the decoded instructions for any part of your program as
explained in Section 7 .2.4.2.

The name of the routine whose instructions are displayed is shown at the
right of the display name, INST. The numbers displayed at the left of the
instructions are the compiler-generated source line numbers.

Using Screen Mode
7 .2 Debugger Predefined Displays

Figure 7-3 Screen Mode Instruction Display

- INST: routine SQUARES$MAIN ---------------------
TSTL BA16(Rll)
BLEQ SQUARES$MAIN\%LINE 16

Line 10; MOVL BA4(Rll),RO
TSTL WA-164(Rll) [RO]
BEQL SQUARES$MAIN\%LINE 13

->ne 11: MOVL BA12(Rll),Rl
MOVL BA4(Rll),RO
MULL3 WA-164(Rll) [RO],WA-164(Rll) [RO](BA-84(Rll) [Rl]

Line 13: AOBLEQ BA16(Rll),BA4(Rll),SQUARES$MAIN\%LINE 10
Line 16: PUSHAL LA525

: MNEGL SA#l,-(SP)
-OUT-output---------------------------~

stepped to SQUARES$MAIN\%LINE 9
9: DO 10 I = 1, N

SQUARES$MAIN\N: 3
SQUARES$MAIN\K: 0
stepped to SQUARES$MAIN\%LINE 11
SQUARES$MAIN\I: 1
SQUARES$MAIN\K: 0
- PROMPT-error-program-prompt ---------------------
DBG> STEP
DBG> EXAMINE I,K
DBG>

ZK-6505-GE

As you execute the program under debugger control, INST is updated
automatically whenever execution is suspended. The arrow in the leftmost
column points to the instruction at which execution is suspended. This is
the instruction that will be executed next and whose address is the current
PC value.

The built-in command that automatically updates display INST is
EXAMINE/INSTRUCTION . %INST_SCOPE\ %PC. The properties of
this command are described in Section C.3.4 and Section 4.3.1.

7 .2.4.1 Displaying the Instruction Display
By default, display INST is marked as removed (see Section 7 .3.2) from
the display pasteboard and is not visible. To show display INST, use one
of the following methods:

• Press keypad key 7 to place displays SRC and INST side by side.
This enables you to readily compare the source code and the decoded
instruction stream.

• Press the keypad key sequence PFl-7 to place displays INST and REG
side by side.

• Enter the command DISPLAY INST to place INST in its default or
most recently defined location (see Section 7 .3.2).

7-9

7.2.5

Using Screen Mode
7 .2 Debugger Predefined Displays

7.2.4.2 Displaying Instructions in Arbitrary Program Locations
You can use display INST to display decoded instructions throughout your
program:

• You can scroll through the entire instruction display by pressing
keypad keys 2 (scroll down) or 8 (scroll up) as explained in
Section 7.3.1. This enables you to view any instruction within the
routine in which execution is suspended.

• You can display the instruction stream for any routine that is currently
on the call stack by using the command SET SCOPE/CURRENT (see
Section 7 .2.4.3).

• If INST has the instruction attribute, you can display the instructions
for any code location throughout your program by using the EXAMINE
/INSTRUCTION command:

1 To assign INST the instruction attribute, use the command
SELECT/INSTRUCTION INST (see Section 7.6.2 and Section 7.7).
Note that the instruction attribute is automatically assigned to
INST when you display it by pressing either keypad key 7 or the
key sequence PFl-7.

2 To display the instructions associated with a code location
(for example, a routine declaration), use the EXAMINE
/INSTRUCTION command (see Section 4.3.1).

If no display has the instruction attribute, the output of an EXAMINE
/INSTRUCTION command is directed at display OUT.

After manipulating the contents of display INST, you can redisplay the
location at which execution is currently suspended (the default behavior of
INST) by pressing keypad key 5.

7 .2.4.3 Displaying Instructions for a Routine on the Call Stack
The command SET SCOPE/CURRENT enables you to display the
instructions for any routine that is currently on the call stack. For
example, the following command updates display INST so that it shows
the instructions for the caller of the routine in which execution is currently
suspended:

DBG> SET SCOPE/CURRENT 1

To reset the default scope for displaying instructions, enter the command
CANCEL SCOPE. The command causes display INST to show the
instructions for the routine at the top of the call stack, where execution is
suspended.

Predefined Register Display {REG)

7-10

The predefined register display REG shows the current values, in
hexadecimal format, of the VAX general registers (RO to RU, AP, FP,
SP, PC), the four condition code bits (C, V, Z, and N) of the processor
status longword (PSL), and as many of the top stack values as can be
displayed through the window (see Figure 7-4).

Using Screen Mode
7 .2 Debugger Predefined Displays

Figure 7-4 Screen Mode Register Display

- SRC: module SQUARES$MAIN- scroll-sourc REG

3: c -- Read the input array RO :00000000 Rll:000004AO +10:0002019B
4: OPEN(UNIT=8, FILE='DATAF Rl :00000008 AP :7FF359CC +14:7FFE2BDC
5: READ(8,*) N, (INARR(I), R2 :00000000 FP :7FF35980 +18:000009FF
6: c R3 :7FF35994 SP :7FF35980 +lC:OOOOOOOS
7: c -- Square all non-zero e R4 00000000 PC :00000640 +20:00000600

-> 8: K = 0 RS 00000000 PSL: C:O Z:O +24:00000000
9: DO 10 I = 1, N R6 7FF35649 PSL: V:O N:O +28:00000001

10: IF (INARR(I) .NE. 0) THEN R7 8012F9E9 @SP:OOOOOOOO +2C:OOOOOOOD
11: K = K + 1 R8 7FFECA52 +04:08000000 +30:7FF359CC
12: OUTARR(K) = INAR R9 7FFECC5A +08:7FF359CC +34:00000000
13: END IF RlO 7FFED7D4 +OC:7FF359B8 +38:00020073

- OUT- output --------------'-----------------
stepped to SQUARES$MAIN\%LINE 4
stepped to SQUARES$MAIN\%LINE 5
stepped to SQUARES$MAIN\%LINE 8
SQUARES$MAIN\I: 5
SQUARES$MAIN\K: 0
SQUARES$MAIN\N: 4

- PROMPT- error-program-prompt
DBG> STEP
DBG> EXAMINE I, K, N
DBG>

ZK-6506-GE

The register values displayed are for the routine in which execution is
currently suspended. The values are updated whenever the debugger
takes control. Any changed values are highlighted.

REG is initially marked as removed (see Section 7 .3.2) from the display
pasteboard and is not visible. You must use the DISPLAY command (or
the keypad key sequence GOLD-7) to show the REG display. Pressing
GOLD-7 enables you to place REG next to display INST.

If the register window is made larger, the debugger fills the remaining
space with information contained in the user call stack.

REG does not display the current values of the VAX vector registers. To
display data contained in vector registers or vector control registers in
screen mode, use a DO display. (See Section 7.6.1.)

7.3 Manipulating Existing Displays
This section explains how to perform the following functions:

• Use the SELECT and SCROLL commands to scroll a display.

• Use the DISPLAY command to show, hide, or remove a display; the
CANCEL DISPLAY command to permanently delete a display; and the
SHOW DISPLAY command to identify the displays that currently exist
and their order in the display list.

7-11

7.3.1

7.3.2

Using Screen Mode
7 ~a Manipulating Existing Displays

• Use the MOVE command to move a display across the screen.

• Use the EXPAND command to expand or contract a display.

Note also that Section 7.5 and Section 7.6 discuss more advanced
techniques for modifying existing displays with the DISPLAY command
how to change the display window and the type of information displayed.

Scrolling a Display
A display usually has more lines of text (and possibly longer lines) than
can be seen through its window. The SCROLL command enables you to
view text that is hidden beyond a window's border. You can scroll through
all displays except for the PROMPT display.

The easiest way to scroll displays is with keypad keys, as described later
in this section. First, use of the relevant commands is explained.

You can specify a display explicitly with the SCROLL command. Typically,
however, you first use the SELECT/SCROLL command to select the
current scrolling display. This display then has the scroll attribute and is '
the default display for the SCROLL command. You then use the SCROLL
command with no parameter to scroll that display up or down by a
specified number of lines, or to the right or left by a specified number
of columns. The direction and distance scrolled are specified with the
command qualifiers (/UP:n, /RIGHT:n, and so on).

In the following example, the SELECT command selects display OUT as
the current scrolling display (!SCROLL can be omitted because it is the
default qualifier); the SCROLL command then scrolls OUT to reveal text
18 lines down:

DBG> SELECT OUT
DBG> SCROLL/DOWN:l8

Several useful SELECT and SCROLL command lines are assigned to
keypad keys (see Appendix B for the keypad diagram):

• Pressing key 3 assigns the scroll attribute to the next display in the
display list after the current scrolling display. So, to select a display
as the current scrolling display, press key 3 repeatedly until the word
"scroll" appears on the top line of that display.

• Press key 8, 2, 6, or 4 to scroll up, down, right, or left, respectively.
The amount of scroll depends on which key state you use (DEFAULT,
GOLD, or BLUE).

Showing, Hiding, Removing, and Canceling a Display

7-12

The DISPLAY command is the most versatile command for creating and
manipulating displays. In its simplest form, the command puts an existing
display on top of the pasteboard, where it appears through its current
window. For example, the following command shows the display INST
through its current window:

DBG> DISPLAY INST

7.3.3

Using Screen Mode
7.3 Manipulating Existing Displays

Pressing keypad key 9, which is bound to the command DISPLAY
%NEXTDISP, enables you to achieve this effect conveniently. The built-
in function %NEXTDISP signifies the next display in the display list
(Appendix D identifies all screen-related built-in functions). Each time you
press key 9, the next display in the list is put on top of the pasteboard, in
its current window.

Note that, by default, the top line of display OUT (which identifies the
display) coincides with the bottom line of display SRC. If SRC is on top
of the pasteboard, its bottom line hides the top line of OUT (keep this in
mind when using the DISPLAY command and associated keypad keys to
put various displays on top of the pasteboard).

To hide a display at the bottom of the pasteboard, use the DISPLAY/HIDE
command. This command changes the order of that display in the display
list.

To remove a display from the pasteboard so that it is no longer seen (yet is
not permanently deleted), use the DISPLAY/REMOVE command. To put a
removed display back on the pasteboard, use the DISPLAY command.

To delete a display permanently, use the CANCEL DISPLAY command.
To re-create the display, use the DISPLAY command as described in
Section 7.4.

Note that you cannot hide, remove, or delete the PROMPT display.

To identify the displays that currently exist, use the SHOW DISPLAY
command. They are listed according to their order on the display list. The
display that is on top of the pasteboard is listed last.

See the command dictionary for information about the various options
provided by the DISPLAY command qualifiers. Note also that the
DISPLAY command accepts optional parameters that enable you to modify
other characteristics of existing displays, namely the display window
and the type of information displayed. The techniques are discussed in
Section 7.5 and Section 7.6.

Moving a Display Across the Screen
Use the MOVE command to move a display across the screen. The
qualifiers /UP:n, /DOWN:n, /RIGHT:n, and /LEFT:n specify the direction
and the number of lines or columns by which to move the display. If you
do not specify a display, the current scrolling display is moved.

The easiest way to move a display is by using keypad keys:

• Press key 3 repeatedly as needed to select the current scrolling display.

• Put the keypad in the MOVE state, then use keys 8, 2, 4, or 6 to move
the display up, down, left, or right, respectively (s~e Appendix B).

7-13

7.3.4

Using Screen Mode
7 .3 Manipulating Existing Displays

Expanding or Contracting a Display
Use the EXPAND command to expand or contract a display. The qualifiers
/UP:n, /DOWN:n, /RIGHT:n, and /LEFT:n specify the direction and the
number of lines or columns by which to expand or contract the display (to
contract a display, specify negative integer values with these qualifiers). If
you do not specify a display, the current scrolling display is expanded or
contracted.

The easiest way to expand or contract a display is by using keypad keys.

• Press key 3 repeatedly as needed to select the current scrolling display.

• Put the keypad in the EXPAND or CONTRACT state, then use keys
8, 2, 4, or 6 to expand or contract the display vertically or horizontally
(see Appendix B).

Note that the PROMPT display cannot be contracted (or expanded)
horizontally. Also, it cannot be contracted vertically to less than two
lines.

7.4 Creating a New Display

7-14

To create a new screen display, use the DISPLAY command. The basic
syntax is as follows:

DISPLAY display-name [AT window-specification] [display-kind]

The display name can be any name that is not already used to name
a display (use the SHOW DISPLAY command to identify all existing
displays). When you create a new display, it is placed on top of the
pasteboard, on top of any existing displays (except for the predefined
PROMPT display, which cannot be hidden). The display name appears at
the top left corner of the display window.

Section 7 .5 explains the options for specifying windows. If you do not
provide a window specification, the display is positioned in the upper or
lower half of the screen, alternating between these locations as you create
new displays.

Section 7.6 explains the options for specifying display kinds. If you do not
specify a display kind, an output display is created.

For example, the following command creates a new output display named
OUT2. The window associated with OUT2 is either the top or bottom half
of the screen.

DBG> DISPLAY OUT2

The following command creates a new 11D0 11 display named EXAM_XY
that is located in the right third quarter (RQ3) of the screen. This display
shows the current value of variables X and Y and is updated whenever the
debugger gains control from the program.

DBG> DISPLAY EXAM_XY AT RQ3 DO (EXAMINE X,Y)

See the command dictionary for information about the various options
provided by the DISPLAY command qualifiers.

Using Screen Mode
7 .5 Specifying a Display Window

7.5 Specifying a Display Window

7.5.1

7.5.2

Display windows can occupy any rectangular portion of the screen.

You can specify a display window when you create a display with the
DISPLAY command. You can also change the window currently associated
with a display by specifying a new window with the DISPLAY command.
When specifying a window, you have the following options:

• Specify a window in terms of lines and columns.

• Use the name of a predefined window, such as Hl.

• Use the name of a window definition previously established with the
SET WINDOW command.

Each of these techniques is described in the next sections. When specifying
windows, keep in mind that the PROMPT display always remains on top
of the display pasteboard and, therefore, occludes any part of another
display that shares the same region of the screen.

Display windows, regardless of how specified, are dynamic. This means
that, if you use a SET TERMINAL command to change the screen height
or width, the window associated with a display expands or contracts in
proportion to the new screen height or width.

Specifying a Window in Terms of Lines and Columns
The general form of a window specification is (start-line,line-count[,start
column,column-count)). For example, the following command creates
the output display CALLS and specifies that its window be 7 lines deep
starting at line 10, and 30 columns wide starting at column 50:

DBG> DISPLAY CALLS AT (10,7,50,30)

If you do not specify start-column or column-count, the window occupies
the full width of the screen.

Predefined Windows
The debugger provides many predefined windows. These have short
symbolic names that you can use in the DISPLAY command instead of
having to specify lines and columns. For example, the following command
creates the output display ZIP and specifies that its window be RHl (the
top right half of the screen).

DBG> DISPLAY ZIP AT RHl

The SHOW WINDOW command identifies all predefined window
definitions, as well as those you create with the SET WINDOW command.

7-15

7.5.3

Using Screen Mode
7 .5 Specifying a Display Window

Creating a New Window Definition
Although the predefined windows should be adequate for most situations,
you can also create a new window definition with the SET WINDOW
command. This command, which has the following form, associates a
window name with a window specification:

SET WINDOW window-name AT (start-line,line-count[,start-col,col-count])

After creating a window definition, you can simply use its name (like
that of a predefined window) in a DISPLAY command. In the following
example, the window definition MIDDLE is established. That definition is
then used to display OUT through the window MIDDLE.

DBG> SET WINDOW MIDDLE AT (9,4,30,20)
DBG> DISPLAY OUT AT MIDDLE

To identify all current window definitions, use the SHOW WINDOW
command. To delete a window definition, use the CANCEL WINDOW
command.

7.6 Specifying the Display Kind

7-16

Every display has a display kind. The display kind determines the type of
information a display contains and how that information is generated.

Typically, you specify a display kind when you use the DISPLAY command
to create a new display (if you do not specify a display kind, an output
display is created). You can also use the DISPLAY command to change
the display kind of an existing display. The keywords and associated
parameters with which you specify a display kind are listed below. Each
of these options is explained in the sections that follow (refer also to the
displays illustrated in Section 7 .2).

DO (command-list)
INSTRUCTION
INSTRUCTION (command)
OUTPUT
REGISTER
SOURCE
SOURCE (command)

The contents of a register display are generated and updated automatically
by the debugger. The contents of other kinds of displays are generated by
commands, and these display kinds fall into two general groups.

A display that belongs to one of the following display kinds has its contents
updated automatically according to the command or command list you
supply when defining that display:

DO (command-list)
INSTRUCTION (command)
SOURCE (command)

7.6.1

Using Screen Mode
7 .6 Specifying the Display Kind

The command list specified is executed each time the debugger gains
control from your program, provided the display is not marked as removed.
The output of the commands forms the new contents of the display. If the
display is marked as removed, the debugger does not execute the command
list until you view that display (marking that display as unremoved).

A display that belongs to one of the following display kinds derives its
contents from commands that you enter interactively:

INSTRUCTION
OUTPUT
SOURCE

To direct debugger output to a specific display in this group, you must
first select it with the SELECT command. The technique is explained in
the next sections and, in further detail, in Section 7. 7. After a display
is selected for a certain type of output, the output from your commands
forms the contents of the display.

The default size of the memory buffer associated wjth any newly created
display is 64 lines. For source and instruction displays, the size of the
buffer only affects performance. In the case of a source display, source files
are paged in as necessary as you scroll through the module. In the case
of an instruction display, the instructions are decoded from the image as
necessary as you scroll through the routine.

For output and DO displays, the buffer size defines how many lines of text
the display holds. If you add more text to the display, the oldest lines are
discarded to make room for the new text. You can use the /SIZE qualifier
on the DISPLAY command to change the buffer size.

DO (command[; ...]) Display Kind
A DO display is an automatically updated display. The commands in the
command list are executed in the order listed each time the debugger
gains control from your program. Their output forms the content of the
display, erasing any previous content.

For example, the following command creates the DO display CALLS at
window Q3. Each time the debugger gains control from the program,
the SHOW CALLS command is executed and the output is displayed in
CALLS, replacing any previous contents.

DBG> DISPLAY CALLS AT Q3 DO (SHOW CALLS)

The following command creates a DO display named V2_DISP that shows
the contents of elements 4 to 7 of the VAX vector register V2 (using
FORTRAN array syntax). The display is automatically updated whenever
the debugger gains control from the program:

DBG> DISPLAY V2 DISP AT RQ2 DO (EXAMINE %V2(4:7))

7-17

7.6.2

7.6.3

Using Screen Mode
7 .6 Specifying the Display Kind

INSTRUCTION Display Kind
An instruction display shows the output of an EXAMINE/INSTRUCTION
command within the assembly-language instruction stream of a routine.
Because the instructions displayed are decoded from the image being
debugged and show the exact code that is executing, this kind of display is
particularly useful in helping you debug optimized code (see Section 9.1).

In the display, one line is devoted to each instruction. Source line numbers
corresponding to the instructions are displayed in the left column. The
instruction at the location being examined is centered in the display and is
marked by an arrow in the left column.

Before anything can be written to an instruction display, you must select
it as the current instruction display with the SELECT/INSTRUCTION
command.

In the following example, the DISPLAY command creates the instruction
display INST2 at RHl. The SELECT/INSTRUCTION command then
selects INST2 as the current instruction display. When the EXAMINE
/INSTRUCTION X command is executed, window RHl fills with the
instruction stream surrounding the location denoted by X. The arrow
points to the instruction at location X, which is centered in the display.

DBG> DISPLAY INST2 AT RHl INSTRUCTION
DBG> SELECT/INSTRUCTION INST2
DBG> EXAMINE/INSTRUCTION X

Each subsequent EXAMINE/INSTRUCTION command updates the
display.

INSTRUCTION (command) Display Kind

7-18

This is an instruction display that is automatically updated with the
output of the command specified. That command, which must be an
EXAMINE/INSTRUCTION command, is executed each time the debugger
gains control from your program.

For example, the following command creates the instruction display INST3
at window RS45. Each time the debugger gains control, the built-in
command EXAMINE/INSTRUCTION .%INST_SCOPE\ %PC is executed,
updating the display.

DBG> DISPLAY INST3 AT RS45 INSTRUCT (EX/INST .%INST_SCOPE\%PC)

This command creates a display that functions like the predefined display
INST. The built-in EXAMINE/INSTRUCTION command displays the
instruction at the current PC value in the current scope (see Section C.3.4).

If an automatically updated instruction display is selected as the current
instruction display, it is updated like a simple instruction display by an
interactive EXAMINE/INSTRUCTION command (in addition to being
updated by its built-in command).

7.6.4

7.6.5

Using Screen Mode
7 .6 Specifying the Display Kind

OUTPUT Display Kind
An output display shows any debugger output that is not directed to
another display. New output is appended to the previous contents of the
display.

Before anything can be written to an output display, it must be selected
as the current output display with the SELECT/OUTPUT command, or as
the current error display with the SELECT/ERROR command, or as the
current input display with the SELECT/INPUT command. See Section 7. 7
for more information about using the SELECT command with output
displays.

In the following example, the DISPLAY command creates the output
display OUT2 at window T2 (the display kind OUTPUT could have been
omitted from this example, because it is the default kind). The SELECT
/OUTPUT command then selects OUT2 as the current output display.
These two commands create a display that functions like the predefined
display OUT.

DBG> DISPLAY OUT2 AT T2 OUTPUT
DBG> SELECT /OUTPUT OUT2

OUT2 now collects any debugger output that is not directed to another
display. For example:

• The output of a SHOW CALLS command goes to OUT2.

• If no instruction display has been selected as the current instruction
display, the output of an EXAMINE/INSTRUCTION command goes to
OUT2.

• By default, debugger diagnostic messages are directed to the PROMPT
display. They can be directed to OUT2 with the SELECT/ERROR
command.

REGISTER Display Kind
A register display is an automatically updated display that shows the
current values, in hexadecimal format, of the VAX general registers (RO to
Rll, AP, FP, SP, and PC), the four condition code bits (C,V, Z, and N) of the
processor status longword (PSL), and as many of the top call stack values
as can be displayed in the window (see Figure 7-4).

The register values displayed are for the routine in which execution is
currently suspended. The values are updated whenever the debugger
takes control. Any changed values are highlighted.

A register display does not display the current values of the VAX vector
registers. To display data contained in vector registers or vector control
registers in screen mode, use a DO display. (See Section 7.6.1.)

7-19

7.6.6

7.6.7

Using Screen Mode
7.6 Specifying the Display Kind

SOURCE Display Kind
A source display shows the output of a TYPE or EXAMINE/SOURCE
command within the source code of a module, if that source code is
available. Source line numbers are displayed in the left column. The
source line that is the output of the command is centered in the display
and is marked by an arrow in the left column. If a range of lines is
specified with the TYPE command, the lines are centered in the display,
but no arrow is shown.

Before anything can be written to a source display, you must select it as
the current source display with the SELECT/SOURCE command.

In the following example, the DISPLAY command creates the source
display SRC2 at Q2. The SELECT/SOURCE command then selects SRC2
as the current source display. When the command TYPE 34 is executed,
window RHl fills with the source code surrounding line 34 of the module
being debugged. The arrow points to line 34, which is centered in the
display.

DBG> DISPLAY SRC2 AT Q2 SOURCE
DBG> SELECT/SOURCE SRC2
DBG> TYPE 34

Each subsequent TYPE or EXAMINE/SOURCE command updates the
display.

SOURCE {command) Display Kind

7-20

This is a source display that is automatically updated with the output
of the command specified. That command, which must be an EXAMINE
/SOURCE or TYPE command, is executed each time the debugger gains
control from your program.

For example, the following command creates a source display SRC3
at window RS45. Each time the debugger gains control, the built-in
command EXAMINE/SOURCE .%SOURCE_SCOPE\ %PC is executed,
updating the display.

DBG> DISPLAY SRC3 AT RS45 SOURCE (EX/SOURCE .%SOURCE_SCOPE\%PC)

This command creates a display that functions like the predefined display
SRC. The built-in EXAMINE/SOURCE command displays the source line
for the current PC value in the current scope (see Section C.3.1).

If an automatically updated source display is selected as the current
source display, it is updated like a simple source display by an interactive
EXAMINE/SOURCE or TYPE command (in addition to being updated by
its built-in command).

7.6.8 PROGRAM Display Kind

Using Screen Mode
7 .6 Specifying the Display Kind

The PROMPT display belongs to the special display kind "program." Note
that PROMPT is the only display of that kind. You cannot specify that
display kind in a DISPLAY command.

To avoid possible confusion, the PROMPT display has several restrictions
(see Section 7.2.3).

7.7 Assigning Display Attributes
In screen mode, the output from commands you enter interactively is
directed to various displays according to the type of output and the
attributes assigned to these displays. For example, debugger diagnostic
messages go to the display that has the error attribute (the current error
display). By assigning one or more attributes to a display, you can mix or
isolate different kinds of information.

The attributes have the following names: error, input, instruction, output,
program, prompt, scroll, and source. When a display is assigned an
attribute, the name of that attribute appears in lowercase letters on the
top border of its window, to the right of the display name. Note that the
scroll attribute does not affect debugger output but is used to control the
default display for the SCROLL, MOVE, and EXPAND commands.

By default, attributes are assigned to the predefined displays as follows:

• SRC has the source and scroll attributes.

• OUT has the output attribute.

• PROMPT has the prompt, program, and error attributes.

To assign an attribute to a display, use the SELECT command with the
qualifier of the same name as the attribute. In the following example,
the DISPLAY command creates the output display ZIP. The SELECT
/OUTPUT command then selects ZIP as the current output display-the
display that has the output attribute. After this command is executed, the
word "output" disappears from the top border of the predefined output
display OUT and appears instead on display ZIP, and all debugger output
formerly directed to OUT is now directed to ZIP.

DBG> DISPLAY ZIP OUTPUT
DBG> SELECT/ OUTPUT ZIP

Specific attributes can be assigned only to certain display kinds. The
following list identifies each of the SELECT command qualifiers, its effect,
and the display kinds to which you can assign that attribute.

7-21

Using Screen Mode
7. 7 Assigning Display Attributes

7-22

SELECT
Qualifier

/ERROR

/INPUT

/INSTRUCTION

/OUTPUT

/PROGRAM

/PROMPT

/SCROLL

Description

Selects the specified display as the current error display. Directs
any subsequent debugger diagnostic message to that display. It
must be either an output display or the PROMPT display. If no
display is specified, selects the PROMPT display as the current
error display.

Selects the specified display as the current input display.
Echoes any subsequent debugger input in that display. It
must be an output display. If no display is specified, unselects
the current input display: debugger input is not echoed to any
display.

Selects the specified display as the current instruction display.
Directs the output of any subsequent EXAMINE/INSTRUCTION
command to that display. It must be an instruction display.
Keypad key sequence BLUE-COMMA selects the next
instruction display in the display list as the current instruction
display. If no display is specified, unselects the current
instruction display: no display has the instruction attribute.

Selects the specified display as the current output display.
Directs any subsequent debugger output to that display, except
where a particular type of output is being directed to another
display (such as diagnostic messages going to the current error
display). The specified display must be either an output display
or the PROMPT display. Keypad key sequence GOLD-3 selects
the next output display in the display list as the current output
display. If no display is specified, selects the PROMPT display
as the current output display.

Selects the specified display as the current program display.
Tries to force any subsequent program input or output to that
display. Currently, only the PROMPT display can be specified.
If no display is specified, unselects the current program display:
program output is no longer forced to the PROMPT display.

Selects the specified display as the current prompt display,
where the debugger prompts for input. Currently, only the
PROMPT display can be specified. You cannot unselect the
PROMPT display.

Selects the specified display as the current scrolling display.
Makes that display the default display for any subsequent
SCROLL, MOVE, or EXPAND command. You can specify any
display (however, note that the PROMPT display cannot be
scrolled). The /SCROLL qualifier is the default if you do not
specify a qualifier with the SELECT command. Key 3 selects
as the current scrolling display the next display in the display
list after the current scrolling display. If no display is specified,
unselects the current scrolling display: no display has the scroll
attribute.

Using Screen Mode
7.7 Assigning Display Attributes

SELECT
Qualifier Description

/SOURCE Selects the specified display as the current source display.
Directs the output of any subsequent TYPE or EXAMINE
/SOURCE command to that display. It must be a source display.
Keypad key sequence BLUE-3 selects the next source display
in the display list as the current source display. If no display is
specified, unselects the current source display: no display has
the source attribute.

Subject to the restrictions listed, a display can have several attributes. In
the preceding example, ZIP was selected as the current output display.
In the next example, ZIP is further selected as the current input, error,
and scrolling display. After these commands are executed, debugger input,
output, and diagnostics are logged in ZIP in the proper sequence as they
occur, and ZIP is the current scrolling display.

DBG> SELECT/INPUT/ERROR/SCROLL ZIP

To identify the displays currently selected for each of the display
attributes, use the SHOW SELECT command.

If you use the SELECT command with a particular qualifier but without
specifying a display name, the effect is typically to de-assign that attribute
(to "unselect" the display that had the attribute). The exact effect depends
on the attribute, as described in the preceding list.

7.8 A Sample Display Configuration
How to best use screen mode depends on your personal style and on what
type of bug you are looking for. You might be satisfied to simply use the
predefined displays. On the other hand, especially if you have access to
a larger screen, you might want to create additional displays for various
purposes. The following example might give you some ideas.

Assume you are debugging in a high-level language and are interested in
tracing the execution of your program through several routine calls.

First set up the default screen configuration-that is, SRC in Hl, OUT in
S45, and PROMPT in S6 (the keypad key sequence BLUE-MINUS gives
this configuration). SRC shows the source code of the module in which
execution is suspended.

The next command creates a source display named SRC2 in RHl that
shows the PC value at scope 1 (one level down the call stack, at the call to
the routine in which execution is suspended):

DBG> DISPLAY SRC2 AT RHl SOURCE (EXAMINE/SOURCE .l\%PC)

Thus the left half of your screen shows the currently executing routine,
whereas the right half shows the caller of that routine.

The next command creates a DO display named CALLS at S4 that
executes the SHOW CALLS command each time the debugger gains
control from the program:

DBG> DISPLAY CALLS AT S4 DO (SHOW CALLS)

7-23

Using Screen Mode
7 .8 A Sample Display Configuration

Because the top half of OUT is now hidden by CALLS, make OUT's
window smaller:

DBG> DISPLAY OUT AT S5

You can create a similar display configuration with instruction displays
instead of source displays.

7.9 Saving Displays and the Screen State

7.10

The SAVE command enables you to make a "snapshot" of an existing
display and save that copy as a new display. This is useful if, for example,
you later want to refer to the current contents of an automatically updated
display (such as a DO display).

In the following example, the SAVE command saves the current contents
of display CALLS into display CALLS4, which is created by the command:

DBG> SAVE CALLS AS CALLS4

The new display is removed from the pasteboard. So, to view its contents
use the DISPLAY command:

DBG> DISPLAY CALLS4

The EXTRACT command has two uses. First, it enables you to save the
contents of a display in a text file. For example, the following command
extracts the contents of display CALLS, appending the resulting text to
the file COB34.TXT:

DBG> EXTRACT /APPEND CALLS COB34

Second, the EXTRACT/SCREEN_LAYOUT command enables you to create
a command procedure that can later be invoked during a debugging
session to re-create the previous state of the screen. In the following
example, the EXTRACT/SCREEN_LAYOUT command creates a command
procedure with the default specification SYS$DISK:[]DBGSCREEN.COM.
The file contains all the commands" needed to re-create the current state of
the screen.

DBG> EXTRACT/ SCREEN_ LAYOUT

DBG> @DBGSCREEN

Note that you cannot save the PROMPT display as another display, or
extract it into a file.

Changing the Screen Height and Width

7-24

During a debugging session, you might want to change the height or width
of your terminal screen. One reason might be to accommodate long lines
that would wrap if displayed across 80 columns. Or, if you are using a
workstation, you might want to reformat your debugger window relative to
other windows.

Using Screen Mode
7.10 Changing the Screen Height and Width

To change the screen height or width, use the SET TERMINAL command.
The general effect of the command is the same whether you are at a
VT-series terminal or at a workstation.

In this example, assume you are using a workstation in its default
emulated VTlOO-screen mode, with a screen size of 24 lines by 80 columns.
You have invoked the debugger and are using it in screen mode. You now
want to take advantage of the larger screen. The following command
increases the screen height and width of the debugger window to 35 lines
and 110 columns respectively:

DBG> SET TERMINAL/PAGE: 35/WIDTH: 110

By default, all displays are dynamic. A dynamic display automatically
adjusts its window dimensions in proportion when a SET TERMINAL
command changes the screen height or width. This means that, when
using the SET TERMINAL command, you preserve the relative positions
of your displays. The /[NO]DYNAMIC qualifier on the DISPLAY command
enables you to control whether or not a display is dynamic. If a display
is not dynamic, it does not change its window coordinates after you enter
a SET TERMINAL command (you can then use the DISPLAY, MOVE,
or EXPAND commands, or various keypad key combinations, to move or
resize a display).

To see the current terminal width and height being used by the debugger,
use the SHOW TERMINAL command.

Note that the debugger's SET TERMINAL command does not affect the
terminal screen size at DCL level. When you exit the debugger, the
original screen size is maintained.

7-25

8 Additional Convenience Features

This chapter describes the following debugger convenience features not
described elsewhere in this manual:

• Using debugger command procedures

• Using an initialization file for a debugging session

• Logging a debugging session into a file

• Defining symbols to represent commands, address expressions, or
values

• Assigning debugger commands to function keys

• Using control structures to enter commands

• Calling arbitrary routines linked with you.r program

8.1 Using Debugger Command Procedures

8.1.1

A debugger command procedure is a sequence of commands contained in
a file. You can direct the debugger to execute a command procedure to
recreate a debugging session, to continue a previous session, or to avoid
typing the same debugger commands many times during a debugging
session. You ~an pass parameters to command procedures.

As with DCL command procedures, you execute a aebugger command
procedure by preceding its file specification with an at sign (@). The @ is
the execute procedure command.

Debugger command procedures are especially useful when you regularly
perform a number of standard set-up debugger commands, as specified in
a debugger initialization file (see Section 8.2). You can also use a debugger
log file as a command procedure (see Section 8.3).

Basic Conventions
The following is a sample debugger command procedure named
BREAK7.COM:

! *****Debugger Command Procedure BREAK7.COM *****
SET BREAK/AFTER:3 %LINE 120 DO (EXAMINE K,N,J,X(K); GO)
SET BREAK/AFTER:3 %LINE 160 DO (EXAMINE K,N,J,X(K),S; GO)
SET BREAK %LINE 90

When you execute this command procedure with the execute procedure
(@) command, the .commands listed in the procedure are executed in the
order they appear.

The rules entering commands in command procedures are listed in
Section 1 of the command dictionary.

8-1

8.1.2

Additional Convenience Features
8.1 Using Debugger Command Procedures

You can pass parameters to a command procedure. See Section 8.1.2 for
conventions on passing parameters.

You can enter the @ command like any other debugger command-that is,
directly from the terminal, from within another command procedure, from
within a DO clause in a command such as SET BREAK, or from within a
DO clause in a screen display definition.

If you do not supply a full file specification with the @ command,
the debugger assumes SYS$DISK:[]DEBUG.COM as the default file
specification for command procedures. For example, you would enter the
following command line to execute command procedure BREAK.7.COM,
located in your current default directory:

DBG> @BREAK7

The SET ATSIGN command enables you to change any or all fields of the
default file specification, SYS$DISK:[]DEBUG.COM. The command SHOW
ATSIGN identifies the default file specification for command procedures.

By default, commands read from a command procedure are not echoed. If
you enter the command SET OUTPUT VERIFY, all commands read from a
command procedure are echoed on the current output device, as specified
by DBG$0UTPUT (the default output device is SYS$0UTPUT). Use the
SHOW OUTPUT command to determine whether commands read from a
command procedure are echoed or not.

If the execution of a command in a command procedure results in a
diagnostic of severity "warning" or greater, the command is aborted, but
execution of the command procedure continues at the next command line.

Passing Parameters to Command Procedures

8-2

As with DCL command procedures, you can pass parameters to debugger
command procedures. However, the technique is different in several
respects.

Subject to the conventions described here, you can pass as many
parameters as you want to a debugger command procedure. The
parameters can be address expressions, commands, or value expressions in
the current language. You must surround command strings in quotation
marks ("),and you must separate parameters by commas (,).

A debugger command procedure to which you pass parameters must
contain a DECLARE command line that binds each actual (passed)
parameter to a formal parameter (a symbol) declared within the command
procedure.

The DECLARE command is valid only within a command procedure. Its
format is as follows:

DECLARE p-name:p-kind [,p-name:p-kind [, ...]]

Each p-name:p-kind pair associates a formal parameter (p-name) with a
parameter kind (p-kind). The valid p-kind keywords are as follows:

Additional Convenience Features
8.1 Using Debugger Command Procedures

ADDRESS Causes the actual parameter to be interpreted as an address
expression.

COMMAND
VALUE

Causes the actual parameter to be interpreted as a command.

Causes the actual parameter to be interpreted as a value expression
in the current language.

The following example illustrates what happens when a parameter is
passed to a command procedure. The command DECLARE K:ADDRESS,
within command procedure EXAM.COM, declares the formal parameter K
The actual parameter passed to EXAM.COM is interpreted as an address
expression. The command EXAMINE K displays the value of that address
expression. The command SET OUTPUT VERIFY causes the commands
to echo when they are read by the debugger.

! ***** Debugger Command Procedure EXAM.COM *****
SET OUTPUT VERIFY
DECLARE K:ADDRESS
EXAMINE K

The next command line executes EXAM.COM, passing the actual
parameter ARR4. Within EXAM.COM, ARR4 is interpreted as an address
expression (an array variable, in this case).

DBG> @EXAM ARR4
%DEBUG-I-VERIFYIC, entering command procedure EXAM

DECLARE K:ADDRESS
EXAMINE K

PROG_8\ARR4
(1): 18
(2): 1
(3): 0
(4): 1

%DEBUG-I-VERIFYIC, exiting command procedure EXAM
DBG>

Each p-name:p-kind pair specified by a DECLARE command binds one
parameter. So, for instance, if you want to pass five parameters to a
command procedure, you need five corresponding p-name:p-kind pairs.
The pairs are always processed in the order in which you specify them.

For example, the next command procedure, EXAM_GO.COM accepts two
parameters, an address expression (L) and a command string (M). The
address expression is then examined and the command is executed:

! ***** Debugger Command Procedure EXAM GO.COM *****
DECLARE L:ADDRESS, M:COMMAND
EXAMINE L; M

The following example shows how you could execute EXAM_GO.COM,
passing a variable X to be examined and a command @DUMP.COM to be
executed:

DBG> @EXAM_GO X, "@DUMP"

The %PARCNT built-in symbol, which can be used only within a command
procedure, enables you to pass a variable number of parameters to a
command procedure. The value of %PARCNT is the number of actual
parameters passed to the command procedure.

8-3

Additional Convenience Features
8.1 Using Debugger Command Procedures

The %PARCNT built-in symbol is illustrated in the following example. The
command procedure, VAR.DBG, contains the following lines:

! ***** Debugger Command Procedure VAR.DEG
SET OUTPUT VERIFY

! Display the number of parameters passed:
EVALUATE %PARCNT
! Loop as needed to bind all passed parameters and obtain their values:
FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)

The following command line executes VAR.DBG, passing the parameters
12, 37, and 45:

DEG> @VAR.DEG 12,37,45
%DEEUG-I-VERIFYIC, entering command procedure VAR.DEG
! Display the number of parameters passed:
EVALUATE %PARCNT
3
! Loop as needed to bind all passed parameters and obtain their values:
FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)
12
37
45
%DEEUG-I-VERIFYIC, exiting command procedure VAR.DEG
DEG>

When VAR.DBG is executed, %PARCNT has the value 3. Therefore, the
FOR loop within VAR.DBG is repeated 3 times. The FOR loop causes the
DECLARE command to bind each of the three actual parameters (starting
with 12) to a new declaration of X. Each actual parameter is interpreted as
a value expression in the current language, and the command EVALUATE
X displays that value.

8.2 Using a Debugger Initialization File

8-4

A debugger initialization file is a command procedure, assigned the logical
name DBG$INIT, that the debugger automatically executes at debugger
start up. Every time you invoke the debugger, the commands contained in
the file are automatically executed.

An initialization file contains any command lines you might always
enter at the start of a debugging session to either tailor your debugging
environment or control the execution of your program in a predetermined
way from run to run.

For example, you might have a file DEBUG_START4.COM containing the
following commands:

Additional Convenience Features
8.2 Using a Debugger Initialization File

! ***** Debugger Initialization File DEBUG START4.COM *****
! Log debugging session into default log flle (SYS$DISK: []DEBUG.LOG)
SET OUTPUT LOG

! Echo commands as they are read from command procedures:
SET OUTPUT VERIFY

! If source files are not in current default directory, use [SMITH.SHARE]
SET SOURCE [],[SMITH.SHARE]

! Invoke screen mode:
SET MODE SCREEN

! Define the symbol SB as the command SET BREAK:
DEFINE/COMMAND SB = "SET BREAK"

! Assign the command SHOW MODULE * to keypad key 7:
DEFINE/KEY/TERMINATE KP7 "SHOW MODULE *"

To make this file a debugger initialization file, use the DCL command
DEFINE. For example:

$ DEFINE DBG$INIT WORK: [JONES.DBGCOMFILES]DEBUG_START4.COM

8.3 Logging a Debugging Session into a File
A debugger log file maintains a history of a debugging session. During
the debugging session, each command entered and the resulting debugger
output are stored in the file.

The following is an example of a debugger log file.

SHOW OUTPUT
!noverify, terminal, noscreen_log, logging to DSK2: [JONES.P7]DEBUG.LOG;l
SET STEP NOSOURCE
SET TRACE %LINE 30
SET BREAK %LINE 60
SHOW TRACE
!tracepoint at PROG4\%LINE 30
GO
!trace at PROG4\%LINE 30
!break at PROG4\%LINE 60

The DBG> prompt is not recorded, and the debugger output is commented
out with exclamation points so the file can be used as a debugger command
procedure without modification. Thus, if a lengthy debugging session is
interrupted, you can execute the log file as you would any other debugger
command procedure. Executing the log file restores the debugging session
to the point at which it was previously terminated.

To create a debugger log file, use the command SET OUTPUT LOG. By
default, the debugger writes the log to SYS$DISK:[]DEBUG.LOG. To
name a debugger log file, use the SET LOG command. You can

8-5

Additional Convenience Features
8.3 Logging a Debugging Session into a File

override any field of the default file specification. For example, after you
enter the following commands, the debugger logs the session to the file
[JONES.WORK2]MONITOR.LOG:

DBG> SET LOG [JONES.WORK2]MONITOR
DBG> SET OUTPUT LOG

You might want to enter the SET OUTPUT LOG command in your
debugger initialization file (see Section 8.2).

The SHOW LOG command reports whether the debugger is writing to a
log file and identifies the current log file. The SHOW OUTPUT command
identifies all current output options.

If you are debugging in screen mode, the SET OUTPUT SCREEN_LOG
command enables you to log the screen contents as the screen is updated.
To use this command, you must already be logging your debugging
session-that is, the command SET OUTPUT SCREEN_LOG is valid
only after you have entered the command SET OUTPUT LOG. Note that
using SET OUTPUT SCREEN_LOG is not desirable for a long debugging
session, because storing screen information in this manner results in a big
log file. For other techniques on saving screen-mode information, see also
the descriptions of the commands SAVE and EXTRACT in Chapter 7 and
in the command dictionary.

If you plan to use a log file as a command procedure, you should first enter
the command SET OUTPUT VERIFY so that debugger commands are
echoed as they are read.

8.4 Defining Symbols for Commands, Address Expressions, and Values

8-6

The DEFINE command enables you to create a symbol for a lengthy or
often-repeated command sequence or address expression and to store the
value of a language expression in a symbol.

You specify the kind of symbol you want to define by the command
qualifier you use with the DEFINE command (!COMMAND, /ADDRESS,
or NALUE). The default qualifier is /ADDRESS. If you plan to enter
several DEFINE commands with the same qualifier, you can first use the
SET DEFINE command to establish a new default qualifier (for example,
SET DEFINE COMMAND makes the DEFINE command behave like
DEFINE/COMMAND). The SHOW DEFINE command identifies the
default qualifier currently in effect.

Use the SHOW SYMBOL/DEFINED command to identify symbols you
have defined with the DEFINE command. Note that the SHOW SYMBOL
command without the /DEFINED qualifier identifies only the symbols that
are defined in your program, such as the names of routines and variables.

Use the DELETE command to DELETE symbol definitions created with
the DEFINE command.

When defining a symbol within a command procedure, use the /LOCAL
qualifier to confine the symbol definition to that command procedure.

8.4.1

8.4.2

Additional Convenience Features
8.4 Defining Symbols for Commands, Address Expressions, and Values

Defining Symbols for Commands
Use the DEFINE/COMMAND command to equate one or more commands
(actually, strings) to a shorter symbol. The basic syntax is illustrated in
the following example.

DBG> DEFINE/COMMAND SB = "SET BREAK"
DBG> SB PARSER

In the example, the DEFINE/COMMAND command equates the symbol
SB to the string SET BREAK (note the use of the quotation marks to
delimit the command string). When the command line SB PARSER is
executed, the debugger substitutes the string SET BREAK for the symbol
SB and then executes the SET BREAK command.

In the following example, the DEFINE/COMMAND command equates
the symbol BT to the string consisting of the command SHOW BREAK
followed by the command SHOW TRACE (use semicolons to separate
multiple command strings):

DBG> DEFINE/COMMAND BT = "SHOW BREAK; SHOW TRACE"

The SHOW SYMBOL/DEFINED command identifies the symbol BT as
follows:

DBG> SHOW SYM/DEFINED BT
defined BT

DBG>

bound to: "SHOW BREAK;SHOW TRACE"
was defined /command

To define complex commands, you might need to use command procedures
with parameters (see Section 8.1.2 for information about passing
parameters to command procedures). For example:

DBG> DEFINE/COMMAND DUMP= "@DUMP_PROG2.COM"

Defining Symbols for Address Expressions
Use the DEFINE/ADDRESS command to equate an address expression to
a symbol. Although /ADDRESS is the default qualifier for the DEFINE
command, it is used in the following examples for emphasis.

In the following example, the symbol Bl is equated to the address ofline
378; the command SET BREAK Bl then sets a breakpoint on line 378.

DBG> DEFINE/ADDRESS Bl = %LINE 378
DBG> SET BREAK Bl

The DEFINE/ADDRESS command is useful when you need to specify a
long path name repeatedly to reference the name of a variable or routine
that is defined multiple times. In the next example, the symbol UX is
equated to the path name SCREEN_IO\ UPDATE\X; the abbreviated
command line EXAMINE UX can then be used to obtain the value of X in
routine UPDATE of module SCREEN_IO.

DBG> DEFINE UX = SCREEN_IO\UPDATE\X
DBG> EXAMINE UX

8-7

8.4.3

Additional Convenience Features
8.4 Defining Symbols for Commands, Address Expressions, and Values

Defining Symbols for Values
Use the DEFINENALUE command to equate the current value of a
language expression to a symbol (the current value is the value at the
time the DEFINENALUE command was entered).

The following example illustrates how the DEFINENALUE command can
be used to count the number of calls to a routine.

DBG> DEFINE/VALUE COUNT = 0
DBG> SET TRACE/SILENT ROUT DO (DEFINE/VALUE COUNT = COUNT + 1)
DBG> GO

DBG> EVALUATE COUNT
14
DBG>

In the example, the first DEFINENALUE command initializes the value
of the symbol COUNT to 0. The SET TRACE command sets a silent
tracepoint on routine ROUT and (through the DO clause) increments
the value of COUNT by 1 every time ROUT is called. After execution is
resumed and eventually suspended, the EVALUATE command obtains the
current value of COUNT (the number of times that ROUT was called).

8.5 Assigning Commands to Function Keys

8.5.1

To facilitate entering commonly used commands, the function keys on the
keypad have predefined debugger functions that are established when you
invoke the debugger. These predefined functions are identified in detail
in Appendix B. You can modify the functions of the keypad keys to suit
your individual needs. If you have a VT200- or VT300-series terminal or a
workstation, you can also bind commands to the additional function keys
on the LK201 keyboard.

The debugger commands DEFINE/KEY, SHOW KEY, and DELETE/KEY
enable you to assign, identify, and delete key definitions, respectively.
Before you can use this feature, keypad mode must be enabled with the
SET MODE KEYPAD command (keypad mode is enabled by default).
Keypad mode also enables you to use the predefined functions of the
keypad keys.

If you want to use the keypad keys to enter numbers rather than debugger
commands, enter the command SET MODE NOKEYPAD.

Basic Conventions

8-8

The debugger DEFINE/KEY command, which is similar to the DCL
DEFINE/KEY command, enables you to assign a string to a function key.
In the following example, the DEFINE/KEY command defines keypad key
7 to enter and execute the command SHOW MODULE *:

DBG> DEFINE/KEY/TERMINATE KP7 "SHOW MODULE *"
%DEBUG-I-DEFKEY, DEFAULT key KP7 has been defined
DBG>

8.5.2

Additional Convenience Features
8.5 Assigning Commands to Function Keys

The !TERMINATE qualifier indicates that pressing key 7 executes the
command. You do not have to press Return after pressing key 7.

KP7 is the key name that you must use with the commands DEFINE/KEY,
SHOW KEY, and DELETE/KEY. The valid key names that you can use
with these commands are listed in the command dictionary for VT52
and VTlOO-series terminals and for LK201 keyboards (see the command
descriptions).

The same function key can be assigned any number of definitions as long
as each definition is associated with a different state. The predefined
states (DEFAULT, GOLD, BLUE, and so on) are identified in Appendix B.
In the preceding example, the informational message indicates that key 7
has been defined for the DEFAULT state (which is the default key state).

You can enter key definitions in a debugger initialization file (see
Section 8.2) so that these definitions are available whenever you invoke
the debugger.

To display a key definition in the current state, enter the command SHOW
KEY. For example:

DBG> SHOW KEY KP 7

DEFAULT keypad definitions:
KP7 = "SHOW MODULE *" (echo,terminate,nolock)

DBG>

To display a key definition in a state other than the current state, specify
that state with the /STATE qualifier when entering the SHOW KEY
command. To see all key definitions in the current state, enter the
command SHOW KEY/ALL.

To delete a key definition, use the DELETE/KEY command. To delete a
key definition in a state other than the current state, specify that state
with the /STATE qualifier. For example:

DBG> DELETE/KEY/STATE=GOLD KP7
%DEBUG-I-DELKEY, GOLD key KP7 has been deleted
DBG>

Advanced Techniques
This section illustrates more advanced techniques for defining keys,
particularly techniques related to the use of state keys.

The following command line assigns the unterminated command string
11 SET BREAK %LINE 11 to keypad key 9, for the BLUE state.

DBG> DEFINE/KEY/IF_STATE=BLUE KP9 "SET BREAK %LINE"

The predefined DEFAULT key state is established by default. The
predefined BLUE key state is established by pressing keypad key PF4.
You would enter the command line assigned in the preceding example
(SET BREAK %LINE ...) by pressing key PF4 then key 9, then entering
a line number, then pressing the Return key to terminate and process the
command line.

8-9

Additional Convenience Features
8.5 Assigning Commands to Function Keys

The SET KEY command enables you to change the default state for
key definitions. For example, after entering the command SET KEY
/STATE=BLUE, you would not need to press PF4 to enter the command
line in the previous example. Also, the SHOW KEY command would show
key definitions in the BLUE state, by default, and the DELETE/KEY
command would delete key definitions in the BLUE state by default.

You can create additional key states. For example:

DBG> SET KEY/STATE=DEFAULT
DBG> DEFINE/KEY/SET_STATE=RED/LOCK_STATE F12

In this example, the SET KEY command establishes DEFAULT as the
current state. The DEFINE/KEY command makes key F12 (LK201
keyboard) a state key. As a result, pressing F12 while in the DEFAULT
state causes the current state to become RED. The key definition is not
terminated and has no other effect (a null string is assigned to F12). After
pressing Fl2, you can enter "RED" commands by pressing keys that have
definitions associated with the RED state.

8.6 Using Control Structures to Enter Commands

8.6.1

8.6.2

FOR Command

The FOR, IF, REPEAT, and WHILE commands enable you to create
looping and conditional constructs for entering debugger commands.
The associated command EXITLOOP is used to exit a FOR, REPEAT, or
WHILE loop.

See Section 4.1.5 and Section 9.3.2.2 for information about evaluating
language expressions.

The FOR command executes a sequence of commands while incrementing
a variable a specified number of times. It has the following format:

FOR name=expression1 TO expression2 [BY expression3] DO(command[; . . .]}

IF Command

8-10

For example, the following command line sets up a loop that initializes the
first 10 elements of an array to zero:

DBG> FOR I = 1 TO 10 DO (DEPOSIT A(I) = 0)

The IF command executes a sequence of commands if a language
expression (Boolean expression) is evaluated as true. It has the following
format:

IF boolean-expression THEN (command[; . . .]) [ELSE (command[; . . .])]

The following FORTRAN example sets up a condition that issues the
command EXAMINE X2 if Xl is not equal to -9.9, and issues the
command EXAMINE Yl otherwise:

DBG> IF Xl .NE. -9.9 THEN (EXAMINE X2) ELSE (EXAMINE Yl)

8.6.3

8.6.4

8.6.5

Additional Convenience Features
8.6 Using Control Structures to Enter Commands

The following Pascal example combines a FOR loop and a condition test.
The STEP command is issued ifXl is not equal to -9.9. The test is made
four times:

DBG> FOR COUNT= 1 TO 4 DO (IF Xl <> -9.9 THEN (STEP))

REPEAT Command
The REPEAT command executes a sequence of commands a specified
number of times. It has the following format:

REPEAT language-expression DO (command[; . . .])

For example, the following command line sets up a loop that issues a
sequence of two commands (EXAMINE Y then STEP) 10 times:

DBG> REPEAT 10 DO (EXAMINE Y; STEP)

WHILE Command
The WHILE command executes a sequence of commands while the
language expression (Boolean expression) you have specified evaluates
as true. It has the following format:

WHILE boolean-expression DO (command[; . . .])

The following Pascal example sets up a loop that tests Xl and X2
repetitively and issues the two commands EXAMINE X2 and STEP if
X2 is less than Xl:

DBG> WHILE X2 < Xl DO (EX X2;STEP)

EXITLOOP Command
The EXITLOOP command exits one or more enclosing FOR, REPEAT, or
WHILE loops. It has the following format:

EXITLOOP [n]

The integer n specifies the number of nested loops to exit from.

The following Pascal example sets up an endless loop that issues a STEP
command with each iteration. After each step, the value of X is tested. If
Xis greater than 3, the EXITLOOP command terminates the loop.

DBG> WHILE TRUE DO (STEP; IF X > 3 THEN EXITLOOP)

8.7 Calling Routines Independently of Program Execution
The CALL command enables you to execute a routine independently of
the normal execution of your program. It is one of the four debugger
commands that can be used to execute your program (the others are GO,
STEP, and EXIT).

8-11

Additional Convenience Features
8.7 Calling Routines Independently of Program Execution

The CALL command executes a routine whether or not your program
actually includes a call to that routine, so long as the routine was linked
with your program. Thus you can use the CALL command to execute
routines for any purpose (for example, to debug a routine out of the
context of program execution, invoke a run-time library procedure, execute
a routine that dumps debugging information, and so on).

You can debug unrelated routines by linking them with a dummy main
program that has a transfer address, and then using the CALL command
to execute them.

The following example shows how you could use the CALL command to
display some process statistics without having to include the necessary
code in your program. The example consists of calls to run-time library
routines that initialize a timer (LIB$INIT_TIMER) and display the elapsed
time and various statistics (LIB$SHOW _TIMER). (Note that the presence
of the debugger affects the timings and counts):

DBG> SET MODULE SHARE$LIBRTL 0
DBG> CALL LIB$INIT TIMER 8
value returned is l fD
DBG> [enter various debugger commands]

DBG> CALL LIB$SHOW_TIMER 8
ELAPSED: 0 00:00:21.65 CPU: 0:14:00.21 BUFIO: 16 DIRIO: 0 FAULTS: 3

value returned is 1
DBG>

The comments that follow refer to the callouts in the previous example:

0 Routines LIB$INIT_TIMER and LIB$SHOW_TIMER are in the
shareable image LIBRTL. This image must be set by setting its
"module" because only its universal symbols are accessible during a
debugging session (see Section 5.4.2.3).

8 This CALL command executes routine LIB$INIT_TIMER.

8 The "value returned" message indicates the value returned in register
RO after the CALL command has been executed.

By VMS convention, after a called routine has executed, register RO
contains the function return value (if the routine is a function) or the
procedure completion status (if the routine is a procedure that returns
a status value). If a called procedure does not return a status value or
function value, the value in RO might be meaningless, and the "value
returned" message can be ignored.

8 This CALL command executes routine LIB$SHOW _TIMER.

The following example shows how to call LIB$SHOW _ VM (also in
LIBRTL) to display memory statistics. (Again, note that the presence
of the debugger affects the counts):

DBG> SET MODULE SHARE$LIBRTL
DBG> CALL LIB$SHOW_VM

1785 calls to LIB$GET VM, 284 calls to LIB$FREE_VM, 122216 bytes still allocated
value returned is 1 -
DBG>

8-12

Additional Convenience Features
8. 7 Calling Routines Independently of Program Execution

You can pass parameters to routines with the CALL command. See the
description of the CALL command in the command dictionary for details
and examples.

8-13

g Debugging Special Cases

This chapter presents debugging techniques for special cases that are not
covered elsewhere in this manual:

• Optimized code

• Screen-oriented programs

• Multilanguage programs

• Exceptions and condition handlers

• Exit handlers

• AST-driven programs

9.1 Debugging Optimized Code
By default, many compilers optimize the code they produce so that the
program executes faster. The net result is that the code that is executing
as you debug might not match the source code displayed in a screen-mode
source display (see Section 7.2.1) or in a source listing file. For example,
some optimization techniques eliminate variables so that you no longer
have access to them while debugging.

To avoid the problems of debugging optimized code, many compilers allow
you to specify the /NOOPTIMIZE (or equivalent) command qualifier at
compile time. Specifying this qualifier inhibits most compiler optimization,
thereby reducing discrepancies between the source code and executable
code caused by optimization.

If this option is not available to you, read this section. It describes the
techniques for debugging optimized code and gives some typical examples
of optimized code to illustrate the potential causes of confusion.

When debugging optimized code, use a screen-mode instruction display,
such as the predefined display INST, to show the decoded VAX assembly
language instruction stream of your program (see Section 7 .2.4). An
instruction display shows the exact code that is executing.

In screen mode, pressing keypad key 7 places the SRC and INST displays
side by side for easy comparison. Alternatively, you can inspect a compiler
generated machine code listing.

In addition, to execute the program at the instruction level and examine
instructions, use the techniques described in Section 4.3.

Using these methods, you should be able to determine what is happening
at the executable code level and thereby resolve the discrepancy between
source display and program behavior.

9-1

9.1.1

Debugging Special Cases
9.1 Debugging Optimized Code

Eliminated Variables

9-2

A compiler might optimize code by eliminating variables, either
permanently or temporarily at various points during execution. If
you try to examine a variable X that no longer is accessible because of
optimization, the debugger might display one of the following messages:

%DEBUG-W-UNALLOCATED, entity X was not allocated in memory
(was optimized away)

%DEBUG-W-NOVALATPC, entity X does not have a value at the
current PC (was optimized away)

The following Pascal example shows how this could happen.

PROGRAM DOC(OUTPUT);
VAR

X,Y: INTEGER;
BEGIN

x := 5;
y := 2;
WRITELN(X*Y);

END.

If you compile this program with the /NOOPTIMIZE (or equivalent)
qualifier, you obtain the following (normal) behavior when debugging:

$ PASCAL/DEBUG/NOOPTIMIZE DOC
$ LINK/DEBUG DOC
$ RUN DOC

DBG> STEP
stepped to DOC\%LINE 5

5: x := 5;
DBG> STEP
stepped to DOC\%LINE 6

6: y := 2;
DBG> STEP
stepped to DOC\%LINE 7

7: WRITELN(X*Y);
DBG> EXAMINE X, Y
DOC\X: 5
DOC\Y: 2
DBG>

If you compile the program with the /OPTIMIZE (or equivalent) qualifier,
because the values of X and Y are not changed after the initial assignment,
the compiler calculates X*Y, stores that value (10), and does not allocate
storage for X or Y. Therefore, after you invoke the debugger, a STEP
command takes you directly to line 7 rather than line 5. Moreover, you
cannot examine X or Y:

9.1.2

Debugging Special Cases
9.1 Debugging Optimized Code

$ PASCAL/DEBUG/OPTIMIZE DOC
$ LINK/DEBUG DOC
$ RUN DOC

DBG> EXAMINE X, Y
%DEBUG-W-NOVALATPC, entity X does not have a value at the

current PC (was optimized away)
DBG> STEP
stepped to DOC\%LINE 7

7: WRITELN(X*Y);
DBG>

To see what values are being used in your optimized program, use the
command EXAMINE/OPERAND .%PC to display the machine code at
the current PC value, including the values and symbolization of all of the
operands. For example, the following lines show the optimized code when
the PC value is at the WRITELN statement:

DBG> STEP
stepped to DOC\%LINE 7

7: WRITELN(X*Y);
DBG> EXAMINE/OPERAND . %PC
DOC\%LINE 7: PUSHL SA#lO
DBG>

In contrast, the following lines show the unoptimized code at the
WRITELN statement:

DBG> STEP
stepped to DOC\%LINE 7

7: WRITELN(X*Y);
DBG> EXAMINE/OPERAND . %PC
DOC\%LINE 7: MOVL SA#l0,BA-4(FP)

BA-4(FP) 2146279292 contains 62914576
DBG>

Changes in Coding Order
Several methods of optimizing consist of performing operations in a
sequence different from the sequence specified in the source code.
Sometimes code is eliminated altogether.

As a result, the source code displayed by the debugger does not correspond
exactly to the actual code being executed.

To illustrate, the following example depicts a segment of source code from
a FORTRAN program as it might appear on a compiler listing or in a
screen-mode source display. This code segment sets the first ten elements
of array A to the value l/X.

Line Source Code

5 DO 100 I=l,10
6 A(I) = 1/X
7 100 CONTINUE

9-3

9.1.3

Debugging Special Cases
9.1 Debugging Optimized Code

Use of Registers

9-4

As the compiler processes the source program, it determines that the
reciprocal of X need only be computed once, not ten times as the source
code specifies, because the value of X never changes in the DO-loop. The
compiler thus generates optimized code equivalent to the following code
segment:

Line Optimized Code Equivalent

5 TEMP = 1/X
DO 100 I=l,10

6 A(I) = TEMP
7 100 CONTINUE

In the optimized code, the value of 1/X is computed once, saved in a
temporary location, and then assigned to each A(l). The optimized code
now executes faster, but it no longer corresponds exactly to the source
code.

In this example, if you execute to line 5 by entering a STEP command, the
debugger displays the source line as it appears in the source file, not the
optimized code equivalent that it is actually executing.

stepped to PROG_\%LINE 5
5: DO 100 I=l,10

At this point, if you enter another STEP command to execute line 5, the
debugger executes line 5 of the optimized code, not line 5 of the displayed
source code. Thus, the program computes the reciprocal of X and sets up
the DO loop, whereas the source display indicates only that the DO loop is
set up.

This discrepancy is not obvious from looking at the displayed source line.
Furthermore, if the computation of l/X were to fail because X is zero, it
would appear from inspecting the source display that a division by zero
had occurred on a source line that contains no division at all.

This kind of apparent mismatch between source code and executable code
should be expected from time to time when debugging optimized programs.
It can be caused not only by code motions out of loops, as in the previous
example, but by a number of other optimization methods as well.

A compiler might determine that the value of an expression does not
change between two given occurrences and might save the value in a
register. In such cases, the compiler does not recompute the value for the
next occurrence, but assumes the value saved in the register is valid.

If, while debugging a program, you use the DEPOSIT command to change
the value of the variable in the expression, the corresponding value stored
in the register might not be changed. Thus, when execution continues, the
value in the register might be used instead of the changed value in the
expression, causing unexpected results.

In addition, when the value of a nonstatic variable (see Section 3.6.2) is
held in a register, its value in memory is generally invalid; therefore, a
spurious value might be displayed if you enter the EXAMINE command
for a variable under these circumstances.

9.1.4 Use of Condition Codes

Debugging Special Cases
9.1 Debugging Optimized Code

One optimization technique takes advantage of the way in which the VAX
processor condition codes are set. For example, consider the following
Pascal source code:

x := x + 2.5;
IF X < 0
THEN

Rather than test the new value of X to determine whether to branch, the
optimized code bases its decision on the condition code setting after 2.5 is
added to X. Thus, if you attempt to set a breakpoint on the IF statement
and deposit a different value into X, you do not achieve the intended result
because the condition codes no longer reflect the value ofX. In other words,
the decision to branch is being made without regard to the deposited value
of the variable.

Again, you can use the command EXAMINE/OPERAND . %PC to
determine the correct location for depositing so as to achieve the desired
effect.

9.2 Debugging Screen-Oriented Programs
The debugger uses the terminal screen for input and output (I/0) during a
debugging session. If you use a single terminal to debug a screen-oriented
program that uses most or all of the screen, debugger I/O can overwrite, or
can be overwritten by, program I/O.

Using one terminal for both program I/O and debugger I/O is even more
complicated if you are debugging in screen mode and your screen-oriented
program calls any VMS RTL Screen Management (SMG$) routines. This
is because the debugger's screen mode also calls SMG routines. In such
cases, the debugger and your program share the same SMG pasteboard,
causing further interference.

To avoid these problems when debugging a screen-oriented program, use
one of the following techniques to separate debugger I/O from program I/O:

• If you are at a workstation running VWS, start your debugging session
and then enter the debugger command SET MODE SEPARATE.
It creates a separate terminal-emulator window for debugger I/O.
Program I/O continues to be displayed in the window from which you
invoked the debugger.

• If you are at a workstation running DECwindows and want to display
the debugger's DECwindows interface on a separate workstation (also
running DECwindows), see Section 1.6.3.1.

• If you are at a workstation running DECwindows but want to use the
debugger's command interface rather than the DECwindows interface,
see Section 1.6.3.3. It explains how to create a separate DECterm
window for debuger I/O. The effect is similar to using the command
SET MODE SEPARATE on a workstation running VWS.

9-5

Debugging Special Cases
9.2 Debugging Screen-Oriented Programs

9-6

• If you do not have a workstation, use two terminals-one for program
1/0 and another for debugger 1/0. The technique is described in the
rest of this section.

Assume that TTDl: is your current terminal, from which you plan to
invoke the debugger. You want to display debugger 1/0 on terminal TTD2:
so that TTDl: is devoted exclusively to program 1/0.

Follow these steps:

1 Provide the necessary protection to TTD2: so that you can allocate
that terminal from TTDl: (see Section 9.2.1).

The remaining steps are all performed from TTDl:.

2 Allocate TTD2:. This provides your process on TTDl: with exclusive
access to TTD2::

$ ALLOCATE TTD2:

3 Assign the debugger logical names DBG$INPUT and DBG$0UTPUT
to TTD2::

$ DEFINE DBG$INPUT TTD2:
$ DEFINE DBG$0UTPUT TTD2:

DBG$INPUT and DBG$0UTPUT specify the debugger input device
and output device, respectively. By default, these logical names are
equated to SYS$INPUT and SYS$0UTPUT, respectively. Assigning
DBG$INPUT and DBG$0UTPUT to TTD2: enables you to display
debugger commands and debugger output on TTD2:.

4 Make sure that the terminal type is known to the system. Use the
following command:

$ SHOW DEVICE/FULL TTD2:

If the device type is "unknown," your system manager (or a user with
LOG_IO or PHY_IO privilege) must make it known to the system
as shown in the following example. In the example, the terminal is
assumed to be a VT200:

$ SET TERMINAL/PERMANENT/DEVICE=VT200 TTD2:

5 Run the program to be debugged:

$ RUN FORMS

You can now observe debugger 1/0 on TTD2:

6 When finished with the debugging session, deallocate TTD2: as follows
(or log out):

$ DEALLOCATE TTD2:

9.2.1

Debugging Special Cases
9.2 Debugging Screen-Oriented Programs

Setting the Protection to Allocate a Terminal
On a properly secured system, terminals are protected so that you cannot
allocate a terminal from another terminal.

To set the nessary protection, your system manager (or a user with the
privileges indicated) should follow the steps illustrated in the following
example.

In the example, TTDl: is your current terminal (from which you plan to
invoke the debugger), and TTD2: is the terminal to be allocated so that it
can display debugger I/O.

1 If both TTDl: and TTD2: are hardwired to the system, go to Step 4.

If TTDl: and TTD2: are connected to the system over a LAT (local
area transport), continue with Step 2.

2 Log in to TTD2:

3 Enter these commands (you need LOG_IO or PHY_IO privilege):

$ SET PROCESS/PRIV=LOG IO
$ SET TERMINAL/NOHANG/PERMANENT
$ LOGOUT/NOHANG

4 Enter one of the following commands (you need OPER privilege):

$ SET ACL/OBJECT_TYPE=DEVICE/ACL=(IDENT=[PROJ,JONES],ACCESS=READ+WRITE) TTD2: 8
$ SET PROTECTION=WORLD:RW/DEVICE TTD2: •

8 The SET ACL command line is preferred because it uses an access
control list (ACL). In the example, access is restricted to UIC
[PROJ,JONES].

• The SET PROTECTION command line provides world read/write
access and, therefore, allows any user to allocate and perform I/O
to TTD2:.

9.3 Debugging Multilanguage Programs
The debugger enables you to debug modules whose source code is written
in different languages, within the same debugging session. This section
highlights some language specific behavior that you should be aware of, to
minimize possible confusion.

When debugging in any language, be sure to consult the documentation
supplied with that language. The chapter devoted to debugging, in
the user's guide, contains all language dependent information for that
language. See also Appendix E of this manual, which tabulates the
constructs and operators that are supported by the debugger for each
language.

9-7

9.3.1

Debugging Special Cases
9.3 Debugging Multilanguage Programs

Controlling the Current Debugger Language

9-8

At debugger startup, the debugger sets the current language to that in
which the module containing the main program (usually the routine
containing the image transfer address) is written. The current language is
identified when you invoke the debugger. For example:

$ RUN FORMS

VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is PASCAL, module set to FORMS
DBG>

The current language setting determines how the debugger parses and
interprets the names, operators, and expressions you specify in debugger
commands, including things like the typing of variables, array and record
syntax, the default radix for integer data, case sensitivity, and so on.
The language setting also determines how the debugger displays data
associated with your program.

Many programs include modules that are written in languages other than
that of the main program. To minimize confusion, by default the debugger
language remains set to the language of the main program throughout a
debugging session, even if execution is suspended within a module written
in another language.

To take full advantage of symbolic debugging with such modules, use
the SET LANGUAGE command to set the debugging context to that
of another language. For example, the following command causes the
debugger to interpret any symbols, expressions, and so on according to the
rules of the COBOL language:

DBG> SET LANGUAGE COBOL

The keywords that you can use with the SET LANGUAGE command
correspond to all of the VMS supported languages that are also supported
by the debugger:

ADA
BASIC
BLISS
c
COBOL
DIBOL
FORTRAN
MACRO
PASCAL
PLI
RPG
SCAN

In addition, when debugging a program that is written in an unsupported
language, you can specify the command SET LANGUAGE UNKNOWN. To
maximize the usability of the debugger with unsupported languages, the
SET LANGUAGE UNKNOWN command causes the debugger to accept
a large set of data formats and operators, including some that might be
specific to only a few supported languages. The operators and constructs

9.3.2

Debugging Special Cases
9.3 Debugging Multilanguage Programs

that are recognized when the language is set to UNKNOWN are identified
in Appendix E.

Specific Differences Among Languages
This section lists some of the differences you should keep in mind when
debugging in various languages. Included are differences that are affected
by the SET LANGUAGE command and other differences (for example,
language specific initialization code and predefined breakpoints).

This list is not intended to be complete. Consult your language
documentation for complete details.

9.3.2.1 Default Radix
The default radix for entering and displaying integer data is hexadecimal
for BLISS and MACRO and decimal for all other languages.

Use the SET RADIX command to establish a new default radix.

9.3.2.2 Evaluating Language Expressions
Several debugger commands and constructs evaluate language
expressions:

• The EVALUATE, DEPOSIT, IF, FOR, REPEAT, and WHILE
commands.

• WHEN clauses, which are used with the SET BREAK, SET TRACE,
and SET WATCH commands.

When processing these commands, the debugger evaluates language
expressions in the syntax of the current language and in the curr~nt radix
as discussed in Section 4.1.5.

Note that operators vary widely among different languages (see
Appendix E). For example, the following two commands evaluate
equivalent expressions in Pascal and FORTRAN, respectively:

DBG> SET WATCH X WHEN (Y < 5)
DBG> SET WATCH X WHEN (Y .LT. 5)

! Pascal
! FORTRAN

Assume that the language is set to PASCAL and you have entered the
first (Pascal) command. You now step into a FORTRAN routine, set the
language to FORTRAN, and resume execution. While the language is set
to FORTRAN, the debugger is not able to evaluate the expression (Y < 5).
As a result, it sets an unconditional watchpoint and, when the watchpoint
is triggered, returns a syntax error for the "<" operator.

This type of discrepancy can also occur if you use commands that evaluate
language expressions in debugger command procedures and initialization
files.

Note also that the debugger processes language expressions that contain
variable names (or other address expressions) differently when the
language is set to BLISS than when it is set to another language. See
Section 4.1.5 for details.

9-9

Debugging Special Cases
9.3 Debugging Multilanguage Programs

9-10

9.3.2.3 Arrays and Records
The syntax for denoting array elements and record components (if
applicable) varies among languages.

For example, some languages use brackets, [], and others use parentheses,
(), to delimit array elements.

Some languages (like BASIC) have zero-based arrays. Some languages
have one-based arrays, as in the following example:

DBG> EXAMINE INTEGER ARRAY
PROG2\INTEGER_ARRAY -

(1,1): 27
(1,2): 31
(1, 3) : 12
(2,1): 15
(2,2): 22
(2,3): 18

DBG>

For some languages (like Pascal and Ada) the specific array declaration
determines how the array is based.

9.3.2.4 Case Sensitivity
Names and language expressions are case sensitive in C. You must specify
them exactly as they appear in the source code. For example, the following
two commands are not equivalent when the language is set to C:

DBG> SET BREAK SCREEN IO\%LINE 10
DBG> SET BREAK screen=io\%LINE 10

9.3.2.5 Initialization Code
If you have a multilanguage program that includes an Ada package,
or a FORTRAN main program that was compiled with the
/CHECK=UNDERFLOW (or /CHECK=ALL) qualifier, a NOTATMAIN
message is issued when you invoke the debugger. For example:

$ RUN MONITOR

VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is ADA, module set to MONITOR
%DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

The NOTATMAIN message indicates that execution is suspended before
the beginning of the main program. This enables you to execute and check
some initialization code under debugger control.

The initialization code is created by the compiler and is placed in a special
PSECT named LIB$INITIALIZE. In the case of an Ada package, the
initialization code belongs to the package body (which might contain
statements to initialize variables, and so on). In the case of a FORTRAN
program, the initialization code declares the handler that is needed if you
specify the /CHECK=UNDERFLOW or /CHECK=ALL qualifier.

Debugging Special Cases
9.3 Debugging Multilanguage Programs

The NOTATMAIN message indicates that, if you do not want to debug the
initialization code, you can execute immediately to the beginning of the
main program by entering a GO command. You are then at the same point
as when you invoke the debugger with any other program. Entering the
GO command again starts program execution.

9.3.2.6 Ada Predefined Breakpoints

DBG> SHOW BREAK

If your program is linked with a module that is written in Ada, two
breakpoints that are associated with Ada tasking exception events are
automatically established when you invoke the debugger. Note that these
breakpoints are not affected by a SET LANGUAGE command. They are
established automatically during debugger initialization when the Ada
Run-Time Library is present. When you enter a SHOW BREAK command
under these conditions, the following breakpoints are displayed:

Predefined breakpoint on ADA event "DEPENDENTS EXCEPTION" for any value
Predefined breakpoint on ADA event "EXCEPTION TERMINATED" for any value
DBG>

9.4 Debugging Exceptions and Condition Handlers
A condition handler is a procedure that the VMS operating system
executes when an exception occurs.

Exceptions include hardware conditions (such as an arithmetic overflow or
a memory access violation) or signaled software exceptions (for example,
an exception signaled because a file could not be found).

VMS conventions specify how, and in what order, various condition
handlers established by the operating system, the debugger, or your
own program are invoked-for example, the primary handler, call
frame (application-declared) handlers, and so on. Section 9.4.3 describes
condition handling when you are using the debugger. See the VMS Run
Time Library Routines Volume for additional general information about
condition handling.

Tools for debugging exceptions and condition handlers include the
following:

• The SET BREAK/EXCEPTION and SET TRACE/EXCEPTION
commands, which direct the debugger to treat any exception generated
by your program as a breakpoint or tracepoint, respectively (see
Section 9.4.1 and Section 9.4.2).

• Several built-in symbols (such as %EXC_NAME), which enable you to
qualify exception breakpoints and tracepoints (see Section 9.4.4).

• The SET BREAK/EVENT and SET TRACE/EVENT.commands, which
enable you to break on or trace exception events that are specific to
Ada and SCAN programs (see the corresponding documentation for
more information).

9-11

9.4.1

9.4.2

Debugging Special Cases
9.4 Debugging Exceptions and Condition Handlers

Setting Breakpoints or Tracepoints on Exceptions
When you enter a SET BREAK/EXCEPTION (or SET TRACE
/EXCEPTION) command, you direct the debugger to treat any exception
generated by your program as a breakpoint (or tracepoint). As a result
of a SET BREAK/EXCEPTION command, if your program generates an
exception, the debugger suspends execution, reports the exception and
the line where execution is suspended, and prompts for commands. The
following example illustrates the effect:

DBG> SET BREAK/EXCEPTION
DBG> GO

%SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero at PC=0000066C, PSL=03C00022
break on exception preceding TEST\%LINE 13

DBG>
6: X := 3/Y;

Note that an exception breakpoint (or tracepoint) is triggered even if
your program has a condition handler to handle the exception. The
SET BREAK/EXCEPTION command causes a breakpoint to occur before
any handler can execute (and thereby possibly dismiss the exception).
Without the exception breakpoint, the handler would be executed, and the
debugger would get control only if no handler dismissed the exception (see
Section 9.4.2 and Section 9.4.3).

The following command line is useful for identifying where an exception
occurred. It causes the debugger to display automatically the sequence of
active calls and the PC value at 'an exception breakpoint.

DBG> SET BREAK/EXCEPTION DO (SET MODULE/CALLS; SHOW CALLS)

You can also create a screen-mode DO display that issues a SHOW CALLS
command whenever the debugger interrupts execution. For example:

DBG> DISPLAY CALLS DO (SET MODULE/CALLS; SHOW CALLS)

An exception tracepoint (established with the SET TRACE/EXCEPTION
command) is like an exception breakpoint followed by a GO command
without an address expression specified.

An exception breakpoint cancels an exception tracepoint, and vice versa.

To cancel exception breakpoints or tracepoints, use the CANCEL BREAK
/EXCEPTION or CANCEL TRACE/EXCEPTION command, respectively.

Resuming Execution at an Exception Breakpoint

9-12

When an exception breakpoint is triggered, execution is suspended before
any application-declared condition handler is invoked. When you resume
execution from the breakpoint with the GO, STEP, or CALL commands,
the behavior is as follows:

• Entering a GO command without an address-expression parameter,
or entering a STEP command, causes the debugger to resignal the

Debugging Special Cases
9.4 Debugging Exceptions and Condition Handlers

exception. The GO command enables you to observe which application
declared handler, if any, next handles the exception. The STEP
command causes you to step into that handler (see the next example).

• Entering a GO command with an address-expression parameter causes
execution to resume at the specified location, thus inhibiting the
execution of any application-declared handlers.

• A common debugging technique at an exception breakpoint is to call
a dump routine with the CALL command (see Chapter 8). When you
enter the CALL command at an exception breakpoint, no breakpoints,
tracepoints, or watchpoints that were previously set within the called
routine are active, so that the debugger does not lose the exception
context. After the routine has executed, the debugger prompts for
input. Entering a GO or STEP command at this point causes the
debugger to resignal the exception, as for the first bulleted item in this
list.

The following FORTRAN example shows how to determine the presence of
a condition handler at an exception breakpoint and how a STEP command,
entered at the breakpoint, enables you to step into the handler.

At the exception breakpoint, the SHOW CALLS command indicates that
the exception was generated during a call to routine SYS$QIOW:

DBG> SET BREAK/EXCEPTION
DBG> GO

%SYSTEM-F-SSFAIL, system service failure exception, status=0000013C, PC=7FFEDE06, PSL=03C00000
break on exception preceding SYS$QIOW+6
DBG> SHOW CALLS

module name

*EXC$MAIN
DBG>

routine name
SYS$QIOW
EXC$MAIN

line

23

rel PC
00000006
0000003B

abs PC
7FFEDE06
0000063B

The following SHOW STACK command indicates that no handler is
declared in routine SYS$QIOW. However, one level down the call stack,
routine EXC$MAIN has declared a handler named SSHAND:

DBG> SHOW STACK
stack frame 0 (2146296644)

condition handler: 0
SPA: 0
S: 0
mask:
PSW:

saved AP:
saved FP:
saved PC:

AM<R2,R3,R4,R5,R6,R7,R8,R9,Rl0,Rll>
0020 (hexadecimal)
2146296780
2146296704
EXC$MAIN\%LINE 25

9-13

9.4.3

Debugging Special Cases
9.4 Debugging Exceptions and Condition Handlers

DBG> STEP

stack frame 1 (2146296704)
condition handler: SSHAND

DBG>

SPA: 0
S: 0
mask:
PSW:

saved AP:
saved FP:
saved PC:

"M<Rll>
0000 (hexadecimal)
2146296780
2146296760
SHARE$DEBUG+2217

At this exception breakpoint, entering a STEP command enables you to
step directly into condition handler SSHAND:

stepped to routine SSHAND
2: INTEGER*4 FUNCTION SSHAND (SIGARGS, MECHARGS)

DBG> SHOW CALLS
module name

*SSHAND
routine name
SS HAND

line
2

rel PC abs PC
00000002 00000642

----- above condition handler called with exception 0000045C:
%SYSTEM-F-SSFAIL, system service failure exception, status=0000013C, PC=7FFEDE06, PSL=03C00000
----- end of exception message

SYS$QIOW 00000006 7FFEDE06
*EXC$MAIN EXC$MAIN 23 0000003B 0000063B
DBG>

The debugger symbolizes the addresses of condition handlers into names if
that is possible. However, note that with some languages, exceptions are
first handled by an RTL routine, before any application-declared condition
handler is invoked. In such cases, the address of the first condition
handler might be symbolized to an offset from an RTL shareable image
address.

Effect of Debugger on Condition Handling

9-14

When you run your program with the debugger, at least one of the
following condition handlers is invoked, in the order given, to handle
any exceptions caused by the execution of your program:

1 Primary handler.

2 Secondary handler.

3 Call-frame handlers (application-declared). Also known as stack
handlers.

4 Final handler.

5 Last-chance handler.

6 Catchall handler.

A handler can return one of the following three status codes to the VAX
Condition Handling Facility:

• SS$_RESIGNAL-The VMS operating system searches for the next
handler.

• SS$_CONTINUE-The condition is assumed to be corrected, and
execution continues.

Debugging Special Cases
9.4 Debugging Exceptions and Condition Handlers

• SS$_ UNWIND-The call stack is unwound some number of frames, if
necessary, and the signal is dismissed.

For more information about condition handling, see the VMS Run-Time
Library Routines Volume.

9.4.3.1 Primary Handler
When you run your program with the debugger, the primary handler is
the debugger. Therefore, the debugger has the first opportunity to handle
an exception, whether or not the exception is caused by the debugger
(Section 3. 7 describes how the debugger causes exceptions to occur in your
program in order to control and monitor execution).

If you have entered a SET BREAK/EXCEPTION or SET TRACE
/EXCEPTION command, the debugger breaks on (or traces) any exceptions
caused by your program. The break (or trace) action occurs before any
application-declared handler is invoked.

If you have not entered a SET BREAK/EXCEPTION or SET TRACE
/EXCEPTION command, the primary handler resignals any exceptions
caused by your program.

9.4.3.2 Secondary Handler
The secondary handler is used for special purposes and does not apply to
the types of programs covered in this manual.

9.4.3.3 Call-Frame Handlers (Application-Declared)
Each routine of your program can establish a condition handler, also
known as a call-frame handler. The operating system searches for these
handlers starting with the routine that is currently executing. If no
handler was established for that routine, the system searches for a handler
established by the next routine down the call stack, and so on back to the
main program, if necessary.

After it is invoked, a handler might perform one of the following actions:

• It handles the exception, thus allowing the program to continue
execution.

• It resignals the exception. The operating system then searches for
another handler down the call stack.

• It encounters a breakpoint or watchpoint, thereby suspending
execution at the breakpoint or watchpoint.

• It generates its own exception. In this case, the primary handler is
invoked again.

• It exits, thus terminating program execution.

9-15

9.4.4

Debugging Special Cases
9.4 Debugging Exceptions and Condition Handlers

9.4.3.4 Final and Last-Chance Handlers
These handlers are controlled by the debugger. They enable the
debugger to ultimately regain control and display the DBG> prompt if
no application-declared handler has handled an exception. Otherwise, the
debugging session would terminate, and control would pass to the DCL
command interpreter.

The final handler is the last frame on the call stack and the first of
these two handlers to be invoked. The following example illustrates what
happens when an unhandled exception is propagated from an exception
breakpoint to the final handler:

DBG> SET BREAK/EXCEPTION
DBG> GO

%SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero at PC=0000066C, PSL=03C00022
break on exception preceding TEST\%LINE 13

6: X := 3/Y;
DBG> GO
%SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero at PC=0000066C, PSL=03C00022
DBG>

DBG> DEPOSIT %FP = 10
DBG> GO

In this example, the first INTDIV message is issued by the primary
handler, and the second is issued by the final handler, which then displays
the DBG> prompt.

The last-chance handler is invoked only if the final handler cannot gain
control because the call stack is corrupted. For example:

%SYSTEM-F-ACCVIO, access violation, reason mask=OO, virtual address=OOOOOOOA, PC=0000319C, PSL=03COOOOO
%DEBUG-E-LASTCHANCE, stack exception handlers lost, re-initializing stack
DBG>

The catchall handler, which is part of the VMS operating system, is
invoked if the last-chance handler cannot gain control. The catchall
handler produces a register dump. This should never occur if the debugger
has control of your program. But it can occur if your program encounters
an error when running without the debugger.

If, during a debugging session, you observe a register dump and are
returned to DCL level, submit an SPR to Digital.

Exception-Related Built-In Symbols

9-16

When an exception is signaled, the debugger sets the following exception
related built-in symbols.

DBG> EVALUATE %EXC NAME
I ACCVIO'

Debugging Special Cases
9.4 Debugging Exceptions and Condition Handlers

Symbol

%EXC _FACILITY

%EXC_NAME

%ADAEXC_NAME

%EXC_NUMBER

%EXC_SEVERITY

Description

Name of facility that issued the current exception

Name of current exception

Ada exception name of current exception (for Ada programs
only)

Number of current exception

Severity code of current exception

You can use these symbols as follows:

• To obtain information about the fields of the VMS condition code of the
current exception.

• To qualify exception breakpoints (or tracepoints) so that they trigger
only on certain kinds of exceptions.

The following examples illustrate the use of some of these symbols. Note
that the conditional expressions in the WHEN clauses are language
specific:

DBG> SET TRACE/EXCEPTION WHEN (%EXC_NAME = "ACCVIO")
DBG> EVALUATE %EXC FACILITY
'SYSTEM'
DBG> EVALUATE %EXC NUMBER
12 -
DBG> EVALUATE/CONDITION __ VALUE %EXC_NUMBER
%SYSTEM-F-ACCVIO, access violation, reason rnask=Ol, virtual address=FFFFFF30, PC=00007552, PSL=03C00000
DBG> SET BREAK/EXCEPTION WHEN (%EXC NUMBER = 12)
DBG> SET BREAK/EXCEPTION WHEN (%EXC~::SEVERITY .NE. "I" .AND. %EXC SEVERITY .NE. "S")

9.5 Debugging Exit Handlers
Exit handlers are procedures that are called whenever an image requests
the $EXIT system service or runs to completion. A user program can
declare one or more exit handlers. The debugger always declares its own
exit handler.

At program termination, the debugger exit handler executes after all
application-declared exit handlers have executed.

To debug an application-declared exit handler, proceed as follows:

1 Set a breakpoint in that exit handler.

2 Cause the exit handler to execute, by means of one of the following
techniques:

• Include in your program an instruction that invokes the exit
handler (usually a call to $EXIT).

• Allow your program to terminate.

• Enter the EXIT command. (Note that the QUIT command does not
execute any user declared exit handlers.)

When the exit handler executes, the breakpoint is activated and
control is then returned to the debugger, which prompts for commands.

9-17

Debugging Special Cases
9.5 Debugging Exit Handlers

The SHOW EXIT_HANDLERS command gives a display of the exit
handlers that your program has declared. The exit handler routines
are displayed in the order that they are called. A routine name is
displayed symbolically, if possible. Otherwise its address is displayed.
The debugger's exit handlers are not displayed. For example:

DBG> SHOW EXIT HANDLERS
exit handler a~STACKS\CLEANUP
exit handler at BLIHANDLER\HANDLERl
DBG>

9.6 Debugging AST-Driven Programs

9.6.1

9.6.2

A program can use asynchronous system traps (ASTs) either explicitly,
or implicitly by calling VMS system services or RTL routines that call
application-defined AST routines. Section 9.6.1 explains how to facilitate
debugging by disabling and enabling the delivery of ASTs originating with
your program. Section 9.6.2 explains how delivery of an AST affects a
SHOW CALLS display.

Disabling and Enabling the Delivery of ASTs
Debugging AST-driven programs can be confusing because interrupts
originating from the program being debugged can occur, but are not
processed, ,while the debugger is running (processing commands, tracing
execution, displaying information, and so on).

By default, the delivery of ASTs is enabled while the program is running.
The command DISABLE AST disables the delivery of ASTs while the
program is running and causes any such potential interrupts to be queued.

The delivery of ASTs is always disabled when the debugger is running.

The command ENABLE AST reenables the delivery of ASTs, including any
pending ASTs. The command SHOW AST indicates whether the delivery
of ASTs is enabled or disabled.

To control the delivery of ASTs during the execution of a routine called
with the CALL command, use the /[NOJAST qualifiers. The command
CALL/ AST enables the delivery of ASTs in the called routine. The
command CALL/NOAST disables the delivery of ASTs in the called
routine. If you do not specify I AST or /NOAST with the CALL command,
the delivery of ASTs is enabled unless you have previously entered the
command DISABLE AST.

Call Frames Associated with ASTs in SHOW CALLS Display

9-18

The delivery of an AST creates one or more special call frames that appear
in a SHOW CALLS display. These call frames are not symbolized and
might make the SHOW CALLS display confusing. The following example
illustrates what you might see in a SHOW CALLS display when an AST
routine is on the call stack.

Debugging Special Cases
9.6 Debugging AST-Driven Programs

Assume that a program calls the system service $SETIMR to set a timer
that expires at a specified interval and then execute an application-defined
AST routine, TIMER_ROUT, in the program.

The following command lines set a breakpoint on routine TIMER_ROUT,
start execution which is then suspended on that routine, and display the
sequence of active calls at the breakpoint:

DBG> SET BREAK TIMER ROUT
DBG> GO
break at routine MODl\TIMER_ROUT

14: x = .x + 1;
DBG> SHOW CALLS
module name
*MODl

DBG>

routine name
TIMER ROUT

line
14

rel PC
00000002
00000000

abs PC
0000040E
80009E5E

The bottom line is the call frame associated with the system AST
dispatcher. It shows the absolute PC value when the AST was delivered.
Because the AST dispatcher is in system space (as indicated by the high
absolute address), no symbolic information (module name, routine name,
line number) is available. A SHOW CALLS display associated with the
delivery of an AST might also show some debugger call frames (module
name SHARE$DEBUG) and diagnostic messages related to condition
handling by the debugger. You should ignore such messages and call
frames.

9-19

10 Debugging Multiprocess Programs

This chapter explains how to use features of the debugger that are specific
to multiprocess programs-that is, programs that run in more than one
process. The features enable you to display process information and
control the execution of specific processes. When debugging a multiprocess
program, use these features in addition to those explained in other
chapters.

The first section gets you started with multiprocess debugging. The
remaining sections provide additional information.

Throughout the chapter it is assumed that all images discussed are
11 debuggable 11 images-that is, images that can be brought under control
of the debugger. A debuggable image is one that was not linked with the
/NOTRACEBACK command qualifier. As explained in Chapter 5, you have
full symbolic information when debugging an image only if its modules
were compiled and linked with the /DEBUG command qualifier.

10.1 Getting Started

10.1.1

This section gives an overview of the multiprocess debugging environment
and explains the basic techniques used to debug a multiprocess program.
Refer to subsequent sections for additional details.

Establishing a Multiprocess Debugging Configuration
Before invoking the debugger, enter the following command to establish a
multiprocess configuration:

$ DEFINE/JOB DBG$PROCESS MULTIPROCESS

This command establishes a multiprocess configuration for the VMS
job hierarchy in which the command was entered. As a result, after a
debugging session is started, any debuggable image running in the same
job can be controlled from that one session.

See Section 10.2.1 for more information about debugging configurations
and process relationships. See Section 10.2.9 for system requirements
related to multiprocess debugging.

10.1.2 Invoking the Debugger
This section explains the usual way of starting a multiprocess debugging
session. See Section 10.2.4 for additional techniques for invoking the
debugger (for example, using the CTRL/Y-DEBUG sequence or the
CONNECT command).

10-1

Debugging Multiprocess Programs
10.1 Getting Started

$ RUN MAIN_ PROG

You typically initiate the execution of a multiprocess program by running
the main image in the main (master) process. After the main image
is running in the main process, the program might spawn one or more
subprocesses to run additional images by issuing a LIB$SPAWN run-time
library call or a $CREPRC system service call.

If the main image is debuggable, the debugger is invoked when you run
the image. For example:

VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is FORTRAN, module set to MAIN PROG
%DEBUG-I-NOTATMAIN, type GO to get to start of main program
predefined trace on activation at routine MAIN PROG in %PROCESS_NUMBER 1
DBG 1>

As with a one-process program, the debugger displays its banner and
prompt just prior to the start of execution of the main image. However,
note two differences: the "predefined trace on ... " message and the
debugger prompt.

In a multiprocess configuration, the debugger traces each new process
that is brought under control. In this case, the debugger traces the
first process, which runs the main image of the program. (%PROCESS_
NUMBER is a built-in symbol that identifies a process number, just as
%LINE identifies a line number.)

The significance of the prompt suffix(' _1') is explained in the next
section.

10.1.3 Visible Process and Process-Specific Commands

10-2

The previous example shows that the debugger prompt in a multiprocess
debugging configuration is different from that found in the default
configuration.

In a multiprocess configuration, 11 dynamic prompt setting" is enabled by
default (SET PROMPT/SUFFIX=PROCESS_NUMBER). Therefore, the
prompt has a process-specific suffix that indicates the process number of
the visible process. The debugger assigns a process number sequentially,
starting with process 1, to each process that comes under the control of a
given debugging session.

The visible process is the process that is the default context for issuing
process-specific commands. Process-specific commands are those that
start execution (STEP, GO, and so on) and those used for looking up
symbols, setting breakpoints, looking at the call stack and registers, and
so on. Commands that are not process specific are those that do not
depend on the mapping of memory but, rather, affect the entire debugging
environment (for example, keypad mode and screen mode commands).

Unless dynamic prompt setting is disabled (SET PROMPT/NOSUFFIX),
the debugger prompt suffix always identifies the visible process (for
example, DBG_l>). The SET PROMPT command provides several options
for tailoring the prompt-string prefix and suffix to your needs.

Debugging Multiprocess Programs
10.1 Getting Started

10.1.4 Obtaining Information about Processes
Use the SHOW PROCESS command to obtain information about processes
that are currently under control of your debugging session. By default,
SHOW PROCESS displays one line of information about the visible
process. The following example shows the kind of information displayed
immediately after you invoke the debugger:

DBG l> SHOW PROCESS
Number Name

* 1 JONES
DBG l>

Hold State
activated

Current PC
MAIN_PROG\%LINE 2

A one-line SHOW PROCESS display provides the following information
about each process specified:

• The process number assigned by the debugger. In this case, the
process number is 1 because this is the first process known to the
debugger. The asterisk in the leftmost column (*) marks the visible
process.

• The VMS process name. In this case, the VMS process name is
JONES.

• Whether the process has been put on hold with a SET PROCESS
/HOLD command, as explained in Section 10.1.7.2. (This process has
not been put on hold.)

• The current debugging state for that process. A process is in the
"activated" state when it is first brought under debugger control (that
is, before it has executed any part of the program under debugger
control). Table 10-1 summarizes the possible debugging states that
can appear in the state column.

• The location (symbolized, if possible) where execution of the image
is suspended in that process. In this case, the image has not started
execution.

Table 10-1

Activated

Break1

Interrupted

Step1

Debugging States

The image and its process have just been brought under
debugger control, either through a DCL RUN/DEBUG
command, a debugger CONNECT command, a
CTRUY-DEBUG sequence, or by the program signaling
SS$_DEBUG while it was not under debugger control.

A breakpoint was triggered.

Execution was interrupted in that process, either because
execution was suspended in another process, or because
the user interrupted execution with the abort-key sequence
{CTRUC, by default).

A STEP command has completed.

1 See the SHOW PROCESS command in the command dictionary for a list of additional states.

(continued on next page)

10-3

Debugging Multiprocess Programs
10.1 Getting Started

Table 10-1 (Cont.) Debugging States

Terminated

Trace1

Unhandled exception

Watch of

The image has terminated execution but the process is
still under debugger control. Therefore, you can obtain
information about the image and its process.

A tracepoint was triggered.

An unhandled exception was encountered.

A watchpoint was triggered.

1 See the SHOW PROCESS command in the command dictionary for a list of additional states.

The SHOW PROCESS/ALL command provides .information about all
processes that are currently under debugger control (in the case of the
previous example, a SHOW PROCESS/ALL command would show only
process 1). The SHOW PROCESS/FULL command provides additional
details about processes.

Returning to the previous example, if you now enter a STEP command
followed by a SHOW PROCESS command, the state column in the SHOW
PROCESS display indicates that execution is suspended at the completion
of a step:

DBG l> SHOW PROCESS
Number Name

* 1 JONES
DBG l>

Hold State
step

Current PC
MAIN_PROG\%LINE 3

Similarly, if you were to set a breakpoint and enter a GO command, a
SHOW PROCESS command entered at the prompt after the break point
has triggered would identify the state as 11 break 11

•

10.1.5 Bringing a Spawned Process Under Debugger Control

10-4

Continuing with the example from the last section, assume that you have
entered a few more STEP commands and, in the middle of a step, MAIN_
PROG spawns a process to run a debuggable image called TEST.

Because DBG$PROCESS has the value MULTIPROCESS, the spawned
process is now requesting to connect to the current debugging session, and
the image TEST is suspended at the start of execution.

While the spawned process is waiting to be connected, it is not yet known
to the debugger and cannot be identified in a SHOW PROCESS/ALL
display. You can bring the process under debugger control using either of
the following methods:

• Enter a command, such as STEP, that starts execution.

• Enter the CONNECT command without specifying a parameter. The
CONNECT command is preferable in cases when you do not want the
program to execute further.

DBG 1> STEP

Debugging Multiprocess Programs
10.1 Getting Started

The following example illustrates use of the CONNECT command:

stepped to MAIN PROG\%LINE 18 in %PROCESS NUMBER 1
18: LIB$SPAWN ("RUN /DEBUG TEST") -
DBG 1> STEP
stepped to MAIN_PROG\%LINE 21 in %PROCESS_NUMBER 1
21: x = 7
DBG l> CONNECT
predefined trace on activation at routine TEST in %PROCESS NUMBER 2
DBG 1>

In this example, the second STEP command takes you past the
LIB$SPAWN call that spawns the process. The CONNECT command
brings the waiting process under debugger control. After entering the
CONNECT command, you might need to wait a moment for the process
to connect. The "predefined trace on . . . " message, as explained in
Section 10.1.2, indicates that the debugger has taken control of a new
process and identifies that process as process 2, the second process known
to the debugger in this session.

A SHOW PROCESS/ALL command, entered at this point, identifies the
debugging state for each process and the location at which execution is
suspended:

DBG 1> SHOW PROCESS/ALL
Number Name Hold State

* 1 JONES step
2 JONES 1 activated

DBG l>

Current PC
MAIN PROG\%LINE 21
TEST\%LINE 1+2

Note that the CONNECT command brings any processes that are waiting
to be connected to the debugger under debugger control. If no processes
are waiting, you can press CTRLJC to abort the CONNECT command and
display the debugger prompt.

10.1.6 Broadcasting Commands to Specified Processes
By default, process-specific commands are executed in the context of the
visible process. The DO command enables you to execute commands in
the context of one or more processes that are currently under debugger
control. This is also referred to as "broadcasting" commands to processes.

Use the DO command without a qualifier to execute commands in the
context of all of the processes. For example, the following command
executes the SHOW CALLS command for all processes currently under
debugger control (processes 1 and 2, in this case):

DBG_l> DO (SHOW CALLS)
For %PROCESS NUMBER 1

module name routine name
*MAIN_PROG MAIN_PROG

For %PROCESS NUMBER 2
module name
TEST

routine name
TEST

line
21

line
1+2

rel PC abs PC
OOOOOOlE 0000041E

rel PC abs PC
OOOOOOOB 0000040B

As indicated in this example, the debugger identifies the process associated
with any debugger output.

10-5

Debugging Multiprocess Programs
10.1 Getting Started

Use the DO command with the /PROCESS= qualifier to execute commands
in the context of specific processes. For example, the following command
executes the commands SET MODULE START and EXAMINE X in the
context of process 2:

DBG_l> DO/PROCESS=(%PROC 2) (SET MODULE START; EXAMINE X)

For more information about how to specify processes in debugger
commands, see Section 10.2.2.

10.1.7 Controlling Execution

10-6

Program execution in a multiprocess debugging environment follows these
conventions:

• When you enter a command that starts program execution, such as
STEP or GO, the command is executed in the context of the visible
process. However, images in any other processes that have not been
put on hold (with a SET PROCESS/HOLD command) are also allowed
to execute. Similarly, if you use the DO command to broadcast a
command to start execution in one or more processes, the command is
executed in the context of each specified process that is not on hold,
but images in any other processes that are not hold are also allowed to
execute. In all cases, a hold condition is ignored in the visible process.
(See Section 10.1. 7 .2 for additional information about the behavior of
processes on hold.)

• After execution is started, the way in which it continues depends on
whether the command SET MODE [NO]INTERRUPT was entered.
By default (SET MODE INTERRUPT), execution continues until it
is suspended in any process. At that point, execution is interrupted
in any other processes that were executing images, and the debugger
prompts for input.

These concepts are illustrated next by continuing with the example in
Section 10.1.5 that illustrates the use of the CONNECT command.

In that example, the "stepped to ... " messages indicate that both commands
are executed in the context of process 1, the visible process. The second
STEP command spawns process 2. The SHOW PROCESS/ ALL example of
Section 10.1.5 indicates that execution in processes 1 and 2 is suspended
at MAIN_PROG\%LINE 21 and TEST\%LINE 1+2, respectively.

At this point, entering another STEP command followed by SHOW
PROCESS/ ALL results in the following display:

DBG 1> STEP
stepped to MAIN_PROG\%LINE 23 in %PROCESS_NUMBER 1
23: y = 15
DBG 1> SHOW PROCESS/ALL

Number Name Hold State

* 1 JONES
2 JONES 1

DBG 1>

step
interrupted

Current PC
MAIN PROG\%LINE 23
TEST\%LINE 3+1

Debugging Multiprocess Programs
10.1 Getting Started

The STEP command is executed in the context of process 1, the visible
process. After the STEP command, execution in process 1 is suspended
at MAIN_PROG\ %LINE 23. However, the STEP command also causes
execution to start in process 2. The completion of the STEP command in
process 1 causes execution in process 2 to be interrupted at TEST\ %LINE
3+1.

Section 10.1.7.1 describes another mode of execution, which is provided by
the command SET MODE NOINTERRUPT.

10.1. 7 .1 Controlling Execution with SET MODE NOINTERRUPT
The command SET MODE NOINTERRUPT allows execution to continue
without interruption in other processes when it is suspended in some
process. This is especially useful if, for example, you want to broadcast a
STEP command to several processes with the DO command, then complete
execution of the STEP command in all these processes. For example:

DBG 1> SET MODE NOINTERRUPT
DBG~)> DO (STEP)

In this example, the DO command executes the STEP command in the
context of all processes. The visible process and any other processes
that are not on hold start execution. Because the command SET MODE
NOINTERRUPT was entered, the prompt is displayed only after the
STEP command has completed execution (or execution has been otherwise
suspended at a breakpoint or watchpoint) in all processes that were
executing. ·

When SET MODE NOINTERRUPT is in effect, as long as execution
continues in any process, the debugger does not prompt for input. In such
cases, use CTRL/C to interrupt all processes and display the prompt.

10.1. 7.2 Putting Specified Processes on Hold
As indicated in the preceding sections, a command that starts execution is
executed in the context of the visible process, but it also causes execution
to start in other processes. If you want to inhibit execution in a process,
put it on hold. For example, the following SET PROCESS/HOLD command
puts process 2 on hold. The subsequent STEP command is executed in the
context of process 1, the visible process. Execution also starts in any other
processes that are not on hold, but not in process 2:

DBG 1> SET PROCESS/HOLD %PROC 2
DBG-1> STEP

A SHOW PROCESS display indicates whether a process is on hold. For
example:

DBG 1> SHOW PROCESS/ALL
Number Name

* 1 JONES
2 JONES 1

DBG l>

Hold State
step

HOLD interrupted

Current PC
MAIN PROG\%LINE 24
TEST\%LINE 3+1

To release a process from the hold condition, enter the command SET
PROCESS/NOHOLD, and specify the process.

10-7

Debugging Multiprocess Programs
10.1 Getting Started

Note that a hold condition is ignored in the visible process. Therefore,
the command SET PROCESS/HOLD/ ALL is a convenient way to confine
execution to the visible process. In the following example, execution starts
only in the visible process:

DBG_l> SET PROCESS/HOLD/ALL
DBG 1> STEP

This feature is useful if, for example, you want to use the CALL command
to execute a dump routine that is not part of the execution stream of your
program.

The preceding discussions also apply if you use the DO command to
broadcast a GO, STEP, or CALL command to several processes. The GO,
STEP or CALL command is executed in the context of each specified
process that is not on hold, and execution also starts in any other process
that is not on hold. The following example illustrates the execution
behavior when all processes are put on hold and commands are broadcast
to all processes. Execution starts only in the visible process (process 1, in
this example):

DBG l> SET PROCESS/HOLD/ALL
DBG_l> DO (EXAMINE X; STEP)
For %PROCESS NUMBER 1

MAIN_PROG\X: 78
For %PROCESS NUMBER 2

TEST\X: -29
stepped to MAIN_PROG\%LINE 26 in %PROCESS NUMBER 1
26: K = K + 1
DBG 1>

10.1.8 Changing the Visible Process
Use the SET PROCESS command (with the default NISIBLE qualifier) to
establish another process as the visible process. For example, the following
command makes process 2 the visible process:

DBG 1> SET PROCESS %PROC 2
DBG 2>

In this example; because dynamic prompt setting is enabled by default,
the SET PROCESS command also has caused the prompt string suffix
to change. It now indicates that process 2 is the visible process. All
process-specific commands are now executed in the context of process 2.
For example, a SHOW CALLS command would display the call stack for
the image running in process 2.

10.1.9 Dynamic Process Setting

10-8

By default, "dynamic process setting" is enabled (SET PROCESS
/DYNAMIC). As a result, whenever the debugger suspends program
execution and displays its prompt, the process in which execution is
suspended becomes the visible process automatically. Dynamic process
setting occurs in the following situations: when a breakpoint or watchpoint
is triggered, at an exception condition, on the completion of a STEP
command, or when the last process performs an image exit.

Debugging Multiprocess Programs
10.1 Getting Started

When dynamic process setting is disabled (/NODYNAMIC), the visible
process remains unchanged until you specify another process with the SET
PROCESSNISIBLE command.

Dynamic process setting is illustrated in the following example, which also
illustrates dynamic prompt setting:

DBG l> SHOW PROCESS/ALL
Number Name Hold State Current PC

* 1 JONES step MAIN PROG\%LINE 22
2 JONES 1 interrupted TEST\%LINE 4

DBG_l> DO/PROCESS=(%PROC 2) (SET BREAK %LINE 11)
DBG l> GO

break at TEST\%LINE 11 in %PROCESS NUMBER 2
DBG 2> SHOW PROCESS/ALL -

Number Name
1 JONES

* 2 JONES 1
DBG 2>

Hold State
interrupted
break

Current PC
MAIN PROG\%LINE 28
TEST\%LINE 11

In this example, process 1 is initially the visible process, as indicated by
the prompt and the SHOW PROCESS display. The DO command sets
a breakpoint in the context of process 2. Execution is resumed with the
GO command and is suspended at the breakpoint in process 2. Process
2 is now the visible process, as indicated by the prompt and the SHOW
PROCESS display.

If you have entered the command SET MODE NOINTERRUPT and then
started execution in several processes with the DO command, the prompt
is displayed only after execution has been suspended in all processes. In
this case, the visible process remains unchanged, unless the last process
performs an image exit (and thereby becomes the visible process).

10.1.10 Monitoring the Termination of Images
When the main image of a process runs to completion, the process goes
into the "terminated" debugging state (not to be confused with process
termination in the VMS sense). This condition is traced by default, as if
you had entered the command SET TRACEtrERMINATING.

When a process is in the terminated debugging state, it is still known to
the debugger and appears in a SHOW PROCESS/ALL display. You can
enter commands to examine variables, and so on.

When the last image of the program exits, the debugger gains control and
displays its prompt.

10.1.11 Ending the Debugging Session
To end the entire debugging session, use the EXIT or QUIT command
without specifying any parameters.

EXIT executes any exit handlers that are declared in the program. QUIT
does not.

10-9

Debugging Multiprocess Programs
10.1 Getting Started

Thus, when you do not specify any parameters, the behavior of EXIT
and QUIT is analogous to their behavior for the default debugging
configuration.

10.1.12 Terminating Specified Processes
To terminate specified processes without ending the debugging session, use
the EXIT or QUIT command, specifying one or more process specifications
as parameters. For example, the following command terminates the image
running in process 2 and terminates the process:

DBG 3> EXIT %PROC 2

DBG 3>

Subsequently, process 2 does not appear in a SHOW PROCESS display.
See the command dictionary for complete details on the EXIT and QUIT
commands.

10.1.13 Interrupting Program Execution

10.2

Pressing CTRL/C (or the abort-key sequence established with the SET
ABORT_KEY command) interrupts execution in every process that is
currently running an image. This is indicated as an "interrupted" state in
a SHOW PROCESS display.

As in the default configuration, you can also use CTRL/C to abort a
debugger command.

Supplemental Information
This section provides additional details or more advanced concepts and
usages than those covered in Section 10.1.

10.2.1 Debugging Configurations and Process Relationships

10-10

You can invoke the debugger in either the default or the multiprocess
configuration to debug programs that run in either one or several
processes, respectively.

The debugging configuration depends on the current definition of the
logical name DBG$PROCESS, as indicated in the following table.

Definition of Logical Name
DBG$PROCESS

Undefined or DEFAULT

MULTIPROCESS

Resulting Debugging Configuration

Default (use this configuration with a program that
runs in one process)

Multiprocess (use this configuration with a program
that runs in several processes)

Note that the debugging configuration does not depend on whether
the program runs in one or several processes. Rather, the value of

Debugging Multiprocess Programs
10.2 Supplemental Information

DBG$PROCESS determines whether debuggable images running in
different processes can be controlled from the same debugging session.

Before invoking the debugger, enter the DCL command SHOW LOGICAL
DBG$PROCESS to determine the current definition of DBG$PROCESS
and the resulting debugging configuration.

10.2.1.1 Establishing a Default Debugging Configuration
Use the command SHOW LOGICAL DBG$PROCESS to determine the
current debugging configuration.

In the following example, the output of the command indicates that a
default debugging configuration is in effect:

$ SHOW LOGICAL DBG$PROCESS
%SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS

If DBG$PROCESS has the value MULTIPROCESS, and you want to
debug a program that runs in only one process, enter the following
command:

$ DEFINE DBG$PROCESS DEFAULT

10.2.1.2 Establishing a Multiprocess Debugging Configuration
The multiprocess debugging configuration enables you to interact with
several processes from one debugging session.

Use the following command to establish a multiprocess debugging
configuration:

$ DEFINE/JOB DBG$PROCESS MULTIPROCESS

As shown in this example, when defining DBG$PROCESS for a
multiprocess configuration, use a job logical definition so that the definition
applies to all processes in that job. An image can be connected to (and
controlled by) an existing multiprocess debugging session only if the
process running the image is in the same job as the process running the
debugging session.

In the typical multiprocess scenario, the program runs in one master
parent process and several subprocesses. The debugger is invoked
from the master process, then the program creates subprocesses during
execution (a subprocess can also become the parent of another level of
subprocesses).

Another possible scenario is that the program runs in several peer
processes. There is no master process. This configuration would result
if you invoked the debugger by running one debuggable image and then
used the SPAWN/NOWAIT command repeatedly to spawn other processes
and run a debuggable image in each spawned process.

10-11

Debugging Multiprocess Programs
10.2 Supplemental Information

10.2.1.3 Process Relationships When Debugging
The debugger consists of two parts: A relatively small kernel
debugger image (DEBUG.EXE) and a larger main debugger image
(DEBUGSHR.EXE) that contains most of the debugger code. This
separation reduces potential interference between the debugger and
the program being debugged.

The separation also makes it possible to have two debugging
configurations: a default configuration and a multiprocess configuration.
Regardless of the configuration, the presence of a main debugger running
in some process establishes a unique debugging session.

When you invoke the debugger in the default configuration, the program
runs in its process along with the kernel debugger, and a new subprocess is
created to run the main debugger. A new main debugger (and, therefore, a
new debugging session) is established every time you invoke the debugger.

In the multiprocess configuration, the program being debugged runs in
several processes. Each process that is running one or more images under
debugger control is also running a local copy of the kernel debugger. The
main debugger, running in a separate subprocess, communicates with the
other processes through their kernel debuggers.

Although all processes of a multiprocess configuration must be in the
same job, they do not have to be related in a particular process/subprocess
hierarchy. Moreover, the program images running in separate processes do
not have to communicate with each other.

See Section 10.2.9 for system requirements related to multiprocess
debugging.

10.2.2 Specifying Processes in Debugger Commands

10-12

When specifying processes in debugger commands, you can use any of
the forms listed in Table 10-2, except when specifying processes with the
CONNECT command (see Section 10.2.4.2).

The CONNECT command is used to bring a process that is not yet known
to the debugger under debugger control. Therefore, when specifying a
process with CONNECT, you can use only its VMS process name or VMS
process identification number (PID). You cannot use its debugger-assigned
process number or any of the process built-in symbols (for example,
%NEXT_PROCESS) for the process.

Debugging Multiprocess Programs
10.2 Supplemental Information

Table 10-2 Process Specifications

[%PROCESS_NAME] process-name

[%PROCESS_NAME] "process-name"

%PROCESS_PID process_id

%PROCESS_NUMBER process-number (or
%PROC process-number)

process-group-name

%NEXT _PROCESS

%PREVIOUS_PROCESS

%VISIBLE_PROCESS

The VMS process name, if that name
contains no spaces or lowercase
characters 1

•

The VMS process name, if that
name contains spaces or lowercase
characters. You can also use
apostrophes (') instead of quotation
marks (").

The VMS process identification number
(PIO, a hexadecimal number).

The number assigned to a process
when it comes under debugger
control. A new number is assigned
sequentially, starting with 1 , to each
process. If a process is terminated
with the EXIT or au IT command,
the number is not reused during the
debugging session. Process numbers
appear in a SHOW PROCESS display.
Processes are ordered in a circular list
so they can be indexed with the built-in
symbols %PREVIOUS_PROCESS and
%NEXT_PROCESS.

A symbol defined with the DEFINE
/PROCESS_GROUP command to
represent a group of processes.

The next process after the visible
process in the debugger's circular
process list.

The process previous to the visible
process in the debugger's circular
process list.

The process whose stack, register set,
and images are the current context for
looking up symbols, register values,
routine calls, breakpoints, and so on.

1 The process name can include the wildcard character (*)

You can omit the %PROCESS_NAME built-in symbol when entering
commands. For example:

DBG_2> SHOW PROCESS %PROC 2, JONES_3

You can define a symbol to represent a group of processes (DEFINE
/PROCESS_GROUP). This enables you to enter commands in abbreviated
form. For example:

10-13

Debugging Multiprocess Programs
10.2 Supplemental Information

DBG 1> DEFINE/PROCESS GROUP SERVERS=FILE_SERVER, NETWORK_SERVER
DBG=l> SHOW PROCESS SERVERS

Number Name Hold State

* 1 FILE SERVER
2 NETWORK SERVER

DBG 1>

step
break

Current PC
FS PROG\%LINE 37
NET_PROG\%LINE 24

The built-in symbols %VISIBLE_PROCESS, %NEXT_PROCESS, and
%PREVIOUS_PROCESS are useful in control structures based on the IF,
WHILE, or REPEAT commands and in command procedures.

10.2.3 Monitoring Process Activation and Termination
By default, a tracepoint is triggered when a process comes under debugger
control and when it performs an image exit. These predefined tracepoints
are equivalent to those resulting from entering the commands SET TRACE
/ACTIVATING and SET TRACE/TERMINATING, respectively. You can set
breakpoints on these events by means of the SET BREAK/ACTIVATING
and SET BREAK/TERMINATING commands.

To cancel the predefined tracepoints, use the CANCEL TRACE
/PREDEFINED command with the /ACTIVATING and /TERMINATING
qualifiers. To cancel any user-defined activation and termination
breakpoints, use the CANCEL BREAK command with the /ACTIVATING
and /TERMINATING qualifiers (the /USER qualifier is assumed by default
when canceling breakpoints or tracepoints).

The debugger prompt is displayed when the first process comes under
debugger control. This enables you to enter commands before the main
image has started execution, as with a one-process program.

Also, the debugger prompt is displayed when the last process performs an
image exit. This enables you to enter commands after the program has
completed execution, as with a one-process program.

10.2.4 Interrupting the Execution of an Image to Connect it to the Debugger
You can interrupt a debuggable image that is ruD.ning without debugger
control in a process and connect that process to the debugger.

10-14

• To start a new debugging session, use the CTRL/Y-DEBUG sequence
from DCL level.

• To interrupt an image and connect it to an existing debugging session,
use the CONNECT command.

10.2.4.1 Using the CTRL/Y-DEBUG Sequence to Invoke the Debugger
You use the CTRL/Y-DEBUG sequence with the multiprocess debugging
configuration exactly as with the default configuration. That is, run
the image from DCL level with the RUN/NODEBUG command, then
press CTRL/Y to interrupt the image. The DEBUG command causes the
debugger to be invoked. (See Section 3.1.2.)

Debugging Multiprocess Programs
10.2 Supplemental Information

The following example shows how you might start a new debugging
session:

$ DEFINE/JOB DBG$PROCESS MULTIPROCESS
$ RUN/NODEBUG PROG2

jCTRL/Yj

Interrupt
$ DEBUG

VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is FORTRAN, module set to SUB4
predefined trace on activation at SUB4\%LINE 12 in %PROCESS_NUMBER 1
DBG 1>

In this example, the DEFINE/JOB command establishes a multiprocess
debugging configuration. The RUN/NODEBUG command starts the
execution of image PROG2 without debugger control. The CTRL/Y
DEBUG sequence interrupts execution and invokes the debugger.

The VAX DEBUG banner indicates that a new debugging session has been
started. The process-specific prompt (DBG_l>) indicates that this is a
multiprocess configuration and that execution is suspended in process 1,
which is running image PROG2.

The activation tracepoint identifies the location at which execution was
interrupted (and at which the debugger took control of the process). You
can also use the SHOW CALLS command to display the call stack at that
location.

After the debugger has been invoked, you can use the CONNECT
command to bring other processes under debugger control. In the previous
example, you could use the CONNECT command to bring processes under
debugger control that were created by PROG2 before you interrupted its
execution (see Section 10.2.4.2).

When using the CTRL/Y-DEBUG sequence, if a multiprocess debugging
session already exists in the same job as the image that is interrupted,
the image connects to that session. In this case, because a new session is
not started, the VAX DEBUG banner is not displayed when the debugger
takes control. This situation could occur if, for example, you entered
a SPAWN/NOWAIT command from the session, started execution with
a RUN/NODEBUG command, and then entered a CTRL/Y-DEBUG
sequence.

10.2.4.2 Using the CONNECT Command to Interrupt an Image
The CONNECT command, used without a parameter, was introduced in
Section 10.1.5. When used with a parameter, the CONNECT command
enables you to interrupt a debuggable image that is running without
debugger control and bring it under control of your current debugging
session.

The image might have been activated as follows:

• Your program issued a LIB$SPAWN run-time library call or a
$CREPRC system service call to spawn a process and run an image
without debugger control

10-15

Debugging Multiprocess Programs
10.2 Supplemental Information

• You started execution with a RUN/NODEBUG command entered at
DCL level

In the following example, the CONNECT command causes the image
running in process JONES_3 to be interrupted and to come under control
of the current debugging session. Process JONES_3 must be in the same
job as the session.

DBG_l> CONNECT JONES_3

Note that a process is not identified by a debugger process number until it
is connected to a debugging session. Therefore, when specifying a process
with the CONNECT command, you can use only its VMS process name or
VMS process identification number (PID).

The effect of the CONNECT command is equivalent to attaching to
a process from a debugging session and then entering the sequence
CTRL/Y-DEBUG to interrupt the running image and invoke the
debugger. However, the CONNECT command is easier to enter and
also enables you to interrupt a process to which you cannot attach.

10.2.5 Screen Mode Features for Multiprocess Debugging
Screen mode displays, whether predefined or user defined, are associated
with the visible process by default. For example, SRC shows the source
code where execution is suspended in the visible process, OUT shows the
output of commands executed in the context of the visible process, and so
on.

By using the /PROCESS qualifier with the DISPLAY command you can
create process-specific displays or make existing displays process specific,
respectively. The contents of a process-specific display are generated and
modified in the context of that process. You can make any display process
specific except for the PROMPT display. For example, the following
command creates the automatically updated source display SRC_3, which
shows the source code where execution is suspended in process 3:

DBG 2> DISPLAY/PROCESS=(%PROC 3) SRC_3 AT RS23 SOURCE (EXAM/SOURCE .%SOURCE_SCOPE\%PC)

You assign attributes to process-specific displays as for displays that are
not process specific. For example, the following command makes display
SRC_3 the current scrolling and source display-that is, the output of
SCROLL, TYPE, and EXAMINE/SOURCE commands are then directed at
SRC_3:

10-16

DBG_2> SELECT/SCROLL/SOURCE SRC_3

If you enter a DISPLAY/PROCESS command without specifying a process,
the specified display is then specific to the process that was the visible
process when you entered the command. For example, the following
command makes OUT_X specific to process 2:

DBG 2> DISPLAY /PROCESS OUT X

Debugging Multiprocess Programs
10.2 Supplemental Information

The /SUFFIX qualifier appends a process identifying suffix that denotes
the visible process to a display name. This qualifier can be used directly
after a display name in any command that specifies a display (for example,
DISPLAY, EXTRACT, SAVE). It is especially useful within command
procedures in conjunction with display definitions or key definitions that
are bound to display definitions.

In a multiprocess configuration, the predefined tracepoint on process
activation automatically creates a new source display and a new
instruction display for each new process that comes under debugger
control. The displays have the names SRC_n and INST_n, respectively,
where n is the process number. These displays are initially marked as
removed. They are automatically deleted on process termination.

Several predefined keypad key sequences enable you to configure your
screen with the process-specific source and instruction displays that are
created automatically when a process is activated. Key sequences that are
specific to multiprocess programs are as follows: PFl-9, PF4-9, PF4-7,
PF4-3, PF4-l. See Section B.5 for the general effect of these sequences.
Use the SHOW KEY command to determine the exact commands.

10.2.6 Setting Watchpoints in Global Sections

DBG 1> GO

You can set watchpoints in global sections. A global section is a region of
memory that is shared among all processes of a multiprocess program. A
watchpoint that is set on a location in a global section (a global section
watchpoint) triggers when any process modifies the contents of that
location.

When setting watchpoints on arrays or records, note that performance
is improved if you specify individual elements rather than the entire
structure with the SET WATCH command.

If you set a watchpoint on a location that is not yet mapped to a global
section, the watchpoint is treated as a conventional static watchpoint. For
example:

DBG_l> SET WATCH ARR(l)
DBG 1> SHOW WATCH
watchpoint of PPL3\ARR(l)

When ARR is subsequently mapped to a global section, the watchpoint is
automatically treated as a global section watchpoint and an informational
message is issued. For example:

%DEBUG-I-WATVARNOWGBL, watched variable PPL3\ARR(l) has been remapped
to a global section

predefined trace on activation at routine PPL3 in %PROCESS NUMBER 2
predefined trace on activation at routine PPL3 in %PROCESS-NUMBER 3
watch of PPL3\ARR(l) at PPL3\%LINE 93 in %PROCESS_NUMBER 2-

93: ARR(l) = INDEX
old value: 0
new value: 1

break at PPL3\%LINE 94 in %PROCESS_NUMBER 2
94: ARR(I) = I

10-17

Debugging Multiprocess Programs
10.2 Supplemental Information

After the watched location is mapped to a global section, the watchpoint is
visible from each process. For example:

DBG_2> DO (SHOW WATCH)
For %PROCESS NUMBER 1

watchpoint-of PPL3\ARR(l) [global-section watchpoint]
For %PROCESS NUMBER 2

watchpoint-of PPL3\ARR(l) [global-section watchpoint]
For %PROCESS NUMBER 3

watchpoint-of PPL3\ARR(l) [global-section watchpoint]

10.2.7 Using Multiprocess Commands with the Default Configuration
All commands, qualifiers, and built-in symbols that are provided for
multiprocess debugging are also understood in the default debugging
configuration and have analogous behaviors (where applicable). For
example:

• The EXIT command without a parameter ends a debugging session in
both configurations.

• A DO command without the /PROCESS qualifier executes the
commands specified in all processes.

• In the default configuration, the visible process is the process that runs
the entire program. It is identified as process 1 in a SHOW PROCESS
display.

• Process-specific built-in symbols, such as %PROCESS_NUMBER
and %VISIBLE_PROCESS, are interpreted correctly in the default
configuration.

This compatibility enables you to use command procedures designed for
multiprocess debugging when debugging programs that run in only one
process.

10.2.8 Advanced Concepts and Possible Errors
The debugging configuration (default or multiprocess) is controlled entirely
by the definition of DBG$PROCESS. If some of the processes in a job
have different definitions of DBG$PROCESS, the resulting debugging
configuration can be very confusing.

The value of DBG$PROCESS is checked when the kernel debugger is first
invoked.

Consider the following scenario:

$ DEFINE/JOB DBG$PROCESS MULTIPROCESS
$ RUN TEST

VAX DEBUG Version 5.4

10-18

Debugging Multiprocess Programs
10.2 Supplemental Information

DBG_l> SET BREAK/ACTIVATING; GO
break at program activation in %PROCESS NUMBER 2
DBG_2> SHOW PROCESS/ALL

Number Name Hold State Current PC
1 SMITH interrupted TEST\%LINE 50

* 2 SMITH 1 activated SUB1\%LINE 71
DBG 2> SPAWN DEFINE DBG$PROCESS DEFAULT Establish a default configuration
DBG 2> SET BREAK %LINE lOO;GO ! Assume that TEST creates a new process

VAX DEBUG Version 5.4

break at %LINE 100 in %PROCESS NUMBER 2
DBG> SHOW PROCESS/ALL

Number Name Hold State Current PC
MYPROG\%LINE 10 * 3 SMITH 2 activated

DBG_2> SHOW PROCESS/ALL
Number Name Hold State Current PC

TEST\%LINE 50
SUB1\%LINE 100

1 SMITH interrupted
* 2 SMITH 1 break
DBG>

Because of the re-assigment of DBG$PROCESS, there are two different
main debuggers (two debugging sessions) in the job. Both debuggers use
the same terminal for input and output. Therefore, the prompts and
output lines from the two sessions are intermixed on the screen. (The
effect is similar to what you see if you enter a DCL SPAWN/NOWAIT
command, in that two processes are sharing the terminal).

Generally, this mixed default and multiprocess configuration is not
desirable. However, although potentially confusing, the configuration
can be useful if you need to debug an experimental copy of a program
without disturbing your primary debugging session, which has several
processes connected to it. In such cases, use the SPAWN and ATTACH
commands to control the activity of the subprocesses.

10.2.9 System Requirements For Multiprocess Debugging
Several users debugging multiprocess programs can place a load on a
system. This section describes the resources used by the debugger, so that
you or your system manager can tune your system for this activity.

Note that the discussion covers only the resources used by the debugger.
You might have to tune your system to support the multiprocess programs
themselves.

10.2.9.1 User Quotas
Each user needs a PRCLM quota sufficient to create an additional
subprocess for the debugger, beyond the number of processes needed
by the program.

BYTLM, ENQLM, FILLM, and PGFLQUOTA are pooled quotas. They may
need to be increased to account for the debugger subprocess as follows:

• Each user's ENQLM quota should be increased by at least the number
of processes being debugged.

• Each user's PGFLQUOTA might need to be increased. If a user has an
insufficient PGFLQUOTA, the debugger might fail to activate or cause
"virtual memory exceeded" errors during execution.

10-19

Debugging Multiprocess Programs
10.2 Supplemental Information

10-20

• Each user's BYTLM and FILLM quotas might need to be increased.
The debugger requires BYTLM and FILLM quotas sufficient to open
each image file being debugged, the corresponding source files, and
the debugger input, output, and log files. The debugger command SET
MAX_SOURCE_FILES can be used to limit the number of source files
kept open by the debugger at any one time.

10.2.9.2 System Resources
The kernel and main debugger communicate through global sections. The
main debugger communicates with up to 8 kernel debuggers through a
65-page global section. Therefore, the SYSGEN global-page and global
section parameters (GBLPAGES and GBLSECTIONS, respectively) might
need to be increased. For example, if 10 users are using the debugger
simultaneously, 10 global sections using a total of 650 global pages are
required by the debugger.

11 Debugging Vectorized Programs

Notes:

This chapter describes features of the debugger that are specific to
vectorized programs (programs that use VAX vector instructions). Use
these features in addition to those explained in other chapters.

The information in this chapter enables you to perform the following tasks:

• Display information about the availability and use of the vector
processor on your system

• Control and monitor the execution of vector instructions with
breakpoints, watchpoints, and so on

• Examine and deposit into the vector control registers (%VCR, %VLR,
and %VMR) and the vector registers (%VO to %V15)

• Examine and deposit vector instructions and their operands

• Perform masked operations when examining vector registers or vector
instructions to display only certain register elements or override the
masking associated with a vector instruction

• When using the EXAMINE command, specify composite address
expressions of a complex form that might be appropriate for a
vectorized program

• Display the decoded results of vector floating-point exceptions

• Control synchronization between the scalar and vector processors

• Save and restore the current vector state when using the CALL
command to execute a routine that might affect the vector state

• Display vector register data using a screen-mode display

For additional information that is specific to a v~ctorized high-level
language program, see the associated language documentation. For
complete information about vector instructions and vector registers, see
the VAX MACRO and Instruction Set Reference Manual.

1 Compilers do not generate symbol-table data to associate
vector registers with symbols declared in the program.
Therefore, no symbolization is available for vector registers
during a debugging session. Also, you can access a vector
register only in scope 0 (the scope of the routine at the top of
the call stack).

11-1

Debugging Vectorized Programs

2 The examples in this chapter show how to access elements of
a vector register using array syntax (for example, EXAMINE
%V1(37)). This syntax is not supported for BLISS. In BLISS, use
the SET LANGUAGE command to set the language temporarily
to some other language, such as FORTRAN, then use the array
syntax for that language.

11.1 Obtaining Information About the Vector Processor

11.2

The command SHOW PROCESS/FULL provides some information about
the availability and use of the vector processor on your system. For
example:

DBG> SHOW PROCESS/FULL

Vector capable: Yes
Vector consumer: Yes Vector CPU time: 0 00:03:17.18
Fast Vector context switches: 0 Slow Vector context switches: 0

DBG>

The Vector Capable field can have the following entries:

Vector-Capable
Entry

Yes

No (protected)

VVIEF

No

Description

The VAX system has a vector processor, and it is available to
the process that is running the program.

The VAX system has a vector processor, but the process
running the program is denied access to the processor.

The VAX system does not have a vector processor. It is
running the VAX Vector Instruction Emulation Facility (VVIEF).
The VVIEF is available to the process that is running the
program.

The VAX system does not have an active vector processor,
and the VVIEF is not loaded on the system.

Controlling and Monitoring the Execution of Vector Instructions
The following sections explain how to perform the following tasks:

11-2

• Execute the program to (step to) either the next vector instruction or
any one of a set of specified vector instructions.

• Set breakpoints and tracepoints that trigger either on any vector
instruction or on any one of a set of specified vector instructions.

• Set watchpoints to monitor changes in vector registers.

Debugging Vectorized Programs
11.2 Controlling and Monitoring the Execution of Vector Instructions

11.2.1 Executing the Program to the Next Vector Instruction
To execute the program to the next vector instruction encountered in the
program, enter the command STEPNECTOR_INSTRUCTION.

You can also execute the program to the next vector instruction
whose opcode is in a list of opcodes by using the command STEP
/INSTRUCTION=(opcode[, .. .]). For example:

DBG> STEP/INSTRUCTION=(VLDL,VSTL,MOVL)

The SET STEP command enables you to change the default unit of
execution of the STEP command:

• Enter the command SET STEP VECTOR_INSTRUCTION to make the
STEP command execute the program to the next vector instruction by
default.

• Enter the command SET STEP INSTRUCTION=(opcode[, ...]) to make
the STEP command execute the program to the next instruction that
is in the list of opcodes (including a vector instruction) by default.

11.2.2 Setting Breakpoints and Tracepoints on Vector Instructions
To set a breakpoint (or a tracepoint) that triggers whenever a vector
instruction is encountered in the program, enter the command
SET BREAK/VECTOR_INSTRUCTION (or SET TRACENECTOR_
INSTRUCTION).

To cancel such breakpoints or tracepoints, enter the command CANCEL
BREAK/VECTOR_INSTRUCTION or CANCEL TRACENECTOR_
INSTRUCTION.

You can also set breakpoints and tracepoints on one or more specific vector
instructions by using the qualifier /INSTRUCTION=(opcode[, .. .]) with the
SET BREAK and SET TRACE commands. For example:

DBG> SET BREAK/INSTRUCTION=(VVADDL,VVLEQL)

To cancel such breakpoints and tracepoints, enter the command CANCEL
BREAK/INSTRUCTION or CANCEL TRACE/INSTRUCTION.

11.2.3 Setting Watchpoints on Vector Registers
You can set watchpoints on the vector registers (VO to V15) and on the
vector control registers (VCR, VLR, and VMR). Section 11.3.1 identifies
these registers and their built-in debugger symbols.

These watchpoints are treated like static watchpoints in that, once set, the
watchpoint is active until you cancel it explicitly.

In the following example, a watchpoint is set on register VCR:

DBG> SET WATCH %VCR

11-3

11.3

Debugging Vectorized Programs
11.2 Controlling and Monitoring the Execution of Vector Instructions

In the case of VMR and VO to V15, you can set a watchpoint either on
the register aggregate (that is, on all elements of the register), on an
individual register element, or on a range of elements (a slice). Use the
same technique that you use to set a watchpoint on an array variable.
(See Section 3.6.)

For example, the following command sets a watchpoint that triggers if any
element of register V5 changes:

DBG> SET WATCH %V5

The following command sets a watchpoint that triggers if element 37 of V2
changes (FORTRAN array syntax):

DBG> SET WATCH %V2 (3 7)

The following command sets a watchpoint that triggers if any element of
V2 in the range from element 5 to 13 changes:

DBG> SET WATCH %V2(5:13)

Examining and Depositing into Vector Registers
The following sections explain how to examine and deposit into the vector
control registers (VCR, VLR, and VMR) and the vector registers (VO to
V15).

11.3.1 Specifying the Vector Registers and Vector Control Registers
The VAX architecture provides 16 vector registers (VO to V15) and 3
vector control registers (VCR, VLR, VMR). When referencing any of these
registers in a debugger command, use the following built-in symbols (the
register name preceded by a percent sign (%)).

Symbol

%VO ... %V15

%VCR

%VLR

%VMR

Description

Vector registers (VO ... V15)

Vector count register (VCR)

Vector length register (VLR)

Vector mask register (VMR)

As with all debugger register symbols, you can omit the percent sign (%)
prefix if your program has not declared a symbol with the same name.

11.3.2 Examining and Depositing into the Vector Count Register (VCR)

11-4

The vector count register (VCR) specifies the length of the offset vector
generated by the IOTA instruction.

The value of VCR is an integer from 0 to 64. By default, the debugger
treats VCR as a longword integer. Although you can deposit values
greater than 64 into VCR, the debugger issues a diagnostic message that
the value is out of bounds in such cases.

Debugging Vectorized Programs
11.3 Examining and Depositing into Vector Registers

The following command sequence shows how to manipulate the value of
VCR:

DBG> EXAMINE %VCR
O\%VCR: 8
DBG> DEPOSIT %VCR = 4
DBG> EXAMINE %VCR
0\%VCR: 4
DBG>

11.3.3 Examining and Depositing into the Vector Length Register {VLR)
The vector length register (VLR) limits the highest element of a vector
register that is processed by a vector instruction. The value of VLR is an
integer from 0 to 64. This value specifies the number of register elements
that are processed, starting with element 0.

In the context of a debugging session, the current value of VLR limits the
highest element of a vector register that you can access with an EXAMINE
or DEPOSIT debugger command.

The following command sequence shows how to manipulate the value of
VLR to examine different numbers of elements of the vector register Vl:

DBG> EXAMINE %VLR
O\%VLR: 4
DBG> EXAMINE %Vl
0\%Vl

(0): 12
(1): 3
(2): 138
(3): 51

DBG> DEPOSIT %VLR = 3
DBG> EXAMINE %VLR
0\%VLR: 3
DBG> EXAMINE %Vl
0\%Vl

(0): 12
(1): 3
(2): 138

DBG>

You cannot access a register element outside the range from 0 to VLR-1.
In the following example, the EXAMINE command specifies element 7 of
register Vl, which is out of bounds (FORTRAN .array syntax):

DBG> EXAMINE %VLR
O\%VLR: 3
DBG> EXAMINE %V1(7)
%DEBUG-E-VECTSUBRNG, vector register subscript out of bounds,

bounds are 0 .. 2
DBG>

By default, the debugger treats VLR as a longword integer. Although
you can deposit values greater than 64 into VLR, the debugger issues a
diagnostic message that the value is out of bounds in such cases.

11-5

Debugging Vectorized Programs
11.3 Examining and Depositing into Vector Registers

11.3.4 Examining and Depositing into the Vector Mask Register (VMR)

11-6

The vector mask register (VMR) specifies a mask (a bit pattern) that a
vector instruction uses in order to operate on only certain elements of a
vector register operand. A masked vector instruction cannot operate on an
element of a vector register that is masked by VMR.

VMR has 64 bits (1 quadword), numbered 0 to 63. Each bit corresponds
to an element of a vector register. The value of a particular bit (0 or 1)
determines whether the corresponding register element is operated on
during a masked operation.

Masked operations are explained in Section 11.4.1 and Section 11.5. This
section describes only how to display and change the value of VMR.

To examine one or more specific elements (bits) of VMR, use the same
technique that you use to examine an array variable. (See Section 4.2.3.)

For example, the output of the following command shows that bit 5 of
VMR is set (FORTRAN array syntax):

DBG> EXAMINE %VMR (5)
0\%VMR(5): 1

DBG>

The following command displays the values of bits 4 to 6 of VMR. Bits 4
and 5 are set, and bit 6 is clear:

DBG> EXAMINE %VMR (4: 6)
0\%VMR

(4): 1
(5): 1
(6): 0

DBG>

By default, when you examine VMR without specifying subscripts, the
debugger displays the value of the register as a quadword integer in
hexadecimal format, to reduce the size of the output display. For example:

DBG> EXAMINE %VMR

O\%VMR
(0):

DBG>
OFFFFFFF FFFFFFFF

By specifying the command EXAMINE/BIN %VMR or the command
EXAMINE %VMR(0:63), you can display the value of each bit ofVMR in a
64-row array format.

As with an array variable, you can deposit a value into one bit of VMR at
a time. For example:

DBG> EXAMINE %VMR (3 7)
0\%VMR(37): 1
DBG> DEPOSIT %VMR (37) 0
DBG> EXAMINE %VMR (3 7)
0\%VMR(37): 0
DBG>

Debugging Vectorized Programs
11.3 Examining and Depositing into Vector Registers

You can also deposit a quadword integer value into the entire aggregate by
using the command DEPOSIT/QUADWORD. For example:

DBG> DEPOSIT/QUADWORD %VMR
0

= %HEX OFFFFF
DBG> EXAMINE %VMR

0\%VMR
(0) : 00000000 OOOFFFFF

DBG>

11.3.5 Examining and Depositing into the Vector Registers (VO to V15)
There are 16 vector registers, designated VO to V15. Each of the vector
registers has 64 elements, numbered 0 to 63, and each element has 64 bits
(one quadword).

To examine one or more elements of a vector register, use the same
technique that you use to examine an array variable. (See Section 4.2.3.)
The examples in this section use FORTRAN array syntax:

DBG> EXAMINE %V3
DBG> EXAMINE %V3 (2 7)

DBG> EXAMINE %V3 (3: 14)
DBG> EXAMINE %V0(2),%V3(1:4)

!Examine all elements of V3
!Examine element 27 of V3
!Examine elements 3 to 14 of V3
!Examine element 2 of VO and
!elements 1 to 4 of V3

The values of register elements are displayed in an indexed format similar
to that used for an array variable. For example, the following command
displays the values of elements 1 to 3 of register Vl:

DBG> EXAMINE %Vl (1: 3)

0\%Vl
(1): 3
(2): 138
(3): 51

DBG>

Note that you cannot examine a range of vector registers. For example,
the following commands are invalid:

DBG> EXAMINE %VO: %V3
DBG> EXArvlINE %V2 (7) : %V3 (12)

As with an array variable, you can deposit a value into only one element of
a vector register at a time. For example, the following command deposits
the integer value 8531 into element 9 of VO:

DBG> DEPOSIT %VO (9) = 8531

The current value of the vector length register (VLR) limits the highest
register element that you can examine or deposit into. (See Section 11.3.3.)
Therefore, the following commands are equivalent:

DBG> EXAMINE %Vl
DBG> EXAMINE %Vl (0: %VLR-1)

The expression 0:%VLR-1 specifies the range of register elements that are
denoted by the current value of VLR.

11-7

11.4

Debugging Vectorized Programs
11.3 Examining and Depositing into Vector Registers

By default, the debugger treats each element of a vector register as a
longword integer and displays the value in the current radix. For example:

DBG> EXAMINE %V3(27)
0\%V3(27): 5983
DBG> DEPOSIT %V3(27) 3625
DBG> EXAMINE %V3(27)
0\%V3(27): 3625
DBG>

However, note that a register value that is examined in the context of a
vector instruction (that is, as an instruction operand) is displayed in the
data type that is appropriate for the instruction. (See Section 11.4.1.)

To display the full (quadword) value of an element of a vector register as
a quadword integer, use the command EXAMINE/QUADWORD. Similarly,
to deposit a quadword integer value into a register element, use the
command DEPOSIT/QUADWORD.

You can also use any of the other type qualifiers associated with the
EXAMINE and DEPOSIT commands (for example, /FLOAT) to override
the default type. For example:

DBG> EXAMINE %V5(2)
O\%V5(2): 0
DBG> EXAMINE/D FLOAT %V5(2)
0\%V5(2): 0.0000000000000000
DBG>

You can use register symbols in language expressions, subject to the
restrictions on using aggregate data structures in language expressions.
(See Section 4.1.5.1.) For example, the following expression is valid
(FORTRAN syntax):

DBG> EVALUATE %V0(4) .EQ. %Vl(4)

However, the following expression is not valid because more than one
register element is specified:

DBG> EVALUATE %VO .EQ. %Vl

Examining and Depositing Vector Instructions

11-8

The techniques for manipulating vector instructions include all of those
used for scalar instructions (described in Section 4.3) and additional
techniques specific to vector instructions:

• You can use a screen-mode instruction display to present the scalar
and vector instructions decoded from the instruction stream of your
program.

• You can execute your program at the vector instruction level by using
commands such as the following:

STEPNECTOR_INSTRUCTION
STEP/INSTRUCTION=(opcode[, .. .J)
SET STEP VECTOR_INSTRUCTION
SET STEP INSTRUCTION=(opcode[, ... J)
SET BREAK/VECTOR_INSTRUCTION
SET BREAK/INSTRUCTION=(opcode[, ... J)

11.4.1

Debugging Vectorized Programs
11.4 Examining and Depositing Vector Instructions

• You can use the command EXAMINE/OPERANDS to display the
instruction at the current PC value, including any operand information
contained in vector registers. In addition, the qualifiers trMASK
and /FMASK enable you to simulate the effect of the vector mask
register (VMR) or override any masking associated with the' examined
instruction so that you can hide or display specific register elements.

• You can deposit a vector instruction at a particular memory address in
your program.

Whether you are examining or depositing vector instructions, the debugger
correctly processes the vector instruction qualifiers according to the
instructions to which they apply. The following table summarizes the
functions of these qualifiers. See the VAX MACRO and Instruction Set
Reference Manual for complete information about their use.

Instruction
Qualifier Description

/U Enable floating underflow {vector floating-point instructions)

IV Enable integer overflow {vector integer instructions)

/M Modify intent {VLDx and VGATHx instructions)

10 Perform masked operations only on elements for which the VMR bit is O

/1 Perform masked operations only on elements for which the VMR bit is 1

Examining Vector Instructions and Their Operands
When you examine a program location that contains a vector instruction,
the debugger decodes that instruction and translates it and its operands
into their VAX MACRO assembler form, with the following restrictions.
(See the VAX MACRO and Instruction Set Reference Manual for details
about instruction opcodes.)

• If the vector control word is not encoded using either immediate or
short-literal mode, the debugger cannot translate the opcode and,
therefore, displays the instruction and its operands in their VAX vector
architectural form rather than their VAX MACRO assembler form.

• If the VAX opcode is VSMERGEx, the debugger displays the
instruction mnemonic as VSMERGE rather than VSMERGEF,
VSMERGED, or VSMERGEG. In this case, a literal src.rq operand
is displayed as a quadword integer in the current radix.

The command EXAMINE/OPERANDS .%PC enables you to display the
instruction at the current PC value and its operands. (See Section 4.3.1.)
When you examine a vector instruction with this command, the values of
any vector register operands are displayed as for an array variable. For
example (FORTRAN array syntax):

11-9

Debugging Vectorized Programs
11.4 Examining and Depositing Vector Instructions

11-10

DBG> EXAMINE/OPERANDS . %PC
PROG$MAIN\%LINE 81+19: VSTL
VO contains:

0\%VO (0): 137445504
0\%VO (1): 137445504
0\%VO (2): 137445504

WA-572(FP) 2145991456 contains 2
DBG>

As with scalar instructions, operand values are displayed in the data type
that is appropriate for the examined instruction.

When you use the command EXAMINE/OPERANDS, :the display of
register elements depends on the following factors:

• The current value of VLR. The highest element of a vector register
that is operated on (and, therefore, displayed) is limited by the value
ofVLR.

• Whether the examined instruction is performing a masked operation.
In an unmasked operation, all register elements (up to VLR-1) are
displayed. A masked operation is indicated by the presence of the /1 or
10 instruction qualifier. For example:

VVADDF/1 VO,Vl,V2

In a masked operation, only the elements that correspond to the
set or clear bits of VMR are operated on (depending on whether the
instruction qualifier is /1 or /0, respectively).

These concepts are illustrated in the following two examples, which show
an unmasked and a masked register-to-register operation, respectively.

In the next example, the examined instruction, VVADDF, is performing an
unmasked operation so that the current value of VMR is irrelevant. All
elements from 0 to 5 are displayed:

DBG> EXAMINE %VLR
0\%VLR: 6
DBG> EXAMINE %VMR (0: 5)
0\%VMR

(0): 1
(1): 0
(2): 1
(3): 0
(4): 1
(5): 0

DBG> EXAMINE/OPERANDS • %PC
PROG$MAIN\%LINE 12: VVADDF VO,Vl,V2
VO contains:

O\%V0(0): 7.0000000
0\%VO(l): 7.0000000

0\%VO (5): 7.0000000
Vl contains:

0\%Vl (0) : 4.0000000
0\%Vl (1): 4.0000000

0\%Vl (5): 4.0000000
V2 contains:

Debugging Vectorized Programs
11.4 Examining and Depositing Vector Instructions

DBG>

0\%V2(0): 5.0000000
0\%V2(1): 5.0000000

0\%V2(5): 5.0000000

In the next example, the same VVADDF instruction is performing a
masked operation. The instruction qualifier /1 specifies that elements that
match the set bits (bit value 1) in VMR are operated on:

DBG> EXAMINE %VLR
0\%VLR: 6
DBG> EXAMINE %VMR (0 : 5)
0\%VMR

(0): 1
(1): 0
(2): 1
(3): 0
(4): 1
(5): 0

DBG> EXAMINE/OPERANDS . %PC
PROG$MAIN\%LINE 12: VVADDF/1 VO,Vl,V2
VO contains:

0\%V0(0): 7.0000000
0\%V0(2): 7.0000000
0\%V0(4): 7.0000000

Vl contains:
O\%V0(0):
0\%V0(2):
0\%V0(4):

V2 contains:
0\%V0(0):
0\%V0(2):
0\%V0(4):

DBG>

4.0000000
4.0000000
4.0000000

5.0000000
5.0000000
5.0000000

The next example shows a masked operation that loads data from memory
to a vector register. Comments, keyed to the callouts, follow the example.

DBG> EXAMINE %VLR
0\%VLR: 6
DBG> EXAMINE %VMR (0 : 5)
0\%VMR

(0): 1
(1): 0
(2): 1
(3): 0
(4): 1
(5): 0

DBG> EXAMINE/OPERANDS . %PC 8
PROG$MAIN\%LINE 31+12: VLDL/1 ARR+8,#4,VO

PROG$MAIN\ARR(3) (address 1024) contains 35
VO contains:

O\%V0(0): 0 ..
0\%V0(2): 0
0\%VO (4): 0

DBG> EXAMINE ARR (1 : 8) 8
PROG$MAIN\ARR

(1): 9
(2): 17
(3): 35
(4): 73

11-11

Debugging Vectorized Programs
11.4 Examining and Depositing Vector Instructions

11-12

(5): 81
(6): 6
(7): 7
(8): 49

DBG>

Figure 11-1 Masked Loading of Array Elements from Memory into a
Vector Register

Instruction: VLDL/1 ARR+8,#4,VO

ARR

(1) 9

VMR(O:S) (2) 17 VO(O:S)
+8

(0) --+ (3) --+ (0)

(1) (4) (1)

(2) --+ (5) --+ (2)

(3) (6) (3)

(4) --+ (7) --+ (4)

(5) (8) 49 (5) 0

ZK-1937 A-GE

The comments that follow refer to the callouts in the previous example:

0 The EXAMINE/OPERANDS command shows that a VLDL instruction
is about to be executed. The instruction will load longword-integer
data from array ARR, starting at ARR+8 bytes, into register VO, as
illustrated in Figure 11-1. Figure 11-1 shows the contents of VO after
the instruction has been executed. Note that array ARR is indexed
l..n, not O .. n-1 (FORTRAN example).

8 The stride value (#4) of the VLDL instruction specifies the number of
bytes between the start addresses of array elements.

8 The instruction operand ARR+8 denotes the start of array element 3,
ARR(3). The EXAMINE/OPERANDS command displays only the first
element of array ARR that is operated upon (see item 0).

Debugging Vectorized Programs
11.4 Examining and Depositing Vector Instructions

8 The current values of VLR and VMR will cause the VLDL instruction
to load the contents of array elements ARR(3), ARR(5), and ARR(7)
into register elements VO(O), V0(2), and V0(4), respectively. The
EXAMINE/OPERANDS command shows the contents of VO before the
instruction has been executed.

0 For reference, the command EXAMINE ARR(1:8) displays the full
range of array elements that are associated with the load operation.

11.4.2 Depositing Vector Instructions

11.5

The techniques for depositing VAX scalar instructions also apply to
depositing vector instructions. (See Section 4.3.2.) For example, the
following command deposits a masked VVMULF vector instruction at the
current PC address:

DBG> DEPOSIT/INSTRUCTION .%PC = "WMULF/0 V2,V3,V7"

Note the following additional information when depositing vector
instructions. (See the VAX MACRO and Instruction Set Reference Manual
for details about instruction opcodes.)

• The regnum.rw operand of the MxVP and VSYNC instructions is
generated as a short literal.

• Do not specify a vector control word when depositing a vector
instruction. The debugger constructs the vector control word based
on the instruction and instruction qualifiers, if any, and encodes it
using immediate mode.

• The value of an immediate argument of a VSMERGEx instruction is
interpreted according to the data type associated with that instruction.
For example, the src argument for a VSMERGEF instruction is
interpreted as a F _floating value, and so on. For VSMERGE without a
type suffix, the debugger interprets a literal src operand as a quadword
integer in the current radix.

Using a Mask When Examining Vector Registers or Instructions
Section 11.4.1 explains how the command EXAMINE/OPERANDS . %PC
displays vector instruction operands, depending on whether or not the
operation is masked by VMR.

This section explains how to specify an arbitrary mask in order to simulate
or override the effect of VMR and obtain the following results:

• Display only certain elements of a vector register or of an array in
memory

• Override the operand masking (if any) that might be associated with
an examined instruction

11-13

11.5.1

Debugging Vectorized Programs
11.5 Using a Mask When Examining Vector Registers or Instructions

You specify a mask by using the trMASK or /FMASK qualifier with the
EXAMINE command.

Note: The remainder of this section describes use of the trMASK and
/FMASK qualifiers when examining vector registers. Unless
indicated otherwise, the discussion also applies to use of these
qualifiers when examining memory arrays.

The trMASK qualifier applies the EXAMINE command only to the
elements of the examined register that correspond to the set bits (bit
value: 1) of the mask. The /FMASK qualifier applies the EXAMINE
command only to the elements that correspond to the clear bits (bit value:
0) of the mask.

The current value of VLR limits the highest element of a vector register
that you can examine. But the value of VLR does not affect examining an
array in memory.

You can optionally specify a mask (in the form of a mask address
expression) with the !I'MASK and /FMASK qualifiers:

• Section 11.5.1 describes use of these qualifiers with the default mask,
which is VMR.

• Section 11.5.2 describes use of these qualifiers with some arbitrary
slice of VMR as the mask.

• Section 11.5.3 describes use of these qualifiers with a mask other than
VMR.

Using VMR as the Default Mask

11-14

By default, if you do not specify a mask with the EXAMINE!I'MASK or
EXAMINE/FMASK command, VMR is used as the mask. That is, the
EXAMINE command is applied only to the elements of the vector register
that correspond to the set bits (in the case of trMASK) or clear bits (in the
case of /FMASK) of VMR.

In the examples that follow, VLR has the value 6 and VMR(O:VLR-1) has
the following set of values:

DBG> EXAMINE %VMR(0:%VLR-1)

0\%VMR
(0): 1
(1): 0
(2) : 1
(3): 0
(4): 1
(5): 0

DBG>

The following command displays the value of V3 without using a mask.
All elements of V3 from 0 to VLR-1 are displayed:

Debugging Vectorized Programs
11.5 Using a Mask When Examining Vector Registers or Instructions

DBG> EXAMINE %V3
0\%V3

(0): 17
(1): 138
(2): 3
(3): 9
(4): 51
(5): 252

DBG>

The following command displays the elements of V3 (in the range from 0
to VLR-1) for which VMR(i) has the value 1:

DBG> EXAMINE/TMASK %V3
0\%V3

(0): 17
(2): 3
(4): 51

DBG>

The following command displays the elements of V3 (in the range from 0
to VLR-1) for which VMR(i) has the value 0:

DBG> EXAMINE/FMASK %V3
0\%V3

(1): 138
(3): 9
(5): 252

DBG>

In the following example, the /FMASK qualifier is used when examining
an instruction and its vector-register operands. The EXAMINE
/OPERANDS/FMASK command displays the register-operand elements
(in the range from 0 to VLR-1) for which VMR(i) has the value 0:

DBG> EXAMINE/OPERANDS/FMASK .%PC
PROG$MAIN\%LINE 341+16: VVEQLL VO,Vl
VO contains:

0\%VO (1): 0
0\%VO (3): 0
0\%V0(5): 0

Vl contains:

DBG>

0\%Vl (1): 0
0\%V1(3): 0
0\%Vl (5): 0

11.5.2 Using a Slice of VMR as the Mask
If you specify a slice of VMR with the EXAMINEITMASK or EXAMINE
/FMASK command, the output is displayed according to the following
conventions:

1 The number of mask elements specified limits the number of register
element that you can examine. For example:

11-15

Debugging Vectorized Programs
11.5 Using a Mask When Examining Vector Registers or Instructions

DBG> EXAMINE %VLR
0\%VLR: 12
DBG> EXAMINE %VMR (3 : 5)
0\%VMR

(3): 1
(4): 1
(5): 1

DBG> EXAMINE/TMASK= (%VMR (3: 5)) %VO (3: 10)
0\%VO

(3): 9
(4): 51
(5): 252

DBG>

Note the use of parentheses when specifying a mask with the !rMASK
qualifier.

2 The lowest specified element of the mask is applied to the lowest
specified element of the register. For example, EXAMINE!rMASK
%V0(4:7) applies VMR(O) to V0(4), VMR(l) to V0(5), and so on. If the
lowest specified elements of the mask and register do not match, the
debugger lists both the mask elements and the register elements that
are operated on and issues a message. For example:

DBG> EXAMINE %VLR
0\%VLR: 12
DBG> EXAMINE %VMR (4 : 7)
0\%VMR

(4): 1
(5): 0
(6): 1
(7): 1

DBG> EXAMINE/TMASK=(%VMR(4:7)) %VO (3:10)
%DEBUG-I-MASKMISMATCH, mask/target subscripts do not match,

displaying mask
O\%VO

%VMR(4): 1
%VO (3): 9
%VMR(6): 1
%VO (5) : 252
%VMR(7): 1
%V0(6): 56

DBG>

11.5.3 Using a Mask Other than VMR

11-16

If you specify a mask address expression other than VMR with the
EXAMINE!rMASK or EXAMINE/FMASK command, the value at that
address is used as the mask, subject to the following conventions:

• If the mask address expression denotes a Boolean array, its values
are used as the mask in the same basic way that VMR is used in
the default case. In the following example, BOOL_ARR, a 4-element
Boolean array variable, is used as the mask:

Debugging Vectorized Programs
11.5 Using a Mask When Examining Vector Registers or Instructions

DBG> EXAMINE %VLR
0\%VLR: 6
DBG> EXAMINE BOOL ARR
PROG$MAIN\BOOL_ARR

(0): 0
(1): 0
(2): 1
(3): 0

DBG> EXAMINE/FMASK=(BOOL_ARR) %VO
%DEBUG-I-MASKNOTVMR, mask used is not %VMR, displaying

spec±f ied mask
O\%VO

BOOL_ARR (0): 0
%V0(0): 17
BOOL_ARR (1): 0
%V0(1): 138
BOOL_ARR (3): 0
%VO (3) : 9

DBG>

As shown in the example, when you use a mask other than VMR, the
debugger displays both the mask elements and the register elements
that are operated on and issues a message.

• If the mask address expression denotes a non-Boolean array, t};le
least significant bit of each array element is used as the mask for the
corresponding element of the register.

• If the mask address expression denotes a Boolean scalar type, its
value is used as the mask for the first element of the register. No
other elements are examined. In the following example, BOOL_ VAR, a
single-element Boolean variable, is used as the mask:

DBG> EXAMINE BOOL VAR
PROG$MAIN\BOOL VAR: 1
DBG> EXAMINE/TMASK=(BOOL_VAR) %VO
%DEBUG-I-MASKNOTVMR, mask used is not %VMR, displaying

specified mask
0\%VO

BOOL VAR: 1
%VO (0) : 17

DBG>

• If the mask address expression denotes any other type, its least
significant bit value is used as the mask for the first element of the
register. No other elements are examined.

• The number of mask elements specified limits the number of register
elements that you can examine, as when the mask is VMR (see
Section 11.5.2).

• For a multi-element mask, the lowest specified element of the mask
is applied to the lowest specified element of the register, as when the
mask is VMR (see Section 11.5.2).

11-17

11.6

Debugging Vectorized Programs
11.6 Examining Composite Vector Address Expressions

Examining Composite Vector Address Expressions
When using the EXAMINE command, you can specify various forms of
composite address expressions-expressions that include byte offsets from
a given address. For example, if X is an integer variable, the following
EXAMINE command displays the value currently stored at the memory
location that is 6 bytes beyond the address of X:

DBG> EXAMINE X + 6
MOD3\X+6: 274903
DBG>

The examples in this section show how to specify composite address
expressions of a form that might be appropriate for a vectorized program.

The next example shows how you might verify the effect of a VSCATL
instruction. The instructions shown are decoded from a FORTRAN
program. Comments, keyed to the callouts, follow the example.

DBG> EXAMINE %VLR
O\%VLR: 5
DBG> EXAMINE/OPERANDS . %PC 8
PROG1$MAIN\%LINE 9+32: VSCATL V7,WA-804(Rll),V9
V7 contains:

0\%V7(0): 11 ~
0\%V7 (1) : 13
0\%V7(2): 15
0\%V7 (3) : 17
0\%V7 (4): 19

WA-804(Rll)PROG1$MAIN\ARRX(l) (address 1820) contains 0 .,
V9 contains:

0\%V9(0): 0 Ct
0\%V9 (1): 8
0\%V9 (2): 16
0\%V9 (3): 24
0\%V9(4): 32

DBG> SHOW SYMBOL/TYPE ARRX @)
data PROG1$MAIN\ARRX
array descriptor type, 1 dimension, bounds: [1:200], size: 800 bytes
cell type: atomic type, longword integer, size: 4 bytes

DBG> EXAMINE ARRX (1) + . %V9 (0: %VLR-1) (i)
PROG1$MAIN\ARRX(l): 0
PROG1$MAIN\ARRX(3): 0
PROG1$MAIN\ARRX(5): 0
PROG1$MAIN\ARRX(7): 0
PROG1$MAIN\ARRX(9): 0
DBG> STEP/ INSTRUCTION fj
stepped to PROG1$MAIN\%LINE 9+40: MOVZBL IA#64,AP
DBG> EXAMINE ARRX (1) + . %V9 (0: %VLR-1) 0
PROG1$MAIN\ARRX(l): 11
PROG1$MAIN\ARRX(3): 13
PROG1$MAIN\ARRX(5): 15
PROG1$MAIN\ARRX(7): 17
PROG1$MAIN\ARRX(9): 19
DBG>

11-18

Debugging Vectorized Programs
11.6 Examining Composite Vector Address Expressions

The comments that follow refer to the callouts in the previous example:

0 The EXAMINE/OPERANDS command shows that a VSCATL
instruction is about to be executed. The instruction will transfer
longword-integer (4-byte) data from register V7 into memory locations.
These locations are determined by adding offset values, contained in
register V9, to a base address.

8 Register V7 contains the longword-integer values to be transferred to
memory.

8 The base address specified as an operand to the VSCATL instruction is
symbolized as ARRX(l), which denotes element 1 of array ARRX.

8 Register V9 contains the offset from the base address, in bytes, of each
target vector element in memory.

0 The SHOW SYMBOL!rYPE command indicates that ARRX is an array
of contiguous longword integers.

0 The EXAMINE command displays the values of the target vector
elements in memory. The address expression specified uses the offset
values contained in register V9 to set the start address of successive
vector elements in memory, relative to ARRX(l), the base address. The
debugger symbolizes the locations of vector elements in memory in
terms of the elements of array ARRX. In this example, vector elements
begin every 8 bytes, coinciding with every other element of array
ARRX. Because the VSCATL instruction has not yet been executed, all
of the vector elements in memory contain the value zero.

8 The STEP/INSTRUCTION command executes the VSCATL instruction
and suspends execution at the next instruction, MOVZBL.

0 As in item 0, the EXAMINE command displays the values of the
target vector elements in memory. Now the contents of memory show
that the values have been transferred from register V7.

The next example shows how to specify a more complex vector address
expression with the EXAMINE command.

Assume that array ARRZ has contiguous quadword-integer (8-byte)
elements. The fourth EXAMINE command in the example displays the
values of vector elements in memory, starting at element ARRZ(l). As
in the previous example, the debugger symbolizes the locations of vector
elements in terms of the array elements. The location of successive vector
elements relative to ARRZ(l) is computed by adding the values contained
in registers Vl and V3 to specify a combined offset for a particular
element. The order in which vector elements are displayed is determined
by cycling through all the values in the last specified register (V3(0:2)) for
each value in the first specified register (Vl). In this example, the values
of all vector elements are zero.

11-19

11.7

Debugging Vectorized Programs
11.6 Examining Composite Vector Address Expressions

DBG> EXAMINE %VLR
0\%VLR: 4
DBG> EXAMINE %Vl
0\%Vl

(0): 0
(1): 4
(2) : 8
(3): 12

DBG> EXAMINE %V3
0\%Vl

(0): 0
(1): 8
(2): 16
(3): 24

DBG> EXAMINE ARRZ (1)
PROG4$MAIN\ARRZ(l):
PROG4$MAIN\ARRZ(2):
PROG4$MAIN\ARRZ(3):
PROG4$MAIN\ARRZ(l)+4:
PROG4$MAIN\ARRZ(2)+4:
PROG4$MAIN\ARRZ(3)+4:
PROG4$MAIN\ARRZ(2):
PROG4$MAIN\ARRZ(3):
PROG4$MAIN\ARRZ(4):
PROG4$MAIN\ARRZ(2)+4:
PROG4$MAIN\ARRZ(3)+4:
PROG4$MAIN\ARRZ(4)+4:
DBG>

+ .%Vl(0:3) + .%V3(0:2)
0 ARRZ(l)+O+O
0 ARRZ(l)+0+8
0 ARRZ(1)+0+16
0 ARRZ(1)+4+0
0 ARRZ(1)+4+8
0 ARRZ(1)+4+16
0 ARRZ(1)+8+0
0 ARRZ(1)+8+8
0 ARRZ(1)+8+16
0 ARRZ(1)+12+0
0 ARRZ(1)+12+8
0 ARRZ(1)+12+16

Displaying the Results of Vector Floating-Point Exceptions

11-20

When a vector instruction causes a floating-point exception in a vector
element, the exception result is encoded into the corresponding element of
the destination register.

In such cases, you can use the EXAMINE/FLOAT command to display
the decoded exception message in the associated register element. This
technique enables you to identify a floating-point exception that is still
pending delivery, as illustrated in Section 11.8. The following example
shows that a vector instruction caused a floating divide-by-zero exception
in element 2 of register V5:

DBG> EXAMINE/FLOAT %V5
O\%V5

DBG>

(0): 297.2800
(1): 87.41499
(2) : Reserved operand, encoded as floating divide by zero
(3): 173.8650

If the program copies values from vector registers into memory, you can
apply the EXAMINE/FLOAT command to the memory location and display
the decoded information, as you would for a vector register.

The following table identifies the decoded debugger message for each type
of vector floating-point exception.

11.8

Debugging Vectorized Programs
11. 7 Displaying the Results of Vector Floating-Point Exceptions

Exception

Floating underflow

Floating divide by
zero

Floating reserved
operand

Floating overflow

Debugger Message

Reserved operand, encoded as floating underflow

Reserved operand, encoded as floating divide by zero

Reserved operand, encoded as floating reserved operand

Reserved operand, encoded as floating overflow

Controlling Scalar-Vector Synchronization
To achieve high performance, the VAX scalar and vector processors operate
concurrently as much as possible. The scalar processor passes any vector
instructions to the vector processor and then continues executing scalar
instructions while the vector processor executes vector instructions.

In some cases, the operation of the two processors must be synchronized to
ensure correct program results. By using synchronizing instructions such
as SYNC, MSYNC, and VSYNC, the program forces certain operations to
complete before others are initiated. See the VAX MACRO and Instruction
Set Reference Manual for more information about these instructions and
scalar-vector synchronization.

If the program has been vectorized by the compiler (for example, the
VAX FORTRAN compiler), the necessary synchronizing instructions are
automatically generated. However, VAX MACRO programmers need to
code synchronizing instructions explicitly.

By default, the debugger does not force scalar-vector synchronization
during program execution except for its own internal purposes. The
program executes as if it were running without debugger control, and
synchronization is controlled entirely by the program. This default
mode of operation is established by the command SET VECTOR_MODE
NOSYNCHRONIZED.

When you use the debugger in the default, nonsynchronized vector mode,
certain vector operations might be in an interrupted state when program
execution is suspended at a breakpoint, watchpoint, or at the completion
of a STEP command. For example:

• An exception caused by a vector instruction might be pending delivery.

• An operation that transfers data between vector registers and scalar
memory might not have completed. Therefore, examining the contents
of memory or vector registers might yield unpredictable results.

To eliminate potential confusion in such cases, enter the command
SYNCHRONIZE VECTOR_MODE. It forces immediate synchronization
between the scalar and vector processors. Entering this command is
equivalent to issuing a SYNC and an MSYNC instruction at the location
in the program at which execution is suspended. The effect is as follows~

• Any exception that was caused by a vector instruction and was still
pending delivery is immediately delivered. Note that forcing the
delivery of a pending exception triggers an exception breakpoint or

11-21

Debugging Vectorized Programs
11.8 Controlling Scalar-Vector Synchronization

DBG> STEP 0

tracepoint (if one was set) or invokes an exception handler (if one is
available at that location in the program).

• Any read or write operation between vector registers and either the
general registers or memory is completed immediately-that is, any
vector memory instruction that was still being executed completes
execution.

The following MACRO example shows the effect of the SYNCHRONIZE
VECTOR_MODE command. Comments, keyed to the callouts, follow the
example.

stepped to .MAIN.\SUB\%LINE 99
99: VVDIVD Vl,VO,V2

DBG> STEP 8
stepped to .MAIN.\SUB\%LINE 100

100: CLRL RO
DBG> EXAMINE/FLOAT %V2 @)
0\%V2

[0]: 13.53400
[1] : Reserved operand, encoded as floating divide by zero
[2]: 247.2450

DBG> SYNCHRONIZE VECTOR MODE 8
%SYSTEM-F-VARITH, vectorarithmetic fault, summary=00000002,

mask=00000004, PC=000002El, PSL=03C00010
break on unhandled exception preceding .MAIN.\SUB\%LINE 100

100: CLRL RO
DBG>

11-22

The comments that follow refer to the callouts in the previous example:

0 This STEP command suspends program execution on line 99, just
before a VVDIVD instruction is executed. Assume that, in this
example, the instruction will trigger a floating-point divide-by-zero
exception.

8 This STEP command executes the VVDIVD instruction. Note,
however, that the exception is not delivered at this point in the
execution of the program.

@) The EXAMINE/FLOAT command displays a decoded exception
message in element 1 of the destination register, V2 (see Section 11. 7).
This confirms that a floating-point divide-by-zero exception was
triggered and is pending delivery.

8 The SYNCHRONIZE VECTOR_MODE command forces the immediate
delivery of the pending vector exception. (Note that you might obtain
a different set of diagnostic messages if your program were using the
VVIEF rather than vector processor hardware.)

An alternative to using the SYNCHRONIZE VECTOR_MODE command is
to operate the debugger in the synchronized vector mode by entering the
command SET VECTOR_MODE SYNCHRONIZED. This command causes
the debugger to force automatic synchronization between the scalar and
vector processors whenever a vector instruction is executed. Specifically,
the debugger issues a SYNC instruction after every vector instruction

Debugging Vectorized Programs
11.8 Controlling Scalar-Vector Synchronization

and, in addition, an MSYNC instruction after any vector instruction that
accesses memory. This forces the completion of all activities associated
with the vector instruction that is being synchronized:

• Any exception that was caused by a vector instruction is delivered
before the next scalar instruction is executed. Note that forcing the
delivery of a pending exception triggers an exception breakpoint or
tracepoint (if one was set) or invokes an exception handler (if one is
available at that location in the program).

• Any read or write operation between vector registers and either
the general registers or memory is completed before the next scalar
instruction is executed.

The following example shows the effect of the SET VECTOR_MODE
SYNCHRONIZED command on the same instruction stream that was
used in the previous example. Comments, keyed to the callouts, follow the
example.

DBG> SHOW VECTOR MODE
Vector mode is nonsynchronized
DBG> SET VECTOR MODE SYNCHRONIZED 8
DBG> SHOW VECTOR MODE
Vector mode is synchronized
DBG> STEP 8
stepped to .MAIN.\SUB\%LINE 99

99: VVDIVD Vl,VO,V2
DBG> STEP 6)
%SYSTEM-F-VARITH, vector arithmetic fault, summary=00000002,

mask=00000004, PC=000002El, PSL=03C00010
break on unhandled exception preceding .MAIN.\SUB\%LINE 100

100: CLRL RO
DBG>

The comments that follow refer to the callouts in the previous example:

0 The command SET VECTOR_MODE SYNCHRONIZED causes the
debugger to force automatic synchronization between the scalar and
vector processors whenever a vector instruction is executed.

8 This STEP command suspends program execution on line 99, just
before a VVDIVD instruction is executed. Assume that, as in the
previous example, the instruction will trigger a floating-point divide
by-zero exception.

8 This STEP command executes the VVDIVD instruction, which triggers
the exception. Note that the vector exception is delivered immediately
because the debugger is being operated in synchronized vector mode.

Note that, in addition to SYNCHRONIZE VECTOR_MODE and SET
VECTOR_MODE SYNCHRONIZED, a few other debugger commands can
affect synchronization-for example, SET WATCH.

11-23

11.9

11.10

Debugging Vectorized Programs
11.9 Calling Routines That Might Affect the Program's Vector State

Calling Routines That Might Affect the Program's Vector State
The CALL command's /[NO]SAVE_ VECTOR_STATE qualifiers enable you
to control whether the current state of the vector processor is saved and
then restored when a routine is called.

The state of the VAX vector processor comprises the following:

• The values of the vector registers and vector control registers

• Any vector exception (an exception caused by the execution of a vector
instruction) that might be pending delivery

When you use the CALL command to execute a routine, execution of the
routine might change the state of the vector processor as follows:

• By changing the values of vector registers or vector control registers

• By causing a vector exception

• By causing the delivery of a vector exception that was pending when
the CALL command was issued

The command CALL/SAVE_ VECTOR_STATE specifies that the state of
the vector processor that exists before the CALL command is issued is
restored by the debugger after the called routine has completed execution.
This ensures that, after the called routine has completed execution:

• Any vector exception that was pending delivery before the CALL
command was issued is still pending delivery

• No vector exception that was triggered during the routine call is still
pending delivery

• The values of the vector registers are identical to their values before
the CALL command was issued

The command CALL/NOSAVE_VECTOR_STATE, which is the default,
specifies that the state of the vector processor that exists before the CALL
command is issued is not restored by the debugger after the called routine
has completed execution. In this case, the state of the vector processor
after the routine call depends on the effect (if any) of the called routine.

The /[NO]SAVE_ VECTOR_STATE qualifiers have no effect on the VAX
general (scalar) registers. The values of these registers are always saved
and restored when you execute a routine with the CALL command.

Displaying Vector Register Data in Screen Mode

11-24

In screen mode, a register display shows the current values of the VAX
general registers. (See Section 7 .2.5.)

To display data contained in vector registers or vector control registers in
screen mode, use a DO display. (See Section 7.6.1.)

Debugging Vectorized Programs
11.10 Displaying Vector Register Data in Screen Mode

For example, the following command creates a DO display named V2_DISP
that shows the contents of elements 4 to 7 of register V2 (FORTRAN array
syntax). The display is automatically updated whenever the debugger
gains control from your program:

DBG> DISPLAY V2 DISP AT RQ2 DO (EXAMINE %V2(4:7))

11-25

Debugger Command Dictionary

The Debugger Command Dictionary contains detailed reference
information about all debugger commands, organized as follows:

• Section 1 explains how to enter debugger commands.

• Section 2 gives general information about debugger diagnostic
messages.

• Section 3 lists commands that apply only when you are using the
debugger at a workstation running VWS (not DECwindows).

• Section 4 contains detailed reference information about the debugger
commands.

1 Debugger Command Format

1.1 General Format

You can enter debugger commands interactively at the keyboard or store
them within a command procedure to be invoked later with the@ (execute
procedure) command.

This section gives the following information:

• General format for debugger commands

• Rules for entering commands interactively at the keyboard

• Rules for entering commands in debugger command procedures

A command string is the complete specification of a debugger command.
Although you can continue a command on more than one line, the term
command string is used to define an entire command that is passed to the
debugger.

A debugger command string consists of a verb and, possibly, parameters
and qualifiers.

The verb specifies the command to be executed. Some debugger command
strings might consist of only a verb or a verb pair. For example:

DBG> GO
DBG> SHOW IMAGE

A parameter specifies what the verb acts on (for example, a file
specification). A qualifier describes or modifies the action taken by the
verb. Some command strings might include one or more parameters or
qualifiers. In the following examples, COUNT, I, J, and K, OUT2, and
PROG4.COM are parameters(@ is the "execute procedure" command);
/SCROLL and /OUTPUT are qualifiers.

DBG> SET WATCH COUNT
DBG> EXAMINE I, J, K
DBG> SELECT/SCROLL/OUTPUT OUT2
DBG> @PROG4 • COM

Some commands accept optional WHEN or DO clauses. DO clauses are
also used in some screen display definitions.

CD-3

A WHEN clause consists of the keyword WHEN followed by a conditional
expression (within parentheses) that evaluates to true or false in the
current language. A DO clause consists of the keyword DO followed by
one or more command strings (within parentheses) that are to be executed
in the order that they are listed. You must separate multiple command
strings with semicolons (;). These points are illustrated in the next
example.

The following command string sets a breakpoint on routine SWAP that is
triggered whenever the value of J equals 4 during execution. When the
breakpoint is triggered, the debugger executes the two command strings
SHOW CALLS and EXAMINE I,K, in the order indicated.

DBG> SET BREAK SWAP WHEN (J = 4) DO (SHOW CALLS; EXAMINE I,K)

The debugger checks the syntax of the commands in a DO clause when it
executes the DO clause. You can nest commands within DO clauses.

1.2 Entering Commands at the Keyboard

CD-4

When entering a debugger command interactively at the keyboard, you
can abbreviate a keyword (verb, qualifier, parameter) to as few characters
as are needed to make it unique within the set of all debugger keywords.
However, some commonly used commands (for example, EXAMINE,
DEPOSIT, GO, STEP) can be abbreviated to their first characters. Also, in
some cases, the debugger interprets nonunique abbreviations correctly on
the basis of context.

Pressing the Return key terminates the current line, causing the debugger
to process it. To continue a long command string on another line, type a
hyphen (-)before pressing RETURN. As a result, the debugger prompt
is prefixed with an underline character (_DBG>), indicating that the
command string is still being accepted.

You can enter more than one command string on one line by separating
command strings with semicolons (;).

To enter a comment (explanatory text that is recorded in a debugger log
file but is otherwise ignored by the debugger), precede the comment text
with an exclamation point (!). If the comment wraps to another line, start
that line with an exclamation point.

The command line editing functions that are available at the DCL prompt
are also available at the debugger prompt, including command recall
with the up arrow and down arrow keys. For example, pressing the left
arrow and right arrow keys moves the cursor one character to the left and
right, respectively; pressing CTRUH and CTRL/E moves the cursor to the
beginning and the end of the line, respectively; pressing CTRL!U deletes
all the characters to the left of the cursor, and so on.

To interrupt a command that is being processed by the debugger, press
CTRL/C. (See the description of CTRL/C in the command dictionary.)

1.3 Entering Commands in Command Procedures
To maximize legibility, it is best not to abbreviate command keywords in
a command procedure. Do not abbreviate command keywords to less than
four significant characters (not counting the negation /NO ...), to avoid
potential conflicts in future releases.

Start a debugger command line at the left margin. (Do not start a
command line with a dollar sign($) as you do when writing a DCL
command procedure).

The beginning of a new line ends the previous command line (the end
of-file character also ends the previous command line). To continue a
command string on another line, type a hyphen (-) before starting the new
line.

You can enter more than one command string on one line by separating
command strings with semicolons (;).

To enter a comment (explanatory text that does not affect the execution of
the command procedure), precede the comment text with an exclamation
point (!). If the comment wraps to another line, start that line with an
exclamation point.

2 Debugger Diagnostic Messages
The following example shows the elements of a debugger diagnostic
message:

%DEBUG-W-NOSYMBOL, symbol 'X' is not in the symbol table

• • • e
8 The facility name (DEBUG).

8 The severity level (W, in this example).

@) The message identifier (NOSYMBOL, in this example). The message
identifier is an abbreviation of the message text.

8 The message text.

The identifier enables you to find the explanation for a diagnostic message
from the debugger's online help (and the action you need to take, if any).

To obtain online help about a debugger message, use the following general
command format:

HELP MESSAGES message-identifier

The possible severity levels for diagnostic messages are as follows:

S (success)
I (informational)
W (warning)
E (error)
F (fatal, or severe error)

Success and informational messages inform you that the debugger has
performed your request.

CD-5

Warning messages indicate that the debugger might have performed some,
but not all, of your request and that you should verify the result.

Error messages indicate that the debugger could not perform your request,
but that the state of the debugging session was not changed. The only
exceptions are if the message identifier was DBGERR or INTERR. These
identifiers signify an internal debugger error, and you should submit a
Software Performance Report (SPR) in such cases.

Fatal messages indicate that the debugger could not perform your request
and that the debugging session is in an indeterminate state from which
you cannot recov~r reliably. Typically, the error ends the debugging
session.

3 Commands Recognized Only on Workstations Running VWS
The following commands are recognized only when you are using the
debugger at a workstation running VWS (not DECwindows):

• SET MODE [NOJSEPARATE

• SET PROMPT/[NO]POP

See the descriptions of these commands in the command dictionary in
Section 4. All of the other debugger commands apply to workstations as
well as terminals.

4 Debugger Command Dictionary

CD-6

The Debugger Command Dictionary describes each of the debugger
commands in detail. Commands are listed alphabetically. The following
information is provided for each command: command description, format,
parameters, qualifiers, and one or more examples. See the preface of this
manual for documentation conventions.

@ {Execute Procedure)

@(Execute Procedure)

Executes a debugger command procedure.

FORMAT @ file-spec [parameter[, ...]]

PARAMETERS file-spec

DESCRIPTION

Specifies the command procedure to be executed. For any part of the
full file specification that is not provided, the debugger uses the file
specification established with the last SET ATSIGN command, if any. If
the missing part of the file specification was not established by a SET
ATSIGN command, the debugger assumes SYS$DISK:[]DEBUG.COM as
the default file specification. You can specify a logical name.

parameter
Specifies a parameter that is passed to the command procedure. The
parameter can be an address expression, a value expression in the current
language, or a debugger command (the command must be enclosed within
quotation marks (")). Note that, unlike with DCL, you must separate
parameters by commas. Also, you can pass as many parameters as there
are formal parameter declarations within the command procedure. For
more information about passing parameters to command procedures, see
the DECLARE command description.

A debugger command procedure can contain any debugger commands,
including another @ command. The debugger executes commands from the
command procedure until it reaches an EXIT or QUIT command or the
end of the file. At that point, the debugger returns control to the command
stream that invoked the command procedure. A command stream can
be the terminal, an outer (containing) command procedure, a DO clause
in a command such as SET BREAK, or a DO clause in a screen display
definition.

By default, commands read from a command procedure are not echoed. If
you enter the command SET OUTPUT VERIFY, all commands read from a
command procedure are echoed on the current output device, as specified
by DBG$0UTPUT (the default output device is SYS$0UTPUT).

For information about passing parameters to command procedures, see the
DECLARE command description.

Related commands: (SET, SHOW) ATSIGN, SET OUTPUT [NO]VERIFY,
SHOW OUTPUT, DECLARE.

CD-7

@ (Execute Procedure)

EXAMPLE
DBG> SET ATSIGN USER: [JONES.DEBUG] .DBG
DBG> SET OUTPUT VERIFY
DBG> @CHECKOUT
%DEBUG-I-VERIFYICF, entering cormnand procedure CHECKOUT

SET MODULE/ALL
SET BREAK SUBl
GO

break at routine PROG5\SUB2
EXAMINE X

PROG5\SUB2\X: 376

%DEBUG-I-VERIFYICF, exiting cormnand procedure MAIN
DBG>

CD-8

In this example, the command SET ATSIGN establishes that debugger
command procedures are, by default, in USER:[JONES.DEBUG] and have
a file type of DBG. The command @CHECKOUT executes the command
procedure USER:[JONES.DEBUG]CHECKOUT.DBG. Commands
contained within the command procedure are echoed because the command
SET OUTPUT VERIFY was entered.

ATTACH

ATTACH

Passes control of your terminal from the current process to another process.

FORMAT ATTACH process-name

PARAMETERS process-name
Specifies the process to which your terminal is to be attached. The process
must already exist before you try to attach to it. If the process name
contains nonalphanumeric or space characters, you must enclose it in
quotation marks (").

DESCRIPTION The ATTACH command allows you to go back and forth between a
debugging session and your command interpreter, or between two
debugging sessions. To do so, you must first use the SPAWN command
to create a subprocess (see the description of the SPAWN command);
you can then attach to it whenever you want. To return to your original
process with minimal system overhead, use another ATTACH command.

Related command: SPAWN.

EXAMPLES
D DBG> SPAWN

$ ATTACH JONES
%DEBUG-I-RETURNED, control returned to process JONES
DBG> ATTACH JONES_l
$

In this example, the series of commands creates a subprocess named
JONES_l from the debugger (currently running in the process JONES)
and then attaches to that subprocess.

~ DBG> ATTACH "Alpha One"
$

This example illustrates use of quotation marks to enclose a process name
that contains a space character.

CD-9

CALL

CALL

Calls a routine that was linked with your program.

FORMAT CALL routine-name [(argument[, ...])]

PARAMETERS routine-name

CD-10

Specifies the name or the memory address of the routine to be called.

argument
Specifies an argument that is required by the routine. Arguments can be
passed by address (the default), by descriptor, by reference, and by value,
as follows:

%ADDR Passes the argument by address. This is the default. The format is as
follows:

CALL routine-name (%ADDR address-expression)

The debugger evaluates the address expression and passes that address
to the routine specified. For simple variables (such as X), the address of
Xis passed into the routine. This passing mechanism is how FORTRAN
implements ROUTINE(X). In other words, for named variables, using
%ADDR corresponds to a call by reference in FORTRAN. For other
expressions, however, you must use the %REF function to call by
reference. For complex or composite variables (such as arrays, records,
and access types), the address is passed when you specify %ADDR,
but the called routine might not handle the passed data properly. Do not
specify a literal value (a number or an expression composed of numbers)
when using %ADDR.

%DESCR Passes the argument by descriptor. The format is as follows:

%REF

%VAL

CALL routine-name (%DESCR language-expression)

The debugger evaluates the language expression and builds a VAX
standard descriptor to describe the value. The descriptor is then passed
to the routine you named. You would use this technique to pass strings
to a FORTRAN routine.

Passes the argument by reference. The format is as follows:

CALL routine-name (%REF language-expression)

The debugger evaluates the language expression and passes a pointer to
the value, into the called routine. This passing mechanism corresponds
to the way FORTRAN passes the result of an expression.

Passes the argument by value. The format is as follows:

CALL routine-name (%VAL language-expression)

The debugger evaluates the language expression and passes the value
directly to the called routine.

QUALIFIERS /AST (default)
/NOA ST

CALL

Controls whether the delivery of asynchronous system traps (ASTs) is
enabled or disabled during the execution of the called routine. The
I AST qualifier specifies that ASTs can be delivered, if delivery of ASTs
was enabled before the CALL command was entered (that is, unless you
previously entered the command DISABLE AST). The /NOAST qualifier
specifies that ASTs cannot be delivered.

/SAVE_ VECTOR_ STATE
/NOSAVE_ VECTOR_STATE (default)
Note: This qualifier applies to vectorized programs.

Controls whether the current state of the vector processor is saved and
then restored when a routine is called with the CALL command.

The state of the vector processor comprises the following:

• The values of the vector registers (VO to V15) and the vector control
registers (VCR, VLR, and VMR)

• Any vector exception (an exception caused by the execution of a vector
instruction) that might be pending delivery

When you use the CALL command to execute a routine, execution of the
routine might change the state of the vector processor as follows:

• By changing the values of vector registers or vector control registers

• By causing a vector exception

• By causing the delivery of a vector exception that was pending when
the CALL command was issued

The /SAVE_ VECTOR_STATE qualifier specifies that the state of the vector
processor that exists before the CALL command is issued is restored by the
debugger after the called routine has completed execution. This ensures
that, after the called routine has completed execution:

• Any vector exception that was pending delivery before the CALL
command was issued is still pending delivery

• No vector exception that was triggered during the routine call is still
pending delivery

• The values of the vector registers are identical to their values before
the CALL command was issued

The /NOSAVE_ VECTOR_STATE qualifier, which is the default, specifies
that the state of the vector processor that exists before the CALL command
is issued is not restored by the debugger after the called routine has
completed execution. In this case, the state of the vector processor after
the routine call depends on the effect (if any) of the called routine.

The /[NO]SAVE_ VECTOR_STATE qualifiers have no effect on the VAX
general registers. The values of these registers are always saved and
restored when you execute a routine with the CALL command.

CD-11

CALL

DESCRIPTION

CD-12

The CALL command is one of the four debugger commands that can
be used to execute your program (the others are GO, STEP, and EXIT).
The command enables you to execute a routine independently of the
normal execution of your program. The CALL command executes a routine
whether or not your program actually includes a call to that routine, as
long as the routine was linked with your program.

When you enter a CALL command, the debugger takes the following
action. (See the qualifier descriptions for additional information):

1 Saves the current values of the VAX general registers.

2 Constructs an argument list.

3 Executes a call to the routine specified in the command and passes any
arguments.

4 Executes the routine.

5 Displays the value returned by the routine in register RO. By VMS
convention, after a called routine has executed, register RO contains
the function return value (if the routine is a function) or the procedure
completion status (if the routine is a procedure that returns a status
value). If a called procedure does not return a status value or function
value, the value in RO might be meaningless, and the "value returned"
message can be ignored.

6 Restores the values of the general registers to the values they had just
before the CALL command was executed.

7 Issues the prompt.

The debugger assumes that the called routine conforms to the VMS
procedure calling standard (see the VAX Architecture Handbook). However,
note that the debugger does not know about all the argument-passing
mechanisms for all supported languages. Therefore, you might need to
specify how to pass parameters-for example, use CALL SUB1(%VAL
X) rather than CALL SUBl(X). See your language documentation for
complete information about how arguments are passed to routines.

Note that, if you use the CALL command to call a routine that modifies
the value of a passed parameter and returns a new value, the returned
value might be unreliable.

A common debugging technique at an exception breakpoint (resulting from
a SET BREAK/EXCEPTION or a STEP/EXCEPTION command) is to call
a dump routine with the CALL command. When you enter the CALL
command at an exception breakpoint, any breakpoints, tracepoints, or
watchpoints that were previously set within the called routine are disabled
temporarily so that the debugger does not lose the exception context.
However, such eventpoints are active if you enter the CALL command at a
location other than an exception breakpoint.

When an exception breakpoint is triggered, execution is suspended before
any application-declared condition handler is invoked. At an exception
breakpoint, entering· a GO or STEP command after executing a routine
with the CALL command causes the debugger to resignal the exception
(see the descriptions of the GO and STEP commands).

EXAMPLES

CALL

If you are using the multiprocess debugging configuration to debug a
multiprocess program (if the logical name DBG$PROCESS has the value
MULTIPROCESS), note the following additional points:

• The CALL command is executed in the context of the visible process,
but images in any other processes that are not on hold (through a SET
PROCESS/HOLD command) are also allowed to execute. If you use the
DO command to broadcast a CALL command to one or more processes,
the CALL command is executed in the context of each specified process
that is not on hold, but images in any other processes that are not on
hold are also allowed to execute. In all cases, a hold condition in the
visible process is ignored.

• After execution is started, the way in which it continues depends on
whether the command SET MODE [NO]INTERRUPT was entered.
By default (SET MODE INTERRUPT), execution continues until it
is suspended in any process. At that point, execution is interrupted
in any other processes that were executing images, and the debugger
prompts for input.

Related commands: GO, STEP, EXIT, DO, SET PROCESS, SET MODE
[NOJINTERRUPT, SET VECTOR_MODE [NOJSYNCHRONIZED,
SYNCHRONIZE VECTOR_MODE.

D DBG> CALL SUBl (X)
value returned is 19
DBG>

This command calls the routine SUBl, passing the address of X as the
required parameter (by default, the address of the argument specified is
passed). The routine is a function whose returned value is 19.

~ DBG> CALL SUB (%REF 1)
value returned is 1
DBG>

This command passes a pointer to a memory location containing the
numeric literal 1, into the routine SUB.

ri] DBG> SET MODULE SHARE$LIBRTL
DBG> CALL LIB$SHOW VM

1785 calls to LIB$GET VM, 284 calls to LIB$FREE_VM, 122216 bytes
still allocated, value returned is 00000001

DBG>

This example shows how you could call the run-time library routine
LIB$SHOW _ VM (in the shareable image LIBRTL) to display memory
statistics. The SET MODULE command makes the universal symbols
(routine names) in LIBRTL visible in the main image. See the description
of the /SHARE qualifier of the SHOW MODULE command for more
information about this subject.

CD-13

CALL

SUBROUTINE CHECK TEMP(TEMPERATURE,ERROR MESSAGE)
REAL TOLERANCE /4.7/ -
REAL TARGET_TEMP /92.0/
CHARACTER*(*) ERROR_MESSAGE

IF (TEMPERATURE .GT. (TARGET_TEMP +TOLERANCE)) THEN
TYPE *,'Input temperature out of range:' ,TEMPERATURE
TYPE *,ERROR_MESSAGE

ELSE
TYPE *,'Input temperature in range:' ,TEMPERATURE

END IF
RETURN
END

DBG> CALL CHECK_TEMP(%REF 100.0, %DESCR 'TOLERANCE-CHECK 1 FAILED')
Input temperature out of range: 100.0000
TOLERANCE-CHECK 1 FAILED
value returned is 0
DEG> CALL CHECK_TEMP(%REF 95.2, %DESCR 'TOLERANCE-CHECK 2 FAILED')
Input temperature in range: 95.2000
value returned is 0
DEG>

CD-14

In this example, the source code is that of a FORTRAN routine (CHECK_
TEMP) that accepts two parameters, TEMPERATURE (a real number) and
ERROR_MESSAGE (a string). Depending on the value of the temperature,
the routine prints different output. Each of the two CALL commands
passes a temperature value (by reference) and an error message (by
descriptor). Because this routine does not have a formal return value,
the value returned is undefined, in this case, 0.

CANCEL ALL

CANCEL ALL

FORMAT

QUALIFIERS

Cancels all breakpoints, tracepoints, and watchpoints. Restores the scope
and type to their default values. Restores the line, symbolic, and G_Float
modes established with the SET MODE command to their default values.

CANCEL ALL

!PREDEFINED
Cancels all predefined (but no user defined) breakpoints, tracepoints, and
watchpoints.

/USER
Cancels all user defined (but no predefined) breakpoints, tracepoints,
and watchpoints. CANCEL ALL/USER is assumed by default unless you
specify /PREDEFINED.

DESCRIPTION The CANCEL ALL command performs the followings steps:

• Cancels all breakpoints, tracepoints, and watchpoints. This is
equivalent to entering the commands CANCEL BREAK/ALL, CANCEL
TRACE/ALL, and CANCEL WATCWALL. Depending on the type
of program (for example Ada, multiprocess), certain predefined
breakpoints or tracepoints might be set automatically when you invoke
the debugger. By default (CANCEL ALL/USER), only user defined
breakpoints, tracepoints, and watchpoints are canceled-those that
were previously set explicitly with the SET BREAK, SET TRACE,
and SET WATCH commands. If you specify /PREDEFINED but not
/USER, all predefined (but no user defined) breakpoints, tracepoints,
and watchpoints are canceled. If you specify both /PREDEFINED and
/USER, all predefined and user defined breakpoints, tracepoints, and
watchpoints are canceled.

See Section 9.3.2 for information about predefined breakpoints
associated with Ada tasking exception events. See Chapter 10 for
information about predefined tracepoints associated with multiprocess
programs.

• Restores the scope search list to its default value (0,1,2, ... ,n). This
is equivalent to entering the CANCEL SCOPE command.

• Restores the data type for memory locations that are associated with
a compiler generated type to the associated type. Restores the type
for locations that are not associated with a compiler generated type
to "longword integer". This is equivalent to entering the commands
CANCEL TYPE/OVERRIDE and SET TYPE LONGWORD.

CD-15

CANCEL ALL

EXAMPLES
D DBG> CANCEL ALL

fl DBG> CANCEL ALL

• Restores the line, symbolic, and G_Float modes established with the
SET MODE command to their default values. This is equivalent to
entering the following command:

DBG> SET MODE LINE,SYMBOLIC,NOG_FLOAT

The CANCEL ALL command does not affect the current language setting
or modules included in the run-time symbol table.

Related commands: CANCEL BREAK, CANCEL TRACE, CANCEL
WATCH, CANCEL SCOPE, CANCEL TYPE/OVERRIDE, SET TYPE,
(SET, CANCEL) MODE.

This command cancels all user defined breakpoints, tracepoints, and
watchpoints and restores scopes, types, and some modes to their default
values. In this example, there are no predefined breakpoints, tracepoints,
or watchpoints.

%DEBUG-I-PREDEPTNOT, predefined eventpoint(s) not canceled
DBG>

This command cancels,. all user defined breakpoints, tracepoints, and
watchpoints and restores scopes, types, and some modes to their
default values. In this example, there are some predefined breakpoints,
tracepoints, or watchpoints, and these are not canceled by default.

i] DBG> CANCEL ALL/PREDEFINED

CD-16

This command cancels all predefined breakpoints, tracepoints, and
watchpoints and restores scopes, types, and some modes to their default
values. No user defined breakpoints, tracepoints, or watchpoints are
affected.

CANCEL BREAK

CANCEL BREAK

Cancels a breakpoint.

FORMAT CANCEL BREAK [address-expression[, ...]]

PARAMETERS address-expression
Specifies a breakpoint to be canceled. Do not use the asterisk wildcard
character (*). Do not specify an address expression when using any of the
qualifiers except for /EVENT, /PREDEFINED, or /USER.

QUALIFIERS !ACTIVATING
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS).

Cancels the effect of a previous SET BREAK/ACTIVATING command. Do
not specify an address expression with /ACTIVATING.

!ALL
By default, cancels all user defined breakpoints. When used with
/PREDEFINED, cancels all predefined breakpoints but no user defined
breakpoints. Specify both /USER and /PREDEFINED to cancel all
breakpoints. Do not specify an address expression with /ALL.

/BRANCH
Cancels the effect of a previous SET BREAK/BRANCH command. Do not
specify an address expression with /BRANCH.

/CALL
Cancels the effect of a previous SET BREAK/CALL command. Do not
specify an address expression with /CALL.

/EVENT =event-name
Note: This qualifier applies to Ada and SCAN programs. See the
VAX Ada and VAX SCAN documentation for complete information.

Cancels the effect of a previous SET BREAK/EVENT=event-name
command. Specify the event name (and address expression, if any) exactly
as they were specified with the SET BREAK/EVENT command. Event
names depend on the run-time facility and are identified in Appendix E
for Ada and SCAN. You can display the event names associated with
the current run-time facility by entering the SHOW EVENT_FACILITY
command.

!EXCEPTION
Cancels the effect of a previous SET BREAK/EXCEPTION command. Do
not specify an address expression with /EXCEPTION.

CD-17

CANCEL BREAK

/INSTRUCTION
Cancels the effect of a previous SET BREAK/INSTRUCTION command.
Do not specify an address expression with /INSTRUCTION.

/LINE
Cancels the effect of a previous SET BREAK/LINE command. Do not
specify an address expression with /LINE.

/PREDEFINED
Cancels a specified predefined breakpoint without affecting any user
defined breakpoints. When used with I ALL, cancels all predefined
breakpoints.

/TERMINATING
Cancels the effect of a previous SET BREAK/TERMINATING command.
Do not specify an address expression with /TERMINATING.

/USER
Cancels a specified user defined breakpoint without affecting any
predefined breakpoints. When used with I ALL, cancels all user defined
breakpoints. CANCEL BREAK/USER is assumed by default unless you
specify /PREDEFINED.

/VECTOR_INSTRUCTION
Note: This qualifier applies to vectorized programs.

Cancels the effect of a previous SET BREAKNECTOR_INSTRUCTION
command. Do not specify an address expression with
NECTOR_INSTRUCTION.

DESCRIPTION Breakpoints can be user defined or predefined. User defined breakpoints
are those that you set explicitly with the SET BREAK command.
Predefined breakpoints, which depend on the type of program you

CD-18

are debugging (for example, Ada or multiprocess), are established
automatically when you invoke the debugger. Use the SHOW BREAK
command to identify all breakpoints that are currently set. Any predefined
breakpoints are identified as such.

User defined and predefined breakpoints are set and canceled
independently. For example, a location or event can have both a
user defined and a predefined breakpoint. Canceling the user defined
breakpoint does not affect the predefined breakpoint, and conversely.

To cancel only user defined breakpoints, do not specify /PREDEFINED
with the CANCEL BREAK command (!USER is the default). To cancel
only predefined breakpoints, specify /PREDEFINED but not /USER. To
cancel both user defined and predefined breakpoints, specify both /USER
and /PREDEFINED.

In general, note that the effect of the CANCEL BREAK command is
symmetrical with that of the SET BREAK command (even though the SET
BREAK command is used only with user defined breakpoints). Thus, to
cancel a breakpoint that was established at a specific location, specify that
same location (address expression) with the CANCEL BREAK command.
To cancel breakpoints that were established on a class of instructions or

EXAMPLES

CANCEL BREAK

events, specify the class of instructions or events with the corresponding
qualifier (for example, /LINE, /BRANCH, /ACTIVATING, /EVENT=, and so
on). See the qualifier descriptions for more specific information.

Related commands: (SET, SHOW) BREAK, (SET, SHOW, CANCEL)
TRACE, CANCEL ALL, (SET, SHOW) EVENT_FACILITY.

D DBG> CANCEL BREAK MAIN\LOOP+lO

This command cancels the user defined breakpoint set at the address
expression MAIN\LOOP+lO.

6 DBG> CANCEL BREAK/ ALL

This command cancels all user defined breakpoints.

~ DBG> CANCEL BREAK/ALL/USER/PREDEFINED

This command cancels all user defined and predefined breakpoints.

!) DBG 1> CANCEL BREAK/ACTIVATING

This command cancels a previous user defined SET BREAK/ACTIVATING
command. As a result, the debugger does not suspend execution when a
new process is brought under debugger control.

lf3 DBG> CANCEL BREAK/EVENT=DEPENDENTS _EXCEPTION /PREDEFINED

This command cancels the predefined breakpoint set on dependent
exceptions. This breakpoint is predefined for Ada programs.

CD-19

CANCEL DISPLAY

CANCEL DISPLAY

Permanently deletes a screen display.

FORMAT CANCEL DISPLAY [disp-name[, ...]]

PARAMETERS disp-name
Specifies the name of a display to be canceled. Do not specify the PROMPT
display, which cannot be canceled. Do not use the asterisk wildcard
character (*). Do not specify a display name with /ALL.

QUALIFIERS /ALL
Cancels all displays, except for the PROMPT display. Do not specify a
display name with /ALL.

/SUFFIX[:process-identifier-type]
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS). Use this qualifier only directly after a display
name.

Appends a process-identifying suffix to a display name. The suffix denotes
the visible process at the time the command was issued. This qualifier is
used primarily in command procedures when specifying display definitions
or key definitions that are bound to display definitions.

Use any of the following process-identifier-type keywords:

PROCESS_NAME The display-name suffix is the VMS process name.

PROCESS_NUMBER The display-name suffix is the process number (as shown in
a SHOW PROCESS display).

PROCESS_PID The display-name suffix is the VMS process identification
number (PIO).

If you specify /SUFFIX without a process-identifier-type keyword, the
process identifier type used for the display-name suffix is, by default, the
same as that used for the prompt suffix (see SET PROMPT/SUFFIX).

DESCRIPTION When a display is canceled, its contents are permanently lost, it is deleted
from the display list, and all the memory that was allocated to it is
released.

CD-20

You cannot cancel the PROMPT display.

Related commands: (SET, SHOW) DISPLAY, (SET, SHOW, CANCEL)
WINDOW.

CANCEL DISPLAY

EXAMPLE
DBG> CANCEL DISPLAY SRC2

This command permanently deletes display SRC2.

DBG> CANCEL DISPLAY/ALL

This command permanently deletes all displays, except for the PROMPT
display.

CD-21

CANCEL IMAGE

CANCEL IMAGE
Deletes symbol table information for a shareable image.

FORMAT CANCEL IMAGE [image-name[, ... 11

PARAMETERS image-name
Specifies a previously set shareable image to be canceled. Do not specify
the main image, which cannot be canceled. Do not use the asterisk
wildcard character (*). Do not specify an image name with I ALL.

QUALIFIERS /ALL
Specifies that all shareable images except the main image are to be
canceled. Do not specify an image name with I ALL.

DESCRIPTION The CANCEL IMAGE command deallocates the data structures previously
built to debug a shareable image by a SET IMAGE command. Use the
CANCEL IMAGE command if the debugger performance has slowed down
because of many images and modules being set. You can also use the
CANCEL MODULE command to delete only certain modules from an
image's run-time symbol table (RST) without canceling the entire image.
Also, if dynamic mode is enabled (this is the default), you can disable it
with the command SET MODE NODYNAMIC. As a result, the debugger
does not set images or modules automatically.

EXAMPLE

If the current image (the image last set with the SET IMAGE command)
is canceled, the main image (the image containing the image transfer
address) becomes the current image.

Related commands: (SET, SHOW) IMAGE, (SET, SHOW, CANCEL)
MODULE, SET MODE [NO]DYNAMIC.

DBG> CANCEL IMAGE SHARE2, SHARE3

CD-22

This command cancels shareable images SHARE2 and SHARE3. If either
of these was the current image, the main image becomes the current
image.

CANCEL MODE

CANCEL MODE

Restores the line, symbolic, and G_float modes established by the SET
MODE command to their default values. Also restores the default input/output
radix.

FORMAT CANCEL MODE

DESCRIPTION The effect of the CANCEL MODE command is equivalent to entering the
following commands:

EXAMPLE
DBG> CANCEL MODE

DBG> SET MODE LINE,SYMBOLIC,NOG_FLOAT
DBG> CANCEL RADIX

Note that, although the same default modes apply to all languages, the
default radix for both data entry and display is decimal for all languages
except BLISS and MACRO. It is hexadecimal for BLISS and MACRO.

Related commands: (SET, SHOW) MODE, (SET, SHOW, CANCEL)
RADIX.

This command restores the default radix mode and all default mode
values.

CD-23

CANCEL MODULE

CANCEL MODULE

FORMAT

Deletes the symbol records of a module in the current image from the run-time
symbol table (RST) for that image.

CANCEL MODULE [module-name[, ... 11

PARAMETERS module-name

QUALIFIERS

Specifies the name of a module whose symbol records are deleted from
the RST. Do not use the asterisk wildcard character (*). Do not specify a
module name with I ALL.

/ALL
Deletes the symbol records of all modules from the RST. Do not specify a
module name or /[NOJRELATED with /ALL.

/RELATED (default)
/NORELATED
Note: This qualifier applies to Ada programs.

Controls whether the debugger deletes from the RST the symbol records
of a module that is related to a specified module through a with-clause or
subunit relationship.

CANCEL MODULE/RELATED deletes symbol records for related modules
as well as for those specified, but not for any module that is also related
to another set module. The effect of CANCEL MODULE/RELATED is
consistent with Ada's scope and visibility rules and depends on the actual
relationship between modules. CANCEL MODULE/NORELATED deletes
symbol records only for modules that are specified (no symbol records are
deleted for related modules).

DESCRIPTION Note: The current image is either the main image (by default)
or the image established as the current image by a previous SET
IMAGE command.

CD-24

Use the CANCEL MODULE command ifthe debugger performance has
slowed down because of many modules being set. You can also use the
CANCEL IMAGE command to delete the symbols of an entire image (this
automatically cancels all of the modules in that image). Also, if dynamic
mode is enabled (this is the default), you can disable it with the command
SET MODE NODYNAMIC. As a result, the debugger does not set modules
or images automatically.

The CANCEL MODULE command does not cancel any breakpoints,
tracepoints, or watchpoints that are set currently. It deletes the
symbolization of any breakpoints, tracepoints, or watchpoints associated
with the canceled modules.

EXAMPLES

CANCEL MODULE

Related commands: (SET, SHOW) MODULE, SET MODE [NO]DYNAMIC,
(SET, SHOW, CANCEL) IMAGE.

D DBG> CANCEL MODULE SUBl

This command deletes the symbols of module SUB 1 from the RST.

~ DBG> CANCEL MODULE/ALL

This command deletes the symbols of all modules from the RST.

CD-25

CANCEL RADIX

CANCEL RADIX

FORMAT

QUALIFIERS

Restores the default radix for the entry and display of integer data.

CANCEL RADIX

/OVERRIDE
Cancels the override radix established by a previous SET RADIX
/OVERRIDE command. This sets the current override radix to "none" and
restores the output radix mode to the value established with a previous
SET RADIX or SET RADIX/OUTPUT command. If you did not change
the radix mode with a SET RADIX or SET RADIX/OUTPUT command,
the CANCEL RADIX/OVERRIDE command restores the radix mode to
its default value (decimal for all languages except BLISS and MACRO,
hexadecimal for BLISS and MACRO).

DESCRIPTION The CANCEL RADIX command cancels the effect of any previous SET
RADIX and SET RADIX/OVERRIDE commands. It restores the input and
output radix to their default value (decimal for all languages except BLISS
and MACRO, hexadecimal for BLISS and MACRO).

EXAMPLES

The effect of the CANCEL RADIX/OVERRIDE command is more limited
and is explained in the description of the /OVERRIDE qualifier.

Related commands: (SET, SHOW) RADIX, EVALUATE.

D DBG> CANCEL RADIX

This command restores the default input and output radix.

~ DBG> CANCEL RADIX/OVERRIDE

CD-26

This command cancels any override radix you might have set with the
SET RADIX/OVERRIDE command.

CANCEL SCOPE

CANCEL SCOPE

Restores the default scope search list for symbol lookup.

FORMAT CANCEL SCOPE

DESCRIPTION The CANCEL SCOPE command cancels the current scope search list
established by a previous SET SCOPE command and restores the default
scope search list, namely 0,1,2, ... ,n, where n is the number of calls in
the call stack.

EXAMPLE
DBG> CANCEL SCOPE

The default scope search list specifies that, for a symbol without a path
name prefix, a symbol lookup such as 11 EXAMINE X11 first looks for X in
the routine that is currently executing (scope O); if no X is visible there,
the debugger looks in the caller of that routine (scope 1), and so on down
the call stack; if X is not found in scope n, the debugger searches the rest
of the run-time symbol table (RST), then searches the global symbol table
(GST), if necessary.

Related commands: (SET, SHOW) SCOPE.

This command cancels the current scope.

CD-27

CANCEL SOURCE

CANCEL SOURCE

FORMAT

QUALIFIERS

Cancels a source directory search list established by a previous SET
SOURCE command.

CANCEL SOURCE

/EDIT
Note: This qualifier applies mainly to Ada programs.

Cancels the effect of a previous SET SOURCE/EDIT command. As a
result, when you use the EDIT command, the debugger searches for a
source file in the same directory that it was in at compile time. The
CANCEL SOURCE/EDIT command does not cancel the effect of a previous
SET SOURCE command.

/MODULE=module-name
Cancels the effect of a previous SET SOURCE/MODULE=module-name
command in which the same module name was specified. (module-name
specifies a module for which a source directory search list is canceled). As
a result, the debugger searches for the source file of the specified module in
the same directory that it was in at compile time. The CANCEL SOURCE
/MODULE=module-name command does not cancel the effect of a previous
SET SOURCE command, or of a SET SOURCE/MODULE=module-name
command in which a different module name was specified.

DESCRIPTION When used without a qualifier, the CANCEL SOURCE command cancels
the effect of a previous SET SOURCE command used without a qualifier.
CANCEL SOURCE does not cancel the effect of a previous SET SOURCE
/EDIT or SET SOURCE/MODULE=module-name commands.

CD-28

See the qualifier descriptions for an explanation of their effects.

The /EDIT qualifier is needed when the files used for the display of source
code are different from the files to be edited by means of the EDIT
command. This is the case with Ada programs. For Ada programs, the
(SET, SHOW, CANCEL) SOURCE commands affect the search of files used
for source display (the "copied" source files in Ada program libraries);
the (SET, SHOW, CANCEL) SOURCE/EDIT commands affect the search
of the source files that you edit when using the EDIT command. If you
use /MODULE with /EDIT, the effect of /EDIT is further qualified by
/MODULE.

Related commands: (SET, SHOW) SOURCE, (SET, SHOW) MAX_
SOURCE_FILES.

EXAMPLE
DBG> SHOW SOURCE
sourc~ directory search list for COBOLTEST:

[]

SYSTEM:: DEVICE: [PROJD]
source directory search list for all other modules:

[PROJA]
[PROJB]
[PETER. PROJC]

DBG> CANCEL SOURCE
DBG> SHOW SOURCE
source directory search list for COBOLTEST:

[]

SYSTEM::DEVICE: [PROJD]
DBG> CANCEL SOURCE/MODULE=COBOLTEST
DBG> SHOW SOURCE
no directory search list in effect
DBG>

CANCEL SOURCE

In this example, the CANCEL SOURCE command cancels the effect of a
previous SET SOURCE command. It does not cancel any source directory
search lists for specific modules. But the command CANCEL SOURCE
/MODULE=module-name (in this case, COBOLTEST) cancels the source
directory search list for that module.

CD-29

CANCEL TRACE

CANCEL TRACE

Cancels a tracepoint.

FORMAT CANCEL TRACE [address-expression[, ...]]

PARAMETERS address-expression
Specifies a tracepoint to be canceled. Do not use the asterisk wildcard
character (*). Do not specify an address expression when using any of the
qualifiers except for /EVENT, /PREDEFINED, or /USER.

QUALIFIERS /ACTIVATING

CD-30

Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS).

Cancels the effect of a previous SET TRACE/ACTIVATING command. Do
not specify an address expression with /ACTIVATING.

/ALL
By default, cancels all user defined tracepoints. When used with
/PREDEFINED, cancels all predefined tracepoints but no user defined
tracepoints. Specify both /USER and /PREDEFINED to cancel all
tracepoints. Do not specify an address expression with /ALL.

/BRANCH
Cancels the effect of a previous SET TRACE/BRANCH command. Do not
specify an address expression with /BRANCH.

/CALL
Cancels the effect of a previous SET TRACE/CALL command. Do not
specify an address expression with /CALL.

/EVENT =event-name
Note: This qualifier applies to Ada and SCAN programs. See the
VAX Ada and VAX SCAN documentation for complete information.

Cancels the effect of a previous SET TRACE/EVENT=event-name
command. Specify the event name (and address expression, if any) exactly
as they were specified with the SET TRACE/EVENT command. Event
names depend on the run-time facility and are identified in Appendix E
for Ada and SCAN. You can display the event names associated with
the current run-time facility by entering the SHOW EVENT_FACILITY
command.

/EXCEPTION
Cancels the effect of a previous SET TRACE/EXCEPTION command. Do
not specify an address expression with /EXCEPTION.

CANCEL TRACE

/INSTRUCTION
Cancels the effect of a previous SET TRACE/INSTRUCTION command.
Do not specify an address expression with /INSTRUCTION.

/LINE
Cancels the effect of a previous SET TRACE/LINE command. Do not
specify an address expression with /LINE.

/PREDEFINED
Cancels a specified predefined tracepoint without affecting any user
defined tracepoints. When used with /ALL, cancels all predefined
tracepoints.

ffERMINATING
Cancels the effect of a previous SET TRACE/TERMINATING command.
Do not specify an address expression with /TERMINATING.

/USER
Cancels a specified user defined tracepoint without affecting any
predefined tracepoints. When used with I ALL, cancels all user defined
tracepoints. CANCEL BREAK/USER is assumed by default unless you
specify /PREDEFINED.

/VECTOR_INSTRUCTION
Note: This qualifier applies to vectorized programs.

Cancels the effect of a previous SET TRACE/VECTOR_INSTRUCTION
command. Do not specify an address expression with /VECTOR_
INSTRUCTION.

DESCRIPTION Tracepoints can be user defined or predefined. User defined tracepoints are
those that you set explicitly with the SET TRACE command. Predefined
tracepoints, which depend on the type of program you are debugging
(for example, Ada or multiprocess), are established automatically when
you invoke the debugger. Use the SHOW TRACE command to identify
all tracepoints that are currently set. Any predefined tracepoints are
identified as such.

User defined and predefined tracepoints are set and canceled
independently. For example, a location or event can have both a user
defined and a predefined tracepoint. Canceling the user defined tracepoint
does not affect the predefined tracepoint, and conversely.

To cancel only user defined tracepoints, do not specify /PREDEFINED with
the CANCEL TRACE command (/USER is the default). To cancel only
predefined tracepoints, specify /PREDEFINED but not /USER. To cancel
both user defined and predefined tracepoints, specify both /USER and
/PREDEFINED.

In general, note that the effect of the CANCEL TRACE command is
symmetrical with that of the SET TRACE command (even though the SET
TRACE command is used only with user defined tracepoints). Thus, to
cancel a tracepoint that was established at a specific location, specify that
same location (address expression) with the CANCEL TRACE command.
To cancel tracepoints that were established on a class of instructions or

CD-31

CANCEL TRACE

EXAMPLES

events, specify the class of instructions or events with the corresponding
qualifier (for example, /LINE, /BRANCH, /ACTIVATING, /EVENT=, and so
on). See the qualifier descriptions for more specific information.

Related commands: (SET, SHOW) TRACE, (SET, SHOW, CANCEL)
BREAK, CANCEL ALL, (SET, SHOW) EVENT_FACILITY.

D DBG> CANCEL TRACE MAIN\LOOP+lO

This command cancels the user defined tracepoint at the location
MAIN\LOOP+lO.

(i DBG> CANCEL TRACE/ ALL

This command cancels all user defined tracepoints.

i] DBG 1> CANCEL TRACE/TERMINATING

CD-32

This command cancels a previous user defined SET TRACE
/TERMINATING command. As a result, a tracepoint is not triggered
when a process performs an image exit.

CANCEL TYPE/OVERRIDE

CANCEL TYPE/OVERRIDE

FORMAT

QUALIFIERS

Cancels the override type established by a previous SET TYPE/OVERRIDE
command.

CANCEL TYPE/OVERRIDE

/OVERRIDE
This qualifier must be specified.

DESCRIPTION The CANCEL TYPE/OVERRIDE command sets the current override type
to "none". As a result, a program location associated with a compiler
generated type is interpreted according to that type.

EXAMPLE

Related commands: (SET, SHOW) TYPE/OVERRIDE, EXAMINE,
DEPOSIT.

DBG> CANCEL TYPE/OVERRIDE

This command cancels the effect of a previous SET TYPE/OVERRIDE
command.

CD-33

CANCEL WATCH

CANCEL WATCH

Cancels a watchpoint.

FORMAT CANCEL WATCH [address-expression[, ...]]

PARAMETERS address-expression
Specifies a watchpoint to be canceled. With high-level languages, this
is typically the name of a variable. Do not use the asterisk wildcard
character (*). Do not specify an address expression with /ALL.

QUALIFIERS /ALL
Cancels all watchpoints. Do not specify an address expression with /ALL.

DESCRIPTION The effect of the CANCEL WATCH command is symmetrical with the
effect of the SET WATCH command. To cancel a watchpoint that was
established at a specific location with the SET WATCH command, specify
that same location with the CANCEL WATCH command. Thus, to cancel
a watchpoint that was set on an entire aggregate, specify the aggregate in
the CANCEL WATCH command; to cancel a watchpoint that was set on
one element of an aggregate, specify that element in the CANCEL WATCH
command.

EXAMPLES

Note that the CANCEL ALL command also cancels all watchpoints.

Related commands: (SET, SHOW) WATCH, (SET, SHOW, CANCEL)
BREAK, (SET, SHOW, CANCEL) TRACE, CANCEL ALL.

D DBG> CANCEL WATCH SUB2\TOTAL

This command cancels the watchpoint at variable TOTAL in module SUB2.

~ DBG> CANCEL WATCH/ALL

This command cancels all watchpoints you have set.

CD-34

CANCEL WINDOW

CANCEL WINDOW

Permanently deletes a screen window definition.

FORMAT CANCEL WINDOW [wname[, ... 11

PARAMETERS wname
Specifies the name of a screen window definition to be canceled. Do not
use the asterisk wildcard character (*). Do not specify a window definition
name with /ALL.

QUALIFIERS /ALL
Cancels all predefined and user-defined window definitions. Do not specify
a window definition name with I ALL.

DESCRIPTION When a window definition is canceled, you can no longer use its name in a
DISPLAY command. The command does not affect any displays.

EXAMPLE

Related commands: (SET, SHOW) WINDOW, (SET, SHOW, CANCEL)
DISPLAY.

DBG> CANCEL WINDOW MIDDLE

This command permanently deletes the screen window definition
MIDDLE.

CD-35

CONNECT

CONNECT

FORMAT

Note: This command applies only to a multiprocess debugging
configuration (when DBG$PROCESS has the value MULTIPROCESS).

Interrupts an image that is running without debugger control in another
process and brings that process under debugger control. When used without
a parameter, brings any spawned process that is waiting to connect to the
debugger under debugger control.

CONNECT [process-spec[, ... 11

PARAMETERS process-spec
Specifies a process in which an image to be interrupted is running. The
process must be in the same VMS job as the process in which the debugger
was invoked. Use any of the following forms:

DESCRIPTION

CD-36

[%PROCESS_NAME] process-name

[%PROCESS_NAME] "process
name"

%PROCESS_PID process_id

The VMS process name, if that name
contains no space or lowercase characters.
The process name can include the asterisk
wildcard character (*).

The VMS process name, if that name
contains space or lowercase characters.
You can also use apostrophes (') instead of
quotation marks (").

The VMS process identification number (PID,
a hexadecimal number).

When you specify a process, the CONNECT command enables you to
interrupt an image that is running without debugger control in that
proce~s and bring the process under debugger control. The command is
useful if, for example, you run a debuggable image with the DCL command
RUN/NODEBUG or if your program issues a LIB$SPAWN run-time library
call or a $CREPRC system service call that does not invoke the debugger.

You can bring a process under debugger control in this manner only if that
process is in the same VMS job as the process in which the debugger was
invoked, and only if the image was not linked with the /NOTRACEBACK
command qualifier. Also, you have full symbolic information for that image
only if its modules were compiled and linked with the /DEBUG command
qualifier.

When the process is brought under debugger control, execution of the
image is suspended at the point at which it was interrupted.

When you do not specify a process, the CONNECT command brings any
processes that are waiting to connect to your debugging session under
debugger control. If no process is waiting, you can press CTRUC to abort
the CONNECT command.

EXAMPLES
D DBG 1> CONNECT

CONNECT

By default, a tracepoint is triggered when a process is brought under
debugger control. This predefined tracepoint is equivalent to that resulting
from entering the command SET TRACE/ACTIVATING. The process is
then known to the debugger and can be identified in a SHOW PROCESS
display.

Related commands: CTRUY, (SET,SHOW,CANCEL) TRACE.

This command brings any processes that are waiting to be connected to
the debugger under debugger control.

6 DBG 1> CONNECT JONES 3

This command interrupts the image running in process JONES_3 and
brings the process under debugger control. Process JONES_3 must be
in the same VMS job as the process in which the debugger was invoked.
Also, the image must not have been linked with the /NOTRACEBACK
qualifier.

CD-37

CTRL/C

CTRL/C

When entered from within a debugging session, aborts the execution of a
debugger command or interrupts program execution without interrupting the
debugging session.

Note: Do not use CTRL/Y from within a debugging session.

FORMAT ICTRLICI

DESCRIPTION Pressing CTRIJC enables you to abort the execution of a debugger
command or to interrupt program execution without interrupting the
debugging session. This is useful when, for example, the program is
executing an infinite loop that does not have a breakpoint, or you want
to abort a debugger command that takes a long time to complete. The
debugger prompt is then displayed, so that you can enter debugger
commands.

CD-38

After a CTRL/C interruption, any processes of a multiprocess program that
were executing images are in the "interrupted" state.

If your program already has a CTRIJC AST service routine enabled, use
the SET ABORT_KEY command to assign the debugger's abort function
to another CTRL-key sequence. Note, however, that many CTRL-key
sequences have VMS predefined functions, and the SET ABORT_KEY
command enables you to override such definitions (see the VMS DCL
Concepts Manual). Some of the CTRL-key characters not used by the
VMS operating system are G, K, N, and P.

If your program does not have a CTRL/C AST service routine enabled, and
you assign the debugger's abort function to another CTRL-key sequence,
the CTRL/C sequence then behaves like CTRL/Y-that is, it interrupts the
debugging session and returns you to DCL level.

Do not use CTRL/Y from within a debugging session. Always use either
CTRL/C or an equivalent CTRL-key sequence established with the SET
ABORT_KEY command.

Note that you can use the SPAWN and ATTACH commands to leave and
return to a debugging session without losing the debugging context.

Related commands: SET ABORT_KEY, SPAWN, ATTACH, CTRUY.

EXAMPLE
DBG> GO

ICTRL/CI
DBG> EXAMINE/BYTE 1000: 101000
1000: 0
1004: 0
1008: 0
1012: 0
1016: 0
ICTRL/CI

!should have typed 1000:1010

%DEBUG-W-ABORTED, command aborted by user request
DBG>

CTRL/C

This example shows how to use the CTRL/C sequence to, first, interrupt
program execution, and then, abort the execution of a debugger command.

CD-39

CTRL/W, CTRL/Z

CTRL/W, CTRL/Z

FORMAT

CTRUW refreshes the screen in screen mode (like DISPLAY/REFRESH).

CTRUZ ends a debugging session (like EXIT).

ICTRUWI

ICTRUZI

DESCRIPTION For an explanation of the CTRL/W and CTRIJZ commands, see the
descriptions of the DISPLAY/REFRESH and EXIT commands, respectively.

CD-40

CTRL/V

FORMAT

DESCRIPTION

CTRL/Y

When entered from DCL level, interrupts an image that is running without
debugger control, enabling you to then invoke the debugger with the DCL
DEBUG command.

Note: Do not use CTRL/Y from within a debugging session. Instead, use
CTRL/C or an equivalent abort-key sequence established with the SET
ABORT_KEY command.

ICTRUYI

Pressing CTRL/Y at DCL level enables you to interrupt an image that
is running without debugger control, so that you can then invoke the
debugger with the DCL DEBUG command.

Note that you can bring an image under debugger control only if, as
a minimum, that image was linked with the /TRACEBACK command
qualifier (/TRACEBACK is a LINK command default). Also, you can
reference all of the image's symbols while debugging only if its modules
were compiled and linked with the /DEBUG command qualifier (in that
case, you could use the DCL command RUN/NODEBUG to execute the
image without the debugger).

When you press CTRL/Y to interrupt the image's execution, control is
passed to the DCL command interpreter. If you then type the DCL
DEBUG command, the interrupted image is brought under control of
the debugger. The debugger sets its language dependent parameters to
the source language of the module in which execution was interrupted
and displays its prompt. You can then determine where execution
was suspended by entering a SHOW CALLS command (and a SHOW
PROCESS command, in the case of a multiprocess program).

When a new debugging session is started, a process is created to run the
main debugger image (DEBUGSHR.EXE) that controls the session. The
main debugger process is a subprocess of the process that is running the
image to be debugged. The debugger displays its banner when a new
session is started.

Other details about the effect of a CTRL/Y-DEBUG sequence depend on
the debugging configuration (default or multiprocess), which is determined
by the current definition of the logical name DBG$PROCESS in the
process where the interrupted image was executing.

Default Debugging Configuration

The default debugging configuration is achieved when DBG$PROCESS is
either undefined or has the value DEFAULT. In this case a new default
debugging session is started every time you invoke the debugger with the
CTRL/Y-DEBUG sequence (see Example 1).

CD-41

CTRL/Y

EXAMPLES

Multiprocess Debugging Configuration

The multiprocess debugging configuration is achieved when
DBG$PROCESS has the job definition MULTIPROCESS. In this case,
the effect of a CTRL/Y-DEBUG sequence is as follows:

• If a multiprocess debugging session does not already exist in the same
job as the process running the interrupted image, a new multiprocess
debugging session is created (see Example 2).

• If a multiprocess debugging session already exists in the same job, the
interrupted image and its process come under control of that session.
In this case the debugger does not display its banner.

Note that, within a debugging session, you can use the CONNECT
command to connect an image that is running without debugger control in
another process (of the same job) to that debugging session.

Related commands: ($) DEBUG, CONNECT, CTRL/C.

D $ RUN/NODEBUG TEST B

ICTRL/YI
Interrupt
$ DEBUG

VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is ADA, module set to SWAP
DBG>

The RUN/NODEBUG command executes the image TEST_B without
debugger control. Execution is interrupted with CTRL/Y. The DEBUG
command then causes the debugger to be invoked. The debugger displays
its banner, sets the language-dependent parameters to the language (Ada,
in this case) of the module (SWAP) in which execution was interrupted,
and displays the prompt. This is the default debugging configuration, as
indicated by the DBG> prompt.

Ii $ DEFINE/ JOB DBG$PROCESS MULTIPROCESS
$ RUN/NODEBUG PROG2

ICTRL/YI
Interrupt
$ DEBUG

VAX DEBUG Version 5.4

%DEBUG-I-INITIAL, language is FORTRAN, module set to SUB4
predefined trace on activation at SUB4\%LINE 12 in %PROCESS NUMBER 1
DBG l>

CD-42

CTRL/Y

The DEFINE/JOB command establishes a multiprocess debugging configuration. The RUN
/NODEBUG command executes the image PROG2 without debugger control. The CTRUY
DEBUG sequence interrupts execution and invokes the debugger. The VAX DEBUG banner
indicates that a new debugging session has been started. The process-specific prompt (DBG_
1>) indicates that this is a multiprocess configuration and that execution is suspended in process
1, which is running PROG2. The activation tracepoint indicates where execution was interrupted
when the debugger took control of the process.

CD-43

DECLARE

DECLARE

FORMAT

Declares a formal parameter within a command procedure. This enables you
to pass an actual parameter to the procedure when entering an @ (Execute
Procedure) command.

DECLARE p-name:p-kind [,p-name:p-kind[, ...]]

PARAMETERS p-name

DESCRIPTION

CD-44

Specifies a formal parameter (a symbol) that is declared within the
command procedure.

Do not specify a null parameter (represented either by two consecutive
commas or by a comma at the end of the command).

p-kind
Specifies the parameter kind of a formal parameter. Valid keywords are as
follows:

ADDRESS

COMMAND

VALUE

Specifies that the actual parameter is interpreted as an address
expression. Has the same effect as the command DEFINE/ADDRESS
p-name =actual-parameter.

Specifies that the actual parameter is interpreted as a command.
Has the same effect as the command DEFINE/COMMAND p-name =
actual-parameter.

Specifies that the actual parameter is interpreted as a value
expression in the current language. Has the same effect as the
command DEFINE/VALUE p-name =actual-parameter.

The DECLARE command is valid only within a command procedure.

The DECLARE command binds one or more actual parameters (specified
on the command line following the 11 @ file-spec") to formal parameters
(symbols) declared within a command procedure.

Each p-name:p-kind pair specified by a DECLARE command binds one
formal parameter to one actual parameter. Formal parameters are bound
to actual parameters in the order in which the debugger processes the
parameter declarations. If you specify several formal parameters on a
single DECLARE command, the leftmost formal parameter is bound to
the first actual parameter, the next formal parameter is bound to the
second, and so on. If you use a DECLARE command in a loop, the formal
parameter is bound to the first actual parameter on the first iteration
of the loop; the same formal parameter is bound to the second actual
parameter on the next iteration, and so on.

Each parameter declaration acts like a DEFINE command: it associates
a formal parameter with an address expression, a command, or a value
expression in the current language, according to the parameter kind
specified. The formal parameters themselves are consistent with those

EXAMPLES

DECLARE

accepted by the DEFINE command and can in fact be deleted from the
symbol table with the DELETE command. For more information, see the
descriptions of the DEFINE and DELETE commands.

The %PARCNT built-in symbol, which can be used only within a command
procedure, enables you to pass a variable number of parameters to a
command procedure. The value of %PARCNT is the number of actual
parameters passed to the command procedure.

Related commands: @ (Execute Procedure), DEFINE, DELETE.

D ! ***** Command Procedure EXAM.COM *****
SET OUTPUT VERIFY
DECLARE K:ADDRESS
EXAMINE K

DBG> @EXAM ARR4
%DEBUG-I-VERIFYIC, entering command procedure EXAM

DECLARE K:ADDRESS
EXAMINE K

PROG_8\ARR4
(1): 18
(2): 1
(3): 0
(4): 1

%DEBUG-I-VERIFYIC, exiting command procedure EXAM
DBG>

In this example, the command DECLARE K:ADDRESS declares the formal
parameter K within command procedure EXAM.COM. When EXAM.COM
is executed, the actual parameter passed to EXAM.COM is interpreted as
an address expression, and the command EXAMINE K displays the value
of that address expression. The command SET OUTPUT VERIFY causes
the commands to echo when they are read by the debugger.

At the debugger prompt, the command @EXAM ARR4 executes
EXAM.COM, passing the actual parameter ARR4. Within EXAM.COM,
ARR4 is interpreted as an address expression (an array variable, in this
case).

! ***** Debugger Command Procedure EXAM GO.COM
DECLARE L:ADDRESS, M:COMMAND

EXAMINE L; M

DBG> @EXAM GO x "@DUMP II

In this example, the command procedure EXAM_GO.COM accepts two
parameters, an address expression (L) and a command string (M). The
address expression is then examined and the command is executed.

At the debugger prompt, the command @EXAM_GO X "®DUMP" executes
EXAM_GO.COM, passing the address expression X and the command
string @DUMP.

CD-45

DECLARE

m ! ***** Debugger Command Procedure VAR.DEG *****
SET OUTPUT VERIFY
FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)

DEG> @VAR.DEG 12,37,45
%DEEUG-I-VERIFYIC, entering command procedure VAR.DEG

FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)
12
37
45
%DEEUG-I-VERIFYIC, exiting command procedure VAR.DEG
DBG>

CD-46

In this example, the command procedure VAR.DEG accepts a variable
number of parameters. That number is stored in the built-in symbol
%PARCNT.

At the debugger prompt, the command @VAR.DEG executes VAR.DEG,
passing the actual parameters 12, 37, and 45. Therefore, %PARCNT has
the value 3, and the FOR loop is repeated 3 times. The FOR loop causes
the DECLARE command to bind each of the three actual parameters
(starting with 12) to a new declaration of X. Each actual parameter
is interpreted as a value expression in the current language, and the
command EVALUATE X displays that value.

DEFINE

DEFINE

Assigns a symbolic name to an address expression, command, or value.

FORMAT DEFINE symbo/-name=parameter
[,symbol-name=parameter[, ...]]

PARAMETERS symbol-name

QUALIFIERS

Specifies a symbolic name to be assigned to an address, command, or
value. The symbolic name can be composed of alphanumeric characters
and underscores. The debugger converts lowercase alphabetic characters
to uppercase. The first character must not be a number. The symbolic
name must be no more than 31 characters long.

parameter
Depends on the qualifier specified.

/ADDRESS
Specifies that the defined symbol is an abbreviation for an address
expression. In this case, parameter is an address expression. DEFINE
I ADDRESS is the default.

/COMMAND
Specifies that the defined symbol is treated as a new debugger command.
In this case, parameter is a quoted character string. This qualifier
provides, in simple cases, essentially the same capability as the DCL
command "symbol:=string." To define complex commands, you might need
to use command procedures with formal parameters. For more information
about declaring parameters to command procedures, see the description of
the DECLARE command.

/LOCAL
Specifies that the definition remain local to the command procedure in
which the DEFINE command is issued. The defined symbol is not visible
at the debugger command level. By default, a symbol defined within a
command procedure is visible outside that procedure.

/VALUE
Specifies that the defined symbol is an abbreviation for a value. In this
case, parameter is a language expression in the current language.

DESCRIPTION The DEFINE/ADDRESS command enables you to assign a symbolic name
to an address expression in your program. For example, you can define
a symbol for a nonsymbolic program location or for a symbolic program
location having a long path name prefix. Then, you can refer to that
program location by the newly defined symbol. The I ADDRESS qualifier is
the default definition qualifier.

CD-47

DEFINE

EXAMPLES

The DEFINE/COMMAND command enables you to define abbreviations
for debugger commands or even define new commands, either from the
debugger command level or from command procedures.

The DEFINENALUE command enables you to assign a symbolic name to
a value (or the result of evaluating a language expression).

Use the /LOCAL qualifier to confine symbol definitions to command
procedures. By default, defined symbols are global (visible outside the
command procedure).

If you plan to enter several DEFINE commands with the same qualifier,
you can first use the SET DEFINE command to establish a new default
qualifier (for example, SET DEFINE COMMAND makes the DEFINE
command behave like DEFINE/COMMAND). Then you do not have to
use that qualifier with the DEFINE command. You can override the
current default qualifier for the duration of a single DEFINE command by
specifying another qualifier.

In symbol translation, the debugger searches symbols you define during
the debugging session first. So if you define a symbol that already exists in
your program, the debugger translates the symbol according to its defined
definition, unless you specify a path name prefix.

If a symbol is redefined, the previous definition is canceled, even if
different qualifiers were used with the DEFINE command.

Definitions created with the DEFINE/ADDRESS and DEFINENALUE
commands are available only when the image in whose context they
were created is the current image. If you use the SET IMAGE command
to establish a new current image, these definitions are temporarily
unavailable. Definitions created with the DEFINE/COMMAND and
DEFINE/KEY commands are always available for all images, however.

Use the SHOW SYMBOL/DEFINED command to determine the
equivalence value of a symbol.

Use the DELETE command to cancel a symbol definition.

Related commands: SHOW DEFINE, SHOW SYMBOL/DEFINED,
DELETE, SET IMAGE, DECLARE.

D DBG> DEFINE CHK=MAIN\LOOP+lO

This command assigns the symbol CHK to the address MAIN\LOOP+lO.

CD-48

DEFINE

~ DBG> DEFINE/VALUE COUNTER=O
DBG> SET TRACE/SILENT R DO (DEFINE/VALUE COUNTER = COUNTER+l)

In this example, the first command assigns a value of 0 to the symbol
COUNTER. The second command causes the debugger to increment the
value of the symbol COUNTER by 1 whenever address R is encountered.
In other words, this example counts the number of calls to R.

I] DBG> DEFINE/COMMAND BRE = "SET BREAK"

This command assigns the symbol BRE to the debugger command SET
BREAK.

CD-49

DEFINE/KEY

DEFINE/KEV

Assigns a string to a function key.

FORMAT DEFINE/KEY key-name 11 equiv-string"

PARAMETERS key-name

Key-name

PF1

PF2

PF3

PF4

KPO- KP9

PERIOD

COMMA

MINUS

ENTER

E1

E2

E3

E4

E5

E6

HELP

DO

F6- F20

CD-50

Specifies a function key to be assigned a string. Valid key names are as
follows:

LK201 Keyboard VT100-type VT52-type

PF1

PF2

PF3

PF4

PF1

PF2

PF3

PF4

Blue

Red

Black

Keypad O - 9 Keypad O - 9 Keypad O - 9

Keypad period (.) Keypad period (.)

Keypad comma (,) Keypad comma (,)

Keypad minus (-) Keypad minus (-)

ENTER ENTER ENTER

Find

Insert Here

Remove

Select

Prev Screen

Next Screen

Help

Do

F6 - F20

On LK201 keyboards:

• You cannot define keys Fl to F5 or the arrow keys (E7 to ElO).

• You can define keys F6 to F14 only if you have first entered the DCL
command SET TERMINAUNOLINE_EDITING. In that case, the line
editing functions of the LEFT and RIGHT arrow keys (ES and E9) are
disabled.

equiv-string
Specifies the string to be processed when the specified key is pressed.
Typically, this is one or more debugger commands. If the string includes
any space or nonalphanumeric characters (for example, a semicolon
separating two commands) enclose the string in quotation marks (").

QUALIFIERS /ECHO (default)
/NOE CHO

DEFINE/KEY

Controls whether the command line is displayed after the key has been
pressed. Do not use /NOECHO with /NOTERMINATE.

llF_STATE=(state-name[, ...])
INOIF_STATE (default)
Specifies one or more states to which a key definition applies. The /IF_
STATE qualifier assigns the key definition to the specified states. You can
specify predefined states, such as DEFAULT and GOLD, or user-defined
states. A state name can be any appropriate alphanumeric string. The
/NOIF _STATE qualifier assigns the key definition to the current state.

/LOCK STATE
INOLOCK_STATE (default)
Controls how long the state set by /SET_STATE remains in effect after
the specified key is pressed. The /LOCK_STATE qualifier causes the state
to remain in effect until it is changed explicitly (for example, with a SET
KEY/STATE command). The /NOLOCK_STATE qualifier causes the state
to remain in effect only until the next terminator character is typed, or
until the next defined function key is pressed.

!LOG (default)
/NO LOG
Controls whether a message is displayed indicating that the key definition
has been successfully created. The /LOG qualifier displays the message.

/SET_ STATE=state-name
/NOSET_STATE (default)
Controls whether pressing the key changes the current key state. The
/SET _STATE qualifier causes the current state to change to the specified
state when you press the key. The /NOSET_STATE qualifier causes the
current state to remain in effect.

/TERMINATE
/NOTERMINATE (default)
Controls whether the specified string is terminated (processed) when
the key is pressed. The trERMINATE qualifier causes the string to be
terminated when the key is pressed. The /NOTERMINATE qualifier
allows you to press other keys before terminating the string by pressing
the Return key.

DESCRIPTION Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

The DEFINE/KEY command enables you to assign a string to a function
key, overriding any predefined function that was bound to that key (the
predefined key functions are listed in Appendix B). When you then press
the key, the debugger enters the currently associated string into your
command line. The DEFINE/KEY command is like the DCL DEFINE
/KEY command.

CD-51

DEFINE/KEY

EXAMPLES

On VT52 and VTl 00-series terminals, the function keys you can use
include all of the numeric keypad keys. Newer terminals and workstations
have the LK201 keyboard. On LK201 keyboards, the function keys you
can use include all of the numeric keypad keys, the nonarrow keys of the
editing keypad (Find, Insert Here, and so on), and keys.F6 to F20 at the
top of the keyboard.

A key definition remains in effect until you redefine the key, enter the
DELETE/KEY command for that key, or exit the debugger. You can
include key definitions in a command procedure, such as your debugger
initialization file.

The /IF _STATE qualifier enables you to increase the number of key
definitions available on your terminal. The same key can be assigned
any number of definitions as long as each definition is associated with a
different state.

By default, the current key state is the 11 DEFAULT 11 state. The current
state can be changed with the SET KEY/STATE command, or by pressing
a key that causes a state change (a key that was defined with the DEFINE
/KEY/LOCK_STATE/STATE qualifier combination).

Related commands: DELETE/KEY, SHOW KEY, SET KEY.

D DBG> SET KEY/STATE=GOLD
%DEBUG-I-SETKEY, keypad state has been set to GOLD
DBG> DEFINE/KEY /TERMINATE KP 9 "SET RADIX/OVERRIDE HEX"
%DEBUG-I-DEFKEY, GOLD key KP9 has been defined
DBG>

In this example, the SET KEY command establishes GOLD as the
current key state. The DEFINE/KEY command assigns the SET RADIX
/OVERRIDE HEX command to keypad key 9 for the current state (GOLD).
The command is processed when the key is pressed.

~ DBG> DEFINE/KEY/IF STATE=BLUE KP9 "SET BREAK %LINE "
%DEBUG-I-DEFKEY, BLUE key KP9 has been defined
DBG>

co~s2

This command assigns the unterminated command string "SET BREAK
%LINE 11 to keypad key 9 for the BLUE state. After pressing the keypad
key sequence BLUE-KP9, you can enter a line number and then press
the Return key to terminate and process the SET BREAK command.

If] DBG> SET KEY/ STATE=DEFAULT
%DEBUG-I-SETKEY, keypad state has been set to DEFAULT
DBG> DEFINE/KEY/SET STATE=RED/LOCK STATE F12 ""
%DEBUG-I-DEFKEY, DEFAULT key F12 has been defined
DBG>

DEFINE/KEY

In this example, the SET KEY command establishes DEFAULT as the
current state. The DEFINE/KEY command makes key F12 (LK201
keyboard) a state key. Pressing F12 while in the DEFAULT state causes
the current state to become RED. The key definition is not terminated and
has no other effect (a null string is assigned to F12). After pressing F12,
you can enter "RED" commands by pressing keys that have definitions
associated with the RED state.

CD-53

DEFINE/PROCESS_GROUP

DEFINE/PROCESS GROUP

FORMAT

PARAMETERS

CD-54

Note: This command applies to a multiprocess debugging configuration
(when DBG$PROCESS has the value MULTIPROCESS).

Assigns a symbolic name to a list of process specifications.

DEFINE/PROCESS_ GROUP process-group-name
[=process-spec[, . . . 11

process-group-name
Specifies a symbolic name to be assigned to a list of process specifications.
The symbolic name can be composed of alphanumeric characters and
underscores. The debugger converts lowercase alphabetic characters to
uppercase. The first character must not be a number. The symbolic name
must be no more than 31 characters long.

process-spec
Specifies a process. Use any of the following forms:

[%PROCESS_NAME] process-name

[%PROCESS_NAME] "process-name"

%PROCESS_PID process_id

%PROCESS_NUMBER process-number (or
%PROC process-number)

process-group-name

%NEXT _PROCESS

%PREVIOUS_PROCESS

The VMS process name, if that name
contains no space or lowercase
characters. The process name can
include the asterisk wildcard character
(*).

The VMS process name, if that
name contains space or lowercase
characters. You can also use
apostrophes (') instead of quotation
marks(").

The VMS process identification number
(PIO, a hexadecimal number).

The number assigned to a process
when it comes under debugger control.
Process numbers appear in a SHOW
PROCESS display.

A symbol defined with the DEFINE
/PROCESS_GROUP command to
represent a group of processes.
Do not specify a recursive symbol
definition.

The process after the visible process in
the debugger's circular process list.

The process previous to the visible
process in the debugger's circular
process list.

% VISIBLE_PROCESS

DEFINE/PROCESS_ GROUP

The process whose call stack, register
set, and images are the current context
for looking up symbols, register values,
routine calls, breakpoints, and so on.

If you do not specify a process, the symbolic name is created but contains
no process entries.

DESCRIPTION The DEFINE/PROCESS_GROUP command assigns a symbol to list of
process specifications. You can then use the symbol in any command
where a list of process specifications is allowed.

The DEFINE/PROCESS_GROUP command does not verify the existence
of a specified process. This enables you to specify processes that do not yet
exist.

To identify a symbol that was defined with the DEFINE/PROCESS_
GROUP command, use the SHOW SYMBOL/DEFINED command. To
delete a symbol that was defined with the DEFINE/PROCESS_GROUP
command, use the DELETE command.

Related commands: SHOW SYMBOL/DEFINED, DELETE, SET DEFINE,
SHOW DEFINE.

EXAMPLES

II DBG_l> DEFINE/PROCESS GROUP
DBG_l> SHOW PROCESS SERVERS

Number Name Hold
* 1 FILE SERVER

2 NETWORK SERVER
DBG 1>

SERVERS=FILE_SERVER,NET_SERVER

State
step
break

Current PC
FS PROG\%LINE 37
NET_PROG\%LINE 24

This DEFINE/PROCESS_GROUP command assigns the symbolic
name SERVERS to the process group consisting of FILE_SERVER
and NETWORK_SERVER. The SHOW PROCESS SERVERS command
displays information about the processes that make up the group
SERVERS.

~ USER 3> DEFINE/PROCESS GROUP Gl=%PROCESS NUMBER 1, %VISIBLE PROCESS
. USER 3> SHOW SYMBOL/DEFINED Gl - -

defined Gl
bound to: "%PROCESS NUMBER 1, %VISIBLE PROCESS"
was defined /process_group

USER 3> DELETE Gl

This DEFINE/PROCESS_GROUP command assigns the symbolic name
G 1 to the process group consisting of process 1 and the visible process
(process 3). The command SHOW SYMBOUDEFINED Gl identifies the
defined symbol G 1. The command DELETE G 1 deletes the symbol from
the DEFINE symbol table.

CD-55

DEFINE/PROCESS_ GROUP

DBG 2> DEFINE/PROCESS GROUP A= B,C,D
DBG-2> DEFINE/PROCESS-GROUP B = E,F,G
DBG=2> DEFINE/PROCESS-GROUP E = I,J,A
%DEBUG-E-NORECSYM, recursive PROCESS_GROUP symbol definition

encountered at or near "A"
DBG 2>

CD-56

This series of DEFINE/PROCESS_ GROUP commands illustrate valid and
invalid uses of the command.

DELETE

DELETE

Deletes a symbol definition that was established with the DEFINE command.

FORMAT DELETE [symbol-name[, ... 11

PARAMETERS symbol-name
Specifies a symbol whose definition is to be deleted from the DEFINE
symbol table. Do not use the asterisk wildcard character (*). Do not
specify a symbol name with /ALL. If you use /LOCAL, the symbol specified
must have been previously defined with the DEFINE/LOCAL command. If
you do not specify /LOCAL, the symbol specified must have been previously
defined with the DEFINE command without the /LOCAL qualifier.

QUALIFIERS /ALL
Deletes all global DEFINE definitions. If you also specify /LOCAL,
deletes all local DEFINE definitions associated with the current command
procedure (but not the global DEFINE definitions). Do not specify a
symbol name with /ALL.

/LOCAL
Deletes the (local) definition of the specified symbol from the current
command procedure. The symbol must have been previously defined with
the DEFINE/LOCAL command.

DESCRIPTION The DELETE command deletes either a global DEFINE symbol or a local
DEFINE symbol. A global DEFINE symbol is a symbol defined with the
DEFINE command without the /LOCAL qualifier. A local DEFINE symbol
is a symbol defined in a debugger command procedure with the DEFINE
/LOCAL command, so that its definition is confined to that command
procedure.

EXAMPLES

Related command: DEFINE, SHOW SYMBOL/DEFINED, SHOW
DEFINE, DECLARE.

D DBG> DEFINE x = INARR, y = OUTARR
DBG> DELETE X, Y

In this example, the DEFINE command defines X and Y as global symbols
corresponding to !NARR and OUTARR, respectively. The DELETE
command deletes these two symbol definitions from the global symbol
table.

CD-57

DELETE

II DBG> DELETE/ALL/LOCAL

CD-58

In this example, the DELETE/ALLJLOCAL commmand deletes all local
symbol definitions from the current command procedure.

DELETE/KEY

DELETE/KEY

FORMAT

Deletes a key definition that was established with the DEFINE/KEY command
or, by default, by the debugger.

DELETE/KEY [key-name]

PARAMETERS key-name

Key-name

PF1

PF2

PF3

PF4

KPO- KP9

PERIOD

COMMA

MINUS

ENTER

E1

E2

E3

E4

ES

E6

HELP

DO

F6- F20

Specifies a key whose definition is to be deleted. Do not use the asterisk
wildcard character (*). Do not specify a key name with /ALL. Valid key
names are as follows:

LK201 Keyboard

PF1

PF2

PF3

PF4

Keypad O - 9

Keypad period (.)

Keypad comma (,)

Keypad minus (-)

ENTER

Find

Insert Here

Remove

Select

Prev Screen

Next Screen

Help

Do

F6- F20

VT100-type

PF1

PF2

PF3

PF4

Keypad O - 9

Keypad period (.)

Keypad comma (,)

Keypad minus (-)

ENTER

VT52-type

Blue

Red

Black

Keypad O - 9

ENTER

QUALIFIERS /ALL
Deletes all key definitions in the specified state. Do not specify a key name
with /ALL. If you do not specify a state, all key definitions in the current
state are deleted. Use the /STATE qualifier to specify one or more states.

!LOG (default)
/NOLOG
Controls whether a message is displayed indicating that the specified key
definitions have been deleted. The /LOG qualifier displays the message.

CD-59

DELETE/KEY

!STATE=(state-name[, ...])
/NOSTATE (default)
Selects one or more states for which a key definition is to be deleted. The
/STATE qualifier deletes key definitions for the specified states. You can
specify predefined key states, such as DEFAULT and GOLD, or user
defined states. A state name can be any appropriate alphanumeric string.
The /NOSTATE qualifier deletes the key definition for the current state
only.

By default, the current key state is the 11 DEFAULT 11 state. The current
state can be changed with the SET KEY/STATE command, or by pressing
a key that causes a state change (a key that was defined with the DEFINE
/KEY/LOCK_STATE/STATE qualifier combination).

DESCRIPTION The DELETE/KEY command is like the DCL DELETE/KEY command.

EXAMPLES

Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

Related commands: DEFINE/KEY, SHOW KEY, SET KEY.

D DBG> DELETE/KEY KP4
%DEBUG-I-DELKEY, DEFAULT key KP4 has been deleted
DBG>

This command deletes the key definition for keypad key KP4 in the state
last set by the SET KEY command (by default, this is the DEFAULT
state).

~ DBG> DELETE/KEY/STATE=(BLUE,RED) COMMA
%DEBUG-I-DELKEY, BLUE key COMMA has been deleted
%DEBUG-I-DELKEY, RED key COMMA has been deleted
DBG>

CD-60

This command deletes the key definition for keypad key COMMA in the
BLUE and RED states.

DEPOSIT

FORMAT

DEPOSIT

Changes the value of a program variable. More generally, deposits a new
value at the location denoted by an address expression.

DEPOSIT address-expression = language-expression

PARAMETERS address-expression

QUALIFIERS

Specifies the location into which the value of the language expression is
to be deposited. With high-level languages, this is typically the name of
a variable and can include a path name to specify the variable uniquely.
More generally, an address expression can also be a memory address or
a register and can be composed of numbers (offsets) and symbols, as well
as one or more operators, operands, or delimiters. Appendix D identifies
the debugger's built-in symbols for the VAX registers and identifies the
operators that can be used in address expressions.

You cannot specify an entire aggregate variable (a composite data
structure such as an array or a record). To specify an individual array
element or a record component, use the syntax of the current language.

See Chapter 11 for information that is specific to vector registers and
vector instructions.

language-expression
Specifies the value to be deposited. You can specify any language
expression that is valid in the current language. For most languages,
the expression can include the names of simple (noncomposite, single
valued) variables but not the names of aggregate variables (such as arrays
or records). If the expression contains symbols with different compiler
generated types, the debugger uses the rules of the current language to
evaluate the expression.

If the expression is an ASCII string or a VAX assembly-language
instruction, you must enclose it in quotation marks (") or apostrophes
('). If the string contains quotation marks or apostrophes, use the other
delimiter to enclose the string.

If the string has more characters (1-byte ASCII) than can fit into the
program location denoted by the address expression, the debugger
truncates the extra characters from the right. If the string has fewer
characters, the debugger pads the remaining characters to the right of the
string by inserting ASCII space characters.

/ASCIC
Deposits a counted ASCII string into the specified location. You must
specify a string on the right-hand side of the equal sign. The deposited
string is preceded by a 1-byte count field that gives the length of the
string. The I AC qualifier is also accepted.

CD-61

DEPOSIT

CD-62

/ASCID
Deposits an ASCII string into the address given by a string descriptor
that is at the specified location. You must specify a string on the right
hand side of the equal sign. The specified location must contain a
string descriptor. If the string lengths do not match, the string is either
truncated on the right or padded with space characters on the right. /AD
is also accepted.

/ASCll:n
Deposits n bytes of an ASCII string into the specified location. You must
specify a string on the right-hand side of the equal sign. If its length is
not n, the string is truncated or padded with space characters on the right.
If n is omitted, the actual length of the data item at the specified location
is used.

/ASCIW
Deposits a counted ASCII string into the specified location. You must
specify a string on the right-hand side of the equal sign. The deposited
string is preceded by a 2-byte count field that gives the length of the
string. The /AW qualifier is also accepted.

/ASCIZ
Deposits a zero-terminated ASCII string into the specified location. You
must specify a string on the right-hand side of the equal sign. The
deposited string is terminated by a zero byte that indicates the end of
the string. The I AZ qualifier is also accepted.

/BYTE
Deposits a 1-byte integer into the specified location.

ID FLOAT
Converts the expression on the right-hand side of the equal sign to the
D_floating type (length 8 bytes) and deposits the result into the specified
location. Values of type D_floating can range from .29 * 10-38 to 1.7 * 1038
with approximately 16 decimal digits precision.

/DATE_ TIME
Converts a string representing a date and time (for example, 21-DEC-1988
21:08:47.15) to the VMS internal format for date and time and deposits
that value (length 8 bytes) into the specified location. Specify an absolute
date and time in the following format: [dd-mmm-yyyy[:]] [hh:mm:ss.cc].

/FLOAT
Converts the expression on the right-hand side of the equal sign to the
F _floating type (length 4 bytes) and deposits the result into the specified
location. Values of type F _floating can range from .29 * 10-38 to 1. 7 * 1038

with approximately 7 decimal digits precision.

/G FLOAT
Converts the expression on the right-hand side of the equal sign to the
G_floating type (length 8 bytes) and deposits the result into the specified
location. Values of type G_floating can range from .56 * 10-308 to .9 * 10308
with approximately 15 decimal digits precision.

DEPOSIT

/H FLOAT
Converts the expression on the right-hand side of the equal sign to the
H_floating type (length 16 bytes) and deposits the result into the specified
location. Values of type H_floating can range from .84*10-4932 to .59*104932

with approximately 33 decimal digits precision.

/INSTRUCT/ON
Deposits a VAX assembly-language instruction into the specified location.
The expression on the right-hand side of the equal sign must be a string
representing a VAX instruction.

/LONGWORD
Deposits a longword integer (length 4 bytes) into the specified location.

/OCTAWORD
Deposits an octaword integer (length 16 bytes) into the specified location.

/PACKED:n
Converts the expression on the right-hand side of the equal sign to a
packed decimal representation and deposits the resulting value into the
specified location. The value of n is the number of decimal digits. Each
digit occupies one nibble (4 bits).

/QUADWORD
Deposits a quadword integer (length 8 bytes) into the specified location.

ff ASK
Note: This qualifier applies to Ada programs.

Deposits an Ada task value (a task name, or a task ID such as %TASK 3)
into the specified location.

ffYPE:(type-expression)
Converts the expression to be deposited to the type denoted by type
expression (the name of a variable or data type declared in the program),
then deposits the resulting value into the specified location. This enables
you to specify a user-declared type.

You must use parentheses around the type expression.

/WORD
Deposits a word integer (length 2 bytes) into the specified location.

DESCRIPTION The DEPOSIT command can be used to change the contents of any
memory location or register that is accessible in your program. For high
level languages the command is used mostly to change the value of a
variable (an integer, real, string, array, record, and so on).

The DEPOSIT command is like an assignment statement in most
programming languages. The value of the expression specified to the right
of the equal sign is assigned to the variable or other location specified to
the left of the equal sign. Note that for Ada and Pascal, you can use ":="
instead of "=" in the command syntax.

CD-63

DEPOSIT

CD-64

The debugger recognizes the compiler generated types associated with
symbolic address expressions (symbolic names declared in your program).
Symbolic address expressions include the following entities:

• Variable names. When specifying a variable with the DEPOSIT
command, use the same syntax that is used in the source code.

• Routine names, labels, and line numbers. These are associated with
VAX instructions. You can deposit instructions using basically the
same techniques as when depositing into string variables. However,
you must also use the /INSTRUCTION qualifier or first enter a SET
TYPE INSTRUCTION or SET TYPE/OVERRIDE INSTRUCTION
command.

In general, when you enter a DEPOSIT command, the debugger takes the
following action:

• It evaluates the address expression specified to the left of the equal
sign, to yield a program location.

• If the program location has a symbolic name, the debugger associates
the location with the symbol's compiler generated type. If the location
does not have a symbolic name (and, therefore, no associated compiler
generated type) the debugger associates the location with the type
longword integer by default. This means that, by default, you can
deposit integer values that do not exceed 4 bytes into these locations.

See Chapter 11 for information that is specific to vector registers and
vector instructions.

• It evaluates the language expression specified to the right of the equal
sign, in the syntax of the current language and in the current radix, to
yield a value. The current language is the language last established
with the SET LANGUAGE command. If no SET LANGUAGE
command was entered, the current language is, by default, the
language of the module containing the main program.

• It checks that the value and type of the language expression is
consistent with the type of the address expression. If you try to
deposit a value that is incompatible with the type of the address
expression, the debugger issues a diagnostic message. If the value is
compatible, the debugger deposits the value into the location denoted
by the address expression.

The debugger might do type conversion during a deposit operation if the
language rules allow it. For example a real value that is specified to the
right of the equal sign might be converted to an integer value if it is being
deposited into a location with an integer type. In general, the debugger
tries to follow the assignment rules for the current language.

There are several ways of changing the type associated with a program
location so that you can deposit data of a different type into that location:

• To change the default type for all locations that do not have a symbolic
name, you can specify a new type with the SET TYPE command.

EXAMPLES

DEPOSIT

• To change the default type for all locations (both those that do and do
not have a symbolic name), you can specify a new type with the SET
TYPE/OVERRIDE command.

• To override the type currently associated with a particular location for
the duration of a single DEPOSIT command, you can specify a new
type by means of a qualifier (!ASCII:n, /BYTE, TYPE=(type-expression),
and so on).

The debugger can interpret and display integer data in any one of four
radixes: binary, decimal, hexadecimal, and octal. The default radix for
both data entry and display is decimal for all languages except BLISS
and MACRO. It is hexadecimal for BLISS and MACRO. You can use the
SET RADIX and SET RADIX/OVERRIDE commands to change the default
radix.

The DEPOSIT command sets the current entity built-in symbols
%CURLOC and period (.) to the location denoted by the address
expression specified. Logical predecessors (%PREVLOC and circumflex
("))and successors (%NEXTLOC and pressing the Return key) are based
on the value of the current entity.

Related commands: EXAMINE, EVALUATE, (SET, SHOW, CANCEL)
RADIX, (SET, SHOW) TYPE, CANCEL TYPE/OVERRIDE.

D DBG> DEPOSIT I = 7

This command deposits the value 7 into the integer variable I.

~ DBG> DEPOSIT WIDTH = CURRENT WIDTH + 24. 80

This command deposits the value of the expression CURRENT_ WIDTH+
24.80 into the real variable WIDTH.

i) DBG> DEPOSIT STATUS = FALSE

This command deposits the value FALSE into the Boolean variable
STATUS.

EJ DBG> DEPOSIT PART NUMBER = "WG-7619.3-84"

This command deposits the string WG-7619.3-84 into the string variable
PART_NUMBER.

!fJ DBG> DEPOSIT EMPLOYEE.ZIPCODE = 02172

This command deposits the value 02172 into component ZIPCODE of
record EMPLOYEE.

CD-65

DEPOSIT

5J DBG> DEPOSIT ARR(8) = 35
DBG> DEPOSIT A = 14

DBG> FOR I

The first DEPOSIT command deposits the value 35 into element 8 of
array ARR. As a result, element 8 becomes the current entity. The second
command deposits the value 14 into the logical predecessor of element 8,
namely element 7.

1 TO 4 DO (DEPOSIT ARR(I) = 0)

This command deposits the value 0 into elements 1 to 4 of array ARR.

[i'J DBG> DEPOSIT COLOR = 3
%DEBUG-E-OPTNOTALLOW, operator "DEPOSIT" not allowed on given

data type
DBG>

The debugger alerts you when you try to deposit data of the wrong type
into a variable (in this case, if you try to deposit an integer value into an
enumerated type variable). The E (error) message severity indicates that
the debugger does not make the assignment.

[fJ DBG> DEPOSIT VOLUME = - 100
%DEBUG-I-IVALOUTBNDS, value assigned is out of bounds at or near '-'
DBG>

The debugger alerts you when you try to deposit an out-of-bounds value
into a variable (in this case a negative value). The I (informational)
message severity indicates that the debugger does make the assignment.

ID] DBG> DEPOSIT/BYTE WORK = %HEX 21

This command deposits the expression %HEX 21 into location WORK and
converts it to a byte integer.

Ill DBG> DEPOSIT/OCTAWORD BIGINT = 111222333444555

This command deposits the expression 111222333444555 into location
BIGINT and converts it to an octaword integer.

II DBG> DEPOSIT/FLOAT BIGFLT = 1.11949*10**35

This command converts 1.11949*10**35 to an F _floating type value and
deposits it into location BIGFLT.

II DBG> DEPOSIT/ASCII: 10 WORK+20 = 'abcdefghij'

This command deposits the string "abcdefghij" into the location that is 20
bytes beyond that denoted by the symbol WORK

llJ DBG> DEPOSIT /INSTR SUB2+2 = 'MOVL #20A, RO'

CD-66

This command deposits the instruction MOVL #20A,RO' into the location
SUB2 + 2 bytes.

II DBG> DEPOSIT/TASK VAR = %TASK 2
DBG> EXAMINE/HEX VAR
SAMPLE.VAR: 0016A040
DBG> EXAMINE/TASK VAR
SAMPLE.VAR: %TASK 2
DBG>

DEPOSIT

The DEPOSIT command deposits the Ada task value %TASK 2 into
location VAR. The subsequent EXAMINE commands display the contents
of VAR in hexadecimal format and as a task value, respectively.

CD-67

DISABLE AST

DISABLE AST

Disables the delivery of asynchronous system traps (ASTs) in your program.

FORMAT DISABLE AST

DESCRIPTION The DISABLE AST command disables the delivery of ASTs in your
program and thereby prevents interrupts from occurring while the
program is running. If ASTs are delivered while the debugger is running
(processing commands, and so on), they are queued and are delivered
when control is returned to the program.

EXAMPLE
DBG> DISABLE AST
DBG> SHOW AST
ASTs are disabled
DBG>

CD-68

The ENABLE AST command re-enables the delivery of ASTs, including
any pending ASTs (ASTs waiting to be delivered).

Related commands: (ENABLE, SHOW) AST.

The DISABLE AST disables the delivery of ASTs in your program, as
confirmed with the SHOW AST command.

DISPLAY

DISPLAY

Creates a new screen display or modifies an existing display.

FORMAT DISPLAY [disp-name [ATw-spec] [disp-kind] [, ...]]

PARAMETERS disp-name
Specifies the display to be created or modified.

If you are creating a new display, specify a name that is not already used
as a display name.

If you are modifying an existing display, you can specify any of the
following entities:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the DISPLAY command

• A display built-in symbol: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

You must specify this parameter unless you use /GENERATE (parameter
optional), or /REFRESH (parameter not allowed).

You can specify more than one display, each with an optional window
specification (w-spec) and display kind (disp-kind).

w-spec
Specifies the screen window at which the display is to be positioned. You
can specify any of the following entities:

• A predefined window. For example, RHl (right top half). See
Appendix C.

• A window definition previously established with the SET WINDOW
command.

• A window specification of the form (start-line, line-count [,start-column,
column-count]). The specification can include expressions which can
be based on the built-in symbols %PAGE and %WIDTH (for example,
%WIDTH/4).

If you omit the w-spec parameter, the screen position depends on whether
you are specifying an existing display or a new display:

• If you are specifying an existing display, the position of the display is
not changed.

• If you are specifying a new display, it is positioned at window Hl or
H2, alternating between Hl and H2 each time you create another
display.

CD-69.

DISPLAY

QUALIFIERS

CD-70

disp-kind
Specifies the display kind. Valid keywords are as follows:

DO (command[; ...]) Specifies an automatically updated output display.

INSTRUCTION

INSTRUCTION (command)

OUTPUT

REGISTER

SOURCE

SOURCE (command)

The commands are executed in the order listed
each time the debugger gains control. Their output
forms the contents of the display. If you specify
more than one command, they must be· separated
by semicolons.

Specifies an instruction display. If selected as
the current instruction display with the SELECT
/INSTRUCTION command, it displays the output
from subsequent EXAMINE/INSTRUCTION
commands.

Specifies an automatically updated instruction
display. The command specified must be an
EXAMINE/INSTRUCTION command. The
instruction display is updated each time the
debugger gains control.

Specifies an output display. If selected as the
current output display with the SELECT/OUTPUT
command, it displays any debugger output that is not
directed to another display. If selected as the current
input display with the SELECT/INPUT command, it
echoes debugger input. If selected as the current
error display with the SELECT/ERROR command, it
displays debugger diagnostic messages.

Specifies an automatically updated register display.
The display is updated each time the debugger
gains control.

Specifies a source display. If selected as the
current source display with the SELECT/SOURCE
command, it displays the output from subsequent
TYPE or EXAMINE/SOURCE commands.

Specifies an automatically updated source display.
The command specified must be a TYPE or
EXAMINE/SOURCE command. The source display
is updated each time the debugger gains control.

You cannot change the display kind of the PROMPT display.

If you omit the disp-kind parameter, the display kind depends on whether
you are specifying an existing display or a new display:

• If you are specifying an existing display, the display kind is not
changed.

• If you are specifying a new display, an OUTPUT display is created.

/CLEAR
Erases the entire contents of a specified display. Do not use /CLEAR when
creating a new display. Do not use /GENERATE with /CLEAR.

DISPLAY

/DYNAMIC (default)
/NODYNAMIC
Controls whether a display automatically adjusts its window dimensions
proportionally when the screen height or width is changed by a SET
TERMINAL command. By default (/DYNAMIC), all user-defined and
predefined displays, adjust their dimensions automatically.

/GENERATE
Regenerates the contents of a specified display. Only automatically
generated displays are regenerated. These include DO displays, register
displays, source (cmd-list) displays, and instruction (cmd-list) displays.
The debugger automatically regenerates all these kinds of displays before
each prompt. If no display is specified, regenerates the contents of all
automatically generated displays. Do not use /GENERATE when creating
a new display. Do not use /CLEAR with /GENERATE.

/HIDE
Places a specified display at the bottom of the display pasteboard. This
hides the specified display behind any other displays that share the same
region of the screen. You cannot hide the PROMPT display.

The /HIDE qualifier has the same effect as /PUSH.

/MARK CHANGE
/NOMARK_ CHANGE (default)
Controls whether the lines that change in a DO display each time it is
automatically updated are marked. When you use /MARK_CHANGE, any
lines in which some contents have changed since the last time the display
was updated are highlighted in reverse video. This qualifier is particularly
useful when you want any variables in an automatically updated display
to be highlighted when they change.

The /NOMARK_CHANGE qualifier (default) specifies that any lines that
change in DO displays are not to be marked. This qualifier cancels the
effect of a previously entered IMARK_CHANGE qualifier on the specified
display.

This qualifier is not applicable to other kinds of displays.

/POP (default)
/NO POP
Controls whether a specified display is placed at the top of the display
pasteboard, ahead of any other displays but behind the PROMPT display.
By default (/POP), the display is placed at the top of the pasteboard
and hides any other displays that share the same region of the screen,
except for the PROMPT display. This is the default action of the DISPLAY
command.

The /NOPOP qualifier preserves the order of all displays on the pasteboard
(same effect as /NOPUSH).

/PROCESS[=(process-spec)]
/NOPROCESS (default)
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS).

CD-71

DISPLAY

CD-72

Controls whether the specified display is process specific-that is, whether
the specified display is associated only with a particular process. The
contents of a process-specific display are generated and modified in the
context of that process. You can make any display process specific, except
for the PROMPT display.

The IPROCESS=(process-spec) qualifier causes the specified display to be
associated with the specified process. You must include the parentheses.
Use any of the following process-spec forms:

[%PROCESS_NAME] process-name

[%PROCESS_NAME] "process-name"

%PROCESS_PID process_id

%PROCESS_NUMBER process-number (or
%PROC process-number}

process-group-name

%NEXT_PROCESS

%PREVIOUS_PROCESS

%VISIBLE_PROCESS

The VMS process name, if that name
contains no space or lowercase
characters. The process name can
include the asterisk wildcard character
(* }.

The VMS process name, if that
name contains space or lowercase
characters. You can also use
apostrophes (' } instead of quotation
marks ("}.

The VMS process identification number
(PIO, a hexadecimal number}.

The number assigned to a process
when it comes under debugger control.
Process numbers appear in a SHOW
PROCESS display.

A symbol defined with the DEFINE
/PROCESS_GROUP command to
represent a group of processes.

The process after the visible process in
the debugger's circular process list.

The process previous to the visible
process in the debugger's circular
process list.

The process whose call stack, register
set, and images are the current context
for looking up symbols, register values,
routine calls, breakpoints, and so on.

The /PROCESS qualifier causes the specified display to be associated with
the process that was the visible process when the DISPLAY/PROCESS
command was executed.

The /NOPROCESS qualifier causes the specified display to always be
associated with the visible process, which might change during program
execution. This is the default behavior.

If you do not specify /PROCESS, the current process-specific behavior (if
any) of the specified display remains unchanged.

See also /SUFFIX.

/PUSH
/NO PUSH

DISPLAY

The /PUSH qualifier has the same effect as /HIDE. The /NOPUSH qualifier
preserves the order of all displays on the pasteboard (same effect as
/NOPOP).

/REFRESH
Refreshes the terminal screen. Do not specify any command parameters
with /REFRESH. You can also use CTRL/W to refresh the screen.

/REMOVE
Marks the display as being removed from the display pasteboard, so it
is not shown on the screen unless you explicitly request it with another
DISPLAY command. Although a removed display is not visible on the
screen, it still exists and its contents are preserved. You cannot remove
the PROMPT display.

/S/ZE:n
Sets the maximum size of a display to n lines. If more than n lines are
written to the display, the oldest lines are lost as the new lines are added.
If you omit this qualifier, the maximum size of the display is as follows:

• If you specify an existing display, the maximum size is unchanged

• If you are creating a display, the default size is 64 lines

For an output or DO display, /SIZE:n specifies that the display should hold
the n most recent lines of output. For a source or instruction display, n
gives the number of source lines or lines of instructions that can be placed
in the memory buffer at any one time. However, you can scroll a source
display over the entire source code of the module whose code is displayed
(source lines are paged into the buffer as needed). Similarly, you can scroll
an instruction display over all of the instructions of the routine whose
instructions are displayed (instructions are decoded from the image as
needed).

/SUFFIX[:process-identifier-type]
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS). Use this qualifier only directly after a display
name.

Appends a process-identifying suffix to a display name. The suffix denotes
the visible process at the time the command was issued. This qualifier is
used primarily in command procedures when specifying display definitions
or key definitions that are bound to display definitions.

Use any of the following process-identifier-type keywords:

PROCESS_NAME The display-name suffix is the VMS process name.

PROCESS_NUMBER The display-name suffix is the process number (as shown in
a SHOW PROCESS display).

PROCESS_PID The display-name suffix is the VMS process identification
number (PIO).

CD-73

DISPLAY

If you specify /SUFFIX without a process-identifier-type keyword, the
process identifier type used for the display-name suffix is, by default, the
same as that used for the prompt suffix (see SET PROMPT/SUFFIX).

See also /[NOJPROCESS.

DESCRIPTION The DISPLAY command can be used to create a display or modify an
existing display.

EXAMPLES

To create a display, specify a name that is not already used as a display
name (the SHOW DISPLAY command identifies all existing displays).

By default, the DISPLAY command places a specified display on top of the
display pasteboard, ahead of any other displays but behind the PROMPT
display, which cannot be hidden. The specified display thus hides the
portions of other displays (except for the PROMPT display) that share the
same region of the screen.

See Appendix B for keypad-key definitions associated with the DISPLAY
command.

Related commands: (SHOW, CANCEL) DISPLAY, (SET, SHOW,
CANCEL) WINDOW, SELECT, EXPAND, MOVE, CTRL/W, (SET, SHOW)
TERMINAL, SET PROMPT.

D DBG> DISPLAY REG

This command shows the predefined register display, REG, at its current
window location.

~ DBG> DISPLAY /PUSH INST

This command pushes display INST to the bottom of the display
pasteboard, behind all other displays.

rfl DBG> DISPLAY NEWDISP AT RT2
DBG> SELECT/INPUT NEWDISP

In this example, the DISPLAY command shows the user-defined display
NEWDISP at the right middle third of the screen. The SELECT/INPUT
command selects NEWDISP as the current input display. NEWDISP now
echoes debugger input.

!I DBG> DISPLAY DISP2 AT RS45
DBG> SELECT/OUTPUT DISP2

CD-74

In this example, the DISPLAY command creates a display named DISP2
essentially at the right bottom half of the screen, above the PROMPT
display, which is located at S6. This is an output display by default. The
SELECT/OUTPUT command then selects DISP2 as the current output
display.

DISPLAY

~ DBG> SET WINDOW TOP AT (1, 8, 45, 30)
DBG> DISPLAY NEWINST AT TOP INSTRUCTION
DBG> SELECT/INST NEWINST

In this example, the SET WINDOW command creates a window named
TOP starting at line 1 and column 45, and extending down for 8 lines
and to the right for 30 columns. The DISPLAY command creates an
instruction display named NEWINST to be displayed through TOP. The
SELECT/INST command selects NEWINST as the current instruction
display.

ri] DBG> DISPLAY CALLS AT Q3 DO (SHOW CALLS)

This command creates a DO display named CALLS at window Q3. Each
time the debugger gains control from the program, the SHOW CALLS
command is executed and the output is displayed in display CALLS,
replacing any previous contents.

f,; DBG> DISPLAY /MARK EXAM AT Q2 DO (EXAMINE A, B, C)

This command creates a DO display named EXAM at window Q2. The
display shows the current values of variables A, B, and C whenever the
debugger prompts for input. Any changed values are highlighted.

(i] DBG 3> DISPLAY/PROCESS OUT X AT S4

This command makes display OUT_X specific to the visible process
(process 3) and puts the display at window S4.

~ DBG 2> DISPLAY/PROCESS OUT_/SUFFIX AT S45 OUTPUT

This command creates an output display at window S45. The /PROCESS
qualifier, by default, makes the display specific to the visible process
(process 2, in this example). The /SUFFIX qualifier appends a process
identifying suffix, that denotes the visible process, to the display name
OUT_. By default, the /SUFFIX qualifier appends the same process
identifier suffix that appears on the prompt. Therefore, the full display
name is OUT_2.

CD-75

DO

DO

FORMAT

Note: This command applies to a multiprocess debugging configuration
(when DBG$PROCESS has the value MULTIPROCESS).

Executes a debugger command in the context of one or more processes.

DO (command[; ...])

PARAMETERS command
Specifies a debugger command that is to be executed in the context of the
processes specified.

QUALIFIERS /PROCESS:(process-spec[, ...])
Specifies one or more processes in whose context the commands are
executed. You must include the parentheses even if only one process is
specified. If you do not specify /PROCESS, the commands are executed in
the context of all processes (this effect is also achieved if you specify the
asterisk wildcard character (*)for process-spec).

CD-76

Use any of the following forms:

[%PROCESS_NAME] process-name

[%PROCESS_NAME] "process-name"

%PROCESS_PID process_id

%PROCESS_NUMBER process-number (or
%PROC process-number)

process-group-name

%NEXT _PROCESS

%PREVIOUS_PROCESS

The VMS process name, if that name
contains no space or lowercase
characters. The process name can
include the asterisk wildcard character
(*).

The VMS process name, if that
name contains space or lowercase
characters. You can also use
apostrophes (') instead of quotation
marks(").

The VMS process identification number
(PID, a hexadecimal number).

The number assigned to a process
when it comes under debugger control.
Process numbers appear in a SHOW
PROCESS display.

A symbol defined with the DEFINE
/PROCESS_GROUP command to
represent a group of processes.

The process after the visible process in
the debugger's circular process list.

The process previous to the visible
process in the debugger's circular
process list.

DESCRIPTION

EXAMPLES

% VISIBLE_PROCESS

DO

The process whose call stack, register
set, and images are the current context
for looking up symbols, register values,
routine calls, breakpoints, and so on.

By default, commands are executed in the context of the visible process.
The DO command enables you to execute commands in the context of one
or more processes that are currently under debugger control (this is also
referred to as 11 broadcasting11 commands to processes). The DO command
is equivalent to entering a SET PROCESS/VISIBLE command for each
process specified with the /PROCESS qualifier (or for all processes, if
/PROCESS is not specified) and then entering the specified commands.

To change the visible process, use the SET PROCESS command.

When using the DO command, note that a hold condition in the visible
process (as established with the command SET PROCESS/HOLD) is
ignored.

Related commands: SET PROCESS.

D DBG 2> DO (SHOW CALLS)
For %PROCESS NUMBER 1

module name
*MOD4

routine name
SUB3

For %PROCESS NUMBER 2
module name

*MOD3
DBG 2>

routine name
SUBl

line
31

line
4

rel PC abs PC
OOOOOOlE 0000041E

rel PC abs PC
OOOOOOOB 0000040B

This command executes a SHOW CALLS command in the context of all
processes that are currently under debugger control.

~ DBG 3> DO/PROCESS= (%PROC 2, %PROC 1) (EVAL/ADDR X; EXAM X)
For %PROCESS NUMBER 2

%DEBUG-E-NOSYMBOL, symbol 'X' is not in the symbol table
For %Process number 1

512
TEST\X: 1

DBG 3>

This command executes the two commands EVAIJADDR X and EXAM X
in the context of processes 2 and 1.

CD-77

EDIT

EDIT

FORMAT

Invokes the editor established with the SET EDITOR command. If no SET
EDITOR command was entered, invokes the VAX Language-Sensitive Editor,
if that editor is installed on your system.

EDIT [[module-name\] line-number]

PARAMETERS module-name
Specifies the name of the module whose source file is to be edited. If you
specify a module name, you must also specify a line number. If you omit
the module name parameter, the source file whose code appears in the
current source display is chosen for editing.

line-number
A positive integer that specifies the source line on which the editor's
cursor is initially placed. If you omit this parameter, the cursor is initially
positioned at the beginning of the source line that is centered in the
debugger's current source display, or at the beginning of line 1 if the
editor was set to /NOSTART_POSITION (see the SET EDITOR command
description).

QUALIFIERS /EXIT
/NOEXIT (default)
Controls whether you end the debugging session prior to invoking the
editor. If you specify /EXIT, the debugging session is terminated and the
editor is then invoked. If you specify /NOEXIT, the editing session is
started and you return to your debugging session after terminating the
editing session.

DESCRIPTION If you have not specified an editor with the SET EDITOR command,

CD-78

the EDIT command invokes the VAX Language-Sensitive Editor in a
spawned subprocess (if the VAX Language-Sensitive Editor is installed
on your system). The typical (default) way to use the EDIT command is
not to specify any parameters. In this case, the editing cursor is initially
positioned at the beginning of the line that is centered in the currently
selected debugger source display (the current source display).

The SET EDITOR command provides options for invoking different editors,
either in a subprocess or through a callable interface.

Related commands: (SET, SHOW) EDITOR, (SET, SHOW, CANCEL)
SOURCE.

EXAMPLES

D DBG> EDIT

EDIT

In this example, the EDIT command spawns the VAX Language-Sensitive
Editor in a subprocess to edit the source file whose code appears in the
current source display. The editing cursor is positioned at the beginning of
the line that was centered in the source display.

~ DBG> EDIT SWAP\12

In this example, the EDIT command spawns the VAX Language-Sensitive
Editor in a subprocess to edit the source file containing the module SWAP.
The editing cursor is positioned at the beginning of source line 12.

ri] DBG> SET EDITOR/CALLABLE EDT
DBG> EDIT

In this example, the SET EDITOR/CALLABLE_EDT command establishes
that EDT is the default editor and is invoked through its callable interface
(rather than spawned in a subprocess). The EDIT command invokes EDT
to edit the source file whose code appears in the current source display.
The editing cursor is positioned at the beginning of source line 1, because
the default qualifier /NOSTART_POSITION applies to EDT.

CD-79

ENABLE AST

ENABLE AST

Enables the delivery of asynchronous system traps (ASTs) in your program.

FORMAT ENABLE AST

DESCRIPTION The ENABLE AST command enables the delivery of ASTs while your
program is running, including any pending ASTs (ASTs waiting to be
delivered). If ASTs are delivered while the debugger is running (processing
commands, and so on), they are queued and are delivered when control is
returned to the program. Delivery of ASTs in your program is initially
enabled by default.

EXAMPLE
DBG> ENABLE AST
DBG> SHOW AST
ASTs are enabled
DBG>

CD-80

Related commands: (DISABLE, SHOW) AST.

The ENABLE AST command enables the delivery of ASTs in your
program, as confirmed with the SHOW AST command.

EVALUATE

FORMAT

EVALUATE

Evaluates a language expression in the current language (by default, the
language of the module containing the main program).

EVALUATE language-expression[, ...]

PARAMETERS language-expression
Specifies any valid expression in the current language.

QUALIFIERS /BINARY
Specifies that the result be displayed in binary radix.

/CONDITION_ VALUE
Specifies that the expression be interpreted as a VMS condition value (the
kind of condition value you would specify using the condition-handling
mechanism). The message text corresponding to that condition value is
then displayed. The specified value must be an integer value.

/DECIMAL
Specifies that the result be displayed in decimal radix.

/HEXADECIMAL
Specifies that the result be displayed in hexadecimal radix.

/OCTAL
Specifies that the result be displayed in octal radix.

DESCRIPTION The debugger interprets the expression specified in an EVALUATE
command as a language expression, evaluates it in the syntax of the
current language and in the current radix, and displays its value as a
literal (for example, an integer value) in the current language.

The current language is the language last established with the SET
LANGUAGE command. If no SET LANGUAGE command was entered,
the current language is, by default, the language of the module containing
the main program.

If an expression contains symbols with different compiler generated types,
the debugger uses the type-conversion rules of the current language to
evaluate the expression.

The debugger can interpret and display integer data in any one of four
radixes: binary, decimal, hexadecimal, and octal. The current radix is the
radix last established with the SET RADIX command. If no SET RADIX
command was entered, the current radix for both data entry and display
is, by default, decimal for all languages except BLISS and MACRO. It is
hexadecimal for BLISS and MACRO. You can use a radix qualifier with the

CD-81

EVALUATE

EXAMPLES

EVALUATE command (/BINARY, /OCTAL, and so on) to display integer
data in another radix. These qualifiers do not affect how the debugger
interprets the data you specify-that is, they override the current output
radix, but not the input radix.

The EVALUATE command sets the current value built-in symbols
%CURVAL and backslash (\)to the value denoted by the specified
expression.

Debugger support for language-specific operators and constructs is
described in Appendix E.

Related commands: EVALUATE/ADDRESS, (SET, SHOW) LANGUAGE,
(SET, SHOW, CANCEL) RADIX, (SET, SHOW) TYPE.

D DBG> EVALUATE 100. 34 * (14. 2 + 7. 9)
2217.514
DBG>

This command uses the debugger as a calculator by multiplying 100.34 by
(14.2 + 7.9).

&1 DBG> EVALUATE/OCTAL X
00000001512
DBG>

This command evaluates the symbol X and displays the result in octal
radix.

I] DBG> EVALUATE TOTAL + CURR AMOUNT

8247.20
DBG>

This command evaluates the sum of the values of two real variables,
TOTAL and CURR_AMOUNT.

!J DBG> DEPOSIT WILLING = TRUE
DBG> DEPOSIT ABLE = FALSE
DBG> EVALUATE WILLING AND ABLE

False
DBG>

In this example, the EVALUATE command evaluates the logical AND of
the current values of two Boolean variables, WILLING and ABLE.

~ DBG> EVALUATE COLOR' FIRST
RED
DBG>

CD-82

In this Ada example, this command evaluates the first element of the
enumeration type COLOR.

EVALUATE/ ADDRESS

EVALUATE/ ADDRESS

FORMAT

Evaluates an address expression and displays the result as a memory
address or a register name.

EVALUATE/ADDRESS address-expression£ ...]

PARAMETERS address-expression
Specifies an address expression of any valid form (for example, a routine
name, a variable name, a label, a line number, and so on).

QUALIFIERS /BINARY
Specifies that the memory address is displayed in binary radix.

/DECIMAL
Specifies that the memory address is displayed in decimal radix.

/HEXADECIMAL
Specifies that the memory address is displayed in hexadecimal radix.

/OCTAL
Specifies that the memory address is displayed in octal radix.

DESCRIPTION The EVALUATE/ADDRESS command enables you to determine the
memory address or register associated with an address expression.

The debugger can interpret and display integer data in any one of four
radixes: binary, decimal, hexadecimal, and octal. The default radix for
both data entry and display is decimal for all languages except BLISS and
MACRO. It is hexadecimal for BLISS and MACRO. You can use a radix
qualifier with the EVALUATE command (/BINARY, /OCTAL, and so on)
to display address values in another radix. Note that these qualifiers do
not affect how the debugger interprets the data you specify-that is, they
override the current output radix, but not the input radix.

If the value of a variable is currently stored in a register instead of
memory, the EVALUATE/ADDRESS command identifies the register.
The radix qualifiers have no effect in that case.

The EVALUATE/ADDRESS command sets the current entity built-in
symbols %CURLOC and period (.) to the location denoted by the address
expression specified. Logical predecessors (%PREVLOC and circumflex
("))and successors (%NEXTLOC and pressing the Return key) are based
on the value of the current entity.

Related commands: EVALUATE, (SET, SHOW, CANCEL) RADIX,
SYMBOLIZE, SHOW SYMBOIJADDRESS.

CD-83

EVALUATE/ ADDRESS

EXAMPLES

D DBG> EVALUATE/ADDRESS MODNAME\%LINE 110
3942
DBG>

This command displays the memory address denoted by the address
expression MODNAME\ %LINE 110.

~ DBG> EVALUATE/ADDRESS/HEX A, B, C
000004A4
000004AC
000004AO
DBG>

This command displays the memory addresses denoted by the address
expressions A, B, and C in hexadecimal radix.

I] DBG> EVALUATE/ADDRESS X
MOD3\%Rl
DBG>

CD-84

This command indicates that variable X is associated with register Rl. X
is a nonstatic (register) variable.

EXAMINE

FORMAT

EXAMINE

Displays the current value of a program variable. More generally, displays the
value of the entity denoted by an address expression.

EXAMINE [address-expression[:address-expressionl
[, ... 11

PARAMETERS address-expression
Specifies an entity to be examined. With high-level languages, this is
typically the name of a variable and can include a path name to specify
the variable uniquely. More generally, an address expression can also be

QUALIFIERS

a memory address or a register and can be composed of numbers (offsets)
and symbols, as well as one or more operators, operands, or delimiters.
Appendix D identifies the debugger's built-in symbols for the VAX registers
and identifies the operators that can be used in address expressions.

If you specify the name of an aggregate variable (a composite data
structure such as an array or record structure) the debugger displays
the values of all elements. For an array, the display shows the subscript
(index) and value of each array element. For a record, the display shows
the name and value of each record component.

To specify an individual array element, array slice, or record component,
use the syntax of the current language.

If you specify a range of entities, the value of the address expression that
denotes the first entity in the range must be less than the value of the
address expression that denotes the last entity in the range. The debugger
displays the entity specified by the first address expression, the logical
successor of that address expression, the next logical successor, and so on,
until it displays the entity specified by the last address expression. You
can specify a list of ranges by separating ranges with a comma.

See Chapter 11 and the descriptions of the /TMASK, /FMASK, and
/OPERANDS qualifiers for information that is specific to vector registers
and vector instructions.

/ASC/C
Interprets each examined entity as a counted ASCII string preceded by a
1-byte count field that gives the length of the string. The string is then
displayed. The I AC qualifier is also accepted.

/ASCID
Interprets each examined entity as the address of a string descriptor
pointing to an ASCII string. The CLASS and DTYPE fields of the
descriptor are not checked, but the LENGTH and POINTER fields provide
the character length and address of the ASCII string. The string is then
displayed. The I AD qualifier is also accepted.

CD-85

EXAMINE

CD-86

/ASCll:n
Interprets and displays each examined entity as an ASCII string of length
n bytes (n characters). If n is omitted, the debugger attempts to determine
a length from the type of the address expression.

/ASCIW
Interprets each examined entity as a counted ASCII string preceded by a
2-byte count field that gives the length of the string. The string is then
displayed. The /AW qualifier is also accepted.

/ASCIZ
Interprets each examined entity as a zero-terminated ASCII string. The
ending zero byte indicates the end of the string. The string is then
displayed. The I AZ qualifier is also accepted.

/BINARY
Displays each examined entity as a binary integer.

/BYTE
Displays each examined entity in the byte integer type (length 1 byte).

/CONDITION VALUE
Interprets each examined entity as a condition-value return status and
displays the message associated with that return status.

/D_FLOAT
Displays each examined entity in the D_floating type (length 8 bytes).
Values of type D_floating can range from .29 * 10-38 to 1.7 * 1038 with
approximately 16 decimal digits precision.

/DATE TIME
Interprets each examined entity as a quadword integer (length 8 bytes)
containing the internal VMS representation of date and time. Displays the
value in the format dd-mmm-yyyy hh:mm:ss.xx.

/DECIMAL
Displays each examined entity as a decimal integer.

!DEFAULT
Displays each examined entity in the default radix.

!FLOAT
Displays each examined entity in the F _floating type (length 4 bytes).
Values of type F _floating can range from .29 * 10-38 to 1. 7 * 1038 with
approximately 7 decimal digits precision.

IFMASK[=(mask-address-expression)]
Note: This qualifier applies to vectorized programs.

See trMASK.

/G FLOAT
Displays each examined entity in the G_floating type (length 8 bytes).
Values of type G_floating can range from .56 * 10-308 to .9 * 10308 with
approximately 15 decimal digits precision.

EXAMINE

/H FLOAT
Displays each examined entity in the H_fioating type (length 16 bytes).
Values of type H_fioating can range from .84 * 10-4932 to .59 * 104932 with
approximately 33 decimal digits precision.

!HEXADECIMAL
Displays each examined entity as a hexadecimal integer.

/INSTRUCTION
Displays each examined entity as a VAX assembly-language instruction
(variable length, depending on the number of instruction operands and the
kind of addressing modes used). See also /OPERANDS.

In screen mode, the output of an EXAMINE/INSTRUCTION command
is directed at the current instruction display, if any, not at an output or
DO display. The arrow in the instruction display points to the examined
instruction.

!LINE (default)
/NOL/NE
Controls whether program locations are displayed in terms of line numbers
(%LINE x) or as routine-name+ byte-offset. By default (/LINE), the
debugger symbolizes program locations in terms of line numbers.

/LONGWORD
Displays each examined entity in the longword integer type (length 4
bytes). This is the default type for program locations that do not have a
compiler generated type.

/OCTAL
Displays each examined entity as an octal integer.

/OCTAWORD
Displays each examined entity in the octaword integer type (length 16
bytes).

/OPERANDS[:keyword]
Displays operand information associated with an examined instruction
(displays each operand's address and its contents, using the operand's
data type). The keywords BRIEF and FULL vary the amount of
information displayed about any nonregister operands. The default is
/OPERANDS=BRIEF.

Use /OPERANDS only when examining the instruction at the current
PC value (for example, EXAMINE/OPERANDS .0\ %PC). Examining the
operands of an instruction that is not at the current PC value can give
erroneous results, because the state of the machine (the contents of the
registers) is not set up for that instruction.

In screen mode, operand information is directed at the current output
display.

When you examine the operands of a vector instruction, any operand
element masking that might be associated with that instruction is
performed by default. The trMASK and /FMASK qualifiers enable you
to specify some other mask. The current value of the vector length register
(VLR) limits the highest element of a vector register that you can examine.

CD-87

EXAMINE

CD-88

See also the SET MODE [NO]OPERANDS=keyword command. It enables
you to set a default level for the amount of operand information displayed
when examining instructions.

/PACKED:n
Interprets each examined entity as a packed decimal number. The value of
n is the number of decimal digits. Each digit occupies one nibble (4 bits).

/PSL
Displays each examined entity in PSL (processor status longword) format.

/PSW
Displays each examined entity in PSW (processor status word) format.
The /PSW qualifier is like /PSL except that only the low order word
(2 bytes) is displayed.

/QUADWORD
Displays each examined entity in the quadword integer type (length 8
bytes).

/SOURCE
Displays the source line corresponding to the location of each examined
entity. The examined entity must be associated with a machine code
instruction and, therefore, must be a line number,. a label, a routine name,
or the memory address of an instruction. The examined entity cannot be
a variable name or any other address expression that is associated with
data.

In screen mode, the output of an EXAMINE/SOURCE command is directed
at the current source display, if any, not at an output or DO display. The
arrow in the source display points to the source line associated with the
last entity specified (or the last one specified in a list of entities).

/SYMBOLIC (default)
/NOSYMBOLIC
Controls whether symbolization occurs. By default (!SYMBOLIC),
the debugger symbolizes all addresses, if possible; that is, it converts
numeric addresses into their symbolic representation. If you specify
/NOSYMBOLIC, the debugger suppresses symbolization of entities you
specify as absolute addresses. If you specify entities as variable names,
symbolization still occurs. The /NOSYMBOLIC qualifier is useful if you
are interested in identifying numeric addresses rather than their symbolic
names (if symbolic names exist for those addresses). If you specify
/NOSYMBOLIC, command processing might speed up somewhat, because
the debugger does not need to convert numbers to names.

/TASK
Note: This qualifier applies to Ada programs.

Interprets each examined entity as an Ada task object and displays the
task value (the name or task ID) of that task object.

/TMASK[=(mask-address-expression)]
/FMASK[=(mask-address-expression)]
Note: These qualifiers apply to vectorized programs.

EXAMINE

These qualifiers enable you to specify a mask in order to display certain
elements of a vector register (VO to V15), or of an array in memory, while
not displaying other elements.

For example, when you examine the operands of a vector instruction
(by using the /OPERANDS qualifier), these qualifiers enable you to
override any operand-element masking that might be associated with
that instruction.

The !I'MASK qualifier applies the EXAMINE command only to the
elements of the register or array that correspond to the set bits (bit value:
1) of the mask. The /FMASK qualifier applies the EXAMINE command
only to the elements that correspond to the clear bits (bit value: 0) of the
mask. The current value of the vector length register (VLR) limits the
highest register element that you can examine but not the highest array
element.

By default, if you do not specify a mask address expression with !I'MASK
or /FMASK, the vector mask register (VMR) is used. That is, the
EXAMINE command is applied only to the elements of the vector register
or array that correspond to the set bits (in the case of /TMASK) or clear
bits (in the case of /FMASK) of VMR.

If you specify a mask address expression with /TMASK or /FMASK,
the value at that address is used as the mask, subject to the following
conventions:

• You must use parentheses around the address expression.

• The number of mask elements limits the number of register or array
elements that you can examine.

• If the mask address expression denotes a Boolean array, its values
are used as the mask, in the same basic way that VMR is used in the
default case.

• If the mask address expression denotes a non-Boolean array, the least
significant bit value of each array element is used as the mask for the
corresponding element of the register or target array.

• If the mask address expression denotes a Boolean scalar type, its value
is used as the mask for the first element of the register or target array.
No other elements are examined.

• If the mask address expression denotes any other type, its least
significant bit value is used as the mask for the first element of the
register or target array. No other elements are examined.

• For a multi-element mask, the lowest specified element of the mask is
applied to the lowest specified element of the register or target array.

ITYPE=(type-expression)
Interprets and displays each examined entity according to the type
specified by type-expression (the name of a variable or data type declared
in the program). This enables you to specify a user-declared type.

/WORD
Displays each examined entity in the word integer type (length 2 bytes).

CD-89

EXAMINE

DESCRIPTION

CD-90

The EXAMINE command displays the entity at the location denoted by an
address expression. The command can be used to display the contents of
any memory location or register that is accessible in your program. For
high-level languages the command is used mostly to obtain the current
value of a variable (an integer, real, string, array, record, and so on).

The debugger recognizes the compiler generated types associated with
symbolic address expressions (symbolic names declared in your program).
Symbolic address expressions include the following entities:

• Variable names. When specifying a variable with the EXAMINE
command, use the same syntax that is used in the source code.

• Routine names, labels, and line numbers. These are associated with
VAX instructions. You can examine instructions using the same
techniques as when examining variables.

In general, when you enter an EXAMINE command, the debugger
evaluates the address expression specified to yield a program location.
The debugger then displays the value stored at that location as follows:

• If the location has a symbolic name, the debugger formats the value
according to the compiler generated type associated with that symbol
that is, as a variable of a particular type or as a VAX instruction.

• If the location does not have a symbolic name (and, therefore, no
associated compiler generated type) the debugger formats the value
in the type longword integer by default. This means that, by default,
the EXAMINE command displays the contents of these locations as
longword (4-byte) integer values.

See Chapter 11 and the descriptions of the trMASK, /FMASK, and
/OPERANDS qualifiers for information that is specific to vector registers
and vector instructions.

There are several ways of changing the type associated with a program
location so that you can display the data at that location in another data
format:

• To change the default type for all locations that do not have a symbolic
name, you can specify a new type with the SET TYPE command.

• To change the default type for all locations (both those that do and do
not have a symbolic name), you can specify a new type with the SET
TYPE/OVERRIDE command.

• To override the type currently associated with a particular location
for the duration of a single EXAMINE command, you can specify a
new type by means of a type qualifier (/ ASCII:n, /BYTE, ITYPE=(type
expression), and so on). Most of the EXAMINE command qualifiers are
type qualifiers.

The debugger can interpret and display integer data in any one of four
radixes: binary, decimal, hexadecimal, and octal. The default radix
for both data entry and display is decimal for all languages except
BLISS and MACRO. It is hexadecimal for BLISS and MACRO. The
EXAMINE command has four radix qualifiers (/BINARY, /DECIMAL,

EXAMPLES

EXAMINE

/HEXADECIMAL, /OCTAL) that enable you to display data in another
radix. You can also use the SET RADIX and SET RADIX/OVERRIDE
commands to change the default radix.

In addition to the type and radix qualifiers, the EXAMINE command has
qualifiers for other purposes:

• The /SOURCE qualifier enables you to identify the line of source code
corresponding to a line number, routine name, label, or any other
address expression that is associated with an instruction rather than
data.

• The /[NOJLINE and /[NOJSYMBOL qualifiers enable you to control the
symbolization of address expressions.

The EXAMINE command sets the current entity built-in symbols
%CURLOC and period (.) to the location denoted by the address
expression specified. Logical predecessors (%PREVLOC and circumflex
(")) and successors (%NEXTLOC and pressing the Return key) are based
on the value of the current entity.

Related Commands: DEPOSIT, EVALUATE, (SET, SHOW, CANCEL)
RADIX, (SET, SHOW) TYPE, CANCEL TYPE/OVERRIDE, SET MODE
[NO]OPERANDS, SET MODE [NOJSYMBOLIC.

D DBG> EXAMINE COUNT
SUB2\COUNT: 27
DBG>

This command displays the value of the integer variable COUNT, in
module SUB2.

DBG> EXAMINE PART NUMBER
INVENTORY\PART_NUMBER: "LP-3592.6-84"
DBG>

DBG> EXAMINE
SUB1\ARR3

(1, 1) :
(1, 2) :
(1, 3) :
(2, 1) :
(2, 2) :
(2, 3) :

DBG>

This command displays the value of the string variable PART_NUMBER.

SUB1\ARR3

27.01000
31. 01000
12.48000
15.08000
22.30000
18.73000

This command displays the value of all elements in array ARR3, in module
SUBl. ARR3 is a 2 by 3 element array of real numbers.

CD-91

EXAMINE

D DBG> EXAMINE SUB1\ARR3(2,1:3)
SUB1\ARR3

(2, 1) : 15. 08000
(2,2): 22.30000
(2,3): 18.73000

DBG>

This command displays the value of the elements in a slice of array
SUBl \ARR3. The slice includes "columns" 1 to 3 of "row" 2.

~ DBG> EXAMINE VALVES.INTAKE.STATUS
MONITOR\VALVES.INTAKE.STATUS: OFF
DBG>

This command displays the value of the nested record component
VALVES.INTAKE.STATUS in module MONITOR.

ti] DBG> EXAMINE/SOURCE SWAP
module MAIN

47: procedure SWAP(X,Y: in out INTEGER) is
DBG>

This command displays the source line in which routine SWAP is declared
(the location of routine SWAP).

i DBG> DEPOSIT/ASCII: 7 WORK+20 = 'abcdefg'
DBG> EXAMINE/ASCII:? WORK+20
DETAT\WORK+20: "abcdefg"
DBG> EXAMINE/ASCII:5 WORK+20
DETAT\WORK+20: "abcde"
DBG>

In this example, the DEPOSIT command deposits the entity ' abcdefg' as
an ASCII string of length 7 bytes into the location that is 20 bytes beyond
the location denoted by the symbol WORK The first EXAMINE command
displays the value of the entity at that location as an ASCII string of
length 7 bytes (abcdefg). The second EXAMINE command displays the
value of the entity at that location as an ASCII string of length 5 bytes
(abcde).

ri] DBG> EXAMINE/INST MAIN+2
MAIN\MAIN+02: MOVAL LAMAINA,Rll
DBG>

This command displays the contents of the location that is 2 bytes beyond
the location denoted by the symbol MAIN as an instruction (MOVAL).

~ DBG> EXAMINE/OPERANDS=FULL .0\%PC
X\X$START+OC: MOVL BA04(R4),R7

DBG>

CD-92

BA04(R4) R4 contains X\X$START\M (address 00001054),
BA04(00001054) evaluates to X\X$START\K
(address 00001058), which contains 00000016

R7 R7 contains 00000000

This command displays the instruction (MOVL) at the current PC value.
The /OPERANDS qualifier with the keyword FULL displays the maximum
level of operand information.

EXAMINE

II] DBG> SET RADIX HEXADECIMAL
DBG> EVALUATE/ADDRESS WORKDATA
0000086F
DBG> EXAMINE/SYMBOLIC 0000086F
MOD3\WORKDATA: 03020100
DBG> EXAMINE/NOSYMBOLIC 0000086F
0000086F: 03020100
DBG>

In this example, the EVALUATE/ADDRESS command indicates that the
memory address of variable WORKDATA is 0000086F, hexadecimal. The
two EXAMINE commands display the value contained at that address
using the /[NO]SYMBOL qualifier to control whether the address is
symbolized to WORKDATA.

II DBG> EXAMINE/HEX FIDBLK
FDEX1$MAIN\FIDBLK

DBG>

(1) : 00000008
(2) : 00000100
(3): OOOOOOAB

This command displays the value of the array variable FIDBLK in
hexadecimal radix.

II DBG> EXAMINE/DECIMAL/WORD NEWDATA:NEWDATA+6
SUB2\NEWDATA: 256
SUB2\NEWDATA+2: 770
SUB2\NEWDATA+4: 1284
SUB2\NEWDATA+6: 1798
DBG>

This command displays, in decimal radix, the values of word integer
entities (2-byte entities) that are in the range of locations denoted by
NEWDATA to NEWDATA + 6 bytes.

II DBG> EXAMINE/TASK ALPHA
SAMPLE.ALPHA: %TASK 2
DBG>

This command interprets ALPHA to be the address of an Ada task object
and displays the task value %TASK 2 associated with that task object.

CD-93

EXIT

EXIT

FORMAT

Ends a debugging session, or terminates one or more processes of a
multiprocess program, allowing any application-declared exit handlers to
run.

If used within a command procedure or DO clause and no process is
specified, exits the command procedure or DO clause at that point.

EXIT [process-spec[, ...]]

PARAMETERS process-spec

CD-94

Note: This parameter applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS).

Specifies a process. Use any of the following forms:

[%PROCESS_NAME] process-name The VMS process name, if that name
contains no space or lowercase
characters. The process name can
include the asterisk wildcard character

[%PROCESS_NAME] "process-name"

%PROCESS_PID process_id

%PROCESS_NUMBER process-number (or
%PROC process-number)

process-group-name

%NEXT _PROCESS

%PREVIOUS_PROCESS

%VISIBLE_PROCESS

(*).

The VMS process name, if that
name contains space or lowercase
characters. You can also use
apostrophes (') instead of quotation
marks(").

The VMS process identification number
(PIO, a hexadecimal number).

The number assigned to a process
when it comes under debugger control.
Process numbers appear in a SHOW
PROCESS display.

A symbol defined with the DEFINE
/PROCESS_GROUP command to
represent a group of processes.

The process after the visible process in
the debugger's circular process list.

The process previous to the visible
process in the debugger's circular
process list.

The process whose call stack, register
set, and images are the current context
for looking up symbols, register values,
routine calls, breakpoints, and so on.

You can also use the asterisk wildcard character (*) to specify all
processes.

DESCRIPTION

EXIT

The EXIT command is one of the four debugger commands that can be
used to execute your program (the others are CALL, GO, and STEP).

Ending a Debugging Session

To end a debugging session, enter the EXIT command at the debugger
prompt without specifying any parameters. This causes orderly
termination of the session: the program's application-declared exit
handlers (if any) are executed, the debugger exit handler is executed
(closing log files, restoring the screen and keypad states, and so on),
and control is returned to the command interpreter. You cannot then
continue to debug your program by entering the DCL commands DEBUG
or CONTINUE. To restart the debugger, you must run the program again.

Note that, since EXIT runs any application-declared exit handlers, you can
set breakpoints in such exit handlers, and the breakpoints are triggered
upon typing EXIT. EXIT can thus be used to debug your exit handlers.

To end a debugging session without running any application-declared exit
handlers, use the QUIT command instead of EXIT.

Using the EXIT Command in Command Procedures and DO Clauses

When the debugger executes an EXIT command (without any parameters)
in a command procedure, control returns to the command stream that
invoked the command procedure. A command stream can be the terminal,
an outer (containing) command procedure, or a DO clause in a command
or screen display definition. For example, if the command procedure was ·
invoked from within a DO clause, control returns to that DO clause, where
the debugger executes the next command (if any remain in the command
sequence).

When the debugger executes an EXIT command (without any parameters)
in a DO clause, it ignores any remaining commands in that clause and
displays its prompt.

Terminating Specified Processes

If you are using the multiprocess debugging configuration to debug a
multiprocess program (if the logical name DBG$PROCESS has the value
MULTIPROCESS), you can use the EXIT command to terminate specified
processes without ending the debugging session. The same techniques and
behavior apply, whether you enter the EXIT command at the prompt or
use it within a command procedure or DO clause.

To terminate one or more processes, enter the EXIT command, specifying
these processes as parameters. This causes orderly termination of the
images in these processes, executing any application-declared exit handlers
associated with these images. Subsequently, the specified processes are no
longer identified in a SHOW PROCESS/ALL display. If any specified
processes were on hold, as the result of a SET PROCESS/HOLD command,
the hold condition is ignored.

CD-95

EXIT

EXAMPLES
D DBG> EXIT

$

When the specified processes begin to exit, any unspecified process that
is not on hold begins execution. After execution is started, the way
in which it continues depends on whether the command SET MODE
[NO]INTERRUPT was entered previously. By default (SET MODE
INTERRUPT), execution continues until it is suspended in any process.
At that point, execution is interrupted in any other processes that were
executing images, and the debugger prompts for input.

To terminate specified processes without running any application-declared
exit handlers or otherwise starting execution, use the QUIT command
instead of EXIT.

Related commands: CTRUZ, QUIT, CTRUC, SET ABORT_KEY, CTRUY,
@file-spec, SET PROCESS, SET MODE [NO]INTERRUPT.

This command ends the debugging session and returns you to DCL
command level.

~ JONES l> EXIT %NEXT_PROCESS, %PROCESS_NAME JONES_3, %PROC 5
JONES l>

CD-96

This command causes orderly termination of three processes of a
multiprocess program: the process after the visible process on the process
list, process JONES_3, and process 5. Control is returned to the debugger
after the specified processes have exited.

EXITLOOP

EXITLOOP

Exits one or more enclosing FOR, REPEAT, or WHILE loops.

FORMAT EXITLOOP [n]

PARAMETERS n
A decimal integer that specifies the number of nested loops to exit from.
The default is 1.

DESCRIPTION Use the EXITLOOP command to exit one or more enclosing FOR, REPEAT,
or WHILE loops.

Related commands: FOR, REPEAT, WHILE.

EXAMPLE
DBG> WHILE 1 DO (STEP; IF X .GT. 3 THEN EXITLOOP)

The WHILE 1 command generates an endless loop that executes a STEP
command with each iteration. After each STEP, the value of X is tested.
If X is greater than 3, the EXITLOOP command terminates the loop
(FORTRAN example).

CD-97

EXPAND

EXPAND

Expands or contracts the window associated with a screen display.

FORMAT EXPAND [disp-name[, ...]]

PARAMETERS disp-name

QUALIFIERS

CD-98

Specifies a display to be expanded or contracted. You can specify any of
the following entities:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the DISPLAY command

• A display built-in symbol: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you do not specify a display, the current scrolling display, as established
by the SELECT command, is chosen.

You must specify at least one qualifier.

/DOWN[:n]
Moves the bottom border of the display down by n lines (if n is positive) or
up by n lines (if n is negative). If n is omitted, the border is moved down
by 1 line.

/LEFT[:n]
Moves the left border of the display to the left by n lines (if n is positive)
or to the right by n lines (if n is negative). If n is omitted, the border is
moved to the left by 1 line.

/RIGHT[:n]
Moves the right border of the display to the right by n lines (if n is
positive) or to the left by n lines (if n is negative). If n is omitted, the
border is moved to the right by 1 line.

/SUFFIX[=process-identifier-type]
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS). Use this qualifier only directly after a display
name.

Appends a process-identifying suffix to a display name. The suffix denotes
the visible process at the time the command was issued. This qualifier is
used primarily in command procedures when specifying display definitions
or key definitions that are bound to display definitions.

EXPAND

Use any of the following process-identifier-type keywords:

PROCESS_NAME The display-name suffix is the VMS process name.

PROCESS_NUMBER The display-name suffix is the process number (as shown in
a SHOW PROCESS display).

PROCESS_PID The display-name suffix is the VMS process identification
number (PIO).

If you specify /SUFFIX without a process-identifier-type keyword, the
process identifier type used for the display-name suffix is, by default, the
same as that used for the prompt suffix (see SET PROMPT/SUFFIX).

/UP[:n]
Moves the top border of the display up by n lines (if n is positive) or down
by n lines (if n is negative). If n is omitted, the border is moved up by 1
line.

DESCRIPTION The EXPAND command moves one or more display-window borders
according to the qualifiers specified (IUP:[n], /DOWN:[n], RIGHT:[n],
/LEFT:[n]).

EXAMPLES

The EXPAND command does not affect the order of a display on the
display pasteboard. Depending on the relative order of displays, the
EXPAND command can cause the specified display to hide or uncover
another display or be hidden by another display, partially or totally.

Except for the PROMPT display, any display can be contracted to the
point where it disappears (at which point it is marked as "removed"). It
can then be expanded from that point. Contracting a display to the point
where it disappears causes it to lose any attributes that were selected for
it. The PROMPT display cannot be contracted or expanded horizontally
but can be contracted vertically to a height of 2 lines.

A window border can be expanded only up to the edge of the screen. The
left and top window borders cannot be expanded beyond the left and top
edges of the display, respectively. The right border can be expanded up
to 255 columns from the left display edge. The bottom border of a source
or instruction display can be expanded down only to the bottom edge of
the display (to the end of the source module or routine's instructions). A
register display cannot be expanded beyond its full size.

See Appendix B for keypad-key definitions associated with the EXPAND
command.

Related commands: MOVE, DISPLAY, SELECT/SCROLL, (SET, SHOW)
TERMINAL.

D DBG> EXPAND/RIGHT: 6

This command moves the right border of the current scrolling display to
the right by 6 columns.

CD-99

EXPAND

~ DBG> EXPAND/UP /RIGHT :-12 OUT2

This command moves the top border of display OUT2 up by 1 line, and the
right border to the left by 12 columns.

I] DBG> EXPAND /DOWN: 9 9 SRC

CD-100

This command moves the bottom border of display SRC down to the
bottom edge of the screen.

EXTRACT

FORMAT

EXTRACT

Saves the contents of screen displays in a file or creates a debugger
command procedure with all of the commands necessary to recreate the
current screen state at a later time.

EXTRACT [disp-name[, ...]] [file-spec]

PARAMETERS disp-name

QUALIFIERS

Specifies a display to be extracted. You can specify any of the following
entities:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the DISPLAY command

You can use the asterisk wildcard character (*) in a display name. Do not
specify a display name with I ALL.

file-spec
Specifies the file to which the information is written. You can specify a
logical name.

If you specify /SCREEN_LAYOUT, the default specification for the file is
SYS$DISK:[]DBGSCREEN.COM. Otherwise, the default specification is
SYS$DISK:[JDEBUG.TXT.

/ALL
Extracts all displays. Do not specify a display name with I ALL. Do not
specify /SCREEN_LAYOUT with /ALL.

/APPEND
Appends the information at the end of the file, rather than creating a new
file. By default, a new file is created. Do not specify /SCREEN_LAYOUT
with /APPEND.

!SCREEN_LAYOUT
Writes a file that contains the debugger commands describing the current
state of the screen. This information includes the screen height and width,
and the position, display kind, and display attributes of every existing
display. This file can then be executed with the @file-spec command to
reconstruct the screen at a later time.

!SUFFIX[=process-identifier-type]
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS). Use this qualifier only directly after a display
name.

CD-101

EXTRACT

Appends a process-identifying suffix to a display name. The suffix denotes
the visible process at the time the command was issued. This qualifier is
used primarily in command procedures when specifying display definitions
or key definitions that are bound to display definitions.

Use any of the following process-identifier-type keywords:

PROCESS_NAME The display-name suffix is the VMS process name.

PROCESS_NUMBER The display-name suffix is the process number (as shown in
a SHOW PROCESS display).

PROCESS_PID The display-name suffix is the VMS process identification
number (PIO).

If you specify /SUFFIX without a process-identifier-type keyword, the
process identifier type used for the display-name suffix is, by default, the
same as that used for the prompt suffix (see SET PROMPT/SUFFIX).

DESCRIPTION When you use the EXTRACT command to save the contents of a display
into a file, only those lines that are currently stored in the display's
memory buffer (as determined by the /SIZE qualifier on the DISPLAY
command) are written to the file.

EXAMPLES
D DBG> EXTRACT SRC

You cannot extract the PROMPT display into a file.

Related commands: SAVE, DISPLAY.

This command writes all the lines in display SRC into file
SYS$DISK:[]DEBUG. TXT.

~ DBG> EXTRACT/APPEND OUT [JONES.WORK]MYFILE

This command appends all the lines in display OUT to the end of file
[JONES.WORK]MYFILE.TXT.

I] DBG> EXTRACT/ SCREEN_ LAYOUT

CD-102

This command writes the debugger commands needed to reconstruct the
screen into file SYS$DISK:[]DBGSCREEN.COM.

FOR

FORMAT

FOR

Executes a sequence of commands while incrementing a variable a specified
number of times.

FOR name=expression1 TO expression2 [BY
expression3] DO (command[; ...])

PARAMETERS name
Specifies the name of a count variable.

expression 1
Specifies an integer or enumeration type value. The expressionl and
expression2 parameters must always be of the same type.

expression2
Specifies an integer or enumeration type value. The expressionl and
expression2 parameters must always be of the same type.

expression3
Specifies an integer.

command
Specifies a debugger command. If you specify more than one command,
they must be separated by semicolons.

DESCRIPTION The behavior of the FOR command depends on the value of the expression3
parameter. If expression3 is positive, name is incremented from the value
of expressionl by the value of expression3 until it is greater than the value
of expression2.

If expression3 is negative, name is decremented from the value of
expressionl by the value of expression3 until it is less than the value of
expression2.

If expression3 is zero, the debugger returns an error message.

If expression3 is left out entirely, the debugger assumes it to have the
value +1.

Related commands: REPEAT, WHILE, EXITLOOP.

CD-103

FOR

EXAMPLES
D DBG> FOR I 10 TO 1 BY -1 DO (EXAMINE A (I))

This command examines an array backwards.

~ DBG> FOR I 1 TO 10 DO (DEPOSIT A(I) = 0)

This command initializes an array to zero.

CD-104

GO

GO

Starts or resumes program execution.

FORMAT GO [address-expression]

PARAMETERS address-expression
Specifies that program execution resume at the location denoted by the
address expression. If you do not specify an address expression, execution
resumes at the point of suspension or, in the case of debugger start up, at
the image transfer address.

DESCRIPTION The GO command starts program execution or resumes execution from the
point at which it is currently suspended. GO is one of the four debugger
commands that can be used to execute your program (the others are CALL,
EXIT, and STEP).

Note that specifying an address expression with the GO command can
produce unexpected results because it alters the normal control fl.ow of
your program. For example, during a debugging session you can restart
execution at the beginning of the program by entering the command GO
%LINE 1. However, because the program has executed, the contents of
some variables might now be initialized differently from when you first
ran the program.

If an exception breakpoint is triggered (resulting from a SET BREAK
/EXCEPTION or a STEP/EXCEPTION command), execution is suspended
before any application-declared condition handler is invoked. If you then
resume execution with the GO command, the behavior is as follows:

• Entering a GO command to resume execution from the current location
causes the debugger to resignal the exception. This use of the GO
command enables you to observe which application-declared handler, if
any, next handles the exception.

• Entering a GO command to resume execution from a location other
than the current location inhibits the execution of any application
declared handler for that exception.

If you are using the multiprocess debugging configuration to debug a
multiprocess program (if the logical name DBG$PROCESS has the value
MULTIPROCESS), note the following additional points:

• The GO command is executed in the context of the visible process,
but images in any other processes that are not on hold (through a SET
PROCESS/HOLD command) are also allowed to execute. If you use the
DO command to broadcast a GO command to one or more processes,
the GO command is executed in the context of each specified process
that is not on hold, but images in any other processes that are not on

CD-105

GO

EXAMPLES

D DBG> GO

hold are also allowed to execute. In all cases, a hold condition in the
visible process is ignored.

• After execution is started, the way in which it continues depends on
whether the command SET MODE [NO]INTERRUPT was entered.
By default (SET MODE INTERRUPT), execution continues until it
is suspended in any process. At that point, execution is interrupted
in any other processes that were executing images, and the debugger
prompts for input.

Related commands: STEP, SET STEP, SET BREAK, SET TRACE,
SET WATCH, CALL, EXIT, DO, SET PROCESS, SET MODE
[NO]INTERRUPT.

%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful
completion'

DBG>

This command starts program execution, which then completes
successfully.

~ DBG> SET BREAK RESTORE
DBG> GO

break at routine INVENTORY\RESTORE
137: procedure RESTORE;
DBG> GO

DBG>

i] DBG> GO %LINE 42

CD-106

This SET BREAK command sets a breakpoint on routine RESTORE. The
first GO command starts program execution, which is then suspended at
the breakpoint on routine RESTORE. The second GO command resumes
execution from the breakpoint.

This command resumes program execution at line 42 of the module in
which execution is currently suspended.

HELP

HELP

Displays online help on debugger commands and selected topics.

FORMAT HELP help-topic [subtopic [... 11

PARAMETERS help-topic

DESCRIPTION

EXAMPLE
DBG> HELP GO

GO

Specifies the name of a debugger command or topic about which you need
help. You can specify the asterisk wildcard character (*), either singly or
within a name.

subtopic
Specifies a subtopic, command qualifier, or command parameter about
which you want further information. You can specify *, either singly or
within a name.

The debugger's online help facility provides the following information
about any debugger command: a description of the command, format of
the command, parameters that can be specified with the command, and
qualifiers that can be specified with the command.

To obtain information about a particular qualifier or parameter, specify
it as a subtopic. If you want information about all command qualifiers,
specify "qualifier" as a subtopic. If you want information about all
parameters, specify "parameter" as a subtopic. If you want information
about all parameters, qualifiers, and any other subtopics related to a
command, specify * as a subtopic.

In addition to help on commands, you can get online help on various topics
such as screen features, keypad mode, and so on. Topic keywords are
listed along with the commands when you type HELP.

Type HELP Release_N otes for information about any incompatibilities
between the current release of the debugger and previous releases. Type
HELP New_Features for summary information about new features with
this release of the debugger.

For help on the predefined keypad-key functions, see Appendix B.

The GO command starts program execution or resumes execution
from the point at which it is currently suspended. GO is one
of the four debugger commands that can be used to execute
your program (the others are CALL, EXIT, and STEP).

CD-107

HELP

Note that specifying an address expression with the GO
command can produce unexpected results because it alters the
normal control flow of your program. For example, during a
debugging session you can restart execution at the beginning
of the program by entering the command GO %LINE 1. However,
because the program has executed, the contents of some
variables might now be initialized differently from when you
first ran the program.

Format:

GO [address-expression]

Additional information available:

Examples Multiprocess_Programs Parameters

This command displays help for the GO command.

CD-108

IF

FORMAT

Executes a sequence of commands if a language expression (Boolean
expression) is evaluated as true.

IF Boolean-expression THEN (command[; ...])
/ELSE (command[; ...])]

IF

PARAMETERS Boolean-expression
Specifies a language expression that evaluates as a Boolean value (true or
false) in the currently set language.

command
Specifies a debugger command. If you specify more than one command,
you must separate them with semicolons (;).

DESCRIPTION The IF command evaluates a Boolean expression. If the value is true (as
defined in the current language), the debugger command list in the THEN
clause is executed. If the expression is false, the command list in the
ELSE clause is executed (if it is present).

Related commands: FOR, REPEAT, WHILE, EXITLOOP.

EXAMPLE
DBG> SET BREAK R DO (IF X .LT.5 THEN (GO) ELSE (EXAMINE X))

This command causes the debugger to suspend program execution at
location R (a breakpoint) and then resume program execution if the value
ofX is less than 5 (FORTRAN example). If the value ofX is 5 or more, the
value of X is displayed.

CD-109

MOVE

MOVE

Moves a screen display vertically or horizontally across the screen.

FORMAT MOVE [disp-name[, ...]]

PARAMETERS disp-name
Specifies a display to be moved. You can specify any of the following
entities:

QUALIFIERS

CD-110

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the DISPLAY command

• A display built-in symbol: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you do not specify a display, the current scrolling display, as established
by the SELECT command, is chosen.

You must specify at least one qualifier.

/DOWN[:n]
Moves the display down by n lines (if n is positive) or up by n lines (if n is
negative). If n is omitted, the display is moved down by 1 line.

/LEFT[:n]
Moves the display to the left by n lines (if n is positive) or right by n lines
(if n is negative). If n is omitted, the display is moved to the left by 1 line.

/RIGHT[:n]
Moves the display to the right by n lines (if n is positive) or left by n lines
(if n is negative). If n is omitted, the display is moved to the right by 1
line.

!SUFFIX[=process-identifier-type]
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS). Use this qualifier only directly after a display
name.

Appends a process-identifying suffix to a display name. The suffix denotes
the visible process at the time the command was issued. This qualifier is
used primarily in command procedures when specifying display definitions
or key definitions that are bound to display definitions.

Use any of the following process-identifier-type keywords:

PROCESS_NAME The display-name suffix is the VMS process name.

MOVE

PROCESS_NUMBER The display-name suffix is the process number (as shown in
a SHOW PROCESS display).

PROCESS_PID The display-name suffix is the VMS process identification
number (PIO).

If you specify /SUFFIX without a process-identifier-type keyword, the
process identifier type used for the display-name suffix is, by default, the
same as that used for the prompt suffix (see SET PROMPT/SUFFIX).

IUP[:n]
Moves the display up by n lines (if n is positive) or down by n lines (if n is
negative). If n is omitted, the display is moved up by 1 line.

DESCRIPTION For each display specified, the MOVE command simply creates a window
of the same dimensions elsewhere on the screen and maps the display to
it, while maintaining the relative position of the text within the window.

EXAMPLES

D DBG> MOVE/LEFT

The MOVE command does not change the order of a display on the display
pasteboard. Depending on the relative order of displays, the MOVE
command can cause the display to hide or uncover another display or
be hidden by another display, partially or totally.

A display can be moved only up to the edge of the screen.

See Appendix B for keypad-key definitions associated with the MOVE
command.

Related commands: EXPAND, DISPLAY, SELECT/SCROLL, (SET, SHOW)
TERMINAL.

This command moves the current scrolling display to the left by 1 column.

~ DBG> MOVE/UP:3/RIGHT:5 NEW_OUT

This command moves display NEW_OUT up by 3 lines and to the right by
5 columns.

CD-111

QUIT

QUIT

FORMAT

Ends a debugging session, or terminates one or more processes of a
multiprocess program (like EXIT}, but without allowing any application
declared exit handlers to run.

If used within a command procedure or DO clause and no process is
specified, exits the command procedure or DO clause at that point.

QUIT [process-spec[, ... 11

PARAMETERS process-spec

CD-112

Note: This parameter applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS).

Specifies a process. Use any of the following forms:

(%PROCESS_NAME] process-name

(%PROCESS_NAME] "process-name"

%PROCESS_PID process_id

%PROCESS_NUMBER process-number (or
%PROC process-number)

process-group-name

%NEXT _PROCESS

%PREVIOUS_PROCESS

% VISIBLE_PROCESS

The VMS process name, if that name
contains no space or lowercase
characters. The process name can
include the asterisk wildcard character
(*).

The VMS process name, if that
name contains space or lowercase
characters. You can also use
apostrophes (') instead of quotation
marks(").

The VMS process identification number
(PIO, a hexadecimal number).

The number assigned to a process
when it comes under debugger control.
Process numbers appear in a SHOW
PROCESS display.

A symbol defined with the DEFINE
/PROCESS_GROUP command to
represent a group of processes.

The process after the visible process in
the debugger's circular process list.

The process previous to the visible
process in the debugger's circular
process list.

The process whose call stack, register
set, and images are the current context
for looking up symbols, register values,
routine calls, breakpoints, and so on.

You can also use the asterisk wildcard character (*) to specify all
processes.

DESCRIPTION

QUIT

The QUIT command is like the EXIT command, except that QUIT does
not cause your program to execute and, therefore, does not execute any
application-declared exit handlers in your program.

Ending a Debugging Session

To end a debugging session, enter the QUIT command at the debugger
prompt without specifying any parameters. This causes orderly
termination of the session: the debugger exit handler is executed (closing
log files, restoring the screen and keypad states, and so on), and control is
returned to the command interpreter. You cannot then continue to debug
your program by entering the DCL commands DEBUG or CONTINUE. To
restart the debugger, you must run the program again.

Using the QUIT Command in Command Procedures and DO Clauses

When the debugger executes a QUIT command (without any parameters)
in a command procedure, control returns to the command stream that
invoked the command procedure. A command stream can be the terminal,
an outer (containing) command procedure, or a DO clause in a command
or screen display definition. For example, if the command procedure was
invoked from within a DO clause, control returns to that DO clause, where
the debugger executes the next command (if any remain in the command
sequence).

When the debugger executes a QUIT command (without any parameters)
in a DO clause, it ignores any remaining commands in that clause and
displays its prompt.

Terminating Specified Processes

If you are using the multiprocess debugging configuration to debug a
multiprocess program (if the logical name DBG$PROCESS has the value
MULTIPROCESS), you can use the QUIT command to terminate specified
processes without ending the debugging session. The same techniques and
behavior apply, whether you enter the QUIT command at the prompt or
use it within a command procedure or DO clause.

To terminate one or more processes, enter the QUIT command, specifying
these processes as parameters. This causes orderly termination of the
images in these processes without executing any application-declared
exit handlers associated with these images. Subsequently, the specified
processes are no longer identified in a SHOW PROCESS/ALL display.

In contrast to the EXIT command, the QUIT command does not cause any
process to start execution.

Related commands: EXIT, CTRUZ, CTRUC, SET ABORT_KEY, CTRUY,
@file-spec, SET PROCESS.

CD-113

QUIT

EXAMPLES

D DBG> QUIT
$

This command, when entered from the prompt, ends the debugging session
and returns you to DCL command level.

I JONES 1> QUIT %NEXT_PROCESS, %PROCESS_NAME JONES_3, %PROC 5
JONES 1>

CD-114

This command causes orderly termination of three processes of a
multiprocess program: the process after the visible process on the process
list, process JONES_3, and process 5. Control is returned to the debugger
after the specified processes have exited.

REPEAT

REPEAT
Executes a sequence of commands a specified number of times.

FORMAT REPEAT Jang-exp DO (command[; ...])

PARAMETERS Jang-exp
Denotes any expression in the currently set language that evaluates to a
positive integer.

command
Specifies a debugger command. If you specify more than one command,
they must be separated by semicolons.

DESCRIPTION The REPEAT command is a simple form of the FOR command. The
REPEAT command executes a sequence of commands repetitively a
specified number of times, without providing the options for establishing
count parameters that the FOR command does.

Related commands: FOR, WHILE, EXITLOOP.

EXAMPLE

DBG> REPEAT 10 DO (EXAMINE Y; STEP)

This command line sets up a loop that issues a sequence of two commands
(EXAMINE Y then STEP) 10 times.

CD-115

SAVE

SAVE

Preserves the contents of an existing screen display in a new display.

FORMAT SAVE old-disp AS new-disp [, ...]

PARAMETERS old-disp

QUALIFIERS

Specifies the display whose contents are saved. You can specify any of the
following entities:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the DISPLAY command

• A display built-in symbol: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

new-disp
Specifies the name of the new display to be created. This new display then
receives the contents of the old-disp display.

!SUFFIX[=process-identifier-type]
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS). Use this qualifier only directly after a display
name.

Appends a process-identifying suffix to a display name. The suffix denotes
the visible process at the time the command was issued. This qualifier is
used primarily in command procedures when specifying display definitions
or key definitions that are bound to display definitions.

Use any of the following process-identifier-type keywords:

PROCESS_NAME

PROCESS_NUMBER

PROCESS_PID

The display-name suffix is the VMS process name.

The display-name suffix is the process number (as shown in
a SHOW PROCESS display).

The display-name suffix is the VMS process identification
number (PIO).

If you specify /SUFFIX without a process-identifier-type keyword, the
process identifier type used for the display-name suffix is, by default, the
same as that used for the prompt suffix (see SET PROMPT/SUFFIX).

DESCRIPTION The SAVE command enables you to save a "snapshot" copy of an existing
display in a new display for later reference. The new display is created
with the same text contents as the existing display. In general, the new
display is given all the attributes or characteristics of the old display
except that it is removed from the screen and is never automatically

CD-116

EXAMPLE

SAVE

updated. You can later recall the saved display to the terminal screen with
the DISPLAY command.

When you use the SAVE command, only those lines that are currently
stored in the display's memory buffer (as determined by the /SIZE qualifier
on the DISPLAY command) are stored in the saved display. However, in
the case of a saved source or instruction display, you can also see any
other source lines associated with that module or any other instructions
associated with that routine (by scrolling the saved display).

You cannot save the PROMPT display.

Related commands: EXTRACT, DISPLAY.

DBG> SAVE REG AS OLDREG

This command saves the contents of the display named REG into the
newly created display named OLDREG.

CD-117

SCROLL

SCROLL

FORMAT

Scrolls a screen display to make other parts of the text visible through the
display window.

SCROLL [disp-name]

PARAMETERS disp-name

QUALIFIERS

CD-118

Specifies a display to be scrolled. You can specify any of the following
entities:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the DISPLAY command

• A display built-in symbol: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you do not specify a display, the current scrolling display, as established
by the SELECT command, is chosen.

/BOTTOM
Scrolls down to the bottom of the display's text.

/DOWN:[n]
Scrolls down over the display's text by n lines to reveal text further down
in the display. If n is omitted, the display is scrolled by approximately 3/4
of its window height.

/LEFT:[n]
Scrolls left over the display's text by n columns to reveal text beyond the
left window border. You cannot scroll past column 1. If n is omitted, the
display is scrolled left by 8 columns.

/RIGHT[:n]
Scrolls right over the display's text by n columns to reveal text beyond the
right window border. You cannot scroll past column 255. If n is omitted,
the display is scrolled right by 8 columns.

/SUFFIX[=process-identifier-type]
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS). Use this qualifier only directly after a display
name.

Appends a process-identifying suffix to a display name. The suffix denotes
the visible process at the time the command was issued. This qualifier is
used primarily in command procedures when specifying display definitions
or key definitions that are bound to display definitions.

SCROLL

Use any of the following process-identifier-type keywords:

PROCESS_NAME The display-name suffix is the VMS process name.

PROCESS_NUMBER The display-name suffix is the process number (as shown in
a SHOW PROCESS display).

PROCESS_PID The display-name suffix is the VMS process identification
number (PID).

If you specify /SUFFIX without a process-identifier-type keyword, the
process identifier type used for the display-name suffix is, by default, the
same as that used for the prompt suffix (see SET PROMPT/SUFFIX).

/TOP
Scrolls up to the top of the display's text.

/UP[:n]
Scrolls up over the display's text by n lines to reveal text further up in the
display. If n is omitted, the display is scrolled by approximately 3/4 of its
window height.

DESCRIPTION The SCROLL command moves a display up, down, right, or left relative
to its window so that various parts of the display text can be made visible
through the window.

Use the SELECT/SCROLL command to select the target display for the
SCROLL command (the current scrolling display).

See Appendix B for keypad-key definitions associated with the SCROLL
command.

Related commands: SELECT.

EXAMPLES

D DBG> SCROLL/LEFT

This command scrolls the current scrolling display to the left by 8 columns.

~ DBG> SCROLL/UP: 4 ALPHA

This command scrolls display ALPHA 4 lines up.

CD-119

SEARCH

SEARCH

FORMAT

PARAMETERS

CD-120

Searches the source code for a specified string and displays source lines that
contain an occurrence of the string.

SEARCH [range] [string]

range
Specifies a program region to be searched. Use any of the following
formats:

mod-name

mod-name\line-num

mod-name\line-num:line-num

line-num

line-num:line-num

null (no entry)

string

Searches the specified module from line 0 to the
end of the module.

Searches the specified module from the specified
line number to the end of the module.

Searches the specified module from the line number
specified on the left of the colon to the line number
specified on the right.

Uses the current scope to find a module and
searches that module from the specified line number
to the end of the module. The current scope is that
established by a previous SET SCOPE command,
or the PC scope if no SET SCOPE command was
entered. If you specify a scope search list with the
SET SCOPE command, the debugger searches only
the module associated with the first named scope.

Uses the current scope to find a module and
searches that module from the line number specified
on the left of the colon to the line number specified
on the right. The current scope is that established
by a previous SET SCOPE command, or the PC
scope if no SET SCOPE command was entered. If
you specify a scope search list with the SET SCOPE
command, the debugger searches only the module
associated with the first named scope.

Searches the same module as that from which
a source line was most recently displayed (as a
result of a TYPE, EXAMINE/SOURCE, or SEARCH
command, for example), beginning at the first
line following the line most recently displayed and
continuing to the end of the module.

Specifies the source code characters for which to search. If you do not
specify a string, the string specified in the last SEARCH command, if any,
is used.

You must enclose the string in quotation marks (") or apostrophes (')
under the following conditions:

• The string has any leading or ending space or tab characters

QUALIFIERS

SEARCH

• The string contains an embedded semicolon

• The range parameter is null

If the string is enclosed in quotation marks, use two consecutive quotation
marks (1111

) to indicate an enclosed quotation mark. If the string is
enclosed in apostrophes, use two consecutive apostrophes (' ') to indicate
an enclosed apostrophe.

/ALL
Specifies that the debugger search for all occurrences of the string in the
specified range and display every line containing an occurrence of the
string.

/IDENTIFIER
Specifies that the debugger search for an occurrence of the string in
the specified range but display the string only if it is not bounded on
either side by a character that can be part of an identifier in the current
language.

/NEXT
Specifies that the debugger search for the next occurrence of the string in
the specified range and display only the line containing this occurrence.
This is the default.

/STRING
Specifies that the debugger search for and display the string as specified,
and not interpret the context surrounding an occurrence of the string, as it
does in the case of /IDENTIFIER. This is the default.

DESCRIPTION The SEARCH command displays the lines of source code that contain an
occurrence of a specified string.

When specifying a module name with the SEARCH command, note
that the module must be set. Use the SHOW MODULE command
to determine whether a particular module is set. Then use the SET
MODULE command, if necessary.

SEARCH command qualifiers determine whether the debugger: (1)
searches for all occurrences (/ALL) of the string or only the next occurrence
(/NEXT); and (2) displays any occurrence of the string (!STRING) or only
those occurrences in which the string is not bounded on either side by a
character that can be part of an identifier in the current language
(/IDENTIFIER).

If you plan to enter several SEARCH commands with the same qualifier,
you can first use the SET SEARCH command to establish a new default
qualifier (for example, SET SEARCH ALL makes the SEARCH command
behave like SEARCH/ALL). Then you do not have to use that qualifier
with the SEARCH command. You can override the current default
qualifiers for the duration of a single SEARCH command by specifying
other qualifiers.

Related commands: (SET, SHOW) SEARCH, (SET, SHOW) LANGUAGE,
(SET, SHOW) SCOPE, (SET, SHOW) MODULE.

CD-121

SEARCH

EXAMPLES

D DBG> SEARCH/STRING/ALL 40:50 D
module COBOLTEST

40: 02
41: 02
42: 02
47: 02
48: 02
49: 02
50: 02

DBG>

D2N COMP-2 VALUE -234560000000.
D COMP-2 VALUE 222222.33.
DN COMP-2 VALUE -222222.333333.
DRO COMP-2 VALUE 0.1.
DRS COMP-2 VALUE 0.000001.
DRlO COMP-2 VALUE 0.00000000001.
DR15 COMP-2 VALUE 0.0000000000000001.

This command searches for all occurrences of the letter D in lines 40 to 50
of the module COBOLTEST, the module that is in the current scope.

~ DBG> SEARCH/IDENTIFIER/ALL 40:50 D
module COBOLTEST

41: 02 D COMP-2 VALUE 222222.33.
DBG>

This command searches for all occurrences of the letter D in lines 40 to 50
of the module COBOLTEST. The debugger displays the only line where the
letter D (the search string) is not bounded on either side by a character
that can be part of an identifier in the current language.

i] DBG> SEARCH/NEXT 40: 50 D
module COBOLTEST

40: 02 D2N COMP-2 VALUE -234560000000.
DBG>

DBG> SEARCH/NEXT
module COBOLTEST

This command searches for the next occurrence of the letter D in lines 40
to 50 of the module COBOLTEST.

41: 02 D COMP-2 VALUE 222222.33.
DBG>

DBG> SEARCH 4 3 D
module COBOLTEST

This command searches for the next occurrence of the letter D. The
debugger assumes D to be the search string because D was the last one
entered and no other search string was specified.

47: 02 DRO COMP-2 VALUE 0.1.
DBG>

CD-122

This command searches for the next occurrence (by default) of the letter D,
starting with line 43.

SELECT

FORMAT

SELECT

Selects a screen display as the current error, input, instruction, output,
program, prompt, scrolling, or source display.

SELECT [disp-name]

PARAMETERS disp-name

QUALIFIERS

Specifies the display to be selected. You can specify any one of the
following, with the restrictions noted in the qualifier descriptions:

• A predefined display (SRC, OUT, INST, REG, and PROMPT)

• A display previously created with the DISPLAY command

• A display built-in symbol: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you omit this parameter and do not specify a qualifier, you "unselect"
the current scrolling display (no display then has the scrolling attribute).
If you omit this parameter but specify a qualifier (/INPUT, /SOURCE,
and so on), you unselect the current display with that attribute (see the
qualifier descriptions).

/ERROR
If you specify a display, selects it as the current error display. This
causes all debugger diagnostic messages to go to that display. The display
specified must be either an output display or the PROMPT display.

If you do not specify a display, the PROMPT display is selected as the
current error display.

By default, the PROMPT display has the error attribute.

/INPUT
If you specify a display, selects it as the current input display. This
causes that display to echo debugger input (which always appears in
the PROMPT display). The display specified must be an output display.

If you do not specify a display, the current input display is unselected and
debugger input is not echoed to any display (debugger input appears only
in the PROMPT display).

By default, no display has the input attribute.

/INSTRUCTION
If you specify a display, selects it as the current instruction display. This
causes the output of all EXAMINE/INSTRUCTION commands to go to
that display. The display specified must be an instruction display.

If you do not specify a display, the current instruction display is unselected
and no display has the instruction attribute.

CD-123

SELECT

CD-124

By default, for all languages except MACRO, no display has the instruction
attribute. If the language is set to MACRO, the INST display has the
instruction attribute by default.

/OUTPUT
If you specify a display, selects it as the current output display. This
causes debugger output that is not already directed to another display to
go to that display. The display specified must be either an output display
or the PROMPT display.

If you do not specify a display, the PROMPT display is selected as the
current output display.

By default, the OUT display has the output attribute.

/PROGRAM
If you specify a display, selects it as the current program display. This
causes the debugger to try to force program input and output to that
display. Currently, only the PROMPT display can be specified.

If you do not specify a display, the current program display is unselected
and program input and output are no longer forced to the specified display.

By default, the PROMPT display has the program attribute, except on
workstations, where the program attribute is unselected.

/PROMPT
Selects the specified display as the current prompt display. This is where
the debugger prompts for input. Currently, only the PROMPT display
can be specified. Moreover, you cannot unselect the PROMPT display (the
PROMPT display always has the prompt attribute).

/SCROLL
If you specify a display, selects it as the current scrolling display. This
is the default display for the SCROLL, MOVE, and EXPAND commands.
Although any display can have the scroll attribute, note that you can use
only the MOVE and EXPAND commands (not the SCROLL command)
with the PROMPT display.

If you do not specify a display, the current scrolling display is unselected
and no display has the scroll attribute.

By default, for all languages except MACRO, the SRC display has the
scroll attribute. If the language is set to MACRO, the INST display has
the scroll attribute by default.

Note: If no qualifier is specified, /SCROLL is assumed by default.

/SOURCE
If you specify a display, selects it as the current source display. This causes
the output of all TYPE and EXAMINE/SOURCE commands to go to that
display. The display specified must be a source display.

If you do not specify a display, the current source display is unselected and
no display has the source attribute.

By default, for all languages except MACRO, the SRC display has the
source attribute. If the language is set to MACRO, no display has the
source attribute by default.

SELECT

/SUFFIX[:process-identifier-type]
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS). Use this qualifier only directly after a display
name.

Appends a process-identifying suffix to a display name. The suffix denotes
the visible process at the time the command was issued. This qualifier is
used primarily in command procedures when specifying display definitions
or key definitions that are bound to display definitions.

Use any of the following process-identifier-type keywords:

PROCESS_NAME The display-name suffix is the VMS process name.

PROCESS_NUMBER The display-name suffix is the process number (as shown in
a SHOW PROCESS display).

PROCESS_PID The display-name suffix is the VMS process identification
number (PID).

If you specify /SUFFIX without a process-identifier-type keyword, the
process identifier type used for the display-name suffix is, by default, the
same as that used for the prompt suffix (see SET PROMPT/SUFFIX).

DESCRIPTION Attributes are used to select the current scrolling display and to direct
various types of debugger output to particular displays. This gives you
the option of mixing or isolating different types of information, such
as debugger input, output, diagnostic messages, and so on in scrollable
displays.

EXAMPLES

You use the SELECT command with one or more qualifiers (/ERROR,
/SOURCE, and so on) to assign one or more corresponding attributes to a
display. If you do not specify a qualifier, the /SCROLL qualifier is assumed
by default.

If you use the SELECT command without specifying a display name, in
general the attribute assignment indicated by the command qualifier is
canceled (unselected). To reassign display attributes you must use another
SELECT command. See the individual qualifier descriptions for details.

See Appendix B for keypad-key definitions associated with the SELECT
command.

Related commands: SHOW SELECT, SCROLL, MOVE, EXPAND,
DISPLAY.

D DBG> SELECT/SOURCE/SCROLL SRC2

This command selects display SRC2 as the current source and scrolling
display.

CD-125

SELECT

~ DBG> SELECT/ INPUT /ERROR OUT

This command selects display OUT as the current input and error display.
This causes debugger input, debugger output (assuming OUT is the
current output display), and debugger diagnostic messages to be logged
in the OUT display in the correct sequence.

I] DBG> SELECT/ SOURCE

CD-126

This command unselects (deletes the source attribute from) the currently
selected source display. The output of a TYPE or EXAMINE/SOURCE
command then goes to the currently selected output display.

SET ABORT_KEV

SET ABORT KEY

FORMAT

Assigns the debugger's abort function to another CTRL-key sequence. By
default, the CTRUC sequence performs the abort function.

SET ABORT_KEV = CTRL_character

PARAMETERS character
Specifies the key you press while holding down the CTRL key. You can
specify any alphabetic character.

DESCRIPTION By default, the CTRL/C sequence, when entered within a debugging
session, aborts the execution of a debugger command and interrupts
program execution. The SET ABORT_KEY command enables you to
assign the abort function to another CTRL-key sequence. This might be
necessary if your program has a CTRL/C AST service routine enabled.

EXAMPLE
DBG> SHOW ABORT _KEY

Note that many CTRL-key sequences have VMS predefined functions,
and the SET ABORT_KEY command enables you to override such
definitions (see the VMS DCL Concepts Manual). Some of the CTRL
key characters not used by the VMS operating system are G, K, N, and
P.

The SHOW ABORT_KEY command identifies the CTRL-key sequence
currently in effect for the abort function.

Do not use CTRL/Y from within a debugging session. Always use either
CTRL/C or an equivalent CTRL-key sequence established with the SET
ABORT_KEY command.

Related commands: CTRL/C, SHOW ABORT_KEY, CTRL/Y.

Abort Command Key is CTRL C
DBG> GO

ICTRL/CI

DBG> EXAMINE/BYTE 1000:101000 !should have typed 1000:1010
1000: 0
1004: 0
1008: 0
1012: 0
1016: 0

CD-127

SET ABORT_KEY

ICTRL/CI

%DEBUG-W-ABORTED, command aborted by user request
DBG> SET ABORT KEY CTRL P
DBG> GO

ICTRL/PI
DBG> EXAMINE/BYTE 1000:101000 !should have typed 1000:1010
1000: 0
1004: 0
1008: 0
1012: 0
1016: 0
ICTRL/PI

%DEBUG-W-ABORTED, command aborted by user request
DBG>

CD-128

This sequence of commands shows the following entities:

• Use of the (default) CTRIJC sequence to perform the abort function.

• Use of the SET ABORT_KEY command to reassign the abort function
to the CTRL/P sequence.

SET ATSIGN

FORMAT

SET ATSIGN

Establishes the default file specification that the debugger uses when
searching for command procedures.

SET ATSIGN file-spec

PARAMETERS file-spec
Specifies any part of a VMS file specification (for example, a directory
name or a file type) that the debugger is to use by default when searching
for a command procedure. If you do not supply a full file specification,
the debugger assumes SYS$DISK:[]DEBUG.COM as the default file
specification for any missing field.

You can specify a logical name that translates to a search list. In this case,
the debugger processes the file specifications in the order they appear in
the search list until the command procedure is found.

DESCRIPTION When you invoke a command procedure during a debugging session,
the debugger, by default, assumes that its file specification is
SYS$DISK:[]DEBUG.COM. The SET ATSIGN command enables you
to override this default.

Related commands: @file-spec, SHOW ATSIGN.

EXAMPLE
DBG> SET ATSIGN USER: [JONES.DEBUG] .DBG
DBG> @TEST

In this example, when the user invokes @TEST, the debugger looks for the
file TEST.DEG in USER:[JONES.DEBUG].

CD-129

SET BREAK

SET BREAK

FORMAT

Establishes a breakpoint at the location denoted by an address expression, at
instructions of a particular class, or at the occurrence of specified events.

SET BREAK [address-expression[, ...]]
[WHEN (conditional-expression)]
[DO(command[; ...])]

PARAMETERS address-expression
Specifies an address expression (a program location) at which a breakpoint
is to be set. With high-level languages, this is typically a line number,

CD-130

a routine name, or a label, and can include a path name to specify
the entity uniquely. More generally, an address expression can also
be a memory address or a register and can be composed of numbers
(offsets) and symbols, as well as one or more operators, operands, or
delimiters. Appendix D identifies the operators that can be used in
address expressions.

Do not specify the asterisk wildcard character (*). Do not specify
an address expression with /ACTIVATING, /BRANCH, /CALL,
/EXCEPTION, /INSTRUCTION[=(opcode-list)], /INTO, /[NO]JSB, /LINE,
/OVER, /[NO]SHARE, /[NO]SYSTEM, /TERMINATING, or /VECTOR_
INSTRUCTION. The !MODIFY and /RETURN qualifiers are used with
specific kinds of address expressions.

If you specify a memory address or an address expression whose value
is not a symbolic location, check (with the EXAMINE command) that
an instruction actually begins at the byte of memory so indicated. If
an instruction does not begin at this byte, a run-time error can occur
when an instruction including that byte is executed. When you set a
breakpoint by specifying an address expression whose value is not a
symbolic location, the debugger does not verify that the location specified
marks the beginning of an instruction. CALLS and CALLG routines start
with an entry mask.

command
Specifies a debugger command to be executed as part of the DO clause
when break action is taken.

conditional-expression
Specifies a conditional expression in the currently set language that is to
be evaluated when execution reaches the breakpoint. If the expression
is true, break action occurs, and the debugger reports that a break has
occurred. If the expression is false, break action does not occur. In this
case, a report is not issued, the commands specified by the DO clause are
not executed, and program execution is continued.

QUALIFIERS

SET BREAK

/ACTIVATING
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS).

Causes the debugger to break when a new process comes under debugger
control. The debugger prompt is displayed when the first process comes
under debugger control. This enables you to enter debugger commands
before the program has started execution. Do not specify an address
expression with /ACTIVATING. See also /TERMINATING.

/AFTER:n
Specifies that break action not be taken until the nth time the designated
breakpoint is encountered (n is a decimal integer). Thereafter, the
breakpoint occurs every time it is encountered provided that conditions
in the WHEN clause (if specified) are true. The command SET BREAK
/AFTER: 1 has the same effect as the SET BREAK command.

/BRANCH
Causes the debugger to break on every branch instruction encountered
during program execution. Do not specify an address expression with
/BRANCH. See also /INTO and /OVER.

/CALL
Causes the debugger to break on every call instruction encountered during
program execution, including the RET instruction. Do not specify an
address expression with /CALL. See also /INTO and /OVER.

/EVENT =event-name
Note: This qualifier applies to Ada and SCAN programs. See the
VAX Ada and VAX SCAN documentation for complete information.

Causes the debugger to break on the specified event (if that event is
defined and detected by the run-time system). If you specify an address
expression with /EVENT, causes the debugger to break whenever the
specified event occurs for that address expression. Event names depend on
the run-time facility and are identified in Appendix E for Ada and SCAN.
You can display the event names associated with the current run-time
facility by entering the SHOW EVENT_FACILITY command. Note that
you cannot specify an address expression with certain event names.

/EXCEPTION
Causes the debugger to break whenever an exception is signaled. The
break action occurs before any application-declared exception handlers are
invoked. Do not specify an address expression with /EXCEPTION.

As a result of a SET BREAK/EXCEPTION command, whenever your
program generates an exception, the debugger suspends program
execution, reports the exception, and displays its prompt. When you
resume execution from an exception breakpoint, the behavior is as follows:

• If you enter a GO command without an address-expression parameter,
the exception is resignaled, thus allowing any application-declared
exception handler to execute.

• If you enter a GO command with an address-expression parameter,
program execution continues at the specified location, thus inhibiting
the execution of any application-declared exception handler.

CD-131

SET BREAK

CD-132

• If you enter a STEP command, the debugger steps into any
application-declared exception handler. If there is no application
declared handler for that exception, the debugger resignals the
exception.

• If you enter a CALL command, the routine specified is executed.
If a routine is called with the CALL command directly after an
exception breakpoint has been triggered, no breakpoints, tracepoints,
or watchpoints set within that routine are triggered. However, they
are triggered if the CALL command is given at another time.

/INSTRUCTION[=(opcode[, ...])]
If you do not specify an opcode, causes the debugger to break on every
instruction encountered during program execution. If you specify one or
more opcodes, causes the debugger to break on every instruction whose
opcode is in the list.

Do not specify an address expression with this qualifier. If you specify a
vector instruction, do not include an instruction qualifier (/U, N, IM, 10, or
/1) with the instruction mnemonic. See also /INTO and /OVER.

/INTO
Applies only to breakpoints set with /BRANCH, /CALL,
/INSTRUCTION[=(opcode-list)], /LINE, or NECTOR_INSTRUCTION;
that is, when an address expression is not explicitly specified. When used
with those qualifiers, causes the debugger to break at the specified points
within called routines (as well as within the routine in which execution is
currently suspended). The /INTO qualifier is the default behavior and is
the opposite of /OVER.

When using /INTO, you can further qualify the break action with the
/[NOJJSB, /[NO]SHARE, and /[NOJSYSTEM qualifiers.

/JSB
IN OJ SB
Qualifies /INTO. Use /[NO]JSB only with /INTO and one of the following
qualifiers: /BRANCH, /CALL, /INSTRUCTION[=(opcode-list)], /LINE,
or NECTOR_INSTRUCTION. The /JSB qualifier is the default for all
languages except DIBOL. The /JSB qualifier permits the debugger to
break within routines that are called by the JSB or CALL instruction. The
/NOJSB qualifier (the DIBOL default) specifies that breakpoints not be set
within routines called by JSB instructions. In DIBOL, application-declared
routines are called by the CALL instruction and DIBOL run-time library
routines are called by the JSB instruction. Do not specify an address
expression with /[NO]JSB.

/LINE
Causes the debugger to break on the beginning of each source line
encountered during program execution. Do not specify an address
expression with /LINE. See also /INTO and /OVER.

/MODIFY
Causes the debugger to break on every instruction that writes to and
modifies the value of the location indicated by the address expression. The
address expression is typically a variable name.

SET BREAK

The SET BREAK/MODIFY command acts exactly like a SET WATCH
command and operates under the same restrictions.

If you specify an absolute address for the address expression, the debugger
might not be able to associate the address with a particular data object.
In this case, the debugger uses a default length of 4 bytes. You can change
this length, however, by setting the type to either WORD (SET TYPE
WORD, which changes the default length to 2 bytes) or BYTE (SET
TYPE BYTE, which changes the default length to 1 byte). SET TYPE
LONGWORD restores the default length of 4 bytes.

/OVER
Applies only to breakpoints set with /BRANCH, /CALL,
/INSTRUCTION[=(opcode-list)], /LINE, or NECTOR_INSTRUCTION;
that is, when an address expression is not explicitly specified. When used
with those qualifiers, causes the debugger to break at the specified points
only within the routine in which execution is currently suspended (not
within called routines). The /OVER qualifier is the opposite of /INTO (the
default behavior).

!RETURN
Causes the debugger to break on the RET (return) instruction of the
routine associated with the specified address expression (which can be a
routine name, line number, and so on). This qualifier can only be applied
to routines called with a CALLS or CALLG instruction; it cannot be used
with JSB routines. Breaking on the RET instruction enables you to inspect
the local environment (for example, obtain the values of local variables)
before the RET instruction deletes the routine's call frame from the call
stack.

For this qualifier, the address-expression parameter is an instruction
address within a CALLS or CALLG routine. It can simply be a routine
name, in which case it specifies the routine start address. However, you
can also specify another location in a routine, so you can see only those
returns that are taken after a certain code path is followed.

A SET BREAK/RETURN command cancels a previous SET BREAK
command if the same address expression is specified.

/SHARE (default)
/NOSHARE
Qualifies /INTO. Use /[NO]SHARE only with /INTO and one of the
following qualifiers: /BRANCH, /CALL, /INSTRUCTION[=(opcode-list)],
/LINE, or NECTOR_INSTRUCTION. The /SHARE qualifier permits
the debugger to break within shareable image routines as well as other
routines. The /NOSHARE qualifier specifies that breakpoints not be set
within shareable images. Do not specify an address expression with
/[NO]SHARE.

/SILENT
/NOS/LENT (default)
Controls whether the "break . . . " message and the source line for
the current location are displayed at the breakpoint. The /NOSILENT
qualifier specifies that the message is displayed. The /SILENT qualifier
specifies that the message and the source line are not displayed. The
/SILENT qualifier overrides /SOURCE. See also SET STEP [NOJSOURCE.

CD-133

SET BREAK

/SOURCE (default)
/NOSOURCE
Controls whether the source line for the current location is displayed
at the breakpoint. The /SOURCE qualifier specifies that the source line
is displayed. The /NOSOURCE qualifier specifies that no source line is
displayed. The /SILENT qualifier overrides /SOURCE. See also SET STEP
[NO]SOURCE.

/SYSTEM (default)
/NOSYSTEM
Qualifies /INTO. Use /[NO]SYSTEM only with /INTO and one of the
following qualifiers: /BRANCH, /CALL, /INSTRUCTION[=(opcode-list)],
/LINE, or NECTOR_INSTRUCTION. The /SYSTEM qualifier permits
the debugger to break within system routines (Pl space) as well as other
routines. The /NOSYSTEM qualifier specifies that breakpoints not be
set within system routines. Do not specify an address expression with
/[NO]SYSTEM.

/TEMPORARY
Causes the breakpoint to disappear after it is triggered (the breakpoint
does not remain permanently set).

/TERMINATING
Causes the debugger to break when a process performs an image exit.
Note that the debugger always gains control and displays its prompt when
the last image of a one-process or multiprocess program exits. A process is
terminated when the image has executed the $EXIT system service and all
of its exit handlers have executed. Do not specify an address expression
with trERMINATING. See also /ACTIVATING.

/VECTOR_INSTRUCTION
Note: This qualifier applies to vectorized programs.

Causes the debugger to break on every vector instruction encountered
during program execution. Do not specify an address expression with
NECTOR_INSTRUCTION. See also /INTO and /OVER.

DESCRIPTION When a breakpoint is triggered, the debugger takes the following action:

1 Suspends program execution at the breakpoint location.

CD-134

2 If I AFTER was speci~ed when the breakpoint was set, checks the
AFTER count. If the specified number of counts has not been reached,
execution is resumed and the debugger does not perform the remaining
steps.

3 Evaluates the expression in a WHEN clause, if one was specified
when the breakpoint was set. If the value of the expression is false,
execution is resumed and the debugger does not perform the remaining
steps.

4 Reports that execution has reached the breakpoint location by issuing
a "break . . . " message, unless /SILENT was specified.

SET BREAK

5 Displays the line of source code at which execution is suspended,
unless /NOSOURCE or /SILENT was specified when the breakpoint
was set, or SET STEP NOSOURCE was entered previously.

6 Executes the commands in a DO clause, if one was specified when
the breakpoint was set. If the DO clause contains a GO command,
execution continues and the debugger does not perform the next step.

7 Issues the prompt.

You set a breakpoint at a particular location in your program by specifying
an address expression with the SET BREAK command. You set a
breakpoint on consecutive source lines, classes of instructions, or events
by specifying a qualifier with the SET BREAK command. Generally, you
must specify either an address expression or a qualifier, but not both.
The only exception is with the /EVENT qualifier, which requires that you
specify an event name keyword and permits you also to specify an address
expression for certain event names.

The /LINE qualifier sets a breakpoint on each line of source code.

The following qualifiers set breakpoints on classes of instructions. Note
that use of these qualifiers and of the /LINE qualifier causes the debugger
to trace every instruction of your program as it executes and thus
significantly slows down execution:

/BRANCH
/CALL
/INSTRUCTION[=(opcode[, ...])]
/RETURN
NECTOR_INSTRUCTION

The following qualifiers set breakpoints on classes of events:

/ACTIVATING
/EVENT=event-name
/EXCEPTION
!rERMINATING

The following qualifiers affect what happens at a routine call:

/INTO
/[NO]JSB
/OVER
/[NOJSHARE
/[NOJSYSTEM

The following qualifiers affect what output is displayed when a breakpoint
is reached:

/[NO]SILENT
/[NOJSOURCE

The following qualifiers affect the timing and duration of breakpoints:

/AFTER:n
trEMPORARY

CD-135

SET BREAK

EXAMPLES

The /MODIFY qualifier is used to monitor changes at program locations
(typically changes in the values of variables).

If you set a breakpoint at a location currently used as a tracepoint, the
tracepoint is canceled in favor of the breakpoint, and vice versa.

Breakpoints can be user defined or predefined. User defined breakpoints
are those that you set explicitly with the SET BREAK command.
Predefined breakpoints, which depend on the type of program you
are debugging (for example, Ada or multiprocess), are established
automatically when you invoke the debugger. Use the SHOW BREAK
command to identify all breakpoints that are currently set. Any predefined
breakpoints are identified as such.

User defined and predefined breakpoints are set and canceled
independently. For example, a location or event can have both a
user defined and a predefined breakpoint. Canceling the user defined
breakpoint does not affect the predefined breakpoint, and conversely.

Related commands: (SHOW, CANCEL) BREAK, CANCEL ALL, SET
TRACE, SET WATCH, GO, STEP, (SET, SHOW) EVENT_FACILITY, SET
STEP [NO]SOURCE.

D DBG> SET BREAK SWAP\%LINE 12

This command causes the debugger to break on line 12 of module SWAP.

~ DBG> SET BREAK/AFTER:3 SUB2

This command causes the debugger to break on the third and subsequent
times that SUB2 (a routine) is executed.

I DBG> SET BREAK/NOSOURCE LOOPl DO (EXAMINE D; STEP; EXAMINE Y; GO)

This command causes the debugger to break at location LOOPl. At
the breakpoint, the following commands are issued, in the order given:
EXAMINE D, STEP, EXAMINE Y, and GO. The /NOSOURCE qualifier
suppresses the display of source code at the breakpoint.

EJ DBG> SET BREAK ROUT3 WHEN (X > 4) DO (EXAMINE Y)

This command causes the debugger to break on routine ROUT3 when X is
greater than 4. At the breakpoint, the command EXAMINE Y is issued.

~ DBG> SET BREAK/TEMPORARY 14 4 0
DBG> SHOW BREAK
breakpoint at 1440 [temporary]
DBG>

This command sets a temporary breakpoint at memory address 1440.
After that breakpoint is triggered, it disappears.

[i'J DBG> SET BREAK/LINE

CD-136

This command causes the debugger to break on the beginning of every
source line encountered during program execution.

SET BREAK

I DBG> SET BREAK/LINE WHEN (X .NE. 0)
DBG> SET BREAK/INSTRUCTION WHEN (X .NE. 0)

These two commands cause the debugger to break when Xis not equal
to 0. The first command tests for the condition at the beginning of every
source line encountered during execution. The second command tests for
the condition at each instruction.

§ DBG> SET BREAK/INSTRUCTION=ADDL3

This command causes the debugger to break whenever the instruction
ADDL3 is about to be executed.

m DBG> SET BREAK/LINE/INTO/NOSHARE/NOSYSTEM

This command causes the debugger to break on the beginning of every
source line, including lines in called routines (/INTO) but not in shareable
image routines (/NOSHARE) or system routines (/NOSYSTEM).

Ill DBG> SET BREAK/RETURN ROUT4

This command causes the debugger to break whenever the RET instruction
of routine ROUT4 is about to be executed.

II DBG> SET BREAK/RETURN %LINE 14

This command causes the debugger to break whenever the RET instruction
of the routine that includes line 14 is about to be executed. This form of
the command is useful if execution is currently suspended within a routine
and you want to set a breakpoint on that routine's RET instruction.

II DBG> SET BREAK/EXCEPTION DO (SET MODULE/CALLS; SHOW CALLS)

This command causes the debugger to break whenever an exception is
signaled. At the breakpoint, the commands SET MODULE/CALLS and
SHOW CALLS are issued.

llJ DBG> SET BREAK/EVENT=RUN RESERVE, %TASK 3

This command sets two breakpoints, which are associated with the Ada
tasks RESERVE and task 3, respectively. Each breakpoint is triggered
whenever its associated task makes a transition to the RUN state.

II] DBG 1> SET BREAK/ACTIVATING

This command causes the debugger to break whenever a process of a
multiprocess program is brought under debugger control.

CD-137

SET DEFINE

SET DEFINE

FORMAT

Establishes a default qualifier (/ADDRESS, /COMMAND, /PROCESS_GROUP,
or /VALUE) for the DEFINE command.

SET DEFINE define-default

PARAMETERS define-default
Specifies the default to be established for the DEFINE command. Valid
keywords (which correspond to DEFINE command qualifiers) are as
follows:

ADDRESS

COMMAND

PROCESS_ GROUP

VALUE

Subsequent DEFINE commands are treated as DEFINE
/ADDRESS. This is the default.

Subsequent DEFINE commands are treated as DEFINE
/COMMAND.

Subsequent DEFINE commands are treated as DEFINE
/PROCESS_GROUP.

Subsequent DEFINE commands are treated as DEFINE
/VALUE.

DESCRIPTION The SET DEFINE command establishes a default qualifier for subsequent
DEFINE commands. The parameters that you specify in the SET DEFINE
command have the same names as the DEFINE command qualifiers.
DEFINE command qualifiers determine whether the DEFINE command
binds a symbol to an address, a command string, a list of processes, or a
value.

EXAMPLE

You can override the current DEFINE default for the duration of a
single DEFINE command by specifying another qualifier. Use the SHOW
DEFINE command to identify the current DEFINE defaults.

Related commands: SHOW DEFINE, DEFINE, DEFINE/PROCESS_
GROUP, DELETE, SHOW SYMBOL/DEFINED.

DBG> SET DEFINE VALUE

CD-138

The SET DEFINE VALUE command specifies that subsequent DEFINE
commands are treated as DEFINENALUE.

SET EDITOR

SET EDITOR

Establishes the editor that is invoked by the EDIT command.

FORMAT SET EDITOR [command-line]

PARAMETERS command-line

QUALIFIERS

Specifies a command line to invoke a particular editor on your system
when you use the EDIT command.

You must specify a command line unless you use the /CALLABLE_EDT,
/CALLABLE_LSEDIT, or /CALLABLE_TPU qualifiers. If you do not use
one of these qualifiers, the editor specified in the SET EDITOR command
line is spawned to a subprocess when you enter the EDIT command.

You can specify a command line with the /CALLABLE_LSEDIT and
/CALLABLE_TPU qualifiers, but not with the /CALLABLE_EDT qualifier.

/CALLABLE EDT
Specifies that thecallable version of the EDT editor is invoked when
you use the EDIT command. Do not specify a command line with
/CALLABLE_EDT (a command line of "EDT" is used).

!CALLABLE LSEDIT
Specifies that th;-callable version of the VAX Language-Sensitive Editor
(LSEDIT) is invoked when you use the EDIT command. If you also specify
a command line, it is passed to callable LSEDIT. If you do not specify a
command line, the default command line is "LSEDIT11

•

!CALLABLE TPU
Specifies that th;-callable version of the VAX Text Processing Utility
(VAXTPU) is invoked when you use the EDIT command. If you also
specify a command line, it is passed to callable VAXTPU. If you do not
specify a command line, the default command line is 11TPU".

!START_POSITION
!NOSTART_POSITION (default)
Note: Currently, only VAXTPU and the VAX Language-Sensitive
Editor (specified either as TPU or /CALLABLE_TPU, and LSEDIT
or /CALLABLE_LSEDIT, respectively) supports /START_POSITION.

Controls whether the /START_POSITION qualifier is appended to the
specified or default command line when the EDIT command is used. This
qualifier affects the initial position of the editor's cursor. By default,
(/NOSTART_POSITION), the editor's cursor is placed at the beginning of
source line 1, regardless of which line is centered in the debugger's source
display or whether a line number is specified in the EDIT command. If
/START_POSITION is specified, the cursor is placed either on the line
whose number is specified in the EDIT command, or (if no line number is
specified) on the line that is centered in the current source display.

CD-139

SET EDITOR

DESCRIPTION The SET EDITOR command can be used to specify any editor that is
installed on your system. In general, the command line specified as
parameter to the SET EDITOR command is spawned and executed in
a subprocess. However, if you use EDT, LSEDIT, or VAXTPU, you have
the option of invoking these editors in a more efficient way. You can
specify the /CALLABLE_EDT, /CALLABLE_LSEDIT, or /CALLABLE_
TPU qualifiers, which cause the callable versions of EDT, LSEDIT, and
VAXTPU, respectively, to be invoked by the EDIT command. In the case
of LSEDIT and VAXTPU, you can also specify a command line that is
executed by the callable editor.

Related commands: SHOW EDITOR, EDIT, (SET, SHOW, CANCEL)
SOURCE.

EXAMPLES

D DBG> SET EDITOR '@MAIL$EDIT 1111
'

This command causes the EDIT command to spawn the command line
'@MAIL$EDIT ""',which invokes the same editor as you use in MAIL.

DBG> SET EDITOR/CALLABLE_TPU

This command causes the EDIT command to invoke callable VAXTPU with
the default command line of TPU.

DBG> SET EDITOR/CALLABLE_TPU TPU/SECTION=MYSECINI.TPU$SECTION

This command causes the EDIT command to invoke callable VAXTPU with
the command line TPU/SECTION=MYSECINI.TPU$SECTION.

DBG> SET EDITOR/CALLABLE_LSEDIT/START_POSITION

This command causes the EDIT command to invoke callable LSEDIT
with the default command line of LSEDIT. Also the /START_POSITION
qualifier is appended to the command line, so that the editing session
starts on the source line that is centered in the debugger's current source
display.

CD-140

SET EVENT _FACILITY

SET EVENT FACILITY

FORMAT

Establishes the run-time library facility for eventpoints that are set with the
SET BREAK/EVENT and SET TRACE/EVENT commands.

Note: This command applies to Ada and SCAN programs. See the VAX
Ada and VAX SCAN documentation for complete information.

SET EVENT FACILITY facility-name

PARAMETERS facillly-name
Specifies a run-time library facility for eventpoints. Valid keywords are as
follows:

ADA Enables recognition of Ada-specific events when you use the (SET,
CANCEL) BREAK/EVENT and (SET, CANCEL) TRACE/EVENT commands.
Valid Ada event names are identified in Appendix E.

SCAN Enables recognition of SCAN-specific events when you use the (SET,
CANCEL) BREAK/EVENT and (SET, CANCEL) TRACE/EVENT commands.
Valid SCAN event names are identified in Appendix E.

DESCRIPTION The Ada event facility enables you to set breakpoints and tracepoints on
tasking events and exception events. The SCAN event facility enables you
to set breakpoints and tracepoints on pattern-matching events.

EXAMPLE

Use the SHOW EVENT _FACILITY command to identify the events
applicable to the currently set language.

Related commands: SHOW EVENT_FACILITY, (SET, CANCEL) BREAK
/EVENT, SHOW BREAK, (SET, CANCEL) TRACE/EVENT, SHOW
TRACE.

DBG> SET EVENT FACILITY ADA

This command establishes Ada as the current run-time library facility.

CD-141

SET IMAGE

SET IMAGE

FORMAT

Loads symbol information for one or more shareable images and establishes
the current image.

SET IMAGE [image-name[, ... 11

PARAMETERS image-name
Specifies a shareable image to be •iset". Do not use the asterisk wildcard
character (*). Do not specify an image name with /ALL.

QUALIFIERS /ALL
Specifies that all shareable images are set. Do not specify an image with
/ALL.

DESCRIPTION The SET IMAGE command builds data structures for one or more specified
images but does not set any modules within the images specified.

CD-142

The "current" image is the current debugging context: you have access
to symbols in the current image. If only one image is specified with the
SET IMAGE command, that image becomes the current image. If a list of
images is specified, the last one in the list becomes the current image. If
I ALL is specified, the current image is unchanged.

Before an image can be set with the SET IMAGE command, it must
have been linked with the /DEBUG or /TRACEBACK qualifier on the
LINK command. If an image was linked /NOTRACEBACK, no symbol
information is available for that image and you cannot specify it with the
SET IMAGE command.

Definitions created with the DEFINE/ADDRESS and DEFINENALUE
commands are available only when the image in whose context they were
created is the current i.mage. When you use the SET IMAGE command
to establish a new current image, these definitions are temporarily
unavailable. Definitions created with the DEFINE/COMMAND and
DEFINE/KEY commands are always available for all images, however.

Related commands: (SHOW, CANCEL) IMAGE, (SET, SHOW, CANCEL)
MODULE, SET MODE [NO]DYNAMIC.

SET IMAGE

EXAMPLE
DBG> SET IMAGE SHAREl
DBG> SET MODULE SUBR
DBG> SET BREAK SUBR

This sequence of commands shows how to set a breakpoint on. routine
SUBR in module SUBR of shareable image SHAREl. The SET IMAGE
command sets the debugging context to SHAREl. The SET MODULE
command loads the symbol records of module SUBR into the RST. The
SET BREAK command sets a breakpoint on routine SUBR.

CD-143

SET KEY

SET KEV

FORMAT

QUALIFIERS

Establishes the current key state.

SET KEY

!LOG (default)
/NO LOG
Controls whether a message is displayed indicating that the key state has
been set. The /LOG qualifier displays the message.

!STATE[=state-name]
/NOSTATE (default)
Specifies a key state to be established as the current state. You can
specify a predefined key state, such as GOLD, or a user-defined state. A
state name can be any appropriate alphanumeric string. The /NOSTATE
qualifier leaves the current state unchanged.

DESCRIPTION Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

EXAMPLE

By default, the current key state is the 11 DEFAULT11 state. When you
define function keys using the DEFINE/KEY command, you can use the
/IF _STATE qualifier of that command to assign a specific state name to
the key definition. If that state is not set when you press the key, the
definition is not processed. The SET KEY/STATE command enables you to
change the current state to the appropriate state.

You can also change the current state by pressing a key that causes a
state change (a key that was defined with the DEFINE/KEY/LOCK_
STATE/SET_STATE qualifier combination).

Related commands: DEFINE/KEY, DELETE/KEY, SHOW KEY.

DBG> SET KEY/ STATE=PROG3

CD-144

This command changes the key state to the PROG3 state. The user can
now use the key definitions that are associated with this state.

SET LANGUAGE

SET LANGUAGE

Establishes the current language.

FORMAT SET LANGUAGE language-name

PARAMETERS language-name
Specifies a language. Valid keywords are ADA, BASIC, BLISS, C,
COBOL, DIBOL, FORTRAN, MACRO, PASCAL, PLI, RPG, SCAN, and
UNKNOWN.

DESCRIPTION When you invoke the debugger, the debugger sets the current language
to that in which the module containing the main program is written.
This is usually the module containing the image transfer address. To
debug a module written in a different source language from that of the
main program, you can change the language with the SET LANGUAGE
command.

The current language setting determines how the debugger parses and
interprets the names, operators, and expressions you specify in debugger
commands, including things like the typing of variables, array and record
syntax, the default radix for the entry and display of integer data, case
sensitivity, and so on. The language setting also determines how the
debugger formats and displays data associated with your program.

The default radix for both data entry and display is decimal for all
languages except BLISS and MACRO. It is hexadecimal for BLISS and
MACRO. The default type for program locations that do not have a
compiler generated type is longword integer.

The SET LANGUAGE UNKNOWN command is used when debugging
a program that is written in an unsupported language. To maximize
the usability of the debugger with unsupported languages, the SET
LANGUAGE UNKNOWN command causes the debugger to accept a large
set of data formats and operators, including some that might be specific to
only a few supported languages.

The operators and constructs that are recognized for each SET
LANGUAGE command parameter are identified in Appendix E.

Related commands: SHOW LANGUAGE, SET TYPE, SET RADIX, SET
MODE, DEPOSIT, EXAMINE, EVALUATE.

CD-145

SET LANGUAGE

EXAMPLES
D DBG> SET LANG COBOL

This command establishes COBOL as the current language.

~ DBG> SET LANG PASCAL

This command establishes Pascal as the current language.

CD~146

SET LOG

FORMAT

SET LOG

Specifies a log file to which the debugger writes after a SET OUTPUT LOG
command has been entered.

SET LOG file-spec

PARAMETERS file-spec
Denotes the file specification of the log file. If you do not supply a full
file specification, the debugger assumes SYS$DISK:[]DEBUG.LOG as the
default file specification for any missing field.

If you specify a version number and that version of the file already
exists, the debugger writes to the file specified, appending the log of the
debugging session onto the end of that file.

DESCRIPTION Note that the SET LOG command only determines the name of a log file;
it does not cause the debugger to create or write to the specified file. The
SET OUTPUT LOG command accomplishes that.

EXAMPLES

If you have entered a SET OUTPUT LOG command but no SET LOG
command, the debugger writes to the file SYS$DISK:[]DEBUG.LOG by
default.

If the debugger is writing to a log file and you specify another log file with
the SET LOG command, the debugger closes the former file and begins
writing to the file specified in the SET LOG command.

Related commands: SHOW LOG, SET OUTPUT LOG, SET OUTPUT
SCREEN_LOG.

D DBG> SET LOG CALC
DBG> SET OUTPUT LOG

In this example, the SET LOG command specifies the debugger log file
to be SYS$DISK:[]CALC.LOG. The SET OUTPUT LOG command causes
user input and debugger output to be logged to that file.

~ DBG> SET LOG "[CODEPROJ] FEB29. TMP"
DBG> SET OUTPUT LOG

In this example, the SET LOG command specifies the debugger log file to
be [CODEPROJ]FEB29.TMP. The SET OUTPUT LOG command causes
user input and debugger output to be logged to that file.

CD-147

SET MARGINS

SET MARGINS

FORMAT

Specifies the leftmost and rightmost source-line character position at which to
begin and end display of a source line.

SET MARGINS rm
lm:rm
Im:
:rm

PARAMETERS Im
The source-line character position at which to begin display of the line of
source code (the left margin).

rm
The source-line character position at which to end display of the line of
source code (the right margin).

DESCRIPTION The SET MARGINS command affects only the display of source lines. It
does not affect the display of other debugger output, as from an EXAMINE
command.

CD-148

The SET MARGINS command is useful for controlling the display of
source code when, for example, the code is deeply indented or long lines
wrap at the right margin. In such cases, you can set the left margin to
eliminate indented space in the source display, and you can decrease the
right margin setting (from its default value of 255) to truncate lines and
prevent them from wrapping.

The SET MARGINS command is useful mostly in line (noscreen) mode.
In line mode, the SET MARGINS command affects the display of source
lines resulting from a TYPE, EXAMINE/SOURCE, SEARCH, or STEP
command, or when a breakpoint, tracepoint, or watchpoint is triggered.

In screen mode, the SET MARGINS command has no effect on the display
of source lines in a source display, such as the predefined display SRC.
Therefore it does not affect the output of a TYPE or EXAMINE/SOURCE
command, since that output is directed at a source display. The SET
MARGINS command affects only the display of any source code that
might appear in an output or DO display (for example after a STEP
command has been executed). However, note that such source-code display
is normally suppressed if you invoke screen mode with the keypad key
sequence PF1-PF3, because that sequence issues the command SET STEP
NOSOURCE in addition to SET MODE SCREEN, to eliminate redundant
source dis play.

EXAMPLES

SET MARGINS

By default, the debugger displays a source line beginning at character
position 1 of the source line. This is actually character position 9 on
your terminal screen. The first eight character positions on the screen
are reserved for the line number and cannot be manipulated by the SET
MARGINS command.

If you specify a single number, the debugger sets the left margin to 1 and
the right margin to the number specified.

If you specify two numbers, separated with a colon, the debugger sets the
left margin to the number on the left of the colon and the right margin to
the number on the right.

If you specify a single number followed by a colon, the debugger sets the
left margin to that number and leaves the right margin unchanged.

If you specify a colon followed by a single number, the debugger sets the
right margin to that number and leaves the left margin unchanged.

Related commands: SHOW MARGINS, SET STEP [NO]SOURCE.

D DBG> SHOW MARGINS
left margin: 1 , right margin: 255
DBG> TYPE 14
module FORARRAY

14:
DBG>

DIMENSION IARRAY(4:5,5), VECTOR(lO), I3D(3,3,4)

This example displays the default margin settings for a line of source code
(1and255).

~ DBG> SET MARGINS 3 9
DBG> SHOW MARGINS
left margin: 1 , right margin: 39
DBG> TYPE 14
module FORARRAY

14: DIMENSION IARRAY(4:5,5), VECTOR
DBG>

This example shows how the display of a line of source code changes when
you change the right margin setting from 255 to 39.

i] DBG> SET MARGINS 10: 45
DBG> SHOW MARGINS
left margin: 10 , right margin: 45
DBG> TYPE 14
module FORARRAY

14: IMENSION IARRAY(4:5,5), VECTOR(lO),
DBG>

This example shows the display of the same line of source code after both
margins are changed.

CD-149

SET MARGINS

II DBG> SET MARGINS : 100
DBG> SHOW MARGINS
left margin: 10 , right margin: 100
DBG>

This example shows how to change the right margin setting while
retaining the previous left margin setting.

[i DBG> SET MARGINS 5:
DBG> SHOW MARGINS
left margin: 5 , right margin: 100
DBG>

CD-150

This example shows how to change the left margin setting while retaining
the previous right margin setting.

SET MAX_SOURCE_FILES

SET MAX SOURCE FILES

FORMAT

PARAMETERS

DESCRIPTION

EXAMPLE

Specifies the maximum number of source files that the debugger can keep
open at any one time.

SET MAX_SOURCE_FILES n

n
Specifies the maximum number of source files that the debugger can keep
open at any one time (n is a decimal integer). The value of n cannot exceed
20. The default value is 5.

By default, the debugger can keep five source files open at any one time.

Opening a source file requires the use of an 1/0 channel, which is a limited
system resource. Both the program and the debugger use 1/0 channels. To
ensure that the debugger does not use all available 1/0 channels and thus
cause the program to fail (for lack of an available 1/0 channel), you can
enter the SET MAX_SOURCE_FILES command to specify the maximum
number of source files (and thus source file 1/0 channels) that the debugger
can use at any one time.

Note that the value ofMAX_SOURCE_FILES does not limit the number of
source files that the debugger can open; rather, it limits the number that
can be kept open at any one time. Thus, if the debugger reaches this limit,
it must close a file in order to open another one.

Note also that setting MAX_SOURCE_FILES to a very small number can
make the debugger's use of source files inefficient.

Related commands: SHOW MAX_SOURCE_FILES, (SET, SHOW,
CANCEL) SOURCE.

DBG> SHOW MAX SOURCE FILES
max source files: 5 - -
DBG> SET MAX SOURCE FILES 8

- -
DBG> SHOW MAX SOURCE FILES
max source files: 8 -- -
DBG>

In this example, the SET MAX_SOURCE_FILES 8 command enables the
debugger to keep a maximum of eight files open at any one time.

CD-151

SET MODE

SET MODE

FORMAT

PARAMETERS

CD-152

Enables or disables a debugger mode.

SET MODE mode[, ...]

mode
Specifies a debugger mode to be enabled or disabled. Valid keywords are
as follows:

DYNAMIC

NODYNAMIC

G_FLOAT

NOG_FLOAT

INTERRUPT

Enables dynamic mode. When dynamic mode is enabled,
the debugger sets modules and images automatically
during program execution so that you typically do
not have to enter the SET MODULE or SET IMAGE
command. Specifically, whenever the debugger interrupts
execution (whenever the debugger prompt is displayed),
the debugger automatically sets the module and image
that contain the routine in which execution is currently
suspended. If the module or image is already set,
dynamic mode has no effect on that module or image.
The debugger issues an informational message when
its sets a module or image automatically. SET MODE
DYNAMIC is the default.

Disables dynamic mode. Because additional memory
is allocated when a module or image is set, you might
want to disable dynamic mode if performance becomes
a problem (you can also free up memory by canceling
modules and images with the CANCEL MODULE and
CANCEL IMAGE commands). When dynamic mode is
disabled, you must set modules and images explicitly with
the SET MODULE and SET IMAGE commands.

Specifies that the debugger interpret double-precision
floating-point constants entered in expressions as
G_FLOAT (does not affect the interpretation of variables
declared in your program).

Specifies that the debugger interpret double-precision
floating-point constants entered in expressions as
D_FLOAT (does not affect the interpretation of variables
declared in your program). SET MODE NOG_FLOAT is
the default.

(Applies to a multiprocess debugging configuration
that is, when DBG$PROCESS has the value
MULTIPROCESS). Specifies that, when program
execution is suspended in any process, the debugger
interrupts execution in any other processes that were
executing images and prompts for input. SET MODE
INTERRUPT is the default.

NOINTERRUPT

KEYPAD

NOKEYPAD

LINE

NOLINE

OPERANDS[=keyword]

NOOPERANDS

SET MODE

(Applies to a multiprocess debugging configuration
that is, when DBG$PROCESS has the value
MULTIPROCESS). Specifies that, when program
execution is suspended in any process, the debugger
take the following action:

If execution was suspended because of an unhandled
exception, the debugger interrupts execution in any
other processes that were executing images and
prompts for input.
If execution was suspended because of a breakpoint
or watchpoint or the completion of a STEP command,
the debugger lets execution proceed in any other
processes that were executing images and does not
display the prompt unless execution is eventually
suspended in a// these processes. As long as
execution continues in any process, the debugger
does not prompt for input. In such cases, use CTRUC
to interrupt all processes and display the prompt.

Enables keypad mode. When keypad mode is enabled,
you can use the keys on the numeric keypad to
perform certain predefined functions. Several debugger
commands, especially useful in screen mode, are bound to
the keypad keys (see Appendix 8). You can also redefine
the key functions with the DEFINE/KEY command. SET
MODE KEYPAD is the default.

Disables keypad mode. When keypad mode is disabled,
the keys on the numeric keypad do not have predefined
functions, nor can you assign debugger functions to those
keys with the DEFINE/KEY command.

Specifies that the debugger display program locations in
terms of line numbers, if possible. SET MODE LINE is the
default.

Specifies that the debugger display program locations
as routine-name +byte-offset rather than in terms of line
numbers.

Specifies that the EXAMINE command, when used to
examine an instruction, display the address and contents
of the instruction's operands in addition to the instruction
and its operands. The level of information displayed
about any nonregister operands depends on whether
you use the keyword BRIEF or FULL. The default is
OPERANDS=BRIEF.

Specifies that the EXAMINE command, when used to
examine an instruction, display only the instruction and its
operands. SET MODE NOOPERANDS is the default.

CD-153

SET MODE

SCREEN

NOSCREEN

SCROLL

NOSCROLL

SEPARATE

NOSEPARATE

SYMBOLIC

NOSYMBOLIC

CD-154

Enables screen mode. When screen mode is enabled, you
can divide the terminal screen into rectangular regions,
so different data can be displayed in different regions.
Screen mode enables you to view more information more
conveniently than the default, line-oriented, noscreen
mode. You can use the predefined displays, or you can
define your own.

Disables screen mode. SET MODE NOSCREEN is the
default.

Enables scroll mode. When scroll mode is enabled, a
screen-mode output or DO display is updated by scrolling
the output line by line, as it is generated. SET MODE
SCROLL is the default.

Disables scroll mode. When scroll mode is disabled, a
screen-mode output or DO display is updated only once
per command, instead of line by line as it is generated.
Disabling scroll mode reduces the amount of screen
upc:fating that takes place and can be useful with slow
terminals.

(Applies only to workstations running VWS). Specifies
that a separate window be created for debugger input
and output. This feature is useful when debugging screen
oriented programs, because it moves all debugger displays
out of the window that contains the program's input and
output. The separate window is created with a height of
24 lines and a width of 80 columns wide, emulating a
VT-series terminal screen.

(Applies only to workstations running VWS.) Specifies that
no separate window be created for debugger input and
output. SET MODE NOSEPARATE is the default.

Enables symbolic mode. When symbolic mode is enabled,
the debugger displays the locations denoted by address
expressions symbolically (if possible) and displays
instruction operands symbolically (if possible). EXAMINE
/NOSYMBOLIC can be used to override SET MODE
SYMBOLIC for the duration of an EXAMINE command.
SET MODE SYMBOLIC is the default.

Disables symbolic mode. When symbolic mode is
disabled, the debugger does not attempt to symbolize
numeric addresses (it does not cause the debugger to
convert numbers to names). This is useful if you are
interested in identifying numeric addresses rather than
their symbolic names (if symbolic names exist for those
addresses). When symbolic mode is disabled, command
processing might speed up somewhat, because the
debugger does not need to convert numbers to names.
EXAMINE/SYMBOLIC can be used to override SET
MODE NOSYMBOLIC for the duration of an EXAMINE
command.

SET MODE

DESCRIPTION See the parameter descriptions for details about the SET MODE command.

EXAMPLE
DBG> SET MODE SCREEN

The default values of these modes are the same for all languages.

Related commands: (SHOW, CANCEL) MODE, (SET, SHOW, CANCEL)
MODULE, (SET, SHOW, CANCEL) IMAGE, (SET, SHOW) TYPE,
EXAMINE, DEPOSIT, EVALUATE, DEFINE/KEY, SYMBOLIZE,
DISPLAY, SET PROMPT, (SET, SHOW, CANCEL) RADIX.

This command puts the debugger in screen mode.

CD-155

SET MODULE

SET MODULE

FORMAT

Loads the symbol records of a module in the current image into the run-time
symbol table (RST) of that image.

SET MODULE [module-name[, ... 11

PARAMETERS module-name

QUALIFIERS

Specifies a module of the current image whose symbol records are loaded
into the RST. Do not use the asterisk wildcard character (*). Do not
specify a module name with I ALL.

/ALL
Specifies that the symbol records of all modules in the current image be
loaded into the RST. Do not specify a module name with I ALL.

/CALLS
Sets all the modules that currently have routines on the call stack. If a
module is already set, /CALLS has no effect on that module. Do not specify
a module name with /CALLS.

/RELATED (default)
/NORELATED
Note: This qualifier applies to Ada programs.

Controls whether the debugger loads into the RST the symbol records of
a module that is related to a specified module through a with-clause or
subunit relationship.

SET MODULE/RELATED loads symbol records for related modules as
well as for those specified. This makes names declared in related modules
visible so that you can reference them in debugger commands exactly
as they can be referenced within the Ada source code. SET MODULE
/NORELATED loads symbol records only for modules that are specified (no
symbol records are loaded for related modules).

DESCRIPTION Note: The current image is either the main image (by default)
or the image established as the current image by a previous SET
IMAGE command.

CD-156

Symbol records must be present in the run-time symbol table (RST) if the
debugger is to recognize and properly interpret the symbols declared in
your program. The process by which the symbol records of a module are
loaded into the RST is called setting a module.

EXAMPLES

SET MODULE

At debugger startup, the debugger sets the module containing the transfer
address (the main program). By default, dynamic mode is enabled (SET
MODE DYNAMIC). Therefore, the debugger sets modules (and images)
automatically as the program executes so that you can reference symbols
as you need them. Specifically, whenever execution is suspended, the
debugger sets the module and image containing the routine in which
execution is suspended. In the case of Ada programs, as a module is set
dynamically, its related modules are also set automatically, by default, to
make the appropriate symbols accessible (visible).

Dynamic mode makes accessible most of the symbols you might need
to reference. If you need to reference a symbol in a module that is not
already set, proceed as follows:

• If the module is in the current image, use the SET MODULE command
to set the module where the symbol is defined.

• If the module is in another image, use the SET IMAGE command
to make that image the current image, then use the SET MODULE
command to set the module where the symbol is defined. ·

If dynamic mode is disabled (SET MODE NODYNAMIC), only the module
containing the transfer address is set automatically. You must set any
other modules explicitly.

If you use the SET IMAGE command to establish a new current image, all
modules previously set remain set. However, only the symbols in the set
modules of the current image are accessible. Symbols in the set modules
of other images are tern porarily unaccessible.

When dynamic mode is enabled, memory is allocated automatically to
accommodate the increasing size of the RST. If dynamic mode is disabled,
the debugger automatically allocates more memory as needed when you
set a module or an image. Whether dynamic mode is enabled or disabled,
if performance becomes a problem as more modules are set, use the
CANCEL MODULE command to reduce the number of set modules.

If a parameter in a SET SCOPE command designates a program location
in a module that is not already set, the SET SCOPE command sets that
module.

Related commands: (SHOW, CANCEL) MODULE, SET MODE
[NO]DYNAMIC, (SET, SHOW, CANCEL) IMAGE.

D DBG> SET MODULE SUBl

This command sets module SUBl (loads the symbol records of module
SUBl into the RST).

CD-157

SET MODULE

[g DBG> SET IMAGE SHARE3
DBG> SET MODULE MATH
DBG> SET BREAK %LINE 31

In this example, the SET IMAGE command makes shareable image
SHARES the current image. The SET MODULE command sets module
MATH in image SHARES. The SET BREAK command sets a breakpoint
on line Sl of module MATH.

I] DBG> SHOW MODULE/SHARE
module name symbols language size

FOO
MAIN

SHARE$DEBUG
SHARE$LIBRTL
SHARE$MTHRTL
SHARE$SHARE1
SHARE$SHARE2

yes MACRO 432
no FORTRAN 280

no Image 0
no Image 0
no Image 0
no Image 0
no Image 0

total modules: 17. bytes allocated: 162280.
DBG> SET MODULE SHARE$SHARE2
DBG> SHOW SYMBOL * IN SHARE$SHARE2

CD-158

In this example, the SHOW MODULE/SHARE command identifies all
of the modules in the current image and all of the shareable images
(the names of the shareable images are prefixed with 11 SHARE$ 11

). The
command SET MODULE SHARE$SHARE2 sets the shareable image
module SHARE$SHARE2. The SHOW SYMBOL command identifies
any universal symbols defined in the shareable image SHARE2. See the
description of the /SHARE qualifier of the SHOW MODULE command for
more information.

SET OUTPUT

SET OUTPUT

Enables or disables a debugger output option.

FORMAT SET OUTPUT output-option[, ...]

PARAMETERS output-option
Specifies an output option to be enabled or disabled. Valid keywords are
as follows:

LOG Specifies that debugger input and output be recorded in a log
file. If you specify the log file by the SET LOG command, the
debugger writes to that file; otherwise, by default the debugger
writes to SYS$DISK[]:DEBUG.LOG.

NOLOG Specifies that debugger input and output not be recorded in a
log file. NOLOG is the default.

SCREEN_LOG Specifies that, while in screen mode, the screen contents be
recorded in a log file as the screen is updated. To log the
screen contents you must also specify SET OUTPUT LOG. See
the description of the LOG option regarding specifying the log
file.

NOSCREEN_LOG Specifies that the screen contents, while in screen mode, not be
recorded in a log file. NOSCREEN_LOG is the default.

TERMINAL Specifies that debugger output be displayed at the terminal.
TERMINAL is the default.

NOTERMINAL Specifies that debugger output, except for diagnostic messages,
not be displayed at the terminal.

VERIFY Specifies that the debugger echo, on the current output device,
each input command string that it is executing from a command
procedure or DO clause. The current output device is by default
SYS$0UTPUT, the terminal, but can be redefined with the
logical name DBG$0UTPUT.

NOVERIFY Specifies that the debugger not display each input command
string that it is executing from a command procedure or DO
clause. NOVERIFY is the default.

DESCRIPTION Debugger output options control the way in which debugger responses to
commands are displayed and recorded. See the parameter descriptions for
details about the SET OUTPUT command.

Related commands: SHOW OUTPUT, (SET, SHOW) LOG, SET MODE
SCREEN, @file-spec, (SET, SHOW) ATSIGN.

CD-159

SET OUTPUT

EXAMPLE
DBG> SET OUTPUT VERIFY,LOG,NOTERMINAL

CD-160

This command specifies that the debugger take the following action:

• Output each command string that it is executing from a command
procedure or DO clause (VERIFY).

• Record debugger output and user input in a log file (LOG).

• Not display output at the terminal, except for diagnostic messages
(NOTERMINAL).

SET PROCESS

SET PROCESS

FORMAT

Note: This command applies to a multiprocess debugging configuration
(when DBG$PROCESS has the value MULTIPROCESS).

Establishes the visible process, modifies characteristics of one or more
processes, or enables/disables dynamic process setting.

SET PROCESS [process-spec[, ...]]

PARAMETERS process-spec
Specifies a process. Use any of the following forms:

[%PROCESS_NAME] process-name

[%PROCESS_NAME] "process-name"

%PROCESS_PID process_id

%PROCESS_NUMBER process-number (or
%PROC process-number)

process-group-name

%NEXT _PROCESS

%PREVIOUS_PROCESS

% VISIBLE_PROCESS

The VMS process name, if that name
contains no space or lowercase
characters. The process name can
include the asterisk wildcard character
(*).

The VMS process name, if that
name contains space or lowercase
characters. You can also use
apostrophes (') instead of quotation
marks (").

The VMS process identification number
(PIO, a hexadecimal number).

The number assigned to a process
when it comes under debugger control.
Process numbers appear in a SHOW
PROCESS display.

A symbol defined with the DEFINE
/PROCESS_GROUP command to
represent a group of processes.

The process after the visible process in
the debugger's circular process list.

The process previous to the visible
process in the debugger's circular
process list.

The process whose call stack, register
set, and images are the current context
for looking up symbols, register values,
routine calls, breakpoints, and so on.

You can also use the asterisk wildcard character (*) to specify all
processes.

CD-161

SET PROCESS

QUALIFIERS

CD-162

/ALL
Applies the SET PROCESS command to all processes. Do not specify a
process with this qualifier. Do not specify /[NO]DYNAMIC, or NISIBLE
with /ALL.

/DYNAMIC (default)
/NODYNAMIC
Controls whether dynamic process setting is enabled or disabled. When
dynamic process setting is enabled (!DYNAMIC), whenever the debugger
suspends execution and displays its prompt, the process in which execution
is suspended becomes the visible process automatically. When dynamic
process setting is disabled (/NODYNAMIC), the visible process remains
unchanged until you specify another process with the SET PROCESS
NISIBLE command.

Do not specify a process with /[NO]DYNAMIC. Do not specify /ALL,
/[NOJHOLD, or NISIBLE with /[NOJDYNAMIC.

/HOLD
/NOHOLD
/HOLD puts a specified process on hold. This prevents images in that
process from executing when you enter a GO, STEP, or CALL command,
unless the process is the visible process. A hold condition in the visible
process is ignored.

The /NOHOLD qualifier releases a specified process from a hold condition.
This permits images in that process to execute when you enter a GO,
STEP, or CALL command, regardless of which process is the visible
process.

The behavior described also applies when you use the DO command to
broadcast a GO, STEP, or CALL command to specific processes.

If no process is specified, /HOLD puts the visible process on hold, and
/NOHOLD releases the visible process from the hold condition.

See the descriptions of the GO, STEP, CALL, EXIT, and QUIT commands
for the effects of these commands on processes that have or have not been
put on hold.

Do not specify /[NO]DYNAMIC with /[NO]HOLD.

/VISIBLE
Makes the specified process the visible process. This switches your
debugging context to the specified process, so that symbol lookups and
the setting of breakpoints, and so on, are done in the context of that
process. You must specify one, and only one, process.

If you do not specify NISIBLE, it is assumed by default.

Do not specify /ALL, or /[NO]DYNAMIC with NISIBLE.

SET PROCESS

DESCRIPTION The SET PROCESS command establishes the visible process or modifies
characteristics of one or more processes.

By default, commands are executed in the context of the visible process.
The visible process is the process that is your current debugging context.
Symbol lookups and the setting of breakpoints, and so on, are done in the
context of the visible process.

The DO command enables you to execute commands in the context of
specific processes or of all processes. The DO command is equivalent to
entering a SET PROCESSNISIBLE command for each process specified
(or for all processes, if no process is specified with the DO command) and
then entering the specified commands.

Dynamic process setting is enabled by default and is controlled with the
/[NO]DYNAMIC qualifier. When dynamic process setting is enabled,
whenever the debugger suspends program exe.cution and displays its
prompt, the process in which execution is suspended becomes the visible
process automatically.

Related commands: SHOW PROCESS, DO, GO, STEP, CALL, EXIT,
QUIT.

EXAMPLES

D DBG 1> SET PROCESS/HOLD/ALL
DBG=)> SHOW PROCESS/ALL

Number Name
* 1 TEST X

2 TEST Y
DBG 1>

Hold State
YES step
YES break

Current PC
PROG\%LINE 50
PROG\ %LINE 71

The command SET PROCESS/HOLD/ALL puts all processes on hold. This
is confirmed in the SHOW PROCESS/ALL display.

DBG 1> SET PROCESS/NOHOLD %VISIBLE PROCESS
DBG-1> SHOW PROCESS/ALL -

Number Name Hold State

* 1 TEST X step
2 TEST Y YES break

DBG 1>

Current PC
PROG\%LINE 50
PROG\ %LINE 71

The command SET PROCESS/NOHOLD %VISIBLE_PROCESS releases
the visible process from the hold condition. This is confirmed in the SHOW
PROCESS/ ALL display.

DBG 1> SET PROCESS TEST Y - -
DBG 2> SHOW PROCESS

Number Name
* 2 TEST Y
DBG 2>

Hold State
YES break

Current PC
PROG\%LINE 71

The command SET PROCESS TEST_Y makes process TEST_Y the visible
process. The command SHOW PROCESS displays information about the
visible process by default.

CD-163

SET PROCESS

!I DBG_l> SET PROCESS/HOLD/ALL
DBG_l> DO (EXAMINE X; STEP)
For %PROCESS NUMBER 1

MAIN_PROG\X: 78
For %PROCESS NUMBER 2

TEST\X: -29
stepped to MAIN_PROG\%LINE 26 in %PROCESS NUMBER 1
26: K = K + 1
DBG 1>

CD-164

The command SET PROCESS/HOLD/ALL puts all processes on hold. The
DO command broadcasts the commands EXAMINE X and STEP to all
processes (processes 1 and 2, in this example). The STEP command is
executed in the context of process 1, because a hold condition in the visible
process is ignored. Because process 2 is on hold, execution is inhibited in
that process.

SET PROMPT

SET PROMPT

Changes the debugger prompt string to your personal preference.

FORMAT SET PROMPT [prompt-parameter]

PARAMETERS prompt-parameter

QUALIFIERS

Specifies the new prompt string. If the string contains spaces, semicolons
(;), or lowercase characters, you must enclose it in quotation marks (") or
apostrophes ('). If you do not specify a string, the current prompt string
remains unchanged.

By default, the prompt string is DBG> for a nonmultiprocess debugging
configuration (when the logical name DBG$PROCESS is undefined or has
the value DEFAULT).

By default, for a multiprocess debugging configuration (when
DBG$PROCESS has the value MULTIPROCESS), the prompt string
consists of a process-independent prefix (specified by prompt-parameter)
and a process-specific suffix (specified by the /[NO]SUFFIX qualifier). The
suffix changes automatically as the visible process changes.

ISUFFIX[=process-identifier-type]
/NOSUFFIX
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS).

The /SUFFIX qualifier enables "dynamic prompt setting". As a result,
the prompt string includes a process-specific suffix that automatically
identifies the visible process. This is the default behavior.

The /NOSUFFIX qualifier disables dynamic prompt setting. As a result,
the prompt string does not include a process-specific suffix and does not
change when another process becomes the visible process.

When you invoke the debugger with the RUN command to debug a
multiprocess program, the prompt string is DBG_l> by default. This
indicates that dynamic prompt setting is enabled and that the visible
process is process 1 (the first process connected to the debugger). You can
control the process-specific prompt-string suffix by specifying one of the
following process-identifier-type keywords with the /SUFFIX qualifier:

PROCESS_NAME

PROCESS_NUMBER

PROCESS_PID

The prompt-string suffix is the VMS process name.

The prompt-string suffix is the process number (as shown in
a SHOW PROCESS display). This is the default.

The prompt-string suffix is the VMS process identification
number (PIO).

CD-165

SET PROMPT

The following table illustrates the possible kinds of prompt strings for a
multiprocess debugging configuration. Note that the entire prompt string
depends on the prompt-parameter command parameter (which controls the
process-independent prefix), and on the values of /(NO]SUFFIX and the
process-identifier-type keyword (which control the process-specific suffix).

prornpt-pararneter
(prefix) Qualifier and Keyword (suffix) Resulting Prompt String

none none unchanged
none /NOSUFFIX DBG>

none /SUFFIX DBG__process-numbe1> 1

none /SU FFIX=PROCESS_NAME process-name>

none /SUFFIX=PROCESS_NUMBER process-number;.

none /SU FFIX=PROCESS_PID pici>

XYZ_ /NOSUFFIX XYZ_>

XYZ_ /SUFFIX XYZ__process-numbe1>

XYZ_ /SUFFIX=PROCESS_NAME XYZ__process-name>

XYZ_ /SUFFIX=PROCESS_NUMBER XYZ__process-numbe1>

XYZ_ /SUFFIX=PROCESS_PID XYZ__pici>

1 The default prompt for a multiprocess debugging configuration is DBG_process-numbe1>, which
is equivalent to entering the following command:

DBG> SET PROMPT/SUFFIX=PROCESS_NUMBER 11 DBG_11

/POP
/NOPOP (default)
Note: This qualifier applies only to workstations running VWS.

The /POP qualifier causes the debugger window to pop over other windows
and become attached to the keyboard when the debugger prompts for
input. The /NOPOP qualifier disables this behavior (the debugger window
is not popped over other windows and is not attached to the keyboard
automatically when the debugger prompts for input).

If you do not specify /POP or /NOPOP, the prompt behavior is set to
/NOPOP

DESCRIPTION The SET PROMPT command enables you to tailor the debugger prompt
string to your individual preference.

CD-166

If you are using a multiprocess debugging configuration (when the logical
name DBG$PROCESS has the value MULTIPROCESS), the /(NO]SUFFIX
qualifier enables you to specify a process-specific prompt-string suffix.

If you are using the debugger at a workstation, the /(NO]POP qualifier
enables you to control whether the debugger window is popped over other
windows whenever the debugger prompts for input.

Related commands: (SET, SHOW) PROCESS.

SET PROMPT

EXAMPLES

D DBG> SET PROMPT II$ "

$ SET PROMPT II d b g : II

d b g SET PROMPT "DBG> II

DBG>

The successive SET PROMPT commands change the debugger prompt
from "DBG>" to"$", to "db g :", then back to "DBG>".

~ DBG_l> SET PROMPT/NOSUFFIX "dbg> II

dbg> SET PROMPT/SUFFIX
DBG_l> SET PROMPT/SUFFIX=PROCESS_NUMBER "xyz_"
xyz 1> SET PROMPT/SUFFIX=PROCESS NAME
SMITH> SET PROMPT/SUFFIX=PROCESS-NAME "John "
John SMITH> SET PROMPT/SUFFIX=PROCESS PID
20800E4D> -

The successive SET PROMPT commands show the effect of the
/[NO]SUFFIX qualifier and the prompt-parameter string for multiprocess
programs.

CD-167

SET RADIX

SET RADIX

FORMAT

Establishes the radix for the entry and display of integer data. When used with
/OVERRIDE, causes all data to be displayed as integer data of the specified
radix.

SET RADIX radix

PARAMETERS radix

QUALIFIERS

Specifies the radix to be established. Valid keywords are as follows:

BINARY Sets the radix to binary.

DECIMAL Sets the radix to decimal. This is the default for all languages
except BLISS and MACRO.

DEFAULT Sets the radix to the language default.

OCTAL Sets the radix to octal.

HEXADECIMAL Sets the default radix to hexadecimal. This is the default for BLISS
and MACRO.

/INPUT
Sets only the input radix (the radix for entering integer data) to the
specified radix.

/OUTPUT
Sets only the output radix (the radix for displaying integer data) to the
specified radix.

/OVERRIDE
Causes all data to be displayed as integer data of the specified radix.

DESCRIPTION The current radix setting influences how the debugger interprets and
displays integer data in the following contexts:

CD-168

• Integer data that you specify in address expressions or language
expressions.

• Integer data that is displayed by the commands EXAMINE and
EVALUATE.

The default radix for both data entry and display is decimal for all
languages except BLISS and MACRO. It is hexadecimal for BLISS and
MACRO.

The SET RADIX command enables you to specify a new radix for data
entry or display (the input radix and output radix, respectively).

EXAMPLES

SET RADIX

If you do not specify a qualifier, the SET RADIX command changes both
the input and output radix. If you specify the /INPUT or /OUTPUT
qualifier, the command changes the input or output radix, respectively.

If you specify the /OVERRIDE qualifier, the SET RADIX command changes
only the output radix but causes all data (not just data that has an integer
type) to be displayed as integer data of the specified radix.

Note that, except when used with the /OVERRIDE qualifier, the SET
RADIX command does not affect the interpretation or display of noninteger
values (such as real or enumeration type values).

The EVALUATE, EXAMINE, and DEPOSIT commands have radix
qualifiers (/BINARY, /HEXADECIMAL, and so on) that enable you
to override, for the duration of that command, any radix previously
established with the SET RADIX or SET RADIX/OVERRIDE command.

You can also use the built-in symbols %BIN, %DEC, %HEX, and %OCT in
address expressions and language expressions to specify that an integer
literal that follows should be interpreted in binary, decimal, hexadecimal,
or octal radix, respectively (see Appendix D).

Related commands: (SHOW, CANCEL) RADIX, (SET, SHOW, CANCEL)
MODE, EVALUATE, EXAMINE, DEPOSIT.

D DBG> SET RADIX HEX

This command sets the radix to hexadecimal. This means that, by default,
integer data is interpreted and displayed in hexadecimal radix.

~ DBG> SET RADIX/INPUT OCT

This command sets the radix for input to octal. This means that, by
default, integer data that is entered is interpreted in octal radix.

i] DBG> SET RADIX/OUTPUT BIN

This command sets the radix for output to binary. This means that, by
default, integer data is displayed in binary radix.

EJ DBG> SET RADIX/OVERRIDE DECIMAL

This command sets the override radix to decimal. This means that, by
default, all data (not just data that has an integer type) is displayed as
decimal integer data.

CD-169

SET SCOPE

SET SCOPE

FORMAT

l=stablishes how the debugger looks up symbols (variable names, routine
names, line numbers, and so on) when a path name prefix is not specified.

SET SCOPE location[, ...]

PARAMETERS location

QUALIFIERS

CD-170

Denotes a program region (scope) to be used for the interpretation of
symbols that you specify without a path name prefix. A location can be
any of the following, unless you specify /CURRENT or /MODULE (see the
qualifier descriptions):

path name prefix

n

Specifies the scope denoted by the path name prefix. A path
name prefix consists of the names of one or more nesting
program elements (module, routine, block, and so on), with
each name separated by a backslash character(\). When
a path name prefix consists of more than one name, list a
nesting element to the left of the \ and a nested element
to the right of the \. A common path name prefix format is
module\ routine\blocM.

If you specify only a module name and that name is the
same as the name of a routine, use the /MODULE qualifier;
otherwise, the debugger assumes that you are specifying the
routine.

Specifies the scope denoted by the routine which is n
levels down the call stack (n is a decimal integer). A scope
specified by an integer changes dynamically as the program
executes. The value O denotes the routine that is currently
executing, the value 1 denotes the caller of that routine, and
so on down the call stack. The default scope search list is
0, 1,2, ... ,n, where n is the number of calls in the call stack.

Specifies the global scope-that is, the set of all program
locations in which a global symbol is known. The definition
of a global symbol and the way it is declared depends on the
language.

When you specify more th~n one location parameter, you establish a scope
search list. If the debugger cannot interpret the symbol using the first
parameter, it uses the next parameter, and continues using parameters
in order of their specification until it successfully interprets the symbol or
until it exhausts the parameters specified.

/CURRENT
Establishes a scope search list that is like the default search list
(0,1,2, ... ,n) but starts at the numeric scope specified as the command
parameter. Scope 0 is the PC scope, and n is the number of calls in the
call stack.

SET SCOPE

When using SET SCOPE/CURRENT, note the following conventions and
behavior:

• The default scope search list must be in effect when the command is
entered. To restore the default scope search list, enter the command
CANCEL SCOPE.

• The command parameter specified must be one (and only one) decimal
integer from 0 to n.

• In screen mode, the command updates the predefined source and
instruction displays SRC and INST, respectively, to show the routine
on the call stack in which symbol searches are to start.

• The default scope search list is restored when program execution is
resumed.

/MODULE
Indicates that the name specified as the command parameter is a module
name and not a routine name. You need to use /MODULE only if you
specify a module name as the command parameter and that module name
is the same as the name of a routine.

DESCRIPTION By default, the debugger looks up a symbol specified without a path
name prefix according to the scope search list 0,1,2, ... ,n, where n is the
number of calls in the call stack. This scope search list is based on the
current PC value and changes dynamically as the program executes. The
default scope search list specifies that a symbol lookup such as "EXAMINE
X11 first looks for X in the routine that is currently executing (scope 0); if
no X is visible there, the debugger looks in the caller of that routine (scope
1), and so on down the call stack; if X is not found in scope n, the debugger
searches the rest of the run-time symbol table (RST)-that is, all set
modules and the global symbol table (GST), if necessary.

In most cases, this default scope search list enables you to resolve
ambiguities in a predictable, natural way that is consistent with language
rules. But if you cannot access a symbol that is defined multiple times,
use either of the following techniques:

• Specify the symbol with a path name prefix. The path name
prefix consists of any nesting program units (for example,
module\routine\block) that are necessary to specify the symbol
uniquely. For example:

DBG> EXAMINE MOD4\ROUT3\X
DBG> TYPE MOD4\27

• Establish a new default scope (or a scope search list) for symbol lookup
by means of the SET SCOPE command. You can then specify the
symbol without using a path name prefix. For example:

DBG> SET SCOPE MOD4\ROUT3
DBG> EXAMINE X
DBG> TYPE 27

The SET SCOPE command is useful in those cases where otherwise you
would need to use a path name repeatedly to specify symbols.

CD-171

SET SCOPE

EXAMPLES
D DBG> EXAMINE y

To restore the default scope search list, use the CANCEL SCOPE
command.

When the default scope search list is in effect, you can use the command
SET SCOPE/CURRENT to specify that symbol searches start at a numeric
scope other than scope 0, relative to the call stack (for example, scope 2).

When you use the SET SCOPE command, the debugger searches only the
program locations you specify explicitly, unless you use the /CURRENT
qualifier. Also, the scope or scope search list established with a SET
SCOPE command remains in effect until you restore the default scope
search list or enter another SET SCOPE command. However, if you use
the /CURRENT qualifier, the default scope search list is restored whenever
program execution is resumed.

The SET SCOPE command updates a screen-mode source or instruction
display only if the command is used with the /CURRENT qualifier,

If a name you specify in a SET SCOPE command is the name of both a
module and a routine, the debugger sets the scope to the routine. In such
cases, use the command SET SCOPE/MODULE if you want to set the
scope to the module.

If you specify a module name in a SET SCOPE command, the debugger
11 sets 11 that module if it is not already set. However, if you want only to set
a module, use the SET MODULE command rather than the SET SCOPE
command, to avoid the possibility of disturbing the current scope search
list.

Related commands: (SHOW, CANCEL) SCOPE, CANCEL ALL, SET
MODULE, SHOW SYMBOL, SYMBOLIZE, SEARCH, TYPE.

%DEBUG-W-NOUNIQUE, symbol 'Y' is not unique
DBG> SHOW SYMBOL Y

data CHECK_IN\Y
data INVENTORY\COUNT\Y

DBG> SET SCOPE INVENTORY\COUNT
DBG> EXAMINE Y
INVENTORY\COUNT\Y: 347.15
DBG>

CD-172

In this example, the first EXAMINE Y command indicates that symbol
Y is defined multiple times and cannot be resolved from the current
scope search list. The SHOW SYMBOL command displays the different
declarations of symbol Y. The SET SCOPE command directs the debugger
to look for symbols without path name prefixes in routine COUNT of
module INVENTORY. The subsequent EXAMINE command can now
interpret Y unambiguously.

SET SCOPE

~ DBG> CANCEL SCOPE
DBG> SET SCOPE/CURRENT 1

i] DBG> SET SCOPE 1
DBG> EXAMINE %RS

In this example, the CANCEL SCOPE command restores the default scope
search list (0,1,2, ... ,n). The SET SCOPE/CURRENT command then
changes the scope search list to 1,2, ... ,n, so that symbol searches start
with scope 1-that is, with the caller of the routine in which execution
is currently suspended. The predefined source and instruction displays
SRC and INST, respectively, are updated and now show the source and
instructions for the caller of the routine in which execution is suspended.

In this example, the SET SCOPE command directs the debugger to look
for symbols without path name prefixes in scope 1-that is, in the caller
of the routine in which execution is suspended. The EXAMINE command
then displays the value of register R5 in the caller routine. Note that the
SET SCOPE command, when used without the /CURRENT qualifier, does
not update any source or instruction display.

!J DBG> SET SCOPE 0, STACKS\R2, SCREEN

This command directs the debugger to look for symbols without path name
prefixes according to the following scope search list. First the debugger
looks in the PC scope (denoted by 11 0 11

). If the debugger cannot find a
specified symbol in the PC scope, it then looks in routine R2 of module
STACKS. If necessary, it then looks in module SCREEN. If the debugger
still cannot find a specified symbol, it looks no further.

DBG> SHOW SYMBOL X
data ALPHA\X
data ALPHA\BETA\X
data X (global)
DBG> SHOW SCOPE
scope: 0 [= ALPHA\BETA
DBG> SYMBOLIZE X
address ALPHA\BETA\%RO:

ALPHA\BETA\X
DBG> SET SCOPE \
DBG> SYMBOLIZE X
address 00000200:

ALPHA\X
address 00000200: (global)

x
DBG>

global X
local X
same as ALPHA\X

In this example, the SHOW SYMBOL command indicates that there are
two declarations of the symbol X-a global ALPHA \X (shown twice) and a
local ALPHA\ BETA\ X. Within the current scope, the local declaration of
X (ALPHA\ BETA\ X) is visible. After the scope is set to the global scope
(SET SCOPE \), the global declaration of X is made visible.

CD-173

SET SEARCH

SET SEARCH

FORMAT

Establishes default qualifiers (/ALL or /NEXT, /IDENTIFIER or /STRING) for
the SEARCH command.

SET SEARCH search-default[, ...]

PARAMETERS search-default
Specifies a default to be established for the SEARCH command. Valid
keywords (which correspond to SEARCH command qualifiers) are as
follows:

ALL

IDENTIFIER

NEXT

STRING

Subsequent SEARCH commands are treated as SEARCH/ALL,
rather than SEARCH/NEXT.

Subsequent SEARCH commands are treated as SEARCH
/IDENTIFIER, rather than SEARCH/STRING.

Subsequent SEARCH commands are treated as SEARCH/NEXT,
rather than SEARCH/ALL. This is the default.

Subsequent SEARCH commands are treated as SEARCH/STRING,
rather than SEARCH/IDENTIFIER. This is the default.

DESCRIPTION The SET SEARC!I command establishes default qualifiers for subsequent
SEARCH commands. The parameters that you specify in the SET
SEARCH command have the same names as the SEARCH command
qualifiers. SEARCH command qualifiers qetermine whether the SEARCH
command: (1) searches for all occurrences (ALL) of a string or only the
next occurrence (NEXT); and (2) displays any occurrence of the string
(STRING) or only those occurrences in which the string is not bounded on
either side by a character that can be part of an identifier in the current
language (IDENTIFIER).

CD-174

You can override the current SEARCH default for the duration of a
single SEARCH command by specifying other qualifiers. Use the SHOW
SEARCH command to identify the current SEARCH defaults.

Related commands: SEARCH, SHOW SEARCH, (SET, SHOW)
LANGUAGE.

EXAMPLE
DBG> SHOW SEARCH
search settings: search for next occurrence, as a string
DBG> SET SEARCH IDENTIFIER
DBG> SHOW SEARCH
search settings: search for next occurrence, as an identifier
DBG> SET SEARCH ALL
DBG> SHOW SEARCH
search settings: search for all occurrences, as an identifier
DBG>

SET SEARCH

In this example, the SET SEARCH IDENTIFIER command directs the
debugger to search for an occurrence of the string in the specified range
but display the string only if it is not bounded on either side by a character
that can be part of an identifier in the current language.

The SET SEARCH ALL command directs the debugger to search for (and
display) all occurrences of the string in the specified range.

CD-175

SET SOURCE

SET SOURCE

FORMAT

Specifies where the debugger is to search for source files that have been
moved to another directory after being compiled.

SET SOURCE directory-spec[, ...]

PARAMETERS directory-spec
Specifies any part of a VMS file specification (typically a device/directory)
that the debugger is to use by default when searching for a source file. For
any part of a full file specification that you do not supply, the debugger
uses the file specification stored in the module's symbol record-that is,
the file specification that the source file had at compile time.

If you specify more than one directory in a single SET SOURCE command,
you create a source directory search list (you can also specify a search
list logical name that is defined at your process level). In this case, the
debugger locates the source file by searching the first directory specified,
then the second, and so on, until it either locates the source file or
exhausts the list of directories.

QUALIFIERS /EDIT

DESCRIPTION

CD-176

Note: This qualifier applies mainly to Ada programs.

Specifies that the directory search list is used to locate source files for
editing when you use the EDIT command.

IMODULE=module-name
Specifies that the directory search list is used to locate source files only for
the specified module.

By default, the debugger expects a source file to be in the same directory
it was in at compile time (the debugger also checks that the creation
and revision date and time of a source file match the information in the
debugger's symbol table). If a source file has been moved to a different
directory since compile time, use the SET SOURCE command to specify a
source directory search list.

When a source file is moved to another directory, the version number of
the source file might change. To locate the correct version of the source file
in the event that a version number was not specified in the directory-spec
parameter, the debugger inserts the match-all asterisk wildcard character
(*) in the version number field of the new file specification. Therefore,
all versions of the moved source file are searched until the correct version
is located. The correct version of the source file is the version that has
the same creation or revision date and time, the same file size, the same
record format, and the same file organization as the original compile-time
source file.

EXAMPLES
D DBG> SHOW SOURCE

SET SOURCE

If the debugger does not find the correct version, it uses the file that has
the closest revision date and time (if such a file exists in that directory)
and issues a message such as the following when first displaying source
code:

%DEBUG-I-NOTORIGSRC, original version of source file not found
file used is WORK: [JONES.PROG3]PRG.FOR;14

If you enter the SET SOURCE command without the /MODULE=module
name qualifier, the debugger uses the specified directory search list to
locate source files for all modules that were not mentioned in a previous
SET SOURCE/MODULE=module-name command.

See the qualifier descriptions for an explanation of their effects.

The /EDIT qualifier is needed when the files used for the display of source
code are different from the files to be edited by means of the EDIT
command. This is the case with Ada programs. For Ada programs, the
(SET, SHOW, CANCEL) SOURCE commands affect the search of files used
for source display (the "copied" source files in Ada program libraries); the
(SET, SHOW, CANCEL) SOURCE/EDIT commands affect the search of the
source files you edit when using the EDIT command. If you use /MODULE
with /EDIT, the effect of /EDIT is further qualified by /MODULE.

A full VMS file specification consists of the following fields:

node::device:[directory]file-name.file-type;version-number

If the full file specification of a source file exceeds 231 characters, the
debugger cannot locate the file. You can work around this problem by
first defining a logical name 11X11 (at DCL level) to expand to your long file
specification, and then using the command "SET SOURCE X".

Related commands: (CANCEL, SHOW) SOURCE, (CANCEL, SHOW)
MAX_SOURCE_FILES.

no directory search list in effect
DBG> SET SOURCE [PROJA], [PROJB], USER$: [PETER. PROJC]
DBG> SHOW SOURCE
source directory search list for all modules:

[PROJA]

DBG>

[PROJB]
USER$: [PETER.PROJC]

In this example, the SET SOURCE command specifies that
the debugger should search directories [PROJA], [PROJB], and
USER$:[PETER.PROJC], in that order, for source files.

CD-177

SET SOURCE

fra DBG> SET SOURCE/MODULE=COBOLTEST [], DISK$2: [PROJD]
DBG> SHOW SOURCE
source directory search list for COBOLTEST:

[]
DISK$2: [PROJD]

source directory search list for all other modules:
[PROJA]

DBG>

CD-178

[PROJB]
USER$: [PETER.PROJC]

In this example, the SET SOURCE command specifies that the debugger
should search the current default directory ([]) and DISK$2:[PROJD],
in that order, for source files to use with the module COBOLTEST.
The SHOW SOURCE command displays the search lists established in
examples 1and2.

SET STEP

FORMAT

SET STEP

Establishes default qualifiers (/LINE, /INTO, and so on) for the STEP
command.

SET STEP step-default[, ...]

PARAMETERS step-default
Specifies a default to be established for the STEP command. Valid
keywords (which correspond to STEP command qualifiers) are as follows:

BRANCH Subsequent STEP commands are treated as STEP/BRANCH {step
to the next branch instruction).

CALL Subsequent STEP commands are treated as STEP/CALL {step to
the next call instruction).

EXCEPTION Subsequent STEP commands are treated as STEP/EXCEPTION
{step to the next exception).

INSTRUCTION Subsequent STEP commands are treated as STEP/INSTRUCTION
{step to the next instruction). You can also specify one or more
instructions {INSTRUCTION={opcode-list)). The debugger then
steps to the next instruction that is in the specified list. If you
specify a vector instruction, do not include an instruction qualifier
{/U, N, /M, /0, or /1) with the instruction mnemonic.

INTO Subsequent STEP commands are treated as STEP/INTO {step into
called routines) rather than STEP/OVER {step over called routines).
When INTO is in effect, you can qualify the types of routines to step
into by means of the [NO]JSB, [NO]SHARE, and [NO]SYSTEM
parameters, or by using the STEP/[NO]JSB, STEP/[NO]SHARE,
and STEP/[NO]SYSTEM command/qualifier combinations {the latter
three take effect only for the immediate STEP command).

JSB If INTO is in effect, subsequent STEP commands are treated as
STEP/INTO/JSB {step into routines called by a JSB instruction as
well as those called by a CALL instruction). This is the default for
all languages except DIBOL.

NOJSB If INTO is in effect, subsequent STEP commands are treated as
STEP/INTO/NOJSB {step over routines called by a JSB instruction,
but step into routines called by a CALL instruction). This is the
default for DIBOL.

LINE Subsequent STEP commands are treated as STEP/LINE {step to
the next line). This is the default for all languages.

OVER Subsequent STEP commands are treated as STEP/OVER {step
over all called routines) rather than STEP/INTO (step into called
routines). SET STEP OVER is the default.

RETURN Subsequent STEP commands are treated as STEP/RETURN (step
to the RET instruction of the routine that is currently executing
that is, up to the point just prior to transferring control back to the
calling routine).

CD-179

SET STEP

DESCRIPTION

CD-180

SHARE If INTO is in effect, subsequent STEP commands are treated as
STEP/INTO/SHARE (step into called routines in shareable images
as well as into other called routines). This is the default.

NOSHARE If INTO is in effect, subsequent STEP commands are treated as
STEP/INTO/NOSHARE (step over called routines in shareable
images, but step into other routines).

SILENT Subsequent STEP commands are treated as STEP/SILENT (after a
step, do not display the "stepped to . . . " message or the source
line for the current location).

NOSILENT Subsequent STEP commands are treated as STEP/NOSILENT
(after a step, display the "stepped to ... " message). This is the
default.

SOURCE Subsequent STEP commands are treated as STEP/SOURCE
(after a step, display the source line for the current location).
Also, subsequent SET BREAK, SET TRACE, and SET WATCH
commands are treated as SET BREAK/SOURCE, SET TRACE
/SOURCE, and SET WATCH/SOURCE, respectively (at a
breakpoint, tracepoint, or watchpoint, display the source line for
the current location). This is the default.

NOSOURCE Subsequent STEP commands are treated as STEP/NOSOURCE
(after a step, do not display the source line for the current location).
Also, subsequent SET BREAK, SET TRACE, and SET WATCH
commands are treated as SET BREAK/NOSOURCE, SET TRACE
/NOSOURCE, and SET WATCH/NOSOURCE, respectively (at a
breakpoint, tracepoint, or watchpoint, do not display the source line
for the current location).

SYSTEM If INTO is in effect, subsequent STEP commands are treated as
STEP/INTO/SYSTEM (step into called routines in system space (P1
space) as well as into other called routines). This is the default.

NOSYSTEM If INTO is in effect, subsequent STEP commands are treated
as STEP/INTO/NOSYSTEM (step over called routines in system
space, but step into other routines).

VECTOR_ (Applies to vectorized programs). Subsequent STEP commands
INSTRUCTION are treated as STEP/VECTOR_INSTRUCTION (step to the next

vector instruction).

The SET STEP command establishes default qualifiers for subsequent
STEP commands. The parameters that you specify in the SET STEP
command have the same names as the STEP command qualifiers. The
following parameters affect where the STEP command suspends execution
after a step:

BRANCH
CALL
EXCEPTION
INSTRUCTION[=(opcode[, ...])]
LINE
RETURN
VECTOR_INSTRUCTION

EXAMPLES

SET STEP

The following parameters affect what output is seen when a STEP
command is executed:

[NOJSILENT
[NOJSOURCE

The following parameters affect what happens at a routine call:

INTO
[NO]JSB
OVER
[NOJSHARE
[NOJSYSTEM

You can override the current STEP defaults for the duration of a single
STEP command by specifying other qualifiers. Use the SHOW STEP
command to identify the current STEP defaults.

If you invoke screen mode with the keypad-key sequence PF1-PF3, the
command SET STEP NOSOURCE is entered in addition to the command
SET MODE SCREEN. Therefore, any display of source code in output
and DO displays that would result from a STEP command or from a
breakpoint, tracepoint, or watchpoint being triggered is suppressed, to
eliminate redundancy with the source display.

Related commands: STEP, SHOW STEP.

D DBG> SET STEP INSTRUCTION,NOSOURCE

This command causes the debugger to execute the program to the next
instruction when a STEP command is entered, and not to display lines of
source code with each STEP command.

~ DBG> SET STEP LINE,INTO,NOSYSTEM,NOSHARE

This command causes the debugger to execute the program to the next
line when a STEP command is entered, and to step into called routines in
user space only. The debugger steps over routines in system space and in
shareable images.

CD-181

SET TASK

SET TASK

FORMAT

Modifies characteristics of one or more tasks or of the entire tasking system.

Note: This command applies to Ada programs. See the VAX Ada
documentation for complete information.

SET TASK [task-spec[, ... 11

PARAMETERS task-spec

QUALIFIERS

CD-182

Specifies a task value. Use any of the following forms:

• An Ada language expression for a task value-for example, a task
object name. You can use a path name.

• The task ID (for example, %TASK 2), as indicated in a SHOW TASK
display.

• A task built-in symbol (%ACTIVE_TASK, %CALLER_TASK, %NEXT_
TASK, or %VISIBLE_TASK).

Do not use the asterisk wildcard character (*). See the qualifier
descriptions for details on how to specify tasks with particular qualifiers.

/ABORT
Aborts the specified tasks. If no task is specified, aborts the visible task.
The task is marked for termination but is not immediately terminated.
The effect is identical to executing the Ada statement abort task-name,
and causes the specified tasks to become abnormal.

/ACTIVE
Makes the specified task the active task-the task that runs when a STEP
or GO command is executed. Causes a task switch to the new active task
and makes that task the visible task. The specified task must be in either
the RUNNING or READY state. When using /ACTIVE, you must specify
one, and only one, task.

/ALL
Applies the SET TASK command to all tasks. Do not specify a task nor
the /ACTIVE, NISIBLE, or trIME_SLICE qualifiers with /ALL.

/HOLD
/NOH OLD
Controls whether a. specified task is put on hold. The /HOLD qualifier
puts a specified task on hold. If no task is specified, /HOLD puts the
visible task on hold.

Putting a task on hold prevents a task from entering the RUNNING state.
A task put on hold is allowed to make other state transitions; in particular,
it can change from the SUSPENDED to the READY state.

SET TASK

A task that is already in the RUNNING state (the active task) can
continue to execute as long as it remains in the RUNNING state, even
though it is put on hold. If the task leaves the RUNNING state for any
reason (including expiration of a time slice, if time slicing is enabled),
it might not return to the RUNNING state until released from the hold
condition. You can force a task into the RUNNING state with the SET
TASK/ ACTIVE command even if the task is on hold.

The /NOHOLD qualifier releases a specified task from hold. If no task is
specified, /NOHOLD releases the visible task from hold.

!PRIORITY:n
Sets the priority of a specified task ton, where n is a decimal integer
from 0 to 15 inclusive. If no task is specified, sets the priority of the
visible task ton. Note that this does not prevent the task's priority from
later changing in the course of execution, for example, while executing a
rendezvous.

!RESTORE
Causes the priority of a specified task to be restored to the value specified
in pragma PRIORITY. If pragma PRIORITY was not specified, the
default value of 7 is used. If no task is specified, causes the priority of the
visible task to be restored.

/TIME_ SLICE:t
Sets the duration otherwise specified by pragma TIME_SLICE to the
value t, where tis a decimal integer or fixed-point value representing
seconds. The SET TASK/TIME_SLICE=O.O command disables time slicing.

/VISIBLE
Makes the specified task the visible task-the task whose call stack and
register set are the current context for looking up names, calls, and so
on (commands such as EXAMINE are directed at the visible task). When
using NISIBLE, you must specify one, and only one, task.

Note: If no qualifier is specified, NISIBLE is assumed by default.

DESCRIPTION The possible task states are RUNNING, READY, SUSPENDED, and
TERMINATED.

All of the SET TASK command qualifiers except for I ALL provide a means
of controlling the tasking environment, by directly or indirectly causing
task state transitions. The /ALL qualifier is used to apply the SET TASK
command to all tasks.

Task switching can often be confusing when you are trying to debug a
program. The SET TASK/TIME_SLICE and SET TASK/HOLD commands
give you several ways of controlling task switching.

Related commands: SHOW TASK, SET BREAK/EVENT, SET TRACE
/EVENT, EXAMINE/TASK, DEPOSIT/TASK.

CD-183

SET TASK

EXAMPLES

D DBG> SET TASK/ACTIVE %TASK 3

This command makes the task whose task ID is %TASK 3 the active task.

f:l DBG> SET TASK/HOLD/ALL
DBG> SET TASK/ACTIVE %TASK 1
DBG> GO

DBG> SET TASK/ACTIVE %TASK 3
DBG> STEP

CD-184

The SET TASK/HOLD/ALL command freezes the state of all tasks except
the active task. The SET TASK/ ACTIVE command is then used selectively
(along with the GO command) to observe the behavior of one or more
specified tasks in isolation.

SET TERMINAL

SET TERMINAL

FORMAT

QUALIFIERS

Sets the terminal-screen height or width that the debugger uses when it
formats screen and other output.

SET TERMINAL
You must specify at least one qualifier, either /PAGE or /WIDTH. You
can specify both /PAGE and /WIDTH. You must specify a value for each
qualifier used.

/PAGE:n
Specifies that the terminal screen height should be set to n lines. You can
use any value from 18 to 100.

/WIDTH:n
Specifies that the terminal screen width should be set to n columns. You
can use any value from 20 to 255. For a VTlOO, VT200, or VT300 series
terminal, n is typically either 80 or 132.

DESCRIPTION The SET TERMINAL command enables you to define the portion of the
screen that the debugger has available for formatting screen output.

This command is useful with VTlOO-, VT200-, or VT300- series terminals,
where you can set the screen width to typically 80 or 132 columns. It
is also useful with workstations, where you can modify the size of the
terminal-emulator window that the debugger uses.

When you enter the SET TERMINAL command, all screen window
definitions (including those created by the user) are automatically adjusted
for the new screen dimensions. For example, RHl changes dimensions
proportionally to remain the top right half of the screen.

Similarly, all 11 dynamic 11 displays are automatically adjusted to maintain
their relative dimensions. By default, all predefined and user-defined
displays are dynamic. If you have specified /NODYNAMIC in a DISPLAY
command, the display is no longer dynamic. In that case, the display does
not automatically change dimensions with a SET TERMINAL command.
However, you can always use the DISPLAY command to redisplay the
display within any window definition (you can also use keypad-key
combinations, such as BLUE-MINUS, to enter predefined DISPLAY
commands).

Related commands: SHOW TERMINAL, DISPLAY/[NO]DYNAMIC, (SET,
SHOW, CANCEL) WINDOW, EXPAND.

CD-185

SET TERMINAL

EXAMPLE
DBG> SET TERMINAL/WIDTH:132

CD-186

This command specifies that the terminal screen width be set to 132
columns.

SET TRACE

FORMAT

SET TRACE

Establishes a tracepoint at the location denoted by an address expression, at
instructions of a particular class, or at the occurrence of specified events.

SET TRACE [address-expression[, ...]]
[WHEN (conditional-expression)]
[DO(command[; . ..])]

PARAMETERS address-expression
Specifies an address expression (a program location) at which a tracepoint
is to be set. With high-level languages, this is typically a line number,
a routine name, or a label, and can include a path name to specify
the entity uniquely. More generally, an address expression can also
be a memory address or a register and can be composed of numbers
(offsets) and symbols, as well as one or more operators, operands, or
delimiters. Appendix D identifies the operators that can be used in
address expressions.

Do not specify the asterisk wildcard character (*). Do not specify
an address expression with /ACTIVATING, /BRANCH, /CALL,
/EXCEPTION, /INSTRUCTION[=(opcode-list)], /INTO, /[NO]JSB, /LINE,
/OVER, /[NOJSHARE, /[NO]SYSTEM, /TERMINATING, or /VECTOR_
INSTRUCTION. The /MODIFY and /RETURN qualifiers are used with
specific kinds of address expressions.

If you specify a memory address or an address expression whose value
is not a symbolic location, check (with the EXAMINE command) that
an instruction actually begins at the byte of memory so indicated. If
an instruction does not begin at this byte, a run-time error can occur
when an instruction including that byte is executed. When you set
a tracepoint by specifying an address expression whose value is not a
symbolic location, the debugger does not verify that the location specified
marks the beginning of an instruction. CALLS and CALLG routines start
with an entry mask.

conditional-expression
Specifies a conditional expression in the currently set language that is to
be evaluated whenever execution reaches the tracepoint. If the expression
is true, trace action occurs, and the debugger reports that a tracepoint has
been reached. If the expression is false, trace action does not occur. In this
case, a report is not issued, the commands specified by the DO clause are
not executed, and program execution is continued.

command
Specifies a debugger command to be executed as part of the DO clause
when trace action is taken.

CD-187

SET TRACE

QUALIFIERS

CD-188

/ACTIVATING
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS).

Causes the debugger to trace when a new process comes under debugger
control. This is the default behavior. Do not specify an address expression
with I ACTIVATING. See also trERMINATING.

/AFTER:n
Specifies that trace action not be taken until the nth time the designated
tracepoint is encountered (n is a decimal integer). Thereafter, the
tracepoint occurs every time it is encountered provided that conditions
in the WHEN clause (if specified) are true. The command SET TRACE
I AFTER:l has the same effect as the SET TRACE command.

/BRANCH
Causes the debugger to trace every branch instruction encountered during
program execution. Do not specify an address expression with /BRANCH.
See also /INTO and /OVER.

/CALL
Causes the debugger to trace every call instruction encountered during
program execution, including the RET instruction. Do not specify an
address expression with /CALL. See also /INTO and /OVER.

/EVENT =event-name
Note: This qualifier applies to Ada and SCAN programs. See the
VAX Ada and VAX SCAN documentation for complete information.

Causes the debugger to trace the specified event (if that event is defined
and detected by the run-time system). If you specify an address expression
with /EVENT, causes the debugger to trace whenever the specified event
occurs for that address expression. Event names depend on the run-time
facility and are identified in Appendix E for Ada and SCAN. You can
display the event names associated with the current run-time facility by
entering the SHOW EVENT_FACILITY command. Note that you cannot
specify an address expression with certain event names.

/EXCEPTION
Causes the debugger to trace every exception that is signaled. The trace
action occurs before any application-declared exception handlers are
invoked. Do not specify an address expression with /EXCEPTION.

As a result of a SET TRACE/EXCEPTION command, whenever your
program generates an exception, the debugger reports the exception and
resignals the exception, thus allowing any application-declared exception
handler to execute.

/INSTRUCTION[=(opcode[, ...])]
If you do not specify an opcode, causes the debugger to trace every
instruction encountered during program execution. If you specify one
or more opcodes, causes the debugger to trace every instruction whose
opcode is in the list.

SET TRACE

Do not specify an address expression with this qualifier. If you specify a
vector instruction, do not include an instruction qualifier (/U, N, JM, 10, or
/1) with the instruction mnemonic. See also /INTO and /OVER.

/INTO
Applies only to tracepoints set with /BRANCH, /CALL,
/INSTRUCTION[=(opcode-list)], /LINE, or NECTOR_INSTRUCTION;
that is, when an address expression is not explicitly specified. When used
with those qualifiers, causes the debugger to trace the specified points
within called routines (as well as within the routine in which execution is
currently suspended). The /INTO qualifier is the default behavior and is
the opposite of /OVER.

When using /INTO, you can further qualify the trace action with the
/[NOJJSB, /[NOJSHARE, and /[NO]SYSTEM qualifiers.

/JSB
IN OJ SB
Qualifies /INTO. Use /[NO]JSB only with /INTO and one of the following
qualifiers: /BRANCH, /CALL, /INSTRUCTION[=(opcode-list)], /LINE,
or NECTOR_INSTRUCTION. The /JSB qualifier is the default for all
languages except DIBOL. The /JSB qualifier permits the debugger to
set tracepoints within routines that are called by the JSB or CALL
instruction. The /NOJSB qualifier (the DIBOL default) specifies that
tracepoints not be set within routines called by JSB instructions. In
DIBOL, application-declared routines are called by the CALL instruction
and DIBOL run-time library routines are called by the JSB instruction.
Do not specify an address expression with /[NO]JSB.

/LINE
Causes the debugger to trace the beginning of each source line encountered
during program execution. Do not specify an address expression with
/LINE. See also /INTO and /OVER.

/MODIFY
Causes the debugger to trace when an instruction writes to and modifies
the value of a location indicated by a specified address expression. The
address expression is typically a variable name.

The command SET TRACE/MODIFY X is equivalent to the command
SET WATCH X DO(GO). SET TRACE/MODIFY operates under the same
restrictions as SET WATCH.

If you specify an absolute address for the address expression, the debugger
might not be able to associate the address with a particular data object.
In this case, the debugger uses a default length of 4 bytes. You can change
this length, however, by setting the type to either WORD (SET TYPE
WORD, which changes the default length to 2 bytes) or BYTE (SET
TYPE BYTE, which changes the default length to 1 byte). SET TYPE
LONGWORD restores the default length of 4 bytes.

/OVER
Applies only to tracepoints set with /BRANCH, /CALL,
/INSTRUCTION[=(opcode-list)], /LINE, or NECTOR_INSTRUCTION;
that is, when an address expression is not explicitly specified. When used
with those qualifiers, causes the debugger to trace the specified points only
within the routine in which execution is currently suspended (not within

CD-189

SET TRACE

CD-190

called routines). The /OVER qualifier is the opposite of /INTO (the default
behavior).

/RETURN
Causes the debugger to trace the RET (return) instruction of the routine
associated with the specified address expression (which can be a routine
name, line number, and so on). This qualifier can only be applied to
routines called with a CALLS or CALLG instruction; it cannot be used
with JSB routines. Tracing the RET instruction enables you to inspect the
local environment (for example, obtain the values of local variables) before
the RET instruction deletes the routine's call frame from the call stack.

For this qualifier, the address-expression parameter is an instruction
address within a CALLS or CALLG routine. It can simply be a routine
name, in which case it specifies the routine start address. However, you
can also specify another location in a routine, so you can see only those
returns that are taken after a certain code path is followed.

A SET TRACE/RETURN command cancels a previous SET TRACE
command if the same address expression is specified.

/SHARE (default)
/NOSH ARE
Qualifies /INTO. Use /[NO]SHARE only with /INTO and one of the
following qualifiers: /BRANCH, /CALL, /INSTRUCTION[=(opcode-list)],
/LINE, or NECTOR_INSTRUCTION. The /SHARE qualifier permits the
debugger to set tracepoints within shareable image routines as well as
other routines. The /NOSHARE qualifier specifies that tracepoints not be
set within shareable images. Do not specify an address expression with
/[NOJSHARE.

/SILENT
/NOS/LENT (default)
Controls whether the "trace ... " message and the source line for the
current location are displayed at the tracepoint. The /NOSILENT qualifier
specifies that the message is displayed. The /SILENT qualifier specifies
that the message and source line are not displayed. The /SILENT qualifier
overrides /SOURCE.

/SOURCE (default)
/NOSOURCE
Controls whether the source line for the current location is displayed at
the tracepoint. The /SOURCE qualifier specifies that the source line is
displayed. The /NOSOURCE qualifier specifies that the source line is not
displayed. The /SILENT qualifier overrides /SOURCE. See also SET STEP
[NO]SOURCE.

/SYSTEM (default)
/NOSY STEM
Qualifies /INTO. Use /[NO]SYSTEM only with /INTO and one of the
following qualifiers: /BRANClI, /CALL, /INSTRUCTION[=(opcode-list)],
/LINE, or NECTOR_INSTRUCTION. The /SYSTEM qualifier permits the
debugger to set tracepoints within system routines (Pl space) as well as
other routines. The /NOSYSTEM qualifier specifies that tracepoints not
be set within system routines. Do not specify an address expression with
/[NO]SYSTEM.

DESCRIPTION

SET TRACE

ffEMPORARY
Causes the tracepoint to disappear after it is triggered (the tracepoint does
not remain permanently set).

ff ERM/NAT/NG
Causes the debugger to trace when a process performs an image exit.
This is the default behavior. Note that the debugger always gains
control and displays its prompt when the last image of a one-process
or multiprocess program exits. Do not specify an address expression with
/TERMINATING. See also /ACTIVATING.

/VECTOR_INSTRUCTION
Note: This qualifier applies to vectorized programs.

Causes the debugger to trace every vector instruction encountered during
program execution. Do not specify an address expression with NECTOR_
INSTRUCTION. See also /INTO and /OVER.

When a tracepoint is triggered, the debugger takes the following action:

1 Suspends program execution at the tracepoint location.

2 If I AFTER was specified when the tracepoint was set, checks the
AFTER count. If the specified number of counts has not been reached,
execution is resumed and the debugger does not perform the remaining
steps.

3 Evaluates the expression in a WHEN clause, if one was specified when
the tracepoint was set. If the value of the expression is false, execution
is resumed and the debugger does not perform the remaining steps.

4 Reports that execution has reached the tracepoint location by issuing a
"trace . . . " message, unless /SILENT was specified.

5 Displays the line of source code corresponding to the tracepoint, unless
/NOSOURCE or /SILENT was specified when the breakpoint was set,
or SET STEP NOSOURCE was entered previously.

6 Executes the commands in a DO clause, if one was specified when the
tracepoint was set.

7 Resumes execution.

You set a tracepoint at a particular location in your program by specifying
an address expression with the SET TRACE command. You set a
tracepoint on consecutive source lines, classes of instructions, or events
by specifying a qualifier with the SET TRACE command. Generally, you
must specify either an address expression or a qualifier, but not both.
The only exception is with the /EVENT qualifier, which requires that you
specify an event name keyword and permits you also to specify an address
expression for certain event names.

The /LINE qualifier sets a tracepoint on each line of source code.

CD-191

SET TRACE

CD-192

The following qualifiers set tracepoints on classes of instructions. Note
that use of these qualifiers and of the /LINE qualifier causes the debugger
to trace every instruction of your program as it executes and thus
significantly slows down execution:

/BRANCH
/CALL
/INSTRUCTION[=(opcode[, ...])]
/RETURN
NECTOR_INSTRUCTION

The following qualifiers set tracepoints on classes of events:

/ACTIVATING
/EVENT=event-name
/EXCEPTION
/TERMINATING

The following qualifiers affect what happens at a routine call:

/INTO
/[NO]JSB
/OVER
/[NO]SHARE
/[NO]SYSTEM

The following qualifiers affect what output is displayed when a tracepoint
is reached:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect the timing and duration of tracepoints:

/AFTER:n
/TEMPORARY

The /MODIFY qualifier is used to monitor changes at program locations
(typically changes in the values of variables).

If you set a tracepoint at a location currently used as a breakpoint, the
breakpoint is canceled in favor of the tracepoint, and vice versa.

Tracepoints can be user defined or predefined. User defined tracepoints are
those that you set explicitly with the SET TRACE command. Predefined
tracepoints, which depend on the type of program you are debugging
(for example, Ada or multiprocess), are established automatically when
you invoke the debugger. Use the SHOW TRACE command to identify
all tracepoints that are currently set. Any predefined tracepoints are
identified as such.

User defined and predefined tracepoints are set and canceled
independently. For example, a location or event can have both a user
defined and a predefined tracepoint. Canceling the user defined tracepoint
does not affect the predefined tracepoint, and conversely.

EXAMPLES

SET TRACE

Related commands: (SHOW, CANCEL) TRACE, CANCEL ALL, SET
BREAK, SET WATCH, GO, (SET, SHOW) EVENT_FACILITY, SET STEP
[NO]SOURCE.

D DBG> SET TRACE SUB3

This command causes the debugger to trace the beginning of routine SUB3
when that routine is executed.

rra DBG> SET TRACE/BRANCH/CALL

This command causes the debugger to trace every BRANCH instruction
and every CALL instruction encountered during program execution.

~ DBG> SET TRACE/LINE/INTO/NOSHARE/NOSYSTEM

This command causes the debugger to trace the beginning of every source
line, including lines in called routines (/INTO) but not in shareable image
routines (/NOSHARE) or system routines (/NOSYSTEM).

m DBG> SET TRACE/NOSOURCE TEST5\%LINE 14 WHEN (X .NE. 2) DO (EXAMINE Y)

This command causes the debugger to trace line 14 of module TEST5
when X is not equal to 2. At the tracepoint, the command EXAMINE Y is
issued. The /NOSOURCE qualifier suppresses the display of source code
at the tracepoint.

~ DBG> SET TRACE/INSTRUCTION WHEN (X .NE. 0)

This command causes the debugger to trace when X is not equal to 0. The
condition is tested at each instruction encountered during execution.

~ DBG> SET TRACE/SILENT SUB2 DO (SET WATCH K)

This SET TRACE command causes the debugger to trace the beginning
of routine SUB2 during execution. At the tracepoint, the DO clause sets
a watchpoint on variable K. The /SILENT qualifier on the SET TRACE
command suppresses the "trace . . . " message and the display of source
code at the tracepoint. This example shows a convenient way of setting a
watch point on a nonstatic (stack or register) variable. A nonstatic variable
is defined only when its defining routine (SUB2, in this case) is active (on
the call stack).

i DBG> SET TRACE/RETURN ROUT4 DO (EXAMINE X)

This SET TRACE command causes the debugger to trace the RET
instruction of routine ROUT4 (that is, just before execution returns to
the calling routine). At the tracepoint, the DO clause issues the command
EXAMINE X. This example shows a convenient way of obtaining the value
of a nonstatic variable just before execution leaves that variable's defining
routine.

CD-193

SET TRACE

[El DBG> SET TRACE/EVENT=TERMINATED

CD-194

This command causes the debugger to trace the point at which an Ada
task makes a transition to the TERMINATED state.

SET TYPE

FORMAT

SET TYPE

Establishes the default type to be associated with program locations that do
not have a symbolic name (and, therefore, do not have an associated compiler
generated type). When used with /OVERRIDE, establishes the default type to
be associated with all locations, overriding any compiler generated types.

SET TYPE type-keyword

PARAMETERS type-keyword
Specifies the default type to be established. Valid keywords are as follows:

ASCIC

ASCID

ASCll:n

ASCIW

ASCIZ

BYTE

D_FLOAT

DATE_ TIME

Sets the default type to counted ASCII string with a 1-byte
count field that precedes the string and gives its length.
AC is also accepted as a keyword.

Sets the default type to ASCII string descriptor. The
CLASS and DTYPE fields of the descriptor are not
checked, but the LENGTH and POINTER fields provide
the character length and address of the ASCII string.
The string is then displayed. AD is also accepted as a
keyword.

Sets the default type to ASCII character string (length n
bytes). The length indicates both the number of bytes
of memory to be examined and the number of ASCII
characters to be displayed. If you do not specify a value
for n, the debugger uses the default value of 4 bytes. The
value n is interpreted in decimal radix.

Sets the default type to counted ASCII string with a 2-byte
count field that precedes the string and gives its length.
This data type occurs in PASCAL and PUI. AW is also
accepted as a keyword.

Sets the default type to zero-terminated ASCII string. The
ending zero byte indicates the end of the string. AZ is also
accepted as a keyword.

Sets the default type to byte integer (length 1 byte).

Sets the default type to D_floating (length 8 bytes). Values
of type D_floating can range from .29 * 10-38 to 1.7 * 1038

with approximately 16 decimal digits precision.

Sets the default type to date and time. This is a quadword
integer (length 8 bytes) containing the internal VMS
representation of date and time. Values are displayed
in the format dd-mmm-yyyy hh:mm:ss.xx. Specify an
absolute date and time as follows:

[dd-mrmn-yyyy[:JJ [hh:mrn:ss.cc]

CD-195

SET TYPE

QUALIFIERS

FLOAT

G_FLOAT

H_FLOAT

INSTRUCTION

LONGWORD

OCTAWORD

PACKED:n

QUADWORD

TYPE=(expression)

WORD

/OVERRIDE

Sets the default type to F _floating (length 4 bytes). Values
of type F _floating can range from .29 * 10-38 to 1.7 * 1038

with approximately 7 decimal digits precision.

Sets the default type to G_floating (length 8 bytes). Values
of type G_floating can range from .56 * 10-308 to .9 * 10308

with approximately 15 decimal digits precision.

Sets the default type to H_floating (length 16 bytes).
Values of type H_floating can range from .84 * 10-4932 to
.59 * 104932 with approximately 33 decimal digits precision.

Sets the default type to VAX instruction (variable length,
depending on the number of instruction operands and the
kind of addressing modes used).

Sets the default type to longword integer (length 4 bytes).
This is the default type for program locations that do not
have a symbolic name (do not have a compiler generated
type).

Sets the default type to octaword integer (length 16 bytes).

Sets the default type to packed decimal. The value of n
is the number of decimal digits. Each digit occupies one
nibble (4 bits).

Sets the default type to quadword integer (length 8 bytes).

Sets the default type to the type denoted by expression
(the name of a variable or data type declared in the
program). This enables you to specify an application
declared type.

Sets the default type to word integer (length 2 bytes).

Associates the type specified with all program locations, whether or not
they have a symbolic name (whether or not they have an associated
compiler generated type).

DESCRIPTION When you use the EXAMINE, DEPOSIT, or EVALUATE commands,
the default types associated with address expressions influence how the
debugger interprets and displays program entities.

CD-196

The debugger recognizes the compiler generated types associated with
symbolic address expressions (symbolic names declared in your program),
and it interprets and displays the contents of these locations accordingly.
For program locations that do not have a symbolic name and, therefore,
no associated compiler generated type, the default type in all languages is
longword integer.

The SET TYPE command enables you to change the default type
associated with locations that do not have a symbolic name. The SET
TYPE/OVERRIDE command enables you to set a default type for all
program locations, both those that do and do not have a symbolic name.

EXAMPLES

SET TYPE

The EXAMINE and DEPOSIT commands have type qualifiers (!ASCII,
/BYTE, /G_FLOAT, and so on) that enable you to override, for the duration
of a single command, the type previously associated with any program
location.

Related commands: SHOW TYPE, CANCEL TYPE/OVERRIDE, (SET,
SHOW, CANCEL) RADIX, (SET, SHOW, CANCEL) MODE, EXAMINE,
DEPOSIT.

D DBG> SET TYPE ASCII: 8

This command establishes an 8-byte ASCII character string as the default
type associated with untyped program locations.

~ DBG> SET TYPE/OVERRIDE LONGWORD

This command establishes longword integer as the default type associated
with both untyped program locations and program locations that have
compiler generated types.

I] DBG> SET TYPE D FLOAT

This command establishes D_Floating as the default type associated with
untyped program locations.

!J DBG> SET TYPE TYPE= (S_ARRAY)

This command establishes the type of the variable S_ARRAY as the default
type associated with untyped program locations.

CD-197

SET VECTOR MODE

SET VECTOR MODE

FORMAT

Note: This command applies to vectorized programs.

Enables or disables a debugger vector mode option.

SET VECTOR MODE vector-mode-option

PARAMETERS vector-mode-option

DESCRIPTION

CD-198

Specifies the vector mode option. Valid keywords are as follows:

SYNCHRONIZED Specifies that the debugger force automatic synchronization
between the scalar and vector processors whenever a vector
instruction is executed. Specifically, the debugger issues
a SYNC instruction after every vector instruction and, in
addition, an MSYNC instruction after any vector instruction
that accesses memory. This forces the completion of all
activities associated with the vector instruction that is being
synchronized:

Any exception that was caused by a vector instruction is
delivered before the next scalar instruction is executed.
Note that forcing the delivery of a pending exception
triggers an exception breakpoint or tracepoint (if one was
set) or invokes an exception handler (if one is available at
that location in the program).
Any read or write operation between vector registers and
either the general registers or memory is completed before
the next scalar instruction is executed.

Note that the command SET VECTOR_MODE
SYNCHRONIZED does not issue an immediate SYNC or
MSYNC instruction at the time it is issued. Use the command
SYNCHRONIZE VECTOR_MODE to force immediate
synchronization.

NOSYNCHRONIZED Specifies that the debugger not force synchronization between
the scalar and vector processors except for internal debugger
purposes. As a result, any synchronization is controlled entirely
by the program, and the program runs as if it were not under
debugger control. NOSYNCHRONIZED is the default vector
mode.

Vector mode options control the way in which the debugger interacts with
the vector processor. See the parameter descriptions for details about the
SET VECTOR_MODE command.

Related commands: SHOW VECTOR_MODE, SYNCHRONIZE VECTOR_
MODE.

SET VECTOR_MODE

EXAMPLES
D DBG> SET VECTOR MODE SYNCHRONIZED

This command causes the debugger to force synchronization between the
scalar and vector processors after each vector instruction is executed.

DBG> SHOW VECTOR MODE

Vector mode is nonsynchronized
DBG> SET VECTOR_ MODE SYNCHRONIZED 0
DBG> SHOW VECTOR_MODE

Vector mode is synchronized
DBG> STEP ft
stepped to .MAIN.\SUB\%LINE 99

99: VVDIVD Vl,VO,V2
DBG> STEP @)
%SYSTEM-F-VARITH, vector arithmetic fault, summary=00000002,

mask=00000004, PC=000002El, PSL=03C00010
break on unhandled exception preceding .MAIN.\SUB\%LINE 100

100: CLRL RO
DBG>

The comments that follow refer to the callouts in the previous example:

0 The command SET VECTOR_MODE SYNCHRONIZED causes the
debugger to force automatic synchronization between the scalar and
vector processors whenever a vector instruction is executed.

8 This STEP command suspends program execution on line 99, just
before a VVDIVD instruction is executed. Assume that, in this
example, the instruction will trigger a floating-point divide-by-zero
exception.

8 This STEP command executes the VVDIVD instruction, which triggers
the exception. Note that the vector exception is delivered immediately
because the debugger is being operated in synchronized vector mode.

CD-199

SET WATCH

SET WATCH

FORMAT

Establishes a watchpoint at the location denoted by an address expression.

SET WATCH address-expression[, ...]
[WHEN (conditional-expression)]
[DO(command[; ...])]

PARAMETERS address-expression

QUALIFIERS

CD-200

Specifies an address expression (a program location) at which a watchpoint
is to be set. With high-level languages, this is typically the name of a
program variable and can include a path name to specify the variable
uniquely. More generally, an address expression can also be a memory
address or a register and can be composed of numbers (offsets) and
symbols, as well as one or more operators, operands, or delimiters.
Appendix D identifies the operators that can be used in address
expressions.

Do not specify the asterisk wildcard character (*).
See Chapter 11 for information that is specific to vector registers.

conditional-expression
Specifies a conditional expression in the currently set language that is to
be evaluated whenever execution reaches the watchpoint. If the expression
is true, watch action occurs, and the debugger reports that a watchpoint
has been triggered. If the expression is false, watch action does not occur.
In this case, a report is not issued, the commands specified by the DO
clause are not executed, and program execution is continued.

command
Specifies a debugger command to be executed as part of the DO clause
when watch action is taken.

/AFTER:n
Specifies that watch action not be taken until the nth time the designated
watchpoint is encountered (n is a decimal integer). Thereafter, the
watchpoint occurs every time it is encountered provided that conditions in
the WHEN clause are true. The command SET WATCH/AFTER:l has the
same effect as the SET WATCH command.

/INTO
Specifies that the debugger is to monitor a nonstatic variable by tracing
instructions not only within the defining routine, but also within a routine
that is called from the defining routine (and any other such nested calls).
SET WATCH/INTO enables you to monitor nonstatic variables within
called routines more precisely than SET WATCH/OVER; but the speed of
execution within called routines is faster with SET WATCH/OVER.

SET WATCH

/OVER
Specifies that the debugger is to monitor a nonstatic variable by tracing
instructions only within the defining routine, not within a routine that
is called by the defining routine. As a result, the debugger executes a
called routine at normal speed and resumes tracing instructions only when
execution returns to the defining routine. SET WATCWOVER provides
faster execution than SET WATCWINTO; but if a called routine modifies
the watched variable, execution is interrupted only upon returning to the
defining routine. SET WATCWOVER is the default behavior when you set
watchpoints on nonstatic variables.

/SILENT
/NOS/LENT (default)
Controls whether the "watch ... " message and the source line for
the current location are displayed at the watchpoint. The /NOSILENT
qualifier specifies that the message is displayed. The /SILENT qualifier
specifies that the message and source line are not displayed. The /SILENT
qualifier overrides /SOURCE.

/SOURCE (default)
/NOSOURCE
Controls whether the source line for the current location is displayed at
the watchpoint. The /SOURCE qualifier specifies that the source line is
displayed. The /NOSOURCE qualifier specifies that the source line is not
displayed. The /SILENT qualifier overrides /SOURCE. See also SET STEP
[NO]SOURCE.

/STATIC
/NOSTATIC
Enables you to override the debugger's default determination of whether
a specified variable (watch point location) is static or nonstatic. The
/STATIC qualifier specifies that the debugger should treat the variable
as a static variable, even though it might be allocated in Pl space.
This causes the debugger to monitor the location by using the faster
write-protection method rather than by tracing every instruction. The
/NOSTATIC qualifier specifies that the debugger should treat the variable
as a nonstatic variable, even though it might be allocated in PO space.
The /NOSTATIC qualifier causes the debugger to monitor the location by
tracing every instruction. Exercise caution when using these qualifiers.

ff EM PO RARY
Causes the watchpoint to disappear after it is triggered (the watchpoint
does not remain permanently set).

DESCRIPTION When an instruction causes the modification of a watchpoint location, the
debugger takes the following action:

1 Suspends program execution after that instruction has completed
execution.

2 If /AFTER was specified when the watchpoint was set, checks the
AFTER count. If the specified number of counts has not been reached,
execution continues and the debugger does not perform the remaining
steps.

CD-201

SET WATCH

CD-202

3 Evaluates the expression in a WHEN clause, if one was specified
when the watchpoint was set. If the value of the expression is false,
execution continues and the debugger does not perform the remaining
steps.

4 Reports that execution has reached the watchpoint location, unless
/SILENT was specified ("watch of . . . ").

5 Reports the old (unmodified) value at the watchpoint location.

6 Reports the new (modified) value at the watchpoint location.

7 Displays the line of source code at which execution is suspended,
unless /NOSOURCE or /SILENT was specified when the watchpoint
was set, or SET STEP NOSOURCE was entered previously.

8 Executes the commands in a DO clause, if one was specified when
the watchpoint was set. If the DO clause contains a GO command,
execution continues and the debugger does not perform the next step.

9 Issues the prompt.

For high-level language programs, the address expressions you specify
with the SET WATCH command are typically variable names. If you
specify an absolute memory address that is associated with a compiler
generated type, the debugger symbolizes the address and uses the length
in bytes associated with that type to determine the length in bytes of the
watchpoint location. If you specify an absolute memory address that the
debugger cannot associate with a compiler-generated type, the debugger
watches 4 bytes of memory, by default, beginning at the byte identified by
the address expression. You can change this length, however, by setting
the type to either WORD (SET TYPE WORD, which changes the default
length to 2 bytes) or BYTE (SET TYPE BYTE, which changes the default
length to 1 byte). SET TYPE LONGWORD restores the default length of 4
bytes.

You can set watchpoints on aggregates (that is, entire arrays or records).
A watch point set on an array or record triggers if any element of the array
or record changes. Thus, you do not need to set watchpoints on individual
array elements or record components. Note, however, that you cannot set
an aggregate watchpoint on a variant record.

You can also set a watchpoint on a record component, on an individual
array element, or on an array slice (a range of array elements). A
watchpoint set on an array slice triggers if any element within that slice
changes. When setting the watchpoint, use the syntax of the current
language.

See Chapter 11 for information that is specific to vector registers.

The following qualifiers affect what output is seen when a watchpoint is
reached:

/[NOJSILENT
/[NO]SOURCE

SET WATCH

The following qualifiers affect the timing and duration of watchpoints:

/AFTER:n
!TEMPORARY

The following qualifiers apply only to nonstatic variables:

/INTO
/OVER

The following qualifiers are used to override the debugger's determination
of whether a variable is static or nonstatic:

/[NOJSTATIC

Static and Nonstatic Watchpoints

The technique for setting a watchpoint depends on whether the variable is
static or nonstatic. A static variable is associated with the same memory
address throughout execution of the program. You can always set a
watchpoint on a static variable throughout execution.

A nonstatic variable is allocated on the call stack or in a register and has a
value only when its defining routine is active (on the call stack). Therefore,
you can set a watchpoint on a nonstatic variable only when execution is
currently suspended within the scope of the defining routine (including
any routine called by the definining routine). The watchpoint is canceled
when execution returns from the defining routine.

Another distinction between static and nonstatic watchpoints is speed
of execution. To watch a static variable, the debugger write-protects the
page containing the variable. If your program attempts to write to that
page, an access violation occurs and the debugger handles the exception,
determining whether the watched variable was modified. Except when
writing to that page, the program executes at normal speed.

To watch a nonstatic variable, the debugger traces every instruction
in the variable's defining routine and checks the value of the variable
after each instruction has been executed. Since this significantly slows
down execution, the debugger issues a message when you set a nonstatic
watch point.

As explained in the next paragraphs, the /[NO]STATIC and /INTO and
/OVER qualifiers enable you to exercise some control over speed of
execution and other factors when watching variables.

The debugger determines whether a variable is static or nonstatic by
checking how it is allocated. Typically, a static variable is in PO space (0 to
3FFFFFFF, hexadecimal); a nonstatic variable is in Pl space (40000000 to
7FFFFFFF) or in a register. The debugger issues a warning if you try to
set a watchpoint on a variable that is allocated in Pl space or in a register
when execution is not currently suspended within the scope of the defining
routine.

The /[NOJSTATIC qualifiers enable you to override this default behavior.
For example, if you have allocated nonstack storage in Pl space, use
the /STATIC qualifier when setting a watchpoint on a variable that is
allocated in that storage area. This enables the debugger to use the

CD-203

SET WATCH

faster write-protection method of watching the location instead of tracing
every instruction. Conversely, if, for example, you have allocated your
own call stack in PO space, use the /NOSTATIC qualifier when setting a
watchpoint on a variable that is allocated on that call stack. This enables
the debugger to treat the watchpoint as a nonstatic watchpoint.

You can also control the execution speed for nonstatic watchpoints in called
routines by means of the /INTO and /OVER qualifiers.

Global Section Watchpoints

You can set watchpoints on variables or arbitrary program locations in
global sections. A global section is a region of memory that is shared
among all processes of a multiprocess program. A watchpoint that is set
on a location in a global section (a global section watchpoint) triggers when
any process modifies the contents of that location.

You set a global section watchpoint just as you would set a watchpoint on a
static variable. However, because of the way the debugger monitors global
section watchpoints, note the following point. When setting watchpoints
on arrays or records, performance is improved if you specify individual
elements rather than the entire structure with the SET WATCH command.

If you set a watchpoint on a location that is not yet mapped to a global
section, the watchpoint is treated as a conventional static watchpoint.
When the location is subsequently mapped to a global section, the
watchpoint is automatically treated as a global section watchpoint and
an informational message is issued. The watchpoint is then visible from
each process of the multiprocess program.

Related commands: (SHOW, CANCEL) WATCH, SET BREAK, SET
TRACE, SET STEP [NOJSOURCE.

EXAMPLES
D DBG> SET WATCH MAXCOUNT

This command establishes a watchpoint on the variable MAXCOUNT.

~ DBG> SET WATCH ARR
DBG> GO

watch of SUBR\ARR at SUBR\%LINE 12+8
old value:

(1): 7
(2): 12
(3): 3

CD-204

SET WATCH

new value:
(1): 7
(2): 12
(3): 28

break at SUBR\%LINE 14
DBG>

In this example, the SET WATCH command sets a watchpoint on the
three-element integer array, ARR. Execution is then resumed with the GO
command. The watchpoint triggers whenever any array element changes.
In this case the third element changed.

rf] DBG> SET WATCH ARR (3)

In this example, the SET WATCH command sets a watchpoint on element
3 of array ARR (FORTRAN array syntax). The watchpoint triggers
whenever element 3 changes.

!J DBG> SET WATCH P_ARR[3:5]

In this example, the SET WATCH command sets a watchpoint on the array
slice consisting of elements 3 to 5 of array P _ARR (Pascal array syntax).
The watchpoint triggers whenever any of these elements change.

~ DBG> SET TRACE/SILENT SUB2 DO (SET WATCH K)

In this example, variable K is a nonstatic variable and is defined only
when its defining routine, SUB2, is active (on the call stack). The SET
TRACE command sets a tracepoint on SUB2. When the tracepoint is
triggered during execution, the DO clause sets a watchpoint on K. The
watchpoint is then canceled when execution returns from routine SUB2.
The /SILENT qualifier on the SET TRACE command suppresses the
"trace . . . " message and the display of source code at the tracepoint.

ti] DBG 1> SET WATCH ARR (1)
DBG 1> SHOW WATCH
watchpoint of PPL3\ARR(l)
DBG_l> GO
%DEBUG-I-WATVARNOWGBL, watched variable PPL3\ARR(l) has been remapped

to a global section
predefined trace on activation at routine PPL3 in %PROCESS NUMBER 2
predefined trace on activation at routine PPL3 in %PROCESS-NUMBER 3
watch of PPL3\ARR(l) at PPL3\%LINE 93 in %PROCESS_NUMBER 2-

93: ARR(l) = INDEX
old value: 0
new value: 1

break at PPL3\%LINE 94 in %PROCESS NUMBER 2
94: ARR(I) = I

DBG_2> DO (SHOW WATCH)
For %PROCESS NUMBER 1

watchpoint of PPL3\ARR(l) [global-section watchpoint]
For %PROCESS NUMBER 2

watchpoint-of PPL3\ARR(l) [global-section watchpoint]
For %PROCESS NUMBER 3

watchpoint-of PPL3\ARR(l) [global-section watchpoint]
DBG 2>

CD-205

SET WATCH

CD-206

In this example of a global section watchpoint, the SET WATCH command
sets a watchpoint on element 1 of array ARR. Because ARR has not yet
been mapped to a global section, the SHOW WATCH command identifies
the watchpoint as a conventional static watchpoint.

After the GO command resumes execution, ARR is remapped to a global
section. The watchpoint is automatically treated as a global section
watch point.

Processes 2 and 3 come under debugger control, then the watchpoint is
triggered in process 2, interrupting execution. At this point, the SHOW
WATCH command confirms that the watchpoint is visible from each
process.

SET WINDOW

SET WINDOW

FORMAT

PARAMETERS

DESCRIPTION

Creates a screen window definition.

SET WINDOW wname AT (start-line, line-count
[,start-col, col-count])

wname
Specifies the name of the window you are defining. If a window definition
with that name already exists, it is canceled in favor of the new definition.

start-line
Specifies the starting line number of the window. This line displays the
window title, or header line. The top line of the screen is line 1.

line-count
Specifies the number of text lines in the window, not counting the header
line. Line-count must be at least 1. The sum of start-line and line-count
must not exceed the current screen height.

start-col
Specifies the starting column number of the window. This is the column at
which the first character of the window is displayed. The leftmost column
of the screen is column 1.

col-count
Specifies the number of characters per line in the window. Col-count must
be at least 1. The sum of start-col and col-count must not exceed the
current screen width.

A screen window is a rectangular region on the terminal screen through
which you can view a display. The SET WINDOW command establishes a
window definition by associating a window name with a screen region. You
specify the screen region in terms of a starting line and height (line count)
and, optionally, a starting column and width (column count). If you do not
specify the starting column and column count, they default to column 1
and the current screen width.

You can specify a window region in terms of expressions that use the
built-in symbols %PAGE and %WIDTH.

You can use the names of any windows you have defined with the SET
WINDOW command in a DISPLAY command to position displays on the
screen.

Window definitions are dynamic-that is, window dimensions expand and
contract proportionally when a SET TERMINAL command changes the
screen width or height.

CD-207

SET WINDOW

EXAMPLES

Related commands: (SHOW, CANCEL) WINDOW, (SET SHOW, CANCEL)
DISPLAY, DISPLAY, (SET, SHOW) TERMINAL.

D DBG> SET WINDOW ONE LINE AT (1, 1)

This command defines a window named ONELINE at the top of the screen.
The window is one line deep and, by default, spans the width of the screen.

~ DBG> SET WINDOW MIDDLE AT (9, 4, 30, 20)

This command defines a window named MIDDLE at the middle of the
screen. The window is 4 lines deep starting at line 9, and 20 columns wide
starting at column 30.

~ DBG> SET WINDOW FLEX AT (%PAGE/4,%PAGE/2,%WIDTH/4,%WIDTH/2)

CD-208

This command defines a window named FLEX that occupies a region
around the middle of the screen and is defined in terms of the current
screen height (%PAGE) and width (%WIDTH).

SHOW ABORT _KEY

SHOW ABORT KEY

Identifies the CTRL-key sequence currently defined to abort the execution of
a debugger command or to interrupt program execution.

FORMAT SHOW ABORT KEY

DESCRIPTION By default, the CTRUC sequence, when entered within a debugging
session, aborts the execution of a debugger command and interrupts
program execution. The SET ABORT_KEY command enables you to
assign the abort function to another CTRL-key sequence. The SHOW
ABORT_KEY command identifies the CTRL-key sequence currently in
effect for the abort function.

Related commands: CTRUC, SET ABORT_KEY.

EXAMPLE
DBG> SHOW ABORT KEY
Abort Command Key is CTRL C

DBG> SET ABORT KEY = CTRL P
DBG> SHOW ABORT KEY -
Abort Command Key is CTRL P
DBG>

The first SHOW ABORT_KEY command identifies the default abort
command key sequence, CTRUC. The command SET ABORT_KEY =
CTRL_P assigns the abort-command function to the CTRUP sequence, as
verified by the second SHOW ABORT_KEY command.

CD-209

SHOW AST

SHOW AST

Indicates whether delivery of ASTs is enabled or disabled.

FORMAT SHOW AST

DESCRIPTION The SHOW AST command indicates whether delivery of ASTs is enabled
or disabled. Note that the command does not identify an AST whose
delivery is pending. The delivery of ASTs is enabled by default and with
the ENABLE AST command. The delivery of ASTs is disabled with the
DISABLE AST command.

EXAMPLE
DBG> AST'
ASTs are enabled
DBG> AST
DBG> .i\ST
ASTs are disabled
DBG>

CD-210

Related commands: (ENABLE, DISABLE) AST.

The SHOW AST command indicates whether the delivery of ASTs is
enabled.

SHOW ATSIGN

SHOW ATSIGN

Identifies the default file specification established with the last SET ATSIGN
command. The debugger uses this file specification when processing the
@file-spec command.

FORMAT SHOW ATSIGN

DESCRIPTION Related commands: SET ATSIGN, @file-spec.

EXAMPLES
D DBG> SHOW ATSIGN

No indirect corrunand file default in effect, using DEBUG.COM
DBG>

This example shows that, if the SET ATSIGN command was not used,
command procedures are assumed to have the default file specification
SYS$DISK:[]DEBUG.COM.

~ DBG> SET ATSIGN USER: [JONES.DEBUG] .DBG
DBG> SHOW ATSIGN
Indirect corrunand file default is USER: [JONES.DEBUG] .DBG
DBG>

In this example, the SHOW ATSIGN command indicates the default file
specification for command procedures, as previously established with the
SET ATSIGN command.

CD-211

SHOW BREAK

SHOW BREAK

Displays information about breakpoints.

FORMAT SHOW BREAK

QUALIFIERS /PREDEFINED
Displays information about predefined breakpoints.

/USER
Displays information about user defined breakpoints.

DESCRIPTION The SHOW BREAK command displays information about breakpoints that
are currently set, including any options such as WHEN or DO clauses,

EXAMPLES

I AFTER counts, and so on.

By default, SHOW BREAK displays information about both user defined
and predefined breakpoints (if any). This is equivalent to entering the
command SHOW BREAK/USER/PREDEFINED. User defined breakpoints
are set with the SET BREAK command. Predefined breakpoints are set
automatically when you invoke the debugger, and they depend on the type
of program you are debugging.

See Section 9.3.2 for information about predefined breakpoints that are
associated with Ada tasking exception events.

If you established a breakpoint using the I AFTER:n command qualifier
with the SET BREAK command, the SHOW BREAK command displays
the current value of the decimal integer n, that is, the originally specified
integer value minus one for each time the breakpoint location was reached.
(The debugger decrements n each time the breakpoint location is reached
until the value of n is zero, at which time the debugger takes break action.)

Related commands: (SET, CANCEL) BREAK.

D DBG> SHOW BREAK
breakpoint at SUBl\LOOP
breakpoint at MAIN\MAIN+lF

do (EX SUBl\D ; EX/SYMBOLIC PSL; GO)
breakpoint at routine SUB2\SUB2

/after: 2
DBG>

CD-212

The SHOW BREAK command identifies all breakpoints that are
currently set. This example indicates user defined breakpoints that are
triggered whenever execution reaches SUBl\LOOP, MAIN\MAIN, and
SUB2\ SUB2, respectively.

~ DBG> SHOW BREAK/PREDEFINED
predefined breakpoint on Ada event "DEPENDENTS EXCEPTION"

for any value
predefined breakpoint on Ada event "EXCEPTION TERMINATED"

for any value
DBG>

SHOW BREAK

This command identifies the predefined breakpoints that are currently set.
The example shows two predefined breakpoints, which are associated with
Ada tasking exception events. These breakpoints are set automatically by
the debugger for all Ada programs and for any mixed language program
that is linked with an Ada module.

CD-213

SHOW CALLS

SHOW CALLS

FORMAT

PARAMETERS

DESCRIPTION

CD-214

Identifies the currently active routine calls (the call stack).

SHOW CALLS [n]

n
A decimal integer that specifies the number of call frames to be identified.
By default, all currently active call frames are identified.

Whenever a call is made to a routine as your program executes, the VMS
operating system creates a separate call frame on the call stack. Each call
frame stores information about the calling routine. The call frame for the
most recently called routine is on the top of the call stack.

When a routine returns execution to its caller, the call frame for that
routine is removed from the call stack.

The SHOW CALLS command shows a traceback that lists the sequence of
active routine calls that lead to the routine in which execution is currently
suspended. Any recursive routine calls are shown in the display, so you
can use the SHOW CALLS command to examine the chain of recursion.

One line of information is displayed for each call frame, starting with the
most recent call. The top line identifies the currently executing routine,
the next line identifies its caller, the following line identifies the caller of
the caller, and so on.

The following information is provided for each call frame:

• The name of the enclosing module. An asterisk (*) to the left of a
module name indicates that the module is set.

• The name of the calling routine, provided the module is set (the first
line shows the currently executing routine).

• The line number where the call was made in that routine, provided the
module is set (the first line shows the line number at which execution
is suspended).

• The value of the PC in the calling routine at the time that control was
transferred to the called routine. The PC value is shown as a memory
address relative to the address of the name of the routine and also as
an absolute address.

Note that, even if your program contains no routine calls, the SHOW
CALLS command displays an active call. The reason for this is that your
program has a stack frame built for it when it is first activated. Thus, if
the SHOW CALLS display shows no active calls, either your program has
terminated or the call stack has been corrupted.

Related commands: SHOW STACK, SHOW SCOPE.

SHOW CALLS

EXAMPLE
DBG> SHOW CALLS

module name routine name line rel PC abs PC

SUB2
*SUBl
*MAIN
DBG>

SUB2
SUBl
MAIN

5
10

00000002
00000014
0000002C

0000085A
00000854
0000082C

This command displays information about the sequence of currently active
procedure calls.

CD-215

SHOW DEFINE

SHOW DEFINE

Identifies the default qualifier (/ADDRESS, /COMMAND, /PROCESS_GROUP,
or /VALUE) currently in effect for the DEFINE command.

FORMAT SHOW DEFINE

DESCRIPTION The default qualifier for the DEFINE command is the default qualifier
last established with the SET DEFINE command. If no SET DEFINE
command was entered, the default qualifier is I ADDRESS.

EXAMPLE
DBG> SHOW DEFINE

To identify a symbol defined with the DEFINE command, use the SHOW
SYMBOL/DEFINED command.

Related commands: SET DEFINE, DEFINE, DEFINE/PROCESS_GROUP,
DELETE, SHOW SYMBOL/DEFINED.

Current setting is: DEFINE/ADDRESS
DBG>

CD-216

The SHOW DEFINE command indicates that the DEFINE command is set
for definition by address.

SHOW DISPLAY

SHOW DISPLAY

Identifies one or more existing screen displays.

FORMAT SHOW DISPLAY [disp-name[, ... 11

PARAMETERS disp-name
Specifies the name of a display. If you do not specify a name, or if you
specify the asterisk wildcard character (*) by itself, all display definitions
are listed. You can use * within a display name. Do not specify a display
name with /ALL.

QUALIFIERS /ALL
Lists all display definitions. Do not specify a display name with /ALL.

!SUFFIX[=process-identifier-type]
Note: This qualifier applies to a multiprocess debugging
configuration (when DBG$PROCESS has the value
MULTIPROCESS). Use this qualifier only directly after a display
name.

Appends a process-identifying suffix to a display name. The suffix denotes
the visible process at the time the command was issued. This qualifier is
used primarily in command procedures when specifying display definitions
or key definitions that are bound to display definitions.

Use any of the following process-identifier-type keywords:

PROCESS_NAME The display-name suffix is the VMS process name.

PROCESS_NUMBER The display-name suffix is the process number (as shown in
a SHOW PROCESS display).

PROCESS_PID The display-name suffix is the VMS process identification
number (PIO).

If you specify /SUFFIX without a process-identifier-type keyword, the
process identifier type used for the display-name suffix is, by default, the
same as that used for the prompt suffix (see SET PROMPT/SUFFIX).

DESCRIPTION The SHOW DISPLAY command lists all displays according to their order
in the display list. The most hidden display is listed first, and the display
that is on top of the display pasteboard is listed last.

For each display, the SHOW DISPLAY command lists its name, maximum
size, screen window, and display kind (including any debug command list).
It also identifies whether the display is removed from the pasteboard or is
dynamic (a dynamic display automatically adjusts its window dimensions
if the screen size is changed with the SET TERMINAL command).

Related commands: (SET, CANCEL) DISPLAY, DISPLAY, (SET, CANCEL,
SHOW WINDOW), SHOW SELECT, EXTRACT/SCREEN_LAYOUT.

CD-217

SHOW DISPLAY

EXAMPLE
DBG> SHOW DISPLAY
display SRC at Hl, size = 64, dynamic

kind = SOURCE (EXAMINE/SOURCE .%SOURCE SCOPE\%PC)
display INST at Hl, size = 64, removed, dynamic

kind = INSTRUCTION (EXAMINE/INSTRUCTION .O\%PC)
display REG at RHl, size = 64, removed, dynamic, kind = REGISTER
display OUT at S45, size = 100, dynamic, kind = OUTPUT
display EXSUM at Q3, size = 64, dynamic, kind = DO (EXAMINE SUM)
display PROMPT at S6, size = 64, dynamic, kind = PROGRAM
DBG>

CD-218

The SHOW DISPLAY command lists all displays currently defined. In
this example, they include the five predefined displays (SRC, INST, REG,
OUT, and PROMPT), and the user-defined DO display EXSUM. Displays
INST and REG are removed from the display pasteboard: the DISPLAY
command must be used in order to display them on the screen.

SHOW EDITOR

SHOW EDITOR

Indicates the action taken by the EDIT command, as established by the SET
EDITOR command.

FORMAT SHOW EDITOR

DESCRIPTION Related commands: SET EDITOR, EDIT.

EXAMPLES
D DBG> SHOW EDITOR

The editor is SPAWNed, with command line
"LSEDIT/START_POSITION=(n,1)"

DBG>

This command indicates that, when you enter the EDIT command, you
spawn the VAX Language-Sensitive Editor in a subprocess. The /START_
POSITION qualifier that is appended to the command line indicates that
the editing cursor is initially positioned at the beginning of the line that is
centered in the debugger's current source display.

~ DBG> SET EDITOR/CALLABLE_TPU
DBG> SHOW EDITOR
The editor is CALLABLE_TPU, with command line "TPU"
DBG>

In this example, the SHOW EDITOR command indicates that, when you
enter the EDIT command, you invoke the callable version of the VAX Text
Processing Utility (VAXTPU). The editing cursor is initially positioned at
the beginning of source line 1.

CD-219

SHOW EVENT FACILITY

SHOW EVENT FACILITY

Identifies the current run-time facility for eventpoints and the associated event
names.

Note: This command applies to Ada and SCAN programs. See the VAX
Ada and VAX SCAN documentation for complete information.

FORMAT SHOW EVENT FACILITY

DESCRIPTION The SHOW EVENT_FACILITY command is meaningful only with Ada or
SCAN programs. The command identifies the current run-time facility and
lists the associated event names that can be used with the SET BREAK
/EVENT and SET TRACE/EVENT commands. The event names associated
with the Ada and SCAN run-time facilities are identified in Appendix E.

EXAMPLE

Related commands: SET EVENT_FACILITY, (SET, CANCEL) BREAK
/EVENT, SHOW BREAK, (SET, CANCEL) TRACE/EVENT, SHOW
TRACE.

DBG> SHOW EVENT_FACILITY
event facility is ADA
DBG>

CD-220

This command identifies the current event facility to be Ada and lists the
associated event names that can be used with a SET BREAK/EVENT or
SET TRACE/EVENT command.

SHOW EXIT HANDLERS

SHOW EXIT HANDLERS

Identifies the exit handlers that have been declared in your program.

FORMAT SHOW EXIT HANDLERS

DESCRIPTION The exit handler routines are displayed in the order that they are called
(that is, last in, first out). The routine name is displayed symbolically, if
possible. Otherwise, its address is displayed. The debugger's exit handlers
are not displayed.

EXAMPLE
DBG> SHOW EXIT_HANDLERS
exit handler at STACKS\CLEANUP
DBG>

This command identifies the exit handler routine CLEANUP, which is
declared in module STACKS.

CD-221

SHOW IMAGE

SHOW IMAGE

FORMAT

Displays information about one or more shareable images that are part of your
running program.

SHOW IMAGE [image-name]

PARAMETERS image-name
Specifies the name of a shareable image to be included in the display. If
you do not specify a name, or if you specify the asterisk wildcard character
(*) by itself, all images are listed. You can use * within an image name.

DESCRIPTION The SHOW IMAGE command displays the following information:

EXAMPLE

• Name of the shareable image

• Start and end addresses of the image

• Whether the image has been set with the SET IMAGE command
(loaded into the RST)

• Current image that is your debugging context (marked with an
asterisk)

• Total number of images selected in the display

• Number of bytes allocated for the RST and other internal structures

Related commands: (SET, CANCEL) IMAGE, (SET, SHOW, CANCEL)
MODULE.

DBG> SHOW IMAGE SHARE*
image name

*SHARE
SHAREl
SHARE2
SHARE3
SHARE4

total images: 5
DBG>

CD-222

set base address end address

yes 00000200 OOOOOFFF
no 00001000 000017FF
yes 00018COO 000191FF
no 00019200 000195FF
no 00019600 0001B7FF

bytes allocated: 33032

This SHOW IMAGE command identifies all of the shareable images whose
names start with "SHARE" and which are associated with the program.
Images SHARE and SHARE2 are set. The asterisk identifies SHARE as
the current image.

SHOW KEV

SHOW KEY

FORMAT

Displays the debugger predefined key definitions and those created by the
DEFINE/KEY command.

SHOW KEV [key-name]

PARAMETERS key-name

Key-name

PF1

PF2

PF3

PF4

KPO- KP9

PERIOD

COMMA

MINUS

ENTER

E1

E2

E3

E4

E5

E6

HELP

DO

F6 - F20

Specifies a function key whose definition is displayed. Do not use the
asterisk wildcard character (*). Do not specify a key name with /ALL.
Valid key names are as follows:

LK201 Keyboard

PF1

PF2

PF3

PF4

Keypad 0- 9

Keypad period (.)

Keypad comma (,)

Keypad minus (-)

ENTER

Find

Insert Here

Remove

Select

Prev Screen

Next Screen

Help

Do

F6- F20

VT100-type

PF1

PF2

PF3

PF4

Keypad O - 9

Keypad period (.)

Keypad comma (,)

Keypad minus (-)

ENTER

VT52-type

Blue

Red

Black

Keypad O - 9

ENTER

QUALIFIERS /ALL
Displays all key definitions for the current state, by default, or for the
states specified with the /STATE qualifier. Do not specify a key name with
/ALL.

/BRIEF
Displays only the key definitions (by default, all the qualifiers associated
with a key definition are also shown, including any specified state).

CD-223

SHOW KEY

/DIRECTORY
Displays the names of all the states for which keys have been defined. Do
not specify other qualifiers with /DIRECTORY.

/STATE=(state-name[, ...])
/NOSTATE (default)
Selects one or more states for which a key definition is displayed. The
/STATE qualifier displays key definitions for the specified states. You
can specify predefined key states, such as DEFAULT and GOLD, or user
defined states. A state name can be any appropriate alphanumeric string.
The /NOSTATE qualifier displays key definitions for the current state only.

DESCRIPTION Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

EXAMPLES

By default, the current key state is the 11 DEFAULT 11 state. The current
state can be changed with the SET KEY/STATE command, or by pressing
a key that causes a state change (a key that was defined with the DEFINE
/KEY/LOCK_STATE/STATE qualifier combination).

Related commands: DEFINE/KEY, DELETE/KEY, SET KEY.

D DBG> SHOW KEY I ALL

This command displays all the key definitions for the current state.

~ DBG> SHOW KEY/STATE=BLUE KP8
GOLD keypad definitions:

KP8 "Scroll/Top" (noecho,terminate,nolock)
DBG>

This command displays the definition for keypad key 8 in the BLUE state.

i] DBG> SHOW KEY /BRIEF KP 8
DEFAULT keypad definitions:

KP8 "Scroll/Up"
DBG>

CD-224

This command displays the definition for keypad key 8 in the current key
state.

SHOW KEY

!J DBG> SHOW KEY /DIRECTORY
MOVE GOLD
MOVE BLUE
MOVE
GOLD
EXPAND GOLD
EXPAND BLUE
EXPAND
DEFAULT
CONTRACT GOLD
CONTRACT BLUE
CONTRACT
BLUE
DBG>

This command displays the names of the states for which keys have been
defined.

CD-225

SHOW LANGUAGE

SHOW LANGUAGE

Identifies the current language.

FORMAT SHOW LANGUAGE

DESCRIPTION The current language is the language last established with the SET
LANGUAGE command. If no SET LANGUAGE command was entered,
the current language is, by default, the language of the module containing
the main program.

EXAMPLE
DBG> SHOW LANGUAGE
language: BASIC
DBG>

CD-226

Related commands: SET LANGUAGE.

This command displays the name of the current language as BASIC.

SHOW LOG

SHOW LOG

Indicates whether the debugger is writing to a log file and identifies the current
log file.

FORMAT SHOW LOG

DESCRIPTION The current log file is the log file last established by a SET LOG command.

EXAMPLES
D DBG> SHOW LOG

If no SET LOG command was entered, the current log file is the file
SYS$DISK:[]DEBUG.LOG by default.

Related commands: SET LOG, SET OUTPUT [NO]LOG, SET OUTPUT
[NO]SCREEN_LOG.

not logging to DEBUG.LOG
DBG>

This command displays the name of the current log file as DEBUG.LOG
(the default log file) and reports that the debugger is not writing to it.

m DBG> SET LOG PROG4
DBG> SET OUTPUT LOG
DBG> SHOW LOG
logging to USER$: [JONES.WORK]PROG4.LOG
DBG>

In this example, the SET LOG command establishes that the current log
file is PROG4.LOG (in the current default directory). The SET OUTPUT
LOG command causes the debugger to log debugger input and output into
that file. The SHOW LOG command confirms that the debugger is writing
to the log file PROG4.COM in the current default directory.

CD-227

SHOW MARGINS

SHOW MARGINS

Identifies the current source-line margin settings for the display of source
code.

FORMAT SHOW MARGINS

DESCRIPTION The current margin settings are the margin settings last established
with the SET MARGINS command. If no SET MARGINS command was
entered, the left margin is set to 1 and the right margin is set to 255 by
default.

Related commands: SET MARGINS.

EXAMPLES
D DBG> SHOW MARGINS

left margin: 1 , right margin: 255
DBG>

This command displays the default margin settings of 1 and 255.

II DBG> SET MARGINS 50
DBG> SHOW MARGINS
left margin: 1 , right margin: 50
DBG>

This command displays the default left margin setting of 1 and the
modified right margin setting of 50.

i] DBG> SET MARGINS 10: 60
DBG> SHOW MARGINS
left margin: 10 , right margin: 60
DBG>

This command displays both margin settings modified to 10 and 60.

CD-228

SHOW MAX_SOURCE_FILES

SHOW MAX SOURCE FILES

Identifies the maximum number of source files that the debugger can keep
open at any one time.

FORMAT SHOW MAX_SOURCE_FILES

DESCRIPTION The maximum number of source files that the debugger can keep open
at any one time can be specified using the SET MAX_SOURCE_FILES
command. If no SET MAX_SOURCE_FILES command was entered, the
maximum number of files is 5 by default.

EXAMPLE

Related commands: SET MAX_SOURCE_FILES, (SET, SHOW, CANCEL)
SOURCE.

DBG> SHOW MAX SOURCE FILES
max_source_files: 7
DBG>

This command shows that the debugger can keep a maximum of 7 source
files open at any one time.

CD-229

SHOW MODE

SHOW MODE

Identifies the current debugger modes (screen or no screen, keypad or
nokeypad, and so on) and the current radix.

FORMAT SHOW MODE

DESCRIPTION The current debugger modes are the modes last established with the SET
MODE command. If no SET MODE command was entered, the current
modes are, by default: DYNAMIC, NOG_FLOAT (D_float), INTERRUPT,
KEYPAD, LINE, NOSCREEN, SCROLL, NOSEPARATE, SYMBOLIC.

EXAMPLE
DBG> SHOW MODE

Related commands: (SET, CANCEL) MODE, (SET, SHOW, CANCEL)
RADIX.

modes: symbolic, line, d float, screen, scroll, keypad,
dynamic, interrupt, no separate window

input radix :decimal
output radix:decimal
DBG>

CD-230

The SHOW MODE command displays the current modes and current
input and output radix.

SHOW MODULE

SHOW MODULE

Displays information about the modules in the current image.

FORMAT SHOW MODULE [module-name]

PARAMETERS module-name
Specifies the name of a module to be included in the display. If you do
not specify a name, or if you specify the asterisk wildcard character (*)
by itself, all modules are listed. You can use * within a module name.
Shareable image modules are selected only if the /SHARE qualifier is
specified.

QUALIFIERS /RELATED
/NOR ELATED (default)
Note: This qualifier applies to Ada programs.

Controls whether the debugger includes, in the SHOW MODULE display,
any module that is related to a specified module through a with-clause or
subunit relationship.

SHOW MODULE/RELATED displays related modules as well as those
specified. The display identifies the exact relationship. By default
(/NORELATED), no related modules are selected for display (only the
modules specified are selected).

/SHARE
/NOSHARE (default)
Controls whether the debugger includes, in the SHOW MODULE display,
any shareable images that have been linked with your program. By
default (/NOSHARE) no shareable image modules are selected for display.

The debugger creates dummy modules for each shareable image in your
program. The names of these shareable "image modules" have the prefix
11 SHARE$ 11

• SHOW MODULE/SHARE identifies these shareable image
modules, as well as the modules in the current image.

Setting a shareable image module loads the universal symbols for that
image into the run-time symbol table so that you can reference these
symbols from the current image. However, you cannot reference other
(local or global) symbols in that image from the current image. Note that
this feature overlaps the effect of the newer SET IMAGE and SHOW
IMAGE commands.

DESCRIPTION Note: The current image is either the main image (by default)
or the image established as the current image by a previous SET
IMAGE command.

CD-231

SHOW MODULE

EXAMPLES
D DBG> SHOW MODULE

module name

TEST
SCREEN IO

The SHOW MODULE command displays the following information about
one or more modules selected for display:

• Name of the module.

• Programming language in which the module is coded, unless all
modules are coded in the same language.

• Whether the module has been set with the SET MODULE command.
That is, whether the symbol records of the module have been loaded
into the debugger's run-time symbol table (RST).

• Space (in bytes) required in the RST for symbol records in that module.

• Total number of modules selected in the display.

• Number of bytes allocated for the RST and other internal structures
(the amount of heap space in use in the main debugger's process).

Related commands: (SET, CANCEL) MODULE, (SET, SHOW, CANCEL)
IMAGE, SET MODE [NO]DYNAMIC, SHOW SYMBOL, (SET, SHOW,
CANCEL) SCOPE.

symbols size

yes 432
no 280

total PASCAL modules: 2.
DBG>

bytes allocated: 2740.

~ DBG> SHOW MODULE
module name

FOO
MAIN
SUBl
SUB2

In this example, the SHOW MODULE command, without a parameter
specified, displays information about all of the modules in the current
image, which is the main image by default. This example shows the
display format when all modules have the same source language. The
"symbols" column shows that module TEST has been set, but module
SCREEN_IO has not.

FOO, MAIN, SUB*
symbols language size

yes MACRO 432
no FORTRAN 280
no FORTRAN 164
no FORTRAN 204

total modules: 4. bytes allocated: 60720.
DBG>

CD-232

In this example, the SHOW MODULE command displays information
about the modules FOO and MAIN, and all modules having the prefix
SUB. This example shows the display format when the modules do not
have the same source language.

DBG> SHOW MODULE/SHARE
module name

FOO
MAIN

SHARE$DEBUG
SHARE$LIBRTL
SHARE$MTHRTL
SHARE$SHARE1
SHARE$SHARE2

symbols language

yes
no

no
no
no
no
no

MACRO
FORTRAN

Image
Image
Image
Image
Image

size

432
280

0
0
0
0
0

total modules: 17. bytes allocated: 162280.
DBG> SET MODULE SHARE$SHARE2
DBG> SHOW SYMBOL * IN SHARE$SHARE2
DBG>

SHOW MODULE

In this example, the command SHOW MODULE/SHARE identifies all
of the modules in the current image and all of the shareable images
(the names of the shareable images are prefixed with 11 SHARE$ 11

). The
command SET MODULE SHARE$SHARE2 sets the shareable image
module SHARE$SHARE2. The SHOW SYMBOL command identifies any
universal symbols defined in the shareable image SHARE2.

CD-233

SHOW OUTPUT

SHOW OUTPUT

Identifies the current output options.

FORMAT SHOW OUTPUT

DESCRIPTION The current output options are the options last established with the SET
OUTPUT command. If no SET OUTPUT command was entered, the
output options are, by default: NOLOG, NOSCREEN_LOG, TERMINAL,
NOVERIFY.

Related commands: SET OUTPUT, SET LOG, SET MODE SCREEN.

EXAMPLE
DBG> SHOW OUTPUT
noverify, terminal, screen log,

logging to USER$: [JONES.WORK]DEBUG.LOG;9
DBG>

CD-234

This command shows the following current output options:

• Debugger commands read from debugger command procedures are not
echoed on the terminal.

• Debugger output is being displayed on the terminal.

• The debugging session is being logged to the log file
USER$:[JONES.WORK]DEBUG.LOG;9.

• The screen contents are logged as they are updated in screen mode.

SHOW PROCESS

SHOW PROCESS

FORMAT

Displays information about processes that are currently under debugger
control. This command applies especially to a multiprocess debugging
configuration (when DBG$PROCESS has the value MULTIPROCESS).

SHOW PROCESS [process-spec[, ...]]

PARAMETERS process-spec

QUALIFIERS

Specifies a process. Use any of the following forms:

[%PROCESS_NAME] process-name

[%PROCESS_NAME] "process-name"

%PROCESS_PID process_id

%PROCESS_NUMBER process-number (or
%PROC process-number)

process-group-name

%NEXT _PROCESS

%PREVIOUS_PROCESS

%VISIBLE_PROCESS

The VMS process name, if that name
contains no space or lowercase
characters. The process name can
include the asterisk wildcard character
(*).

The VMS process name, if that
name contains space or lowercase
characters. You can also use
apostrophes (') instead of quotation
marks (").

The VMS process identification number
(PID, a hexadecimal number).

The number assigned to a process
when it comes under debugger control.
Process numbers appear in a SHOW
PROCESS display.

A symbol defined with the DEFINE
/PROCESS_GROUP command to
represent a group of processes.

The process after the visible process in
the debugger's circular process list.

The process previous to the visible
process in the debugger's circular
process list.

The process whose call stack, register
set, and images are the current context
for looking up symbols, register values,
routine calls, breakpoints, and so on.

You can also use the asterisk wildcard character (*) to specify all
processes. If you do not specify a process, the visible process is selected,
unless you specify I ALL.

/ALL
Selects all processes known to the debugger for display. Do not specify a
process with /ALL.

CD-235

SHOW PROCESS

!BRIEF
Displays only one line of information for each process selected for display.
The /BRIEF qualifier is the default.

!DYNAMIC
Shows whether dynamic process setting is enabled or disabled. Dynamic
process setting is enabled by default and is controlled with the command
SET PROCESS/[NOJDYNAMIC.

Do not specify a process with /DYNAMIC. Do not specify /ALL, /BRIEF,
/FULL, /[NOJHOLD, or NISIBLE with /DYNAMIC.

/FULL
Displays maximum information for each process selected for display.

!HOLD
!NOH OLD
Selects either processes that are on hold, or processes that are not on hold
for display.

If you do not specify a process, /HOLD selects all processes that are on
hold. If you specify a process list, /HOLD selects the processes in the list
that are on hold.

If you do not specify a process, /NO HOLD selects all processes that are not
on hold. If you specify a process list, /NO HOLD selects the processes in
the list that are not on hold.

If you specify both /HOLD and /NOHOLD on the same command line, the
effect is to select processes that are on hold and processes that are not on
hold for display (the qualifier specified last on the command line does not
override the other).

/VISIBLE
Selects the visible process for display. If you do not specify NISIBLE, it is
assumed by default.

DESCRIPTION The SHOW PROCESS command displays information about specified
processes and any images running in those processes.

CD-236

When used with the /FULL qualifier, the SHOW PROCESS command
also displays information about the availability and use of the vector
processor-information that is useful if you are debugging a program that
uses vector instructions.

A process can first appear in a SHOW PROCESS display as soon as it
comes under debugger control. A process can no longer appear in a SHOW
PROCESS display if it is terminated through an EXIT or QUIT command.

By default (/BRIEF), one line of information is displayed for each process,
including as follows:

• The process number assigned by the debugger. A process number is
assigned sequentially, starting with process 1, to each process that
comes under debugger control. If a process is terminated by an EXIT
or QUIT command, its process number is not reused during that

SHOW PROCESS

debugging session. The visible process is marked with an asterisk (*)
in the leftmost column.

• The VMS process name.

• Whether the process has been put on hold with a SET PROCESS
/HOLD command.

• The current debugging state for that process (see Table CD-1).

• The location (symbolized, if possible) at which execution of the image
is suspended in that process.

Table CD-1 Debugging States

Activated The image and its process have just been brought under
debugger control, either through a DCL RUN/DEBUG
command, a debugger CONNECT command, a CTRUY
DEBUG sequence, or by the program signaling SS$_
DEBUG while it was not under debugger control.

Break
Break on branch
Break on call
Break on instruction
Break on lines
Break on modify of
Break on return
Exception break
Excep. break preceding

Interrupted

Step
Step on return

Terminated

Trace
Trace on branch
Trace on call
Trace on instruction
Trace on lines
Trace on modify of
Trace on return
Exception trace
Excep. trace preceding

Unhandled exception

Watch of

A breakpoint was triggered.

Execution was interrupted in that process, either because
execution was suspended in another process, or because
the user interrupted program execution with the abort-key
sequence (CTRUC by default).

A STEP command has completed.

The image indicated has terminated execution but the
process is still under debugger control. Therefore, you
can obtain information about the image and its process.
You can use the EXIT or QUIT command to terminate the
process.

A tracepoint was triggered.

An unhandled exception was encountered.

A watchpoint was triggered.

The SHOW PROCESS/FULL gives additional information about processes
(see the examples).

CD-237

SHOW PROCESS

Related commands: SET PROCESS, EXIT, QUIT, DEFINE/PROCESS_
GROUP, CTRIJC, CONNECT.

EXAMPLES

D DBG 2> SHOW PROCESS
Number Name

* 2 WTA3:
DBG 2>

Hold State
HOLD break

Current PC
SCREEN\%LINE 47

The SHOW PROCESS command, by default, displays one line of
information about the visible process (which is identified with an asterisk
in the leftmost column. The process has the VMS process name _ WTA3:.
It is the second process brought under debugger control (process number
2). It is on hold, and the image's execution is suspended at a breakpoint at
line 47 of module SCREEN.

~ DBG 2> SHOW PROCESS/FULL %PREVIOUS PROCESS
Process number: 1
Hold: NO
Current PC: TEST_VALVES\%LINE 153
State: interrupted
PID: 20400885
Current/Base priority: 5/4

Process name: JONES 1:
Visible process: NO

Owner PID: 00000000
Terminal: VTA79:

Image name: USER$: [JONES.PROGl]TEST_VALVES.EXE;31

Elapsed CPU time: 0 00:03:17.17
Buffered I/O Count: 14894
Direct I/O Count: 6956
Open file count: 7
Enqueue count: 200
Vector capable: Yes
Vector consumer: Yes
Fast Vector context switches: 0
Current working set size: 1102
Current working set extent: 12288

CPU Limit: Infinite
Remaining buffered I/O quota:
Remaining direct I/0 quota:
Remaining open file quota:
Remaining enqueue quota:

Vector CPU time:
Slow Vector context switches:
Working set size quota:
Maximum working set extent:

80
40
43

198

00:00:00.00
0

1304
12288

Peak working set size: 4955 Maximum authorized working set: 1304
16182 Current virtual size: 255 Peak virtual size:

Page faults: 41358

Active ASTs:
Event flags:
DBG 2>

Remaining AST Quota:
FF800000 60000003 Event flag wait mask:

27
7FFFFFFF

The command SHOW PROCESS/FULL %PREVIOUS_PROCESS displays
the maximum level of information about the previous process in the
circular list of processes (process number 1, in this case).

DBG 2> SHOW PROCESS %PROCESS NAME TEST 3
Number Name

7 TEST 3

DBG 2>

CD-238

- -
Hold State Current PC

watch of TEST 3\ROUT4\COUNT
-TEST_3\%LINE 54

This SHOW PROCESS command displays one line of information about
process TEST_3. The image is suspended at a watchpoint of variable
COUNT.

!) DBG 2> SHOW PROCESS/DYNAMIC
Dynamic process setting is enabled
DBG 2>

SHOW PROCESS

This SHOW PROCESS/DYNAMIC command indicates that dynamic
process setting is enabled.

CD-239

SHOW RADIX

SHOW RADIX

FORMAT

QUALIFIERS

Identifies the current radix for the entry and display of integer data or, if the
/OVERRIDE command qualifier is specified, the current override radix.

SHOW RADIX

/OVERRIDE
Identifies the current override radix.

DESCRIPTION The debugger can interpret and display integer data in any one of four
radixes: binary, decimal, hexadecimal, and octal. The current radix for
the entry and display of integer data is the radix last established with the
SET RADIX command. If no SET RADIX command was entered, the radix
for both entry and display (input radix and output radix, respectively) is
decimal for all languages except BLISS and MACRO. It is hexadecimal for
BLISS and MACRO.

EXAMPLES

The current override radix for the display of all data is the override radix
last established with the SET RADIX/OVERRIDE command. If no SET
RADIX/OVERRIDE command was entered, the override radix is "none".

Related commands: (SET, CANCEL) RADIX, EXAMINE, DEPOSIT,
EVALUATE.

D DBG> SHOW RADIX
input radix: decimal
output radix: decimal
DBG>

This command identifies the input radix and output radix as decimal.

~ DBG> SET RADIX/OVERRIDE HEX
DBG> SHOW RADIX/OVERRIDE

output override radix: hexadecimal
DBG>

CD-240

In this example, the SET RADIX/OVERRIDE command sets the override
radix to hexadecimal and the SHOW RADIX/OVERRIDE command
indicates the override radix. This means that all data is displayed as
hexadecimal integer data in commands such as EXAMINE and so on.

SHOW SCOPE

SHOW SCOPE

FORMAT

DESCRIPTION

EXAMPLES

Identifies the current scope search list for symbol lookup.

SHOW SCOPE

The current scope search list designates one or more program locations
(specified by path names or other special characters) to be used in the
interpretation of symbols that are specified without path name prefixes in
debugger commands.

The current scope search list is the scope search list last established with
the SET SCOPE command. Ifno SET SCOPE command was entered, the
current scope search list is 0,1,2, ... ,n by default.

The default scope search list specifies that, for a symbol without a path
name prefix, a symbol lookup such as 11 EXAMINE X11 first looks for X in
the routine that is currently executing (scope O); if no Xis visible there,
the debugger looks in the caller of that routine (scope 1), and so on down
the call stack; if X is not found in scope n, the debugger searches the rest
of the run-time symbol table (RST)-that is, all set modules and the global
symbol table (GST), if necessary.

If you have used a decimal integer in the SET SCOPE command to
represent a routine in the call stack, the SHOW SCOPE command displays
the name of the routine represented by the integer, if possible.

Related commands: (SET, CANCEL) SCOPE.

D DBG> CANCEL SCOPE
DBG> SHOW SCOPE
scope:
* 0 = EIGHTQUEENS\TRYCOL\REMOVEQUEEN],

1 = EIGHTQUEENS\TRYCOL],
2 = EIGHTQUEENS\TRYCOL 1],
3 = EIGHTQUEENS\TRYCOL 2],
4 = EIGHTQUEENS\TRYCOL 3],
5 = EIGHTQUEENS\TRYCOL 4],
6 [= EIGHTQUEENS]

DBG> SET SCOPE/CURRENT 2
DBG> SHOW SCOPE
scope:

0 [= EIGHTQUEENS\TRYCOL\REMOVEQUEEN],
1 [= EIGHTQUEENS\TRYCOL],

* 2 [= EIGHTQUEENS\TRYCOL 1],
3 [= EIGHTQUEENS\TRYCOL 2],
4 [= EIGHTQUEENS\TRYCOL 3],
5 [= EIGHTQUEENS\TRYCOL 4],
6 [= EIGHTQUEENS]

CD-241

SHOW SCOPE

The CANCEL SCOPE command restores the default scope search list,
which is displayed by the (first) SHOW SCOPE command. In this
example, execution is suspended at routine REMOVEQUEEN, after
several recursive calls to routine TRYCOL. The asterisk indicates that
the scope search list starts with scope 0, the scope of the routine in which
execution is suspended.

The command SET SCOPE/CURRENT resets the start of the scope search
list to scope 2. Scope 2 is the scope of the caller of the caller of the routine
in which execution is suspended. The asterisk in the output of the (second)
SHOW SCOPE command indicates that the scope search list now starts
with scope 2.

~ DBG> SET SCOPE 0, STACKS\R2, SCREEN_IO, \
DBG> SHOW SCOPE
scope:

DBG>

CD-242

0, [= TEST] ,
STACKS\R2,
SCREEN IO,
\ -

In this example, the SET SCOPE command directs the debugger to
look for symbols without path name prefixes according to the following
scope search list. First the debugger looks in the PC scope (denoted by
"0", which is in module TEST). If the debugger cannot find a specified
symbol in the PC scope, it then looks in routine R2 of module STACKS;
if necessary, it then looks in module SCREEN_IO, and then finally in the
global symbol table (denoted by the global scope, \). The SHOW SCOPE
command identifies the current scope search list for symbol lookup. Note
that no asterisk is shown in the SHOW SCOPE display unless the default
scope search list is in effect or you have previously entered a SET SCOPE
/CURRENT command.

SHOW SEARCH

SHOW SEARCH

FORMAT

DESCRIPTION

EXAMPLE
DBG> SHOW SEARCH

Identifies the default qualifiers (/ALL or /NEXT, /IDENTIFIER or /STRING)
currently in effect for the SEARCH command.

SHOW SEARCH

The default qualifiers for the SEARCH command are the default qualifiers
last established with the SET SEARCH command. If no SET SEARCH
command was .entered, the default qualifiers are /NEXT and /STRING.

Related commands: SET SEARCH, SEARCH, (SET, SHOW) LANGUAGE.

search settings: search for next occurrence, as a string
DBG> SET SEARCH IDENT
DBG> SHOW SEARCH
search settings: search for next occurrence, as an identifier
DBG> SET SEARCH ALL
DBG> SHOW SEARCH
search settings: search for all occurrences, as an identifier
DBG>

In this example, the first SHOW SEARCH command displays the default
settings for the SET SEARCH command. By default, the debugger
searches for and displays the next occurrence of the string.

The second SHOW SEARCH command indicates that the debugger
searches for the next occurrence of the string, but displays the string
only if it is not bounded on either side by a character that can be part of
an identifier in the current language.

The third SHOW SEARCH command indicates that the debugger searches
for all occurrences of the string, but displays the strings only if they are
not bounded on either side by a character that can be part of an identifier
in the current language.

CD-243

SHOW SELECT

SHOW SELECT

Identifies the displays currently selected for each of the display attributes:
error, input, instruction, output, program, prompt, scroll, and source.

FORMAT SHOW SELECT

DESCRIPTION The display attributes have the following properties:

EXAMPLE
DBG> SHOW SELECT
display selections:

scroll = SRC
input = none
output = OUT

• A display that has the error attribute displays debugger diagnostic
messages.

• A display that has the input attribute echoes your debugger input.

• A display that has the instruct~on attribute displays the decoded
assembly language instruction stream of the routine being debugged.
The display is updated when you enter an EXAMINE/INSTRUCTION
command.

• A display that has the output attribute displays any debugger output
that is not directed to another display.

• A display that has the program attribute displays program input and
output. Currently only the PROMPT display can have the program
attribute.

• A display that has the prompt attribute is where the debugger prompts
for input. Currently, only the PROMPT display can have the PROMPT
attribute.

• A display that has the scroll attribute is the default display for the
SCROLL, MOVE, and EXPAND commands.

• A display that has the source attribute displays the source code of the
module being debugged, if available. The display is updated when you
enter a TYPE or EXAMINE/SOURCE command.

Related commands: SELECT, SHOW DISPLAY.

error = PROMPT
source = SRC
instruction = none
program = PROMPT
prompt = PROMPT

DBG>

CD-244

SHOW SELECT

In this example, The SHOW SELECT command identifies the displays
currently selected for each of the display attributes. The display selections
shown are the default selections for all languages.

CD-245

SHOW SOURCE

SHOW SOURCE

FORMAT

QUALIFIERS

Identifies the source directory search lists currently in effect.

SHOW SOURCE

/EDIT
Note: This qualifier applies mainly to Ada programs.

Identifies the search list for source files to be edited when you use the
EDIT command.

DESCRIPTION If a source directory search list has not been established by means of

CD-246

the SET SOURCE or SET SOURCE/MODULE=module-name commands,
the SHOW SOURCE command indicates that no directory search list is
currently in effect. In this case, the debugger expects each source file to
be in the same directory that it was in at compile time (the debugger also
checks that the version number and the creation date and time of a source
file match the information in the debugger's symbol table).

The SET SOURCE/MODULE=module-name command establishes a source
directory search list for a particular module. The SET SOURCE command
establishes a source directory search list for all modules not explicitly
mentioned in a SET SOURCE/MODULE=module-name command. When
those commands have been used, the SHOW SOURCE command identifies
the source directory search list associated with each search categories.

The /EDIT qualifier is needed when the files used for the display of source
code are different from the files to be edited by means of the EDIT
command. This is the case with Ada programs. For Ada programs, the
SHOW SOURCE command identifies the search list of files used for source
display (the "copied" source files in Ada program libraries); the SHOW
SOURCE/EDIT command identifies the search list for the source files you
edit when using the EDIT command.

Related commands: (SET, CANCEL) SOURCE, (SET, SHOW) MAX_
SOURCE_FILES.

EXAMPLES
D DBG> SHOW SOURCE

no directory search list in effect
DEG> SET SOURCE [PROJA], [PROJB],DISK: [PETER.PROJC]
DBG> SHOW SOURCE
source directory search list for all modules:

[PROJA]
[PROJB]
DISK: [PETER.PROJC]

DBG>

SHOW SOURCE

In this example, the SET SOURCE command directs the debugger to
search the directories [PROJA],[PROJB], and DISK:[PETER.PROJC].

~ DBG> SET SOURCE/MODULE=COBOLTEST [], DISK$2: [PROJD]
DBG> SHOW SOURCE
source directory search list for COBOLTEST:

[]

DISK$2: [PROJD]
source directory search list for all other modules:

[PROJA]
[PROJB]
DISK: [PETER.PROJC]

DBG>

In this example, the SET SOURCE command directs the debugger to
search the current default directory ([]) and directory DISK$2:[PROJD] for
source files to use with the module COBOLTEST.

CD-247

SHOW STACK

SHOW STACK

Displays information from the current call stack.

FORMAT SHOW STACK [n]

PARAMETERS n
Specifies the number of frames to display. If n is omitted, information
about all call stack frames is displayed.

DESCRIPTION For each call frame, the SHOW STACK command displays information
such as the condition handler, saved register values, and the argument
list, if any. The latter is the list of arguments passed to the subroutine
with that call. In some cases the argument list can contain the addresses
of actual arguments. In such cases, use the command EXAMINE address
to display the values of these arguments.

Related commands: SHOW CALLS.

EXAMPLE
DBG> SHOW STACK
stack frame 0 (2146814812)

condition handler: 0
SPA: 0
S: 0
mask: AM<R2>
PSW: 0000 (hexadecimal)

saved AP: 7
saved FP: 2146814852
saved PC: EIGHTQUEENS\%LINE 69
saved R2: 0
argument list: (1) EIGHTQUEENS\%LINE 68+2

stack frame 1 (2146814852)

DBG>

condition handler: SHARE$PASRTL+888
SPA: 0
S: 0
mask:
PSW:

saved AP:
saved FP:
saved PC:

none saved
0000 (hexadecimal)
2146814924
2146814904
SHARE$DEBUG+667

In this example, the SHOW STACK command displays information about
all call stack frames at the current PC location.

CD-248

SHOW STEP

SHOW STEP

Identifies the default qualifiers (/INTO, /INSTRUCTION, /NOSILENT and so
on) currently in effect for the STEP command.

FORMAT SHOW STEP

DESCRIPTION The default qualifiers for the STEP command are the default qualifiers
last established by the SET STEP command. If no SET STEP command
was entered, the default qualifiers are /LINE, /OVER, /NOSILENT, and
/SOURCE.

EXAMPLE

If you invoke screen mode with the keypad-key sequence PF1-PF3, the
command SET STEP NOSOURCE is issued in addition to the command
SET MODE SCREEN (to eliminate redundant source display in output
and DO displays). In that case, the default qualifiers for the STEP
command are /LINE, /OVER, /NOSILENT, and /NOSOURCE.

Related commands: SET STEP, STEP.

DBG> SET STEP INTO,NOSYSTEM,NOSHARE,INSTRUCTION,NOSOURCE
DBG> SHOW STEP
step type: nosystem, noshare, nosource, nosilent, into routine calls,

by instruction
DBG>

In this example, the SHOW STEP command indicates that the debugger
take the following action:

• Steps into called routines, but not those in system space or in
shareable images

• Steps by instruction

• Does not display lines of source code while stepping

CD-249

SHOW SYMBOL

SHOW SYMBOL

FORMAT

Displays information about the symbols in the debugger's run-time symbol
table (RST) for the current image.

SHOW SYMBOL symbol-name[, ...] /IN
scope[, ...]]

PARAMETERS symbo~name

QUALIFIERS

CD-250

Specifies a symbol to be identified. A valid symbol name is a single
identifier or a label name of the form %LABEL n, where n is an integer.
Compound names such as RECORD.FIELD or ARRAY[l,2] are not valid.
If you specify the asterisk wildcard character (*) by itself, all symbols are
listed. You can use * within a symbol name.

scope
Specifies the name of a module, routine, or lexical block, or a numeric
scope. It has the same syntax as the scope specification in a SET SCOPE
command and can include path name qualification. All specified scopes
must be in set modules in the current image.

The SHOW SYMBOL command displays only those symbols in the RST
for the current image that both match the specified name and are declared
within the lexical entity specified by the scope parameter. If the scope
parameter is omitted, all set modules and the global symbol table (GST)
for the current image are searched for symbols that match the name
specified by the symbol-name parameter.

/ADDRESS
Displays the address specification for each selected symbol. The address
specification is the method of computing the symbol's address. It
can merely be the symbol's memory address, but it can also involve
indirection or an offset from a register value. Some symbols have address
specifications too complicated to present in any understandable way. These
address specifications are labeled "complex address specifications."

/DEFINED
Displays symbols you have defined with the DEFINE command (symbol
definitions that are in the DEFINE symbol table).

/DIRECT
Displays only those symbols that are declared directly in the scope
parameter. Symbols declared in lexical entities nested within the scope
specified by the scope parameters are not shown.

/LOCAL
Displays symbols that are defined with the DEFINE/LOCAL command
(symbol definitions that are in the DEFINE symbol table).

DESCRIPTION

EXAMPLES

SHOW SYMBOL

/TYPE
Displays data type information for each selected symbol.

/USE CLAUSE
Note: This qualifier applies to Ada programs.

Identifies any Ada package that a specified block, subprogram, or package
names in a use clause. If the symbol specified is a package, also identifies
any block, subprogram, package, and so on that names the specified
symbol in a use clause.

Note: The current image is either the main image (by default)
or the image established as the current image by a previous SET
IMAGE command.

The SHOW SYMBOL command displays information that the debugger
has about a given symbol in the current image. This information might
not be the same as what the compiler had or even what you see in your
source code. Nonetheless, it is useful for understanding why the debugger
might act as it does when handling symbols.

If you do not specify a qualifier, the SHOW SYMBOL command lists all
of the possible declarations or definitions of a specified symbol that exist
in the RST for the current image-that is, in all set modules and in the
GST for that image. Symbols are displayed with their path names. A
path name identifies the search scope (module, nested routines, blocks,
and so on) that the debugger must follow to reach a particular declaration
of a symbol. When specifying symbolic address expressions in debugger
commands, you need to use path names only if a symbol is defined multiple
times and the debugger cannot resolve the ambiguity.

The /DEFINED and /LOCAL qualifiers display information about symbols
defined with the DEFINE command (not the symbols that are derived from
your program). The other qualifiers display information about symbols
defined within your program.

Related commands: DEFINE, SHOW DEFINE, DELETE, SYMBOLIZE,
SET MODE [NO]LINE, SET MODE [NO]SYMBOLIC.

D DBG> SHOW SYMBOL I
data FORARRAY\I
DBG>

This command shows that symbol I is defined in module FORARRAY and
is a variable (data) rather than a routine.

~ DBG> SHOW SYMBOL/ADDRESS INTARRAYl
data FORARRAY\INTARRAYl

DBG>
descriptor address: 0009DE8B

This command shows that symbol INTARRAYl is defined in module
FORARRAY and has a memory address of 0009DE8B.

CD-251

SHOW SYMBOL

i] DBG> SHOW SYMBOL *PL*

This command lists all the symbols whose names contain the string 11 PL 11
•

m DBG> SHOW SYMBOL/TYPE/ADDRESS *

This command displays all information about all symbols.

~ DBG> SHOW SYMBOL * IN MOD3\COUNTER
routine MOD3\COUNTER

DBG>

data MOD3\COUNTER\X
data MOD3\COUNTER\Y

This command lists all the symbols that are defined in the scope denoted
by the path name MOD3\COUNTER.

m DBG> DEFINE/COMMAND SB=SET BREAK
DBG> SHOW SYMBOL/DEFINED SB
defined SB

bound to: SET BREAK
was defined /command

DBG>

CD-252

In this example, the DEFINE/COMMAND command defines SB as a
symbol for the command SET BREAK. The SHOW SYMBOUDEFINED
command displays that definition.

SHOW TASK

FORMAT

SHOW TASK

Displays information about the tasks of a tasking program.

Note: This command applies to Ada programs. See the VAX Ada
documentation for complete information.

SHOW TASK [task-spec[, ... 11

PARAMETERS task-spec

QUALIFIERS

Specifies a task value. Use any of the following forms:

• An Ada language expression for a task value-for example, a task
object name. You can use a path name.

• The task ID (for example, %TASK 2), as indicated in a SHOW TASK
display.

• A task built-in symbol (%ACTIVE_TASK, %CALLER_TASK, %NEXT_
TASK, or %VISIBLE_TASK).

Do not use the asterisk wildcard character (*). See the qualifier
descriptions for details on how to specify tasks with particular qualifiers.

/ALL
Selects all tasks that currently exist in the program for display. Do not
specify a task with I ALL.

/CALLS[=n]
Performs a SHOW CALLS command for each task selected for display. You
can use the SHOW CALLS command to obtain the current PC value of a
task.

/FULL
Displays additional information about each task selected for display. The
/FULL qualifier provides additional information if used either by itself, or
with the /CALLS or /STATISTICS qualifier.

/HOLD
/NO HOLD
Selects either tasks that are on hold, or tasks that are not on hold for
display.

If you do not specify a task, /HOLD selects all tasks that are on hold. If
you specify a task list, /HOLD selects the tasks in the task list that are on
hold.

If you do not specify a task, /NOHOLD selects all tasks that are not on
hold. If you specify a task list, /NOHOLD selects the tasks in the task list
that are not on hold.

CD-253

SHOW TASK

/PRIORITY:(n[, ...])
If you do not specify a task, selects all tasks that have any of the specified
priorities, n, where n is a decimal integer from 0 to 15 inclusive. If you
specify a task list, selects the tasks in the task list that have any of the
priorities specified.

/STATE:(state[, ...])
If you do not specify a task, selects all tasks that are in any of the specified
states (the possible states are RUNNING, READY, SUSPENDED, or
TERMINATED). If you specify a task list, selects the tasks in the task list
that are in any of the states specified.

/STATISTICS
Displays tasking statistics for the entire tasking system. You can use this
information to measure the performance of your tasking program. The
larger the number of total schedulings (also known as context switches),
the more tasking overhead there is. When you specify /STATISTICS, the
only other permissible qualifier is /FULL.

/TIME SLICE
Displays the current value of pragm.a TIME_SLICE.

DESCRIPTION You can select tasks for display with the SHOW TASK command by
specifying any of the following entities:

EXAMPLES

• A task list-that is, a list of task specifications.

• Task selection qualifiers: /ALL, /[NOJHOLD, /PRIORITY, /STATE.

• Both a task list and task selection qualifiers. Only the tasks that
satisfy all specified criteria are selected for display.

If no task parameters or task selection qualifiers are given, the SHOW
TASK command displays summary information about the visible task.

Related commands: SET TASK, SET BREAK/EVENT, SET TRACE
/EVENT, EXAMINE/TASK, DEPOSIT/TASK.

D DBG> SHOW TASK/ALL

task id pri

* %TASK 1 7
%TASK 2 7
%TASK 3 6

DBG>

CD-254

hold state substate task object
RUN 122624

HOLD SUSP Accept H4.MONITOR
READY Entry call H4.CHECK IN

In this example, the SHOW TASK/ALL command provides basic
information about all the tasks of a program that are currently in
existence-namely, tasks that have been created and whose master has
not yet terminated. One line is devoted to each task. The active task is
marked with an asterisk and is always the task that is in the RUN state.

SHOW TASK

fi DBG> SHOW TASK %ACTIVE_TASK, %TASK 3,MONITOR

This command selects the active task, %TASK 3, and task MONITOR for
display.

i] DBG> SHOW TASK/PRIORITY=6

This command selects all tasks with priority 6 for display.

El DBG> SHOW TASK/STATE= (RUN, SUSP)

This command selects all tasks that are either running or suspended for
display.

~ DBG> SHOW TASK/ STATE=SUSP /NOHOLD

This command selects all tasks that are both suspended and not on hold
for display.

@] DBG> SHOW TASK/STATE= (RUN, SUSP) /PRI0=7 %VISIBLE_TASK, %TASK 3

This command selects for display those tasks among the visible task and
%TASK 3 that are in either the RUNNING or SUSPENDED STATE, and
have priority 7.

CD-255

SHOW TERMINAL

SHOW TERMINAL

Identifies the current terminal screen height (page) and width being used to
format output.

FORMAT SHOW TERMINAL

DESCRIPTION The current terminal screen height and width are the height and width
last established by the SET TERMINAL command. If no SET TERMINAL
command was entered, the current height and width are, by default, the
height and width known to the VMS terminal driver, as displayed by the
DCL command SHOW TERMINAL (usually 24 lines and 80 columns,
respectively, for VT-series terminals).

EXAMPLE
DBG> SHOW TERMINAL
terminal width: 80

page: 24
DBG>

CD-256

Related commands: SET TERMINAL, SHOW DISPLAY, SHOW WINDOW.

This command displays the current terminal screen width and height
(page) as 80 columns and 24 lines, respectively.

SHOW TRACE

SHOW TRACE

FORMAT

QUALIFIERS

DESCRIPTION

EXAMPLES
D DBG> SHOW TRACE

Displays information about tracepoints.

SHOW TRACE

!PREDEFINED
Displays information about predefined tracepoints.

/USER
Displays information about user defined tracepoints.

The SHOW TRACE command displays information about tracepoints that
are currently set, including any options such as WHEN or DO clauses,
I AFTER counts, and so on.

By default, SHOW TRACE displays information about both user defined
and predefined tracepoints (if any). This is equivalent to entering the
command SHOW TRACE/USER/PREDEFINED. User defined tracepoints
are set with the SET TRACE command. Predefined tracepoints are set
automatically when you invoke the debugger, and they depend on the
type of program you are debugging. See Chapter 10 for information about
predefined tracepoints that are associated with multiprocess programs.

If you established a tracepoint using the I AFTER:n command qualifier
with the SET TRACE command, the SHOW TRACE command displays
the current value of the decimal integer n, that is, the originally specified
integer value minus one for each time the tracepoint location was reached.
(The debugger decrements n each time the tracepoint location is reached
until the value of n is zero, at which time the debugger takes trace action.)

Related commands: (SET, CANCEL) TRACE.

tracepoint at routine CALC\MULT
tracepoint on calls:

DBG>
RET RSB BSBB JSB BSBW CAL LG CALLS

The SHOW TRACE command identifies all tracepoints that are currently
set. This example indicates user defined tracepoints that are triggered
whenever execution reaches routine MULT in module CALC or one of the
instructions RET, RSB, BSBB, JSB, BSBW, CALLG, or CALLS.

CD-257

SHOW TRACE

~ DBG_2> SHOW TRACE/PREDEFINED
predefined tracepoint on program activation

DO (SET DISP/DYN/REM/SIZE:64/PROC SRC /SUF=PROCESS NU AT Hl SOURCE
(EXAM/SOURCE .%SOURCE SCOPE\%PC); -

SET DISP/DYN/REM/SIZE:64/PROC INST /SUF=PROCESS NU AT Hl INST
(EXAM/INSTRUCTION .0\%PC)) - -

predefined tracepoint on program termination
DBG 2>

CD-258

This command identifies the predefined tracepoints that are currently set.
The example shows the predefined tracepoints that are set automatically
by the debugger for a multiprocess program (when DBG$PROCESS
has the value MULTIPROCESS). The tracepoint on program activation
triggers whenever a new process comes under debugger control. The
DO clause creates a process-specific source display named SRC_n and a
process-specific instruction display named INST_n whenever a process
activation tracepoint is triggered. The tracepoint on program termination
triggers whenever a process performs an image exit.

SHOW TYPE

FORMAT

QUALIFIERS

SHOW TYPE

Identifies the current type for program locations that do not have a compiler
generated type or, if the /OVERRIDE command qualifier is specified, the
current override type.

SHOW TYPE

/OVERRIDE
Identifies the current override type.

DESCRIPTION The current type for program locations that do not have a compiler
generated type is the type last established by the SET TYPE command.
If no SET TYPE command was entered, the type for those locations is
longword integer.

EXAMPLES

The current override type for all program locations is the override type
last established by the SET TYPE/OVERRIDE command. If no SET TYPE
/OVERRIDE command was entered, the override type is "none".

Related commands: SET TYPE, CANCEL TYPE/OVERRIDE, (SET,
SHOW, CANCEL) RADIX, (SET, SHOW, CANCEL) MODE, EXAMINE,
DEPOSIT.

D DBG> SET TYPE QUADWORD
DBG> SHOW TYPE
type: quadword integer
DBG>

This command sets the type for locations that do not have a compiler
generated type to quadword. The SHOW TYPE command displays the
current default type for those locations as quadword integer. This means
that the debugger interprets and displays entities at those locations as
quadword integers unless you specify otherwise (for example with a type
qualifier on the EXAMINE command).

fa DBG> SHOW TYPE/OVERRIDE
type/override: none
DBG>

This command indicates that no override type has been defined.

CD-259

SHOW VECTOR MODE

SHOW VECTOR MODE

Note: This command applies to vectorized programs.

Identifies the current vector mode (synchronized or nonsynchronized).

FORMAT SHOW VECTOR_MODE

DESCRIPTION The current vector mode is the mode established with the SET VECTOR_
MODE command. If no SET VECTOR_MODE command was entered, the
vector mode is, by default, nonsynchronized.

EXAMPLE

Related commands: SET VECTOR_MODE [NO]SYNCHRONIZED,
SYNCHRONIZE VECTOR_MODE.

DBG> SHOW VECTOR MODE
Vector mode is nonsynchronized
DBG> SET VECTOR MODE SYNCHRONIZED
DBG> SHOW VECTOR MODE
Vector mode is synchronized
DBG>

CD-260

The SHOW VECTOR_MODE command indicates the effect of the SET
VECTOR_MODE command.

SHOW WATCH

SHOW WATCH

Displays information about watchpoints.

FORMAT SHOW WATCH

DESCRIPTION The SHOW WATCH command displays information about watchpoints
that are currently set, including any options such as WHEN or DO clauses,
I AFTER counts, and so on.

EXAMPLE
DBG> SHOW WATCH

If you established a watchpoint using the I AFTER:n command qualifier
with the SET WATCH command, the SHOW WATCH command displays
the current value of the decimal integer n, that is, the originally specified
integer value minus one for each time the watchpoint location was
reached. (The debugger decrements n each time the watchpoint location
is reached until the value of n is zero, at which time the debugger takes
watch action.)

Related commands: (SET, CANCEL) WATCH.

watchpoint of MAIN\X
watchpoint of SUB2\TABLE+20
DBG>

This command displays two watchpoints, one at the variable X (defined in
module MAIN), and the other at the location SUB2\ TABLE+20 (20 bytes
beyond the address denoted by the address expression TABLE).

CD-261

SHOW WINDOW

SHOW WINDOW

FORMAT

PARAMETERS

QUALIFIERS

Identifies the name and screen position of predefined and user-defined
screen-mode windows.

SHOW WINDOW [wname[, ...]]

wname
Specifies the name of a screen window definition. If you do not specify a
name, or if you specify the asterisk wildcard character (*) by itself, all
window definitions are listed. You can use * within a window name. Do
not specify a window definition name with I ALL.

/ALL
Lists all window definitions. Do not specify a window definition name with
/ALL.

DESCRIPTION Related commands: (SET, CANCEL) WINDOW, (SET, SHOW, CANCEL)
DISPLAY, SHOW SELECT, (SET, SHOW) TERMINAL.

EXAMPLE
DBG> SHOW WINDOW LH*, RH*

window LHl at (1,11,1,40)
window LH12 at (1,23,1,40)
window LH2 at (13,11,1,40)
window RHl at (1,11,42,39)
window RH12 at (1,23,42,39)
window RH2 at (13,11,42,39)
DBG>

CD-262

This command displays the name and screen position of all screen window
definitions whose names starts with LH or RH.

SPAWN

FORMAT

SPAWN

Creates a subprocess, enabling you to execute DCL commands without
terminating a debugging session or losing your debugging context.

SPAWN [DCL-command]

PARAMETERS DCL-command

QUALIFIERS

Specifies a DCL command. If you specify a DCL command, the command
is executed in a subprocess. Control is returned to the debugging session
when the DCL command terminates.

If you do not specify a DCL command, a subprocess is created and you can
then enter DCL commands. Either logging out of the spawned process or
attaching to the parent process (with the DCL ATTACH command) enables
you to continue your debugging session.

If the DCL command contains a semicolon, you must enclose the command
in quotation marks ("). Otherwise the semicolon is interpreted as a
debugger command separator. To include a quotation mark inside the
string, enter two consecutive quotation marks ("").

/INPUT :file-spec
Specifies an input DCL command file containing one or more DCL
commands to be executed by the spawned subprocess. The default file
type is .COM. If you specify a DCL command string with the SPAWN
command and an input file with the /INPUT qualifier, the command string
is processed before the input file. After processing of the input file is
complete, the subprocess is terminated. Do not use the asterisk wildcard
character (*) in the file specification.

!OUTPUT =file-spec
Writes the output from the SPAWN operation to the specified file. The
default file type is .LOG. Do not use the asterisk wildcard character (*)in
the file specification.

/WAIT (default)
!NO WAIT
Controls whether the debugging session (the parent process) is suspended
while the subprocess is running. The /WAJ.T qualifier (default) suspends
the debugging session until the subprocess is terminated. You cannot
enter debugger commands until control returns to the parent process.

The /NOWAIT qualifier executes the subprocess in parallel with the
debugging session. You can enter debugger commands while the
subprocess is running. If you use /NOWAIT, you should specify a DCL
command with the SPAWN command; the DCL command is executed
in the subprocess. A message indicates when the spawned subprocess
completes.

CD-263

SPAWN

DESCRIPTION

EXAMPLES
D DBG> SPAWN

$

The SPAWN command acts exactly like the DCL SPAWN command. You
can edit files, compile programs, read mail, and so on without ending your
debugging session or losing your current debugging context.

In addition, you can spawn a DCL SPAWN command. DCL processes
the second SPAWN command, including any qualifier specified with that
command.

Related commands: ATTACH.

This command shows that the SPAWN command, with no parameter
specified, creates a subprocess at DCL level. You can now enter DCL
commands. Log out to return to the debugger prompt.

~ DBG> SPAWN/NOWAIT/INPUT=READ_NOTES/OUTPUT=0428NOTES
DBG>

This command creates a subprocess that is executed in parallel with the
debugging session. This subprocess executes the DCL command procedure
READ_NOTES.COM. The output from the spawned operation is written to
the file 0428NOTES.LOG.

g] DBG> SPAWN/NOWAIT SPAWN/OUT=MYCOM. LOG @MYCOM
DBG>

CD-264

This command creates a subprocess that is executed in parallel with
the debugging session. This subprocess creates another subprocess to
execute the DCL command procedure MYCOM.COM. The output from
that operation is written to the file MYCOM.LOG.

STEP

FORMAT

STEP

Executes the program up to the next line, instruction, or other specified
location.

STEP [n]

PARAMETERS n

QUALIFIERS

A decimal integer that specifies the number of step units (lines,
instructions, and so on) to be executed. If you do not specify the parameter
n, the debugger executes one step unit.

/BRANCH
Executes the program to the next branch instruction. STEP/BRANCH has
the same effect as SET BREAK!I'EMPORARY/BRANCH;GO.

/CALL
Executes the program to the next call or RET instruction. STEP/CALL
has the same effect as SET BREAK!I'EMPORARY/CALL;GO.

/EXCEPTION
Executes the program to the next exception, if any. STEP/EXCEPTION
has the same effect as SET BREAK!I'EMPORARY/EXCEPTION;GO. If no
exception occurs, STEP/EXCEPTION has the same effect as GO.

/INSTRUCTION[=(opcode[, ...])]
If you do not specify an opcode, executes the program to the next
instruction. STEP/INSTRUCTION has the same effect as SET BREAK
/TEMPORARY/INSTRUCTION;GO.

If you specify one or more opcodes, executes the program to
the next instruction whose opcode is specified in the list. STEP
/INSTRUCTION=(opcode[, ...]) has the same effect as SET BREAK
/TEMPORARY/INSTRUCTION=(opcode[, ...]);GO.

If you specify a vector instruction, do not include an instruction qualifier
(/U, N, IM, 10, or /1) with the instruction mnemonic.

/INTO
If execution is currently suspended at a routine call, STEP/INTO executes
the program up to the beginning of that routine (steps into that routine).
Otherwise, STEP/INTO has the same effect as STEP without a qualifier.
The /INTO qualifier is the opposite of /OVER (the default behavior).

The STEP/INTO behavior can be modified by also using the /[NO]JSB,
/[NO]SHARE, and /[NO]SYSTEM qualifiers.

/JSB
IN OJ SB
Qualifies a previous SET STEP INTO command or a current STEP/INTO
command.

CD-265

STEP

CD-266

If execution is currently suspended at a routine call and the routine is
called by a JSB instruction, STEP/INTO/NOJSB has the same effect as
STEP/OVER. Otherwise, STEP/INTO/NOJSB has the same effect as STEP
/INTO.

Use STEP/INTO/JSB to override a previous SET STEP NOJSB command.
STEP/INTO/JSB enables a STEP/INTO command to step into routines
that are called by a JSB instruction, as well as into routines that are
called by a CALL instruction.

The /JSB qualifier is the default for all languages except DIBOL. The
/NOJSB qualifier is the default for DIBOL. In DIBOL, application-declared
routines are called by the CALL instruction and DIBOL run-time library
routines are called by the JSB instruction.

/LINE
Executes the program to the next line of source code. However, note that
the debugger skips over any source lines that do not result in executable
code when compiled (for example, comment lines). STEP/LINE has the
same effect as SET BREAK!rEMPORARY/LINE;GO. This is the default
behavior for all languages.

/OVER
If execution is currently suspended at a routine call, STEP/OVER executes
the routine up to and including the routine's RET instruction (steps over
that routine). The /OVER qualifier is the default behavior and is the
opposite of /INTO.

/RETURN
Executes the routine in which execution is currently suspended up to
its RET instruction (that is, up to the point just prior to transferring
control back to the calling routine). This enables you to inspect the
local environment (for example, obtain the values of local variables)
before the RET instruction deletes the routine's call frame from the call
stack. STEP/RETURN has the same effect as SET BREAKtrEMPORARY
/RETURN;GO.

STEP/RETURN n executes the program up n levels of the call stack.

/SHARE (default)
/NOS HARE
Qualifies a previous SET STEP INTO command or a current STEP/INTO
command.

If execution is currently suspended at a call to a shareable image routine,
STEP/INTO/NOSHARE has the same effect as STEP/OVER. Otherwise,
STEP/INTO/NOSHARE has the same effect as STEP/INTO.

Use STEP/INTO/SHARE to override a previous SET STEP NOSHARE
command. STEP/INTO/SHARE enables a STEP/INTO command to step
into shareable image routines, as well as into other kinds of routines.

/SILENT
/NOS/LENT (default)
Controls whether the "stepped to . . . " message and the source line
for the current location are displayed after the STEP has completed.
The /NOSILENT qualifier specifies that the message is displayed. The

STEP

/SILENT qualifier specifies that the message and source line are not
displayed. The /SILENT qualifier overrides /SOURCE.

/SOURCE (default)
/NOSOURCE
Controls whether the source line for the current location is displayed after
the STEP has completed. The /SOURCE qualifier specifies that the source
line is displayed. The /NOSOURCE qualifier specifies that the source line
is not displayed. The /SILENT qualifier overrides /SOURCE. See also SET
STEP [NOJSOURCE.

/SYSTEM (default)
/NOSYSTEM
/[NOJSYSTEM qualifies a previous SET STEP INTO command or a current
STEP/INTO command.

If execution is currently suspended at a call to a system routine (in Pl
space), STEP/INTO/NOSYSTEM has the same effect as STEP/OVER.
Otherwise, STEP/INTO/NOSYSTEM has the same effect as STEP/INTO.

Use STEP/INTO/SYSTEM to override a previous SET STEP NOSYSTEM
command. STEP/INTO/SYSTEM enables a STEP/INTO command to step
into system routines, as well as into other kinds of routines.

/VECTOR INSTRUCTION
Note: This qualifier applies to vectorized programs.

Executes the program to the next vector instruction. STEPNECTOR_
INSTRUCTION has the same effect as SET BREAKtrEMPORARY
NECTOR_INSTRUCTION;GO.

DESCRIPTION The STEP command is one of the four debugger commands that can be
used to execute your program (the others are CALL, EXIT, and GO).

The behavior of the STEP command depends on the following factors:

• The default STEP mode previously established with a SET STEP
command, if any.

• The qualifier specified with the STEP command, if any.

• The number of step units specified as parameter to the STEP
command, if any.

If no SET STEP command was previously entered, the debugger takes
the following default action when you enter a STEP command without
specifying a qualifier or parameter:

1 Executes a line of source code (STEP/LINE is the default).

2 Reports that execution has completed by issuing a "stepped to ... "
message (STEP/NOSILENT is the default).

3 Displays the line of source code at which execution is suspended (STEP
/SOURCE is the default).

4 Issues the prompt.

CD-267

STEP

CD-268

The following STEP command qualifiers affect the location to which you
step:

/BRANCH
/CALL
/EXCEPTION
/INSTRUCTION[=(opcode[, ...])]
/LINE
/RETURN
NECTOR_INSTRUCTION

The following qualifiers affect what output is seen upon completion of a
step:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect what happens at a routine call:

/INTO
/[NO]JSB
/OVER
/[NO]SHARE
/[NO]SYSTEM

If you plan to enter several STEP commands with the same qualifiers, you
can first use the SET STEP command to establish new default qualifiers
(for example, SET STEP INTO NOSYSTEM makes the STEP command
behave like STEP/INTO/NOSYSTEM). Then you do not have to use those
qualifiers with the STEP command. You can override the current default
qualifiers for the duration of a single STEP command by specifying other
qualifiers. Use the SHOW STEP command to identify the current STEP
defaults.

If an exception breakpoint is triggered (resulting from a SET BREAK
/EXCEPTION or a STEP/EXCEPTION command), execution is suspended
before any application-declared condition handler is invoked. If you then
resume execution with the STEP command, the debugger resignals the
exception and the program executes to the beginning of (steps into) the
condition handler, if any.

If you are using the multiprocess debugging configuration to debug a
multiprocess program (if the logical name DBG$PROCESS has the value
MULTIPROCESS), note the following additional points:

• The STEP command is executed in the context of the visible process,
but images in any other processes that are not on hold (through a SET
PROCESS/HOLD command) are also allowed to execute. If you use the
DO command to broadcast a STEP command to one or more processes,
the STEP command is executed in the context of each specified process
that is not on hold, but images in any other processes that are not on
hold are also allowed to execute. In all cases, a hold condition in the
visible process is ignored.

EXAMPLES
I DBG> SHOW STEP

STEP

• After execution is started, the way in which it continues depends on
whether the command SET MODE [NO]INTERRUPT was entered.
By default (SET MODE INTERRUPT), execution continues until it
is suspended in any process. At that point, execution is interrupted
in any other processes that were executing images, and the debugger
prompts for input.

Related commands: (SET, SHOW) STEP, GO, SET BREAK/EXCEPTION,
CALL, EXIT, DO, SET PROCESS, SET MODE [NO]INTERRUPT.

step type: source, nosilent, by line,
over routine calls

DBG> STEP
stepped to SQUARES$MAIN\%LINE 4

DBG>
4: OPEN(UNIT=8, FILE='DATAFILE.DAT', STATUS='OLD')

The SHOW STEP command identifies the default qualifiers currently in
effect for the STEP command. In this case, the STEP command, without
any parameters or qualifiers, causes the debugger to execute the next
line of source code. After the STEP command has completed, execution is
suspended at the beginning of line 4.

rl DBG> STEP 5
stepped to MAIN\%LINE 47

DBG>
47: SWAP(X,Y);

This command causes the debugger to execute the next 5 lines of source
code. After the STEP command has completed, execution is suspended at
the beginning of line 4 7.

i] DBG> STEP /INTO
stepped to routine SWAP

23: procedure SWAP (A,B: in out integer) is
DBG> STEP
stepped to MAIN\SWAP\%LINE 24

24: TEMP: integer := 0;
DBG> STEP /RETURN
stepped on return from MAIN\SWAP\%LINE 24 to MAIN\SWAP\%LINE 29

29: end SWAP;
DBG>

In this example, the STEP/INTO command causes the debugger to execute
the program up to the beginning of the routine that is being called at
the current PC value (routine SWAP, in this case). The STEP command
executes the next line of source code. The STEP/RETURN command
causes the debugger to finish executing routine SWAP up to its RET
instruction (that is, up to the point just prior to transferring control back
to the calling routine).

CD-269

STEP

EJ DBG> SET STEP INSTRUCTION
DBG> SHOW STEP
step type: source, nosilent, by instruction,

over routine calls
DBG> STEP
stepped to SUB1\%LINE 26: MOVL

DBG>

CD-270

26: Z:integer:=4;

In this example, the SET STEP INSTRUCTION command establishes the
default STEP command qualifier to be /INSTRUCTION. This is verified
by the SHOW STEP command. The STEP command causes the debugger
to execute the next instruction. After the STEP command has completed,
execution is suspended at the first instruction (MOVL) of line 26 in module
SUBl.

SYMBOLIZE

SYMBOLIZE

Converts a memory address to a symbolic representation, if possible.

FORMAT SYMBOLIZE address-expression[, ...]

PARAMETERS address-expression
Specifies an address .expression to be symbolized. Do not use the asterisk
wildcard character (*).

DESCRIPTION If the address is a static address, it is symbolized as the nearest preceding
symbol name, plus an offset. If the address is also a code address and

EXAMPLES

a line number can be found that covers the address, the line number is
included in the symbolization.

If the address is a register address, the debugger displays all symbols in
all set modules that are bound to that register. The full path name of each
such symbol is displayed. The register name itself (11 %R5 11

, for example) is
also displayed.

If the address is a call stack location in the call frame of a routine in a
set module, the debugger searches for all symbols in that routine whose
addresses are relative to the Frame Pointer (FP) or the Stack Pointer
(SP). The closest preceding symbol name plus an offset is displayed as the
symbolization of the address. A symbol whose address specification is too
complex is ignored.

If the debugger can find no symbolization for the address, a message is
displayed.

Related commands: SET MODE [NO]SYMBOLIC, SET MODE [NO]LINE,
SHOW SYMBOL, (SET, SHOW, CANCEL) MODULE, EVALUATE
/ADDRESS.

D DBG> SYMBOLIZE %R5
address PROG\%R5:

PROG\X
DBG>

This example shows that the local variable X in routine PROG is located
in register R5.

CD-271

SYMBOLIZE

~ DBG> SYMBOLIZE %HEX 27C9E3
address 0027C9E3:

DBG>

CD-272

MODS\X

This command directs the debugger to treat the integer literal 27C9E3 as a
hexadecimal value and convert that address to a symbolic representation,
if possible. The address converts to the symbol X in module MOD5.

SYNCHRONIZE VECTOR_MODE

SYNCHRONIZE VECTOR MODE

Note: This command applies to vectorized programs.

Forces immediate synchronization between the scalar and vector processors.

FORMAT SYNCHRONIZE VECTOR_MODE

DESCRIPTION The command SYNCHRONIZE VECTOR_MODE forces immediate
synchronization between the scalar and vector processors by issuing a
SYNC and an MSYNC instruction. The effect is. as follows:

EXAMPLES

• Any exception that was caused by a vector instruction and was still
pending delivery is immediately delivered. Note that forcing the
delivery of a pending exception triggers an exception breakpoint or
tracepoint (if one was set) or invokes an exception handler (if one is
available at that location in the program).

• Any read or write operation between vector registers and either the
general registers or memory is completed immediately-that is, any
vector memory instruction that was still being executed completes
execution.

Entering the command SYNCHRONIZE VECTOR_MODE is equivalent to
issuing SYNC and MSYNC instructions at the location in the program at
which execution is suspended.

By default, the debugger does not force synchronization between the
scalar and vector processors during program execution (SET VECTOR_
MODE NOSYNCHRONIZED). Use the command SET VECTOR_MODE
SYNCHRONIZED to force such synchronization.

Related commands: SET VECTOR_MODE [NO]SYNCHRONIZED, SHOW
VECTOR_MODE.

D DBG> SYNCHRONIZE VECTOR MODE
%DEBUG-I-SYNCREPCOM, Synchronize reporting complete
DBG>

The SYNCHRONIZE VECTOR_MODE command forces immediate
synchronization between the scalar and vector processors. In this example,
the diagnostic message indicates that the synchronization operation has
completed and that all pending vector exceptions have been delivered and
reported.

CD-273

SYNCHRONIZE VECTOR_MODE

DBG> STEP 0
stepped to .MAIN.\SUB\%LINE 99

99: VVDIVD Vl,VO,V2
DBG> STEP 8
stepped to .MAIN.\SUB\%LINE 100

100: CLRL RO
DBG> EXAMINE/FLOAT %V2 6)
0\%V2

[0]: 13.53400
[1]: Reserved operand, encoded as floating divide by zero
[2]: 247.2450

DBG> SYNCHRONIZE VECTOR MODE 8
%SYSTEM-F-VARITH, vector arithmetic fault, summary=00000002,

mask=00000004, PC=000002El, PSL=03C00010
break on unhandled exception preceding .MAIN.\SUB\%LINE 100

100: CLRL RO
DBG>

CD-274

The comments that follow refer to the callouts in the previous example:

0 This STEP command suspends program execution on line 99, just
before a VVDIVD instruction is executed. Assume that, in this
example, the instruction will trigger a floating-point divide-by-zero
exception.

8 This STEP command executes the VVDIVD instruction. Note,
however, that the exception is not delivered at this point in the
execution of the program.

8 The EXAMINE/FLOAT command displays a decoded exception
message in element 1 of the destination register, V2. This confirms
that a floating-point divide-by-zero exception was triggered and is
pending delivery.

8 The SYNCHRONIZE VECTOR_MODE command forces the immediate
delivery of the pending vector exception.

TYPE

FORMAT

Displays lines of source code.

TYPE [[mod-name \lline-num[:line-num 1
[,[mod-name\]line-num[:line-numl[, ... 11

TYPE

PARAMETERS mod-name

DESCRIPTION

Specifies the module that contains the source lines to be displayed. If you
specify a module name along with the line numbers, use standard path
name notation: insert a backslash (\) between the module name and the
line numbers.

If you do not specify a module name, the debugger uses the current scope
(as established by a previous SET SCOPE command, or the PC scope if
no SET SCOPE command was entered) to find source lines for display.
If you specify a scope search list with the SET SCOPE command, the
debugger searches for source lines only in the module associated with the
first named scope.

line-num
Specifies a compiler-generated line number (a number used to label a
source language statement or statements).

If you specify a single line number, the debugger displays the source code
corresponding to that line number.

If you specify a list of line numbers, separating each with a comma,
the debugger displays the source code corresponding to each of the line
numbers.

If you specify a range of line numbers, separating the beginning and
ending line numbers in the range with a colon, the debugger displays the
source code corresponding to that range of line numbers.

You can display all the source lines of a module by specifying a range of
line numbers starting from 1 and ending at a number equal to or greater
than the largest line number in the module.

After displaying a single line of source code, you can display the next line
of that module by entering a TYPE command without a line number
that is, by entering a TYPE command and then pressing the Return key.
You can then display the next line and successive lines by repeating this
sequence, in effect, reading through your source program one line at a
time.

The TYPE command displays the lines of source code that correspond to
the specified line numbers. The line numbers used by the debugger to
identify lines of source code are generated by the compiler. They appear in
a compiler-generated listing and in a screen-mode source display.

CD-275

TYPE

EXAMPLES
D DBG> TYPE 160

module COBOLTEST

If you specify a module name with the TYPE command, the module
must be set. Use the SHOW MODULE command to determine whether
a particular module is set. Then use the SET MODULE command, if
necessary.

In screen mode, the output of a TYPE command is directed at the current
source display, not at an output or DO display. The source display shows
the lines specified and any surrounding lines that fit in the display
window.

Related commands: SET MODE [NO]SCREEN, EXAMINE/SOURCE,
SET STEP [NO]SOURCE, STEP/[NOJSOURCE, SET (BREAK, TRACE,
WATCH) /[NO]SOURCE, (SET, SHOW, CANCEL) SCOPE.

160: START-IT-PARA.
DBG> TYPE
module COBOLTEST

161: MOVE SCl TO ESO.
DBG>

In this example, the first TYPE command displays line 160, using the
current scope to locate the module containing that line number. The
second TYPE command, entered without specifying a line number, displays
the next line in that module.

~ DBG> TYPE 160: 163
module COBOLTEST

160: START-IT-PARA.
161: MOVE SCl TO ESO.
162: DISPLAY ESO.
163: MOVE SCl TO ESl.

DBG>

This command displays lines 160 to 163, using the current scope to locate
the module.

I] DBG> TYPE SCREEN_IO\ 7, 22: 24

This command displays line 7 and lines 22 to 24 in module SCREEN_IO.

CD-276

WHILE

FORMAT

WHILE

Executes a sequence of commands while the language expression (Boolean
expression) you have specified evaluates as true.

WHILE Boolean-expression DO (command[; . ..])

PARAMETERS Boolean-expression
Specifies a language expression that evaluates as a Boolean value (true or
false) in the currently set language.

command
Specifies a debugger command. If you specify more than one command,
separate them with semicolons.

DESCRIPTION The WHILE command evaluates a Boolean expression in the current
language. If the value is true, the command list in the DO clause is
executed. The command then repeats the sequence, reevaluating the
Boolean-expression and executing the command-list until the expression is
evaluated as false.

EXAMPLE

If the Boolean-expression is false, the WHILE command terminates.

Related commands: FOR, REPEAT, EXITLOOP.

DBG> WHILE (X .EQ. 0) DO (STEP/SILENT)

This command directs the debugger to keep stepping through the program
until X no longer equals 0 (FORTRAN example).

CD-277

A Command Defaults

This appendix identifies the defaults associated with debugger commands.

Command

@file-spec

CALL

CONNECT

DEFINE

DEFINE/KEY

DELETE/KEY

DEPOSIT

DISPLAY

DO

EDIT

ENABLE (DISABLE) AST

EVALUATE

Default

For any field of the file specification that is not
specified, the default is SYS$DISK:[]DEBUG.COM. To
change the default, use the SET ATSIGN command.

Arguments are passed by address (%ADDA). CALL
/AST/NOSAVE_ VECTOR_STATE.

If no process is specified, the CONNECT command
brings any processes that are waiting to connect to
the debugging session under debugger control.

DEFINE/ADDRESS

DEFINE/KEY/ECHO/NOIF _STATE/NOLOCK_STATE
/LOG/NOS ET_ STATE/NOTE RM INATE

DELETE/KEY/LOG/NOSTATE

Language expressions are interpreted according to
the currently set language. Address expressions
that are associated with compiler generated types
are treated according to that type. Other address
expressions are treated as having the type longword
integer.

DISPLAY/DYNAMIC/NOMARK_CHANGE/POP when
applied to an existing display. The current display
kind, window, and size remain unchanged.

DISPLAY/DYNAMIC/POP/SIZE:64 when creating
a display. The default window is either H 1 or H2,
alternating between these two with each newly
created display. The default display kind is "output".

DO/PROCESS=*

EDIT/NOEXIT. The default is to invoke the VAX
Language-Sensitive Editor in a spawned subprocess.
This can be changed with a SET EDITOR command.
The default source file to be edited is the file whose
source code appears in the current source display.
The default position of the editing cursor is either the
beginning of the line that is centered in the current
source display, or the beginning of line 1 if the editor
was set to /NOSTART _POSITION.

ENABLE AST

Language expressions are interpreted according to
the currently set language.

A-1

Command Defaults

A-2

Command

EXAMINE

EXPAND

EXTRACT

MOVE

SCROLL

SEARCH

SELECT

SET ATSIGN

SET BREAK

SET DEFINE

SET EDITOR

SET IMAGE

SET KEY

SET LANGUAGE

SET LOG

SET MARGINS

SET MAX_SOURCE_FILES

SET MODE

SET OUTPUT

SET PROCESS

Default

The contents of program locations that are associated
with a compiler generated type are interpreted and
displayed according to that type. The contents of
other locations are interpreted and displayed as
longword integers.

EXPAND/DOWN, /UP: 1 line. EXPAND/LEFT, RIGHT:
1 column.

If you specify /SCREEN_LAYOUT, the
default specification for the output file is
SYS$DISK:[]DBGSCREEN.COM. Otherwise,
the default specification for the output file is
SYS$DISK:[]DEBUG. TXT.

MOVE/DOWN, /UP: 1 line. MOVE/LEFT, RIGHT: 1
column.

SCROLUDOWN, /UP: 3/4 of window height. SCROLL
/LEFT, /RIGHT: 8 columns.

SEARCH/NEXT/STRING. If no module name is
specified, the debugger uses the current scope to find
a module and searches that module for an occurrence
of the string. The current scope is that established by
a previous SET SCOPE command, or the PC scope
if no SET SCOPE command was entered. Also, if
no string is specified, the string specified in the last
SEARCH command, if any, is used.

SELECT/SCROLL

SET ATSIGN SYS$DISK:[]DEBUG.COM

SET BREAK/INTO/JSB/SHARE/SYSTEM
/NOSILENT/SOURCE

SET DEFINE ADDRESS

SET EDITOR/NOSTART_POSITION

The current image is the main image.

SET KEY/STATE=DEFAULT

The default language is the language of the module
that contains the image transfer address (main
program).

SET LOG SYS$DISK:[]DEBUG.LOG

SET MARGINS 1 :255 (left margin: 1, right margin:
255)

SET MAX_SOURCE_FILES 5

SET MODE DYNAMIC, NOG_FLOAT, KEYPAD,
LINE, NOOPERANDS, NOSCREEN, NOSEPARATE,
SCROLL, SYMBOLIC

SET OUTPUT NOLOG, NOSCREEN_LOG,
TERMINAL, NOVERIFY

SET PROCESS/VISIBLE

Command

SET PROMPT

SET RADIX

SET SCOPE

SET SEARCH

SET SOURCE

SET STEP

SET TERMINAL

SET TRACE

SET TYPE

SET VECTOR_MODE

SET WATCH

SPAWN

STEP

TYPE

Command Defaults

Default

SET PROMPT/NOPOP 11 DBG> 11
•

For multiprocess programs:
SET PROMPT/NOPOP/SUFFIX=PROCESS_
NUMBER 11 DBG_11

For all languages except BLISS and MACRO: SET
RADIX DECIMAL. For BLISS and MACRO: SET
RADIX HEXADECIMAL.

The debugger looks up a symbol specified without a
path name prefix according to the scope search list
0, 1, ... ,N (where N is the number of calls in the
call stack). If the symbol is not found, the debugger
searches the run-time symbol table, then the global
symbol table if necessary.

SET SEARCH NEXT, STRING

When searching for a source file, the debugger uses
the full file specification that is stored in the run-time
symbol table (RST).

SET STEP SOURCE, NOSILENT, OVER, LINE

The values of /PAGE and /WIDTH default to those set
at DCL level (see the VMS DCL Dictionary or enter
the DCL command HELP SET TERMINAL).

SET TRACE/INTO/JSB/SHARE/SYSTEM /NOSILENT
/SOURCE

The default type for program locations that are
associated with a compiler generated type is that
type. The default type for other locations is longword
integer.

SET VECTOR_MODE NOSYNCHRONIZED

For static variables: SET WATCH/NOSILENT
/SOURCE. For nonstatic variables: SET WATCH
/NOSILENT/OVER/SOURCE.

SPAWN/WAIT

STEP/OVER/LINE

If no module name is specified, the debugger uses
the current scope to find a module and searches
that module for source lines for display. The current
scope is that established by a previous SET SCOPE
command, or the PC scope if no SET SCOPE
command was entered. Also, if no line is specified
after a single source line has been displayed with
the TYPE command, the next line in that module is
displayed by default.

A-3

B Predefined Key Functions

When you invoke the debugger, certain predefined functions (commands,
sequences of commands, and command terminators) are assigned to keys
on the numeric keypad, to the right of the main keyboard. By using these
keys you can enter certain commands with fewer keystrokes than if you
were to type them at the keyboard. For example, pressing the COMMA (,)
keypad key is equivalent to typing GO and then pressing the Return key.
Terminals and workstations that have an LK201 keyboard have additional
programmable keys compared to those on VTlOO keyboards (for example,
"Help" or "Remove"), and some of these keys are also assigned debugger
functions.

To use function keys, keypad mode must be enabled (SET MODE
KEYPAD). Keypad mode is enabled when you invoke the debugger. If
you do not want keypad mode enabled, perhaps because the program
being debugged uses the keypad for itself, you can disable keypad mode by
entering the SET MODE NOKEYPAD command.

The keypad key functions that are predefined when you invoke the
debugger are identified in summary form in Figure B-1. Table B-1,
Table B-2, Table B-3, and Table B-4 identify all key definitions in detail.
Most keys are used for manipulating screen displays in screen mode. To
use screen mode commands, you must first enable screen mode by pressing
keypad key PF3 (SET MODE SCREEN). In screen mode, to re-create
the default layout of various windows, press the keypad-key sequence
BLUE-MINUS (PF4 followed by the MINUS key(-)).

To use the keypad keys to enter numbers rather than debugger commands,
enter the command SET MODE NOKEYPAD.

B.1 DEFAULT, GOLD, BLUE Functions
A given key typically has three predefined functions:

• One function is entered by pressing the given key by itself. This is the
DEFAULT function.

• A second function is entered by pressing and releasing the PFl key
and then pressing the given key. This is the GOLD function, because
PFl is also called the GOLD key.

• A third function is entered by pressing and releasing the PF4 key and
then pressing the given key. This is the BLUE function, because PF4
is also called the BLUE key.

B-1

Predefined Key Functions
B.1 DEFAULT, GOLD, BLUE Functions

Figure B-1 Keypad Key Functions Predefined by the Debugger-Command Interface

r F17 "' F18 F19

DEFAULT MOVE EXPAND
(SCROLL) (EXPAND+)

\.. .J

/' PF1 PF2 PF3

GOLD HELP DEFAULT SET MODE SCREEN
GOLD HELP GOLD SET MODE NOSCR
GOLD HELP BLUE DISP/GENERATE

7 rs
"' 9

DISP SRC,INST,OUT SCROLUUP DISPLAY next
DISP INST,REG,OUT SCROWTOP SET PROC next
DISP 2 SRC, 2 INST SCROLUUP ... DISP2SRC

\. _,J
'4 "' 5 rs "'

SCROLULEFT EX/SOU .O\%PC SCROLURIGHT
SCROLL/LEFT:255 SHOW CALLS SCROLURIGHT:255
SCROLULEFT ... SHOWCALLS3 SCROLURIGHT ...

\. .J \.I
1 '2

"" 3

EXAMINE SCROLUDOWN
EXAM11(prev) SCROLUBOlTOM
DISP 3 SRC, 3 INST SCROLUDOWN ...

0

'-

B-2

"'
STEP
STEP/INTO
STEP/OVER

LK201 Keyboard:

Press
F17
F18
F19
F20

VT-100 Keyboard:
Type
SET KEY/STATE=DEFAULT
SETKEY/STATE=MOVE
SET KEY/STATE=EXPAND
SET KEY/STATE=CONTRACT

.J

SEL SCROLL next
SEL OUTPUT next
DISP3SRC

RESET
RESET
RESET

Keys 2,4,6,8
SCROLL
MOVE
EXPAND
CONTRACT

Keys 2,4,6,8
SCROLL
MOVE
EXPAND
CONTRACT

F20 '
CONTRACT
(EXPAND-)

../

PF4 \

BLUE
BLUE
BLUE

-
DISP next at FS

DISP SRC, OUT

'
GO
SEUSOURCE next
SEUINST next

ENTER

ENTER

"MOVE"

"EXPAND"

"CONTRACT"

EXPAND/LEFT:-1
EXPAND/LEFT:-999
EXPAND/LEFT:-10

8

2

MOVE/UP
MOVE/UP:999
MOVE/UP:5

EXPAND/DOWN:-1
EXPAND/DOWN:-999
EXPAND/DOWN:-5

EXPAND/RIGHT:-1
EXPAND/RIGHT:-999
EXPAND/RIGHT:-10

ZK-0956A-GE

Predefined Key Functions
B.1 DEFAULT, GOLD, BLUE Functions

In Figure B-1, the DEFAULT, GOLD, and BLUE functions are listed
within each key's outline, from top to bottom respectively. For example,
pressing keypad key 0 enters the command STEP (DEFAULT function);
pressing key PFl and then key 0 enters the command STEP/INTO (GOLD
function); pressing key PF4 and then key 0 enters the command STEP
/OVER (BLUE function).

All command sequences assigned to keypad keys are terminated (executed
immediately) except for the BLUE functions of keys 2, 4, 6, and 8. These
unterminated commands are symbolized with a trailing ellipsis (. . .)
in Figure B-1. To terminate the command, supply a parameter and then
press RETURN. For example, to scroll down 12 lines, do the following:

1 Press key PF4

2 Press keypad key 2

3 Type : 12 at the keyboard

4 Press the Return key

B.2 Key Definitions Specific to LK201 Keyboards
Table B-1 lists keys that are specific to LK201 keyboards and do not
appear on VTlOO keyboards. For each key, the table identifies the
equivalent command and, for some keys, an equivalent keypad key that
you can use if you do not have an LK201 keyboard.

Table B-1 Key Definitions Specific to LK201 Keyboards

Equivalent
LK201 Key Command Sequence Invoked Keypad Key

F17 SET KEY/STATE=DEFAULT None

F18 SET KEY/STATE=MOVE None

F19 SET KEY/STATE=EXPAND None

F20 SET KEY/STATE=CONTRACT None

Help HELP KEYPAD SUMMARY None

Next Screen SCROLUDOWN 2

Prev Screen SCROLUUP 8

Remove DISPLAY/REMOVE %CURSCROLL None

Select SELECT/SCROLL %NEXTSCROLL 3

B.3 Keys that Scroll, Move, Expand, Contract Displays
By default, keypad keys 2, 4, 6, and 8 scroll the current scrolling display.
Each key controls a direction (down, left, right, and up, respectively). By
pressing keys Fl8, F19, or F20, you can place the keypad in the MOVE,
EXPAND, or CONTRACT states. When the keypad is in the MOVE state,
keys 2, 4, 6, and 8 can be used to move the current scrolling display down,
left, and so on. Similarly, in the EXPAND and CONTRACT states, the
four keys can be used to expand or contract the current scrolling display.

B-3

Predefined Key Functions
B.3 Keys that Scroll, Move, Expand, Contract Displays

B-4

(See Figure B-1 and. Table B-2. Alternative key definitions for VTlOO
keyboards are described later in this section.)

To scroll, move, expand, or contract a display, proceed as follows:

1 Press key 3 repeatedly, as needed, to select the current scrolling
display from the display list.

2 Press key Fl 7, F18, F19, or F20 to put the keypad in the DEFAULT
(scroll), MOVE, EXPAND, or CONTRACT state, respectively.

3 Press keys 2, 4, 6, and 8 to perform the desired function. Use the PFl
(GOLD) and PF4 (BLUE) keys to control the amount of scrolling or
movement.

Table B-2 Keys that Change the Key State

Key Description

PF1 Invokes the GOLD function of the next key you press.

PF4 Invokes the BLUE function of the next key you press.

F17 Puts the keypad in the DEFAULT state, enabling the scroll-display functions
of keys 2, 4, 6, and 8. The keypad is in the DEFAULT state when you
invoke the debugger.

F18 Puts the keypad in the MOVE state, enabling the move-display functions of
keys 2, 4, 6, and 8.

F19 Puts the keypad in the EXPAND state, enabling the expand-display
functions of keys 2, 4, 6, and 8.

F20 Puts the keypad in the CONTRACT state, enabling the contract-display
functions of keys 2, 4, 6, and 8.

If you have a VTlOO keyboard, you can simulate the effect of LK201 keys
Fl7 to F20 by defining the key sequences GOLD-KP9 and BLUE-KP9
(currently undefined) as shown below. With these definitions, pressing
GOLD-KP9 puts the keypad in the DEFAULT (scroll) state; pressing
BLUE-KP9 cycles the keypad through the DEFAULT, MOVE, EXPAND,
and CONTRACT states (like cycling through keys Fl 7 to F20). You might
want to store these key definitions in a command procedure, such as your
debugger initialization file.

DEFINE/KEY/IF STATE=(GOLD,MOVE GOLD,EXPAND GOLD,CONTRACT GOLD)-
/TERMINATE KP9 "SET KEY/STATE::DEFAULT/NOLOG" -

DEFINE/KEY/IF STATE=(BLUE)-
/TERMINATE KP9 "SET KEY/STATE=MOVE/NOLOG"

DEFINE/KEY/IF STATE=(MOVE BLUE)-
/TERMINATE KP9 "SET KEY/STATE=EXPAND/NOLOG"

DEFINE/KEY/IF STATE=(EXPAND BLUE)-
/TERMINATE KP9 "SET KEY/STATE=CONTRACT/NOLOG"

DEFINE/KEY/IF STATE=(CONTRACT BLUE)
/TERMINATE KP9 "SET KEY/STATE=DEFAULT/NOLOG"

Predefined Key Functions
B.4 Online Keypad Key Diagrams

B.4 Online Keypad Key Diagrams
Online HELP for the keypad keys is available by pressing the Help key
and also the PF2 key, either by itself or with other keys (see Table B-3).
You can also use the SHOW KEY command to identify key definitions.

Table B-3 Keys that Invoke Online Help to Display Keypad Diagrams

Key or
Key Sequence Command Sequence Invoked

Help HELP KEYPAD SUMMARY

PF2 HELP KEYPAD DEFAULT

PF1-PF2 HELP KEYPAD GOLD

PF4-PF2 HELP KEYPAD BLUE

F18-PF2 HELP KEYPAD MOVE

F18-PF1 -PF2 HELP KEYPAD MOVE_GOLD

F18-PF4-PF2 HELP KEYPAD MOVE_BLUE

F19-PF2 HELP KEYPAD EXPAND

F19-PF1 -PF2 HELP KEYPAD EXPAND_GOLD

F19-PF4-PF2 HELP KEYPAD EXPAND_BLUE

F20-PF2 HELP KEYPAD CONTRACT

F20-PF1 -PF2 HELP KEYPAD CONTRACT_GOLD

F20-PF4-PF2 HELP KEYPAD CONTRACT_BLUE

Description

Shows a diagram of the keypad keys and
summarizes each key's function

Shows a diagram of the keypad keys and their
DEFAULT functions

Shows a diagram of the keypad keys and their
GOLD functions

Shows a diagram of the keypad keys and their
BLUE functions

Shows a diagram of the keypad keys and their
MOVE DEFAULT functions

Shows a diagram of the keypad keys and their
MOVE GOLD functions

Shows a diagram of the keypad keys and their
MOVE BLUE functions

Shows a diagram of the keypad keys and their
EXPAND DEFAULT functions

Shows a diagram of the keypad keys and their
EXPAND GOLD functions

Shows a diagram of the keypad keys and their
EXPAND BLUE functions

Shows a diagram of the keypad keys and their
CONTRACT DEFAULT functions

Shows a diagram of the keypad keys and their
CONTRACT GOLD functions

Shows a diagram of the keypad keys and their
CONTRACT BLUE functions

B-5

Predefined Key Functions
B.5 Debugger Key Definitions

B.5 Debugger Key Definitions

B-6

Table B-4 identifies all key definitions.

Table B-4 Debugger Key Definitions

Key

0

2

3

State

DEFAULT

GOLD

BLUE

DEFAULT

GOLD

BLUE

DEFAULT

GOLD

Command Invoked or Function

STEP

STEP/INTO

STEP/OVER

EXAMINE. Examines the logical successor of the
current entity, if one is defined (the next location).

EXAMINE"· Enables you to examine the logical
predecessor of the current entity, if one is defined
(the previous location).

Displays three sets of predefined process-specific
source and instruction displays, SRC_n and
INST _n. These consist of source and instruction
displays for the visible process at S2 and RS2,
respectively; source and instruction displays for
the previous process on the process list at S 1
and RS1, respectively; and source and instruction
displays for the next process on the process list at
S3 and RS3, respectively.

SCROLUDOWN

SCROLUBOTTOM

BLUE SCROLUDOWN (not terminated). To terminate
the command, supply the number of lines to be
scrolled (:n) or a display name.

MOVE MOVE/DOWN

MOVE_ GOLD MOVE/DOWN:999

MOVE_BLUE MOVE/DOWN:5

EXPAND EXPAND/DOWN

EXPAND_GOLD EXPAND/DOWN:999

EXPAND_BLUE EXPAND/DOWN:5

CONTRACT EXPAND/DOWN:-1

CONTRACT_GOLD EXPAND/DOWN:-999

CONTRACT_BLUE EXPAND/DOWN:-5

DEFAULT SELECT/SCROLL %NEXTSCROLL. Selects as
the current scrolling display the next display in the
display list after the current scrolling display.

GOLD SELECT/OUTPUT %NEXTOUTPUT. Selects the
next output display in the display list as the current
output display.

(continued on next page)

Predefined Key Functions
B.5 Debugger Key Definitions

Table B-4 (Cont.) Debugger Key Definitions

Key

4

5

6

State

BLUE

BLUE

DEFAULT

GOLD

BLUE

MOVE

MOVE_ GOLD

MOVE_ BLUE

EXPAND

EXPAND_GOLD

EXPAND_BLUE

CONTRACT

CONTRACT _GOLD

CONTRACT _BLUE

DEFAULT

GOLD

BLUE

DEFAULT

GOLD

BLUE

MOVE

MOVE_ GOLD

MOVE_BLUE

EXPAND

Command Invoked or Function

Displays three predefined process-specific source
displays, SRC_n. These are located at S1, S2,
and S3, respectively, for the previous, current
(visible}, and next process on the process list.

SELECT/SOURCE %NEXTSOURCE. Selects the
next source display in the display list as the current
source display.

SCRO LULE FT

SCROLULEFT:255

SCROLULEFT (not terminated). To terminate
the command, supply the number of lines to be
scrolled (:n) or a display name.

MOVE/LEFT

MOVE/LEFT:999

MOVE/LEFT:10

EXPAND/LEFT

EXPAND/LEFT:999

EXPAND/LEFT:10

EXPAND/LEFT:-1

EXPAND/LEFT:-999

EXPAND/LEFT:-10

EXAM/SOURCE .%SOURCE_SCOPE\%PC;
EXAM/INST .0/olNST_SCOPE\%PC. In line
(noscreen) mode, displays the the source line
and the instruction to be executed next. In screen
mode, centers the current source display on the
next source line to be executed, and the current
instruction display on the n~xt instruction to be
executed.

SHOW CALLS

SHOW CALLS 3

SCROLURIGHT

SCROLURIGHT:255

SCROLURIGHT (not terminated). To terminate
the command, supply the number of lines to be
scrolled (:n) or a display name.

MOVE/RIGHT

MOVE/RIGHT:999

MOVE/RIGHT:10

EXPAND/RIGHT

(continued on next page)

B-7

Predefined Key Functions
B.5 Debugger Key Definitions

Table B-4 {Cont.) Debugger Key Definitions

Key

7

8

9

B-8

State

EXPAND_GOLD

EXPAND_BLUE

CONTRACT

CONTRACT _GOLD

CONTRACT _BLUE

DEFAULT

GOLD

BLUE

DEFAULT

GOLD

BLUE

MOVE

MOVE_GOLD

MOVE_BLUE

EXPAND

EXPAND_GOLD

EXPAND_BLUE

CONTRACT

CONTRACT _GOLD

CONTRACT _BLUE

DEFAULT

Command Invoked or Function

EXPAND/RIGHT:999

EXPAND/RIGHT:10

EXPAND/RIGHT:-1

EXPAND/RIGHT:-999

EXPAND/RIGHT:-10

DISPLAY SRC AT LH1, INST AT RH1, OUT
AT S45, PROMPT AT S6; SELECT/SCROLL
/SOURCE SRC; SELECT/INST INST; SELECT
/OUT OUT. Displays the SRC, INST, OUT, and
PROMPT displays with the proper attributes.

DISPLAY INST AT LH1, REG AT RH1, OUT AT
S45, PROMPT AT S6; SELECT/SCROLUINST
INST; SELECT/OUT OUT. Displays the INST,
REG, OUT, and PROMPT displays with the proper
attributes.

Displays two sets of predefined process-specific
source and instruction displays, SRC_n and
INST _n. These consist of source and instruction
displays for the visible process at Q1 and RQ1 ,
respectively, and source and instruction displays
for the next process on the process list at Q2 and
RQ2, respectively.

SCROLUUP

SCROLL/TOP

SCROLUUP (not terminated}. To terminate the
command, supply the number of lines to be
scrolled (:n} or a display name.

MOVE/UP

MOVE/UP:999

MOVE/UP:5

EXPAND/UP

EXPAND/UP:999

EXPAND/UP:5

EXPAND/UP:-1

EXPAND/UP:-999

EXPAND/UP:-5

DISPLAY %NEXTDISP. Displays the next display in
the display list through its current window (removed
displays are not included}.

(continued on next page)

Table B-4 (Cont.)

Key State

GOLD

BLUE

PF1

PF2

PF3 DEFAULT

GOLD

BLUE

PF4

COMMA DEFAULT

GOLD

BLUE

MINUS DEFAULT

GOLD

BLUE

ENTER

PERIOD All states

Predefined Key Functions
8.5 Debugger Key Definitions

Debugger Key Definitions

Command Invoked or Function

SET PROCESS/VISIBLE %NEXT_PROCESS.
Makes the next process in the process list the
visible process.

Displays two predefined process-specific source
displays, SRC_n. These are located at Q1 and
Q2, respectively, for the visible process and for the
next process on the process list.

See Table B-2.

See Table B-3.

SET MODE SCREEN; SET STEP NOSOURCE.
Enables screen mode and suppresses the output
of source lines that would normally appear in the
output display (since that output is redundant when
the source display is present).

SET MODE NOSCREEN; SET STEP SOURCE.
Disables screen mode and restores the output of
source lines.

DISPLAY/GENERATE. Regenerates the contents
of all automatically updated displays.

See Table B-2.

GO

SELECT/SOURCE %NEXT_SOURCE. Selects the
next source display in the display list as the current
source display.

SELECT/INSTRUCTION %NEXTINST. Selects the
next instruction display In the display list as the
current instruction display.

DISPLAY %NEXTDISP AT S12345, PROMPT AT
S6; SELECT/SCROLL %CURDISP. Displays the
next display in the display list at essentially full
screen (top of screen to top of PROMPT display).
Selects that display as the current scrolling display.

Undefined

DISPLAY SRC AT H1, OUT AT S45, PROMPT AT
S6; SELECT/SCROLUSOURCE SRC; SELECT
/OUT OUT. Displays the SRC, OUT, and PROMPT
displays with the proper attributes. This is the
default display configuration.

Enables you to enter (terminate) a command.
Same effect as RETURN.

Cancels the effect of pressing state keys which do
not lock the state, such as GOLD and BLUE. Does
not affect the operation of state keys which lock the
state, such as MOVE, EXPAND, and CONTRACT.

(continued on next page)

B-9

Predefined Key Functions
B.5 Debugger Key Definitions

Table B-4 (Cont.)

Key State

Next DEFAULT
Screen
(E6)

Prev DEFAULT
Screen
(ES)

Remove DEFAULT
(E3)

Select DEFAULT
(E4)

F17

F18

F19

F20

CTRUW

CTRUZ

B-10

Debugger Key Definitions

Command Invoked or Function

SCROLUDOWN

SCROLUUP

DISPLAY/REMOVE %CURSCROLL. Removes the
current scrolling display from the display list.

SELECT/SCROLL %NEXTSCROLL. Selects as
the current scrolling display the next display in the
display list after the current scrolling display.

See Table B-2.

See Table B-2.

See Table B-2.

See Table B-2.

DISPLAY/REFRESH

EXIT

C Screen Mode Reference Information

C.1 Display Kinds

This appendix contains summarized reference information related to
screen mode. The following topics are covered:

• Display kinds

• Display attributes

• Predefined displays

• Screen-related built-in symbols

• Screen dimensions and predefined windows

The DISPLAY command accepts these display-kind keywords and
parameters:

DO (command[; ...])

INSTRUCTION

INSTRUCTION (command)

OUTPUT

REGISTER

Specifies an automatically updated output display.
The commands are executed in the order listed
each time the debugger gains control. Their output
forms the contents of the display. If you specify
more than one command, they must be separated
by semicolons.

Specifies an instruction display. If selected as
the current instruction display with the SELECT
/INSTRUCTION command, it displays the output
from subsequent EXAMINE/INSTRUCTION
commands.

Specifies an automatically updated instruction
display. The command specified must be an
EXAMINE/INSTRUCTION command. The
instruction display is updated each time the
debugger gains control.

Specifies an output display. If selected as the
current output display with the SELECT/OUTPUT
command, it displays any debugger output that is not
directed to another display. If selected as the current
input display with the SELECT/INPUT command, it
echoes debugger input. If selected as the current
error display with the SELECT/ERROR command, it
displays debugger diagnostic messages.

Specifies an automatically updated register display.
The display is updated each time the debugger
gains control.

C-1

Screen Mode Reference Information
C.1 Display Kinds

SOURCE

SOURCE (command)

Specifies a source display. If selected as the
current source display with the SELECT/SOURCE
command, it displays the output from subsequent
TYPE or EXAMINE/SOURCE commands.

Specifies an automatically updated source display.
The command specified must be a TYPE or
EXAMINE/SOURCE command. The source display
is updated each time the debugger gains control.

C.2 Display Attributes

C-2

The SELECT command assigns an attribute to a display according to the
qualifier used with that command. The following list identifies each of the
SELECT command qualifiers, its effect, and the display kinds to which
you can assign that attribute.

SELECT
Qualifier

/ERROR

/INPUT

/INSTRUCTION

/OUTPUT

/PROGRAM

Description

Selects the specified display as the current error display. Directs
any subsequent debugger diagnostic message to that display. It
must be either an output display or the PROMPT display. If no
display is specified, selects the PROMPT display as the current
error display.

Selects the specified display as the current input display.
Echoes any subsequent debugger input in that display. It
must be an output display. If no display is specified, unselects
the current input display: debugger input is not echoed to any
display.

Selects the specified display as the current instruction display.
Directs the output of any subsequent EXAMINE/INSTRUCTION
command to that display. It must be an instruction display.
Keypad key sequence BLUE-COMMA selects the next
instruction display in the display list as the current instruction
display. If no display is specified, unselects the current
instruction display: no display has the instruction attribute.

Selects the specified display as the current output display.
Directs any subsequent debugger output to that display, except
where a particular type of output is being directed to another
display (such as diagnostic messages going to the current error
display). The specified display must be either an output display
or the PROMPT display. Keypad key sequence GOLD-3 selects
the next output display in the display list as the current output
display. If no display is specified, selects the PROMPT display
as the current output display.

Selects the specified display as the current program display.
Tries to force any subsequent program input or output to that
display. Currently, only the PROMPT display can be specified.
If no display is specified, unselects the current program display:
program output is no longer forced to the PROMPT display.

SELECT
Qualifier

/PROMPT

/SCROLL

/SOURCE

Screen Mode Reference Information
C.2 Display Attributes

Description

Selects the specified display as the current prompt display,
where the debugger prompts for input. Currently, only the
PROMPT display can be specified. You cannot unselect the
PROMPT display.

Selects the specified display as the current scrolling display.
Makes that display the default display for any subsequent
SCROLL, MOVE, or EXPAND command. You can specify any
display (however, note that the PROMPT display cannot be
scrolled). The /SCROLL qualifier is the default if you do not
specify a qualifier with the SELECT command. Key 3 selects
as the current scrolling display the next display in the display
list after the current scrolling display. If no display is specified,
unselects the current scrolling display: no display has the scroll
attribute.

Selects the specified display as the current source display.
Directs the output of any subsequent TYPE or EXAMINE
/SOURCE command to that display. It must be a source display.
Keypad key sequence BLU E-3 selects the next source display
in the display list as the current source display. If no display is
specified, unselects the current source display: no display has
the source attribute.

By default, when you invoke screen mode, the predefined displays are
selected for attributes as follows:

Attribute Predefined Display

Error PROMPT

Input no display selected

Instruction no display selected

Output OUT

Program PROMPT

Prompt PROMPT

Scroll SRC

Source SRC

C.3 Predefined Displays
Properties of the predefined displays SRC, OUT, PROMPT, INST and REG
are summarized in this section.

C-3

C.3.1

C.3.2

C.3.3

Screen Mode Reference Information
C.3 Predefined Displays

SRC {Source Display)
SRC is an automatically updated source display. It shows the source code
of the module being debugged, if that source code is available. The arrow
points to the source line corresponding to the current PC value (where
execution is suspended).

The default characteristics of the SRC display are the following:

Display kind

Attributes

Position

Size

Dynamic

source (examine/source . %source_scope\ %pc)

scroll, source

H1

64 lines

yes

%SOURCE_SCOPE is a built-in scope that has the following properties:

• By default %SOURCE_SCOPE denotes scope 0, which is the scope of
the routine where execution is currently suspended.

• If you have reset the scope search list relative to the call stack by
means of the SET SCOPE/CURRENT command, %SOURCE_SCOPE
denotes the current scope specified (the scope of the routine at the
start of the search list).

• If source code is not available for the routine in the current scope,
%SOURCE_SCOPE denotes scope N, where N is the first level down
the call stack for which source code is available.

When displaying source lines that are not associated with the module
where execution is suspended, the debugger issues the following message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
Displaying source in a caller of the current routine.

OUT {Output Display)
OUT shows all debugger output that is not directed to another display.

The default characteristics of the OUT display are the following:

Display kind

Attribute

Position

Size

Dynamic

output

output

S45

100 lines

yes

PROMPT {Prompt Display)

C-4

PROMPT is the display in which the debugger prompts for input and, by
default, forces program output and prints debugger diagnostic messages.

C.3.4

C.3.5

Screen Mode Reference Information
C.3 Predefined Displays

PROMPT has different properties and restrictions than other displays.
This is to eliminate possible confusion when manipulating that display:

• You cannot hide, remove, permanently delete, or scroll PROMPT.

• You can contract PROMPT down to 2 lines. You cannot contract
PROMPT horizontally.

The default characteristics of the PROMPT display are the following:

program Display kind

Attributes error, prompt, program (no other display can have the prompt or
program attributes)

Position

Size

Dynamic

INST {Instruction Display)

S6

Not applicable (PROMPT is not scrollable)

yes

INST is an automatically updated instruction display. It shows the
instruction stream of the routine being debugged. The instructions
displayed are decoded from the image being debugged. The arrow points
to the instruction at the current PC value.

The default characteristics of the INST display are the following:

Display kind

Attributes

Position

Size

Dynamic

instruction (examine/instruction .%inst_scope\%pc)

none

H1, removed

64 lines

yes

%INST_SCOPE is a built-in scope that has the following properties:

• By default %INST_SCOPE denotes scope 0, which is the scope of the
routine where execution is currently suspended.

• If you have reset the scope search list relative to the call stack by
means of the SET SCOPE/CURRENT command, %INST_SCOPE
denotes the current scope specified (the scope of the routine at the
start of the search list).

REG {Register Display)
REG automatically shows the current values, in hexadecimal format,
of the VAX general registers (RO to Rll, AP, FP, SP, and PC), the four
condition code bits (C,V, Z, and N) of the processor status longword (PSL),
and as many of the top call stack values as can be displayed in the window.

The register values displayed are for the routine in which execution is
currently suspended. The values are updated whenever the debugger
takes control. Any changed values are highlighted.

C-5

Screen Mode Reference Information
C.3 Predefined Displays

The default characteristics of the REG display are the following:

Display kind register

Attribute none

Position RH 1 , removed

Size 64 lines

Dynamic yes

If the register window is resized, the debugger automatically reformats the
displayed information to adapt to the new window size.

Display REG does not display the current values of the VAX vector
registers. To display data contained in vector registers or vector control
registers in screen mode, use a DO display. (See Section 7.6.1.)

C.4 Screen-Related Built-In Symbols

C.4.1

C.4.2

The following built-in symbols are available for specifying displays and
screen parameters in language expressions:

• %SOURCE_SCOPE-Used to display source code. %SOURCE_SCOPE
is described in Section C.3.1.

• %INST_SCOPE-U sed to display instructions. %INST_SCOPE is
described in Section C.3.4.

• %PAGE, %WIDTH-Used to specify the current screen height and
width.

• %CURDISP, %CURSCROLL, %NEXTDISP, %NEXTINST,
%NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE-Used to specify
displays in the display list.

Screen Height and Width
The built-in symbols %PAGE and % WIDTH return, respectively, the
current height and width of the terminal screen. These symbols can
be used in various expression, such as for window specifications. For
example, the following command defines a window named MIDDLE that
occupies a region around the middle of the screen:

DBG> SET WINDOW MIDDLE AT (%PAGE/4,%PAGE/2,%WIDTH/4,%WIDTH/2)

Display Built-In Symbols

C-6

Each time you refer to a specific display with a DISPLAY command, the
display list is updated and reordered, if necessary. The most recently
referenced display is put at the tail of the display list, since that display is
pasted last on the pasteboard (the display list can be identified by entering
a SHOW DISPLAY command).

Screen Mode Reference Information
C.4 Screen-Related Built-In Symbols

You can use display built-in symbols to specify displays relative to their
positions in the display list. These symbols, listed as follows, enable you
to refer to displays by their relative positions in the list instead of by their
explicit names. The symbols are used mainly in keypad key definitions or
command procedures.

Display symbols treat the display list as a circular list. Therefore, you can
enter any commands that use display symbols to cycle through the display
list until you reach the display you want.

%CURDISP The current display. This is the display most recently referenced
with a DISPLAY command-the least occluded display.

%CURSCROLL The current scrolling display. This is the default display for the
SCROLL, MOVE, and EXPAND commands, as well as for the
associated keypad keys (2, 4, 6, and 8).

%NEXTDISP The next display in the list after the current display. The next
display is the display that follows the topmost display. Because
the display list is circular, this is the display at the bottom of the
pasteboard-the most occluded display.

%NEXTINST The next instruction display in the display list after the current
instruction display. The current instruction display is the
display that receives the output from EXAMINE/INSTRUCTION
commands.

%NEXTOUTPUT The next output display in the display list after the current output
display. An output display receives debugger output that is not
already directed to another display.

%NEXTSCROLL The next display in the display list after the current scrolling
display.

%NEXTSOURCE The next source display in the display list after the current source
display. The current source display is the display which receives
the output from TYPE and EXAMINE/SOURCE commands.

C.5 Screen Dimensions and Predefined Windows
On a VT-series terminal, the screen consists of 24 lines by 80 or 132
columns. On a workstation, the screen is larger in both height and
width. The debugger can accommodate screen sizes up to 100 lines by
255 columns.

The debugger has many predefined windows that you can use to position
displays on the screen. The SHOW WINDOW command identifies all
predefined and user defined windows. The predefined windows are
expressed in terms of fractions of the screen dimensions (for example,
quarters, halves, and so on). Therefore, the positions and dimensions
of the predefined windows that are indicated by the SHOW WINDOW
command are adjusted for the screen dimensions.

In addition to the full height and width of the screen, the predefined
windows include all possible regions that result from dividing the
screen vertically into halves, thirds, quarters, sixths, and eighths, and
horizontally into left and right halves.

C-7

Screen Mode Reference Information
C.5 Screen Dimensions and Predefined Windows

C-8

The following conventions apply to the names of predefined windows. The
prefixes Land R denote left and right windows, respectively. Other letters
denote the full screen (FS) or fractions of the screen height (H: half, T:
third, Q: quarter, S: sixth, E: eighth). The trailing numbers denote specific
fractions of the screen height, starting from the top. For example:

• Windows Tl, T2, and T3 occupy the top, middle and bottom thirds of
the screen, respectively.

• Window RH2 occupies the right bottom half of the screen.

• Window LQ23 occupies the left middle two quarters of the screen.

• Window 845 occupies the fourth and fifth sixths of the screen.

The horizontal boundaries (start-column, column-count) of the predefined
windows for the default terminal screen width of 80 columns are as
follows:

• Left hand windows: (1,40)

• Right hand windows: (42,39)

The vertical boundaries (start-line, line-count) of the predefined windows
for the default terminal screen height of 24 lines are as follows:

Window Name Start-line, Line-count Window Location

FS (1,23) Full screen

H1 (1, 11) Top half

H2 (13, 11) Bottom half

T1 (1,7) Top third

T2 (9,7) Middle third

T3 (17,7) Bottom third

01 (1,5) Top quarter

Q2 (7,5) Second quarter

Q3 (13,5) Third quarter

Q4 (19,5) Bottom quarter

S1 (1,3) Top sixth

S2 (5,3) Second sixth

S3 (9,3) Third sixth

S4 (13,3) Fourth sixth

S5 (17,3) Fifth sixth

S6 (21,3) Bottom sixth

E1 (1,2) Top eighth

E2 (4,2) Second eighth

E3 (7,2} Third eighth

E4 (10,2) Fourth eighth

Screen Mode Reference Information
C.5 Screen Dimensions and Predefined Windows

Window Name Start-line,Line-count Window Location

E5 (13,2) Fifth eighth

E6 (16,2) Sixth eighth

E7 (19,2) Seventh eighth

EB (22,2) Bottom eighth

C-9

D Built-In Symbols and Logical Names

This appendix identifies all of the debugger built-in symbols and logical
names.

D.1 SS$_DEBUG Condition

D.2 Logical Names

SS$_DEBUG (defined in SYS$LIBRARY:STARLET.OLB) is a condition
you can signal from your program to invoke the debugger. Signaling SS$_
DEBUG from your program is equivalent to typing CTRL/Y followed by
the DCL command DEBUG at that point.

You can pass commands to the debugger at the time you signal it with
SS$_DEBUG. The commands you want the debugger to execute should
be specified as you would enter them at the DBG> prompt. Multiple
commands should be separated by semicolons. The commands should be
passed by reference as an ASCIC string. See your language documentation
for details on constructing an ASCIC string.

For example, to invoke the debugger and enter a SHOW CALLS command
at a given point in your program, you could insert the following code in
your program (BLISS example):

LIB$SIGNAL(SS$_DEBUG, 1, UPLIT BYTE(%ASCIC 'SHOW CALLS'));

You can obtain the definition of SS$_DEBUG at compile time from
the appropriate STARLET or SYSDEF file for your language (for
example STARLET.L32 for BLISS or FORSYSDEF.TLB for FORTRAN).
You can also obtain the definition of SS$_DEBUG at link time in
SYS$LIBRARY:STARLET.OLB (this method is less desirable).

The following list identifies debugger-specific logical names.

Logical
Name

DBG$1NIT

Description

Points to your debugger initialization file. Default: no
debugger initialization file. DBG$1NIT accepts a full or
partial VMS file specification as well as a search list. See
Section 8.2 for information about debugger initialization files.

D-1

Built-In Symbols and Logical Names
D.2 Logical Names

D-2

Logical
Name

DBG$1NPUT

Description

Points to the debugger input device. Default: SYS$1NPUT.
See Section 9.2 for information about using DBG$1NPUT
and DBG$0UTPUT to debug screen-oriented programs at
two terminals.

DBG$1NPUT is ignored in the DECwindows interface (see
DBG$DECW$DISPLAY). You can use DBG$1NPUT if you
are displaying the debugger's command interface in a
DECterm window (see Section 1.6.3.3).

DBG$0UTPUT Points to the debugger output device. Default:
SYS$0UTPUT. See Section 9.2 for information about using
DBG$1NPUT and DBG$0UTPUT to debug screen-oriented
programs at two terminals.

DBG$0UTPUT is ignored in the DECwindows interface
(see DBG$DECW$DISPLAY). You can use DBG$0UTPUT
if you are displaying the debugger's command interface in a
DECterm window (see Section 1.6.3.3).

DBG$PROCESS Specifies the debugging configuration (default or
multiprocess). Default: DBG$PROCESS is undefined. See
Section 10.2.1 for information about using DBG$PROCESS
to specify the debugging configuration.

DBG$DECW$DISPLAY Applies only to workstations running DECwindows.
Specifies the debugger interface (DECwindows
or command) or the display device. Default:
DBG$DECW$DISPLAY is either undefined or has the
same definition as the application-wide logical name
DECW$DISPLAY. See Section 1.6.3 for information about
using DBG$DECW$DISPLAY to override the debugger's
default interface in the DECwindows environment.

Use the DCL command DEFINE or ASSIGN to assign values to these
logical names. For example, the following command specifies the location
of the debugger initialization file:

$ DEFINE DBG$INIT DISK$: [JONES.COMFILES]DEBUGINIT.COM

Note the following points about the logical name DBG$INPUT. If you
plan to debug a program that takes its input from a file (for example,
PROG_IN .DAT) and your debugger input from the terminal, establish the
following definitions before invoking the debugger:

$ DEFINE SYS$INPUT PROG IN. DAT
$ DEFINE/PROCESS DBG$INPUT 'F$LOGICAL ("SYS$COMMAND")

That is, define DBG$INPUT to point to the translation of
SYS$COMMAND. If you define DBG$INPUT to point to SYS$COMMAND,
the debugger tries to get its input from the file, PROG_IN.DAT.

D.3 Built-In Symbols

Built-In Symbols and Logical Names
D.3 Built-In Symbols

The debugger's built-in symbols provide options for specifying program
entities and values.

Most of the debugger built-in symbols have a percent sign (%) prefix.

The following symbols are described in this appendix:

• %RO to %Rll, %AP, %FP, %SP, %PC, %PSL-Used to specify the VAX
general registers.

• %VO to %V15, %VCR, %VLR, and %VMR-Used to specify the VAX
vector registers and vector control registers.

• %NAME-Used to construct identifiers.

• %PARCNT-Used in command procedures to count parameters passed.

• %BIN, %DEC, %HEX, %OCT-Used to control the input radix.

• Period (.), Return key, circumflex ("), backslash (\), %CURLOC,
%NEXTLOC, %PREVLOC, %CURVAL-U sed to specify consecutive
program locations and the current value of an entity.

• Plus sign (+), minus sign (-), multiplication sign (*), division sign (I),
at sign (@), period (.), bit field operator (<p,s,e>), %LABEL, %LINE,
backslash (\)-Used as operators in address expressions.

• %ADAEXC_NAME, %EXC_FACILITY, %EXC_NAME, %EXC_
NUMBER, %EXC_SEVERITY-U sed to obtain information about
exceptions.

• %ACTIVE_TASK, %CALLER_TASK, %NEXT_TASK, %TASK,
%VISIBLE_TASK-Used to specify tasks in Ada tasking programs.

• %CURRENT_SCOPE_ENTRY, %NEXT_SCOPE_ENTRY,
%PREVIOUS_SCOPE_ENTRY-Used to specify the current, next,
and previous scope relative to the call stack.

The following symbols are described elsewhere in this manual, as
indicated:

• %ADDR, %DESCR, %REF, %VAL-Used to specify the argument
passing mechanism for the CALL command. See the CALL command
description in the command dictionary.

• %PROCESS_NAME, %PROCESS_PID, %PROCESS_NUMBER,
%NEXTYROCESS, %PREVIOUS_PROCESS, %VISIBLE_
PROCESS-Used to specify processes in multiprocess programs.
See Section 10.2.2.

• %PAGE~ %WIDTH-Used to specify the current screen height and
width. See Section C.4.1.

• %SOURCE_SCOPE, %INST_SCOPE-Used to specify the scope for
source and instruction display in screen mode. See Section C.3.1 and
Section C.3.4, respectively.

D-3

D.3.1

D.3.2

Built-In Symbols and Logical Names
D.3 Built-In Symbols

• %CURDISP, %CURSCROLL, %NEXTDISP, %NEXTINST,
%NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE-Used in screen
mode to specify displays in the display list. See Section C.4.2.

Specifying the VAX Registers
The debugger built-in symbol for a VAX register is the register name
preceded by the percent sign (%). When specifying a register symbol, you
can omit the percent sign (%) prefix if your program has not declared a
symbol with the same name.

The register symbols are identified in the following list.

Symbol

%RO ... %R11

%AP (%R12)

%FP (%R13)

%SP (%R14)

%PC (%R15)

%PSL

%VO ... %V15

%VCR

%VLR

%VMR

Description

VAX General Registers

General purpose registers (RO ... R11)

Argument pointer (AP)

Frame pointer (FP)

Stack pointer (SP)

Program counter (PC)

Processor status longword (PSL)

VAX Vector Registers and Vector Control Registers

Vector registers VO ... V15

Vector count register

Vector length register

Vector mask register

See Section 4.4 and Section 4.3.1 for more info1-mation about the general
registers. See Chapter 11 for more information about the vector registers.

Constructing Identifiers

D-4

The %NAME built-in symbol enables you to construct identifiers that are
not ordinarily legal in the current language. The syntax is as follows:

%NAME 'character-string'

In the following example, the variable with the name '12' is examined:

DBG> EXAMINE %NAME '12'

In the following example, the compiler-generated label P.AAA is examined:

DBG> EXAMINE %NAME 'P .AAA'

D.3.3

D.3.4

D.3.5

Built-In Symbols and Logical Names
D.3 Built-In Symbols

Counting Parameters Passed to Command Procedures
The %PARCNT built-in symbol can be used within a command procedure
that accepts a variable number of actual parameters (%PARCNT is defined
only within a debugger command procedure).

%PARCNT specifies the number of actual parameters passed to the current
command procedure. In the following example, command procedure
ABC.COM is invoked and three parameters are passed:

DBG> @ABC 111,222,333

Within ABC.COM, %PARCNT now has the value 3. %PARCNT is then
used as a loop counter to obtain the value of each parameter passed to
ABC.COM:

DBG> FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)

Controlling the Input Radix
The built-in symbols %BIN, %DEC, %HEX, and %OCT can be used in
address expressions and language expressions to specify that an integer
literal that follows (or all integer literals in a parenthesized expression
that follows) should be interpreted in binary, decimal, hexadecimal, or
octal radix, respectively. Use these radix built-in symbols only with
integer literals.

For example:

DBG>
16
DBG>
32
DBG>
2
DBG>
16
DBG>
OA

EVALUATE/DEC

EVALUATE/DEC

EVALUATE/DEC

EVALUATE/DEC

EVALUATE/HEX

%HEX

%HEX

%BIN

%OCT

%DEC

10

(10

10

(10

10

DBG> SET RADIX DECIMAL
DBG> EVALUATE %HEX 20 + 33
65
DBG> EVALUATE %HEX (20+33)
83

+ 10)

+ 10)

! Treat 20 as hexadecimal, 33 as decimal
! Resulting value is decimal

! Treat both 20 and 33 as hexadecimal

DBG> EVALUATE %HEX (20+ %OCT 10 +33) ! Treat 20 and 33 as
91 ! hexadecimal and 10 as octal
DBG> SYMBOLIZE %HEX 27C9E3 ! Symbolize a hexadecimal address
DBG> DEP/INST %HEX 5432 = 'MOVL AO%DEC 222, Rl'
DBG> ! Treat address 5432 as hexadecimal, and operand 222 as decimal)

Specifying Program Locations and the Current Value of an Entity
The following built-in symbols enable you to specify program locations and
the current value of an entity.

D-5

Built-In Symbols and Logical Names
D.3 Built-In Symbols

D-6

Symbol

%CURLOC
. (period)

%NEXTLOC
Return key

%PREVLOC
11 (circumflex)

%CURVAL
\ (backslash)

Description

Current logical entity-the program location last referenced by an
EXAMINE, DEPOSIT, or EVALUATE/ADDRESS command.

Logical successor of the current entity-the program location that
logically follows the location last referenced by an EXAMINE,
DEPOSIT, or EVALUATE/ADDRESS command. Because the
Return key is a command terminator, it can be used only
where a command terminator is appropriate (for example,
immediately after EXAMINE, but not immediately after DEPOSIT
or EVALUATE/ADDRESS).

Logical predecessor of current entity-the program location that
logically precedes the location last referenced by an EXAMINE,
DEPOSIT, or EVALUATE/ADDRESS command.

Value last displayed by an EVALUATE or EXAMINE command, or
deposited by a DEPOSIT command. These two symbols are not
affected by an EVALUATE/ADDRESS command.

In the following example, the variable WIDTH is examined; the value 12
is then deposited into the current location (WIDTH); this is verified by
examining the current location:

DBG> EXAMINE WIDTH
MOD\WIDTH: 7
DBG> DEPOSIT = 12
DBG> EXAMINE
MOD\WIDTH: 12
DBG> EXAMINE %CURLOC
MOD\WIDTH: 12
DBG>

In the next example, the next and previous locations in an array are
examined:

DBG> EXAMINE PRIMES (4)
MOD\PRIMES(4): 7
DBG> EXAMINE %NEXTLOC
MOD\PRIMES(5): 11
DBG> EXAMINE ~
MOD\PRIMES(6): 13
DBG> EXAMINE %PREVLOC
MOD\PRIMES(5): 11
DBG> EXAMINE A

MOD\PRIMES(4): 7
DBG>

Examine next location

Note that using the Return key to signify the logical successor does not
apply to all contexts. For example, you cannot press the Return key after
typing the command DEPOSIT to indicate the next location, whereas you
can always use the symbol %NEXTLOC for that purpose.

D.3.6

Built-In Symbols and Logical Names
D.3 Built-In Symbols

Using Symbols and Operators in Address Expressions
The symbols and operators that can be used in address expressions are
listed below. A unary operator has one operand. A binary operator has
two operands.

Symbol

%LABEL

%LINE

\ (backslash)

At sign(@)
Period (.)

Bit field <p,s,e>

Plus sign (+)

Minus sign (-)

Multiplication sign (*)

Division sign (I)

Description

Specifies that the numeric literal that follows is a program
label (for languages like FORTRAN that have numeric
program labels). You can qualify the label with a path
name prefix that specifies the containing module.

Specifies that the numeric literal that follows is a line
number in your program. You can qualify the line number
with a path name prefix that specifies the containing
module.

When used within a path name, delimits each element of
the path name. In this context, the backslash cannot be
the leftmost element of the complete path name.

When used as the prefix to a symbol, specifies that the
symbol is to be interpreted as a global symbol. In this
context, the backslash must be the leftmost element of
the symbol's complete path name.

Unary operators. In an address expression, the at sign
(@) and period (.) each function as a "contents-of"
operator. The "contents-of" operator causes its operand
to be interpreted as a memory address and thus requests
the contents of (or value residing at) that address.

Unary operator. You can apply bit field selection to an
address-expression. To select a bit field, you supply a bit
offset (p), a bit length (s), and a sign extension bit (e),
which is optional.

Unary or binary operator. As a unary operator, indicates
the unchanged value of its operand. As a binary
operator, adds the preceding operand and succeeding
operand together.

Unary or binary operator. As a unary operator, indicates
the negation of the value of its operand. As a binary
operator, subtracts the succeeding operand from the
preceding operand.

Binary operator. Multiplies the preceding operand by the
succeeding operand.

Binary operator. Divides the preceding operand by the
succeeding operand.

D-7

Built-In Symbols and Logical Names
D.3 Built-In Symbols

D-8

The following examples illustrate the use of built-in symbols and operators
in address expressions.

%LINE and %LABEL Operators

The following command sets a tracepoint at line 26 of the module where
execution is currently suspended:

DBG> SET TRACE %LINE 26

The next command displays the source line associated with line 4 7:

DBG> EXAMINE/ SOURCE %LINE 4 7
module MAIN

47: procedure SWAP(X,Y: in out INTEGER) is
DBG>

The next command sets a breakpoint at label 10 of module MOD4:

DBG> SET BREAK MOD4\%LABEL 10

Path Name Operators

The following command displays the value of the variable COUNT that
is declared in routine ROUT2 of module MOD4. The backslash (\)path
name delimiter separates the path name elements:

DBG> EXAMINE MOD4 \ROUT2\COUNT
MOD4\ROUT2\COUNT: 12
DBG>

The following command sets a breakpoint on line 26 of the module
QUEUMAN:

DBG> SET BREAK QUEUMAN\%LINE 26

The following command displays the value of the global symbol X:

DBG> EXAMINE \X

Arithmetic Operators

The order in which the debugger evaluates the elements of an address
expression is similar to that used by most programming languages. The
order is determined by the following three factors, listed in decreasing
order of precedence (first listed have higher precedence):

1 The use of delimiters (usually parentheses or brackets) to group
operands with particular operators

2 The assignment of relative priority to each operator

3 Left-to-right priority of operators

The debugger operators are listed in decreasing order of precedence as
follows:

1 Unary operators ((.), (@), (+), (-))

2 Multiplication and division operators ((*), (/))
3 Addition and subtraction operators ((+), (-))

Built-In Symbols and Logical Names
D.3 Built-In Symbols

For example, when evaluating the following expression, the debugger first
adds the operands within parentheses, then divides the result by 4, then
subtracts the result from 5.

5-(T+5)/4

The following command displays the value contained in the memory
location X + 4 bytes:

DBG> EXAMINE X + 4

Contents-of Operator

The following examples illustrate use of the contents-of operator. In the
next example, the instruction at the current PC value is obtained (the
instruction whose address is contained in the PC and which is about to
execute):

DBG> EXAMINE .%PC
MOD\%LINE 5: PUSHL SA#8
DBG>

In the next example, the source line at the PC value one level down the
call stack is obtained (at the call to routine SWAP):

DBG> EXAMINE/SOURCE .1\%PC
module MAIN
MAIN\%LINE 134:
DBG>

SWAP (X, Y);

For the next example, assume that the value of pointer variable PTR is
7FFOOOOO hexadecimal, the address of an entity that you want to examine.
Assume further that the value of this entity is 3FFOOOOO hexadecimal.
The following command shows how to examine the entity:

DBG> EXAMINE/LONG .PTR
7FFOOOOO: 3FFOOOOO
DBG>

In the next example, the contents-of operator (at sign or period) is used
with the current location operator (period) to examine a linked list of
three quadword-integer pointer variables (identified as Ll, L2, and L3 in
the illustration that follows). P is a pointer to the start of the list. The
low longword of each pointer variable contains the address of the next
variable; the high longword of each variable contains its integer value (8,
6, and 12, respectively).

P: 9840

L1 L2 L3

9BDA

·1
9BF4

I
·1

0000

8 6 12

ZK-7936-GE

D-9

D.3.7

Built-In Symbols and Logical Names
D.3 Built-In Symbols

DBG> SET TYPE QUADWORD; SET RADIX HEX
DBG> EXAMINE .P Examine the entity whose address

is contained in P.
00009BC2: 00000008 00009BDA High word has value 8, low word

has address of next entity (9BDA).
DBG> EXAMINE @. ! Examine the entity whose address

! is contained in the current entity.
00009BDA: 00000006 00009BF4 ! High word has value 6, low word

! has address of next entity (9BF4).
DBG> EXAMINE . . ! Examine the entity whose address

! is contained in the current entity.
00009BF4: OOOOOOOC 00000000 ! High word has value 12 (dee.), low word

! has address 0 (end of list) .

Bit-Field Operator

The following example shows how to use the bit-field operator. For
example, to examine the address expression X_NAME starting at bit
3 with a length of 4 bits and no sign extension, you would enter the
following command:

DBG> EXAMINE X NAME <3, 4, 0>

Obtaining Information About Exceptions

D-10

The following built-in symbols enable you to obtain information about
the current exception and use that information to qualify breakpoints or
tracepoints.

Symbol Description

%EXC_FACILITY

%EXC_NAME

%ADAEXC_NAME

Name of facility that issued the current exception

Name of current exception

Ada exception name of current exception (for Ada programs
only)

%EXC_NUMBER

%EXC_SEVERITY

For example:

Number of current exception

Severity code of current exception

DBG> EVALUATE %EXC NAME
"FLTDIV F"
DBG> SET BREAK/EXCEPTION WHEN (%EXC_NAME

DBG> EVALUATE %EXC NUMBER
12
DBG> EVALUATE/CONDITION_VALUE %EXC NUMBER

"FLTDIV _F")

%SYSTEM-F-ACCVIO, access violation at PC !XL, virtual address !XL
DBG> SET BREAK/EXCEPTION WHEN (%EXC_NUMBER = 12)

Note that the conditional expressions in the WHEN clauses are language
specific.

D.3.8

D.3.9

Specifying Ada Tasks

Built-In Symbols and Logical Names
D.3 Built-In Symbols

The following built-in symbols can be used to specify the tasks of an Ada
tasking program in debugger commands (these built-in symbols apply only
to Ada tasking programs).

Symbol

%ACTIVE_ TASK

%CALLER_ TASK

%NEXT_TASK

%TASK n

% VISIBLE_ TASK

Description

Currently active task-the task that executes when a GO or
STEP command is entered.

Task that is the entry caller of the active task during a task
rendezvous.

Next task on debugger's task list after the task that is currently
visible.

Specifies a task by means of its task ID (n is a decimal integer
assigned by the VAX Ada Run-Time Library to each task as it is
created).

Currently visible task-the task that is the context for an
EXAMINE command, for example.

Two examples follow. See the VAX Ada documentation for additional
details.

DBG> EXAMINE MONITOR TASK
MOD\MONITOR_TASK: %TASK 2
DBG> WHILE %NEXT_TASK NEQ %ACTIVE DO (SET TASK %NEXT_TASK; SHOW CALLS)

Specifying the Current, Next, and Previous Scope on the Call Stack
You can use the following built-in symbols to obtain and manipulate the
scope for symbol lookup and for source or instruction display relative to
the routine call stack.

Symbol

%CURRENT_SCOPE_
ENTRY

%NEXT_SCOPE_ENTRY

%PREVIOUS_SCOPE_
ENTRY

Description

The call frame that the debugger is currently using as
reference when displaying source code or decoded
VAX instructions, or when searching for symbols. By
default, this is call frame 0.

The next call frame down the call stack from the call
frame denoted by %CURRENT_SCOPE_ENTRY.

The next call frame up the call stack from the call
frame denoted by %CURRENT_SCOPE_ENTRY.

These symbols return integer values that denote a call frame on the call
stack. Call frame 0 denotes the routine at the top of the stack, where
execution is suspended. Call frame 1 denotes the calling routine, and so
on.

D-11

Built-In Symbols and Logical Names
D.3 Built-In Symbols

D-12

For example, the following command specifies that the debugger search for
symbols starting with the scope denoted by the next routine down the call
stack (rather than starting with the routine at the top of the call stack):

DBG> SET SCOPE/CURRENT %NEXT_SCOPE_ENTRY

E Summary of Debugger Support for Languages

E.1 Ada

The debugger supports most of the VAX-supported languages. Debugger
support is summarized in this chapter for the following language keywords
(used with the SET LANGUAGE command): ADA, BASIC, BLISS, C,
COBOL, DIBOL, FORTRAN, MACRO, PASCAL, PLI, RPG, SCAN, and
UNKNOWN. For each language, the following information is provided:

• Supported operators in language expressions

• Supported constructs in language expressions and address expressions

• Supported data types

• Any other language-specific features (for example, event keywords in
the case of Ada and SCAN)

• Restrictions in debugger support, if any

For further information, refer to the documentation furnished with a
particular language.

This section includes information about debugger support for Ada.

Operators in Language Expressions

Supported Ada operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus (identity)

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

Infix I Division

Infix MOD Modulus

Infix REM Remainder

Infix ** Exponentiation

Prefix ABS Absolute value

Infix & Concatenation (only string types)

Infix Equality (only scalar and string types)

Infix I= Inequality (only scalar and string types)

Infix > Greater than (only scalar and string types)

E-1

Summary of Debugger Support for Languages
E.1 Ada

E-2

Kind Symbol Function

Infix >= Greater than or equal (only scalar and string types)

Infix < Less than (only scalar and string types)

Infix <= Less than or equal (only scalar and string types)

Prefix NOT Logical NOT

Infix AND Logical AND (not for bit arrays)

Infix OR Logical OR (not for bit arrays)

Infix XOR Logical exclusive OR (not for bit arrays)

The debugger does not support the following items:

• Operations on entire arrays or records

• The short-circuit control forms: and then, or else

• The membership tests: in, not in

• User-defined operators

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for Ada follow:

Symbol Construct

() Subscripting

Record component selection

.ALL Pointer dereferencing

Predefined Symbols

Supported Ada predefined symbols follow:

Symbol

TRUE

FALSE

null

Data Types

Meaning

Boolean True

Boolean False

Null access value

Supported Ada data types follow:

Ada Type

INTEGER

SHORT _INTEGER

SHORT _SHORT _INTEGER

SYSTEM.UNSIGNED_QUADWORD

VAX Type Name

Longword Integer (L)

Word Integer (W)

Byte Integer (B)

Quadword Unsigned (QU)

Summary of Debugger Support for Languages
E.1 Ada

Ada Type

SYSTEM.UNSIGNED_LONGWORD

SYSTEM.UNSIGNED_WORD

SYSTEM.UNSIGNED_BYTE

FLOAT

SYSTEM.F _FLOAT

SYSTEM.D_FLOAT

LONG_FLOAT

SYSTEM.G_FLOAT

SYSTEM.H_FLOAT

LONG_LONG_FLOAT

Fixed

STRING

BOOLEAN

BOOLEAN

Enumeration

Arrays

Records

Access (pointers)

Tasks

Predefined Attributes

VAX Type Name

Longword Unsigned (LU)

Word Unsigned (WU)

Byte Unsigned (BU)

F _Floating (F)

F _Floating (F)

D _Floating (D)

D_Floating (D), if pragma LONG_FLOAT
(D_FLOAT) is in effect. G_Floating (G), if
pragma LONG_FLOAT(G_FLOAT) is in effect.

G_Floating (G)

H_Floating (H)

H_Floating (H)

(None)

ASCII Text (T)

Aligned Bit String (V)

Unaligned Bit String (VU)

For any enumeration type whose value fits
into an unsigned byte or word: Byte Unsigned
(BU) or Word Unsigned (WU), respectively.
Otherwise: No corresponding VAX data type.

(None)

(None)

(None)

(None)

Supported Ada predefined attributes follow:

Attribute Debugger Support

P1 CONSTRAINED For a prefix P that denotes a record object with discriminants.
The value of P' CONSTRAINED reflects the current state of P
(constrained or unconstrained).

P1 FIRST For a prefix P that denotes an enumeration type or a subtype of
an enumeration type. Yields the lower bound of P.

P 1 FIRST For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the lower bound of
the first index range.

P' FIRST(N) For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the lower bound of
the N-th index range.

P' LAST For a prefix P that denotes an enunieration type, or a subtype of
an enumeration type. Yields the upper bound of P.

E-3

Summary of Debugger Support for Languages
E.1 Ada

E-4

Attribute

pr LAST

pr LAST(N)

Pr LENGTH

Pr LENGTH(N)

pr POS(X)

pr PRED(X)

pr SIZE

pr SUCC(X)

pr VAL(N)

Tasking States

Debugger Support

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the upper bound of
the first index range.

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the upper bound of
the N-th index range.

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the number of
values of the first index range (zero for a null range).

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the number of
values of the N-th index range (zero for a null range).

For a prefix P that denotes an enumeration type or a subtype of
an enumeration type. Yields the position number of the value X.
The first position is 0.

For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the value of type P which has a
position number one less than that of X.

For a prefix P that denotes an object. Yields the number of bits
allocated to hold the object.

For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the value of type P which has a
position number one more than that of X.

For a prefix P that denotes an enumeration type or a subtype of
an enumeration type. Yields the value of type P which has the
position number N. The first position is 0.

Support for Ada tasking states is as follows.

The following task-state keywords can be used with the SHOW TASK
/STATE command:

Task State Description

RUNNING Currently running on the processor. This is the active task.

READY Eligible to execute and waiting for the processor to be made
available.

SUSPENDED Suspended-that is, waiting for an event rather than for the
availability of the processor. For example, when a task is created, it
remains in the suspended state until it is activated.

TERMINATED Terminated.

Summary of Debugger Support for Languages
E.1 Ada

The following task-substate keywords can appear in a SHOW TASK
display:

Task Substate

Abnormal

Accept

Activating

Activating tasks

Completed [abn]

Completed [exc]

Completed

Delay

Dependents

Dependents [exc]

Entry call

Invalid state

1/0 or AST

Not yet activated

Select or delay

Select or term.

Select

Shared resource

Terminated (abn]

Terminated [exc]

Terminated

Timed entry call

Events

Description

Task has been aborted.

Task is waiting at an accept statement that is not inside a
select statement.

Task is elaborating its declarative part.

Task is waiting for tasks it has created to finish activating.

Task is completed due to an abort statement, but is not yet
terminated. In Ada, a task awaiting dependent tasks at its
"end" is called "completed". After the dependent tasks are
terminated, the state changes to terminated.

Task is completed due to an unhandled exception, but is not
yet terminated. In Ada, a task awaiting dependent tasks at
its "end" is called "completed". After the dependent tasks
are terminated, the state changes to terminated.

Task is completed. No abort statement was issued, and no
unhandled exception occurred.

Task is waiting at a delay statement.

Task is waiting for dependent tasks to terminate.

Task is waiting for dependent tasks to allow an unhandled
exception to propagate.

Task is waiting for its entry call to be accepted.

There is a bug in the VAX Ada Run-Time Library.

Task is waiting for 1/0 completion or some AST.

Task is waiting to be activated by the task that created it.

Task is waiting at a select statement with a delay
alternative.

Task is waiting at a select statement with a terminate
alternative.

Task is waiting at a select statement with neither an else,
delay, or terminate alternative.

Task is waiting for an internal shared resource.

Task was terminated by an abort.

Task was terminated because of an unhandled exception.

Task terminated normally.

Task is waiting in a timed entry call.

The following Ada event keywords can be used with the /EVENT qualifier
of the SET BREAK, SET TRACE, CANCEL BREAK, and CANCEL
TRACE commands. You can also display these event keywords with
the SHOW EVENT_FACILITY command.

E-5

Summary of Debugger Support for Languages
E.1 Ada

E-6

Exception-Related Events

Event Keyword

HANDLED

HANDLED_OTHERS

Description

Triggers when an exception is about to be handled
in some Ada exception handler, including an others
handler.

Triggers only when an exception is about to be
handled in an others Ada exception handler.

Task Exception-Related Events

Event Keyword Description

RENDEZVOUS_EXCEPTION Triggers when an exception begins to propagate out
of a rendezvous.

DEPENDENTS_EXCEPTION Triggers when an unhandled exception causes a task
to wait for dependent tasks in some scope (includes
unhandled exceptions, such as task rundown signals,
that are internal to the VAX Ada Run-Time Library).
Often immediately precedes a deadlock.

Task Termination Events

Event Keyword Description

TERMINATED Triggers when a task is terminating, whether normally,
by abort, or by exception.

EXCEPTION_ TERMINATED Triggers when a task is terminating due to an
unhandled exception.

ABORT_TERMINATED Triggers when a task is terminating due to an abort.

Low-Level Task Scheduling Events

Event Keyword

RUN

PREEMPTED

ACTIVATING

SUSPENDED

Restrictions

Description

Triggers when a task is about to run.

Triggers when a task is being preempted from the
RUN state, and its state changes to READY.

Triggers when a task is about to begin its activation
(that is, at the beginning of the elaboration of the
declarative part of its task body).

Triggers when a task is about to be suspended.

Restrictions in debugger support for Ada are as follows:

• With certain Ada record variables, the debugger fails to show the
record components correctly (possibly with a NOACCESSR error
message) when the type declaration is in a different scope than the
record (symbol) declaration.

E.2 BASIC

Summary of Debugger Support for Languages
E.1 Ada

• You cannot examine Ada objects requiring extended descriptor DSTs
(debug-symbol-table records) to describe them. These objects are
typically accessed arrays whose size is greater than 65535 bytes.

This section includes information about debugger support for BASIC.

Operators in Language Expressions

Supported BASIC operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition, String concatenation

Infix Subtraction

Infix * Multiplication

Infix Division

Infix Exponentiation

Infix A Exponentiation

Infix Equal to

Infix <> Not equal to

Infix >< Not equal to

Infix > Greater than

Infix >= Greater than or equal to

Infix => Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Infix =< Less than or equal to

Prefix NOT Bit-wise NOT

Infix AND Bit-wise AND

Infix OR Bit-wise OR

Infix XOR Bit-wise exclusive OR

Infix IMP Bit-wise implication

Infix EQV Bit-wise equivalence

E-7

Summary of Debugger Support for Languages
E.2 BASIC

E-8

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for BASIC
follow:

Symbol Construct

() Subscripting

Record component selection

Data Types

Supported BASIC data types follow:

BASIC Type VAX Type Name

BYTE Byte Integer (B)

WORD Word Integer (W)

LONG Longword Integer (L)

SINGLE F _Floating (F)

DOUBLE D _Floating (D)

GFLOAT G_Floating (G)

HFLOAT H_Floating (H)

DECIMAL Packed Decimal (P)

STRING ASCII Text (T)

RFA (None)

Arrays (None)

Records (None)

Additional Information

Expressions that overflow in the BASIC language do not necessarily
overflow when evaluated by the debugger. The debugger tries to compute
a numerically correct result, even when the BASIC rules call for overflows.
This difference is particularly likely to affect DECIMAL computations.

BASIC constants of the forms [radix]"numeric-string"[type] (such as
"12.34"GFLOAT) or n% (such as 25% for integer 25) are not supported in
debugger expressions.

E.3 BLISS

Summary of Debugger Support for Languages
E.3 BLISS

This section includes information about debugger support for BLISS.

Operators in Language Expressions

Supported BLISS operators in language expressions follow:

Kind Symbol Function

Prefix Indirection

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

Infix I Division

Infix MOD Remainder

Infix A Left shift

Infix EQL Equal to

Infix EQLU Equal to

Infix EQLA Equal to

Infix NEQ Not equal to

Infix NEQU Not equal to

Infix NEQA Not equal to

Infix GTR Greater than

Infix GTRU Greater than unsigned

Infix GTRA Greater than unsigned

Infix GEQ Greater than or equal to

Infix GEQU Greater than or equal to unsigned

Infix GEQA Greater than or equal to unsigned

Infix LSS Less than

Infix LSSU Less than unsigned

Infix LSSA Less than unsigned

Infix LEQ Less than or equal to

Infix LEQU Less than or equal to unsigned

Infix LEQA Less than or equal to unsigned

Prefix NOT Bit-wise NOT

Infix AND Bit-wise AND

Infix OR Bit-wise OR

Infix XOR Bit-wise exclusive OR

Infix EQV Bit-wise equivalence

E-9

Summary of Debugger Support for Languages
E.3 BLISS

E.4 C

E-10

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for BLISS
follow:

Symbol Construct

[]

[fldname]

<p,S,e>

Subscripting

Field selection

Bit field selection

Data Types

Supported BLISS data types follow:

BLISS Type VAX Type Name

BYTE Byte Integer (B)

WORD Word Integer (W)

LONG Longword Integer (L)

BYTE UNSIGNED Byte Unsigned (BU)

WORD UNSIGNED Word Unsigned (WU)

LONG UNSIGNED Longword Unsigned (LU)

VECTOR (None)

BITVECTOR (None)

BLOCK (None)

BLOCKVECTOR (None)

REF VECTOR (None)

REF BITVECTOR (None)

REF BLOCK (None)

REF BLOCKVECTOR (None)

This section includes information about debugger support for C.

Operators in Language Expressions

Supported C operators in language expressions follow:

Kind Symbol Function

Prefix * Indirection

Prefix & Address of

Prefix SIZEOF Size of

Prefix Unary minus (negation)

Summary of Debugger Support for Languages
E.4 C

Kind Symbol Function

Infix + Addition

Infix Subtraction

Infix * Multiplication

Infix I Division

Infix % Remainder

Infix << Left shift

Infix >> Right shift

Infix Equal to

Infix != Not equal to

Infix > Greater than

Infix >= Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Prefix (tilde) Bit-wise NOT

Infix & Bit-wise AND

Infix Bit-wise OR

Infix A Bit-wise exclusive OR

Prefix Logical NOT

Infix && Logical AND

Infix 11 Logical OR

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for C follow:

Symbol Construct

[] Subscripting

Structure component selection

-> Pointer dereferencing

Data Types

Supported C data types follow:

CType

int

unsigned int

short int

unsigned short int

char

VAX Type Name

Longword Integer (L)

Longword Unsigned (LU)

Word Integer (W)

Word Unsigned (WU)

Byte Integer (B)

E-11

Summary of Debugger Support for Languages
E.4 C

E.5 COBOL

E-12

CType

unsigned char

float

double

en um

struct

union

Pointer Type

Array Type

Additional Information

VAX Type Name

Byte Unsigned (BU)

F _Floating (F)

D _Floating (D)

(None)

(None)

(None)

(None)

(None)

Symbol names are case sensitive for language C, meaning that uppercase
and lowercase letters are treated as different characters.

Since the exclamation point (!) is an operator in C, it cannot be used
as the comment delimiter. When the language is set to C, the debugger
instead accepts /* as the comment delimiter. The comment continues
to the end of the current line. (A matching*/ is neither needed nor
recognized.) To permit debugger log files to be used as debugger input,
the debugger still recognizes ! as a comment delimiter if it is the first
nonspace character on a line.

The debugger accepts the prefix asterisk (*) as an indirection operator
in both C language expressions and debugger address expressions. In
address expressions, prefix"*" is synonymous to prefix"." or"@" when the
language is set to C.

The debugger does not support any of the assignment operators in C (or
any other language) in order to prevent unintended modifications to the
program being debugged. Hence such operators as=,+=,-=,++, and- are
not recognized. To alter the contents of a memory location, you must do so
with an explicit DEPOSIT command.

This section includes information about debugger support for COBOL.

Operators in Language Expressions

Supported COBOL operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

Summary of Debugger Support for Languages
E.5 COBOL

Kind Symbol Function

Infix Division

Infix ** Exponentiation

Infix Equal to

Infix NOT= Not equal to

Infix > Greater than

Infix NOT< Greater than or equal to

Infix < Less than

Infix NOT> Less than or equal to

Infix NOT Logical NOT

Infix AND Logical AND

Infix OR Logical OR

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for COBOL
follow:

Symbol Construct

() Subscripting

OF Record component selection

IN Record component selection

Data Types

Supported COBOL data types follow:

COBOL Type

COMP

COMP

COMP

COMP-1

COMP-2

COMP-3

INDEX

Alphanumeric

Records

Numeric Unsigned

Leading Separate Sign

Leading Overpunched Sign

Trailing Separate Sign

Trailing Overpunched Sign

VAX Type Name

Longword Integer (L,LU)

Word Integer (W,WU)

Quadword Integer (Q,QU)

F _Floating (F)

D_Floating (D)

Packed Decimal (P)

Longword Integer (L)

ASCII Text (T)

(None)

Numeric string, unsigned (NU)

Numeric string, left separate sign (NL)

Numeric string, left overpunched sign (NLO)

Numeric string, right separate sign (NR)

Numeric string, right overpunched sign (NRO)

E-13

Summary of Debugger Support for Languages
E.5 COBOL

E.6 DIBOL

E-14

Additional Information

The debugger can show source text included in a program with the
COPY, COPY REPLACING, or REPLACE verb. However, when COPY
REPLACING or REPLACE is used, the debugger always shows the
original source text as it appeared before text replacement. In other
words, the original source file is shown instead of the modified source text
generated by the COPY REPLACING or REPLACE verb.

The debugger cannot show the original source lines associated with the
code for a REPORT section. You can see the DATA SECTION source lines
associated with a REPORT, but no source lines are associated with the
compiled code that generates the report.

This section includes information about debugger support for DIBOL.

Operators in Language Expressions

Supported DIBOL operators in language expressions follow:

Kind

Prefix

Prefix

Prefix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Symbol

+

+

I

II

.EQ.

.NE.

.GT.

.GE.

.LT.

.LE.

.NOT.

.AND .

. OR.

.XOR.

Function

Round

Unary plus

Unary minus (negation)

Addition

Subtraction

Multiplication

Division

Division with fractional result

Equal to

Not equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Logical NOT

Logical AND

Logical OR

Exclusive OR

E.7 FORTRAN

Summary of Debugger Support for Languages
E.6 DIBOL

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for DIBOL
follow:

Symbol Construct

() Substring

[] Subscripting

Record component selection

Data Types

Supported DIBOL data types follow:

DIBOL Type VAX Type Name

11 Byte Integer (B)

12 Word Integer (W)

14 Longword Integer (L)

Pn Packed Decimal String (P)

Pn.m Packed Decimal String (P)

On Numeric String, Zoned Sign (NZ)

Dn.m Numeric String, Zoned Sign (NZ)

An ASCII Text (T)

Arrays (None)

Records (None)

This section includes information about debugger support for FORTRAN.

Operators in Language Expressions

Supported FORTRAN operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

Infix Division

Infix ** Exponentiation

Infix II Concatenation

E-15

Summary of Debugger Support for Languages
E.7 FORTRAN

E-16

Kind Symbol Function

Infix .EQ. Equal to

Infix .NE. Not equal to

Infix .GT. Greater than

Infix .GE. Greater than or equal to

Infix .LT. Less than

Infix .LE. Less than or equal to

Prefix .NOT. Logical NOT

Infix .AND. Logical AND

Infix .OR. Logical OR

Infix .XOR. Exclusive OR

Infix .EQV. Equivalence

Infix .NEQV. Exclusive OR

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for FORTRAN
follow:

Symbol Construct

() Subscripting

Record component selection

Predefined Symbols

Supported FORTRAN predefined symbols follow:

Symbol

.TRUE.

.FALSE.

Data Types

Description

Logical True

Logical False

Supported FORTRAN data types follow:

FORTRAN Type VAX Type Name

LOGICAL*1 Byte Unsigned (BU)

LOGICAL*2 Word Unsigned (WU)

LOGICAL*4 Longword Unsigned (LU)

INTEGER*2 Word Integer (W)

INTEGER*4 Longword Integer (L)

REAL*4 F _Floating (F)

E.8 MACRO

Summary of Debugger Support for Languages
E.7 FORTRAN

FORTRAN Type VAX Type Name

REAL*8 D_Floating (D)

REAL*8 G_Floating (G)

REAL*16 H_Floating (H)

COMPLEX*8 F _Complex (FC)

COMPLEX*16 D _Complex (DC)

COMPLEX*16 G_Complex (GC)

CHARACTER ASCII Text (T)

Arrays (None)

Records (None)

Additional Information

Even though the VAX type codes for unsigned integers (BU, WU, LU) are
used internally to describe the LOGICAL data types, the debugger (like
the compiler) treats LOGICAL variables and values as being signed when
used in language expressions.

The debugger prints the numeric values of LOGICAL variables or
expressions instead of TRUE or FALSE. Normally, only the low-order bit of
a LOGICAL variable or value is significant (0 is FALSE and 1 is TRUE).
However, VAX FORTRAN does allow all bits in a LOGICAL value to be
manipulated and LOGICAL values can be used in integer expressions. For
this reason, it is at times necessary to see the entire integer value of a
LOGICAL variable or expression, and that is what the debugger shows.

COMPLEX constants such as (1.0,2.0) are not supported in debugger
expressions.

This section includes information about debugger support for MACRO.

Operators in Language Expressions

Language MACRO does not have expressions in the same sense as high
level languages. Only assembly-time expressions and only a limited set
of operators are accepted. To permit the MACRO programmer to use
expressions at debug-time as freely as in other languages, the debugger
accepts a number of operators in MACRO language expressions that are
not found in MACRO itself. In particular, the debugger accepts a complete
set of comparison and Boolean operators modeled after BLISS. It also
accepts the indirection operator and the normal arithmetic operators.

Kind

Prefix

Prefix

Prefix

Symbol

@

+

Function

Indirection

Indirection

Unary plus

E-17

Summary of Debugger Support for Languages
E.8 MACRO

E-18

Kind Symbol Function

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

Infix I Division

Infix MOD Remainder

Infix @ Left shift

Infix EQL Equal to

Infix EQLU Equal to

Infix NEQ Not equal to

Infix NEQU Not equal to

Infix GTR Greater than

Infix GTRU Greater than unsigned

Infix GEQ Greater than or equal to

Infix GEQU Greater than or equal to unsigned

Infix LSS Less than

Infix LSSU Less than unsigned

Infix LEQ Less than or equal to

Infix LEQU Less than or equal to unsigned

Prefix NOT Bit-wise NOT

Infix AND Bit-wise AND

Infix OR Bit-wise OR

Infix XOR Bit-wise exclusive OR

Infix EQV Bit-wise equivalence

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for MACRO
follow:

Symbol Construct

[] Subscripting

<p,S,0> Bitfield selection as in BLISS

The DST information generated by the MACRO assembler treats a label
that is followed by an assembler directive for storage allocation as an
array variable whose name is the label. This enables you to use the array
syntax of a high-level language when examining or manipulating such
data.

In the following example of MACRO source code, the label LAB4
designates hexadecimal data stored in four words:

LAB4: .WORD A X3F,5[2], A X3C

E.9 Pascal

Summary of Debugger Support for Languages
E.8 MACRO

The debugger treats LAB4 as an array variable. For example, the next
command displays the value stored in each element (word):

DBG> EXAMINE LAB4
.MAIN.\MAIN\LAB4

[0]: 003F
[l]: 0005
[2]: 0005
[3]: 003C

DBG>

The next command displays the value stored in the fourth word (the first
word is indexed as element "0"):

DBG> EXAMINE LAB4[3]
.MAIN.\MAIN\LAB4[3]: 03C
DBG>

Data Types

Supported MACRO data types follow:

MACRO Type VAX Type Name

(Not applicable) Byte Unsigned (BU)

(Not applicable) Word Unsigned (WU)

(Not applicable) Longword Unsigned (LU)

(Not applicable) Byte Integer (B)

(Not applicable) Word Integer (W)

(Not applicable) Longword Integer (L)

(Not applicable) F _Floating (F)

(Not applicable) D_Floating (D)

(Not applicable) G_Floating (G)

(Not applicable) H_Floating (H)

(Not applicable) Packed decimal (P)

This section includes information about debugger support for Pascal.

Operators in Language Expressions

Supported Pascal operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition, concatenation

Infix Subtraction

E-19

Summary of Debugger Support for Languages
E.9 Pascal

E-20

Kind Symbol Function

Infix * Multiplication

Infix I Real division

Infix DIV Integer division

Infix MOD Modulus

Infix REM Remainder

Infix ** Exponentiation

Infix IN Set membership

Infix Equal to

Infix <> Not equal to

Infix > Greater than

Infix >= Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Prefix NOT Logical NOT

Infix AND Logical AND

Infix OR Logical OR

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for Pascal
follow:

Symbol Construct

[] Subscripting

Record component selection
A Pointer dereferencing

Predefined Symbols

Supported Pascal predefined symbols follow:

Symbol

TRUE

FALSE

NIL

Meaning

Boolean True

Boolean False

Nil pointer

Summary of Debugger Support for Languages
E.9 Pascal

Built-In Functions

Supported Pascal built-in functions follow:

Symbol Meaning

SUCC Logical successor

PRED Logical predecessor

Data Types

Supported Pascal data types follow:

Pascal Type VAX Type Name

INTEGER Longword Integer (L)

INTEGER Word Integer (W, WU)

INTEGER Byte Integer (B,BU)

UNSIGNED Longword Unsigned (LU)

UNSIGNED Word Unsigned (WU)

UNSIGNED Byte Unsigned (BU)

SINGLE F _Floating (F)

DOUBLE D _Floating (D)

DOUBLE G_Floating (G)

QUADRUPLE H_Floating (H)

BOOLEAN (None)

CHAR ASCII Text (T)

VARYING OF CHAR Varying Text (VT)

SET (None)

FILE (None)

Enumerations (None)

Subranges (None)

Typed Pointers (None)

Arrays (None)

Records (None)

Variant records (None)

The debugger accepts Pascal set constants such as [1,2,5,8 .. 10] or [RED,
BLUE] in Pascal language expressions.

Restrictions

Restrictions in debugger support for Pascal are as follows.

You cannot examine the .LENGTH and .BODY fields of a Pascal varying
string variable using the normal language syntax. For example, if VARS is
the name of a string variable, the following commands are not supported:

DBG> EXAMINE VARS.LENGTH
DBG> EXAMINE VARS.BODY

E-21

Summary of Debugger Support for Languages
E.9 Pascal

E.10 PL/I

E-22

To examine these fields, use the techniques illustrated in the following
examples.

Use

EXAMINE/WORD VARS

EXAMINE/ASCII VARS+2

Instead of

EXAMINE VARS.LENGTH

EXAMINE VARS.BODY

This section includes information about debugger support for PLJI.

Operators in Language Expressions

Supported PL/I operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

Infix Division

Infix ** Exponentiation

Infix 11 Concatenation

Infix Equal to

Infix "= Not equal to

Infix > Greater than

Infix >= Greater than or equal to

Infix "< Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Infix "> Less than or equal to

Prefix /\ Bit-wise NOT

Infix & Bit-wise AND

Infix Bit-wise OR

Summary of Debugger Support for Languages
E.10 PL/I

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for PLJI follow:

Symbol Construct

() Subscripting

Structure component selection

-> Pointer dereferencing

Data Types

Supported PL/I data types follow:

PUI Type VAX Type Name

FIXED BINARY Longword Integer (L)

FIXED DECIMAL Packed Decimal (P)

FLOAT BINARY F _Floating (F)

FLOAT DECIMAL F _Floating (F)

FLOAT BIN/DEC D_Floating (D)

FLOAT BIN/DEC G_Floating (G)

FLOAT BIN/DEC H_Floating (H)

BIT Bit (V)

BIT Bit Unaligned (VU)

CHARACTER ASCII Text (T)

CHARACTER VARYING Varying Text (VT)

FILE (None)

Labels (None)

Pointers (None)

Arrays (None)

Structures (None)

The debugger treats all numeric constants of the form n or n.n in PLJI
language expressions as packed decimal constants, not integer or floating
point constants, in order to conform to PL/I language rules. The internal
representation of 10 is therefore OCOl hexadecimal, not OA hexadecimal.

You can enter floating-point constants using the syntax nEn or n.nEn.

There is no PLJI syntax for entering constants whose internal
representation is Longword Integer. This limitation is not normally
significant when debugging, since the debugger supports the PLJI type
conversion rules. However, it is possible to enter integer constants by
using the debugger's %HEX, %OCT, and %BIN operators.

E-23

Summary of Debugger Support for Languages
E.11 RPG

E.11 RPG

E-24

This section includes information about debugger support for RPG.

Operators in Language Expressions

Supported RPG operators in language expressions follow:

Kind

Prefix

Prefix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Prefix

Infix

Infix

Symbol

+

+

*

NOT=

>

NOT<

<

NOT>

NOT

AND

OR

Function

Unary plus

Unary minus (negation)

Addition

Subtraction

Multiplication

Division

Equal to

Not equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Logical NOT

Logical AND

Logical OR

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for RPG follow:

Symbol Construct

() Subscripting

Data Types

Supported RPG data types follow:

RPG Type

Longword

Word

Packed Decimal

Character

Overpunched Decimal

Arrays

Tables

VAX Type Name

Longword Integer (L)

Word Integer (W)

Packed Decimal (P)

ASCII Text (T)

Right Overpunched Sign (NRO)

(None)

(None)

E.12 SCAN

Summary of Debugger Support for Languages
E.11 RPG

The debugger supports access to all RPG indicators and labels used in
the current program. You can thus examine labels such as *DETL and
indicators such as *INLR and *INOl to *IN99.

This section includes information about debugger support for SCAN.

Operators in Language Expressions

Supported SCAN operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

Infix Division

Infix & Concatenation

Infix Equal to

Infix <> Not equal to

Infix > Greater than

Infix >= Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Prefix NOT Complement

Infix AND Intersection

Infix OR Union

Infix XOR Exclusive OR

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for SCAN
follow:

Symbol Construct

() Subscripting

Record component selection

-> Pointer dereferencing

E-25

Summary of Debugger Support for Languages
E.12 SCAN

E-26

Predefined Symbols

Supported SCAN predefined symbols follow:

Symbol Meaning

TRUE Boolean True

FALSE Boolean False

NIL Nil pointer

Data Types

Supported SCAN data types follow:

SCAN Type VAX Type Name

BOOLEAN (None)

INTEGER Longwoid Integer (L)

POINTER (None)

FIXED STRING (n) TEXT with CLASS=S

VARYING STRING (n) TEXT with CLASS=VS

DYNAMIC STRING TEXT with CLASS=D

TREE (None)

TREEPTR (None)

RECORD (None)

OVERLAY (None)

There is no specific support for the following datatypes: FILE, TOKEN,
GROUP, SET. Examining a FILL variable displays the contents of the
specified variable as a string by default, and so might have little meaning.
If the characteristics of the fill are known, then the appropriate qualifier
(/HEX, and so on) applied to the command produces a more meaningful
display.

The following examples show how to examine SCAN TREE and TREEPTR
variables. To dump an entire SCAN tree or subtree:

DBG> EXAMINE tree_variable ([subscript], . . .)

To dump the contents of a SCAN subtree:

DBG> EXAMINE treeptr _variable

To dump an entire SCAN subtree:

DBG> EXAMINE treeptr_variable->

DEPOSIT is not supported for SCAN TREE variables. You can set
breakpoints on any SCAN label, line number, MACRO, or PROCEDURE.

E.13

Summary of Debugger Support for Languages
E.12 SCAN

Events

The following SCAN event keywords can be used with the /EVENT
qualifier of the SET BREAK, SET TRACE, CANCEL BREAK, and
CANCEL TRACE commands. You can also display these event keywords
with the SHOW EVENT_FACILITY command.

Event Keyword Description

A token is built.

An operand in a picture is being matched.

A new line of the input stream is read.

A new line of the output stream is written.

A trigger macro is starting or terminating.

A syntax macro is starting or terminating.

TOKEN

PICTURE

INPUT

OUTPUT

TRIGGER

SYNTAX

ERROR Picture matching error recovery is starting or terminating.

Language UNKNOWN
This section includes information about debugger support for UNKNOWN.

Operators in Language Expressions

Supported operators in language expressions for UNKNOWN follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix Multiplication

Infix Division

Infix ** Exponentiation

Infix & Concatenation

Infix II Concatenation

Infix Equal to

Infix <> Not equal to

Infix I= Not equal to

Infix > Greater than

Infix >= Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Infix EQL Equal to

Infix NEQ Not equal to

E-27

Summary of Debugger Support for Languages
E.13 Language UNKNOWN

E-28

Kind Symbol Function

Infix GTR Greater than

Infix GEQ Greater than or equal to

Infix LSS Less than

Infix LEQ Less than or equal to

Prefix NOT Logical NOT

Infix AND Logical AND

Infix OR Logical OR

Infix XOR Exclusive OR

Infix EQV Equivalence

Constructs in Language and Address Expressions

Supported constructs in language and address expressions for UNKNOWN
follow:

Symbol

[]

()

Construct

Subscripting

Subscripting

Record component selection

Pointer dereferencing

Predefined Symbols

Supported predefined symbols for UNKNOWN follow:

Symbol

TRUE

FALSE

NIL

Data Types

Meaning

Boolean True

Boolean False

Nil pointer

When the language is set to UNKNOWN, the debugger understands all
data types accepted by other languages except a few very language-specific
types, such a picture types and file types. In UNKNOWN language
expressions, the debugger accepts most scalar VAX Standard data types.

• For language UNKNOWN, the debugger accepts the dot-notation for
record component selection. If C is a component of a record B which
in turn is a component of a record A, C can be referenced as "A.B.C".
Subscripts can be attached to any array components; if Bis an array,
for instance, C can be referenced as "A.B[2,3].C".

• For language UNKNOWN, the debugger accepts both round and
square subscript parentheses. Hence, A[2,3] and A(2,3) are equivalent.

Index

A
Abort function• 2-8, 10-10, CD-38, CD-127,

CD-209
with DECwindows • 1-21

/ABORT qualifier• CD-182
/AC

See /ASCIC qualifier
/ACTIVATING qualifier• 10-14, CD-17, CD-30,

C D-131 , C D-188
Activation

predefined tracepoint, multiprocess program •
10-14

I ACTIVE qualifier • CD-182
%ACTIVE_ TASK• D-11
/AD

See /ASCID qualifier
%ADAEXC_NAME • 9-16, D-10
Address

depositing into • 4-25
with DECwindows • 1-26

examining• 4-14
with DECwindows • 1-26

obtaining• 3-13, 4-13
with DECwindows • 1-26

specifying breakpoint• 3-13
symbolizing• 4-14

with DECwindows • 1-26
Address expression

See also Address
code • 4-20, 6-5

with DECwindows • 1-23
compared to language expression • 4-8

with DECwindows • 1-23
composite, vector• 11-18
current entity • 4-8, 4-13, D-5

with DECwindows • 1-9
DEPOSIT command • 4-3, CD-61
EVALUATE/ADDRESS command• 3-13, 4-13,

CD-83
EXAMINE command• 4-2, CD-85
EXAMINE/SOURCE command• 6-5
logical predecessor • 4-8, 4-13, D-5

with DECwindows • 1-9
logical successor • 4-8, 4-13, D-5

-- with DECwindows • 1-9

Address expression (Cont.)

selecting from DECwindows window• 1-23
SET BREAK command• 3-9, CD-130
SET TRACE command• 3-10, CD-187
SET WATCH command• 3-17, CD-200
symbolic • 4-4

with DECwindows • 1-23
SYMBOLIZE command • 4-14, CD-271
type of• 4-4

/ADDRESS qualifier• 8-6, CD-47, CD-83, CD-250
/AFTER qualifier• CD-131, CD-188, CD-200
Aggregate

DEPOSIT command •4-17, 4-18, 11-7, 11-8,
CD-61

EXAMINE command• 4-17, 4-18, 11-6, 11-7,
11-8, CD-85

SET WATCH command• 3-19, 11-3
ALLOCATE command

debugging with two terminals • 9-6
/ALL qualifier• CD-162

CANCEL BREAK command• CD-17
CANCEL DISPLAY command • CD-20
CANCEL IMAGE command• CD-22
CANCEL MODULE command• CD-24
CANCEL TRACE command • CD-30
CANCEL WATCH command • CD-34
CANCEL WINDOW command• CD-35
DELETE command• CD-57
DELETE/KEY command • CD-59
EXTRACT command• CD-101
SEARCH command• CD-121
SET IMAGE command• CD-142
SET MODULE command• CD-156
SET TASK command• CD-182
SHOW DISPLAY command• CD-217
SHOW KEY command • CD-223
SHOW PROCESS command • CD-235
SHOW TASK command • CD-253
SHOW WINDOW command• CD-262

%AP • 4-23, D-4
Apostrophe (')

ASCII string delimiter• 4-16
instruction delimiter• 4-22

/APPEND qualifier• CD-101
Array type • 4-17

vector register• 11-7
/ASCIC qualifier• CD-61, CD-85
/ASCID qualifier• CD-62, CD-85

lndex-1

Index

/ASCII qualifier• CD-62, CD-86
ASCII string type• 4-16, 4-28, CD-61, CD-85,

CD-195
/ASCIW qualifier• CD-62, CD-86
/ASCIZ qualifier• CD-62, CD-86
AST (asynchronous system trap)• 9-18

CALL command • 9-18, CD-1 O
disabling • CD-68
displaying AST handling conditions • CD-21 O
enabling • CD-80
SHOW CALLS command• 9-18

AST-driven program
debugging • 9-18

Asterisk (*)
HELP command• CD-107
multiplication operator• D-7

I AST qualifier • 9-18, CD-11
At sign(@)

contents-of operator• D-7
execute-procedure command• 8-1, CD-7
SET ATSIGN command• CD-129
SHOW ATSIGN command • CD-211

ATTACH command • 3-5, CD-9
Attribute

display• 7-3, 7-6, 7-10, 7-21, CD-123, CD-244
window

with DECwindows • 1-10
AUTO window, DECwindows • 1-11
/AW

See I ASC IW qualifier
/AZ

See /ASCIZ qualifier

B
Backslash (\)

current value • 4-6
global-symbol specifier• 5-10, CD-170, D-7
path name delimiter• 5-9, 6-4, D-7

with DECwindows • 1-11, 1-28
%BIN •4-12, D-5
/BINARY qualifier• 4-12, CD-81, CD-83, CD-86
Bit field operator (<p,s,e>) • D-7
/BOTTOM qualifier • C D-118
/BRANCH qualifier• CD-17, CD-30, CD-131,

CD-188, CD-265
Breakpoint

canceling• 3-17, CD-17
defined• 3-9

lndex-2

Breakpoint (Cont.)

delayed triggering of• 3-14, CD-131
displaying• CD-212
DO clause • 3-14
exception • 9-11, CD-130
on activation (multiprocess program)• 10-14
on termination (image exit)• 10-14
on vector instruction • 11-3
predefined • 9-11
setting• 3-9, CD-130
source display at• 6-7
WHEN clause• 3-14
with DECwindows • 1-24

/BRIEF qualifier• CD-223, CD-236
Built-in symbol • C-6, D-3
/BYTE qualifier• CD-62, CD-86

c
/CALLABLE_EDT qualifier• CD-139
/CALLABLE_LSEDIT qualifier• CD-139
/CALLABLE_TPU qualifier• CD-139
CALL command • 8-11 , CD-1 O

and ASTs • 9-18, CD-10
multiprocess program • 10-6
vectorized program • 11-24
with DECwindows • 1-8

%CALLER_ TASK• D-11
Call frame

field and buttons in main window
with DECwindows • 1-9, 1-21, 1-22, 1-28

/CALL qualifier• CD-17, CD-30, CD-131, CD-188,
CD-265

/CALLS qualifier• CD-156, CD-253
Call stack

See also Scope
displaying• 2-15, 9-13, CD-214, CD-248

with DECwindows • 1-24
used to control instruction display• 7-10, CD-170

with DECwindows • 1-9, 1-22
used to control source display• 7-7, CD-170

with DECwindows • 1-9, 1-21
used to control symbol search •5-10, CD-170

with DECwindows • 1-9, 1-28
CANCEL ALL command• CD-15
CANCEL BREAK command • 3-17, CD-17
CANCEL DISPLAY command•7-13, CD-20
CANCEL IMAGE command• 5-15, CD-22
CANCEL MODE command • CD-23
CANCEL MODULE command• 5-7, CD-24

CANCEL RADIX command• 4-12, CD-26
CANCEL SCOPE command• 5-12, CD-27
CANCEL SOURCE command• 6-3, CD-28
CANCEL TRACE command• 3-17, CD-30
CANCEL TYPE/OVERRIDE command• 4-26, CD-33
CANCEL WATCH command• 3-17, CD-34
CANCEL WINDOW command• 7-16, CD-35
Case sensitivity • 9-1 0
Catchall handler • 9-14
Circumflex (") • 4-8, 4-13, D-5
/CLEAR qualifier• CD-70
Code

see Instruction
Code address expression

selecting from window
with DECwindows • 1-23

Colon (:)
range delimiter• 4-18, 11-4, 11-6, 11-7, CD-85

Command format
debugger• CD-3

Command interface
COMMAND box, DECwindows • 1-20, 1-28
debugger•2-1

with DECwindows • 1-28, 1-35, 1-36
Command procedure

See also Initialization file, debugger
debugger•8-1
default directory for• CD-129, CD-211
displaying commands in • CD-159
exiting• CD-7, CD-94, CD-112
invoking • CD-7
log file as • 8-5
passing parameters to • 8-2, CD-44
recreating displays with• 7-24, CD-101
with DECwindows • 1-29

/COMMAND qualifier• 8-6, CD-47
Comment

format • CD-4
Compiler

compiler generated type • 4-4
/DEBUG qualifier• 5-2, 6-1

with DECwindows • 1-2
/LIST qualifier • 6-1
/NOOPTIMIZE qualifier• 5-2, 9-1

with DECwindows • 1-2
Condition handler

debugging • 9-11
/CONDITION_ VALUE qualifier• CD-81, CD-86
CONNECT command• 10-4, 10-15, CD-36
Contents-of operator• 4-7, 4-20, D-7
CTRUC • 2-8, 10-5, 10-10, CD-38

CTRUW • CD-40, CD-73
CTRUY • 2-8, 3-4, 3-5, 10-14, CD-41

with DECwindows • 1-34
CTRUZ • 3-5, CD-40
%CURD ISP• C-7
%CURLOC • 4-8, 4-13, D-5
Current

display• 7-3, 7-21, CD-123, CD-244
entity • 4-8, 4-13, 4-20, D-5

with DECwindows • 1-9
image• 5-15, CD-142, CD-222
language •4-10, CD-145, CD-226
location• 2-11, 6-4, 6-5, 7-6, 7-10

with DECwindows • 1-21, 1-22
radix• 4-11, CD-168, CD-240
scope • 5-11, CD-170, CD-241
type • 4-25, CD-195, CD-259
value • 4-6, D-5

Current entity
field and buttons in main window

with DECwindows • 1-9
/CURRENT qualifier• 5-12, CD-170
%CURRENT_SCOPE_ENTRY • D-11
%CURSCROLL • C-7
%CURVAL • 4-6, D-5

D
Data type

See Type
/DATE_ TIME qualifier• CD-62, CD-86
DBG$DECW$DISPLAY

with DECwindows • 1-34, 1-35, 1-37, D-1
DBG$1NIT • 8-4, D-1
DBG$1NPUT • 9-6, D-1

with DECwindows • 1-36
DBG$0UTPUT • 9-6, D-1

with DECwindows • 1-36
DBG$PROCESS • 2-6, 10-1, 10-10, D-1

with DECwindows • 1-3, 1-30
DEBUG command• 3-4, 10-14, CD-41

with DECwindows • 1-34
Debugger

command interface • 2-1
with DECwindows • 1-28, 1-35, 1-36

DECwindows interface• 1-1

Index

displaying command interface on other terminal •
9-5
with DECwindows • 1-36

lndex-3

Index

Debugger (Cont.)

displaying DECwindows interface on other
workstation • 1-35

invoking from DECwindows FileView window•
1-33

invoking over DECnet link• 3-1
Debugger command

dictionary • CD-3
format • CD-3
repeating• CD-103, CD-115, CD-277
summary • 2-27
with DECwindows • 1-28, 1-35, 1-36

Debugging configuration

See also Debugger
default • 2-6, 10-1 O

with DECwindows • 1-3
multiprocess• 10-1, 10-1 O

with DECwindows • 1-30
/DEBUG qualifier• 3-1, 5-2, 5-4, 6-1

shareable image• 5-12
with DECwindows • 1-2

Debug symbol table

See DST
%DEC • 4-12, D-5
/DECIMAL qualifier• 4-12, CD-81, CD-83, CD-86
DECLARE command • 8-2, CD-44
DECnet

debugging over• 3-1
DECwindows

debugger interface• 1-1
debugging DECwindows application• 1-35

DECwindows interface
debugger•1-1

displaying on other workstation • 1-35
/DEFAULT qualifier• CD-86
DEFINE command• 8-6, CD-47

displaying default qualifiers for• CD-216
setting default qualifiers for• CD-138

/DEFINED qualifier• CD-250
DEFINE/KEY command • 8-8, CD-50
DEFINE/PROCESS_GROUP command• 10-13,

CD-54
DELETE command • 8-6, CD-57
DELETE/KEY command • 8-9, CD-59
Deposit

DEPOSIT command • 4-3, CD-61
instruction• 4-22, 11-13

with DECwindows • 1-26
into address • 4-25

with DECwindows • 1-26

lndex-4

Deposit
into register • 4-23, 11-4

with DECwindows • 1-26
into variable• 4-3, 4-15

with DECwindows • 1-25
into vector register• 11-4
vector instruction • 11-13

DEPOSIT command • 4-3, CD-61
/DIRECTORY qualifier• CD-224
/DIRECT qualifier• CD-250
DISABLE AST command• 9-18, CD-68
Display, debugger, screen mode

See also Source display, Instruction, Window
attribute• 7-3, 7-21, CD-123, CD-244
canceling• 7-13, CD-20
contracting• 7-14, CD-98
creating• 7-14, CD-69
current• 7-3, 7-21, CD-123
default configuration• 7-2, 7-4
defined • 7-2
DO display•7-17, 11-24
expanding• 7-14, CD-98
extracting• 7-24, CD-101
hiding• 7-13, CD-71
identifying• 7-13, CD-217
instruction display (INST)• 7-8, 7-18
kind• 7-3, 7-16, C-1
list• 7-3, CD-217, C-6
moving• 7-13, CD-110
output display (OUT)• 7-7, 7-19
pasteboard• 7-3, CD-74
predefined • 7-4, C-3
process specific • 10-16
prompt display (PROMPT) • 7-7
register display (REG)• 7-10, 7-19, 11-24
removing• 7-13, CD-73
saving• 7-24, CD-116
scrolling• 7-12, CD-118
selecting• 7-21, CD-123
showing• 7-13, CD-69
window• 7-2, 7-15, C-7

DISPLAY command • 7-12, 7-14, CD-69
DO clause

example • 3-14
exiting• CD-94, CD-112
format • CD-4

DO command• 10-6, 10-7, CD-76
DO display• 7-17, C-1
/DOWN qualifier • CD-98, CD-110, CD-118
DST (debug symbol table)

creating • 5-4

DST (debug symbol table) (Cont.)

shareable image • 5-14
source line correlation • 6-1

Dynamic mode• CD-152
image setting• 5-14
module setting • 5-7

with DECwindows • 1-27
Dynamic process setting• 10-8, CD-162
Dynamic prompt setting• 10-2, CD-165
/DYNAMIC qualifier• CD-71, CD-162, CD-236
/D_FLOAT qualifier• CD-62, CD-86

E
/ECHO qualifier• CD-51
EDIT command• CD-78
/EDIT qualifier· CD-28, CD-176, CD-246
ENABLE AST command • 9-18, CD-80
/ERROR qualifier• 7-22, CD-123
Evaluate

memory address • 4-13, CD-83
with DECwindows • 1-26

EVALUATE/ADDRESS command• 3-13, 3-20 4-13
CD-83 ' '

EVALUATE command • 4-5, CD-81
Event facility, setting• CD-141, CD-220
Eventpoint

See Breakpoint, Tracepoint, Watchpoint
/EVENT qualifier• 3-16, C.D-17, CD-30, CD-131

CD-188 '
Examine

address • 4-25
with DECwindows • 1-26

EXAMINE command• 4-2, CD-85
instruction • 4-20, 11-9

with DECwindows • 1-26
register • 4-23, 11-4

with DECwindows • 1-26
using vector mask• 11-13
variable• 4-2, 4-15

with DECwindows • 1-25
vector address expression • 11-18
vector instruction • 11-9
vector register • 11-4

Examine button
with DECwindows • 1-9

EXAMINE command• 4-2, CD-85
EXAMINE/INSTRUCTION command• 4-20 7-10

C-5 ' '

EXAMINE/OPERANDS command• 4-20, 11-9

Index

EXAMINE/SOURCE command• 6-5, 7-6, C-4
Exception

See also Vector exception
debugging • 9-11

Exception breakpoint or tracepoint
canceling• 9-12, CD-17, CD-30
qualifying • 9-16, D-1 O
resuming execution at • 9-12
setting• 9-12, CD-131, CD-188

Exception handler
debugger as • 3-22
debugging• 9-11

/EXCEPTION qualifier•9-11, CD-17, CD-30,
CD-131, CD-188, CD-265

Exclamation point(!)
comment delimiter• CD-4
log file • 8-5

%EXC_FACILITY • 9-16, D-10
%EXC_NAME • 9-16, D-10
%EXC_NUMBER • 9-16, D-'10
%EXC_SEVERITY • 9-16, D-10
Execution

as controlled by debugger • 3-22
discrepancies caused by debugger • 3-24
interrupting with CTRUC • 2-8
interrupting with CTRUY • 3-4

with DECwindows • 1-34
interrupting with Stop button

with DECwindows • 1-9, 1-21
monitoring with SHOW CALLS command • 2-15

CD-214 '
monitoring with tracepoint • 3-1 O, CD-187

with DECwindows • 1-24
multiprocess program • 10-6, CD-152
resuming after exception break • 9-12
starting or resuming with CALL command• 8-11

11-24, CD-10 '
starting or resuming with GO command• 2-13

CD-105 '
with DECwindows • 1-24

starting or resuming with STEP command • 3-7
CD-265 '
with DECwindows • 1-24

suspending with breakpoint • 3-9, CD-130
with DECwindows • 1-24

suspending with exception breakpoint• 9-12,
CD-131

suspending with watchpoint • 3-17, 10-17,
CD-200
with DECwindows • 1-25

vectorized program • 11-2
$EXIT• 9-17

lndex-5

Index

EXIT command• 3-5, 9-17, CD-94
multiprocess program• 10-9, 10-10
with DECwindows • 1-21

Exit handler
debugging• 9-17, CD-94
executing • 3-5, CD-94

with DECwindows • 1-21
execution sequence of • 9-17
identifying • 9-18, CD-221

EXITLOOP command • 8-11, CD-97
/EXIT qualifier• CD-78
EXPAND command• 7-14, CD-98
Expression

See Address expression, Language expression
EXTRACT command• 7-24, CD-101

F
File

See Command procedure, Log file, Initialization
file, Source file

Final handler• 9-14
/FLOAT qualifier• CD-62, CD-86
/FMASK qualifier • 11-13, CD-88
FOR command• 8-10, CD-103
%FP • 4-23, D-4
/FULL qualifier• CD-236, CD-253

G
General register

See also Register
/GENERATE qualifier• CD-71
Global section watchpoint • 10-17
Global symbol

See Symbol
Global symbol table

See GST
Go button

with DECwindows • 1-9
GO command• 2-13, CD-105

multiprocess program • 10-6
with DECwindows • 1-24

GST (global symbol table)
creating• 5-4
shareable image • 5-13

/G_FLOAT qualifier• CD-62, CD-86

lndex-6

H
Handler

condition • 9-14
Help

online • 2-8, CD-107
for debugger messages • 2-8, CD-5
with DECwindows • 1-19

HELP command • 2-8, CD-107
%HEX•4-12, D-5
/HEXADECIMAL qualifier• 4-12, CD-81, CD-83,

CD-87
/HIDE qualifier• CD-71
/HOLD qualifier• 10-3, 10-7, CD-162, CD-182,

CD-236, CD-253
Hyphen (-)

line-continuation character • CD-4
subtraction operator• D-7

/H_FLOAT qualifier• CD-63, CD-87

I
Identifier

search string• 6-7
/IDENTIFIER qualifier• 6-7, CD-121
IF command• 8-10, CD-109
/IF _STATE qualifier• 8-9, CD-51
Image

See also Shareable image
privileged, securing • 5-6
shareable, debugging • 5-12

with DECwindows • 1-30
Indirection operator

See Contents-of operator
Initialization

debugging session • 3-1 , 9-8
with DECwindows • 1-5

Initialization code • 9-10
with DECwindows • 1-5

Initialization file
See also Command procedure, debugger
debugger • 8-4, D-1

with DECwindows • 1-29
Input, debugger

DBG$DECW$DISPLAY
with DECwindows • 1-35, D-1

DBG$1NPUT • 9-6, D-1
with DECwindows • 1-36

/INPUT qualifier• 7-22, CD-123, CD-168, CD-263
Instruction

See also Vector instruction
depositing• 4-20, 4-22

with DECwindows • 1-26
display (INST) •4-20, 7-8, 10-16, C-5

for routine on call stack•7-10, CD-170
with DECwindows • 1-9, 1-11, 1-22

display kind• 7-18, C-1
EXAMINE/INSTRUCTION command• 4-20, 7-10,

C-5
EXAMINE/OPERANDS command• 4-20
examining• 4-20, 7-8

with DECwindows • 1-22, 1-26
operand• 4-20, CD-87, CD-153
optimized code• 7-8, 9-1

with DECwindows • 1-11, 1-22
selecting from DECwindows window • 1-23
SET SCOPE/CURRENT command• 7-10,

CD-170
window (INST), DECwindows • 1-11, 1-22

/INSTRUCTION qualifier• 7-10, 7-22, CD-18,
CD-31, CD-63, CD-87, CD-123, CD-132,
CD-188, CD-265

%1NST_SCOPE • 7-18, C-5
Integer type • 4-15, 4-25, 4-27
Interrupt

debugging session • 3-5
execution of command • 2-8, CD-38

with DECwindows • 1-21
execution of program·. 2-8, 3-4, 10-6, 10-1 O,

10-14, CD-36, CD-38, CD-41, CD-152
with DECwindows • 1-21

/INTO qualifier• CD-132, CD-189, CD-200, CD-265
Invoking

J

debugger•2-5,2-7, 3-1, 10-1, 10-14, CD-41
with DECwindows • 1-2, 1-4, 1-33

/JSB qualifier• 3-14, CD-132, CD-189, CD-265

K
Key definition

creating • 8-8, CD-50
debugger predefined • B-1

with DECwindows • 1-31

Key definition (Cont.)

debugger predefined, multiprocess • 10-17
deleting • 8-9, CD-59
displaying • 8-9, CD-223

Index

Keypad mode• 8-8, CD-50, CD-153, CD-223, B-1
Key state• 8-9, CD-50, CD-223, B-1

L
%LABEL• 3-11, D-7
Language

current• 4-10, CD-145
identifying • CD-226
multilanguage program• 9-7

with DECwindows • 1-29
setting • 4-10, CD-145
support by debugger • E-1

with DECwindows • 1-2
Language expression

compared to address expression • 4-8
with DECwindows • 1-23

DEPOSIT command• 4-3, CD-61
EVALUATE command• 4-5, CD-81
evaluating• 4-5

with DECwindows • 1-27
FOR command •8-10, CD-103
IF command• 8-10, CD-109
REPEAT command • 8-11, CD-115
WHEN clause• 3-14
WHILE command• 8-11, CD-277

Language-Sensitive Editor• CD-78
Last-chance handler • 9-14
LAT terminal

debugging using two • 9-7
/LEFT qualifier• CD-98, CD-110, CD-118
Lexical function

See Built-in symbol
LIB$1NITIALIZE • 9-10
%LINE• D-7

EXAMINE command• 4-20
EXAMINE/SOURCE command• 6-5
GO command • CD-105
SET BREAK command• 3-11
SET TRACE command • 3-11
STEP command • 3-7

Line mode• CD-153
Line number

See also %LINE
selecting from DECwindows window• 1-23
source display • 6-1, 6-3, 6-5

lndex-7

Index

Line number
source display (Cont.)

with DECwindows • 1-10
traceback information • 2-15, 5-3
treated as symbol • 5-9

/LINEqualifier•3-14, CD-18, CD-31, CD-87,
CD-132, CD-189, CD-266

LINK command • 5-4, 6-2
shareable image • 5-12
with DECwindows • 1-2

/LIST qualifier• 6-1
/LOCAL qualifier• 8-6, CD-47, CD-57, CD-250
Local symbol

See Symbol
/LOCK_STATE qualifier• CD-51
Log file

as command procedure • 8-5
debugger• 8-5, CD-159

with DECwindows • 1-29
name of • 8-5, CD-14 7, CD-227

Logical name
debugger • D-1

Logical predecessor• 4-8, 4-13, 4-20, D-5
with DECwindows • 1-9

Logical successor• 4-8, 4-13, 4-20, D-5
with DECwindows • 1-9

/LOG qualifier• CD-51, CD-59
/LONGWORD qualifier • CD-63, CD-87

M
Margin

source display • 6-9, CD-148, CD-228
/MARK_ CHANGE qualifier• CD-71
Mask

EXAMINE/FMASK command• 11-13
EXAMINE/TMASK command• 11-13
masked vector operation• 11-6, 11-10, 11-13,

11-14
register, VMR • 11-6, 11-10, 11-13, 11-14

Memory
effectofdebugger•3-24

Message
debugger • 2-8, CD-5

with DECwindows • 1-20
MicroVAX

See Workstation
Mode

CANCEL MODE command • CD-23

lndex-8

Mode (Cont.)

SET MODE [NO]DYNAMIC command• 5-7, 5-14,
CD-152

SET MODE [NO]G_FLOAT command• CD-152
SET MODE [NO]INTERRUPT command• CD-152
SET MODE [NO]KEYPAD command • 8-8,

CD-153
SET MODE [NO]LINE command• CD-153
SET MODE [NO]OPERANDS command • 4-20,

CD-153
SET MODE [NO]SCREEN command• 7-1,

CD-154
SET MODE [NO]SCROLL command• CD-154
SET MODE [NO]SEPARATE command • 9-5,

CD-154
with DECwindows • 1-36

SET MODE [NO]SYMBOLIC command• 4-14,
CD-154

SHOW MODE• CD-230
/MODIFY qualifier• CD-132, CD-189
Module•2-6

See also Shareable image
canceling• 5-7, CD-24
information about• 5-7, CD-231
setting • 5-6, CD-156

with DECwindows • 1-27
traceback information • 5-3
with DECwindows • 1-2

/MODULE qualifier•CD-28, CD-171, CD-176
MOVE command• 7-13, CD-110
Multilanguage program

debugging• 9-7
with DECwindows • 1-29

Multiprocess program
CALL command• CD-10
CONNECT command• 10-4, 10-15, CD-36
controlling execution • 10-6
DBG$PROCESS • 10-10
debugging • 10-1

with DECwindows • 1-9, 1-30
DEFINE/PROCESS_ GROUP command• CD-54
DO command • 10-5, CD-76
EXIT command• 10-9, 10-10, CD-94

with DECwindows • 1-21
global section watchpoint • 10-17
GO command• 10-6, CD-105
QUIT command• 10-9, 10-10, CD-112

with DECwindows • 1-21
screen mode features • 10-16
SET MODE [NO] INTERRUPT command• 10-7,

CD-152
SET PROCESS command• 10-7, 10-8, CD-161

Multiprocess program (Cont.)

SHOW PROCESS command • 10-3, CD-235
Specifying processes • 10-12
STEP command • 10-6, CD-265
system requirements • 10-19
with DECwindows • 1-9, 1-30

N
%NAME•D-4
Network

debugging over • 3-1
%NEXTDISP • C-7
%NEXTINST • C-7
%NEXTLOC • 4-8, 4-13, D-5
Next location

See Logical successor
%NEXTOUTPUT • C-7
/NEXT qualifier• 6-6, CD-121
%NEXTSCROLL • C-7
%NEXTSOURCE • C-7
%NEXT_PROCESS • 10-12
%NEXT_SCOPE_ENTRY • D-11
%NEXT_ TASK• D-11
Nonstatic variable• 3-20, 4-1

with DECwindows • 1-25
/NOOPTIM IZE qualifier • 2-6, 5-2, 9-1

with DECwindows • 1-2
NOP (No Operation) instruction • 4-23

0
Object module • 5-3, 6-1
%OCT• 4-12, D-5
/OCTAL qualifier•4-12, CD-81, CD-83, CD-87
/OCTAWORD qualifier• CD-63, CD-87
Operand

instruction • 4-20, CD-87, CD-153
vector instruction • 11-6, 11-9

/OP ERAN OS qualifier• 4-20, 11-9, CD-87, CD-153
Operator

address expression • D-7
language expression • E-1

Optimization
effect on debugging• 2-6, 5-2, 7-8, 9-1

with DECwindows • 1-2, 1-10, 1-11
/OPTIMIZE qualifier• 2-6, 5-2, 9-1

with DECwindows • 1-2

/OPTIONS qualifier • 5-12
Output

Index

configuration, displaying • 8-2, 8-6, CD-234
configuration, setting• 8-2, 8-6, CD-159
debugger, DBG$DECW$DISPLAY

with DECwindows • 1-35, D-1
debugger, DBG$0UTPUT • 9-6, D-1

with DECwindows • 1-36
display (OUT)• 7-7, C-4

with DECwindows • 1-10
display kind• 7-19, C-1
window (OUT}, DECwindows • 1-10

/OUTPUT qualifier• 7-22, CD-124, CD-168, CD-263
/OVER qualifier• CD-133, CD-189, CD-201,

CD-266
/OVERRIDE qualifier• 4-26, CD-26, CD-33,

CD-168, CD-196, CD-240, CD-259
Override type • 4-26

p
/PACKED qualifier• CD-63, CD-88
%PAGE•C-6
/PAGE qualifier• 7-24, CD-185
Parameter

debugger command procedure • 8-2, CD-44
%PARCNT • 8-2, D-5
Pasteboard• 7-3
Path name

abbreviating • 5-10
numeric• 5-10
relation to symbol • 5-9

with DECwindows • 1-11
syntax• 5-9
to specify scope• 5-8, 5-9

with DECwindows • 1-28
%PC

See PC
PC (program counter)

built-in symbol (%PC) • 4-23, D-4
content of• 2-12, 4-20
EXAMINE/INSTRUCTION command• 7-10, 7-18
EXAMINE/OPERANDS command• 4-20, 11-9
EXAMINE/SOURCE command• 6-5, 7-6, 7-20,

7-23
examining • 4-20, 11-9

with DECwindows • 1-26
scope• 5-8
SHOW CALLS display• 2-15, CD-214

lndex-9

Index

Period (.)

contents-of operator• 4-7, 4-20, D-7
current entity • 4-8, 4-13, D-5

Pointer type • 4-19
/POP qualifier• CD-71, CD-166
Pop-up menu

with DECwindows • 1-12
Predecessor

See Logical predecessor
/PREDEFINED qualifier• CD-15, CD-18, CD-31,

CD-212, CD-257
Previous location

See Logical predecessor
%PREVIOUS_PROCESS • 10-12
%PREVIOUS_SCOPE_ENTRY • D-11
%PREVLOC • 4-8, 4-13, D-5
Primary handler• 3-22, 9-14
/PRIORITY qualifier• CD-183, CD-254
Privilege

allocate terminal• 9-7
Process

activation tracepoint, predefined • 10-14
connecting debugger to • 10-4, 10-15, CD-36
multiprocess debugging• 10-1

with DECwindows • 1-9, 1-30
termination tracepoint, predefined • 10-14

/PROCESS qualifier• 10-6, 10-16, CD-71, CD-76
/PROCESS_GROUP qualifier• 10-13, CD-54
%PROCESS_NAME • 10-12
%PROCESS_NUMBER • 10-12
%PROCESS_PID • 10-12
Program

display kind• 7-21, C-1
Program counter

See PC
/PROGRAM qualifier• 7-22, CD-124
Prompt

COMMAND box, DECwindows • 1-28
debugger(DBG>)•2-7, 10-2, CD-165

with DECwindows • 1-28, 1-35, 1-36
display (PROMPT) • 7-7, C-4
multiprocess program • 10-2

/PROMPT qualifier• 7-22, CD-124
Protection

debugging with two terminals• 9-7
of terminal• 9-7

%PSL • 4-23, D-4
PSL (processor status longword) • 4-24
/PSL qualifier• CD-88
/PSW qualifier• CD-88
/PUSH qualifier• CD-73

lndex-10

Q
/QUADWORD qualifier• 11-7, 11-8, CD-63, CD-88
QUIT command• 3-5, CD-112

multiprocess program • 10-9, 10-1 O
with DECwindows • 1-21

Quotation mark (")
ASCII string delimiter• 4-16
instruction delimiter• 4-22

R
Radix

canceling • CD-26
conversion • 4-11 , D-5
current• 4-11, CD-168
displaying • CD-240
multilanguage program • 9-9
specifying• 4-11, CD-168

Range
colon (:)•4-18, 11-4, 11-6, 11-7, CD-85

Real type • 4-15
Record

source line correlation• 6-1
Record type • 4-18
/REFRESH qualifier• CD-73
Register

See also Vector register
built-in symbol • 4-23, D-4
depositing into• 4-23

with DECwindows • 1-26
display (REG) • 7-10, C-5

with DECwindows • 1-12
display kind• 7-19, C-1
examining • 4-23

with DECwindows • 1-26
PC

See PC
PSL•4-24
symbol• D-4
symbolizing • 4-14, CD-271

with DECwindows • 1-26
variable• 3-20, 4-1

with DECwindows • 1-25
watchpoint • 3-20
window (REG), DECwindows • 1-12

/RELATED qualifier• CD-24, CD-156, CD-231
/REMOVE qualifier• CD-73

REPEAT command• 8-11, CD-115
/RESTORE qualifier• CD-183
Return key

logical successor • 4-8, 4-13, 0-5
/RETURN qualifier• CD-133, CD-190, CD-266
/RIGHT qualifier• CD-98, CD-110, CD-118
Routine

calling • 8-11 , 11-24, C0-1 O
call stack• 2-15, 7-7, 7-10, CD-170, CD-214

with DECwindows • 1-21, 1-22, 1-24, 1-28
displaying instructions for, on call stack• 7-1 o,

CD-170
with DECwindows • 1-22

displaying source code for, on call stack• 7-7,
CD-170
with DECwindows • 1-21

EXAMINE/SOURCE command• 6-5
multiple invocations of• 5-11, CD-170

with DECwindows • 1-28
selecting from DECwindows window• 1-23
SET BREAK command• 3-11
SET SCOPE command • C0-170
SET TRACE command• 3-11
SHOW CALLS command• 2-15
traceback information• 5-3

with DECwindows • 1-24
RST (run-time symbol table)• 5-6

and symbol search • 5-8
deleting symbol records in• 5-7, CD-24
displaying modules in• 5-7, CD-231
displaying symbols in • 5-9, CD-250
inserting symbol records in • 5-6, CD-156
shareable image • 5-14
with DECwindows • 1-27

RUN command • 3-1, 3-3, 5-4

See also Execution
shareable image • 5-14
with DECwindows • 1-4

Run-time symbol table

See RST

s
SAVE command• 7-24, CD-116
/SAVE_VECTOR_STATE qualifier• 11-24, CD-11
Scalar type • 4-15
Scope

built-in symbol• 7-4, 7-8, 7-18, 7-20, C-4, C-5,
C-6, 0-11

Scope (Cont.)

canceling• 5-12, CD-27
current•5-11, C0-170
default• 5-8, CD-27, CD-171, CD-241

with DECwindows • 1-28
displaying• 5-12, CD-241
for instruction display• 7-10, CD-170

with DECwindows • 1-9, 1-22
for source display• 7-7, CD-170

with DECwindows • 1-9, 1-21

Index

for symbol search• 5-8, 5-11, CD-27, CD-170,
CD-241
with DECwindows • 1-9, 1-28

PC •5-8
relation to call stack•5-10, 5-11, 5-12, 7-7,

7-10, CD-170
with DECwindows • 1-9, 1-21, 1-22, 1-28

SEARCH command • 6-6, CD-120
search list• 5-8, 5-11, CD-27, C0-170, C0-241

with DECwindows • 1-9, 1-28
SET SCOPE command•5-11, 7-7, 7-10,

C0-170
setting• 5-11, CD-170

with DECwindows • 1-28
specifying with path name • 5-9
TYPE command • 6-4, C0-275
vector register • 11-2

Screen display

See Display, debugger, screen mode
Screen management

debugging DECwindows application• 1-35
debugging screen-oriented program • 9-5

with DECwindows • 1-36
Screen mode• 7-1, CD-154

multiprocess program• 10-16
summary reference information • C-1

Screen-oriented program
debugging • 9-5

with DECwindows • 1-35, 1-36
Screen size

displaying• 7-25, CD-256
%PAGE, %WIDTH symbols• C-6
setting• 7-24, CD-185

/SCREEN_LAYOUT qualifier• CD-101
SCROLL command •7-12, CD-118
Scroll mode • CD-154
/SCROLL qualifier• 7-22, CD-124
SEARCH command• 6-6, C0-120

displaying default qualifiers for• 6-7, CD-243
setting default qualifiers for• 6~7. C0-174

lndex-11

Index

Search list

scope• 5-8, 5-11, CD-170, CD-241
with DECwindows • 1-9, 1-28

source file • 6-2, CD-28, CD-176, CD-246
Security

image •5-6
terminal • 9-7

SELECT command• 7-21, CD-123
Semicolon (;)

command separator • CD-4
SET ABORT_KEY command• 2-8, CD-127
SET ATSIGN command •8-2, CD-129
SET BREAK command• 3-9, 6-7, 9-11, 11-3,

CD-130
SET DEFINE command• 8-6, CD-138
SET EDITOR command• CD-139
SET EVENT_FACILITY command• CD-141
SET IMAGE command •5-15, CD-142

effect on symbol definitions • CD-48
SET KEY command• 8-10, CD-144
SET LANGUAGE command •4-10, CD-145
SET LOG command• 8-5, CD-147
SET MARGINS command •6-9, CD-148
SET MAX_SOURCE_FILES command• 6-3, CD-151
SET MODE command• CD-152
SET MODE [NO]DYNAMIC command• 5-7, 5-14,

CD-152
SET MODE [NO]G_FLOAT command• CD-152
SET MODE [NO]INTERRUPT command• 10-6,

CD-152
SET MODE [NO]KEYPAD command• 8-8, CD-153,

B-1
SET MODE [NO]LINE command• CD-153
SET MODE [NO]OPERANDS command· 4-20,

CD-153
SET MODE [NO]SCREEN command• 7-1, CD-154
SET MODE [NO]SCROLL command• CD-154
SET MODE [NO]SEPARATE command• 9-5,

CD-154
with DECwindows • 1-36

SET MODE [NO]SYMBOLIC command• 4-14,
CD-154

SET MODULE command• 5-7, 5-16, CD-156
SET OUTPUT command• CD-159
SET OUTPUT [NO]LOG command• 8-5, CD-159
SET OUTPUT [NO]SCREEN_LOG command • 8-6,

CD-159
SET OUTPUT [NO]TERMINAL command• CD-159
SET OUTPUT [NO]VERIFY command• 8-2, CD-159
SET PROCESS command• 10-7, 10-8, CD-161
SET PROMPT command• CD-165
SET RADIX command•4-11, 9-9, CD-168

lndex-12

SET SCOPE command• 5-11, 6-4, 7-7, 7-10,
CD-170

SET SEARCH command• 6-7, CD-174
SET SOURCE command• 6-2, CD-176
SET STEP command• 3-8, 4-20, 6-7, 11-3,

CD-179
SET TASK command• CD-182
SET TERMINAL command• 7-24, CD-185
SET TRACE command•3-10, 6-7, 9-11, 11-3,

CD-187
SET TYPE command• 4-25, CD-195
SET TYPE/OVERRIDE command• 4-26, CD-195
SET VECTOR_MODE command• 11-21, CD-198
SET WATCH command•3-17, 6-7, 11-3, CD-200
SET WINDOW command• 7-16, CD-207
/SET_STATE qualifier• 8-10, CD-51
Shareable image

See also Module
CANCEL IMAGE command• 5-15, CD-22
debugging • 5-12

with DECwindows • 1-30
SET BREAK/INTO command • 3-14, CD-133
SET IMAGE command• 5-15, CD-142
SET STEP INTO command • 3-9, CD-180
SET TRACE/INTO command •3-14, CD-190
SET WATCH command • 3-22
SHOW IMAGE command• 5-14, CD-222
STEP/INTO command • CD-266

/SHAREABLE qualifier• 5-12
/SHARE qualifier• 3-14, 5-16, CD-133, CD-190,

CD-231, CD-266
SHOW ABORT _KEY command • CD-209
SHOW AST command•9-18, CD-210
SHOW ATSIGN command • 8-2, CD-211
SHOW BREAK command• 3-11, CD-212
SHOW CALLS command• 2-15, 3-4, 9-12, 9-18,

CD-214
SHOW DEFINE command • 8-6, CD-216
SHOW DISPLAY command• 7-13, CD-217
SHOW EDITOR command • CD-219
SHOW EVENT _FACILITY command • 3-16, CD-220
SHOW EXIT_HANDLERS command• 9-18, CD-221
SHOW IMAGE command• 5-14, CD-222
SHOW KEY command • 8-9, CD-223
SHOW LANGUAGE command •4-10, CD-226
SHOW LOG command • 8-6, CD-227
SHOW MARGINS command •6-9, CD-228
SHOW MAX_SOURCE_FILES command• 6-3,

CD-229
SHOW MODE command• CD-230
SHOW MODULE command• 5-7, 5-16, CD-231

SHOW OUTPUT command • 8-2, 8-6, CD-234
SHOW PROCESS command • 10-3, 11-2, CD-235
SHOW RADIX command• 4-11, CD-240
SHOW SCOPE command •5-12, CD-241
SHOW SEARCH command• 6-7, CD-243
SHOW SELECT command• 7-23, CD-244
SHOW SOURCE command • 6-2, CD-246
SHOW STACK command• 9-13, CD-248
SHOW STEP command • 3-8, CD-249
SHOW SYMBOL command • 5-9, CD-250
SHOW SYMBOUDEFINED command• 8-6
SHOW TASK command • CD-253
SHOW TERMINAL command• 7-25, CD-256
SHOW TRACE command • 3-11, CD-257
SHOW TYPE command • 4-26, CD-259
SHOW VECTOR_MODE command • 11-21, CD-260
SHOW WATCH command• 3-17, CD-261
SHOW WINDOW command• 7-16, CD-262
/SILENT qualifier•3-14, CD-133, CD-190, CD-201,

CD-266
/SIZE qualifier• CD-73
Slash (/)

division operator • D-7
SMG$

debugging screen-oriented program • 9-5
Source code

See Source display
Source directory

displaying • 6-2, CD-246
search list• 6-2, CD-28, CD-176

Source display• 2-9, 6-1, 7-1
discrepancies in• 7-4, 9-1

with DECwindows • 1-1 O
display kind • 7-20, C-1
EXAMINE/SOURCE command• 6-5, 7-6, 7-20,

C-4
for routine on call stack• 7-7, CD-170

with DECwindows • 1-9, 1-10, 1-21
line-oriented • 6-3
margins in • 6-9, CD-228
multiprocess program• 10-16
not available•2-11, 2-13, 6-1, 7-4, CD-176, C-4

with DECwindows • 1-10, 1-21
optimized code• 2-6, 5-2, 7-8, 9-1

with DECwindows • 1-10
SEARCH command • 6-6, CD-120
SET BREAK command • 6-7
SET SCOPE/CURRENT command• 7-7, CD-170
SET STEP command• 6-7, CD-179
SET TRACE command • 6-7
SET WATCH command• 6-7

Source display (Cont.)

SAC, predefined• 7-4, C-4
with DECwindows • 1-10

STEP command• 6-7
TYPE command • 6-3, CD-275
with DECwindows • 1-9, 1-10, 1-21

Source file
See also Source display
correct version of• CD-176, CD-246
defined • 6-2
file specification • 6-2
location • 6-2, CD-28, CD-176, CD-246
maximum number• 6-3, CD-151, CD-229
not available • 6-2, CD-176

Source line correlation • 6-1

Index

/SOURCE qualifier• 6-5, 6-8, 7-6, 7-23, CD-88,
CD-124, CD-134, CD-190, CD-201, CD-267

Source window
See also Source display
SAC, DECwindows • 1-10, 1-21

%SOURCE_SCOPE • 7-20, C-4
%SP • 4-23, D-4
SPAWN command • 3-5, CD-263
SAC

source display, screen mode • 7-4, C-4
source window, DECwindows • 1-10, 1-21

SS$_DEBUG condition• D-1
Stack

See also Call stack, Call frame, Scope
variable • 3-20, 4-1

with DECwindows • 1-25
/START_POSITION qualifier• CD-139
/STATE qualifier• 8-9, CD-60, CD-144, CD-224,

CD-254
/STATIC qualifier • CD-201
Static variable • 3-20, 4-1
/STATISTICS qualifier • CD-254
Step button

with DECwindows • 1-9
STEP command • 3-7, 6-7, CD-265

and instruction-level debugging • 4-20
displaying default qualifiers for • CD-249
multiprocess program • 10-6
setting default qualifiers for• CD-179
vectorized program • 11-3
with DECwindows • 1-24

Stop button
with DECwindows • 1-9, 1-21

STOP command • 3-5
/STRING qualifier• 6-7, CD-121
String type • 4-16, 4-28

lndex-13

Index

Successor

See Logical successor
/SUFFIX qualifier• 10-17, CD-20, CD-73, CD-98,

CD-101, CD-110, CD-116, CD-118, CD-125,
CD-165, CD-217

Symbol

See also DST, GST, RST, Scope
ambiguity, resolving• 5-7

with DECwindows • 1-28
built-in • C-6, D-3
compiler generated type • 4-4
defining • 8-6, CD-48
displaying • 5-9, 8-6, CD-48, CD-250

with DECwindows • 1-25
global • 5-4, 5-1 O
image setting • 5-14
local •5-4
module setting • 5-6

with DECwindows • 1-27
not in symbol table • 5-6, 5-15

with DECwindows • 1-27
not unique • 5-9

with DECwindows • 1-28
relation to address expression • 4-4

with DECwindows • 1-23
relation to path name • 5-9

with DECwindows • 1-11
search based on call stack• 5-12, CD-170

with DECwindows • 1-9, 1-28
search conventions• 5-8, CD-171

with DECwindows • 1-9, 1-28
SET SCOPE command •5-11, CD-170
shareable image• 5-14

with DECwindows • 1-30
show symbol

with DECwindows • 1-25
SHOW SYMBOL command • 5-9
symbolic mode • 4-14, CD-154
traceback information • 5-3
universal •5-5, 5-12, 5-16
vector register • 11-1

Symbolic mode• 4-14, CD-154
/SYMBOLIC qualifier • 4-14, CD-88
Symbolize

address • 3-13, 4-14, CD-271
with DECwindows • 1-26

register• 4-14, CD-271
with DECwindows • 1-26

vector register • 11-1
SYMBOLIZE command• 3-13, 4-14, CD-271

lndex-14

Symbol record

See Symbol
Symbol table

See DST, GST, RST
Synchronization

debugging vectorized program• 11-21, CD-198,
CD-260, CD-273

delivery of vector exception• 11-20, 11-21, 11-24
SET VECTOR_MODE command• 11-21, CD-198
SHOW VECTOR_MODE command .. 11-21,

CD-260
SYNCHRONIZE VECTOR_MODE command" 11-21,

CD-273
/SYSTEM qualifier• 3-14, CD--134, CD-190, CD-267
System space

SET BREAK command• CD-134
SET STEP command • CD-180
SET TRACE command • CD-190
STEP command • CD-267

T
%TASK• D-11
Tasking

debugging • CD-182, CD-253
with DECwindows • 1-30

SET TASK command• CD-182
SHOW TASK command • CD-253

/TASK qualifier• CD-63, CD-88
/TEMPORARY qualifier" CD-134, CD-191, CD-201
Terminal

for debugger input/output, separate• 9-5, CD-154
using DECterm window • 1-36

Terminal emulator
See also Terminal

Terminal screen size
See Screen size

/TERMINATE qualifier• 8--9, CD-51
/TERMINATING qualifier .. 10-14, CD-18, CD-31,

CD-134, CD-191
Termination

debugging session• 3-5, 10-9, CD-94, CD-112
with DECwindows • 1-21

execution of handlers at • 9-17
multiprocess program• 10-9, 10-10, 10-14

/TIME_SLICE qualifier• CD-183, CD-254
/TMASK qualifier• 11-13, CD-88
/TOP qualifier• CD-119
Traceback

compiler option • 5-3

Traceback (Cont.)

link option • 5-4
SHOW CALLS display• 2-15

/TRACEBACK qualifier• 3-3, 5-4, 5-5
shareable image • 5-13

Tracepoint
canceling• 3-17, CD-30
defined • 3-1 O
delayed triggering of• 3-14, CD-188
displaying • CD-257
DO clause • 3-14
exception • 9-11, CD-187
on activation (multiprocess program)• 10-14
on termination (image exit) • 10-14
on vector instruction • 11-3
predefined • 1 0-14
setting• 3-10, CD-187
source display at• 6-7
WHEN clause• 3-14
with DECwindows • 1-24

Transfer address • 3-1, 9-8
Type

address expression • 4-4, 4-25
array• 4-17
ASCII string• 4-16, 4-28
compiler generated• 4-4, 4-15
conversion, numeric• 4-7
current• 4-25, CD-195, CD-259
displaying • CD-259
integer• 4-15, 4-27
override• 4-26, CD-195
pointer • 4-19
real• 4-15
record • 4-18
scalar• 4-15
SET TYPE command• 4-25, CD-195
symbolic address expression • 4-4
VAX instruction• 4-20
vector register• 11-7

TYPE command• 6-3, 7-6, CD-275
Type override • 4-26, CD-33, CD-196, CD-259
/TYPE qualifier• 4-28, CD-63, CD-89, CD-251

u
Universal symbol

See Symbol
/UP qualifier•CD-99, CD-111, CD-119
/USER qualifier• CD-15, CD-18, CD-31, CD-212,

CD-257

/USE_CLAUSE qualifier• CD-251

v
/VALUE qualifier• 8-6, CD-47
Variable

as override type • 4-28
depositing into• 4-3, 4-15

with DECwindows • 1-25
examining• 4-2, 4-15

with DECwindows • 1-25
global section• 10-17
initialized• 4-1
nonstatic • 3-20, 4-1

with DECwindows • 1-25
optimized code• 9-1
register • 3-20, 4-1

with DECwindows • 1-25

Index

selecting from DECwindows window• 1-23
stack local • 3-20, 4-1

with DECwindows • 1-25
static • 3-20
uninitialized • 3-24
watchpoint • 3-17, 10-17

with DECwindows • 1-25
Variable name

address expression • 4-8
with DECwindows • 1-23

DEPOSIT command• 4-3
EXAMINE command• 4-2
language expression • 4-6
selecting from DECwindows window • 1-23
SET WATCH command• 3-17

VAX Language-Sensitive Editor• CD-78
VAXstation

See Workstation
VAX Vector Instruction Emulation Facility

See VVIEF
%VCR

See VCR
VCR (vector count register) • 11-4, D-4
Vector count register

See VCR
Vector exception

delivery of • 11-20, 11-21, 11-24
Vector instruction• 11-8

CANCEL BREAK/VECTOR_INSTRUCTION
command• 11-3, CD-18

lndex-1f

Index

Vector instruction (Cont.)

CANCEL TRACE/VECTOR_INSTRUCTION
command• 11-3, CD-31

delivery of vector exception• 11-20, 11-21, 11-24
depositing• 11-13
displaying • 11-8
EXAMINE/OPERANDS command• 11-9
examining• 11-9
masked operation• 11-10, 11-15
operand • 11-9
replacing • 11-13
SET BREAK/VECTOR_INSTRUCTION command

•11-3, CD-134
SET STEP VECTOR_INSTRUCTION command•

11-3, CD-180
SET TRACE/VECTOR_INSTRUCTION command

• 11-3, CD-191
STEP/VECTOR_INSTRUCTION command• 11-3,

CD-267
Vectorized program

CALU[NO]SAVE_ VECTOR_STATE command•
11-24, CD-11

controlling and monitoring execution • 11-2
debugging • 11-1

with DECwindows • 1-30
delivery of vector exception • 11-20, 11-21, 11-24
depositing into vector register• 11-4, 11-7
depositing vector instruction• 11-13
EXAMINE/FMASK command• 11-13
EXAMINE/OPERANDS command• 11-9, CD-87
EXAMINE/TMASK command• 11-13
examining vector instruction • 11-9
examining vector register• 11-4, 11-7
masked operation• 11-6, 11-10, 11-13, 11-14
obtaining information about • 11-2
setting breakpoint • 11-3
setting tracepoint • 11-3
setting watchpoint • 11-3
SET VECTOR_MODE command• 11-21, CD-198
SHOW PROCESS/FULL command• 11-2
SHOW VECTOR_MODE command• 11-21,

CD-260
specifying vector register• 11-4
SYNCHRONIZE VECTOR_MODE command•

11-21, CD-273
synchronizing scalar and vector processors •

11-21
VO to V15•11-7
VCR• 11-4
VLR • 11-5
VMR • 11-6, 11-10, 11-:-13, 11-14
with DECwindows • 1-30

lndex-16

Vector length register

See VLR
Vector mask register

See VMR
Vector mode

SET VECTOR_MODE [NO]SYNCHRONIZED
command• 11-21

SYNCHRONIZE VECTOR_MODE command•
11-21

Vector register

See also Register
built-in symbol • 11-4, D-4
composite address expression • 11-18
depositing into• 11-4, 11-7
display, screen mode• 7-10, 7-17, 11-24
examining • 11-4, 11-7
scope• 11-2
VO to V15•11-7, D-4
VCR • 11-4, D-4
VLR • 11-5, D-4
VMR•11-6, 11-10, 11-13, 11-14, D-4
watchpoint • 11-3

/VECTOR_INSTRUCTION qualifier• 11-3, CD-18,
CD-31, CD-134, CD-191, CD-267

Verify
SET OUTPUT VERIFY command• CD-159

Virtual memory address

See Memory address
Visible process• 10-2, 10-3, 10-8

field and buttons in main window
with DECwindows • 1-9

/VISIBLE qualifier• CD-162, CD-183, CD-236
%VISIBLE_PROCESS • 10-12
%VISIBLE_TASK • D-11
%VLR

See VLR
VLR (vector length register) • 11-4, 11-5, D-4
%VMR

See VMR
VMR (vector mask register)• 11-4, 11-6, 11-10,

11-13, 11-14, D-4
VVIEF (VAX Vector Instruction Emulation Facility)

SHOW PROCESS/FULL command• 11-2

w
/WAIT qualifier• CD-263
Watch point

aggregate • 3-19, 11-3

Watchpoint (Cont.)

canceling • CD-34
defined • 3-17
displaying• CD-261
effect on execution speed • 3-20
global section• 10-17
multiprocess program• 10-17
nonstatic (stack or register) variable • 3-20
register • 3-20
setting• 3-17, CD-200
shareable image • 3-22
source display at• 6-7
static variable • 3-20
vector register • 11-3
with DECwindows • 1-25

WHEN clause
example • 3-14
format • CD-4

WHILE command• 8-11, CD-277
%WIDTH•C-6
/WIDTH qualifier• 7-24, CD-185
Window

See also Display, debugger, screen mode
attribute, DECwindows • 1-10
automatic (AUTO), DECwindows • 1-11
default configuration, DECwindows • 1-4
for debugger command interface

DECwindows COMMAND box• 1-20, 1-28
DECwindows DECterm window • 1-36
VWS window • 9-5, CD-154

instruction (INST), DECwindows • 1-11, 1-22
output (OUT), DECwindows • 1-10
predefined, DECwindows • 1-9
register (REG), DECwindows • 1-12
screen-mode, creating definition for• 7-16,

CD-207
screen-mode, defined• 7-2
screen-mode, deleting definition of• 7-16, CD-35
screen-mode, identifying• 7-16, CD-262
screen-mode, predefined • CD-262, C-7
screen-mode, specifying • 7-15
selecting address expression from, DECwindows •

1-23
source (SRC), DECwindows • 1-1 O, 1-21

/WORD qualifier• CD-63, CD-89
Workstation

debugger commands for (when using VWS) •
CD-6

debugger DECwindows interface for• 1-1
debugging DECwindows application • 1-35
debugging screen-oriented program

using separate DECterm window • 1-36

Index

Workstation
debugging screen-oriented program (Cont.)

using separate VWS window• 9-5, CD-154
popping debugger window (when using VWS) •

CD-166
separate, for debugger DECwindows interface •

1-35
separate debugger terminal-emulator window

using DECwindows (DECterm} • 1-36
using VWS • 9-5, CD-154

terminal emulator screen size• 7-24, CD-185

lndex-17

How to Order Additional Documentation

............... .__,,,_. __ _.,....._......,.-=s-•.,.,.,;R>mm.mt-• .,.,,.,,,_,,..,.,,., __ ___

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/El5
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 014 73

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS Debugger Manual
AA-LA59C-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

- Do Not Tear - Fold Here and Tape -------------------[lllr--------------
No Postage

~nmnoma™ ~:~=j~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ... 1.11 .. 1

in the
United States

- Do Not Tear - Fold Here --

I

I
I
I
I
I

