
VMS Version 5.3 New Features Manual
Order Number: AA-MG29B-TE

October 1989

This manual describes the new features of the VMS Version 5.3 operating system.

Revision/Update Information: This manual supersedes the VMS Version 5.2
New Features Manual.

Software Version: VMS Version 5.3

digital equipment corporation
maynard, massachusetts

6

October 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

©Digital Equipment Corporation 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA LiveLink VAX.cluster
DDIF LN03 VAX.RMS
DEC MASSBUS VAX.server
DECnet MicroVAX VAX.station
DECUS PrintServer 40 VMS
DECwindows Q-bus VT
DECwriter ReGIS X.UI
DEQNA ULTRIX
DIGITAL UNIBUS
GIGI VAX mamanmn™
The following are third-party trademarks:

PostScript is a registered trademark of Adobe Systems, Inc.

X Window System, Version 11 and its derivations (X, Xll, X Version 11, X Window
System) are trademarks of the Massachusetts Institute of Technology.

ZK5367

Production Note
This book was produced with the VAX DOCUMENT electronic publishing system,
a software tool developed and sold by Digital. In this system, writers use an
ASCII text editor to create source files containing text and English-like code;
this code labels the structural elements of the document, such as chapters,
paragraphs, and tables. The VAX DOCUMENT software, which runs on the
VMS operating system, interprets the code to format the text, generate a table
of contents and index, and paginate the entire document. Writers can print
the document on the terminal or line printer, or they can use Digital-supported
devices, such as the LN03 laser printer and PostScript printers (PrintServer 40
or LN03R ScriptPrinter), to produce a typeset-quality copy containing integrated
graphics.

Contents

Chapter 1 Introduction
1.1 Overvie'W' . 1-1

1.2 DEC'Wi.ndoW's . 1-1

1.3 Distributed Name Service •••••••••• ~........... 1-2

1.4 V~PU • 1-2

1.5 EW . • • • • • • • • • • • • . • • . • • . . • • • • . • . 1-4

1.6 Small Computer System Interface (SCSI) . . . • • • • • • 1-4

Chapter 2 DECwindows System Features
2.1 Internationalization • • • • • • • • • • • • • • • • • • • . • • • • • • • 2-1

2.2 Monitor Independence......................... 2-1

2.3 Multiscreen Support • • • • • • • • . • • . • • . . . • 2-2

2.4 Additional Transport Support • • • • • • • • • • . . • • . • • • 2-2

2.5 MIT Release 3 Compliance • • • • • • • . • . • • • 2-2

Chapter 3 DECwindows User Information
3.1

3.2

3.3

Icon Box

Session Manager • • • . • • • • • • • . • • • • • • • • . • . • • • • • • •

FileVie'W
3.3.1 Updating the File List
3.3.2 Keeping Track of Work in Progress
3.3.3 Working with Files
3.3.4 Accessing Files and Applications Quickly
3.3.5 Using Double-Click Commands

3-1

3-2

3-2
3--3
3--3
3-3
3-4
3-4

vi Contents

3.4

3.3.6
3.3.7
3.3.8
3.3.9

Saving a View
Changing the Look of Your File List
Adding Verbs and Building Pull-Down Menus ..
Customizing File View

Desktop Applications ••••••••••••••••••.•••••••
3.4.1 Bookreader
3.4.2 Calculator
3.4.3 Calendar
3.4.4 Cardfiler
3.4.5 Clock
3.4.6 CDA Viewer
3.4. 7 DECterm.
3.4.8 Mail
3.4.9 Notepad
3.4.10 Paint
3.4.11 Puzzle

3--4
3--4
3-5
3-6

3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-8
3-9
3-9
3-9

Chapter 4 DCL Commands
4.1 CONVERT/DOCUMENT . • • . • • • • • • . • • . • • . . . • • • . . 4-2

4.2 CREATE!rERMINAL Command • • . • • • • • • • . • • 4-6

4.3 SET DISPLAY Command • • • • • • • • • • • • • . • • • • • • • . • 4-12

4.4 SHOW LICENSE Command..................... 4-12

4.5 VIEW Command . • • • . • • . . • • • . • • • • • • • • . . • • • • . . • 4-14

Chapter 5 System Management Features
5.1 Extension of Lock Manager Limit • • • • • • • • • • • • • • • 5-1

5.2 NCP Executor Command Changes............... 5-1
5.2.1 Parameter for SET/DEFINE EXECUTOR 5-2
5.2.2 SHOW EXECUTOR CHARACTERISTICS

Command. 5-2

Chapter 6 Programming Features
6.1 XUI Toolkit New Features • 6-1

6.1.1 New Toolkit Routines.................... . 6-2
6.1.2 New Attributes . 6-5

6.2 New Xlib Routines . • • • • • • • . • • • • • • • • • • • . • • • • . • • 6-6

Contents vii

6.3

6.4

6.5

6.6

6.7

6.8

UIL Compiler Features ••••••••••••••••••••••••
6.3.1 Language Data-Type Functions
6.3.2 Multiple Callback Procedures Feature
6.3.3 UIL Constraint Argument
6.3.4 UIL Version Qualifier

CDA Features ••••••••••••••••••••••••••••••••
6.4.1 DTIF Support
6.4.2 CDA Converter Architecture
6.4.3 CDA Converters
6.4.4 CDA$CONVERT Routine
6.4.5 CDA Viewers
6.4.6 CDA Viewer Routines

DECwindows Server $QIO Calls to Driver .•••••••

New DECwindows Driver Support •••••••.•••••••

VMS SCSI Third-Party Device Support •••.•••••••

$QIO Return for Network Name/Object Number •••

Chapter 7 The VMS Distributed Name Service
7.1 Introduction to the Distributed Name Service •••••

7.1.1 The DNS Namespace
7.1.2 Structure of a N amespace
7.1.3 Creating Objects
7.1.4 Modifying Objects
7.1.5 Distributing the N amespace
7 .1.6 Requesting Information from DNS

7.2 DNS System Services ••••••••••••••••••.•••••••
$DNS
$DNSW

7.3 DNS Run-Time Routines •••••••••••••••.•••••••
DNS$APPEND_SIMPLENAME_TO_RIGHT
DNS$COMPARE_FULLNAME
DNS$COMPARE_SIMPLENAME
DNS$CONCATENATE_NAME
DNS$COUNT_SIMPLENAMES
DNS$CVT_DNSADDRESS_TO_BINARY
DNS$CVT_DNSADDRESS_TO_NODENAME
DNS$CVT_NODENAME_TO_DNSADDRESS
DNS$CVT_TO_USERNAME_STRING

6-7
6-7
6-8
6-8
6-8

6-9
6-9
6-9
6-9

6-10
6-10
6-10

6-11

6-12

6-12

6-13

7-2
7-2
7-4
7-9

7-12
7-14
7-18

7-26
7-27
7-54

7-55
7-56
7-58
7-60
7-62
7-64
7-66
7-68
7-70
7-72

viii Contents

DNS$PARSE_USERNAME_STRING. 7-74
DNS$REMOVE_FIRST_SET_VALUE 7-77
DNS$REMOVE_LEFT_SIMPLENAME 7-80
DNS$REMOVE_RIGHT_SIMPLENAME 7-82

7.4 Starting the DNS Clerk • • • • . . • . . . • . . • • . . . • . • • . . 7-84

7.5 DECnet Event Messages . • . • • . . . • • • 7-84

7 .6 System Error Messages • • • . • . . • • • . • • • • • • • • • . . • . 7-85

Chapter 8 VAXTPU
8.1

8.2

8.3

8.4

Associated Documents •••••••••••••••••••••••.•

Changed DECwindows VAXTPU Initialization .••..

Initialization Coding •••••••••.••••••••••••••.•
8.3.1 Enhancements to the MAP Built-In
8.3.2 Enhancements to the UNMAP Built-In
8.3.3 Behavior ofGET_INFO (widget_variable,

11widget_info 11
) Built-In

Buffer Change Journaling •••••••••••••.••••.•••
8.4.1 Buffer Change Journal File Naming

Algorithm
8.4.2 Enhancements to the CREATE_BUFFER

Built-In
8.4.3 Enhancements to the DELETE Built-In
8.4.4 GET_INFO (buffer_variable, "journaling")

Built-In
8.4.5 GET_INFO (buffer_variable, 11journal_file 11

)

Built-In
8.4.6 GET_INFO (buffer_variable,

"safe_forjournaling") Built-In
8.4.7 GET_INFO (buffer_variable, 11journal_name 11

)

Built-In
8.4.8 GET_INFO (string_variable, 11journal 11

)

8.4.9
8.4.10
8.4.11
8.4.12

Built-In
RECOVER_BUFFER Built-In
SET (JOURNALING) Built-In
WRITE_FILE Built-In
TPU$_FILE_RECOVERABLE Item Code

8-3

8-3

8-4
8-4
8-5

8-5

8-6

8-8

8-9
8-10

8-10

8-11

8-11

8-12

8-12
8-13
8-16
8-17
8-17

Contents ix

8.5 Enhancements to VAXTPU's Pattern Support •••••
8.5.1 New Pattern Keywords
8.5.2 Search Performance
8.5.3 The New Reverse Search Algorithm

8.6 Record Attributes • • • • . • . •••
8.6.1 Display Value Attribute
8.6.2 Modifiability Attribute
8.6.3 New Built-Ins Implementing Record Attribute

Support

8.7 Enhanced Support for DECwindows VAXTPU ••.••
8.7.1 Support for the Watch Cursor
8. 7 .2 Support for Resizing Windows and Screens
8. 7 .3 · Support for Icons
8. 7.4 Support for Sending and Detecting Client

Messages
8.7.5 Other New Built-Ins Extending DECwindows

VAXTPU

8.8 Support for Setting and Fetching the Default
Directoey
8.8.1 SET (DEFAULT_DIRECTORY)Built-in
8.8.2 GET_INFO (SYSTEM, 11 default_directory11

)

Built-In
8.8.3 Callable Interface Issues

8-18
8-18
8-18
8-19

8-20
8-21
8-22

8-22

8-30
8-30
8-30
8-32

8-35

8-39

8-49
8-49

8-50
8-51

8.9 Enhancements to the VAXTPU Compiler • • • • • • • . • 8-52
8.9.1 EQUIVALENCE Statement 8-52
8.9.2 Support for Local Variables in Unbound Code . . 8-53
8.9.3 Support for Conditional Compilation 8-54
8.9.4 Support for Specifying the Radix of Numeric

Constants . 8-55

8.10 Reserved Keywords • • . • • . . • • • • • • . • • • . • • • • . • • • • 8-56

8.11 Support for Handling Detached Cursor
Conditions . 8-57
8.11.1 SET (DETACHED_ACTION) Built-In 8-57
8.11.2 GET_INFO (SCREEN, 11 detached_action")

Built-In . 8-58
8.11.3 GET_INFO (SCREEN, 11 detached_reason")

Built-In . 8-59

8.12 Other Enhanced Built-Ins • • • • • • • • . • • • • • • • • • • • • • 8-60
8.12.1 CHANGE_CASE Built-In. 8-60
8.12.2 CREATE_RANGE Built-In. 8-62

x Contents

8.12.3
8.12.4
8.12.5
8.12.6
8.12.7
8.12.8
8.12.9
8.12.10

EDIT Built-In
GET_INFO (buffer_variable) Built-In
LENGTH Built-In
MESSAGE Built-In
MODIFY_RANGE Built-In
POSITION Built-In
SUBSTR Built-In
TRANSLATE Built-In

8-63
8-65
8-66
8-66
8-67
8-68
8-68
8-69

8.13 TPU$_FILEIO Item Code • 8-71

8.14 TPU$_CHAIN Item Code • • • • . . • • • • • • • • • • • • • • • • • 8-72

8.15 Enhancements to Keyboard Support • • • • • • • • • • • • • 8-72

8.16 Enhancements to the /NODISPLAY Command
Qualifier • 8-73

Chapter 9 EVE
9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

Input File Handling ••

Journaling and Recovery ••••••••••••••••••••••
9.2.1 Buffer Change Journaling
9.2.2 Keystroke Journaling and Recovery

·Attribute Saving .••••...••••..•.••••••.•••••••
9.3.1 Saving Attributes in a Section File
9.3.2 Saving Attributes in a Command File
9.3.3 Saving EVE Default Attributes

Menu Entries •••••••••••••••••••••••••••••••••

Case-Exact Search •

Key Definitions •••••••••••••••••••••••••••••••
9.6.1 DECwindows-Style Function Keys
9.6.2 Repeat Counts with Gold Key
9.6.3 WPS Ruler Keys
9.6.4 Mouse Buttons
9.6.5 LEARN Sequences and Prompts

FILL and Paragraph Boundaries ••••••••••••••••

Buffer List •.•••••••••••.•••••••••••••••••••••

Batch Editing ••••••••••••••••••••••••••••••••

Other Changes •
9.10.1 Bound Cursor Motion

9-2

9-3
9-3
9-7

9-8
9-11
9-13
9-14

9-15

9-16

9-16
9-17
9-18
9-19
9-19
9-20

9-20

9-20

9-21

9-22
9-22

9.11

Index

Examples
9-1

9-2

Figures
7-1
7-2

7-3

7-4
7-5

Tables
3-1
6-1
6-2
6-3
6-4
7-1

Contents xi

9.10.2
9.10.3
9.10.4

9.10.5
9.10.6

Commands Buffer
SHOW Command
RESTORE SELECTION Command with
DECwindows Quick Copy
PREVIOUS BUFFER Command
Help Topics

Program-Level Changes ••••••••••••••••.••••.••
9.11.1
9.11.2
9.11.3
9.11.4
9.11.5
9.11.6

Renamed Variable for the MAIN Buffer
Pre-Key and Post-Key Procedure Sharing
Detached Cursor Handling
Status Line Processing
EVE$INTERNATIONALIZATION Module
Obsolete Keywords for Message Constants

EVE-Generated Code for Saving Attributes in a
Command File
EVE Initialization File for Batch Editing

A DNS Namespace
Valid Character Cotles for DNS Simple
Names
Additional Character Codes Allowed in Quoted
Simple Names
A Partitioned N amespace
A N amespace with Replicated Directories

File View Menu Changes
New Routines
New Attributes
New Xlib Routines
New UIL Data-Type Functions
DNS Item Code Arguments

9-23
9_;23

9-24
9-24
9-24

9-25
9-25
9-25
9-26
9-26
9-26
9-26

9-13
9-22

7-5

7-8

7-8
7-15
7-16

3-2
6-2
6-5
6-7
6-7

7-47

xii Contents

8-1 Journaling Behavior Established by EVE 8-8
8-2 Selected Built-In Actions When

ERASE_UNMODIFIABLE is Turned Off 8-26
8-3 Detached Cursor Flag Constants 8-60
8-4 CREATE_RANGE Keyword Parameters 8-63
8-5 New GET_INFO Calls for the Editing Point and

Their Previous Equivalents 8-65
8-6 MODIFY_RANGE Keyword Parameters 8-68
9-1 EVE Commands for Buffer Change Journaling

and Recovery 9-4
9-2 EVE Commands for Saving Default

Attributes 9-8·
9-3 EVE Commands for Saving Attributes 9-9
9-4 EVE Settings for Saving Attributes 9-12

Preface

Intended Audience
This book is intended for general users, system managers, and programmers who
use the VMS operating system.

Structure of This Document
This book is organized as follows:

• Chapter 1 provides an overview of new features developed since VMS
Version 5.2.

• Chapter 2 describes the significant DECwindows development and features
that affect system performance and usage.

• Chapter 3 summarizes the new DECwindows user features.

• Chapter 4 presents new DCL commands as well as additions made to existing
commands, and describes how they are used.

• Chapter 5 summarizes the new features that support system management.

• Chapter 6 summarizes the new programming features. Most of the features
are in the DECwindows programming languages.

• Chapter 7 introduces the Distributed Name Service and describes how to
program and use the facility.

• Chapter 8 presents the new VAXTPU features and provides the application
programmer with information about using these features.

• Chapter 9 presents enhancements made to the EVE editor.

xiv Preface

Associated Documents
The VMS DECwindows Programming Documentation Supplement contains new
DECwindows programming language information. The following books contain
additional information about the new features of the VMS Version 5.3 operating
system:

• VMS lkrsion 5.3 Release Notes

• CDA Reference Manual

• VMS DECwindows Desktop Applications Guide

• VMS DECwindows User's Guide

• VMS DECwindows Programming Documentation Supplement

• VMS DECwindows Transport Manual

• VMS lkrsion 5.3 Small Computer System Interface (SCSI) Device Support
Manual

Conventions
The following conventions are used in this manual:

mouse

MBl, MB2, MB3

CtrVx

PFlx

The term mouse is used to refer to any pointing device, such as a
mouse, a puck, or a stylus.

MBl indicates the left mouse button, MB2 indicates the middle
mouse button, and MB3 indicates the right mouse button. (The
buttons can be redefined by the user.)

A sequence such as CtrVx indicates that you must hold down the
key labeled Ctrl while you press another key or a pointing device
button.

A sequence such as PFl x indicates that you must first press and
release the key labeled PFl, then press and release another key or
a pointing device button.

A key name is shown enclosed to indicate that you press a key on
the keyboard.

()

[]

{ }

red ink

boldface text

italic text

UPPERCASE TEXT

numbers

Preface xv

In examples, a horizontal ellipsis indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because they
are not important to the topic being discussed.

In format descriptions, parentheses indicate that, if you choose
more than one option, you must enclose the choices in parentheses.

In format descriptions, brackets indicate that whatever is enclosed
is optional; you can select none, one, or all of the choices. Brackets
are not, however, optional in the syntax of a directory name in a
file specification or in the syntax of substring specification in an
assignment statement.

In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

Red ink characters appearing in interactive examples of this book
indicate information or commands that you must enter from the
keyboard. Characters and output lines in black ink are system
prompts and display output. For online versions, user input is
shown in bold.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Italic text represents information that can vary in system messages ·
(for example, Internal error number).

Uppercase letters indicate that you must enter a command (for
example, enter OPEN/READ), or they indicate the name of a
routine, the name of a file, the name of a file protection code, or
the abbreviation for a system privilege.

Hyphens in coding examples indicate that additional ·arguments to
the request are provided on the line that follows.

Unless otherwise noted, all numbers in the text are assumed to be
decimal. Nondecimal radixes-binary, octal, or hexadecimal-are
explicitly indicated.

Chapter 1

Introduction

This chapter provides an overview of the VMS Version 5.3 new features.

1.1 Overview
The VMS Version 5.3 operating system provides new features in the following
major areas:

• Improved DECwindows software for workstations

• Distributed Name Service (DNS) for network based systems

• Enhanced VAX Text Processing Utility (TPU) and Extensible VAX
Editor (EVE)

• Small Computer System Interface (SCSI) support

1.2 DECwindows
Many of the VMS Version 5.3 new features reflect enhancements to the
DECwindows workstation software. DECwindows improvement is noted in the
following areas:

• Improved system features and performance

The improvements to DECwindows system features provide a high level of
interoperability, monitor independence~ multiscreen support,. and compliance
with Massachusetts Institute of Technology (MIT) Version 11, X Window
standard.

In addition, DECwindows has extended international features to allow users
who have installed support for a language other than· English to switch easily
to that language.

The TCP/IP transport introduces support for the the VMS/ULTRIX Connection
X layered product. Also, transport layer programming support is now
provided to third-party programmers.

1-2 Introduction

See Chapter 2 for more information about these features.

• Expanded user features

The Window Manager (Icon Box) and Session Manager have been enhanced
to make it easier for users to customize their DECwindows sessions.

File View now includes additional commands for working with files and
provides additional customization features and options. In addition, the
desktop applications have been enhanced.

See Chapter 3 for more details about these user features.

• Expanded programming features

The X User Interface {XU!) Toolkit, Xlib library, User Interface Lanaguage
(UIL), Compound Document Architecture (CDA), and server programming
have been expanded. New routines, attributes, arguments, and data-type
structures have been added to the DECwindows programming languages. See
Chapter 6 for more information about using these program features.

• New Digital Command Language (DCL) commands and additions to exisiting
commands have been added to provide more DECwindows support. See
Chapter 4 for more information about using these new DCL commands and
qualifiers.

1.3 Distributed Name Service
The new VMS Distributed Name Service (DNS) provides for storing the names of
resources such as files, disks, nodes, queues, and mailboxes on your network. For
the programmer, the DNS clerk provides a means of assigning unique names to
resources so that an application or user can easily find those resources. Once an
application has named a resource using DNS, the name is available for all users
of the application.

If the application requires that the resource be known throughout the network,
the DNS Server layered product must be installed on the remote systems. Once
the server is installed, multiple users located throughout a network can refer
to a common resource by the same name. Resources can be moved within the
network. No additional preparation is required, and it is unnecessary to learn a
new naming convention. See Chapter 7 for more information about using DNS.

1.4 VAXTPU
VAXTPU is a programmable, text processing utility that aids application and
system programmers in developing tools that manipulate text. The following new
features have been added to VAXTPU:

• Buffer change journaling

Introduction 1-3

In addition to keystroke journaling, VAXTPU now performs buffer change
journaling. File modifications are tracked on a per-buffer basis. Buffer
change journaling allows DECwindows VAXTPU sessions to be journaled and
recovered. To implement buffer change journaling, VAXTPU also provides six
new built-in procedures and enhances four previously existing built-ins.

• DECwindows VAXTPU improvements

Initialization is faster for applications layered on DECwindows VAXTPU.

The MAP and UNMAP built-ins now accept a widget parameter. Icon
pixmaps are now supported and seven new built-ins are available for finer
control over various DECwindows functions.

Window resizing is easier with a new SET (HEIGHT) and the enhanced SET
(WIDTH) built-in procedures.

• Programming tools improved

Pattern searches are more efficient. New keywords are available for creating
patterns. The SCAN, SCANL, SPAN, and SPANL built-in procadures can
perform a new kind of reverse search.

VAXTPU now gives programmers the option to make one or more records in
a buffer visible or invisible on a screen and to set or change the left margin
of the records. Also, the records can be made unmodifiable, so a user cannot
alter the record.

Function keys Fl through F5 are now supported. Modifiers ALT_MODIFIED
and HELP _MODIFIED for main keyboard keys and for control modified
keys are also available. In addition, all built-ins can be used when the
/NODISPLAY command qualifier is specified.

VAXTPU supports binary, octal, and hexadecimal constants as well as decimal
constants.

Application programmers or users can now change the current default
directory from within VAXTPU and can declare a local variable in code
that is not within a procedure. For defining synonyms an EQUIVALENCE
statement is now available. Conditional compilation statements enable the
programmer to control which portions in a source file are compiled under
various conditions.

You can now designate a program to handle a detached cursor condition
(condition in which the cursor position cannot accurately represent the editing
point in the current window).

When using the VAXTPU callable interface, application programmers can
allow VAXTPU to supply a default routine instead of specifying the entry
TPU$_FILEIO in the item list for the TPU$INITIALIZE routine. The
VAXTPU callable interface now supports chaining of item lists, making the
VAXTPU callable interface more like VMS system services.

1-4 Introduction

See Chapter 8 for more information about these features.

1.5 EVE
The Extensible VAX Editor (EVE) is an editor written in the VAXTPU program
ming language. The following new features have been added to EVE:

• Buffer change journaling and recovery

In addition to keystroke journaling, EVE now performs buffer change
journaling. EVE creates a journal file for each user buffer. Recovery is
done interactively (that is, by using RECOVER commands within EVE) and
restores only your text, not any settings or key definitions. This method of
journaling and recovery works on DECwindows as well as on character-cell
terminals. You can still use keystroke journaling and recovery when using
EVE on a character cell terminal.

• Attribute saving

You can now save global attribute settings in a section file or TPU command
file, either by using the SAVE ATTRIBUTES command or when exiting from
EVE.

• Menu customization

You can now add and delete menu items in DECwindows EVE's pull-down
and pop-up menus.

• Search list handling

If you use a search list or wildcard directory specification (such as [...]) in
specifying an input file, EVE gets the first matching file in the search list.

• New commands

There are several new commands, particularly concerning buffer change
journaling and recovery, user attribute saving, and menu customizations.

• Batch editing

You~can now invoke EVE with EDITtrPU/NODISPLAY, typically for batch
editing.

See Chapter 9 for more information about these features.

1.6 Small Computer System Interface (SCSI)
VMS Version 5.3 supports the attachment of third-party Small Computer System
Interface (SCSI) peripherals to the SCSI bus of MicroVAX and VAXstation 3100
models or 3520/3540 systems. For more details, see Chapter 6.

Chapter 2

DECwindows System Features

The major new VMS Version 5.3 DECwindows system and performance features
are:

• More internationalization support

• Monitor independence

• Multiscreen support

• Additional transport support

• MIT X Window System Release 3 compliance

2.1 Internationalization
The previous release of DECwindows contained numerous international features,
including support for 8-bit character sets, European keyboard support, and
compound string interfaces in the toolkit programming library.

With VMS Version 5.3, DECwindows extends this support at both the user
interface and programming library levels. It adds the ability to switch between
multiple natural languages (for example, French or German), if the DECwindows
language variant is installed on a system. A new compound string text widget
has been added, and numerous enhancements have been made to provide better
directional support (for example, right-to-left) for international markets.

2.2 Monitor Independence
The new DECwindows applications have fewer restrictions about the type of
workstation monitors and screen sizes on which they can be effectively displayed.
All applications can run on monitors with 75 dots-per-inch (dpi) or 100-dpi
screens. They also handle screen geometries as small as 512 by 342 pixels using
the appropriate fonts and color palettes.

2-2 DECwindows System Features

2.3 Multiscreen Support
Significant development and changes in the X server, device drivers, and Session
Manager components now support the multiscreen environment. A multiscreen
system is a workstation with one keyboard, one mouse, and more than one display
screen. It is still a single-user workstation system allowing a specified keyboard
or mouse to interact with other monitors of a workstation group. All VMS
Version 5.3 DECwindows clients can be run on screens other than screen zero.

2.4 Additional Transport Support
DECwindows now adds TCP/IP transport support for use with the VMS/ULTRIX
Connection (UCX) layered product. The programming interface between the
DECwindows common-transport module and the transport-specific module is now
documented in the VMS DECwindows Transport Manual. This enables other
Digital groups and third parties to write their own transport layers to extend
further the interoperability of DECwindows systems.

2.5 MIT Release 3 Compliance
All of the DECwindows components now meet the published interfaces specified
by the Massachusetts Institute of Technology (MIT) X Window System,
Version 11, Release 3.

Chapter 3

DECwindows User Information

This chapter describes the latest DECwindows features that are of interest to all
VMS DECwindows users. The main sections cover new features for the following
topics:

• Window Manager (Icon Box)

• Session Manager

• FileView

• Desktop applications

For more details about using the Icon Box, Session Manager, and FileView, see
the VMS DECwindows User's Guide. For information about using DECwindows
desktop applications, see the VMS DECwindows Desktop Applications Guide.

3.1 Icon Box -
The DECwindows Icon Box contains the following new features:

• If you press and hold MB2 in the Icon Box's work area, the Window Manager
displays a pop-up menu, which contains Save Settings and Customize options.

• When you click on a window for input focus, the text "Press MB2 to
customize" replaces the copyright notice in the title bar. When you click
again for input focus, the text "Icon Box" replaces "Press MB2 to customize."

• If you point to the title bar of any window and press and hold MB3, you can
move the window without setting input focus to that window.

3-2 DECwindows User Information

3.2 Session Manager
New Session Manager features allow you to do the following:

• Customize the Applications Menu

• Customize the definitions that start applications

• Select applications to start automatically when you log in

• Customize the default language

• Disable the Print Screen Rotate and Scale Pictures option

• Use color Print Screen options

• Specify a transport when using the Security option

• Customize the Pause text label

• Specify another window manager as executable

• Display a logo other than the Digital logo in the login box

3.3 FileView
Table 3-1 summarizes changes made to File View menus.

Table 3-1: FileView Menu Changes

Menu Item Change

Layout ...

Menu Bar ...

Moved from Control menu to Customize menu.

Privileges ...

Logical Names

DDIF

Read

Type

Moved from Control menu to Customize menu. Allows you to remove
or rearrange all the menus in your menu bar. (Previously, the Control,
Customize, and Views menus could not be removed or rearranged.)

Moved from Control menu to Customize menu.

Moved from Control menu to Utilities menu.

Renamed (on Applications menu) to CDA Viewer.

New command in the Files menu that has the same options as the
Edit command, but allows you only to read, not edit, a file.

Removed from the Files menu as well as from all File View menus.
For upward compatibility, the Type command is still defined in the
File View system customization file, but is not referenced. (The Read
command includes a Type option as one of the reader choices.)

(continued on next page)

DECwindows User Information 3-3

Table 3-1 {Cont.): FileView Menu Changes

Menu Item

Set Protection

Any Verb ...

Change

New command in the Files menu that lets you change the file
protection on selected files by setting and clearing the toggle buttons
in the Set Protection dialog box. You can also specify the Log and
Confirm options.

New item on Control menu.

The following sections summarize additional File View changes and new features.

3.3.1 Updating the File List
FileView now allows you to cancel a long-running view update operation. When
you start an update operation, the Apply/Update button becomes a Cancel button.
Clicking on the Cancel button aborts the file search, and File View displays
whatever file information was collected up to that point, along with a pop-up
message box that indicates some information might be missing.

3.3.2 Keeping Track of Work in Progress
The behavior of the Stop Task buttons in the Work in Progress and Task Output
windows have changed. Previously, when you clicked on the Stop Task button,
FileView attempted to stop the running task and removed the Work in Progrp,ss
box entry for the task whether the task actually stopped or not. Now, FileVidw
attempts to stop the task and, rather than removing the entry, shows the status
"Stopped" in the Work in Progress box. When the task actually stops, the Work in
Progress box entry disappears.

FileVi.ew now uses a single Work in Progress dialog box for all FileView tasks,
regardless of which File View window you started them from. When you choose
Work in Progress from the Control menu or start a task that causes the Work in
Progress dialog box to appear, it is placed relative to the current File View window.
After that, it will reappear in the same position each time it is popped up.

3.3.3 Working with Files
The dialog boxes for commands on the Files menu now contain an Apply button.
When you click on the Apply button, the task is started, but the dialog box is
not dismissed. Instead, the OK, Apply, and Cancel buttons are disabled until the
task completes. When the task completes, FileView reenables the buttons; you
can then use the same dialog box to perform another task. For example, you can
choose Search, and search repeatedly for different strings on the selected file list
without choosing Search again.

3-4 DECwindows User Information

3.3.4 Accessing Files and Applications Quickly

When File View's file list does not entirely fill its window, there is unused blank
space after the last file name. In previous versions, you could not double-click or
display pop-up menus in this background area. Now you can define a double-click
verb and pop-up menu for this unused space by using the new file type **.

3.3.5 Using Double-Click Commands

In FileView's file list, a double click can mean different things depending on the
type of file you point at. When you double click on a file, File View now displays a
tiny pop-up menu that shows the verb about to execute.

3.3.6 Saving a View

The Save View dialog box contains five additional view components:

• Window Name

• Icon Name

• Initial State

• Exclude Directories

• Exclude Files

The initial settings in the Save View dialog box have changed. When you choose
Save View... from the Customize menu, the dialog box pops up with all its toggle
buttons set and with the Name of View field containing Startup (the name of the
startup view).

The Save View dialog box contains All and None buttons, which set and clear
all the toggle buttons at once. By default, Save View... now behaves like Save
Startup View. (In VMS Version 5.1, only the File Filter and Directory toggle
buttons were set by default; and the name field was empty.)

3.3.7 Changing the Look of Your File List

The following new features let you change the look of your file list:

• FileView now allows you to exclude VMS directory (DIR) files from your file
list. In VMS Version 5.1, DIR files were always shown in the file list, even
though they were also visible in the subdirectory (navigation) list box.

You can control this option from the Layout dialog box (choose Layout ... from
the Customize menu). You can also save views that will enable or disable the
setting by using the Save View dialog box.

DIR files are now excluded from the file list by default.

DECwindows User Information 3-5

• By choosing the new menu item Exclude Files... from the Customize menu,
you can specify a file name filter (with wildcards) to remove some files
from the file list. This is similar in functionality to the DCL command
DIRECTORY/EXCLUDE. You can save these file filters in saved views.

If the current view has a nonblank. exclude file filter, a status line
(Excluded: nn) appears in FileVi.ew's main window. This shows the number of
files removed from the file list because of the exclude file filter.

The Views menu now includes a new saved view (Exclude: None) item.
Choosing this saved view clears the current view's exclude file filter.

• The Layout dialog box contains another toggle button (Sort/Filter Key) in the
Fields list. By default, the toggle button is enabled and the sort key field (if
any) is automatically displayed. When this toggle button is disabled, FileVi.ew
does not automatically display the sort key field. In VMS Version 5.1, the sort
key values were always shown in the file list if you enabled a sorted order for
your view. For example, if you sorted your file list by file creation date, there
was no way to avoid having the create date displayed.

3.3.8 Adding Verbs and Building Pull-Down Menus
FileVi.ew's built-in verbs can now be used in your own custom menus or as double
click verbs. You can also rename any of File View's built-in verbs.

You can now change the contents of the Control and Customize menus just as you
can change any other menu in File View.

Three built-in verbs have been added (Select All, Select None, and Update View)
that correspond to the buttons in File View's main window. By default, these verbs
are on the background pop-up menu.

The command files invoked by verbs on the Files menu, as well as the DCL
Command verb command file, now accept the Task Output box size as an optional
parameter. For example, the size of DCL Command window can be changed to 48
by changing the verb definition to:

@VUE$LIBRARY:VUE$DCL_COMMAND 48

A new command file called VUE$ITERATE is included in VUE$LIBRARY. This
command file allows you to define verbs that operate on each of the currently
selected files without writing a command file. The command file takes a
parameter that is the DCL command to execute for each file. The command
definition should include the symbol 'VUE$FILE in the position at which the file
name is to be substituted. For example, a Show Owner verb can be defined as
follows:

@VUE$LIBRARY:VUE$1TERATE "DIR/OWNER 'VUE$FILE"

3-6 DECwindows User Information

The command file allows additional optional control parameters. Parameter 2
is the label to be used in the Task Output box. If no control parameters are
specified, Processing is used. The current file name is appended to this label.
Parameter 3 is the prompt string to be used to prompt for file names if there
are no currently selected files. If parameter 3 is null or not specified, Files: is
used. If parameter 4 is present, the Work in Progress box will not automatically
pop up when you choose the verb. If parameter 4 is null or not specified, the box
appears. Parameter 5 is the size of the task output box. The default is 24 lines.
The built-in verb Show Files is defined using this command file as follows:

@VUE$LIBRARY:VUE$1TERATE "DIR/FULL/NOHEAD/VERSION=1 -
'VUE$FILE" "Showing "Show File" false

3.3.9 Customizing FileView

A new verb, Create Public Profile, makes it easier for application developers to
create the File View verb definition file they need to ship with their products. This
verb is not on the menu bar by default, but it can be accessed through the Any
Verb... dialog box.

You can now customize these three components of your File View windows:

• The window name, as displayed in File View's main window title bar.

• The icon name, as displayed in File View's icon in the Icon Box.

• File View's initial state. This allows you to start File View as a window or an
icon.

You can enter labels for the window and icon names, and you can indicate
whether the DECnet node name and the current default directory should also be
displayed. The window and icon names can be different, and they can be stored
as part of a saved view. By default, the DECnet node name and the default
directory are included in both the window and icon names.

3.4 Desktop Applications
This section summarizes the new features of the DECwindows Desktop Applications.
The following applications have added new features. See the VMS DECwindows
Desktop Applications Guide for more information.

• Bookreader

• Calculator

• Calendar

• Cardfiler

• Clock

• CDA Viewer

DECwindows User Information 3-7

• DECterm

• Mail

• Notepad

• Paint

• Puzzle

3.4.1 Bookreader
The Bookreader now includes:

• Context-sensitive online Help.

• Go Back button in the topic window, which returns the display to the last
topic being viewed.

• Menu items on the View menu that let you enable or disable highlighting of
hot spots and extensions. (For example, text that describes an extension to a
programming language.)

• More button in the topic window, lets you move forward within a topic. (If the
end of the topic is reached, the next topic is displayed.)

• Icons to the left of each title in the selection window to show whether the title
refers to a shelf or a book.

3.4.2 Calculator
The Calculator now includes the keys deg, X!, 1/X, Rnd, Inv, sin, cos, tan, log, In,
e, and YAX and allows you to save the screen placement and size of the Calculator
if you modified those settings during your session.

3.4.3 Calendar
The following changes and additions have been made to the Calendar:

• Timeslots in the day display now contain a "handle" that enables you to move
an entry to a different timeslot.

• You can create daynotes, which are notes that are not associated with a
particular time. You can also create daynotes that repeat at regular intervals.

• You can associate icons with entries and daynotes.

• You can create overlapping entries.

• Calendar now allows you much greater range and flexibility in customizing
alarm settings.

• You can send and receive Calendar entries through mail.

3-8 DECwindows User Information

• You can save the size and position of the Calendar if you modified those
settings during your session.

• You can specify a smaller increment by which to move an entry using the
handle-for example, you could specify an increment of four minutes, which
would enable you to make an entry for an 8:04 meeting.

3.4.4 Cardfiler

The Cardfiler now allows you to cut and paste images from other applications,
such as Paint. You can also save the size and placement of the Cardfiler if you
modified those settings during your session.

3.4.5 Clock
The Clock now lets you use 24-hour time and to save the size and placement of
the Clock if you modified those settings during your session.

3.4.6 CDA Viewer
The Compound Document Architecture (CDA) Viewer (formerly the DDIF
Viewer) has two new menu items on the File menu: Diagnostic Information and
Document Information, which you can choose to display information about the file
you are currently viewing.

The new Options File dialog box enables you to specify the name of a file
containing processing options to be applied as your file is loaded for viewing.
The new Paper Size dialog box enables you to pick a paper size and to override
the existing document format.

There is also a new Page... button at the bottom of the window, which allows you
to specify the number of the page you want to display.

3.4. 7 DECterm

DECterm now lets you disable operating system control over terminal size and to
adjust the transcript size. There is a new Customize Graphics dialog box that lets
you modify DECterm graphics features. In addition, you can now specify your
own titles for the icon and window.

3.4.8 Mail

The following changes and additions have been made to Mail:

• You can move messages in the outline interface by dragging them.

• You can send an existing file without using an editor by choosing the Use
Existing File... menu item on the Create-Send window's File menu.

• You can specify your own display name for new drawers or modify the display
name for existing drawers.

DECwindows User Information 3-9

• Mail now has keyboard accelerator support for quick ways of performing
common functions.

• The Customize menu has the following new menu items: User Attributes ... ,
Send Attributes ... , Deliver Attributes ... , Print Attributes ... , Window Attributes .. t,
Save Attributes, Restore Attributes, and Restore System Attributes.

• The Send button (and the Send menu item on the File Menu) is dimmed after
sending a message. It remains dimmed until you change something in the
Send window.

• You can specify whether Mail starts in a window or an icon state.

3.4.9 Notepad
The Notepad now lets you split the screen so that you can view and edit two
portions of a file at the same time. In addition, there are two new menu items:
Select All and Clear, which let you select all or delete all of the text in a buffer.
You delete text by choosing Select All and then Clear.

3.4.10 Paint
Paint now has a Picture Size... menu item on the Customize menu, which lets
you change the picture size and modify the resolution. The new Full View menu
item on the Options menu enables you to display entire figures even if they are
too large to fit in the Paint window, and to display or permanently crop only a
portion of your picture. The new Scale Picture menu item on the Edit menu lets
you scale your entire image.

Paint also now has keyboard accelerators that let you perform common Paint
operations without using the mouse.

3.4.11 Puzzle
If you modified the size and placement of the puzzle during a session, you can
now save these values.

Chapter 4

DCL Commands

VMS Version 5.3 includes the following new DCL command:

Command

CREATE/TERMINAL

Function

Creates a window, such as a DECterm window, that emulates another
terminal type

The following table lists the new qualifiers to the DCL commands SET DISPLAY,
SHOW LICENSE, and VIEW:

Qualifier Function

SET DISPLAY Command

/DELETE

/EXECUTIVE_MODE

/SUPERVISOR_MODE

/USER_MODE

Deletes the display device and cancels the redirected display

Creates an executive mode device

Creates a supervisor mode device

Creates a user mode device

SHOW LICENSE Command

/BRIEF

/CHARGE_ TABLE

/PRODUCER=name

Displays a summary of information about the specified product licenses

Displays information in the current Charge Table for the current VAX
computer

Displays software product licenses active on the current node

4-2 DCL Commands

Qualifier

VIEW Command

/INTERFACE

/HEIGHT

/OVERRIDE_FORMAT

/WIDTH

Function

Specifies the type of display device you are using

Specifies the height of the page in number of characters

Selects the CDA converter to override your document format

Specifies the number of characters per line

In addition, the CONVERT/DOCUMENT command now supports the DTIF input
and output format that is included in the /FORMAT and /OPTIONS qualifiers.
Also, the /OPTIONS qualifier contains new processing options.

4.1 CONVERT/DOCUMENT
The DCL command CONVERT/DOCUMENT converts a revisable format file to
another revisable or final format file. You can use this command only if you have
DECwindows installed on your system.

The CONVERT/DOCUMENT command has the following format:

CONVERT/DOCUMENT input-file[IFORMAT=format-name] -
output-file[/FORMAT =format-name]

Parameter

input-file
Specifies the file to be converted. The default file type is DDIF.

output-file
Specifies the name of the converted file. The default file type is DDIF.

Qualifiers

/FORMAT =format-name
Specifies the encoding format of the input or output file. The default format is
DDIF for both input and output.

The DTIF format is now supported with the /FORMAT qualifier. Input formats
bundled with the VMS operating system and their default file types are as
follows:

Input Format

DDIF

DTIF

TEXT

File Type

DDIF

DTIF

TXT

DCL Commands 4-3

Output formats bundled with the VMS operating system and their default file
types are as follows:

Output Format

DDIF

DTIF

TEXT
PS
ANALYSIS

File Type

DDIF

DTIF

TXT

PS
CDA$ANALYSIS

Digital's CDA Converter Library is a layered product that provides additional
input and output formats. Independent software vendors who write DDIF- and
DTIF-conforming applications, as well as front- and back-end converters, also
provide input and output formats that are layered on the VMS operating system.
Contact your system manager for a complete list of input and output formats
available on your system.

IOPTIONS:options-filename
Specifies a file that contains processing options for both input and output. The
default file type for a VMS options file is CDA$0PTIONS.

You can create an options file that contains all the input and output processing
options to be applied during the conversion of the input file to the output file.
These processing options affect how your input file is processed and how your
output file is created or displayed.

The CDA Converter contains several new processing options available for several
of the file formats that are bundled with VMS. The new processing options
available with VMS Version 5.3 follow.

Text Back-End Processing Options

The text back-end converter supports the following new options:

• HEIGHT value

Specifies the maximum number of lines per page in your text output file. If
you specify 0, the number of lines per page corresponds to the height specified
in your document. If you additionally specify OVERRIDE_FORMAT or if the
document has no inherent page size, the document is formatted to the height
value specified by this option. The default height is 66 lines.

4-4 DCL Commands

• OVERRIDE_FORMAT [ON,OFF]
t

Causes the text back-end converter to ignore the document formatting
information included in your document, so that the text is formatted in
a single large galley per page that corresponds to the size of the page as
specified by the HEIGHT and WIDTH processing options. If this option is not
specified, the default is OFF; if this option is specified without a value, the
default is ON.

• WIDTH value

Specifies the maximum number of columns of characters per page in your text
output file. If you specify 0, the number ·of columns per page corresponds to
the width specified in your document. If you additionally specify OVERRIDE_
FORMAT or if the document has no inherent page size, the document is
formatted to the value specified by this processing option. If any lines of text
exceed this width value, the additional columns are truncated. The default
width is 80 characters.

Domain Conversion Processing Options

The new CDA Domain converter provides several new domain conversion
processing options. When you are converting any table format to any document
format, you can now specify the following processing options using a format name
of DTIF _TO_DDIF:

• COLUMN_TITLE

Displays the column titles as contained in the column attributes centered at
the top of the column.

• CURRENT_DATE

Displays the current date and time in the bottom left comer of the page. The
value is formatted according to the document's specification for a default date
and time.

• DOCUMENT_DATE

Displays the document date and time as contained in the document header
in the top left comer of the page. The value is formatted according to the
document's specification for a default date and time.

• DOCUMENT_TITLE

Displays the document titles as contained in the document header centered at
the top of the page, one string per line.

• PAGE_NUMBER

Displays the current page number in the top right comer of the page. ·

DCL Commands 4-5

• PAPER_SIZE size

Specifies the size of the paper to be used when formatting the PostScript
output file. The values are the same as those for the PostScript back end.

• PAPER_HEIGHT height

Specifies a paper size other than one of the predefined values provided. The
default paper height is 11 inches.

• PAPER_ WIDTH width

Specifies a paper size other than one of the predefined sizes provided. The
default paper width is 8.5 inches.

• PAPER_TOP _MARGIN top-margin

Specifies the width of the margin provided at the top of the page. The default
value is 0.25 inches.

• PAPER_BOTTOM_MARGIN bottom-margin

Specifies the width of the margin provided at the bottom of the page. The
default value is 0.25 inches.

• PAPER_LEFT_MARGIN left-margin

Specifies the width of the margin provided on the left-hand side of the page.
The default value is 0.25 inches.

• PAPER_RIGHT_MARGIN right-margin

Specifies the width of the margin provided on the right-hand side of the page.
The default value is 0.25 inches.

• PAPER_ORIENTATION orientation

Specifies the paper orientation to be used in the output file. The values are
the same as those for the PostScript back end.

Example
$ CONVERT/DOCUMENT/OPTIONS=OPTIONS.CDA$0PTIONS -
_$ FOOBAR.DTIF/FORMAT=DTIF MOOMAR.DDIF/FORMAT=DDIF

This command converts an input file named FOOBAR.DTIF, which has the DTIF
format, to an output file named MOOMAR.DDIF, which has the DDIF format.
The specified options file is named OPTIONS.CDA$0PTIONS.

4-6 DCL Commands

4.2 CREATE/TERMINAL Command
The new DCL command CREATEtrERMINAL creates a window that emulates
another terminal type. Currently, only DECterm windows can be created with
this command.

Specify CREATEtrERMINAL in the following format:

CREATE/TERMINAL [command-string)

Parameter

command-string
Specifies a command string that is to be executed in the context of the created
subprocess. This parameter allows CREATEtrERMINAL to be used in much the
same way as the SPAWN command.

Description

The CREATEtrERMINAL command creates a subprocess of your current process.
When the subprocess is created, the process-permanent open files and any image
or procedure context are not copied from the parent process. The subprocess is
set to command level 0 (DCL level with the current prompt).

If you do not specify the /PROCESS qualifier, the name of this subprocess is
composed of the same base name as the parent process and a unique number.
For example, if the parent process name is SMITH, the subprocess name can be
SMITH_l, SMITH_2, and so on.

The LOGIN.COM file of the parent process is not executed for the subprocess,
because the context is copied separately, allowing quicker initialization of the
subprocess. When the /WAIT qualifier is in effect, the parent process remains in
hibernation until the subprocess terminates and returns control to the parent by
using the ATTACH command.

Use the LOGOUT command to terminate the subprocess and return to the
parent process. You can also use the ATTACH command to transfer control of
the terminal to another process in the subprocess tree, including the parent
process. (The SHOW PROCESS/SUBPROCESS command displays the process in
the subprocess tree and points to the current process.)

NOTE: Because a tree of subprocesses can be established
using the CREATEtrERMINAL command, you must be careful
when terminating any process in the tree. When a process is
terminated, all the subprocesses below that point in the tree are
automatically terminated.

Qualifiers for the CREATEtrERMINAL command must directly follow the
command verb. The command string parameter begins after the last qualifier
and continues to the end of the command line.

DCL Commands 4-7

Qualifiers

I APPLICATION_ KEYPAD
Sets the APPLICATION_KEYPAD terminal characteristic in the created terminal
window. If /APPLICATION_KEYPAD or /NUMERIC_KEYPAD is not specified,
the default is to inherit the characteristic from the parent. (See also /NUMERIC_
KEYPAD.)

/BIG_FONT
Specifies that the Big Font (as specified in resource files) be selected when the
created terminal window is initialized. It is an error to specify /BIG_FONT in
combination with /LITTLE_FONT. If you do not specify either /BIG_FONT or
/LITTLE_FONT, the initial font is /BIG_FONT.

!BROADCAST
INOBROADCAST
Determines whether the terminal window is created with broadcast messages
enabled. If neither qualifier is specified, the created terminal window inherits the
broadcast characteristic of the parent window.

ICARRIAGE_CONTROL
INOCARRIAGE_CONTROL
Determines whether carriage return and line feed characters are prefixed to the
subprocess's prompt string. By default, CREATE/TERMINAL copies the current
setting of the parent process. This qualifier is used only with /NO DETACH.

ICLl:cll-filespec
INOCLI
Specifies the name of a Command Language Interpreter (CLI) to be used by the
subprocess. The default CLI is the same as that of the parent process (defined in
SYSUAF). If you specify /CLI, the attributes of the parent process are copied to
the subprocess. The CLI you specify must be located in SYS$SYSTEM and have
the file type EXE. This qualifier is used only with /NODETACH.

ICONTROLLER:fHename
Specifies the name of the terminal window controller image. This name allows
the CREATE/TERMINAL command to create a window on a variant controller,
such as for a language not supported by the base product. For a DECterm, the
default is SYS$SYSTEM:DECW$TERMINAL.EXE. The device and directory
default to SYS$SYSTEM and the file type defaults to EXE.

NOTE: The "name" field of the file name as returned by
$PARSE is used to form the mailbox logical name. For example,
if the file "name" is DECW$TERMINAL, the mailbox logical
name will be DECW$TERMINAL_MAILBOX_node::O.O. For
backward compatibility, the controller also defines a logical name
DECW$DECTERM_MAILBOX_host::O.O to point to the same
mailbox.

4-8 DCL Commands

IDEFINE_LOGICAL:{{logname, TABLE:tablename} [, .•.])
Specifies one or more logical names that are set to the name of the created
pseudo-terminal device. Each element in the list is either a logical name or else
TABLE= followed by the name of a logical name table in which all subsequent
logical names will be entered. The default is the process logical name table.

/DETACH
INODETACH (default)
Determines whether the created terminal process is detached or a subprocess of
the current process. The command-string parameter can not be used with the
/DETACH qualifier.

IDISPLAY:display-name
Specifies the name of the display on which to create the terminal window. If this
parameter is omitted the DECW$DISPLAY logical name is used.

/ESCAPE
!NOE SCAPE
Sets or clears the ESCAPE characteristic of the created terminal window. The
default is to inherit the characteristic of the parent.

/FALLBACK
INOFALLBACK
Sets or clears the FALLBACK characteristic of the created terminal window. The
default is to inherit the characteristic of the parent.

IHOSTSYNC (default)
INOHOSTSYNC
Sets or clears the HOSTSYNC characteristic of the created terminal window. The
default is to inherit the characteristic of the parent.

/INPUT =filename
Specifies an alternate input file or device to use as SYS$INPUT for the new
process. The default is to use the created terminal window for input.

/INSERT
Creates the terminal window with insert mode as the default for line editing.
If /INSERT or /OVERSTRIKE is not specified, the default is to inherit the
characteristic from the parent. (See also /OVERSTRIKE.)

/KEYPAD (default)
/NOKEYPAD
Determines whether keypad definitions and the current keypad state are copied
from the parent process. This qualifier is used only with /NODETACH.

/LINE_EDIT/NG
INOLINE_EDITING

DCL Commands 4-9

. Determines whether the terminal window is created with line editing enabled. If
neither qualifier is specified, the created terminal window inherits the line editing
characteristic of the parent.

ILITTLE_FONT
Specifies that the Little Font (as specified in resource files) be selected when the
created terminal window is initialized. It is an error to specify /LITTLE_FONT
in combination with /BIG_FONT. If you do not specify either /BIG_FONT or
/LITTLE_FONT, the initial font is /BIG_FONT.

ILOGGED_IN (default)
!NOLOGGED_IN
Determines whether a prompt for a user name and password are supplied
(/NOLOGGED_IN) or the created terminal window is logged in automatically
(/LOGGED_IN). This qualifier is used only with /DETACH.

!LOGICAL_NAMES (default)
/NOLOGICAL_NAMES
Determines whether the created terminal window inherits the parent's logical
names. This qualifier is used only with /NODETACH.

!NOTIFY
INONOTIFY (default)
Determines whether a notification message is broadcast to the parent when the
created terminal window exits. This qualifier is used only with /NODETACH.

/NUMERIC_KEYPAD
Sets the NUMERIC_KEYPAD terminal characteristic in the created terminal
window. If /NUMERIC_KEYPAD or /APPLICATION_KEYPAD is not specified,
the default is to inherit the characteristic from the parent. (See also
APPLICATION_KEYPAD.)

/OVERSTRIKE
Creates the terminal window with overstrike mode as the default for line editing.
If /OVERSTRIKE or /INSERT is not specified, the default is to inherit the
characteristic from the parent. (See also /INSERT.)

/PASTHRU
/NOPASTHRU
Sets or clears the PASTHRU characteristic in the created terminal window. The
default is to inherit the characteristic of the parent.

4-10 DCL Commands

/PROCESS (default)
IPROCESS:process-name
/NOPROCESS
Specifies the name of the process or subprocess to be created. /NOPROCESS
means that a window is created without a process. If you specify /PROCESS
without a process name, a unique process name is assigned with the same base
name as the parent process and a unique number. The default process name
format is: usemame_n. If you specify a process name that already exists, an
error message is displayed. This qualifier is used with both /DETACH and
/NO DETACH.

/PROMPT :prompt
Specifies the prompt string of the created terminal window. This qualifier is used
only with /NODETACH.

/READSYNC
/NOREADSYNC
Sets or clears the READSYNC terminal characteristic in the created terminal
window. The default is to inherit the characteristic from the parent.

/RESOURCE_FILE:filename
Specifies that the created terminal window use the resource file "filename"
instead of the default resource file, DECW$USER_FAULTS:DECW$TERMINAL_
DEFAULT.DAT.

/SYMBOLS (default)
INOSYMBOLS
Determines whether the subprocess inherits the parent's DCL symbols. This
qualifier is used only with /NODETACH.

ffABLE:command-table
Specifies the name of an alternate command table to be used by the subprocess.
This qualifier is used only with /NODETACH.

ITTSYNC
/NOTTSYNC
Sets or clears the TTSYNC terminal characteristic in the created terminal
window; the default is to inherit the characteristic of the parent.

ffYPE_AHEAD
INOTYPE_AHEAD
Sets or clears the TYPE_AHEAD terminal characteristic in the created terminal
window. The default is to inherit the characteristic of the parent.

DCL Commands 4-11

!WAIT
!NOWAIT (default)
Requires that you wait for the subprocess to terminate before you enter another
DCL command. The /NOWAIT qualifier allows you to enter new commands while
the subprocess is running. This qualifier is used only with /NODETACH.

IWINDOW_ATTRIBUTES:{keyword [, •••])
Specifies initial attributes for the created terminal window to override the
defaults read from the resource file. These keywords include:

Keyword

BACKGROUND

FOREGROUND

WIDTH

HEIGHT

X_POSITION

Y_POSITION

ROWS

COLUMNS

INITIAL_STATE

TITLE

ICON_NAME

FONT

Example

Description

The background color.

The foreground color.

The width, in pixels.

The height, in pixels.

The x-position, in pixels.

The y-position, in pixels.

The number of rows in the window, in character cells. If the Auto Resize
Window option is enabled, ROWS and COLUMNS override the size specified by
WIDTH and HEIGHT.

The number of columns in the window, in character cells. If the Auto Resize
Window option is enabled, ROWS and COLUMNS override the size specified by
WIDTH and HEIGHT.

The initial state of the window, either ICON or WINDOW.

A character string specifying the window title.

A character string specifying the window icon name.

The name of the font to be used in the window. If you specify /LITTLE_FONT,
or omit both /LITTLE_FONT and IBIG_FONT, this overrides the name of the
Little Font that is set in the resource files; otherwise it overrides the name of
the Big Font. The font name can be a logical name, and it can be (but does not
have to be) the base font in a complete font set.

$ CREATE/TERMINAL=DECTERM/DISPLAY=MYNODE::O -
$ /WINDOW_ATTRIBUTES=(ROWS=36,COLUMNS=80, -

~) TITLE="REMOTE TERMINAL", ICON_NAME="REMOTE TERMINAL")

This command creates a detached process in a DECterm window on node
MYNODE:: that is 36 rows by 80 columns and has its title and icon name set
to "Remote terminal".

4-12 DCL Commands

4.3 SET DISPLAY Command
The DCL command SET DISPLAY has four new qualifiers that direct the output
of a DECwindows application:

/DELETE
Deletes the display device and cancels the redirected display. The /DELETE
qualifier replaces the /NOPERMANENT qualifier. The /NOPERMANENT
qualifier continues to be supported.

/EXECUTIVE_MODE
Creates an executive mode device and assigns the logical name DECW$DISPLAY
to point to it. This qualifier must be used with the /CREATE qualifier. Devices
created with the /EXECUTIVE_MODE qualifier are deleted only if:

• They are explicitly deleted with the /DELETE qualifier.

• The system is rebooted.

To create, modify, or delete executive mode devices, you must have SYSMAN
privilege.

ISUPERVISOR_MODE
Creates a supervisor mode device and assigns the logical name DECW$DISPLAY
to point to it. This qualifier must be used with the /CREATE qualifier. When the
user logs out, the device is deleted.

/USER_ MODE
Creates a user-mode display device and assigns the logical name DECW$DISPLAY
to point to it. This qualifier must be used with the /CREATE qualifier. The
lifetime of a user-mode device is one DECwindows image: when the next
DECwindows image exits, the device is deleted.

4.4 SHOW LICENSE Command
The DCL command SHOW LICENSE displays software product licenses active
on the current node. The command contains new qualifiers that support a charge
table and that display licenses according to a specified producer.

The SHOW LICENSE command has the following format:

SHOW LICENSE [product-name]

Parameter

product-name

DCL Commands 4-13

Specifies the name or names of activated software product licenses to display.
Wildcard characters (* and %) are allowed. If you do not specify a product name,
all active product-name license information is displayed. The product-name
parameter is incompatible with the /CHARGE_TABLE qualifier.

Qualifiers

/BRIEF
Displays a summary of information about the specified active product licenses.
You cannot use the /BRIEF qualifier with the /CHARGE_TABLE qualifier.

/CHARGE_ TABLE
Displays information in the current Charge Table, also known as the License
Unit Requirement Table (LURT), for the current VAX computer. The /CHARGE_
TABLE qualifier is incompatible with the product-name parameter, and the
/BRIEF and /PRODUCER qualifiers.

/OUTPUT[:filespec]
/NOOUTPUT
By default, the output of the SHOW LICENSE command is sent to the current
SYS$0UTPUT device (usually your terminal). To send the output to a file, use
the /OUTPUT qualifier followed by a file specification.

You cannot use wildcard characters for the file specification. If you enter a partial
file specification (for example, specifying only a directory), SHOW is the default
file name and LIS is the default file type.

If you enter the /NOOUTPUT qualifier, output is suppressed.

!PRODUCER:producer-name
Displays software product licenses active on the current node that are supplied by
a specified producer. Wildcard characters (* and %) are allowed for the producer
name parameter. You cannot use the /PRODUCER qualifier with the
/CHARGE_TABLE qualifier.

Example

$ SHOW LICENSE

Active licenses on node WTPOOH:

DVNETEND
Producer: DEC
Units: 0
Version: 5.3
Date: (none)
Termination Date: (none)
Availability: E (System Integrated Products)
Activity: 0
MOD UNITS

4-14 DCL Commands

VAX-VMS
Producer: DEC
Units: 0
Version: 5.3
Date: (none)
Termination Date: (none)
Availability: A (VMS Capac~ty)
Activity: 0
MOD_UNITS
NO_SHARE

The SHOW LICENSE command in this example displays all the active licenses
on the current node named WTPOOH.
$ SHOW LICENSE/BRIEF

Active licenses on node WTPOOH:

------- Product ID --------
Product Producer
DVNETEND DEC
VAX-VMS DEC

---- Rating ----- -- Version -
Uni ts Avail Activ Version Date

0 E 0 5.3 (none)
0 A 0 5.3 (none)

Expires
(none)
(none)

The SHOW LICENSE command in this example displays a summary of all the
active licenses on the current node named WTPOOH.
$ SHOW LICENSE/CHARGE TABLE
VMS/LMF Charge Information for node WTPOOH
This is a VAX 8800, hardware model type 18
Type: A, Units Required: 93 (VMS Capacity)
Type: B, * Not Permitted * (VMS Server)
Type: C, * Not Permitted * (VMS Concurrent User)
Type: D, * Not Permitted * (VMS Workstation)
Type: E, Units Required: 400 (System Integrated Products)
Type: F, Units Required: 1200 (Layered Products)

The SHOW LICENSE command in this example displays license unit require
ments for the current VAX computer with the NODE name WTPOOH. For a
description of how to use this information, see the VMS License Management
Utility Manual, part of the VMS Base Documentation Set.

4.5 VIEW Command
The DCL command VIEW invokes the Compound Document Architecture (CDA)
Viewer, which lets you view a compound document file on a character-cell
terminal or a DECwindows display. Some of the qualifiers affecting the size of
the display have. no visible affect if you display a compound document file on a
small monitor.

Four new qualifiers have been added to the VIEW command.

The VIEW command has the following format:

VIEW input-file

Parameter

input-file

DCL Commands 4-15

Specifies the name of the file to be viewed. If you do not specify an input file
name, you are prompted for one. You cannot use wildcard characters in the file
name. The default input file-encoding format is DDIF, and the default file type is
DDIF. Valid input file formats are any of those for which there is a CDA converter
front end installed on the system.

Qualifiers

!FORMAT[:fmt-name]
!FORMAT :DDIF (default)
Specifies the format of your input file. The input formats that you can use with
the CDA Viewer depend on the CDA converters installed on your system. The
DTIF format is now supported. The default input format is DDIF. Input formats
now bundled with the VMS operating system and their default file types are as
follows:

Input Format

DDIF

DTIF

TEXT

File Type

DDIF

DTIF

TXT

Additional input formats are provided in Digital's CDA Converter Library, a
layered product. Independent software vendors who write DDIF-·and DTIF
conforming applications and front- and back-end CDA converters also provide
input formats that are layered on the VMS operating system. Contact your
system manager for a complete list of input formats available on your system.

!HEIGHT:nn
Specifies the height of the page in number of characters. If you specify the
/OVERRIDE_FORMAT qualifier or if the document being viewed has no inherent
format, this page height is used. On the DECwindows display, the default height
is 66 lines, which is equivalent to the default page height of 11 inches. On
character cell displays, the page height defaults to your terminal's screen height.
However, if you use the /OUTPUT qualifier, the page height depends on the page
height of your document.

/INTERFACE:DECWINDOWS
/INTERFACE:CHARACTER_ CELL (default)
Specifies the type of display you are using.

4-16 DCL Commands

/OVERRIDE_FORMAT
INOOVERRIDE_FORMAT (default)
Selects the CDA Viewer to override the format of your document. The
NOOVERRIDE option (default) uses the format information stored in your
document.

IWIDTH:nn
Specifies the number of characters per line. If you specify the /OVERRIDE_
FORMAT qualifier or if the document being viewed has no inherent format,
this page width is used. On the DECwindows display, the default width is
85 characters, which is equivalent to the default page width of 8.5 inches. On
character cell displays, the page width defaults to your terminal's screen width.
However, if you use the /OUTPUT qualifier, the default is 132 columns.

Example

$ VIEW FOOBAR.DTIF/FORMAT=DTIF/OPTIONS=OPTIONS.CDA$0PTIONS -
$ /NOOUTPUT/NOPAGE/INTERFACE=DECWINDOWS/OVERRIDE FORMAT -

=$ /WIDTH=80/HEIGHT=66 -

This command invokes the CDA Viewer to view a file named FOOBAR.DTIF,
which has the DTIF format. The display interface is DECwindows, and the CDA
Viewer will override the document's default format. The display width will be
80 characters, and the display height will be 66 lines.

Chapter 5

System Management Features

This chapter summarizes new features of VMS Version 5.3 that provide system
management support. Additions to the following components are described:

• Lock Manager

• NCP Executor Commands

5.1 Extension of Lock Manager Limit
The Lock ID space for the Lock Manager is now extended from 65,535 to 262,144
locks. The SYSGEN parameters listed in the following table are increased to the
values indicated:

SYSGEN Parameter

LOCKIDTBL

LOCKIDTBL_MAX

SRPCOUNT

SRPCOUNTV

IRPCOUNT

IRPCOUNTV

New Maximum Value

262,144

262,144

270,336

270,336

135,168

135,168

5.2 NCP Executor Command Changes
The NCP executor commands now include:

• A new parameter to SET/DEFINE EXECUTOR command

• New display characteristics for SHOW EXECUTOR CHARACTERISTICS
command

5-2 System Management Features

5.2.1 Parameter for SET/DEFINE EXECUTOR

The network control ancillary program (NETACP) manages an index into a
properly synchronized table in nonpaged-pool memory. System managers can
modify the size of the table using the NCP command SET/DEFINE EXECUTOR
with the following new parameter:

Parameter

MAXIMUM DECLARED OBJECTS

Description

Specifies the number of objects that processes can
declare. To determine the current number of declared
objects on your system, use the NCP SHOW KNOWN
OBJECTS command. Each of the objects with a PID
listed is one declared object. A single process can
declare more than one object. Failure to provide a
sufficient number of objects can result in the failure
of network servers to be initialized. The default of 31
objects is sufficient for most configurations. The valid
range is 8 to 16383. Note that dynamically setting the
number lower has no effect.

5.2.2 SHOW EXECUTOR CHARACTERISTICS Command

The SHOW EXECUTOR CHARACTERISTICS command now displays infor
mation as shown in the following example. Note that a new entry Maximum
Declared Objects is displayed and the Pipeline quota now shows 10000.

NCP> SHOW EXECUTOR CHARACTERISTICS

Node Volatile Characteristics as of 16-JUN-1990 10:48:27

Executor node = 2.11 (BOSTON)

Identification
Management version
Incoming timer
Outgoing timer
Incoming Proxy
Outgoing Proxy
NSP version
Maximum links
Delay factor
Delay weight
Inactivity timer
Retransmit factor
Routing version
Type
Routing timer
Broadcast routing timer
Maximum address
Maximum circuits
Maximum cost
Maximum hops
Maximum visits
Maximum area
Max broadcast nonrouters
Max broadcast routers
Maximum path splits
Area maximum cost
Area maximum hops
Maximum buffers
Buffer size
Default access
Pipeline quota
Alias incoming
Alias maximum links
Alias node
Path split policy
Maximum Declared Objects

System Management Features 5-3

DECnet-VAX VS.3, VMS V5.3
V4.0.0
45
45
Enabled
Enabled
V4.1. 0
128
80
5
60
10
V2.0.0
routing IV
600
40
1023
16
1022
15
63
63
64
32
1
1022
30
100
576
incoming and outgoing
10000
Enabled
32

2 .10 (CLUSTR)
Normal

= 31

Chapter 6

P.rogramming Features

This chapter summarizes new features of VMS Version 5.3 that provide
programming support. The main sections cover new features for the following
topics:

• X User Interface (XUI) Toolkit

• VMS DECwindows X Library (Xlib)

• User Interface Language (UIL) Compiler

• Compound Document Architecture (CDA)

• DECwindows Server

• DECwindows Driver

• Small Computer System Interface (SCSI)

With. the exception of SCSI, VMS Version 5.3 programming enhancements
primarily support the DECwindows environment.

6.1 XUI Toolkit New Features
VMS Version 5.3 of the XUI. Toolkit contains two new widgets, one new gadget,
and several widget manipulation routines. In addition, there are new attributes
supported for· existing widgets. Reference information on the new routines
and attributes and information on programming with these new features is
documented in the VMS DECwindows Programming Documentation Supplement.
Section 6.1.1 gives an overview of the new routines. Section 6.1.2 lists the new
attributes for existing widgets.

6-2 Programming Features

6.1.1 New Toolkit Routines

The new XUI Toolkit widgets and gadgets are as follows:

• Color mixing widget-This widget lets you define colors for applications. The
widget is a pop-up dialog box containing a default color display subwidget
and a default color mixer subwidget. The color display subwidget shows the
original color in one window and the new color as you modify it in another
window. The color mixer subwidget uses the red, blue, green (RGB) color
model. You can either move a slider to specify percentages of each color or
enter RGB values for those colors. Applications can replace both the color
display subwidget and the color mixer subwidget with custom components.

• Compound string text widget-This widget lets you enter text and edit
existing text using various character sets and writing directions.

• Pull-down menu entry gadget-This gadget corresponds to the pull-down
menu entry widget.

Table 6-1 lists the new routines supported by VMS Version 5.3 of the XUI Toolkit.

Table 6-1: New Routines

Routine

Intrinsic Routines

APPLICATION ADD ACTIONS

APPLICATION ADD CONVERTER

APPLICATION ERROR

APPLICATION ERROR MESSAGE

APPLICATION GET ERROR
DATABASE

APPLICATION GET ERROR
DATABASE TEXT

APPLICATION GET SELECTION
TIMEOUT

APPLICATION SET ERROR
HANDLER

Function

Declares an action table and registers it with the
translation manager.

Registers a new resource converter.

Calls the installed fatal error procedure and passes the
message specified.

Calls the high-level error handler and passes the
information specified.

Obtains the error database.

Obtains the error database text for an error or a warning.

Returns the current value of the intrinsics selection
timeout interval.

Registers an error procedure to be called on a fatal error
condition.

(continued on next page)

Programming Features 6-3

Table 6-1 {Cont.): New Routines

Routine Function

Intrinsic Routines

APPLICATION SET ERROR
MESSAGE HANDLER

APPLICATION SET SELECTION
TIMEOUT

APPLICATION SET WARNING
HANDLER

APPLICATION SET WARNING
MESSAGE HANDLER

APPLICATION WARNING

APPLICATION WARNING MESSAGE

GET CONSTRAINT RESOURCE LIST

Convenience Routines

ACTIVATE WIDGET

GET USER DATA

DRM Routines

FETCH COLOR LITERAL

FETCH ICON LITERAL

FETCH LITERAL

Compound String Routines

STRING FREE CONTEXT

STRING INIT CONTEXT

Registers a procedure called on a fatal error condition.

Sets the intrinsics selection timeout.

Registers a procedure to be called on nonfatal error
conditions.

Registers a procedure that is called on a nonfatal error
condition.

Calls the installed nonfatal error procedure.

Calls the installed high-level warning handler.

Gets a list of constraint attributes.

Allows the application to simulate push button activation.

Returns the user data associated with the widget.

Fetches a named color literal from a UID file and converts
it to a pixel value.

Fetches an icon literal from a UID file.

Fetches the value of a literal in a UID file.

Frees a compound string context structure.

Initializes the context needed by GET NEXT SEGMENT.

(continued on next page)

6-4 Programming Features

Table 6-1 (Cont.): New Routines

Routine Function

Cut and Paste Routines

CLIPBOARD REGISTER FORMAT

END COPY FROM CLIPBOARD

START COPY FROM CLIPBOARD

START COPY TO CLIPBOARD

ffigh-Level Widget Routines

COLOR MIX GET NEW COLOR

COLOR MIX SET NEW COLOR

CS TEXT

CS TEXT CLEAR SELECTION

CS GET EDITABLE

CS STRING GET MAX LENGTH

CS TEXT GET SELECTION

CS TEXT GET STRING

CS TEXT REPLACE

Registers the length of the data for formats not specified
by the ICCCM conventions.

Indicates that the application has completed copying data
from the clipboard and unlocks the clipboard.

Indicates that the application is ready to start copying
data from the clipboard and locks the clipboard.

Identical to BEGIN COPY TO CLIPBOARD, except that
the timestamp of the event that triggered the copy is
included as an argument.

Returns the red, green, and blue color values to the color
mix widget.

Sets the red, green, and blue color values in the color mix
widget.

Creates a compound string text widget.

Clears the global selection highlighted in the compound
string text widget.

Obtains the current permission state concerning whether
the text in the compound string text widget can be edited
by the user. ·

Obtains the current maximum allowable length of the text
in the compound string text widget.

Retrieves the global selection, if any, currently highlighted
in the compound string text widget.

Retrieves all the text from the compound text widget.

Replaces a portion of the current text in the compound
string text widget or inserts some new text into the current
text of the compound string text widget.

(continued on next page)

Table 6-1 (Cont.): New Routines

Routine

IDgh-Level Widget Routines

CS TEXT SET EDITABLE

CS TEXT SET MAX LENGTH

CS TEXT SET SELECTION

CS TEXT SET STRING

Low-Level Widget Routines

COLOR MIX CREATE

CS TEXT CREATE

Gadget Creation Routines

Programming Features 6-5

Function

Sets the permission state that determines whether the text
in the widget can be edited by the user.

Sets the maximum allowable length of the text in the
compound string text widget.

Makes specified text in the compound string text widget
the current global selection and highlights it in the
compound string text widget.

Sets the text in the compound string text widget.

Creates a color mix widget, which is a specialized pop-up
dialog box, containing a default color display subwidget
and a default color mixer tool subwidget.

Creates a compound string text widget.

PULL DOWN MENU ENTRY CREATE Creates a pull-down menu entry gadget.

6.1.2 New Attributes
Several widget creation routines now support additional attributes. Complete
descriptions of these attributes are in the VMS DECwindows Programming
Documentation Supplement. Table 6-2 lists the new attributes for existing
widgets.

Table 6-2: New Attributes

Widget

Dialog box

File selection

Attribute

auto_unrealize

file_to_extern_proc

mask_to_extern_proc

mask_to_intern_proc

(continued on next page)

6-6 Programming Features

Table 6-2 (Cont.): New Attributes

Widget

Help

Menu

Message box

Push button

Scroll bar

s text

Toggle button

Attribute

gototopic_label

gobacktopic_label

visittopic_label

close_label

helphelp_label

helpontitle_label

helptitle_label

help_acknowledge_label

help_on_help_title

cache_help_library

map_callback

change_ vis_atts

menu_extend_last_row

second_label

label_ alignment

second_label_alignment

icon_pixmap

insensitive_pixmap

show_arrows

user_data

insensitive_pixmap_on

insensitive_pixmap_off

6.2 New Xlib Routines
The DECwi.ndows implementation of Xlib is now equivalent to the Massachusetts
Institute of Technology (MIT) Release 3 version. DECwindows now contains five
new Xlib routines that make the Display and Visual structures opaque. Table 6-3
lists the routines and their functions. For more detail, see the VMS DECwindows
Programming Documentation Supplement.

Table ~= New Xlib Routines

Routine

DISPLAY KEYCODES

DISPLAY MOTION BUFFER SIZE

MAX REQUEST SIZE

RESOURCE MANAGER STRING

VISUAL ID FROM VISUAL

Programming Features 6-7

Function

Returns the minimum and maximum number of keycodes
supported by the specified display.

Returns the size of the motion buffer for the specified
display.

Returils the maximum request size, in 4-byte units, that
the server allows.

Returns a pointer to the resource manager string for the
specified dsplay.

Returns the visual identifier for the specified visual type.

6.3 UIL Compiler Features
This section summarizes features of the new UIL compiler in VMS
Version 5.3. Changes affect the syntax and usage of the language elements
and module components of the compiler. A new compiler qualifier (NERSION)
accommodates version changes to the DECwindows software. For more detail, see
the VMS DECwindows Programming Documentation Supplement.

6.3.1 Language Data-Type Functions
Table 6-4 describes new and revised data-type functions in the new UIL
compiler.

Table 6-4: New UIL Data-Type Functions

Data Type

ASCIZ_STRING_TABLE

COMPOUND_STRING_TABLE

INTEGER_ TABLE

Function

An ASCIZ string table is an array of ASCIZ (null-terminated)
string values separated by commas. The ASCIZ_STRING_
TABLE function allows you to pass more than one ASCIZ
string as a callback tag value.

A compound string table is an array of compound strings.
Objects requiring a list of string values, such as the items
and selected_items arguments for the list box widget, use
string table values.

An integer table is an array of integer values separated by
commas. The INTEGER_TABLE function allows you to pass
more than one integer tag value per callback reason.

(continued on next page)

6-8 Programming Features

Table 6-4 (Cont.): New UIL Data-Type Functions

Data Type

XBITMAPFILE

Function

The XBITMAPFILE function is similar to the ICON function
in that both functions describe a rectangular icon that is
x pixels wide and y pixels high. However, XBITMAPFILE
allows you to specify an external file containing the definition
of an X bitmap, whereas all ICON function definitions are
coded directly within the UIL module. The X bitmap file
specified as the -argument to the XBITMAPFILE function is
read at application run time by DRM.

6.3.2 Multiple Callback Procedures Feature
The new UIL allows you to specify multiple callback procedures of a specific
callback reason by defining the procedures as a type of list. Just as with any
other list types, you can define a procedures list either in-line or in a separate list
section that you reference by name.

If you define a reason more than once (for example, when the reason is defined
both in a referenced procedures list and in the callbacks list for the object), all
previous definitions are overridden by the latest definition.

6.3.3 UIL Constraint Argument
The XUI Toolkit and the X Toolkit (instrinsics) now directly support definitions
for constraint arguments. A constraint argument is one that is passed directly to
children of an object, beyond those arguments that are normally available. For
example, an attached dialog box widget grants a set of constraint arguments to
its children. These constraint arguments are used to control the position of the
children in the attached dialog box.

6.3.4 UIL Version Qualifier
The UIL version (NERSION) qualifier now provides upward compatibility
between Versions 1.0 and 2.0 of the UIL compiler. Note that VMS Version 5.3
incorporates UIL Version 2.0. The NERSION qualifier serves two basic functions.
First, you can use the NERSION qualifier as a method for identifying the correct
version of the XUI Toolkit for which an application was written. Second, you can
use the NERSION qualifier to continue building interfaces that will run under
Version 1.0 of the XUI Toolkit, while still being able to use the new UIL compiler
features implemented for Version 2.0.

Allowable values for the NERSION qualifier are Vl and V2. The default is
NERSION=V2.

Programming Features 6-9

6.4 CDA Features
The CDA components (Toolkit, Converters, and Viewers) are significantly
enhanced. The Converters and Viewers now render DDIF documents much
closer to their intended appearance. Many problems in the Toolkit have been
corrected, enabling other applications to process DDIF documents better. The
Toolkit also includes new support for DTIF (DIGITAL Table Interchange Format)
and a callable interface to the DECwindows and character cell viewers. For more
information, see the CDA Reference Manual, Part I and Part II.

6.4.1 DTIF Support

DTIF is the standard format for the storage and interchange of table data file
formats, such as database information and spreadsheets. DTIF defines the logical
structure and layout of a data table, the values and formulas contained within
the table, and the presentation attributes to be used when printing or displaying
the table.

DTIF aggregate structures are new additions to the CDA Toolkit and are used
with the CDA Toolkit routines in the same way as the DDIF aggregate structures.

6.4.2 CDA Converter Architecture

The CDA converter architecture contains a new component called the domain
converter. The CDA ·converter kernel invokes the domain converter during the
conversion of a table input file format to a document output file format. The
domain converter converts the in-memory DTIF representation of a table input
file to the in-memory DDIF representation. The converter kernel then converts
the DDIF in-memory representation to the document output format for printing
or viewing.

The CDA converter architecture also supports the new DTIF _TO_DDIF format
name and several new processing options that you can specify in an options file.
You use the DTIF_TO_DDIF format name with the new processing options when
converting table input file formats to document output file formats from the DCL
command line. For a description of these new features, see Chapter 4.

6.4.3 CDA Converters

The CDA Converters that ship with VMS are the Text front and back end, the
DDIF and DTIF front- and back-end converters, the PostScript back end, and the
Analysis back-end converter. The Text back-end converter has been improved to
format documents similar to the format the CDA character-cell Viewer produces.

6-10 Programming Features

The Text back-end converter has four new processing options:

Option

HEIGHT value

OVERRIDE_FORMAT

SOFI'_DIRECTIVES

WIDTH value

Description

Lets you specify the maximum number of lines per page in your
text output file.

Causes the Text back-end converter to ignore the document
formatting information included in your document.

Causes the document to obey the soft directives contained in the
document when creating your text output file.

Lets you specify the maximum number of columns of characters
per page in your text output file.

6.4.4 CDA$CONVERT Routine
The standard-item-list parameter has four new values:

Value

CDA$_INPUT_FRONT_END_DOMAIN

CDA$_INPUT_POSITION_PROCEDURE

CDA$_0UTPUT_BACK_END_DOMAIN

CDA$_0PTIONS_LINE

6.4.5 CDA Viewers

Description

The address and length of a string that specifies the
input document domain (either DDIF or DTIF).

The address of a procedure that provides position
information.

The address and length of a string that specifies the
output document domain (either DDIF or DTIF).

The address and length of a string that contains options
to control processing.

The CDA Viewers have been rewritten to significantly improve their formatting
capabilities. They process multi-column, multi-font text, native graphics, and
images. They support color for text, graphics, and images. The DCL command for
the Vi.ewers (VIEW) has been enhanced to give you more control over document
formatting. For more details, see Chapter 4.

6.4.6 CDA Viewer Routines
The Toolkit contains several new routines encoded in the portable
ULTRIX C format, which you can use to write CDA Viewer applications for use on
DECwindows workstations or on character cell terminals. The new DECwindows
routines and character cell routines are summarized in the following table:

Programming Features 6-11

Routine Description

Character Cell Routines

CC DELETE PAGE

CC END

CC GET PAGE

CC INITIALIZE

Deallocates the page display structure allocated by the routine CC GET
PAGE.

Deallocates all internal structures that were allocated and does general
cleanup required for CC viewer shutdown for the current file.

Returns the next sequential formatted page from the CDA document.

Initializes the character cell CDA Viewer and returns a context block to
the caller for use in subsequent character cell CDA Viewer routine calls.

DECwindows Routines

BOTTOM DOCUMENT

CLOSE FILE

DOCUMENT INFO

GOTO PAGE

NEXT PAGE

PREVIOUS PAGE

REGISTER CLASS

TOP DOCUMENT

VIEWER

VIEWER CREATE

VIEWERFILE

Displays the last content in the file in the widget window.

Closes the file currently being read by the CDA Viewer and clears the
window.

Returns information from the header aggregate of the document currently
opened.

Attempts to move the document to the specified page number.

Displays the next page of a CDA document.

Displays the previous page (if one exists) of a CDA document.

Indicates that the CDA Viewer widget is registered with DRM.

Displays the beginning content of the file in the widget window.

Creates a widget for viewing a CDA file.

Creates a widget for viewing a CDA file.

Opens a file and begins to view the information content of the file, provided
the file can be converted to in-memory DDIF.

6.5 DECwindows Server $QIO Calls to Driver
For DECwindows server programming with a workstation driver, there are three
new calls in the common driver interface. The first two calls use the new $QIO
function modifier (10$K_DECW_CURSOR_BOUNDARIES) to set and sense
cursor boundaries on a screen. The third call is Write X Event (function code
10$_DECW _ WRITEV) that generates an input packet event without the use of
hardware.

The GPB Wait $QIO call to an output driver now includes the function modifier
(GB$K_LEGGS_WAIT_FOR_PK.T) as an option to handle the packet-wait function
when no more are free. The $QIO GPB Wait fuction is now renamed to Packet
Wait, which now supports two function modifier options. For more details, refer
to the VMS DECwindows Programming Documentation Supplement and the VMS
DECwindows Device Driver Manual.

s-12 Programming Features

6.6 New DECwindows Driver Support
The new driver, GBBDriver, provides support as an output driver for the
VAXstation 3520 and 3540 Low End Graphics Subsystem (LEGGS) color monitors.
Existing output drivers GABDriver and GCBDriver also support the VAXstation
3100 models.

6.7 VMS SCSI Third-Party Device Support
VMS Version 5.3 provides the three mechanisms to allow a non-Digital-supplied
Small Computer System Interface (SCSI) device to be attached to a MicroVAX or
VAXstation system. The implementor of support for a non-Digital-supplied SCSI
device can select the most appropriate method based on the capabilities of the
device, the needs of its end users, and available programming resources. The
three mechanisms provided by VMS Version 5.3 are as follows:

• A SCSI disk or tape drive can function properly using the standard VMS
SCSI disk or tape class driver and the VMS SCSI port driver, given certain
restrictions and cautions.

• An application program can send commands to, receive status from, and
exchange data with a device on the SCSI bus by using the VMS generic
SCSI class driver. The VMS operating system defines a special Queue-1/0
Request ($QIO) system service interface that allows an application to pass
SCSI command packets to the device through the generic SCSI class driver
and the VMS SCSI port driver.

• A non-Digital-supplied SCSI class driver, in conjunction with the VMS
SCSI port driver, can supply the level of support most closely tailored to
the capabilities of the device. By writing a SCSI class driver, a syst~m
programmer can implement device-specific error handling and a simple,
robust $QIO interface.

Because the VMS operating system provides a special set of macros that
initialize the SCSI port and transfer commands and data to a SCSI device,
the programmer of a SCSI class driver can focus on coding details related to
device capabilities. The VMS operating system further facilitates the writing
of a SCSI class driver by including the online sources of a template SCSI class
driver.

Refer to the VMS ~rsion 5.3 Small Computer System Interface (SCSI) Device
Support Manual for a complete description of VMS support of third-party SCSI
devices.

Programming Features 6-13

6.8 $QIO Return for Network Name/Object Number
A new $QIO system service return condition (SS$_TOOMUCHDATA) is added to
the status list concerning transparent task-to-task network operations.
SS$_TOOMUCHDATA is a possible return condition when declaring a network
name or object number. For more information about performing network task-to
task operations, see the VMS Networking Manual.

Status

SS$_TOOMUCHDATA

Meaning

The QIO has failed because the number of Maximum Declared
Objects has been exceeded.

Chapter 7

The VMS Distributed Name Service

The Distributed Name Service (DNS) is a facility for storing the names of
resources in your network such as files, disks, nodes, queues, and mailboxes.
The Distributed Name Service clerk is the VMS programming interface to DNS
that allows an application to register a resource in the name service and then
access the resource from any point in the network by a single name. DNS is a
layered product and must be installed in your network before you can start the
DNS clerk or utilize the name service.

Applications that need the Distributed Name Service must use the $DNS clerk
system service and the DNS run-time routines to register, modify, and locate
information in the DNS database. A DNS clerk, which is resident on every VMS
Version 5.3 system and later, receives application requests through the $DNS
system service. The clerk locates a DNS server that can process the request.
Once the request is satisfied, the clerk returns the requested information to the
client application.

The information in this chapter is intended for VMS programmers who are
writing applications that call the Distributed Name Service. It includes the
following:

• Conceptual information on DNS

• DNS clerk system services, $DNS and $DNSW

• DNS run-time routines

• Startup information for the DNS clerk

• DECnet event messages from the DNS clerk

• System error messages generated by the DNS clerk

7..;.2 The VMS Distributed Name Service

7 .1 Introduction to the Distributed Name Service
The VAX Distributed Name Service (DNS) provides a means of assigning unique
names to network resources so that a network application or network user
can find resources within the network. (Resources are such things as disks,
systems, applications, and so on.) Once an application has named a resource
using DNS, the name is available for all users of the application. Multiple
users located throughout a network can refer to a common resource by the same
name. Resources can be moved within the network. No additional preparation is
required, and it is unnecessary to learn a new naming convention.

You should consider using DNS applications that need to access such remote
resources as printers, files, disks, and nodes. In addition, application databases or
servers are good candidates for naming. All of these resources would be commonly
named and their locations identified within DNS. With DNS, the resource could
be moved without users being aware of the change.

Although it is desirable to name application databases, you should ordinarily use
DNS to store only the location of the database, not the database itself. (Most
database applications require higher levels of consistency than DNS provides.) If
the database is relocated, then only the DNS information has to be modified.

7.1.1 The DNS Namespace

The collection of names in the Distributed Name Service database is called a
namespace. A namespace is located on VMS nodes where the DNS server
software is installed. The collection of databases stored on each server makes
up the namespace itself.

DNS refers to the named resources in a namespace as objects. Each object name
refers to a specific entity. The object name is important because applications use
the object name in all DNS operations.

Associated with every object is a set of attributes describing properties of an
object. An application reads object attributes for information such as an address,
class, or version.

Most applications use the address attribute of an object, which allows you to find
the node on which a resource resides. When a network resource is relocated, an
application has DNS update the object's address attribute. All requests for the
object receive the new address. Since the object has the same DNS name, the
application user can be unaware that the resource has moved.

7.1.1.1 Planning Namespace Objects
When writing applications that use DNS, it is important to determine ahead of
time what resources an application needs and how an application will use each
resource. Then you can determine what objects an application needs to create and
the kind of information each object needs to store. Once the object is designed,
you can decide which object attributes to assign and what their values will be.

The VMS Distributed Name Service 7-3

7.1.1.2 Restrictions
Because of the high cost of keeping copies of DNS names synchronized, you should
use DNS applications that store information that does not change frequently.
Frequent updates add traffic to the network, which can degrade overall network
performance. Because resources such as files, disks, nodes, queues, and mailboxes
remain on one node for a long time, a good example of information to store with
DNS is a network address.

Not only should the information stored in DNS be relatively static, it should also
be verifiable. When DNS updates its database, it attempts to send the update
to all copies of the name within 24 hours. This means that your application can
request data from a copy of a name that has not been updated. An application
must be able to recognize when data is invalid. For this reason, a network
address is a good example of data that can be validated. If you use an address
and the resource is not there, the data is obviously outdated.

7.1.1.3 Using the Namespace
An application choosing to use the namespace performs four basic operations:

• Object creation- An application needs to create an object to represent each
network resource it requires.

• Object modification- Once an object is created to represent a resource,
an application modifies the object to contain the attributes and .values the
application requires.

• Object deletion- When a resource is no longer useful, an application should
delete the object.

• Information retrieval. The most common operation an application performs
is requesting the DNS clerk to obtain the values of an attribute so that, for
example, the application can locate the resource in the network.

7.1.1.4 Object Names
The name DNS assigns to an object is one that the user supplies. The client
application translates the name it receives through the user interface from string
format into opaque format before passing it to the DNS clerk. DNS works only
with opaque format because it is guaranteed to be unique, whereas string format
often contains logical names that easily change.

The $DNS system service supplies functions for conversion between string
and opaque format. If an application maintains its own databases, then the
application must store DNS names in opaque format.

7-4 The VMS Distributed Name Service

7 .1.1.5 Object Attributes
Client applications store information about a resource as object attributes. When
creating an object, an application needs to assign a class name and a version
to a new object. The class name reflects the purpose of the object within an
application. The purpose can be specific to an application or it can be shared
among a group of applications. For example, a group of user names might be
shared. An application uses the class name to search for its objects or list its
objects. The class version helps to pair a version of an object with a software
version.

In order to store additional information with an object, an application must
modify the object.

DNS always assigns certain attributes to an object during creation. It assigns a
unique identifier (UID) and an update time-stamping (UTS) indicating when an
object was last edited. DNS also assigns a third attribute that specifies access
control for the new object. Initially, the owner of the object has read, write,
delete, control, and test access. The namespace administrator can modify this
access according to site requirements.

An attribute name is limited to 31 characters and its value cannot exceed 4000
bytes. The name service assigns a prefix of DNS$ to the name of each attribute
it assigns. An application creates a prefix to assign to attributes it creates. For
example, DECnet uses the prefix DNA$ and the Distributed File Service uses the
prefix DFS$. Names assigned by Digital all contain the dollar sign ($). User
supplied names should use an underscore (_). To ensure uniqueness, you should
register your facility name through Digital's product registration program.

7.1.2 Structure of a Namespace
A DNS namespace is a hierarchical set of directories, as depicted in Figure 7-1.
At the top of the hierarchy is the root directory, which is symbolized by a
period (.). Below the root directory are levels of subdirectories. The namespace
administrator establishes the directory structure of the namespace and, in some
cases, assigns names to. directories. While the organization of the namespace
directories is similar to the VMS directory structure, namespace directories are
completely separate from the VMS directory structure.

Directories in a namespace can contain three types of entries:

• Objects

• Directory pointers

• Soft links

An object represents a network resource. It consists of a name that is unique
within the namespace and its associated attributes.

The VMS Distributed Name Service 7-5

Directory pointers are used internally by DNS to link one level of directories
to the next. DNS refers to the hierarchical relationship of directories in terms of
child directories and parent directories.

A soft link provides an alternate name for an object, directory, or soft link. For
example, a namespace structured with both an organizational and a geographical
dimension might access a single object through multiple soft links. A soft link
can also be useful in renaming an object. The soft link would point to the original
object name so that users could successfully use an outdated name. This kind
of soft link would be deleted after sufficient time has passed for applications
and users to become aware of the new object name. You create and delete links
through the DNS management program.

Although an application requests the creation of an object in order to register
a resource, it does not position the object in the namespace. The system
administrator determines which directory DNS stores the object in. The structure
of a namespace differs for each network, so you should not hard-code names into
applications.

Figure 7-1 illustrates a DNS namespace.

Figure 7-1: A DNS Namespace

I
NEW_ YORK

SALES

I
I

ATLANTA

7.1.2.1 Naming Syntax

Root

MARKETING

I
COMMUNICATIONS

ENGINEERING

I
RESEARCH

I
I

DEVELOPMENT

dev disk J}
tools:=disk :j Objects

node_client

ZK-0959A-GE

The DNS name of an object, directory, or soft link in the namespace is a complete
path specification from the root directory to the entity in the directory of interest.
For example, the DNS name .ENGINEERING.DEVELOPMENT.TOOLS_DISK
identifies an object named TOOLS_DISK in the namespace directory called

7-6 The VMS Distributed Name Service

.ENGINEERING.DEVELOPMENT. The ENGINEERING directory is in the
root directory, and DEVELOPMENT is a child directory of the ENGINEERING
directory.

While the full name is a complete path name from the root directory, each element
in a full name is called a simple name. The last simple name in a full name
designates an object, a child directory, or a soft link. In the previous example,
TOOLS_DISK is a simple name assigned to a disk object. The maximum length
of a simple name is 255 bytes.

You can represent a full name in three ways:

namespacename:.simplename.simplename

or

.simplename.simplename

or

simplename.simplename

If the full name does not start with a namespace name or a period, DNS attempts
to translate the first simple name as a logical name. Any equivalence name
found is added to the name string in place of the matched simple name. This
process is repeated until the first term does not match a logical name or the clerk
encounters either a namespace name or a leading period. (A namespace name,
assigned during DNS server installation, defaults to node-name_NS.)

The following example shows what happens with the name RESEARCH.PROJECT_
DISK:

1. Look up RESEARCH as a logical name.

RESEARCH translates to ENG.RESEARCH, so the name string expands to
ENG.RESEARCH.PROJECT_DISK

2. Look up ENG as a logical name.

ENG translates to .ENGINEERING, so the name string becomes
.ENGINEERING.RESEARCH.PROJECT_DISK. Because the new name has a
leading period, translation stops.

3. The namespace name, INMAX_NS, is added to the front of .ENGINEERING
because it is not explicitly specified. (A namespace administrator establishes
the namespace name during installation.) The name becomes INMAX_
NS:.ENGINEER- ING.RESEARCH.PROJECT_DISK

The VMS Distributed Name Service 7-7

7.1.2.2 Logical Names
When the DNS clerk is started on a VMS operating system (see Section 7.4), the
VMS system creates a unique logical name table for DNS to use in translating
full names. This logical name table, called DNS$SYSTEM, prevents unintended
interaction with other system logical names. The DNS use of logical names in
parsing full names is described in Section 7.1.2.1.

To define systemwide logical names for DNS objects, use the DCL command
DEFINE. For example, to create the logical RESEARCH.PROJECT_DISK shown
in the previous section, you would enter the following DCL command:
$ DEFINE/TABLE=DNS$SYSTEM RESEARCH "ENG.RESEARCH"

When parsing a name, the $DNS service specifies the logical name DNS$LOGICAL
as the table it uses to translate a simple name into a full name. This name
ordinarily translates to DNS$SYSTEM in order to access the systemwide DNS
logical name table.

In order to define process or job logical names for $DNS, you must create a
process or job table and redefine DNS$LOGICAL as a search list, as in the
following example (note that elevated privileges are required to create a job
table):
$ CREATE /NAME TABLE DNS PROCESS TABLE
$ DEFINE /TABLE=LNM$PROCESS DIRECTORY DNS$LOGICAL -
_$DNS_PROCESS_TABLE,DNS$SYSTEM

Once you have created the process or job table and redefined DNS$LOGICAL, you
can create job-specific logical names for DNS using the DCL command DEFINE,
as follows:
$ DEFINE /TABLE=DNS_PROCESS_TABLE RESEARCH 11 ENG.RESEARCH.MYGROUP"

For information about logical names, see Introduction to VMS System Services.

7.1.2.3 Valid Characters for DNS Names
DNS namespace names, full names, or simple names can contain letters,
numbers, and certain punctuation marks from· the ISO Latin 1 character set, as
shown in Figure 7-2. Additional characters and punctuation marks can appear
as long as the name is enclosed in quotation marks, for example, "project%". See
Figure 7-3.

7-8 The VMS Distributed Name Service

Figure 7-2: Valid Character Codes for DNS Simple Names

Code Range
(Decimal)

036
045
048-057
065-077
078-090
095
097-109
110-122
192-207
208-214
216-223
224-239
240-246
248-255

Character

$

0123456789
A BCDEFGH IJKLM
N 0 P QR STU VWX Y Z

abcdefghijklm
n opq rs t uvwxyz
A AAAAAJEQEEEt: l iii
£> N66666
00000Yl=>B
a aaaaa~c;eeeeiii'i
o no6ooo
0 uuooy1>y

ZK-0961 A-GE

NOTE: All simple names containing the dollar sign ($) are
reserved for use by Digital.

Figure 7-3: Additional Character Codes Allowed in Quoted Simple Names

Code Range
Character (Decimal)

032-033 {space} I
035 #
037-044 % & () . + ,
046-047 I
058-064 : < = > ? @
091-094 [\ I I\

096
123-126 { I } -
160-167 { no-break space} I ¢ £ a ¥ I § I

168-174 •• © I cc - ®
175-187 - 0 ± 2 3 IJ 11 1 R » ,
188-191 ~ Y2 3A l
215 x
247 +

ZK-0962A-GE

The VMS Distributed Name Service 7-9

DNS maintains the case of an entity when it registers an object, but it is case
insensitive in lookups. For example, the name eng.research would match the
name ENG.RESEARCH.

DNS also supports binary simple names. A binary name consists of the leading
character pair %x or %X, followed by pairs of hexadecimal digits. A binary simple
name does not match any regular or quoted simple name, even if a given name
has the same binary value.

DNS makes use of wildcards for identifying groups of objects during search
operations. Wildcards consist of the following:

Symbol Name Meaning

? Question mark Match one character.

* Asterisk Match any number of characters.

7 .1.3 Creating Objects

Each application that uses DNS must register its resources in the namespace
using either the $DNS or the $DNSW system service. Registration involves
creating an object in the namespace to represent the resource.· You create an
object to represent each resource in the network that your application needs to
find. At the same time, you should define attributes the object needs and assign
their values.

A DNS object consists of a name and its associated attributes. You create the
object first, along with some key attributes. Later, you can modify the object to
hold additional attributes that are relevant to the application.

To create an object with $DNS:

1. Prompt for a name from the user interface.

The name that an application assigns to an object should come from a user
interface, a configuration file, a system logical, or some other source. The
application never assigns an object's name because the namespace structure
is uncertain. The name the application receives from the user interface is in
string format.

2. Use the $DNS parse function to convert the full name string into the opaque
format of DNS.

3. Optionally, reserve an event flag so you can check for completion of the
service.

7-10 The VMS Distributed Name Service

4. Build an item list containing the following elements:

• The opaque name for the object (resulting from the translation in step 2)

• The class name given by the application, which should contain the facility
code

• The class version assigned by the application

• An optional timeout value, specifying when the call expires

5. Optionally, provide the address of the DNS status block to receive status
information from the name service.

6. Optionally, provide the address of the asynchronous system trap (AST) service
routine. AST routines allow a program to continue execution while waiting
for parts of the program to complete.

7. Optionally, supply a parameter to pass to the AST routine.

8. Call the create object function, providing all the parameters supplied in
steps 1 through 7.

If a clerk call is not complete when timeout occurs, then the call completes with
an error. The error is returned in the DNS status block.

An application should check errors returned; it is not enough to check the return
of the $DNS call itself. You need to check the DNS status block to be sure there
are no errors at the DNS server.

The following C routine shows how to create an object in the namespace with the
synchronous service $DNSW. The routine demonstrates how to construct an item
list.
#include <dnsdef.h>
#include <dnsmsg.h>
/*

* Parameters:
*
*
*
*
*
*
*
*/

class name= address of the opaque simple name of the"class
to assign to the object

class len = length (in bytes) of the class opaque simple name
object name= address of opaque full name of the object

- to create in the namespace.
object_len = length (in bytes) of the opaque full name of the

object to create

create object(class name, class len, object_name, object_len)
unsigned char *class name; -
unsigned short class-len;
unsigned char *object name;
unsigned short object-len;
{ -

struct $dnsitmdef createitem[4]; /*Item list used by system service*/
struct $dnscversdef version; /* Version assigned to the object */
struct $dnsb iosb; /* Used to determine DNS server status */
int status; /* Status return from system service */

The VMS Distributed Name Service 7-11

/*
* Construct the item list that creates the object:
*/

createitem[O] .d.ns$w itm size = class len; tt
createitem[O].dns$w-itm-code = dns$ class;
createitem[O].dns$a=itm=address = class_name;

createitem[l].dns$w itm size= object len; ft
createitem[l].dns$w-itm-code = dns$ objectname;
createitem[l] .dns$a=itm=address = object_name;

version.dns$b c major = 1; .,
version.dns$b=c=minor = O;

createitem[2].dns$w itm size= sizeof(struct $dnscversdef); e
createitem[2].dns$w-itm-code = dns$ version;
createitem[2].dns$a=itm=address = &;Tersion;

*((int *)&createitem[3]) = O; CD
status= sys$dnsw(O, dns$_create_object, &createitem, &iosb, 0, 0); (i)

if(status == SS$_NORMAL)
{

status = iosb.dns$l_dnsb_status; 8

return(status);

tt The first entry in the item list is the address of the opaque simple name
representing the class of the object.

8 The second entry in the item list is the address of the opaque full name for
the object .

., The next step is to build a version structure, which will indicate the version
of the object. In this case, the object is version 1.0.

e The third entry in the item list is the address of the version structure that
was just built.

CD Zero terminates an item list.

(i) Call the system service to create the object.

8 Check to see that both the system service and DNS were able to perform the
operation without error.

7-12 The VMS Distributed Name Service

7 .1.4 Modifying Objects

After applications use DNS to create objects that identify resources, they add
attributes to the newly created objects that describe properties of the object.

You modify an object whenever you need to add an attribute, change an attribute
value, or delete an attribute. You can add as many attributes as you like. If you
add the same attribute to an object twice, the time-stamping on the attribute is
updated.

DNS attributes can have a single value or they can have a set of values. For
example, an attribute holding the class version number of a resource would have
a single value, while an attribute holding the location of a service in the network
could have a set of values. The set would hold the addresses of all nodes in the
network that offer the service. Depending on the attribute type, DNS performs
a slightly different action. DNS adds or deletes a value when there is only one.
When there is a set of values, DNS adds or deletes a value from an existing group
of values.

To modify an object with $DNS:

1. Build an item list containing the following elements:

• The opaque name of the object you are modifying

• The type of entry, as described in Section 7 .1.2

• The operation to perform

• The type of attribute you are adding: a single value or a set of values

• The attribute name

• The value being added to the attribute

2. Supply any of the optional parameters described in Section 7.1.3.

3. Call the modify attribute function, supplying the parameters established in
steps 1 and 2.

The following C example shows how to add an attribute and its value to an object:
#include <dnsdef.h>
#include <dnsmsg.h>
/*
* Parameters:
* obj name = address of opaque full name of object
* obj=len = length of opaque full name of object
* att_name = address of opaque simple name of attribute to create
* att_len = length of opaque simple name of attribute
* att_value= value to associate with the attribute
* val_len = length of added value (in bytes)
*/

The VMS Distributed Name Service

add attribute(obj name, obj len, att_name, att_len, att_value, val_len)
unsigned char *obj name; -
unsigned short obj=len;
unsigned char *att name;
unsigned short att-len;
unsigned char *att-value;
unsigned short val=len;
{

struct $dnsitmdef moditem[7]; /*Item list for $DNSW */
unsigned char objtype = dns$k object; /* Using object entries */
unsigned char opertype = dns$k_present; /* Adding an object */
unsigned char attype dns$k set; /* Attribute will be type set */
struct $dnsb iosb; - /* Used to determine DNS status */
int status; /* Status of system service */

/*
* Construct the item list to add an attribute to an object.
*/

moditem[O] .dns$w itm size = obj len;
moditem[O] .dns$w=itm=code = dns$_entry;
moditem[O] .dns$a_itm_address = obj_name; «t
moditem[l] .dns$w itm size= sizeof(char);
moditem[l] .dns$w-itm-code = dns$ lookingfor;

moditem[l] .dns$a=itm=address = &~bjtype; ~
moditem[2] .dns$w itm size= sizeof(char);
moditem[2] .dns$w-itm-code = dns$ modoperation;

moditem[2] .dns$a=itm=address = &~pertype; .,

moditem[3] .dns$w itm size= sizeof(char);
moditem[3] .dns$w-itm-code = dns$ attributetype;

moditem[3] .dns$a=itm=address = &~ttype; ..

moditem[4] .dns$w itm size = att len;
moditem[4] .dns$w-itm-code = dns$ attributename;

moditem[4] .dns$a=itm=address = a~t_name; Ci
moditem[S] .dns$w itm size = val len;
moditem[S] .dns$w=itm=code = dns$_modvalue;
moditem[S] .dns$a_itm_address = att_value; 8
*((int *)&moditem[6]) = 0; fj

/*
* Call $DNSW to add the attribute to the object.
*/

status= sys$dnsw(O, dns$_modify_attribute, &moditem, &iosb, O, 0);

if(status == SS$_NORMAL)
{

status = iosb.dns$l_dnsb_status;

return(status);

7-13

7-14 The VMS Distributed Name Service

e The first entry in the item list is the address of the opaque full name of the
object.

• The second entry in the item list shows that the entry is an object-not a soft
link or directory pointer.

• The third entry in the item list is the operation to perform. The program adds
an attribute with its value to the object.

8 The fourth entry in the item list is the attribute type. The attribute has a set
of values rather than a single value.

Cl The fifth entry in the item list is the opaque simple name of the attribute
being added.

e The sixth entry in the item list is the value associated with the attribute.

8 Check to see that both the system service and DNS performed the operation
without error.

7.1.5 Distributing the Namespace
A VMS node running DNS server software can contain the entire namespace.
However, performance and reliability are enhanced when several VMS nodes act
as DNS servers.

DNS supports the partitioning of the namespace across several DNS servers. In
this situation, no DNS server contains the entire namespace, but each contains
a portion of the namespace, usually the directories frequently accessed by local
client applications. Directory pointers connect parts of the the database that are
distributed among two or more servers.

Figure 7-4 depicts a namespace with three DNS servers. The DESIGN node
contains most of the namespace-the root directory plus the research and
development directories. The applications directory resides on the APPLY node,
while the hardware directory resides on the SHOP node.

DNS refers to a collection of directories on a server as a clearinghouse.

The VMS Distributed Name Service 7-15

Figure 7-4: A Partitioned Namespace

SHOP Node DESIGN Node APPLY Node

HARDWARE

I
RESEARCH

Root

I
I

DEVELOPMENT

SYSTEMS

•---------------------------------

7 .1.5.1 Replicating Directories

APPLICATIONS

~------------------'
ZK-0960A-GE

In large networks, many applications rely on DNS and names must be available
for the application to work. To ensure availability, DNS allows the duplication of
data and provides a mechanism to keep all copies of names synchronized. Then, if
one server becomes disabled, applications can still access the namespace through
another server. Whenever data is duplicated, DNS copies one or more directories
with all their contents.

The namespace administrator determines how many copies of each directory
should exist and where they should be located. For example, Figure 7-5 shows
the same namespace as Figure 7-4. However, in Figure 7-5 the root directory is
duplicated so that it exists on all three DNS servers.

7 .1.5.2 Types of Directories
Once you duplicate parts of a namespace, you generate different types of
directories. Some are writable, while others are read-only. In a replicated
namespace, there are three types of directories:

• Master

• Secondary

• Read-only

7-16 The VMS Distributed Name Service

For example, in Figure 7-5 there are three copies of the root directory. The
master copy resides on node DESIGN. Read-only copies reside on the other two
nodes.

Figure 7-5: A Namespace with Replicated Directories

SHOP Node DESIGN Node APPLY Node

Root*

HARDWARE

* Read-Only Directories

I
RESEARCH

Root

I
I

DEVELOPMENT

SYSTEMS

'---------------------------------

Root*

APPLICATIONS

------------------'
ZK-0958A-GE

In a master directory an application can create or modify all types of entries:
objects, directory pointers, and soft links. In a secondary directory an application
can create or modify objects and soft links but not directory pointers. An
application can retrieve namespace data from any type of directory.

When an application attempts to create a new object or update an existing one,
the DNS clerk sends the request to a DNS server that has a secondary or master
directory. The request to create an object succeeds as long as no other entry with
the same name exists; the request to modify an object succeeds as long as the
object is found in the directory.

7.1.5.3 Setting Confidence
An application can use the confidence argument in a $DNS call to stipulate
the type of directory that the DNS clerk should use to service the call. For
example, when an application wants to create an object, it can force the DNS
clerk to create the object in the master directory by stipulating a high confidence
level. Otherwise,.,DNS creates the object either in the master or in a secondary
directory.

The VMS Distributed Name Service 7-17

In a create or modify call, confidence has the following meaning:

• High confidence-Use the master directory.

• Medium confidence-Use the master or a secondary directory. There can be
multiple copies of secondary directories.

An application's expression of confidence has a slightly different meaning in a
request to find data. In this operation, there are three levels of confidence:

• High confidence-Use the master directory.

• Medium con:fidence-U se cached information to find the location of a DNS
server but get the information from a DNS server.

• Low confidence-Use cached information.

7.1.5.4 Maintaining Consistency in Data
Whenever a directory is modified, the name service attempts to send the updated
information to all directory replicas as long as the convergence attribute of the
directory is set to high. Sometimes it is impossible to deliver the updates to all
directory replicas, however, because a network link may be down or a node may
be unreachable.

DNS does have a method of ensuring data consistency-it is called a skulk. In a
skulk, DNS checks to see if data is consistent. If not, it gathers all updates made
to a directory since the last skulk and propagates the updates to all replicas of
the directory. If there is any discrepancy between information in a master and
a secondary directory during a skulk, then the entry with the most recent time
stamping is used. Once the skulk is completed, DNS informs all directories of the
time-stamping of the latest universal update.

When the convergence attribute is high, DNS skulks the namespace every
12 hours. When the convergence is low, the skulk occurs every 24 hours.

Directory replicas can lose their consistency between skulks. Two objects of the
same name could be created simultaneously in different directory replicas or
updates to. the namespace might not be seen by all copies immediately. When
DNS detects a conflict in replicas, it preserves the object with the most recent
update time-stamping and deletes the older object. There is a chance that
an application may get information from the namespace that DNS has not
synchronized. In this case, an application has to have a mechanism to deal with
the inconsistency.

7-18 The VMS Distributed Name Service

7.1.6 Requesting Information from DNS
Once an application adds its objects to the namespace and modifies the objects to
contaill any necessary attributes, the application is ready to use the namespace.
An application can request that the DNS clerk read information stored with an
object or list all the application's· objects that are stored in a particular directory.
An application might also need to resolve all soft links in a name in order to
identify a target entry.

For example, the VAX Distributed File Service (DFS) is a layered product that
provides VMS users with the ability to use remote VMS disks as if they were
attached to their local VMS system. The DFS application registers VMS directory
structures (a directory and all of its subdirectories) with DNS. Each DFS object
registered in the namespace names a particular file access point. DFS creates
each object with a class attribute of DFS$ACCESSPOINT and modifies the
address attribute (DNS$ADDRESS) of each object to hold the DECnet node
address where the directory structures reside. As a final step in registering its
resources, DFS creates a database to map DNS names to the appropriate VMS
directory structures.

Whenever the DFS application receives the following mount request, DFS sends a
request for information to the DNS clerk:

MOUNT ACCESS_POINT dns-name vms-logical-name

To read the address attribute of the access point object, the DFS application
performs the following procedures:

1. Translates the DNS name that is supplied through the user interface to
opaque format using the $DNS parse function ·

2. Reads the class attribute of the object with the $DNS read attribute function,
indicating that there will be a second call to read other attributes of the object

3. Makes a second call to the $DNS service to read the address attribute of the
object

4. Sends the DNS name to the DFS server, which looks up the disk where the
access point is located

5. Verifies that the DNS name is valid on the DFS server

Then the DFS client and DFS server communicate to complete the mount
function.

The VMS Distributed Name Service 7-19

7 .1.6.1 Reading Objects
When requesting information from DNS, an application always takes an object
name from the user interface, translates the name into opaque format, and passes
it in an item list to the DNS clerk.

The following, C program shows how an application reads an object attribute. The
$DNSW service uses an item list to return a set of objects. Then, the application
calls a run-time routine to read each value in the set.
#include <dnsdef.h>
#include <dnsmsg.h>
/*

* Parameters:
* opaque_objname

*
*
*
*

obj_len
opaque_attname

* attname len
*/

address of opaque full name for the object
containing the attribute to be read
length of opaque full name of the object

= address of the opaque simple name of the
attribute to be read

= length of opaque simple name of attribute

read_attribute(opaque_objname, obj_len, opaque_attname, attname_len)
unsigned char *opaque objname;
unsigned short obj len;
unsigned char *opaque attname;
unsigned short attname len;
{ -

struct $dnsb iosb;
char objtype = dns$k_object;

/* Used to determine DNS status */
/* Using object entries */

struct $dnsitmdef readitem[6]; /* Item list for system service*/
struct dsc$descriptor set_dsc, value_dsc, newset_dsc, uid_dsc;

unsigned char attvalbuf[dns$k maxattribute]; /*To hold the attribute
/* values returned from extraction routine.

unsigned char attsetbuf[dns$k maxattribute]; /* To hold the set of
/* attribute values after the return from $DNSW.

*/
*/
*/

*/
unsigned char uidbuf[20]; /* Needed for context of multiple reads */

int read status;
int set status;
int xx;-

/* Status of read attribute routine */
/* Status of remove value routine */
/* General variable used by print routine */

unsigned short setlen; /* Contains current length of set structure */
unsigned short val len; /* Contains length of value extracted from set */
unsigned short uid=len; /* Contains length of UID extracted from set */

/* Construct an item list to read values of the attribute. */ tt
readitem[O] .dns$w itm code = dns$_entry;
readitem[O] .dns$w-itm-size = obj len;
readitem[O] .dns$a=itm=address = opaque_objname;

readitem[l].dns$w itm code= dns$ lookingfor;
readitem[l] .dns$w-itm-size = sizeof(char);
readitem[l] .dns$a=itm=address = &objtype;

readitem[2].dns$w itm code= dns$ attributename;
readitem[2].dns$a-itm-address =opaque attname;
readitem[2] .dns$w=itm=size attname_len;

7-20 The VMS Distributed Name Service

readitem[3] .dns$w itm code = dns$ outvalset;
readitem[3] .dns$a-itm-ret length ~ &setlen;
readitem[3].dns$w-itm-size = dns$k maxattribute;
readitem[3].dns$a=itm=address = attsetbuf;

*((int *)&readitem[4]) = O;

do 8
{

read_status = sys$dnsw(O, dns$_read_attribute, &readitem, &iosb, 0, 0);

if(read_status == SS$_NORMAL)
{

read_status iosb.dns$l_dnsb_status;

if ((read_statu1;1
{

SS$_NORMAL) I I (.read_status DNS$_MOREDATA))

. setlen--;
do •
{

set dsc.dsc$w length = setlen;
set=dsc.dsc$a.=Fointer = &attsetbuf[O]; /*Address of set*/

value dsc.dsc$w length = dns$k simplenamemax;
value=dsc.dsc$a.=Fointer = attvalbuf; /* Buffer to hold */

/* attribute value */

uid dsc.dsc$w length = 20;
uid=dsc.dsc$a.=Fointer = uidbuf; /*Buffer to hold value's UID*/

newset dsc.dsc$w length = dns$k maxattribute;
newset=dsc.dsc$a:J>ointer = &attsetbuf[O]; /*Same buffer for*/

/* each call */

set_status = dns$remove first set value(&set dsc, &value_dsc,
8 - - ~val len, &~id dsc,

- &uid len, &newset dsc,
&setlen); -

if(set status == SS$ NORMAL)
{ .- -

readitem[4].dns$w_itm_code = dns$ contextvartime;
readitem[4].dns$w itm size= uid len;
readitem[4).dns$a=itm=address = uidbuf;

*((int *)&readitem[S]) = O;

else
{

The VMS Distributed Name Service 7-21

printf ("\ tValue: "); 8
for(xx = O; xx < val_len; xx++)

printf("%x ", attvalbuf[xx]);
printf ("\n");

else if (set status != 0)
{ -

}

printf("Error %d returned when removing value from set\n",
set status);

exit(set_status);

while(set_status == SS$_NORMAL);

printf("Error reading attribute= %d\n", read_status);
exit(read_status);

while(read_status == DNS$_MOREDATA);

8 The item list contains five entries:

• The opaque full name of the object with the attribute the program wants
to read

• The type of namespace entry to access

• The opaque simple name of the attribute to read

• The address of the buffer containing the set of values returned by the
read operation

• A zero to terminate the item list

• The loop repeatedly calls the $DNSW service to read the values of the
attribute because the first call might not return all the values. The loop
executes until $DNSW returns something other than DNS$_MOREDATA.

e This loop extracts all values from the set returned by $DNSW, one value at
a time. The routine takes the address of the second byte in the structure
because the first byte indicates the attribute type. This routine sets up
descriptors for buffers that are used by the DNS$REMOVE_FIRST_SET_
VALUE routine to extract values from the set. The loop executes until all
values are extracted from the set or it encounters an error.

8 The DNS$REMOVE_FIRST_SET_ VALUE routine extracts a value from the
set.

e This attribute name might be the context the routine uses to read additional
attributes. The attribute's UID, not its value, provides the context. ·

8 Finally, display the value in hexadecimal format. (You could also take the
attribute name and convert it to a printable format before displaying the
result.)

7-22 The VMS Distributed Name Service

7 .1.6.2 Listing Information
The list functions of $DNS allow applications to list the objects, subdirectories,
or soft links in a specific directory. Either the asterisk (*) or question mark (?)
wildcard, described in Section 7.1.2.3, allows an application to screen on the basis
of its facility name.

The values DNS returns from read or enumerate functions are in different
structures. For example, an enumeration of objects returns different structures
than an enumeration of directories.

The following C program shows how an application can read the objects in a
directory with the $DNS system service. It demonstrates how you parse any set
that the enumerate objects function returns with a run-time routine in order
to remove the first entry from the set. The example also demonstrates how the
program takes each value from the set.

#include <dnsdef.h>
#include <dnsmsg.h>
/*

* Parameters:
* fname_:p
* fname_len
*/

opaque full name of the directory to enumerate
length of full name of the directory

struct $dnsitmdef enumitem[4];
unsigned char setbuf[lOO];
struct $dnsb enum iosb;

/* Item list for enumeration */
/* Values from enumeration */

/* DNS status information */
int synch event; -
unsigned short setlen;

I* Used for synchronous AST threads */
/* Length of output in setbuf */

enumerate_objects(fname_:p, fname_len)
unsigned char *fname_:p;
unsigned short fname_len;
{

int enumerate_objects_ast();

int status; /* General routine status */
int enum_status; /* Status of enumeration routine */

/* Set up item list */

enumitem[O] .dns$w itm code = dns$_directory; /* Opaque directory name */
enumitem[0].dns$w-itm-size = fname len;
enumitem[O] .dns$a=itm=address = fname_:p;

enumitem[l] .dns$w itm code = dns$ outobjects; /* output buffer */
enumitem[l].dns$a-itm-ret length~ &setlen;
enumitem[l] .dns$w-itm-size = 100;
enumitem[l].dns$a=itm=address = setbuf;

*((int *)&enumitem[2]) = O; /*Zero terminate item list*/

status= lib$get_ef(&synch_event); t»

The VMS Distributed Name Service

if(status != SS$_NORMAL)
{

printf("Could not get event flag to synch AST threads\n");
exit(status);

enum status= sys$dns(O, dns$_enumerate_objects, &enumitem,
- fl &enum_iosb, enumerate_objects_ast, setbuf);

if(enum_status != SS$~NORMAL) I)
{

printf("Error enumerating objects
exit(enum_status);

%d\n", enum_status);

status= sys$synch(synch_event, &enum_iosb); Ct
if(status != SS$ NORMAL)
{ -

printf("Synchronization with AST threads failed\n~');
exit(status);

/* AST routine parameter: */
/* outbuf : address of buffer that contains enumerated names. */ • unsigned char objnamebuf[dns$k_simplenamemax]; /*Opaque object name*/

enumerate objects ast(outbuf)
unsigned char *outbuf;
{

7-23

struct $dnsitmdef cvtitem[3]; /* Item list for class name*/
struct $dnsb iosb; /* Used for name service status information */
struct dsc$descriptor set_dsc, value_dsc, newset_dsc;

unsigned char simplebuf[dns$k_simplestrmax]; /* Object name string */

int enum status;
int status;

/* The status of the enumeration itself */
/* Used for checking immediate status returns */
/* Status of remove value routine */ int set_status;

unsigned short val len;
unsigned short sname_len;

/* Length of set value */
/* Length of object name */

enum status = enum iosb.dns$1 dnsb status; /* Check status */
if((enum status !=-SS$ NORMAL) && (enum status != DNS$_MOREDATA))"
{ - - -

do
{

printf("Error enumerating objects= %d\n", enum_status);
sys$setef(synch event);
exit(enum_status);

/*
* Extract object names from output buffer one
* value at a time. Set up descriptors for the extraction.
*I

set dsc.dsc$w length = setlen;
set:dsc.dsc$a::J>ointer = setbuf;

/* Contains address of */
/* the set whose values */
/* are to be extracted */

7-24 The VMS Distributed Name Service

value dsc.dsc$w length = dns$k simplenamemax;
value=dsc.dsc$a~ointer = objnamebuf; /* To contain the */

newset dsc.dsc$w length = 100;
newset=dsc.dsc$a~ointer = setbuf;

/* name of an object */
/* after the extraction */

/* To contain a new */
/* set structure after */
/* the extraction. */

/* Call RTL routine to extract the value from the set */
set status = dns$remove first set value(&set dsc, &value dsc, &val len,

- - - - O, O~ &newset_dsc, &setlen);

if(set_status == SS$_NORMAL) • cvtitem[O].dns$w itm code dns$_fromsimplename;
cvtitem[O].dns$w-itm-size val len;
cvtitem[O].dns$a=itm=address = objnamebuf;

cvtitem[l] .dns$w itm code = dns$ tostringname;
cvtitem[l].dns$w-itm-size = dns$k simplestrmax;
cvtitem[l].dns$a-itm-address = simplebuf;
cvtitem[l].dns$a=itm=ret_length &sname_len;

*((int *)&cvtitem[2]) = O;

status = sys$dnsw(O, dns$ simple opaque to string, &cvtitem,
&iosb, O, 0); - - -

if(status == SS$ NORMAL)
status = iosb.dns$l_dnsb_status; /* Check for errors */

if(status != SS$_NORMAL) /* If error, terminate processing */
{

else
{

printf("Converting object name to string returned %d\n",
status);

exit(status);

simplebuf[sname len] = O; /* Null terminate for printing */
printf ("%s\n", simplebuf);

enumitem[2].dns$w itm code= dns$ contextvarname; fl
enumitem[2] .dns$w-itm-size = val len;
enumitem[2] .dns$a=itm=address = objnamebuf;

*((int *)&enumitem[3]) = O;

else if (set status != 0)
{ -

printf("Error %d returned when removing value from set\n",
set status);

exit(set_status);

while(set_status SS$ _NORMAL) ;

The VMS Distributed Name Service 7-25

if(enum_status == DNS$_MOREDATA)
{

else
{

enum status = sys$dns(O, dns$ enumerate objects, &enumitem,
- &enum_iosb, enumerate_objects_ast, setbuf);

if(enum_status != SS$_NORMAL) /* Check status of $DNS */
{

printf("Error enumerating objects= %d\n", enum_status);
sys$setef(synch_event);

• sys$setef(synch_event);

8 Get an event flag to synchronize the execution of AST threads.

8 Use the system service to enumerate the object names.

8 Check the status of system service itself before waiting for threads.

8 Use the $SYNCH call to make sure the DNS clerk has completed and that all
threads have finished executing.

8 After enumerating objects, $DNS calls an AST routine. The routine shows
how DNS$REMOVE_FIRST_SET_VALUE extracts object names from the set
returned by the DNS$_ENUMERATE_OBJECTS function.

8 Use an item list to convert the opaque simple name to a string name so you
can display it to the user. The item list contains the following entries:

• The address of the opaque simple name to be converted

• The address of the buffer that will hold the string name

• A zero to terminate the item list

8 This object name could provide the context for continuing the enumeration.
Append the context variable to the item list so the enumeration can continue
from this name if there is more data.

fD Use the system service to enumerate the object names as long as there is
more data.

CD Set the event flag to indicate that all AST threads have completed and the
program can terminate.

7-26 The VMS Distributed Name Service

7.1.6.3 How the Clerk Locates Data
When the DNS clerk receives an application's call for service, it tries to find a
DNS server that can process the request.

Often, the DNS clerk does not know which DNS server holds the object
information. To find an unknown server, the clerk looks in its own cache first.
The clerk cache holds namespace information gathered from servicing earlier
application requests. If the clerk cache does not list the needed server, then the
DNS clerk requests information from a local DNS server in its cache. (A clerk
always knows about at least one DNS server because this information is loaded
at system startup.)

The clerk's last recourse is to trace directory pointers through the namespace.
Any DNS server is capable of telling the clerk about another DNS server holding
other directories in the namespace hierarchy. The clerk follows directory pointers
until it finds a DNS server holding the specified directory. If the clerk cannot find
the specified directory, then it follows directory pointers up to the root directory.
Once the root directory is found, the clerk traces directory pointers away from
the root, until it finds a DNS server that has the directory holding the requested
object.

Once the clerk finds a directory that holds the required information, it delivers
the request to the DNS server. As soon as the clerk receives a response, it
transmits the result to the application.

7.2 DNS System Services
The Distributed Name Service Clerk system services are the programming
interface to the VAX Distributed Name Service facility. The DNS Clerk system
services allow an application to register a resource in a distributed database and
then access the resource from any point in the network by a single name. There
are two system service calls to the clerk that are described in this section.

• $DNS (Distributed Name Service Clerk)

• $DNSW (Distributed Name Service Clerk and Wait)

The $DNS system service is the asynchronous client interface for applications
using the Distributed Name Service. The $DNSW system service is the
synchronous client interface.

DNS Clerk System Service Calls 7-27
$DNS

$DNS-Distributed Name Service Clerk
The Distributed Name Service Clerk service registers a resource in a
distributed database. The $DNS service completes asynchronously; that
is, it returns to the client immediately after making a name service call.
The status returned to the client call indicates whether a request was
successfully queued to the name service.

Note that the Distributed Name Service Clerk and Wait ($DNSW) call
is the synchronous equivalent of $DNS. $DNSW is identical to $DNS in
every way except that $DNSW returns to the caller after the operation
completes.

format
SYS$DNS [efn] ,func ,itmlst ,[dnsb] ,[astadr] ,[astprm}

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return by immediate value
a condition value in RO. Condition values returned by this call are listed
in the section Condition Values Returned. Errors returned here are from
the DNS clerk. Refer to the dnsb argument for errors returned by the
name service.

arguments
ef n
VMS Usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $DNS completes. The efn.
argument is a longword containing this number. The efn. argument is
optional; if not specified, event flag 0 is set.

When $DNS begins execution, it clears the event flag. Even if the service
encounters an error and completes without queuing a name service
request, the specified event flag is set.

tune
VMS Usage: function_code
type: longword (unsigned)
access: read only
mechanism: by value

7-28 DNS Clerk System Service Calls
$DNS

Function code specifying the action that $DNS is to perform. The func
argument is a longword containing this function code.

A single call to $DNS can specify one function code. Most function codes
require or allow for additional information to be passed in the call with
the itmlst argument.

$DNS Function Codes

OHS$_ CREATE_ OBJECT
This request creates an object in the namespace. Initially, the entry
has the attributes of DNSUID, DNSUTS, DNS$CLASS, DNS$ACS,
and DNS$CLASSVERSION. The name service creates the DNS$UID,
DNS$UTS, and DNS$ACS attributes. The client application supplies
the DNS$CLASS and DNS$CLASSVERSION attributes. You can add
additional attributes using the DNS$_MODIFY_ATTRIBUTE function.

The DNS clerk cannot guarantee that an object has been created. Another
DNS$_CREATE_OBJECT request could supersede the object created by
your call. To verify an object creation, wait until the directory is skulked
and then cJieck to see if the requested object entry is present. If the value
of the directory's DNS$ALLUPTO attribute is greater than the UID of the
object entry, your object entry has been successfully created.

Creating an object in the namespace requires write access to the directory
in which the object will reside.

If specified, DNS$_0UTUID holds the UID of the created object.

You must specify the following item codes:

DNS$_CLASS (Class_Name)
DNS$_0BJECTNAME (Opaque_Full_Name)
DNS$_ VERSION (Class_ Version)

You can specify the following input item codes:

DNS$_CONF
DNS$_WAIT

You can specify the following output item code:

DNS$0UTUID (UID)

'$DNS returns the following:

SS$_NORMAL
DNS$_ENTRYEXISTS
DNS$_INVALID_OBJECTNAME
DNS$_1NVALID_CLASSNAME
Any condition listed in the section Condition Values Returned.

DNS Clerk System Service Calls 7-29

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_0ELETE_OBJECT

$DNS

This request removes the specified obje~t from the namespace. The
function requires delete access to the object in question.

You must specify the following input item code:

DNS$_0BJECTNAME (Opaque_Full_Name)

You can specify the following input item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following:

SS$_NORMAL
DNS$_INVALID_OBJECTNAME
Any condition listed in the section Condition Values Returned.

$DNS returns the following qualifying status:

.DNS$V _DNSB_OUTLINKED

DNS$_ENUMERATE_ATTRIBUTES

This request returns a set of attributes in DNS$_0UTATTRIBUTESET
that is associated with the entry. The entry type is specified in the DNS$_
LOOKINGFOR entry.

To manipulate the values returned by this call, use the DNS$REMOVE_
FIRST_SET_ VALUE run-time routine. The values returned are the
Enum_Att_N ame structure, which is described in Table 7-1.

You must have read access to the entry to enumerate its attributes.

The DNS clerk enumerates attributes in alphabetical order. A return
status of DNS$_MOREDATA implies that not all attributes have
been enumerated. You should make further calls, setting DNS$_
CONTEXTVARNAME to the last·attribute in the set returned, until
the procedure returns SS$_NORMAL.

You must specify the following input item codes:

DNS$_ENTRY (Opaque_Full_N ame)
DNS$_LOOKINGFOR (Entry _Type)

You must specify the following output item code:

DNS$_0UTATTRIBUTESET (set ofEnum_Att_Name)

7-30 DNS Clerk System Service Calls
$DNS

You can specify any of the following input item codes:

DNS$_CONF
DNS$_CONTEXTVARNAME (Opaque_Simple_Name)
DNS$_WAIT

$DNS can return the following:

SS$_NORMAL
DNS$_MOREDATA
DNS$_1NVALID_ENTRYNAME
DNS$_INVALID_CONTEXTNAME
Any condition listed in the section Condition Values Returned.

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ENUMERATE_ CH/LDREN
This request takes as input a directory name with an optional simple
name that uses a wildcard. The. DNS clerk matches the input against
child directory entries in the specified directory.

The DNS clerk returns a set of simple names of child directories in the
target directory that match the name with the wildcard. A null set is
returned when there is no match or when the directory has no children.

To manipulate the values returned by this call, use the DNS$REMOVE_
FIRST_SET_VALUE run-time routine. The value returned is a simple
name.

The function requires read access to the parent directory.

The child directories are enumerated in alphabetical order. If the call
returns DNS$_MOREDATA, not all children have been enumerated and
the client should make further calls, setting DNS$_CONTEXTVARNAME
to the last child directory in the set returned, until the procedure
returns SS$_NORMAL. Subsequent calls return the child directories,
starting with the directory specified in DNS$_CONTEXTVARNAME and ·
continuing in alphabetical order.

You must specify the following input item code:

DNS$_DIRECTORY (Opaque_Full_Name)

You must specify the following output item code:

DNS$_0UTCHILDREN (set of Opaque_Simple_Name)

You can specify the following input item codes:

DNS$_CONF
DNS$_CONTEXTVARNAME (Opaque_Simple_Name)

DNS Clerk System Service Calls 7-31

DNS$_WAIT
DNS$_ WILDCARD (Opaque_Simple_Name)

$DNS returns the following:

SS$_NORMAL
DNS$_MOREDATA
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_ WILDCARDNAME

You might receive the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ENUMERATE_ OBJECTS

$DNS

This request takes as input the directory name, a simple name that uses a
wildcard, and a class name that uses a wildcard. The DNS clerk matches
these against objects in the directory. If a wildcard and class filter are not
specified, then all objects in the directory are returned.

The function returns (in DNS$_0UTOBJECTS) a set of simple names
of objects in the directory that match the name with the wildcard. If no
objects match the wildcard or the directory contains no objects, a null
set is returned. The DNS clerk returns DNS$V_DNSB_OUTLINKED
qualifying status if it encounters one or more soft links in resolving the
names of object entries to be enumerated.

To manipulate the values returned by this call, use the DNS$REMOVE_
FIRST_SET_ VALUE run-time routine. The value returned is a simple
name structure.

This function requires read access to the parent directory.

The objects are enumerated in alphabetical order. If the call returns
DNS$_MOREDATA, not all objects have been enumerated and the client
should make further calls, setting DNS$_CONTEXTVARNAME to the last
object in the set returned, until the procedure returns SS$_NORMAL. If
the class filter is specified, only those objects of the specified classes are
returned.

You must specify the following input item code:

DNS$_DIRECTORY (Opaque_Full_N ame)

You must specify the following output item code:

DNS$_0UTOBJECTS (set of Opaque_Simple_Names)

You can specify any of the following input item codes:

DNS$_ WILDCARD (Opaque_Simple_Name)
DNS$_CLASSFILTER (Opaque_Simple_Name)

7-32 DNS Clerk System Service Calls
$DNS

DNS$_CONTEXTVARNAME (Opaque_Simple_Name)
DNS$_CONF
DNS$_WAIT

$DNS returns the following:

SS$_NORMAL
DNS$_MOREDATA
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_ WILDCARDNAME
DNS$_INVALID_CLASSNAME

You might receive the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ENUMERATE_SOFTLINKS

This request takes as input the name of a directory and a wildcarded
simple name. The DNS clerk matches these against soft links in the
directory. It returns (in DNS$_0UTSOFTLINKS) a set consisting of
simple names of soft links in the directory that match the wildcarded
name. If no soft link entries match the wildcard or the directory contains
no soft links, a null set is returned.

If no wildcard is specified, then all soft links in the directory are returned.

To manipulate the values returned by this call, use the DNS$REMOVE_
FIRST_SET_VALUE run-time routine. The value returned is a simple
name.

This function requires read access to the parent directory.

The soft links are enumerated in alphabetical order. If the call
returns DNS$_MOREDATA, not all matching soft links have been
enumerated and the client should make further calls, setting DNS$_
CONTEXTVARNAME to the last soft link in the set returned, until the
procedure returns SS$_NORMAL.

You must specify the following input item code:

DNS$_DIRECTORY (Opaque_Full_N ame)

You must specify the following output item code:

DNS$_0UTSOFTLINKS (set of Opaque_Simple_Name)

You can specify the following input item codes:

DNS$_ WILDCARD (Opaque_Simple_Name)
DNS$_CONTEXTVARNAME (Opaque_Simple_Name)
DNS$_CONF

DNS$_WAIT

$DNS returns the following:

DNS Clerk System Service Calls 7-33
$DNS

SS$_NORMAL
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_ WILDCARDNAME

You might receive the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_FULL_OPAQUE_TO_STRING
This request converts a full name in opaque format to its equivalent in
string format, as described in Section 7.1.1.4. Setting the byte referred to
by DNS$_SUPPRESS_NSNAME to 1 prevents the namespace name from
being included in the string name.

You must specify the following item codes:

DNS$_FROMFULLNAME (Opaque_Full_Name)
DNS$_TOSTRINGNAME (Full_Name_Str)

You can specify the following input item code:

DNS$_SUPPRESS_NSNAME (byte)

$DNS returns the following:

SS$_NORMAL
DNS$_INVALIDNAME

You do not receive qualifying status.

DNS$_MODIFY_ATTRIBUTE
This request applies one update to the specified entry in the namespace.
You can add or remove an attribute; you can add or remove a value from
either a single-value attribute or a set-valued attribute.

This operation requires write or delete access to the entry whose attribute
is being modified, depending on whether the operation adds or removes
the attribute.

When adding a value to a single-value attribute, include a value in DNS$_
MODVALUE or you will receive the error DNS$_INVALIDUPDATE. The
item code DNS$_MODVALUE is not required when writing to an attribute
set because the name service creates the attribute if no value is provided.

In a delete operation, include the DNS$_MODVALUE item code to remove
a certain value from an attribute set. Unless you specify the item code,
the name service removes the attribute and all its values from the entry.

7-34 DNS Clerk System Service Calls
$DNS

You must specify the following item codes:

DNS$_ENTRY (Opaque_Full_Name)
DNS$_LOOKINGFOR (Entry_Type)
DNS$_MODOPERATION (DNS$K_PRESENT or DNS$K_ABSENT)
DNS$_ATTRIBUTETYPE (DNS$K_SET or DNS$K_SINGLE)
DNS$_ATTRIBUTENAME (Opaque_Simple_Name)

You can specify the following input item codes:

DNS$_CONF
DNS$_MODVALUE
DNS$_WAIT

$DNS returns the following:

SS$_NORMAL
DNS$_ WRONGATTRIBUTETYPE
DNS$_INVALIDUPDATE
DNS$_INVALID_ENTRYNAME
DNS$_INVALID_ATTRIBUTENAME

You might receive the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_PARSE_FULLNAME_STRING
This request takes a full name in string format and converts it to its
equivalent in opaque format. If DNS$_NEXTCHAR_PTR is used,
the longword referenced by this entry contains the address of the
character immediately following the DNS name given in DNS$_
FROMSTRINGNAME.

You must specify the following item codes:

DNS$_FROMSTRINGNAME (Full_Name_Str)
DNS$_TOFULLNAME (Opaque_Full_Name)

You can specify the following input item code:

DNS$_NEXTCHAR_PTR

$DNS can return the following:

SS$_NORMAL
DNS$_INVALIDNAME

You do not receive qualifying status.

DNS$_PARSE_S/MPLENAME_STR/NG
This request takes a simple name in string format and converts it
to its equivalent in opaque format. If DNS$_NEXTCHAR_PTR is
used, the longword referenced by this entry contains the address of

DNS Clerk System Service Calls 7-35
$DNS

the character immediately following the DNS name given in DNS$_
FROMSTRINGNAME.

You must specify the following item codes:

DNS$_FROMSTRINGNAME (Simple_Name_Str)
DNS$_TOFULLNAME (Opaque_Simple_Name)

You can specify the following input item code:

DNS$_NEXTCHAR_PTR

$DNS can return the following:

SS$_NORMAL
DNS$_INVALIDNAME

You do not receive qualifying status.

DNS$_READ_ATTRIBUTE
This request returns (in DNS$_0UTVALSET) a set whose members
are the values of the specified attribute. When the request completes
successfully, the qualifying status indicates whether soft links were
followed in resolving the name.

This function requires read access to the object whose attribute is to be
read.

To manipulate the values returned by this call, use the DNS$REMOVE_
FIRST_SET_ VALUE run-time routine. The contents of DNS$_
OUTVALSET are passed to DNS$REMOVE_FIRST_SET_VALUE, and
the routine returns the value of the attribute.

The attribute values are returned in the order they were received.
If the call returns DNS$_MOREDATA, not all values have been
returned. The client application can make further calls, setting DNS$_
CONTEXTVARTIME to the time-stamping of the last attribute in the set
returned, until the procedure returns SS$_NORMAL. If the client sets
the DNS$_MAYBEMORE argument to 1, the name service attempts to
make subsequent DNS$_READ_ATTRIBUTE calls for the same entry
more efficient. The client may set this argument to true on any call,· but
performance improves only if the client accesses no other entry before
making a read attribute call for the previous entry.

You must include the following input item codes:

DNS$_ENTRY (Opaque_Full_Name)
DNS$_LOOKINGFOR (Entry _Type)
DNS$_ATTRIBUTENAME (Opaque_Simple_Name)

7-36 DNS Clerk System Service Calls
$DNS

You must include the following output item code:

DNS$_0UTVALSET (set of values)

You can include the following input item codes:

DNS$_MAYBEMORE (Boolean)
DNS$_CONTEXTVARTIME (UID)
DNS$_CONF
DNS$_WAIT

$DNS returns the following:

SS$_NORMAL
DNS$_MOREDATA
DNS$_INVALID_ENTRYNAME
DNS$_1NVALID_ATTRIBUTENAME

You might receive the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_RESOLVE_NAME
This request follows a chain of soft links to its destination, returning the
full name of that entry so that future calls by the client application can
use the entry name without incurring the overhead of following the link.

This function requires read access to each of the soft links in the chain.

Applications that maintain their own databases of opaque DNS names
should use DNS$_RESOLVE_NAME any time they receive the qualifying
status DNS$V _DNSB_OUTLINKED. This status indicates a need to
update the current name, using the soft link. facility of DNS. Use the
original name with DNS$_RESOLVE_NAME and store the result in the
application database.

If the application provides a name that does not contain any soft links,
DNS$_NOTLINKED status is returned. If the target of any of the chain
of soft links followed does not exist, the DNS$_DANGLINGLINK status is
returned. To obtain the target of any particular soft link, use the DNS$_
READ_ATTRIBUTE function with DNS$_LOOKINGFOR set to DNS$K_
SOFTLINK and request the attribute DNS$LINKTARGET. This can be
useful in discovering which link in a chain is "broken." If the DNS clerk
detects a loop, it returns DNS$_POSSIBLECYCLE status.

You must specify the following input item code:

DNS$_LINKNAME (Opaque_Full_Name)

You must specify the following output item code:

DNS$_0UTNAME (Opaque_Full_Name)

DNS Clerk System Service Calls 7-37
$DNS

You can specify the following input item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following:

SS$_NORMAL
DNS$_INVALID_LINKNAME
DNS$_NOTLINKED

You might receive the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_S/MPLE_OPAQUE_TO_STRING
This request takes a simple name in opaque format and converts it to its
equivalent in string format, as described in Section 7.1.1.4.

You must specify the following item codes:

DNS$_FROMSIMPLENAME (Opaque_Simple_Name)
DNS$_TOSTRINGNAME (Simple_Name_Str)

$DNS returns the following:

SS$_NORMAL
DNS$_INVALIDNAME

You do not receive qualifying status.

DNS$_S/MPLENAME_STR/NG_ TO_ OPAQUE
This request converts a simple name in string format to its equivalent
in opaque format. If DNS$_NEXTCHAR_PTR is used,. the longword
referenced by this entry contains the address of the character immediately
following the DNS name given in DNS$_FROMSTRINGNAME.

You must specify the following item codes:

DNS$_FROMSTRINGNAME (Simple_Name_Str)
DNS$_TOSIMPLENAME (Opaque_Simple_Name)

You can specify the following input item code:

DNS$_NEXTCHAR_PTR

$DNS can return the following:

DNS$_INVALIDNAME

You do not receive qualifying status.

7-38 DNS Clerk System Service Calls
$DNS

DNS$_ TEST_ATTRIBUTE
This request returns DNS$_TRUE if the specified attribute has one of the
following characteristics:

• It is a single-value attribute and its value matches the client-specified
value.

• It is a set-valued attribute and the attribute contains the client-
specified value as one of its members.

On successful completion of the function, DNS$V _DNSB_OUTLINKED
indicates whether soft links were followed in resolving the name.

This function requires test or read access to the entry whose attribute is
to be tested.

If the attribute is not present in the entry, the function returns
DNS$_FALSE.

You must specify the following item codes:

DNS$_ENTRY (Opaque_Full_Name)
DNS$_LOOKINGFOR (Entry_Type)
DNS$_ATTRIBUTENAME (Opaque_Simple_Name)
DNS$_ VALUE (value)

You can specify the following input item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following when the call is successful:

DNS$_TRUE
DNS$_FALSE

$DNS returns the following when the call is unsuccessful:

DNS$_INVALID_ENTRYNAME
DNS$_INVALID_ATTRIBUTENAME

You might receive the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ TEST_ GROUP
This request tests for group membership. It returns DNS$_TRUE if
the specified member is a member of the specified group (or a subgroup
thereof), and DNS$_FALSE otherwise. If a recursive search is required
and one or more of the subgroups is unavailable, the status encountered
in trying to access that group is returned.

DNS Clerk System Service Calls 7-39
$DNS

The DNS$_INOUTDIRECT argument, on input, controls the scope of the
search. If set to true, the only group considered is the top level group
specified by the group argument. If set to false, recursive evaluation is
performed. On output, the DNS$_INOUTDIRECT argument is set to 1 if
the member was found in the top level group; otherwise it is set to 0.

You must specify the following item codes:

DNS$_GROUP (Opaque_Full_Name)
DNS$_MEMBER (Opaque_Full_Name)

You can specify the following input item codes:

DNS$_CONF
DNS$_INOUTDIRECT (Boolean)
DNS$_WAIT

$DNS returns the following:

SS$_NORMAL
DNS$_NOTAGROUP
DNS$_INVALID_GROUPNAME
DNS$_INVALID_MEMBERNAME

You might receive the following qualifying status:

DNS$V _DNSB_INOUTDIRECT

itmlst
VMS Usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list supplying information to be used in performing the function.
specified by the func argument. The itmlst argument is the address
of the item list. The item list consists of one or more item descriptors,
each of which is three longwords. The descriptors can be in any order
in the item list. Each item descriptor specifies an item code. Each item
code either describes the specific information to be returned by $DNS or
otherwise affects the action designated by the function code. The item list
is terminated by a longword of zero.

7-40 DNS Clerk System Service Calls
$DNS

31

The item list is a standard VMS format item list. The following figure
depicts the general structure of an item descriptor:

15

Item Code l
Buffer Address

Return Length Address

$DNS Item Descriptor Fields

item code

0

Buffer Length

ZK-1705-GE

A word containing a symbolic code describing the nature of the
information currently in the buffer or to be returned in the buffer. The
location of the buffer is pointed to by the buffer address field. Each item
code has a symbolic name; these symbolic names are defined by the $DNS
macro and have the format DNS$_code.

buffer length
A word specifying the length of the buffer; the buffer either supplies
information to be used by $DNS or receives information from $DNS. The
required length of the buffer varies depending on the item code specified;
each item code descriP,tion specifies the required length.

buffer address
A longword containing the address of the buffer that specifies or receives
the information.

return length address
A longword containing the address of a word specifying the actual length
in bytes of the information returned by $DNS. The information resides in
a buffer identified by the buffer address field. The field applies to output
item list entries only and is ignored for input entries. If the return length
address is 0, it is ignored.

$DNS Item Codes

DNS$_ATTRIBUTETYPE
The DNS$_ATTRIBUTETYPE item code specifies whether an attribute
is set valued (DNS$K_SET) with a value of 3 or single valued (DNS$K_
SINGLE) with a value of 2.

DNS$_ATTRIBUTENAME

DNS Clerk System Service Calls 7-41
$DNS

The DNS$_ATTRIBUTENAME item code specifies the opaque simple
name of an attribute. An attribute name cannot be longer than 31
characters.

DNS$_CLASS
The DNS$_CLASS item code specifies the class of an object for the $DNS
function DNS$_CREATE_OBJECT. DNS$_CLASS is an opaque simple
name.

DNS$_CLASSFILTER
DNS$_CLASSFILTER is used by the $DNS function DNS$_ENUMERATE_
OBJECTS to limit the scope of the enumeration to those objects belonging
to a certain class (or, if a wildcard name is used, a group of classes).
DNS$_CLASSFILTER is an opaque simple name, which can use a
wildcard.

DNS$_CLASSFILTER is optional. A wildcard simple name of* is used by
default, meaning that objects of all classes will be enumerated.

DNS$_CONF
DNS$_CONF specifies for $DNS the.level of importance in returning
up-to-date information. DNS$_CONF is 1 byte long and can take one of
the following values:

Confidence Level Value

DNS$K_LOW 1

DNS$K_MEDIUM 2

DNS$K_IDGH 3

Description

Service the DNS clerk request at the lowest cost,
usually from cached information.

Bypass any cached information and obtain the
data directly from a name server.

Service the request from a master directory.

The entry is optional; ifit is not specified, the DNS clerk assumes a·value
of DNS$K_LOW.

DNS$_CONTEXTVARNAME
DNS$_CONTEXTVARNAME is used by the enumeration functions of
$DNS to specify a context from which the enumeration is to begin. The
item is an opaque simple name.

DNS$_CONTEXTVARNAME is optional. If not given, the enumeration
begins with the first element.

DNS$_DIRECTORY
DNS$_DIRECTORY is used by most of the enumeration functions of
$DNS to specify the namespace directory in which the elements of the
enumeration are to be found. DNS$_DIRECTORY is an opaque full name.

7-42 DNS Clerk System Service Calls
$DNS

DNS$_ENTRY
DNS$_ENTRY specifies for $DNS the opaque full name of a namespace
entry (object, soft link, directory, clearinghouse).

DNS$_FROMFULLNAME
DNS$_FROMFULLNAME specifies for the DNS$_FULL_OPAQUE_TO_
STRING function the opaque full name that is to be converted into string
format.

DNS$_FROMSIMPLENAME
DNS$_FROMSIMPLENAME specifies for the DNS$_SIMPLE_OPAQUE_
TO_STRING function the opaque simple name that is to be converted into
string format.

DNS$_FROMSTRINGNAME
DNS$_FROMSTRINGNAME specifies a name in string format for the
parse functions DNS$_PARSE_FULLNAME_STRING and DNS$_PARSE_
SIMPLENAME_STRING that is to be converted to opaque format.

DNS$_GROUP
DNS$_GROUP specifies for the DNS$_TEST_GROUP function the opaque
full name of the group that is to be tested. DNS$_GROUP must be the
name of a group object.

DNS$_1NOUTDIRECT
DNS$_INOUTDIRECT is a Boolean value that serves two different
purposes for the DNS$_TEST_GROUP function. On input, DNS$_
INOUTDIRECT controls the scope of the search for the test, as follows:

Value Definition

1 The only group to be tested is the top level group specified by the DNS$_GROUP
item.

0 All subgroups of the group named in DNS$_GROUP are tested for inclusion. A
subgroup is any member that is a group in itself.

On output, DNS$_INOUTDIRECT is set to indicate whether the members
were found in the top level group or were found as members of one of the
subgroups, as follows:

Value Definition

1 The member was found in the top level group.

0 The member was found in one of the subgroups of the top level group.

DNS$_INOUTDIRECT is a single-byte value.

DNS$_LINKNAME

DNS Clerk System Service Calls 7-43
$DNS

DNS$_LINKNAME specifies the opaque full name of a soft link.

DNS$_LOOKINGFOR

DNS$_LOOKINGFOR specifies the type of entry on which the call is to
operate. DNS$_LOOKINGFOR, which is encoded as a byte, can take one
of the following values:

Type of Entry Value

DNS$K_DIRECTORY 1

DNS$K_OBJECT 2

DNS$K_CHILDDIRECTORY 3

DNS$K_SOFTLINK 4

DNS$K_CLEARINGHOUSE 5

DNS$_MAYBEMORE

DNS$_MAYBEMORE is used with the DNS$_READ_ATTRIBUTE
function to indicate that the results of the read operation are to be
cached. This is a single-byte item.

When this item is set to 1, the name service returns as much information
about the attributes for the entry as it is able to fit in the return buffer.
All of this information is cached to make later lookups of attribute
information for the entry quicker and more efficient.

If this item is not supplied, then only the requested information for the
entry is returned.

DNS$_MEMBER

DNS$_MEMBER specifies for the DNS$_TEST_GROUP function of $DNS
the opaque full name of a member that is to be tested for inclusion within
a given group.

DNS$_MODOPERATION

DNS$_MODOPERATION specifies for the DNS$_MODIFY_ATTRIBUTE
function the type of operation that is to take place. There are two types
of modifications: adding an attribute (DNS$K_PRESENT), which has a
value of 1, or deleting an attribute (DNS$K_ABSENT), which has a value
ofO.

The name service adds an attribute in the following way:

• For an existing attribute where an attribute value is given, the value
is added to a set-valued attribute and all other values for the set are
unaffected. The value replaces any previous value in a single-value
attribute.

7-44 DNS Clerk System Service Calls
$DNS

• For an existing attribute where an attribute value is not given, all
previous values for the attribute are unaffected.

• For a new attribute

Where an attribute is given, the attribute is created and given
the attribute type of DNS$K_SET or DNS$K_SINGLE as supplied
with the DNS$K_ATTRIBUTETYPE item. The value is assigned
to the attribute.

Where an attribute value is not given, a set-valued attribute is
created without a value assignment, but a single-value attribute
is not created.

The name service deletes an attribute in the following way:

• If the attribute exists and an attribute value is given, the attribute
value is removed from a set-valued attribute. All other values are
unaffected. For a single-value attribute, the attribute (along with its
value) is removed from the entry.

• If an attribute value is not given, then the attribute and all values of
the attribute· are removed. This is true for both set-valued attributes
and single-value attributes.

DNS$_MODVALUE
DNS$_MODVALUE specifies for the DNS$_MODIFY_ATTRIBUTE
function the value that is to be added to or deleted from an attribute.
The structure of this value is dependent on the application.

DNS$_MODVALUE is an optional argument that affects the overall
operation of the DNS$_MODIFY_ATTRIBUTE function. (See the DNS$_
MODOPERATION item code description for more information.)

DNS$_NEXTCHAR_PTR
DNS$_NEXTCHAR_PTR is an optional item code that can be used with
the parse functions DNS$_PARSE_FULLNAME_STRING and DNS$_
PARSE_SIMPLENAME_STRING to return the address of the character
that immediately follows a valid DNS name. This option is most useful
when applications are parsing command line strings.

Without this item code, the parse functions return an error if any portion
of the name string is invalid.·

DNS$_ OBJECTNAME
DNS$_0BJECTNAME specifies the opaque full name of an object.

DNS$_ OUTATTRIBUTESET
DNS$_0UTATTRIBUTESET specifies to the DNS$_ENUMERATE_
ATTRIBUTES function the address of a buffer that is to contain the set of
enumerated attribute names.

DNS Clerk System Service Calls 7-45
$DNS

The names returned in this set can be extracted from the buffer with
the DNS$REMOVE_FIRST_SET_ VALUE routine. The resulting values
are contained in the $DNSATTRSPECDEF structure, a byte indicating
whether an attribute is set-value or single-value followed by an opaque
simple name.

DNS$_0UTNAME
DNS$_0UTNAME specifies for the DNS*_RESOLVE_NAME function
the address of a buffer that is to contain the opaque full name of the
namespace entry that is pointed to by a soft link.

DNS$_ OUTOBJECTS
DNS$_0UTOBJECTS specifies for the DNS$_ENUMERATE_OBJECTS
function the address of a buffer that is to contain the set of opaque simple
names· returned by the enumeration.

The values resulting from the enumeration can be extracted using the
DNS$REMOVE_FIRST_SET_ VALUE routine. The resulting values are
the opaque simple names of the objects found in the directory.

DNS$_ OUTCHILDREN
DNS$_0UTCHILDREN specifies for the DNS$_ENUMERATE_
CHILDREN function the address of a buffer that is to contain the set
of opaque simple names returned by the enumeration.

The values resulting from the enumeration can be extracted using the
DNS$REMOVE_FIRST_SET_ VALUE routine. These values are the
opaque simple names of the child directories found in the parent directory.

DNS$_ OUTSOFTLINKS
DNS$_0UTSOFTLINKS specifies for the DNS$_ENUMERATE_
SOFTLINKS function the address of a buffer that is to contain the set
of opaque simple names returned by the enumeration.

The values resulting from the enu:Qieration can be extracted using the
DNS$REMOVE_FIRST_SET_ VALUE routine. The resulting values are
the opaque simple names of the soft links found in the directory.

DNS$_ OUTVALSET
DNS$_0UTVALSET specifies for the DNS$_READ_ATTRIBUTE function
the address of a buffer that is to contain the set of values for the given
attribute.

The values of the set placed in this buffer can be extracted using the
DNS$REMOVE_FIRST_SET_ VALUE routine. The extracted values are
the values of the attribute.

7-46 DNS Clerk System Service Calls
$DNS

DNS$_0UTUID
DNS$_ OUTUID is an optional item code that contains the address of a
buffer used by the create functions of $DNS to return the unique identifier
(UID). The UID is the time-stamping the entry received at creation.

DNS$_SUPPRESS_NSNAME
DNS$_SUPPRESS_NSNAME is an optional item for the DNS$_FULL_
OPAQUE_TO_STRING function that is used to indicate that the leading
namespace name should not be returned in the converted full name
string. This is a single-byte value.

A value of 1 suppresses the leading namespace name in the resulting full
name string.

DNS$_ TOFULLNAME
DNS$_TOFULLNAME specifies for the DNS$_PARSE_FULLNAME_
STRING function the address of a buffer that will contain the resulting
opaque full name.

DNS$_ TOS/MPLENAME
DNS$_TOSIMPLENAME specifies for the DNS$_PARSE_SIMPLENAME_
STRING function the address of a buffer that will contain the resulting
opaque simple name.

DNS$_ TOSTRINGNAME
DNS$_TOSTRINGNAME specifies the address of a buffer that is to
contain the string name resulting from one of the conversion functions:
DNS$_FULL_OPAQUE_TO_STRING or DNS$_SIMPLE_OPAQUE_TO_
STRING.

DNS$_VALUE
DNS$_ VALUE specifies for the DNS$_TEST_ATTRIBUTE function the
value that is to be tested. This item contains the address of a buffer
holding the value.

DNS$_ VERSION
DNS$_ VERSION specifies for the DNS$_CREATE_OBJECT function
the version associated with an object. This item contains the address
of a $DNSCVERSDEF (CLASSVERSION) structure. This is a 2-byte
structure: the first byte contains the major version number; the second
contains the minor version number.

DNS$_WAIT
DNS$_WAIT enables the client to specify a timeout value to wait for a
call to complete. If the timeout expires, the call returns either DNS$K_
TIMEOUTNOTDONE or DNS$K_TIMEOUTMAYBEDONE, depending on .
whether the name space was updated by the incomplete operation.

The $BINTIM service converts an ASCII string time value to the
quadword time value required by $DNS.

DNS Clerk System Service Calls 7-47
$DNS

The parameter is optional; if it is not specified, a system-defined default
timeout value of 10 minutes is assumed.

DNS$_ W/LDCARD
DNS$_ WILDCARD is an optional item code that specifies to the
enumeration functions of $DNS the opaque simple name used to limit
the scope of the enumeration. (The simple name does not have to use a
wildcard.) Only those simple names that match the wildcard are returned
by the enumeration.

Item Code Identifiers

The identifiers shown in Table 7-1 are data structures that are used in
item code arguments. Each data structure defines the encoding of an item
list element.

Table 7-1: DNS Item Code Arguments

Item Code Identifier

Attribute_N ame

Attribute_Name_Str

Boolean

Class_Name

Class_Name_Str

Class_ Version

Confidence

Entry_Type

Enum_Att_Name

Description

The structure of an opaque simple name, limited to 31
ISO Latin 1 characters.

An attribute name string with the structure of a
simple name string but limited to 31 ISO Latin 1
characters.

A 1-byte field with the value 0 if false and 1 if true.

An opaque simple name, limited to 31 ISO Latin 1
characters.

A simple name string, limited to 31 ISO Latin 1
characters.

A 2-byte field specifying major and minor version
numbers associated with the object class.

A 1-byte field with the value: DNSK_LOW, DNSK_
MEDIUM, or DNS$K_lilGH.

A 1-byte field with the value DNS$K_OBJECT,
DNS$K_SOFTLINK, DNS$K_DIRECTORY, or
DNS$K_CLEARINGHOUSE.

A structure consisting of a single byte, indicating
whether the attribute is a set (DNSK$_SET) or
a single value (DNS$K_SINGLE), followed by an
opaque simple name.

(continued on next page)

7-48 DNS Clerk System Service Calls
$DNS

Table 7-1 (Cont.): DNS Item Code Arguments

Item Code Identifier

Full_Name_String

Group_Member

Opaque_Full_Name

Opaque_Simple_Name

Simple_Name_Str

dnsb
VMS Usage: dns_status_block

Description

A full name string with the following structure:

[NS_name:] [.] Namestring [.Namestring]

NS_name:, if present, is a local system representation
of the NSUID, the unique identifier of the name
server. The DNS clerk supplies a namespace name
(node-name_NS) if the value is omitted.

Namestring represents a simple name component.
Multiple simple names are separated by periods. You
can include the asterisk wildcard (*) and simple
name strings within quotation marks.

A structure consisting of a single byte, indicating
whether the entry is a principal (DNS$K_GRPMEM_
NOT_GROUP) or another group <DNS$K_GRPMEM_
IS_ GROUP), followed by the opaque full name of the
member.

The internal format of the complete name identifier
for an object. The maximum output of DNS$PARSE_
FULLNAME_STRING is 402 bytes.

A simple name specifies the internal format of one
component of an Opaque_Full_Name. The Opaque_
Simple_Name is the output of the DNS$PARSE_
SIMPLENAME_STRING routine. It can be no longer
than 257 bytes.

One term consisting of a string of ASCil characters
with its length stored separately in an item list.

type: quadword (unsigned)
access: write only
mechanism: by reference

Status block to receive the final completion status of the $DNS operation.
The dnsb argument is the address of the quadword $DNS status block.

31

DNS Clerk System Service Calls 7-49
$DNS

The following figure depicts the structure of a $DNS status block:

0

return status

qualifying status

ZK-1080A-GE

Status Block Fields

return status
Set on completion of a DNS clerk request to indicate the success or
failure of the operation. Check the qualifying status word for additional
information about a request marked as successful. Wherever possible,
each function code description includes return status values.

qualifying status
This field consists of a set of flags that provide additional information
about a successful name service operation. Wherever possible, each
function code description includes qualifying status values.

The qualifying status values are defined as follows:

• DNS$V_DNSB_INOUTDIRECT-Iftrue, indicates only the top level
group was seached for a member.

• DNS$V _DNSB_OUTLINKED-If set, indicates that one or more soft
links were encountered while resolving the object of the call.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

Asynchronous system trap (AST) routine to be executed when I/O
completes. The astadr argument, which is the address of a longword
value, is the entry mask to the AST routine.

The AST routine executes in the access mode of the caller of $DNS.

astprm
VMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

7-50 DNS Clerk System Service Calls
$DNS

Asynchronous system trap (AST) parameter passed to the AST service
routine. The astprm argument is a longword value containing the AST
parameter.

description
The VMS Distributed Name Service Clerk system service provides a low
level interface between an application (client) and the VAX Distributed
Name Service. The DNS clerk interface is used to create, delete, modify,
and retrieve objects or soft links in a namespace.

A single system service call supports the DNS clerk. It has two main
parameters:

• A function code identifying the particular service to perform

• An item list specifying all the parameters for the required function

The use of this item list is similar to that of other system services that
use a single item list for both input and output operations.

Item list entries must be specified in opaque format. You can convert
any one of the name strings to opaque format with a conversion function.
If applications need to store names, they must store them in opaque
format. The opaque format guarantees the uniqueness of a name over
time, whereas a string format does not.

Many of the functions return results as a set. In some cases, the specified
output buffer might not be large enough to contain the complete set.
In this case, the return status indicates this condition with the success
status $DNS_MOREDATA. To obtain the remaining data from the set, the
client should make repeated calls, each time specifying the last attribute
received in the context variable item until the call returns SS$_NORMAL.

The context variable item can take one of two forms depending on the
function:

• DNS$CONTEXTVARNAME-If the returned data is a set of names,
then the item is a simple name.

• DNS$CONTEXTVARTIME-lf the returned data is a set of values,
then the item is a time-stamping.

If the context variable item is not specified or is null, then the results are
returned from the beginning of the set.

All functions return the SS$_NORMAL status for success except DNS$_
TEST_AITRIBUTE, which returns DNS$_TRUE or DNS$_FALSE. The
functions return linked information in the $DNS status block. The
DNS$V _DNSB_OUTLINKED bit in the status block indicates whether
any soft links are encountered in an information search.

DNS Clerk System Service Calls 7-51

Condition Values Returned

SS$_NORMAL

DNS$_ACCESSDENIED

DNS$_BADCLOCK

DNS$_BADEPOCH

DNS$_BADITEMBUFFER

DNS$_CACHELOCKED

DNS$_CLEARINGHOUSEDOWN

DNS$_CLERKBUG

DNS$_CONFLICTINGARGUMENTS

DNS$_DANGLINGLINK

DNS$_DATACORRUPTION

DNS$_ENTRYEXISTS

DNS$_FALSE

DNS$_INVALIDARGUMENT

DNS$_INVALID_ATTRIBUTENAME

DNS$_INVALID_CLASSNAME

$DNS

Normal completion of the request.

Caller does not have required access to the
entry in question. This error is returned only
if the client has some access to the entry.
Otherwise, the unknown entry status is
returned.

The clock at the name server has a value
outside the· permissible range.

Copies of directories are not synchronized.

Invalid output item buffer detected. (This
normally indicates that the buffer has been
modified during the call.)

Global client cache locked.

Clearinghouse is not available.

Internal clerk error detected.

'l\vo or more optional arguments conflict; they
cannot be specified in the same function call.

Soft link points to nonexistent entry.

An error occurred in accessing the data stored
at a clearinghouse. The clearinghouse may be
corrupted.

An entry with the same full name already
exists in the namespace.

Unsuccessful test operation.

A syntactically incorrect, out of range, or
otherwise inappropriate argument was
specified in the call.

The name given for function is not a valid
DNS attribute name.

The name given for function is not a valid
DNS class name.

DNS$_INVALID_CLEARINGHOUSENAME The name given for function is not a valid

DNS$_INVALID_CONTEXTNAME

DNS$_INVALID_DIRECTORYNAME

DNS clearinghouse name.

The name given for function is not a valid
DNSname.

The name given for function is not a valid
DNS directory name.

7-52 DNS Clerk System Service Calls
$DNS

DNS$_INVALID_ENTRYNAME

DNS$_INVALIDFUNCTION

DNS$_INVALID_GROUPNAME

DNS$_INVALIDITEM

DNS$_INVALID_LINKNAME

DNS$_INVALID_MEMBERNAME

DNS$_INVALIDNAME

DNS$_INVALID_NSNAME

DNS$_INVALID_OBJECTNAME

DNS$_INVALID_TARGETNAME

DNS$_INVALIDUPDATE

DNS$_INVALID_ WILDCARDNAME

DNS$_LOGICAL_ERROR

DNS$_MISSINGITEM

DNS$_MOREDATA

DNS$_NAMESERVERBUG

DNS$_NOCACHE

DNS$_NOCOMMUNICATION

DNS$_NONSRESOURCES

DNS$_NONSNAME

DNS$_NOTAGROUP

DNS$_NOTIMPLEMENTED

DNS$_NOTLINKED

The name given for function is not a valid
DNS entry name.

Invalid function specified.

The name given for function is not a valid
DNS group name.

Invalid item list entry specified.

The name given for function is not a valid
DNS link name.

The name given for function is not a valid
DNSname.

A badly formed name was supplied to the call.

N amespace name given in name string is not
a valid DNS name.

The name given for function is not a valid
DNS object name.

The name given for function is not a valid
DNSname.

An update was attempted to an attribute that
cannot be directly modified by the client.

The name given for function is not a valid
DNSname.

Error translating logical name in given string.

Required item list entry is missing.

More output data to be returned.

A name server encountered an implementa
tion bug. Please submit an SPR.

Client cache file not initialized.

No communication was possible with any
name server capable of processing the request.
Check NCP event 353.5 for the DECnet error.

The call could not be performed due to lack
of memory or communication resources at the
local node to process the request.

Unknown namespace name specified.

The full name given is not the name of a
group.

This function is defined by the architecture
as optional and is not available in this
implementation.

A link is not contained in the name.

DNS Clerk System Service Calls
$DNS

7-53

DNS$_NOTNAMESERVER

DNS$_NOTSUPPORTED

DNS$_POSSIBLECYCLE

DNS$_RESOURCEERROR

DNS$_TIMEOUTNOTDONE

DNS$_TIMEOUTMAYBEDONE

DNS$_TRUE

DNS$_UNKNOWNCLEARINGHOUSE

DNS$_UNKNOWNENTRY

DNS$_UNTRUSTEDCH

DNS$_WRONGATTRIBUTETYPE

The node contacted by the clerk does not
have a DNS server running. This can happen
when the application supplies the clerk with
inaccurate replica information.

This version of the architecture does not
support the requested function.

Loop detected in link or group entry.

Failure to obtain system resource.

The operation did not complete in the
time allotted. No modifications have been
performed even if the operation requested
them.

The operation did not complete in the time
allotted. Modifications may or may not have
been made to the namespace.

Successful test operation.

The clearinghouse does not exist.

Either the requested entry does not exist or
the client does not have access to the entry.

A DNS server is not included in the object's
access control set.

The caller specified an attribute type that did
not match the actual type of the attribute.

7-54 DNS Clerk System Service Calls
$DNSW

$DNSW-Distributed Name Service Clerk and Wait
The Distributed Name Service Clerk and Wait service registers a resource
in a distributed database; same as $DNS. However, the $DNSW service
completes synchronously; that is, it returns to the caller after the
operation completes.

For asynchronous completion, use the $DNS service, which returns to the
caller immediately after making a name service call. The return status to
the client call indicates whether a request was successfully queued to the
name service.

In all other respects, $DNSW is identical to $DNS. Refer to the $DNS
description for complete information about the $DNSW service.

format
SYS$DNSW [efn] ,tune ,itmlst ,[dnsb] ,[astadr] ,{astprm]

The VMS Distributed Name Service 7-55

7.3 DNS Run-Time Routines
All applications designed to take advantage of the Distributed Name Service
(DNS) use the DNS clerk system services and the DNS run-time routines to
register a resource in the DNS namespace and to modify and :find information
within the namespace. This section describes the run-time routines.

7-56 DNS$ Run-Time Routines
DNS$APPEND _SIMPLENAME_ TO _RIGHT

DNS$APPEND _SIMPLENAME_ TO _RIGHT-Append a
Simple Name to the End of a Full Name

The Append a Simple Name to the End of a Full Name routine adds an
opaque simple name to the end of an opaque full name to create a new
full name.

format
DNS$APPEND _SIMPLENAME_ TO _RIGHT

fullname ,simplename ,resulting-fullname ,resulting-length

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

arguments
full name
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The opaque full name gaining a new simple name. The fullname
argument is the address of a descriptor pointing to the opaque full name
that is to be extended.

simplename
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The opaque simple name that is appended. The simplename argument
is the address of a descriptor pointing to an opaque simple name that is
to be appended to the full name, thus creating a new full name.

resulting-fullname
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The new full name. The resulting-fullname argument is the address
of a descriptor that points to the buffer that receives the new full name.

DNS$ Run-Time Routines 7-57
DNS$APPEND _SIMPLENAME_ TO_RIGHT

This buffer can be the same as the buffer referred to by the fullname
argument; however, the descriptors must be separate.

resulting-length
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The length of the new full name. The resulting-length argument is the
address of a word that receives the length of the new full name found in
resulting-fullname.

description
DNS$APPEND_SIMPLENAME_TO_RIGHT adds an opaque simple name
to the end of an opaque full name to create a new full name.

condition values returned

SS$_NORMAL

DNS$_INVALIDNAME

0

Normal successful completion.

The name to be converted is not a valid DNS name.

Error appending name.

7-58 DNS$ Run-Time Routines
DNS$COMPARE_FULLNAME

DNS$COMPARE_FULLNAME-Compare Full Names
The Compare Full Names routine compares two opaque full names and
returns the result.

format
DNS$COMPARE_FULLNAME fullname1 ,fullname2

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

arguments
fullname1
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

One opaque full name. The fullnamel argument is the address of a
descriptor pointing to an opaque full name.

fullname2
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

One opaque full name. The fullname2 argument is the address of a
descriptor pointing to an opaque full name.

description
DNS$COMPARE_FULLNAME compares two opaque full names and
returns the result. First, the procedure checks the namespace UIDs of
the full names as numbers. If they are unequal, the routine returns the
result. If they are equal, it compares each simple name in the full name
until it finds an inequality or determines that both names are the same.

condition values returned

-1

0

1

DNS$ Run-Time Routines 7-59
DNS$COMPARE_FULLNAME

fullnamel is less than fullname2.

fullnamel equals fullname2.

fullnamel is greater than fullname2.

7-60 DNS$ Run-Time Routines
DNS$COMPARE_SIMPLENAME

DNS$COMPARE_SIMPLENAME-Compare Two Simple
Names

The Compare Two Simple Names routine compares two simple names,
without considering case.

format
DNS$COMPARE_SIMPLENAME simplename1 ,simplename2

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

arguments
simplename1
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

An opaque simple name. The simplenamel argument is the address of a
descriptor pointing to the first simple name.

simplename2
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

An opaque simple name. The simplename2 argument is the address of a
descriptor pointing to the second simple name.

description
DNS$COMPARE_SIMPLENAME compares two simple names, without
considering case. The routine determines the relationship between two
opaque simple names to see if they are equal.

condition values returned

SS$_NORMAL

-1

0

1

DNS$ Run-Time Routines 7-61
DNS$COMPARE_SIMPLENAME

Normal successful completion.

simplenamel is less than simplename2.

simplenamel equals simplename2.

simplenamel is greater than simplename2.

7-62 DNS$ Run-Time Routines
DNS$CONCATENATE_NAME

DNS$CONCATENATE_NAME-Join Two Names
The Join Two Names routine joins two opaque full names to form a new
full name.

format
DNS$CONCATENATE_NAME

fullname 1 ,fullname2 ,resulting-fullname ,resulting-length

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

arguments
fullname1
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The opaque full name to be joined. The fullnamel argument is the
address of a descriptor pointing to the opaque full name.

fullname2
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The opaque full name appended to fullnamel. The fullname2 argument
is the address of a descriptor pointing to the full name to be appended.

resulting-fullname
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The buffer where the new full name will be written. The resulting
fullname argument is the address of a descriptor pointing to the buffer.
This buffer can be the same as the buffer referred to by the fullnamel
argument; however, the descriptors must be separate.

resulting-length
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

DNS$ Run-Time Routines 7-63
DNS$CONCATENATE_NAME

The length of the new full name. The resulting-length argument is the
address of a word that receives the length of the new full name found in
resulting-fullname.

description
DNS$CONCATENATE_NAME joins two opaque full names to form a new
opaque full name, which is placed in the buffer named by the resulting
fullname argument. The new full name receives the namespace name
of the first opaque full name. For example, appending the full name
TEST:.POP.DIRl (fullname2) to DEC:.ENG.NAC (fullnamel) results in
a full name of DEC:.ENG.NAC.POP.DIRl.

condition values returned

SS$_NORMAL

DNS$_INVALIDNAME

0

Normal successful completion.

The name to be converted is not a valid DNS name.

Error performing concatenation.

7-64 DNS$ Run-Time Routines
DNS$COUNT _SIMPLENAMES

DNS$COUNT_SIMPLENAMES-Count the Simple
Names in a Full Name

The Count the Simple Names in a Full Name routine counts the number
of simple names contained in an opaque full name.

format
DNS$COUNT_SIMPLENAMES fullname ,count

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

arguments
full name
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The full name to be counted. The fullname argument is the address of a
descriptor pointing to the full name that is to be examined for the simple
names it contains.

count
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The number of simple names found in the full name. The count
argument is the address of a word that receives the number of simple
names.

description
DNS$COUNT_SIMPLENAMES counts the number of simple names-but
not the namespace name-found in an opaque full name. The number of
simple names counted is returned in the word referenced by the count
argument. The routine is meant to be used with DNS$REMOVE_RIGHT_
SIMPLENAME and DNS$REMOVE_LEFT_SIMPLENAME.

condition values returned

SS$_NORMAL

DNS$_INVALIDNAME

DNS$ Run-Time Routines 7-65
DNS$COUNT _SIMPLENAMES

Normal successful completion.

The name to be converted is not a valid DNS name.

7-66 DNS$ Run-Time Routines
DNS$CVT _DNSADDRESS_ TO _BINARY

DNS$CVT _DNSADDRESS_ TO _BINARY-Convert
a DNS Address to a Phase IV Binary Address

The Convert a DNS Address to a Phase IV Binary Address routine takes
a DNS address and returns the DECnet Phase IV node address.

format
DNS$CVT _DNSADDRESS_ TO_BINARY dnsaddress ,binary

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

arguments
dnsaddress
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The DNS address. The dnsaddress argument is the address of a
descriptor pointing to the DNS address.

binary
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The DECnet Phase IV address found in the DNS address structure. The
binary argument is the address of a word containing the 16-bit Phase IV
address of the node.

description
DNS$CVT_DNSADDRESS_TO_BINARY takes a DNS address and
returns the DECnet Phase IV node address. The Phase IV address is
returned in a word. If no Phase IV address is found in the DNS address,
then the value 0 is returned as an error.

condition values returned

SS$_NORMAL

0

DNS$ Run-Time Routines 7-67
DNS$CVT _DNSADDRESS_ TO _BINARY

Normal successful completion.

No DECnet Phase IV address found.

7-68 DNS$ Run-Time Routines
DNS$CVT_DNSADDRESS_TO_NODENAME

DNS$CVT_DNSADDRESS_TO_NODENAME--Convert
a DNS Address to a Node Name

The Convert a DNS Address to a Node Name routine takes a DNS address
and returns a DECnet Phase IV node name.

format
DNS$CVT_DNSADDRESS_TO_NODENAME

dnsaddress ,nodename ,resulting-length

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

arguments
dnsaddress
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The DNS address. The dnsaddress argument is the address of a
descriptor pointing to the DNS address.

nodename
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The DECnet Phase IV node name. The nodename argument is the
address of a descriptor pointing to the Phase IV node name. The memory
buffer referenced by the DSC$A_POINTER portion of this descriptor must
be large enough to contain the entire Phase IV node name string, which
can be up to six bytes long.

resulting-length
VMS Usage: word_unsigned
type:. word (unsigned)
access: write only
mechanism: by reference

DNS$ Run-Time Routines 7-69
DNS$CVT_DNSADDRESS_TO_NODENAME

The length of the node name (in bytes) after conversion. The resulting
length argument is a word containing the length of the node name (in
bytes) after conversion.

description
DNS$CVT_DNSADDRESS_TO_NODENAME takes a DNS address and
returns a DECnet Phase IV node name. lfno Phase IV address is found,
then the value 0 is returned.

Because DNS$CVT_DNSADDRESS_TO_NODENAME calls both
$ASSIGN and $QIOW, it can return condition values from either of
these system services. The routine also returns errors detected through
NETACP.

condition values returned

SS$_NORMAL

0

Normal successful completion.

No DECnet Phase IV address found.

7-70 DNS$ Run-Time Routines
DNS$CVT_NODENAME_ TO_DNSADDRESS

DNS$CVT_NODENAME_TO_DNSADDRESS--Convert
a Node Name to an Address

The Convert a Node Name to a DNS Address routine takes a DECnet
Phase IV node name and returns a DNS address.

format
DNS$CVT_NODENAME_TO_DNSADDRESS

nodename ,dnsaddress ,resulting-length

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

arguments
nodename
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The DECnet Phase IV node name. The nodename argument is the
address of a descriptor pointing to the node name. This routine creates
a DNS address containing the node address of the given Phase IV node
name.

dnsaddress
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The address of a buffer containing the DNS address. The dnsaddress
argument is the address of a descriptor pointing to the buffer address.

resulting-length
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The length of the DNS address after conversion. The resulting-length
argument is a word containing the length of the address.

DNS$ Run-Time Routines 7-71
DNS$CVT_NODENAME_TO_DNSADDRESS

description
DNS$CVT_NODENAME_TO_DNSADDRESS takes a DECnet Phase IV
node name and returns a DNS address. The routine creates the DNS
address for a given Phase IV node name.

DNS$CVT_NODENAME_TO_DNSADDRESS calls $ASSIGN and $QIOW
so· it can return condition values from either of these system services. The
routine also returns errors detected through NETACP.

condition values returned

SS$_NORMAL Normal successful completion.

7-72 DNS$ Run-Time Routines
DNS$CVT _TO_ USERNAME_STRING

DNS$CVT _TO_ USERNAME_STRING-Convert
an Opaque User Name to a String

The Convert an Opaque User Name to a String routine converts an
opaque DECnet Phase IV user name into a usemame string.

format
DNS$CVT _TO_ USERNAME_STRING

fullname ,username ,resulting-length

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

arguments
full name
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The opaque full name for the DECnet Phase IV user name. The fullname
argument is the address of a descriptor pointing to the name.

username
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The name converted to DECnet Phase IV format (node::user). The
username argument is the address of a descriptor pointing to a buffer
containing the converted name.

resulting-length
VMS Usage: word_unslgned
type: word (unsigned)
access: write only
mechanism: by reference

The length of the converted user name. The resulting-length argument
is the address of a word containing the length.

DNS$ Run-Time Routines 7-73
DNS$CVT _TO_ USERNAME_STRING

description
DNS$CVT_TO_USERNAME_STRING converts a DNS representation of a
Phase IV user name into a Phase IV username string.

If any full name other than a DNS representation of a Phase IV user
name is given, the routine returns a DNS$_INVALIDNAME error.

condition values returned

SS$_NORMAL

DNS$_ACCESSVIOLATION

DNS$_CACHELOCKED

DNS$_INVALIDARGUMENT

DNS$_INVALIDNAME

DNS$_NOCACHE

DNS$_RESOURCEERROR

Procedure successfully completed.

Memory or other resource access violation.

Global client cache locked by another process.

One of the arguments was incorrect, out of range, or
otherwise inappropriate.

The name to be converted is not a valid DNS name.

Client cache file not initialized.

Insufficient resources on local system to process request.

7-74 DNS$ Run-Time Routines
DNS$PARSE.._ USERNAME_STRING

DNS$PARSE_ USERNAME_STRING-Convert a
User Name from String to Opaque

The Convert a User Name from String to Opaque routine converts a
DECnet Phase IV user name to an opaque full name.

format
DNS$PARSE_USERNAME_STRING

user-string ,phase4-name ,resulting-length [,next-character-pointer]

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

arguments
user-string
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The name string to convert. The user-string argument is the address of
a descriptor pointing to the DECnet Phase IV usemame string, which is
in the format node::user.

phase4-name
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The opaque full name resulting from conversion. The phase4-name
argument is the address of a descriptor pointing to the buffer that is to
contain an opaque full name representing a user name on a Phase IV
node.

resulting-length
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

DNS$ Run-Time Routines 7-75
DNS$PARSE_USERNAME_STRING

The length of the opaque full name. The resulting-length argument
is the address of a word holding the length of the name returned in
phase4-name.

next-character-pointer
VMS Usage: address
type: address
access: write only
mechanism: by reference

The character following the DNS name extracted from user-string.
The next-character-pointer argument is the address of the character
following the DNS name. When you use this argument, DNS$PARSE_
USERNAME_STRING returns DNS$_INVALIDNAME when it encounters
an invalid name. In such a case, next-character-pointer points to the
first character in the name that is invalid.

description
DNS$PARSE_USERNAME_STRING converts a DECnet Phase IV user
name to an opaque full name that represents the user name.

The next-character-pointer argument affects how the routine parses
the string:

• When next-character-pointer is zero or absent, the full name string
given in user-string must contain valid DNS characters with DNS
naming syntax. If any part of the string violates this rule, the routine
returns DNS$_INVALIDNAME and the output should not be used.

• When the next-character-pointer argument has a nonzero value,
the parsing begins at the first character referenced by user-string
and parsing continues until one of the following occurs:

An invalid DNS character is found.

An exception to DNS syntax rules occurs.

All characters have been parsed.

Then the address given by next-character-pointer is set to the
address of the character or group of characters that is invalid. It
returns DNS$_INVALIDNAME if the colons (::) separating the node
name from the user name of the Phase IV name are missing.

If any part of the node portion of the DECnet Phase IV username string
is not a proper DNS name, the routine returns DNS$_INVALIDNAME
regardless of the value and whether or not the next-character-pointer
argument is supplied.

7-76 DNS$ Run-Time Routines
DNS$PARSE_ USERNAME_STRING

Error conditions can result from the parse routine. You can test for error
conditions in any of the following ways:

• When all parts of the name are invalid, test whether next-character·
pointer contains the same address as user-string. Alternatively, test
whether the resulting length is zero.

• When user-string contains a valid DNS name, test whether next·
character-pointer contains the address immediately following
the given. buffer. Alternatively, test whether the address in next
character-pointer minus the address of user-string is equal to or
larger than the size of the given buffer.

• When parsing a user name that has been extracted from a command
line, test whether the character given at the address of next
character-pointer is a valid separator for the command line, for
example, a space. If you find an invalid character, then part of the
DNS name is invalid.

condition values returned

SS$_NORMAL

DNS$_ACCESSVIOLATION

DNS$_CACHELOCKED

DNS$_INVALIDARGUMENT

DNS$_INVALIDNAME

DNS$_NOCACHE

DNS$_RESOURCEERROR

0

Normal successful completion.

Memory or other resource access violation.

Global client cache locked by another process.

One of the arguments was incorrect, out of ·range, or
otherwise inappropriate.

The name to be converted is not a valid DNS name.

Client cache file not initialized.

Insufficient resources on local system to process request.

Error creating opaque name.

DNS$ Run-Time Routines 7-77
DNS$REMOVE_FIRST _SET_ VALUE

DNS$REMOVE_FIRST _SET_ VALUE-Remove a
Value from a Set

The Remove a Value from a Set routine extracts the first value from a set
and returns the value with its creation time-stamping UID.

format
DNS$REMOVE_FIRST _SET_ VALUE

set[, value][, value-length] [,uid] [,uid-length] [,newset] [,newset-length]

returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

arguments
set
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The set from which the value is extracted. The set argument is the
address of a descriptor pointing to the set.

value
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The value extracted from the set. The value argument is the address of a
descriptor pointing to a buffer containing the value.

value-length
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The length of the value. The value-length argument is the address of a
word holding the length of the value placed in value.

7-78 DNS$ Run-Time Routines
DNS$REMOVE_FIRST _SET_ VALUE

uid
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The buffer holding the creation time-stamping UID of the extracted value.
The uid argument is the address of a descriptor pointing to the buffer.

uid-length
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The length of the UID placed in uid. The uid-length argument is the
address of a word holding the length.

newset
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The opaque set without the first value. The newset argument is the
address of a descriptor pointing to a buffer containing that set. The buffer
can be the same as the one given in the set argument.

newset-length
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The length of the new set copied to the newset buffer. The newset
length argument is the address of a word that receives the length.

description
DNS$REMOVE_FIRST_SET_VALUE extracts a value from a set and
returns the value with its creation time-stamping UID. Use the routine to
extract values from the sets returned by $DNS and $DNSW.

A set can contain any number of values that are relevant to a given call.
The routine extracts values one at a time from the opaque set for use by
a program. In order to extract all values from the set, you must use an
execution loop.

condition values returned

SS$_NORMAL

DNS$_INVALIDARGUMENT

0

-1

DNS$ Run-Time Routines 7-79
DNS$REMOVE_FIRST _SET_ VALUE

Normal successful completion.

The set argument was incorrect, out of range, or
otherwise inappropriate.

Set buffer is empty.

Length of value, uid, or newset buffers too small.

7-80 DNS$ Run-Time Routines
DNS$REMOVE_LEFT _SIMPLENAME

DNS$REMOVE_LEFT _SIMPLENAME-Strip the
Simple Name on the Left from the Full Name

The Remove the Simple Name on the Left from the Full Name routine
removes the leftmost simple name from an opaque full name. It returns
both the simple name stripped and the new full name that results from
the operation. _ ..

format
DNS$REMOVE_LEFT _ SIMPLENAME

returns

fullname [,resulting-fullname] [,resulting-fullname-length]
[,resulting-simplename] [,resulting-simplename-length]

VMS Usage: cond_value
type: longword {unsigned)
access: write only
mechanism: by value

arguments
full name
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The opaque full name to strip. The fullname argument is the address
of a descriptor pointing to the opaque full name to strip. If the full name
does not contain any simple names, the routine returns a value of 0 in
cond_ value.

resulting-fullname
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The opaque full name resulting from the operation. The resulting
fullname argument is the address of a descriptor pointing to the buffer
containing the resulting opaque full name. This buffer can be the same as
the buffer referred to by the fullname argument; however, the descriptors
must be separate.

resulting-fullname-length
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

DNS$ Run-Time Routines 7-81
DNS$REMOVE_LEFT _SIMPLENAME

The length of the full name that is returned. The resulting-fullname
length argument is the address of a word receiving the length of the full
name returned in resulting-fullname.

resulting-simplename
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The simple name stripped from fullname. The resulting-simplename
argument is the address of a descriptor pointing to the buffer containing
the opaque simple name that was stripped.

resulting-simplename-length
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The length of the simple name. The resulting-simplename-length
argument is the address of a word that receives the length of the simple
name returned in resulting-simplename.

description
DNS$REMOVE_LEFT_SIMPLENAME removes the leftmost simple name
from an opaque full name. When resulting-fullname is nonzero, the full
name resulting from the removal of the leftmost simple name is returned
in that buffer. When resulting-simplename is nonzero, the simple
name that was stripped from fullname is returned in that buffer. The
namespace name is not stripped from the full name; only simple names
are affected.

condition values returned

SS$_NORMAL

DNS$_INVALIDNAME

-1

0

Normal successful completion.

The name to be converted is not a valid DNS name.

Error stripping name.

No simple name.

7-82 DNS$ Run-Time Routines
DNS$REMOVE_RIGHT _SIMPLENAME

DNS$REMOVE_RIGHT _SIMPLENAME-Strip the
Simple Name on the Right from the Full Name

The Remove the Simple Name on the Right from the Full Name routine
removes the rightmost simple name from an opaque full name. It returns
both the simple name stripped and the new full name that results from
the operation.

format
DNS$REMOVE_RIGHT _SIMPLENAME

returns

fullname £resulting-fullname] £resulting-fullname-length]
£resulting-simplename] £resulting-simplename-length]

VMS Usage: cond_value
type: longword (unsigned)
access: write only·
mechanism: by value

arguments
full name
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The opaque full name to strip. The fullname argument is the address of
a descriptor pointing to the opaque full name to strip. When the opaque
full name does not contain any simple names, the routine returns a value
of 0 in cond_ value.

resulting-fullname
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The opaque full name resulting from the operation. The resulting
fullname argument is the address of a descriptor pointing to a buffer
containing the resulting opaque full name. This buffer can be the same as
the buffer referred to by the fullname argument; however, the descriptors
must be separate.

resulting-fullname-length
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

DNS$ Run-Time Routines 7-83
DNS$REMOVE_RIGHT _SIMPLENAME

The length of the full name returned in resulting-fullname. The
resulting-fullname-length argument is the address of a word that
receives the length of the full name returned in resulting-fullname.

resulting-simplename
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

A buffer containing the opaque simple name stripped from fullname. The
resulting-simplename argument is the address of a descriptor pointing
to the buffer.

resulting-simplename-length
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The length of the simple name. The resulting-simplename-length
argument is the address of a word receiving the length of the simple
name returned in resulting-simplename.

description
DNS$REMOVE_RIGHT_SIMPLENAME removes the rightmost simple
name from an opaque full name. When resulting-full.name is nonzero,
the full name resulting from the removal of the rightmost simple name
is returned in that buffer. When resulting-simplename is nonzero, the
simple name that was stripped from fullname is returned in that buffer.
The namespace name is not stripped from the full name; only simple
names are affected.

condition values returned

SS$_NORMAL

DNS$_INVALIDNAME

-1

Normal successful completion.

The name to be converted is not a valid DNS name.

EITor stripping name.

7-84 The VMS Distributed Name Service

7.4 Starting the DNS Clerk
The VAX Distributed Name Service (DNS) is a product consisting of two modules:
a clerk and a server. The DNS clerk is an integral part of the VMS operating
system. The server is a layered product. As long as a DNS server is installed
in your network, you can start the DNS clerk on your local VMS system. Then,
applications can take advantage of the DNS name service.

You start the DNS clerk once DECnet is running. The DNS startup procedure
defines the default DNS server, installs necessary libraries, and creates an
advertiser process. Startup involves two steps:

1. Obtain the name of the default DNS server from your network administrator.

2. Execute the command procedure DNS$CHANGE_DEF _FILE. It runs the
command procedure DNS$CLERK_STARTUP, which installs the shareable
libraries and creates the advertiser process DNS$ADVER.

To run the command procedure, enter the following command:

$ @SYS$STARTUP:DNS$CHANGE_DEF_FILE.COM

When executed, SYS$STARTUP:DNS$CHANGE_DEF_FILE.COM prompts
for the name of the node where the DNS server is located.
Name of DNS server node?

Enter a node name, identifying the node that has the DNS server installed.

Once you have run DNS$CHANGE_DEF_FILE.COM, you do not need to run
it again unless you want to change the default DNS server or the default
namespace. DNS$CHANGE_DEF _FILE.COM copies a configuration file to
SYS$SYSTEM that is called DNS$DEFAULT_FILE.DAT. It lists the name of the
namespace currently being used as a default.

You must add the file SYS$STARTUP:DNS$CLERK_STARTUP.COM to
SYS$MANAGER:SYSTARTUP _ V5.COM after the line that starts DECnet so
that the DNS clerk images are installed and .the advertiser is started after a
system boot.

7.5 DECnet Event Messages
The following are DECnet event messages sent by the Distributed Name Service
clerk. For a complete list of DECnet event messages, see the VMS Network .
Control Program Manual.

The VMS Distributed Name Service 7-85

353.5 DNS Clerk Unable to Communicate with Server

The DNS clerk was unable to communicate with a DNS server. This message
displays the name of the clearinghouse where the communication failed, the node
on which the DNS server servicing the clearinghouse exists, and the reason why
the communication failed, which might be any of the following:

• Unknown clearinghouse

The requested clearinghouse is not serviced by the DNS server that was
contacted. This can happen when the cache maintained by the local DNS
clerk contains outdated information for a directory.

• Clearinghouse down

A DNS server is unable to service a request because the clearinghouse is not
operational (stopped state).

• Wrong state

A DNS server is unable to service a request because the clearinghouse is
currently starting up or shutting down.

• Data corruption

A DNS server is unable to service the request because the clearinghouse file
has been corrupted.

• No communication

A network error occurred on the local system or on the system containing the
DNS server. The local VMS error is displayed as a part of this message.

353.20 Local DNS Advertiser Error

This event communicates errors that are local to the DNS Advertiser
(DNS$ADVER). All these errors have the prefix ADV and are generated when
the DNS Advertiser has encounters an error that prevents proper operation of the
process. Exact errors are listed in Section 7.6.

7.6 System Error Messages
The following are the system error messages that can be generated by the
Distributed Name Service clerk.

7-86 The VMS Distributed Name Service

ADVADVCOMP, device error whlle advertising

Facility: DNS, Distributed Name Service Clerk Service

Explanation: An error occurred on the network device while advertising
clearinghouse information.

User Action: The device in which the error occurred is included in the
error text, along with the VMS status from the device. Take corrective
action based on the accompanying VMS error message.

ADVADVERSEND, multicast error while advertising clearinghouse

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS$ADVER process was unable to build an
advertisement protocol or send the protocol by means of multicasting.

User Action: This error should be seen only on systems that contain a DNS
server. Stop the server and restart it. If the problem persists, contact your
Digital Customer Service Group representative.

ADVALLOC, failed to allocate space for cache entry

Facility: DNS, Distributed Name Service Clerk Service

Explanation: There is not enough room in the DNS clerk cache for a
namespace nickname. The namespace will not be added to the clerk cache.

User Action: This is an informational message; no overt user action is
required.

ADVBADFORMAT, bad advertisement message received from device

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The message that the DNS$ADVER process read from the
network device was an invalid clearinghouse advertisement.

User Action: Make sure no other process is using multicast ID numbers 09-
00-2B-02-01-00 and 09-00-2B-02-01-01. If not, check that the multicasting
de'\Tice is operating correctly.

ADVBTIM, error converting time string in $BINTIM

Facility: DNS, Distributed Name Service Clerk Service

Explanation: An internal error occurred in the DNS$ADVER process. The
image might be corrupt.

User Action: Submit a Software Performance Report (SPR).

The VMS Distributed Name Service 7-87

ADVCACHEINIT, could not initialize DNS clerk cache

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS$ADVER process was unable to initialize the DNS
caches. This message is usually accompanied by a message indicating the
reason for the failure.

User Action: Make sure no other DNS$ADVER process is running on
the system. Also, make sure that the DNS$CLIENT or DNS$SHARE
executables are not installed as sharable images. Take corrective action
based on the accompanying VMS error message.

ADVCANTIM, error canceling multicast timer

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS$ADVER process was unable to cancel a local timer
(used to determine when a multicast of local DNS server information is
performed).

User Action: A specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

ADVCHUID, failed to add clearinghouse to cache

Facility: DNS, Distributed Name Service Clerk Service

Explanation: An error occurred while trying to add DNS clearinghouse
information to the DNS global cache. The actual DNS error that caused this
error accompanies this error message. The clearinghouse will not be entered
in the global cache.

User Action: This is an informational message; no overt user action is
required.

ADVCLILOADFAIL, error while loading client clearinghouses

Facility: DNS, Distributed Name Service Clerk Service

Explanation: An error occurred wJrlle the DNS$ADVER process attempted
to load clearinghouse information into the client cache.

User Action: A specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

7-88 The VMS Distributed Name Service

ADVDEASGN, error deassigning device

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS$ADVER process was unable to deassign a device
that was no longer needed.

User Action: The device in which the error occurred is included in the error
message, along with the VMS status from the device. Take corrective action
based on the accompanying VMS error message.

ADVDEFCONN, error connecting DNS$DEFAULT_FILE.DAT, no default namespace
defined

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS$ADVER process was able to open the configuration
file but was unable to connect to the file and read it.

User Action: A specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

ADVDEFLOAD, error closing DNS$DEFAULT _FILE.DAT

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS$ADVER process was unable to close the
configuration file.

User Action: A specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

ADVDEFOPEN, error opening DNS$DEFAULT _FILE.DAT, no default namespace defined

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS$ADVER process was unable to open the file
containing configuration information for this system. The· DNS clerk can
still execute, but names that use default namespaces will be marked invalid.

User Action: Make sure the file DNS$DEFAULT_FILE.DAT exists in
the SYS$SYSTEM directory. If it does not, then use the command file
SYS$STARTUP:DNS$CHANGE:DEF _FILE.COM to configure default
information for the local system. If the file does exist, make sure it has
world-readable protection.

The VMS Distributed Name Service 7-89

ADVDEFPARSE, error parsing DNS$DEFAULT_FILE.DAT, no default namespace defined

Facility: DNS, Distributed N rune Service Clerk Service

Explanation: One or more of the entries in the DNS configuration file was
invalid. The advertiser was unable to determine the default nrunespace.

User Action: You might need to edit the configuration file DNS$DEFAULT_
FILE.DAT in SYS$SYSTEM so it only contains configuration infor-
mation for the DNS clerk. You can reconfigure the system using the
SYS$STARTUP:DNS$CHANGE_DEF_FILE.COM command file. After mak
ing corrections, stop the DNS clerk (using SYS$STARTUP:DNS$CLERK_
STOP.COM) and then restart it (using SYS$STARTUP:DNS$CLERK_
STARTUP.COM).

ADVDEVCHECK, error checking Ethernet devices

Facility: DNS, Distributed Name Service Clerk Service

Explanation: An error occurred while checking the status of a network
device.

User Action: The device in which the error occurred is included in the
error text, along with the VMS status from the device. Take corrective
action based on the accompanying VMS error message.

ADVDUMPFAIL, error while dumping DNS server clearinghouses

Facility: DNS, Distributed N rune Service Clerk Service

Explanation: An error occurred while the DNS$ADVER process attempted
to create a configuration file on the local system.

User Action: A specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

ADVETHERMEM, no memory for write to device

Facility: DNS, Distributed N rune Service Clerk Service

Explanation: There is not enough memory available for the DNS$ADVER
process to allocate space to build a protocol.

User Action: Check process and system memory quotas.

7-90 The VMS Distributed Name Service

ADVMBX, could not create mailbox DNS$SOLICIT _MBX

Facility: DNS, Distributed Name Service Clerk Service

Explanation: An error occurred on the local system that prevented the
DNS$ADVER process from creating the DNS$SOLICIT_MBX mailbox. This
mailbox is used by the DNS clerk to log errors.

User Action: A· specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

ADVNICKUID, failed to add NICKNS entry to cache

Facility: DNS, Distributed Name Service Clerk Service

Explanation: An error occurred while trying to associate a UID with a
namespace nickname in the DNS global cache. The actual DNS error that
caused the error is included in the error message. An entry will not be made
in the global cache for this namespace.

User Action: This is an informational message; no overt user action is
required.

ADVPRIV, not enough privs to run DNS$ADVER

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The process executing the DNS$ADVER process does not
have the necessary privileges.

User Action: The DNS$ADVER process needs SHMEM, PFNMAP,
EXQUOTA, PRMGBL, SYSGBL, SYSLCK, SYSPRV, LOG_IO, NETMBX,
TMPMBX, SYSNAM and CMKRNL privileges. Restart DNS$ADVER using
these privileges.

ADVRANDOM, error generating random number

Facility: DNS, Distributed Name Service Clerk Service

Explanation: Random ·numbers are used by the DNS$ADVER process to
help prevent congestion of multicasts on the network.

User Action: A specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

The VMS Distributed Name Service 7-91

ADVRECBUF, device error while receiving message

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS$ADVER process encountered an error while
receiving a message through the network.

User Action: The device in which the error occurred is included in the
error text, along with the VMS status from the device. Take corrective
action based on the accompanying VMS error message.

ADVRECREATE, recreation of mailbox DNS$SOLICIT _MBX failed

Facility: DNS, Distributed Name Service Clerk Service

Explanation: An error occurred while receiving a message on the mailbox.
Another error occurred when the DNS$ADVER process tried to remedy the
error by recreating the mailbox.

User Action: A specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

ADVREREAD, re-read of DNS$SOLICIT _MBX failed

Facility: DNS, Distributed Name Service Clerk Service

Explanation: An error occurred while receiving a message on the mailbox.
After a new mailbox had been successfully created, another error occurred
while trying to reread the mailbox.

User Action: A specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

ADVSETIMR, error setting timer for multicasts

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS$ADVER process was unable to set a local timer.
This timer is used to determine when a multicast of local DNS server
information is performed.

User Action: A specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

7-92 The VMS Distributed Name Service

ADVSOLCOMP, device error while soliciting DNS servers

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS$ADVER process encountered an error while
multicasting a solicitation message to DNS servers on the network.

User Action: The device in which the error occurred is included in the
error text, along with the VMS status from the device. Take corrective
action based on the accompanying VMS error message.

ADVTIMERR, cannot create timeout value

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS$ADVER process attempted to create a DNS
timeout value but received an error from the $GETTIM service routine.

User Action: A specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

ADVUIDNICK, failed to add NSNAME entry to cache

Facility: DNS, Distributed Name Service Clerk Service

Explanation: An error occurred while trying to associate a UID with a
namespace nickname in the DNS global cache. The actual DNS error that
caused this error is included in this error text. No entry will be made in the
global cache.

User Action: This is an informational message; no overt user action is
required.

ADVWRITETHER, error writing on device

Facility: DNS, Distributed Name Service Clerk Service

Explanation: An error occurred while DNS$ADVER was trying to write to
an ethemet device.

User Action: The device in which the error occurred is included in the
error text, along with the VMS status from the device. Take corrective
action based on the accompanying VMS error message.

The VMS Distributed Name Service 7-93

NOCOMMUNICATION, unable to communicate with DNS server

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS clerk was unable to communicate with a
clearinghouse. The error text includes VMS error information that might
have caused the communication problem.

User Action: A specific VMS error immediately follows the error text of
this message. Take corrective action based on the accompanying VMS error
message.

SOLCONNECT, error connecting to file SYS$SYSTEM:DNS$DEFAULT_FILE.DAT

Facility: DNS, Distributed Name Service Clerk Service

Explanation:· The solicitor attempted to check the configuration file for
errors, but was unable to connect to the file.

User Action: A specific VMS error message immediately follows the error
text of this message. Take corrective action based on the accompanying VMS
error message.

SOLOPEN, error opening file SYS$SYSTEM:DNS$DEFAULT_FILE.DAT

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The solicitor attempted to check the configuration file for
errors but was unable to open the file.

User Action: A specific VMS error message immediately follows the error
text of this message. Take corrective action based on the accompanying VMS
error message.

SOLREADLINE, error reading line in file SYS$SYSTEM:DNS$DEFAULT_FILE.DAT

Facility: DNS, Distributed Name Service Clerk Service

Explanation: Invalid configuration information was found in the DNS
configuration file.

User Action: You might need to edit the configuration file DNS$DEFAULT_
FILE.DAT in SYS$SYSTEM. Make sure that the file contains config
uration information for the DNS clerk only. You can reconfigure the
system using the SYS$STARTUP:DNS$CHANGE_DEF _FILE.COM
command file. After making corrections, you must stop the DNS clerk
(using SYS$STARTUP:DNS$CLERK_STOP.COM) and restart it (using
SYS$STARTUP:DNS$CLERK_STARTUP.COM).

7-94 The VMS Distributed Name Service

SOLTIMEOUT, timed out waiting for DNS$ADVER to read mailbox message from
DNS$SOLICIT_MBX

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS solicit process was unable to communicate with
the advertiser process. This can happen when the advertiser process
(DNS$ADVER) is unable to start properly or has terminated abnormally.

User Action: Make sure the DNS$ADVER process is running. If it is not,
then restart.it using the SYS$STARTUP:DNS$CLERK_STARTUP.COM
command file. If it is running, stop it using SYS$STARTUP.DNS$CLERK_
STOP.COM and then restart it. If this does not work, call your Digital
Customer Service Group representative.

SOLWAITING, waiting for DNS$ADVER to read mailbox message from
DNS$SOLICIT_MBX

Facility: DNS, Distributed Name Service Clerk Service

Explanation: During the startup phase of the DNS clerk, you get this
message if your system is heavily loaded. It indicates that startup has taken
longer than normally anticipated but has not yet failed.

User Action: This is an informational message; no overt user action is
required.

UNKNOWNCLEARINGHOUSE, the clearinghouse does not exist

Facility: DNS, Distributed Name Service Clerk Service

Explanation: The DNS clerk attempted to contact a clearinghouse that
does not exist in the namespace. This can occur when the· DNS clerk caches
are out of date or when the replica set of a given directory is out of date.

User Action: None. The DNS clerk will try to contact other clearinghouses
to satisfy the request.

Chapter 8

VAXTPU

This chapter provides information on new and changed features of VAXTPU
for programmers who write applications in VAXTPU or who extend or layer
applications on the Extensible VAX Editor (EVE).

The portions of this chapter that cover DECwindows VAXTPU are intended for
readers familiar with DECwindows programming concepts and terminology. For
more information on programming in DECwindows, see the VMS DECwindows
Guide to Application Programming and the VMS DECwindows Toolkit Routines
Reference Manual.

The major new VAXTPU features for VMS Version 5.3 are as follows:

• Initialization is faster in DECwindows VAXTPU. Note that some application
recoding might be required.

• The MAP and UNMAP built-ins accept a widget parameter.

• New buffer change journaling keeps track of modifications on a per-buffer
basis. Buffer change journaling allows DECwindows VAXTPU sessions to be
journaled and recovered. To. implement buffer change journaling, VAXTPU
provides six new built-ins and enhances four previously existing built-ins.
Keystroke journaling is still provided.

• Pattern searches are more efficient. The new keywords BUFFER_BEGIN
and BUFFER_END are available for creating patterns. The SCAN, SCANL,
SPAN, and SPANL built-ins can perform a new kind of reverse search in
addition to the previously supported reverse search.

• Programmers now have the option to make one or more records in a buffer
visible or invisible on a screen. The programmer can also set or change the
left margin of the records. Finally, the records can be made unmodifiable, so
a user cannot alter the record.

• A watch cursor replaces the pointer cursor when DECwindows VAXTPU is
busy for more than one second.

8-2 VAXTPU

• DECwindows VAXTPU supports the use of icon pixmaps and the addition of
the SET (HEIGHT) built-in and enhancement of the SET (WIDTH) built-in
make window resizing easier.

• Seven new built-ins provide finer control over various DECwindows functions.

• Application programmers or users can change the current default directory
from within VAXTPU.

• For defining synonyms, an EQUIVALENCE statement is available and
programmers can declare a local variable in code that is not within a
procedure. Binary, octal, and hexadecimal constants are supported, as well as
decimal constants.

• Conditional statements are now available to control which portions of a source
file are compiled under various· conditions.

• You can designate a program to handle detached cursor conditions (conditions
in which the cursor position cannot accurately represent the editing point in
the current window).

• Miscellaneous enhancements have been added to the following previously
existing built-ins:

CHANGE_ CASE

CREATE_RANGE

EDIT

GET_INFO (buffer_ variable)

LENGTH

MESSAGE

MODIFY_RANGE

POSITION

SUBSTR

TRANSLATE

• Seven keywords are reserved for future use.

• When using the VAXTPU callable interface, the application programmer can
allow VAXTPU to supply a default routine instead of specifying the entry
TPU$_FILEIO in the item list for the TPU$INITIALIZE routine.

• The VAXTPU callable interface supports chaining of item lists, making the
callable interface more like VMS system services.

VAXTPU 8-3

• Function keys Fl through F5 are now supported. Modifiers ALT_MODIFIED
and HELP _MODIFIED are available for main keyboard keys and for control
modified keys.

• All built-ins are available when you specify the /NODISPLAY command
qualifier.

These features are described in more detail in the following sections.

8.1 Associated Documents
For complete reference information on the features of VAXTPU through VMS
Version 5.2, see the VAX Text Processing Utility Manual.

To learn how to use the Extensible VAX Editor (EVE), see the Guide to VMS
Text Processing. For reference information on EVE commands, see VMS EVE
Reference Manual.

The VMS Utility Routines Manual contains a chapter presenting the VAXTPU
callable interface.

The VMS System Messages and Recovery Procedures Reference Volume contains
the VAXTPU messages, as well as an explanation and suggested user action for
each message. The messages are listed alphabetically by the abbreviation for the
message text.

8.2 Changed DECwindows VAXTPU Initialization
This section discusses new VAXTPU initialization processing features that are
incompatible with previous versions of DECwindows VAXTPU.

All code that compiled and executed properly on the versions ofVAXTPU released
with VMS Version 5.0, Version 5.1, and Version 5.2 will continue to compile and
execute properly, unless the code depends on displaying information or prompting
during startup of DECwindows VAXTPU. To display information or prompts, you
must modify the initialization code to include a statement containing any of the
following built-ins:

• READ _KEY built-in procedure

• READ_ CHAR built-in procedure

• READ_LINE built-in procedure

• MAP built-in procedure

Also note that the use of new or incompatible EVE features might make
rebuilding existing section files desirable.

8-4 VAXTPU

8.3 Initialization Coding
Unlike previous versions ofDECwindows VAXTPU, the new version does not map
any prompts or display information to the screen until the initialization program
completes. This results in a faster initialization process.

Because user prompts and display information are no longer automatically
displayed during the application's initialization phase, your program code for
previous versions of VAXTPU might not work as intended under the new version.
The READ_CHAR, READ_KEY, and READ_LINE built-ins have been enhanced
to map the user visible portion of your application to the DECwindows screen.
For information about resizing windows/screens and the READ_CHAR, READ_
KEY, and READ_LINE built-in procedures, refer to Section 8.7.2.

If you want an application to display information during initialization but do not
want to use READ_CHAR, READ_KEY, or READ_LINE, you can use the newly
enhanced MAP built-in. MAP allows a VAXTPU application to map the window
associated with a widget to the screen. The UNMAP built-in has been similarly
enhanced to allow an application to unmap the window associated with a widget.

To map or unmap VAXTPU's top-level window and all its subwindows, your
application can call GET_INFO (widget, "parent") in a loop. The loop starts at
some known child of the VAXTPU top-level widget and proceeds up the widget
hierarchy until GET_INFO (widget, "parent") returns 0, indicating that a widget
with no parent has been found. The application then calls MAP or UNMAP on
the parentless widget. The application can use the widget returned by GET_
INFO (WIDGET, 11 widget_id", SCREEN, 11tpu$mainwindow") as the starting
point in such a loop.

8.3.1 Enhancements to the MAP Built-In
The MAP built-in can now take a widget parameter. When you use MAP this way,
the built-in calls the Xlib routine MAP WINDOW to map the window associated
with the specified widget.

Syntax

MAP (widget)

Parameter

widget
The widget instance you want to make visible.

VAXTPU 8-5

Example

MAP (example_widget);

This statement causes the widget assigned to the variable example_widget to
become visible, if the widget has been created and managed but not mapped.
For more information on how to map widgets without managing them, see the
description of SET (MAPPED_ WHEN_MANAGED) in this chapter.

8.3.2 Enhancements to the UNMAP Built-In
The UNMAP built-in can now take a parameter that is a variable containing
a widget instance. When you use UNMAP this way, the built-in calls the Xlib
routine UNMAP WINDOW to unmap the window associated with the specified
widget. If the unmapped window is VAXTPU's top-level window, VAXTPU
automatically maps the top-level window again if a READ_CHAR, READ_KEY or
READ_LINE built-in is executed.

Syntax

UNMAP (widget)

Parameter

widget
The widget instance you want to make invisible.

Example

UNMAP (example_widget);

This statement causes the widget assigned to the variable example_widget to
become invisible.

8.3.3 Behavior of GET_INFO (widget_variable, 11widget_info 11
)

Built-In

The GET_INFO (widget_variable, 11widget_info") built-in has been modified
to handle the case where the requested resource is a list of items and the list
contains no entries. In this case, the GET_INFO call uses either the element of
the array parameter or uses the value parameter to return an array containing
no elements.

Syntax

{O I 1} := GET_INFO (widget_variable, "widget_info",
{array I arg_pair} [, array I arg_pair ...])

8-6 VAXTPU

Parameters

wldgeL varlable
The variable containing the widget instance whose resource values you want to
fetch.

"widgeLinfo"
A string indicating that you want the current value for one or more resources of
the specified widget.

array
An array used to return resource values. For complete information on using
this array, see the description of GET_INFO (widget_ variable) in the VAX Text
Processing Utility Manual.

arg_pair
A string naming a valid resource for the specified widget followed by a variable
to store the value of the resource. For complete information on using this pair of
parameters, see the description of GET_INFO (widget_ variable) in the VAX Text
Processing Utility Manual.

Example
temp_array := create array;
temp array {"selecteditems" + ascii (10) + "selecteditemsCount"} := O;
status := get_info (the_widget_id, "widget_info", temp_array);

If the_widget_id is a variable containing a list box widget that has no items
selected, then temp_array{"selectedltems" + ascii (10) + "selectedltemsCount"}
contains an empty array when the built-in returns.

8.4 Buffer Change Journaling
In previous versions of VAXTPU, the only form of journaling available was
keystroke journaling. In keystroke journaling, VAXTPU keeps track of each
keystroke made by the user during a session, regardless of which buffer is in
use when the user presses the key. If a system interruption occurs during a
session, the user can use the /JOURNAL and /RECOVER qualifiers to reconstruct
the work done during the session. For more information on recovery using a
keystroke journal file, see the VMS EVE Reference Manual.

Keystroke journaling did not work in the DECwindows environment in previous
versions ofVAXTPU, which made journaling and recovery impossible.

In VMS Version 5.3, VAXTPU supports both keystroke journaling and buffer
change journaling. Buffer change journaling involves maintaining journal files on
a per-buffer basis. The application can use the enhanced SET (JOURNALING)
built-in to direct VAXTPU to establish and maintain a separate journal file for
any buffer or buffers created during the session. The application programmer or
user can also use the enhanced SET (JOURNALING) built-in to tum buffer

VAXTPU 8-7

change journaling off or on for a given buffer during a session. For more
information on SET (JOURNALING), see Section 8.4.10. For more information
on using buffer change journaling files to recover from a system interrupt, see
Section 8.4.9.

In a buffer's journal file, VAXTPU keeps track of the following attributes for each
record in the buffer:

• Left margin setting

• Modifiability or unmodi:fiability

• Display value

For more information on record attributes and display values, see Section 8.6.

In the buffer's journal file, VAXTPU also keeps track of the following changes to
records and record attributes:

• Characters inserted in and deleted from a record (including the location where
the change took place)

• Records inserted in and deleted from a buffer (including the location where
the change took place)

• Changes to record attributes

Buffer change journaling does not involve keeping a record of all keystrokes
performed by the user while the user is editing a given buffer.

Now you can use both keystroke and buffer change journaling at the same time.
To turn on keystroke journaling, the application uses the JOURNAL_OPEN
built-in. For more information on JOURNAL_OPEN, see the VAX Text Processing
Utility Manual.

The application layered on VAXTPU, not the VAXTPU engine, determines what
kind of journaling is turned on and under what conditions. Table 8-1 shows the
journaling behavior established by EVE, which is VAXTPU's default editor.

8-8 VAXTPU

Table 8-1: Journaling Behavior Established by EVE

User or Programmer
Action

No DCL command qualifier
related to journaling is
specified.

/NOJOURNAL command
qualifier is specified.

Effect on Keystroke
Journaling

Keystroke journaling is
turned off.

Keystroke journaling is
turned off.

/JOURNAL = <filespec> Keystroke journaling is
command qualifier is turned on.
specified.

/JOURNAL command Keystroke journaling is
qualifier is specified without turned off.
a file specification.

Effect on Buffer Change
Journaling

Buffer change journaling is turned on.

Buffer change journaling is turned off.
Note, however, that /NOJOURNAL does
not disable buffer change journaling.
Even when /NOJOURNAL has been
specified, it is possible to use SET
(JOURNALING) to turn on buffer change
journaling.

Buffer change journaling is turned off.

Buffer change journaling is turned on.

To determine whether buffer change journaling is turned on, use a statement
similar to the following:
status := GET_INFO (buffer_narne, "journaling");

To determine the name of the keystroke journal file, use a statement similar to
the following:
filename := GET_INFO (SYSTEM, "journal_file");

8.4.1 Buffer Change Journal File Naming Algorithm
By default, VAXTPU creates the buffer change journal file name by using the
following algorithm:

1. Convert all characters in the buffer name that are not alphanumeric, dollar
sign, underscore, or hyphen to underscores.

2. Truncate the resulting file name to 39 characters.

3. Add the file extension .TPU$JOURNAL.

For example, a buffer named FOO.BAR has a default journal file name of
FOO_BAR.TPU$JOURNAL.

VAXTPU puts all journal files in the directory defined by the logical name
TPU$JOURNAL. By default, this logical is defined as SYS$SCRATCH. You
can reassign this logical name. For example, if you want journal files written to
the current default directory, define TPU$JOURNAL as [].

VAXTPU 8-9

8.4.2 Enhancements to the CREATE_BUFFER Built-In

The CREATE_BUFFER built-in now optionally accepts a fourth parameter
specifying the name of the journal file to be used with the buffer.

Syntax

[buffer :=] CREATE_BUFFER (string1 (, [string2] [, [buffer] [, string3]]])

Parameters

string1
The name of the buffer you want to create.

string2
Optionally, a string specifying the input file for the buffer. If you do not specify
an input file, you create an empty buffer.

buffer
The buffer you want to use as a template for the buffer being created. The new
buffer has the same attributes (such as tabs, margins, etc.) as the template
buffer. For a list of all the attributes inherited by the new buffer, see the
description of the CREATE_BUFFER built-in in the VAX Text Processing Utility
Manual.

string3
The name of the journal file to be used with the buffer. Note that VAXTPU does
not copy the journal file name from the template buffer. Instead, CREATE_
BUFFER uses string3 as the new journal file name. If you do not specify string3,
VAXTPU names the journal file using its journal file naming algorithm. For more
information on the default journal file naming algorithm, see Section 8.4.1.

EVE turns on buffer change journaling by default for each new buffer. However,
the CREATE_BUFFER built-in does not automatically tum on journaling; if you
are layering directly on VAXTPU, your application must use SET (JOURNALING)
to tum journaling on.

Description

If you want to skip an optional parameter and specify a subsequent optional
parameter, you must use a comma as a placeholder for the skipped parameter.

8-10 VAXTPU

Examples

bufl := CREATE_BUFFER ("Scratch",,, "Scratch_jl. jl");

This statement creates a buffer named "Scratch" and directs VAXTPU to name
the associated buffer change journal file "Scratchjl.jl". Note that you must use
commas as placeholders for the two unspecified optional parameters. Note, too,
that by default VAXTPU puts journal files in the directory defined by the logical
name TPU$JOURNAL. By default, TPU$JOURNAL points to the same directory
that SYS$SCRATCH points to. You can reassign TPU$JOURNAL to point to a
different directory.

defaults_buffer := CREATE_BUFFER ("Defaults");

SET (EOB_TEXT, defaults_buffer, "[That's all, folks!]");

user_buffer := CREATE_BUFFER ("Userl.txt", "", defaults_buffer);

This code fragment creates a template buffer called "Defaults", changes the end
of-buffer text for the template buffer, and then creates a user buffer. The user
buffer is created with the same end-of-buffer text that the defaults buffer has.

8.4.3 Enhancements to the DELETE Built-In

When a buffer is deleted, the associated journal file (if any) is closed and deleted.

8.4.4 GET_INFO (buffer_variable, 11journaling 11
) Built-In

The new GET_INFO (buffer_variable, "journaling") built-in returns 1 if the
specified buffer is being journaled or returns 0 if it is not.

Syntax

{1 I O} := GET_INFO (buffer_variable, "journaling")

Parameters

buffer_ variable
The variable containing the buffer whose journaled status you want to know.

"journaling"
A string directing VAXTPU to return the journaled status of the specified buffer.

Example
the_result := GET_INFO (main_buffer, "journaling");

This statement returns 1 if journaling is turned on for the buffer stored in the
variable main_buffer or returns 0 if journaling is turned off.

VAXTPU 8-11

8.4.5 GET_INFO (buffer_variable, 11journal_file 11
) Built-In

The new GET_INFO (buffer_ variable, 11journal_file11
) built-in returns a string that

is the name of the journal file for the specified buffer. If the buffer is not being
journaled, the call returns 0.

Syntax

{file_name_string I O} := GET_INFO (buffer_variable, "journal_file")

Parameters

buffer_ variable
The variable containing the buffer whose journal file name you want to know.

"safe_for_journaling"
A string directing VAXTPU to return the name of the specified buffer's journal
file.

Example
the_name := GET_INFO (main_buffer, "journal_file");

This statement assigns to the variable the_name the name of the journal file for
the buffer stored in the variable main_buffer or returns 0 if journaling is turned
off.

8.4.6 GET_INFO (buffer_variable, 11 safe_for_journaling 11
) Built-In

The new GET_INFO (buffer_variable, 11 safe_forjournaling11
) built-in returns 1 if

the specified buffer is safe for journaling or returns 0 if it is not. A buffer is safe
for journaling if it is empty, has never been modified, or has not been modified
since the last time it was written to a file.

Syntax

{1 I O} := GET_INFO (buffer_variable, "safe_for_journaling")

Parameters

buffer_ variable
The variable containing the buffer whose safety status you want to know.

"safe_for_journaling"
A string directing VAXTPU to return the safety status of the specified buffer.

Example

the_result := GET_INFO (main_buffer, "safe_for_journaling");

This statement returns 1 if journaling is safe on for the buffer stored in the
variable main_buffer or returns 0 if not.

8-12 VAXTPU

8.4.7 GET_INFO {buffer_variable, 11journal_name11
) Built-In

The new GET_INFO (buffer_variable, 11journal_name 11
) built-in converts a buffer's

name to a journal file name using VAXTPU's default journal file name algorithm.
VAXTPU converts the buffer name to a journal file name regardless of journaling
status. The GET_INFO call does not require journaling to be turned on for the
specified buffer. For more information on this algorithm, see Section 8.4.1.

Syntax

file_name_string := GET _INFO (buffer_variable, "journal_name")

Parameters

bu'ffer_ variable
The variable containing the buffer whose name you want converted to a journal
file name.

"journaLname"
A string directing VAXTPU to convert the specified buffer's name to a journal file
name.

Example

the_name := GET_INFO (main_buffer, "journal_name");

This statement assigns to the variable the_name a journal file name created by
applying the journal file naming algorithm to the name of the buffer contained in
the variable main_buffer.

8.4.8 GET_INFO {string_variable, 11journal 11
) Built-In

The new GET_INFO (string_variable, 11journal 11
) built-in returns an array

containing information about the journal file whose name you specify with
the string parameter. If the specified file is not a journal file, the integer 0 is
returned.

Syntax

{array I O} := GET_INFO (string_variable, "journal")

Parameters

string_ variable
A string that is the name of the journal file about which you want information.
11 journa/11

A string constant directing VAXTPU to return an array containing information on
the specified journal file.

VAXTPU 8-13

Description

The array· indexes and the contents of the corresponding elements of the returned
array are as follows:

Index

1

2

3

4

5

6

7

Contents of Element

The name of the buffer whose contents were journaled.

The date and time the journal file was created.

The date and time the edit session started.

The name of the source file. A source file is a file to which the buffer has been
written. The journal file maintains a pointer to the source file. This enables the
journal file to retrieve from the source file the buffer contents as they were after
the last write operation. If the buffer has not been written out or if none of the
source files will be available during recovery, this element contains a null string.

The name of the output file associated with the buffer. This is the file name
specified with the SET (OUTPUT) built-in.

The name of the original input file associated with the buffer by the CREATE_
BUFFER built-in. If there is no associated input file or if the input file will not be
available during a recovery, this element contains a null string.

VAXTPU's identification string for the version ofVAXTPU that wrote the journal
file.

Note that all elements are of type string.

Example

the_array := GET_INFO ("foo_bar.tpu$journal", "journal");

This statement returns an array whose elements contain strings that are
attributes of the journal FOO_BAR.TPU$JOURNAL.

8.4.9 RECOVER_BUFFER Built-In

The new RECOVER_BUFFER built-in reconstructs the work done in the buffer
whose name you specify. VAXTPU creates a new buffer using the specified buffer
name and, using the information in the original buffer's journal file, recovers all
the changes made to records in the original file. The resulting recovery is written
to the newly created buffer.

Syntax

new_buffer .- RECOVER_BUFFER (old_buffer_name, [, [journal_file_name]
template_buffer]])

8-14 VAXTPU

Parameters

o/d_buffer_name
The name of the buffer you are trying to recover.

journa/_file_name
The name of the journal file you want VAXTPU to use to recover your buffer. If
you did not set a journal file name using SET (JOURNALING), in most cases
VAXTPU will have created the journal file using its default journal file naming
algorithm. If the journal file was named by default, you need not specify a journal
file name with RECOVER_BUFFER. If you specified a journal file name using
SET (JOURNALING), use the same name with RECOVER_BUFFER.

Do not specify any directory name in this string. Specify only the buffer name
and the extension, if any.

template_buffer
The buffer whose attributes you want applied to the newly created buffer. For
more information on using a buffer as a template, see the description in the VAX
Text Processing Utility Manual of the CREATE_BUFFER built-in.

Description

Do not confuse the RECOVER_BUFFER built-in with the /RECOVER command
qualifier in DCL. /RECOVER is used with /JOURNAL when invoking VAXTPU
to recover a session by using a keystroke journal file. RECOVER_BUFFER, on
the other hand, is used after VAXTPU has been invoked. It uses a buffer change
journal file to recover the changes made to a specified buffer.

Only the first parameter (the old buffer name) is required. If you want to specify
the third parameter but not the second, you must use a comma as a placeholder,
as follows:
RECOVER_BUFFER ("junk.txt", , template_buffer);

The third parameter is optional.

If VAXTPU returns a message that it cannot find the journal file and if the
buffer you are trying to recover is small, the reason for the message might be
that records from the buffer were never written to the journal file because there
were not enough records to trigger the first write operation to the journal file.
Similarly, if some text is missing after recovery, the reason might be that the last
few operations did not trigger a write operation. For more information on how
VAXTPU manages write operations to a journal file, see the description of the
SET (JOURNALING) built-in in the VAX Text Processing Utility Manual.

Buffer change journaling does not journal changes in buffer attributes (such as
modifiability of the buffer or visibility of tabs). Buffer change journaling only
tracks changes to records in the buffer, such as addition, deletion, or modification
of a record or changes in a record's attributes.

VAXTPU 8-15

If you press CTRUC during a recovery, VAXTPU aborts the recovery, closes the
journal file, and deletes the newly created buffer.

After a successful recovery, VAXTPU continues journaling new changes into the
journal file that was used during the recovery.

If you have journal files created with the default naming algorithm as a result
of editing multiple buffers with the same or similar names, RECOVER_BUFFER
might not recover the buffer you intend. For more information on the default
journal file naming algorithm, see Section 8.4.1. For example, suppose you were
editing two buffers, one called FOO! and the other called FOO?. The default
journal file naming algorithm creates for each buffer a journal file named FOO_
.TPU$JOURNAL. The journal file for the buffer created first has the lower
version number. If-there were a system interruption while you were editing
both buffers, and if the journal file for FOO! had the lower version number, then
RECOVER_BUFFER would recover the journal file created for the buffer FOO?.

When you write the contents of a buffer to a file, the old journal. file is closed, a
new journal file is created, and the old journal file is deleted. If you write the
contents of the buffer to a file other than the default output file, the new journal
file contains a pointer to the file to which you last wrote the buffer. For example,
if the buffer is called MAIN but you write the contents of the buffer to a file
called OPUS.TXT, the new journal file contains a pointer to the file OPUS.TXT.
OPUS.TXT is known as the "source file" because, during a recovery, VAXTPU
uses OPUS.TXT as the source for the contents of the buffer as they were when
the write operation was performed.

Examples

RECOVER_BUFFER ("junk.txt");

This statement directs VAXTPU to find the buffer change journal file associated
with the original buffer JUNK TXT, to create a new buffer called JUNK TXT,
and, using the information from the journal file, to recover the changes made in
the original JUNK TXT buffer. The results of the recovery are placed in the new
JUNK TXT buffer.

defaults_buffer := CREATE_BUFFER ("Defaults");

SET (EOB_TEST, defaults_buffer, "[That's all, folks!]");

user_buffer := CREATE_BUFFER ("Userl. txt", 1111
, defaults_buffer);

SET (JOURNALING, ·user_buffer, ON, "userl_journal.tpu$journal");

RECOVEJ;l_BUFFER ("Userl.txt", "userl_journal.tpu$journal",
defaults_buffer);

This code fragment creates a defaults buffer, changes an attribute of the defaults
buffer, and creates a user buffer. The fourth· statement turns on buffer change
journaling and designates the file named USER1_JOURNAL.TPU$JOURNAL
as the journaling file. At some later point in the session (represented by the

8-16 VAXTPU

ellipses) the RECOVER_BUFFER statement is used to recover the contents
of the old USERl. TXT by calling the contents of the journal file, USERl_
JOURNAL.TPU$JOURNAL. The attributes of the defaults buffer are applied
to the newly created buffer USERl. TXT. In this case, the new buffer has the
end-of-buffer text 11 [That's all, folks!] 11

•

8.4.10 SET {JOURNALING) Built-In

The SET (JOURNALING) built-in can now be used to tum on or tum off buffer
change journaling and to specify a journal file name.

Syntax

SET (JOURNALING, buffer, {ON I OFF} [,file_name_string])

Parameters

JOURNALING
A keyword indicating that the SET built-in is being used to enable, disable, or set
the frequency of journaling.

buffer
The buffer for which you want to tum on buffer change journaling.

ON
A keyword turning on buffer change journaling.

OFF
A keyword turning off buffer change journaling.

file_name_string
The string naming the file you want to use as the buffer's journal file. If the
file does not exist, VAXTPU automatically creates it. You cannot specify this
parameter if you have specified the keyword OFF for the third parameter. If you
do not specify any file name when you tum journaling on, VAXTPU creates a
journal file for you and names the file using the default naming algorithm. For
more information on this algorithm, see Section 8.4.1.

Description

Journaling can be turned on only if the buffer is safe for journaling. For a buffer
to be safe for journaling, it must either be empty, never modified, or unmodified
since the last time it was written to a file. (Whether the buffer has been modified
is not the same as whether the buffer is marked as modified. The modified flag
can be set or cleared by the application or by the user.)

Once a buffer that is being journaled is written to a file, the journal file is closed
and deleted and a new one is started.

VAXTPU 8-17

A journal file name can be supplied only if journaling is being turned on. If a
journal file name is supplied, VAXTPU creates a journal file using the name you
specified. If this parameter is omitted, VAXTPU creates a journal file name based
on the buffer's name using the algorithm outlined in Section 8.4.1.

If journaling is being turned off for the specified buffer, VAXTPU closes the
journal file but does not delete it.

VAXTPU signals a warning or error if any of the following conditions apply:

• Journaling is being turned on and one o.r more of the following is also true:

The specified buffer is not safe for journaling.

The specified buffer is already being journaled.

An RMS error was returned when VAXTPU tried to create the journal
file.

• Journaling is being turned off and a journal file name is specified in the
built-in call.

Example
SET (JOURNALING, CURRENT_BUFFER, ON, "diskl: [reinig]journal.jnl");

This statement turns on buffer change journaling for the current buffer and
directs VAXTPU to use the file JOURNAL.JNL in the directory [REINIG] as the
journal file.

8.4.11 WRITE_FILE Built-In

The WRITE_FILE built-in has been enhanced. When the contents of a buffer are
written to a file, the associated journal file (if any) is closed and deleted and a
new journal file is created. The new file contains the name of the file to which the
buffer was written.

8.4.12 TPU$_FILE_RECOVERABLE Item Code

The VAXTPU callable interface routine TPU$INITIALIZE now makes available
a new item code, TPU$_FILE_RECOVERABLE. (For more information on the
VAXTPU callable interface and the TPU$1NITIALIZE routine, see the VMS
Utility Routines Manual.)

This item code indicates whether the file being opened will be available when
VAXTPU attempts a recovery. A file might not be available if the layered
application does not automatically create and continuously update a file
associated with each buffer created during the session. For example, if the
file being opened is a mailbox (as opposed to a file on disk), then the mailbox will
probably not exist when the user attempts to recover the file.

8-18 VAXTPU

By default, the item code contains a 0, indicating that the file will not be available
at recovery time.

If this item code is set to 0, VAXTPU copies the contents of the buffer into the
journal file when the journal file is created.

8.5 Enhancements to VAXTPU's Pattern Support
The enhancements to VAXTPU's pattern support are as follows:

• The new keywords BUFFER_BEGIN and BUFFER_END can now be used to
construct patterns.

• Searches using sophisticated patterns are executed more efficiently.

• The SCAN, SCANL, SPAN, and SPANL built-ins can now be used to specify a
new kind of reverse search.

8.5.1 New Pattern Keywords

BUFFER_BEGIN and BUFFER_END are new keywords within a pattern.
BUFFER_BEGIN matches the beginning of the buffer in which the search is
executed. BUFFER_END matches the end of the buffer in which the search is
executed.

8.5.2 Search Performance

Searching with. complicated patterns is now more efficient in three areas.

When performing a non-exact search, VAXTPU must translate both the pattern
and the searched text to ensure correct comparisons. VAXTPU now allocates
space within each pattern element to store the translated version of the element.
This means that VAXTPU no longer translates the pattern each time the
SEARCH built-in is invoked. The pattern is only translated during the first
non-exact SEARCH using that pattern.

The pattern code now translates whole records at a time and saves the last record
it translated. Thus, after the SEARCH built-in has checked the first half of a
line, it does not have to translate the line again to see if the rest of the pattern
matches the second half of a line.

Alternation previously matched both alternate pattern elements and then chose
which alternate to use for the pattern match. Now the alternation algorithm does
not try to match the second alternate pattern element anyplace at or after the
start of the first alternate pattern element. In reverse search, it does not try to
match the second alternate at or before the start of the first alternate pattern
element. For example, suppose you search this paragraph with the following
pattern:
"pattern" I "xyzzy"

VAXTPU 8-19

The search does not proceed past the first line because the first line contains the
first alternate, which is pattern.

8.5.3 The New Reverse Search Algorithm
A new optional parameter is allowed for the SCAN, SPAN, SCANL, and SPANL
built-ins. This parameter can be the either of the keywords REVERSE or
FORWARD. The REVERSE keyword specifies new behavior in reverse searches.

For more information on the SCAN, SCANL, SPAN, and SPANL built-ins, see the
descriptions of those built-ins in the VAX Text Processing Utility Manual.

Syntax

{SCAN
pattern := SCANL I ({string I range I buffer} [, {FORWARD I REVERSE}])

Parameters

string

SPAN I
SPANL }

The string on which you want the built-in to perform pattern matching.

range
The range on which you want the built-in to perform pattern matching.

buffer
The buffer on which you want the built-in to perform pattern matching.

FORWARD
A keyword directing VAXTPU to match characters in the forward direction. This
is the default.

REVERSE
A keyword directing VAXTPU to match characters as follows: first, match
characters in the forward direction until VAXTPU finds a character that is a
not member of the set of characters in the specified buffer, range, or string (in
the case of SPAN and SPANL) or that is a member of the set of characters (in the
case of SCAN and SCANL). Next, return to the first character matched and start
matching characters in the reverse direction until VAXTPU finds a character that
is not in the specified buffer, range, or string (in the case of SPAN and SPANL) or
that is in the set (in the case of SCAN and SCANL). You can specify REVERSE
only if you are using the built-in in the first element of a pattern being used in a
reverse search. In all other contexts, specifying REVERSE has no effect.

s-20 VAXTPU

The behavior enabled by REVERSE allows an alternate form of reverse search.
By default, a reverse search stops as soon as a successful match occurs, even if
there might have been a longer successful match in the reverse direction. By
specifying REVERSE, you direct VAXTPU not to stop matching in either direction
until it has matched as many characters as possible.

Example
word:= SCAN (' ', REVERSE);

This statement defines the variable word to mean the longest consecutive string
of characters that does not include a space character. Suppose you are searching
the text Xanadu, the cursor is on the n, and you use the following statement:
the_range :=SEARCH (word, REVERSE);

The variable the_range contains the word Xanadu. The reason for this is, when
you use SCAN with REVERSE as the first element of a pattern and then use that
pattern in a reverse search, SCAN matches as many characters as possible in
both the forward and reverse directions.

Suppose that the cursor is on the n of Xanadu, as before, but you define the
variable word without the REVERSE keyword, as follows:
word:= SCAN (' ');

If you do a reverse search, the_range contains the characters nadu.

8.6 Record Attributes
Previous versions of VAXTPU supported the setting and modifying of one record
attribute, the left margin. A record attribute is a characteristic of a record or
of an integer value associated with a record, defining how the record appears or
behaves and what actions can be performed on it.

VAXTPU supports two new record attributes, display value and modifiability.
For more information on the display value attribute, see Section 8.6.1. For more
information on the modifiability attribute, see Section 8.6.2.

VAXTPU provides a new built-in, SET (RECORD_ATTRIBUTE), for setting
or changing record· attributes. (For more information on .SET (RECORD_
ATTRIBUTE), see Section 8.6.3.6.) Copying or moving a record in insert
mode generally preserves all its attributes. VAXTPU does not preserve record
attributes in overstrike mode. Splitting a record creates two records with the
same record attributes, except that the new record receives the buffer's default
left margin value, not the original record's left margin value. If you append to
one record another record with different attributes, the resulting record has the
attributes of the record to which the second record was appended.

VAXTPU 8-21

For example, copying an unmodifiable record in insert mode with MOVE_TEXT
or COPY_TEXT usually creates a new record that is unmodifiable. Note, however,
that the first or last line created during the copy of a range may or may not be
unmodifiable.

The major exception to the general rule stated in the previous paragraph is that
splitting a line at the beginning or end of a· record creates a new record. The
new record is created with the default values of the various record attributes, no
matter what the values of the split line.

8.6.1 Display Value Attribute

A display value is an integer that controls whether a given record is visible
in a given window. You can assign a display value to a record using the new
SET (RECORD_ATTRIBUTE) built-in. For more information on this built-in,
see Section 8.6.3.6. You can assign a display value to a window using the new
SET (DISPLAY_ VALUE) built-in. For more information on this built-in, see
Section 8.6.3.4.

If a record's display value is greater than or equal to the display value of the
window mapped to the record's buffer, VAXTPU makes the record visible in that
window; otherwise, VAXTPU makes the record invisible.

Display values can range from -127 to + 127. The default value is zero for both
records and windows, meaning that records are visible by default.

The display value of a buffer's end of buffer text cannot be changed. The end of
buffer text is permanently assigned a display value of + 127 and, thus, is always
visible in any window. You can, without error, include the end of buffer text in a
range when you set the display value of a set of records. However, this does not
change the display value of the end of buffer text.

If VAXTPU determines that the current editing point is on a record that is not
visible in the current window, the screen updater positions the cursor on the
next visible record, placing the cursor in the comparable screen column. This
condition is known as a "detached cursor." To designate code to be executed when
the cursor is detached, use the new SET (DETACHED_ACTION) built-in. For
more information on this built-in, see Section 8.11.1.

Note that the built-ins SCROLL, CURSOR_ VERTICAL and CURSOR_
HORIZONTAL always leave the editing point and the cursor position on a visible
record. Thus, SCROLL (CURRENT_ WINDOW, 0), CURSOR_ VERTICAL (0), and
CURSOR_HORIZONTAL (0) all have the effect of moving the editing point from
an invisible record to the next visible record in the current window.

s-22 VAXTPU

8.6.2 Modifiability Attribute
Now you can use the new SET (RECORD_ATTRIBUTE) built-in to make an
individual record unmodifiable within a buffer, regardless of whether the buffer
is unmodifiable. For more information on SET (RECORD_ATTRIBUTE), see
Section 8.6.3.6.

If a buffer is unmodifiable, then no records within it can be modified. However,
making a buffer modifiable does not automatically make all records within a
buffer modifiable. Any record that was individually made unmodifiable remains
so.

By default, any newly created records in a modifiable buffer are modifiable.

You cannot change the left margin of an unmodifiable record. You can change the
display value of a record at any time.

8.6.3 New Built-Ins Implementing Record Attribute Support
VAXTPU has the following new built-in procedures to implement support for
setting, changing, and determining record attributes:

• GET_INFO (buffer, 11 erase_unmodifiable 11
)

• GET_INFO ({buffer I marker I range}, 11 unmodifiable_records 11
)

• GET_INFO ({mark I window}, 11 display_value 11
)

• SET (DISPLAY_ VALUE)

• SET (ERASE_UNMODIFIABLE)

• SET (RECORD_ATTRIBUTE)

These built-ins are described in the following subsections.

8.6.3.1 GET_INFO (buffer_varlable, 11erase_unmodifiable 11
) Built-In

The new GET_INFO (buffer_variable, "erase_unmodifiable11
) built-in returns 1 if

unmodifiable records can be erased from the specified buffer and returns 0 if the
records cannot be erased. For more information on enabling and disabling the
erasing of unmodifiable records, see Section 8.6.3.5.

Syntax

status := GET _INFO (buffer, "erase_unmodifiable")

Parameters

buffer

VAXTPU 8-23

The buffer holding the records of where you are fetching the erase-unmodifiable
record status.

"erase_unmodifiab/e"
A string constant indicating that you want to know if unmodifiable records can be
erased from the specified buffer.

Example
the_result := GET_INFO (CURRENT_BUFFER, "erase_unmodifiable");

This statement assigns the value 1 to the variable the_result if the records in the
current buffer can be erased. Otherwise, the value 0 is returned.

8.6.3.2 GET_INFO ({buffer I marker I range}, 11 unmodifiable_records11
) Built-In

The new GET_INFO ({buffer I marker I range}, 11unmodifiable_records11
)

built-in returns 1 if the specified buffer or range contains one or more
unmodifiable records or if the record containing the specified marker is
unmodifiable. The call returns 0 if no unmodifiable records are present in the
specified location.

Syntax

status := GET _INFO ({buffer I marker I range}, "unmodifiable_records")

Parameters

buffer
The buffer in which you want to determine whether unmodifiable records are
present.

marker
The marker marking the line whose unmodifiability you want to determine.

range
The buffer in which you want to determine whether unmodifiable records are
present.

"unmodifiable_records 11

A string constant indicating that you want to know whether unmodifiable records
are present.

8-24 VAXTPU

Example

the marker :=MARK (none};
the:result := GET_INFO (the_marker, "unmodifiable_records"};

This code fragment establishes a marker at the editing point and then determines
whether the record containing the marker is unmodifiable.

8.6.3.3 GET_INFO ({marker I window}, 11display_value 11
} Built-In

The new GET_INFO ({marker I window}, 11 display_value 11
) built-in returns the

display value of the specified window or of the record in which the specified
marker is located. For more information on how display values are used, see
Section 8.6.1.

Syntax

display_value_integer := GET_INFO ({marker I window}, "display_value")

Parameter

marker
The marker marking the record whose display value you want to know.

window
The window whose display value you want to know.

"display_ value"
A string constant indicating that you want to fetch the display value associated
with the specified window or with the record containing the specified marker.

Example

the value := GET_INFO (CURRENT_WINDOW, "display_value"};

This statement assigns to the variable the_value the display value associated with
the current window.

8.6.3.4 SET (DISPLAY_ VALUE} Built-In
The new SET (DISPLAY_ VALUE) built-in sets the display value of the
specified window. For information on setting the display value of a record, see
Section 8.6.3.6.

VAXTPU uses a window's display value, which is an integer value, to determine
if a given record in a buffer should be made visible in the window mapped to
the buffer. If the record's display value is greater than or equal to the window's
setting, VAXTPU makes the record visible in that window; otherwise, VAXTPU
makes the record invisible.

Syntax

SET (DISPLAY_VALUE, window, display_value_integer)

VAXTPU 8-25

Parameters

DISPLAY_ VALUE
A keyword indicating that the SET built-in is being used to set the display value
for a window.

window
The window whose display value you want to set.

display_ value_integer
An integer from -127 to + 127.

Example

SET (DISPLAY_VALUE, CURRENT_WINDOW, 10);

This statement gives the current window a display value of 10. This means that
any record whose display value is less than 10 is invisible in the specified window.

8.6.3.5 SET {ERASE_UNMODIFIABLE) Built-In
The new SET (ERASE_UNMODIFIABLE) built-in controls whether VAXTPU
erases unmodifiable records in response to built-ins that delete lines from a buffer.
For example, ERASE_LINE deletes an unmodifiable record only if ERASE_
UNMODIFIABLE is turned on. If ERASE_ UNMODIFIABLE is turned off when
ERASE_LINE or if a similar built-in encounters an unmodifiable record, the
built-in returns an error and does not delete the record.

SET (ERASE_UNMODIFIABLE) optionally returns an integer (0 or 1) indicating
whether ERASE_UNMODIFIABLE was turned on before the current call was
executed. This makes it easier to return to the previous setting later in the
program.

Syntax

[previous_erase_setting] := SET (ERASE_UNMODIFIABLE, b1..1ffer, {ON I OFF})

Parameters

ERASE_ UNMODIFIABLE
A keyword indicating that the SET built-in. is being used to control whether
unmodifiable records are deleted in response to built-ins that erase lines in a
buffer.

buffer
The buffer for which you want to tum on or tum off erasing of unmodifiable
records.

8-26 VAXTPU

ON
A keyword enabling erasing of unmodifiable records.

OFF
A keyword disabling erasing of unmodifiable records.

Description

By default, unmodifiable records can be deleted from buffers by built-ins such
as ERASE_LINE. However, some built-ins delete records as a side effect of
their normal action. Table 8-2 shows the built-ins that can delete records as
a side effect and shows what these built-ins do instead when the ERASE_
UNMODIFIABLE setting is turned off. The SET (ERASE_UNMODIFIABLE)
built-in prevents these built-ins from unintentionally deleting unmodifiable
records.

Table 8-2: Selected Built-In Actions When ERASE_ UNMODIFIABLE is Turned
Off

Built-In

APPEND_LINE

CHANGE_ CASE

COPY_ TEXT

EDIT

ERASE (buffer)

ERASE (range)

Action

Signals a warning if an attempt is made to append to an unmodifiable line.

Signals a warning if any of the lines in the range or buffer are
unmodifiable.

Copies all records, preserving modifiability attribute while in insert mode.

Signals a warning if the current editing position is in an unmodifiable line.

Signals a warning if in overstrike mode and any of the lines to be
overstruck are unmodifiable.

Signals a warning if any of the lines in the range or buffer are
unmodifiable.

Signals a warning if any line in the buffer is unmodifiable and the buffer
is not erase unmodifiable.

Signals a warning if the start or the end of the range is in the middle of an
unmodifiable line.

Signals a warning if any of the lines in the range are unmodifiable and the
buffer is not erase unmodifiable.

ERASE_ CHARACTER Signals a warning if the current line is unmodifiable.

ERASE_LINE Signals a warning if the current line is unmodifiable and the buffer is not
erase unmodifiable.

FILL Signals a warning if any of the lines in the range or buffer are
unmodifiable.

(continued on next page)

VAXTPU 8-27

Table 8-2 {Cont.): Selected Built-In Actions When ERASE_UNMODIFIABLE is
Turned Off

Built-In

MOVE_ TEXT

SPLIT_LINE

TRANSLATE

Example

Action

Moves all records, perserving modifiability attribute while in insert mode.

Signals a warning if the current editing point is in an unmodifiable line.

Signals .a warning if in overstrike mode and any of the lines to be
overstruck are unmodifiable.

If the start or the end of the range is in the middle of an unmodifiable line,
the MOVE_TEXT is turned into a COPY_TEXT and a warning is issued.

If any of the lines in the buffer or range are unmodifiable and the buffer
is not erase unmodifiable, the MOVE_TEXT is turned into a COPY_TEXT
and a warning is issued.

Signals a warning if the current· editing position is in the middle of an
unmodifiable line.

If the current editing position is at the beginning of an unmodifiable line,
a new modifiable line is created before it.

If the current editing position is at the end of an unmodifiable line, a new
modifiable line is created after it.

If the current editing position is on an empty unmodifiable line, then a
new modifiable line is created after it.

Signals a warning if any of the lines in the range or buffer are
unmodifiable.

old_setting :=SET (ERASE_UNMODIFIABLE, CURRENT_BUFFER, OFF);

This statement turns off erasing of unmodifiable records in the current buffer and
returns the previous setting ofERASE_UNMODIFIABLE.

8.6.3.6 SET {RECORD _ATTRIBUTE) Built-In
The new SET (RECORD_ATTRIBUTE) built-in sets or alters any of three possible
attributes for the specified record or records. The record attributes you can set
are its left margin, its modifiability, and its visibility.

Syntax

SET (RECORD_ATTRIBUTE, {mark I range I buffer},
{DISPLAY_ VALUE I LEFT _MARGIN},
{display_setting_integer I margin_setting_integer})

or

SET (RECORD_ATTRIBUTE, [marker I range I buffer], MODIFIABLE, [ON I OFF])

8-28 VAXTPU

Parameters

RECORD_ATTRIBUTE
A keyword indicating that the SET built-in is being used to specify or change a
record attribute.

marker
The marker marking the record whose attribute you want to set.

range
The range containing the records whose attribute you want to set.

buffer
The buffer containing the records for which you want to set an attribute. When
you specify a buffer for the second parameter, the record attribute is applied to all
records in the buffer.

DISPLAY_ VALUE
A keyword indicating that you want to affect the visibility of the record. If you
specify the DISPLAY_ VALUE keyword as the third parameter, you must specify
for the fourth parameter an integer providing a display setting.

LEFT_ MARGIN
A keyword indicating that you want to specify the left margin for the specified
records. If you specify the LEFT_MARGIN keyword as the third parameter, you
must specify for the fourth parameter an integer providing a left margin value.

display_setting_integer
An integer value from -127 to + 127. This is the display setting. To determine
whether a record is to be visible or invisible in a given window, VAXTPU
compares the record's display setting to the window's display setting. (A window's
display setting is specified with SET (DISPLAY_ VALUE).) If the record's setting is
greater than or equal to the window's setting, VAXTPU makes the record visible
in that window; otherwise, VAXTPU makes the record invisible.

margin_setting_integer
An integer that is the column at which the left margin should be set. The value
must be between 1 and the value of the right margin. (The maximum valid value
for the right margin is 960.)

MODIFIABLE
A keyword indicating that you want to determine whether the specified records
are modifiable. If you specify the MODIFIABLE keyword as the third parameter,
you must specify either ON or OFF as the fourth parameter.

VAXTPU 8-29

ON
A keyword making records modifiable. Note, if a buffer is modifiable, you can
use SET (RECORD_ATTRIBUTE) to make a record in the bcifer unmodifiable
(with keyword OFF). If a buffer is unmodifiable and you use SET (RECORD_
ATTRIBUTE) to make a record in the buffer modifiable (with keyword ON),
VAXTPU marks the record as modifiable, but does not allow modifications to the
record until the buffer is made modifiable using keyword MODIFIABLE.

OFF
A keyword making records unmodifiable.

Description

With each call to SET (RECORD_ATTRIBUTE), you can set only one attribute.
For example, you cannot change visibility and modifiability using just one call.
To set more than one record attribute, use multiple calls to SET (RECORD_
ATTRIBUTE).

When you set an attribute for multiple records, each record gets the same value.
For example, if you specify a range of records and a value for the left margin
attribute, all records in the range receive the same left margin value.

You cannot change the left margin of an unmodifiable record. You can change the
display value of a record at any time. You can change the modifiability of a record
if the buffer is modifiable.

Examples

SET (MODIFIABLE, bufl, OFF);
rl:= CREATE RANGE (BEGINNING OF(bufl), END_OF(bufl), REVERSE);
SET (RECORD=ATTRIBUTE, rl, MODIFIABLE, OFF);
SET (RECORD_ATTRIBUTE, rl, MODIFIABLE, ON);
SET (MODIFIABLE, bufl, ON);

This code fragment uses statements that change buffer modifiability and record
modifiability independently. Note that you can tum on the modifiability of a
record or range of records even when the buffer's modifiability is turned off. If
you do so, VAXTPU does not signal an error but does not make the requested
modification to the record.

SET (RECORD_ATTRIBUTE, CURRENT_BUFFER, LEFT_MARGIN, 3);

This statement sets the left margin of all records in the current buffer to
column 3.

SET (DISPLAY_VALUE, CURRENT_WINDOW, 0);
SET (RECORD_ATTRIBUTE, SELECT_RANGE, -1);

These statements make the records in the range select_range invisible in the
current window.

SET (RECORD_ATTRIBUTE, MARK (FREE_CURSOR), MODIFIABLE, OFF);

This statement makes the current record unmodifiable.

8-30 VAXTPU

8.7 Enhanced Support for DECwindows VAXTPU
This section describes the new and enhanced features of DECwindows VAX.TPU.

8. 7 .1 Support for the Watch Cursor

When VAXTPU has been busy for more than one second, VAX.TPU changes the
pointer cursor to a watch cursor. No application intervention is necessary to
cause this action, and applications cannot prevent it from happening. This makes
VAX.TPU and its layered applications more consistent with other DECwindows
applications.

8. 7.2 Support for Resizing Windows and Screens
VAXTPU has a new built-in, SET (HEIGHT), which facilitates resizing windows.
Also, the SET (WIDTH) built-in .has been enhanced to allow manipulation of the
VAX.TPU screen as well as windows.

In DECwindows, if using either the SET (WIDTH) or SET (HEIGHT) built-ins
causes the terminal to resize, a resize event occurs. If a resize action routine has
been declared, this routine is called the next time VAX.TPU returns to its main
loop.

When a resize event has occurred but has not yet been processed, the READ_
KEY, READ_CHAR and READ_LINE built-ins abort. Thus, if you try to include
these built-ins in a procedure that has performed a SET (WIDTH) or a SET
(HEIGHT), you can get unexpected results.

The resize action routine is not called until control returns to the main VAXTPU
input loop. This means that a SET (HEIGHT) or a SET (WIDTH) statement
does not take effect until after section file initialization within the DECwindows
environment.

No resize actions are available in the non-DECwindows version ofVAX.TPU.
Thus, if you call SET (WIDTH) or SET (HEIGHT), you must be sure your code
adjusts any application data that depends on the size of the terminal. No action
routine is called, and the screen resizes immediately. The following subsections
describe the SET (HEIGHT) and SET (WIDTH) built-ins in more detail.

8. 7 .2.1 SET (HEIGHT) Built-In
The new SET (HEIGHT) built-in sets the height of the VAX.TPU screen without
modifying the height or location of any VAX.TPU window. For more information
on the VAXTPU screen, see the VAX Text Processing Utility Manual.

Syntax

SET (HEIGHT, SCREEN, length)

VAXTPU 8-31

Parameters

HEIGHT
A keyword indicating that the vertical dimension is being set.

SCREEN
A keyword indicating that the screen is being resized.

length
The length (in lines) that you want the screen to have. The value must be an
integer between 1 and 255.

Description

Note that, although SET (HEIGHT) does not alter any VAXTPU windows, the
default EVE behavior when the screen is made smaller is to unmap windows
from the screen, starting with the bottom-most window and working upward,
until there is room on the screen for the remaining windows. If the screen is
subsequently made larger, the uiimapped windows are not remapped by default.

Example

SET (HEIGHT, SCREEN, 20);

This statement causes the screen to have a height of 20 lines.

8. 7 .2.2 SET {WIDTH) Built-In
The SET (WIDTH) built-in sets the width of a window or the VAXTPU screen.
The following parameters are enhancements to the built-in. For more information
on the VAXTPU screen, see the VAX Text Processing Utility Manual.

Syntax

SET (WIDTH, {window I ALL I SCREEN}, width_int)

Parameters

WIDTH
A keyword indicating that the horizontal dimension is being set.

window
The window for which you want to set or change the width.

ALL
A keyword indicating that VAXTPU should set the screen and all windows, visible
and invisible, to the specified width.

8-32 VAXTPU

SCREEN
A keyword indicating that VAXTPU should set the screen to the specified width
without altering the size of any VAXTPU windows. Note, however, that by default
EVE resizes the windows to match the width of the screen. Note, too, that you
cannot set the screen to be narrower than the widest VAXTPU window.

width_int
The width of the window in columns. You can specify any integer between 1 and
255. In non-DECwindows VAXTPU, a value of 80 causes VAXTPU to repaint
the screen and depict the text in normal-width font, if the text is not already so
depicted. A value of 132 causes VAXTPU to repaint the screen and depict the text
in narrow font, if the text is not already so depicted. By default, the width of a
window is the same as the physical width of the terminal when the window is
created.

Example

SET (WIDTH, main_window, 132);

This statement sets the width of the main window to 132 columns and changes
the font from standard to narrow.
SET (WIDTH, ALL, 40);

This statement sets the width of the screen and all windows, visible and invisible,
to 40 columns. The statement does not affect the font.

8. 7 .3 Support for Icons

VAXTPU now supports the use of pixmaps as well as icon names. The following
subsections describe the two new built-ins implementing this support: SET
(ICON_PIXMAP) and SET (ICONIFY_PIXMAP).

8.7.3.1 SET (ICON_PIXMAP) Built-In
The new SET (ICON_PIXMAP) built-in determines the pixmap for the icon
creation in the DECwindows icon box when the user selects the Large Window
Manager Icon Style.

Syntax

Choose either of two variants:

SET (ICON_PIXMAP, integer, icon__pixmap [,widget])

or

SET (ICON_PIXMAP, bitmap_file_name [,widget])

VAXTPU 8-33

Parameters

ICON_PIXMAP
A keyword indicating that the SET built-in is being used to· determine the pixmap
for the icon creation in the DECwindows icon box when the user selects the Large
Window Manager Icon Style.

integer
The hierarchy identifier returned by the SET (DRM_HIERARCHY) built-in. This
identifier is passed to the XUI Resource Manager, which uses the identifier to find
the hierarchy's resource name in the resource database.

icon_pixmap
A case-sensitive string that is the name assigned to the icon in the UIL file
defining the icon pixmap. The icon must be declared EXPORTED in the UIL file.

widget
The widget whose icon pixmap is to be set. By default, VAXTPU sets the icon
pixmap of its top-level widget.

bitmap_file_name
The file specification of a bitmap file. SET (ICON_PIXMAP) requires these
files to be in the format created by the Xlib routine WRITE BITMAP
FILE. To create a file with the correct format, you can use the program
SYS$SYSTEM:DECW$PAINT.EXE (the DECpaint application) or the program
DECW$EXAMPLES:BITMAP.EXE. If you use DECpaint, use the Customize
Picture Size option to set the picture size to non-standard, the width to 32 pixels,
and the height to 32 pixels. Use the Zoom option to manipulate this small image.
Choose the XU format when you save the file.

Description

To specify an icon pixmap defined in a UIL file, use the first syntax variant shown
in the Syntax section. To specify an icon created in a bitmap file, use the second
syntax variant shown in the Syntax section.

If an application uses SET (ICON_PIXMAP) so a large icon can be displayed, in
most cases the application should also use SET (ICONIFY_PIXMAP) to create an
iconify button in the title bar. An application also needs to use SET (ICONIFY_
PIXMAP) so a small icon can be displayed if the user selects the Small Window
Manager Icon Style from the Session Manager's Customize Window dialog box.

Example
SET (ICON_PIXMAP, "DISKl: [SMITH] ICON_FLAMINGO.Xll")

This statement causes the icon pixmap stored in the file ICON_FLAMINGO.Xll
to be displayed in the application's icon if the Large Window Manager Icon Style
has been selected.

8-34 VAXTPU

8. 7.3.2 SET (ICONIFY _PIXMAP) Built-In
The new SET (ICONIFY_PIXMAP) built-in determines the pixmap for the icon
creation in the DECwindows icon box when the user selects the Small Window
Manager Icon Style. When you use SET (ICONIFY_PIXMAP), VAXTPU also
automatically places the specified pixmap in the application's iconify button in the
title bar.

Syntax

Choose either of two variants:

SET (ICONIFY _PIXMAP, integer, icon_pixmap [,widget])

or

SET (ICONIFY _PIXMAP, bitmap_file_name [,widget])

Parameter

ICONIFY_PIXMAP
A keyword indicating that the SET built-in is being used to determine the pixmap
for the icon creation in the DECwindows icon box when the user selects the Small
Window Manager Icon Style.

Integer
The hierarchy identifier returned by the SET (DRM_HIERARCHY) built-in. This
identifier is passed to the XUI Resource Manager, which uses the identifier to find
the hierarchy's resource name in the resource database.

lcon_plxmap
A case-sensitive string that is the name assigned to the icon in the UIL file
defining the iconify pixmap. The icon must be declared EXPORTED in the UIL
file.

widget
The widget whose iconify pixmap is to be set. By default, VAXTPU sets the
iconify pixmap of its top-level widget.

bltmap_flle_name
The file specification of a bitmap file. SET (ICONIFY_PIXMAP) requires
these files to be in the format created by the Xlib routine WRITE BITMAP
FILE. To create a file with the correct format, you can use the program
SYS$SYSTEM:DECW$PAINT.EXE (the DECpaint application) or the program
DECW$EXAMPLES:BITMAP.EXE. If you use DECpaint, use the Customize
Picture Size option to set the picture size to non-standard, the width to 16 pixels,
and the height to 16 pixels. Use the Zoom option to manipulate this small image.
Choose the Xll format when you save the file.

VAXTPU 8-35

Description

To specify an iconify pixmap defined in a UIL file, use the first syntax variant
shown in the Syntax section. To specify an icon created in a bitmap file, use the
second syntax variant shown in the Syntax section.

If an application uses SET (ICONIFY_PIXMAP) so a small icon can be displayed,
in most cases the application should also use SET (ICON_PIXMAP) so a large
icon can be displayed if the user selects the Large Window Manager Icon Style.

Note that the user selects the Large or Small Window Manager Icon Style using
the Session Manager's Customize Window dialog box.

Example

SET (ICONIFY_PIXMAP, "DISKl:[SMITH]ICONIFY_FLAMINGO.Xll")

This statement causes the iconify pixmap stored in the file ICONIFY_
FLAMINGO.XU to be displayed in the application's iconify button and in the
application's icon if the small Window Manager Icon Style has been selected.

8.7.4 Support for Sending and Detecting Client Messages
A client message is a communication from one DECwindows application to
another. The message enables the sending application to generate an event on
the queue of the receiving application.

The following new built-ins enable applications layered on VAXTPU or EVE to
designate and fetch client message action routines and to send and detect client
messages:

• SET (CLIENT_MESSAGE)

• GET_INFO (SCREEN, 11clie.nt_message_routine11
)

• SEND_CLIENT_MESSAGE

• GET_INFO (SCREEN, 11client_message11
)

The following sections describe these new built-ins.

8.7.4.1 SET (CLIENT_MESSAGE) Built-In
The new SET (CLIENT_MESSAGE) built-in assigns the action routine to be
executed when DECwindows VAXTPU receives a client message from another
DECwindows application.

Syntax

SET (CLIENT_MESSAGE, SCREEN, {buffer I learn_sequence I
program I range I string })

8-36 VAXTPU

Parameters

CLIENT_MESSAGE
A keyword indicating that SET is being used to designate a client message action
routine.

SCREEN
A keyword used to preserve compatibility with future versions of VAXTPU.

buffer
The buffer containing the code to be executed when VAXTPU receives a client
message.

learn_sequence
The learn sequence to be executed when VAXTPU receives a client message.

program
The program to be executed when VAXTPU receives a client message.

range
The range containing the code to be executed when VAXTPU receives a client
message.

string
The string containing the code to be executed when VAXTPU receives a client
message.

8.7.4.2 GET_INFO (SCREEN, 11 client_message_routine11
) Built-In

The new GET_INFO (SCREEN, 11 client_message_routine 11
) built-in returns the

program or learn sequence that is assigned as the application's client message
handler routine.

Syntax

{program learn_sequence} := GET _INFO (SCREEN, "client_message_routine")

Parameter

SCREEN
A keyword used to preserve compatibility with future versions ofVAXTPU.

"clienLmessage_routine"
A string indicating that you want GET_INFO to return the application's message
action routine.

VAXTPU 8-37

8.7.4.3 SEND_CLIENT_MESSAGE Built-In
The new SEND_CLIENT_MESSAGE built-in sends either of two client
messages-STUFF _SELECTION or KILL_SELECTION-to other DECwindows
applications.

Syntax

SEND_CLIENT_MESSAGE (STUFF _SELECTION I KILL_SELECTION)

Parameters

KILL_SELECTION
A keyword indicating that the client message to be sent is the KILL_SELECTION
client message.

Use the SEND_CLIENT_MESSAGE (KILL_SELECTION) message in response to
a user request to copy and remove text from another application (that owns the
input focus) into the VAXTPU/EVE layered application.

For this copy and delete function, the user selects the text in the application
that owns the input focus by placing the pointer cursor on the desired location
in the VAXTPU/EVE layered application; the user then presses the Ctrl key
and clicks MB3. For this event, the VAXTPU/EVE layered application responds
with a SEND_CLIENT_MESSAGE (KILL_SELECTION) message directing the
application that owns the input focus to delete the selected text.

STUFF_ SELECTION
A keyword indicating that the client message to be sent is the STUFF_
SELECTION client message.

Use the SEND_CLIENT_MESSAGE (STUFF _SELECTION) message in response
to a user request to copy something from an application layered on VAXTPU or
EVE into some other DECwindows application that owns the input focus.

For this copy function, the user presses and holds MB3 and drags the pointer
over the selected text in the VAXTPU/EVE layered application. The VAXTPU
/EVE layered application grabs ownership of this secondary global selection
and responds by sending a SEND_CLIENT_MESSAGE (STUFF_SELECTION)
message to the other application, which owns the input focus.

In response to the message, the other application requests to read the secondary
global selection. This causes the VAXTPU/EVE layered application to write out
the secondary global selection, which is then received by the other application.

Note that, if the user presses Ctrl/MB3 instead of just MB3 when dragging the
pointer over selected text, the last step is that the text in the secondary global
selection is deleted from the VAXTPU/EVE-based application.

8-38 VAXTPU

Description

Note that the VAXTPU/EVE layered application cannot designate the application
that is to receive the client message. VAXTPU handles sending the message to
the correct DECwindows application.

8.7.4.4 GET_INFO {SCREEN, "client_message") Built-In
The new GET_INFO (SCREEN, "client_message") built-in returns a keyword
indicating whether VAXTPU has received a KILL_SELECTION client message
or a STUFF_SELECTION client message. If the call is used when there is no
current client message, the integer 0 is returned.

GET_INFO (SCREEN, 11 client_message") is _used in a VAXTPU or EVE layered
application's client message routine. This routine provides the application's
response to a client message received from another application.

Syntax

{KILL_SELECTION I
STUFF _SELECTION I O} := GET _INFO (SCREEN, "client_message")

Parameters

SCREEN
A keyword used to preserve compatibility with future versions of VAXTPU.

"client_ message"
A string indicating that you want GET_INFO to return a keyword describing the
type of client message returned.

Return Values

KILL_ SELECTION
The call GET_INFO (SCREEN, 11client_message11

) returns the keyword KILL_
SELECTION when the user is copying from the input focused application (layered
on VAXTPU or on EVE) to another application.

To· perform this copy function, the user selects text in the VAXTPU/EVE layered
application with the input focus. This designates the text to be placed in the
primary global selection when another application asks to read the selection. The
user then positions the pointer to the location in the other application where the
text is to be inserted and clicks MB3. This causes the text in the primary global
selection to be copied to the location indicated by the pointer.

If the user presses Ctrl/MB3 to copy the selection into the other application,
the selection is then copied into the other application and deleted from the
VAXTPU/EVE layered application where the selection was made. In this case,
after the other application inserts the text from the primary global selection,
the application sends a KILL_SELECTION client message to the VAXTPU/EVE
layered application. When the VAXTPU/EVE layered application detects the

VAXTPU 8-39

client message, it executes its client message routine. This routine contains a
statement using GET_INFO (SCREEN, 11 client_message"). In the case described
here, the return value is the keyword KILL_SELECTION. The VAXTPU/EVE
layered application then deletes the selected text.

STUFF_ SELECTION
The call GET_INFO (SCREEN, 11client_message") returns the keyword STUFF_
SELECTION when the user copies from some other application that does not
own the input focus to the VAXTPU/EVE layered application that owns the input
focus.

The user performs a drag operation using MB3 to select the text in the other
application. The application grabs ownership of the secondary global selection
and assigns to it the selected text. The application then sends a STUFF_
SELECTION client message to the VAXTPU/EVE layered application. When
the VAXTPU/EVE layered application receives the client message, it executes
its client message routine. This routine contains a statement using GET_INFO
(SCREEN, 11 client_message 11

). In the case described here, the return value is
the keyword STUFF_SELECTION. The VAXTPU/EVE layered application then
inserts the text from the secondary global selection at the VAXTPU/EVE layered
application's editing point.

0
An integer indicating that there is no current client message.

8.7.5 Other New Built-Ins Extending DECwindows VAXTPU

The following subsections describe the following nine new built-ins in
DECwindows VAXTPU:

• GET_INFO (WIDGET, 11children11
)

• GET_INFO (widget_variable, "class")

• GET_INFO (widget_variable, 11 is_managed11
)

• GET_INFO (widget_ variable, 11 is_subclass 11
)

• GET_INFO (widget_variable, 11 parent11
)

• GET_INFO (widget_variable, "resources")

• REALIZE_WIDGET

• SET (MAPPED_WHEN_MANAGED)

• SET (WIDGET_CALL_DATA)

8-40 VAXTPU

8.7.5.1 GET_INFO (WIDGET, "Children") Built-In
The new GET_INFO (WIDGET, "children") built-in returns the number of widget
children controlled by the specified widget. The array parameter returns the
children themselves. If the keyword SCREEN is specified instead of a widget,
the built-in returns the number of children controlled by VAXTPU's main window
widget.

Syntax

integer := GET_INFO (WIDGET, "children", {SCREEN I widget}, array_variable)

Parameters

WIDGET
A keyword indicating that you want information about a widget.
11 chlldren11

A string constant indicating that you want information about the children of a
widget.

SCREEN
A keyword indicating that you want to fetch the children controlled by VAXTPU's
main window widget.

widget
The widget instance whose children you want to fetch.

array_ variable
An array created by VAXTPU and assigned to the variable you specify if the
widget has any children. The array is integer indexed; its elements contain the
children. If the widget has no children, the array variable is assigned the type
UNSPECIFIED. ·

Example

The following example shows how to use this GET_INFO to display the entire
hierarchy of widgets known to a VAXTPU session.
PROCEDURE eve_show_widgets

local
loop_index,
num topmost,
widget_array;

widget_array := O;

! Display the widget hierarchy

num_topmost := GET_INFO (WIDGET, "children", SCREEN, widget_array);

IF num_topmost > 0
THEN

loop_index := 1;
LOOP

EXITIF loop index > num topmost;
show widget-tree (widget array, "");
loop=index 7= loop_index-+ 1;

ENDLOOP;
ENDIF;

ENDPROCEDURE;

VAXTPU 8-41

PROCEDURE show widget tree
(the_array~ the_string)

Recursively display the widget tree

LOCAL
child array,
highest,
loop index,
num_children;

child array := O;
loop Index := 1;
highest :=get info (the_array, "high_index");
LOOP -

EXITIF loop_index > highest;
MESSAGE (the string+ GET INFO (the array {loop index}, "name")

+ ASCII (%011) - - - .

+GET INFO (the artay {loop index}, "class"));
num children :~GET INFO(WIDGET, "children",

- - the_array {loop_index}, child_array);
IF num_children > 0
THEN

show_widget_tree (child_array, the_string + " ");
ENDIF;
loop_index := loop_index + 1;

ENDLOOP;

ENDPROCEDURE;

8.7.5.2 GET_INFO (widget_variable, "class") Built-In
The new GET_INFO (widget_ variable, "class") built-in returns the name of the
class to which the. specified widget instance belongs.

Syntax

string := GET _INFO (widget, "class")

Parameters

widget
The widget instance whose class you want to know.

"class"
A string constant indicating that you want to know the class of the specified
widget.

8-42 VAXTPU

Example

the_name := GET_INFO (example_widget, "class");

This statement places in the variable the_name the string that is the name of
example_widget's class.

8.7.5.3 GET_INFO {widget_variable, 11 ls_managed 11
) Built-In

The new GET_INFO (widget_variable, 11 is_managed11
) built-in returns 1 (TRUE)

if the specified widget is managed; otherwise, it returns (FALSE). This built-in
calls the DECwindows Toolkit routine IS MANAGED.

Syntax

{O I 1} := GET _INFO (widget, "is_managed")

Parameters

widget
The widget instance whose managed status you want to know.
11 /s_managed11

A string constant indicating that you want to know if a widget is managed.

t:xample

status := GET_INFO (example_widget, "is_managed");

This statement assigns to the variable status a 1 if the widget contained in
example_widget is managed; otherwise, it assigns a 0.

8.7.5.4 GET_INFO {widget_variable, 11 is_subclass 11
) Built-In

The new GET_INFO (widget_variable, 11is_subclass11
) built-in returns 1 (TRUE)

if the specified widget belongs to the class referred to by the specified integer or
belongs to a subclass of that class. A TRUE value indicates only that the widget
is equal to or is a subclass of the specified class; the value does not indicate how
far down the class hierarchy the widget's class or subclass is. If the widget is not
in the class or one of its subclasses, this GET_INFO call returns 0 (FALSE).

Syntax

{O I 1} := GET _INFO (widget, "is_subclass", integer)

Parameters

widget

VAXTPU 8-43

The widget instance whose membership in a class or subclass you want to know.

"is_ subclass"
A string constant indicating that you want to know whether the specified widget
is in the class referred to by the specified integer or belongs to a subclass of that
class.

integer
The integer returned by the DEFINE_WIDGET_CLASS built-in.

8.7.5.5 GET_INFO (widget_variable, 11 parent11
) Built-In

The new GET_INFO (widget_ variable, "parent") built-in returns the parent of
the specified widget instance. If the widget has no parent, the call returns 0.

Syntax

{O I widget1} := GET _INFO (widget2, "parent")

Parameters

widget2
The widget instance whose parent you want to fetch.

"parent•
A string constant indicating that you want to fetch the specified widget instance's
parent.

Example

the_parent := GET_INFO (exarnple_widget, "parent");

This statement assigns to the variable the_parent the widget that is the parent of
the widget stored in the variable example_widget.

8.7.5.6 GET_INFO (widget_variable, 11 resources11
) Built-In

The new GET_INFO (widget_variable, "resources") built-in returns a string
indexed array in which each index is a valid resource name for the specified
widget. The corresponding array element is a string containing the resource's
data type and class, separated by a line feed (ASCII (10)).

Syntax

array := GET _INFO (widget, "resources")

8-44 VAXTPU

Parameters

widget
The widget instance whose resource classes and data types you want to know.

"resources"
A string constant indicating that you want to know the resource classes and data
types for the specified widget instance.

Example

the_array := GET_INFO (example_widget, "resources");

After this statement is executed, the array contains elements that are example_
widget's resources. For example, if the widget assigned to example_widget is a
previously created list box widget, this GET JNFO call causes VAXTPU to create
elements in the array assigned to the_array and to index those elements with
strings that are the names of a list box widget's resources. The contents of each
array element are the data type and class of the named resource. Thus, the
following statement:
first_value := GET_INFO (the_array, "first");

returns the following string index for the first element:
"accelerators"

The following statement:
MESSAGE (the_array{"accelerators"});

causes the following data type and class to be displayed in the message buffer:
AcceleratorTable Accelerators

VAXTPU 8-45

8.7.5.7 REALIZE_WIDGET Built-In
The new REALIZE_ WIDGET built-in creates a window for the specified widget
instance and maps the window to the display. Note that you can realize a widget
only once during the widget's lifetime. For more information on realizing widgets,
see the VMS DECwindows Guide to Application Programming and the VMS
DECwindows Toolkit Routines Reference Manual.

Syntax

REALIZE_WIDGET (widget)

Parameter

widget
The widget instance you want VAXTPU to realize.

Example

REALIZE_WIDGET (example_widget);

ThiS! statement realizes the widget stored in example_widget.

8.7.5.8 SET (MAPPED_WHEN_MANAGED) Built-in
The new SET (MAPPED_ WHEN_MANAGED) built-in controls whether a widget
instance is mapped to the screen when it is managed. For more information on
managing widgets, see the VMS DECwindows Guide to Application Programming
and the VMS DECwindows Toolkit Routines Reference Manual.

Syntax

SET (MAPPED_WHEN_MANAGED, widget, {ON I OFF})

Parameters

MAPPED_ WHEN_MANAGED
A keyword indicating that SET is being used to control whether the specified
widget instance should become visible when it is managed.

widget
The widget instance whose mapped status you want to set.

8-46 VAXTPU

ON
A keyword directing VAXTPU to make the specified widget visible when it is
managed. This is the default value.

OFF
A keyword directing VAXTPU not to make the specified widget visible when it is
managed.

Example

SET (MAPPED_WHEN_MANAGED, example_widget, OFF);

This statement directs VAXTPU to make the widget contained in example_widget
invisible when the widget is managed.

8.7.5.9 SET {WIDGET_CALL_DATA) Built-In
The new SET (WIDGET_CALL_DATA) built-in lets you create a template telling
VAXTPU how to interpret the information in the fields of a widget's callback data
structure.

Syntax

SET (WIDGET_CALL_DATA, widget, reason_code,
request_string, keyword [, request_string, keyword ...])

VAXTPU 8-47

Parameters

WIDGET_CALL_DATA
A keyword indicating that the SET built-in is being used to control how VAXTPU
interprets information in a widget's callback data structure.

widget
The specific widget instance for which you want to determine how the callback
data are interpreted.

reason_code
The identifier for the reason code with which the callback data structure is
associated. For example, if you are using SET (WIDGET_CALL_DATA) to set
the format of the callback structure associated with the Help Requested reason
code of the File Selection widget and if your program defines the VAX reason code
bindings as constants, you could refer to the Help Requested reason code by using
the constant DWT$C_CRHELP_REQUESTED. .

request_ string
One of the six valid strings describing the data type of a given field in a callback
data structure. The valid strings are as follows:

"char"

"int"

"void"

keyword

"compound_string"

"short"

"widget"

One of the four valid keywords indicating the VAXTPU data type to which
VAXTPU should convert the data in a given field of a callback data structure.
The valid keywords are as follows:

INTEGER

UNSPECIFIED

STRING

WIDGET

Use the request_string parameter with the keyword parameter to inform
VAXTPU, for each field of the structure, what data type the field had originally
and what VAXTPU data type corresponds to the original data type. The valid
keywords corresponding to each request string are as follows:

Request String

"widget"

"short"

"int"

Associated Keyword(s)

WIDGET or UNSPECIFIED

INTEGER or UNSPECIFIED

INTEGER or UNSPECIFIED

8-48 VAXTPU

Request String

"compound_string"

"char"

"void"

Description

Associated Keyword(s)

STRING or UNSPECIFIED

STRING or UNSPECIFIED

UNSPECIFIED

You use SET (WIDGET_CALL_DATA) to tell VAXTPU what data type to assign
to each field in a callback data structure. You must specify the widget and the
callback reason whose data structure you want VAXTPU to process. During a
callback generated by the specified widget for the specified reason, VAXTPU
interprets the data in the callback structure according to the description you
create.

In an application layered on VAXTPU, you can obtain the interpreted callback
data by using the built-in GET_INFO (WIDGET, 11 callback_parameters11

).

You can create a different template for each of the reason codes associated with a
given widget. To do so, make a separate call to the SET (WIDGET_CALL_DATA)
built-in for each reason code. If you specify the same widget and reason code in
more than one call, VAXTPU uses the most recently specified format.

In all callback data structures defined by the DECwindows Toolkit, the first
field is the reason code field and the second field is the event field. For more
information on the fields in each widget's callback structures, see the VMS
DECwindows Toolkit Routines Reference Manual. If your application creates
or uses a new kind of widget, the widget's callback structure must follow this
convention.

Do not specify any request string or keyword for the reason field. In almost all
cases, you specify the event field with the. request string "void" and the keyword
UNSPECIFIED. Specify all subsequent fields, if the callback structure has such
fields, up to and including the last field you want to specify. Note that the VAX
longword data type corresponds to the 11int 11 request string and the INTEGER
data type in VAXTPU.

Although you can skip trailing fields, you cannot skip intermediate fields even
if they are unimportant to your application. To direct VAXTPU to ignore the
information in a given field, use the request string "void" and the keyword
UNSPECIFIED when specifying that field.

If you specify an invalid request string, VAXTPU signals TPU$_ILLREQUEST.
If you specify an invalid keyword, VAXTPU signals TPU$_BADKEY. If you use
valid parameters but assign the wrong data type to a field and ifVAXTPU detects
the error, VAXTPU assigns the data type UNSPECIFIED to that field during
processing of a callback.

VAXTPU 8-49

An application should use this built-in only if it needs access to callback
information other than the reason code. For more information on how SET
(WIDGET_CALL_DATA) affects GET_INFO (WIDGET, "callback_parameters "),
see the online HELP topic GET_INFO(WIDGET).

Example

CONSTANT DWT$C_CRSINGLE := 20;

SET (WIDGET CALL DATA, initial list box, DWT$C_CRSINGLE,
"void"~ - UNSPECIFIED~ ! event
"compound string", STRING, item
"int", - INTEGER, ! item length
"int", INTEGER) ; ! i tern number

This code fragment begins by defining the constant DWT$C_CRSINGLE to be the
integer value 20, which is the integer associated with the reason "user selected
a single item." (Note that the file SYS$LIBRARY:DECWDWTDEF.H contains
constants defined for reason code. If you layer an application, the values you
assign to the reason code constants must match the values in this file.) The next
statement tells VAXTPU how to interpret the fields of the callback data structure
associated with a List Box widget assigned to the variable 11 initial_list_box". The
statement directs VAXTPU to ignore the data in the "event" field and to treat
the data in the item field as type STRING, in the 11item length" field as type
INTEGER, and in the 11item number" field as type INTEGER.

8.8 Support for Setting and Fetching the Default
Directory

VAXTPU now lets the application modify the default directory, using the SET
(DEFAULT_DIRECTORY) built-in. To determine the current default directory,
you can now use the new GET_INFO (SYSTEM, 11 default_directocy 11

) built-in.
Applications that use the callable interface can intercept requests to change the
default directory.

The following subsections describe the two new built-ins implementing this
enhancement.

8.8.1 SET {DEFAULT _DIRECTORY)Built-in

The new SET (DEFAULT_DIRECTORY) built-in determines the directory that
will be used as the default.

Syntax

[old_default_string :=] SET (DEFAULT_DIRECTORY, new_default_string)

8-50 VAXTPU

Parameters

DEFAULT_ DIRECTORY
A keyword indicating that the SET built-in is being used to control which
directory is used as the default.

new_default_string
A quoted string naming the directory to which you want the default changed.

Description

When the user exits from VAXTPU, the default directory is not restored to the
default that was set when the user invoked VAXTPU.

Note that, when the user enters the EVE command DCL SHOW DEFAULT, the
default shown is not always the new default directory, even though the setting
has actually been changed. To update DCUs tracking of the current default
directory, you can use EVE command DCL SET DEFAULT.

Example

prev_dir :=SET (DEFAULT_DIRECTORY, "DISKl:[WALSH.PINK]");

This statement sets the default directory to [WALSH.PINK] on the device DISKl.
The variable prev _dir contains the string naming the previous default directory.

8.8.2 GET _INFO (SYSTEM, 11default_directory11
) Built-In

The new GET_INFO (SYSTEM, 11 default_directory") built-in returns the name of
the current default directory.

Syntax

directory_name_string := GET _INFO (SYSTEM, "default_directory")

Parameters

SYSTEM
A keyword indicating that you are fetching information about a system setting.

"default_ directory''
A string constant indicating that you want to know the current default directory.

Example

the_directory := GET_INFO (SYSTEM, "default_directory");

This statement assigns to the variable the_directory the string that is the name of
the current default directory.

VAXTPU 8-51

8.8.3 Callable Interface Issues
VAXTPU lets you intercept requests to set or determine the current default
directory. This feature parallels VAXTPU's callable interface support for other
aspects of input and output.

The VAXTPU callable interface routine TPU$INITIALIZE now makes available
two new item codes, TPU$_SET_DEFAULT and TPU$_GET_DEFAULT. If you do
not specify these item codes, VAXTPU uses its own default routines.

For more information on the VAXTPU callable interface and the TPU$INITIALIZE
routine, see the VMS Utility Routines Manual.

User-supplied routines must take the same arguments as the TPU-supplied
routines and must return any errors as status codes. VAXTPU signals TPU$_
SYSERROR with the returned error code as a secondary status if a false value is
returned.

The default routine for setting the default directory is as follows:

status = TPU$$SET_DEFAULT_DIRECTORY (result: REF $desc, new_default:
REF $desc)

If an error occurs during execution of this routine, the default directory is not
changed.

Parameters

result
Either 0 or a descriptor that is to be initialized as a dynamic string and set to the
old default directory.

new_default
A string descriptor for the new default directory.

The default routine for determining the default directory is as follows:

status = TPU$$GET_DEFAULT_DIRECTORY (result: REF $desc)

Parameter

result
A descriptor that is to be initialized as a dynamic string and set to the current
default directory.

8-52 VAXTPU

8.9 Enhancements to the VAXTPU Compiler
The VAXTPU compiler has been enhanced in the following ways:

• VAXTPU now allows the programmer to limit the scope of local variables in
unbound code (code that is not in a procedure).

• There is a new EQUIVALENCE statement.

• The compiler can perform conditional compilation. Lexical keywords of the
form 11 %xxx 11 are used to indicate compilation directives. These keywords are
case insensitive.

• Lexical prefixes can be used to specify the radix of numeric constants.

8.9.1 EQUIVALENCE Statement
VAXTPU now supports the creation of synonyms using the EQUIVALENCE
statement.

Syntax

EQUIVALENCE synonym_name1 = real_name1, synonym_name2 =
real_name2, ... ;

Elements of the EQUIVALENCE Statement

real_ name
A user-defined global variable or procedure name. If real_name is undefined,
VAXTPU defines it as an ambiguous name. This ambiguous name can become a
variable or procedure later.

synonym_name
A name to be defined as a synonym for the real_name.

Description

Equivalences work only when both the real_name and the synonym_name are
defined at the same time. You cannot save a section file containing the real_name
and then later use that section file to extend code that uses an EQUIVALENCE
of the saved name. To avoid problems, include all EQUIVALENCE statements
in the same compilation unit where the real_name is de:fiiied. Alternatively, the
equivalences can reside in different compilation units, but all of the compilation
units must be used when building the section file from scratch. If you use a
base section file that you extend interactively, you cannot make equivalences to
procedures or variables defined in the base section file.

VAXTPU 8-53

8.9.2 Support for Local Variables in Unbound Code
In previous versions of VMS, VAXTPU variables used in unbound code (code not
in a procedure) were always global in scope. VAXTPU now lets you to define
local variables in unbound code. Such variables are accessible only within that
unbound code.

Unbound code can occur in the following places:

• Module initialization code. This occurs after all procedure declarations within
a module but before the ENDMODULE statement.

• Executable code. This occurs after all module and procedure declarations in a
file but before the end of file.

Example

The following example shows a complete compilation unit. This unit contains
a module named mmm that, in tum, contains a procedure foo and some
initialization code mmm_module_init, a procedure bar defined outside the module,
and some unbound code at the end of the file. In each of these sections of code, a
local variable x is defined. The variable is displayed using the MESSAGE built-in.
MODULE mrrun IDENT "mrmn"

PROCEDURE foo; ! Declare procedure "foo" in module "mrmn"

LOCAL
x; "x" is local to procedure "foo"

x := "Within procedure foo, within module mrmn";
MESSAGE (x) ;

ENDPROCEDURE; ! End procedure "foo"

LOCAL
x; ! "x" is local to

! procedure "mrmn_module_init"

x := "Starting or ending the module init code";
MESSAGE (x) ;
foo;
MESSAGE (x);

ENDMODULE;

PROCEDURE bar

LOCAL
x;

End module "mrmn"

Declare procedure "bar"

! "x" is local to procedure "bar"

x := "In procedure bar, which is outside all modules";
MESSAGE (x);

ENDPROCEDURE;

LOCAL
x;

End procedure "bar"

! "x" is local to the unbound code •.•

8-54 VAXTPU

x := "Starting or ending the unbound, non-init code";
MESSAGE (x);
mmm_module_init;
foo;
bar;
MESSAGE (x) ;
EXIT;

If this code is included in a file TEMP.TPU, the following DCL command
demonstrates the scope of the various local variables:
$ EDIT/TPU/NOSECTION/NOINITIALIZE/NODISPLAY/COMMAND=temp.tpu
42 lines read from file TEMP.TPU;l
Starting or ending the unbound, non-init code
Starting or ending the module init code
Within procedure foo, within module mmm
Starting or ending the module init code
Within procedure foo, within module mmm
In procedure bar, which is outside all modules
Starting or ending the unbound, non-init code

8.9.3 Support for Conditional Compilation
VAXTPU now provides lexical keywords for controlling what code is compiled
under different conditions. The new lexical keywords are as follows:

• %IF

• %IFDEF

• %THEN

• %ELSE

• %ENDIF

Syntax

Conditional compilation lexical keywords are used in a manner similar to
ordinary IFtrHEN/ELSE/ENDIF statements. The syntax is as follows:

%1FDEF variable_or_proc_name % THEN ... [%ELSE ...] %ENDIF

or

%IF boolean_ expression % THEN ... [%ELSE ...] %ENDIF

Description

If you use the %1FDEF structure, specify variable_or _proc_name as the name of
a VAXTPU procedure or variable. IFDEF is a statement that says: ''if a variable
or procedure with this name is defined." If the name is defined, the compiler
compiles the code marked by %THEN. If the name is not defined, the compiler
compiles the code marked by %ELSE.

VAXTPU 8-55

If you use the %IF structure, specify boolean_expression as either a numeric
constant or a defined global variable whose value is an integer. Any odd value
is true and any even value is false. If the variable or constant contains a value
that is odd, the compiler compiles the code marked by %THEN. If the variable or
constant contains a value that is even, the compiler compiles the code marked by
%ELSE.

You do not have to put conditional compilation lexical keywords at the beginning
of a line. You can nest conditional statements to a depth of 2**32-1.

Example
ON ERROR

- [TPU$ CREATEFAIL]:
%IF eve$x-option decwindows
%THEN - -

%ELSE

%END IF

IF eve$x_decwindows_active
THEN

eve$popup_message (MESSAGE_TEXT (EVE$_CANTCREADCL, 1));
ELSE

eve$message (EVE$_CANTCREADCL);
ENDIF;

eve$message (EVE$_CANTCREADCL);

eve$learn_abort;
RETURN (FALSE);

[OTHERWISE]:
ENDON_ERROR;

This ON_ERROR procedure determines whether a popup message widget or a
simple message is used, depending on whether the code is being compiled by a
DECwindows version of VAXTPU.

8.9.4 Support for Specifying the Radix of Numeric Constants

VAXTPU now supports specifying constants with binary, octal, hexadecimal, and
decimal radixes.

To specify a numeric constant in binary, precede the number with %B. The
number can consist only of digits 0 and 1.

To specify a numeric constant in octal, precede the number with %0. The number
can consist only of digits 0 through 7.

To specify a numeric constant in hexadecimal, precede the number with %X. The
number can consist of digits 0-9 and A-F.

There is no radix specifier for decimal. Any numeric constant without an explicit
radix specifier is assumed to be decimal.

8-56 VAXTPU

Examples

The following are examples of correct numeric constants:

! Many different ways of saying the same thing.
!
CONSTANT binary_constant := %blllll;
CONSTANT octal constant := %037;
CONSTANT decimal constant := 31;
CONSTANT hex_constant := %xlf;
!
! Compile time expressions work, too.
!
CONSTANT negative_value := -%xlf;
CONSTANT strange_zero := hex_constant - %xlf;

Invalid constructs for numeric constants return the error level message TPU$_
UNKLEXICAL, 11Unknown lexical element," during compilation. The following
examples are not valid:
constant bad_binary := %b123;
constant bad hex := %x10abg;
constant not=a_radix := %z0123;

8.10 Reserved Keywords

only O's and l's are legal.
'g' is illegal digit.
No such radix.

VAXTPU now reserves seven keywords for use in future versions. At present
these keywords are not used by VAXTPU, but you should avoid using variables
with these names to prevent future name conflicts. The reserved keywords are as
follows:

• FILL_NOT_BEGIN

• FILL_NOT_END

• PHONETIC_ OFFSET

• PHONETIC_LENGTH

• CLAUSE_NUMBER

• MAX_CLAUSE_NUMBER

• ALIGNMENT_DEFAULT

VAXTPU 8-57

8.11 Support for Handling Detached Cursor Conditions
VAXTPU provides three new built-ins for handling detached cursor conditions.
A detached cursor condition occurs when the cursor position cannot accurately
represent the editing point in the current window. This condition occurs in any of
five situations:

• The current window is not mapped to the current buffer. This state is known
as a disjointed cursor.

• The editing point is off the left side of the (shifted) current window.

• The editing point is off the right side of the current window.

• The editing point is on an invisible record.

• No current window exists. This state is called an unmapped cursor.

VAXTPU allows an application to detect these conditions and to attempt to
remedy them using an action routine. VAXTPU's main loop checks for a detached
cursor condition after each key is pressed and after performing any applicable
pre-key, post-key, and margin action routines. If the cursor is detached, VAXTPU
executes the detached action routine if the application has defined one.

The following subsections describe the new built-ins implementing VAXTPU's
detached cursor support.

8a11.1 SET (DETACHED_ACTION) Built-In

The new SET (DETACHED_ACTION) built-in specifies the code to be executed
when the VAXTPU main input loop detects that the current cursor position is
detached (that is, that the cursor position cannot accurately represent the editing
point in the current window).

Syntax

SET (DETACHED_ACTION, SCREEN [, {buffer I learn I program I
range I string}]

Parameters

DETACHED_ACTION
A keyword indicating that the SET built-in is being used to designate the
detached cursor action routine.

SCREEN
A keyword indicating that the detached actiOn routine is being set for all buffers
and windows used during the session.

buffer
The buffer containing the detached cursor action routine.

8-58 VAXTPU

learn
The learn sequence that is executed as the detached cursor action routine.

program
The program containing the detached cursor action routine.

range
The range containing the detached cursor action routine.

string
The string containing the detached cursor action routine.

Description

If you do not specify the optional third parameter, SET (DETACHED_ACTION)
deletes the current detached action routine.

To fetch the current detached action routine, use GET_INFO (SCREEN,
"detached_action"). To find out which of the five possible detached states the
cursor is in, use GET_INFO (SCREEN, 11 detached_reason11

).

Example

The following procedure is a simple detached cursor action routine:
PROCEDURE detached_routine

LOCAL rightmost column,
the..,;.offset;

rightmost_column := GET_INFO (CURRENT_WINDOW, "right", VISIBLE_TEXT);

the_offset := GET_INFO (CURRENT_BUFFER, "offset_column");

IF the_offset > rightmost_column

THEN SHIFT (CURRENT_WINDOW, the_offset - rightmost_column + 2)

ENDIF;

UPDATE (CURRENT_WINDOW);

ENDPROCEDURE;

Given this definition of the procedure "detached_routine", the following statement
designates this procedure as an application's detached action routine:

SET (DETACHED_ACTION, SCREEN, "detached_routine");

8.11.2 GET_INFO (SCREEN, 11detached_action 11
) Built-In

The new GET_INFO (SCREEN, 11 detached_action11
) built-in returns the current

detached action routine. If no such routine is designated, returns the type
UNSPECIFIED.

VAXTPU 8-59

Syntax

{unspecified I program} := GET _INFO (SCREEN, "detached_action")

Parameters

SCREEN
A keyword indicating that the call seeks information about a characteristic
affecting the entire session, not just one buffer or window.

"detached_ action"
A string constant indicating that you want VAXTPU to fetch the detached action
routine.

Example

the_routine := GET_INFO (SCREEN, "detached_action")

This statement assigns to the variable the_routine the detached action routine if
one exists. Otherwise, it assigns unspecified to the variable the_routine.

8.11.3 GET_INFO (SCREEN, 11detached_reason11
} Built-In

The new GET_INFO (SCREEN, 11 detached_reason") built-in returns a bit-encoded
integer that identifies to one of the five possible detached cursor states.

Syntax

integer := GET _INFO (SCREEN, "detached_reason")

Parameters

SCREEN
A keyword indicating that the call seeks information about a characteristic
affecting the entire session, not just one buffer or window.

"detached_reason"
A string constant indicating that you want VAXTPU to return an integer
representing the reason for the detached action condition.

Description

Digital recommends that you use VAXTPU's predefined constants, rather than
the actual integers, to refer to the reasons for detachment. Table 8-3 ·Shows the
correspondence of constants, integers, and reasons.

8-60 VAXTPU

Table 8-3: Detached Cursor Flag Constants

Constant Value Reason

TPU$K_OFF _LEFT 1 The editing point is off the le:ft side of the current window.

TPU$K_OFF _RIGHT 2 The editing point is off the right side of the current window.

TPU$K_INVISIBLE 4 The editing point is on a record that is invisible in the current
window.

TPU$K_DISJOINT 8 The current buffer is not mapped to the current window.

TPU$K_UNMAPPED 16 No current window exists.

Note that it is possible for TPU$K_INVISIBLE to be set in combination with
either the TPU$K_OFF _LEFr or TPU$K_OFF _RIGHT flags.

Example

the_value := GET_INFO (SCREEN, "detached_reason");

If the editing point is off the right edge of the screen, this statement causes
VAXTPU to assign to the_value the integer 2.

8.12 Other Enhanced Built-Ins
The subsections in this section describe enhancements to 10 miscellaneous
built-ins.

8.12.1 CHANGE_ CASE Built-In

The CHANGE_CASE built-in changes the case of all alphabetic characters in a
buffer, range, or string, according to the keyword that you specify. Optionally,
CHANGE_CASE returns a string, range, or buffer containing the changed text.

Syntax

[returned_buffer I
returned_range I
returned_string :=] CHANGE_CASE ({buffer I range I string},

{LOWER I UPPER I INVERT},
[IN_PLA9E I NOT _IN_PLACE])

Parameter

buffer

VAXTPU 8-61

The buffer in which you want VAXTPU to change the case. Note that you cannot
use the keyword NOT_IN_PLACE if you specify a buffer for the first parameter.

range
The range in which you want VAXTPU to change the case. Note that you cannot
use the keyword NOT_IN_PLACE if you specify a range for the first parameter.

string
The string in which you want VAXTPU to change the case. If you specify IN_
PLACE for the third parameter, CHANGE_ CASE makes the specified change
to the string specified in the first parameter. CHANGE_CASE has no effect on
string constants.

LOWER
A keyword directing VAXTPU to change letters to all lowercase.

UPPER
A keyword directing VAXTPU to change letters to all uppercase.

INVERT
A keyword directing VAXTPU to change uppercase letters to lowercase, and
lowercase letters to uppercase.

IN_PLACE
A keyword directing VAXTPU to make the indicated change in the buffer, range,
or string specified. This is the default.

NOT_IN_PLACE
A keyword directing VAXTPU to leave the specified string unchanged and return
a string that is the result of the specified change in case. You cannot use NOT_
IN_PLACE if the first parameter is specified as a range or buffer. To use NOT_
IN_PLACE, you must specify a return value for CHANGE_CASE.

Return Values

returned_buffer
A variable of type buffer pointing to the buffer containing the modified text, if you
specify a buffer for the first parameter. The variable "returned_buffer" points to
the same buffer pointed to by the buffer variable specified as the first parameter.

returned_range
A range containing the modified text, if you specify a range for the first
parameter. The returned range spans the same text as the range specified as
a parameter, but they are two separate ranges. If you subsequently change or
delete one of the ranges, this has no effect on the other range.

8-62 VAXTPU

returned_strlng
A string containing the modified text, if you specify a string for the first
parameter. CHANGE_ CASE can return a string even if you specify IN_PLACE.

Examples

returned_value := CHANGE_CASE (CURRENT_BUFFER, LOWER, IN_PLACE);

This statement makes all characters in the current buffer lowercase. The variable
returned_ value contains the newly modified current buffer.

returned_value := CHANGE_CASE (the_string, INVERT, NOT_IN_PLACE);

This statement inverts the case of all characters in the string pointed to by
11the_string11 , and returns the modified string in the variable "returned_ value".

8.12.2 CREATE_RANGE Built-In

The CREATE_RANGE built-in returns a range that includes two delimiters and
all the characters between them, and sets the video attributes for displaying
the characters when they are visible on the screen. A range delimiter can be a
marker, the beginning or end of a line, or the beginning or end of a buffer. The
beginning and ending delimiters do not have to be of the same type but must be
in the same buffer.

Syntax

range := CREATE_RANGE ({marker1 I delimiting_keyword},
{marker2 I delimiting_keyword}
[, attribute_keyword])

Parameters

marker1
The marker marking the point in the buffer where the range begins.

marker2
The marker marking the point in the buffer where the range ends.

delimiting_ keyword
A keyword indicating the point in the buffer where you want the range to begin
or end. Table 8-4 shows the valid keywords and their meanings.

VAXTPU 8-63

Table 8-4: CREATE_RANGE Keyword Parameters

KeyWord Meaning

LINE_BEGIN The beginning of the current buffer's current line.

LINE_END The end of the current buffer's current line.

BUFFER_BEGIN Line 1, offset 0 in the current buffer. This is the first position where a character
could be inserted, regardless of whether there is a character there. This is the
same as the point referred to by BEGINNING_OF (CURRENT_BUFFER).

BUFFER_END The last position in the buffer where a character could be inserted, regardless
of whether there is a character there. This is the same as the point referred to
by END_OF (CURRENT_BUFFER).

attribute_keyword
The video attribute for the range: BLINK, BOLD, NONE, REVERSE, or
UNDERLINE. If you omit the parameter, the default is NONE.

Description ,

If a marker defining a range is a free marker, VAXTPU creates a new bound
marker, tied to the character or end-of-line nearest to the free marker, to use as
the range delimiter. Note that an end-of-line is not a character, but is a point to
which a marker can be bound.

Example

the_range := CREATE_RANGE (BUFFER_BEGIN, mark2, REVERSE);

This statement creates a range starting at the first point in the buffer where a
character can be inserted and ending at the point marked by mark2. If the range
is visible on the screen, the characters in it are highlighted with the reverse video
attribute.

8.12.3 EDIT Built-In
The EDIT built-in modifies a string according to the keywords you specify.
Currently, EDIT returns a value.

Syntax

[returned_buffer I
returned_range
returned_string

I
:=] EDIT ({buffer I range I string},

keyword1 [, ...] [,keyword2] [,keyword3])

8-64 VAXTPU

Parameters

buffer
The buffer in which you want VAXTPU to edit text. Note that you cannot use the
keyword NOT_IN_PLACE if you specify a buffer for the first parameter.

range
The range in which you want VAXTPU to edit text. Note that you cannot use the
keyword NOT_IN_PLACE if you specify a range for the first parameter.

string
The string you want to modify. If you specify a return value, the returned string
consists of the string you specify for the first parameter, modified in the way you
specify in the second and subsequent parameters. If you specify IN_PLACE for
the third parameter, EDIT makes the specified change to the string specified in
the first parameter. EDIT has no effect on string constants.

keyword1
A keyword specifying the editing operation you want to perform on the string.
Valid keywords are: COLLAPSE, COMPRESS, INVERT, LOWER, TRIM, TRIM_
LEADING, TRIM_TRAILING, or UPPER. For more information on the effect of
these keywords, see the description of the EDIT built-in procedure in the VAX
Text Processing Utility Manual.

keyword2
A keyword specifying whether VAXTPU quote characters are used as quote
characters or as regular text. The valid keywords are ON or OFF. The default is
ON.

keyword3
A keyword indicating where VAXTPU is to make the indicated change. The valid
keywords and their meaning are as follows:

Keyword

IN_PLACE

NOT_IN_PLACE

Meaning

Make the indicated change in place. This is the default.

Leave the specified string unchanged and return a string that is the
result of the specified editing. You cannot use NOT_IN.:..PLACE if the first
parameter is specified as a range or buffer. To use NOT_IN_PLACE, you
must specify a return value for EDIT.

Return Values

returned_bu'ffer

VAXTPU 8-65

A variable of type buffer pointing to the buffer containing the modified text, if you
specify a buffer for the first parameter. The variable "returned_buffer" points to
the same buffer pointed to by the buffer variable specified as the first parameter.

returned_range
A range containing the modified text, if you specify a range for first parameter.
The returned range spans the same text as the range specified as a parameter,
but they are two separate ranges. If you subsequently change or delete one of the
ranges, this has no effect on the other range.

returned_string
A string containing the modified text, when you specify a string for the first
parameter. EDIT can return a string even if you specify IN_PLACE.

Example

returned_value :=EDIT (the_string, COLLAPSE, OFF, NOT_IN_PLACE);

This statement removes all spaces and tabs from the string pointed to by the_
string and does not treat quotation marks or apostrophes as quote characters.
Returns the modified string in the variable returned_value, but does not change
the string in the variable the_string.

8.12.4 GET_INFO {buffer_variable) Built-In
A new set of GET_INFO calls are provided to determine whether the editing point
in a buffer to is bound or free. Table 8-5 shows the new calls and their previous
equivalents.

Table 8-5: New GET _INFO Calls for the Editing Point and Their Previous
Equivalents

New GET_INFO Call

GET_INFO (CURRENT_BUFFER,
"record_number")

GET_INFO (CURRENT_BUFFER,
"bound")

GET_INFO (CURRENT_BUFFER,
"beyond_eol")

Equivalent code

GET_INFO (MARK (FREE_CURSOR), "record_number")

GET_INFO (MARK (FREE_CURSOR), "boundi')

GET_INFO (MARK (FREE_ CURSOR), "beyond_eol")

(continued on next page)

8-66 VAXTPU

Table 8-5 {Cont.): New GET _INFO Calls for the Editing Point and Their Previous
Equivalents

New GET_INFO Call

GET_INFO (CURRENT_BUFFER,
"before_bol")

GET_INFO (CURRENT_BUFFER,
"middle_of_tab")

GET_INFO (CURRENT_BUFFER,
"beyond_eob")

8.12.5 LENGTH Built-In

Equivalent code

GET_INFO (MARK (FREE_CURSOR), "before_bol ")

GET_INFO (MARK (FREE_CURSOR), "middle_of_tab")

GET_INFO (MARK (FREE_CURSOR), "beyond_eob")

The LENGTH built-in now accepts a buffer as well as a string or range. LENGTH
returns the length of the buffer, in characters. There is no difference between
asking for the length of a buffer or for the length of a range that spans the buffer.

Syntax

integer := LENGTH ({buffer I range I string})

Parameter

buffer
The buffer whose length you want to determine.

range
The range whose length you want to determine.

string
The string whose length you want to determine.

8.12.6 MESSAGE Built-In

The MESSAGE built-in now accepts a buffer as well as a range or string.

Syntax

MESSAGE ({buffer I range I string} [, integer1])

Parameters

buffer

VAXTPU 8-67

A buffer whose contents you want displayed in the message area.

range
A range whose contents you want displayed in the message area.

string
A string to be displayed in the message area.

integer1
An integer indicating the severity of the message placed in the message buffer.
For more information on this parameter, see the description of the MESSAGE
built-in in the VAX Text Processing Utility Manual.

8.12.7 MODIFY_RANGE Built-In

The MODIFY_RANGE built-in now accepts the keywords LINE_BEGIN, LINE_
END, BUFFER_BEGIN, and BUFFER_END as well as marks.

Syntax

MODIFY _RANGE (range, [{marker1 I delimiting_keyword},
{marker2 I delimiting_keyword}]
[, attribute_keyword])

Parameters

range
The range to be modified.

marker1
The starting mark for the range.

marker2
The ending mark for the range.

delimiting_ keyword
A keyword indicating the point in the buffer where you want the range to begin
or end. Table 8-6 shows the valid keywords and their meanings. Use of the
delimiting keywords are more efficient than the BEGINNING_OF and END_OF
built-ins.

8-68 VAXTPU

Table 8-6: MODIFY _RANGE Keyword Parameters

Keyword

LINE_BEGIN

LINE_END

BUFFER_
BEGIN

BUFFER_END

Meaning

The beginning of the current buffer's current line.

The end of the current buffer's current line.

Line 1, offset 0 in the current buffer. This is the first position where a character
could be inserted, regardless of whether there is a character there. This is the
same as the point referred to by BEGINNING_OF (CURRENT_BUFFER).

The last position in the buffer where a character could be inserted, regardless of
whether there is a character there. This is the same as the point referred to by
END_OF (CURRENT_BUFFER).

attribute_keyword
A keyword specifying the new video attribute for the range. By default,
the attribute is not modified. You can use the keywords NONE, REVERSE,
UNDERLINE, BLINK, or BOLD to specify this parameter.

8. ~ 2.8 POSITION Built-In
The POSITION built-in now accepts the BUFFER_BEGIN and BUFFER_END
keywords for its parameter.

POSITION (BUFFER_BEGIN) puts the editing point at the beginning of the
current buffer and is equivalent to POSITION (BEGINNING_OF (CURRENT_
BUFFER)).

POSITION (BUFFER_END) puts the editing point at the end of the current
buffer and is equivalent to POSITION (END_OF (CURRENT_BUFFER)).

The use of the BUFFER_BEGIN and BUFFER_END keywords is more efficient
than using the built-ins BEGINNING_OF and END_OF.

8.12.9 SUBSTR Built-In
The SUBSTR built-in now accepts a buffer as well as a string or range in its
first parameter. In addition, the third parameter is now optional. If no third
parameter is specified, it is assumed that the substring extends to the end of the
input buffer, range, or string.

Syntax

string2 == SUBSTR ({buffer I range I string}, integer1 [, integer2])

Parameter

buffer
A buffer containing the substring.

range
A range containing the substring.

string
A string containing the substring.

integer1

VAXTPU 8-69

The character position at which the substring starts. The :first character position
is 1.

integer2
The number of characters to include in the substring. If you do not specify this
parameter, VAXTPU sets the substring's end point at the end of the specified
buffer, range, or string.

Example

! The following two calls to SUBSTR return the same value.
!
first ten characters := SUBSTR (CURRENT BUFFER, 1, 10);
buffer range :=CREATE RANGE (BUFFER BEGIN, BUFFER END, NONE);
same_ten_characters :=-SUBSTR (rl, 1; 10); -
!
! Leaving the last parameter off means "go to the end".
!
a_string := "abcdefghijk";
IF SUBSTR (a string, 5, length (a string)) <> SUBSTR (a string, 5)
THEN - - -

MESSAGE ('This message will never be displayed.');
ELSE

MESSAGE ('This message is always displayed.');
ENDIF;

8.12.10 TRANSLATE Built-In

The TRANSLATE built-in procedure now returns a value. This value might
be the range or buffer translated, or might be a string representation of the
translated text.

The IN_PLACE and NOT_IN_PLACE keywords specify whether the source is
to be changed. IN_PLACE means that the source is modified, while NOT_IN_
PLACE indicates that the source is not changed.

8-70 VAXTPU

Syntax

[returned_buffer I
returned_range I
returned_string :=] TRANSLATE (buffer I range I string1}, string2,

string3 [, {IN_PLACE I NOT _IN_PLACE}])

Parameters

buffer
A buffer in which one or more characters are to be replaced. Note that you cannot
use the keyword NOT_IN_PLACE if you specify a buffer for the first parameter.

range
A range in which one or more characters are to be replaced. Note that you cannot
use the keyword NOT_IN_PLACE if you specify a range for the first parameter.

string1
A string in which one or more characters are to be replaced. If a return value
is specified, the substitution is performed in the returned string. If you specify
IN_PLACE for the third parameter, TRANSLATE makes the specified change to
the string specified in the first parameter. TRANSLATE has no effect on string
constants.

string2
The string of replacement characters.

string3
The literal characters within the text specified by parameter! that are to be
replaced

IN_PLACE
A keyword directing VAXTPU to make the indicated change in the buffer, range,
or string specified. This is the default.

NOT_IN_PLACE
A keyword directing VAXTPU to leave the specified string unchanged and return
a string that is the result of the specified translation. You cannot use NOT_IN_
PLACE if the first parameter is specified as a range or buffer. To use NOT_IN_
PLACE, you must specify a return value for TRANSLATE.

Return Values

returned_buffer

VAXTPU 8-71

A variable of type buffer pointing to the buffer containing the modified text, if you
specify a buffer for the first parameter. The variable "returned_buffer" points to
the same buffer pointed to by the buffer variable specified as the first parameter.

returned_range
A range containing the modified text, if you specify a range for first parameter.
The returned range spans the same text as the range specified as a parameter,
but they are two separate ranges. If you subsequently change or delete one of the
ranges, this has no effect on the other range.

returned_string
A string containing the modified text, when you specify a string for the first
parameter. TRANSLATE can return a string even if you specify IN_PLACE.

Example

The following statements show how the character * can replace the character r
during an interactive session. Suppose the following text is written in a buffer
and that the variable 11the_range 11 spans this text:
This darned wind is a darned nuisance, darn it!

The following statement assigns to 11the_string11 the characters in 11the_range 11
:

the_string := STR (the_range)

The following statement assigns to translated_string the text that results when
an asterisk is substituted for each "r":
translated_string := TRANSLATE (the_string, "*", "r", NOT_IN_PLACE)

The variable 11translated_string11 then contains the following text:
This da*ned wind is a da*ned nuisance, da*n it!

Note that, ifthe text contained other r's, they would also be replaced by asterisks.

8.13 TPU$_FILEIO Item Code
The TPU$1NITIALIZE routine calls a user-specified routine, which returns an
item list. In previous versions ofVAXTPU, this item list was required to include
an entry for item code TPU$_FILEIO. (Most users simply specified the default
VAXTPU routine, TPU$$FILEIO.)

The item list is no longer required to specify the TPU$_FILEIO item code. If not
present, the default of TPU$$FILEIO is used.

8-72 VAXTPU

8.14 TPU$_CHAIN Item Code
Item lists can now be chained, as they are for item lists of the VMS system
services.· Chained item lists allow applications to add additional item list entries
to an item list returned by some other code. Note that item list entries later in
the list override earlier entries. Also note that this does not allow an application
to set additional option bits.

The BUFFER ADDRESS portion of the TPU$_CHAIN item list entry contains the
address of the new item list segment.

Any item list entries after TPU$_ CHAIN are ignored.

VAXTPU scans each item list segment for a memory-freeing routine and calls it
(if specified) to allow an application to free up item list memory when processing
is completed. Memory-freeing routines are effective only for the item list segment
in which they are declared. ·If more than one is specified in a single segment,
VAXTPU calls only the last one declared in the segment.

8.15 Enhancements to Keyboard Support
VAXTPU's keyboard support is enhanced as follows:

• Several new keys are supported as function keys.

• Two key modifiers can now modify main array keys (keys found on the main
keyboard on most Digital terminals) and control-modified keys.

VAXTPU now supports Fl, F2, F3, F4, and F5 as valid function keys.

Note that some operatings systems or terminals might trap these keys before the
signals they send can be processed by VAXTPU. In such an operating system or
on such a terminal, it is possible to bind routines to these keys, but the bound
routines cannot be executed.

VAXTPU now lets you to modify main array keys and control modified
keys with the modifiers ALT_MODIFIED and HELP _MODIFIED. For more
information on these modifiers, see the descriptions of KEY_NAME and
GET_INFO (any _keyname) in the VAX Text Processing Utility Manual.

Modified main array keys and control modified keys do not have a graphic
rendition. These keys might be saved in section files and will be handled properly
by the STR and GET_INFO (keyname, "name") built-ins.

The KEY_NAME built-in has been enhanced to handle all modifiers on main
array and control modified keys. For example, the following statements return
the keyword KEY_NAME (11A11

) in this_result and the keyword CTRL_A_KEYin
that_result:
this result :=key name ("a", SHIFT MODIFIED);
that:=result := key:=name ("a", CTRL_MODIFIED);

VAXTPU 8-73

8.16 Enhancements to the /NODISPLAY Command
Qualifier

Previously, some VAXTPU built-ins did not work when VAXTPU was invoked with
the /NODISPLAY qualifier. The built-ins that did not work included UPDATE,
CREATE_ WINDOW, and ADJUST_ WINDOW.

All VAXTPU built-ins now work in /NODISPLAY mode as they do in /DISPLAY
mode. The only difference between /NODISPLAY mode and /DISPLAY mode is
that in /NODISPLAY mode no output occurs. The only exception to this is the
MESSAGE built-in, which continues to write to SYS$0UTPUT if there is no
message buffer.

You might want to alter any existing code that checks the /NODISPLAY and
/DISPLAY modes before using certain built-ins. This check is no longer necessary.·

Chapter 9

EVE

The Extensible VAX Editor (EVE) is a general-purpose text editor based on the
VAX Text Processing Utility (VAXTPU). To invoke EVE, use the EDIT!I'PU
command.

EVE has the following new and changed features:

• Improved handling of input files

• Buffer change journaling and recovery as well as keystroke journaling and
recovery

• Saving attributes in a section file or command file

• U ser-defi.ned menu items on DECwindows

• Case-exact searches

• Enhanced key definitions and key names
•• • Enhanced paragraph boundaries for FILL commands

• Improved Buffer List buffer

• Batch editing with the EDIT!I'PU/NODISPLAY command

• Changes to other commands, including enhanced SHOW command output

• Program-level changes (of interest if you build your own VAXTPU applications
using EVE as a base)

EVE provides extensive online help for all commands, keys, and other topics.
Each HELP topic provides examples or a list of steps and other information.

9-2 EVE

9.1 Input File Handling
When you invoke EVE, if the input file is ambiguous, EVE delays applying the
following command line qualifiers until you resolve the file name:

l[NO]MODIFY
/[NOJOUTPUT
l[NOJREAD_ONLY
/START_POSITION
l[NO]WRITE

For example, the following command invokes EVE to edit a file with the type
TXT, putting the cursor on line 5, column 20: .
$ EDIT/TPU *.txt/START_POSITION=(S,20)

If more than one file matches your wildcard request-for example, if you have
two files, LETIER.TXT and MEMO.TXT-EVE displays the matching files so you
can choose the one you want. The list appears in an EVE system buffer named
$CHOICES$ in a second window. (For information about using the $CHOICES$
buffer, see the EVE online help topic called Choices Buffer.) After you resolve
the file name, EVE copies the file into a buffer and then applies the /START_
POSITION qualifier.

If you specify an input file using a search list or a wildcard directory (such as
[...]), EVE gets the first matching file found---without displaying the $CHOICES$
buffer.

In the following example, you define a search list called STAFFMEMOS and then
invoke EVE to edit a file from that search list:
$ DEFINE staffmemos hiring.dat,promotion.lis,salary.txt
$ EDIT/TPU staffmemos

In this example, if the first file in the search list exists, EVE copies that file
(HIRING.DAT) into a buffer, using the file name and file type as the buffer name;
ifit does not exist, EVE tries to get the second file (PROMOTION.LIS), and so on.

· If none of the files in the search list exists, EVE treats the name of the search list
as a file name and then creates an empty buffer named STAFFMEMOS.

In the following example, you invoke EVE using a wildcard directory ([...]) to
edit a file called JABBER.TXT in your current directory or in a subdirectory of
the current directory. EVE searches through the directory tree and gets the first
JABBER.TXT file found.
$ EDIT/TPU [.•.]jabber.txt

This way of handling a search list or wildcard directory applies not only to the
EDITtrPU command for invoking EVE, but also to the following EVE commands
that use a file specification as a parameter:

@(at sign)
GET FILE
INCLUDE FILE
OPEN
OPEN SELECTED
RECOVER BUFFER

9.2 Journaling and Recovery

EVE 9-3

Journal files record your edits so that, if a system failure interrupts your editing
session, you can recover your work. EVE now provides two types of journaling
and recovery:

• Buffer change journaling creates a separate journal file for each text
buffer you create. This is the new EVE default. Buffer change journaling
works both on DECwindows and on character-cell terminals. You recover one
buffer at a time, typically by using RECOVER BUFFER commands in EVE.
You can recover buffers from different editing sessions. The recovery restores
only your text-it does not restore settings, key definitions, or the contents of
system buffers (such as the Insert Here buffer) before the system failure.

• Keystroke journaling is unchanged. Keystroke journaling creates a single
journal file for the editing session. Keystroke journaling works only on
character-cell terminals-it does not work on DECwindows-and ·has other
restrictions. The recovery re-creates your editing session stroke for stroke, in
a "player piano" fashion.

It is possible to have both types of journaling for an editing session, although
there is usually no reason to do so. Generally, buffer change journaling is the
better method to use because it has fewer restrictions and the recovery is usually
quite fast.

You can disable both kinds of journaling by using the /NOJOURNAL qualifier
when you invoke EVE-typically, when you use EVE to examine a file without
making any edits (such as with /READ_ONLY) or for demonstration sessions.

For information about the new and changed VAXTPU features for journaling and
recovery, see Chapter 8.

9.2.1 Buffer Change Journaling
Buffer change journaling creates a journal file for each text buffer. (EVE does
not create buffer change journal files for system buffers such as the Insert Here
buffer, DCL buffer, or $RESTORE$ buffer.) As you edit a buffer, the journal file
records the changes you make, such as erasing, inserting, or reformatting text.
When you exit from EVE or when you delete the buffer, the journal files are
deleted. If a system failure interrupts your editing session, the journal files are
saved. Your last few keystrokes before the system failure might be lost. Table 9-1
summarizes the new EVE commands for buffer change journaling and recovery.

9-4 EVE

Table 9-1: EVE Commands for Buffer Change Journaling and Recovery

Command

RECOVER BUFFER

RECOVER BUFFER ALL

SET JOURNALING

SET JOURNALING ALL

SET NOJOURNALING

SET NOJOURNALING ALL

Usage or Effects

Recovers a specified buffer by using the journal file for
the buffer. You can specify the name of the buffer or
file you want to recover or the name of the journal file
for the buffer.

Recovers all your text buffers-one at a time-by
using the journal files for the buffers, if there are any.

Enables buffer change journaling for a buffer that you
specify.

Enables buffer change journaling for all your buffers.
{Default setting.)

Disables buffer change journaling for a buffer you
specify.

Disables buffer change journaling for all your buffers.

Buffer change journal :files are written in a directory defined by the logical name
TPU$JOURNAL. By default, this directory is SYS$SCRATCH, which is typically
your top-level or login directory. You can redefine the TPU$JOURNAL logical
name to have the journal files written in a different directory. (This logical name
does not apply to keystroke journal files.) For example, the following commands
create a subdirectory called [USER.JOURNAL] and then define TPU$JOURNAL
as this subdirectory:
$ CREATE/DIRECTORY [user.journal]
$ DEFINE TPU$JOURNAL [user.journal]

You can also put the definition in your LOGIN.COM file.

Buffer change journal files can be quite large (even larger than the text files
you edit). Because of the potential size of buffer change journal files and
because there is a journal file for each text buffer, you might want to define
TPU$JOURNAL as a directory or subdirectory on a large disk, rather than as
SYS$SCRATCH.

The name of the buffer change journal file derives from the name of the file or
buffer being edited and the file type TPU$JOURNAL, as follows:

Text Buffer Name

JABBER.TXT

GUMBO_RECIPE.RNO

MAIN

LATEST NEWS

Buffer Change Journal File

JABBER_TXT.TPU$JOURNAL

GUMBO_RECIPE_RNO.TPU$JOURNAL

MAIN.TPU$JOURNAL

LATEST_NEWS.TPU$JOURNAL

EVE 9-5

To find the name of the journal file for the current buffer, use the SHOW
command.

There are two ways to recover your edits with buffer change journal files-using
the /RECOVER qualifier on the command line when you invoke EVE or using
RECOVER BUFFER commands within EVE.

In the following example, you are editing a file called JABBER.TXT when a
system failure interrupts your editing session. You then recover your edits by
using the /RECOVER qualifer:

_$ EDIT/TPU jabber.txt

*** system failure ***

$ EDIT/TPU jabber.txt/RECOVER

Alternatively, you can invoke EVE and use the following command to recover your
text:
Command: RECOVER BUFFER jabber.txt

If the buffer change journal file is available (in this case, a file named
JABBER_TXT.TPU$JOURNAL), EVE shows the following information and asks
if you want to recover that buffer:

Name of the buffer
Original input file for the buffer, if any
Output file for the buffer, if any
Source file for recovery, if any
Starting date and time of the editing session
Journal file creation date and time

If you want to recover the buffer, press Return. Otherwise, type NO and press
Return.

If the buffer you want to recover exists-typically, the MAIN buffer-EVE
first deletes that buffer and then does the recovery. If the buffer you want to
recover has been modified, EVE prompts you whether to delete the buffer before
recovering.

If you are unsure of the buffer names or journal file names, specify the asterisk
wildcard, as follows:
Command: RECOVER BUFFER *

EVE then displays a list of all your available journal files so you can choose the
one you want. The list appears in an EVE system buffer named $CHOICES$ in a
second window. For information about using the $CHOICES$ buffer, see the EVE
online help topic called Choices Buffer.

9-6 EVE

To recover all your text buffers-one at a time-use the RECOVER BUFFER ALL
command. EVE then tries to recover each text buffer for which there is a buffer
change journal available. The effect is the same as repeating the RECOVER
BUFFER command, without having to specify buffer names or journal file names.
For each text buffer, EVE displays information such as the buffer name, the files
associated with the buffer, and the time and date the journal file was created.
EVE prompts you for one of the following:

Response

YES

NO

QUIT

Effects

Recovers the buffer, and then asks you whether to recover the next buffer, if there
is one. This is the default response-you can simply press Return.

Skips this recovery. If there is another buffer to recover, EVE asks you about the
other buffer.

Cancels-does not recover the buffer and does not continue recovery operations.

You can disable buffer change journaling for a particular buffer by using the
SET NOJOURNALING command. To disable buffer change journaling for all
your buffers, use the SET NOJOURNALING ALL command. Typically, you
disable buffer change journaling if you are using keystroke journaling instead
(see Section 9.2.2) or if there is no need to journal the edits (such as when the
buffer is simply a "scratchpad" or temporary storage area for reading a file).

SET NOJOURNALING commands do not delete the buffer change journal files.
To delete the journal files, use the DCL command DELETE. For example, to
delete all the buffer change journal files, use the following command:
$ DELETE TPU$JOURNAL:*.TPU$JOURNAL;*

If you disabled buffer change journaling, you can enable journaling by using the
SET JOURNALING command. For example, the following command enables
journaling for a buffer named JABBER.TXT:
Command: SET JOURNALING jabber.txt

If you invoked EVE with the /NOJOURNAL qualifier and then want to enable
buffer change journaling during the editing session, use the SET JOURNALING
ALL command (which is otherwise the EVE default).

Note that you cannot enable buffer change journaling after the buffer has been
modified in an editing session. In such a case, EVE displays the following
message:
Command: SET JOURNALING memo.txt
Buffer MEMO.TXT is not safe for journaling

. You should first write out (save) the buffer by using the WRITE FILE or SAVE
FILE command, and then enable journaling.

EVE 9-7

9.2.2 Keystroke Journaling and Recovery
Keystroke journaling is unchanged. Keystroke journaling creates a single journal
file for the editing session, regardless of the number of buffers you create. The
journal file records your keystrokes, including commands, for the editing session
rather than simply the changes to text. To enable keystroke journaling, invoke
EVE using the /JOURNAL qualifier and specify the keystroke journal file you
want created. The default file type for keystroke journal files is TJL. The journal
file is written in your current directory (or whatever directory you specify on the
command line).

Normally, when you exit or quit, the keystroke journal file, if any, is deleted. If a
system failure interrupts your editing session, the journal file is saved. Your last
few keystrokes before the system failure might be lost. 'lb recover your edits, you
re-enter the command for the interrupted editing session, including all command
line qualifiers, and add the /RECOVER qualifier. EVE then replays your editing
session in a "player piano" fashion. Typically, you then exit to save the recovered
text.

In the following example, you invoke EVE to edit a file called JABBER.TXT. The
keystroke journal file is called MYJOU.TJL. (EVE also creates a buffer change
journal file by default.)
$ EDIT/TPU/JOURNAL=myjou jabber.txt

*** system failure ***

$ EDIT/TPU/JOURNAL=myjou jabber.txt/RECOVER

Note that, when recovering your edits with a keystroke journal file, you must
specify the journal file name on the command line. If you use /RECOVER without
using /JOURNAL and the keyst~oke journal file name, EVE tries to execute a
RECOVER BUFFER command on a buffer change journal file. (See Section 9.2.1.)

Keystroke journaling has some restrictions that do not apply to buffer change
journaling. Before recovering your edits with a keystroke journal file, make sure
all relevant files and terminal settings are the same as when you began the
original editing session. If you wrote out any buffers before the system failure,
you might want to rename the saved files or move them to a different directory to
ensure that the recovery uses the original versions of the files. If you saved

9-8 EVE

attributes, make sure that the recovery uses the original version of your section
file or command file. Also, check that the following terminal settings are the
same as when you began the editing session you are recovering:

Device_ Type
Edit_mode
Eightbit
Page
Width

Recovery with a keystroke journal file might fail or might not work properly if you
used Ctrl/C to halt or cancel an operation during the editing session. Keystroke
journaling does not record Ctrl/C. Therefore, when you replay your keystrokes,
the operation continues uninterrupted.

Keystroke journaling is particularly useful to record (and re-create) a problem
for debugging purposes. If you have a problem with EVE or VAXTPU and want
to submit a software performance report (SPR), be sure to submit the keystroke
journal file if there is one, as well as other relevant files, the output from the
SHOW SUMMARY command, and a description of the problem.

9.3 Attribute Saving
You can now save global attribute settings (Attributes) for future editing sessions
in a section file or TPU command file, either by using the SAVE ATTRIBUTES
command during an editing session or responding YES to EVE's prompt when
exiting from a session. Table 9-2 lists the default settings that you can save.

Table 9-2: EVE Commands for Saving Default Attributes

Command

SET CLIPBOARD

SET CURSOR BOUND

SET DEFAULT COMMAND FILE

SET DEFAULT SECTION FILE

SET FIND CASE EXACT

SET NOEXIT ATi1RIBUTE CHECK

SET NOSECTION FILE PROMPTING

Default Setting

SET NOCLIPBOARD

SET CURSOR FREE

SET NODEFAULT COMMAND
FILE

SET NODEFAULT SECTION
FILE

SET FIND CASE NOEXACT

SET EXIT ATTRIBUTE CHECK

SET SECTION FILE PROMPTING

(continued on next page)

EVE 9-9

Table 9-2 (Cont.): EVE Commands for Saving Default Attributes

Command

SET PENDING DELETE

SET TABS MOVEMENT
or SET TABS SPACES

SET TABS VISIBLE

Default Setting

SET NOPENDING DELETE

SET TABS INSERT

SET TABS INVISIBLE

If you have an EVE initialization file containing commands for these settings, you
can delete those command lines after you save the settings in your section file or
command file.

Other global settings (such as scroll margins or the type of wildcards) and any
buffer settings (such as margins or tab stops) are not saved. Typically, you use an
initialization file for those settings. For a list of the EVE default settings, see the
EVE online help topic called Defaults.

Table 9-3 summarizes the new and changed commands for saving attributes.

Table 9-3: EVE Commands for Saving Attributes

Command

SAVE ATTRIBUTES

SAVE SYSTEM ATTRIBUTES

Usage or Effects

Saves attributes in a section file or command file,
depending on your responses to EVE prompts or
settings done with other EVE commands. If you
save attributes in a section file, the effect is the
same as entering the SAVE EXTENDED EVE
command. If you save attributes in a command
file, EVE generates a specially marked block of
VAXTPU statements for attribute settings and menu
definitions, and either creates a command file or
updates an existing command file with this block of
statements.

Saves EVE default attributes in a section file
or command file. This is useful if you want to
restore your section file or command file to the
standard EVE settings and menu definitions. See
Section 9.3.3.

(continued on next page)

9-10 EVE

Table 9-3 {Cont.): EVE Commands for Saving Attributes

Command Usage or Effects

SAVE EXTENDED EVE Creates a section file, saving attributes, key
definitions, menu definitions, compiled procedures,
and other extensions such as global variables set
with a VAXTPU statement. If you do not specify a
section file on the command line, EVE prompts you
for one or uses your default section file (if you set a
default).

SET DEFAULT COMMAND FILE

SET DEFAULT SECTION FILE

SET EXIT ATTRIBUTE CHECK

SET NODEFAULT COMMAND FILE

SET NODEFAULT SECTION FILE

SET NOEXIT ATTRIBUTE CHECK

SET NOSECTION FILE PROMPTING

SET SECTION FILE PROMPTING

Determines the command file for saving attributes.
Does not determine the command file to be executed
at startup, if any.

Determines the section file for saving attributes.
Does not determine the section file to be executed at
startup.

Default setting. If you changed attributes, then EVE
asks if you want to save your changes when you exit
or quit.

Default setting. When you save attributes, the
default command file is TPU$COMMAND.TPU in
your current directory, or the command file that was
executed at startup. See Section 9.3.2.

Default setting. When you save attributes, EVE
asks for the name of the section file you want to
create (unless you disabled section file prompting).

Disables attribute checking, typically to speed up or
simplify exiting or quitting. Does not apply to the
editing session in which you enter the command,
but only to the editing sessions in which you use the
section file or command file in which you saved the
setting.

Disables prompting for a section file when you save
attributes, typically to speed up or simplify saving
attributes in a default section file or in a command
file.

Default setting. When you save attributes, EVE
.prompts you for the name of a section file.

You can save attributes during your editing session by using the SAVE
ATTRIBUTES or SAVE EXTENDED EVE command-or as part of exiting or
quitting. By default, if you have changed attributes and not saved them, then on
exiting, EVE prompts you as follows:

Command: SET CURSOR BOUND
Command: SET FIND CASE EXACT
Command: SET TABS VISIBLE

Command: EXIT
Attributes were changed. Save them? [YES]

EVE 9-11

If you want to save the changes, simply press Return. Effectively, EVE then
executes the SAVE ATTRIBUTES command before exiting. If you do not want to
save the changes, type NO and press Return. EVE then continues exiting.

To disable this prompting to make exiting faster or simpler, use the SET NOEXIT
ATTRIBUTE CHECK command. However, the command does not apply to the
current editing session because exit checking is itself a global setting and can be
saved in a section file or command file. After you save it, the setting applies to
future editing sessions in which you use the relevant section file or command file.

9.3.1 Saving Attributes in a Section File

Typically, you save attributes in a section file. A section file is in binary form and
saves attributes, key definitions (including learn sequences), menu definitions,
compiled procedures, and other extensions to the editor-including any saved in
the section file you· are using. In effect, the section file is your customized version
of EVE. Because the section file is binary, it is executed quickly at startup. The
default file type for section files is TPU$SECTION.

To create a section file, you can use the SAVE EXTENDED EVE command (as
in previous versions of EVE) or the SAVE ATTRIBUTES command. Using SAVE
EXTENDED EVE, you can specify the section file on the command line or let EVE
prompt you for the section file name. Using SAVE ATTRIBUTES, you specify the
section file as a response to a prompt.

For example, the following command saves attributes and other customizations in
a section file called MYSEC.TPU$SECTION in your current directory:
Command: SAVE ATTRIBUTES
Save attributes in a section file [YES]? IReturnl
File to save in: mysec
DISK$1:[USER]MYSEC.TPU$SECTION;l created

To speed up saving attributes in a section file, you can set a default section file
that is, the section file you want to save in without having to specify the file each
time save attributes-and you can disable section file prompting. Table 9-4 shows
the interaction of the settings for default section file and section file prompting.

9-12 ·EVE

Table 9-4: EVE Settings for Saving Attributes

Commands (Settings)

SET DEFAULT SECTION FILE
SET SECTION FILE PROMPTING

SET DEFAULT SECTION FILE
SET NOSECTION FILE PROMPTNG

SET NODEFAULT SECTION FILE
SET SECTION FILE PROMPTING

SET NODEFAULT SECTION FILE
SET NOSECTION FILE PROMPTNG

Effects with SAVE ATI'RIBUTES

When you save attributes, EVE asks you whether to
save in a section file. If you respond YES (the default
response), EVE saves in your default section file. If you
respond NO, EVE asks whether to save in a command
file.

When you save attributes, EVE saves in your default
section file without prompting.

Default settings. When you save attributes, EVE asks
whether to save in a section file. If you respond YES,
EVE asks for the name of a section file. If you respond
NO, EVE asks whether to save in a command file.

When you save attributes, EVE asks whether to save in
a command file. (See Section 9.3.2.)

When you use the SET DEFAULT SECTION FILE command, you usually specify
the section file you are going to use at startup for future editing sessions. The
command does not determine the s~ction file to be executed when you invoke
the editor, but only the section file in which you save attributes and other
customizations. To specify the section file you want executed at startup, do
either of the following:

• Enter the EDIT/TPU/SECTION command and specify the section file you
want to use.

• Define the logical name TPU$SECTION in your LOGIN.COM file to specify
the section file, and then use the EDIT/TPU command.

Note that, in specifying the section file to be executed, you must use a complete
file specification, including the device (or disk) and directory. Otherwise, VAXTPU
assumes the section file is in SYS$SHARE.

Section files can be quite large, depending on the number of key definitions, menu
definitions, and procedures you save. If you have limited disk space, you should
save attributes in a command file, which requires less disk space. For more
information about creating and using section files, see the EVE online help topic
called Section Files.

EVE 9-13

9.3.2 Saving Attributes in a Command File
A command file contains VAXTPU procedures and statements that are compiled
and executed at startup-in effect, a series of programs for extending EVE. (You
can also use a command file for batch editing.) A command file might be slower at
startup than a section file (depending on the number of procedures to be compiled
and statements to be executed), but it takes up less disk space than a section file,
and a command file can be edited and printed. Also, if you edit your command
file, you can recompile procedures during your editing session by using EXTEND
commands. The default file type for command files is TPU.

When you use the SAVE ATTRIBUTES command or when you save attributes on
exiting or quitting, you can have EVE create or update a command file. EVE then
generates a specially marked block of VAXTPU statements for your settings and
menu definitions. Thus, if you created a command file with procedures and key
definitions of your own, you can have EVE append the block of attribute settings
to this command file. Example 9-1 is a sample of the EVE-generated code.

Example 9-1: EVE-Generated Code for Saving Attributes in a Command File

! EVE-generated code begin
! EVE attributes begin
eve set find case exact;
eve-set-cursor bound;
eve-set-nodefault command file;
eve-set-nodefault-section-file;
eve-set-exit attribute check;
eve=set~ending_delete;
eve_set_nosection_file_prompting;
eve set tabs ('INSERT');
eve-set-tabs ('VISIBLE');
! EVE attributes end
! EVE-generated code end

To save attributes in a command file, use the SAVE ATTRIBUTES command, as
follows:
Command: SAVE ATTRIBUTES
Save attributes in a section file [YES]? no
Save attributes in a command file [YES]? IReturnl
Enter file name [TPU$COMMAND.TPU] mycom
14 written to file DISK$1: [USER]MYCOM.TPU;l

Note that the prompt for the command file name shows, in brackets, the default
command file that EVE uses if you press Return at the prompt without typing a
file name. This default is one of the following:

• The command file specified with the /COMMAND qualifier when you invoked
EVE

9-14 EVE

• The command file defined by the logical name TPU$COMMAND

• A command file called TPU$COMMAND.TPU in your current directory

You can set your preferred default command file-that is, the command file you
want EVE to create or update without having to specify the file each time you
save attributes. For example, the following command sets your default command
file as MYCOM.TPU in your current directory:
Command: SET DEFAULT COMMAND FILE mycom

If you want to save attributes in a command file rather than in a section file,
you should also use the SET NOSECTION FILE PROMPTING command. Then,
when you save attributes, EVE asks whether to save in a command file, without
first asking whether to save in a section file.

When you use the SET DEFAULT COMMAND FILE command, you usually
specify the command file you are going to use at startup for future editing
sessions. The command does not determine the command file to be executed
when you invoke EVE, only the command file in which you save attributes and
menu definitions. To specify the command file you want executed at startup, do
any of the following:

• Use EDITtrPU/COMMAND and specify the command file you want to use.

• Name the command file TPU$COMMAND.TPU in your current directory and
then invoke EVE using EDITtrPU.

• Define the logical name TPU$COMMAND in your LOGIN.COM file to specify
the command file and then invoke EVE using EDITtrPU.

For more information about creating and using command files, see the EVE
online help topic called Command Files.

9.3.3 Saving EVE Default Attributes

The SAVE SYSTEM ATTRIBUTES command saves EVE default settings
and menu entries in a section file or command file. Thus, if you set several
attributes and defined or undefined menu entries, you can use SAVE SYSTEM
ATTRIBUTES to restore the standard EVE settings and menus to your section
file or command file.

SAVE SYSTEM ATTRIBUTES does not change the settings currently in effect-
for example, it does not enable free cursor motion or invisible tabs-but only
saves the EVE defaults in a section file or command file.

EVE 9-15

9.4 Menu Entries
If you invoke EVE with the /DISPLAY =DECWINDOWS qualifier, you can add
and remove menu items by using the DEFINE MENU ENTRY and UNDEFINE
MENU ENTRY commands or by choosing Extend Menu from the Customize
menu. You can save your menu definitions in a section file or command file for
future editing sessions.

To add a menu item, do the following steps:

1. Enter the DEFINE MENU ENTRY command.

2. Enter the name of the menu to which you want to add an item-any of the
following:

File Pulldown
Edit Pulldown
Search Pulldown
Display Pulldown
Format Pulldown
Customize Pulldown
Help Pulldown
Select Popup

Put the menu name in quotes or let EVE prompt you for the menu name. You
need only use the first' term of the menu name, but you cannot abbreviate this
term.

3. Enter the name of the EVE command you want the menu item to execute.
Put the command name in quotes or let EVE prompt you for the command
name.

4. Enter the label or name that you want to appear on the menu. Put the label
in quotes or let EVE prompt you for it. If you simply press Return at the
prompt, without typing anything, the label is the same as the command
name.

5. Enter YES or NO to specify whether you want a separator line to appear
above the label as a visual aid or for aesthetics. Put the response in quotes or
let EVE prompt you for it.

For example, the following command adds SHOW BUFFERS to the File menu,
labeling the item Buffer List, and adds a line separator above the item:
Command: DEFINE MENU "File" "SHOW BUFFERS" "Buffer List" "Yes"

The following command removes CENTER LINE from the pop-up menu that is
displayed with MB2 when there is no selection:
Command: UNDEFINE MENU "Noselect" "Center Line"

~16 EVE

You can also add or remove menu items by choosing Extend Menu from the
Customize menu. Extend Menu displays a dialog box containing three list boxes,
similar to the Verbs and Menus list boxes in FileView, and has buttons for adding
or removing a menu item. The lists show the available commands, the names of
EVE menus, and the items in a particular menu. The dialog box also as entry
lines so you can enter the name of the command you want to add to a menu and
the label you want to appear in the menu.

'lb save your menu definitions in a section file, use the SAVE EXTENDED EVE
command or, if section file prompting is enabled, use the SAVE ATTRIBUTES
command. To save your menu definitions in a command file, use SAVE
ATTRIBUTES as described in Section 9.3.

9.5 Case-Exact Search
The new SET FIND CASE EXACT command specifies that searches always
match the case of your search string exactly. This is particularly useful to find
or replace lowercase occurrences only. For example, the following commands
enable case-exact search and then find "digital" when it appears in lowercase
only, skipping occurrences such as "Digital" or "DIGITAL":
Command: SET FIND CASE EXACT
Command: FIND digital

The default setting is SET FIND CASE NO EXACT-if you enter the search string
in all lowercase, EVE searches for any occurrence; if you enter the search string
in uppercase or mixed case, EVE searches for an exact match.

The setting applies to the FIND, REPLACE, and WILDCARD FIND commands.
If you want case-exact search for future editing sessions, save the setting in your
section file or command file. (See Section 9.3.)

9.6 Key Definitions
You can specify the keys on the mini keypad by their engraved labels as well as
by their positional number (El-E6), as follows:

Label on
the Mini Keypad

Find

Insert Here

Remove

Select

Prev Screen

Next Screen

EVE Key Name

FIND or El

INSERT_HERE or E3

REMOVE orE3

SELECTorE4

PREV _SCREEN or E5

NEXT_SCREEN or E6

EVE 9-17

You can abbreviate key names so long as your abbreviation is not ambiguous. For
example, G--REM is a valid abbreviation for Gold-Remove. Note that G-R is an
abbreviation for Gold-R. The case of letters does not matter in a key definition.
For example, Gold-A and Gold-a are the same.

You can specify control keys using Ctrl, Control, or the circumflex character (,...).
For example, the following key names are the same:

Ctrl/A
Control/A
AA

Do not use the circumflex to specify a control key in combination with Gold or
other modifier keys. For a list of the control keys defined by EVE, see the EVE
online help topic called Control Keys.

With DECwindows, you can define shifted function keys and Alt key combina
tions. Shifted function keys combine holding down the Shift key on the main
keyboard while you press a function key (such as as F14, Remove, PF4, or <XI)
or mouse button (such as MB2). With DECwindows, the Compose Character
key on the keyboard serves as the Alt key. You can combine Alt with. a function
key, shifted function key, typing key~ control key, mouse button, or Gold key
combination. To enter a compose character sequence, use Alt/Space.

In specifying key combinations, use a slash (I), dash (-), or underscore (_) as a
delimiter in the key name. For example, the following key names are the same:

Alt/A
Alt-A
Alt_A

As a convention,·EVE shows key names (with the SHOW KEY or HELP KEYS
command) using a slash for control keys, shifted function keys, and Alt key
combinations and a dash for Gold key combinations. Thus, key combinations that
require you to hold down one key (such as Ctrl) while pressing another key are
shown with a slash; key combinations in which you press one key after another
(such as Gold-Help) are shown with a dash.

For more information about using EVE key names, see the EVE online help topic
called Names For Keys.

9.6.1 DECwindows-Style Function Keys
Use the SET FUNCTION KEYS DECWINDOWS command.to enable DECwindows
style key definitions, as follows:

9-18

Key

Shiftl<XI

Shift/Find

F12

Shift/F12

F13

Shift/F13

EVE

DECwindows-Style Definition

ERASE CHARACTER. (In insert mode, erases the current character; in
overstrike mode, replaces it with a space.)

FIND NEXT

START OF LINE

END OF LINE

EDT/WPS Delete Previous Word. (Erases all or part of the word left the cursor;
at the start of a line, erases the line break for the previous line.)

EDT/WPS Delete Word. (Erases from the current character to the end of the
word; at the end of a line, erases the line break.)

This overrides the current definitions of the keys, whether EVE default, EDT
keypad, or WPS keypad, but does not override definitions of your own. For
example, if you defined the F13 key, your definition applies.

Remember that shifted function keys work only when you invoke EVE with
/DISPLAY =DECWINDOWS qualifier. They do not work on character-cell
terminals, such as a VT220 or VTlOO.

The default setting is SET FUNCTION KEYS NODECWINDOWS-there are no
shifted function keys (other than any you defined), and the F12 and F13 keys are
defined as follows:

Key

F12

F13

Non-DECwindows-Style Definition

MOVE BY LINE or EDT Start Of Line

ERASE WORD or EDT/WPS Delete Previous Word

9.6.2 Repeat Counts with Gold Key
With the EDT keypad or WPS keypad, you can press the Gold key (PFl) and
type a number to repeat the next keystroke or command (much like using the
REPEAT command). For example, to move the cursor down five lines, you can do
the following:

1. Press the Gold key and type the number 5. The number appears in reverse
video on the command line.

2. Press the down arrow key (!).
The maximum repeat count is 32767. If you enter more than five digits, EVE
displays an error message and sets the repeat count to 0.

EVE 9-19

You cannot use Gold-number combinations to repeat the following keys. Instead,
use the REPEAT command to repeat the key.

• The Delete key, which lets you erase the repeat count in case you mistyped
the number

• The EDT Specins key (Gold-KP3), which uses a Gold-number combination to
specify the decimal value of the character to be inserted

• The WPS Paste key (Comma or Gold-Comma on the keypad or Insert Here
on.the mini keypad), which uses Gold-1 through Gold-9 to specify an optional
WPS-style alternate paste buffer

9.6.3 WPS Ruler Keys
When you use the WPS keypad Ruler key (Gold-R), you can press KP4 to move to
the next or previous indicator in the ruler, and press Gold-H to get help on ruler
keys. These definitions are independent of how the keys are otherwise defined.
For a list of the keys you can use with the WPS Ruler, see the EVE online help
topic called Ruler Keys.

9.6.4 Mouse Buttons
You can define any mouse button, including MBl. If you press a mouse button
that is undefined, such as Gold-MBl, EVE does the corresponding action for
MBl:

1 click

2 clicks

3 clicks

4 clicks

5 clicks

Drag

Moves the cursor to where you are pointing and cancels any select range or found
range.

Moves the cursor to where you are pointing and selects all of the word at that location.

Moves the cursor to where you are pointing and selects all of the line at that location.

Moves the cursor to where you are pointing and selects all of the paragraph at that
location.

Moves the cursor to where you are pointing and selects all of the buffer.

Selects text. The cursor moves to where you are pointing when you release the mouse.

If you press a mouse button you have defined, EVE first executes a position
cursor operation (moving the cursor to where you are pointing and canceling a
select range or found range) and then executes whatever command is bound to
that mouse button. For more information about defining mouse buttons, see the
EVE online help topic called Mouse.

9-20 EVE

9.6.5 LEARN Sequences and Prompts
Under certain circumstances, some EVE commands reported informational
messages that aborted a learn sequence. This has been changed as follows:

• With the cursor on an empty prompt line, the following commands (or keys
defined for those commands) no longer abort a learn sequence:

ERASE PREVIOUS WORD
ERASE START OF LINE
DELETE
MOVE LEFT

• With the cursor positioned at the end of a prompt, the MOVE RIGHT
command (or right arrow key) no longer aborts a learn sequence.

9.7 FILL and Paragraph Boundaries
Paragraph boundaries for FILL commands and for the WPS keypad Paragraph
key (KP5) are any of the following:

• Blank line

• Top or bottom of the buffer

• Page break (form feed at the start of a line)

• DIGITAL Standard Runoff command (such as .LE; or .HLl) at the start of a
line

• VAX DOCUMENT tag (such as <LE> or <EMPHASIS>) at the start of a line

When you fill a select range or found range, the FILL or FILL RANGE command
does not reformat a line that begins with a page break, RUNOFF command, or
VAX DOCUMENT tag but does reformat the other lines in the range. Filling a
range does not delete blank lines.

9.8 Buffer List
When you use the SHOW BUFFERS or SHOW SYSTEM BUFFERS command,
EVE puts the cursor on the name of the buffer you were in and highlights the
name of that buffer in video bold. The list appears in a buffer named Buffer List.
If you were in a buffer that is not in the list-for example, if you are in the DCL
buffer or other EVE system buffer and then use the SHOW BUFFERS command
to get a list of your text buffers-EVE puts the cursor on the name of the first
buffer in the list.

EVE 9-21

To view a buffer, put the cursor anywhere on the line referring to that buffer and
then use the SELECT or RETURN command-effectively, the same as using the
BUFFER command withut having to type the buffer name. For example, you
can press the Select key on the mini keypad, the Return key, or any key defined
as SELECT or RETURN. Because EVE defines the Enter key on the keypad as
RETURN (except with the VTlOO keypad or WPS keypad), pressing Enter is the
same as pressing Return. With DECwindows, you can use the mouse to point to
the name of a buffer and click MBl.

To delete a buffer, put the cursor anywhere on the line referring to that buffer
and then use REMOVE or CUT.

With DECwindows, you can select all or part of the Buffer List buffer by using.
the mouse as follows:

1. Point where you want to begin the selection.

2. Drag MBl to select the text.

3. Use REMOVE or CUT to cut the selection, or use STORE TEXT or COPY to
copy the selection.

This is useful if you want to paste all or part of the buffer list into another
buffer-for example; if you want to save the list of buffers you were editing or the
list of EVE system buffers.

9.9 Batch Editing
You can use EVE for batch editing by using the EDITtrPU/NODISPLAY
command. Typically, you also use the /INITIALIZATION or /COMMAND qualifier
to specify a special initialization file or command file containing the editing
operations you want EVE to perform. For example, the following DCL command
file invokes EVE:
$SET DEFAULT disk$1:[user.work]
$ EDIT/TPU/NODISPLAY/INIT=batchedit
$ PURGE
$ RUNOFF/LOG/MESSAGE=USER chl,ch2
$ PRINT/AFTER=18:30 *.mem

go to work area
run EVE in batch
clean up
create .MEM files
print output

Example 9-2 shows the EVE initialization file (BATCHEDIT.EVE).

Some EVE commands cannot be used in batch mode. Generally, any command
that requires a parameter, such as a file name or search string, will not
work unless all the required· information is given on the command line. Also,
commands that prompt for a key press (such as REMEMBER) or keyword
response (such as REPLACE) or that use a key press to exit from some special
state (such as HELP) will not work. Using such a command might cause the the
batch job to fail.

9-22 EVE

Example 9-2: EVE Initialization File for Batch Editing

GET FILE chl.rno
find the placeholder for inserting the change

FIND {add info here}
! cut the placeholder
REMOVE

add the new information to CHl.RNO
INCLUDE FILE newinfo.txt

save the edits
WRITE FILE

similar change in CH2.RNO
GET FILE ch2.rno
FIND NEXT
REMOVE
TPU EVE$INSERT_TEXT (" See Chapter 1. ")
WRITE FILE
QUIT

Note that the initialization file or command file should end with an EXIT or QUIT
command-that is, it should be a complete editing session. Because the EXIT and
QUIT command can prompt you for additional input, all your edits should be
written out before the EXIT or QUIT is executed.

For complex edits in batch mode, you should use a VAXTPU command file
containing the procedures you want executed. Generally, you get greater
precision or flexibility with VAXTPU procedures, particularly for complex
reformatting, string replacements, and so on. For simpler edits, you can use
an EVE initialization file.

For more information about invoking the editor from a DCL command file, see
the VAX Text Processing Utility Manual.

9.10 Other Changes
The following sections describe other changes to EVE commands, keys, and
features. For detailed information about these commands or keys, use EVE
online help.

9.10.1 Bound Cursor Motion

When you enable bound cursor motion-with the SET CURSOR BOUND or SET
KEYPAD WPS command-if the cursor is in an unused area of the buffer (or
"whitespace"), EVE moves the cursor to the nearest text. This effect is called
snapping.

EVE 9-23

9.10.2 Commands Buffer

The Commands buffer-the EVE system buffer that stores the commands you
enter-is unmodifiable except for the line in the command window (that is, the
command you are typing or the command line you have recalled). This ensures
that cutting and pasting from the Commands buffer does not alter the command
history of the editing session. For example, if you select and cut a line from the
Commands buffer, EVE does a copy instead.

For more information about EVE command-line editing, see the EVE online help
topic called Editing Command Lines.

9.10.3 SHOW Command

The output from the SHOW and SHOW DEFAULTS BUFFER commands includes
information about journaling, paragraph indentation, word wrap, and other buffer
settings. The following is typical output from the SHOW command:
EVE V2.4 1990-08-31 11:03

Information about buffer JABBER.TXT

Input file: DISK$1: [USER.POEMS]JABBER.TXT;l
Output file: DISK$1:[USER.POEMS]JABBER.TXT;l
Journal file: DISK$1: [USER]JABBER_TXT.TPU$JOURNAL;l

Modified
Mode: Insert
Paragraph indent: -4
Write
Direction: Forward
28 lines

Tab stops set every 8 columns.

Word wrap: on

Marks:

slithy toves

Left margin set to: 5
Right margin set to: 72
WPS word wrap indent: none
Modifiable
Window width set to: 80

brillig

The status line when you use the SHOW command appears in reverse video as
follows:
Buffer: SHOW To go back use RESET or DO

Thus, to return to the buffer you were in before the SHOW command, you can
press the Do key and type any command, or use the RESET command (for
example, by pressing Gold-Select).

9-24 EVE

9.10.4 RESTORE SELECTION Command with DECwindows Quick
Copy

Use the RESTORE SELECTION command to insert the text you last erased with
a pending delete operation or the text you moved with DECwindows Quick Copy
functions (Ctrl/MB3 or Ctrl/MB3Drag). For more information, see the EVE online
help topic called Quick Copy.

9.10.5 PREVIOUS BUFFER Command

Use the PREVIOUS BUFFER command to put your previous buffer into the
current window, if you have two or more buffers. EVE then returns the cursor to
your last position in that buffer. This lets you toggle between different buffers or
cycle through several buffers without having to type the buffer names. It does not
re-create a deleted buffer and it does not return you to an EVE system buffer.

If you have more than two buffers, the previous buffer is detern'lined by the order
in which you created the buffers. Conceptually, the list of buffers is circular, so
that repeating PREVIOUS BUFFER cycles through your buffers. If you have only
two buffers, the PREVIOUS BUFFER and NEXT BUFFER commands are the
same.

9.10.6 Help Topics

EVE has several new Help topics covering the new commands and features. In
particular, the help topic called Journal Files includes information about buffer
change journaling· and recovery, and there is a new help topic called Attributes
that explains how to save global settings in a section file or command file.

With DECwindows, you can get help on menu items by combining the Help key
and the mouse as follows:

1. Drag the pointer to the menu item you want help on, such as Global
Attributes in the Customize menu.

2. Press and hold the Help key. Release the mouse button, and then release the
Help key.

EVE 9-25

Similarly, you can get help on buttons within some dialog boxes, such as the ALL
button in the Replace dialog box, as follows:

1. Point to the button you want help on.

2. Press and hold down the Help key. Click MBl and then release the Help key.

In most cases, the HELP topic for a menu item or toggle button is the same as for
the corresponding command. Command topics contain examples or a list of steps
(or both) and also contain other information, such as any default key definitions
for the command.

9.11 Program-Level Changes
The following sections describe EVE program-level changes. These are of interest
if you use EVE as a base on which to build your own VAXTPU application. If you
use EVE only as an editor, you need not read this section. For information about
new features ofVAXTPU, see Chapter 8.

9.11.1 Renamed Variable for the MAIN Buffer
The variable EVE$X_MAIN_BUFFER replaces the variable MAIN_BUFFER.
This variable points to the initial buffer that is mapped to the main window on
startup-either a buffer named after the input file specified on the command line
or, if you did not specify a file when you invoked EVE, a buffer named MAIN.

If the buffer pointed to by EVE$X_MAIN_BUFFER is deleted (for example, by
a DELETE BUFFER command), EVE does not reset the variable to point to
another buffer. In this case, an. application layered on EVE can reset the variable
to point to another buffer.

9.11.2 Pre-Key and Post-Key Procedure Sharing
EVE lets layered applications use the pre-key and post-key procedure resources
provided by VAXTPU. All requests to create or delete a key procedure from any
key-map list must go through a single procedure, EVE$SET_KEY_PROCEDURE.
(Previously, EVE allowed only a single application key procedure to be set on
any key-map lists except the command key-map list, and key procedures for a
layered application were not active while the EVE key procedure was active for
any key-map list.)

9-26 EVE

9.11.3 Detached Cursor Handling

To handle a detached cursor, EVE uses the new VAXTPU built-in procedure SET
(DETACHED_ACTION). A detached cursor condition occurs when the cursor
position cannot represent the editing point in the current window, as follows:

• If the editing point is positioned to an invisible line, EVE moves the editing
position to the next visible line.

• Ifthe editing point is in a buffer that is not mapped to the current window,
EVE moves the editing point to the buffer in the current window.

• If there is no current window, EVE re-initializes its windows and maps the
current buffer to the current window.

• If the cursor is past the left or right edge of the current window, EVE takes
no action.

For more information, see Chapter 8.

9.11.4 Status Line Processing

If you reduce the width of the EVE window, the status line shrinks as well,
but EVE tries to keep the buffer-name field at full size unless the window is so
narrow that the buffer name does not fit, in which case the field is truncated.

The other status line fields-direction, mode, read/write status-are not
truncated. If any of these fields does not fit completely, it is simply omitted,
beginning with the rightmost field (depending on the direction of the buffer).

For more information, see the EVE online help topic called Status Line.

9.11.5 EVE$1NTERNATIONALIZATION Module

The EVE$INTERNALIZATION module has been added to the EVE sources
(normally contained in SYS$EXAMPLES). This module facilitates translating
EVE commands from English into some other language. For more information,
see the comments in the EVE source files.

9.11.6 Obsolete Keywords for Message Constants

The following EVE keywords are no longer defined in. EVE. These keywords
were message constants used as parameters for the EVE$MESSAGE procedure.
In writing your own procedures, do not use any such EVE message constants
because these constants are not supported as part of the EVE public interface.
The only exception to such use is for any message constant used by EVE as part
of a call to an EVE$ routine or as a return status from an EVE$ routine. Digital
will ensure that such constants remain totally upwards c~mpatible.

EVE 9-27

EVE Keyword Message
Constant Numeric Value

EVE$_NODOCMSG 35959266

EVE$_SHOWBUFSSTATUS 35971419

EVE$_SHOWSTATUS 35971403

EVE$_HELPSTATUSDOWN 35971363

EVE$_HELPSTATUSUPDN 35971371

EVE$_HELPSTATUSN 35971339

EVE$_STATUSLINE 35971291

EVE$_PATSTATBIG 35971523

EVE$_DCLSTATUS 35971323

EVE$_HELPSTATUSNP 35971347

EVE$_HELPSTATUSUP 35971379

EVE$_HELPSTATUSP 35971355

EVE$_HELPSTATUS 35971331

EVE$_PATSTATBIGUPDN 35971507

The integer values of the message constants above are listed so that any code you
have written that depends on these messages can continue to use the messages
for this release. Use these integers in place of the constants that previously
defined them.

Index

A
Action routine

assigning for client messages, 8-35
detached cursor, 8-57

Address
converting to node address, 7-66
converting to node name, 7-68

Attribute
new for XUI toolkit, 6-5

Attribute (VAX.TPU)
modifiable record, 8-22

Attribute for DNS
assigning, 7-4
enumerating, 7-29
modifying, 7-33
reading, 7-35
returning value, 7-77
testing for one, 7-38
types of, 7-12

Attribute for TPU
setting records, 8-27

Attribute_Name identifier, 7-47
Attribute_Name_Str identifier, 7-4 7

B
Back-end converter, 6-9

text, 4-3
use of, 4-3, 4-15

Base
specifying numeric constants 8-55

Bookreader application, 3-7 '
Boolean identifier, 7-4 7
Buffer

behavior of journal file, 8-17

Buffer (cont'd.)
converting name to journal file name

8-12 '
end of buffer text

visibility of, 8-21
getting file name of journal, 8-11
getting unmodifiable records erasible

state, 8-22
journal file, 8-6
length (VAXTPU), 8-66
recovering contents of, 8-13
sensing journaling, 8-10
sensing safe journaling, 8-11
sensing unmodifiable records in, 8-23
setting unmodifiable record erase state

8-25 '
unmodifiable

effect of records, 8-22
Bufferchangejournaling, 8-6

and keystroke journaling, 8-14
converting buffer to journal file name

8-12 '
default file naming, 8-8
enabling, 8-16
getting enable state, 8-8
getting file name of journal, 8-11
getting information on journal file,

8-12
naming algorithm, 8--8
recovery, 8-13
sensing, 8-10
sensing safe state, 8-11
specifying file name, 8-16

BUFFER_BEGIN keyword, 8-18, 8-62,
8-67,8-68

BUFFER_END keyword, 8-18, 8-62,
8-67,8-68

lndex-2

c
Calander application, 3-7
Calculator application, 3-7
Callable interface

and default directory, 8-51
item code TPU$_FILE_RECOVERABLE,

8-17
Callback data

handling (VAXTPU), 8-46
Callback data structure

of widget (VAXTPU), 8-46
Callback procedures

UIL, 6-8
Cardfiler application, 3-8
CDA$CONVERT routine

parameter changes, 6-10
CDA component, 6-9
CDA converter

new processing options, 6-9
CDA converter library, 4-15
CDA new features

CDA$_1NPUT_FRONT_END_DOMAIN
value, 6-10

CDA$_1NPUT_POSITION_
PROCEDURE value, 6-10

CDA$_0PTIONS_LINE processing
option, 6-10

CDA$_0UTPUT_BACK_END_
DOMAIN value, 6-10

CDA viewer routines, 6-10
CDA viewers enhanced support, 6-10
domain converter, 6-9
DTIF support, 6-9
DTIF_TO_DDIF format name, 6-9
new values for standard-item-list,

6-10
CDA Viewer application, 3-8
CDA viewer routines

CDA new feature, 6-10
for character cell terminal, 6-11
for DECwindows terminal, 6-11

CDA viewers, 6-10
CHANGE_CASE built-in procedure, 8-60
Child directory

. DNS, 7-5

Children
getting information (VAXTPU), 8-40

Class
getting widget information (VAXTPU),

8-41
getting widget resource information

(VAX.TPU), 8-43
Class_Name identifer, 7-47
C.lass_Name_Str identifier, 7-47
Class_ Version identifer, 7-4 7
Clearinghouse, 7-14
Client message

assigning handler routine, 8-35
fetching action routine for handling,

8-36
sending from VAXTPU, 8-37

Client message (VAXTPU), 8-35
handling, 8-35
sensing type, 8-38

Client message handler
getting routine, 8-36

Clock application, 3-8
Color mixing widget, 6-2
Command line

/JOURNAL command qualifier, 8-6,
8-7

/NODISPLAY command qualifier,
8-73

/NOJOURNAL command qualifier,
8-7

/RECOVER command qualifier, 8-6,
8-14

Compilation
conditional in VAXTPU, 8-54
lexical functions (VAX.TPU), 8-54

Compiler
VAXTPU enhancements, 8-52

Compound Document Architecture
See CDA

Compound string routines
list of, 6-3

Compound string text widget, 6-2
Conditional compilation

in VAXTPU, 8-54
Condition value, 7-51 to 7-53
Confidence identifier, 7-4 7

Confidence level, 7-16
Constant

specifying radix of, 8-55
Constraint argument

defining, 6--8
UIL, 6--8

Convenience routines
list of, 6-3

CONVERT/DOCUMENT command, 4-2
/FORMAT qualifier, 4-2
/OPTIONS qualifier, 4-3

Copying
of records

effect on record attributes, 8-20
COPY_TEXT built-in
. effect on record attributes, 8-20
CREATEtrERMINAL command, 4-6
CREATE_BUFFER built-in procedure,

8-9,8-13
CREATE_RANGE built-in procedure,

8-62
Creating the options file, 4-3
Cursor

detached action routine (VAXTPU),
8-58

detached handling <VAXTPU), 8-57
detached routine (VAX.TPU), 8-57
getting detached reason (VAXTPU),

8-59
watch-style

in VAXTPU, 8-30
Cursor position

relationship to invisible record, 8-21
CURSOR_HORIZONTAL built-in

procedure
operation, 8-21

CURSOR_ VERTICAL built-in procedure
operation, 8-21

Customize File View menu
changes, 3-2

Cut and Paste routines
of XUI toolkit, 6-3

D
Data type

UIL, 6-7
DCL commands

CONVERT/DOCUMENT, 4-2
CREATEtrERMINAL, 4-6
SET DISPLAY, 4-12
SHOW LICENSE, 4-12
VIEW, 4-14

DDIF input file
format, 4-15

DECnet event messages, 7-84
DECterm application, 3-8
DECwindows server

transport, 2-2
DECwindows system, 2-1

internationalization, 2-1
MIT compliance, 2-2
monitor independence, 2-1
multiscreen, 2-2

DECwindows VAXTPU

lndex-3

incompatible new features of, 8-3
Default directory

and VAXTPU callable interface, 8-51
getting (VAX.TPU), 8-50
setting <VAXTPU), 8-49

Default file naming algorithm
buffer change journal, 8-8

DELETE built-in procedure
journaling support, 8-10

Desktop applications, 3-6
Detached cursor

defining handler routine, 8-57
getting reason (VAXTPU), 8-59
handling (VAXTPU), 8-57

Detached cursor action routine
getting information, 8-58

Detached cursor :flag
TPU$K_DISJOINT, 8-60
TPU$K_INVISIBLE, 8-60
TPU$K_OFF _LEFT, 8-60
TPU$K_OFF _RIGHT, 8-60
TPU$K_UNMAPPED, 8-60

lndex-4

Device support
driver, 6-12

Device Support
SCSI, 6-12

Digital Command Language commands
See DCL commands

Directory
default setting (VAXTPU), 8-49
DNS types, 7-5, 7-15
enumerating in DNS, 7-30
getting default (VAXTPU), 8-50

Display value
getting, 8-24
of VAXTPU window, 8-21
setting for window, 8-24
setting records, 8-27
visability of VAXTPU record, 8-21

Display value attribute
of VAXTPU record, 8-20

Distributed Name Service
See DNS

DNS$APPEND_SIMPLENAME_TO_
RIGHT routine, 7-56

DNS$COMPARE_FULLNAME routine,
7-58

DNS$COMPARE_SIMPLENAME routine,
7-60

DNS$CONCATENATE_NAME routine,
7-62

DNS$CONTEXTVARNAME item, 7-50
DNS$CONTEXTVARTIME item, 7-50
DNS$COUNT_SIMPLENAMES routine,

7-64
DNS$CVT_DNSADDRESS_TO_BINARY

routine, 7-66
DNS$CVT_DNSADDRESS_TO_

NODENAME routine, 7-68
DNS$CVT_NODENAME_TO_

DNSADDRESS routine, 7-70
DNS$CVT_TO_USERNAME_STRING

routine, 7-72
DNS$PARSE_USERNAME_STRING

routine, 7-7 4
DNS$REMOVE_FIRST_SET_ VALUE

routine, 7-77

DNS$REMOVE_LEFT_SIMPLENAME
routine, 7-80

DNS$REMOVE_RIGHT_SIMPLENAME
routine, 7-82

DNS (Distributed Name Service), 7-1
clearinghouse, 7-14
overview, 1-2
restrictions, 7-3
root directory, 7-4
wildcards, 7-9, 7-22

DNS call
timeout in, 7-10

DNS clerk
locating data in namespace, 7-26
starting, 7-84

$DNS function code, 7-28 to 7-39
converting from opaque, 7-33
converting opaque name, 7-37
converting string name, 7-34, 7-37
creating an object, 7-28
deleting an object, 7-29
enumerating attributes, 7-29
enumerating child directories, 7-30
enumerating objects, 7-31
enumerating soft links, 7-32
modifying attribute, 7-33
reading attribute, 7-35
resolving soft link, 7-36
testing a group, 7-38
testing for attribute, 7-38

$DNS item code, 7-40 to 7-47
arguments, 7-47 to 7-48
attribute address, 7-44
attribute name, 7-41
attribute type, 7-40
attribute value address, 7-45
Boolean values, 7-42
caching results, 7-43
confidence level, 7-41
converting names, 7-42, 7-44, 7-46
entry type, 7-42, 7-43
enumerating directories, 7-41
enumerating functions, 7-41
enumerating objects, 7-41
member name, 7-43
modifying attribute, 7-44

$DNS item code (cont'd.)
modifying attributes, 7-43
object class, 7-41
object name, 7-44
simple name address, 7-45
soft link name, 7-43
specifying groups, 7-42
suppressing namespace name, 7-46
target name address, 7-45
testing attribute value, 7-46
timeout value, 7-46
urn address, 7-46
version of object, 7-46
wildcard, 7-4 7

DNS name
case sensitivity, 7-9
comparing, 7-60
converting, 7-33,7-34,7-37
converting full name, 7-33
defining logicals, 7-7
format of, 7-3
source of, 7-3

DNS naming conventions
binary names, 7-9
format, 7-3
logical names, 7-7
quoted names, 7-9
syntax, 7-5
valid characters, 7-7
wildcards, 7-9

DNS object, 7-5
creating, 7-9 to 7-11, 7-28
deleting, 7-29
enumerating, 7-31
modifying, 7-12 to 7-14
reading attributes of, 7-19

DNS string name
converting, 7-37
converting to opaque, 7-34
format, 7-3

$DNS system service, 7-27
arguments, 7-27 to 7-50
building item list, 7-39
description, 7-50
format, 7-27, 7-50
function codes, 7-28

$DNS system service (cont'd.)
item code identifiers, 7-4 7
qualifying status, 7-49
returns, 7-27
status block, 7-27

$DNSW system service, 7-54
Domain converter, 4-4

CDA new feature, 6-9
processing options, 4-4

Driver, 6-12
DRM routines

list of, 6-3
DTIF support

CDA new feature, 6-9
DTIF_TO_DDIF format name

CDA new feature, 6-9

E
EDIT built-in procedure, 8-63
Editing point

lndex-5

relationship to invisible record, 8-21
EDITtrPU command

/COMMAND qualifier, 9-14
input file handling, 9-2
/JOURNAL qualifier, 9-7
/NO DISPLAY qualifier, 9-21
/NOJOURNAL qualifier, 9-6
/RECOVER qualifier

with buffer change journal file,
9-5

/SECTION qualifier, 9-12
%ELSE lexical keyword

compiling VAXTPU, 8-54
%ENDIF lexical keyword

compiling VAXTPU, 8-54
Entry_Type identifier, 7-47
Enumerate call

attributes, 7-29
directories, 7-30
objects, 7-31
soft links, 7-32

Enum_Att_N ame identifier, 7-4 7
EQUIVALENCE statement

in VAXTPU, 8-52

lndex-6

ERASE_UNMODIFIABLE mode
and APPEND_LINE, 8-26
and CHANGE_CASE, 8-26
and COPY_TEXT, 8-26
and EDIT, 8-26
and ERASE (buffer), 8-26
and ERASE (range), 8-26
and ERASE_CHARACTER, 8-26
and ERASE_LINE, 8-26
and FILL, 8-26
and MOVE_TEXT, 8-27
and SPLIT_LINE, 8-27
and TRANSLATE, 8-27

Erasing unmodifiable records
VAXTPU, 8-25

Error messages
DNS, 7-85

EVE, 9-1 to 9-27
attributes, 9-8

saving in command file, 9-13
saving in section file, 9-11
saving system defaults, 9-14

batch editing, 9-21
bound cursor motion, 9-22
buffer change journaling, 9-3
buffers

Buffer List, 9-20
Commands, 9-23

case-exact search, 9-16
$CHOICES$ buffer

with input files, 9-2
with journal files, 9--5

code generated for saving attributes,
9-13

command file
saving attributes in, 9-13
TPU$COMMAND.TPU, 9-14

commands
DEFINE MENU ENTRY, 9-15
FILL, 9-20
PREVIOUS BUFFER, 9-24
RECOVER BUFFER, 9--5
RECOVER BUFFER ALL, 9-6
RESTORE SELECTION, 9-24
SAVE ATrRIBUTES, 9-9

with command file, 9-13
with section file, 9-11

EVE
commands (cont'd.)

SAVE EXTENDED EVE, 9-10
SAVE SYSTEM ATrRIBUTES,

9-9,9-14
SET CURSOR BOUND, 9-22
SET DEFAULT COMMAND FILE,

9-10,9-14
SET DEFAULT SECTION FILE,

9-10,9-12
SET EXIT ATrRIBUTE CHECK,

9-10
SET FIND CASE EXACT, 9-16
SET FIND CASE NOEXACT,

9-16
SET FUNCTION KEYS

DECWINDOWS, 9-17
SET FUNCTION KEYS

NODECWINDOWS, 9-18
SET JOURNALING, 9-6
SET JOURNALING ALL, 9-6
SET NODEFAULT COMMAND

FILE, 9-10
SET NODEFAULT SECTION

FILE, 9-10, 9-12
SET NOEXIT ATrRIBUTE

CHECK, 9-10, 9-11
SET NOJOURNALING, 9-6
SET NOJOURNALING ALL, 9-6
SET NOSECTION FILE

PROMPTING, 9-10, 9-12,
9-14

SET SECTION FILE
PROMPTING, 9-10, 9-12

SHOW, 9-23
SHOW BUFFERS, 9-20
SHOW DEFAULTS BUFFER,

9-23
SHOW SYSTEM BUFFERS, 9-20
UNDEFINE MENU ENTRY, 9-15

DECwindows function keys, 9-17
detached cursor handling, 9-26
input file handling, 9-2
journal file

deleting, 9-6
directory for, 9-4
naming, 9-5

EVE (cont'd.)
key names

abbreviating, 9-17
control keys, 9-17
for mini keypad, 9-16

keys
Alt combinations, 9-17
DECwindows-style, 9-17
Enter in buffer list, 9-20
Gold for repeat counts, 9-18
Return in buffer list, 9-20
shifted function, 9-17
With learn sequences, 9-20
with WPS Ruler, 9-19

keystroke journaling, 9-3
restrictions, 9-7
with software performance report,

9-8
learn sequence keys, 9-20
logical names

TPU$JOURNAL, 9-4
menus, 9-15
mouse

defining buttons, 9-19
in buffer list buffer, 9-20

paragraph boundaries, 9-20
programming

EVE$INTERNATIONALIZATION
module, 9-26

EVE$SET_KEY_PROCEDURE,
9-25

EVE$X_MAIN_BUFFER variable,
9-25

obsolete keywords for messages
constants, 9-26

post-key procedures, 9-25
pre-key procedures, 9-25

repeat counts with Gold key, 9-18
section file

saving attributes in, 9-11
status line, 9-26
WPS Ruler keys, 9-19

EVE Features
overview, 1-4

Event flag
$DNS system service, 7-27

Event messages
DNS, 7-84

Extensible VAX Editor
See EVE

F
File

lndex-7

default name for journaling, 8-8
File list

updating a, 3-3
File View, 3-2

menus, 3-2
/FORMAT qualifier

for the CONVERT/DOCUMENT
command, 4-2

for the VIEW command, 4-15
FORWARD keyword, 8-19
Front-end converter, 6-9

options file, 4-3
use of, 4-3, 4-15

Full name
converting to opaque, 7-34
converting to string, 7-33

Full_Name_String identifer, 7-48
Function keys

VAXTPU support for, 8-72

G
Gadget

pull-down menu entry, 6-2
Gadget routines

XUI toolkit, 6-5
GET_INFO (widget_variable) built-in

procedure
behavior, 8-5

GET_INFO built-in procedure
"children" data, 8-40
"class" data, 8-41
"client_message", 8-38
"client_message_routine", 8-36
"default_directory", 8-50
"detached_action" data, 8-58
"detached_reason" data, 8-59

lndex-8

GET_INFO built-in procedure (cont'd.)
"is_managed" data, 8-42
"is_subclass" data, 8-42
"parent" data, 8-43
"resources" data, 8-43
string constant parameter

"display_value", 8-24
"erase_unmodifiable", 8-22
"journaling", 8-8, 8-10
"journal", 8-12
"journal_file", 8-8, 8-11
"journal_name", 8-12
"safe_for_journaling", 8-11
"unmodifiable_records", 8-23

string constant parameter for "widget_
info", 8-5

use of, 8-8
Group_Member identifier, 7-48

H
HEIGHT value processing option

CDA new feature, 6-10

I
Icon

implementing in DECwindows
VAXTPU, 8-32, 8-34

support DECwindows VAXTPU, 8-32
Icon box, 3-1
Icon creation (VAXTPU), 8-32, 8-34
%IFDEF lexical keyword

compiling VAXTPU, 8-54
%IF lexical keyword

compiling VAXTPU, 8-54
Initialization

incompatibility of in DECwindows
VAXTPU, 8-3

Initialization coding
VAXTPU, 8-4

Initialization procedures
VAXTPU, 8-3

Insert mode
effecting record attributes, 8-20

Internationalization DECwindows, 2-1
Invisible record, 8-27

relationship to editing point, 8-21
Item code

J

TPU$_CHAIN, 8-72
TPU$_FILEIO, 8-71
TPU$_FILE_RECOVERABLE, 8-17
TPU$_GET_DEFAULT, 8-51
TPU$_SET_DEFAULT, 8-51

/JOURNAL command qualifier, 8-6, 8-7
Journal file, 8-14

default name, 8-8
getting characteristics of, 8-12
getting name of, 8-8
recovering buffer contents, 8-13
specifying with CREATE_BUFFER

built-in, 8-9
Journaling

buffer change, 8-6
converting buffer to journal file name,

8-12
default file name, 8-8
EVE default behavior, 8-7
getting buffer change journaling enable

state, 8-8
getting file name of buffer change

journal, 8-11
getting journal file information, 8-12
layered application control, 8-7
recovery of buffer contents, 8-13
role of CREATE_BUFFER built-in,

8-9
role of source file, 8-15
sensing a safe buffer, 8-11
sensing buffer change journaling, 8-10
sensing the enable of keystroke

journaling, 8-8
using both keystroke and buffer change

journaling, 8-7
JOURNALING parameter

SET built-in procedure, 8-16
JOURNAL_OPEN built-in procedure,

8-7

K
Key

modifiers (VAXTPU), 8-72
Keyboard

KEY_NAME built-in procedure, 8-72
Keyboard keys

expanded VAXTPU support, 8-72
Keys

expanded.VAXTPU support, 8-72
function keys (Fl through F5), 8-72

Keystroke journaling
and buffer change journaling, 8-14
comparative to buffer change

journaling, 8-6
recovery, 9-7
recovery restrictions, 9-7
sensing the enable, 8-8

Keyword
marking the range (VAXTPU), 8-62
modifying string (VAXTPU), 8-63
modify range, 8-67
position (VAXTPU), 8-68

Keywords
reserved in VAXTPU, 8-56

KEY_NAME built-in procedure, 8-72
KILL_SELECTION client message, 8-37

L
Left margin

setting TPU records, 8-27
LENGTH built-in procedure, 8-66
License

charge table, 4-12
displaying an active, 4-12

LINE_BEGIN keyword, 8-62, 8-67
LINE_END keyword, 8-62, 8-67
Local variables

compiling VAXTPU, 8-53
Lock manager limit, 5-1
Logical name, 7-7

SYS$SCRATCH, 8-10
TPU$JOURNAL, 8-10

lndex-9

Low End Graphics Subsystem (LEGGS),
6-12

Low-level widget routines
list of, 6-5

M
Mail application, 3-8
Main array keys

modifying and controlling, 8-72
Managed state

sensing widget (VAXTPU), 8-42
Managing

setting widget/screen mapping
(VAXTPU), 8-45

MAP built-in procedure, 8-4
enhancement to, 8-4

MAPPED_WHEN_MANAGED parameter
to SET built-in procedure, 8-45

Mapping
widget/screen (VAXTPU), 8-45

Margin
setting TPU records, 8-27

Marker
getting display value of marked record,

8-24
sensing marked unmodifiable record,

8-23
Message (VAXTPU)

sending, 8-37
MESSAGE built-in procedure, 8-66
MIT Release 3 compliance, 2-2
Modifiability

of VAXTPU record, 8-22
setting records, 8-27

Modifiability attribute
of VAXTPU record, 8-20

Modifiable record, 8-22
MODIFY_RANGE built-in procedure,

8-67
Monitor independence, 2-1
MOVE_TEXT built-in

effect on record attributes, 8-20
Multiple UIL callback procedures, 6-8
Multiscreen, 2-2

lndex-10

N
Name

DNS
SeeDNS name

Name service
See DNS (Distributed Name Service)

Namespace, 7-2
changing default, 7-84
clearinghouses in, 7-14
distributing, 7-14
listing information, 7-22 to 7-25
name of, 7-6, 7-48
structure of, 7-4
ways of using, 7-3

NCP executor, 5-1
SET/DEFINE EXECUTOR command,

5-2 -
SHOW EXECUTOR CHARACTERISTICS

command, 5-2
Network name/object

$QIO return, 6-13
Node name

converting to address, 7-70
/NODISPLAY command qualifier

enhancements to, 8-73
/NOJOURNAL command qualifier, 8-7
Notepad application, 3-9
Numeric constant

specifying radix of, 8-55

0
Object

See DNS object
Opaque name

concatenating, 7-56, 7-62
converting to string, 7-33, 7-37, 7-72
converting user name, 7-74
counting components, 7-64
format of, 7-3
returning simple name, 7-80, 7-82

Options file, 4-3
CDA conversion, 4-3

/OPTIONS qualifier
for CONVERT/DOCUMENT command,

4-3
OUTPUT parameter

SET built-in procedure, 8-13
OVERRIDE_FORMAT processing option

CDA new feature, 6-10
Overstrike mode

effecting record attributes, 8-20

p
Paint application, 3-9
Parent

getting widget information (VAXTPU),
8-43

Pattern enhancements
BUFFER_BEGIN keyword, 8-18
BUFFER_END keyword, 8-18
reverse search, 8-19

Pattern search
improvements, 8-18

Pixmap
DECwindows icon (VAXTPU), 8--32
use of to implent icon in DECwindows

VAXTPU, 8--34
POSITION built-in procedure, 8-68
Processing options

CDA converters, 6-9
domain converter, 4-4
Tuxt back-end converter, 4-3

Programming, 6-1
for network name/object number, 6-13
in server, 6-11
with CDA, 6-9
with UIL, 6-7
with XLIB, 6-6
with XUI Toolkit, 6-1

Pull-down menu gadget, 6-2
Puzzle application, 3-9

Q
$QIO

network naming return, 6-13

$QIO Calls, 6-11
Qualifier for UIL, 6-8

R
Radix

specifiying numeric constants, 8-55
Range

length (VAXTPU), 8-66
sensing unmodifiable records in, 8-23

Read command, 3-2
READ_CHAR built-in procedure, 8-4
READ_KEY built-in procedure, 8-4
READ_LINE built-in procedure, 8-4
REALIZE_ WIDGET built-in procedure,

8-45
Realizing

widgets in VAXTPU, 8-45
Record

attribute
display value, 8-21
effect of copying a record, 8-20
effect of insert mode, 8-20
modifiability, 8-22
modifying, 8-20
overstrike mode effect, 8-20

getting display value of, 8-24
getting unmodifiable erasible state,

8-22
invisible

relationship to editing point, 8-21
sensing unmodifiable state, 8-23
setting attributes, 8-27
setting modifiability, 8-22
setting unmodifiable erase state, 8-25
visibility of, 8-21

/RECOVER command qualifier, 8--6, 8-14
Recovery

keystroke journaling, 9-7
of buffer contents, 8-6, 8-13
role of CREATE_BUFFER built-in,

8-9
role of source file, 8-15
using keystroke journaling/not buffer

changejournaling, 8-14

lndex-11

RECOVER_BUFFER built-in procedure,
8-13

Resize event, 8-30
Resizing ·

of windows and screens, 8-30
screen height (VAXTPU), 8-30
screen width (VAXTPU), 8-31

Resource
getting widget class and data type

information (VAX.TPU), 8-43
REVERSE keyword, 8-19
Reverse search

text pattern, 8-19
Routine

CDA$CONVERT, 6-10
CDA Viewer, 6-10
XLIB, 6--6
XUI 'lbolkit, 6-2

Run-time routines
DNS, 7-55

s
SCAN built-in procedure, 8-19
SCANL built-in procedure, 8-19
Screen

resizing, 8-30, 8-31
SCROLL built-in procedure

operation, 8-21
SCSI (Small Computer System Interface)

third-party support, 6-12
SCSI Features

overview, 1-4
SCSI third-party device

summary of VMS support for, 6-12
Searching pattern

reverse, 8-19
SEND_CLIENT_MESSAGE built-in

procedure, 8-37
Server

$QIO Call programming, 6-11
transport support, 2-2

Session manager, 3-2
SET (CLIENT_MESSAGE) built-in

procedure, 8-35

lndex-12

SET (DEFAULT_DIRECTORY) built-in
procedure, 8-49

SET (DETACHED_ACTION) built-in
procedure, 8-57

SET (DISPLAY_ VALUE) built-in
procedure, ~24

SET (ERASE_UNMODIFIABLE) built-in
procedure, 8-25

SET (HEIGHT) built-in procedure, 8-30
SET (ICONIFY_PIXMAP) built-in

procedure, 8-34
SET (ICON_PIXMAP) built-in procedure,

8-32
SET (JOURNALING) built-in procedure

enhancements to, ~16
SET(MAPPED_WHEN_MANAGED)

built-in procedure, 8-45
SET (OUTPUT) built-in procedure, 8-13
SET (RECORD_ATTRIBUTE) built-in

setting record modifiability, ~22
SET (RECORD_ATTRIBUTE) built-in

procedure, ~27
SET (WIDGET_CALL_DATA) built-in

procedure, 8-46
SET (WIDTH) built-in procedure, 8-31
SET/DEFINE EXECUTOR command,

5-2
SET DISPLAY command

new qualifiers, 4-12
Set Protection command, 3-2
SHOW EXECUTOR CHARACTERISTICS

command, 5-2
SHOW LICENSE command

new qualifiers, 4-12
Simple name

converting to opaque, 7-34
Simple_Name_Str identifier, 7-48
Skulk, 7-17
Small Computer System Interface

See SCSI
Soft link

DNS, 7-5
enumerating, 7-32
locating target entry, 7-36

SOFT_DIRECTIVES processing option
CDA new feature, 6-10

Source file
defined, ~15

SPAN built-in procedure, ~19
SPANL built-in procedure, ~19
SS$_TOOMUCHDATA message, 6-13
Standard-item-list new values

CDA new feature, 6-10
Startup

incompatibility of DECwindows
VAXTPU, ~3

STUFF _SELECTION client message,
8-37

Subclass
sensing widget information (VAXTPU),

8-42
SUBSTR built-in procedure, 8-68
Synonyms

creating for VAXTPU, 8-52
SYS$DNS system service

See $DNS system service
SYS$SCRATCH logical name

and VAXTPU journaling, ~10
SYSGEN parameters, 5-1
System features, 2-1
System management features, 5-1
System service, 7-26

T
Task Output Box, 3-3
Terminal emulator

creating, 4-6
Text back-end converter

processing options, 4-3
%THEN lexical keyword

compiling VAXTPU, ~54
TPU

SeeVAXTPU
TPU$$GET_DEFAULT_DIRECTORY

routine, 8-51
TPU$$SET_DEFAULT_DIRECTORY

routine, 8-51
TPU$INITIALIZE routine

item codes, ~51
item code TPU$_CHAIN, ~72

TPU$INITIALIZE routine (cont'd.)
item code TPU$_FILEIO, 8-71
item code TPU$_FILE_RECOVERABLE,

8-17
TPU$JOURNAL logical name, 9-4

VAXTPU journaling, 8-10
TPU$_FILE_RECOVERABLE item code,

8-17
TPU$_UNKLEXICAL error message,

8-56
TRANSLATE built-in procedure, 8-69
Transport, 2-2

u
UIL Compiler, 6-7

callback procedure, 6-8
constraint argument, 6-8
data type, 6-7
version qualifer, 6-8

Unbound code
compiling local variables, 8-53

UNMAP built-in procedure, 8-5
enhancement to, 8-4

Unmodifiable record, 8-22, 8-27
getting erasible state, 8-22
sensing, 8-23
setting erase state, 8-25

User Interface Language
See UIL

v
VAX Text Processing Utility

See VAXTPU
VAXTPU

callable interface, 8-17
contants, 8-55
documents related to, 8-3
error message, 8-56
incompatibility of DECwindows

initialization/startup, 8-3
journaling methods, 8-6
keywords reserved, 8-56
overview, 1-2,8-1

VIEW command
/FORMAT qualifier,. 4-15
new qualifiers, 4-14

Visibility

lndex-13

getting display value of record/window,
8-24

sensing record display value, 8-24
setting record, 8-27

w
Watch cursor, 8-30
Widget

color mixing, 6-2
compound text string, 6-2
creating window (VAXTPU), 8-45
getting children information (VAXTPU),

8-40
getting class and data type resource

information (VAXTPU), 8-43
getting parent information (VAXTPU),

8-43
getting subclass information (VAXTPU),

8-42
mapping screen (VAXTPU), 8-45
new XUI toolkit attributes, 6-5
realizing (VAX.TPU), 8-45
sensing class (VAXTPU), 8-41
sensing the managed state (VAXTPU),

8-42
setting screen map (VAXTPU), 8-45
using callback data structure

(VAX.TPU), 8-46
WIDTH value processing option

CDA new feature, 6-10
Wildcard

DNS, 7-9, 7-22
Window

creating (VAXTPU widget), 8-45
getting display value of, 8-24
resizing, 8-30
setting display value of, 8-24

Window manager, 3-1
Work in Progress Box, 3-3
WRITE_FILE built-in

journaling support, 8-17

lndex-14

x
XLIB

new routines, 6-6
X library

See XLIB
XUI Toolkit

new routines, 6-2
new widgets, 6-1

X User Interface 'lbolki.t
See XUI 'lbolkit

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders
'lb place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Ha~aii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS Version 5.3
New Features Manual

AA-MG298-TE

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good

D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
Nametritle Dept.

Company

Mailing Address

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11. i •• 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

No Postage
Necessary
if Mailed

in the
United States

Do Not Tear - Fold Here --

Reader's Comments VMS Version 5.3
New Features Manual

AA-MG29B-TE

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good

D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
Name!l'itle Dept.

Company

Mailing Address

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 •• 1

No Postage
Necessary
if Mailed

in the
United States

Do Not Tear - Fold Here --

