
VMS User's Manual
Order Number: AA-LA98B-TE

June 1989

This manual describes tasks you can perform using the VMS operating system.
The information contained in this manual is intended for all users and is
applicable to all members of the VAX and MicroVAX families of computers
running the VMS operating system.

Revision/Update Information: This manual supersedes the VMS General User's
Manual, Version 5.0.

Software Version: VMS Version 5.2

digital equipment corporation
maynard, massachusetts

June 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA MASSBUS VAX RMS

DDIF PrintServer 40 VAXstation

DEC Q-bus VMS

DECnet ReGIS VT
DECUS ULTRIX XUI
DECwindows UNIBUS

DIGITAL VAX

LN03 VAXcluster mamaama™
The following is a third-party trademark:

PostScript is a registered trademark of Adobe Systems, Inc.

ZK4323

Production Note
This book was produced with the VAX DOCUMENT electronic publishing system,
a software tool developed and sold by Digital. In this system, writers use an
ASCII text editor to create source files containing text and English-like code;
this code labels the structural elements of the document, such as chapters,
paragraphs, and tables. The VAX DOCUMENT software, which runs on the
VMS operating system, interprets the code to format the text, generate a table
of contents and index, and paginate the entire document. Writers can print
the document on the terminal or line printer, or they can use Digital-supported
devices, such as the LN03 laser printer and PostScript printers (PrintServer 40
or LN03R ScriptPrinter), to produce a typeset-quality copy containing integrated
graphics.

Contents

Preface xxix

Chapter 1 Introduction: VMS Concepts and
Definitions

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

How to Use This Manual •••••••••••••••••.•••••

Logging In to the System •

Using a Network ••••••••••••••••••••••••••••••

The DIGITAL Command Language (DCL) •••.•••••
1.4.1 The DCL Command Line

Files and Directories . •
1.5.1 File and Directory Specifications
1.5.2 Directory Structures

Devices ••••••••••••••••••••••••••••••••.•••••
1.6.1 Physical Device Names
1.6.2 Logical Device Names
1.6.3 Generic Device Names

Processes ••••••••••••••••••••••••••••••••••••

Programs ••••••••••••••••••••••••••••••.•••••

Utilities •••••••••••••••••••••••••••••••.•••••
1.9.1 MAIL
1.9.2 VMS SORT/MERGE

Text Editors ••••••••••••••••••••••••••••••••••

1-1

1-2

1-2

1-2
1-3

1-4
1-4
1-5

1-6
1-6
1-7
1-7

1-7

1-8

1-8
1-9
1-9

1-9

1.11 DIGITAL Standard Runoff (DSR) • • • • • • • • • • . • • • • • 1-9

1.12 Logical Names • • • • • • . • • • • • • • • • • • • • • • • • • • . • • • • • 1-10

1.13 Symbols • 1-10

1.14 Command Procedures • 1-11

vi Contents

1.15 Account and System Security • • • . • • • • • • • • • • • • . • • 1-11

Chapter 2 Getting Started: Interacting with VMS
2.1 Logging In to the System. . • • • • • • • • • • . • • • . • • . • • • 2-1

2.2 Logging In to a Remote Node • • • • . . • • • • • • • • • • • • • 2-2

2.3 Changing Your Password . . • . . • • . • • • • • • • • • • • • • . • 2-3

2.4 Recognizing System Responses • • • • • • • • • • • • • • • • • 2-4

2.5 Getting Help . 2-5

2.6 Ending a Remote Session • • . . . • . . • • . . • • . . • . 2-7

2. 7 Logging Out of the System . . . • • . . • • • • • • • • • • . • • • 2-7

Chapter 3 The DIGITAL Command Language:
Communicating with VMS

3.1 Using DCL Commands . . • • • . . . • • • • • • • • . • . • . 3-1

3.2 Constructing a DCL Command • • • • • . . • • • • • • . • • • • 3-3
3.2.1 Vocabulary of a DCL Command 3-3
3.2.2 Putting the Parts in Order: Syntax 3-4

3.3 Entering a DCL Command . . • . • . • • • • • • • • • • • . . • • 3-5
3.3.1 Rules for Entering a DCL Command 3-5
3.3.2 Entering an Incomplete Command Line. 3-6
3.3.3 Entering a Command Longer Than One Line . . 3-6
3.3.4 Entering Parameters . 3-7
3.3.5 Entering Qualifiers . 3-8

3.4 Recalling Commands . • • • . • 3-10

3.5 Entering Dates and Times as Values . • • • • • • • . • • • • 3-12
3.5.1 Absolute Time . 3-12
3.5.2 Delta Time . 3-13
3.5.3 Combination Time . 3-14

3.6 Defining Terminal Keys . . . • . • • . . • . . • • • . . • • • • • • • 3-15

3.7 Summary of Key Combinations . . • • • . • • • • • • • • • • . 3-15

Contents vii

Chapter 4 Files: Storing Information
4.1 Understanding File Names and Specifications..... 4-2

4.2 Using Wildcards with Files • • • • • • • • . • . . • • • • . 4-4
4.2.1 The Asterisk (*) Wildcard Character 4-5
4.2.2 The Percent (%) Wildcard Character 4-5

4.3 Creating and Modifying Files • • • . • • . • . . • • • . 4-5
4.3.1 Creating Files . 4-5
4.3.2 Copying Files . 4-6

4.4 Renaming Files • . . • . • • • . . • • • • • . • • • . . • • • • • • . . • . 4-7

4.5 Displaying the Contents of Files . • . • • • • • • • . • • • • • 4-7

4.6 Deleting Files • • • • • • • . • . . . • • • • • • . . • • • • • • . . . • • • 4-8

4. 7 Protecting a File from Other Users 4-9
4. 7 .1 Default File Protection . 4-9
4.7.2 Explicit File Protection 4-10

4.8 Printing Files • • • • • . . . • • • • . . . • • • • • • • . • • • . • • . . . 4-11
4.8.1 Displaying Queue Information......... 4-11
4.8.2 Stopping and Deleting a Print Job...... 4-12
4.8.3 Printing a File on Another Node 4-12
4.8.4 DCL Commands That Control Print Jobs 4-12

Chapter 5 Directories: Organizing and Managing
Files

5.1 Understanding Directory Structures............. 5-1

5.2 Understanding Directory Names and
Specifications • . • • • • • • • • • • • • • • 5-3

5.3 Creating Directories • • • • • • . • • • • • • • . • • • . • • . • • . . . 5-3

5.4 Displaying Directories • • . • . • • • • • • • • • • • • • • . • • • . • 5-3

5.5 Setting a Default Directory................ • • • • • 5-4

5.6 Deleting Directories • • • • • • . . . • . • . . . • 5-5

5. 7 Protecting a Directory from Other Users • 5-6

5.8 Using Wildcards to Search the Directory
Structure . 5-6
5.8.1 The Ellipsis (...) Wildcard Character 5-7
5.8.2 The Hyphen (-) Wildcard Character 5-8

viii Contents

Chapter 6 Editing Text Files: Using EVE
6.1

6.2

6.3

6.4

6.5

Beginning an Editing Session •••••••••••••••••••

Using Online Help ••

Ending an Editing Session •••••••••••••••••••••
6.3.1 Saving Your Edits
6.3.2 Ending the Session Without Saving Your

Edits

Entering EVE Commands ••••••••••••••••••.•••
6.4.1 Using Defined Keys to Enter EVE

Commands
6.4.2 Typing EVE Commands
6.4.3 EVE Key Names

Editing Text •••••••••••.••••••••••••••••••••.•
6.5.1 Locating Text
6.5.2 Replacing Text
6.5.3 Recovering from System Interruptions
6.5.4 Refreshing the Screen
6.5.5 Using the Journal File
6.5.6 Listing Buffers
6.5. 7 Editing Two Buffers
6.5.8 Reading and Writing Files
6.5.9 EVE Default Settings

6.6 Saving Time and Keystrokes-Defining Keys in
EVE ••.••.•••••••••••••••••••.• • •• • • • • • • • • • • •
6.6.1 Using EVE to Emulate EDT
6.6.2 Using EVE to Emulate WPS
6.6.3 Defining a Key While Using EVE
6.6.4 Using Startup Files to Define Keys

6-1

6-2

6-2
6-3

6-3

6-3

6--4
6-7
6-7

6-8
6-9

6-11
6-12
6-12
6-12
6-14
6-14
6-14
6-15

6-18
6-18
6-21
6-22
6-25

6. 7 Using DCL Within EVE • 6-32
6. 7.1 Executing a DCL Command. 6-33
6. 7 .2 Creating a Subprocess . 6-33

6.8 Converting from EDT to EVE • • • • • • • • • • • • • • • • • • • 6-33

6.9 EVE Command Summary • 6-37

Contents ix

Chapter 7 Editing Text Files: Using EDT
7.1 Invoking and Ending an EDT Session............ 7-1

7.1.1 Invoking EDT . 7-1
7.1.2 Ending an EDT Session................... 7-2

7.2 Entering EDT Commands . . • • • . . . • • . • • . • • . . • • • • 7-3
7.2.1 Entering EDT Line Commands 7-3
7.2.2 Entering Keypad Commands 7-3
7.2.3 Canceling EDT Commands 7-5

7.3 Getting HELP in EDT • • • • • • • • • • • • • • • • . • • . . . • • • 7-5
7.3.1 Getting HELP with Keypad-Editing

Commands............................. 7-5
7.3.2 Getting HELP with Line-Editing Commands... 7-5

7.4 Changing Editing Modes • • • • • . • • • • • • • • • • • • • • • • • 7-5
7.4.1 Changing from Keypad to Line Editing 7-6
7.4.2 Changing from Line to Keypad Editing 7-6
7.4.3 Entering Line-Editing Commands from Keypad

Mode . 7-6

7.5 Recovering from Interruptions. • • • • • • • • . • . • • . • • . 7-7

7.6 EDT Keypad Editing •. • 7-8
7.6.1 Manipulating the Cursor 7-8
7.6.2 Inserting Text . 7-13
7.6.3 Deleting and Restoring Text. 7-14
7.6.4 Locating Text........................... 7-17
7.6.5 Substituting Text . 7-19
7.6.6 Moving Text............................ 7-21
7.6. 7 Moving Text Within the File 7-21
7 .6.8 Using Multiple Buffers . 7-25

7. 7 Saving Time and Keystrokes-Defining Keys in
EDT •••
7. 7 .1 Defining Keys While in EDT
7.7.2 Advanced Key Definitions
7. 7 .3 Permanent Key Definitions
7.7.4 Summary

7-27
7-27
7-31
7-34
7-41

7.8 Controlling EDT Sessions • 7-42
7 .8.1 Controlling Screen Format with SET

Commands............................. 7-42
7 .8.2 Controlling Editing Functions with SET

Commands . 7-43
7.8.3 Defining EDT Macros . 7-44

x Contents

Chapter 8 MAIL: Communicating with Other
Users

8.1 Invoking and Exiting MAIL • 8-2

8.2 Reading Messages • • • • • • . • 8-2
8.2.1 Reading a New Message 8-3
8.2.2 Reading Old Messages . 8-3

8.3 Sending a Message • • •. • • • • • • • • • • • • • • . • • • • • • • . • • 8-4
8.3.1 Sending MAIL over the Network............ 8-5
8.3.2 Sending a Message to More Than One User . . . 8-5
8.3.3 Sending a File . 8-7
8.3.4 Creating a File from a Message............. 8-8

8.4 Replying to a Message • 8-9

8.5 Forwarding a Message • • • • • • • • • . • • • • • • • • • • • • • • • 8-9

8.6 Organizing Your Messages • • • • • • • • • • • . • • • • • • • • • . 8-9
8.6.1 Creating and Modifying Folders............. 8-9

8. 7 Selecting Folders . • • • • • . • • • • • • • • • . • • • • • • • • • • • . 8-10

8.8 Deleting Messages • • • • . • 8-11

8.9 Customizing Your MAIL Environment. • • • • • • • • • • • 8-12
8.9.1 Creating a Mail Subdirectory............... 8-12
8.9.2 Using the Mail Keypad 8-12
8.9.3 Using a Text Editor in MAIL............... 8-13

Chapter 9 VMS SORT/MERGE: Sorting and
Merging Files

9.1 Sorting Records • . • • 9-1

9.2 Sorting Character Data Files • • • • • • • • • • • • • • • • • • • 9-3

9.3 Sorting Noncharacter Data Files • • • • • • • • • • • • • • • • 9-4

9.4 Entering Records from a Terminal • • • • • • • • • • • • • • 9-4

9.5 Submitting Batch Jobs. . • 9-5

9.6 Merging Files . • . . • . • • • • • • • • • • • • • • •. • • • • • • • • • • • 9-5

Contents xi

Chapter 10 Processes: Using the VMS
Environment

10.1 Interpreting Your Process Context 10-1

10.2 Using Subprocesses • • • • • • • • • • • • • • . • • • . • • • • • . . • 10-3
10.2.1 Creating a Subprocess . 10-4
10.2.2 Exiting from a Subprocess 1~5
10.2.3 Looking at a Subprocess Context 10-6

10.3 Executing Programs Across the Network......... 10-7

10.4 Using Batch Jobs ••••••••..•.•.•......••••....
10.4.1 Submitting a Batch Job
10.4.2 Batch Job Output
10.4.3 Restarting a Batch Job

10-7
1~7
10-8
1~9

Chapter 11 Logical Names: Defining Names for
Devices and Files

11.1 Creating Logical Names • • • . • 11-1
11.1.1 Rules for Creating Logical Names 11-2
11.1.2 Equating More Than One Equivalence Name . . 11-3

11.2 Displaying Logical Names • 11-3

11.3 Deleting Logical Names • • . . • • • . . • . • • • . . • . . 11-4

11.4 Understanding Logical Name Tables............. 11-4
11.4.1 The Process Table . 11-5
11.4.2 The Job Table........................... 11-6
11.4.3 The Group Table . 11-6
11.4.4 The System Table . 11-7

11.5 Directory Logical Name Tables. . • • • . • • • • • • • • • • . • 11-8
11.5.1 The Process Directory Table 11-8
11.5.2 The System Directory Table 11-9

11.6 Logical Name Access Modes . • • • • • • • • • • . . • • 11-11

11. 7 Creating a Logical Name Table. • • • • • • • • • • • • . 11-12

11.8 Using Search Lists • • • • • . • • • • . • . . • • • • . • • • • • • • • • 11-13

11.9 Using Logical Node Names . . • • • • • • • • • • • • • • • • • . • 11-14

11.10 System-Created Logical Names • • • • • • • • • • • • • • • • • 11-15
11.10.1 Process-Permanent Logical Names 11-15
11.10.2 System-Permanent Logical Names........... 11-18

xii Contents

Chapter 12 Symbols: Defining Commands and
Expressions

12.1 Using Symbols to Represent DCL Commands • • • • • 12-1

12.2 Using Symbols to Collect, Store, and Manipulate
Data
12.2.1 Defining Symbols as Character Strings
12.2.2 Creating Symbols
12.2.3 Understanding Symbol Tables
12.2.4 Understanding Symbol Substitution
12.2.5 Using Symbol Values
12.2.6 Using Symbols in Expressions

Chapter 13 Command Procedures: Programming
with DCL

12-3
12-3
12-4
12-5
12-6
12-7

12-11

13.1 Formatting a Command Procedure •• ·• • • • • • • • • • • • 13-2

13.2 Executing a Command Procedure • • • • • • • • • • • • • • • 13-2
13.2.1 Changing Command Procedure Levels 13-4
13.2.2 Exiting from a Command Procedure 13-5

13.3 Designing a Login Command Procedure • • • • • • • • • • 13-5

13.4

13.5

13.6

13.7

13.8

Using Loops .

Passing Data
13.5.1 Using Parameters to Pass Data
13.5.2 Using the INQUIRE Command
13.5.3 Using the READ Command
13.5.4 Obtaining Data from SYS$INPUT

Returning Data • • • • • • • • • • • • • • • • • ••••••••••••••

Displaying Data
13. 7 .1 Displaying Character Strings and Symbols
13. 7.2 Displaying Text
13. 7 .3 Displaying Files

Reading and Writing Files (File 1/0) •••••••••••••
13.8.1 Specifying Files in Batch Job Command

13.8.2
13.8.3
13.8.4
13.8.5

Procedures
Writing to a File
Reading from a File
Modifying a File
Handling Input/Output (1/0) Errors

13-7

13-9
13-10
13-13
13-14
13-14

13-15

13-16
13-16
13-17
13-17

13-17

13-17
13-18
13-20
13-21
13-24

Contents xiii

13.9 Restarting Batch Jobs • 13-24

13.10 Cleanup Operations • 13-25

Reference Section
DCL Commands

=(Assignment Statement)
:= (String Assignment)
@(Execute Procedure)
ACCOUNTING
ALLOCATE
ANALyzE/AUDIT
ANALyzE/CRASH_DUMP
ANALyzE/DISK_STRUCTURE
ANALyzE/ERROR_LOG
ANALyzE/Ilv.IAGE
ANALyzEf.MEDIA
ANALyzE/OBJECT
ANALyzE/PROCESS_DUMP
ANALyzEfRl\1:S_FILE
ANALyzE/SYSTEM
APPEND
ASSIGN .. .
ASSIGN/MERGE
ASSIGN/QUEUE ~
ATTACH .. .
BACKUP
CALL .. .
CANCEL
CLOSE•...................
CONNECT .. .
r1rt.1'. TmT'll. TT TP
VV.&.'ll.1..1..&."4U.l!I •••••••••••••••••••••• •.,,,,,, • • • • •, • • •,

CONVERT .. .
CONVERT/DOCUMENT
CONVERT/RECLAIM
COPY .. .
CREATE ·
CREATE/DIRECTORY
CREATE/FDL
CREATE/NAME_TABLE
DEALLOCATE
DEASSIGN
DEASSIGN/QUEUE

DCL-1
DCL-1
DCL-2
DCL-2
DCL-4
DCL-4
DCL-5
DCL-5
DCL-5
DCL-6
DCL-6
DCL-7
DCL-7
DCL-9

DCL-11
DCL-12
DCL-12
DCL-16
DCL-18
DCL-19
DCL-20
DCL-20
DCL-21
DCL-23
DCL-25
DCL-26
DCL-27
DCL-28
DCL-28
DCL-28
DCL-29
DCL-35
DCL-36
DCL-37
DCL-38
DCL-39
DCL-40
DCL-42

xiv Contents

DEBUG . DCL-43
DECK ... DCL-43
DEFINE . DCL-45
DEFINE/CHARACTERISTIC. DCL-47
DEFINE/FORM . DCL-48
DEFINE/KEY. DCL-50
DELETE . DCL-53
DELETE/CHARACTERISTIC . DCL-56
DELETE/ENTRY . DCL-57
DELETE/FORM . DCL-58
DELETE/INTRUSION_RECORD. DCL-58
DELETE/KEY . DCL-59
DELETE/QUEUE . DCL-60
DELETE/SYMBOL . DCL-61
DEPOSIT . DCL-62
DIFFERENCES . DCL-63
DIRECTORY . DCL-68
DISCONNECT...................................... DCL-74
DISMOUNT . DCL-75
DUMP .. DCL-78
EDIT/ACL . DCL-81
EDIT/EDT . DCL-81
EDIT/FDL , . DCL-83
EDIT/SUM . DCL-83
EDITtrECO . DCL-84
EDITtrPU . DCL-85
EOD .. DCL-86
EOJ .. DCL-86
ENDSUBROUTINE . DCL-87
EXAMINE . DCL-87
EXCHANGE . DCL-89
EXCHANGE/NETWORK . DCL-90
EXIT . DCL-94
GOSUB . DCL-95
GOTO . DCL-96
HELP . DCL-97
IF .. DCL-98
INITIALIZE . DCL-100
INITIALIZE/QUEUE DCL-106
INQUIRE . DCL-115
INSTALL . DCL-116
JOB . DCL-116

Contents xv

Lexical Functions DCL-121
F$CONTEXT DCL-123
F$CVSI . DCL-129
F$CVTIME .. DCL-130
F$CVUI ... DCL-131
F$DIRECTORY DCL-132
F$EDIT ... DCL-133
F$ELEMENT DCL-134
F$ENVIRONMENT . DCL-135
F$EXTRACT DCL-137
F$FAO .. DCL-139
F$FILE_ATTRIBUTES . DCL-144
F$GETDVI ... DCL-146
F$GETJPI ... DCL-160
F$GETQUI ... DCL-164
F$GETSYI ... DCL-181
F$IDENTIFIER DCL-185
F$INTEGER DCL-186
F$LENGTH .. DCL-187
F$LOCATE .. DCL-188
F$MESSAGE DCL-189
F$MODE .. DCL-189
F$PARSE .. DCL-190
F$PID . DCL-192
F$PRIVILEGE DCL-194
F$PROCESS DCL-195
F$SEARCH .. DCL-195
F$SETPRV ... DCL-196
F$STRING ... DCL-197
F$TIME ... DCL-198
F$TRNLNM .. DCL-198
F$TYPE . DCL-201
r.td>TTCT.'ITI nrtT nnn
J.' cpuo.l:I~" ••• J.JVi.r-~v~

F$VERIFY . DCL-202

DCL Commands DCL-204
LIBRARY . DCL-204
LICENSE . DCL-204
LINK . DCL-204
LOGIN Procedure . DCL-208
LOGOUT .. DCL-210
MACRO . DCL-211
MAIL . DCL-216
MERGE ... DCL-216

xvi Contents

MESSAGE ... DCL-216
MONITOR ... DCL-216
MOUNT ... DCL-217
NCS . DCL-217
ON ... DCL-217
OPEN. DCL-218
PASSWORD .. DCL-220
PATCH . DCL-221
PHONE ... DCL-222
PRINT . DCL-222
PURGE ... DCL-229
READ ... DCL-231
RECALL . DCL-234
RENAME .. DCL-235
REPLY . DCL-238
REQUEST ... DCL-242
RETURN .. DCL-243
RUN (Image) DCL-245
RUN (Process) . DCL-246
RUNOFF .. DCL-251
RUNOFF/CONTENTS DCL-258
RUNOFF/INDEX . DCL-261
SEARCH . DCL-264
SET ACCOUNTING DCL-269
SET ACL . DCL-270
SET AUDIT .. DCL-274
SET BROADCAST DCL-284
SET CARD_READER DCL-285
SET CLUSTER/EXPECTED_ VOTES DCL-286
SET COMMAND DCL-286
SET CONTROL DCL-286
SET DAY .. DCL-287
SET DEFAULT DCL-288
SET DEVICE . DCL-288
SET DEVICE/SERVED . DCL-290
SET DIRECTORY . DCL-291
SET DISPLAY . DCL-293
SET ENTRY .. DCL-297
SET FILE . DCL-304
SET HOST . DCL-308
SET HOST/DTE . DCL-309
SET HOST/DUP. DCL-310
SET HOST/HBC. DCL-311
SET KEY .. DCL-312

Contents xvii

SET LOGINS DCL-313
SET MAGTAPE DCL-313
SET MESSAGE DCL-315
SET ON . DCL-316
SET OUTPUT_RATE DCL-317
SET PASSWORD DCL-317
SET PRINTER . DCL-319
SET PROCESS . DCL-322
SET PROMPT . DCL-325
SET PROTECTION DCL-326
SET PROTECTION/DEFAULT DCL-327
SET PROTECTION/DEVICE . DCL-328
SET QUEUE DCL-329
SET QUEUE/ENTRY . DCL-335
SET RESTART_ VALUE DCL-336
SET RIGHTS_LIST . DCL-337
SET RMS_DEFAULT DCL-339
SET SYMBOL . DCL-340
SET TERMINAL . DCL-341
SET TIME . DCL-351
SET UIC . DCL-352
SET VERIFY . DCL-352
SET VOLUME DCL-353
SET WORKING_SET DCL-356
SHOW ACCOUNTING. DCL-357
SHOW ACL .. DCL-358
SHOW AUDIT DCL-359
SHOW BROADCAST DCL-360
SHOW CLUSTER DCL-360
SHOW CPU .. DCL-360
SHOW DEFAULT DCL-362
SHOW DEVICES DCL-363
SHO'N DEV'!CES/SER'VED . DOI.-364
SHOW DISPLAY DCL-366
SHOW ENTRY DCL-368
SHOW ERROR DCL-370
SHOW INTRUSION DCL-371
SHOW KEY .. DCL-371
SHOW LICENSE . DCL-373
SHOW LOGICAL DCL-374
SHOW MAGTAPE DCL-376
SHOW MEMORY. • DCL-377
SHOW NETWORK DCL-378
SHOW PRINTER DCL-379

xviii Contents

SHOW PROCESS DCL-380
SHOW PROTECTION DCL-382
SHOW QUEUE DCL-383
SHOW QUEUE/CHARACTERISTIC DCL-385
SHOW QUEUE/FORM DCL-386
SHOW QUOTA DCL-387
SHOW RMS_DEFAULT DCL-388
SHOW STATUS DCL-389
SHOW SYMBOL . DCL-390
SHOW SYSTEM DCL-391
SHOW TERMINAL DCL-394
SHOW TIME DCL-395
SHOW TRANSLATION DCL-396
SHOW USERS DCL-396
SHOW WORKING_SET DCL-398
SORT . DCL-399
SPAWN ... DCL-399
START/CPU . DCL-402
START/QUEUE . DCL-402
START/QUEUE/MANAGER. DCL-411
STOP . DCL-413
STOP/CPU . DCL-414
STOP/QUEUE . DCL-415
STOP/QUEUE/ABORT DCL-416
STOP/QUEUE/ENTRY. DCL-416
STOP/QUEUE/MANAGER DCL-417
STOP/QUEUE/NEXT . DCL-417
STOP/QUEUE/REQUEUE DCL-418
STOP/QUEUE/RESET DCL-419
SUBMIT . DCL-420
SUBROUTINE . . . • . DCL-426
SYNCHRONIZE . DCL-426
TYPE . DCL-427
UNLOCK .. DCL-430
VIEW ... DCL-431
WAIT ... DCL-431
WRITE . DCL-432

Contents xix

DIGITAL Standard Runoff (DSR) Commands
1

2

3

DSR Comm.and Format ••••••••••••••••••••••••

Entering DSR Commands •••••••••••••••.••••••

DSR Commands • . • • • • • ••
.APPENDIX
.AUTOJUSTIFY, .NO AUTOJUSTIFY
.AUTOPARAGRAPH, .NO AUTOPARAGRAPH
.AUTOSUBTITLE, .NO AUTOSUBTITLE
.AUTOTABLE, .NO AUTOTABLE
.BLANK
.BREAK
.CENTER (.CENTRE)
.CHAPrER
. CONTROL CHARACTERS, .NO CONTROL
CHARACTERS
.DATE, .NO DATE
.DISPLAY APPENDIX
.DISPLAY CHAPrER
.DISPLAY ELEMENTS
.DISPLAY LEVELS
.DISPLAY NUMBER
. DISPLAY SUBPAGE
.ENABLE BAR, .DISABLE BAR, .BEGIN BAR, .END
BAR .. .
. ENABLE BOLDING, .DISABLE BOLDING
.ENABLE HYPHENATION, .DISABLE
IIYPHENATION
.ENABLE INDEXING, .DISABLE INDEXING
. ENABLE OVERSTRIKING, .DISABLE
OVERSTRIKING
.ENABLE TOC, .DISABLE TOC
. ENABLE UNDERLINING, .DISABLE
UNDERLINING
.ENTRY
.FIGURE DEFERRED, .FIGURE
.FILL, .NO FILL
.FIRST TITLE
.FLAGS ACCEPT, .NO FLAGS ACCEPT
.FLAGS ALL, .NO FLAGS ALL
.FLAGS BOLD, .NO FLAGS BOLD
.FLAGS BREAK, .NO FLAGS BREAK
.FLAGS CAPITALIZE, .NO FLAGS CAPITALIZE
.FLAGS COMMENT, .NO FLAGS COMMENT

DSR-1

DSR-1

DSR-2

DSR-3
DSR-3
DSR-3
DSR-3
DSR-4
DSR-4
DSR-4
DSR-4
DSR-5
DSR-5

DSR-5
DSR-5
DSR-5
DSR-6
DSR-6
DSR-6
DSR-7
DSR-7

DSR-7
DSR-8

DSR-8
DSR-8

DSR-8
DSR-8

DSR-9
DSR-9
DSR-9
DSR-9

DSR-10
DSR-10
DSR-10
DSR-10
DSR-10
DSR-11
DSR-11

xx Contents

.FLAGS CONTROL, .NO FLAGS CONTROL.......... DSR-11

.FLAGS HYPHENATE, .NO FLAGS HYPHENATE. DSR-11

.FLAGS INDEX, .NO FLAGS INDEX DSR-11

.FLAGS LOWERCASE, .NO FLAGS LOWERCASE DSR-12

.FLAGS OVERSTRIKE, .NO FLAGS OVERSTRIKE DSR-12

.FLAGS PERIOD, .NO FLAGS PERIOD DSR-12

.FLAGS SPACE, .NO FLAGS SPACE DSR-12

.FLAGS SUBINDEX, .NO FLAGS SUBINDEX DSR-12

.FLAGS SUBSTITUTE, .NO FLAGS SUBSTITUTE DSR-12

.FLAGS UNDERLINE, .NO FLAGS UNDERLINE DSR-13

.FLAGS UPPERCASE, .NO FLAGS UPPERCASE DSR-13

.FOOTNOTE, .END FOOTNOTE. DSR-13

.HEADER LEVEL . DSR-13

.HEADERS ON, .NO HEADERS DSR-14

.HEADERS UPPER, .HEADERS LOWER, .HEADERS
MIXED. DSR-14
.IF, .IFNOT, .ELSE, .ENDIF . DSR-14
.INDENT . DSR-15
.INDEX . DSR-15
.JUSTIFY, .NO JUSTIFY. DSR-15
.KEEP, .NO KEEP . DSR-15
.LAYOUT . DSR-15
.LEFT MARGIN. DSR-15
.LIST, .END LIST . DSR-16
.LIST ELEMENT . DSR-16
.LITERAL . DSR-16
.NO SPACE . DSR-17
.NOTE, .END NOTE . DSR-17
.NUMBER APPENDIX . DSR-17
.NUMBER CHAPTER DSR-17
.NUMBER LEVEL . DSR-18
.NUMBER LIST. DSR-18
.NUMBER PAGE, .NO NUMBER DSR-18
.NUMBER RUNNING . DSR-19
.NUMBER SUBPAGE . DSR-19
.PAGE ~ . DSR-19
.PAGE SIZE . DSR-19
.PAGING, .NO PAGING. DSR-19
.PARAGRAPH . DSR-20
.PERIOD, .NO PERIOD . DSR-20
.REPEAT . DSR-20
.REQUIRE . DSR-20
.RIGHT . DSR-20
.RIGHT MARGIN . DSR-21

Contents xxi

.SAVE, .RESTORE

.SENDTOC

.SET DATE, .SET TIME

.SET LEVEL

.SET PARAGRAPH

.SKIP

.SPACING

. STYLE HEADERS

.SUBPAGE, .END SUBPAGE

.SUBTITLE, .NO SUBTITLE

. TAB STOPS

.TEST PAGE

.TITLE

.VARIABLE

.XLOWER, .XUPPER

EDT Keypad Commands
ADVANCE Function
APPEND Function
BACKSPACE Function CTRI.JH
BACKUP Function
BOTrOM Function
CHAR (Character) Function
CHNGCASE (Change Case) Function
COMMAND Function
CTRUA (Control A) Function
CTRUC (Control C) Function
CTRUD (Control D) Function
CTRUE (Control E) Function
CTRL/K (Control K) Function
CTRUL (Control L) Function
CTRUM (Control M) Function
CTRl.fR (Cont:rol R) Fu.nction
CTRLfI' (Control T) Function
CTRUU (Control U) Function
CTRUW (Control W) Function
CTRUZ (Control Z) Function
CUT Function
DEL C (Delete Character) Function
DEL EOL (Delete to End of Line) Function
DELETE Function
DELL (Delete Line) Function
DEL W (Delete Word) Function
DO Function (LK201 only)

DSR-21
DSR-21
DSR-21
DSR-22
DSR-22
DSR-22
DSR-22
DSR-22
DSR-23
DSR-23
DSR-23
DSR-23
DSR-24
DSR-24
DSR-24

EDT-1
EDT-1
EDT-1
EDT-1
EDT-2
EDT-2
EDT-2
EDT-2
EDT-4
EDT-4
EDT~
EDT-5
EDT-5
EDT-6
EDT-7
EDT-8
EDT-8
EDT-8
EDT-9
EDT-9
EDT-9

EDT-10
EDT-10
EDT-11
EDT-11
EDT-12
EDT-12
EDT-13

xxii Contents

DOWN Arrow
ENTER Function
EOL (End of Line) Function
FILL Function (VTlOO)
FIND Function
FNDNXT (Find Next) Function
GOLD Function
HELP Function
LEFT Arrow
LINE Function
LINEFEED Function
OPEN LINE Function
PAGE Function
PASTE Function
REPLACE Function
RESET Function
RETURN Function
RIGHT Arrow
SECT (Section) Function
SELECT Function
SPECINS (Special Insert) Function
string specifier ·
SUBS (Substitute) Function
TAB Function
TOP Function
UND C (Undelete Character) Function
UND L (Undelete Line) Function
UND W (Undelete Word) Function
UP Arrow
WORD Function

EVE Commands
@ •••••••••••••••••••••••••.•..••••..••••••••

ATTACH
BOTTOM
BUFFER
CAPITALIZE WORD
CENTER LINE
CHANGE DIRECTION
CHANGE MODE
COPY
CUT .. .
DCL .. .
DEFINE KEY

EDT-13
EDT-14
EDT-14
EDT-14
EDT-15
EDT-16
EDT-16
EDT-17
~DT-18
EDT-18
EDT-18
EDT-19
EDT-19
EDT-20
EDT-21
EDT-21
EDT-22
EDT-22
EDT-22
EDT-23
EDT-23
EDT-24
EDT-24
EDT-25
EDT-26
EDT-26
EDT-27
EDT-28
EDT-28
EDT-29

EVE-1
EVE-1
EVE-2
EVE-3
EVE-3
EVE-4
EVE-5
EVE-5
EVE-6
EVE-6
EVE-7
EVE-7
EVE-8

I

Contents xxiii

DELETE
DELETE BUFFER
DELETE WINDOW
DO
END OF LINE
ENLARGE WINDOW
ERASE CHARACTER
ERASE LINE
ERASE PREVIOUS WORD
ERASE START OF LINE
ERASE WORD
EXIT
EXTEND ALL
EXTEND EVE
EXTEND THIS
EXTENDTPU
FILL
FILL PARAGRAPH
FILLRANGE
FIND
FIND NEXT
FIND SELECTED
FORWARD
GETFILE
GOTO
HELP
INCLUDE FILE
INSERT HERE
INSERT MODE
INSERT PAGE BREAK
LEARN
LINE

EVE-9
EVE-10
EVE-11
EVE-11
EVE-12
EVE-12
EVE-13
EVE-13
EVE-14
EVE-14
EVE-15
EVE-15
EVE-16
EVE-17
EVE-18
EVE-18
EVE-18
EVE-19
EVE-19
EVE-20
EVE-21
EVE-21
EVE-22
EVE-22
EVE-23
EVE-24
EVE-25
EVE-26
EVE-26
EVE-27
EVE-27
EVE-28

LOVV~RCASE VVORD . E\iE-29
MARK . EVE-29
MOVE BY LINE . EVE-30
MOVE BY PAGE . EVE-31
MOVE BY WORD . EVE-31
MOVE DOWN . EVE-31
MOVE LEFT . EVE-32
MOVE RIGHT . EVE-33
MOVE UP . EVE-33
NEW .. EVE-34
NEXT BUFFER . EVE-35
NEXT SCREEN . EVE-35

xxiv Contents

NEXT WINDOW . EVE-36
ONE WINDOW . EVE-37
OPEN. EVE-37
OPEN SELECTED. EVE-37
OTHER WINDOW . EVE-38
OVERSTRIKE MODE . EVE-38
PAGINATE. EVE-39
PASTE . EVE-39
PREVIOUS SCREEN. EVE-40
PREVIOUS WINDOW . EVE-40
QUIT . EVE-41
QUOTE EVE-41
RECALL . EVE-42
REFRESH . EVE-43
REMEMBER EVE-43
REMOVE . EVE-44
REPEAT. EVE-45
REPLACE . EVE-46
RESET . EVE-48
RESTORE . EVE-48
RESTORE CHARACTER . EVE-49
RESTORE LINE . EVE-49
RESTORE SELECTION . EVE-49
RESTORE SENTENCE . EVE-50
RESTORE WORD . EVE-50
RETURN . EVE-50
REVERSE EVE-51
SAVE EXTENDED EVE . EVE-52
SAVE EXTENDED TPU . EVE-53
SAVE FILE . EVE-53
SAVE FILE AS . EVE-54
SELECT . EVE-55
SELECT ALL . EVE-57
SET BUFFER . EVE-57
SET CLIPBOARD . EVE-58
SET CURSOR BOUND . EVE-59
SET CURSOR FREE . EVE-59
SET FIND NOWHITESPACE . EVE-60
SET FIND WHITESPACE . EVE-60
SET GOLD KEY . EVE-61
SET KEYPAD EDT . EVE-62
SET KEYPAD NOEDT. EVE-66
SET KEYPAD NOWPS . EVE-66
SET KEYPAD NUMERIC . EVE-67

Contents xxv

SET KEYPAD VTlOO . • EVE-67
SET KEYPAD WPS . EVE-69
SET LEFT MARGIN . EVE-72
SET NOCLIPBOARD............................ EVE-73
SET NOGOLD KEY EVE-73
SET NOPENDING DELETE . EVE-74
SET NOWRAP. EVE-74
SET PARAGRAPH INDENT . EVE-74
SET PENDING DELETE......................... EVE-76
SET RIGHT MARGIN . EVE-76
SET SCROLL MARGINS. EVE-77
SET TABS . EVE-78
SET WIDTH . EVE-80
SET WILDCARD ULTRIX . EVE-81
SET WILDCARD VMS. EVE-81
SET WRAP . EVE-82
SHIFI' LEFT . EVE-82
SHIFI' RIGHT................................. EVE-83
SHOW . EVE-84
SHOW BUFFERS . EVE-85
SHOW DEFAULTS BUFFER. EVE-86
SHOW KEY . EVE-86
SHOW SUMMARY. EVE-87
SHOW SYSTEM BUFFERS. EVE-87
SHOW WILDCARDS . EVE-88
SHRINK WINDOW . EVE-88
SPAWN . EVE-89
SPELL . EVE-90
SPLIT WINDOW . EVE-91
START OF LINE . EVE-91
STORE TEXT . EVE-92
TAB ... EVE-93
rJ1f'\ 'D or,,'T T'r.' nn
... 'V.&. • i::,, y ~4:/tJ

TPU ... EVE-94
TWO WINDOWS . EVE-94
UNDEFINE KEY. EVE-95
UPPERCASE WORD . EVE-96
WHAT LINE . EVE-96
WILDCARD FIND . EVE-97
WRITE FILE . EVE-98

Mail Utility MAIL-1

Sort/Merge Utility SORT-1

xxvi Contents

Appendix A TFF Facility
A.1 Using the Terminal Fallback Facility . • • • • • • • • • • • • • A-1

A.1.1 The Purpose of Terminal Fallback A-2
A.1.2 The Purpose of Compose Characters A-2
A.1.3 Setting TFF Terminal Parameters A-7

Appendix B Character Sets
B.1 ASCII Character Set. • • • • • • • • . . • • • . . • • • • • • • • • • • • • B-1

B.2 ASCII and DEC Multinational Character Set
Tables . . • . . • • • • • . . • • • . • • • . • • • • • . • • B-2

Appendix C Expressions

Appendix D Terminal Keys
D.1 VT300 and VT200 Terminal Series • • • • • • • • • • • • • • • • • D-1

D.2 VTlOO Terminal Series • • • • • • . • • • • • • • • • • • . • • • • • . • • D-2

Index

Figures
3-1
5-1
6-1

6-2
8-1
EVE-1

EVE-2

B-1

B-2

Parts of a DCL Command Line
Directory Structure
Editing Keys-VT200-Series and VT300-Series
Terminals
Editing Keys-VTlOO-Series Terminals
Sample Mail Message
EVE Default Keys for VT300- and VT200-Series
Terminals
EVE Default Keys for VTlOO-Series
Terminals
Graphical Representation of the ASCII
Character Set
Graphical Representation of the DEC
Multinational Extension to the ASCII Character
Set

3-3
5-2

6-5
6-6
8-1

EVE-68

EVE-69

B-3

B-4

Tables
3-1
3-2
3-3
4-1
6-1
6-2
6-3

7-1
11-1
11-2
11-3
11-4
11-5
11-6

12-1
DCL-1
DCL-2
DCL-3
DCL-4
DCL-5
DCL-6
DCL-7
DCL-8
DCL-9
DCL-10

EVE-1
A-1

Contents xxvii

Commonly Used DCL Commands
Commonly Used DCL Key Combinations
Keys That Execute Terminal Functions
Default File Types
EVE Key Names
EVE Default Settings
EVE Commands and Default Predefined
Keys
Symbols for EDT Functions
Default Process Logical Names
Default Job Logical Names
Default System Logical Names
Default Process Directory Logical Names
Default System Directory Logical Names
Equivalence Names for Process-Permanent
Logical Names
Determining the Value of an Expression
Summary of Lexical Functions
Summary of FAQ Directives
F$FILE_ATTRIBUTES Items
F$GETDVI Items
Values Returned by the DEVCLASS Item
Values Returned by the DEVTYPE Item
F$GETJPI Items
F$GETQUI Items
F$GETSYI Items for the Local Node Only
F$GR'r8YI Items for the Local Notle 0!" fo!"

Other Nodes in the VAXCluster
EVE Default GOLD Key Combinations
LATIN_! Compose Sequence Table

3-2
3-2

3-15
4-3
6-8

6-15

6-37
7-36
11-5
11-6
11-7
11-9
11-9

11-15
12-20

DCL-121
DCL-140
DCL-144
DCL-147
DCL-154
DCL-155
DCL-161
DCL-168
DCL-182

DCL-183
EVE-61

A-3

Preface

The VMS User's Manual provides an overview of the VMS operating system.

Intended Audience
This manual is intended for all users of the VMS operating system.

Document Structure
This manual is organized into two major parts. Chapters 1 through 13 describe
VMS concepts and procedures users need to perform basic computing tasks. The
Reference Section contains the following VMS user reference information:

• DCL commands-In alphabetical order, describes all Digital Command
Language (DCL) commands and lexical functions.

• DIGITAL Standard Runoff (DSR) commands-Contains the rules you must
follow and commands, in alphabetical order, you use to format output with
DSR.

• EDT Editor-Provides reference information about EDT keypad editing.

• EVE Commands-In alphabetical order, describes all EVE editing commands.

• MAIL-Describes the commands and qualifiers you can use to send messages
to other users.

• VMS Sort/Merge-Describes VMS Sort/Merge Utility, which you can use to
sort i"eco:rd~ ul0 tu i11erge input files.

Four appendixes contain tables that list the following information:

• Terminal Fallback Facility

• ASCII character set

• DCL Expressions

• Terminal Keys

xxx Preface

Conventions
The following conventions are used in this manual:

CtrVx

PFl x

()

[]

{}

red ink

boldface text

italic text

UPPERCASE TEXT

A sequence such as CtrVx indicates that you must hold down the
key labeled Ctrl while you press another key or a pointing device
button.

A sequence such as PFl x indicates that you must first press and
release the key labeled PFl, then press and release another key or
a pointing device button.

A key name is shown enclosed to indicate that you press a key on
the keyboard.

In examples, a horizontal ellipsis indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because they
are not important to the topic being discussed.

In format descriptions, parentheses. indicate that, if you choose
more than one option, you must enclose the choices in parentheses.

In format descriptions, brackets indicate that whatever is enclosed
is optional; you can sel~ct none, one, or all of the choices.

In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

Red ink indicates information that you must enter from the
keyboard or a screen object that you must choose or click on.
For online versions, user input is shown in bold.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Italic text represents information that can vary in system messages
(for example, Internal error number).

Uppercase letters indicate that you must enter a command (for
example, enter OPEN/READ).

Uppercase letters can also indicate the name of a command,
the name of a file, the name of a file protection code, or the
abbreviation for a system privilege.

numbers

Preface xxxi

Hyphens in coding examples indicate that additional arguments to
the request are provided on the line that follows.

Unless otherwise noted, all numbers in the text are assumed to be
decimal. Nondecimal radixes-binary, octal, or hexadecimal-are
explicitly indicated.

Chapter 1

Introduction: VMS Concepts and Definitions

Your VAX computer operates under the control of the VMS (Virtual Memory
System) operating system. The VMS operating system controls VAX computer
system resources and schedules access to these resources.

VMS is an interactive operating system. While you are logged in to the
computer, you and the system conduct a dialogue using the DIGITAL Command
Language. You use DCL by entering commands, called DCL Commands, which
are read and translated by the system. You enter a command by typing it on your
keyboard and pressing the RETURN key; the system responds by executing your
command or by displaying an error message on your screen if it cannot interpret
what you entered.

In this manual, VMS is sometimes used to refer to the VMS operating system.
System refers to a VAX computer that is running the VMS operating system.

1.1 How to Use This Manual
The VMS User's Manual is divided into two parts. Chapters 1through13
describe VMS concepts and procedures users need to perform basic computing
tasks. The Reference Section contains VMS user reference information.

This chapter describes the concepts and definitions used in the VMS User's
Manual. Chapters 2 through 13 describe the tasks you can perform on the VMS
operating system. Read this chapter to understand basic concepts about the VMS
operating system and its components. Read chapters 2 through 13 to find out how
to do specific tasks on the VMS operating system.

A system manager performs the administrative tasks that create and maintain
an efficient computing environment. If you are a system manager or want to
understand system management concepts and procedures, refer to the VMS
System Manager's Manual.

The topics discussed in this manual require you to be familiar with your terminal.
For information on setting up or using your terminal, see the owner's manual
supplied with your terminal.

1-2 Introduction: VMS Concepts and Definitions

1.2 Logging In to the System
To interact with the VMS operating system, you must log in to a user account.
An account is a name or number that identifies a user to the system when the
user logs in. That name or number tells the system where the user's files are and
the type of access to other files the user has. User accounts are either privileged
or nonprivileged. System managers grant privileges according to users' needs.

Logging in consists of getting the system's attention and identifying yourself as
an authorized user. Your system manager (or whoever authorizes system use
at your installation) usually sets up accounts. This person provides you with
your user name and password. Your user name identifies you to the system and
distinguishes you from other users. In many cases, a user name is your first or
last name. Your password is for your protection. If you maintain its secrecy, other
users cannot use system resources under your user name.

Chapter 2 describes how to log in to and out of the system.

1.3 Using a Network
Your system might be part of a DECnet-VAX network. When computer systems
are linked together, they form a network. VMS systems in a DECnet network are
able to communicate with each other and share information and resources. Each
system in a network is called a network node and is identified by a unique node
name.

When you are logged in to a network node, you can communicate with other
nodes in the network. The node at which you are logged in is called the local
node; other nodes on the network are called remote nodes. If you have access
to an account on a remote node, you can log in to that account from your local
node and perform tasks on that node while remaining connected to your local
node.

Chapter 2 describes how to log in to a remote node. Additional tasks you can
perform on remote nodes are described in the appropriate chapters of this book.

NOTE: In the examples of remote operations in this manual,
proxy accounts enable users to perform operations on remote
systems. Proxy accounts are one way users can access remote
systems. For more information, about additional ways to access
remote systems, see the VMS System Manager's Manual.

1.4 The DIGITAL Command Language {DCL)
DCL (DIGITAL Command Language) is a set of English-like instructions that
tell the VMS operating system to perform specific operations. DCL provides you
with over 200 commands and functions to use in communicating with the VMS
operating system to accomplish your computing tasks.

I

Introduction: VMS Concepts and Definitions 1-3

You can use DCL in the following two modes:

• Interactive-In interactive mode, you enter commands from your terminal.
One command has to finish executing before you can enter another.

• Batch-In batch mode, the system creates another process to execute
commands on your behalf. Batch jobs and network processes use DCL in
batch mode. A process is an environment created by the system that makes it
possible for you to work with the system. (See Section 1. 7 and Chapter 10 for
more information about processes.) A batch job is a command procedure or
program that is submitted to the operating system for execution as a separate
user process. After you submit the command procedure for batch execution,
you can continue to use your terminal interactively.

When you enter a DCL command, it is read and translated by the DCL
interpreter. The way the command interpreter responds to a command is
determined by the type of command entered. The three types of DCL commands
are as follows:

• Built-in commands-These commands are built into the DCL interpreter and
are executed internally.

• Commands that invoke programs-DCL calls another program to execute the
command rather than executing it internally. The program invoked to execute
a command is referred to as a command image. This command image can
be either an interactive program like MAIL or a noninteractive program like
COPY.

• Foreign commands-A symbol that executes an image is referred to as a
foreign command. (See Section 1.13 for more information about symbols.)
A foreign command executes an image whose name is not recognized by the
command interpreter as a DCL command. The following example defines the
symbol FUN as a foreign command. (No DCL command FUN exists.)
$ FUN := $DISK1: [ROY.PROGRAMS]GAMES.EXE

1.4.1 The DCL Command Line

DCL, like any language, has its own vocabulary and usage rules. The vocabulary
consists of commands, parameters, and qualifiers, which are put together in a
way that DCL can interpret. The way in which the parts of a command line are
put together is referred to as the command line syntax. A DCL command line
contains the following information in the format shown:

[$] [label:] command [/qualifier[=value] ...] [parameter[/qualifier ...]]

NOTE: Items in square brackets [] are optional and might not
be required by a specific command.

1-4 Introduction: VMS Concepts and Definitions

The following table briefly describes the components of a DCL command line:

$

Label

Command

Qualifier

Parameter

Value

The dollar sign is the DCL prompt. When you work interactively with DCL,
DCL displays the prompt when it is ready to accept a command.

Identifies a line in a command procedure. Labels are not used for commands
that are entered interactively.

Specifies the name of the command.

Modifies the action taken by the command. Some qualifiers can modify
parameters. Some can accept values.

Specifies what the command acts upon. You must position parameters in a
specified order within the command.

Modifies a qualifier and is often preceded by an equal sign. A value can be a
file specification, a character string, a number, or a DCL keyword. A keyword
is a word reserved for use in certain specified syntax formats.

Chapter 3 shows a sample command line and describes how to use DCL
commands.

The Reference Section lists in alphabetical order and describes all DCL commands
and lexical functions. (Lexical functions are command language constructs that
the DCL interpreter evaluates and substitutes before it interprets a command
string. Chapter 12 discusses lexical functions in more detail.)

1.5 Files and Directories
A file contains information. This information can be machine-readable data that
the computer understands. It can also be text you enter and manipulate. The
text in the file might be the text of a document, a program, or a list of addresses.
You can examine the data in these files by displaying the files on a terminal
screen or by printing them on paper.

A file is listed in a directory. A directory is a special kind of file that contains
the names and locations of files. Directory files are stored on disks. Disks are the
one of the hardware devices the VMS operating system uses to store information.
See Section 1.6 for more information about disks.

Chapter 4 describes how to create and organize files to store information.
Chapter 5 describes how to use directories to organize and manage files.

1.5.1 File and Directory Specifications

Every :file must have a :file name or file type to identify it to both the system and
you. A file also has a version number. You can have several versions of a file.
Unless you specify a version number, the system uses the highest existing version
number of a file. When you edit a file, the system saves the original :file and
produces a modified output file. By default, the output file has the same name
and type as the original, but the version number is incremented by one. The file
name, type, and version number form a file specification. This information is
specified in the following format:

I

I

I

Introduction: VMS Concepts and Definitions 1-s

filename.type;version

A directory file has the following format:

directory.DIR;1

For example, DOG.DIR;l is a directory file. You cannot edit a directory file.

A full file specification contains the following information in the format shown:

node-name::device:[directory]filename.type;version

Because a full file specification describes the network node on which the file
resides, a full file specification is also known as a network file specification.

A full file specification completely describes the access path the system uses to
locate and identify a file. In addition to the file name, a file specification can
include the directory in which the file is located. For example, in the following
command line, the file STAFF_ VACATIONS.TXT is located in the directory
[JONES]:
$ PRINT [JONES]STAFF_VACATIONS.TXT

If you omit the directory name from the file specification, the current directory is
assumed by default.

When using file and directory specifications to create and manipulate files
and directories, you can use wildcard characters. A wildcard character is a
nonalphanumeric character, such as an asterisk or a percent sign, that is used
within, or in place of, a file name, file type, directory name, or version number in
a file specification to indicate (all) for the given field. Chapter 4 and Chapter 5
describe how to use wildcard characters in file and directory operations.

As mentioned previously, a directory stores files on a disk in a special format.
This format is called a directory structure; Section 1.5.2 describes the
components of a directory structure.

1.5.2 Directory Structures

Each disk contains a main directory, which can be set up by a system manager
or by the system itself. This main directory is called the master file directory
(MFD) and contains a list of user file directories (UFDs). User file directories are
files in the master file directory that point to top level directories. Your top level
directory is usually your login or default directory. Unless your account has
been modified to do otherwise, by default the system places you in your top level
directory when you log in.

In most cases, a UFD exists for each user on the system. It contains the names
of and pointers to files cataloged in a user's directory. A subdirectory is any
directory file that is not an MFD or a UFD. Subdirectories let you organize files
into meaningful groups. Like a directory, a subdirectory contains names and
pointers for the files cataloged within it. It can contain an entry for another

1-s Introduction: VMS Concepts and Definitions

subdirectory, which can contain an entry for another subdirectory, and so on
to seven levels of subdirectories. This structure (a top level directory plus a
maximum of seven levels of subdirectories) is called a hierarchical directory
structure. Chapter 5 contains more information about directory structures.

1.6 Devices
In the VMS operating system, devices are classified as follows:

• Mass Storage Devices-These devices, such as disks and magnetic tapes,
save the contents of files on a magnetic medium. Files saved this way can be
accessed, updated, modified, or reused at any time.

• Record-oriented Devices-These devices, such as terminals, printers,
mailboxes, and card readers read and write only single physical units of
data at a time and do not provide online storage of the data. (Printers and
card readers are also called unit-record devices.)

A device name has the following three parts:

• The device type, which identifies the hardware device. (For example, an RP06
disk has the device type DB, and a TE16 magnetic tape has the device type

.MT.)

• A controller designator, which identifies the hardware controller to which the
device is attached.

• The unit number, which uniquely identifies a device on a particular controller.

The files you commonly access are stored on disks or magnetic tape. Your user file
directory (UFD) and your default directory with all your files and subdirectories
are located on a disk. You can use a file specification that contains directory
information only if the file is located on a disk. Magnetic tapes do not have
directory structures. To obtain a file stored on tape, use a file specification that
contains only file information.

If you want to access a file that is not located on your default device, you must
specify the device name. For files on disks, you must also specify the directory
where the file is cataloged.

You can use physical, logical, or generic names, described in the following
sections, to refer to devices.

1.6.1 Physical Device Names

Each physical device known to the system is uniquely identified by a physical
device name. The physical device name identifies the kind of device, for
example, a storage disk or a terminal. A device name has the following format:

ddcu

I

Introduction: VMS Concepts and Definitions 1-7

The fields are as follows:

dd Device code that represents a device type.

c Controller designation. The controller designation, along with the unit number, identifies
the location of the device within the hardware configuration of the system. Controllers are
designated with alphabetic letters A through Z.

u Unit number. The unit number, along with the controller designation, identifies the
location of the device within the hardware configuration of the system. Unit numbers are
decimal numbers from 0 through 65535.

The maximum length of the device name field, including the controller and the
unit number, is 15 characters. When you specify a device name as part of a file
specification, end it with a colon (:). If you do not specify a logical or physical
device name, your default device name is supplied.

1.6.2 Logical Device Names
Your system manager has probably set up logical device names to represent
the devices on your system. Logical device names can be used to equate a
somewhat cryptic device name to a short, meaningful name. Use these logical
device names, rather than the physical device names, to refer to devices.

Chapter 11 describes how to use logical names.

1.6.3 Generic Device Names
A generic device name consists of the device code and omits the specific
controller or unit number. When you use a generic device name, the system
locates the first available controller or device unit whose physical name satisfies
the portions of the generic device name you specified.

1.7 Processes
When you log in, the system creates an environment from which you can enter
commands. This environment is called your process. The system obtains the
characteristics that are unique to your process from the user authorization file
(UAF). The UAF lists those users permitted to access the system and defines the
characteristics for each user's process. The system manager usually maintains
the UAF. It is within your process that the system executes your programs (also
called images or executable images) one at a time.

A process can be a detached process (a process that is independent of other
processes) or a subprocess (a process that is dependent on another process for
its existence and resources). Your main process, also called your parent process,
is a detached process.

Chapter 10 describes how to use processes to perform computing tasks.

1-8 Introduction: VMS Concepts and Definitions

1.8 Programs
A program, also called an image or an executable image, is a file that contains
instructions and data in machine-readable format. A program can be either a
command image or a noncommand image as follows:

• Command image-A command image is a program associated with and
invoked by a DCL command. For example, when you type the DCL
command COPY, the system executes the program SYS$SYSTEM:COPY.EXE.
COPY.EXE is a command image. A system directory named SYS$SYSTEM
contains a number of command image files, most of which are VMS-supplied.
Use the DCL command DIRECTORY SYS$SYSTEM to examine this system
directory.

• N oncommand image-A noncommand image is a program not associated with
a DCL command. To invoke a noncommand image, name the file containing
the program as the parameter to the RUN command.

Image files can be VMS- or user-supplied and usually have a file type of EXE.
You cannot examine an image file with the DCL commands TYPE, PRINT, or
EDIT because image files do not consist of ASCII characters. (Text files contain
ASCII characters, which are a standard method of representing the alphabet,
punctuation marks, numerals, and other special symbols.) Chapter 10 contains
more information about using programs.

1.9 Uti I ities
A utility is a computer program that provides a service. Utilities are invoked
with DCL commands. Some utilities-interactive utilities-provide a special
environment from which you can perform a specific set of tasks. You work
interactively with these utilities by entering subcommands and other information
in response to the utility's prompt. For example, MAIL is an interactive utility; it
has its own prompt and subcommands.

Other utilities are noninteractive. N oninteractive utilities look and act like DCL
commands; when you invoke a noninteractive utility, it occupies your terminal
and executes a task. When the task is complete, you are returned to DCL
level and your terminal is once again available. The SORT/MERGE and the
LIBRARIAN utilities are two examples of noninteractive utilities.

Some utilities, both interactive and noninteractive, prompt you for a file name
or other information. When you are using such a utility (for example, BACKUP,
MESSAGE, PATCH, and SORT/MERGE), you can add qualifiers to the DCL
command line to tailor the utility to your specific needs, as shown in the following
example:
$ BACKUP/RECORD/IMAGE/LOG ~

From:

Introduction: VMS Concepts and Definitions 1-9

1.9.1 MAIL
MAIL allows you to send messages to and receive messages from other users
on your system or on any VAX computer that is connected to your system by
DECnet-VAX.

Chapter 8 describes how to use MAIL.

1.9.2 VMS SORT/MERGE
The VMS Sort Utility (SORT), invoked with the DCL command SORT, sorts
records from one or more input files according to the fields you select and
generates one reordered output file. The Sort Utility reorders records in a file
(or files) so that they are in alphabetic or numeric order, either low to high
(ascending) or high to low (descending), based on a portion of each record that
you define to be the key.

The VMS Merge Utility (MERGE), invoked with the DCL command MERGE,
combines up to ten previously sorted files into one ordered output file.

For information about using SORT/MERGE, see Chapter 9 and the Reference
Section.

1.1 O Text Editors
Text editors allow you to create and modify text files. With a text editor, you can
enter text from a keyboard and modify the text using text editing commands. For
example, you can type in data for a report and then rearrange sections, duplicate
information, substitute phrases, or format text. You can use text editors to create
and modify source files for programming languages (such as PASCAL or VAX
BASIC) or text formatters (such as VAX DOCUMENT or DIGITAL Standard
Runoff). The VMS operating system supports several text editors. Chapter 6
describes how to use EVE; and Chapter 7 describe how to use EDT. The Reference
Section lists EVE and EDT commands in alphabetical order.

1.11 DIGITAL Standard Runoff {DSR)
DIGITAL Standard Runoff (DSR) is a text formatter that processes source files
into formatted text and intermediate files, and creates tables of contents and
indexes. You use a text editor to create a source file, to which you should give a
file type of RNO. This file contains text, DSR formatting commands, flags (special
instruction characters you insert), and control characters.

The Reference Section describes how to use DSR and lists each DSR command.

1-10 Introduction: VMS Concepts and Definitions

1.12 Logical Names
A logical name is a name equated to an equivalence string name or to a
list of equivalence strings. When you define a logical name, you equate one
character string to an equivalence name, which is usually a full or partial
file specification, another logical name, or any other character string. Once you
have equated a logical name to one or more equivalence names, you can use the
logical name to refer to those equivalence names. For example, you might assign
a logical name to your default disk and directory. Logical names serve two main
functions:

• Shorthand and readability-You can define commonly used files, directories,
and devices with short, meaningful logical names. Such names are easier
to remember and type than the full file specifications. Names that you use
frequently can be defined in your login command procedure. Names that most
users on your system use frequently can be defined by a system manager in
the site-specific system startup command procedure.

• File independence-You can use logical names to keep your programs and
command procedures independent of physical file specifications. For example,
if a command procedure references the logical name ACCOUNTS, you can
equate ACCOUNTS to any file on any disk before executing the command
procedure.

Chapter 11 contains more information about logical name tables and describes
how to use logical names.

1.13 Symbols
Entering DCL command lines that include parameters, multiple qualifiers, and
values can make for much typing and can be time-consuming. To simplify your
interaction with DCL and save time, you can establish symbols to use in place
of command names and entire command strings you type frequently. A symbol
is a name that represents a numeric, character, or logical value. When you use
a symbol in a DCL command line, DCL uses the value you assign to the symbol.
By defining a symbol as a command line, you can execute the command by typing
only the symbol name.

Symbols can also be used (especially in command procedures) to collect, store, and
manipulate certain types of data.

Chapter 12 describes how to use symbols in DCL commands and command
procedures.

Introduction: VMS Concepts and Definitions 1-11

1.14 Command Procedures
A command procedure is a file that contains a series of DCL commands. Some
simple command procedures might only contain one or two DCL commands;
complex command procedures can function as sophisticated computer programs.
When a command procedure is executed, the DCL interpreter reads the file and
executes the commands it contains.

If your system manager has set up a system login command procedure, it
is executed when you log in. A login command procedure allows your system
manager to ensure that certain commands are always executed when you and
other users on your system log in.

After executing the system login command procedure, the system executes your
personal login command procedure, if one exists. Your personal login command
procedure allows you to customize your computing environment. The commands
contained in it are executed every time you log in. Each time you log in, the
system automatically executes up to two login command procedures.

The person who set up your account might have placed a login command
procedure in your top level directory. (Unless your account has been specially
modified to do otherwise, the system automatically places you in your top level
directory when you log in.) If a login command procedure is not in your top level
directory, you can create one yourself, name it LOGIN.COM, and place it in your
top level directory unless your system manager tells you otherwise. A sample
personal login command procedure is described in Chapter 13.

1.15 Account and System Security
The VMS operating system provides two related mechanisms to control the access
that users have to system objects as follows:

• UIC-based protection-Each user process in the system is assigned a
user identification code (UIC) in the user authorization file (UAF) with the
Authorize Utility. Each object on the system, such as a file, is also assigned a
UIC (typically the UIC of its creator). Each object also maintains a protection
---1.,... - -+-·-""··-- "',..L.:-1.. '1-..t:~.-~ '"\...- + ... ~~ ,..,.,../!,...,..,.~~("'I #'.'11n. 7n;I ~n. ,,cii.o,..~ hoC!IO~
.L.l.lQ.i;).O.,' Q. i:>l/J. U.'-'l/U..L II;; ¥'/ .L.L.L'-'.L.L U.'C.L.L.l.lll;ii;) 11.L.lll;i 11,1 }'.:;i V.L ...,..,..,.;;,,;;io., U..L.LV TY..., "'v '°'_,, ..,..,...,.._,,...
upon the relationship between the user UIC and the object UIC.

• ACL-based protection-An access control list (ACL) specifying the type of
access to be granted or denied to a particular user or group of users can be
associated with a system object. An ACL is an optional form of protection
that is typically created by the object owner using the ACL editor (invoked
with the DCL command EDIT/ACL) or the SET ACL command.

The system objects for which ACL-based protection can be specified are files,
directories, devices, batch and print queues, logical name tables, and global
sections. Users are specified by identifiers in the rights database that are
assigned with the Authorize Utility.

1-12 Introduction: VMS Concepts and Definitions

Each VMS system site has unique security requirements. For this reason,
every site should have a system security policy that outlines physical and
software security requirements for system managers and users. The VMS
System Manager's Manual describes the security features available with the VMS
operating system and tasks system managers can perform to maintain account
and system security. Chapter 4 describes how users can protect their files from
unauthorized access.

Chapter 2

Getting Started: Interacting with VMS

This chapter describes the following basic tasks you use to interact with the VMS
operating system:

• Logging in to the system

• Logging in to a remote node

• Changing your password

• Recognizing system responses

• Getting help about the system

• Terminating a remote session

• Logging out of the system

The way you log in to and out of the VMS operating system depends on how
the system is set up at your site. This section provides a general description
of logging in to and out of the VMS operating system. Check with your system
manager for the procedures specific to your site.

2.1 Logging In to the System
You need two pieces of information to log in to the system: your user name and
your password. Your system manager usually sets up accounts and gives you your
user name and password.

To log in to the system, use the following procedure:

1. Make sure your terminal is plugged in and the power is turned on.

2. Press the RETURN key to signal the system that you want to log in. (You
might need to press RETURN several times.) The system displays a prompt
for your user name:
Username:

2-2 Getting Started: Interacting with VMS

3. Enter your user name and press RETURN. (You have about 30 seconds to do
this, otherwise the system "times out" and you must start the login procedure
again.) The system displays your user name on the screen as you type it. For
example:

Username: CASEY ~

The system prompts you for your password as follows:
Password:

4. Enter your password and press RETURN. The system does not display your
password.

The following example shows a successful login:

~
Usernarne: CASEY ~
Password: ~

$

Welcome to VAX/VMS Version 5.2 on node MARS
Last interactive login on Friday, 19-APR-1990 08:41
Last non-interactive login on Thursday, 19-APR-1990 11:05

If you make a mistake entering your user name or password, or if your password
has expired, the system displays the message "User authorization failure," and
you are not logged in. If you make a mistake, press RETURN and try again.
If your password has expired, you need to change your password using the
procedure in Section 2.3. If you have any other problems logging in, get help
from the person who set up your account.

If your login is successful, the system displays a dollar sign ($) in the left margin
of your screen. The dollar sign symbol is the DCL prompt; it indicates that the
system is ready to use.

2.2 Logging In to a Remote Node
If you have access to an account on a remote node, you can log in to that account
from your local node and use the facilities of that remote node while remaining
physically connected to your local node.

For example, to access a remote node HUBBUB on the network using the DCL
command SET HOST, enter the following command:

$ SET HOST HUBBUB

You can then log in to your account on the remote node using the remote node's
login procedure. When you use the SET HOST command to log in to a remote
node, you can perform any operation on the remote node as though it were your
local node. Note that the remote node need not be a VMS system. If the network
link cannot be established, you receive an error message.

Getting Started: Interacting with VMS 2-3

To abort the login procedure, enter CTRUZ at the user name or password prompt
or enter CTRL/Y twice. The host system should respond with the question,
"Are you repeating ""Y to abort the remote session?" Answering Y (uppercase
or lowercase) aborts the remote session.

See the Reference Section for more information about the DCL command SET
HOST.

NOTE: In the examples of remote operations in this chapter,
proxy accounts enable users to perform operations on remote
systems. Proxy accounts are one way users can access remote
systems. For more information about additional ways to access
remote systems, see the VMS System Manager's Manual.

2.3 Changing Your Password
Change your password after you log in for the first time or if your password
is soon to expire. You should also change your password frequently to ensure
system security.

To change your password, use the following procedure:

1. At the DCL prompt ($), enter SET PASSWORD and press RETURN.

The system prompts you for your current password as follows:
Old password:

2. Enter your current password and press RETURN. (The system does not
display what you enter.)

The system prompts you for a new password as follows:
New password:

3. Enter your new password and press RETURN.

The system prompts you to confirm your new password as follows:
Verification:

4. Enter your new password again to verify that you have entered it correctly
and press RETURN.

The following example shows the series of set password prompts:
$ SET PASSWORD
Old password:
New password:
Verification:
$

NOTE: If you are managing your own system, see the VMS
System Manager's Manual for instructions about setting up a user
account and establishing a password.

2-4 Getting Started: Interacting with VMS

2.4 Recognizing System Responses
The system responds to the commands you enter in several ways. It can execute
the command. Generally, you know your command has executed successfully
when the system prompt returns (by default, the dollar sign). It can execute the
command and inform you in a message what it has done. It can, if execution is
not successful, inform you of errors. It can even act for you, supplying values
(defaults) you have not supplied yourself.

Understanding Defaults

A default is the value supplied by the operating system when you do not specify
one yourself. For instance, if you do not specify the number of copies as a qualifier
for the PRINT command, the system uses the default value of 1. By not explicitly
stating a value, the system assumes that you have chosen the default. The VMS
operating system supplies default values in several areas, including command
qualifiers and parameters. The defaults used with individual commands are
specified with each command's description in the VMS DCL Dictionary.

Looking at Informational Messages

The system responds to some commands by displaying information about what it
has done. For example, when you use the PRINT command, the system displays
the job identification number it assigned to the print job and shows the name of
the print queue the job has entered.
$ PRINT MYFILE.LIS ~

Job MYFILE (queue SCALE_PRINT, entry 210) started on SYS$PRINT

Not all commands display informational messages. Successful completion of a
command is usually indicated when the dollar sign prompt returns. Unsuccessful
completion is always indicated by one or more error messages.

Looking at Error Messages

If you enter a command incorrectly, the system displays an error message and
prompts you for the correct command string, as the following example shows:
$ CAPY ~
%DCL-W-IVVERB, unrecognized command verb - check validity and spelling

\CAPY\
$

The three-part code preceding the text of the message indicates the following
information:

• DCL means that the message is from DCL, the default command interpreter.

• W is a warning message.

Getting Started: Interacting with VMS 2-5

• NVERB shows the type of message. The message can be identified by the
mnemonic IVVERB in the VMS System Messages and Recovery Procedures
Reference Volume

You can also receive error messages during command execution if the system
cannot perform the function you have requested. For example, if you type a
PRINT command correctly, but the file you specify does not exist, the PRINT
command informs you of the error with a message like the following:
$ PRINT NOFILE.DAT ~
%PRINT-E-OPENIN, error opening CLASSl: [MAYMON]NOFILE.DAT; as input
-RMS-E-FNF, file not found
$

The first message is from the PRINT command. It tells you it cannot open the
specified file. The second message indicates the reason for the first, that is,
the file cannot be found. RMS refers to the VMS file handling facility, Record
Management Services; error messages related to file handling are generally VMS
RMS messages.

Checking Your Current Process

If you suspect that your system is not doing what you think it should be doing,
press CTRL!r. CTRL!r displays a single line of statistical information about the
current process. When you press CTRL/T during an interactive terminal session,
it momentarily interrupts the current command, command procedure, or image in
order to display statistics.

Although CTRL!r disrupts the characters on the screen, it does not impact any
procedure or editing session. To refresh the screen, press CTR/W. The statistical
information includes node and user name, current time, current process, CPU
usage, number of page faults, level of 1/0 activity, and memory usage. The
following example shows a user named BEAN on node GREEN using the EDT
editor:
GREEN::BEAN 13:45:02 EDT CPU=00:00:03.33 PF=778 I0=295 MEM=315

If you know that your system is running, and CTRL/T does not display statistical
information, enter the SET CONTROL=T at the dollar sign($) prompt, then
press CTRL/T again.

2.5 Getting Help
When you are logged in to the VMS operating system, you can obtain information
about using the system and available commands by using the HELP command.

Use the following procedure to get help:

1. Enter HELP at the DCL prompt and press RETURN:
$HELP ~

2-6 Getting Started: Interacting with VMS

HELP displays a list of topics and the Topic? prompt.
HELP

• (HELP message text and subtopics)

Topic?

2. To see information about one of the topics, type the topic name after the
prompt.
Topic? NAME

HELP displays information about that topic. If the topic has subtopics, HELP
lists the subtopics and displays the Subtopic? prompt.
NAME

. (HELP message text and subtopics)

NAME Subtopic?

3. If you want information on one of the subtopics, type the name after the
prompt.

NAME Subtopic? Subtopic Name

HELP displays information about that subtopic.
Subtopic

Name

. (HELP message text and subtopics, if any)

4. If you want information on another topic, press RETURN.

5. To exit HELP, press RETURN until you return to the DCL prompt.

If you know the command you need information about, type HELP and the
command name. For example, to get help about the SHOW USERS command
enter the following command:
$ HELP SHOW USERS

HELP displays the following information:

SHOW

USERS

Displays the terminal name, username, and process
identification code (PID) of either specific interactive
users or all interactive users on the system.

Format:

SHOW USERS [username]

Getting Started: Interacting with VMS 2-7

Additional information available:

Parameters Command Qualifiers
/OUTPUT -
Examples

SHOW USERS Subtopic?

If you need help but do not know what command or system topic to specify, enter
the command HELP with the word HINTS as a parameter. Each task name listed
in the HINTS text is associated with a list of related command names and system
information topics.

The Reference Section contains more information about the HELP command.

2.6 Ending a Remote Session
You can end a remote session in two ways:

• Use the remote system's logout procedure (for example, on a VMS system, use
the LOGOUT command).

• Press CTRL/Y twice to obtain the host system's prompt, which asks whether
you want to abort the remote session. Answer Y if you want to abort the
remote session. This method works regardless of the system running on the
remote node.

When you end a remote session, the message "%REM-S-END, control returned
to node _NODENAME::" is displayed, and you are returned to the system from
which you made the remote node connection.

If the DECnet network has made intermediate connections for you and one of
the intermediate systems goes down, DECnet either attempts to reroute the
connection or waits a few seconds to determine whether the system will recover.
If DECnet is able to recover the connection, the interruption might be so brief
that you do not notice it, or it may last as long as 60 seconds. If DECnet cannot
recover the connection, the remote session is ended and the message "Path lost to
partner" may be displayed.

2..7 . - . ---~-- -- ---· _ _,_ ··- - """---•----Loggmg vu·c 01 cne ~y~nem

When you finish using the system, always log out. This prevents unauthorized
users from accessing your account and the system. It is also a wise use of system
resources; the resources you no longer need are available for other users.

To log out, enter LOGOUT at the DCL prompt. For example:

$ LOGOUT ~

2-s Getting Started: Interacting with VMS

The system displays a message, similar to the following message, confirming that
you are logged out of the system:
$ LOGOUT
HARRIS logged out at 19-APR-1990 12:42:48.12

NOTE: You can log out of the system only when you are at the
DCL prompt ($). You cannot enter the LOGOUT command while
you are compiling or executing a program, using a text editor
(such as EDT or EVE), or running a utility (such as MAIL). First
you must exit the program, editor, or utility. When the system
displays the DCL prompt, you can log out.

To find out how much time you spent at the terminal (elapsed time), how much
computer time you used (charged CPU time), and other accounting information,
enter LOGOUT/FULL at the DCL prompt. For example:
$ LOGOUT /FULL lB[fj

The system displays information similar to the following:

SIMPSON logged out at 19-APR-1990 12:42:48.12

Accounting information:
Buffered I/0 count: 8005 Peak working set size: 212
Direct I/0 count: 504 Peak virtual size: 770
Page faults: 1476 Mounted volumes: 0
Charged CPU time:O 00:00:50.01 Elapsed time:O 02:27:43.06

Chapter 3

The DIGITAL Command Language:
Communicating with VMS

This chapter describes how to use the DIGITAL Command Language. The
DIGITAL Command Language (DCL) is a limited set of English-like instructions
that tell the VMS operating system to perform specific operations.

DCL commands let you do the following:

• Get information about the system

• Work with files

• Work with disks, magnetic tapes, and other devices

• Modify your work environment

• Develop and execute programs

• Provide security and ensure that resources are used efficiently

3.1 Using DCL Commands
To enter a DCL command, type the command (in uppercase or lowercase letters)
at the DCL prompt($) and press RETURN. For example, to use the DCL
command SHOW TIME, enter the following command:
$ SHOW TIME ~

The system responds by displaying the current date and time and returns the
DCL prompt to indicate it is ready to accept another command:
19-APR-1990 15:41:43
$

Table 3-1 lists a few common computing tasks and the DCL commands you need
to perform them. The Reference Section describes DCL commands in alphabetical
order.

3-2 The DIGITAL Command Language: Communicating with VMS

Table 3-1: Commonly Used DCL Commands

Task

Displaying the contents of a current directory
(list of files)

Making a copy of a specified file

Erasing a specified file and removing it from a
directory

Changing the name of a specified file

Sending a specified file to a printer for printing

Viewing and changing the contents of a text file

Ending your VMS session

Creating files or directories

Controlling how you see the system

Displaying the status of the system

Displaying the contents of a specified file on the
screen

Command

DIRECTORY

COPY

DELETE

RENAME

PRINT

EDIT

LOGOUT

CREATE

SET

SHOW

TYPE

In addition to these English-like commands, the VMS operating system
understands specific key combinations. A key combination is a shortcut or a
way to get the system's attention while it is processing another command.

To enter a key combination, hold down the first key while you press and release
the second key.

Table 3-2 describes a few key combinations. (Additional key combinations are
listed in Section 3.7.)

Table 3-2: Commonly Used DCL Key Combinations

Function

CRTUC

CRTUY

CTRI.lr

Use

During command entry, cancels command processing. CRTUC is displayed
as (Cancel).

Interrupts command processing. CRTUY is displayed as (Interrupt).

Displays information about current process.

The DIGITAL Command Language: Communicating with VMS 3-3

3.2 Constructing a DCL Command
Like a spoken language, DCL is made up of words (vocabulary) and word order
(syntax). The following sections describe these two elements and explain how to
construct a valid DCL command.

3.2.1 Vocabulary of a DCL Command

Figure 3-1 shows the general format and parts of a DCL command line:

Figure 3-1: Parts of a DCL Command Line

$ PRINT/COPIES= 5 GROCERY.LIS IRETI

t
DCL
Prompt l

Qualifier that
modifies the
command

Value that
modifies the
qualifier

DCLCommand

t
Parameter
(In this case, the
parameter is a file
specification)

ZK-0950A-GE

The following sections describe the parts of a DCL command line.

DCL Prompt

'T'hP. dollar Rimi (ll;) iR thP. DC!L nromnt .. When vou work interactivelv with DCL.
DCL display; th~· prompt when .. it is ~eady to a~cept a command. when you write
a command procedure, you must type the dollar sign at the beginning of each
line.

Label

Identifies a line in a command procedure. Use labels only within command
procedures, which are described in Chapter 13.

DCL Command

Specifies the name of the command.

3-4 The DIGITAL Command Language: Communicating with VMS

Parameter

Specifies what the command acts upon. You must place parameters in a specified
order within the command. The DCL command descriptions in the Reference
Section describe what parameter values are allowed for each command and where
they must be placed. Examples of parameter values include file specifications,
queue names, and logical names.

Qualifier

Modifies the action taken by the command. Some qualifiers modify the whole
command, while others can modify specific parameters. Some qualifiers can
accept values. The DCL command descriptions in the Reference Section indicate
whether a specific qualifier can accept a value and what kind of value is
acceptable.

Value

Modifies a qualifier and is often preceded by an equal sign (=). A value can be a
file specification, a character string, a number, or a DCL keyword.

Keyword

A keyword is a word defined for use in certain specified syntax formats. You must
use keywords exactly as listed in the description of the particular DCL command
you want to specify. For example, SYSTEM, OWNER, GROUP, and WORLD are
DCL keywords for the /PROTECTION qualifier of the SET FILE command. (A
DCL keyword can also have a value.)

Wildcard character

A wildcard character is a nonalphanumeric character such as an asterisk (*) or a
percent sign (%) that is used within, or in place of, a file name, file type directory
name, or version number in a file specification to indicate "all" for the given field.
For information about using wildcard characters with files and directories, see
Chapter 4 and Chapter 5. For information about using wildcard characters with
a particular DCL command, see the Reference Section.

3.2.2 Putting the Parts in Order: Syntax
Just as a spoken language depends on the order of words to create meaning, DCL
requires that you put the correct elements of the command line in a specific word
order. This word order or syntax is shown in a syntax diagram.

The following syntax diagrams show the structure of typical DCL commands:

$ label: command/qualifier=value

The DIGITAL Command Language: Communicating with VMS 3-5

or

$ label: command parameter/qualifier

3.3 Entering a DCL Command
When you enter a DCL command, some items must be entered on the command
line. If you do not enter them, the system prompts you to supply the missing
information.

In the following example, the TYPE command expects a file specification. Because
a file specification is a required parameter, if you do not enter one, the system
requests it. A line beginning with an underscore(_) means that the system is
waiting for your response.

$ TYPE
File: WATER.TXT

When you are prompted for an optional parameter, press RETURN to omit it.
At any prompt, you can enter one or more of the remaining parameters and any
additional qualifiers.

If you press CTRUZ after a command prompt, DCL ignores the command and
redisplays the DCL prompt.

Some items need not be specified on the command line. These are called defaults.
When DCL does something by default, it assumes that you want a command
to use certain values or to take certain actions without your having to explicitly
specify them. In general, the values and actions are those considered typical or
expected by users.

For example, if you do not specify the number of copies as a qualifier for the
PRINT command, DCL uses the default value of 1. Unless you specify otherwise,
DCL assumes that you have chosen the default. You can override this default
behavior and print multiple copies of a file by specifying the following command:

$ PRINT/COPIES=4 MYFILE.TXT

DCL supplies default values in several areas, including command parameters and
qualifiers. Parameter defaults are described in the following section; qualifier
defaults are described in Section 3.3.5.2.

3.3.1 Rules for Entering a DCL Command

Use the following rules to enter a DCL command:

• Use any combination of uppercase and lowercase letters. The DCL inter
preter translates lowercase letters to uppercase. Uppercase and lowercase
characters in parameter and qualifier values are equivalent unless enclosed
in quotation marks.

3-6 The DIGITAL Command Language: Communicating with VMS

• Separate the command name from the first parameter with at least one blank
space.

• Separate each additional parameter from the previous parameter qualifier
with at least one blank space.

• Begin each qualifier with a slash (I); the slash serves as a separator and need
not be preceded by blank spaces or tabs.

• A command line can contain a maximum of 128 elements (for example, a file
specification or qualifier).

• You can abbreviate a command name as long as the abbreviated name
remains unique among all DCL command names.

For example, the following commands are equivalent:
$ PR/ C=2 FORMAL ART. TXT
$ PRINT/COPIES=2 FORMAL_ART.TXT

Do not, however, abbreviate commands in command procedures.

Additional rules govern the format of commands when they are used in command
procedures. See Chapter 13 for more information about using commands in
command procedures.

3.3.2 Entering an Incomplete Command Line

If you do not enter all the information that the system needs to process a
command, the system displays a prompt for the missing information. A line
beginning with an underscore (_) means that the system is waiting for your
response.

In the following example, the system displays a prompt because the name of the
file is a required parameter for the TYPE command.
$ TYPE
_File: WATER.TXT

3.3.3 Entering a Command Longer Than One Line

If you enter a command longer than one line, you can continue the command onto
the next line. To continue a command line onto the next line, use the following
procedure:

1. End the command line with a hyphen and press RETURN.

The system displays an underscore (_) followed by the DCL prompt ($).

2. Enter the rest of the command line after this prompt. A line beginning with
an underscore means that the system is waiting for your response, as shown
in the following example:

$ COPY/LOG FORMAT.TXT,FIGURE.TXT,ARTWORK.TXT -
_$ SAVE.TXT

The DIGITAL Command Language: Communicating with VMS 3-7

Note that you must include the appropriate spaces between command names,
parameters, and so on. Pressing RETURN after the hyphen does not add a space.

3.3.4 Entering Parameters

DCL supplies default values for some command parameters. The parameters
accepted by a command as well as the specific command parameter defaults
supplied by DCL are described in each command description in the Reference
Section.

The following rules apply when specifying parameters in a command line:

• Square brackets ([]) in commands indicate optional items. For example, you
do not have to enter a file specification in the following command:

DIRECTORY [file-spec]

• Anything not enclosed in square brackets is required. For example, you must
enter a device name in the following command:

SHOW PRINTER device-name

• In general, precede an output file parameter with an input file parameter. For
example, to copy the input file, LISTS.TXT, to the output file, FORMAT.TXT,
enter the following command:
$ COPY LISTS.TXT FORMAT.TXT

• A parameter can be one item or a series of items. If you enter a series
of items, separate them with commas (,) or plus signs (+). Any number
of spaces or tab characters can precede or follow a comma or a plus sign.
Note that some commands regard the plus sign as a concatenator, not as a
separator. The parameter section of each DCL command description in the
Reference Section describes how each command interprets commas and plus
signs.

The following command syntax line shows that you can optionally enter a list
of files as the parameter:

DELETE file-spec[, ...]

The following example shows how to specify a list of parameters. Here, three
files are copied to a fourth file. The three file specifications-PLUTO.TXT,
SATURN.TXT, and EARTH.TXT-constitute the first parameter.
PLANETS.TXT is the second parameter.
$ COPY PLUTO.TXT,SATURN.TXT,EARTH.TXT PLANETS.TXT

3-8 The DIGITAL Command Language: Communicating with VMS

3.3.5 Entering Qualifiers
The qualifiers accepted by a command are described in each command description
in the Reference Section. The DCL command description also indicates whether a
qualifier accepts a value and what kind of value is required.

You can abbreviate any qualifier name as long as the abbreviated name remains
unique among all qualifier names for the same command. However, you should
not abbreviate commands in command procedures.

Commands have default qualifiers; you do not have to specify a qualifier unless
it is different from the command default. The following sections describe types
of qualifiers and qualifier defaults. The Reference Section contains default
information for specific commands.

3.3.5.1 Types of Qualifiers
The three types of qualifiers are as follows:

• Command qualifiers-A command qualifier modifies a command and can
appear anywhere in the command line. However, it is a good practice to
place the qualifier after the command name. If you are specifying multiple
qualifiers, you should place a command qualifier after other command
qualifiers that follow the command name.

In the following example, /QUEUE is a command qualifier. The files
SATURN.TXT and EARTH.TXT are queued to the print queue LN03_PRINT.
$ PRINT/QUEUE=LN03_PRINT SATURN.TXT,EARTH.TXT

• Positional qualifiers-A positional qualifier can modify commands or
parameters and has different meanings depending on where you place it
in the command string. If you place a positional qualifier after the command
but before the first parameter, it affects the entire command string. If you
place a positional qualifier after a parameter, it affects only that parameter.

In the following example, the first PRINT command requests two copies of the
:files SPRING.SUM and FALL.SUM. The second PRINT command requests
two copies of the file SPRING.SUM, but only one copy of FALL.SUM.
$ PRINT/COPIES=2 SPRING.SUM,FALL.SUM
$ PRINT SPRING.SUM/COPIES=2,FALL.SUM

• Parameter qualifiers-A parameter qualifier can be used only with certain
types of parameters, such as input files and output files.

For example, the BACKUP command accepts several parameter qualifiers
that apply only to input and output file specifications. In the following
example, the /CREATED and /BEFORE qualifiers, which can be specified only

The DIGITAL Command Language: Communicating with VMS 3-9

with input files, select specific input files for the backup operation. (For this
example, multiple copies of the file MYFILE.TXT exist. Only those versions
that were created before April 19, 1990 are selected for the backup operation.)

$ BACKUP MYFILE.TXT/CREATED/BEFORE=19-APR-1990 NEWFILE.TXT

3.3.5.2 Qualifier Defaults
When you omit a specific qualifier from the command line, the system responds
with default behavior. For example, when you delete a file with the DELETE
command, the system by default does not request confirmation of each delete
operation. However, by specifying the DELETE/CONFIRM command, you can
override that default behavior and request that you be prompted for confirmation
before each file is deleted.

You can specify qualifiers in several ways. The qualifier syntax required by a
specific DCL command is given in the command descriptions in the Reference
Section. The following paragraphs explain the syntax used to describe qualifiers
and their defaults:

• Qualifiers with positive and negative forms-These qualifiers have a value of
true or false. You indicate a true value by naming the qualifier. Negate the
qualifier by inserting the prefix NO.

For example, the /CONFIRM qualifier can be expressed positively or
negatively. If you omit the qualifier from the command line, the default action
is /NOCONFIRM. The syntax for the /CONFIRM qualifier is given in a DCL
command description as follows:

/CONFIRM
/NOCONFIRM (default)

• Qualifiers that require values-If you use a qualifier that accepts a value, you
must specify a value. If you omit the qualifier completely, the default value is
applied. For example, if you use the /COPIES qualifier, you must provide a
numeric value. If you omit the /COPIES qualifier, the default is /COPIES=l.
The svntax for the /COPTE8 011~ liner i.i:; Piven in ~ nnr. r.nmmsmil ile~r.-Mnt1nn as foliows: ... - - ·•r --- --- -- - -- -------------- -------... ------

/COPIES=n

If the qualifier accepts a list of values, you must enclose the values in
parentheses and separate them with commas as follows:

$ DELETE/ENTRY=(230,231) LN03_PRINT

The command deletes jobs 230 and 231 from the queue LN03_PRINT.

3-10 The DIGITAL Command Language: Communicating with VMS

• Qualifiers that accept value and positive/negative combinations-Some
qualifiers combine value and positive/negative characteristics so that the
qualifier both accepts a value and allows you to negate the qualifier by
inserting the prefix NO. For example, the SET TERMINAL command permits
the following choices for the /PARITY qualifier:
$ SET TERMINAL/PARITY=EVEN
$ SET TERMINAL/PARITY=ODD
$ SET TERMINAL/NOPARITY

• Qualifiers that affect command execution only if specified-The qualifier has
no corresponding default. For example, the /BY_OWNER qualifier does not
affect the command if it is not specified. The syntax for the /BY_ OWNER
qualifier is given in a DCL command description as follows:

/BY_OWNER

• Qualifiers that override other qualifiers-Sometimes a command has a
qualifier that is automatically applied as a default. Other qualifiers are
available to override the default qualifier.

For example, the /BRIEF qualifier is applied by default when you specify
the DIRECTORY command. That is, the DIRECTORY command generates
a listing that includes only the file name, file type, and version number of
each file in the directory. You must specify the /FULL qualifier to generate a
listing that includes the file name, file type, and version number as well as
the number of blocks used, the date of the file's creation, the date the file was
last backed up, and so on.

Some commands contain conflicting qualifiers that cannot be specified in the same
command line. If you use incompatible qualifiers, the system usually displays an
error message. The command descriptions in the Reference Section indicate
which qualifiers cannot be used together.

3.4 Recalling Commands
At DCL level, you ca.p recall previously typed command lines and avoid the
inconvenience of retyping long command lines. The recall buffer holds up to 20
previously entered commands. Once a command is displayed, you can reexecute
or edit it.

You can display your previously entered commands by using one of the following
methods:

• Pressing CTRL/B

• Using up and down arrow keys

• Entering the RECALL command

Pressing CTRL/B once recalls the previous command line. Pressing CTRL/B again
recalls the line before the previous line, and so on to the last saved command line.

The DIGITAL Command Language: Communicating with VMS 3-11

Pressing the up and down arrow keys recalls the previous and successive
command, respectively. Press the arrow keys repeatedly to move through the
commands.

To examine up to 20 previously typed command lines, type RECALUALL.
Following is a sample display generated by typing RECALUALL:
$ RECALL/ALL

1 SET DEFAULT DISK2:[MARSHALL]
2 EDIT ACCOUNTS.COM
3 PURGE ACCOUNTS.COM
4 DIRECTORY/FULL ACCOUNTS.COM
5 COPY ACCOUNTS.COM [.ACCOUNTS]*
6 SET DEFAULT [.ACCOUNTS]

Having reviewed the available commands, you can recall a particular command
line by typing RECALL and the number of the desired command. The following
example shows how to recall the fourth command line:
$ RECALL 4

After you press RETURN, the fourth command in the list is displayed at the DCL
prompt. (The RECALL command itself is not placed in the buffer.)

You can also follow RECALL with the first characters of the command line you
want to display. RECALL scans the previous command lines (beginning with
the most recent one) and returns the first command line that begins with the
characters you typed. For example, to recall a previously entered command,
EDIT ACCOUNTS.COM, enter the following command:
$ RECALL E

After you press RETURN, the system displays the following command line:
$ EDIT ACCOUNTS.COM

TIP: If you are running a utility or an application program that
uses VMS screen management software, you can use CTRIJB and
the up and down arrow keys to perform command recall. Line
editing must be enabled. Some utilities that have this feature are
MAIL, DEBUG, SHOW CLUSTER, the System Dump Analyzer
(SDA), and the VAXTPU editor.

To erase the contents of the recall buffer, enter the RECALL command with the
ERASE qualifier. For example:
$ RECALL/ERASE

3-12 The DIGITAL Command Language: Communicating with VMS

3.5 Entering Dates and Times as Values
Certain commands and qualifiers accept date and time values. You can specify
these values in one of the following formats:

• Absolute time

• Delta time

• Combination time (combines absolute and delta time formats)

The DCL command descriptions in the Reference Section indicate the time
formats accepted by individual commands and qualifiers.

3.5.1 Absolute Time

Absolute time is a specific date or time of day. The format for an absolute time is
as follows:

[dd-mmm-yyyy][:][hh:mm:ss.cc]

The fields are as follows:

Field Meaning

dd Day of the month; an integer in the range 1 to 31

mmm Month; JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC

yyyy Year; an integer

hh Hour; an integer in the range 0 to 23

mm Minute; an integer in the range 0 to 59

ss Seconds; an integer in the range 0 to 59

cc Hundredths of a second; an integer in the range 0 to 99

You can truncate the date or the time on the right. However, if you are specifying
both date and time, you must include a colon between them. The date must
contain at least one hyphen. You can omit any of the fields within the date and
time as long as you include the punctuation marks that separate the fields. A
truncated or omitted date field defaults to the corresponding fields for the current
date. A truncated or omitted time field defaults to zero. If you specify a past time
in a command that expects the current or a future time, the current time is used.

The DIGITAL Command Language: Communicating with VMS 3-13

You can also specify an absolute time as one of the following keywords:

Keyword

TODAY

TOMORROW

YESTERDAY

Meaning

The current day, month, and year at 00:00:00.0 o'clock

00:00:00.00 o'clock tomorrow

00:00:00.00 o'clock yesterday

The following table shows some examples of absolute time specifications:

Time Specification

19-APR-1990:13

19-APR

15:30

19-

19-::30

3.5.2 Delta Time

Result

1 P.M. on April 19, 1990

Midnight at the beginning of April 19 this year

3:30 P.M. today

Midnight on the 19th day of the current year and month

12:30 A.M. on the 19th of this month

Delta time is an offset (a time interval) from the current date and time to a time
in the future. The general format of a delta time is as follows:

[dddd-][hh:mm:ss.cc]

The fields are as follows:

Field

dddd

hh

mm

SS

cc

Meaning

Number of days; an integer in the range 0 to 9999

Number of hours; an integer in the range 0 to 23

Number of minutes; an integer in the range 0 to 59

Number of seconds; an integer in the range 0 to 59

Number of hundredths of seconds; an integer in the range 0 to 99

You can truncate a delta time on the right. If you specify the number of days,
include a hyphen. You can omit fields within the time as long as you include the
punctuation that separates the fields. If you omit the time field, the default is
zero.

3-14 The DIGITAL Command Language: Communicating with VMS

The following table shows some examples of delta time specifications:

Time Specification

3-

3

:30

3-:30

15:30

Result

3 days from now (72 hours)

3 hours from now

30 minutes from now

3 days and 30 minutes from now

15 hours and 30 minutes from now

3.5.3 Combination Time

To combine absolute and delta time, specify an absolute time plus or minus a
delta time. The format for combination time is as follows:

"[absolute time][+delta time]"

or

[absolute time][-delta time]

The variable fields and default fields for absolute and delta time values are the
same as those described in the preceding sections. The delta time value must
always be preceded by a plus sign (+)or minus sign(-). (Note that the minus
sign is the same keyboard key as the hyphen.) Whenever a plus sign precedes
the delta time value, enclose the entire time specification in quotation marks. In
addition, you can omit the absolute time value. If you do, the delta time is offset
from the current date and time.

The following table shows some examples of combination time specifications:

Time Specification

"+5"

"+:5"

-:5

-1-00

Result

5 hours from now

5 minutes from now

Current time minus 5 minutes

Current time minus 1 day. The minus sign (-) indicates a negative
offset. The dash (-) separates the day from the time field.

If a qualifier is described as a value that can be expressed as an absolute time,
a delta time, or a combination of the two, you must specify a delta time as if it
were part of a combination time. For example, to specify a delta time value of five
minutes from the current time, use "+:5" (not "0-0:5").

The DIGITAL Command Language: Communicating with VMS 3-15

3.6 Defining Terminal Keys
Using key definitions, you can customize your keyboard so that you can enter
DCL commands with fewer keystrokes. A key definition is a string of characters
that you assign to a particular terminal key. When a key is defined, you can press
it instead of typing the string of characters. A key definition usually contains all
or part of a command line. When you press a defined key, the command is either
displayed on your terminal or executed.

Some definable keys are automatically enabled for definition (like keys PFl
through PF4 and keys Fl 7 through F20 on VT200- and VT300-series terminals).
However, before you can define other keys, including keypad 0 (KPO) through KP9
and the keypad keys PERIOD, COMMA, MINUS, and ENTER, you must enable
them for definition by entering either the SET TERMINAUAPPLICATION_
KEYPAD or the SET TERMINAUNONUMERIC command.

For a complete list of definable keys and for more information on how to create
key definitions, see the description of the DCL command DEFINE/KEY in the
Reference Section.

3.7 Summary of Key Combinations
Table 3-3 lists and describes the key combinations that let you enter and edit
DCL commands.

Table 3-3: Keys That Execute Terminal Functions

Key

Keys That Enter DCL Commands

CTRUZ and Fl01

RETURN

Function

Signals the end of the file for data entered from the
terminal. CTRIJZ is displayed as "Exit."

Sends the current line to the system for processing. (On
some terminals, the RETURN key is labeled CR.)

Before a terminal session, RETURN initiates a login
sequence.

1This key is available only on an LK201 keyboard.

(continued on next page)

3-16 The DIGITAL Command Language: Communicating with VMS

Table 3-3 (Cont.): Keys That Execute Terminal Functions
Key Function

Keys That Interrupt DCL Commands

CTRUC and F61

CTR UT

CTR UY

Keys That Recall Commands

CTRUB and Up arrow

Down arrow

During command entry, cancels command processing.
CTRUC is displayed as "Cancel."

Momentarily interrupts terminal output to display a line
of statistical information about the current process. This
display includes your node and user name, the time, the
name of the image you are running, and information
about system resources used during your current terminal
session.

You can also use the CTRL/T key to determine whether the
system is operating. CTRL/T does not return information if
the system is temporarily unresponsive or if your terminal
is set to NOBROADCAST. In order to use CTRUT, SET
CONTROL=T must be enabled either in the system login
command procedure or by you, either interactively or in
your login command procedure.

Interrupts command processing. CTRUY is displayed as
"Interrupt." You can disable CTRUY with the command
SET NOCONTROL=Y.

Under most conditions, CTRUY returns you to the DCL
prompt. The program running is still active. You can enter
any built-in command then continue the program with
the CONTINUE command. (Press CTRUW to refresh the
screen after you enter the CONTINUE command.)

Recalls up to 20 previously entered commands.

Displays the next line in the recall buffer.

1This key is available only on an LK201 keyboard.

(continued on next page)

The DIGITAL Command Language: Communicating with VMS 3-17

Table 3-3 (Cont.): Keys That Execute Terminal Functions
Key Function

Keys That Control Cursor Position

<XI, DELETE

CTRUA, F141

CTRUD and Left aITow

CTRUE

CTRUF and Right aITow

CTRIJH, BACKSPACE, and F121

CTRUI and TAB

CTRUJ, LINEFEED, and F131

CTRIJK

CTRUL

CTRUR

CTRUU

CTRIN

CTRUX

F7, F8, F9, Fll

Deletes the last character «mtered at the terminal. (On
some terminals, the DELETE key is labeled RUBOUT.)
The DELETE key also works when line editing is disabled.

Switches between overstrike and insert mode. The default
mode (as set with the SET TERMINAULINE_EDITING
command) is reset at the beginning of each line.

Moves the cursor one character to the left.

Moves the cursor to the end of the line.

Moves the cursor one character to the right.

Moves the cursor to the beginning of the line.

Moves the cursor to the next tab stop on the terminal.
The system provides tab stops at every eighth character
position on a line. Tab settings are hardware terminal
characteristics that, in general, you can modify. The TAB
key also works when line editing is disabled.

Deletes the word to the left of the cursor.

Advances the current line to the next vertical tab stop.

Causes the cursor to go to the beginning of the next page.
This use of this key is ignored when line editing is enabled.

Repeats the current command line and leaves the cursor
positioned where it was when you pressed CTRUR.

Cancels the current input line.

Turns off some of the line editing function keys. For
example, if you press CTRIN followed by CTRUD, a
CTRUD is generated instead of the cursor moving left one
character. CTRUD is a line terminator at DCL level.

When combined with CTRUV, characters that are not line
+.a~;no+n,.o h'°"""'° '9'\n .o#o,.+ li':v~"""''"l~t'.'I n..-n f"'t'JTDT rr::f n'9"\~ ... - ... ~ -,:. _._ _ v ~~ tJ ... -.;, - ._.,..._. M.a..a. ...

CTRUJ. However, certain control keys, such as CTRUU,
retain their line editing functions.

Cancels the current line and deletes data in the type-ahead
buffer.

Reserved by Digital.

1This key is available only on an LK201 keyboard.

(continued on next page)

3-18 The DIGITAL Command Language: Communicating with VMS

Table 3-3 (Cont.): Keys That Execute Terminal Functions

Key

Keys That Control Screen Display

CTRUO

CTR US

CTRUQ

HOLD SCREEN1and NO SCROLL2

Function

Alternately suspends and continues display of output to
the terminal. CTRIJO is displayed as "Output oft" and
"Output on."

Suspends terminal output until CTRUQ is pressed.

Resumes terminal output suspended by CTRIJS.

Suspends terminal output until the key is pressed again.

1This key is available only on an LK201 keyboard.
2This key is available only on a VTlOO keyboard.

Chapter 4

Files: Storing Information

A file is a unit the VMS operating system uses to store human-readable and
machine-readable data. This chapter describes the following tasks you can
perform with files locally, and if you have sufficient privileges, over a DECnet-VAX
network.

• Understanding file names and file specifications

• Using wildcard characters to access files

• Creating files

• Modifying files

• Copying files

• Renaming files

• Displaying the contents of text files

• Deleting files

• Protecting a file from other users

• Printing files

The descriptions of the DCL commands in the Reference Section describe specific
file operations you can perform locally and over the network.

NOTE: In the examples of remote operations in this chapter,
proxy accounts enable users to perform operations on remote
systems. Proxy accounts are one way users can access remote
systems. For more information, about additional ways to access
remote systems, see the VMS System Manager's Manual.

4-2 Files: Storing Information

4.1 Understanding File Names and Specifications
When you create a file, you must specify certain information so that the system
can locate and identify the file. A complete file specification has the following
format:

node::device:[directory]filename.type;version

You must provide a complete file specification if you are performing file operations
over a network.

When you name a file, you do not have to include all the elements of a complete
file specification. However, you must include a file name or file type to identify it
to both the system and you. The system automatically assigns a version number
unless you specify one. To name a file, use the following format:

filename.type;version

Use the following rules to specify the elements of a file specification:

• Give the file a name that is meaningful to you. The file name can be up to 39
characters chosen from the letters A through Z (uppercase or lowercase), the
numbers 0 through 9, an underscore(_), a hyphen(-), or a dollar sign($).

• Do not use a hyphen as the first or last character in the file name.

• Do not begin a file name with a dollar sign; you can use a dollar sign only
within the file name.

• A file type, which identifies the kind of file, can be from 0 through 39
characters.

• Precede a file type by a period.

• Precede version numbers with a semicolon or a period. (When the system
displays file specifications, it displays a semicolon in front of the file version
number.)

Including a file type is optional. With certain commands, if you omit the file type,
the system applies a default value. Table 4-1 lists some of the more common
default file types used by DCL commands. It also lists the default file types for
some high-level language source programs.

Files: Storing Information 4-3

Table 4-1 : Default File Types

File Type Contents

Default File Types for DCL Commands

CLD

COM

DAT

DIS

DIR

EDT

EXE
HLP

JOU

LIS

LOG

MAI

MEM

OBJ

RNO

SIX

SYS

TJL

TMP

TPU

TXT

Command description file

Command procedure file

Data file

Distribution list file for the MAIL command

Directory file

Startup command file for the EDT editor

Executable program image file created by the linker

Input source file for help libraries

Journal file created by the EDT editor

Listing file created by a language compiler or assembler; default input file for the
PRINT and TYPE commands

Batch job output file

MAIL message file

Output file created by DIGITAL Standard Runoff (DSR)

Object file created by a language compiler or assembler

Input source file for DIGITAL Standard Runoff

Sixel graphic file

System image

Journal file created by the VAXTPU and ACL editors

Temporary file

Command file for the VAXTPU editor

Input file for text libraries or MAIL command output

(continued on next page)

4-4 Files: Storing Information

Table 4-1 (Cont.): Default File Types

File Type Contents

Default File Types for Language Source Programs

ADA

BAS

B32

c
COB

FOR

MAR

PAS

PLI

Input source file for the VAX Ada compiler

Input source file for the VAX BASIC compiler

Input source file for the VAX BLISS-32 compiler

Input source file for the VAX C compiler

Input source file for the VAX COBOL compiler

Input source file for the VAX FORTRAN compiler

Input source file for the VAX MACRO compiler

Input source file for the VAX Pascal compiler

Input source file for the VAX PU! compiler

In addition to a file name and file type, every file has a version number. Version
numbers are decimal numbers from 1 to 32,767 that differentiate versions of a
file. When you initially create a file, the system assigns it a version number of 1.

You may have several versions of a file. Unless you specify a version number, the
system uses the highest existing version number of that file. When you modify
that file, the system saves the original file and produces a modified output file.
By default, this output file has the same name and type as the original, but the
version number is incremented by one.

Version numbers must be preceded with a semicolon or a period. When the
system displays file specifications, it generally displays a semicolon in front of
the file version number.

4.2 Using Wildcards with Files
Use wildcard characters to apply a DCL command to multiple files rather than to
one file at a time. The command applies to all files that match the portion of the
file specification entered.

With many DCL commands you can use an asterisk (*) or a percent sign (%) as
a wildcard in directory names, file names, and file types. You can also use the
asterisk, but not the percent sign, in version numbers.

Many examples in this chapter show the use of wildcard characters in file
operations. The use of wildcard characters in DCL commands varies with
the individual command. For more information about using wildcards with a
particular DCL command, see the Reference Section.

Files: Storing Information 4-5

4.2.1 The Asterisk (*) Wildcard Character

Use the asterisk wildcard character to match the following:

• An entire field, or a portion of it, in the directory, file name, and file type
fields

• The entire version number field, but not a portion of it

4.2.2 The Percent (%) Wildcard Character

Use the percent sign wildcard character as a substitute for any single character
in a file specification. You can use the percent sign in the directory, file name, and
file type fields. You cannot, however, use the percent sign in the version number
field.

The following example displays the latest versions of all DAT files whose names
begin with DISTRICT:

$ TYPE [JONES.TAXES.PROPERTY]DISTRICT%.DAT

This display would include the files DISTRICTl.DAT, DISTRICT2.DAT, and
DISTRICT3.DAT. The file DISTRICT4_5.DAT would not be displayed because it
has more than one character after DISTRICT, nor would the file DISTRICT.DAT
be displayed. The percent sign replaces one character position in a field, but there
must be a character to replace.

4.3 Creating and Modifying Files
The most versatile interactive tool for creating and modifying text files is the
interactive text editor. EVE and EDT are two text editors that are included in
VMS; other text editors may also be available on your system.

You can also create and modify files by using the DCL commands CREATE,
COPY, and RENAME. The following sections describe how to create and modify
files using these commands.

The CREATE command creates a text file. For example, to create a file named
POUND.LIS, enter the CREATE command and then type lines of text:

$ CREATE POUND.LIS
Tag #23, Elmer Doolittle, notified
Tag #37, James Watson, notified
No tag, light brown, 30 lbs., looks part beagle
ICTRLJZI

Pressing CTRIJZ signals the end of the file and returns you to DCL command
level. You cannot modify a file with the CREATE command; after you have
pressed RETURN, you cannot return to a previous line to modify a word. You

4-6 Files: Storing Information

must use a text editor such as EDT or EVE to modify a file created with the
CREATE command.

4.3.2 Copying Files

The COPY command duplicates the contents of an existing file in a new file. For
example, to copy FEES.DAT to RECORDS.DAT, enter the following command:
$ COPY FEES.DAT RECORDS.DAT

The COPY command can duplicate many files at a time. For example, to copy
all TXT files in the default directory to another directory, enter the following
command:
$ COPY *.TXT;* [SAVETEXT]*.*;*

Concatenating Files

The COPY command can concatenate files. For example, to append FEESl.DAT
to FEES.DAT (forming a new version of FEES.DAT) in your default directory,
enter the following command:
$ COPY FEES.DAT,FEESl.DAT FEES.DAT

Copying Files from a Remote Node to Your Node

Use the COPY command to copy files from another node to your node. For
example, to copy the latest version of all files in DISK2:[PUBLIC] on node
CHAOS to files with the same names in your default directory, enter the following
command:
$COPY CHAOS::DISK2: [PUBLIC]*.* *

Copying Files. from Your Node to a Remote Node

Use the COPY command to copy files from your node to another node. For
example, to copy the latest version of all files in your default directory to files
with the same names in the directory DISK2:[STAFF _BACKUP] on node CHAOS,
enter the following command:
$ COPY*·* CHAOS::DISK2: [STAFF_BACKUP]

If you receive a protection violation or DECnet-VAX error message when you
attempt to copy a file across systems, you have two recourses:

• If the file is yours, you can use MAIL to send it to a user account on the other
node.

• You can follow the node name in the file specification with an access control
string.

Files: Storing Information 4-7

Use the /SINCE qualifier with the COPY command to select only those files that
meet the specified criterion. For example, to copy to the default directory only
those files in the directory [JONES.LICENSES.DOG] that have been modified
since April 19, 1990, enter the following command:
$ COPY/SINCE=19-APR-1990/MODIFIED [JONES.LICENSES.DOG]*.* *

4.4 Renaming Files
Use the RENAME command to give the file a new name and optionally to locate
it in a different directory. For example, to give the file FEES.DAT the new name
RECORDS.DAT and move it from the default directory to another directory, enter
the following command:
$ RENAME FEES.DAT;4 [SAVETEXT]RECORDS.DAT

Note that after being renamed, the file FEES.DAT;4 no longer exists in the
default directory. When you use the RENAME command, the input and output
locations must be on the same device.

4.5 Displaying the Contents of Files
To display the contents of a file on your screen, enter the TYPE command and the
file name at the DCL prompt. For example, to display the latest version of the
file STAFF_ VACATIONS. TXT, enter the following command:
$ TYPE STAFF_VACATIONS.TXT

You do not have to specify the version number in the file specification because the
system displays the latest version of a file by default.

Displaying a File on a Remote Node

To display the contents of a file on a remote node, include the node name, disk,
and directory in the file specification. For example, to display the file COMPANY_
HOLIDAYS.TXT, which is located on remote node CHAOS, enter the following
command:
$TYPE CHAOS::DISK2:[PUBLIC]COMPANY_HOLIDAYS.TXT

Displaying Files with Wildcards

You can use the asterisk wildcard (*) to display all versions of a specific file. For
example, to display all versions of the file LOGIN.COM in the directory [JONES],
enter the following command:
$ TYPE [JONES]LOGIN.COM;*

To display all versions and all file types of all files that begin with the word
STAFF in the directory [JONES], enter the following command:
$ TYPE [JONES]STAFF*.*;*

4-8 Files: Storing Information

Displaying More Than One File

If more than one file is listed in the TYPE command, the files are displayed in
the order specified; if wildcard characters are used, the files are displayed in
alphabetical order.

To stop the scrolling of the text on the screen temporarily, press the HOLD
SCREEN key (Fl on VT200- and VT300-series terminals); to resume scrolling,
press the HOLD SCREEN key again. To stop the display and return to DCL
command level, press CTRUY or CTRUO.

If you specify the /PAGE qualifier to the TYPE command, you can view one screen
at a time. The system prompts you to press RETURN when you want to see the
next screen.

TIP: By invoking an interactive text editor (for example, EVE
or EDT) with the /READ_ONLY qualifier, you can use interactive
editing commands to move around in a file and search for specific
sequences of characters. The /READ_ ONLY qualifier prevents you
from modifying the file as you display it.

4.6 Deleting Files
The DELETE command removes files from directories and releases the disk space
they occupy for use by other files. When you use the DELETE command, you
must specify a version number or the asterisk wildcard character as a version
number in each file specification. For example, to delete version 17 of the :file
POUND.LIS, enter the following command:
$DELETE POUND.LIS;17

To delete versions 16 and 17 of the file POUND.LIS, enter the following command:
$DELETE POUND.LIS;16,;17

To delete all versions of the file POUND.LIS, enter the following command:
$ DELETE POUND.LIS;*

When you delete many files with wildcard characters, you might want to confirm
each deletion by using the /CONFIRM qualifier. For example, to confirm the
deletion of all the files in the subdirectory [JONES.LICENSES.DOG], enter the
following command:
$DELETE/CONFIRM*.*;*
DISK1:[JONES.LICENSES.DOG]FEES.DAT;4, delete? [N]: y
DISK1:[JONES.LICENSES.DOG]FEMALE.LIS;6, delete? [N]: Y
DISK1:[JONES.LICENSES.DOG)MALE.LIS;3, delete? [N]: N
DISK1:[JONES.LICENSES.DOG]POUND.LIS;17, delete? [N]: Y

'i
I

Files: Storing Information 4-9

Similarly, you might want to display the names of files as they are deleted. To do
this, specify the /LOG qualifier with the DELETE command. For example, if you
enter the command in the following example, the system displays the names of
the files after they are deleted:
$DELETE/LOG *.LIS;*

%DELETE-I-FILDEL, DISKl: [JONES.LICENSES.DOG]FEMALE.LIS;6 deleted (35 blocks)
=%DELETE-I-FILDEL, DISKl: [JONES.LICENSES.DOG]MALE.LIS;3 deleted (5 blocks)
_%DELETE-I-FILDEL, DISKl: [JONES.LICENSES.DOG]POUND.LIS;l7 deleted (9 blocks)

The PURGE command deletes all except the latest version of the specified file
(or all files) in the default directory or any other specified directory. Purging old
versions of files after updating them enables you to retain more free space on
your disk.

For example, to purge all except the latest two versions of each file in your default
directory, enter the following command:
$ PURGE/KEEP=2

4.7 Protecting a File from Other Users
To prevent other users from accessing your files, you can set protection or modify
the access control list (ACL) of your files. To set protection or modify the ACL
of a file, you must own the file, have control access to the file, or have GRPPRV,
SYSPRV, BYPASS, or READALL privilege.

NOTE: To protect a file completely, you must apply the same or
greater protection to the directory in which the file resides. See
Chapter 5 for information on directory protection.

4.7.1 Default File Protection

A new file receives default UIC-based protection and the default access control
list entries (if any) of its parent directory. (Access control list entries (ACEs)
may specify identifiers and the access rights to be granted or denied the holders
of the identifiers, defaults protection for directories, or security alarm details.)

A renamed file's protection is unchanged. A new version of an existing file
receives the UIC-based protection and ACL of the previous version. (Use the
/PROTECTION qualifier of the BACKUP, COPY, CREATE, and SET FILE
commands to override the default UIC-based protection.)

You ·can use either of the following methods to override the default UIC-based
protection given to new files:

• Default UIC protection-The operating system provides each process with a
default UIC-based protection of (S:RWED,O:RWED,G:RE,W). This indicates
that SYSTEM users and the owners of objects have full access to the object,
users in the same UIC group as the object owner have read and execute
access to the object, and all other users are denied access to the object.

4-10 Files: Storing Information

To change the default protection for files that you create, invoke the SET
PROTECTION command with the /DEFAULT qualifier. For example, if you
enter the following command in your login command procedure, you grant all
processes read and execute access to any files that you create. (Remember
that you must execute the login command procedure for this command to
execute.)
$SET PROTECTION= (S:RWED,O:RWED,G:RE,W:RE)/DEFAULT

• Default ACL protection-You can override default UIC protection for specified
directories or subdirectories by placing a default protection ACE in the ACL
of the appropriate directory file. The default protection specified in the ACE
is applied to any new file created in the specified directory or subdirectory of
the directory. The following ACE, which must be in the ACL of a directory
file, specifies that the default protection for that directory and the directory's
subdirectories allow system and owner processes full access, group processes
read and execute access, and world users no access.
(DEFAULT_PROTECTION,S:RWED,O:RWED,G:RE,W:)

To specify a default identifier ACE to be copied to the ACL of any file
subsequently created in the directory, specify the DEFAULT option in the
directory file's identifier ACL. For example, the following ACE, applied to a
directory file, denies network users access to all files created in the directory:

(IDENTIFIER=NETWORK,OPTIONS=DEFAULT,ACCESS=NONE)

4. 7 .2 Explicit File Protection

You can explicitly specify UIC-based protection for a new file with the /PROTECTION
qualifier (valid with the BACKUP, COPY, and CREATE commands) as shown in
the following example:
$ CREATE MAST12.TXT/PROTECTION=(S:RWED,O:RWED,G,W)

You can change the UIC-based protection on an existing file with the SET
PROTECTION command. For example, to change the UIC-based protection on
the file MAST12. TXT, enter the following command:
$ SET PROTECTION=(S:RWED,O:RWED,G,W) MAST12.TXT

After a file is created and you have created an ACL for the file, you can modify
the ACL and add as many ACEs to the ACL as you want. The protection specified
by the ACL overrides the file's UIC protection.

I

I

I

Files: Storing Information 4-11

4.8 Printing Files
To print a file or files, use the PRINT command. For example, to place a print job
containing three files in the default print queue, SYS$PRINT, enter the following
command:
$ PRINT POUND,MALE,FEES.DAT
Job POUND (queue SYS$PRINT, entry 202) started on SYS$PRINT

The file types of the files named in the PRINT command default to LIS or the
last explicitly named file type; thus, the preceding example queues POUND.LIS,
MALE.LIS, and FEES.DAT to SYS$PRINT. The system displays the job name
(POUND), the queue name (SYS$PRINT), and the job number (202). The system
also indicates whether the job has started or is pending. By default, the job name
is the name of the first (or only) file specification in the PRINT command. After a
job is submitted to a queue, you reference it using the job number. After the job
is queued, it will be printed when no other jobs precede it in the queue and when
the printer is physically ready to print.

A print queue can execute only one job at a time. Print jobs are scheduled
for printing according to their priority, and the job with the highest priority is
printed first. If more than one job exists with the same priority, the smallest job
is usually printed first. Jobs of equal size having the same priority are selected
for printing according to their submission time.

4.8.1 Displaying Queue Information

The default print queue, SYS$PRINT, is usually initialized and started as part
of the site-specific system startup procedure. To display the queues that are
initialized at your site, enter the SHOW QUEUE command as follows:
$ SHOW QUEUE

To display the status of your print jobs, enter the SHOW ENTRY command as
follows:
$ SHOW ENTRY

Jobname Username Entry Blocks Status

POUND JONES 202 38 Printing
On printer queue SYS$PRINT

To see jobs queued by other users, specify the USERNAME parameter to the
SHOW ENTRY command.

4-12 Files: Storing Information

4.8.2 Stopping and Deleting a Print Job
To stop a print job and delete it from the print queue, enter the entry-number
parameter to the DELETE/ENTRY command. For example, to delete entry 202,
enter the following command:
$ DELETE/ENTRY=202

4.8.3 Printing a File on Another Node
To print a file on another system, copy that file to the remote node and specify
the /REMOTE qualifier to the PRINT command. For example, to copy the file
COMPANY_HOLIDAYS.TXT from your local node to the remote node CHAOS
and queue the file for printing to the default system print queue (SYS$PRINT) on
node CHAOS, enter the following commands:

$COPY COMPANY HOLIDAYS.TXT CHAOS"JONES PANDEMONIUM"::DISK2:[JONES]*
$ PRINT/REMOTE-CHAOS::DISK2:[JONES]COMPANY_HOLIDAYS.TXT

In the previous example, an access control string was specified to indicate that
you are authorized to copy files to the directory [JONES] on node CHAOS.
However, if you have a proxy account on that remote node, the asterisk wildcard
at the end of the file specification in the previous command instructs the system
to duplicate the file name COMPANY_HOLIDAYS.TXT when that file is copied to
the remote node.

NOTE: Not all qualifiers to the PRINT command are compatible
with the /REMOTE qualifier. For example, you cannot queue a job
to a specific print queue; all jobs are queued to the default system
print queue (SYS$PRINT). See the description of the /REMOTE
qualifier to the DCL command PRINT in the Reference Section for
a list of PRINT command qualifiers compatible with /REMOTE.

4.8.4 DCL Commands That Control Print Jobs
The DCL commands listed in the following table allow you to control print jobs
in various ways. For example, you can specify the number of copies printed or
you can request that the system notify you when your print job is complete. For
more information on any of these commands, see the descriptions of the DCL
commands in the Reference Section.

Print Operations

Number of copies
By job
By file
Specified file only

Number of pages

Print features
Flag pages
Type of forms (paper)
Special features
Double-spacing
Page heading

Notification of job execution

Delay execution of a job
For a specified time
Indefinitely

Release a delayed job

Display your print jobs

Stop a print job
Delete job
Stop currently printing
job and begin printing
the next job in the
queue

Stop currently printing
job and requeue it for
printing

Files: Storing Information 4-13

Print Job Commands and Qualifiers

PRINT/JOB_COUNT=nl
PRINT/COPIES=n 1

file-spec/COPIES=n 1

PRINT/PAGES=l

PRINT/FLAG=1

PRINT/FORM=1

PRINT/CHARACTERISTICS=1

PRINT/SPACE1

PRINT/HEADER1

PRINT/NOTIFY

PRINT/AFTER
PRINT/HOLD

SET QUEUE/ENTRY/RELEASE

SHOW ENTRY

DELETE/ENTRY=job-number
STOP/ABORT

STOP/REQUEUE

1 Parallel qualifiers for the SET QUEUE/ENTRY command allow you to specify these operations for
print jobs that are already queued but not yet printing.

Chapter 5

Directories: Organizing and Managing Files

Directories are files that store the names of files. Well-organized directories help
you manage files efficiently.

This chapter describes how files are stored in directories and describes the
following directory tasks you can perform to organize and manage your files:

• Creating directories

• Displaying directories

• Setting a default directory

• Deleting directories

• Protecting a directory from other users

• Searching the directory structure with wildcards

The descriptions of the DCL commands in the Reference Section describe specific
directory tasks you can perform locally and over the network.

NOTE: In the examples of remote operations in this chapter,
proxy accounts enable users to perform operations on remote
systems. Proxy accounts are one way users can access remote
systems. For more information about additional ways to access
remote systems. see the VMS System Manager's Manual.

5.1 Understanding Directory Structures
Figure 5-1 shows a sample directory hierarchy. At the top of the structure is
the master file directory (MFD). Its directory name is [000000]. Figure 5-1
contains entries for user file directories including MARTINO.DIR, PUBLIC.DIR,
SCHULTZ.DIR, and JONES.DIR. The top level directory [JONES] is a user file
directory named JONES.DIR;! in [000000].

s-2 Directories: Organizing and Managing Files

Figure 5-1: Directory Structure

(000000]

MARTINO.DIR
Master Directory: PUBLIC.DIR

JONES.DIR

[JONES]

LOGIN.COM;3
LOGIN.COM;4
STAFF.DIS;3
STAFF_ VACATIONS.TXT;2

Top Level Directory: LICENSES.DIR;1 -------------.

Second Level Directory:

TAXES.DIR;1

lo
[JONES. TAXES]

BILLING.DAT;31
LEGALTXT;9
LOCALDIS;2
RECEIPTS.DAT;15

PROPERTY.DIR;1
SALES.DIR;1

+
[JONES.LICENSES]

MAILING.LIS;6
TOTALDAT;2
DEPT.DAT;3

DOO.DIR;1
MARRIAGE.DIR;1

[JONES. TAXES.SALES] [JONES. TAXES.PROPERTY} [JONES.LICENSES.MARRIAGE [JONES.LICENSES.DOG]

Third Level Directory: FEDERALLIS;6
STATE.LIS;2

DISTRICT1.DAT;1
DISTRICT2.DAT;4
DISTRICT3.DAT;2

CURRENT.DAT;6
FEES.DAT;11
1980S.DAT;2

FEES.DAT;4
FEMALE.LIS;6
MALE.LIS;3
POUND.LIS;17

ZK-1746-GE

Assume that you are user JONES. When you log in, the system places you
in [JONES], your default directory. [JONES] contains the following four
nondirectory files:

• LOGIN.COM;3

• LOGIN.COM;4

• STAFF.DIS;3

• STAFF_VACATIONS.TXT

[JONES] also contains the following two dire~tory files:

• TAXES.DIR

• LICENSES.DIR

Directories: Organizing and Managing Files 5-3

The directory file· TAXES.DIR;! points to the [JONES.TAXES] subdirectory;
LICENSES.DIR;! points to the [JONES.LICENSES] subdirectory. (Subdirectories
are specified by concatenating the subdirectory name to the name of the directory
one level above it.)

The [JONES.LICENSES] subdirectory contains three nondirectory files and two
directory files. The directory file DOG.DIR;! points to the
[JONES.LICENSES.DOG] subdirectory; MARRIAGE.DIR points to the
[JONES.LICENSES.MARRIAGE] subdirectory.

This sample directory structure is the basis for the examples in this chapter.

5.2 Understanding Directory Names and Specifications
Use a named directory specification to refer to a directory. A named directory
specification consists of a top level directory name that can be followed by a
maximum of seven subdirectory names.

A named directory specification has the following format:

[directory.subdirectory[.subdirectory ...]]

A directory name can contain up to 39 alphanumeric characters: Any characters
valid for file names are also valid for directory names. Enclose the directory name
in either square brackets ([]) or angle brackets (<>).

5.3 Creating Directories
To create a directory, enter the CREATE/DIRECTORY command. For example, to
create a directory [JONES.LICENSES], enter the following command:

$ CREATE/DIRECTORY [JONES.LICENSES]

If you want to create a subdirectory under your current directory, you do not
have to specify the current directory name; you can enter the subdirectory name
preceded by a period. For example, if your current default directory is [JONES],
enter the following command:

$CREATE/DIRECTORY [.LICENSES]

5.4 Displaying Directories
To display the names of files in a directory, enter DIRECTORY at the DCL
prompt. For example, to list the files in [JONES], enter the following command:
$DIRECTORY

5-4 Directories: Organizing and Managing Files

The system diplays the contents of [JONES] as follows:

Directory DISKl: [JONES]

LICENSES.DIR;l
LOGIN.COM;3
:j:.OGIN .COM; 4
STAFF.DIS;3
STAFF_VACATIONS.TXT;2
TAXES.DIR;l

Total of 5 files.

This example shows that [JONES] contains two subdirectories
[JONES.LICENSES] and [JONES.TAXESJ-and four nondirectory files
STAFF.DIS, STAFF_ VACATIONS.TXT, and two versions of LOGIN.COM.

To list the files in a subdirectory, enter the DIRECTORY command and the
subdirectory name preceded by a period. For example, assuming that the
default directory remains [JONES], to list the contents of the subdirectory
[JONES.LICENSES], enter the following command:
$ DIRECTORY/[.LICENSES]

The system displays the contents of [.LICENSES] as follows:

Directory DISKl: [JONES.LICENSES]

MAILING.LIS;6
TOTAL.DAT;2
DEPT.DAT;3
DOG.DIR;l
MARRIAGE.DIR; 1

Total of 6 files.

TIP: If you want to move one level down the directory structure,
you need to specify only the next subdirectory name preceded by a
period, as shown in the previous example.

5.5 Setting a Default Directory
To create a file in a subdirectory, you must be located at that directory, making
it your new default directory. To change your default directory, use the SET
DEFAULT command. The default remains in effect until you enter another SET
DEFAULT command.

For example, to set default to the directory [JONES] and then display the file
STAFF_VACATIONS.TXT, enter the following commands:
$ SET DEFAULT [JONES]
$ TYPE STAFF VACATIONS.TXT

Directories: Organizing and Managing Files 5-5

To specify a subdirectory, combine the subdirectory name to the name of the
directory one level above it. For example, to display the file BILLING.DAT
located in the subdirectory [JONES.TAXES], enter the following commands:

$ SET DEFAULT [JONES.TAXES]
$ TYPE BILLING.DAT

To display your current default directory, enter the command SHOW DEFAULT,
as shown in the following example:
$ SHOW DEFAULT

DISKl:[JONES.TAXES]
$ SET DEFAULT [PUBLIC]
$ SHOW DEFAULT

DISKl: [PUBLIC]

5.6 Deleting Directories
To delete a directory, use the following procedure:

1. Make sure that the directory contains no files. To find out if the directory
contains files, enter the DIRECTORY command, as shown in the following
example:
$ DIRECTORY

If there are no files in the directory, the system displays the following
message:
No files found.

If the directory contains files, copy them to another directory to save them;
delete them if you do not want to save them. If the directory contains
subdirectories, examine those subdirectories, copy or delete their files, and
delete the subdirectories.

2. Move to the directory one level above the directory you want to delete. For
example, if you want to delete [JONES.LICENSES], you should set default
to [JONES]. Remember that the subdirectory [JONES.LICENSES] exists as
a file named LICENSES.DIR;! in the directory [JONES]. When you delete a
directory, you delete the file that points to that directory.

3. Change the file protection of a directory to allow delete access to the file. (See
Chapter 4 for more information about file protection.) For example, to change
the file protection of LICENSES.DIR, enter the following command:
$ SET PROTECTION=OWNER:D LICENSES.DIR

4. Delete the directory file. For example, to delete the directory file LICENSES,
enter the following command:
$ DELETE LICENSES.DIR;*

5-6 Directories: Organizing and Managing Files

The following example shows how to delete the subdirectory [JONES.LICENSES]:
$ SET DEF [JONES.LICENSES]
$ DIR
NO FILES FOUND
$ SET DEFAULT [JONES]
$ SET PROTECTION=OWNER:D LICENSES.DIR
$ DELETE LICENSES.DIR;l

The directory files (for example, JONES.DIR;l) in the master file directory
require SYSPRV privilege to delete. See the VMS System Manager's Manual
for a discussion of user privileges.

5.7 Protecting a Directory from Other Users
You cannot completely protect a file without applying at least the same protection
to the directory in which the file resides. For example, if you deny a user all
access to a file but allow that user read access to the file's directory, the user
cannot access the contents of the file but can see that it exists. Conversely, a
user allowed access to a file and denied access to the file's directory (or one of the
parent directories) cannot see that the file exists.

NOTE: To protect sensitive files, directory protection alone is not
adequate. You must also protect each file within the directory.

By default, top level directories receive UIC-based protection
(S:RWE,O:RWE,G:RE,W:E) and no ACL. Subdirectories receive UIC-based
protection from the parent directory.

To specify UIC-based protection explicitly when creating a directory, use the
/PROTECTION qualifier of the CREATE/DIRECTORY command. You cannot
specify an ACL for the directory until the directory is created. To change the UIC
based protection of an existing directory, use the SET PROTECTION command
(apply this command to the directory file).

You can limit but not prohibit directory access by specifying execute access but
not read access. Execute access on a directory permits you to examine and read
files that you know are contained in the directory (that is, you know the file
specifications), but prevents you from displaying a list of the files in the directory.

5.8 Using Wildcards to Search the Directory Structure
From any point in a directory structure, you can refer to another directory or
subdirectory in the structure. Do this by specifically naming the directory or
subdirectory you want or by using the ellipsis (. . .) and hyphen (-) wildcard
characters.

Directories: Organizing and Managing Files 5-7

5.8.1 The Ellipsis (. . . } Wildcard Character

Use the ellipsis wildcard character to search down into the directory hierarchy.
To search the current directory and all the subdirectories below it, use the ellipsis
by itself as shown in the following command:
$DIRECTORY [...]

For example, assuming the current directory is [JONES], to display the latest
versions of all files named FEES.DAT in [JONES] and all subdirectories under
[JONES], enter the following command:
$TYPE [JONES ...]FEES.DAT

If you begin the directory specification with an ellipsis, the search begins from
your current directory. For example, assuming the current default directory is
[JONES], to search all subdirectories that end in .SALES and display the latest
versions of the file FEDERAL.LIS, enter the following command:
$TYPE [... SALES]FEDERAL.LIS

The following command displays the latest versions of all files named DEPT.DAT
in [JONES] and all subdirectories under [JONES]:
$TYPE [...]DEPT.DAT

However, if you begin the directory specification with a period, only the
subdirectory that is one level lower than the current directory is searched.
Assuming the current directory is [JONES], the following command searches
only the [.LETTERS] subdirectory that is one level lower than [JONES] for the
file INVITATION.TXT. The subdirectory [JONES.LETTERS] is searched, but
[JONES.WORK.LETTERS] is not:
$ TYPE [.LETTERS]INVITATION.TXT

Assuming the current directory is [JONES], the following command displays the
latest versions of all files named DEPT.DAT in the [.LICENSES] subdirectory
under [JONES] and all subdirectories under the [.LICENSES] subdirectory:
$TYPE [... LICENSES ...]DEPT.DAT

Tc sca:::-~h all top level di:recto:ries &:u.d tht-fr subcliiecto:des frnr.1.1 whe1·ev~r you an~
in the directory structure, use an asterisk (*) followed by an ellipsis (. . .). The
following command (which requires READALL privilege) searches as many as
eight levels of directory names (the top level directory and seven subdirectories),
if they exist. It does not search the MFD.
$DIRECTORY [* ..•]

5-8 Directories: Organizing and Managing Files

5.8.2 The Hyphen { -) Wildcard Character

Use the hyphen wildcard character to move up through the directory structure.
Each hyphen refers to the directory one level up from the current one. You can
follow the hyphens with directory and subdirectory names to move down the
directory structure on another path.

For example, if your current directory is [JONES.LICENSES], enter the following
command to display the latest version of STAFF.DIS in [JONES]:
$ TYPE [-]STAFF.DIS

If your current directory is [JONES.LICENSES], enter the following command to
display the latest version of BILLING.DAT in [JONES.TAXES]:
$ TYPE [-.TAXES]BILLING.DAT

You can specify more than one hyphen. The following command moves you up
two levels in the directory hierarchy. From there, you are placed in the top level
directory [JONES].
$ SET DEFAULT [--JONES]

If you enter so many hyphens that you point above the master file directory
(MFD), the system displays an error message.

II

Chapter 6

Editing Text Files: Using EVE

EVE is a general-purpose text editor that is included with the VMS operating
system. You can use EVE to create and edit new files or to edit existing files.
EVE is interactive, so you see the changes to a file as you make them. You can
use EVE on VT300-, VT200-, or VTlOO-series terminals but not on hardcopy
terminals.

EVE provides extensive online help. For more information about online help, see
Section 6.2. EVE also provides two optional keypads: an EDT keypad or a WPS
keypad. The EDT and WPS keypads provide most (but not all) of the EDT and
WPS key functions. For more information about the EDT and WPS keypads, see
Section 6.6.1 and Section 6.6.2.

6.1 Beginning an Editing Session
You can start an EVE editing session either by creating and editing a new file or
by editing an existing file. To begin an editing session, enter the DCL command
EDITtrPU followed by the name of the new file you want to create or the existing
file you want to edit. For example, to invoke EVE and create a new file named
NEWFILE.DAT, enter the following command:
$ EDIT/TPU NEWFILE.DAT

(If you wanted to edit an existing file, you would use the same format, substitut
ing the name of the existing file for NEWFILE.DAT.)

This command produces a screen that appears as follows:
[End of file]

Buffer: NEWFILE.DAT I Write I Insert I Forward

Editing new file: could not find WORKDISK:[USER]NEWFILE.DAT

6-2 Editing Text Files: Using EVE

If you specify a file on the command line, EVE inserts the text of the file you are
editing into a temporary holding area called a buffer. The contents of the buffer
are shown in an area of your screen called a window. EVE buffers exist only
during the editing session.

The end-of-file marker marks the end of an EVE buffer. It is visible only on the
screen and does not become part of your file. When you add text to the buffer,
the end-of-file marker moves down. Depending on the length of your terminal
screen, the marker may not be visible when you view the beginning of a buffer
that contains many lines of text.

A highlighted status line appears at the bottom of the EVE window and provides
information about the buffer you are viewing in the window. The status line
shows the buffer name, editing status (write or read-only), current mode (insert
or overstrike), and current direction (forward or reverse).

When you invoke EVE to edit a file, an informational message appears in the
message window beneath the highlighted status line. The message states either
that the file is a new file or that a certain number of lines were read from an
existing file. During the editing session, EVE displays other messages in the
message window.

6.2 Using Online Help
EVE has online help that supplies information on editing commands and keys
without disturbing your work. You can get help by entering the HELP command
or by pressing the Help key.

Use the Previous Screen and Next Screen keys (PERIOD and KPO on the keypad of a
VTlOO-series terminal) to scroll through the list of EVE topics. To get information
on a particular command, type a command name after the help prompt and press
Return. The help text appears on the screen.

If you know the name of a specific command for which you want help, press the
Do key, type HELP followed by the name of the command, and press Return. The
help text for that command appears on the screen. For example, to get help on
the MOVE BY LINE command, enter the command HELP MOVE BY LINE.

6.3 Ending an Editing Session
When you are finished with the editing session, you can either save your edits or
discard them.

Editing Text Files: Using EVE 6-3

6.3.1 Saving Your Edits

To end the editing session and save your edited text, use the EXIT command. You
can enter the EXIT command by pressing the F1 o key (on VT200-series or VT300-
series terminals) or by pressing CTRUZ. When you use the EXIT command, EVE
produces a new version of the edited file.

If you have modified the current buffer, EVE creates a new version of the file with
the same file name and file type as the original version, with the version number
incremented by one. For example, if you use the EXIT command after modifying
a file named FUN.DAT;l, the output file is named FUN.DAT;2:
Command: EXIT
4 lines written to file WORKDISK: [USER]FUN.DAT;2

6.3.2 Ending the Session Without Saving Your Edits

To end the editing session without saving the edits that you made, use the QUIT
command. With the QUIT command, the editing session ends and any edits
that you made are ignored. Any existing versions of the files remain unchanged
regardless of how the editing session is ended. To execute the QUIT command, do
the following:

1. Press the Do key (PF4 on VTlOO-series terminals).

2. Type QUIT at the Command: prompt.

3. Press Return.

For example, if you have made edits to a file named FUN.DAT and enter the
QUIT command, the system displays the following:
Command: QUIT
Buffer modifications will not be saved, continue quitting (Y or N)?

Type Y and press Return if you want to quit without saving the edits. If you change
your mind and decide to save your edits, type N, press Return, and exit from the
file using the EXIT command.

l=nt~rinl"I S:VS: ~n""nu:u"'til~ -- ·:::1 - • -,

After you invoke EVE, you can enter EVE commands to edit text, move the
cursor, and perform other operations. You can enter EVE commands in either of
two ways:

• By pressing predefined keys

• By typing the commands themselves

The following sections describe how to enter commands. Table 6-3 at the end of
this chapter lists many EVE commands that you can use and the keys that are
predefined to execute them.

6-4 Editing Text Files: Using EVE

6.4.1 Using Defined Keys to Enter EVE Commands

EVE defines some keys by default. The predefined keys on VT300-series and
VT200-series terminals include the minikeypad (located between the main
keyboard keys and the numeric keypad), certain function keys, and certain control
key sequences. Figure 6-1 shows the predefined keys for the VT300-series and
VT200-series terminals. On VTlOO-series terminals, EVE automatically defines
most of the numeric keypad keys, the four arrow keys, and certain control keys.
Figure 6-2 shows the predefined keys for the VTlOO-series terminal.

Control keys, arrow keys, the Tab, Return, and Delete keys have the same definitions
on all three types of terminal. For example, the Tab key on a VTlOO-series
terminal does the same thing as the Tab key on a VT300- or VT200-series
terminal.

Throughout this chapter, EVE editing keys are referred to by their names, rather
than by their locations on the keyboard. For example, on a VT300-series or
VT200-series terminal, two keys are defined as the Do key: the key located at the
top of the editing keypad, labeled Do, and the PF4 key located on the upper right
of the numeric keypad. On a VTlOO-series terminal, the Do key is the PF4 key
located at the upper right of the numeric keypad.

Result of SET KEYPAD NOEDT or SET KEYPAD NOWPS Commands

lBxit ~han?e Mo~eBy
Direction Line

l
F9 F10 F11 F12

~DELETE
Tab TAB
Retum RETURN
Enter RETURN
PF4 DO

CTRLJA CHANGE MODE
B RECALL
E ENDOFLINE
H START OF LINE
I TAB
J ERASEWORD
L INSERT PAGE BREAK
M RETURN
R REMEMBER
U ERASE START OF LINE
V QUOTE
W REFRESH
Z EXIT

Erase
Word

F13

Change
Mode

F14

Help

Keypad

llll!l!l!lllll1~li1i1

Find Insert
Here

Do

Remove

GOLD key functions are shown inMU:U]!!.li.

Sample Function or Keypad Key

Key label

Default Function

GOLD Function

ZK-1 OSSA-GE

.,,
ce·
c
(iJ

er
m
a.
::+ :;·

CQ

" <D
'<
0

~
tj
0
0

I

"' CD ..
Ci"
0 m
D> a.
:I a: a. :J
< ca
~ mf 0 x 0 r+
In ::!! CD

CD :l.
CD CJ) 0 ..
(;} c ..

~-3 :J :;· ca
D> m iii < m

~

6-6 Editing Text Files: Using EVE

Figure 6-2: Editing Keys-VT100-Series Terminals

Default on VT100 Terminal
Avallable on VT200 Terminal With SET KEYPAD VT100 Command

Delete DELETE
Tab TAB
Retum RETURN
Backspace START of LINE
Linefeed ERASE WORD

CTRLJA CHANGE MODE
B RECALL
E END of LINE
H START of LINE
I TAB
J ERASEWORD
L INSERT PAGE BREAK
M RETURN
R REMEMBER
U ERASE START OF LINE
V QUOTE
W REFRESH
Z EXIT

Find
Help

Keypad

Select Remove

l
4-- l

Next
Screen

Change Do Direction

Insert
Move

By
Here Line

Erase
Word

----+

Change
Mode

Prev
Screen

GOLD key functions are shown in:~.

ZK-6301-GE

You can also use DCL line-editing keys in an EVE session. For example, use
CTRUU to erase to the beginning of the line, CTRUE to move to the end of the line,
and CTRUB to recall the last command entered. By default, the editing mode
(insert or overstrike) of the EVE command line is the same as the editing mode
of your terminal. (You can change the default with the DCL command SET
TERMINAL prior to invoking EVE. Once in EVE, you can change the editing
mode by pressing CTRUA.)

In addition to providing the default predefined keys, EVE lets you do any of the
following:

• Use an EDT-like keypad

• Use a WPS-like keypad

• Define your own keys

• Redefine any of the keys predefined by default

See Section 6.6 for more information about these features.

Editing Text Files: Using EVE 6-7

6.4.2 Typing EVE Commands

In addition to using defined keys to enter commands, you can type commands at
the Command: prompt. To type EVE commands, do the following:

1. Press the Do key. EVE displays the Command: prompt in the command
window beneath the highlighted status line.

2. Type the EVE command after the prompt. The following example shows how
to enter the EXIT command:

Command: EXIT

3. Press Return or the Do key to enter the command.

To save keystrokes when you are typing EVE commands, do the following:

• To recall the last EVE command you entered, press CTRUB. Pressing CTRUB
again recalls the next to the last command and so forth. Continue pressing
CTRUB until the command you want appears on your screen, and press Return
to enter it.

• To abbreviate EVE command names, use the first letters of each command
term, make sure to use enough letters to uniquely identify the· command. For
example, if you wanted to give the OVERSTRIKE command, you could enter
OVER at the Command: prompt.

• To repeat an EVE command or keystroke a specified number of times, use the
REPEAT command. Enter the REPEAT command and the number of times it
is to be repeated. EVE repeats the next character or ~ommand you enter the
specified number of times. For example, the following commands erase five
words (the current word and the four previous):

Command: REPEAT 5
Will repeat next command 5 times.
Command: ERASE WORD

• To repeat the last command entered, press the Do key twice.

6.4.3 EVE Key N~unes

You can type the name of a key as a parameter for the DEFINE KEY, SET GOLD
KEY, SHOW KEY, and UNDEFINE KEY commands. Generally, EVE key names
are the same as DCL key names. For example, the 7 on the numeric keypad is
named KP7. Key names cannot be abbreviated; they are not case sensitive. In
specifying control keys or GOLD key combinations, use a slash, dash, or underscore
in the key name-for example, CTRUN or GOLD-F20. Thus, in an initialization file,
you can use commands with typed key names such as the following:

DEFINE KEY= CTRL/P MOVE BY PAGE
DEFINE KEY= GOLD-N NEXT BUFFER
DEFINE KEY= KP7 CENTER LINE
SET GOLD KEY F17

6-8 Editing Text Files: Using EVE

Table 6-1 lists EVE key names and how the keys are labeled on the keyboard or
keypads. Note that some keys may not appear on some terminals. (For example,
VTlOO-series terminals do not have the F1 through F20 keys. VT200- and VT300-
series terminals do not have BACKSPACE and LINEFEED keys.)

Table 6-1 : EVE Key Names

Key Name

F7 ... F20

HELP or F15

DO or F16

El

E2

E3

E4

E5

E6

UP

LEFT

DOWN

RIGHT

PFl ... PF4

KPO ... KP9

MINUS

PERIOD

COMMA
DELETE

TAB orCTRUI

BS or CTRUH

LF or CTRUJ

Label

F7 ... F20

Help

Do

Find

Insert Here

Remove

Select

Prev Screen

Next Screen

t

-+

PFl ... PF4

0 . . . 9 (numeric keypad)

- (numeric keypad)

. (numeric keypad)

, (numeric keypad)

<XI or DELETE

Tab or TAB

BACKSPACE (VTlOO-series terminals)

LINEFEED (VTlOO-series terminals)

6.5 Editing Text
Once you know how to invoke the EVE editor and how to enter commands, you
can use EVE commands to create and edit files. Editing keys and commands let
you move the cursor and perform editing operations such as moving, erasing, and
restoring text.

I

I

I

Editing Text Files: Using EVE 6-9

Before you begin typing text, look at the highlighted status line to check whether
the buffer is in insert or overstrike mode. If the buffer is in insert mode, text is
inserted at the cursor position, and text that already appears in the file moves to
accommodate your insertions. If the buffer is in overstrike mode, text that you
type at the keyboard is inserted at the cursor position, and the text that already
appears in the file is overwritten as the cursor moves through it. Press CTRUA to
change from one mode to the other.

You can add text to your buffer in the following ways:

• Text-You can type characters at the keyboard. EVE adds the characters to
the buffer at the current cursor position according to the current mode of the
buffer (insert or overstrike). In insert mode, the new characters move existing
characters to the right and down. In overstrike mode, the new characters
replace existing characters.

• Files-You can add an entire file by pressing the Do key and entering the EVE
command INCLUDE FILE. Type the file specification at the File to include:
prompt and press Return. Regardless of the current mode (insert or overstrike)
of the buffer, EVE inserts the entire contents of the specified file into the
buffer just before the line where the cursor currently appears.

• Inserting or restoring text-You can include text that you erased (deleted)
or removed (cut). To include text that you erased, use the appropriate
RESTORE command; to include text that you removed, use the INSERT
HERE command.

Table 6-3, located at the end of this chapter, lists many EVE commands that you
can use to move the cursor and manipulate text. This table also indicates when
the command has corresponding predefined keys. Note that the keys correspond
to the commands only when the default EVE keypad is used; other key definitions
might apply if you use alternate keypads (EVE or WPS) or if the keys have been
redefined.

6.5.1 Locating Text

To locate specific text in the current buffer, enter the FIND command. Then type
the text you want to iocate, which is called the search string . .l4""or example,
enter the following commands to find the search string rhymes with in the
forward direction.
Command: FIND
Forward Find: rhymes with

If the string is found, EVE moves the cursor to the beginning of the specified
string.

If the search string contains all lowercase letters, EVE disregards the case of
letters and locates any occurrence of the string. Thus, the search string the
matches the, THe, and thE. If the search string contains one or more uppercase
letters, EVE finds only the occurrences of the string in which the case of each

s-10 Editing Text Files: Using EVE

letter is exactly the same. Therefore, the only match for the search string tHis is
tHis.

EVE is sensitive to accent marks and locates only those occurrences of the string
in which the accent marks are exactly the same. For example, in searching fore,
EVE does not locate occurrences of e, e, e, or e.
The current direction of the buffer determines whether EVE first searches in a
forward or reverse direction.

If the editor cannot find the string in the current direction but finds it in the
opposite direction, EVE prompts you to change direction. The following example
shows the system response when the string rhymes with is found in the opposite
direction from the search:
Forward Find: rhymes with
Found in reverse direction. Go there?

To search in the opposite direction, type Y. EVE moves the cursor to the first
occurrence of the string in the opposite direction. The current direction in the
highlighted status line does not change, however.

When EVE finds the search string, the editor highlights it and moves the cursor
to the first letter of the string. You can use any one of the following commands on
a highlighted search string:

CAPITALIZE WORD
COPY
CUT
FILL
FILL RANGE
FIND NEXT
FIND SELECTED
LOWERCASE WORD
OPEN SELECTED
REMOVE
STORE TEXT
UPPERCASE WORD
Some EDT or WPS keypad keys

To cancel the highlighting, move the cursor off the search string or use the
RESET command.

To find the next occurrence of the search string, press the Find key twice or enter
the FIND NEXT command.

I

'

Editing Text Files: Using EVE 6-11

6.5.2 Replacing Text

The REPLACE command lets you replace a text string in the current buffer
with another text string. This is useful if you have spelled a word incorrectly
throughout a long file and you want to :fix every occurrence of the misspelled
word.

For example, to use the REPLACE command to replace every occurrence of the
string ee with the string oo, use the following procedure:

1. Move the cursor to the top of the buffer.

2. Press the Do key, type REPLACE, and press Return.

3. Type ee at the highlighted Old string: prompt and press Return.

4. Type oo at the highlighted New string: prompt and press Return.

5. Type all and press Return. All occurrences of the string ee are replaced with
the string oo.

If the old string is found, EVE highlights the text and asks you to choose one of
the following; you need only type the first letter of the response and press Return:

Response

Yes

No

All

Last

Quit

Effect

Replace this occurrence and find the next one. (Default. You can simply press
Return.)

Skip this occurrence and find the next one.

Replace all the occurrences (no further prompting unless EVE finds an occurrence
in the opposite direction).

Replace this occurrence and stop here.

Skip this occurrence and stop here.

The REPLACE command is case sensitive. If the old string has any uppercase
letters, EVE searches for exact case matches. If the old string is all lowercase,
EVE se~rches for any ccc-:!rrence cf the zt:dng ::-ega:rdless of its case. If the ne-vv
string has any uppercase letters, EVE replaces the string exactly. If the old and
new strings are all lowercase, EVE replaces the string according to the following
rules:

• A capitalized version of the old string (first letter uppercase, others lowercase)
is replaced by a capitalized version of the new string.

• An all-uppercase version of the old string is replaced by an all-uppercase
version of the new string.

• Otherwise, the old string is replaced by an all-lowercase version of the new
string.

s-12 Editing Text Files: Using EVE

The following table shows how EVE uses the case of the strings:

Old String New String ffighlights Replacements

butter margarine butter margarine

Butter Margarine

BUTTER MARGARINE

BUtteR margarine

Butter margarine Butter margarine

butter Margarine butter Margarine

Butter Margarine

BUTTER Margarine

BUtteR Margarine

Butter Margarine Butter Margarine

6.5.3 Recovering from System Interruptions
EVE has recovery procedures for two types of system interruptions. You can
remove extraneous characters that appear on your screen, and you can recover a
''lost" editing session with the journaling facility.

6.5.4 Refreshing the Screen
If extraneous characters, such as an operator message, appear on your terminal
screen while you are editing, press CTRL/W to refresh the screen. The screen
becomes blank, and then all characters are redrawn, minus any extraneous
characters.

6.5.5 Using the Journal File
If you are editing a file and a system interruption occurs (that is, a break in
communication between your terminal and the computer), you can recover your
"lost" editing session. By default, EVE records every keystroke you enter during
an editing session in a journal file that has the same file name as the file you are
editing and a file type of TJL.

Typically, an editing session ends without interruption, so the system deletes the
journal file. When the system fails, however, the journal file is saved. EVE can
use the journal file to reconstruct your editing session so that only the last few
keystrokes of your editing session are lost and sometimes nothing is lost.

Editing Text Files: Using EVE 6-13

To recover an editing session, enter the DCL command you used to invoke EVE
plus the /RECOVER qualifier. For example, to recover an editing session you
began with the command EDITtrPU LETTER.RNO, type the following command
and file name and press Return:

$ EDIT/TPU/RECOVER letter.rno

You must recover an editing session at a terminal of the same type as the one you
used for your editing session. When EVE finishes recovering the session, check
to be sure that the last few keystrokes of your editing session were recovered and
continue editing the file. If another system interruption occurs before you exit, a
journal file containing the keystrokes from both editing sessions is saved.

The journal file is saved in the current default directory. However, you can create
a journal file in another directory by using the /JOURNAL qualifier, as in the
following DCL command:
$ EDIT/TPU/JOURNAL=[alexis.travels]letter.tjl letter.rno

If you use the /JOURNAL qualifier to create a journal file with a different
file name or a different directory, then you must use the /JOURNAL qualifier
and the file name when you recover the file. For example, to recover the file
LETTER.RNO when the journal file is in directory [ALEXIS.TRAVELS], enter the
following command:
$ EDIT/TPU/JOURNAL=[alexis.travels]letter.tjl/RECOVER letter.rno

The journaling facility has the following two restrictions:

• All relevant files and terminal settings must be the same as they were
before the system interruption or the recovery might fail or might not work
as expected. For example, if you used the WRITE FILE command during
your editing session to copy the contents of the buffer to another file then,
in recovering your edits, you must specify the original version number. In
this example, you are editing an existing file called LETTER.RNO;l and
use the WRITE FILE command; EVE creates LETTER.RN0;2. The system
then fails and you must enter the original version of LETTER.RNO on
the EDITtrPU/RECOVER command line. In this example you would type
T .F.TTF.R RN0•1 (~oo ~ot>Hnn ~ F\ A f"n.,. Tnn'ro ;nfn"rTn!:*Hnn nn tho WRTTF. ~TT .F. _________ .,,,_,._, __ , __ ,_ ..._,_Vv•--- -·-•- --- ---·- -...-............ - - __ .., ,.,._ __ ••-•--- ----

command.)

• If you press CTRUC during an editing session, immediately exit from the
editing session and invoke EVE again. EVE does not include CTRUC in the
journal file so the recovery will not work as expected.

6-14 Editing Text Files: Using EVE

6.5.6 Listing Buffers
To display a list of all the buffers you have created during an editing session,
enter the SHOW BUFFERS command. To display a list of all buffers that EVE
has created, enter the SHOW SYSTEM BUFFERS command. You can scroll
through the list and specify the buffer you want to view by moving the cursor to
the buffer name and pressing the Select key. EVE puts the buffer in your current
window.

NOTE: Do not delete system buffers, such as Insert Here,
Messages, $RESTORE$, or $DEFAULT$, because these buffers
are necessary for some commands to work properly.

6.5. 7 Editing Two Buffers
During an editing session you can use several buffers if you want to edit more
than one file or if you want temporary storage areas for manipulating blocks of
text.

You can create a new buffer using one of the following commands: GET FILE or
OPEN, OPEN SELECTED, or BUFFER. If the buffer you specify does not already
exist, EVE creates a new buffer. You can use the asterisk wildcard character (*)
as a substitute for all or some of the characters in the file name and file type.
You can use the percent wildcard character (%) as a substitute for one character
in the file name and file type, and you can use the ellipsis wildcard ([...]) as a
substitute for a directory specification.

If the specified file exists, EVE reads the contents of the file into a new buffer and
displays the buffer in the current window. If there is more than one match for a
file specification with a wildcard, EVE displays a list of choices and prompts you
to provide a more complete file specification. Otherwise, EVE creates an empty
buffer and displays the buffer in the current window.

To change the buffer in the current window, press the Do key, type BUFFER and
the name of the buffer you want to display on the screen, and press Return. If you
forget a buffer name, enter the SHOW BUFFERS command to display the names
of active buffers in your editing session and specify a buffer with the Select key.

6.5.8 Reading and Writing Files
There are four ways to read a file into an EVE buffer.

• Invoke EVE with a file specification.

• Enter the INCLUDE FILE command and the name of the file you want to
include. EVE reads the entire contents of the file into the buffer just before
the line where the cursor is located. Using the INCLUDE FILE command
does not change the name of th~ buffer on the status line.

Editing Text Files: Using EVE 6-15

• Enter the GET FILE or OPEN command and the name of the file you want
to use. Either command creates a new buffer and reads the contents of an
existing file into the buffer. The name of the buffer on the status line is the
same as the file name you specify with the GET FILE or OPEN command.
(See Section 6.5.7.)

• Select or find a file name, then enter the OPEN SELECTED command.

To write the contents of the current buffer to a file, enter the WRITE FILE
command. Yoµ can include a file specification with the WRITE FILE command.
If you do not include a file specification, EVE writes the file using the input
file specification. If you created the current buffer with the BUFFER or NEW
command, EVE prompts you for a file specification to which it writes the file.

6.5.9 EVE Default Settings

Table 6-2 lists the EVE default settings-the settings EVE uses unless you
specify otherwise. You may want to refer to this table in creating an initialization
file, to check which settings you want to change. Note that some settings are
global (applying in all buffers you edit), and others are buffer-specific. For
example, the type of cursor motion (bound or free) and tab mode (insert, spaces,
or movement) are the same in all buffers you edit, whereas margins, paragraph
indent, and tab stops can be set differently for each buffer. (You may want one
buffer to have a right margin of 75 and another to have a right margin of 68.)

Table 6-2: EVE Default Settings

Default Setting

Global Settings (Applying
to All Buffers)

SET NOCLIPBOARD

SET CURSOR FREE

SET FIND NOWHITESPACE

Effects

Copy, cut, and paste operations use the EVE Insert Here buffer.
On DECwindows, you can enable the clipboard, which lets you
transfer text between EVE and other DECwindows applications.
WPS keypad keys do not use the clipboard, regardless of the
~~tti'!g_

You can move the cursor anywhere in the buffer and enter text
there, as opposed to a bound cursor, which cannot move into the
unused portion of the buffer. Note that using SET KEYPAD WPS
automatically enables a bound cursor.

FIND and WILDCARD FIND commands match spaces and tabs
in the search string exactly as entered, and do not search across
a line break.

(continued on next page)

6-16 Editing Text Files: Using EVE

Table 6-2 {Cont.): EVE Default Settings

Default Setting Effects

Global Settings (Applying
to All Buffers)

SET NOGOLD KEY

SET KEYPAD NUMERIC
or SET KEYPAD VTlOO

SET NOPENDING DELETE

SET SCROLL MARGINS 0 0

SET TABS INSERT

SET TABS INVISIBLE

SET WIDTH 80

SET WILDCARDS VMS

Buffer-Specific Settings

FORWARD

INSERT MODE

SET BUFFER MODIFIABLE

EVE does not have a default GOLD key. Setting the EDT or
WPS keypad makes PF1 the GOLD key, overriding any current
definition of PF1, unless you set a different key as GOLD.

On VT300-series and VT200-series terminals, keys on the
numeric keypad are undefined, except for the PF4 and ENTER
keys. On VTlOO-series terminals, the numeric keypad is used for
the EVE default key bindings. Control keys are defined the same
on either type of terminal. Also, you can set the EDT keypad or
WPS keypad on either type of terminal.

Using DELETE or typing new text does not erase a select range.

Scrolling begins automatically when you move past the top or
bottom of the window.

Using TAB inserts a tab character. You can set the tab mode to
insert spaces instead of a tab character, or to move the cursor
without inserting anything.

Tab characters appear during editing as blank space, as opposed
to visible tabs, which appear as a small I\, (horizontal tab).

The width of the EVE screen layout is the same as your terminal
setting-typically 80 columns.

The WILDCARD FIND command uses VMS-style wildcards, such
as the asterisk (*) to match any amount of text on a line, the
percent sign (%) to match a single character on a line, and so on.
You can enable ULTRIX-style wildcards.

Commands like FIND and MOVE BY LINE move the cursor to
the right and down. You can change the direction to reverse (left
and up).

Characters you type are inserted at the current position, pushing
existing text to the right and down. You can change the mode to
overstrike.

Buffers you create can be modified (edited). You can set the
buffer to unmodifiable.

(continued on next page)

Editing Text Files: Using EVE 6-17

Table 6-2 {Cont.): EVE Default Settings

Default Setting Effects

Buffer-Specific Settings

SET BUFFER WRITE

SET LEFT MARGIN 1

SET PARAGRAPH INDENT 0

SET RIGHT MARGIN 79

SET TABS EVERY 8

SET WRAP

On exiting, EVE writes out (saves) your buffers if you have made
any changes. You can set the buffer to read-only.

This is the leftmost column. When you press Return or use FILL
commands or when EVE wraps text, new lines start at the left
margin of the buffer.

Paragraphs you create or ones you reformat with FILL
commands start at the current left margin of the buffer-with no
indent.

The default right margin is one column less than the width set
for your terminal. If the width is 80 columns, the default right
margin is 79. When you use FILL commands or when you type
at the end of a line, EVE wraps text at the right margin of the
buffer.

Tab stops are set at columns 9, 17, 25, 33, 41, and so on. You can
set tab stops at different intervals.

As you type text at the end of a line, EVE wraps text at the right
margin of the buffer, without your having to press the Return key
or use FILL commands.

Note: For editing EVE command lines-such as when you recall a command
the default direction is reverse, the default mode matches your terminal setting,
and the cursor is bound.

EVE settings such as margins, tabs, and type of cursor motion are not usually
saved when you create a section file. Instead, to save these editing preferences,
you can use an initialization file, which contains EVE commands-effectively,
setting your own private defaults. You can also put key definitions in an
initialization file instead of (or in addition to) saving them in a section file. For
~~rn.:w.ple, the follc-..ving EVE ir..itfa.liz~ticn file sets the EDT keypad, define1:i ~ome
keys, sets bound cursor motion, sets the right margin to 70, and sets the tab mode
to insert spaces:

! MYINIT.EVE initialization file

SET KEYPAD EDT
DEFINE KEY= gold-c center line
DEFINE KEY= f20 show buffers

SET CURSOR BOUND
SET RIGHT MARGIN 70
SET TABS SPACES

6-18 Editing Text Files: Using EVE

When you invoke EVE using an initialization file, commands in the initialization
file for margins, tabs stops, and other buffer-specific settings apply to the
main (or first) buffer and to an EVE system buffer named $DEFAULTS$. The
$DEFAULTS$ buffer is a template buffer: when you create a buffer-for example,
by using the GET FILE command-EVE uses the settings of the $DEFAULTS$
buffer, so that each new buffer has the same settings. Thus, if your initialization
file contains the command SET RIGHT MARGIN 70, each buffer you create will
have that right margin.

To find out the default settings, use the SHOW DEFAULTS BUFFER command.
To find out the settings of the buffer you are editing, use the SHOW command.

6.6 Saving Time and Keystrokes-Defining Keys in EVE
Although only a few keys are defined when you first use EVE, there are several
ways that you can define keys to perform a wide range of editing functions. This
section describes three ways to define keys in EVE:

• Emulating a keypad similar to the EDT or WPS editor

• Defining keys while using EVE

• Making permanent key definitions

Read this section if you want to learn about some of the methods of defining keys
in EVE.

6.6.1 Using EVE to Emulate EDT

If you are familiar with the keypad available with the EDT editor, then you can
readily set a similar environment while using EVE.

To use a keypad similar to the EDT keypad, do the following:

1. Enter the EVE editor using the following DCL-level command:

EDIT/TPU file-name

2. Press the DO key (or PF4). The Command: prompt is displayed at the bottom
of the terminal.

3. Type SET KEYPAD EDT (as shown) and press Return.

Col'lfYland: set ke8pad edt_

After you give this command, your keypad resembles the EDT keypad. Note
that although your keypad is similar to the EDT keypad, you are still in the EVE

Editing Text Files: Using EVE 6-19

environment and some EDT functions (for example, line editing) are not available.
However, you can continue to use any of the features that EVE provides.

For example, you can use the EDT keypad and take advantage of the multiple
windows in EVE. You could set your keypad to EDT, as described above, create
two windows, and then define a key to switch back and forth between the two
windows.

Use the following procedure to set up your editing in this way:

1. Enter the EVE editor and set your keypad to EDT, as described in the
previous example.

2. To create two windows on your terminal, press the DO key.

NOTE: Before you gave the SET KEYPAD EDT command,
the PF4 key gave you the Command: prompt. To emulate
EDT, the Command: prompt is redefined as the sequence
PF1-KP7 after you give the SET KEYPAD EDT command.

At the Command: prompt, type TWO WINDOWS and press Return. Your
screen will look like this:

[End of file]

[1Jtfer FILE-IJHl1[DHT I 1,1,-1t;e I I11=ert I rcr11~r,j

[End of file]

3. Define a key that will let you switch back and forth between the windows,
using the following procedure:

a. Press CTRUK to indicate that you want io define Cl kt;y. Th.;; bottv:w of yo~r
terminal looks as follows:

[End of file]

Press keystrokes to be learned. Press CTRL/R to reriieMber these keystrokes.

6-20 Editing Text Files: Using EVE

b. Press DO or the PF1-KP7 sequence to get the Command: prompt, and then
type OTHER WINDOW, as shown, and then press Return.

[End of file]

Col'll"land: other window_
Press ke8strokes to be learned. Press CTRL/R to re~e~ber these ke8strokes.

c. Press CTRUR to end the key definition. The bottom of your screen displays
the following: ,,_. r•n• of file] -=-M•@MAMMQAIQi§Qi+ I 1,1r1 t

j I_ I_! - I_ I - J l_I I r I _1 t I I _1 - _l u ::. I l r_ - r r ~- ij

d. Press any valid CTRL key or PF1- sequence, for example, CTRUA.

Now, when you press CTRUA, the cursor switches between the two windows on the
screen.

If you want to edit (or read) two files at the same time, use the GET file-name
command after you have created the two windows. The file that you name in the
GET command is displayed in one window, and the original file that you were
editing is displayed in the other window.

If you want to save this environment (that is, the EDT keypad emulation and the
key that you defined to switch between windows), then do the following before
you exit from EVE:

1. Get the Command: prompt by pressing DO or the sequence PF1-KP7.

2. Type SAVE EXTENDED TPU [directory]file-name, without giving a file type
(for example, SAVE EXTENDED TPU [THOMASJEVE-KEYDEFS), as shown,
and then press Return:

3. Exit from EVE by pressing CTRUZ to write the files that you have edited, or by
typing QUIT at the Command: prompt. If you have made edits to more than
one file when you press CTRUZ, you will be asked if you want to write each file
(except for the buffer in which the cursor is located-that file is automatically
written).

4. After you exit from EVE, give the following command (or define a symbol)
to use EVE with the EDT keypad and CTRUA defined as switching between
windows:
$ EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS filename.ext

Editing Text Files: Using EVE 6-21

When you enter EVE, the EDT keypad is in place, and the CTRUA key is defined
as switching between windows. Note that only one window is on the screen
when you enter EVE, and that you must first create two windows (with the TWO
WINDOWS command) before you can meaningfully use CTRLIA.

6.6.2 Using EVE to Emulate WPS

If you are familiar with the keypad available with the WPS editor, then you can
readily set a similar environment while using EVE. To use a keypad similar to
the WPS keypad, do the following:

1. Enter the EVE editor using the following DCL-level command:

EDIT/TPU file-name

2. Press the DO key (or PF4). The "Command:" prompt is displayed at the bottom
of the terminal.

3. Type SET KEYPAD WPS (as shown) and press Return.

After you give this command, your keypad resembles the WPS keypad, and you
can use any of the features that EVE provides (for example, multiple windows).
However, although your keypad resembles the WPS keypad, you are still in the
EVE environment and some WPS functions may not be available (for example,
only one ruler is active per document, rulers cannot be embedded in documents,
and scrolling functions slightly differently).

If you want to automatically use the WPS keypad each time you enter the EVE
editor, follow this procedure:

1. Enter the EVE editor and set your keypad to WPS, as described above.

~. Get the ;;Command::: prompt by pressing DO or foe :sequt:rl(;~ PFl[.

3. Type SAVE EXTENDED TPU [directory]file name, without giving a file
extension (for example, SAVE EXTENDED TPU [THOMAS]EVE-KEYDEFS),
as shown, and then press Return.

E.11ffFr FILE-tJHtlE DHT I ldr1te I In"'ert I F:•l"'"~rd

COMMand: SAVE EXTENDED TPU [THOMAS]EVE-KEYDEFS_
WPS ke~pad defined (for MOre inforMation, see help on WPS DIFFERENCES).

4. Exit from EVE by pressing CTRUZ to write the files that you have edited, or by
typing QUIT at the "Command:" prompt.

6-22 Editing Text Files: Using EVE

5. After you exit from EVE, give the following command (or define a symbol) to
use EVE with the WPS keypad:
$ EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS filename.ext

6.6.3 Defining a Key While Using EVE

There are two basic types of key definitions that you can make while using EVE:

1. A key that is defined to be a single, specific EVE function

2. A key that replicates a series of keystrokes, such as inserting text, a series of
EVE functions, or both

You can define keys by the methods described in this section regardless of the
type of keypad that you might be using.

6.6.3.1 Defining a Key to Perform a Single EVE Function
To define a key that performs a single EVE function, use the following procedure:

1. At the "Command:" prompt (press the DO key), type DEFINE and press Return.

2. Type the EVE command that you want to use, for example OTHER WINDOW,
as shown, and then press Return. (The Reference Section contains a list of EVE
commands.)

+HMMM;;p;;w+;;;pdfilp:+I

3. You are prompted to press the key that you want to define, as shown:

4. Press any valid control or PFl sequence, and the key definition is complete.

When you define a key during an EVE editing session, the key definition is
normally valid only until you exit from the EVE session. However, one way to
make a key definition permanent is to use the following procedure, described in
more detail in Section 6.6.1 and Section 6.6.2:

1. At the "Command:" prompt, type SAVE EXTENDED TPU [directory]file
name, without giving a file extension (for example, SAVE EXTENDED TPU
[THOMAS]EVE-KEYDEFS), and then press Return.

2. After you exit from EVE, give the following command (or define a symbol)
to use EVE with the keys that you have defined (substituting the proper
directory and file name):
$ EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS filename.ext

II
,I

Editing Text Files: Using EVE 6-23

6.6.3.2 Defining a Key to Perform a Series of Keystroke~
If you have a series of keystrokes that you repeat frequently, then you can save
time and keystrokes by using a feature of EVE that lets you associate a set of
keystrokes with a particular key sequence. With this feature, you can define a
key to output a string of text, to execute a series of EVE functions, or to combine
one or more text strings with one or more EVE functions.

When you are already in an EVE editing session, and you want to define a key
that executes a series of keystrokes, you always follow the same general process:

1. At the "Command:" prompt, type LEARN and press Return.

2. Type the keystrokes that you want the defined key to repeat. You can insert
text, give EVE commands, or use any keys that are defined.

3. When you have finished typing the keystrokes, press CTRUR to signal EVE
that the sequence is complete.

4. Press the key that you want to define, and the key definition is complete.

For example, suppose that you often type the words International Development
Organization. To include this expression in your text simply by pressing CTRUA,
use the following steps:

1. Be sure your cursor is at a point where you want the text to appear first.

2. At the "Command:" prompt (press the DO key), type LEARN and press Return.

3. Type the text International Development Organization. Your screen now looks
like the following:

Dr. Yvonne Curr~
President

19 April 1990

International Developrrient Organization_

[End of file]

!Press ke~strokes to be learned. Press ClRL/R t.o ref"lel'IDer ~nese Ke1;1s~rgKe<:1.

4. Press CTRUR. The bottom of the terminal looks as follows:

r•n• of filel E 1 1 • t ·= l' F l LE -111111 E D 11 T I I dr it e I
F'tt.:' __ tt1r_ ~t-"':.1 1:.iuu 1.i=1t1t t_, u::1-: 1_1 iJo 11r1::it 11::1:: JU_t lesrt1ed:

5. Now press CTRUA. The key definition is complete, and the message "Key
sequence remembered" is displayed at the bottom of your screen. If you press

6-24 Editing Text Files: Using EVE

CTRUA, the text International Development Organization is inserted in your
buffer.

You follow exactly the same procedure to define a key that includes EVE
functions. For example, suppose that you are editing the following text file, which
has four columns of data. In this example, you want to eliminate the last two
columns ("Price" and "Total") in each row:

IteM Quantit1:1

Apples 20
Bananas 40
Beets 26
Carrots 30
Oranges 20
Peache::i 10
Pears 6
Potatoes 50
!End of file]

Price Total

1. 00 20.00
1.50 60.00
2.00 60.00
2.00 60.00
4.00 80.00
3.00 30.00
6.00 30.00
1.00 60.00

You could go through the procedure manually, which could be painstaking if your
file contained a great deal of data. Alternatively, you could define a key to do
most of the work for you.

To define the CTRUD key to do the work, use the following steps:

1. Move the cursor to the beginning of the first line (the word Item).

2. Press the DO key to get the "Command:" prompt, and type LEARN.

3. Move the cursor ahead two words by giving the command "MOVE BY WORD"
twice at the "Command:" prompt. If you have a key defined that already
moves the cursor ahead one word (for example, if you have set your keypad
to emulate the EDT or WPS editor, or if you have defined a key as described
earlier in this section), you can simply press that key twice.

4. Now you must delete the rest of the text in the line. In EVE, a simple way
to do this is to use the REMOVE (cut) function. Press the SELECT key, give
the command END OF LINE (at the "Command:" prompt), and then press
the REMOVE key. (If your terminal does not have the SELECT and REMOVE
keys, then you can either give the commands SELECT and REMOVE at the
"Command:" prompt, or you can use keys that have been defined as SELECT
and REMOVE.)

5. Give the MOVE BY WORD command once again (or use a key defined as
such), which moves the cursor to the beginning of the next line.

6. Press CTRUR to signal the end of the learn sequence.

7. Press CTRUD to define that key, and the key definition is complete.

When CTRUD is pressed, the cursor moves forward two words, removes the
remainder of the line, and moves the cursor to the beginning of the next line.

Editing Text Files: Using EVE 6-25

You can repeat virtually any series of keystrokes with the learn sequence,
including searching for text, writing the contents of a buffer to a file, moving
from one window to another, substituting text, or any other EVE function.

You can use most CTRU keys, PF1- sequences, and function keys F7 through F20
for the keys that you define. However, you cannot redefine the DO key, and you
should not redefine any of the following keys:

HELP
CTRUC
CTRUO
CTRUQ
CTRUR
CTRUS
CTRur
CTRIJU
CTRL/X
CTRUZ

As with other keys defined during an EVE editing session, keys that you define
with the LEARN command would normally not be valid after you exit from the
EVE editor. However, you can keep and reuse keys that you define during an
EVE session by following this same process that was described in preceding
sections:

1. Give the command SAVE EXTENDED TPU [directory]filename at the
"Command:" prompt; for example:

Peache8 10
Pears 5
Potatoes 50
[End of file]

Col"V"lalld: SAVE EXTENDED TPU [THOMAS]EVE-KEVDEFS_

2. After you exit from EVE, give the following command (or define a symbol) to
use EVE with the keys that you have defined:
$ EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS filename.ext

6.6.4 Using Startup Files to Define Keys
The TPU/EVE editor provides a wide range of features, and your editing
environment can be defined in a number of ways. This section discusses two
methods that you can use to set your editing environment:

• An EVE initialization file

• A TPU section file

6-26 Editing Text Files: Using EVE

6.6.4.1 EVE Initialization Files
An EVE initialization file lets you set your editing environment and define keys
to be specific EVE commands. For example, you could use an EVE initialization
file to set your keypad to an EDT-like environment whenever you use EVE, to set
the left and right margins of your buffers, and to define keys to create two buffers
and switch between them.

To use an EVE initialization file, use the following procedure:

1. Create the EDT initialization file, using any text editor.

2. Specify the initialization file that you want by using the /INITIALIZATION=
qualifier in your EDITtrPU command line. For example, if your EVE
initialization file is [THOMAS]EVE$INIT.EVE, then you would use the
following DCL-level command to edit a file named REPORT.TEXT using
your initialization file:

$ EDIT /TPU /INITIALIZATION=[THOMAS]EVE$INIT.EVE REPORT.TEXT

You can of course define a symbol in your login command file that would
reduce the number of keystrokes that you need; for example:
$ EDIT :== EDIT /TPU /INITIALIZATION=[THOMAS]EVE$INIT.EVE

In the EVE initialization file, each line should contain a single command or key
definition. The following sample shows an EVE initialization file that you could
use or adapt to meet your needs:
SET KEYPAD EDT 8
SET LEFT MARGIN 8 •
SET RIGHT MARGIN 72 •
DEFINE KEY=CTRL/D TWO WINDOWS •
DEFINE KEY=CTRL/A OTHER WINDOW •
DEFINE KEY GOLD/Q QUIT CB
In this EVE initialization file, the lines have the following meanings:

8 EVE provides an EDT-like keypad.

• The left margin of your text is set at 8.

8 The right margin of your text is set at 72.

8 When you press the CTRUD key, two windows are created on your terminal.

CB When you press the CTRUA key, the cursor switches from one window on your
terminal to the other window.

& When you press the GOLD-a sequence, you quit the editing session without
writing the file.

Initialization files are simple to create and use. However, you may also want to
use section files to define your EVE editing environment, because they allow you
to define more complicated key sequences.

Editing Text Files: Using EVE 6-27

When you use the TPU/EVE editor, you can specify an initialization file (and no
section file), a section file (and no initialization file), or you can specify both an
initialization file and a section file.

6.6.4.2 EVE/TPU Section Files
A section file lets you define your EVEfl'PU editing environment much more
fully than with an EVE initialization file. This section describes how to create
one type of section file.

To create and use an EVEfl'PU section file, use the following procedure:

1. Create an EVE/rPU command file using a text editor. The command file is
a text file that can be read on your terminal or printed.

2. Use the SAVE command in EVEfl'PU to generate a section file from the
command file. You cannot read a section file on your terminal, but EVEfl'PU
uses the information in the section file to create your editing environment.

3. Specify the section file that you want by using the /SECTION qualifier in
your EDITfl'PU command line. For example, if your EVE/l'PU section file is
[THOMAS]EVE-KEYDEFS.TPU$SECTION, then you would use the following
DCL-level command to edit a file named REPORT.TEXT using your section
file:
$ EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS REPORT.TEXT

(Note that you do not need to specify a file extension for a section file when
the default, TPU$SECTION, is used.)

As always, you can define a symbol similar to the following in your login
command file to expedite the process:
$ EDIT :== EDIT /TPU /SECTION=[THOMAS]EVE KEYDEFS

The EVEfl'PU section file is built from a command file that you create with a text
editor. One type of command file (and subsequent section file) that sets up your
environment and defines keys uses the following process:

1. Begirr y1J1.!!' ~IJ!n!narrtl file with the following linP.~
procedure tpu$local_init

2. Use valid TPU commands (such as DEFINE_KEY) and the proper syntax for
each command. The sample command file shown later in this section includes
examples of syntax for defining keys that perform EVE commands, insert
text, and set certain paramf3ters.

3. End your command file with the following two lines:
endprocedure;
tpu$local_init;

6-28 Editing Text Files: Using EVE

4. Edit the command file using EVE. At the "Command:" prompt, type EXTEND
TPU *, as shown, and press Return.

def ine-ke1:1 ("eve_set-lefLP1argin(8)", ke1:1-nart1e('g', shift-ke1:1»;
clef ine-ke1:1 ("eve-set-righLPlargin(79) 11

, ke1:1-naP1e('r', ehift_ke1:1));
define_ke1:1 ("eve_buffer('')",f17,"buffer",eve$x_user_ke1:1s);
eet(Plargine,current-buffer,1,72);
endprocedure;
tpuUocal_ini t;
[End of file]

Col'll'land: EXTEND TPU *-

5. At this point, a series of messages flashes across the bottom of your screen.
If no serious errors are found, the message EVE extended. is displayed. You
can see the list of messages displayed by typing EVE BUFFER MESSAGES
at the "Command:" prompt. If the attempt to extend EVE was unsuccessful
because of one or more errors, edit your command file to correct the errors
and redo this step.

If you are ready to proceed with the next step, make sure that you are in the
buffer with your command file. If your command file is not displayed on the
terminal, press the DO key and type the command BUFFER command-file
name (for example, BUFFER EVE KEYDEFS if your command file is named
EVE-KEYDEFS.TPU).

6. Press the DO key, and give the command SAVE section-file-name; it is not
necessary to specify a file extension, because the default file extension
(TPU$SECTION) is automatically supplied. For example, if you wanted your
section file to be named [THOMASJEVE-KEYDEFS.TPU$SECTION, you type
the command as shown, and then press Return:

def ine-ke1:1 (11 e ve_se t_ le f t_Plarg in (8) " , ke1:1-naP1e ('g' , sh if Lke1:1)) ;
define_ke1:1 ("eve_seLrighLP1argin(79) ", ke1:1-naP1e('r', shifLke1:1));
define_ke1:1 ("eve_buffer('')",f17,"buffer 11 ,eve$x_user_ke1:1e);
set(Margins,current_buffer,1,72);
endprocedure;
tpu UocaL in it;
[End of file]

E.i lt t Pr E E - I E , DEF::. T PU I I ilr l t e I In:; er t I FD n t oH" cJ

CoMMand: SAVE [THOMAS]EVE-KEYDEFS_
EVE extended.

7. Exit from EVE by pressing the DO key, typing EXIT, and pressing Return.

8. Now, to use the key definitions that you have created, include the following
lines in your login command file:
$ ED*IT :== EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS

If you want to use the keys that you defined in your command file with an EDT
like keyboard, do the following:

, I

I

Editing Text Files: Using EVE 6-29

1. Create the command and section files as described in the previous example.

2. Create an initialization file that includes only the following line:
SET KEYPAD EDT

3. If the section and initialization files are named
[THOMAS]EVE-KEYDEFS.TPU$SECTION and [THOMAS]EVE-INIT.EVE,
respectively, then include the following line in your login command file:
EDIT :== EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS /INIT=[THOMAS]EVE-INIT

4. After you execute your login command file, you use the key definitions
specified in your section file and the EDT-like keyboard specified in your
initialization file when you use the EVE editor (by using the command EDIT).

NOTE: If you want to use this same editing environment by
default whenever you send or reply to mail, then you should also
include the following two lines in your login command file:
$ assign callable tpu rnail$edit:
$ mail :==mail /edit=(send,reply)

6.6.4.3 Nondefinable Keys
You cannot define any of the following keys:

F1 through F6
COMPOSE CHARACTER
CTRL (by itself)
Return or CTRUM
BREAK
ESCAPE or CTRU[
LOCK or CAPS LOCK
NO SCROLL
SET-UP
SHIFT

Also, EVE does not let you define typing keys on the main keyboard (except in
combination with the GOLD key), a key defined as DO if it is the only key defined
as DO, or the key currently set as GOLD, if any.

Digital recommends that you do not define the following keys and control
keys. Some of these control keys cannot be defined unless you set terminal
characteristics accordingly.

DELETE or <XI (which EVE defines as DELETE)
HELP or on VTlOO terminals, PF2
CTRUB (which EVE defines as RECALL)
CTR UC
CTRUO
CTRUQ
CTRUR (which EVE defines as REMEMBER, to end a learn sequence)
CTR US
CT RUT

6-30 Editing Text Files: Using EVE

CTRL/U (which EVE defines as ERASE START OF LINE)
CTRL/V (which EVE defines as QUOTE)
CTRL/X
CTRL/Y

If you redefine CTRL/B or CTRLIR, you should define other keys as RECALL and
REMEMBER, because those commands can only be executed by a key press.

6.6.4.4 Sample EVE/TPU Command File
The following example shows an EVE command file that you can use or adapt to
meet your needs. To use the key definitions and margin settings in this file, you
should follow the steps described in Section 6.6.4.2.

Note the following syntax rules for defining a key in a command file:

• Use the DEFINE_KEY command to begin the key definition.

~ The key definition begins with an open parenthesis.

• The first part of the key definition uses EVE and TPU commands to describe
the text to be inserted and/or the actions to be taken; this part of the key
definition must be enclosed in quotation marks. To use an EVE command,
use the syntax EVE_command_name (for example, EVE_OTHER_ WINDOW).
To insert text, use the COPY_TEXT command, with the text enclosed in
parentheses and single quotation marks, as shown throughout the sample
command file. If you use more than one command in this section, separate
commands using a semicolon.

• The second part of the key definition specifies the key that is to be defined.

• End the key definition with a close parenthesis and a semicolon.

Note the syntax that you use for describing a key sequence with the DEFINE_
KEY statement in a command file, as in this example for specifying the sequence
PF1-M:

KEY _NAME('U', SHIFT _KEY)
procedure tpu$local_init ~
set (shift_key, pfl); ft
define_key ("copy text('International Development Organization')", ctrl n key); 8
define_key ("eve_-;eturn; eve_return; copy_text('<p>')", ctrl_p_key); 8- -
define_key ("eve return; eve return; copy text('<list>(unnumbered)');" + CD

"eve=return; copy_text('<le>')", key_name('m', shift_key));
define_key ("eve_return; eve_return; copy_text('<endlist>'); eve_return;" + (t

"copy text('<p>'); eve return; eve return",
key_name('n', shift_key)); -

define_key
define_key
define_key
define_key

Editing Text Files: Using EVE

("eve two windows", ctrl d key); 8
("eve-oth~r window", ctrl ~key); 0
("eve-one window", key n~e-(' o', shift key)); CD
("eve=fill_paragraph" ,-ctrl_f_key); .-

define_key ("eve_lowercase_word", key_name('l', shift_key));.
define_key ("eve uppercase word", key name('u', shift key)); 8
define_key ("eve=quit", ke;_name('q',-shift key));.
define_key ("eve_exit", ctrl_z_key); • -

6-31

define_key ("eve_move_left; eve_move_left; eve_select; eve_move_right;" +.
define_key
define_key
define_key

"eve remove; eve move right; eve insert here", ctrl e key);
("eve-set left ma~gin(S) ", key n~e('g' ,-shift key))-; 8
("eve-set-right margin(79)", k;y name('r', shift key));.

("eve=buffer('')11
, f17, "", eve$~_user_keys); .-

set(margins,current buffer,1,72); 49
endprocedure; CO -
tpu$local_init; ti

In this example, line 1 is the text with which you should begin this command
file. Line 2 defines PFl (also known as the GOLD key) as the key used in a 2-
key sequence. You should define the shift key before you make any other key
definitions in your command file.

The following table lists the keys that are defined by the command file in the
previous example:

Line
Number

3

4

5

Key or
Sequence

CTR UN

CTR UP

PF1-M

Action Taken When Key or Sequence is Pressed

The text International Development Organization is inserted in the
editing buffer.

'l\vo carriage returns and the text <.P> are inserted in the current
editing buffer.

Two carriage returns and the following text are inserted in your
,., •. 1. IV'

t:Wt.ll1!:; OUJ..ie;,r;

<list>(unnumbered)
<le>

6-32

Line
Number

6

7

8

9

10

11

12

13

14

15

16

17

18

Editing Text Files: Using EVE

Key or
Sequence

PF1-N

CTRUD

CTRUA

PF1-0

CT RUF

PF1-L

PF1-U

CTRUQ

CT RUZ

CT RUE

PF1-G

PF1-R

F17

Action Taken When Key or Sequence is Pressed

Two carriage returns, the following text, and then two more
carriage returns are inserted in your editing buffer:

<endlist>
<p>

A new window is created on your terminal screen.

The cursor moves from the current window to the other window.

A single window is displayed on the terminal, using the current
buffer.

The current paragraph is filled.

The current word is set to all lowercase.

The current word is set to all uppercase.

You exit from the file and your changes are not saved.

The file is written and you exit from EVE.

The two characters that immediately precede the cursor are
transposed. For example, to change teh to the with a single
keystroke, you could use this CTRUE key definition.

The left margin is set to 8. (The default left margin setting is set
to 1 in a subsequent statement in this command file.)

The right margin is set to 79. (The default right margin setting is
set to 72 in a subsequent statement in this command file.)

EVE prompts you for a buffer name. When you type a buffer
name and press Return, EVE switches to that buffer. (Note that
this DEFINE_KEY statement uses a third and fourth section that
had not previously been used in this example. These parts of the
DEFINE_KEY statement are optional, but they must be used in
this example as shown.)

The final lines of the sample command file (line numbers 19 through 21) set the
default left and right margins for any editing buffer to 1 and 72, and provide the
closing context.

6.7 Using DCL Within EVE
You can execute a DCL command from within EVE, or you can use a subprocess
to switch between the DCL command level and an EVE editing session quickly.

Editing Text Files: Using EVE 6-33

6.7.1 Executing a DCL Command

To enter a DCL command from within EVE, enter the EVE command DCL with
the DCL command you want to execute, and press Return. The message Creating
DCL subprocess . . . appears in the message window.

6. 7 .2 Creating a Subprocess

You can create a subprocess to switch between an EVE editing session and DCL
command level without terminating your editing session. To create a subprocess,
enter the SPAWN command. EVE suspends the current editing session and
connects your terminal to a new VMS subprocess. The DCL prompt ($) appears
on your terminal screen.

NOTE: The SPAWN and ATTACH commands are sup-
ported on DECwindows only if you invoke EVE with the
/DISPLAY=CHARACTER_CELL qualifier (which is the default).

The most common reasons to spawn a subprocess are to invoke the Mail Utility
and to run screen-oriented programs, although your subprocess can invoke any
VMS utility or execute any DCL command.

To return to your editing session, log out of the subprocess by entering the DCL
command LOGOUT. EVE resumes the editing session, and the cursor appears in
the location it occupied before you spawned the subprocess.

6.8 Converting from EDT to EVE
If you are accustomed to the EDT editor, you can customize EVE to work in
similar ways by using a section file or an initialization file (or both), or by using
VAXTPU procedures.

Typically, you save key definitions, learn sequences, and other extensions in a
section file (created with the SAVE EXTENDED EVE command), and use an
EVE initialization file to set editing preferences or private defaults, such as
margins and tabs, that are not saved in the section file. The following are hints
_ __ - - __ -- _ __ L! __ -- .L!'_ _ _ ·- _ ~~m J _ ,-:,,. rr:'t

u.u. \.:V.l.l v t:r 1.o.u.1g 1HJ.U1 .1!1.U .1. LoU .Cl V .Cl.

Use the SET KEYPAD EDT Command

The SET KEYPAD EDT command defines several keys to emulate EDT. You can
put the command in your EVE initialization file, or save the keypad setting in
your section file.

6-34 Editing Text Files: Using EVE

Define Keys for EVE Commands

Use DEFINE KEY commands to define keys that are not otherwise defined by
SET KEYPAD EDT. Put the key-definition commands in your initialization file, or
save the definitions in your section file. For example, the following sets of EDT
and EVE key definitions are equivalent:

• In EDT:
DEF KEY gold b AS "ext show buffer."
DEF KEY gold 1 AS "chglw."
DEF KEY gold u AS "chguw."
DEF KEY gold 2 AS "iinteroffice Memo"Z."
DEF KEY gold 10 AS "ext find=? .• "
DEF KEY 7 AS "501. II
DEF KEY gold 9 AS "cutsr paste."
DEF KEY cont n AS "ext quit."
DEF KEY func 34 AS "shl. II

• In EVE:
DEF KEY= gold-b show buffers
DEF KEY= gold-1 lowercase word
DEF KEY= gold-u uppercase word
DEF KEY= gold-e2 tpu eve$insert_text ("Interoffice Memo")
DEF KEY= gold-pf2 buff er
DEF KEY= kp7 tpu move_vertical (+50)
DEF KEY= gold-kp9 store text
DEF KEY= ctrl/n quit
DEF KEY= f20 shift right 8

Note the differences between EDT and EVE in some key names, as well as
differences in command names. For more information about key names, see
Section 6.4.3.

Set Bound Cursor Motion

Put the SET CURSOR BOUND command in your EVE initialization file to enable
an EDT-style bound cursor that follows the shape or fl.ow of your text. By default,
EVE uses a free cursor, which can move anywhere in the buffer regardless of
whether text is already there.

Set the Right Margin for Wrapping Text

Put the SET RIGHT MARGIN command in your EVE initialization file to set a
wrap limit for entering text and for FILL commands. For example, the following
EDT and EVE commands are equivalent:

• In EDT:
SET WRAP 70

Editing Text Files: Using EVE 6-35

• In EVE:
SET RIGHT MARGIN 70

(The EVE command SET WRAP corresponds to the EDT command SET
NOTRUNCATE.)

Set Scroll Margins for Moving the Cursor

Put the SET SCROLL MARGINS command in your EVE initialization file to set
distances for scrolling to begin automatically as you move the cursor up or down.
For example, with a 24-line terminal screen (21-line main window), the following
EDT and EVE commands are equivalent:

• In EDT:
SET CURSOR 5:15

• In EVE:
SET SCROLL MARGINS 5 6

Note that EVE scroll margins are measured from the top and bottom respectively,
whereas in EDT, both are measured from the top. You can specify numbers of
lines or percentages of the window size. Also, the size of the EVE main window
depends on your terminal settings. For example, on a workstation, the EVE main
window may be longer than 21 lines.

Convert EDT Macros to VAXTPU Procedures

Use VAXTPU procedures in place of EDT macros. Create a buffer containing
the procedures and then compile the procedures with EXTEND commands, or
put the procedures in a VAXTPU command file and then invoke EVE with the
/COMMAND qualifier. In either case, you can save the compiled procedures in
your section file. The following examples show a macro from an EDT startup file
translated into a VAXTPU procedure. Each creates a new command, WIDEN,
which sets the display to 132 columns and sets the right margin to 120.

• EDT macro:

INSERT;SET SCREEN 132
INSERT;SET WRAP 120
FIND =main.

• VAXTPU procedure:
PROCEDURE eve_widen;

EVE_SET_WIDTH (132);
EVE_SET_RIGHT_MARGIN (120);

ENDPROCEDURE;

6-36 Editing Text Files: Using EVE

To execute the macro or procedure, do the following commands:

• In EDT:
* DEFINE MACRO widen
* WIDEN

• In EVE:
Command: EXTEND EVE widen
Command: WIDEN

Alternatively, use the learn command to bind the corresponding EVE commands
to a single key; you can then save the key definition in your section file. Another
method is to put the corresponding EVE commands in an initialization file that
you can use during an editing session (see the description of the @ command).

Convert EDT Nokeypad Statements to VAXTPU Procedures

EDT macros and key definitions that use nokeypad specifiers can usually be
converted into VAXTPU procedures or into LEARN sequences. The following ex
amples show an EDT key definition using nokeypad mode and the corresponding
VAXTPU procedure and key definition. In each case, you define COMMA on the
numeric keypad to transpose or swap the current and previous character. Note
that -C in EDT nokeypad statements can be translated as MOVE_HORIZONTAL
(-1) in VAXTPU procedures.

• In EDT:
DEFINE KEY 19 AS "-c dlc +c undc."

• In VAXTPU:
PROCEDURE user_transpose

LOCAL swap_this;

swap_this := ERASE_CHARACTER (1);

MOVE HORIZONTAL (-1);
EVE$INSERT_TEXT (swap_this);
RETURN (TRUE) ;

ENDPROCEDURE;

EVE$DEFINE_KEY ("user_transpose", COMMA, , EVE$X_USER_KEYS);

Use the WPS Keypad Ruler Key to Adjust Tab Stops

Setting the EDT keypad does not define keys for EDT-style tab adjustment.
However, you can get similar effects by defining a key for the WPS keypad Ruler
key (GOLD-R) and then using the ruler to add or delete tab stops.

'I
I

I

Editing Text Files: Using EVE 6-37

For example, the following command defines F20 as the WPS Ruler key (without
having to enable the WPS keypad):
Command: DEFINE KEY= F20 WPS GOLD-R

Then, to add or delete tab stops, do the following:

1. Press whatever key you have defined as the Ruler key.

EVE displays a ruler at the bottom of the current window (just above the
status line for the window). The cursor appears in the ruler. Tab stops are
marked with a T.

2. Put the cursor where you want to add or delete a tab stop. For example, you
can press the left and right arrow keys to move to a particular column in the
ruler, or press the TAB key to move to the next tab stop (T) in the ruler.

3. Type a T or t at that location to set the tab stop or, if there is already a tab
there, to delete it. The new tab stops are immediately applied to the buffer
you were editing.

4. Repeat steps 2 and 3 to add or delete other tab stops.

5. To exit from the ruler and resume editing, press Return or GOLD-RETURN.

6.9 EVE Command Summary
Section 6.9 shows EVE commands and the keys that are predefined by default for
those commands.

Table 6-3: EVE Commands and Default Predefined Keys

Command Key

BO'ITOM GOLD-!

BUFFER None

CAPITALIZE WORD None

What It Does

Moves the cursor to the end of the current
buffer.

Puts a specified buffer in the current window
and moves the cursor to the last place it
occupied in the buffer. (Buffers are storage
areas that exist only during an editing
session.) If the specified buffer does not
exist, creates a new buffer and moves the
cursor to the start of the buffer.

Capitalizes a single word or each word in the
text highlighted by FIND or SELECT.

(continued on next page)

6-38 Editing Text Files: Using EVE

Table 6-3 {Cont.): EVE Commands and Default Predefined Keys

Command

CENTERLINE

CHANGE DIRECTION

CHANGE MODE

COPY
or STORE TEXT

CUT
DELETE

DELETE BUFFER

DELETE WINDOW

END OF LINE

ENLARGE WINDOW

Key

None

None

CTRIJA.Also, F14
on VT300-series and
VT200-series terminals;
Enter on VTlOO-series
terminals

GOLD-Remove

<X1 or Delete

None

None

CTRIJE or GOLD--

None

What It Does

Centers the current line between the left and
right margins. The cursor moves with the
line, remaining on the same character as the
line moves.

Changes the direction of the current buffer.
The direction of the buffer is shown in the
status line.

Changes the current editing mode as
displayed on the highlighted status line. In
insert mode, EVE inserts text at the current
character position, moving existing text to
accommodate the insertion. In overstrike
mode, EVE overwrites text at the current
position.

Copies text that was marked with SELECT
or FIND, putting it in the Insert Here buffer.
Text that is copied is not removed from its
original position.

Same as REMOVE

Erases the character to the left of the cursor.
In insert mode, the rest of the line moves left
one character to close the space. In overstrike
mode, the erased character is replaced by
a space. At the start of a line, DELETE
erases the carriage return for the previous
line (regardless of mode) and the current line
moves up.

Deletes a buffer you specify by name.

Deletes the window the cursor is in, if you are
using more than one window.

Moves the cursor to the end of the current
line.

Enlarges the window the cursor is in by
a specified number of lines. For example,
ENLARGE WINDOW 5 enlarges the window
by five lines. The adjacent window shrinks
accordingly.

(continued on next page)

Editing Text Files: Using EVE 6-39

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command

ERASE CHARACTER

ERASE LINE

ERASE PREVIOUS
WORD

Key

None

None

None

ERASE START OF LINE CTRUU

ERASE WORD CTRUJ. Also, F13
on VT300-series
and VT200-series
terminals; COMMA
(on the keypad) on
VTlOO-seri.es terminals

FILL None

FILL PARAGRAPH None

FILL RANGE None

What It Does

Erases the character the cursor is on. In
insert mode, the rest of the line moves to
the left one character to close the space.
In overstrike mode, the erased character is
replaced by a space. If the cursor is at the
end of the line, the carriage return is erased
regardless of the mode-and the next line
moves up.

Erases from the current character to the end
of the line, appending the next line to the end
of the current line. If the cursor is at the end
of the line, only the carriage return is erased
and the next line moves up.

Erases the previous word or the word the
cursor is on. If the cursor is between words or
on the first character of a word, the previous
word is erased. If the cursor is in the middle
of a word, all of that word is erased (same as
ERASE WORD). If the cursor is at the start
of a line, the carriage return at the end of the
previous line is erased and the current line
moves up.

Erases characters left of the cursor to the
start of the line.

Erases the current word or, if the cursor
is between words, erases the next word. If
the cursor is at the end of the line, only the
carriage return is erased and the next line
moves up.

Reformats the current paragraph, select
range, or found range, according to the
margins of the buffer, so the maximum
number of words fits on a line.

Reformats the paragraph the cursor is in,
according to the margins set for the buffer.

Reformats the current select range or found
range, according to the current margin
settings.

(continued on next page)

6-40 Editing Text Files: Using EVE

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command

FIND

FIND NEXT

FiND SELECTED

FORWARD

GET FILE
or OPEN

GOTO

INCLUDE FILE

INSERT HERE
or PASTE

INSERT PAGE BREAK

LINE

Key

Find on VT300-series
and VT200-series
terminals

Find-Find on VT300-
series and VT200-series
terminals

Find-Insert Here on
VT300-series and
VT200-series terminals

None

None

None

None

What It Does

Searches the current buffer for the text string
you specify and highlights the found text. The
text that is highlighted is called the found
range.

Searches for the string of text you last
specified with the FIND, REPLACE, or
WILDCARD FIND command.

Searches for a string of text you have selected,
rather than for a typed string.

Sets the direction of the current buffer to
forward (that is, to the right and down). The
direction of the buffer is shown in the status
line. FORWARD is the default setting when
you enter EVE.

Puts the specified file into the current window
and puts the cursor at the beginning of the
buffer. If the file does not exist, EVE puts an
empty buffer in the current window.

Returns the cursor to the location labeled by
the MARK command. If the labeled location
is found in another buffer, EVE moves the
cursor to the other buffer and puts that buffer
into the current window.

Inserts the contents of the specified file into
the current buffer at the line above the cursor
location.

Insert Here on the Inserts the text you copied or removed.
minikeypad on VT300-
series and VT200-series
terminals; KP9 on
VTlOO-series terminals

CTRUL Inserts a form-feed character at the current
position to mark the beginning of a new page.
A page break appears as a small double F
<1].) and is always on a line by itself.

None Moves the cursor to the beginning of the
specified line number in the current buffer.

(continued on next page)

I

I

.\

Editing Text Files: Using EVE 6-41

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command

LOWERCASE WORD

MARK

MOVE BYLINE

MOVE BY PAGE

MOVE BYWORD

MOVE DOWN

MOVE LEFT

MOVE RIGHT

MOVE UP

NEW

Key

None

None

F12 on VT300-series
and VT200-series
terminals; MINUS
(on the keypad) on
VTlOO-series

None

None

!. Also, KP2 on VTlOO
series terminals

~. Also, KP1 on
VTlOO-series terminals

-+. Also, KP3 on
VTlOO-series terminals

j. Also, KP5 on VTlOO
series terminals

None

What It Does

Changes the current word, select range, or
found range to lowercase.

Puts an invisible mark at the current cursor
location. The mark exists for the rest of an
editing session or until you change it but is
not saved when you exit.

In forward direction: moves the cursor to
the end of the current line or, if the cursor
is already at the end of a line, to the end of
the next line. In reverse direction: moves the
cursor to the beginning of the current line or,
if the cursor is already at the beginning of a
line, to the beginning of the previous line.

Moves the cursor to the next or previous page
break (form feed), depending on the current
direction. If there is no page break in the
current direction, the cursor moves to the
bottom or top of the buffer.

In forward direction: moves the cursor to the
beginning of the next word or, if the cursor is
already at the end of a line, to the beginning
of the next line. In reverse direction: moves
the cursor to the beginning of the previous
word or, if the cursor is already at the
beginning of a line, to the end of the previous
line.

Moves the cursor down one line.

Moves the cursor one character or column to
the left.

Moves the cursor one character or column to
the right.

Moves the cursor up one line.

Creates a new buffer, putting it in the current
EVE window, and moves the cursor to the top
of the new buffer. The new buffer is named
MAIN. If a buffer named MAIN already
exists, EVE prompts you for a buffer name.

(continued on next page)

6-42 Editing Text Files: Using EVE

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command

NEXT BUFFER

NEXT SCREEN

NEXT WINDOW

ONE WINDOW

OPEN

OPEN SELECTED

OTHER WINDOW

PAGINATE

Key

None

E6 on VT300-series and
VT200-series terminals;
KPO on VTlOO-series
terminals

None

None

GOLD-Next Screen

None

What It Does

Puts your next buffer (if there is one) into the
current window, returning the cursor to your
last position in that buffer. This lets you move
between buffers without typing buffer names.

Scrolls forward in the current buffer by the
number of lines in the current window minus
one, For example, if the current window is
12 lines long, the NEXT SCREEN command
scrolls the cursor forward 11 lines.

Same as OTHER WINDOW

Restores the window the cursor is in as a
single, large window. EVE deletes all other
windows from the screen. However, the
buffers associated with those windows are not
deleted.

Same as GET FILE

Opens a file whose name you have selected or
found. This command is the same as using
the GET FILE or OPEN command without
having to type the file name.

Moves the cursor to the next window on your
screen, if there is one. The cursor appears in
the last location it occupied in that window.

Inserts a "soft" page break for a 54-line page.
A soft page break appears as a form feed
followed by the null character - <:FF ~).
When the PAGINATE command is entered,
EVE moves back to the previous page break
(if any) then checks ahead for page breaks
within the next 54 lines. If any soft breaks
are found within those 54 lines, EVE removes
them. EVE then moves down 54 lines, inserts
a soft break, and puts the cursor on the next
line. The soft break is inserted on a line by
itself. If a hard page break is found within
the 54 lines, EVE stops on the line after the
hard break, in case you want to erase the
break.

(continued on next page)

Editing Text Files: Using EVE 6-43

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command

PREVIOUS SCREEN

PREVIOUS WINDOW

QUOTE

REMOVE
or CUT

RESET

Key

Prev Screen on VT300-
series and VT200-series
terminals; PERIOD
(on the keypad) on
VTlOO-series terminals

None

CTRIJV

Remove on the
minikeypad on VT200-
series and VT300-series
terminals; KP8 on
VTlOO-series terminals

GOLD-Select

RESTORE GOLD-Insert Here

RESTORE CHARACTER None

What It Does

Scrolls backward in the current buffer by the
number of lines in the current window minus
one. For example, if the current window is 12
lines long, the PREVIOUS SCREEN command
scrolls the cursor backward 11 lines.

Puts the cursor in the previous (or other)
window.

Lets you insert nonprinting characters or
control codes.

Removes the text that was marked with
SELECT or highlighted by FIND, and places
it in the Insert Here buffer.

Cancels any of the following and resets the
direction of the buffer to forward:

• Highlighting of a select or found range

• A press of the GOLD key (or GOLD
number combination for a repeat count)

• An incomplete or recalled command line,
or Choices buffer display

• The output of SHOW, SHOW DEFAULTS
BUFFER, SHOW SUMMARY, or SHOW
WILDCARDS, thereby returning you to
the buffer you were working in

Reinserts, at the current cursor position,
the word, or line that you erased most
recently with an EVE command or editing key.
RESTORE does not restore single characters.

Reinserts, at the current cursor position,
the character you have erased most recently
with an EVE command or editing key. In
overstrike mode, the restored character
replaces the character the cursor is on. In
insert mode, the restored character is inserted
at the cursor position and existing text moves
to accommodate it.

(continued on next page)

6-44 Editing Text Files: Using EVE

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command

RESTORE LINE

RESTORE SELECTION

RESTORE WORD

REVERSE

SAVE FILE

SAVE FILE AS

SELECT

Key

None

None

GOLD-F13 on VT200-
series and VT300-series
terminals; none on
VT-100 series terminals

None

None

None

Select on VT200-series
and VT300-series
terminals; KP7 on
VTlOO-series terminals

What It Does

Reinserts, at the current cursor position, the
line that you have erased most recently with
an EVE command or editing key.

Reinserts the text erased with a pending
delete operation.

Reinserts, at the current cursor position, the
word that you have erased most recently with
an EVE command or editing key.

Sets the direction of the current buffer to
reverse, that is, to the left and up. The
direction of the buffer is shown in the status
line.

Writes the contents of the current buffer to
the file associated with the buffer without
ending the editing session. If you do not
specify a file name with the SAVE FILE
command, EVE prompts you for an output file
specification. Similar to WRITE FILE.

Writes the contents of the current buffer to
the file you specify without ending the editing
session. Thus, if you are editing a file named
FIRST.DAT you can save it as SECOND.TXT.
This command does not change the name
of the buffer. It does, however, associate
the buffer with the file you name so any
subsequent SAVE FILE or WRITE FILE
commands or an EXIT command write the
buffer to the file you named. This command
requires you to supply a file specification.

Marks text (highlighting it in reverse video)
from the initial cursor location to wherever
you move the cursor. The text that is
highlighted is called the select range.
To cancel the selection, enter the SELECT
command again or use RESET.

(continued on next page)

Editing Text Files: Using EVE 6-45

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command Key

SELECT ALL None

SET BUFFER None

SET CURSOR BOUND None

SET CURSOR FREE None

SET FIND None
NO WHITESPACE

SET FIND WHITESPACE None

SET LEFT MARGIN

SET NOPENDING
DELETE

None

None

What It Does

Marks all text (highlighting it in reverse
video) in the current buffer regardless of the
cursor position. The text that is highlighted
is called the select range. To cancel the
selection, enter the SELECT command or
use RESET. Pending delete is temporarily
disabled when the SELECT ALL command is
used to avoid accidentally erasing all of the
buffer.

Lets you specify the editing status of the
buffer: whether the buffer can be modified or
can be written to a file when you exit from
EVE.

Makes the cursor follow the flow of text. The
cursor cannot move into an unused portion of
the buffer. Similar to cursor behavior in EDT,
WPS, and other editors.

Default setting. Allows the cursor to be
put anywhere in the buffer and text can be
entered there.

Default setting. Sets FIND and WILDCARD
FIND commands to match tabs and spaces
exactly as you specify in the search string,
and to search for strings that are entirely on
one line.

Sets FIND and WILDCARD FIND commands
to treat spaces, tabs, and up to one line break
as "white space" so you can search for strings
of two or more words regardless of how they
are separated.

Sets the left margin in the current buffer. The
left margin must be greater than 0 but less
than the right margin. By default, the left
margin is 1 (leftmost column).

Default setting. Disables deletion of -selected
text when you use DELETE or type new text.
If you select text in the buffer, typing new text
adds characters to the select range and using
DELETE erases only the character to the left
of the cursor.

(continued on next page)

6-46 Editing Text Files: Using EVE

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

CoIDJDand Key

SET NOWRAP None

SET PENDING DELETE None

SET RIGHT MARGIN None

SET PARAGRAPH None
INDENT

SET TABS AT None

SET TABS EVERY None

SET TABS INSERT None

What It Does

Disables word wrapping at the right margin
of the buffer. You must start new lines
by pressing Return or by using the FILL
command.

Enables pending delete, which lets you
quickly erase blocks of text. First, enable
pending delete, then use the SELECT
command to choose the text you want to
erase. Erase the text by pressing the Delete
key (or any other typing key). To reinsert
what you deleted, move the cursor where you
want the text to be and enter the RESTORE
SELECTION command. The default is SET
NOPENDING DELETE.

Sets the right margin for the current buff er.
The right margin must be greater than the
left margin. By default, the right margin
is one less than the width. The width is
typically 80, so the default margin is typically
79.

Specifies the number of spaces to be added to
or subtracted from the first line of paragraphs
you create or reformat. The default is 0 (no
indent).

Sets tab stops at the columns that you specify.
The column numbers must be in ascending
order and separated by spaces. By default,
tab stops are set every eight columns. The
command does not affect the hardware tab
settings of your terminal.

Sets tab stops at the specified interval. By
default, tab stops are set every eight columns.
The command does not affect the hardware
tab settings of your terminal.

Default setting. Changes the tab mode so that
EVE inserts a tab character at the current
column when you press the Tab key. The
cursor and text move to the next tab stop.

(continued on next page)

Editing Text Files: Using EVE 6-47

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command Key

SET TABS SPACES None

SET TABS MOVEMENT None

SET TABS VISIBLE None

SET TABS INVISIBLE None

SET WILDCARD None
ULTRIX

SET WILDCARD VMS None

SET WIDTH None

SET WRAP None

SHIFT LEFT None

What It Does

Changes the tab mode to insert an
appropriate number of spaces, rather than
a tab character, when the Tab key is pressed.
Previously existing tab characters are not
affected.

Changes the tab mode so the Tab key becomes
a cursor-movement key. Pressing the Tab key
moves the cursor to the next tab stop but does
not insert a tab character.

Displays a tab character as a visible character
on the screen, appearing as a small !\,
(horizontal tab).

Default setting. Makes a tab character
invisible on the screen, appearing as white
space.

Enables ULTRIX patterns for WILDCARD
FIND.

Default setting. Enables VMS patterns for
WILDCARD FIND.

Sets the width of lines displayed on the
screen. Specify width as a positive integer.
By default, the screen width is your terminal
setting. (It is typically 80 columns.) If the
width is set greater than 80, EVE sets the
terminal to 132-column mode for the current
editing session. When you exit from EVE, the
terminal is restored to the default setting.
Setting the width changes the display of text
in all windows.

Default setting. Enables word wrapping at
the right margin of the buffer. EVE starts
new lil1t:1:1 without yow- p:rc,ssiii.g Ra!u:-~ ~~
using the FILL command.

Moves the window the cursor is in to the left
a specified number of columns. The SHIFT
LEFT command can be used only to reverse
the effect of the SHIFT RIGHT command.

(continued on next page)

6-48 Editing Text Files: Using EVE

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command

SHIFT RIGHT

SHRINK WINDOW

SHOW

SHOW BUFFERS

SHOW SYSTEM
BUFFERS

SHOW WILDCARDS

SPLIT WINDOW

START OF LINE

STORE TEXT

TOP

Key

None

None

None

None

None

None

None

CTRUH. Also,
GOLD--+-

GOLD-j

What It Does

Moves the window the cursor is in to the right
a specified number of columns, allowing you
to view columns of characters that do not
currently appear on the terminal screen.

Shrinks the window the cursor is in by a
specified number of lines. For example,
SHRINK WINDOW 5 shrinks the window
by five lines. The adjacent window expands
accordingly.

Displays information about the buffers you
have created during the editing session.
If more than one buffer is active in your
editing session, the SHOW command displays
information about the buffer you are currently
editing. For information about the other
active buffers, press the Do key. To resume
editing, press any other key.

Lists the buffers you have created during
an editing session. You can move the cursor
through the list and specify a particular buffer
for viewing by using the Select key.

Lists the system buffers created by EVE, such
as the Message buffer, Help buffer, Insert
Here buffer, and $RESTORE$ buffer. You can
move the cursor through the list and specify a
buffer for viewing by using the Select key.

Lists the wildcard patterns you can use with
WILDCARD FIND, either VMS or ULTRIX.

Splits the window the cursor is in, forming
two smaller windows. You can divide
the window into more than two parts by
specifying a number with the command.
For example, SPLIT WINDOW 3 splits the
window into three windows.

Moves the cursor to the beginning of the
current line.

Same as COPY.

Moves the cursor to the beginning of the
current buffer (upper left corner).

(continued on next page)

Editing Text Files: Using EVE 6-49

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command

TWO WINDOWS

UPPERCASE WORD

WILDCARD FIND

WRITE FILE

Key

None

None

None

None

What It Does

Creates two windows; equivalent to SPLIT
WINDOW 2 command.

Changes the current word, select range, or
found range to uppercase.

Searches for a pattern of text, using either
VMS or ULTRIX wildcards, depending on
your setting.

Writes the contents of the current buffer to
the file associated with the buffer or to the
file you specify on the command line without
ending the editing session. If the current
buffer does not have a file specification
associated with it, EVE prompts you for
an output file specification.

Chapter 7

Editing Text Files: Using EDT

EDT is an interactive text editor. With EDT you can create a new file, insert text
into it, and modify that text. You can also edit text in existing files.

EDT provides both line and keypad editing. In line editing, you type the editing
command and the range of text you want the command to affect. In keypad
editing, you move the cursor directly to the text you want to change and press
keypad keys to enter the editing commands.

EDT provides many predefined keys that let you enter commands quickly, as
described in Section 7 .2. In addition, you can define your own keys for EDT, as
described in Section 7. 7.

7.1 Invoking and Ending an EDT Session
An editing session begins when you invoke EDT with the DCL command EDIT. In
an editing session, you can create and edit a new file, or you can edit an existing
file. The session ends when you enter the EXIT or QUIT command.

7 .1.1 Invoking EDT

To invoke EDT, type the DCL command EDIT and specify as a parameter the
file you want to edit. If the specified file already exists, EDT saves the existing
versions and places a copy of the latest version in your buffer. (A buffer is the
te.mporRry storage area in which you edit text.) The existing versions of the file
remain unchanged. For example, to edit an existing file named MEMO.TXT,
enter the following command line:

$ EDIT MEMO.TXT

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]

The first few lines of the latest version of the file appear on the screen. The
cursor is positioned at the top of the screen, and EDT is ready to receive a
keypad-editing command.

7-2 Editing Text Files: Using EDT

If you invoke EDT to create a file, the following message appears:
$ EDIT NEWFILE.TXT

[EOB]

Input file does not exist

Only the EDT message and the end-of-buffer symbol, [EOB], appear on the
screen, and EDT is ready to receive keypad-editing commands. See Section 7 .2.1
for a description of EDT line commands.

NOTE: In the previous examples, you enter EDT in keypad
(change) mode because a startup command file (SYS$LOGIN:EDTINI.EDT)
containing the SET MODE CHANGE command has been
executed. If this command is not executed in an EDT startup
command file, you will enter EDT in line mode.

7.1.2 Ending an EDT Session

To terminate an EDT session, press CTRUZ. This puts you into line-editing
mode. You can type EXIT or QUIT at the asterisk (*) prompt. QUIT terminates
the editing session and does not save your edits. EXIT saves your edits in a new
version of the file. (Note that the existing versions of a file remain unchanged
regardless of how the editing session is terminated.)

To save your edited text, use the line-editing command EXIT to terminate EDT.
When you enter the EXIT command, EDT creates an output file containing the
edited version of the input file. By default, the output file has the same name and
type as the input file, with the version number incremented by 1.

For example, if you enter the EXIT command after editing a file named
MEMO.TXT;3, EDT creates a higher version named MEMO.TXT;4 as follows:
*EXIT
DISKl: [USER]MEMO.TXT;4 2 lines
$

To override the default output file name, enter the EXIT command with a new file
specification as the parameter. For example, if you end the same editing session
with EXIT MICE.TXT, EDT names the output file MICE.TXT;l, provided no other
file named MICE.TXT exists.
*EXIT MICE.TXT
DISKl: [USER]MICE.TXT;l 2 lines
$

To terminate EDT without saving your edits, use the line-editing command QUIT.
All edits you have made to the text are ignored, and no output file is created.
*QUIT
$

I

I

Editing Text Files: Using EDT 7-3

The QUIT command is a useful way to terminate EDT when you have opened a
file by mistake. No new file version is created.

7.2 Entering EDT Commands
Enter most keypad-editing commands by pressing a keypad key. Enter line
editing commands by typing them after the line-editing prompt and pressing
RETURN.

7 .2.1 Entering EDT Line Commands

EDT prompts for line-editing commands with an asterisk. Line-editing commands
usually operate on a range of one or more lines of text that you specify as a
parameter for the command. For example, to display an entire file on your screen,
enter the TYPE command and specify WHOLE as the parameter as follows:
*TYPE WHOLE

You can abbreviate EDT line-editing commands. For clarity, the examples in this
chapter show complete line-editing commands.

7.2.2 Entering Keypad Commands

In keypad editing, the screen displays editing changes as you make them. You
type text from the main keyboard and enter keypad-editing commands from the
numeric keypad. (To initiate keypad editing, you must first enter the line-editing
command CHANGE or have SET MODE CHANGE in your EDT startup file. See
Section 7.4.2 for information on the CHANGE command.)

(See the description of EDT line-editing commands in the Reference Section for
more information about keypad editing keys.)

Each key in the keypad performs at least one editing command; most perform
two. Pressing a key invokes the regular, or upper, function. To invoke the
alternate, or lower, function of a key, press the GOLD key (labeled PFl) first,
followed by the desired key. In the examples that follow, a small diagram
of the keypad highlights the key or keys that perform the command being
described. The text associated. with the keypad. illustrates ihe efieci:. uf that
editing command.

For example, keypad key 1 performs both the WORD and the CHNGCASE
functions. To invoke the WORD command, press WORD: the cursor moves to the
beginning of the next word.

7-4 Editing Text Files: Using EDT

WORD

DODD
DODD
DODD •oDD c::JD

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]

To invoke the CHNGCASE command, press the GOLD key first and then
CHNGCASE. The character at the cursor or the characters highlighted with the
select key changes from lowercase to uppercase or from uppercase to lowercase.
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]

CHNGCASE

•DOD
DODD
DODD •ooo c::JD

Once The weather turns cold, mice may find a crack in your foundation
and enter your house. They're looking for food and shelter from the harsh
weather ahead.

[EOB]

The supplemental editing keys on the VT200 keypad perform the same
functions as some of the EDT keypad keys. (See the description of EDT line
editing commands in the Reference Section for more information about these
supplemental editing keys.)

Editing Text Files: Using EDT 7-5

7.2.3 Canceling EDT Commands

Use CTRUC to cancel the currently executing EDT command without affecting
previous edits. For example, to stop the display of a long file, press CTRUC.
*TYPE WHOLE

The display stops and the CTRUC message appears.

7.3 Getting HELP in EDT
EDT provides a help facility for each of the EDT editing modes.

7.3.1 Getting HELP with Keypad-Editing Commands

To display a diagram of the keypad keys and their functions, enter change
mode (assuming you are in line-editing mode) and then press the HELP key
(labeled PF2). (On VT200-series terminals, you can also use the HELP key on the
supplemental editing keypad.) To display information about a particular keypad
command, first press the HELP key and then press the keypad key.

7.3.2 Getting HELP with Line-Editing Commands

To display a list of EDT topics on which information is available, type HELP and
press RETURN. To display information about a particular command or topic, type
HELP followed by the name of the topic and press RETURN. EDT responds with
a display of information about the topic and a list of related topics about which
information is available. To display information about the use of a particular
command qualifier, type HELP plus the command and that qualifier and press
RETURN. For example, to display information on the use of /QUERY with the
COPY command, enter the following command line:
*HELP COPY /QUERY

7.4 Changing Editing Modes
You can easily switch back and forth between line and keypad editing; you
can also enter line-editing commands from keypad mode. Before using keypad
commands, be sure that your terminal type is set properly. (Use SHOW
TERMINAL to display the setting and SET TERMINAUINQUIRE to set the
terminal type.)

7-6 Editing Text Files: Using EDT

7.4.1 Changing from Keypad to Line Editing
To change from keypad editing to line editing, press CTRUZ. The asterisk prompt
appears at the bottom of your screen, indicating EDT is ready to accept line
editing commands.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]
lcrnuz!

*

7 .4.2 Changing from Line to Keypad Editing

To change from line editing to keypad editing, enter the CHANGE command:
*CHANGE

The first 22 lines of the file are displayed on your screen. If the file has fewer
than 22 lines, the [EOB] symbol appears below the last line of the file.

7.4.3 Entering Line-Editing Commands from Keypad Mode
The keypad COMMAND function allows you to enter line-editing commands
without leaving keypad mode. First, enter COMMAND (by pressing GOLD and
then COMMAND) to invoke the Command: prompt, then type the line-editing
command and press ENTER. (If you press RETURN by mistake, "M appears;
delete the "M by pressing the DELETE key on the main keyboard, and press
ENTER.) The following example enters the line-editing command SET QUIET,
which suppresses the sound made when EDT issues an error message:

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]

COMMAND

•DOD
•DOD
DODD
0000 CJD

Editing Text Files: Using EDT 7-7

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]
Command: SET QUIET

ENTER

DODD
DODD
DODD
0001
c:JD

7.5 Recovering from Interruptions
You can recover from interruptions to your editing session in the following ways:

• Deleting extraneous characters-Pressing CTRUW removes extraneous
characters (such as a broadcast message or a message indicating that you
have received electronic mail) from the screen and restores the previous
display. Use CTRL/W to ensure that the cursor is in the correct position.

• Resuming an interrupted editing session-The DCL command CONTINUE
resumes an editing session that was interrupted by pressing CTRUY, so long
as only built-in DCL commands were entered after pressing CTRUY. For
example, you could press CTRUY, enter the command SHOW TIME, and
return to your editing session with the CONTINUE command.

(Press CTRUW to refresh the screen display. The text of your editing session
is once again displayed.)

• Recovering a lost session-By default, EDT keeps a journal file with the
same file name as the input file and a file type of JOU. If the editing session
ends without i:ntenuption, the journal file is deleted w·hen ycu terminate the
session. If the editing session is aborted (for example, during a system failure,
in response to pressing CTRUY, or entering the QUIT/SAVE command), you
can recover your edits (with the exception of those commands entered just
prior to the interruption). Enter the same command line you used to begin
the editing session, adding the /RECOVER qualifier. For example:
$ EDIT/RECOVER MEMO.TXT

EDT will reproduce the editing session, reading the commands from the
journal file and executing them on the screen.

7-8 Editing Text Files: Using EDT

7.6 EDT Keypad Editing
While line editing allows you to manipulate large portions of text easily, keypad
editing provides easy manipulation of small units of text. Several EDT keypad
commands enable you to find, insert, delete, substitute, and move text in a file.
The cursor can be moved through a file in a variety of ways, and the position of
the cursor in a file determines how text will be affected by EDT commands.

7 .6.1 Manipulating the Cursor

You can manipulate the cursor with commands that move it unit by unit through
the text or with commands that move it directly to a particular location. Several
commands that move the cursor are controlled by the ADVANCE and BACKUP
commands, which set the cursor's direction forward and backward. Unless
otherwise stated, this chapter assumes the default direction of the cursor to
be ADVANCE.

You can move the cursor by character, word, and line units. Use one of the
following keys to move the cursor by character:

• RIGHT ARROW - Moves the cursor one character to the right.

• LEFT ARROW - Moves the cursor one character to the left.

• CHAR - Moves the cursor one character in the current direction.
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

CHAR

DODD
DODD
DODD
DD•o c::::JD

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The WORD command moves the cursor to the beginning of the next or previous
word.
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

WORD

DODD
DODD
DODD •ooo CJD

Editing Text Files: Using EDT 7-9

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The following keys move the cursor by line:

• UP ARROW-Moves the cursor up one line.

• DOWN ARROW-Moves the cursor down one line.

• EOL-Moves the cursor to the end of the current or previous line.
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

EOL

DODD
DODD
DODD
D•Do CJD

0nce tile wea-cner tu:i:.n::i 1,;uJ.u, rn.i.1,;c::: ma.y .L.i.t~t.:l a c:1:ack i:;.-. ye,;,;:;:

foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

• F12 (the BACKSPACE key on VTlOO-series terminals)-Moves the cursor to
the beginning of the previous line.
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead. fIB (I BACKSPACED

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

7-10 Editing Text Files: Using EDT

• LINE-Moves the cursor to the beginning of the next line or previous line.
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

LINE

DODD
DODD
DODD
DODO
-D

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The OPEN LINE command terminates a line without moving the cursor. (The
RETURN key also terminates a line, but moves the cursor to the next line.) The
OPEN LINE command is useful when you want to insert a blank line or a new
line of text. When the cursor is placed at the beginning of a line and the OPEN
LINE command is entered, the text on that line is moved down so that the cursor
is at the beginning of a blank line as follows:
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

OPEN LINE

•ooD
DODD
DODD
ODDO -D

Once the weather turns cold, mice may find a crack in your

foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

To move the cursor by large units, use the SECT and PAGE commands. The
SECT and PAGE commands allow you to scan several lines of text at a time. The
direction in which EDT moves depends upon whether ADVANCE or BACKUP is
set.

Editing Text Files: Using EDT 7-11

• SECT-Moves the cursor across a 16-line section of text in EDT's current
direction. If there are fewer than 16 lines, SECT moves the cursor across the
existing lines.

(On the VT200-series terminals, the supplemental editing keypad key Next
Screen moves the cursor 16 lines forward, regardless of EDT's current
direction. The supplemental editing keypad key Prev Screen moves the cursor
16 lines backward, regardless of EDT's current direction.)

• PAGE-Moves the cursor to the next or previous page boundary (form feed) or
to the end or top of the buffer if there is no. boundary. To insert form feeds in
your text, use CTRLJL.

The TOP and BOTTOM commands allow you to move directly to the beginning or
end of a buffer. (See Section 7 .6.8 for more information about buffers.)

• TOP-Moves the cursor to the beginning, or top, of the buffer.
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

TOP

•DOD
DODD
D•DD
0000 CJD

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

• BOTTOM-Moves the cursor to the end, or bottom, of the buffer.
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

BOTTOM

•DOD
DODD
•DOD
0000 CJD

7-12 Editing Text Files: Using EDT

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The ADVANCE and BACKUP commands control the cursor's direction for the
following EDT keypad-editing commands: CHAR, CHNGCASE, EOL, FIND,
FNDNXT, LINE, PAGE, SECT, SUBS, and WORD. Each of the directional
commands remains in effect until you set the cursor in the opposite directioh
with the other command.

• ADVANCE-Sets the cursor's direction forward so that subsequent commands
move the cursor in the forward direction. For example, if you enter the
WORD command after using ADVANCE, the cursor moves forward one word.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

ADVANCE

DODD
DODD
•DOD
0000
c=ID

WORD

DODD
DODD
DODD •oDD CJD

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

• BACKUP-Sets the cursor's direction in the backward direction so that
subsequent commands move the cursor toward the top of the buffer. For
example, if you enter the WORD command after using BACKUP, the cursor
moves backward one word.

Editing Text Files: Using EDT 7-13

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

BACKUP

DODD
DODD
D•DD
0000 CJD

WORD

DODD
DODD
DODD •ooo CJD

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The cursor remains set in the backward direction until you press ADVANCE. For
example, if you enter a second WORD command in the preceding example you
receive a message indicating that the command requests EDT to back up past the
top of the buffer.

The ADVANCE and BACKUP commands are particularly important in string
searches; see Section 7.6.4 for more information on searches.

7 .6.2 Inserting Text

To insert text in EDT keypad editing, position the cursor where you want the text
to be inserted and begin typing; the cursor remains one position to the right of
the last character inserted. Inserting text in the middle of a line moves both the
cursor and the remainder of the line one position to the right for each character
inserted. When the line exceeds 80 characters, the text you type will either wrap
to the following line or disappear off your screen, depending on the status of the
SET SCREEN, SET [NO]TRUNCATE, and SET [NO]WRAP commands. (See
Section 7 .8.1 for information about screen formatting commands.)

7-14 Editing Text Files: Using EDT

7.6.3 Deleting and Restoring Text
The delete commands work like the cursor movement commands. In EDT keypad
editing, you can delete by character using the Delete key (<&1) (DELETE on
VTlOO-series terminals) and DEL C; by word using F13 (LINEFEED on VTlOO
series terminals) and DEL W; and by line using DEL L, DEL EOL, and CTRUU.

The deleted text is stored in a buffer so that you can also restore the character
(UND C), word (UND W), or line (UND L) most recently deleted wherever and
as many times as you need. Note that the undelete commands restore only the
corresponding units of text that were most recently deleted. For example, if
you have deleted two lines of text with the DELL (delete line) command, the
UND L (undelete line) command will restore only one line, the line most recently
deleted.

The <XI key on the main keyboard (the DELETE key on VTlOO-series terminals)
deletes the character immediately to the left of the cursor. The EDT keypad
editing command DEL C deletes the character directly at the cursor. The UND C
command restores the last character deleted with either the <&J (DELETE) key or
the DEL C command. For example:
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

DELC

DODD
DODD
ODD•
0000 C:JD

nee the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

UNDC

•DOD
DODD
ODD•
0000 C:JD

Editing Text Files: Using EDT 7-15

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The F13 key on the main keyboard (the LINEFEED key on VTlOO-series
terminals) deletes to the beginning of the current or preceding word. The DEL
W command deletes to the end of the current word. Blank ·spaces are considered
part of the word they follow, while all other word delimiters are considered to be
separate words. The UND W command restores the last word deleted with either
the F13 (LINEFEED) key or the DEL W command. For example:
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

DELW
DODD
ODD•
DODD
0000 CJD

Once the weather turns cold, may find a crack in your
foundation and enter your house. They're looking for food
and shelter from the harsh weather ahead.
[EOB]

UNDW

•DOD
ODD•
DODD
ooon
11n___.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The following commands delete a line (or part of a line) of text:

• DEL L-Deletes from the cursor to the end of the line, including the line
terminator. If the cursor is at the beginning of the line, the entire line is
deleted, and the cursor is positioned at the beginning of the next line.

7-16 Editing Text Files: Using EDT

• DEL EOL-Deletes from the cursor to the end of the line (excluding the line
terminator), leaving the cursor at the end of the truncated line.

• CTRUU-Deletes from the cursor to the next previous beginning of line,
leaving the cursor at the beginning of the previous line. -(If CTRUU is used
when the cursor is at the beginning of the line, the previous line is deleted.)

The UND L command restores the last line (or part of a line) that was deleted
with the DEL L, DEL EOL, or CTRUU command. For example:
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

DELL

DOD•
DODD
DODD
DODO
CJD

Once the weather foundation and enter your house. They're looking for
food and shelter from the harsh weather ahead.
[EOB]

UNDL

•oo•
DODD
DODD
DODO
CJD

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The EDT line-editing command DELETE is useful for deleting large sections
of text. Generally, you use line numbers to specify a range for a line-editing
command. For example, to delete lines 306 through 860, enter the following:
*DELETE 306 THRU 860
555 lines deleted

861 Rodents have had a profound effect on human civilization.
*

Editing Text Files: Using EDT 7-17

Note that the EDT line-editing command SET NUMBERS (the default) must be
in effect for line numbers to be displayed in EDT line editing.

You can also use certain keywords (such as WHOLE, REST, BEFORE) as range
specifiers. For example, if you are in the middle of a long buffer and want to
delete from the cursor to the end of the buffer, enter the following:
*DELETE REST
43 lines deleted
[EOB]
*

(You can also specify range by using the EDT keypad-editing command SELECT.
See Section 7.6.7 for information on SELECT.)

7 .6.4 Locating Text

You can move the cursor to a character string you specify with the FIND and
FNDNXT EDT keypad-editing commands. The FIND command searches for
the specified character string between the current position of the cursor and
the beginning or end of the buffer (depending on whether the ADVANCE or the
BACKUP command is in control). EDT does not distinguish between uppercase
and lowercase letters unless you use the SET SEARCH EXACT line-editing
command. When EDT finds the string, it positions the cursor at the first
character in the string (unless the SET SEARCH END command is in effect,
and the cursor is positioned at the last character in the string). In a long file, the
message ''Working" may flash on the screen while EDT searches for the string.

For example, to delete a comma after the word ''house" in the following text, you
can use the FIND command to move the cursor to the string "house." First, enter
the EDT keypad command FIND by pressing the GOLD key and then the FIND
key (on the VT200-series terminal you can also use the FIND key located on
the supplemental editing keypad). Next, type the string you want to locate (the
search string) after the Search for: prompt.

FIND _,....,_.....,
-LJ-LJ
DODD
DODD
0000 CJD

7-18 Editing Text Files: Using EDT

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead. Once inside, they may gnaw
through electrical wires and raid your food. Because mice reproduce
so quickly, what started as one or two mice can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]
Search for: house

To search in the forward direction, use the ADVANCE command to enter the
search string.

ADVANCE
DODD
DODD
•DOD
DODD CJD

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because mice reproduce so
quickly, what started as one or two mice can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]

Use the CHAR command to move the cursor to the comma after the word "house."
Then use the DEL C command to delete the comma.

CHAR
DODD
DODD
DODD
DD•o CJD

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because mice reproduce so
quickly, what started as one or two mice can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house you can prevent these rodents from ever getting in.
[EOB]

Editing Text Files: Using EDT 7-19

To find the next occurrence of the string located with the FIND command, use the
FNDNXT (find next) command. If there is no other occurrence of the string (as in
the example above), EDT issues the message 11String was not found."

NOTE: The directional setting of the cursor determines the
direction of the search. After you press FIND, you can press
either ADVANCE or BACKUP (depending on the direction in
which you want to search) to enter the search string. You can also
use the ENTER command, which applies the current direction to
the search.

7.6.5 Substituting Text

To substitute one character string for another, you can use the SUBS keypad
editing command or the SUBSTITUTE line-editing command. The EDT line
editing command can make global substitutions; that is, it can replace every
occurrence of one character string in the specified range with another string using
only one EDT line-editing command. In contrast, you must use the keypad SUBS
command (press the GOLD key followed by the SUBS key) for each substitution
you make. (If you do not specify a range, the line-editing command SUBSTITUTE
replaces only the first occurrence of the search string in the current line with the
substitute string.)

For example, to substitute the string "mice" for "elephants" throughout a buffer,
enter the line-editing command SUBSTITUTE, the old string, and the new string,
separating all three with the same delimiter. You can use any nonalphanumeric
character (except the percent sign and underscore) as a delimiter for the
SUBSTITUTE command, as long as the delimiting character is not part of
either string. To apply the command to the entire buffer in a global substitution,
specify WHOLE as the parameter. When the operation has been completed, EDT
displays each occurrence of the substitution and the total number of substitutions.
The following example substitutes the string 11mice 11 for each occurrence of the
string "elephants" in the following text:

COMMAND
_,......,,......,,......,
•LJLJLJ

•DOD
DODD
0000 CJD

7-20 Editing Text Files: Using EDT

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because elephants reproduce so
quickly, what started as one or two elephants can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]

ENTER

DODD
DODD
DODD
DODI
CJD

1 Once the weather turns cold, elephants may find a crack
4 in your electrical wires and raid your food. Because elephants reproduce
5 so quickly, what started as one or two elephants can quickly become an
3 substitutions
Press return to continue
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because elephants reproduce so
quickly, what started as one or two elephants can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]

Note that a global substitution replaces all occurrences of the string, regardless of
case or surrounding characters. If you want EDT to search for exact comparisons
of case, use the SET SEARCH EXACT command. If the search string occurs in
the middle of a longer string, the substitution will still be made. For instance, a
global substitution of 11 IN 11 for 11AT 11 would change all words containing the string
11AT. 11

(
11 LATER 11 would become 11 LINER 11

,
11THAT 11 would become 11THIN•i, 11 SAT 11

would become 11 SIN 11
, and so on.)

To get EDT to prompt you before each substitution, use the /QUERY qualifier
with the SUBSTITUTE command.
Command: SUBSTITUTE\AT\IN\WHOLE/QUERY

EDT prompts you with a question mark (?) to verify each substitution. You can
respond with one of the following:

Y Yes, do the substitution.

N No, do not do the substitution.

Editing Text Files: Using EDT 7-21

Q Quit, terminate the command.

A All, do the rest of the substitutions without query.

7.6.6 Moving Text

Both EDT keypad and line commands can move text; however, only line-editing
commands transfer text between buffers and files.

7.6.7 Moving Text Within the File
The EDT keypad-editing command CUT deletes a selected range of text and the
PASTE command inserts it at the cursor's current position. (On the VT200-series
terminals, the supplemental editing keys Remove and Insert Here perform the
same functions as the EDT keypad commands CUT and PASTE.) For instance,
to move the first sentence in the second paragraph of the example to the end
of that paragraph, move the cursor to the beginning of the sentence and press
SELECT. (On the VT200-series terminals, the supplemental editing key SELECT
performs the same function as the EDT keypad command SELECT.) This marks
the beginning of the selected range. (You can cancel the SELECT command with
the RESET command.)
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead. Once inside, they may gnaw
through electrical wires and raid your food. Because mice reproduce
so quickly, what started as one or two mice can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]

SELECT

DODD
DODD
DODD
~~n
L.........J•LJ

To mark the end of the selected range, move the cursor to the end of the sentence.
The terminal highlights a selected range in reverse video. (The selected range
includes the text up to the character preceding the cursor.)
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because elephants reproduce so
quickly, what started as one or two elephants can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]

7-22 Editing Text Files: Using EDT

Press CUT to delete the selected text.

CUT
DODD
DODD
DD•D
0000 c:JD

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in.
[EOB]

Deleted text remains in the PASTE buffer until you perform another CUT
operation. To restore the text, move the cursor to the appropriate position and
enter the PASTE command. (The text will be inserted directly in front of the
cursor.)
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in.
[EOB]

PASTE

•DOD
DODD
DD•D
DODO c:JD

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.
[EOB]

Editing Text Files: Using EDT 7-23

Because the selected text is held in the PASTE buffer until you perform another
CUT operation (or give the line-editing command CLEAR PASTE), you can paste
the text contained in the PASTE buffer as many times as you want. You can
also enter the PASTE buffer to edit the text it contains. (See Section 7.6.8 for
information on using multiple buffers.)

After moving the text, you may want to use the FILL command to reorganize
selected text so that the maximum number of whole words are fitted within the
current line width. The default line width is 80 characters, but you can use the
SET WRAP command to use another line length for filling text. For example, you
can set the line length to 71 characters with the EDT line-editing command SET
WRAP and then fill a selected range of text.

COMMAND

•ooo
•ooo
DODD
DODD
c::JD

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.
[EOB]
Command: SET WRAP 71

ENTER
DODD
DODD
nnnn
0001
c::JD

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.
[EOB]

7-24 Editing Text Files: Using EDT

EDT will now wrap lines of inserted text and fill lines of selected text at a line
width of 71 characters. Use the SELECT command to mark the text you want to
affect and then enter the EDT keypad command FILL.

SELECT

DODD
DODD
DODD
0000
CJ•

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as
one or two elephants can quickly become an invasion.
[EOB]

RLL

•DOD
D•DD
DODD
0000
CJD

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.
[EOB]

There are several EDT line-editing commands that move text. For example, the
MOVE and COPY commands each perform a function similar to those of the
keypad CUT and PASTE operations. MOVE deletes text from one location and
inserts it in another; COPY inserts a copy of the text where specified without
deleting any text. The EDT line-editing commands INCLUDE and WRITE
perform tasks not possible with EDT keypad-editing commands:

• INCLUDE-Copies a file into the buffer you are currently editing or the
buffer you specify. Follow the VMS conventions for file specifications when

Editing Text Files: Using EDT 7-25

specifying the file to be copied to the buffer. For example, the following
command copies the file named MEM.DAT to the buffer named BUFl:
Command: INCLUDE MEM.DAT =BUFl

• WRITE-Copies a specified range of text from a buffer (the current buffer by
default) to a specified file. If you do not specify a range, the WRITE command
copies the entire contents of the current buffer. For example, the following
command copies the contents of the current buffer to the file ANIMALS. TXT:
Command: WRITE ANIMALS.TXT
$DISK1: [USER]ANIMALS.TXT;l 11 lines

The message displays the new file specification and length.

7.6.8 Using Multiple Buffers
When you begin editing a file with EDT, you are working on a copy of the file in a
buffer called MAIN. (EDT also uses a buffer called PASTE to store the text that
you delete·with the CUT and APPEND commands; you can edit this buffer just
as you can edit other text buffers.) You can create other buffers to store pieces of
text during your EDT editing session. You can enter and edit these buffers; you
can copy text to and from them; and you can write their contents to specified files.

To create a buffer, press the COMMAND key. Type the line-editing command
FIND followed by the equal sign and the name you are giving the buffer, then
press the ENTER key. For example, the following command creates a buffer
namedBUFl:

COMMAND

•DOD
•DOD
DODD
0000 CJD

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.
[EOB]
Command: FIND=BUFl

7-26 Editing Text Files: Using EDT

When you enter this command, the system responds by displaying only the [EOB]
symbol, which indicates that the current buffer, BUFl, is empty. You can now
insert and edit text just as you would in the MAIN buffer. To return to the MAIN
buffer, follow the same procedure, typing FIND=MAIN rather than FIND=BUFl.
To return to your previous position in the MAIN buffer, include a period after the
buffer's name as follows:
Command: FIND=MAIN.

The buffer named BUFl remains intact until you exit from EDT, regardless of
whether you enter the EXIT or QUIT command. That is, you can enter, edit,
and exit from a buffer as necessary. However, when you exit from EDT, only the
buffer MAIN is saved.

The SHOW BUFFER command displays the number of lines contained in each
buffer and indicates (with an equal sign) the current buffer. The following
example indicates that there are three buffers (including MAIN and PASTE,
which always exist) and that MAIN is the current buffer:

COMMAND

•ooo
•ooo
DODD
0000 CJD

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.

[EOB]
Command: SHOW BUFFER
=MAIN 11 lines

PASTE 3 lines
BUFl 2 lines

Press return to continue

Pressing the RETURN key returns the cursor to its previous position in· the
buffer.

You can further manipulate the contents of a buffer by specifying the buffer's
name in an EDT line-editing command. For example, if you are in the MAIN
buffer and want to save the contents of BUFl in a file named RODENT.TXT
before exiting from EDT, enter the following command:

COMMAND

•DOD
•DOD
DODD
0000 CJD

Editing Text Files: Using EDT 7-27

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.

[EOB]
Command: WRITE RODENT.TXT =BUFl

$DISK1: [USER]RODENT.TXT;l 2 lines

EDT returns a message indicating that the file has been created, and the cursor
is returned to its previous location in the buffer.

7.7 Saving Time and Keystrokes-Defining Keys in EDT
If you have a series of keystrokes that you repeat frequently, then you can save
time and keystrokes by using a feature of EDT that lets you associate a set of
keystrokes with a particular key sequence. With this feature, you can define a
key to output a string of text, to execute a series of EDT functions, or to combine
one or more text strings with one or more EDT functions.

The easiest way to define keys is while you are already in the EDT editor.
Howe~"~!', any key definition~ that you make during an EDT editing session will be
canceled when you exit from EDT. You can also make permanent key definitions
that will apply whenever you use the EDT editor. This section describes how to
define keys in EDT.

7.7.1 Defining Keys While in EDT
To define a key while you are already in an EDT editing session, you always
follow the same general process:

0 Signal EDT that you want to define a key by pressing I cTRUK I.

• Select the key (either a CTRL key or GOLD- sequence) that you want to
define.

7-28 Editing Text Files: Using EDT

8 Begin the key definition with an open parenthesis.

8 Describe the text that you want to insert and/or the EDT functions that you
want to execute.

8 End the key definition by typing a closed parenthesis and a period, and then
pressing I ENTER I.

When you define a key while already in the EDT editor, the key definition will
end when you exit from EDT. (See Section 7. 7 .3 for information about making key
definitions that apply every time you use the EDT editor.)

Defining a Key to Insert Text

For example, suppose that you often type the words International Development
Organization. To include this expression in your text simply by pressing!cTRUAI,
use the following steps:

1. Press I crRuK I. This tells EDT that you want to define a key.

When you press I CTRUK I. the message "Press the key you wish to define" is
displayed on your terminal.

2. Press lcTRUAI. This tells EDT that it is the !cTRUAI key that you want to define.

When you press lcTRUAl,the message "Now enter the definition terminated by
ENTER" is displayed on your terminal.

3. Enter the following text, exactly as it is shown below:
(iinternational Development Organization!CTRUZD .

(Note that when you press I CTRuz I in the context of defining a key, the symbol
AZ is displayed).

4. Press I ENTER I.

Now press lcrnuAI; the words International Development Organization are inserted
in your text.

When you entered the definition of the key, the entire expression was enclosed
in parentheses. After the first (open) parenthesis, th~ first character in the key
definition was the letter i. This signifies that everything foilowing the letter i will
be text, until lcTRuzl is pressed. When you pressed lcTRuzl, it signified the end of

Editing Text Files: Using EDT 7-29

the text. The closed parenthesis and the final period signified the end of the key
definition; the key definition is terminated when you pressed I ENTER!.

You can also define a key that includes more than one line of text, simply by using
the I RETURN I key in your definition. For example, suppose that you were using text
formatting software in which you type the following text from time to time:

<list>(unnumbered)
<le>

You could define the JCTRUEI key to do this for you, as follows:

1. Press I cTRUK I

2. Press I CTRUE I

3. Type the following, exactly as shown:
(i<list>(unnumbered)JAETUANkle>ICTRUZI> .!ENTER!

As in the previous example, you type the letter i to signify the beginning of
the text that is to be included in the key definition, and that you press !crnuzl
to signify the end of the text. Also note that when you press ~ in the
context of defining a key, the symbol AM is displayed on the terminal.

4. Press ICTAUEI and see that the text is included in your file.

Defining a Key to Use EDT Functions

You can also define a key that performs one or more consecutive EDT functions.
For example, suppose that you are editing the following text file, which has four
columns of data. In this example, you want to eliminate the last two columns
("Price" and "Total") in each row:

ItePI Quantit1:1 Price Total

App lee 20 1.00 20.00
Bananae 40 1.60 60.00
Beets 26 2.00 60.00
Carrots 30 2.00 60.00
Oranges 20 4.00 80.00
i'ea.cnes iv 3.VV .:iiv.vv

Pea.rs 6 6.00 30.00
Potatoes 50 1.00 50.00_

[EOB]

You could move the cursor to the first line ("Item"), press ~twice to move the
cursor two words (to "Price"), press I GOLD-KP2 I to delete the text from the cursor to
the end of the line, press ~ to move the cursor to the beginning of the next line,
and then start the process all over again. Alternatively, you could define a key to
do most of the work for you.

7-30 Editing Text Files: Using EDT

To define the lcTRuol key to do the work, use the following steps:

1. Press lcTRuKI. This tells EDT that you want to define a key.

When you press I CTRUK b the message "Press the key you wish to define" is
displayed on your terminal.

2. Press I CTRuo I. This tells EDT that it is the I CTRuo I key that you want to define.

When you press ICTRuol,the message "Now enter the definition terminated by
ENTER" is displayed on your terminal.

3. Type these keys, exactly in the order shown:

1. (

2. IBfII
3. ~
4. I GOLD-KP2 I

5. ~
6.).I ENTER I

The bottom of the screen will now look like this:

ItePI Quantit1:1 Price Total

Apples 20 1.00 20.00
Bananas 40 1. 50 60.00
Beets 25 2.00 60.00
Carrots 30 2.00 60.00
Oranges 20 4.00 80.00
Peaches 10 3.00 30.00
Pears 5 6.00 30.00
Potatoes 50 1. 00 50.00

[EOB]

111•1•;11114a1+1;;;;1ww•••1111a

This representational text is associated with the EDT functions that you
select for the key definition. Notice that the key definition begins with an
open parenthesis, and it ends with a closed parenthesis followed by a period.
When you press IENTERI to complete the key definition, the text is removed from
the screen.

When you are in the EDT editor and define a key to be a series of EDT
functions, you can either press the function keys or actually type the
representational text (in this case, WWD+ELL).

Editing Text Files: Using EDT 7-31

Keys Available tor Definitions

The only keys that can be defined in EDT are control keys and two-key sequences
beginning with the GOLD (PFl) key.

7.7.2 Advanced Key Definitions
In addition to straightforward text insertions and series of functions, you can
combine functions with text insertions. You use the same principles as when you
define keys for text insertion only or functions only:

• Always begin your key definition with an open parenthesis.

• When you want to include text in your key definition, signal the beginning of
the text by typing i, and signal the end of the text by pressing I cTRuz L

• When you want to include EDT functions in your definition, simply use the
function keys from the keypad.

• End the key definition with a closed parenthesis and a period, and then press
I ENTER I.

For example, suppose that you are editing the following command procedure:
$COPY [MONTHLY]REGION-1.DAT [FINANCE]*•*
$COPY [MONTHLY]REGION-2.DAT [FINANCE]*•*
$COPY [MONTHLY]REGION-3.DAT [FINANCE]•.•
$COPY [MONTHLY]REGION-4.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-6.DAT [FINANCE]•.•
$COPY [MONTHLY]REGION-6.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-7.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-8.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-9.DAT [FINANCE]*·*
$ COPY [MONTHLY]REGION-10.DAT [FINANCE]*•*
[EOB]

Due to a change on your system, it is now necessary to modify the command
procedure to specify the devices on which the files reside. For each filespec, the
directory [MONTHLY] must be preceded by the device name DISKl:, and the
directory [FINANCE] must be preceded by the device name DISK2:.

To expedite the editing process, you could define a key in EDT that edits each line
automatically. The key that you define would move the cursor to [MONTHLY],
insert the text DISKl:, move the cursor to [FINANCE], insert the text DISK2:,
and finally move the cursor to the beginning of the next line.

To define the key sequence I GOLD-FI to replicate this series of keystrokes, do the
following:

1. Press fCTRuKI to signal a key definition.

2. Press !GOLD·F! to signify the key that you are defining.

3. Type an open parenthesis to begin the key definition.

7-32 Editing Text Files: Using EDT

4. Press ~ two times, to represent the cursor moving ahead two words.

5. Type the following, to insert the appropriate text:
iDISKl: lCTRUZl

6. Press ~ once, to represent the cursor moving ahead one word.

7. Type the following, to insert the appropriate text:
iDISK2: lCTRLJZl

8. Press ~ to move the cursor to the beginning of the next line.

9. Type a closed parenthesis followed by a period. The bottom line of your
terminal now looks like this:

$COPY [MONTHLY]REGION-1.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-2.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-3.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-4.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-6.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-6.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-7.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-8.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-9.DAT [FINANCE]*·*
$COPY [MONTHLY]REGION-10.DAT [FINANCE]*·*
[EOB]

10. End the key definition by pressing I ENTER!.

With the cursor at the beginning of the first line of your command procedure,
press I GOLD-FI. The edits are automatically inserted on the first line, and the cursor
is at the beginning of the second line.

You could complete the edits by pressing I GOLD·F I 9 more times, or you could further
expedite the process by using the REPEAT function in EDT, with the following
sequence:

1. Press the !GOLDI key

2. Type 10 (from the keyboard, not the keypad)

3. Press the sequence lGOLD·FI

This executes the I GoLo-F I sequence ten times.

Editing Text Files: Using EDT 7-33

Using the Find Function

To use the EDT find function in a key definition, you must use quotation
marks around the text for which you are searching. That is, the expression
"subroutine" in a key definition means "search for the text string subroutine
and move the cursor to the beginning of that text string." For example, suppose
you have a source program that includes several instances of the following text,
with the name of various subroutines in place of subroutine-name:

.SUBROUTINE subroutine-name

You now find that some additional code is needed after each subroutine, in order
to resolve potential errors, and you want to add the following line after each
subroutine call:
.GO TO ERROR-CHECKING

A key defined for this would first search for the text string .SUBROUTINE and
move the cursor to the beginning of the next line. You would then use the OPEN
LINE function (to make sure there is a blank. line), and then insert the text .GO
TO ERROR-CHECKING. To define the tCTRLJBf key to do this, you would use the
following steps:

1. Press I cTRLJK I

2. Press I CTRLJB I

3. Type an open parenthesis to begin the key definition

4. Type the following to search for the string .SUBROUTINE:
".SUBROUTINE"

5. Press ~ to represent the cursor moving to the beginning of the next line,
then press the sequence I GOLD-KPo I to represent the OPEN LINE function

6. Type the following to include the appropriate text:
i.GO TO ERROR-CHECKINGfCTRUZl

The bottom lines of your screen now look like this:

7. Type a closed parenthesis and a period, then press tENTERf to complete the key
definition.

7-34 Editing Text Files: Using EDT

7. 7.3 Permanent Key Definitions

The previous section explained how to define a key while in EDT. This is easy
and quick to do, but any keys that you define during an editing session will apply
only during that editing session. You can also define keys that will apply every
time that you use the EDT editor. It is a more complex process than defining keys
during an editing session, but it might save you time in the long run.

To define keys that will apply whenever you use the EDT editor, you use the
following process:

• Create a file in which your keys are defined. This file is called an EDT
initialization file, and it is a text file that can contain key definitions and
other set-up information about your EDT session.

• Specify the initialization file that you will use by using the /COMMAND=
qualifier in your EDIT/EDT command line. For example, if your EDT
initialization file is [THOMAS]EDTINI.EDT, then you would use the
following DCL-level command to edit a file named REPORT.TEXT using
your initialization file:
$ EDIT /EDT /COMMAND=[THOMAS]EDTINI.EDT REPORT.TEXT

You can of course define a symbol in your login command file that would
reduce the number of keystrokes that you need; for example:
$ EDT :== EDIT /EDT /COMMAND=[THOMAS]EDTINI.EDT

The EDT Initialization File

The EDT initialization file is a text file that you can create to define keys and set
up parameters for your EDT editing session. Set-up parameters include any SET
command that EDT allows, as described in the EDT reference documentation.

Defining Keys in the EDT Initialization File

To define a key in an EDT initialization file, use the following format:

DEFINE KEY key-name AS 'key-definition.'

The key-name can be either a CTRL key or a sequence using the !GOLDI key. For
CTRL keys, use the word CONTROL followed by a single space and the CTRL
character; for !GOLDI sequences, use the word GOLD followed by a single space
and the appropriate character. For example, the following lines would begin key
definitions for the lcrnuAI, lcTAue~ IGOLD·LI, and IGoLD-31 keys:
DEFINE KEY CONTROL A AS' '
DEFINE KEY CONTROL BAS' '
DEFINE KEY GOLD LAS' '
DEFINE KEY GOLD 3 AS' ..•. '

Each key definition in the EDT initialization file must be on a single line, and the
line can include up to 255 characters.

Editing Text Files: Using EDT 7-35

The next section describes the syntax that you use for th~ key definitions.

Key Definitions in the EDT Initialization File - Text

Key definitions in an EDT initialization file are similar to the key definitions
made during an editing session. The letter i in a key definition signifies the
beginning of text, and the text continues until a lcrRuzl is reached.

When defining a key in the EDT editor, you could press I crRuzl and the symbol
(AZ) would appear in the right place. However, if you are creating your EDT
initialization file pressing I crRuz I will have a different meaning. Therefore,
you have to use the SPECIAL INSERT function to insert the 1crRuzl into your
initialization file.

To insert a lcrRuzl into your file, you type the following sequence:

GOLD
26 [from the keyboard]
GOLD
3 [from the keypad]

If you are using EDT, the symbol "Z is displayed on your terminal.

So to define the fCTRUAI key to insert the text International Development
Organization, you would include the following line in your initialization file:
DEFINE KEY CONTROL A AS 'iinternational Development OrganizationAZ.'

Remember that the "Z is a symbol for lcTRuzl that is inserted into your file with
the following sequence:

GOLD
26
GOLD
3

Also remember to complete the key definition with a period, and then to enclose
the key definition in quotation marks.

1f yuu. -want to insert multiple lines of text i..~ yc~:r key de:fi!'itfo:rr1 the:rr yo.._1 m1Jst
use the symbols for carriage-returns and line-feeds in the text that you insert. In
Section 7. 7 .1, you learned how to define a key that would include the following
text in a file:

<list>(unnumbered)
<le>

When defining a key in the EDT editor, you could insert a carriage-return simply
by pressing the I RETURN I key. However, when you are editing your initialization file,
you must insert the symbol for the ~ key in a similar way as you inserted
the symbol for the lcrRuzl key. The IRETURNI key is considered to be text, so the
symbol for it must also be preceded by i and followed by "Z.

7-36 Editing Text Files: Using EDT

In EDT, the symbol for the I RETURN! key is represented by <CR>. To insert the
symbol for I RETURN I, use the following sequence:

GOLD
13 (Keyboard)
GOLD
3 (Keypad)

When you do this, the symbol <CR> is displayed on your terminal.

So, to define key lcTRUEI to output this text, you would use the following line in
your EDT initialization file:

DEFINE KEY CONTROL E AS 'i<LIST>(UNNUMBERED)<CR><LE>AZ.'

In this example, the symbol <CR> is inserted using the sequence GOLD-13-
GOLD-KP3, and the symbol AZ is inserted using the sequence GOLD-26-GOLD
KP3.

Key Definitions in the EDT Initialization File - EDT Function

To indicate EDT functions, specific symbols are used in your EDT initialization
file. Table 7-1 lists these symbols; they are the same symbols displayed on your
terminal when you define keys while in an EDT session.

Table 7-1: Symbols for EDT Functions

EDT Function Key

FIND PF3

DELETE LINE PF4

UNDELETE LINE GOLD-PF4

SECTION KPB

FILL GOLD-PF8

PAGE KP7

1 Enclose the string in quotes

Symbol

II nl

D+NL

UNDL

(16L)

FILLSR

PAGETOP

Explanation

Search for a string of
text

Delete Line

Insert contents of delete
line buffer

Moves cursor one
section (16 lines)

Fills a selected range of
text

Moves cursor to right of
next page marker

(continued on next page)

Editing Text Files: Using EDT 7-37

Table 7-1 {Cont.): Symbols for EDT Functions

EDT Function Key Symbol Explanation

APPEND KP9 APPEND SR Removes contents of
selected range from
the current buffer
and appends it to the
contents of the paste
buffer

REPLACE GOLD-KP9 CUTSR=DELETE Deletes text in selected
PASTE range and replaces it

with the contents of the
paste buffer

DELETE WORD MINUS(-) DEW Deletes a word

UNDELETE WORD GOLD- UNDW Inserts the contents of
MINUS the Delete word buffer

ADVANCE KP4 ADV Sets cursor direction
forward

BOTTOM GOLD-KP4 ER Moves cursor to end of
the buffer

BACKUP KP5 BACK Sets ~ursor direction
backward

TOP GOLD-KP5 BR Moves cursor to first
character at the
beginning of the buffer

CUT KP6 CUT SR Replaces contents
of paste buffer with
the selected range;
the selected range
is removed from the
current buffer

PASTE GOLD-KP6 PASTE Inserts contents of the
paste buffer into the
current buffer

DELETE CHARACTER COMMA(KP) D+C Deletes a single
character

UNDELETE CHARACTER GOLD- UNDC Inserts the contents
COMMA of the delete character

buffer

WORD KPl w Move ahead one word

(continued on next page)

7-38 Editing Text Files: Using EDT

Table 7-1 (Cont.): Symbols for EDT Functions

EDT Function Key Symbol

CHANGE CASE GOLD-KPl CHGCSR

END OF LINE KP2 EL

DELETE TO END OF LINE GOLD-KP2 D+EL

CHARACTER KP3 +C

LINE KPO L

OPEN LINE GOLD-KPO (<CR>-C)

SELECT PERIOD (KP) SEL

RIGHT Right arrow +C

LEFT Left arrow -C

UP Up arrow -V

DOWN Down arrow +V

Explanation

Change the case of
current character, or
entire select range if
one is active

Move cursor to end of
line

Delete text from cursor
to end of the line

Move ahead one
character

Move cursor to
beginning of next line

Insert open line

Begin a select range

Move right one
character

Move left one character

Move up one line

Move down one line

To use the EDT functions in a key definition, use the symbols shown in the table.
For example, consider the example shown earlier, where a key was defined to
delete the last two columns of a list such as this:
Item Quantity Price Total

Apples 20 1.00 20.00
Bananas 40 1.50 60.00
Beets 25 2.00 50.00
Carrots 30 2.00 60.00
Peaches 10 3.00 30.00
Pears 5 6.00 30.00
Potatoes 50 1.00 50.00
Oranges 20 4.00 80.00

The desired series of steps was as follows:

1. Move the cursor ahead two words.

2. Delete the text from the cursor to the end of the line.

3. Move the cursor to the beginning of the next line.

As shown in Table 7-1, the symbols for these functions are as follows:

Editing Text Files: Using EDT 7-39

1. WW [To move the cursor ahead two words]

2. D+EL [To delete the text from the cursor to the end of the line]

3. L [To move the cursor to the beginning of the next line]

So, to define the I crRLJE I key to move the cursor ahead two words, then delete to the
end of the line, and then move to the next line, you would include the following
line in your EDT initialization file:
DEFINE KEY CONTROL E AS 'WWD+EL.'

Ai; you see, the symbols for the various EDT functions are simply listed one right
after the other, with no intervening punctuation.

Here is another example of a useful key definition, for people who sometimes type
letters in not quite the proper order:
DEFINE KEY CONTROL DAS '-C-CD+C+CUNDC+C.'

This key definition transposes the last two letters that you just typed. For
example, suppose you type the following:
To be or not to be, thta

If you have defined !crnuol as shown above, you could simply press lcrnuol and the
typographical error will be corrected.

Sample EDT Initialization File

The following example shows an EDT initialization file that you could use or
adapt to meet your needs. After this initialization file is created, you specify its
use with the /COMMAND= qualifier in the EDIT/EDT command line.

In this example, the symbols "Z and <CR> represent !cTRLJZI and [RE'i'URN],
respectively, as explained earlier in this section.

set entity word '<>])'t»
set mode changef9
set quiet.
;:>t:li.. w:.r.:d.p 709
define key gold a as 'i<p><cr><list>(unnumbered)<cr><le>Az.'@t
define key gold bas 'i<CR><endlist><p><CR>AZ.'6)
define key gold d as '"("+csel")"i<CR>AZappendsrl) .'8
define key gold e as 'i<CR>AZext delete • thru end.'@)
define key control e as '-c-cd+c+cundc+c.'6>
define key gold fas 'brext delete • thru end.'41)
define key control fas 'brselerfillsrbr.'41 fills entire buffer
define key control 1 as 'i<CR><le>Az.''9
define key control z as 'ext ex.'8
define key gold mas 'ext =main .• '41
define key gold w as 'ext set screen 132.'~
define key gold x as 'ext =x .. '48

7-40 Editing Text Files: Using EDT

The first four lines of this sample initialization file have the following effect:

8 The WORD function stops at the symbols listed, in addition to the existing
defaults, each time you use EDT.

fD Puts EDT in keypad mode when you enter the editor.

6) Tums off the terminal bell that would otherwise go BRAP! when a message is
displayed.

8 Sets the right margin to 70 when you use EDT.

The following table lists the keys that are defined in this initialization file:

Ref.
Key or
Sequence Action Taken When Key or Sequence Is Pressed

A carriage return and the following text are inserted in the editing
buffer:

<p>
<list>(unnumbered)
<le>

A carriage return and the following text are inserted in the editing
buffer:

<endlist>
<p>

The text within the next set of parentheses is removed from the current
buffer and appended (with a carriage return) to the paste buffer. Using
this key, you can extract data that is enclosed in parentheses, and
create a list of the data elements in the paste buffer (which can then be
written to a file).

Deletes all of the text between the cursor position and the end of the
buffer.

The two characters that immediately precede the cursor are transposed.
For example, to change teh to the with a single keystroke, you could use
this I CTRLJE I key definition.

Deletes the entire contents of the buffer (from beginning to end).

The entire buffer is placed in a select range and filled.

Ref.
Key or
Sequence

7.7.4 Summary

Editing Text Files: Using EDT 7-41

Action Taken When Key or Sequence Is Pressed

A carriage return and the following text are inserted in the editing
buffer:

<le>

The edits you have made are saved, the file is written, and you exit
from EDT. This is the same as pressing I CTRL/Z I and then typing EXIT
at the asterisk (*) prompt.

EDT switches to the default buffer (MAIN), at the same cursor position
as when you were last in that buffer.

The screen width on your terminal is set to to 132 columns.

EDT switches to a buffer named X. If buffer X does not exist, this
command creates it; if buffer X does exist, the cursor position is the
same as when you were last in that buffer.

• You can define !cTRul keys and !GoLo-1 key sequences in EDT. Key definitions can
either insert text, reproduce EDT functions, or combine text insertions with
EDT functions.

• You can define keys during an EDT editing session, or you can define keys
in an EDT initialization file. Keys defined during an editing session do not
apply after you exit from EDT, but keys defined in an initialization file apply
whenever the initialization file is specified with the /COMMAND= qualifier in
the EDIT/EDT command line.

• To define a key during an editing session, press I crnuK I. then press the key
that you want to define. Begin the key definition with an open parenthesis.
When vou want to insert text. sienal the beW.nning of the text by typing the
letter i, and signal the end of the text by pressing-I crRLJZ I. When you· want
to include EDT functions in your key definition, just press the appropriate
keypad function key. To indicate that you want to search for a text string in
your key definition, enclose the text in quotes. Complete the key definition by
typing a closed parenthesis and a period, and then by pressing I ENTER I.

• To define keys in an initialization file, put the definition for each key on a
single line, and begin each line with the syntax:

DEFINE KEY key-name AS key-definition

The key definition should begin with a single quote, and it should end with a
period followed by a single quote.

7-42 Editing Text Files: Using EDT

To include text in a key definition, indicate the start of text with the letter
i, and indicate the end of the text by inserting the symbol for !crnuzl. You
can insert the I crRuz I symbol in your initialization file using the sequence
~·
To include EDT functions in your key definitions, use the function symbols
listed in Table 7-1. To search for text, use quotation marks to enclose the text
that is the search string.

Troubleshooting

If you are having trouble defining a key, be sure of the following:

• All text strings begin with i and end with lcrnuz!

• Use quotation marks to search for text strings

• When defining keys in an initialization file, use the proper symbols for EDT
functions (as shown in Table 7-1)

7.8 Controlling EDT Sessions
You can control some of the characteristics of an EDT editing session with
the SET commands. You can also define a macro (a sequence of line-editing
commands) and define keys in EDT. You can enter these control commands
interactively, or you can include them in an EDT startup command file.

7.8.1 Controlling Screen Format with SET Commands

Several EDT commands control the format of a screen display. Some are listed
below. See the EDT commands in the Reference Section for a comprehensive list
of the SET commands.

• SET LINES n-Controls the number of lines that EDT displays on the screen.
This number, which can be set from 1 to 22, defaults to 22. To set the screen
to 15 lines, for example, type:
Command: SET LINES 15

Note that if you are editing at slow baud rates, setting the number of lines
low will increase your editing speed.

• SET SCREEN width-Controls the maximum length of the line EDT displays;
the default width is 80 characters. (When there are more characters than the
SET SCREEN command specifies, EDT displays a diamond at the end of the
line.)

Command: SET SCREEN 132

If you use the SET SCREEN command to make the screen wider than 80 on
either a VTlOO- or VT200-series terminal, EDT changes the terminal's screen
width to 132.

Editing Text Files: Using EDT 7-43

• SET [NO]TRUNCATE-Controls whether the characters that exceed the
SET SCREEN width are displayed on the next line. The default is SET
TRUNCATE, which ends the display of a line at the value of SET SCREEN.
Command: SET [NO]TRUNCATE

• SET [NO]WRAP n-Specifies n character positions as the point at which
text will be moved to the beginning of the next line. When you are inserting
text in EDT keypad mode and the cursor position exceeds the value of n,
EDT wraps the next full word to the next line. (However, when you insert
text in the middle of a line, that line does not always wrap.) The default is
NOWRAP. To wrap the text exceeding 75 characters, for example, type:
Command: SET WRAP 75

The SET commands have corresponding SHOW commands; see the EDT
commands in the Reference Section for a list of SHOW commands.

7.8.2 Controlling Editing Functions with SET Commands

Several commands control EDT's responses during an editing session, as follows.
(See the EDT commands in the Reference Section for a comprehensive list of the
SET commands.)

• SET ENTITY-Defines boundaries for the WORD, SENTENCE, PARAGRAPH,
and PAGE entities. (The SENTENCE and PARAGRAPH entities are not used
by any default key definitions; consequently, they are useful only in the key
definitions you create with the DEFINE KEY command.) For example, the
default boundaries for the WORD entity are a line feed, tab, form feed, line
terminator, and space. To make the period and comma the only delimiters of
the word entity, enter the following SET ENTITY command:
Command: SET ENTITY WORD '' .'

• SET MODE-Controls the EDT editing mode to be entered when the
processing of the EDTINI.EDT file is completed (either line or change mode,
which is keypad mode). For example, to enter change mode instead of line
mode at the beginning of editing sessions, insert the following command at
,,_ - .. _, - P .. -·--··- T:'l~m .. L •• -L ____ -------- --- .1 .£!1_. 11ne enu 01 your .I!IJJ .t t>11art.uv co..uu1H:u1u .tut:~

SET MODE CHANGE

• SET QUIET-Suppresses the sound made when EDT issues an error message
in keypad mode. The default is NOQUIET.

7--44 Editing Text Files: Using EDT

7.8.3 Defining EDT Macros

An EDT macro allows you to execute a sequence of EDT line-editing commands
whenever you invoke the macro. To define a macro, use the EDT line-editing
command DEFINE MACRO to define the name of a buffer as the macro
name. Then create and enter a buffer with the same name as the macro. (See
Section 7.6.8 for information about using multiple buffers.) Once in the buffer,
type the EDT line-editing commands in the desired sequence, one command per
line. For example, the following macro inserts a four-line heading:
INSERT;NAME:
INSERT;DEPT:
INSERT;DATE:
INSERT;SUBJ:
[EOB]

Then exit from the buffer. To invoke the macro, enter its name as an EDT line
editing command. The lines of the heading are inserted at the cursor position:
NAME:
DEPT:
DATE:
SUBJ:

To make a macro available during other editing sessions, you can place the
DEFINE MACRO command and the macro command sequence in an EDT startup
command file. When you include a macro definition in a startup command file,
be sure the command sequence contains the commands for entering the macro
buffer (FIND=buffer-name.) and returning to the MAIN buffer (FIND=MAIN.).
Note that you must precede each command in the sequence with the INSERT
command. For more information about macro definitions, see Section 7.8.3.

Chapter 8

MAIL: Communicating with Other Users

MAIL lets you send messages to other users on your system or on any other
computer that is connected to your system with the DECnet-VAX network. This
chapter describes the routine tasks you can perform using MAIL and how you can
customize MAIL to fit your needs.

For more information about MAIL commands and qualifiers, see the MAIL
description in the Reference Section or type HELP at the MAIL> prompt.

Figure 8-1 shows a sample mail message and its components.

Figure 8-1: Sample Mail Message

Message Number Date Time

!
1

Address {From:
Information To:

Subject Prompt-. Subj:

! !
19-APR-1990 14:12:27

STONE: :FELLINI
JONES
Sales presentation on April 20

Folder Name

!
NEWMAIL

Message f
The meeting to discuss the Hubbub Cola account has been
moved from our conference room to the auditorium.

Text !'lPP '"'" t-hprP 1

L Joe

4

MAIL Prompt--. MAIL>

ZK-0980A-GE

s-2 MAIL: Communicating with Other Users

8.1 Invoking and Exiting MAIL
To perform MAIL tasks, you invoke MAIL and enter MAIL commands at the
MAIL> prompt.

When the MAIL> prompt has been displayed, you can enter the appropriate
MAIL commands to perform the following tasks:

• Read a mail message

• Send a mail message

• Reply to a mail message

• Forward a mail message

• Organize mail messages

The remaining sections in this chapter describe these tasks and provide examples
for performing them. The Reference Section lists and describes the MAIL
commands and their qualifiers.

Invoking MAIL

To invoke MAIL, enter the following command at the DCL prompt:
$MAIL

MAIL displays the following prompt:
MAIL>

Exiting from MAIL

To exit from MAIL, enter the EXIT command at the MAIL prompt.
MAIL> EXIT

You can also exit from MAIL by pressing CTRUZ or using the QUIT command.

NOTE: If you have entered the text of a message, pressing
CTRUZ will send the message. To cancel a send operation without
exiting from MAIL, press CTRUC.

8.2 Reading Messages
Invoke MAIL to read an old or new mail message. Messages you receive are
stored in mail files, which have a default file type of MAI. In this file, by default,
MAIL provides two folders that store old and new messages. New messages are
automatically placed in a folder called NEWMAIL; old messages are placed in a
folder called MAIL. After you read a new message, the message is automatically
moved from the NEWMAIL folder to the MAIL folder. You can move between

MAIL: Communicating with Other Users 8-3

these folders to read old or new mail messages by using the SELECT command.
For information about reading old messages, see Section 8.2.2.

8.2.1 Reading a New Message

When you are logged in to your account and receive a mail message, MAIL
notifies you. For example, notification of a message sent by user FELLINI is
displayed as follows:
New mail on node DOODAH from STONE::FELLINI (10:02:23)

To read a new message, use the following procedure:

1. Invoke MAIL.

2. Press RETURN at the MAIL> prompt.
MAIL>~

If you have more than one new message, press RETURN at the MAIL> prompt
to read the other messages. When you have read all your new messages, MAIL
issues the message "%MAIL-E-NOMOREMSG, no more messages," and continues
to prompt for commands until you exit MAIL.

If you receive a mail message while you are in MAIL, enter the READ/NEW
command to read the new message.

8.2.2 Reading Old Messages

To reread old mail messages in your default MAIL folder, use the following
procedure:

1. Enter the SELECT command at the MAIL> prompt:
MAIL> SELECT MAIL

MAIL places you in the MAIL folder.

2. To read the first message in your default MAIL folder, press RETURN at the
MAIL> prompt or enter the READ command.

MAIL displays the first message (1) in your default mail file on the screen.

3. To display the next message, press RETURN.

4. If the message is too long to display on one screen, press RETURN to display
the next part of the message.

5. To skip part of a message and display the next message, enter NEXT.

8-4 MAIL: Communicating with Other Users

To read a particular message in your default MAIL folder, use the following
procedure:

1. Enter the DIRECTORY command at the MAIL> prompt:
MAIL> DIRECTORY

MAIL displays a list like the following:
MAIL> DIRECTORY

MAIL
From Subject
1 DOLCE::FELLINI
2 DOODAH::JONES

Date
19-APR-1990
19-APR-1990

Sales presentation on April 20
Status

MAIL>

2. Enter the number of the message you want to read at the MAIL> prompt.
MAIL> 2

MAIL displays the message that you selected.

If you have many messages, you can locate a particular message by using the
SEARCH command to find a specified string. To search for a string, specify
that string as a parameter to the SEARCH command, as shown in the following
example:
MAIL> SEARCH "appointment"

The SEARCH command selects and displays the first message in the current
folder that contains the specified string.

To search for a new string, specify the string as a parameter to the SEARCH
command. Each time you specify a new string, the SEARCH command starts
the search at message number 1. To continue searching the folder for messages
that contain the specified string, use the SEARCH command without specifying a
parameter.

8.3 Sending a Message
To send a mail message to any user on your system, do the following:

1. Enter SEND at the MAIL> prompt:
MAIL> SEND

MAIL prompts you for the name of the user you want to receive the message.
To:

2. Type the name of the user receiving the message and press RETURN.
To: THOMPSON

MAIL prompts you for the subject of the message.
Subj:

MAIL: Communicating with Other Users s-s

3. Enter the subject of the message and press RETURN. Entering this
information is optional.
Subj: Meeting on April 20

MAIL prompts you for the text of the message.
Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:

4. Enter the text of a message, or just press RETURN. Entering this information
is optional.

I have some new ideas about the Hubbub Cola account. Let me know ~
when you're available to talk about them. ~
~
--Jeff

5. Press CTRUZ to send the message. If you decide not to send the message,
press CTRUC, which cancels the send operation without exiting from MAIL.

8.3.1 Sending MAIL over the Network

If your computer system is part of a network, you can send mail to any other user
on the network. If you are sending mail to someone on a different node, you must
enter the user's node name and user name at the To: prompt using the following
format:

nodename::username

For example, to send a message to user HIGGINS on node CHEETA, enter the
following command and user name:
MAIL> SEND
To: CHEETA::HIGGINS

MAIL displays a message if the network connection to the remote node is not
available. Wait a while and try to send the message later.

8.3.2 Sending a Message to More Than One User

You can senci mail to several users at foe same time in two ways; using individual
user names at the To: prompt or using a distribution list.

To send the same message to several users using their user names, enter the user
names at the To: prompt and separate them with commas. For example, to send
a message to Thompson, Jones, and Barney, enter the following:
MAIL> SEND
To: THOMPSON,JONES,BARNEY
Subj: Meeting on January 9

8-6 MAIL: Communicating with Other Users

Creating a Distribution List

A distribution list is a file that contains a list of users and their node names. You
must use a text editor to create distribution lists; distribution lists are not created
within MAIL.

To create a distribution list, use the following procedure:

1. Create a file, with the file type DIS, using a text editor.

2. Enter one user name per line in the file.

3. To include the names of other distribution lists in the file, specify an at sign
(@) followed by the name of the distribution list.

4. To include comments in the file, enter an exclamation point (!).

The following example shows a distribution list file:
! ALLBUDGET.DIS

! Budget Committee Members
@BUDGET ! listed in BUDGET.DIS.

Staff
Thompson
BRUTUS::JONES
PORTIA: : BARNEY

In the preceding example, ifthe file BUDGET.DIS is not in the same directory as
the new distribution list file you are creating (ALLBUDGET.DIS), include the file
specification for BUDGET.DIS in the new distribution file. Depending on where
you create ALLBUDGET.DIS, you might have to specify the device and directory
in which BUDGET.DIS is located. (See Chapter 1 for more information about file
specifications.)

Sending a Message to a Distribution List

To send mail to several users using a distribution list, use the following
procedure:

1. Use a text editor to create a distribution list file.

2. Invoke MAIL.

3. Type SEND at the MAIL> prompt and press RETURN:
MAIL> SEND ~

4. Type an at sign (@) and the file name at the To: prompt. Press RETURN.
To: @ALLBUDGET ~

5. Type the subject of the message at the Subj: prompt and press RETURN.
Subj: Tomorrow's Meeting ~

MAIL: Communicating with Other Users 8-7

6. Enter the text of the message at the text prompt.
Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:

The meeting about the Hubbub Cola account is tomorrow at 2:00.

--Jeff

By default, the system looks for a distribution list file with the file type DIS. If
the file containing your distribution list has a different file type, you must specify
the file name and file type at the To: prompt. If you invoke MAIL while in one
directory and the file containing the distribution list is in another, enter the
distribution list's full directory name at the To: prompt.

8.3.3 Sending a File

You can send a file to other users from within MAIL or from DCL level. Use the
following procedure to send a file from within MAIL:

1. At the MAIL> prompt, enter SEND and the name of the file you want to send.

MAIL> SEND MEMO.TXT

2. At the To: prompt, enter the user name of the person you want to receive the
file.
To: EDGELL

3. At the Subj: prompt, enter the subject of the file.
Subj: Another memo

4. To send the file, press RETURN; to cancel the send operation, press CTRUC
or CTRUY. CTRUC keeps you within MAIL; CTRLJY returns you to DCL
level.

When you send a file from DCL level, MAIL is invoked, but you do not enter an
interactive session, nor do you see the MAIL> prompt. When the file is sent, you
are automatically returned to DCL level. When you are sending a file from DCL
level, the argument to the (optional) /SUBJECT qualifier must be enclosed in
quotation marks if it contains any spaces or nonalphanumeric characters.

For example, to send the file MEMO.TXT to user EDGELL on node CHEETA at
DCL level, use the following procedure:

1. At the DCL prompt, enter the following command:

$ MAIL/SUBJECT="Another memo" MEMO.TXT CHEETA::EDGELL

2. Press RETURN to send the file; press CTRL/C to cancel the send operation.

s-s MAIL: Communicating with Other Users

8.3.4 Creating a File from a Message
To create a text file from a message, enter the EXTRACT command and the file
name at the MAIL> prompt while you are reading the message. For example, to
create a file named JAN_MEETINGS.TXT from the following mail message, enter
the following command:

19-APR-1990 14:12:27 NEWMAIL

From: STONE::FELLINI
To: Thompson
Subj: Dates for January sales meetings

Sales meetings in January will be held on the following dates:
Wednesday Jan. 3, 1990
Tuesday Jan. 9, 1990
Monday Jan. 15, 1990
Thursday Jan. 25, 1990

MAIL>.EXTRACT JAN_ MEETINGS. TXT

MAIL displays a message like the following one:
%MAIL-CREATED, DISK:[THOMPSON]JAN_MEETINGS.TXT.

When you exit from MAIL, the file is listed in your current directory (unless you
specify another directory).

The mail header is composed of the From:, To:, and Subj: lines. To create a file
that does not include header information, specify the /NOHEADER qualifier to
the MAIL command.

The following example shows how to create a file named
JANUARY_MEETINGS.TXT containing the text of message number 3:
MAIL> READ 3

MAIL> EXTRACT/NOHEADER JANUARY MEETINGS.TXT
%MAIL-I-CREATED, DISKl: [JONES]JANUARY_MEETINGS.TXT;l created
MAIL>

If the message has more than one header (for example, a forwarded message),
only the topmost header is deleted.

Use the I APPEND qualifier to the EXTRACT command to copy a message to the
end of an existing file. Use the I ALL qualifier to copy all the files in the current
folder to an existing file.

MAIL: Communicating with Other Users 8-9

8.4 Replying to a Message
To reply to a message you have received, use the following procedure:

1. Type REPLY at the MAIL> prompt and press RETURN.

MAIL displays the following header information:
To: STONE::THOMPSON
Subj: RE: Budget Meeting
Enter your message below. Press CTRL/Z when complete. CTRL/C to quit:

2. Type your message and press CTRUZ to send the message; press CTRUC to
quit.

8.5 Forwarding a Message
To forward a mail message to other users, enter the FORWARD command at the
MAIL> prompt after you have read the message.

8.6 Organizing Your Messages
To organize your mail messages, you can create your own mail folders and files.
Each folder and file can contain any number of messages. The name of the
current folder is displayed in the top right corner of the screen each time you
enter a READ or DIRECTORY command. You can work only with messages that
are in your current folder.

Like the default mail folders (NEWMAIL, MAIL, WASTEBASKET), the folders
you create are normally stored in the mail file MAIL.MAI.

8.6.1 Creating and Modifying Folders

The following MAIL commands allow you to create and modify folders:

• FILE or MOVE-Files the current message in the folder you specify. If the
folder does not exist, MAIL displays a message asking if you want to create it.
Afte!" being filed, the ::nessage fa au.tomatically delett:d f:rom th.e (;U.t.ten.t folder.

• COPY-Places a copy of the current message into the folder you specify. If the
folder does not exist, MAIL displays a message asking if you want to create it.
The following commands copy all messages containing the word MEETING
from the current folder to a folder named SCHEDULE. After the commands

s-10 MAIL: Communicating with Other Users

are executed, you have two copies of each message, one in the current folder
and one in the folder SCHEDULE. The first command selects and displays
the first message containing the word meeting:

MAIL> SEARCH MEETING

MAIL> COPY SCHEDULE
Folder SCHEDULE does not exist.
Do you want to create it (Y/N, default is N)?Y
%MAIL-I-NEWFOLDER, folder SCHEDULE created

This command selects and displays the next message containing meeting:

MAIL> SEARCH

MAIL> COPY SCHEDULE
MAIL> SEARCH
%MAIL-E-NOTFOUND, no messages containing 'MEETING' found

8.7 Selecting Folders
To display a list of the folders in your current mail file, enter the
DIRECTORY/FOLDER command, as shown in the following example:

MAIL> DIRECTORY/FOLDER
Listing of folders in SYS$LOGIN:[JONES]MAIL.MAI;l

Press CTRL/C to cancel listing
MAIL
MEMOS
STAFF

MEETING_MINUTES
PROJECT NOTES

To select a new folder as your current folder, use one of the following commands:

• SELECT-Selects the specified folder as the current folder.

• DIRECTORY-Selects the specified folder as the current folder and lists the
messages in the folder.

• READ-Selects the specified folder as the current folder and displays the
specified message (by default, the first message in the folder).

Deleting Folders

To delete a mail folder, delete all the messages in the folder or move them to
another folder. For example, to delete the messages in the MUSIC folder, enter
the following commands:
MAIL> SELECT MUSIC
%MAIL-I-SELECTED, 2 messages selected
MAIL> DELETE/ALL

MAIL: Communicating with Other Users a-11

Creating and Accessing Mail Files

To create a mail file, move a message into the file by entering the COPY, MOVE,
or FILE command as you would to create a folder. When MAIL prompts you for
the name of the folder, specify the name of the mail file after the name of the
folder.

For example, to create the mail file ACCOUNTS.MAI, move the current message
into a folder named FEED in the file ACCOUNTS.MAI, and delete the message
from its current folder and file, enter the following commands:
MAIL> MOVE
_Folder: FEED ~
_File: ACCOUNTS ~

To work within a mail file other than the default mail file, use the MAIL
command SET FILE to specify the alternate file. (The MAIL command SHOW
FILE displays the name of the current mail file.) When you change mail files, the
WASTEBASKET folder of the current mail file is emptied and deleted, and the
mail file is closed.

8.8 Deleting Messages
To delete a mail message from the current folder, either enter the DELETE
command while you are reading the message or enter the DELETE command
followed by the number (or range of numbers) of the message you want to delete.
For example, to delete messages 4, 5, 6, 11, 12, 14, 15, 16, and 17, enter the
following at the MAIL> prompt and press RETURN:
MAIL> DELETE 4-6,11,12,14:17

You can use either the hyphen (-) or the colon (:) to define the range of messages
to be deleted.

Recovering Deleted Messages

When you.delete a message, the message is moved to a folder called WASTEBASKET.
Deleted messages collect in the WASTEBASKET folder until you exit from the
f'll"M'Ant Tn!:!1l filA (AlthA'f' htr Av1t1ncr f''f'n-m MA TT. n'f' htr C!TIAf'1tirinO' ~ rllffA'f'Ant -m!:!11 ---- ---- ------ ---- ,-------,.., -·- ---o _ -"---- --,., -r--.... -.1 ---o - ------ ---- ------
file). When you exit from the current mail file, WASTEBASKET is emptied and
the folder itself is deleted. During your interactive MAIL session, you can recover
any deleted message by moving the message out of the wastebasket folder.

s-12 MAIL: Communicating with Other Users

8.9 Customizing Your MAIL Environment
This section describes the following tasks that can help you use MAIL more
efficiently. These tasks are as follows:

• Creating a mail subdirectory

• Using a text editor in MAIL

• Using the MAIL keypad

8.9.1 Creating a Mail Subdirectory
When you receive mail messages, they are by default written to files named
MAIL$xxxxxxxxxx.MAI located in your top level directory. (Note that the X's
represent a long, random file specification.) Your default mail file, MAIL.MAI, is
created in your top level directory the first time you receive a mail message. To
avoid the display of MAI files in your top level directory, use the MAIL command
SET MAIL_DIRECTORY. This command creates a mail subdirectory and moves
all your MAI files to that subdirectory. To move the MAI files from a subdirectory
back to your top level directory, use the SET NOMAIL_DIRECTORY command.

TIP: To display the name of the subdirectory that contains all
your MAI files, enter SHOW MAIL_DIRECTORYat the MAIL>
prompt.
MAIL> SHOW MAIL_DIRECTORY

MAIL displays the following message:
Your mail file directory is DISK$: [FELLINI.MAIL]

8.9.2 Using the Mail Keypad

You can use the numeric keypad on your keyboard to execute commands in MAIL.
Most keypad keys can execute two commands. To enter the top command for
each key shown in the following diagram, press the appropriate key. To enter the
bottom command shown in the following diagram, press the PFl key before you
press the key.

MAIL: Communicating with Other Users 8-13

f:l LJ
7

SEND

SEND/EDIT

4

CURRENT

CURRENT/EDIT

BACK

BACK/EDIT

PF2

HELP

DIR/FOLDER

8

REPLY

REP/ED/EXT

5

FIRST

FIRST/EDIT

2

PRINT

PRINT/PR/NOT

PF3

EXT/MAIL

EXTRACT

9

FORWARD

FORWD/EDIT

I 6;:IT I

3

DIR

DIR/ST =99999

I

O NEXT 1 · FILE

NEXT/EDIT DELETE

'--~~~~~~~--'

PF4

ERASE

SEL/MAIL

READ/NEW

SHOW/NEW

DIR/NEW

DIR MAIL

ENTER

SELECT

ZK-1744-GE

For example, to execute the MAIL command SEND, press the keypad key 7. To
execute the MAIL command SEND/EDIT, press the PFl key first and then press
keypad key 7. (For more information about mail keypad commands, see MAIL in
the Reference Section.)

You can redefine the keypad keys to execute MAIL commands when you are
in MAIL. Defining keypad keys in MAIL is similar to defining keypad keys to
,...,...,.,.,,+,. nl"'IT ,.,_ __ ,...,...,:J,.. •,,.,. +'L,. T\'li'"ClT'll.T"Cl/T71::1V ------.l !- +'L- 1\A'ATT --......i. -.1.'+'L
vAv\JU."v ~ -.J"-1 "V.1..l.l.l.UG4..1.J.U.i;)' i:>CC ".l.lC .IJ.L!l.L' .&..I. 1..:.11.1.~ .I. \...0.U..U..U.C:U..lU .L.U ".l.lC .Lt'.LL11..LJ .tJCl..l" V.l 1.1.l.l'I;;

Reference Section for more information.

8.9.3 Using a Text Editor in MAIL
You can use a VMS text editor to write your message before you send it. To do so,
specify the /EDIT qualifier with the SEND command as shown. in the following
example:
MAIL> SEND/EDIT

After you respond to the To: and Subj: prompts, MAIL invokes the text editor.
By default, MAIL invokes the EDT editor.

8-14 MAIL: Communicating with Other Users

If you see an asterisk (*) after you enter the subject line and press RETURN,
press the C key to enter the screen editor. To send the message, press CTRUZ
and enter the EXIT command; to cancel the send operation, press CTRUZ and
enter the QUIT command.

TIP: By specifying /EDIT when you invoke MAIL, you can use
the editor for send, reply, and forward operations during the
ensuing mail session.

Setting the Default Editor

By default, MAIL invokes the EDT editor when you specify the MAIL command
SEND/EDIT. By entering the TPU parameter to the MAIL command SET
EDITOR, you can specify that the Text Processing Editor be invoked instead.
(EVE is the default TPU editor.) The TPU editor remains your default MAIL
editor (even if you log out of the system and log back in) until you enter the SET
EDITOR EDT command.

For example, to set the default MAIL editor to TPU, enter the following command
at the MAIL> prompt:
MAIL> SET EDITOR TPU

In the following example, the default MAIL editor has been set to TPU, and the
MAIL command SEND/EDIT has been entered at the MAIL> prompt. MAIL
displays the following screen:

Buffer MAIN I Insert I Forward

Enter the text of your message using EVE commands to move around in the
buffer. A buffer is a temporary storage area that exists only during an editing
session. To send the message, press CTRUZ.

To display the name of the default MAIL editor, enter the MAIL command SHOW
EDITOR.

MAIL> SHOW EDITOR

MAIL displays the default MAIL editor as follows:
Your editor is TPU.

I

I

Chapter 9

VMS SORT/MERGE: Sorting and Merging
Files ·

This chapter describes how to use VMS SORT/MERGE to perform the following
tasks:

• Sort records from one or more input files according to the fields you select and
generate one reordered output file.

• Merge up to 10 input files that have been previously sorted according to the
same key fields and generate one output file.

9.1 Sorting Records
A file record is similar to a line of text in a file. Record sorting, the default
sort operation, keeps records intact and produces an output file consisting of
complete records. Records can be subdivided into fields, which describe individual
segments of the record. A field is specified by the starting position of its first
character in the record and· the length, in characters, of the field. You can sort
records based on the contents of certain fields by specifying the field as a sort key.

The following example illustrates an ascending (the default) record sort based on
that portion of each record starting at character position 8 and extending to the
end of the record (the name):

........... -- -.,..... ¥"'<•.,..,'T..,..,.11....., '\"' ,...m
l:.1.1."J.t: .J.JV..L.l:.a.D • J..JU J. J.)..LJ.'4.l"U·.u.~ • .Ut.J .L

EMPLOYEE LST BYNAME LST

B 7828 MCMAHON JANE A 8042 BENTLEY PETER
A 7933 ROSENBERG HARRY C 8102 KNIGHT MARTHA
C 8102 KNIGHT MARTHAi B 7951 LONG FRANK -.o"'1
A 8042 BENTLEY PETER B 7828 MCMAHON JANE
B 7951 LONG FRANK A 7933 ROSENBERG HARRY

ZK-1748-GE

9-2 VMS SORT/MERGE: Sorting and Merging Files

The following example sorts the same file in descending order using the field in
character positions 3 through 6 (the number) as the sort key:
$ SORT/KEY=(POSITION=3,SIZE=4,DESCENDING) EMPLOYEE.LST BYNUMBER.LST

EMPLOYEE LST BYNUMBER LST

B 7828 MCMAHON JANE C 8102 KNIGHT MARTHA
A 7933 ROSENBERG HARRY A 8042 BENTLEY PETER
C 8102 KNIGHT MARTHAi B 7951 LONG FRANK
A 8042 BENTLEY PETER

~
A 7933 ROSENBERG HARRY

B 7951 LONG FRANK B 7828 MCMAHON JANE

ZK-1749-GE

The first parameter of the SORT command names the file or files to be sorted.
Multiple files are treated as one large file for sorting purposes. The second
parameter provides a name for the ordered output file that the sort will create.
The following example sorts the records in two files, EMPLOYEE.LST and
EMPLOYER.LST, and creates the ordered output file BYNAME.LST:
$ SORT EMPLOYEE.LST,EMPLOYER.LST BYNAME.LST

Single Key

By default, the SORT command assumes that a key field in a record has the
following characteristics:

• Begins in the first position of a record

• Includes the entire record

• Contains character data

• Will be sorted in ascending order

Use the /KEY qualifier to specify characteristics of the key field other than those
assumed by default.

In the following example, the /KEY qualifier specifies that the key field starts in
position 8 and is 15 characters long:
$ SORT/KEY=(POSITION=8,SIZE=15) EMPLOYEE.LST BYNAME.LST

(If an actual key would have to extend beyond the end of the record to meet the
size specification-for example, if the key is the last item in a variable-length
format-the missing characters are treated as null characters.)

VMS SORT/MERGE: Sorting and Merging Files 9-3

Multiple Keys

You can specify more than one key field, up to a limit of 255 characters. Each
key can be ascending or descending. Specify multiple keys in the order of their
priority in the sort. For example, the following command sorts records first on the
value of position 1 in descending order, then on the value of positions 8 through
27 (or the end of the record) in ascending order:

$ SORT/KEY=(POSITION=l,SIZE=l,DESCENDING) -
_$ /KEY=(POSITION=8,SIZE=15) -
_ $ EMPLOYEE. LST DEPTNAME. LST

The results of the sort specified in the preceding example are as follows:

EMPLOYEE LST DEPTNAME LST
B 7828 MCMAHON JANE C 8102 KNIGHTMARTHA
A 7933 ROSENBERG HARRY B 7951 LONG FRANK
C 8102 KNIGHT MARTHA B 7828 MCMAHON JANE
A 8042 BENTLEY PETER A 8042 BENTLEY PETER
B 7951 LONG FRANK A 7933 ROSENBERG HARRY

ZK-1764-GE

By default, records with identical keys are kept but not sorted predictably. To
retain identical keys and arrange them according to the input file order, specify
the /STABLE qualifier. To eliminate duplicate keys, specify the /NODUPLICATES
qualifier.

9.2 Sorting Character Data Files
The SORT command assumes by default that the files to be sorted contain
character data. Characters are sorted according to a collating sequence, which
describes the order in which characters are arranged (A, B, C, and so on).

ASCII is the default collating sequence for character data. In general, ASCII
orders numbers (0 through 9) first, then uppercase letters (A Ll1rnugh Z), ii.uu
then lowercase letters (a through z).

You can specify the EBCDIC collating sequence to generate an output file
that is ordered in EBCDIC sequence (although it remains in ASCII repre
sentation). To use the EBCDIC collating sequence, specify the /COLLATING_
SEQUENCE=EBCDIC qualifier.

The multinational collating sequence collates characters according to the
international character set defined by Digital (see the Reference Section).
The multinational collating sequence compares for different characters first,
then for different diacritical forms of the same character (formed by using
diacritical marks as part of "compose sequences" on VT200-series terminals),
and then for different cases (uppercase or lowercase) of the same character.

9-4 VMS SORT/MERGE: Sorting and Merging Files

To use the multinational collating sequence, specify the /COLLATING_
SEQUENCE=MULTINATIONAL qualifier.

NOTE: Use caution when using the multinational collating
sequence to sort or merge files for further processing. Sequence
checking procedures in most programming languages compare
numeric characters. Because the multinational sequence is based
on actual graphic characters (and not the codes representing those
characters), normal sequence checking will not work.

9.3 Sorting Noncharacter Data Files
If you sort files containing items other than character data, you must specify the
data type of each key. Also, you must take care in calculating starting positions
and sizes, because the items being compared may occupy more than 1 byte.
For example, if you are sorting a file that contains 20 characters followed by 3
:floating-point numbers in F _floating format, and the key is the last floating-point
number, you must make the following specification:
$ SORT/KEY=(POSITION=29,F_FLOATING) STATS.RAW STATS.SOR

In the example, the character data occupies positions 1 through 20 (20
characters), the first F _:floating-point number occupies position 21 through 24,
the second F _:floating-point number occupies positions 25 through 28, and the
third F _floating-point number occupies positions 29 through 32. The size of the
floating-point number is not specified (because it is fixed at 4 bytes).

9.4 Entering Records from a Terminal
The records to be sorted or merged need not be in a file. You can enter the records
directly from the terminal as you enter the SORT or MERGE command.

To enter the input records for a sort or merge operation from your terminal,
specify SYS$INPUT as the input file parameter, qualifying it with the size of the
longest record (in bytes) and the approximate size of the input file (in blocks).
After you enter the command, enter the input records on successive terminal
lines. End each record by pressing RETURN. End the file by pressing CTRUZ.

The following example demonstrates a sort operation in which the input records
to be sorted are entered directly from the terminal:
$ SORT/KEY=(POSITION=8,SIZE=l5) -

$ SYS$INPUT/FORMAT=(RECORD SIZE=22,FILE SIZE=lO) BYNAME.LST
B 7 82 8 MCMAHON JANE ~ - -
A 7933 ROSENBERG HARRY~
C 8102 KNIGHT MARTHA~
A 8042 BENTLEY PETER~
B 7951 LONG FRANK~

. ICTRUZI

VMS SORT/MERGE: Sorting and Merging Files 9-5

9.5 Submitting Batch Jobs
If you are sorting large files, you should consider submitting the sort operation
as a batch job, because the sort will require some time. Batch jobs are programs
or DCL command procedures that run independently of your current session. See
Section 10.4 and Section 13 for more information about batch jobs and command
procedures, respectively.

If the records to be sorted are in a file, the command procedure you submit as
a batch job must contain the SORT command and explicitly set your default
directory or include the directory in the command file specifications. The
following example submits the DCL command procedure SORTJOB.COM as a
batch job. The text of the command procedure is shown following the command
line:
$ SUBMIT SORTJOB

SORTJOB.COM

$ SET DEFAULT [USER.PER] ! Set default to location of input files
$ SORT/KEY=(POSITION=8,SIZE=15) EMPLOYEE.LST BYNAME.LST

You can include the input records in the batch job by placing them after the
SORT command, one record per line, as shown in the following example. As with
terminal input of records, you specify the input file parameter as SYS$INPUT
and qualify it with the record size (in bytes) and the approximate file size (in
blocks):
$ SUBMIT SORTJOB

SORTJOB.COM

$ SET DEFAULT [USER.PER]
$ SORT/KEY=(POSITION=8,SIZE=15)
SYS$INPUT
/FORMAT=(RECORD_SIZE=22,FILE_SIZE=l0)
BYNAME.LST
B 7828 MCMAHON JANE
A 7933 ROSENBERG HARRY
C 8102 KNIGHT MARTHA
A dV42 BENTLEY PE7ER
B 7951 LONG FRANK

9.6 Merging Files
The MERGE command combines up to 10 sorted files into one ordered output file.
The input files must all have the same format, and all must have been sorted on
the same key fields.

The following example demonstrates the merging of two files based on the field
in each record starting at position 8 and extending to the end of the record (the
name field):
$ MERGE/KEY=(POSITION=8,SIZE=15) BYNAME1.LST,BYNAME2.LST BYNAME3.LST

9-6 VMS SORT/MERGE: Sorting and Merging Files

BYNAME1 .LST
A 8042 BENTLEY PETER
C 8102 KNIGHT MARTHA BYNAME3.LST
8 7951 LONG FRANK I-

A 8042 BENTLEY PETER 8 7828 MCMAHON JANE
A 7933 ROSENBERG HARRY C 8102 KNIGHT MARTHA

C 7212 KRAMER KARL
...... B 7951 LONG FRANK ...

B 7828 MCMAHON JANE
BYNAME2.LST C 8323 NORTON FLORENCE

C 7212 KRAMER KARL
A 7933 ROSENBERG HARRY
A 8240 TROUT SAM

C 8323 NORTON FLORENCE t--

A 8240 TROUT SAM

ZK-1771-GE

By default, MERGE does sequence checking to ensure that the input :files are in
order. The sequence check stops the merge and reports an error if a record is
found to be out of order. To prevent sequence checking during the merge, specify
the /NOCHECK_SEQUENCE qualifier.

Chapter 10

Processes: Using the VMS Environment

A process is an environment created by the system that lets you interact with the
VMS operating system.

The system creates a process for you when you perform one of the following tasks:

• Log in-The system creates a process for each interactive user.

• Submit a batch job-The system creates a process for each batch job. When
the batch job is completed, the system deletes the process.

• Spawn a subprocess-The system creates a process when you use the SPAWN
command.

• Run a program using either the /DETACHED qualifier or the IUIC=uic
qualifier.

This chapter describes how and when to use the following processes:

• Subprocesses

• Programs

• Batchjobs

10.1 Interpreting Your Process Context
Characteristics that a process uses, such as privileges, symbols, and logical names
form a process context. To display the process context for your current process,
enter the SHOW PROCESS/ALL command. The following example shows a
sample process context:
19-APR-1990 13:30:37.12.. User: CLEAVER fl
Pid: 24E003DC @) Proc. name: CLEAVER 1 ~ UIC: [DOC,CLEAVER] Ci
Priority: 4 ct Default file spec: ~ISKl: [CLEAVER] fj

10-2 Processes: Using the VMS Environment

Process Quotas: (9
Account name: DOC
CPU limit:
Buffered I/O byte count quota:
Timer queue entry quota:
Paging file quota:
Default page fault cluster:
Enqueue quota:
Max detached processes:

Accounting information: CD

Infinite
31808

10
22276

64
600

0

Direct I/O limit:
Buffered I/O limit:
Open file quota:
Subprocess quota:
AST quota:
Shared file limit:
Max active jobs:

Buffered I/O count: 140 Peak working set size: 383
Direct I/O count: 7 Peak virtual size: 2336
Page faults: 304 Mounted volumes: 0
Images activated: 1
Elapsed CPU time: 0 00:00:00.55
Connect time: 0 00:00:22.76

Process privileges: 41
GROUP may affect other processes in same group
TMPMBX may create temporary mailbox
OPER operator privilege
NETMBX may create network device

Process rights identifiers: '8
INTERACTIVE
LOCAL
SYS$NODE_ZEUS

Process Dynamic Memory Area '9
Current Size (bytes)
Free Space (bytes)
Size of Largest Block
Number of Free Blocks

Processes in this tree: ~
CLEAVER

CLEAVER_l (*)

25600
19592
19520

3

Current Total Size (pages)
Space in Use (bytes)
Size of Smallest Block
Free Blocks LEQU 32 Bytes

18
25
57

4
38

0
0

50
6008

24
1

8 Current date and time-The date and time when the SHOW PROCESS/ALL
command is executed.

8 User name-The user name assigned to the account that is associated with
the process.

8 Process identification number (PID)-A unique number assigned to the
process by the system. The SHOW PROCESS command displays the PID as
a hexadecimal number.

8 Process name-The name assigned to the process. Since process names
are unique, the first process logged in under an account is assigned the
user name, and subsequent processes logged in under the same account are
assigned the terminal name. You can change your process name with the
DCL command SET PROCESS/NAME.

Processes: Using the VMS Environment 10-3

8 User identification code (UIC)-The group and member numbers (or letters)
assigned to the account that is associated with the process (for example,
[PERSONNEL,RODGERS]). Part of your UIC identifies the group to which
you belong. Within a group, users are allowed to share files or system
resources more freely than between groups.

8 Priority-The current priority of the process.

8 Default file specification-The current device and directory. Change your
current defaults with the DCL command SET DEFAULT.

fD Process quotas-The quotas (limits) associated with the process. Examine
these quotas with the /QUOTAS or /ALL qualifiers of the SHOW PROCESS
command.

CD Accounting information-The continuously updated account of the process's
use of memory and CPU time. Examine this information with the
/ACCOUNTING or /ALL qualifiers of the SHOW PROCESS command.

8 Process privileges-The privileges granted to your processes. Privileges
restrict the performance of certain system activities to certain users. Examine
your privileges with the /PRIVILEGES or /ALL qualifiers of the SHOW
PROCESS command.

e Process rights identifiers-System-defined identifiers that are used in
conjunction with access control list protection. Identifiers provide the means
of specifying the users in an access control list. An access control list is a
security tool that defines the kinds of access to be granted or denied to users
of an object, such as a file, device, or mailbox.

8 Process dynamic memory area-The process's current use of dynamic memory.
Dynamic memory is allocated by the system to an image when that image is
executing. When that memory is no longer needed by one process, the system
allocates it to another process. Examine this information with the /MEMORY
or /ALL qualifiers of the SHOW PROCESS command.

8 Processes in this tree-A list of subprocesses belonging to the parent process.
An asterisk appears after the current process. Examine this with the DCL
SHOW PROCESS/SUBPROCESSES or /ALL command.

10.2 Using Subprocesses
The SPAWN command enables you to create a subprocess of your current process.
Within this subprocess, you can interact with the system and log out of the
subprocess to return to your parent process, or switch between your parent
process and subprocesses. Only one of your processes is executing at any time.

10-4 Processes: Using the VMS Environment

By default, the subprocess assumes the name of the parent process followed by
an underscore and a unique number. For example, if the parent process name is
DOUGLASS, the subprocesses are named DOUGLASS_!, DOUGLASS_2, and so
on.

Typically, you use a subprocess in one of the following two ways:

• To interrupt a task, perform a second task, then return to the original task
You can use CTRL/Y to interrupt one task, spawn a subprocess to perform
a second task, exit from the subprocess, and then enter the CONTINUE
command to return to the original task. By default, when you create a
subprocess, the parent process hibernates, and you are given control at DCL
level within the subprocess. Your default directory is the current directory of
the parent process. (If you interrupt the EDT editor, enter the CONTINUE
command and press CTRUW to refresh the screen.)

• To perform a second task while continuing to work on your original task
You can create the subprocess with the SPAWN/NOWAIT command.
SPAWN/NOWAIT generates a noninteractive, batch-like subprocess and is
used to execute only commands that do not require input.

Because both the parent and the subprocess are executing concurrently,
both attempt to control the terminal. To prevent conflicts, also specify the
following:

- /OUTPUT qualifier-Indicates that the subprocess should write output to
a specified file rather than to the terminal.

SPAWN command parameter or /INPUT qualifier-Indicates that the
subprocess should execute the specified commands rather than reading
input from the terminal.

When you specify the /INPUT qualifier of the SPAWN command, the
subprocess is created as a noninteractive process that exits upon encountering
a severe error or an end-of-file indicator. At DCL level, CTRUZ is treated as
an end-of-file indicator.

10.2.1 Creating a Subprocess

In the following example, a user interrupts a command image (the TYPE
command) with CTRL/Y, spawns a subprocess, exits from the subprocess, and
returns to the original process:

Processes: Using the VMS Environment 10-5

$ TYPE MICE. TXT
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

ICTRUYI
$ SPAWN
%DCL-S-SPAWNED, process DOUGLASS 1 spawned
%DCL-S-ATTACHED, terminal now attached to process DOUGLASS_l
$MAIL
MAIL>

MAIL> EXIT
$ LOGOUT

Process DOUGLASS 1 logged out at 31-DEC-1988 12:42:12.46
%DCL-S-RETURNED, control returned to process DOUGLASS
$ CONTINUE
Once inside, they may gnaw through. electrical wires and raid
your food. Because mice reproduce so quickly, what started
as one or two mice can quickly become an invasion. If you seal
the cracks and holes on the exterior of your foundation, you can
prevent these rodents from ever getting in.

Because each process you create is unique, commands executed in one process do
not usually affect any other process. However, because control of the terminal
passes between processes, commands that affect the terminal characteristics (for
example, SET TERMINAL) affect any process controlling that terminal. For
example, if one process inhibits echoing and exits without restoring it, echoing
remains inhibited for the next process that gains control of the terminal. Reset
any altered terminal characteristics with the SET TERMINAL command.

10.2.2 Exiting from a Subprocess
To exit from a subprocess created by SPAWN, use one of the following commands:

• LOGOUT-When you exit from a subprocess with the LOGOUT command,
the snbp!'0cess js deleted (along with any subprocesses that it created), and
you are returned to the parent process.

• ATTACH-When you exit from a subprocess with the ATTACH command,
the subprocess hibernates, and control of your terminal is transferred to the
specified process. (You must specify either a process name as a parameter to
the ATTACH command or a process identification number (PID) as a value of
the /IDENTIFIER qualifier of the ATTACH command.) The following example
shows how to exit from the subprocess DOUGLASS_! and attach to the
process DOUGLASS:

10-s Processes: Using the VMS Environment

$ ATTACH DOUGLASS

%DCL-S-RETURNED, control returned to process DOUGLASS

$ SHOW PROCESS

19-APR-1990 10:34:58.50 VTA303 User: DOUGLASS
Pid: 25C002B4 Proc. name: DOUGLASS UIC: [200,200)
Priority: 4 Default file spec: SYS$SYSDEVICE~[DOUGLASS]

Devices allocated: 11VTA303:

10.2.3 Looking at a Subprocess Context
By default, a subprocess inherits the following items from the parent process:
defaults, privileges, symbols, logical names, control characters, message format,
verification state, and key definitions. The environment that these items
collectively create is called the process context. The following items, however,
are not inherited from the parent process:

• Process identification number (PID)-The system assigns each created
subprocess a unique process identification number.

• Process name-By default, the subprocess name consists of the name of the
parent process followed by an underscore and an integer. Use the /PROCESS
qualifier of the SPAWN command to specify a process name other than the
default. A process name must be unique.

• Created commands-Commands that are defined by a parent process using
the SET COMMAND command are not copied to a subprocess. To use a
created command in a subprocess, you must use SET COMMAND to create
that command for the subprocess.

• Authorize privileges-When you spawn to a subprocess, the process context
contains the privileges of the parent process, not the privileges that you are
authorized to enable. For example, if you spawn to a subprocess while in
MAIL and want to perform a privileged operation, you need to have set the
proper privilege in the parent process before you invoked MAIL.

You can use the following SPAWN qualifiers to prevent the subprocess from
inheriting a number of these items:

Qualifier

/CARRIAGE_CONTROL, /PROMPT

/NOCLI

/NO KEYPAD

/NOLOGICAL_NAMES

/NOSYMBOL

Items Inhibited or Changed

DCL prompt

CLI (command language interpreter; DCL by default)

Keypad definitions

Logical names

Symbols

Processes: Using the VMS Environment 10-1

The /SYMBOL and /LOGICAL_NAMES qualifiers do not affect system-defined
symbols (such as $SEVERITY and $STATUS) or system-defined logical names
(such as SYS$COMMAND and SYS$0UTPUT). Symbols are described in
Chapter 12, and logical names are described in Chapter 11.

Because copying logical names and symbols to a subprocess can be time
consuming (a few seconds), you may want to use the /NOLOGICAL_NAMES
and /NOSYMBOL qualifiers to the SPAWN command unless you plan to use the
logical names or symbols in the subprocess. If you use subprocesses frequently,
the ATTACH command provides the most efficient way to enter and exit a
subprocess. This method allows you to transfer control quickly between the
parent process and subprocess rather than repeatedly waiting for the system to
create a new subprocess for you.

10.3 Executing Programs Across the Network
Because of support provided by DECnet-VAX, programs can execute across the
network as if they were executing locally. Because DECnet-VAX is integrated
within the VMS operating system, it is easy to write programs that access remote
files. To access a remote file in an application program, you need only include
in your file specification the name of the remote node and any required access
control information.

Task-to-task communications, a feature common to all DECnet implementations,
allows two application programs running on the same or different operating
systems to communicate with each other regardless of the programming
languages used. Examples of network applications are distributed processing
applications, transaction processing applications, and applications providing
connection to servers.

10.4 Using Batch Jobs
A batch job is a noninteractive process. Because a batch job executes in a process
of its own, you can have two or more processes doing different things at the same
time. For example, you can perform a computer task interactively while the
system executes a program or command procedure in batch mode.

The following sections describe how to use batch jobs to perform computing tasks.

10.4.1 Submitting a Batch Job

To run a job in batch mode, submit your job to a batch queue (a list of batch jobs
waiting to execute) by entering the DCL command SUBMIT. When you submit
a job, it is directed to the default batch queue, SYS$BATCH, where it is added
to the end of the queue of jobs waiting to be executed. When the jobs preceding
yours are completed, your job is executed. (On a VMS system, the number of
batch jobs that can execute simultaneously is specified when the batch queue is
created by the system manager.)

10-8 Processes: Using the VMS Environment

By default, the SUBMIT command uses a file type of COM. For example, the
following command enters JOBl.COM into SYS$BATCH:

$ SUBMIT JOBl
Job JOBl (queue SYS$BATCH, entry 651, started on SYS$BATCH)

The system displays the name of the job, the queue containing the job, and the
entry number assigned to the job. You receive the DCL prompt once your job is
submitted to the batch queue. If you need to reference your batch job in any DCL
commands (DELETE/ENTRY, for example), do so by using the job entry number.
(You can obtain the job entry number by using the SHOW ENTRY command.)
Note that if multiple procedures are submitted in a batch job, the batch job
terminates when any procedure exits with an error or fatal error status.

Your batch job does not necessarily have to start running at the time you submit
it to the batch queue. To specify a different time, enter the SUBMIT/AFTER
command. In the following example, the job is submitted after 11:30 p.m.:

$ SUBMIT /AFTER=23: 30 JOBl. COM

10.4.2 Batch Job Output
By default, accumulated output from a batch job is written to a log file once
each minute. (To specify a different time interval, include the SET OUTPUT_
RATE command in your command procedure.) If you attempt to use the EDT
editor to read the log file while the system is writing to it, you receive a message
indicating that the file is locked by another user. Wait a few seconds and try
again. The EVE editor, however, allows you to read the batch job's log file. By
specifying EDITtrPU/READ_ONLY and the name of the log file, you can use EVE
commands to move around the log file and ensure that any changes you make to
the file are not saved. If you omit the /READ_ONLY qualifier and modify the log
file in any way, the batch job terminates.

Because your batch job is a process that logs in under your user name and
executes your login command procedure, the output from a batch job includes the
contents of your login command procedure. The output also includes everything
written to the batch job log file (command procedure output, error messages, and
so on) and the full logout message. To prevent your login command procedure
from being written to the batch log file, add the following command to the
beginning of your login command procedure:

$ IF F$MODE () .EQS. "BATCH" THEN SET NOVERIFY

By default, the log file name is the name under which you submitted the job.
Also by default, the log file has a file type of LOG and assumes the device and
directory specified by your login defaults. To specify a different log file name when
you submit the job, use the /LOG_NAME qualifier to the SUBMIT command.

When the batch job completes, the log file is queued to the default system printer
(SYS$PRINT), printed, and deleted. To save the log file after printing it, use the
/KEEP qualifier to the SUBMIT command. To save the log file without printing
it, use the /NOPRINT qualifier to the SUBMIT command.

Processes: Using the VMS Environment 10-9

10.4.3 Restarting a Batch Job

If the system fails while your batch job is executing, your job does not complete.
When the system recovers and the queue is restarted, your job is aborted, and the
next job in the queue is executed. However, by specifying the /RESTART qualifier
when you submit a batch job, you indicate that the system should reexecute your
job if the system crashes before the job is finished.

By default, a batch job is reexecuted beginning with the first line. See Chapter 13
for more information about symbols you can add to your command procedures to
specify a different restarting point.

Chapter 11

Logical Names: Defining Names for Devices
and Files

A logical name is a string of characters (for example, WORK_DISK or PAY_FILE)
that is usually equated to a file name, device name, or other logical name. For
example, when you equate the name WORK_DISK to a physical device DRAl,
then WORK_DISK is a logical name and DRAl is an equivalence string.

Logical names can be defined by you or by the system. This chapter describes
how you can create and use logical names to perform the following tasks:

• Reduce typing by using logical names as a short way of specifying files or
directories you refer to frequently.

• Avoid confusion about the location of disk volumes.

• Keep your programs and command procedures independent of physical file
specifications. (For example, if a command procedure references the logical
name ACCOUNTS, you can equate ACCOUNTS to any file on any disk before
executing the command procedure.)

This chapter also discusses the logical names created by the system.

11.1 Creating Logical Names
You can create your own logical names with either the ASSIGN or the DEFINE
command. Usually, you define logical names in your login command procedure
(login.com), so you can use the logical name whenever you are logged in. You
can also create logical names interactively; however, you will be able to use these
logical names only while your current process is active. Your system manager can
also create logical names that can be used by anyone logged in to the system.

This section uses the DEFINE command to create logical names. (Note that
the syntax for the ASSIGN command differs from the syntax for the DEFINE
command. For information on using the ASSIGN command, see the Reference
Section.

11-2 Logical Names: Defining Names for Devices and Files

The syntax for defining a logical name is as follows:

DEFINE logical-name equivalence-name[, ...]

For example, to associate the logical name WORK_DISK with the equivalence
name DRAl, use the following command either at DCL level or in your login.com:
$ DEFINE WORK_DISK DRAl:

After you have defined this logical name, you can use the logical name
(WORK_DISK) interchangeably with the equivalence name (DRAl).

11.1.1 Rules for Creating Logical Names

Observe the following rules when creating a logical name with the DEFINE
command:

• A logical name and its equivalence name can each have a maximum of 255
characters. A logical name can contain alphanumeric characters, as well as
the underscore (_), dollar sign ($), and hyphen (-).

• When specifying an equivalence name, you must include the punctuation
marks (colons, brackets, periods) that would be required if it were part of
a file specification. For example, a device name is terminated by a colon,
a directory specification is enclosed in square brackets, and a file type is
preceded by a period.

• You can optionally terminate a logical name with a colon. If you do this, the
ASSIGN command removes the colon before placing the logical name in a
logical name table. The DEFINE command does not remove the colon before
placing the name in a logical name table.

In general, you should not specify a colon at the end of a logical name when
you are creating it. However, if you do so and want to save the colon as part
of the logical name, use the DEFINE command. (Note that when you delete a
logical name ending with a colon, you need to specify two colons because the
DEASSIGN command, like the ASSIGN command, removes one colon before
it searches the logical name table for a match.)

If the logical name is part of a file specification, the logical name must be the
leftmost component of the file specification and must be separated from the rest
of the file specification by a colon. When you use a logical name to represent a
complete file specification, the terminating colon is not needed. For example, the
following commands display the file DISKl:[SALES_STAFF]PAYROLL.DAT:

Logical Names: Defining Names for Devices and Files 11-3

$ DEFINE PAY DISKl: [SALES STAFF] PAYROLL.DAT
$ TYPE PAY -

$ DEFINE PAY_FILE DISKl: [SALES_STAFF]PAYROLL
$ TYPE PAY_FILE:.DAT

$ DEFINE PAY_DIR DISKl: [SALES_STAFF]
$ TYPE PAY_DIR:PAYROLL.DAT

$ DEFINE PAY DISK DISKl:
$ TYPE PAY_DISK: [SALES_STAFF]PAYROLL.DAT

By default, the DEFINE command places logical names in your process logical
name table, where the logical name is available only to your process and
subprocesses. Section 11.4 describes logical name tables.

11.1.2 Equating More Than One Equivalence Name
You can equate more than one logical name with an equivalence name. For
example, you can equate the logical names $TERMINAL and CONSOLE to the
physical name of a terminal so that both logical names translate to the same
device. (If you equate a logical name to more than one equivalence string in a
single command, you create a search list for the system to use to translate the
names. See Section 11.8 for information about search list translation.)

If you equate a logical name to one equivalence string and then equate the same
logical name to another equivalence string, the second definition supersedes the
first. You can, however, equate the same logical name to different equivalence
strings if the logical name definitions are in different tables (described in
Section 11.4). You can equate the same logical name to different equivalence
strings in the same table if they are defined in different access modes (described
in Section 11.6).

If you cannot access a file and the command you are specifying and the file
specification seem in order, check the left-hand component of the file specification
(with SHOW LOGICAL) to be sure that it is not defined as a logical name.

11.2 Displaying Logical Names
You can show the equivalence name for a logical name with the SHOW LOGICAL
command. For example, to display the equivalence name for the logical name
WORK_DISK, enter the following command:
$ SHOW LOGICAL WORK_DISK

The system displays the following information:
"WORK_DISK" = "DRAl:"" (LNM$PROCESS_TABLE)

11-4 Logical Names: Defining Names for Devices and Files

11.3 Deleting Logical Names
To delete a logical name, use the DEASSIGN command. For example, to define
the logical name STAFF to the subdirectory, [JONES.STAFF], enter the following
command:
$ DEFINE STAFF [JONES.STAFF]

To delete this logical name, enter the following command:
$ DEASSIGN STAFF

Logical names in your process and job tables are automatically deleted when
your process terminates. However, if you specify the /USER_MODE qualifier to
the DEFINE command, you can place a logical name in the process logical name
table and execute one command image before the logical name is deleted.

11.4 Understanding Logical Name Tables
The system stores logical names and their equivalence strings in tables called
logical name tables. The system provides the following logical name tables:

• Process table

• Job table

• Group table

• The system table

Some logical name tables are available only to your process; these tables are
called process-private. Other tables are shareable; that is, they are available
to other users on the system.

When you enter a logical name as part of a command line, the system translates
the logical name by searching the logical name tables in a certain order.
Information about existing logical name tables and the order in which they are
searched is stored in two logical name directory tables.

Identical logical names can exist in more than one table. The logical name that
is used depends on the order in which the logical name tables are searched.
For example, when the system attempts to translate a logical name in order to
identify the location of a file, it uses the logical name LNM$FILE_DEV to provide
the list of tables in which to look for the name. The order in which the tables
are listed is also the order in which they are searched. The precedence order
defined by LNM$FILE_DEV is (1) process table, (2) job table, (3) group table,
and (4) system table. Therefore, if a logical name exists in both the process and
the group logical name tables, the logical name within the process table is used.
See Section 11.5.2 for more information about LNM$FILE_DEV.

Within each table, the system defines some logical names for you. Each table and
its system-defined logical names are described in the following sections.

Logical Names: Defining Names for Devices and Files 11-5

11.4.1 The Process Table

Your process logical name table, named LNM$PROCESS_TABLE, contains logical
names that are available only to your process and any subsequent subprocesses.
Use the logical name LNM$PROCESS to refer to the process table.

Process logical names are recognized by the process they were created in and by
any subsequent subprocesses. However, process logical names are not recognized
by any parent process.

To display the logical names in your process table, use the following command:

$ SHOW LOGICAL/PROCESS

You can also specify the SHOW LOGICAL/rABLE=table_name command to
display the contents of any logical name table.

By default, the DEFINE and DEASSIGN commands place names in and delete
names from your process table.

Every process on the system has a process logical name table. When you log in,
the system creates logical names for your process and places them in your process
table. These names are listed in Table 11-1.

Table 11-1: Default Process Logical Names

Logical Name

SYS$COMMAND

SYS$DISK

SYS$ERROR

SYS$INPUT

SYS$0UTPUT

TT

Description

The initial file (usually your terminal) from which DCL reads input.
(A file from which DCL reads input is called an input stream.) The
command interpreter uses SYS$COMMAND to "remember" the original
input stream.

Default device established at login or changed by the SET DEFAULT
command.

The default device or file to which DCL writes error messages generated
by warnings, errors, and severe errors.

The default file from which DCL reads input.
'"'-- ------- ------- .t.1- L !----1--- - L----L ------- !- -r-\1'.i\l"'"t--L '"<TAV
.L.UIC 1)1,1.,U\;11;; p.iU\;t;;l)l:) ".UC;I." .l.U\IU.n.11;;i:; a "C;l..iot;;" }JJ.U\;ll;;l:iO U..l .&.l.&.:IVJ..lll;;"- YCM"'

task-to-task communication. When opened by the target process,
SYS$NET represents the logical link over which that process can
exchange data with its partner. SYS$NET is defined only during
task-to-task communication.

The default file (usually your terminal) to which DCL writes output. (A
file to which DCL writes output is called an output stream.)

Default device name for terminals.

Note that the logical names SYS$INPUT, SYS$0UTPUT, SYS$ERROR, and
SYS$COMMAND refer to files that remain open for the life of the process.

11-s Logical Names: Defining Names for Devices and Files

They are referred to as process-permanent files. For more information on
process-permanent files, see Section 11.10.1.

11.4.2 The Job Table

Your job logical name table contains logical names that are available to all
processes in your job tree, no matter what process or subprocess you are currently
in. Your job table is named LNM$JOB_xxx, where xxx is the Job Information
Block address (defined by the system) for your job tree. Use the logical name
LNM$JOB to refer to your job table.

When you log in, the system creates certain logical names and places them in the
job logical name table. These names are listed in Table 11-2. In addition, the
logical names created for mounted disks and tapes and temporary mailboxes are
also placed in the job logical name table.

Table 11-2: Default Job Logical Names

Logical Name

SYS$LOGIN

SYS$LOGIN_DEVICE

SYS$REM_ID

SYS$REM_NODE

SYS$SCRATCH

Description

Your default device and directory when you log in.

Your default device when you log in.

For jobs initiated through a DECnet network connection, the
identification of the process on the remote node from which the job
was originated. On VMS operating systems, if proxy logins are enabled,
this identification is the process's user name, or, if proxy logins are not
enabled, this is the process identification number (PID). (Proxy logins
to proxy accounts allow users to access files across the network without
specifying an access control string.)

For jobs initiated through a DECnet network connection, the name of
the remote node from which the job was originated.

Default device and directory to which temporary files are written.

There is one job table for each job tree in the system. All job tables are shareable
so that all users may access them. However, to access a job logical name table
other than your own, you must redefine LNM$JOB in your process directory
logical name table. For more information about LNM$JOB, see Section 11.5.

11.4.3 The Group Table

The group logical name table contains logical names that are available to all
users with the same user identification code (UIC) group number. The group
table is named LNM$GROUP _xxx, where xxx represents your UIC group number.
Use the logical name LNM$GROUP to refer to your group table. Every group on
the system has a corresponding group logical name table.

Logical Names: Defining Names for Devices and Files 11-7

To create or delete a name in your group table, you need GRPNAM, GRPPRV, or
SYSPRV privilege. See the VMS System Manager's Manual for a description of
user privileges.

11.4.4 The System Table

The system logical name table contains logical names that are available to all
users on the system. The system table is named LNM$SYSTEM_TABLE; use
the logical name LNM$SYSTEM to refer to it. To create or delete a name in the
system table, you must have a UIC group number between 0 and 10, or SYSNAM
or SYSPRV privilege.

There is only one system logical name table for the system. It contains the names
shown in Table 11-3.

Table 11-3: Default System Logical Names

Logical Name

DBG$INPUT

DBG$0UTPUT

SYS$COMMON

SYS$ERRORLOG

SYS$EXAMPLES

SYS$HELP

SYS$INSTRUCTION

SYS$LIBRARY

SYS$LOADABLE_IMAGES

SYS$MAINTENANCE

SYS$MANAGER

SYS$MESSAGE

SYS$NODE

SYS$SHARE

SYS$SPECIFIC

SYS$STARTUP

SYS$SYSDEVICE

Description

Default input stream for the VMS Debugger; equated to
SYS$INPUT

Default output stream for the VMS Debugger; equated to
SYS$0UTPUT

Device and directory name for the common part of SYS$SYSROOT

Device and directory name of error log data files

Device and directory name of system examples

Device and directory name of system HELP files

Device and directory name of system instruction data files

Device and directory name of system libraries

Device and directory of operating system executive loadable
images, device drivers, and other executive loaded code

Device and directory name of system maintenance files

Device and directory name of system manager files

Device and directory name of system message files

Network node name for the local system if DECnet-VAX is active
on the system

Device and directory name of system shareable images

Device and directory name for node-specific part of SYS$SYSDEVICE

Device and directory name of system startup files

VMS system disk containing system directories

(continued on next page)

11-s Logical Names: Defining Names for Devices and Files

Table 11-3 (Cont.): Default System Logical Names

Logical Name

SYS$SYSROOT

SYS$SYSTEM

SYS$TEST

SYS$UPDATE

Description

Device and root directory for system directories

Device and directory of operating system programs and procedures

Device and directory name of User Environment Tust Package
(UETP) files

Device and directory name of system update files

11.5 Directory Logical Name Tables
The system provides the following two directory tables to catalog your logical
name tables:

• LNM$PROCESS_DIRECTORY catalogs your process tables (LNM$PROCESS
and LNM$JOB).

• LNM$SYSTEM_DIRECTORY catalogs your shareable tables (LNM$GROUP
and LNM$SYSTEM).

Both of these directories contain logical names that translate iteratively to table
names. The name of a logical name table must be recorded in one of these
directory tables in order for the system to find it.

To see the relationship of directory tables to logical name tables enter the SHOW
LOGICAUSTRUCTURE command, as shown in the following example:

$ SHOW LOGICAL/STRUCTURE
(LNM$PROCESS DIRECTORY)

(LNM$PROCESS TABLE)
(LNM$SYSTEM DIRECTORY)

(LNM$GROUP 000360)
(LNM$JOB 806E98EO)
(LNM$SYSTEM_TABLE)

11.5.1 The Process Directory Table

Each process on the system has its own process directory logical name table.
When you log in, the VMS operating system places certain logical names in your
process directory table. These names are listed in Table 11-4.

Logical Names: Defining Names for Devices and Files 11-9

Table 11-4: Default Process Directory Logical Names

Logical Name Description

LNM$GROUP A logical name that is defined as LNM$GROUP _xxx, where xxx
represents your group number. LNM$GROUP _xxx is the logical
name table used by your UIC group. (The table LNM$GROUP _
xxx is cataloged in the system directory table.) Therefore,
LNM$GROUP is a logical name that translates iteratively to
the name of your group logical name table.

LNM$JOB A logical name that is defined as LNM$JOB_xxx, where xxx
represents·a number unique to your job tree.
LNM$JOB_xxx is the logical name table used by your job. (The
table LNM$JOB_xxx is cataloged in the system directory table.)
Therefore, LNM$JOB is a logical name that translates iteratively
to the name of your job logical name table.

LNM$PROCESS A logical name that translates iteratively to LNM$PROCESS_
TABLE, which is the name of your process logical name table.

LNM$PROCESS_DIRECTORY The name of your process directory logical name table.

LNM$PROCESS_TABLE The name of your process logical name table.

11.5.2 The System Directory Table

There is one system directory logical name table. The VMS operating system
places certain logical names in the system directory table. These names are listed
in Table 11-5.

Table 11-5: Default System Directory Logical Names

Logical Name

LNM$DCL_LOGICAL

LNM$DIRECTORIES

Description

A logical name that is defined as LNM$FILE_DEV. This logical
name iteratively translates into the list of logical name tables
searched and displayed by the SHOW LOGICAL and SHOW
ITfD A l\TQT A'T'Tf"\l\T """"""""" ... ,:i"' .,..,,:i +'ho M'll!'T"Rl\TT .11.Tl\Jf lov;,..,. l -F,,..,,.Hnn
44""'46-,,..,,~,a..A..&.'VA .. -V.&.&.1..&.&.&'"""'6.A_..., _ _..,. '"+'•--"--•-•- _...,,..,,,..._.., -.-.... -.- ----·
By default, these commands search and display the process, job,
group, and system logical name tables, in that order.

A logical name that is defined as LNM$PROCESS_DIRECTORY
and LNM$SYSTEM_DIRECTORY.

(continued on next page)

11-10 Logical Names: Defining Names for Devices and Files

Table 11-5 (Cont.): Default System Directory Logical Names

Logical Name

LNM$FILE_DEV

LNM$GROUP _xxx

LNM$JOB_xxx

LNM$SYSTEM

LNM$SYSTEM_DIRECTORY

LNM$SYSTEM_TABLE

Description

A logical name that is defined as the list of logical name tables
searched by the system when processing a file specification.
By default, it is defined as LNM$PROCESS, LNM$JOB,
LNM$GROUP, and LNM$SYSTEM. This means that the process,
job, group, and system logical name tables are searched, in that
order.

The name of a group logical name table, where xxx is a group
number. There is an LNM$GROUP _xxx logical name table for
each group in the system.

The name of a job logical name table, where xxx is a number
unique to this job tree. There is an LNM$JOB_xxx logical name
table for each job in the system.

A logical name that translates iteratively to LNM$SYSTEM_
TABLE, which is the name of the system logical name table.

The name of the system directory logical name table.

The name of the system logical name table.

Generally, you do not need to change the default logical name table definitions set
up in the directory tables, LNM$PROCESS_DIRECTORY and LNM$SYSTEM_
DIRECTORY. Two reasons for changing the entries in the directory tables are
(1) to create another logical name table, and (2) to change the search order for
file specification logical names by redefining LNM$FILE_DEV. See Section 11. 7
for information about creating your own logical name table and changing the
order in which the system searches the logical name tables.

Multiple tables with the same name may exist. For example, there may exist
both a process-private and a shareable table called MY_TABLE. The process
private version always takes precedence over the shareable table in all logical
name table processing. When a logical name, such as LNM$FILE_DEV, is used
as a table name, the logical name is iteratively translated until a list of table
names is formed. During this iterative translation, each name is first translated
in the process directory. If this translation fails, it is then translated in the
system directory. This order of precedence cannot be changed. As a consequence
of this ordering, a logical name placed in the process directory table for use as a
table name will always take precedence over any identical name residing in the
system directory.

Logical Names: Defining Names for Devices and Files 11-11

11.6 Logical Name Access Modes
The four access modes in the VMS operating system are as follows:

• User-mode (the outermost and least privileged mode)

• Supervisor-mode

• Executive-mode

• Kernel-mode (the innermost and most privileged mode)

When you create a logical name with DCL commands, it has an access mode of
user, supervisor, or executive. By default, logical names are created in supervisor
mode; you must have SYSNAM privilege to create an executive mode logical
name. To see the access mode for a logical name, use the SHOW LOGICAL/FULL
command, as follows:
$ SHOW LOGICAL/FULL PROJECT

"PROJECT" [super] = "DISKl: [JONES]" (LNM$PROCESS_TABLE)

This shows that the logical name PROJECT was created in supervisor mode.

You can equate the same logical name to different equivalence strings in the
same logical name table by specifying different access modes for each definition.
The following example equates the logical name ACCOUNTS to two different
equivalence names in the process logical name table-one in supervisor-mode and
one in executive-mode:
$DEFINE ACCOUNTS DISKl: [ACCOUNTS] CURRENT.DAT
$ DEFINE/EXECUTIVE_MODE ACCOUNTS DISKl: [JANE.ACCOUNTS] OBSOLETE.DAT

Logical names created in user mode are temporary. Define a logical name in user
mode when you want to define it only for the execution of the next image. In the
following example, the logical name ADDRESSES is automatically deleted after
the execution of the program PAYABLE:
$DEFINE/USER MODE ADDRESSES DISKl: [SAM.ACCOUNTS] OVERDUE.LIS
$ RUN PAYABLE-

Tn lnnlr; ,... ,, lnm,..al na-rnoC! all n.,..1"'riloO"orl ;TnaO'OC! antl ,,+;1;+;0C! Q11r'h !H:! -,,....,. ... ~ o 1"" 0 - __fi,J, _ .. r- ... ·_.b __ 0-- ---- ---------, - ---- --

LOGIN OUT and MAIL, bypass the user- and supervisor-mode portions
of the system logical name table. Therefore, DIGITAL recommends that
logical names for important system components (public disks and directo
ries, for example) be defined in executive mode, using the DCL command
DEFINE/SYSTEM/EXECUTIVE. (Only the operating system and privileged
programs can create logical names in kernel-mode.) This operation requires
either the SYSPRV or SYSNAM privilege.

11-12 Logical Names: Defining Names for Devices and Files

11.7 Creating a Logical Name Table
The CREATE/NAME_TABLE command creates a logical name table and catalogs
it in one of the directory logical name tables. (Logical names that identify logical
name tables or that translate iteratively to logical name tables must always
be entered into one of the directory logical name tables.) To create a logical
name table that is private to your process, create the table in LNM$PROCESS_
DIRECTORY (the default). If you want the table to be shareable, specify
/PARENT_TABLE=LNM$SYSTEM_DIRECTORY with the CREATE/NAME_
TABLE command. Creating shareable name tables requires SYSPRV privilege
or ENABLE access to the parent table.

The following example creates a process-private logical name table named
TAX, places the definition for the logical name CREDIT in the table, and
verifies the table's creation. (You must specify the trABLE qualifier with the
SHOW LOGICAL command to display a logical name in any table other than
LNM$SYSTEM or LNM$PROCESS.)
$ CREATE/NAME TABLE TAX
$ DEFINE/TABLE=TAX CREDIT [ACCOUNTS.CURRENT]CREDIT.DAT
$ SHOW LOGICAL/TABLE=TAX CREDIT

"CREDIT" = "[ACCOUNTS. CURRENT] CREDIT. DAT" (TAX)

To make the system search a user-created logical name table automatically when
processing file specifications, you must create a process-private version of the
default search list (LNM$FILE_DEV) in LNM$PROCESS_DIRECTORY. To add
the created table's name to the default search list, you can define LNM$FILE_
DEV as follows:
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE DEV -
_$ TAX,LNM$PROCESS,LNM$JOB~LNM$GROUP,LNM$SYSTEM

Placing the table's name first specifies that the system search that table first, and
so on in the order of specification.

To delete a logical name table, specify the table that contains it (the system
or process directory logical name table) and the name of the table. Deleting a
shareable logical name table requires DELETE access to the table or SYSPRV
privilege. For example, to delete the logical name table TAX of the preceding
example, specify the following command line:
$ DEASSIGN/TABLE=LMN$PROCESS_DIRECTORY TAX

Note that all logical names in descendant tables (and the descendant tables
themselves) are deleted when a parent logical name table is deleted.

Logical Names: Defining Names for Devices and Files 11-13

11.8 Using Search Lists
A search list is a logical name that has more than one equivalence name. You can
use a search list in any place you can use a logical name. For example:
$DEFINE GETTYSBURG [JONES.HISTORY], [JONES.WORKFILES]
$ SHOW LOGICAL GETTYSBURG

"GETTYSBURG"= "[JONES.HISTORY]" (LNM$PROCESS_TABLE)
= "[JONES.WORKFILES]"

The logical name GETTYSBURG is a search list because it has more than one
equivalence name.

When you use a logical name that is a search list, the system translates
the logical name until it finds a match. The order in which you specify the
equivalence strings determines the order in which the system translates the
names. It uses each equivalence name listed in the definition until a match is
found.

A search list is not a wildcard. It is a list of places to look. Once a file is found,
the search is ended. For example:
$ TYPE GETTYSBURG:SPEECH.TXT

DISKl: [JONES.HISTORY]SPEECH.TXT;2

Fourscore and seven years ago, our fathers brought forth on
this continent a new nation, conceived in liberty, and
dedicated to the proposition that all men are created equal.

In the previous example, the TYPE command searches the equivalence names
[JONES.HISTORY] and [JONES.WORKFILES] in the order they were listed
when GETTYSBURG was defined. Once it finds a file named SPEECH.TXT, the
search is halted and the file is displayed.

You can use a search list with a command that accepts wildcards. When you use
wildca1°ds, the system fo:rms file specifkativrrs u.sirrg each equ.i;ralence rraw.e irr
the search list. The command operates on each file specification that identifies an
existing file.

For example, if you specify the DIRECTORY command with a wildcard character
in the version field, it finds all versions of SPEECH.TXT in the search list defined
by GETTYSBURG, as shown in the following example:
$ DIRECTORY GETTYSBURG:SPEECH.TXT;*

Directory DISKl:[JONES.HISTORY]

SPEECH.TXT;2 SPEECH.TXT;l

Total of 2 files.

11-14 Logical Names: Defining Names for Devices and Files

Directory DISKl: [JONES.WORKFILES]

SPEECH.TXT;l

Total of 1 file.

Grand total of 2 directories, 3 files.

The DIRECTORY command searches the equivalence names [JONES.HISTORY]
and [JONES.WORKFILES] in the order they were listed when GETTYSBURG
was defined. It finds a file named SPEECH. TXT in each directory. If
SPEECH.TXT exists in only one of the directories, only one directory listing
is displayed. If SPEECH. TXT does not exist in either directory, an error message
is displayed indicating that the file was not found.

When you use a search list with a command that does not accept wildcards in
a file specification, the system forms a file specification using each equivalence
name in the search list until a file specification for an existing file is found. The
command affects only the first file found. For example:
$DEFINE DECEMBER DISKl: [FRED],WORK2:[BARNEY]
$ EDIT/EDT DECEMBER:QUOTAS.TXT

First, the system forms the file specification DISKl:[FRED]QUOTAS.TXT and
searches for that file. If QUOTAS.TXT is found in DISKl:[FRED], it is opened
for editing. No other files are subsequently opened. If QUOTAS.TXT is not
found in DISKl:[FRED], the system searches for it in WORK2:[BARNEY]. If
QUOTAS.TXT is found there, it is opened. If it is not found, an error message
is displayed. The system displays an error message only after it checks all
equivalence names in a search list. Then the system reports an error only on the
last file it attempted to find.

The RUN command is an exception. When the RUN command is followed by a
search list, the system forms file specifications as described previously. However,
the system then checks to see whether any of the files in the list are installed
images. It runs the first file in the search list that is an installed image. Then
the RUN command terminates.

If none of the file specifications are installed images, the system repeats the
process of forming file specifications. This time it looks for each file specification
on the disk. It runs the first file it finds there. An error message is displayed if
none of the specified files is found in either the known file list or on the disk.

11.9 Using Logical Node Names
A logical node name is a special type of logical name that can be used in place
of a network node name or in place of a node name and an access control string.
For example:
$DEFINE BOS "BOSTON""ADAMS JOHN""::"

The logical name BOS is equated to the node name BOSTON and an access
control string, where ADAMS is the user name and JOHN is the password.

Logical Names: Defining Names for Devices and Files 11-15

Use the logical name BOS to avoid typing (and displaying) your user name and
password on the terminal screen.

NOTE: Do not place a DEFINE command that includes a
password in a file (your login command procedure, for example). If
others read the file, they will see the password.

11.10 System-Created Logical Names
The system creates a number of logical names for you when you start the system
and log in. By default, DCL creates and assigns logical names to four process
permanent files. When you redefine these logical names, only your process is
affected. The system defines other logical names that you can reassign only with
special privileges.

11.10.1 Process-Permanent Logical Names

Process-permanent logical names are created by DCL when you log in and
remain defined for the life of your process. You cannot deassign these logical
names. You can redefine them (by specifying the same name in a DEFINE
command), but if the redefined name is later deassigned, the process-permanent
name is reestablished. These process-permanent logical names, as follows, are
available to each user of the system at the process level:

• SYS$INPUT-Logical name that refers to the default input device or file

• SYS$0UTPUT-Logical name that refers to the default output device or file

• SYS$ERROR-Logical name that refers to the default device or file to which
the system writes messages

• SYS$COMMAND-Logical name that refers to the value of SYS$INPUT
when you log in

Table 11-6 shows what these logical names are equated to by default.

Tabie 11-6; Equivaience Names ior Process-Permanent Logica; Names

Logical Interactive
Name Mode

SYS$COMMAND Terminal1

SYS$INPUT Terminal

1 Device name of your terminal
2Device name of the initial default device

Batch
Mode

Disk2

Disk

Command
Procedure

Terminal

Disk

(continued on next page)

11-16 Logical Names: Defining Names for Devices and Files

Table 11-6 (Cont.): Equivalence Names for Process-Permanent Logical Names

Logical Interactive Batch Command
Name Mode Mode Procedure

SYS$ERROR Terminal Log file3 Terminal

SYS$0UTPUT Terminal Log file Terminal

3Batch job log file

The following sections describe how to use process-permanent logical names as
file specifications.

11.10.1.1 Redefining SYS$1NPUT
You can redefine SYS$INPUT so that a command procedure reads input from the
terminal or another file. For example, to edit a file from a command procedure,
include the following lines in the command procedure:

$ DEFINE/USER MODE SYS$INPUT SYS$COMMAND
$ EDIT/TPU MYFILE.DAT

In the previous example, SYS$INPUT is redefined as SYS$COMMAND so that
the editor obtains input from the terminal rather than from the command
procedure file (the default). SYS$COMMAND refers to the terminal, the initial
input stream when you logged in. The /USER_MODE qualifier tells the command
procedure that SYS$INPUT is redefined only for the duration of the next image.
In this example, the next image is the editor. When the editor is finished,
SYS$INPUT resumes its default value; in this case, the default value is the
command procedure file.

Note that if you redefine SYS$INPUT, DCL ignores your definition. DCL always
obtains input from the default input stream. However, images, such as command
procedures, can use your definition for SYS$INPUT.

11.10.1.2 Redefining SYS$0UTPUT
You can redefine SYS$0UTPUT to redirect output from your default device
to another file. When you redefine SYS$0UTPUT, the system opens a file
with the name you specify in the logical name assignment. When you define
SYS$0UTPUT, all subsequent output is directed to the new file.

In the following example, SYS$0UTPUT is defined as MYFILE.LIS before
the SHOW DEVICES command is entered. The display produced by SHOW
DEVICES is directed to MYFILE.LIS in your current directory rather than to
your terminal. You can manipulate this data as you would any other text file.

$ DEFINE SYS$0UTPUT MYFILE.LIS
$ SHOW DEVICES

Logical Names: Defining Names for Devices and Files 11-17

Remember to deassign SYS$0UTPUT, or output will continue to be written to
the file you specify. Note that you can redefine SYS$0UTPUT in user mode
(with DEFINE/USER_MODE) to redirect output from an image. This definition
is in effect only until the next command image is executed. Once the command
image is executed (that is, the output is captured in a file), the logical name
SYS$0UTPUT resumes its default value.

When you log in, the system creates two logical names called SYS$0UTPUT. One
name is created in executive mode; the other name is created in supervisor mode.
You can supersede the supervisor mode logical name by redefining SYS$0UTPUT.
If you deassign the supervisor mode name, the system redefines SYS$0UTPUT
in supervisor mode, using the executive mode equivalence name. You cannot
deassign the executive mode name.

In the following example, SYS$0UTPUT is redefined to the file TEMP.DAT.
When SYS$0UTPUT is redefined, output from DCL and from images is directed
to the file TEMP.DAT. The output from the SHOW LOGICAL command and
from the SHOW TIME command is also sent to TEMP.DAT. When you deassign
SYS$0UTPUT, the system closes the file TEMP.DAT and redefines SYS$0UTPUT
to your terminal. When you enter the TYPE command, the output collected in
TEMP.DAT is displayed on your terminal.
$ DEFINE SYS$0UTPUT TEMP.DAT
$ SHOW LOGICAL SYS$0UTPUT
$ SHOW TIME
$ DEASSIGN SYS$0UTPUT
$ TYPE TEMP.DAT

"SYS$0UTPUT" = "DISKl:" (LNM$PROCESS_TABLE)
31-DEC-JAN-1988 13:26:53

When you redefine SYS$0UTPUT to a file, the logical name contains only the
device portion of the file specification, even though the output is directed to the
file you specify. In the previous example, when SYS$0UTPUT was redefined, the
equivalence name contained the device name DISKl, not the full file specification.

If the system cannot open the file you specify when you redefine SYS$0UTPUT,
an error message is displayed.

After you redefine SYS$0UTPUT, .ff1ost comffiands direct o"tp"llt t~ the c~eting
version of the file. However, certain commands create a new version of the file
before they write output.

11.10.1.3 Redefining SYS$ERROR
You can redefine SYS$ERROR to direct error messages to a specified file.
However, if you redefine SYS$ERROR so it is different from SYS$0UTPUT
(or if you redefine SYS$0UTPUT without also redefining SYS$ERROR), DCL
commands send informational, warning, error, and severe error messages to both
SYS$ERROR and SYS$0UTPUT. Therefore, you receive these messages twice
once in the file indicated by the definition of SYS$ERROR and once in the file
indicated by SYS$0UTPUT. Success messages are sent only to the file indicated
by SYS$0UTPUT.

11-1a Logical Names: Defining Names for Devices and Files

If you redefine SYS$ERROR and then run an image that references SYS$ERROR,
the image sends error messages only to the file indicated by SYS$ERROR even if
SYS$ERROR is different from SYS$0UTPUT. Only DCL commands and images
using standard VMS error display mechanisms send error messages to both
SYS$ERROR and SYS$0UTPUT when these files are different.

11.10.1.4 Redefining SYS$COMMAND
Although you can redefine SYS$COMMAND, DCL ignores your definition. DCL
always uses the default definition for your initial input stream. However, if you
execute an image that references SYS$COMMAND, the image can use your new
definition.

11.10.2 System-Permanent Logical Names

The following table lists the logical names automatically defined when the system
starts up. These names are available to all users of the system at the system
level.

Logical Name

DBG$INPUT

DBG$0UTPUT

SYS$COMMON

SYS$ERRORLOG

SYS$EXAMPLES

SYS$HELP

SYS$INSTRUCTION

SYS$LIBRARY

SYS$LOADABLE_IMAGES

SYS$MAINTENANCE

SYS$MANAGER

SYS$MESSAGE

SYS$NODE

SYS$SHARE

SYS$SPECIFIC

SYS$STARTUP

SYS$SYSDEVICE

Equivalence Name

SYS$INPUT at the process level

SYS$0UTPUT at the process level

SYS$SYSDEVICE:[SYSn.SYSCOMMON.], where n is the root
directory number of your processor

SYS$SYSROOT:[SYSERR]

SYS$SYSROOT:[SYSHLP.EXAMPLES]

SYS$SYSROOT:[SYSHLP]

SYS$SYSROOT:[SYSCBI]

SYS$SYSROOT:[SYSLIB]

SYS$SYSROOT:[SYS$LDRJ

SYS$SYSROOT:[SYSMAINT]

SYS$SYSROOT:[SYSMGR]

SYS$SYSROOT:[SYSMSG]

N rune of your node if you are on a network

SYS$SYSROOT:[SYSLIB]

SYS$SYSDEVICE:[SYSn.], where n is the root directory
number of your processor

As a search list, points first to SYS$SYSROOT:[SYS$STARTUPJ,
then to SYS$MANAGER

System disk (usually SYS$DISK)

Logical Names: Defining Names for Devices and Files 11-19

Logical Name

SYS$SYSROOT

SYS$SYSTEM

SYS$TEST

SYS$UPDATE

Equivalence Name

As a search list, points first to SYS$SYSDEVICE:[SYSn.],
where n is the root directory number of your processor; then to
SYS$COMMON

SYS$SYSROOT:[SYSEXE]

SYS$SYSROOT:[SYSTEST]

SYS$SYSROOT:[SYSUPD]

Chapter 12

Symbols: Defining Commands and
Expressions

Symbols are similar to logical names, because they equate a character-string
expression to another expression. Whereas logical names were used to represent
devices, files, or another logical names, symbols can represent DCL commands
(for example, "MAIL"), character or numeric values (for example, "17 or "DOG"),
or a logical value (such as "TRUE"). Symbols are useful shortcuts for entering
DCL-level commands that you frequently use, and they can be essential aids in
representing data in command procedures.

This chapter describes how to use symbols. Read this chapter to learn how to do
the following:

• Define a symbol to represent a DCL-level command

• Use symbols to collect, store, and manipulate data

12.1 Using Symbols to Represent DCL Commands
You can define a symbol to represent a DCL command either in your login
command file (LOGIN.COM) or interactively, at DCL level. Usually, it is a good
idea to define symbols for frequently-used commands in your login command file.
When you define the symbol in your login command file, you can use the symbol
each tim~ that you. lug iii; wheii you. de:fir..e thz ::;y~bl ir..terectively, the Sy!!!bQl

can be used only during the current process.

To define a symbol to represent a DCL command, use the following syntax:

$ symbol_name :== DCL_command_line

For example, suppose you often use the DIRECTORY command with the
qualifiers /NOTRAILING and /COLUMN=2. You could include the following line
in your login command file, allowing you to enter this command just by entering
the two-character symbol DI:

$ DI :== DIRECTORY /NOTRAILING /COLUMN=2

12-2 Symbols: Defining Commands and Expressions

You can also use symbols to enter DCL command lines that execute images or
command procedures.

The following sample section of a login command file gives some examples of
using symbols for DCL command line substitution. Descriptions of the individual
symbols follows the sample code section:
$ DEL :== DELETE /LOG /CONFI~
$ ED :== EDIT /TPU ft
$ HOST :== SET HOST.
$ HR :== SET HOST RED8
$ M*AIL :== MAIL /EDIT=(SEND,REPLY)@t
$ PROT :== SET PROT=(O:RWED,G:RWE,W:RWE) /LOGQ)
$ TIME :== @[JONES]TIME0
$ PRINTALL :== $[ACCOUNTS]PRINTALLC)

8 Defines the symbol DEL to represent the command line DELETE /LOG
/CONFIRM. When this line is in your login command file and you enter the
command DEL, it is equivalent to entering the complete command DELETE
/LOG /CONFIRM. For example, the following sequence could take place:
$ DEL OLD ACCOUNTS.TXT;l
DELETE SYS$SYSDEVICE: [JONES]OLD ACCOUNTS.TXT;l? [NJ: Y
%DELETE-I-FILDEL, SYS$SYSDEVICE;[JONES]OLD ACCOUNTS.TXT;l deleted
(20 blocks) -

8 Defines the symbol ED to be equivalent to the DCL command EDIT /TPU.
For example, if you have defined this symbol, you would edit the file
MANAGERS.DIS with the TPU (EVE) editor by entering the following
command:
$ ED MANAGERS.DIS

8 Defines the symbol HOST to be equivalent to the DCL command SET HOST.
As with the SET HOST command, you must supply the name of the node to
which you want to set host.

8 Defines the symbol HR to be equivalent to the DCL command line SET HOST
RED. In this case, the argument to the SET HOST command is supplied as
part of the symbol definition.

8 Defines a symbol to be equivalent to the DCL-level MAIL command. In this
symbol, the asterisk (*) is used to indicate that any of the following symbols
are equivalent to the command MAIL:

M
MA
MAI
MAIL

(§) Defines the symbol TIME to be equivalent to the DCL command that executes
the command procedure [JONESJTIME.COM.

Symbols: Defining Commands and Expressions 12-3

fl Defines the symbol PRINTALL to execute the image
WORK_DISK:[ACCOUNTS]PRINTALL.EXE. Note that when the dollar
sign ($) precedes a file specification at the beginning of a symbol definition
(without any space between the dollar sign and the file specification), then the
dollar sign has the meaning of "RUN".

TIP: When using symbols to represent DCL commands or collect,
store, and manipulate data you can use several DCL commands.
Two of the commands you can use are SHOW SYMBOL and
DELETE SYMBOL.

The SHOW SYMBOL command displays symbol values. Specify
the name of the symbol to display the value of a particular local
symbol. Specify the name of the symbol and /GLOBAL to display
the value of a particular global symbol. Specify I ALL to display all
local symbols and /ALUGLOBAL to display all global symbols.

The DELETE/SYMBOL command deletes a symbol. You must
include the /GLOBAL qualifier to delete a global symbol. In the
following example, the global symbol TEMP is deleted:
$ DELETE/SYMBOL/GLOBAL TEMP

12.2 Using Symbols to Collect, Store, and Manipulate
Data

You can use symbols to store and manipulate a variety of values. This section
describes the values that can be stored in symbols. It also describes how symbols
can be combined in expressions to manipulate the values the symbols contain.

12.2.1 Defining Symbols as Character Strings
Defining a symbol as a character string allows you to insert that string in a
command line by typing the symbol (with surrounding apostrophes to force
substitution, as described in Section 12.2.4). In the following example, the symbol
FILE is first defined ~.i;; a complete file specification and then used in the TYPE
command:

$ FILE == "DISKl: [JONES.TAXES]CORPORATE.DAT"
$ TYPE 'FILE'

The string can be a directory you often access. In the following example,
whenever the symbol TAXES occurs in a command line, the literal value replaces
the symbol before the line is executed.
$ TAXES== "[JONES.TAXES]"
$ COPY 'TAXES'OVERDUE.DAT OVERDUE.TMP

12-4 Symbols: Defining Commands and Expressions

Symbols can also be variables, which hold values that you calculate or that you
assign as something other than a literal. For example, you might assign the
value of a lexical function to a variable or read the value of a file record into a
variable. As variables, symbols are most often used in command procedures (see
Chapter 13).

12.2.2 Creating Symbols

To create a symbol, assign a value to a symbolic name using the following format:

symbol-name =[=] value

The symbol name can be 1 through 255 characters long and must begin with a
letter, an underscore (_), or a dollar sign ($). In a symbol name, both lowercase
and uppercase letters are treated as uppercase.

The value you assign to a symbol can be made either locally or globally available
to the command interpreter:

• Local-A local symbol is available to the command level that defined it, to
any command procedure executed from that level, and to lower command
levels. (By convention, DCL level-command level 0-is the highest command
level and command level 31 the lowest command level. Thus, when you
move from command level 3 to command level 2, you are moving to the next
higher command level. If you execute a command procedure interactively, the
commands in the procedure are executed at command level 1. You can create
a maximum of 31 command levels.)

• Global-A global symbol is available to any command level regardless of the
level at which it was defined.

To create a local symbol, use a single equal sign in the assignment statement. To
create a global symbol, use two equal signs. The following commands define the
local symbol FILE as the character string DISK2:[BOLIVARJPRICES.CUR and
the global symbol MAX_ VALUE as the number 24.
$FILE = "DISK2: [BOLIVAR] PRICES.CUR"
$ MAX_VALUE == 24

You can omit the quotation marks around character strings in assignment
statements if you precede the equal sign or signs with a colon. Symbol
assignments that omit quotation marks automatically change the character
string to uppercase letters and compress multiple -spaces and tabs to a single
space. The following example again creates the local symbol FILE, this time
omitting the quotation marks because of the included colon:
$FILE := ACCOUNTS:[BOLIVAR]PRICES.84

Symbols: Defining Commands and Expressions 12-5

The result of DCL's evaluation of a symbol is either a ch~racter string or an
integer value. The data type (character or integer) of a symbol is determined by
the data type of the value currently assigned. The type is not permanent: if the
value changes type, as in the following example, the symbol changes type. In the
following example, the local symbol NUM is first assigned a character value and,
then converted to an integer value when assigned an integer expression:
$ NUM = "ABC"
$ NUM = 2 + 5

Local symbols take precedence over global symbols with the same name. Symbols
take precedence over identical command names. This means that if you define
a symbol with the same name as a DCL command, your definition overrides the
command name. For example, if you define the symbol HELP as the command
TYPE HELP.LST, you can no longer invoke the system's HELP facility by typing
HELP.

12.2.3 Understanding Symbol Tables

Symbols are stored in the following tables, which are maintained by the operating
system:

• Local symbol table-DCL maintains a local symbol table for your main
process and for every command level that you create when you execute a
command procedure, use the CALL command, or submit a batch job. A
local table is deleted when its associated command level terminates. (See
Chapter 10 for more information about processes, command procedures, and
batch jobs.)

In addition to the local symbols you create, a local symbol table contains
eight symbols that are maintained by DCL. These symbols, named Pl,
P2, and so on through PS, are used for passing parameters to a command
procedure. Parameters passed to a command procedure are regarded as
character strings. Otherwise, Pl through PS are defined as null character
strings (" "). They are stored in the local symbol table.

• Global symbol table-DCL maintains only one global symbol table for the
du.rativil vf c;. pr0ca:;:;. In ~dditfo!l fo the glabal s~"!!!bols yo.._~ ~rei::ifo, thP. global
symbol table contains the reserved global symbols described in the following
table. These global symbols give you status information on your programs
and command procedures as well as on system commands and utilities.

12-6 Symbols: Defining Commands and Expressions

Reserved
Global
Symbols

$STATUS

$SEVERITY

$RESTART

Definition

The condition code returned by the most recently executed command. $STATUS
conforms to the format of a VMS message code. Applications programs can set
the value of the global symbol $STATUS by including a parameter value to the
EXIT command. The system uses the value of $STATUS to determine which
message, if any, to display and whether to continue execution at the next-higher
command level. The value of the lower three bits in $STATUS is placed in the
global symbol $SEVERITY.

The severity level of the condition code returned by the most recently executed
command. $SEVERITY, which is equal to the lower three bits of $STATUS, can
have the following values:
0 Warning

1 Success

2 Error

3 Information

4 Severe (fatal) error

Has the value TRUE if a batch job was restarted after it was interrupted by a
system crash. Otherwise, $RESTART has the value FALSE.

12.2.4 Understanding Symbol Substitution

When a command line is executed, symbols in the following positions are
automatically substituted:

• On the right side of an [:]= or [:]= = assignment statement

• In a lexical function

• In the brackets on the left side of an assignment statement when you are
performing substring substitution or number overlays (see Section 12.2.6.4)

• In a DEPOSIT, EXAMINE, IF, or WRITE command

• At the beginning of a command line

To force substitution of a symbol that is not in one of the positions listed, enclose
the symbol with apostrophes as follows:
$ TYPE 'B'

To force substitution of a symbol within a quoted character string, precede that
symbol with two apostrophes and follow it with a single apostrophe as follows:
$ T ="TYPE ''B'"

Symbols: Defining Commands and Expressions 12-7

When processing a command line, DCL replaces symbols ~th their values in the
following order:

• Forced substitution-From left to right, DCL replaces all strings delimited
by apostrophes (or double apostrophes for strings within quotation marks).
Symbols preceded by single apostrophes are translated iteratively; symbols
preceded by double apostrophes are not.

• Automatic substitution-From left to right, DCL evaluates each value in the
command line, executing it if it is a command and evaluating it if it is an
expression. Symbols in expressions are replaced by their assigned values; this
substitution is not iterative.

The following example demonstrates the effect of the order in which DCL
substitutes symbols. Assume the following symbol definitions:

$ PN = "PRINT/NOTIFY"
$ FILEl = "[BOLIVAR]TEST CASE.TXT"
$ NUM = 1 -

Given the preceding symbol definitions, the following commands print the file
named [BOLIVAR]TEST_CASE.TXT:

$ FILE = "'FILE' 'NUM' '"
$ PN 'FILE'

In the first command, forced substitution causes NUM to become 1, making
FILE"NUM' become FILEl. If you enter the command SHOW SYMBOL FILE,
you will see that FILE= "'FILEl"'.

The second command performs two substitutions. First, 'FILE' is substituted
with 'FILEl'. 'FILEl' also requires substitution because it is enclosed in
single quotation marks. Automatic substitution causes FILEl to become
[BOLIVAR]TEST_CASE.TXT. This file name is then appended to the value of
PN, which is PRINT/NOTIFY. The resulting string is as follows:

$ PRINT/NOTIFY [BOLIVAR]TEST_CASE.TXT

12.2.5 Using Symbol Values
A symbol can be defined with a character string, a number, a lexical function, a
logical value, or another symbol. The following sections describe these values.

12.2.5.1 Character String Values
Characters fall into the following three main categories:

• Alphanumeric characters-The uppercase letters A through Z, the lowercase
letters a through z, the digits 1 through 9, the dollar sign ($), the underscore
(_), and the hyphen (-).

• Special characters-All other characters that can be displayed or printed: the
exclamation point (!), quotation marks ("), number sign (#), and so on.

12-s Symbols: Defining Commands and Expressions

• Nonprintable characters-All characters that cannot be printed or displayed.
In general, nonprintable characters are ignored for display and print
purposes. However, several nonprintable characters serve control functions as
follows:

Character

HT

LF
FF
CR

ESC
SP

Function

Starts printing or typing at the next horizontal tab

Starts printing or typing on the next line

Starts printing or typing at the top of the next page

Starts printing or typing at the first space on the same line

Introduces a terminal escape sequence

Inserts one space

You can define a character string by enclosing it in quotation marks. In this way,
alphabetic case and spaces are preserved when the symbol assignment is made.

12.2.5.2 Numeric Values
A number can have the following values:

• Decimal-The ASCII characters 0 through 9

• Hexadecimal-The ASCII characters 0 through 9 and A through F

• Octal-The ASCII characters 0 through 7

The number you assign to a symbol must be in the range -2147483648 through
2147483647 (decimal). (An error is not reported if a number outside this range is
specified or calculated, but an incorrect value results.)

At DCL command level and within command procedures, specify a number as
follows:

• Positive numbers-Specify a positive number by typing the appropriate digits.
The following example assigns the number 13 to the symbol DOG_COUNT:

$ DOG COUNT = 13
$ SHOW SYMBOL DOG_COUNT

DOG COUNT = 13 Hex = OOOOOOOD Octal = 00000000015

• Negative numbers-Precede a negative number with a minus sign, as in the
following example:
$ BALANCE = -15237
$ SHOW SYMBOL BALANCE

BALANCE= -15237 Hex= FFFFC47B Octal= 37777742173

Symbols: Defining Commands and Expressions 12-9

• Radix-Specify a number in a radix other than decimal by preceding the
number (but not the minus sign) with %X for hexadecimal numbers and %0
for octal numbers. For example:
$ DOG COUNT = %XD
$ SHOW SYMBOL DOG_COUNT

DOG_COUNT = 13 Hex = OOOOOOOD Octal = 00000000015

$ BALANCE = -%X3B85
$ SHOW SYMBOL BALANCE

BALANCE= -15237 Hex= FFFFC47B Octal= 37777742173

• Fractions-A number cannot include a decimal point. In calculations,
fractions are truncated; for example, 8 divided by 3 equals 2.

Numbers are stored internally as signed 4-byte integers, called longwords;
positive numbers have values of 0 through 2147483647 and negative numbers
have values of 4294967296 minus the absolute value of the number. The number
-15237, for example, is stored as 4294952059. Negative numbers are converted
back to minus-sign format for ASCII or decimal displays; however, they are not
converted back for hexadecimal and octal displays. For example, the number
-15237 appears in displays as hexadecimal FFFFC47B (decimal 4294952059)
rather than hexadecimal-00003B85.

Numbers are stored in text files as a series of digits using ASCII conventions (for
example, the digit 1 has a storage value of 49).

12.2.5.3 Values Returned by Lexical Functions
Typically used in command procedures, lexical functions provide users with a
means to obtain information from the system, including information about system
processes, batch and print queues, and user processes. You can also use lexical
functions to manipulate character strings and translate logical names. When you
assign a lexical function to a symbol, the symbol is equated to the information
returned by the lexical function (for example, a number or character string). At
DCL level, you can then display that information with the DCL command SHOW
SYMBOL. In a command procedure, the information stored in the symbol can be
used later in the procedure. See the description of the DCL commands and lexical
functions in the Reference Section.

To use a lexical function, type the name of the lexical function (which always
begins with F$) and its argument list. Use the following syntax:

F$fu nction-name(args[, ...])

The argument list follows the function name with any number of intervening
spaces and tabs. When using a lexical function, observe the following rules:

• Enclose the argument list in parentheses.

• Within the list, specify arguments in exact order and separate them with
commas; even if you omit an optional argument, do not omit the comma.

• If no arguments are required, type an empty set of parentheses.

12-10 Symbols: Defining Commands and Expressions

• Do not enclose lexical functions in quotation marks.

• If an argument contains a character string, enclose the character string in
quotation marks.

• If an argument contains an integer, a symbol, or another lexical function, do
not enclose these values in quotation marks.

Use lexical functions the same way you would use character strings, integers,
and symbols. The following example uses the F$LENGTH function. F$LENGTH
returns an integer that specifies the length of the string. The returned value is
assigned to the symbol LEN.
$ LEN= F$LENGTH("The cow jumped over the moon.")
$ SHOW SYMBOL LEN

LEN = 29 Hex = OOOOOOlD Octal = 00000000035

You can use a lexical function in any position that you can use a symbol. In
positions where symbol substitution must be forced by enclosing the symbol in
apostrophes, lexical function evaluation must be forced by placing the lexical
function within apostrophes. Lexical functions can also be used as argument
values in other lexical functions.

The following example equates the length of the character symbol LINE to a
numeric symbol named L:
$ L = F$LENGTH (LINE)

The following example strips the last two characters from the character string
that is the value of the symbol LINE:
$ LINE= F$EXTRACT (0,F$LENGTH(LINE)-2,LINE)

12.2.5.4 Logical Values
Some operations interpret numbers and character strings as logical data with
values as follows:

• True-A number has a logical value of true ifit is odd (that is, the low-order
bit is 1). A character string has a logical value of true if the first character is
an uppercase or lowercase T or Y.

• False-A number has a logical value of false ifit is even (that is, the low-order
bit is 0). A character string has a logical value of false if the first character is
not an uppercase or lowercase T or Y.

In both of the following examples, DOG_ COUNT is assigned the value 13. IF
STATUS means if the logical value of STATUS is true.
$ STATUS = 1
$ IF STATUS THEN DOG_COUNT = 13

$ STATUS = "TRUE"
$ IF STATUS T.HEN DOG_ COUNT = 13

Symbols: Defining Commands and Expressions 12-11

12.2.5.5 Using a Symbol as a Value for Another Symbol
After a symbol is defined, it can be used as a value for another symbol. A symbol
can be interpreted as a character string or a number, depending on the context in
which it is used. For example, suppose a symbol, COUNT, is assigned the integer
value 3 as follows:

$ COUNT = 3

Then the value of COUNT can be used in other assignment statements. In the
following example, the value of COUNT is added to 1:

$ TOTAL = COUNT + 1

The result, 4, is equated to the symbol TOTAL. You can confirm the assignment
of the value to TOTAL by entering the SHOW SYMBOL command as follows:

$ SHOW SYMBOL TOTAL
TOTAL = 4 Hex = 00000004 Octal = 00000000004

You can include the symbol COUNT in a string assignment statement as follows:

$ BARK := P'COUNT'

COUNT is converted to a string value and appended to the character P. BARK
now has the same value as P3.

To include a symbol in a string assignment, use either a colon and an equal sign
(:=)or a colon and two equal signs(:==), and enclose the symbol in apostrophes.
Otherwise, DCL will not recognize it as a symbol.

If you define a null character string for a symbol, that symbol has a value of 0, as
shown in the following example:

$ A = ""
$ B = 2
$ C = A + B
$ SHOW SYMBOL C

C = 2 Hex = 00000002 Octal = 00000000002

12.2.6 Using Symbols in Expressions
An expression is a combination of values. Each value in an expression is
connected to another value by an operator. Operators are denoted in the
following ways:

• Special characters-Asterisk (*), slash (I), plus sign (+), and minus sign (-).

• Special names-.EQ., .EQS., .GE., .GES., .GT., .GTS., .LE., .LES., .LT.,
.LTS., .NE., .NES., .NOT., .AND., and .OR.; the names can be uppercase
or lowercase.

12-12 Symbols: Defining Commands and Expressions

Data entities and operators can be adjacent or can be separated by any number
of spaces or tabs. The values in the expression can be symbols or literal values
(such as 3 or "DOG"). Expressions take the following two forms:

• Operations-An operation combines two data entities or alters a data entity.
The following example combines the literal values 10 and 3 by adding them:
$ DOG COUNT = 10 + 3
$ SHOW SYMBOL DOG COUNT

DOG COUNT = 13 - Hex = OOOOOOOD Octal = 00000000015

• Comparisons-A comparison evaluates a relationship between two entities
as true or false. A true comparison evaluates to a numeric value of 1, and a
false comparison evaluates to a numeric value of 0. The following example
compares the value of the symbol DOG_ COUNT with the literal value 13 and
finds them to be equal:
$ DOG CHECK = DOG COUNT .EQ. 13
$ SHOW SYMBOL DOG-CHECK

DOG CHECK = 1 -Hex = 00000001 Octal = 00000000001

You can create character string expressions, numeric expressions, and logical
expressions. These are described in the following sections.

12.2.6.1 Character String Expressions
A character string expression can contain character strings, lexical functions
that evaluate to character strings, or symbols that have character string values.
Attempting an operation or comparison between a character string and a number
causes the character string to be converted to a number.

You can specify the following character string operations:

• Concatenation-The plus sign concatenates two character strings. For
example:
$ COLOR = "light brown"
$WEIGHT= "30 lbs."
$ DOG2 = "No tag, II + COLOR+ ", " + WEIGHT
$ SHOW SYMBOL DOG2

DOG2 ="No tag, light brown, 30 lbs."

• Reduction-The minus sign removes the second character string from the first
character string. For example:
$ SHOW SYMBOL DOG2

DOG2 ="No tag, light brown, 30 lbs."
$ DOG2 = DOG2 - ", 30 lbs."
$ SHOW SYMBOL DOG2

DOG2 = "No tag, light brown"

If the second character string occurs more than once in the first character
string, only the first occurrence of the string is removed.

Symbols: Defining Commands and Expressions 12-13

When you compare two character strings, the strings are compared character by
character; strings of different lengths are not equal (for example, "dogs" is greater
than "dog").

The comparison criteria are the ASCII values of the characters. Under this
criterion, the digits 0 through 9 are less than the letters A through Z, and the
uppercase letters A through Z are less than the lowercase letters a through z. A
character string comparison ends when either of the following conditions is true:

1. All the characters have been compared, in which case the strings are equal.

2. The first mismatch occurs.

You can specify the following varieties of string comparisons. In the examples,
assume that the symbol LAST_NAME has the value ''WHITFIELD."

• Equal to-The operator .EQS. compares one character string to another for
equality. The following comparison evaluates to 0 to indicate that the value of
the symbol LAST_NAME does not equal the literal "NORMAN":
$ TEST NAME = LAST NAME .EQS. "NORMAN"
$ SHOW-SYMBOL TEST=NAME

TEST_NAME = 0 Hex = 00000000 Octal = 00000000000

• Greater than or equal to-The operator .GES. compares one character string
to another for a greater or equal value in the first specified string. The
following comparison evaluates to 1 to indicate that the value of the symbol
LAST_NAME is greater than or equal to the literal "NORMAN":
$ TEST NAME = LAST NAME .GES. "NORMAN"
$ SHOW-SYMBOL TEST=NAME

TEST_NAME = 1 Hex = 00000001 Octal = 00000000001

• Greater than-The operator .GTS. compares one character string to another
for a greater value in the first specified string. The following comparison
evaluates to 1 to indicate that the value of the symbol LAST_NAME is greater
than the literal "NORMAN":
$ TEST NAME = LAST NAME .GTS. "NORMAN"
$ SHOW-SYMBOL TEST=NAME

TEST NAiv.iE = l Hex = OOOOOOOl Oc~al = OOOOOOOOOOl

• Less than or equal to-The operator .LES. compares one character string to
another for a lesser or equal value in the first specified string. The following
comparison evaluates to 0 to indicate that the value of the symbol
LAST_NAME is not less than or equal to the literal "NORMAN":
$ TEST NAME = LAST NAME .LES. "NORMAN"
$ SHOW-SYMBOL TEST=NAME

TEST_NAME = 0 Hex = 00000000 Octal = 00000000000

12-14 Symbols: Defining Commands and Expressions

• Less than-The operator .LTS. compares one character string to another for a
lesser value in the first specified string. The following comparison evaluates
to 0 to indicate that the value of the symbol LAST_NAME is not less than the
literal "NORMAN":
$ TEST_NAME = LAST_NAME .LTS. "NORMAN"
$ SHOW SYMBOL TEST_NAME

TEST_NAME = 0 Hex = 00000000 Octal = 00000000000

• Not equal-The operator .NES. compares one character string to another for
inequality. The following comparison evaluates to 1 to indicate that the value
of the symbol LAST_NAME does not equal the literal "NORMAN":
$ TEST_NAME = LAST_NAME .NES. "NORMAN"
$ SHOW SYMBOL TEST_NAME

TEST_NAME = 1 Hex = 00000001 Octal = 00000000001

12.2.6.2 Numeric Expressions
In a numeric expression, the values involved must be literal numbers (such as 3)
or symbols with numeric values. In addition, you can use a character string that
represents a number (for example, "23" or "-51"). Attempting an operation or
comparison between a number and a character string causes the character string
to be converted to a number.

You can specify the following numeric operations:

• Multiplication-The asterisk multiplies two numbers. For example:
$ BALANCE = 142 * 14
$ SHOW SYMBOL BALANCE

BALANCE = 1988 Hex = 000007C4 Octal = 00000003704

• Division-The slash divides the first specified number by the second specified
number. For example:
$ BALANCE = BALANCE / 14
$ SHOW SYMBOL BALANCE

BALANCE = 142 Hex = 0000008E Octal = 00000000216

If a number does not divide evenly, the remainder is lost. (No rounding takes
place.)

• Addition-The plus sign adds two numbers. For example:
$ BALANCE = BALANCE + 37
$ SHOW SYMBOL BALANCE

BALANCE = 179 Hex= OOOOOOB3 Octal = 00000000263

• Subtraction-The minus sign subtracts the second specified number from the
first specified number. For example:
$ BALANCE = BALANCE - 15416
$ SHOW SYMBOL BALANCE

BALANCE= -15237 Hex= FFFFC47B Octal = 00000142173

Symbols: Defining Commands and Expressions 12-15

• Unary plus and minus-The plus and minus signs change the sign of the
number they precede. For example:
$BALANCE= -(-142)
$ SHOW SYMBOL BALANCE

BALANCE = 142 Hex = 0000008E Octal = 00000000216

You can specify the following numeric comparisons:

• Equal to-The operator .EQ. compares one number to another for equality.
The following comparison evaluates to 1 to indicate that BALANCE equals
-15237:
$ TEST BALANCE = BALANCE .EQ. -15237
$ SHOW-SYMBOL TEST_BALANCE

TEST_BALANCE = 1 Hex = 00000001 Octal = 00000000001

• Greater than or equal to-The operator .GE. compares one number to another
for a greater or equal value in the first number. The following comparison
evaluates to 1 to indicate that BALANCE is greater than or equal to -15237:
$ TEST BALANCE = BALANCE .GE. -15237
$ SHOW-SYMBOL TEST BALANCE

TEST_BALANCE = 1- Hex = 00000001 Octal = 00000000001

• Greater than-The operator .GT. compares one number to another for a
greater value in the first number. The following comparison evaluates to 0
to indicate that BALANCE is not greater than -15237:
$ TEST BALANCE = BALANCE .GT. -15237
$ SHOW-SYMBOL TEST BALANCE

TEST BALANCE = 0- Hex = 00000000 Octal = 00000000000

• Less than or equal to-The operator .LE. compares one number to another
for a lesser or equal value in the first number. The following comparison
evaluates to 1 to indicate that BALANCE is less than or equal to -15237:
$ TEST BALANCE = BALANCE .LE. -15237
$ SHOW-SYMBOL TEST BALANCE

TEST_BALANCE = 1- Hex = 00000001 Octal = 00000000001

• Less than-The operator .LT. compares one number to another for a lesser
value in the first number. The following comparison evaluates to 0 to indicate
that BALANCE is not less than -15237:
$ TEST BALANCE = BALANCE .LT. -15237
$ SHOW-SYMBOL TEST_BALANCE

TEST_BALANCE = 0 Hex = 00000000 Octal = 00000000000

• Not equal to-The operator .NE. compares one number to another for
inequality. The following comparison evaluates to 0 to indicate that
BALANCE equals -15237:
$ TEST BALANCE = BALANCE .NE. -15237
$ SHOW-SYMBOL TEST BALANCE

TEST_BALANCE = 0- Hex = 00000000 Octal = 00000000000

12-16 Symbols: Defining Commands and Expressions

12.2.6.3 Logical Expressions
A logical operation affects all the bits in the number being acted upon. The values
for logical expressions are integers, and the result of the expression is an integer
as well. If you specify a character string value in a logical expression, the string
is converted to an integer before the expression is evaluated.

String and integer values are evaluated as follows:

• If the first character is T, t, Y, or y, a character string has a logical value of
true (1).

• If the first character is not T, t, Y, or y, a character string has a logical value
of false (0).

• If an integer is odd (the low-order bit is 1), it has a logical value of true (1).

• If an integer is even (the low-order bit is 0), it has a logical value of false (0).

Typically, you use logical expressions to evaluate the low-order bit of a logical
value; that is, to determine whether the value is true or false. You can specify the
following logical operations:

• Not-The operator .NOT. reverses the bit configuration of a logical value.
A true value becomes false and a false value becomes true. The following
example reverses a true value to false. The expression evaluates to -2; the
value is even and is therefore false:
$ SHOW SYMBOL STATUS

STATUS = 1 Hex = 00000001 Octal = 00000000001
$ STATUS = .NOT. STATUS
$ SHOW SYMBOL STATUS

STATUS = -2 Hex = FFFFFFFE Octal = 37777777776

• . And-The operator .AND. combines two logical values as follows:

Bit Level

1.AND. 1=1

1.AND. O = O

O .AND.1 = O

0 .AND. 0 = 0

Entity Level

true .AND. true = true

true .AND. false = false

false .AND. true = false

false .AND. false = false

The following example combines a true value and a false value to produce a
false value:
$ STATl = "TRUE"
$ STAT2 = "FALSE"
$ STATUS = STATl .AND. STAT2
$ SHOW SYMBOL STATUS

STATUS = 0 Hex = 00000000 Octal = 00000000000

Symbols: Defining Commands and Expressions

• Or-The operator .OR. combines two logical values as follows:

Bit Level

1.OR.1=1

1.OR.O=1

0 .OR. 1=1

0 .OR. 0 = 0

Entity Level

true .OR. true= true

true .OR. false = true

false .OR. true= true

false .OR. false= false

12-17

The following example combines a true value and a false value to produce a
true value:
$ STATl = "TRUE"
$ STAT2 = "FALSE"
$ STATUS = STATl .OR. STAT2
$ SHOW SYMBOL STATUS

STATUS = 1 Hex = 00000001 Octal = 00000000001

12.2.6.4 Substring Replacement and Numeric Overlays
You can replace a part of a character string with another character string. The
assignment statement has the following format for local symbols:

symbol-name[offset,size] := replacement-string

The assignment statement has the following format for global symbols:

symbol-name[offset,size] :== replacement-string

The fields are as follows:

• Offset is an integer that indicates the position of the replacement-string
relative to the first character in the original string. An offset of 0 means
the first character in the symbol, an offset of 1 means the second character,
and so on.

• Size is an integer that indicates the length of the replacement-string.

To replace substrings, observe the following rules:

• The square brackets are required notation. No spaces are allowed between
the symbol name and the left bracket.

• Integer values for size and offset values can be in the range of 0 through 768.

• The replacement-string must be a character string.

In the following example, the first assignment statement gives the symbol A the
value PACKRAT. The second statement specifies that MUSK replace the first four
characters in the value of A. The result is that the value of A becomes MUSKRAT.

12-10 Symbols: Defining Commands and Expressions

$A := PACKRAT
$ A[O, 4] := MUSK
$ SHOW SYMBOL A

A = "MUSKRAT"

The symbol name you specify can be undefined initially. The assignment
statement creates the symbol name and, if necessary, provides leading or trailing
spaces in the symbol value. For example:
$ B[4,3] :=RAT

If the symbol B does not have a previous value, it is given a value of four leading
spaces followed by RAT. This format creates a blank line of any length. The
following example gives the symbol LINE a value of 80 blank spaces:
$ LINE[0,80] := " "

Lining up records in columns makes a list easier to read and sort. You can use
this format to specify how you want data to be stored. For example:
$ DATA[0,15] := 'NAME'
$ DATA[17,1] := 'GRADE'

The first statement fills in the first 15 columns of DATA with whatever value
NAME has. The second statement fills in column 18 with whatever value GRADE
has. Columns 16 and 17 contain blanks.

A specjal format of the assignment statement can also be used to perform binary
(bit-level) overlays of the current symbol value. This format for local symbols is
as follows:

$ symbol-name[bit-position,size] = replacement-expression

The format for global symbols is as follows:

$ symbol-name[bit-position,size] == replacement-expression

The fields are as follows:

• Bit-position is an integer that indicates the location relative to bit 0 at which
the overlay is to occur.

• Size is an integer that indicates the number of bits to be overlaid.

When using numeric overlays, observe the following rules:

• The square brackets are required notation. No spaces are allowed between
the symbol name and the left bracket.

• Literal values are assumed to be decimal.

• The maximum length for size is 32 bits.

• Replacement-expression must be a numeric expression.

Symbols: Defining Commands and Expressions 12-19

• When symbol-name is either undefined or defined as a string, the result of the
overlay is a string. Otherwise, the result is an integer.

The following example defines the symbol BELL as the value 7. The low-order
byte of BELL has the binary value 00000111. By changing the 0 at offset 5 to
1 (beginning with 0, count bits from right to left), you create the binary value
00100111 (decimal value 39).
$ BELL = 7
$ BELL [5, 1] = 1
$ SHOW SYMBOL BELL

BELL = 39 Hex = 00000027 Octal = 00000000047

12.2.6.5 Order of Operations and the Results of Evaluations
An expression can contain any number of operations and comparisons. You
can indicate precedence (the order in which operation and comparison should
be evaluated) by placing operations to be performed first in parentheses.
(Parentheses can be nested.) Otherwise, operations within an expression are
evaluated in the following order:

1. Unary plus (+) and minus (-)

2. Multiplication and division

3. All other numeric and character operations

4. All numeric and character comparisons

5. Logical NOT operations

6. Logical AND operations

7. Logical OR operations

Operations and comparisons that have the same precedence are evaluated from
left to right. The following examples illustrate precedence of operations in
expressions:
$ BALANCE = 150 + 20 * 4

(BALANCE = 150 + 80)
$ Sttvw ~rM~UL ~ALANC~

BALANCE = 230 Hex = OOOOOOE6 Octal = 00000000346

$ BALANCE = (150 + 20) * 4
(BALANCE= 170 * 4)

$ SHOW SYMBOL BALANCE
BALANCE = 680 Hex = 000002A8 Octal = 00000001250

$ STATUS = 150 * 4 .GT. 80 * 2
(STATUS = 600 .GT. 160)

$ SHOW SYMBOL STATUS
STATUS = 1 Hex = 00000001 Octal = 00000000001

12-20 Symbols: Defining Commands and Expressions

An expression has either an integer or a string value, depending on the types
of values and the operators used. Table 12-1 summarizes how DCL evaluates
expressions. The first column lists the different values and operators that an
expression might contain. The second column tells, for each case, what the entire
expression is equated to. Within the table any value stands for a string or an
integer.

Table 12-1: Determining the Value of an Expression

Expression

Integer value

String value

Integer lexical function

String lexical function

Integer symbol

String symbol

+, -, or .NOT. any value

Any value .AND. or .OR. any value

String + or-string

Integer + or-any value

Any value + or-integer

Any value * or I any value

Any value (string comparison) any value

Any value (numeric comparison) any value

Resulting
Value Type

Integer

String

Integer

String

Integer

String

Integer

Integer

String

Integer

Integer

Integer

Integer

Integer

Chapter 13

Command Procedures: Programming with
DCL

A command procedure is a file that contains DCL commands and data lines
used by the DCL commands. You can write both simple and complex command
procedures. A simple command procedure executes a series of DCL commands
in the order in which they are written. For example, the following command
procedure sets your default directory and examines it:
$! PROCEDURES.COM
$!
$! Enter [MAINT.PROCEDURES] and examine it
$ SET DEFAULT [MAINT.PROCEDURES]
$ DIRECTORY

A complex command procedure performs program-like functions. For example,
the following command procedure asks for directory names and examines the
directories:
$! DIRECTORY.COM
$!
$! Examine directories
$START:
$ INQUIRE DIR NAME "Directory name"
$ IF DIR NAME-.EQS. "" THEN GOTO END
$ DIRECTORY 'DIR NAME'
$ GOTO START -
$END:

This chapter describes how to create and use simple command procedures. For
information about designing, coding, and testing complex command procedures,
refer to the Guide to Using VMS Command Procedures.

13-2 Command Procedures: Programming with DCL

13.1 Formatting a Command Procedure
Use the following rules to format a command procedure:

• Use a dollar sign ($) to begin each line containing a command, comment, or
label.

• Do not begin data lines with a dollar sign.

• Use comments to explain the command procedure to anyone who must
maintain it. Place comments at the beginning of a procedure to describe
the procedure and the parameters passed to it; place them at the beginning
of each block of commands to describe that section of the procedure. The
command interpreter ignores comments when the command procedure
executes. Precede a comment with an exclamation point; the comment is
all text to the right of an exclamation point. (To include a literal exclamation
point in a command line, precede and follow it with quotation marks.)

• Use complete names for commands and qualifiers. Commands and qualifiers
are usually self-explanatory when they are not abbreviated. Abbreviated
commands and qualifiers may no longer be unique when new commands and
qualifiers are added to the VMS operating system.

• Put labels on separate lines to make loops, subroutines, and conditional code
easier to understand. (Labels mark the beginning of loops, subroutines, and
conditional code.) You may choose to differentiate labels from commands by
placing labels immediately after the dollar sign and by preceding commands
with spaces. A label can have lip to 255 characters, cannot contain embedded
spaces, and must be ended with a colon. (The GOTO, GOSUB, and CALL
commands transfer control to labels, which mark the beginning of a loop, a
section of code, or a subroutine.)

• Separate command sequences with lines containing a dollar sign and an
exclamation point ($!). This makes it easier to see the outline of the
command procedure. (If you insert blank lines, the command interpreter
interprets them as data lines and produces a message warning you that the
data lines were ignored.)

13.2 Executing a Command Procedure
You can execute command procedures as follows:

• Interactively from DCL level

• From within another command procedure

• On a remote node

• In batch mode

The following sections contain procedures for each of these methods.

Command Procedures: Programming with DCL 13-3

Executing a Command Procedure Interactively

To execute a command procedure interactively, type an at sign (@) followed by the
file specification of the procedure. The file type defaults to COM. For example,
the following command executes the procedure SETD.COM in the directory
[MAINT.PROCEDURESJ on the disk WORKDISK:
$ @WORKDISK: [MAINT.PROCEDURES]SETD

To simplify the execution of a command procedure, create a global symbol or
a logical name, and place the symbol or logical name definition in your login
command procedure. (Section 13.3 describes how to create a login command
procedure. Symbols are described in Chapter 12; logical names are described in
Chapter 11.) Equating the command line to a global symbol allows you to invoke
the command procedure from any directory by entering the global symbol name
as shown in the following example:

$ SETD == "@WORKDISK: [MAINT .PROCEDURES] SETO"
$ SETO

Equating the file specification to a logical name allows you to invoke the command
procedure from any directory by entering an at sign (@) followed by the logical
name as shown in the following example:

$DEFINE SETO WORKDISK:[MAINT.PROCEDURES]SETD.COM
$ @SETO

Executing a Command Procedure from Within Another Command Procedure

To execute a command procedure from within another command procedure, use
the at sign (@) followed by the file specification of the procedure. For example,
the following command procedure, WRITEDATE.COM, invokes the command
procedure GETDATE.COM:
$! WRITEDATE.COM
$ INQUIRE TIME "What is the current time in hh:mm format?"
$ @GETDATE [JONES.COM]GETDATE.COM

Executing a Command Procedure on a Remote Node

To execute a command procedure interactively on a remote node, use the TY¥E
command. The TYPE command lets you execute command procedures to list the
users logged on to the remote node or to display the status of services in the
local cluster not provided clusterwide. The output of the command procedure is
displayed on the user's terminal at the local node.

13-4 Command Procedures: Programming with DCL

To execute a command procedure in the top level directory of another account on
the remote node, use an access control string in the command in the following
format:

TYPE node_name"user_name password"::"TASK=command_procedure"

The variable user _name is the user name of the account on the remote node,
password is the password of the account on the remote node, and command_
procedure is the name of the command procedure.

For example, the following command procedure, SHOWUSERS.COM, displays the
users logged in at the remote node on which the command procedure resides:
$! SHOWUSERS.COM
$ IF F$MODE() .EQS. "NETWORK" THEN DEFINE/USER SYS$0UTPUT SYS$NET
$ SHOW USERS

The following command executes the command procedure SHOWUSERS.COM
and displays the output from this command procedure on the user's terminal.
The command procedure resides in the top level directory of account BIRD on
node ORIOLE.

$ TYPE ORIOLE"BIRD BOULDER"::"TASK=SHOWUSERS"

VAX/VMS Interactive Users
19-APR-1990 17:20:13.30

Total number of interactive users = 4
Username Process Name PID Terminal
FLICKER Freddie 00536278 TXAl:
ROBIN Red 00892674 VTA2:
DOVE Whitie 00847326 TXA3:
DUCK Donna 02643859 RTAl:

Executing a Command Procedure as a Batch Job

You can also submit a command procedure to a batch queue to execute as a batch
job. If your system is part of a network, you can submit a command procedure to
execute as a batch job on a remote node. Within a command procedure, you can
use DCL commands to open and close files on a remote node and read and write
records in these files, using the same commands and qualifiers as for local files.
Section 10.4 contains more information about batch jobs.

13.2.1 Changing Command Procedure Levels
A command procedure level is an input stream for the DCL command interpreter.
You can create a maximum of 31 command levels. There are two ways to create
new command levels. You can either use the CALL command to call a subroutine
that exists within the command procedure, or you can nest command procedures
by using an execute procedure (@) command inside one command procedure to
invoke another command procedure. When you use the CALL command or nest a
command procedure, the command level increases by 1.

Command Procedures: Programming with DCL 13-5

When you invoke a command procedure, the command level increases by 1.
For example, if you invoke procedure SUB from DCL command level (level 0),
SUB executes at command level 1. If SUB then invokes SUBl, which invokes
SUBSUBl, SUBl executes at command level 2, and SUBSUBl executes at
command level 3.

By convention, DCL level (command level 0) is the highest command level
and command level 31 the lowest command level. Thus, when you move from
command level 3 to command level 2, you are moving to the next higher command
level.

13.2.2 Exiting from a Command Procedure

A command procedure exits when it reaches the end of the procedure, an EXIT
command, or a STOP command. If the exit is caused by the end of the procedure
or an EXIT command, control returns to the next higher command level. If
the exit is caused by the EXIT command, you can return a status value to the
next higher command level by specifying the value as the parameter of the
EXIT command. See Chapter 12 for more information about the global symbols
$STATUS and $SEVERITY. For example, if you invoke SUB at DCL command
level, and SUB calls SUBl, the following sequence of actions occurs:

1. Exiting from SUBl returns you to SUB at the command line following the call
to SUBl.

2. Exiting from SUB returns you to DCL command level.

If the exit is caused by the STOP command, control always returns to DCL
command level, regardless of the command level in which the STOP command
executes.

13.3 Designing a Login Command Procedure
You can create a command procedure, called a login command procedure, to
execute the same commands each time you log in. Name your login command
procedure LOGIN.COM, and place it in your top level directory, unless your
system manager tells you otherwise.

13-6 Command Procedures: Programming with DCL

The following sample LOGIN.COM procedure illustrates some commands you
might want to include in your login command procedure:

$! Sample LOGIN.COM for user MARCIA with
$! default disk of DISK3
$!
$! Exit if this is a batch job or another
$! type of noninteractive process
$!
$ IF F$MODE () .NES. "INTERACTIVE" THEN EXIT 0
$!
$! Tailor the default behavior of
$! certain DCL commands
$!
$ PUR*GE :== PURGE/LOG
$ SUB*MIT :== SUBMIT/NOLOG FILE/NOTIFY
$ M*AIL :== MAIL/EDIT=(SEND,FORWARD,REPLY)
$!
$! Define global symbols
$!
$ DISPLAY :== MONITOR PROCESSES/TOPCPU
$ GO :== SET DEFAULT
$ LP :== SHOW QUEUE/ALL SYS$PRINT
$ SS :== SHOW SYMBOL
$ SQ :== SHOW QUEUE/ALL
$ REM :== @DISK3: [MARCIA.PROG]REMINDER
$ MAIN :== SET DEFAULT DISK3: [MARCIA]
$!
$! Define logical names for:
$! Directories
$ DEFINE HOME DISK3: [MARCIA]
$ DEFINE REV DISK3: [MARCIA.REVIEWS]
$ DEFINE TOOLS DISK3: [MARCIA.TOOLS]
$! Files
$ DEFINE EQUIP DISK3: [MARCIA.LISTS)EQUIPMENT.DAT
$ DEFINE ACCOMP DISK3: [MARCIA]ACCOMPLISHMENTS.DAT
$! Users
$DEFINE JON DAISY::HARRIS
$DEFINE JANE DAISY::MOORE
$!
$! Define keys to execute commands
$!
$ DEFINE/KEY PF3 "SHOW USERS" /TERMINATE
$ DEFINE/KEY KP7 "SPAWN" /TERMINATE
$ DEFINE/KEY KP8 "ATTACH "
$ DEFINE/KEY KP4 "SET HOST "
$!
$! Change the prompt string to a three-character
$! abbreviation of the node name
$!
$NODE= F$GETSYI("NODENAME") f:J
$ PROMPT = F$EXTRACT(0,3,NODE)
$SET PROMPT= "''PROMPT'> II

$!
$! Type the system notices .,
$!

Command Procedures: Programming with DCL 13-7

$ ON ERROR THEN CONTINUE 8
$!
$ TYPE SYS$SYSTEM:NOTICE.TXT
$!
$! Run a program that displays today's appointments CB
$!
$ RUN DISK3: [MARCIA.PROG]REMINDER

8 The F$MODE lexical function returns the mode (interactive, batch, network,
or other) that the process is in when the LOGIN.COM procedure is executing.
This statement causes the procedure to exit unless you are using the system
interactively. You should test the mode at the beginning of your LOGIN.COM
procedure to ensure that commands used only in interactive mode are not
executed in any other mode; in some cases, these commands can abort
noninteractive processes.

8 This group of commands changes the DCL prompt to the first three characters
of the node name. The F$GETSYI lexical function determines the node name.
The F$EXTRACT lexical function extracts the first three characters of the
name. The SET PROMPT command changes the prompt from a dollar sign to
the first three characters of the node name followed by the right angle bracket
character (>) and a space.

8 This command displays the system notices that your system manager keeps
in the file SYS$SYSTEM:NOTICE.TXT.

e This command runs a user-written program that displays your daily
appointments. If you have written programs that you always run after you
log in, you may prefer to execute them directly from your LOGIN. COM file.

8 This command requests the command interpreter to continue executing the
procedure if any warning or error status value is returned when the command
procedure is executed.

The system manager assigns the file specification for your login command
procedure. In most installations, the login command procedure is called
LOGIN.COM.

13.4 Using Loops
A loop is a group of commands that executes repeatedly until a condition is met.
The following arrangement is recommended for statements that form a loop:

1. Begin the loop.

2. Change the termination variable.

3. Test the termination variable. If the condition is met, go to the end of the
loop.

4. Perform the commands in the body of the loop.

13-8 Command Procedures: Programming with DCL

5. Return to the beginning of the loop.

6. End the loop.

You can also write loops that test the termination variable at the end of the loop
rather than at the beginning as follows:

1. Begin the loop.

2. Perform the commands in the body of the loop.

3. Change the termination variable.

4. Test the termination variable. If the condition is not met, go to the beginning
of the loop.

5. End the loop.

Note that when you test the termination variable at the end of the loop, the
commands in the body of the loop execute at least once, regardless of the value in
the termination variable.

Both of the following examples execute a loop that terminates when COMMAND
equals "EX'' (EXIT). (F$EXTRACT truncates COMMAND to its first two
characters.) In the first example, COMMAND, the termination variable, is tested
at the beginning of the loop; in the second, it is tested at the end of the loop.
$! EXAMPLE 1
$!
$GET COMMAND:
$ INQUIRE COMMAND-

" Command (EXIT,DIRECTORY,TYPE,PURGE,DELETE,COPY)"
$ COMMAND = F$EXTRACT(0,2,COMMAND)
$ IF COMMAND .EQS. "EX" THEN GOTO END_LOOP

$ GOTO GET COMMAND
$END_LOOP:-

$! EXAMPLE 2
$!
$GET COMMAND:
$ INQUIRE COMMAND-

" Command (EXIT,DIRECTORY,TYPE,PURGE,DELETE,COPY)"
$ COMMAND = F$EXTRACT(0,2,COMMAND)

$ IF COMMAND .NES. "EX" THEN GOTO GET_COMMAND
$! End of loop

Command Procedures: Programming with DCL 13-9

To perform a loop a specific number of times, use a counter as the termination
variable. In the following example, 10 file names are input by the user and placed
into the local symbols FILl, FIL2, . . . , FILlO:
$ NUM = 1
$LOOP:
$ INQUIRE FIL' NUM' "File"
$ NUM = NUM + 1
$ IF NUM .LT. 11 THEN GOTO LOOP
$END_LOOP:

Set counter
Begin loop
Get file name
Update counter
Test for termination
End loop

To perform a loop for a known sequence of values, use F$ELEMENT. In the
following example, the files CHAPl, CHAP2, CHAP3, CHAPA, CHAPB, and
CHAPC are processed in order:
$ FILE_LIST = "1,2,3,A,B,C"
$ INDEX = 0
$PROCESS:
$ NUM = F$ELEMENT(INDEX,",",FILE LIST)
$ IF NUM .EQS. "," THEN GOTO END-LOOP
$ FILE = "CHAP'' NUM'" -
$! process file named by FILE

$ INDEX = INDEX + 1
$ GOTO PROCESS
$END LOOP:
$ EXIT

13.5 Passing Data
Command procedures frequently require data provided by a user. To specify
the same data each time the command procedure is executed, place the data on
data lines following the command that requires the data. (A data line is a line
that does not begin with a dollar sign.) To include a data line that begins with
a dollar sign, use the DCL commands DECK and EOD, which are described
in the Reference Section.) The foiiowing command procedure executes the
image CENSUS.EXE, which reads the data 1990, 1991, and 1992 each time
the procedure is executed:
$! CENSUS.COM
$!
$ RUN CENSUS
1990
1991
1992
$ EXIT

13-10 Command Procedures: Programming with DCL

The text on a data line is passed directly to the image; DCL does not process
data lines. Therefore, DCL does not translate symbols or evaluate arithmetic
expressions on data lines before passing the symbols or arithmetic expressions to
the image. Logical names are not translated by DCL; therefore, a logical name
included on a data line is not translated before it is passed to an image.

To specify different data each time a command procedure executes, use one of the
following mechanisms, which are described in the following sections:

• Pass the data as one or more parameter values.

• Use the INQUIRE or READ command within the command procedure to
prompt for data.

• Specify a device or file from which to read the data by redefining the logical
name SYS$INPUT.

13.5.1 Using Parameters to Pass Data

When you invoke a command procedure, you can pass it up to eight parameters.
Place the parameters after the file specification of the command procedure.
Separate the parameters with one or more spaces or tabs. For example, the
following command invokes SUM.COM and passes eight parameters to the
procedure:
$ @SUM 34 52 664 89 2 7 87 3

DCL places parameters passed to a command procedure in the local symbols Pl
through PS; Pl is assigned the first parameter value; P2 the second; P3 the third;
and so on. If you pass more than eight values, you receive the following error
message and the command procedure does not execute:
%DCL-W-DEFOVF, too many command procedure parameters - limit to eight

If you pass fewer than eight values, the extra symbols are assigned null values.
A null value is a string with no characters and is represented by double quotation
marks ("").

To pass parameters to a command procedure executed in batch mode, use the
/PARAMETERS qualifier of the SUBMIT command. If you pass more than one
parameter, place the parameters in parentheses and separate them with commas.
If you execute more than one command procedure using a single SUBMIT
command, the specified parameters are used for each command procedure in
the batch job. The following command passes three parameters to the command
procedures ASK COM and GO.COM, which are executed as batch jobs:
$ SUBMIT/PARAMETERS=(TODAY,TOMORROW,YESTERDAY) ASK.COM, GO.COM

Command Procedures: Programming with DCL 13-11

Specify a parameter value as one of the following:

• Integer-When you specify an integer, it is converted to a string as follows:

$ @ADDER 24 25

In this example, Pl is the string value 24; P2 is the string value 25. (You
can, however, use the symbols Pl and P2 in both integer and character string
expressions; DCL performs the necessary conversions automatically.)

• String-Specify character strings as follows:

$ @DATA Paul Cramer

In this example, the strings Paul and Cramer are converted to uppercase
letters; Pl is PAUL, and P2 is CRAMER.

To preserve spaces, tabs, or lowercase characters, place quotation marks
before and after the string as follows:

$ @DATA "Paul Cramer"

In this example, Pl is Paul Cramer, and P2 is null.

• Symbol-To pass the value of a symbol, place an apostrophe character before
and after the symbol, as shown in the following example. When passing
a symbol, DCL removes quotation marks that enclose a string. (To preserve
spaces, tabs, and lowercase characters in a symbol value, surround the symbol
with quotation marks.)

$ NAME = "Paul Cramer"
$ @DATA 'NAME'

In this example, Pl is Paul, and P2 is Cramer.

To include a quotation mark as part of a string, enter three quotation marks
as follows:

$NEW NAME = "'"'Paul Cramer"""
$ @DATA 'NEW NAME'

In this example, Pl is "Paul Cramer", and P2 is null.

• Null-To pass a null parameter, use a set of quotation marks as a placeholder
in the command string. In the following example, the first parameter passed
to DATA.COM is a null parameter:

$ @DATA "" "Paul Cramer"

In this example, Pl is null, and P2 is Paul Cramer.

13-12 Command Procedures: Programming with DCL

For example, when DATA.COM is invoked with the following command, Pl
through PS are defined in DATA.COM as follows:

Pl = Paul Cramer
P2= 24
P3 = (555) 111-1111
P4-P8 =null

$ @DATA "Paul Cramer" 24 "(555) 111-1111"

You can pass up to eight parameters to a nested command procedure. The local
symbols Pl through PB in the nested procedure are not related to the local
symbols Pl through PS in the invoking procedure. In the following example,
DATA.COM invokes the nested command procedure NAME.COM:
$! DATA.COM
$ @NAME 'Pl' Joe Cooper

Because Pl in DATA.COM is the string Paul Cramer, which contains no quotation
marks, it is passed to NAME.COM as two parameters. In NAME.COM, Pl
through PS are defined as follows:

Pl= PAUL
P2 =CRAMER
P3 =JOE
P4 =COOPER
P5-P8 =null

Because DOL removes quotation marks when passing a symbol, you must
enclose the value in three sets of quotation marks to preserve spaces, tabs, and
lowercase characters in the symbol value. For example, in the following command
procedure, the literal value in Pl is enclosed in three sets of quotation marks and
passed to NAME.COM. If Pl originally contains the value "Paul Cramer", the
value "Paul Cramer" is passed to NAME.COM.
$! DATA.COM
$ QUOTE = """
$ Pl = QUOTE + Pl + QUOTE
$ @NAME 'Pl' "Joe Cooper"

In this example, Pl is Paul Cramer and P2 is Joe Cooper in the command
procedure NAME.COM.

An alternative is to enclose the text in quotation marks and, where a symbol
appears, precede the symbol with two apostrophes and follow it with one
apostrophe as follows:
$! DATA.COM
$ @NAME "''Pl' II

Command Procedures: Programming with DCL 13-13

Passing Data and Parameters to a Batch Job

To specify parameters for a job submitted in batch mode, use the /PARAMETERS
qualifier of the SUBMIT command.

TIP: You can also pass data to a batch job by including the data
in a command procedure or by defining SYS$INPUT to be a file.
The specified parameters are used for each command procedure in
the batch job.

For example, the following SUBMIT command passes two parameters to the
command procedures LIBRARY.COM and SORT.COM:
$ SUBMIT-

$ /PARAMETERS=(DISK: [ACCOUNT.BILLS]DATA.DAT,DISK: [ACCOUNT]NAME.DAT) -
=$ LIBRARY.COM, SORT.COM

Your batch job executes as if you had logged in and executed each of the
submitted command procedures. For example, the previous SUBMIT command
executes a batch job that logs in under your account, executes your login
command procedure, and then executes the following commands:
$@LIBRARY DISK: [ACCOUNT.BILLS]DATA.DAT DISK:[ACCOUNT]NAME.DAT
$ @SORT DISK: [ACCOUNT.BILLS]DATA.DAT DISK: [ACCOUNT] NAME.DAT

13.5.2 Using the INQUIRE Command

You can use the INQUIRE command to obtain data for command procedures
that you execute interactively. The INQUIRE command prompts for a value,
reads the value from the terminal, and assigns it to a symbol. The response
to the prompt is interpreted as a character string. By default, the response
is converted to uppercase, multiple blanks and tabs are replaced by a single
space, and leading and trailing spaces are removed. To preserve lowercase
characters, multiple spaces, and tabs, enclose your response in quotation marks.
For example, the following command procedure writes the prompt Filename: and
puts your response into the local symbol FILE:
$ INQUIRE FILE "Filename"

Tu supfH"688 th.6 (;ulu11 a11d spci(;6 autun1atically added tu the eud vf the pfi;wpt,
use the /NOPUNCTUATION qualifier. To make the symbol global instead of
local, use the /GLOBAL qualifier. For example, the following command procedure
writes the prompt Do you want to use default values? and puts the response into
the global symbol DEFAULT:
$ INQUIRE/NOPUNCTUATION/GLOBAL DEFAULT

"Do you want to use default values?"

When a command procedure is submitted as a batch job, the value for a symbol
specified in an INQUIRE command is read from the data line following the
INQUIRE command. If you do not include a data line, the symbol is assigned a
null value.

13-14 Command Procedures: Programming with DCL

13.5.3 Using the READ Command
You can use the READ command to obtain data for command procedures that you
execute interactively. The READ command prompts for a value, reads the value
from the source specified by the first parameter, and assigns it to the symbol
named as the second parameter. If you do not specify a prompt, the READ
command outputs Data: as the default prompt. To specify a different prompt,
use the /PROMPT qualifier. All characters typed on the terminal in response
to the prompt are taken as an exact character string value (case, spaces, and
tabs are preserved). The following command writes the prompt Filename:, reads
the response from the source specified by the logical name SYS$COMMAND (by
default, the terminal), and assigns the response to the symbol FILE:
$ READ/PROMPT="Filename: II SYS$COMMAND FILE

13.5.4 Obtaining Data from SYS$1NPUT
Commands, utilities, and other system images usually get their input from the
source specified by the logical name SYS$INPUT. SYS$INPUT is a process
permanent logical name that the system defines automatically. You can specify
SYS$INPUT as any one of the following:

-
• Data line-In a command procedure, the default value of SYS$INPUT is

the data lines of the procedure. For example, in the following command
procedure, the image CENSUS.EXE uses the default value of SYS$INPUT to
take input (1990, 1991, and 1992) from the data lines:

$! CENSUS.COM
$!
$! Execute CENSUS
$ RUN CENSUS
1990
1991
1992
$

• Terminal-A command procedure can get input from a terminal by defining
SYS$INPUT as the terminal. This allows you to perform interactive
tasks from a command procedure. For example, the following command
procedure defines SYS$INPUT as SYS$COMMAND, which is, by default, the
terminal. The command procedure then invokes the EDT editor, beginning an
interactive editing session.
$! EDIT.COM
$!
$! Edit the file STATS.DAT
$ WRITE SYS$0UTPUT "Edit STATS.DAT:"
$ DEFINE/USER MODE SYS$INPUT SYS$COMMAND:
$ EDIT STATS.DAT

(The /USER_MODE qualifier redefines SYS$INPUT for the next image; you
should use this qualifier whenever you redefine a process-permanent logical
name.)

Command Procedures: Programming with DCL 13-15

• File-A command procedure can get input from a file by defining SYS$INPUT
as a file. For example, the following command procedure defines SYS$INPUT
as the file YEARS.DAT, then invokes the program CENSUS. CENSUS reads
its input from SYS$INPUT, which points to the file YEARS.DAT.
$! CENSUS.COM
$!
$! Execute CENSUS
$ DEFINE/USER MODE SYS$INPUT YEARS.DAT
$ RUN CENSUS -

13.6 Returning Data
To return a value from a command procedure (either to a calling procedure or to
DCL command level), you must assign the value to a global symbol. The global
symbol can be read at any command level. Use comments to explain the use of
any global symbols.

To create a global symbol, specify the value to be passed on the right side of a
global assignment statement. For example, in the following command procedure,
DATA.COM invokes the command procedure NAME.COM, passing NAME.COM a
full name. NAME.COM places the last name in the global symbol LAST_NAME.
When NAME.COM completes, DCL continues executing DATA.COM, which reads
the last name by specifying the global symbol LAST_NAME. (The command
procedure NAME.COM would be in a separate file; it is indented here for clarity.)

$ @DATA "Paul Cramer"

$ DATA.COM
$
$ Pl is a full name.
$ NAME.COM returns the last name in the
$ global symbol LAST_NAME.
$
$ @NAME 'Pl'

$ NAME.COM
$! Pl is a first name
$! P2 is a last name
$! return P2 in the qlobal symbol LAST NAME
$ LAST NAME == P2
$ EXIT-

$! write LAST NAME to the terminal
$ WRITE SYS$0UTPUT "LAST_NAME = ''LAST_NAME'"

LAST_NAME = CRAMER

13-16 Command Procedures: Programming with DCL

13.7 Displaying Data
Commands, utilities, and other system images normally write their output to the
source specified by the logical name SYS$0UTPUT. By default, SYS$0UTPUT
is equated to the terminal. However, you can redirect the output of a
command procedure to a file by using the /OUTPUT qualifier. In the following
example, output from the command procedure SETD.COM is written to the file
RESULTS. TXT instead of to the terminal:
$ @SETD/OUTPUT=RESULTS.TXT

DCL commands that accept the /OUTPUT qualifier include ACCOUNTING,
CALL, DIRECTORY, HELP, LIBRARY, RUN (process), SPAWN, and TYPE.

NOTE: When using (@) to execute a command procedure, the
/OUTPUT qualifier must immediately follow the file name of the
procedure.

13. 7 .1 Displaying Character Strings and Symbols

To display character strings and symbols on the terminal, use the WRITE
command as follows:

• Character string-Enclose the text to be displayed in quotation marks. For
example, the following command displays the text Two files are written.
$ WRITE SYS$0UTPUT "Two files are written."

• Symbol value-The WRITE command automatically substitutes symbols
and lexical functions. For example, the following command displays the text
STATl.DAT, which is the value of the symbol FILE:
$ FILE = "STATl.DAT"
$ WRITE SYS$0UTPUT FILE

• Combination of character strings and symbol values-Enclose the text to be
displayed in quotation marks. Preface a symbol with two apostrophes, and
follow it with one apostrophe. For example, the following lines display the
text STATl.DAT and STAT2.DAT are written. STATl.DAT is the translation
of the symbol AFILE; STAT2.DAT is the translation of the symbol BFILE.
$ AFILE = "STATl.DAT"
$ BFILE = "STATZ.DAT"
$WRITE SYS$0UTPUT "''AFILE' and ''BFILE' are written."

You can also use commas and quotation marks to display a combination of
character strings and symbol values. For example, the following lines display
the same text as the previous example:
$ AFILE = "STATl.DAT"
$ BFILE = "STATZ.DAT"
$ WRITE SYS$0UTPUT AFILE, " and " ,BFILE, "were written."

Command Procedures: Programming with DCL 13-17

13. 7 .2 Displaying Text

To display text that is more than one line long, use the TYPE command. TYPE
writes data to SYS$0UTPUT (the terminal, by default). Using SYS$INPUT as
the parameter causes TYPE to read the data from the command procedure. For
example, when the following command procedure is executed, the text on the data
lines is displayed on the terminal:
$! CLEAN.COM
$!
$ TYPE SYS$INPUT

This command procedure executes a command that
cleans up a directory.

Please enter one of the following commands after the prompt:
EXIT, DIRECTORY, TYPE, PURGE, DELETE, COPY

$ INQUIRE COMMAND "Command"

13.7.3 Displaying Files

To display the contents of a file, use the TYPE command. For example, the
following command displays the file STATl.DAT on the terminal:
$ TYPE DUAO: [HORACE]STATl.DAT

13.8 Reading and Writing Files (File 1/0)

To move data to and from files, use the OPEN, CLOSE, READ, and WRITE
commands. The logical name you specify in the OPEN command is used to refer
to the file in the WRITE, READ, and CLOSE commands.

13.8.1 Specifying Files in Batch Job Command Procedures

A batch job command procedure executes as if you had logged in and executed
the command procedure interactively. Even if invoked from a subdirectory, the
command procedure will begin executing within your top-level directory. Because
your top-level directory may not be the default directory needed to access files
required in a command procedure, command procedures that will be executed in
batch mode should use one of the following mechanisms to ensure that the correct
files are accessed:

• Use complete file specifications-When specifying a file in a command
procedure or passing a file to a command procedure, include the device
and directory names as part of the file specification, as shown in the previous
example.

13-18 Command Procedures: Programming with DCL

• Use the SET DEFAULT command-Before accessing a file in a command
procedure, use the SET DEFAULT command to specify the proper device and
directory.

13.8.2 Writing to a File

To write data to a file, use the following procedure:

1. Open the file-The OPEN command assigns to the logical name specified in
the first parameter the file name specified in the second parameter.

Use the /APPEND qualifier with the OPEN command to write data to the end
of an existing file. If you use the /APPEND qualifier to open a nonexistent
file, an error occurs and no file is opened.

Use the /WRITE qualifier with the OPEN command to create a new file and
to open this file for write access. If you use the /WRITE qualifier to open an
existing file, a new version of that file is created.

2. Begin the write loop with a label-File 1/0 is always done in a loop unless you
are writing or reading a single record.

3. Read the data to be written-Use the INQUIRE command or the READ
command to read data into a symbol.

4. Test the data-Check the symbol containing the data. If the symbol is null
(you pressed RETURN and entered no data on the line), you have reached the
end of the data to be written to the file and should go to the end of the loop.
Otherwise, continue.

5. Write the data to the file-Use the WRITE command to write the value of the
symbol (one record) to the file.

6. Return to the beginning of the loop-You remain in the loop until there is no
more data to be written to the file.

7. End the loop and close the file-The CLOSE command disassociates the file
name from the logical name and closes the file. (Files opened by the OPEN
command remain open until you log out unless you explicitly close them.)

For example, the following command procedure writes data to the new file
STAT.DAT. If a file of that name exists, a new version is created.

Command Procedures: Programming with DCL

$! Write a file
$ ON ERROR THEN EXIT
$
$ OPEN/WRITE IN_FILE STAT.DAT
$ ON CONTROL_Y THEN GOTO END_WRITE
$
$ ON ERROR THEN GOTO END WRITE
$
$WRITE:
$ INQUIRE STUFF "Input data"
$ IF STUFF .EQS. 1111 THEN GOTO END WRITE
$ WRITE IN FILE STUFF -
$ GOTO WRITE
$END WRITE:
$ -

$ CLOSE IN_FILE

EXIT if the command procedure
cannot open the file
Open the file
Close the file if you abort
execution with a CTRL/Y
Close the file if an error
occurs
Begin loop
Get input
Test for end of file
Write to the file
Goto beginning
End loop

Close the file

NOTE: The logical name in the OPEN command must be
unique. If the OPEN command does not work and your commands
seem correct, change the logical name in the OPEN command.
Use the SHOW LOGICAL command to display logical name
definitions.

13-19

If you want to create a file with a unique name, use the F$SEARCH lexical
function to see whether the name is already in the directory. (See the lexical
function descriptions in the Reference Section for more information about
F$SEARCH.) The following command procedure prompts the user for a file name,
then uses the F$SEARCH lexical function to search the default directory for the
name. If a file with that name already exists, control is passed to ERROR_l, the
procedure prints the message The file already exists, and control returns to the
label GET_NAME. You are again prompted for a file name.
$! FILES.COM
$!
$GET NAME:
$ INQUIRE FILE "File" ! Get a file name
$ IF F$SEARCH (FILE) .NES. ! Make sure file is name is unique
$ THEN
$ WRITE SYS$0UTPUT "The file already exists"
$ GOTO GET NAME
$ ELSE
$ OPEN/WRITE IN FILE 'FILE' ! Open file with write access
$ ENDIF

$ EXIT

13-20 Command Procedures: Programming with DCL

13.8.3 Reading from a File

To read data from a file, use the following procedure:

1. Open the file-The OPEN/READ command opens the file for read access and
associates the file name with a logical name.

2. Begin the read loop-File 1/0 is always done in a loop unless you are reading
or writing a single record.

3. Read the data from the file-Use the READ command with the /END_OF_
FILE qualifier to read the next record in the file to a symbol. The /END_
OF _FILE qualifier causes DCL to pass control to the label specified by the
/END_OF _FILE qualifier when you reach the end of the file. Generally, you
specify the label that marks the end of the read loop.

4. Process the data-When you read a file sequentially, process the current
record before reading the next one.

5. Return to the beginning of the loop-You remain in the loop until you reach
the end of the file.

6. End the loop and close the file-The CLOSE command disassociates the file
name from the logical name and closes the file.

For example, the following command procedure reads and processes each record
in the file STAT.DAT:
$ OPEN/READ OUT F STAT.DAT
$! -
$READ DATA:
$ READ/END OF FILE=END READ OUT F STUFF
$ - - - -

$

$ GOTO READ DATA
$ -

$END READ:
$! -
$ CLOSE OUT_F

!Open the file

!Begin the loop
!Read a record; test for

end of file
! Process the data

!Go to the beginning
! of the loop
!End of loop

!Close the file

Command Procedures: Programming with DCL 13-21

13.8.4 Modifying a File

You can modify a file in the following ways:

• Rewrite records-This method allows you to make minor changes to a small
number of records in a file. You cannot change the size of a record or the
number of records in the file.

• Rewrite the file-This method allows you to change, delete, and insert
records. You create a new file using the old file as the main source of input.

• Append records to a file-This method allows you to add new records to the
end of the file.

Making Minor Modifications

To make minor changes to the records in a file, use the following procedure:

1. Open the file for both read and write access.

2. Use the READ command to read through the file until you reach the record
that you want to modify.

3. Create a symbol containing the modified record. The modified record must be
exactly the same size as the original record. If the text of the modified record
is shorter, use spaces to make the record the same size. If the text of the
modified record is longer, you cannot use this method to modify the file.

4. Use the WRITE/UPDATE command to write the modified record back to the
file.

5. Repeat steps 2 through 4 until you have changed all records you intend to
change.

6. Close the file.

Since this method does not allow you to modify the size of the record, use it only
if you have formatted the records in a file (for example, in a data file).

The following command procedure reads each record in a data file. The record
is displayed on the terminal, and you are asked whether the record needs to
be modified. If you choose to modify the record, a new record is read from the
terminal, and its length is compared to the length of the original record. If the
original record is longer, extra spaces make the new record the same size. If
the original record is shorter, an error message is displayed, and you are again
prompted for a new record. If you choose not to modify the record, the next record
is read from the file.

13-22 Command Procedures: Programming with DCL

$! MODIFY.COM
$
$ SPACES = 11

$
$ OPEN/READ/WRITE FILE STATS.DAT
$
$BEGIN LOOP:
$! -

Initialize string of spaces
to make new record same size
Open the file

Begin the loop

$ READ/END OF FILE=END LOOP FILE RECORD Read and display a record
$PROMPT: - - -
$ WRITE SYS$0UTPUT RECORD
$! Does the user want to change the record?
$ INQUIRE/NOPUNCTUATION YN "Do you want to change this info? [N] 11

$
$ IF YN .EQS. "Y"
$ THEN
$! Get the new record
$ INQUIRE NEW RECORD "New Record"
$ OLD_LEN = F$LENGTH (RECORD)
$! Compare the old and new records
$ IF OLD_LEN .GE. F$LENGTH (NEW_RECORD)
$ THEN
$ IF OLD_LEN .NE. F$LENGTH (NEW_RECORD)
$ THEN
$! New record shorter than old record
$ PAD= F$EXTRACT (0,0LD_LEN-F$LENGTH(NEW_RECORD),SPACES)
$ NEW_RECORD = NEW_RECORD + PAD
$
$
$
$
$
$
$
$

END IF
! Write the new record
WRITE/UPDATE FILE NEW_RECORD

ELSE
! New record longer than old record
WRITE SYS$0UTPUT "ERROR -- New record is too long"
GOTO PROMPT

END IF
$ ENDIF
$! Get the next record
$ GOTO BEGIN_LOOP
$
$END LOOP:
$ CLOSE FILE
$ EXIT

Making Major Modifications

To make extensive changes to a file, open that file for read access and open a
new file for write access. Since the /WRITE qualifier opens a new file for write
access, the new file can have the same name as the original file. The new file has
a version number one higher than the version number of the old file.

NOTE: To ensure that the correct file is opened for reading, you
must open the existing file for read access before you open the new
version for write access.

To make major modifications to a file, use the following procedure:

1. Open the file for read access. This is the file you are modifying.

Command Procedures: Programming with DCL 13-23

2. Open a new file for write access.

3. Use the READ command to read each record from the file you are modifying.

As you read each record from the original file, decide how the record is to be
treated. In the following examples, the symbol RECORD contains the record
read from the original file:

• No change-Write the same symbol to the new file.
$! No change
$ WRITE NEW_FILE RECORD

• Change-Use the INQUIRE command to read a different record into the
symbol, then write the modified symbol to the new file.
$! Change
$ INQUIRE NEW RECORD "New record"
$ WRITE NEW_FILE NEW_RECORD

• Delete-Do not write the symbol to the new file.

• Insert-Use a loop to read records into the symbol and to write the symbol
to the new file, as shown in the following example:
$! Insertion
$LOOP:
$!Get new records to insert
$ INQUIRE NEW RECORD "New record"
$ IF RECORD .EQS. 1111 THEN GOTO END LOOP
$ WRITE NEW FILE NEW RECORD -
$ GOTO LOOP- -
$END_LOOP:

4. Continue reading and processing records until you have finished.

5. Use the CLOSE command to close both the input file and the output file.

Appending Records to a File

The OPEN/APPEND command allows you to append records to the end of an
existing file. Use the following steps to append records to a file:

1. Use the OPEN command with the /APPEND qualifier to position the record
pointer at the end of the file. The /APPEND qualifier does not create a new
version of the file.

2. Use the WRITE command to write new data records. Continue adding records
until you are finished.

3. Use the CLOSE command to close the file.

13-24 Command Procedures: Programming with DCL

13.8.5 Handling Input/Output (1/0) Errors
Use the /ERROR qualifier with the OPEN, READ, or WRITE command to
suppress error messages and to pass control to a specified label if an error
occurs during an input or output operation. This qualifier overrides all other
error-control mechanisms (except the /END_OF _FILE qualifier on the READ
command). For example, in the following command procedure, if an error occurs
during execution of the OPEN command, the message Error opening STAT.DAT is
printed and the procedure exits:
$ OPEN/READ/ERROR=READ_ERR OUT_F STAT.DAT

$ EXIT
$READ ERR:
$ WRITE SYS$0UTPUT "Error opening STAT.DAT"
$ EXIT

13.9 Restarting Batch Jobs
Chapter 10 describes how to reexecute your batch job if the system crashes before
the job is finished. By default, a batch job is reexecuted beginning with the first
line. However, you can use the following symbols in your command procedure to
specify a different restarting point:

• $RESTART-A global symbol whose value is true if the batch job has
been started at least once before this execution. Do not specify a value for
$RESTART; the system will assign the appropriate value.

• BATCH$RESTART-A global symbol whose value you specify using the SET
RESTART_VALUE command.

The following procedure describes how to use these symbols in a command
procedure:

1. Begin each possible starting point of the procedure with a label.

2. As the first step in each section, equate the value of BATCH$RESTART to the
label using the SET RESTART_ VALUE command.

3. At the beginning of the procedure, test $RESTART. If $RESTART is true,
issue a GOTO statement using BATCH$RESTART as the transfer label.

The following command procedure extracts a number of modules from a library,
concatenates those modules, and then sorts the resulting file. If aborted, the
command procedure reexecutes from the beginning of the file, the statement
labeled CONCATENATE_LIBRARIES or the statement labeled SORT_FILE,
depending on the value of BATCH$RESTART. (If you were extracting a number
of separate modules, you could make each extraction a separate section.)

Command Procedures: Programming with DCL

$ SORT_MODULES.COM
$
$ set default to the directory containing
$ the library whose modules are to be sorted
$SET DEFAULT WORKDISK:[ACCOUNTS.DATA83]
$
$! check for restarting
$ IF $RESTART THEN GOTO "BATCH$RESTART"
$
$ EXTRACT LIBRARIES:
$ SET RESTART_VALUE=EXTRACT_LIBRARIES

$ CONCATENATE_LIBRARIES:
$ SET RESTART_VALUE=CONCATENATE_LIBRARIES

$ SORT_FILE:
$ SET RESTART_VALUE=SORT_FILE

$ EXIT

13.1 O Cleanup Operations

13-25

In general, execution of a command procedure should not change the user's
process state. Therefore, a command procedure should include a set of commands
that returns the process to its original state. Common cleanup operations include
the following (see the lexical function descriptions in the Reference Section for
lexical function specifications):

• Closing files-If you have opened any files, make sure that they are closed
before the command procedure exits. You can use the lexical function
F$GETJPI to examine the remaining open file quota (FILCNT) for the
process. If FILCNT is the same at the beginning and end of the command
procedure, you know that no files have been left open. For example, the
following lines ciispiay a warning message if a file is left open:
$ FIL_COUNT = F$GETJPI("","FILCNT")

$ IF FIL COUNT .NE. F$GETJPI(1111
,

11 FILCNT11
) THEN

WRITE-SYS$0UTPUT "WARNING -- file left open"

• Deleting temporary or extraneous files-If you have created temporary files,
delete them. In general, if you have updated any files, you should purge them
to delete the previous copies. Before you delete files you have not created,
make sure you want to delete them. For example, if you have updated a file
that contains crucial data, you might want to make the purging operation
optional.

13-26 Command Procedures: Programming with DCL

• Resetting default device and directory-If you change the default device
and/or directory, reset the original defaults before the command procedure
exits.

To save the name of the original default directory, use the DEFAULT keyword
of the F$ENVIRONMENT lexical function. At the end of the command
procedure, include a SET DEFAULT command that restores the saved device
and directory.

The following example saves and restores device and directory defaults:
$ SAV_DEFAULT = F$ENVIRONMENT("DEFAULT")

$ SET DEFAULT 'SAV DEFAULT'

The following table lists other commonly changed process characteristics as well
as the lexical functions and commands used to save and restore the original
settings:

Characteristic To Save .•• To Restore •.•

DCL prompt F$ENVIRONMENT SET PROMPT

Default protection F$ENVIRONMENT SET PROTECTION/DEFAULT

Privileges F$SETPRV F$SETPRV or SET PROCESS/PRMLEGES

Control characters F$ENVIRONMENT SET CONTROL

Verification F$VERIFY F$VERIFY

Message format F$ENVIRONMENT SET MESSAGE

Key state F$ENVIRONMENT SET KEY

To ensure that cleanup operations are performed even if the command procedure
is aborted, begin each command level in the command procedure with the
following statement:
$ ON CONTROL_Y THEN GOTO CLEAN_UP

In each command level of the command procedure, place cleanup operations after
the CLEAN_ UP label.

Reference Section

DCL Commands

DCL Commands
=(Assignment Statement)

DCL-1

This section describes each DCL command and lexical function. The commands
are listed in alphabetical order, with the command name appearing at the top
of every page. The lexical functions are grouped alphabetically under "Lexical
Functions" (after the JOB command description); the name of the lexical function
appears at the top of each page.

= (Assignment Statement)
Defines a symbolic name for a character string or integer value.

format
symbol-name =[=] expression

parameters
symbol-name
Specifies a 1 to 255 character alphanumeric string name for the symbol.
The name can contain any alphanumeric characters from the DEC
Multinational Character Set, the underscore (_), and the dollar sign
($). However, the name must begin only with an alphabetic character, an
underscore, or a dollar sign. Using one equal sign (=) places the symbol
name in the local symbol table for the current command level. Using two
equal signs (= =) places the symbol name in the global symbol table.

expression
Names the value on the right-hand side of an assignment statement. Can
consist of a character string, an integer, a symbol name, a lexical function,
or a combination of these entities. The components of the expression are
evaluated, and the result is assigned to the symbol All literal character
strings must be enclosed in quotation marks. If the expression contains a
symbol, the expression is evaluated using the symbol's value.

example
$ LIST == "DIRECTORY"

The assignment statement in this example assigns the user-defined
synonym LIST as a global symbol definition for the DCL command
DIRECTORY.

DCL-2 DCL Commands
:= (String Assignment)

== (String Assignment)
Defines a symbolic name for a character string value.

format
symbol-name :=[=] string

parameters
symbol-name
Specifies a 1 to 255-character string name for the symbol. The name
can contain any alphanumeric characters from the DEC Multinational
Character Set, the underscore, and the dollar sign. However, the name
must begin only with an alphabetic character, an underscore (_), or a
dollar sign ($). Using one equal sign (:=) places the symbol name in the
local symbol table for the current command level. Using two equal signs
(:==)places the symbol name in the global symbol table.

string
Names the character string value to be equated to the symbol. The string
can contain any alphanumeric or special characters. String values are
automatically converted to uppercase. Also, any leading and trailing
spaces and tabs are removed, and multiple spaces and tabs between
characters are compressed to a single space. To prohibit uppercase
conversion and retain required space and tab characters in a string, place
quotation marks around the string.

example
$ TIME := SHOW TIME
$ TIME

19-APR-1990 11:55:44

In this example, the symbol TIME is equated to the command string
SHOW TIME. Because the symbol name appears as the first word in a
command string, the command interpreter automatically substitutes it
with its string value and executes the command SHOW TIME.

@ (Execute Procedure)
Executes a command procedure or requests the command interpreter to
read subsequent command input from a specific file or device.

format
@ file-spec [p 1 [p2 [... pB]]]

parameters
file-spec

DCL Commands
@ (Execute Procedure)

DCL-3

Specifies either the input device or file for the preceding command, or
the command procedure to be executed. The default file type is COM.
Wildcard characters are not allowed in the file specification.

p1 [p2 [... pB]]
Specifies from one to eight optional parameters to pass to the command
procedure. The symbols (Pl, P2, ... PB) are assigned character string
values in the order of entry. The symbols are local to the specified
command procedure. Separate each parameter with one or more blanks.
Use two consecutive quotation marks (11 11

) to specify a null parameter.

qualifier
!OUTPUT :file-spec
The name of the file to which the command procedure output is written.
By default, the output is written to the current SYS$0UTPUT device.
The default output file type is LIS. Wildcard characters are not allowed
in the output file specification. System responses and error messages are
written to SYS$COMMAND as well as to the specified file. The /OUTPUT
qualifier must immediately follow the file specification of the command
procedure; otherwise, the qualifier is interpreted as a parameter to pass
to the command procedure.

example
$ CREATE DOFOR.COM
$ ON WARNING THEN EXIT
$ IF p 1. EQS. II II THEN INQUIRE p 1 FILE
$ FORTRAN/LIST 'Pl'
$ LINK I Pl'
$.RUN 'Pl'
$ PRINT 'Pl'
ICTRUZI

$ @DOFOR AVERAGE

This example shows a r.ommarrtl :p!"o~etl1.!!"e, ~a.med DOFOR.COM, that
executes the FORTRAN, LINK, and RUN commands to compile, link, and
execute a program. The ON command requests that the procedure not
continue if any of the commands result in warnings or errors.

When you execute DOFOR.COM, you can pass the file specification of the
FORTRAN program as the parameter Pl. If you do not specify a value
for Pl when you execute the procedure, the INQUIRE command issues a
prompting message to the terminal and equates what you enter with the
symbol Pl. In this example, the file name AVERAGE is assigned to Pl.
The file type is not included because the commands FORTRAN, LINK,
RUN, and PRINT provide default file types.

DCL-4 DCL Commands
ACCOUNTING

ACCOUNTING
Invokes the Accounting Utility to collect, record, and report accounting
data. For more information about the Accounting Utility, see the VMS
System Manager's Manual in the VMS base documentation set.

ALLOCATE
Provides your process with exclusive access to a device until you
deallocate the device or terminate your process. Optionally associates
a logical name with the device.

format

ALLOCATE device-name[.j{, ... } [logical-name{:]]

parameters

device-name[:][, ...]
Specifies the name of a physical device or a logical name that translates
to the name of a physical device. The device name can be generic: if
no controller or unit number is specified, any device that satisfies
the specified part of the name is allocated. If more than one device is
specified, the first available device is allocated.

logical-name
Specifies a character string of 1 through 255 characters. Enclose the
string in quotation marks (") if it contains blanks. Trailing colons are
not used. The name becomes a process logical name with the device name
as the equivalence name. The logical name remains defined until it is
explicitly deleted or your process terminates.

qualifiers

!GENERIC
INOGENERIC (default)
Indicates that the first parameter is a device type rather than a device
name. Example device types are RX50, RD52, TK50, RC25, RCF25,
RL02. The first free, nonallocated device of the specified name and type is
allocated.

!LOG (default)
INOLOG
Displays a message indicating the name of the device allocated. If the
operation specifies a logical name that is currently assigned to another
device, displays the superseded value.

DCL Commands DCL-5
ALLOCATE

example
$ ALLOCATE /GENERIC RX50 ACCOUNTS

The ALLOCATE command in this example allocates the first free floppy
disk drive and makes its name equivalent to the process logical name
ACCOUNTS.

ANALYZE/AUDIT
Invokes the Audit Analysis Utility (ANALYZE/AUDIT) to selectively
extract and display information from security audit log files or security
archive files. For more information about the Audit Analysis Utility, see
the Audit Analysis Utility in the VMS base documentation set.

format
ANAL VZE/ AUDIT file-spec

ANALYZE/CRASH_DUMP
Invokes the System Dump Analyzer Utility (SDA) for analysis of a system
dump file. The /CRASH_DUMP qualifier is required.

format
ANALVZE/CRASH_DUMP file-spec

ANALYZE/DISK_ STRUCTURE
Invokes the Analyze/Disk_Structure Utility to do the following:

• Check the readability and validity of Files-11 Structure Level 1 and
Files-11 Structure Level 2 disk volumes

• Report errors and inconsistencies

The /DISK_STRUCTURE qualifier is required. For more information
about the Analyze/Disk_Structure Utility, see the VMS System Manager's
Manual in the VMS base documentation set.

DCL-6 DCL Commands
ANAL VZE/ERROR_LOG

ANALYZE/ERROR_LOG
Invokes the Errorlog Report Formatter (ERF) to report selectively the
contents of an error log file. The /ERROR_LOG qualifier is required.
For more information about the Error Log Utility, see the VMS System
Manager's Manual in the VMS base documentation set.

ANALYZE/IMAGE
Analyzes the contents of an executable image file or a shareable image file
and checks for obvious errors in the image file. See the description of the
linker for general information about image files.

format
ANALYZE/IMAGE file-spec [, ...]

parameter
file-spec[, ...]
Specifies the name of one or more image files that you want analyzed.
You must specify at least one file name. If you specify more than one
file, separate the file specifications with either commas or plus signs. The
default file type is EXE.

Wildcard characters are allowed in the file specification.

qualifiers
IFIXUP_SECTION
Positional Qualifier. If you specify /FIXUP _SECTION after the
ANALyzE/IMAGE command, the fixup section of each image file in
the parameter list is analyzed. If you specify /FIXUP _SECTION after a
file specification, only the information in the fixup section of that image
file is analyzed.

IGST
Positional Qualifier. This qualifier is valid only for shareable images. If
you specify /GST after the ANALYZE/IMAGE command, the global symbol
table records of each image file in the parameter list are analyzed. If you
specify /GST after a file specification, only the global symbol table records
of that file are analyzed.

/HEADER
Positional Qualifier. Specifies that the analysis should include all
header items and image section descriptions.

/INTERACTIVE
INOINTERACTIVE (default)

DCL Commands DCL-7
ANAL VZE/IMAGE

Specifies whether or not the analysis is interactive.

/OUTPUT =file-spec
Identifies the output file for storing the results of the image analysis. No
wildcard characters are allowed in the file specification.

/PATCH_ TEXT
Positional Qualifier. If you specify /PATCH_ TEXT after the
ANALyzE/IMAGE command, the patch text records of each image file in
the parameter list are analyzed. If you specify /PATCH_TEXT after a file
specification, only the patch text records of that file are analyzed.

example
$ ANALYZE/IMAGE/OUTPUT=LIALPHEX/FIXUP_SECTION/PATCH_TEXT LINEDT, ALPHA

The ANALyzE/IMAGE command in this example produces a description
and an error analysis of the fixup sections and patch text records of
LINEDT.EXE and ALPHA.EXE in file LIALPHEX.ANL. Output is sent to
the file LIALPHEX.ANL.

ANALYZE/MEDIA
Invokes the Bad Block Locator Utility (BAD), which analyzes block
addressable devices and records the location of blocks that cannot reliably
store data. For more information about the Bad Block Locator Utility, see
the VMS System Manager's Manual in the VMS base documentation set.

ANALYZE/OBJECT
Analyzes the contents of an object file and checks for any obvious errors.

format

ANALVZE/CSJ~CT tfie-spec[, ... j

parameter
file-spec[, •••]
Specifies the object files or object module libraries you want analyzed
(default file type is OBJ). Use commas or plus signs to separate file
specifications. Wildcard characters are allowed.

DCL-8 DCL Commands
ANALYZE/OBJECT

qualifiers
/DSG
Positional qualifier. If you want the analysis to include debugger
information for all files in the parameter list, insert the /DBG qualifier
immediately following the /OBJECT qualifier. If you want the analysis
to include debugger information selectively, insert the /DBG qualifier
immediately following the selected file specification(s).

IEOM
Positional qualifier. Specifies that the analysis should be limited
to MHD records, EOM records, and records explicitly specified by the
command. If you want this to apply to all files in the parameter list,
insert the /EOM qualifier immediately following the /OBJECT qualifier.
To make this applicable selectively, insert the /EOM qualifier immediately
following the selected file specification(s).

IGSD
Positional qualifier. If you want the analysis to include global symbol
directory records for each file in the parameter list, specify /GSD
immediately following the /OBJECT qualifier. If you want the analysis
to include global symbol directory records selectively, insert the /GSD
qualifier immediately following the selected file specification(s).

llNCLUDE[=(module[, •.•])]
When the specified file is an object module library, use this qualifier to list
selected object modules within the library for analysis. If you omit the list
or specify an asterisk, all modules are analyzed.

/INTERACTIVE
INOINTERACTIVE (default)
Controls whether the analysis occurs interactively.

ILNK
Positional qualifier. If you want the analysis to include link option
specification records for each file in the parameter list, specify /LNK
immediately following the /OBJECT qualifier. If you want the analysis
to include link option specification records selectively, insert the /LNK
qualifier immediately following the selected file specification(s).

DCL Commands DCL-9
ANALYZE/OBJECT

IMHO
Positional qualifier. Specifies that the analysis should be limited
to MHD records, EOM records, and records explicitly specified by the
command. If you want this to apply to all files in the parameter list,
insert the /MHD qualifier immediately following the /OBJECT qualifier.
To make this applicable selectively, insert the /MHD qualifier immediately
following the selected file specification(s).

IOUTPUT[=file-spec]
Directs the output of the object analysis (default is SYS$0UTPUT). No
wildcard characters are allowed in the file specification.

ITBT
Positional qualifier. If you want the analysis to include traceback
records for each file in the parameter list, specify /TBT immediately
following the /OBJECT qualifier. If you want the analysis to include
traceback records selectively, insert the /TBT qualifier immediately
following the selected file specification(s).

ITIR
Positional qualifier. If you want the analysis to include text information
and relocation records for each file in the parameter list, specify /TIR
immediately following the /OBJECT qualifier. If you want the analysis to
include text information and relocation records selectively, insert the /TIR
qualifier immediately following the selected file specification(s).

example
$ ANALYZE/OBJECT/OUTPUT=LIOBJ/DBG LINEDT

In this example, the ANALYZE/OBJECT command analyzes only the
debugger information records of the file LINEDT. OBJ. Output is to the
file LIOBJ.ANL.

ANALYZE/PROCESS_DUMP
fo:vckes the Vl\1S Debugger for a:ualysis 0f a prvcess du.mp fil6 that wil8

created when an image failed during execution (use the /DUMP qualifier
with the RUN or SET PROCESS commands to generate a dump file).

Requires read (R) access to the dump file.

format
ANALYZE/PROCESS_DUMP dump-file

DCL-10 DCL Commands
ANALYZE/PROCESS_DUMP

parameter
dump-file
Specifies the dump file to be analyzed with the debugger.

qualifiers
/FULL
Displays all known information about the failing process.

llMAGE=image-name
/NO/MAGE
Specifies the image whose symbols are to be used in analyzing the dump.
If you use the /NOIMAGE qualifier, no symbols are taken from any image.
By default, symbols are taken from the image with the same name as the
image that was running at the time of the dump.

/INTERACT/VE
/NOINTERACTIVE (default)
Causes the display of information to pause when your terminal screen is
filled. Press RETURN to display additional information. By default, the
display is continuous.

/MISCELLANEOUS
Displays all the miscellaneous information in the dump.

/OUTPUT =file-spec
Writes the information to the specified file. By default, the information is
written to the current SYS$0UTPUT device.

/RELOCATION
Displays the addresses to which data structures saved in the dump are
mapped in PO space.

example
$ ANALYZE/PROCESS/FULL ZIPLIST

DCL Commands
ANAL VZE/PROCESS_DUMP

RO = 00018292 Rl = 8013DE20 R2 = 7FFE6A40 R3 = 7FFE6A98
R4 = 8013DE20 RS = 00000000 R6 = 7FFE7B9A R7 = OOOOFOOO
R8 = 00000000 R9 = 00000000 RlO = 00000000 Rll = 00000000
SP = 7FFAEF44 AP = 7FFAEF48 FP = 7FFAEF84
FREE PO VA 00~01600 FREE Pl VA 7FFAC600
Active ASTs oo Enabled-ASTs OF
Current Privileges FFFFFF80 1010C100
Event Flags 00000000 EOOOOOOO
Buffered I/O count/limit 6/6
Direct I/O count/limit 6/6
File count/limit 27/30
Process count/limit 0/0
Timer queue count/limit 10/10
AST count/limit 6/6
Enqueue count/limit 30/30
Buffered I/O total 7 Direct I/O total 18

DCL-11

Link Date 27-DEC-1988 15:02:00.48 Patch Date 17-NOV-1988 00:01:53.71
ECO Level 0030008C 00540040 00000000 34303230
Kernel stack 00000000 pages at 00000000 moved to 00000000
Exec stack 00000000 pages at 00000000 moved to 00000000
Vector page 00000001 page at 7FFEFEOO moved to 00001600
PIO (RMS) area 00000005 pages at 7FFE1200 moved to 00001800
Image activator context 00000001 page at 7FFE3400 moved to 00002200
User writeable context OOOOOOOA pages at 7FFE1COO moved to 00002400

Creating a subprocess

DBG>
VAX DEBUG Version XS.0-2

This example shows the output of the ANALYZE/PROCESS command
when used with the /FULL qualifier. The file specified, ZIPLIST, contains
the dump of a process that encountered a fatal error. The DBG> prompt
indicates that the debugger is ready to accept commands.

ANALYZE/RMS_FILE
Invokes the Analyze/RMS_File Utility (ANALYZEIRMS_FILE) to inspect
and analyze the illternal iStl'udure of a "VMS RivIS file. The /RivIS_FILE
qualifier is required.

format
ANAL VZE/RMS_FILE file-spec{,., . .]

DCL-12 DCL Commands
ANALYZE/SYSTEM

ANALYZE/SYSTEM
Invokes the System Dump Analyzer (SDA) for analysis of the running
system. The /SYSTEM qualifier is required.

format
ANALYZE/SYSTEM

APPEND
Adds the contents of one or more specified input files to the end of the
specified output file.

format
APPEND input-file-spec{, ... } output-file-spec

parameters
input-file-spec[, •••]
Specifies the names of one or more input files to be appended. Multiple
input files are appended to the output file in the order specified. If you
specify more than one input file, separate multiple file specifications with
either commas or plus signs. You can use wildcard characters in the input
file specifications.

output-file-spec
Specifies the name of the file to which the input files will be appended.
You must specify at least one field in the output file specification. If you
do not specify a device or directory, the APPEND command uses the
current default device and directory. Other unspecified fields default to
the corresponding fields of the first input file specification.

qualifiers
/ALLOCATION:number-of-blocks
Output-file-spec qualifier. Forces the initial allocation of the output
file to the specified number of 512-byte blocks. If you do not specify
the /ALLOCATION qualifier, the initial allocation of the output file is
determined by the size of the input file. Relevant only with the
/NEW_ VERSION qualifier.

/BACKUP
Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/BACKUP selects files according to the dates of their most recent backups.
This qualifier is incompatible with the other qualifiers that also allow you
to select files according to time attributes: /CREATED, /EXPIRED, and
/MODIFIED. If you specify none of these four time qualifiers, the default
is /CREATED.

DCL Commands DCL-13
APPEND

/BEFORE[:time]
Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW,
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to
indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

/BY_OWNER[:uic]
Selects only those files whose owner user identification code (UIC)
matches the specified owner UIC. The default UIC is that of the current
process.

/CONFIRM
!NOCONFIRM (default)
Controls whether a request is issued before each APPEND operation to
confirm that the operation should be performed on that file. The following
responses are valid:

YES

TRUE

1

NO

FALSE
0

~

QUIT

CTRUZ

ALL

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters
(for example, T, TR, or TRU for TRUE), but these abbreviations must be
unique. Affirmative answers are YES, TRUE, and 1. Negative answers
are NO, FALSE, 0, and the RETURN key. QUIT or CTRUZ indicates
that you want to stop processing the command at that point. When you
respond with ALL, the command continues to process, but no further
prompts are given. If you type a response other than one of those in the
list, DCL issues an error message and redisplays the prompt.

/CONTIGUOUS
/NOCONTIGUOUS
Output-file-spec qualifier. Specifies that the output file must occupy
physically contiguous disk blocks. By default, the APPEND command
creates an output file in the same format as the corresponding input file
and does not report an error if not enough space exists for a contiguous
allocation. Relevant only with the /NEW_ VERSION qualifier.

/CREATED (default)
Modifies the time value specified with the /BEFORE or /SINCE qualifiers.
/CREATED selects files based on their dates of creation. This qualifier is
incompatible with the other qualifiers that also allow you to select files
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If
you specify none of these four time qualifiers, the default is /CREATED.

DCL-14 DCL Commands
APPEND

/EXCLUDE=(file-spec[, •••])
Excludes the specified files from the append operation. You can include
a directory but not a device in the file specification. Wtldcard characters
are allowed in the file specification. However, you cannot use relative
version numbers to exclude a specific version. If you provide only one file
specification, you can omit the parentheses.

/EXPIRED
Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/EXPIRED selects files according to their expiration dates. (The
expiration date is set with the SET FILE/EXPIRATION_DATE command.)
The /EXPIRED qualifier is incompatible with the other qualifiers that
also allow you to select files according to time attributes: /BACKUP,
/CREATED, and /MODIFIED. If you specify none of these four time
qualifiers, the default is /CREATED.

IEXTENSION:number-of-blocks
Output-file-spec qualifier. Specifies the number of blocks to be added
to the output file each time the file is extended. When you specify
/EXTENSION, the /NEW_VERSION qualifier is assumed and need not
be typed on the command line. Relevant only with the /NEW_ VERSION
qualifier.

/LOG
INOLOG (default)
Controls whether the APPEND command displays the file specifications
of each file appended. If /LOG is specified, displays the file specifications
of the input and output files as well as the number of blocks or records
appended after each append operation.

/MODIFIED
Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/MODIFIED selects files according to the dates on which they were last
modified. This qualifier is incompatible with the other qualifiers that
also allow you to select files according to time attributes: /BACKUP,
/CREATED, and /EXPIRED. If you specify none of these four time
modifiers, the default is /CREATED.

/NEW VERSION
INONEW_ VERSION (default)
Output-file-spec qualifier. Controls whether the APPEND command
creates a new output file if the specified output file does not exist. If
the specified output file does not already exist, use the INEW_VERSION
qualifier to create a new output file. If the output. file does exist, the
INEW_VERSION qualifier is ignored and the input file is appended to the
output file.

DCL Commands DCL-15
APPEND

/PROTECTION:{ code)
Output-file-spec qualifier. Specifies protection for the output file.
Specify ownership as SYSTEM, OWNER, GROUP, or WORLD and access
as R (read), W (write), E (execute), or D (delete). The default protection,
including any protection attributes not specified, is that of the existing
output file. If no output file exists, the current default protection applies.
Relevant only with the /NEW_ VERSION qualifier.

/READ CHECK
INOREAD_ CHECK (default)
Input-file-spec qualifier. Reads each record in the input files twice to
verify that it has been read correctly.

/SINCE[:time]
Selects for the append operation only those files dated after the specified
time. You can specify time as an absolute time, a combination of absolute
and delta times, or as one of the following keywords: TODAY (default),
TOMORROW, or YESTERDAY. Specify one of the following qualifiers
with /BEFORE to indicate the time attribute to be used as the basis for
selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

/WRITE CHECK
/NOWRlTE_CHECK (default)
Output-file-spec qualifier. Reads each record in the output file after the
record is written to verify that it was appended successfully and that the
output file can subsequently be read without error.

example
$APPEND/NEW VERSION/LOG *.TXT MEM.SUM
%APPEND-I-CREATED, USE$:[MAL]MEM.SUM;l created
%APPEND-S-COPIED, USE$: [MAL]A.TXT;2 copied to USE$:[MAL]MEM.SOM;l (1 block)
%APPEND-S-APPENDED, USE$:[MAL]B.TXT;3 appended to USE$: [MAL]MEM.SUM;l (3 records)
%APPEND-S-APPENDED, USE$:[MAL]G.TXT;7 appended to USE$:[MAL]MEM.SUM;l (51 records)

The APPEND command appends all files with file types of TXT to a
file named MEM.SUM. The /LOG qualifier requests a display of the
specifications of each input file appended. If the file MEM.SUM does not
exist, the APPEND command creates it, as the output shows. Tne number
of blocks or records shown in the output refers to the source file and not
to the target file total.

DCL-16 DCL Commands
ASSIGN

ASSIGN
Creates a logical name and assigns an equivalence string, or a list of
strings, to the specified logical name. If you specify an existing logical
name, the new equivalence name replaces the existing equivalence name.

format
ASSIGN equivalence-name[, ...] logical-name{:]

parameters
equivalence-name[, ...]
Specifies a character string of 1 to 255 characters. Defines the equivalence
name, usually a file specification, device name, or other logical name, to
be associated with the logical name in the specified logical name table.
If the string contains other than uppercase alphanumeric, dollar sign,
or underscore characters, enclose it in quotation marks ("). Use two
consecutive quotation marks (1111

) to denote an actual quotation mark.
Specifying more than one equivalence name for a logical name creates a
search list.

logical-name
Specifies the logical name string, which is a character string containing up
to 255 characters. You choose a logical name to represent the equivalence
name in the specified logical name table. If the string contains other than
uppercase alphanumeric, dollar sign, or underscore characters, enclose
it in quotation marks (11

). Use two consecutive quotation marks (1111
)

to denote an actual quotation mark. If you terminate the logical-name
parameter with a colon, the system removes the colon before placing the
name in a logical name table. (This differs from the DEFINE command,
which saves the colon.) If the logical name is to be entered into the
process directory (LNM$PROCESS_DIRECTORY) or system directory
(LNM$SYSTEM_DIRECTORY) logical name tables, then the name may
only have from 1 to 31 alphanumeric characters (including the dollar sign
and underscore). By default, the logical name is placed in the process
logical name table.

qualifiers
IEXECUTIVE_MODE
Requires SYSNAM privilege. Specifies the mode of the logical name.
If you specify executive mode, but do not have SYSNAM privilege, the
qualifier is ignored and a supervisor mode logical name is created.
The mode of the logical name must be the same as or external to (less
privileged than) the mode of the table in which you are placing the name.

!GROUP

DCL Commands
ASSIGN

DCL-17

Requires SYSPRV or GRPNAM privilege. Places the logical name
in the group logical name table. Other users who have the same group
number in their user identification codes (UICs) can access the logical
name. The /GROUP qualifier is synonymous with /TABLE=LNM$GROUP.

/JOB
Places the logical name in the jobwide logical name table. All processes
within the same job tree as the process creating the logical name
can access the logical name. The /JOB qualifier is synonymous with
/TABLE=LNM$JOB.

/LOG (default)
/NO LOG
Displays a message when a new logical name supersedes an existing
name.

/NAME_ATTRIBUTES[=(keyword[, .•.])]
Specifies the attributes for a logical name. By default, no attributes are
set. You can specify the following keywords for attributes:

CONFINE

NO_ALIAS

Does not copy the logical name into a spawned subprocess; relevant only
for logical names in a private table.

Prohibits creation of logical names with the same name in an outer (less
privileged) access mode within the specified table. If another logical name
with the same name and an outer access mode already exists in this table,
the name is deleted.

!PROCESS (default)
Places the logical name in the process logical name table. The /PROCESS
qualifier is synonymous with /TABLE=LNM$PROCESS.

ISUPERVISOR_MODE (default)
Creates a supervisor mode logical name in the specified table.

!SYSTEM
Requires SYSNAM or SYSPRV privilege. Places the logical
name in the system logical name table. All system users can access
the logical name. The /SYSTEM qualifier is synonymous with
/TABLE=LNM$SYSTEM.

/TABLE=name
Requires WRITE (W) access to the table if the table is shareable.
Specifies the logical name table in which the logical name is to be entered.
You can use the /TABLE qualifier to specify a user-defined logical name
table (created with the CREATE/NAME_TABLE command); to specify
the process, job, group, or system logical name tables; or to specify the
process or system logical name directory tables. If you specify the table
name using a logical name that has more than one translation, the logical

DCL-18 DCL Commands
ASSIGN

name is placed in the first table found. If you do not explicitly specify the
trABLE qualifier, the default is trABLE=LNM$PROCESS (or /PROCESS).

ffRANSLATION_ATTRIBUTES[=(keyword[, .••])]
Equivalence-name qualifier. Specifies attributes of the equivalence
name parameter. Possible keywords are as follows:

CONCEALED

TERMINAL

/USER_MODE

Indicates that the equivalence string is the name of a concealed device.

Indicates that the equivalence string should not be translated iteratively;
logical name translation should terminate with the current equivalence
string.

Creates a user mode logical name in the specified table.

If you specify a user mode logical name in the process logical name table,
that logical name is used for the execution of a single image only; user
mode entries are deleted from the logical name table when any image
executing in the process exits; that is, after any DCL command that
executes an image or user. program completes execution.

example
$ASSIGN XXXl: [CHARLES] CHARLIE
$PRINT CHARLIE:TEST.DAT
Job 274 entered on queue SYS$PRINT

The ASSIGN command in this example associates the logical name
CHARLIE with the directory name [CHARLES] on the disk :XXXl.
Subsequent references to the logical name CHARLIE result in the
correspondence between the logical name CHARLIE and the disk and
directory specified. The PRINT command queues a copy of the file
:XXXl:[CHARLES]TEST.DAT to the system printer.

ASSIGN/MERGE
Removes all jobs from one queue and merges them into another existing
queue. Does not affect jobs that are executing.

Requires OPER privilege or EXECUTE access to both queues.

format
ASSIGN/MERGE target-queue[:] source-queue[.1

parameters
target-queue[:]

DCL Commands DCL-19
ASSIGN/MERGE

Specifies the name of the queue into which the jobs are being merged.

source-queue[:]
Specifies the name of the queue from which the jobs are being removed.

example
$ STOP/QUEUE/NEXT LPBO
$ STOP/QUEUE/REQUEUE=LPAO LPBO
$ ASSIGN/MERGE LPAO LPBO

In this example, the STOP/QUEUE/NEXT command prevents another job
from executing on queue LPBO. The STOP/QUEUE/REQUEUE command
requeues the current job running on LPBO to the target queue LPAO. The
ASSIGN/MERGE command removes the remaining jobs from the LPBO
printer queue and places them in the LPAO printer queue.

ASSIGN/QUEUE
Assigns, or redirects, a logical queue to a single execution queue.
ASSIGN/QUEUE can be used only with printer or terminal queues.

Requires OPER privilege or EXECUTE access to both queues.

format
ASSIGN/QUEUE queue-name{:} logical-queue-name[:]

parameters
queue-name[:]
Name of the execution queue. The queue cannot be a logical queue, a
generic queue, or a batch queue.

logical-queue-name[:]
Name of the logical queue.

example
$ INITIALIZE/QUEUE/DEFAULT=FLAG=ONE/START LPAO
$ INITIALIZE/QUEUE TEST QUEUE
$ ASSIGN/QUEUE LPAO TEST QUEUE
$ START/QUEUE TEST QUEUE-

This example first initializes and starts the printer queue LPAO. The
LPAO queue is set to have a flag page precede each job. The second
INITIALIZE/QUEUE command creates the logical queue TEST_QUEUE.
The ASSIGN/QUEUE command assigns the logical queue TEST_QUEUE
to the printer queue LPAO. The START/QUEUE command starts the
logical queue.

DCL-20 DCL Commands
ATTACH

ATTACH
Transfers control from your current process (which then hibernates) to the
specified process.

The ATTACH and SPAWN commands cannot be used if your
terminal has an associated mailbox.

format
ATTACH [process-name]

parameter
process-name
Specifies the name of a parent process or spawned subprocess to which
control passes. The process must already exist, be part of your current
job, and share the same input stream as your current process. However,
the process cannot be your current process or a subprocess created with
the /NOWAIT qualifier. The process-name parameter is incompatible with
the /IDENTIFICATION qualifier.

qualifier
llDENTIFICATION:pid
Specifies the process identification (PID) of the process to which
terminal control will be transferred. Leading zeros can be omitted.
The /IDENTIFICATION qualifier is incompatible with the process-name
parameter.

example
$ ATTACH JONES 2

Transfers the terminal's control to the subprocess JONES_2.

BACKUP
Invokes the Backup Utility (BACKUP) to perform one of the following
BACKUP operations:

• Make copies of disk files.

• Save disk files as data in a file created by BACKUP on disk or
magnetic tape. (Files created by BACKUP are called save sets.)

• Restore disk files from a BACKUP save set.

I

I

DCL Commands
BACKUP

DCL-21

• Compare disk files or files in a BACKUP save .set with other disk files.

• List information about files in a BACKUP save set to an output device
or file.

Note that standalone BACKUP cannot be invoked this way, but must
be bootstrapped in order to run. For more information about the
Backup Utility, see the VMS System Manager's Manual in the VMS
base documentation set.

CALL
Tranfers control to a labeled subroutine within a command procedure.
The CALL command creates a new procedure level as does the@ (execute
procedure) command.

format
CALL label [p 1 [p2{... pB]]]

parameters
label
Specifies a 1- to 255-alphanumeric character label appearing as the first
item on a command line. A label may not contain embedded blanks.
When the CALL command is executed, control passes to the command
following the specified label.

The label can precede or follow the CALL statement in the current
command procedure. A label in a command procedure must be terminated
with a colon. Labels for subroutines must be unique.

p1 [p2 [... pB]]
Specifies from one to eight optional parameters to pass to the command
procedure. Use two consecutive quotation marks ("") to specify a null
parameter. The parameters assign character string values to the symbols
~!!..~ed Pl, P2, e.!ld. so O!l i~ the o:rtle:r of entry, to R maximum of eight.
The symbols are local to the specified command procedure. Separate each
parameter with one or more blanks.

qualifier
!OUTPUT :file-spec
Writes all output to the file or device specified. By default, the output
is written to the current SYS$0UTPUT device and the output file
type is LIS. System responses and error messages are written to
SYS$COMMAND as well as to the specified file. If you specify /OUTPUT,
the qualifier must immediately follow the CALL command. No wildcard
characters are allowed in the output file specification.

DCL-22

example

$
$! CALL.COM
$

DCL Commands
CALL

$! Define subroutine SUBl
$!
$ SUBl: SUBROUTINE

$ CALL SUB2 !Invoke SUB2 from within SUBl

$ @FILE !Invoke another procedure command file

$ EXIT
$ ENDSUBROUTINE !End of SUBl definition
$
$ Define subroutine SUB2
$
$ SUB2: SUBROUTINE

$ EXIT

DCL Commands
CALL

DCL-23

$ ENDSUBROUTINE !End of SUB2 definition
$!
$! Start of main routine. At this point, both SUBl and SUB2
$! have been defined but none of the previous commands have
$! been executed.
$!
$ START:
$ CALL/OUTPUT=NAMES.LOG SUBl "THIS IS Pl"

$ CALL SUB2 "THIS IS Pl" "THIS IS P2"

$ EXIT !Exit this command procedure file

The command procedure in this example shows how to use CALL to
transfer control to labeled subroutines. The example also shows that you
can call a subroutine or another command file from within a subroutine.
The CALL command invokes the subroutine SUBl, directing output to the
file NAMES.LOG and allowing other users write access to the file. The
subroutine SUB2 is called from within SUB 1. The procedure executes
SUB2 and then uses the@ (Execute Procedure) command to invoke the
command procedure FILE.COM. When all the commands in SUBl have
executed, the CALL command in the main procedure calls SUB2 a second
time. The procedure continues until SUB2 has executed.

CANCEL
Cancels wakeup requests for a specified process, including wakeups
scheduled with either the RUN command or the $SCHDWK system
service.

Requires one of the following:

• Ownership of the process.

• GROUP privilege to cancel scheduled wakeups for processes
in the same group but not owned by you.

• WORLD privilege to cancel scheduled wakeups for any process
in the system.

DCL-24

format

DCL Commands
CANCEL

CANCEL [process-name]

parameter
process-name
Specifies the name of the process for which wakeup requests are to be
canceled. Process names can be up to 23 alphanumeric characters in the
following format:

[node-name: :]process-name

• The node name can have as many as 6 alphanumeric characters.

• The colons count for 2 characters.

• The process name can have as many as 15 characters.

A local process name can look like a remote process name. Therefore,
if you specify ATHENS::SMITH, the system checks for a process named
ATHENS::SMITH on the local node before checking node ATHENS for a
process named SMITH.

The specified process must have the same group number in its
user identification code (UIC) as the current process. If both the
/IDENTIFICATION qualifier and the process name are specified, the
process name is ignored. If neither the process-name parameter nor the
/IDENTIFICATION qualifier are specified, the CANCEL command cancels
scheduled wakeup requests for the current (that is, the issuing) process.

qualifier
/IDENTIFICAT/ON:pid
Identifies the process by its process identification (PID). You can omit
leading zeros when you specify the PID.

example
$ RUN/SCHEDULE=14:00 STATUS
%RUN-S-PROC_ID, identification of created process is 0013012A

$ CANCEL/IDENTIFICATION=l3012A

DCL Commands
CANCEL

DCL-25

The RUN command in this example creates a process to execute the
image STATUS. The process hibernates and is scheduled to be awakened
at 14:00. Before the process is awakened, the CANCEL command cancels
the wake-up request.

CLOSE
Closes a file opened with the OPEN command and deassigns the
associated logical name.

format
CLOSE logical-name[:]

parameter
logical-name[:}
Specifies the logical name assigned to the file when it was opened with
the OPEN command.

qualifiers
/ERROR:/abel
Specifies a label in the command procedure to receive control if the
CLOSE operation results in an error. Overrides any ON condition action
specified. If an error occurs and the target label is successfully given
control, the global symbol $STATUS retains the code for the error that
caused the error path to be taken.

/LOG (default)
INOLOG
Generates a warning message when you attempt to close a file that
was not opened by DCL. If you specify the /ERROR qualifier, the /LOG
qualifier has no effect. If the file has not been opened by DCL, the error
branch is taken and no message is displayed.

~~~mpl~ 

$ OPEN/READ INPUT FILE TEST.DAT 
$ READ LOOP : -
$ READ/END_OF_FILE=NO_MORE INPUT_FILE DATA LINE 



DCL-26 DCL Commands 
CLOSE 

$ GOTO READ LOOP 
$ NO MORE: -
$ CLOSE INPUT_FILE 

The OPEN command in this example opens the file TEST.DAT and 
assigns it the logical name of INPUT_FILE. The /END_OF _FILE qualifier 
on the READ command requests that, when the end-of-file is reached, 
the command interpreter should transfer control to the line at the label 
NO_MORE. The CLOSE command closes the input file. 

CONNECT 
Connects your physical terminal to a virtual terminal that is connected to 
another process. 

You must connect to a virtual terminal that is connected to 
a process with your user identification code (UIC). No other 
physical terminals may be connected to the virtual terminal. 

format 

CONNECT virtual-terminal-name 

parameter 

virtual-terminal-name 
Specifies the name of the virtual terminal to which you are connecting. A 
virtual terminal name always begins with VTA. To determine the name 
of the virtual terminal that is connected to a process, enter the SHOW 
USERS command. 

qualifiers 

!CONTINUE 
/NOCONTINUE (default) 
Controls whether the CONTINUE command is executed in the current 
process just before connecting to another process. This allows an 
interrupted image to continue processing after you connect to another 
process. The /CONTINUE qualifier is incompatible with the /LOGOUT 
qualifier. 

/LOGOUT (default) 
/NOLOGOUT 
Logs out your current process when you connect to another process using 
a virtual terminal. The /LOGOUT qualifier is incompatible with the 
/CONTINUE qualifier. 



example 
$ RUN AVERAGE 
ICTRUYI 
$ CONNECT/CONTINUE VTA72 

DCL Commands 
CONNECT 

DCL-27 

In this example, you use the RUN command to execute the image 
AVERAGE.EXE. You enter this command from a terminal that is 
connected to a virtual terminal. Next, you enter CTRIJY to interrupt 
the image. After you interrupt the image, enter the CONNECT command 
with the /CONTINUE qualifier. This issues the CONTINUE command, so 
the image continues to run and connects you to another virtual terminal. 
You can reconnect to the process later. 

CONTINUE 
Resumes execution of a DCL command, a program, or a command 
procedure that was interrupted by CTRUY or CTRL/C. You cannot 
resume execution of the image if you have entered a command that 
executes another image or if you have invoked a command procedure. You 
can abbreviate the CONTINUE command to a single letter, C. 

format 
CONTINUE 

parameters 
None. 

example 
$ RUN MYPROGRAM A 
ICTRUYI -
$ SHOW TIME 

19-APR-1990 13:40:12 
$ CONTINUE 

In this example, the Rl.JN" commau<l execui;e:s i;h~ ptogtc:u11 
MYPROGRAM_A. While the program is running, pressing CTRUY 
interrupts the image. The SHOW TIME command requests a display 
of the current date and time. The CONTINUE command resumes the 
image. 



DCL-28 DCL Commands 
CONVERT 

CONVERT 
Invokes the Convert Utility (CONVERT) to copy records from one file to 
another, changing the organization and format of the input file to those of 
the output file. 

format 

CONVERT input-file-spec[, ... ] output-file-spec 

CONVERT/DOCUMENT 
Invokes the CDA Converter to translate a revisable format file to another 
revisable or final form file from the DCL command line. Please note that 
you can use this command only if you have DECwindows installed on your 
system. For a complete description of the conversion process including 
more information about the CONVERT/DOCUMENT command and its 
qualifiers, see the VMS Compound Document Architecture Manual. 

format 

CONVERT/DOCUMENT input-file output-file 

CONVERT/RECLAIM 
Invokes the ConvertJReclaim Utility (CONVERT/RECLAIM) to make 
empty buckets in Prolog 3 indexed files available so that new records can 
be written in them. If all the records in a bucket have been deleted, that 
bucket is locked until CONVERT/RECLAIM makes it available. Unlike 
CONVERT, CONVERT/RECLAIM maintains record file addresses (RFAs). 
The /RECLAIM qualifier is required. 

format 

CONVERT/RECLAIM file-spec 



COPY 

DCL Commands 
COPY 

DCL-29 

Creates a new file from one or more existing files. If you do not specify 
the device or directory, the COPY command uses your current default 
device and directory. 

format 
COPY input-file-spec[, ... ] output-file-spec 

parameters 
input-file-spec[, ..• ] 
Specifies the name of an existing file to be copied. Wildcard characters 
are allowed. Use a plus sign (+)or a comma (,)to indicate multiple file 
specifications. 

output-file-spec 
Specifies the name of the output file into which the input is copied. You 
must specify at least one field in the output file specification. If you do 
not specify the device or directory, the COPY command uses your current 
default device and directory. You can use the asterisk wildcard character 
in place of any two of the following: the file name, file type, or version 
number. 

description 
When you specify multiple input and output files you can use the /LOG 
qualifier to verify that the files were copied as you intended. 

Note that there are special considerations for using the COPY command 
with DECwindows compound documents. For more information, see the 
Guide to VMS File Applications. 

Version Numbers 

If you do not specify version numbers for input and output files, the COPY 
command (by default) assigns a version number to the output files that is 
either of the following: · 

• The version number of the input file 

• A version number one greater than the highest version number of an 
existing file with the same file name and file type 

When you specify the output file version number by an asterisk wildcard 
character, the COPY command uses the version numbers of the associated 
input files as the version numbers of the output files. 



DCL-30 DCL Commands 
COPY 

If you specify the output file version number by an explicit version 
number, the COPY command uses that number for the output file 
specification. If a higher version of the output file exists, the COPY 
command issues a warning message and copies the file. If an equal 
version of the output file exists, the COPY command issues a message 
and does not copy the input file. 

File Protection and Creation/Revision Dates 

The COPY command considers an output file to be new when you specify 
any portion of the output file name explicitly. The COPY command sets 
the creation date for a new file to the current time and date. 

If you specify the output file by one or more wildcard characters, the 
COPY command uses the creation date of the input file. 

The COPY command always sets the revision date of the output file 
to the current time and date; it sets the backup date to zero. The file 
system assigns the output file a new expiration date. (The file system sets 
expiration dates if retention is enabled; otherwise it sets expiration dates 
to zero.) 

The protection and access control list (ACL) of the output file is 
determined by the following parameters, in the following order: 

• Protection of previously existing versions of the output file 

• Default Protection and ACL of the output directory 

• Process default file protection 

(Note that the BACKUP command takes the creation and revision dates 
as well as the file protection from the input file.) 

Use the /PROTECTION qualifier to change the output file protection. 

Normally, the owner of the output file will be the same as the creator of 
the output file. However, if a user with extended privileges creates the 
output file, the owner will be the owner of the parent directory or of a 
previous version of the output file if one exists. 

Extended privileges include any of the following: 

• SYSPRV or BYPASS 

• System UIC 

• GRPPRV if the owner of the parent directory (or previous version of 
the output file) is in the same group as the creator of the new output 
file 

• An identifier (with the resource attribute) representing the owner of 
the parent directory (or the previous version of the output file) 



DCL Commands DCL-31 
COPY 

Copying Directory Files 
If you copy a file that is a directory, the COPY command creates a new 
empty subdirectory of the named directory. The COPY command does 
not copy any files from the named directory to the new subdirectory. For 
example: 
$ COPY [SMITH]CATS.DIR [JONES] 

This COPY command creates the new empty subdirectory 
[JONES]CATS.DIR. Once the COPY command creates the new 
subdirectory [JONES]CATS.DIR, you can copy the files in the directory 
[SMITH]CATS.DIR. 

qualifiers 
IALLOCATION:n 
Output-file-spec qualifier. Forces the initial allocation of the output 
file to the number of 512-byte blocks specified by n. If you do not specify 
the number of 512-byte blocks, the size of the input file being copied 
determines the initial allocation of the output file. 

!BACKUP 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/BACKUP selects files according to the dates of their most recent backups. 
This qualifier is incompatible with the other qualifiers that allow you 
to select files according to time attributes: /CREATED, /EXPIRED, and 
/MODIFIED. If you specify none of these four time qualifiers, the default 
is /CREATED. 

/BEFORE[:time} 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, or 
YESTERDAY. To indicate the time attribute to be used as the basis for 
selection, specify one of the following qualifiers with /BEFORE: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

/BY_OWNER[:uic} 
C!,..1,..,..1-,.. ,....,.1 •• .1-1..,.,..,. .t:l,. ...... 1..,. ... ,. ,. ....... ,.- ..... ,.- !..l,. .... .i..:.t:,.,.L!,,.- ,.,...l,. IT.TT/"1\ 
i.J\J.L\J\,,1.10 UJ.J.J.,Y ".LJ.Ui:J'IJ J.J.J.'IJO llY U.Vi::>'IJ U \'V J.J.\JJ. U.i:>(;;J. J.U.'IJ.LJ."J.J..L\_;Q."J.VU \JUU.(;; \ U .1. VJ 

matches the specified owner UIC. The default UIC is that of the current 
process. 

!CONCATENATE (default) 
/NOCONCATENATE 
Creates one output file from multiple input files when you do not use wild
card characters in the output file specification. The /NOCONCATENATE 
qualifier generates multiple output files. Files from Files-11 Structure 
Level 2 disks are concatenated in alphanumeric order; if you specify a 
wildcard in the file version field, files are copied in descending order 
by version number. Files from Files-11 Structure Level 1 disks are 
concatenated in random order. 



DCL-32 DCL Commands 
COPY 

!CONFIRM 
!NOCONFIRM (default) 
Controls whether a request is issued before each COPY operation to 
confirm that the operation should be performed on that file. The following 
responses are valid: 

YES 

TRUE 

1 

NO 

FALSE 

0 

~ 

QUIT 

CTRUZ 

ALL 

You can use any combination of uppercase and lowercase letters for word 
responses. You can abbreviate word responses to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 
unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and the RETURN key. QUIT or CTRUZ indicates 
that you want to stop processing the command at that point. When you 
respond with ALL, the command continues to process but no further 
prompts are given. If you type a response other than one of those in the 
list, DCL issues an error message and redisplays the prompt. 

/CONTIGUOUS 
INOCONTIGUOUS 
Output-file-spec qualifier. Specifies that the output file must occupy 
contiguous physical disk blocks. By default, the COPY command creates 
an output file in the same format as the corresponding input file. Also, by 
default, if not enough space exists for a contiguous allocation, the COPY 
command does not report an error. 

The /CONTIGUOUS qualifier has no effect when you copy files to or from 
tapes because the size of the file on tape cannot be determined until after 
it is copied to the disk. If you copy a file from a tape and want the file to 
be contiguous, use the COPY command twice: once to copy the file from 
the tape, and a second time to create a contiguous file. 

!CREATED (default) 
Modifies the time value spedfied with the /BEFORE or /SINCE qualifier. 
The /CREATED qualifier selects files based on their dates of creation. 
This qualifier is incompatible with the other qualifiers that allow you 
to select files according to time attributes: /BACKUP, /EXPIRED, and 
/MODIFIED. If you specify none of these four time qualifiers, the default 
is /CREATED. 

!EXCLUDE:{file-spec[, .•. ]) 
Excludes the specified files from the COPY operation. You can include a 
directory but not a device in the file specification. Wildcard characters 
are allowed in the file specification. However, you cannot use relative 
version numbers to exclude a specific version. If you provide only one file 
specification, you can omit the parentheses. 



DCL Commands DCL-33 
COPY 

/EXPIRED 
Modifies the time value specified with the /BEFORE or /SINCE qualifiers. 
/EXPIRED selects files according to their expiration dates. (You set the 
expiration date with the SET FILE/EXPIRATION_DATE command.) The 
/EXPIRED qualifier is incompatible with the other qualifiers that allow 
you to select files according to time attributes: /BACKUP, /CREATED, 
and /MODIFIED. If you specify none of these four time qualifiers, the 
default is /CREATED. 

/EXTENSION:n 
Output-file-spec qualifier. Specifies the number of blocks to be added 
to the output file each time the file is extended. 

!LOG 
INOLOG (default) 
Controls whether the COPY command displays the file specifications of 
each file copied. 

When you use the /LOG qualifier, the COPY command displays the 
following for each copy operation: ( 1 ) the file specifications of the input 
and output files, ( 2 ) the number of blocks or the number of records 
copied (depending on whether the file is copied on a block-by-block or 
record-by-record basis), and ( 3) the total number of new files created. 

/MODIFIED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
The /MODIFIED qualifier selects files according to the dates on which 
they were last modified. This qualifier is incompatible with the other 
qualifiers that allow you to select files according to time attributes: 
/BACKUP, /CREATED, and /EXPIRED. If you specify none of these four 
time modifiers, the default is /CREATED. 

/OVERLAY 
/NOOVERLAY (default) 
Output-file-spec qualifier. Requests that data in the input file be copied 
into the existing specified file, overlaying the existing data, rather than 
allocatinl! new snace for the file. The nhvsical location of the file on disk 
does not change: 

4 

v 

/PROTECTION:( code) 
Output-file-spec qualifier. Specifies protection for the output file. 
Specify ownership as SYSTEM, OWNER, GROUP, or WORLD and access 
as R (read), W (write), E (execute), or D (delete). The protection of the 
existing output file is the default. If no output file exists, the current 
default protection applies. 

/READ CHECK 
INOREAD_CHECK (default) 
Input-file-spec qualifier. Reads each record in the input files twice to 
verify that it has been read correctly. 



DCL-34 DCL Commands 
COPY 

/REPLACE 
/NOREPLACE (default) 
Output-file-spec qualifier. Requests that, if a file exists with the same 
file specification as that entered for the output file, the existing file is to be 
deleted. The COPY command allocates new space for the output file. In 
general, when you use the /REPLACE qualifier, include version numbers 
with the file specifications. By default, the COPY command creates a new 
version of a file if a file with that specification exists, incrementing the 
version number. The /NOREPLACE qualifier signals an error when a 
conflict in version numbers occurs. 

/SINCE[:time] 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

ffRUNCATE 
INOTRUNCATE (default) 
Output-file-spec qualifier. Controls whether or not the COPY command 
truncates an output file at the end-of-file when copying it. By default, the 
allocation of the input file determines the size of the output file. 

/VOLUME:n 
Output-file-spec qualifier. Places the output file on the specified 
relative volume number of a multivolume set. By default, the COPY 
command places the output file arbitrarily in a multivolume set. 

/WRITE CHECK 
INOWRlTE_CHECK (default) 
Output-file-spec qualifier. Reads each record in the output file after it 
was written to verify that the record was copied successfully and that the 
file can be read subsequently without error. 

example 
$COPY/LOG A.DAT,B.MEM C.* 
%COPY-S-COPIED, DBAO: [MAL]A.DAT;S copied to DBAO: [MAL]C.DAT;ll (1 block) 
%COPY-S-COPIED, DBAO:[MAL]B.MEM;2 copied to DBAO: [MAL]C.MEM;24 (58 records) 
%COPY-S-NEWFILES, 2 files created 

In this example, the two input file specifications are separated with a 
comma. The asterisk wildcard character in the output file specification 
indicates that two output files are to be created. For each copy operation, 
the COPY command uses the file type of the input file to name the output 
file. 



DCL Commands DCL-35 
CREATE 

CREATE 
Creates a sequential text file (or files). Specify the content of the file on 
the lines following the command, one record per line. In interactive mode, 
terminate the file input with CTRUZ. In a command procedure, terminate 
the file input with a line beginning with a dollar sign in column 1 (or with 
the end of the command procedure). 

format 
CREATE file-spec{, ... ] 

parameter 
file-spec[, ... ) 
Specifies the name of one or more input files to be created. Wildcard 
characters are not allowed. If you omit either the file name or the file 
type, the CREATE command does not supply any defaults. The file name 
or file type is null. If the specified file already exists, a new version is 
created. 

qualifiers 
!LOG 
INOLOG (default) 
Displays the file specification of each new file created as the command 
executes. 

/OWNER_ UIC:uic 
Requires SYSPRV privilege to specify a UIC other than your own. 
Specifies the user identification code (UIC) to be associated with the file 
being created. 

/PROTECTION:{ code) 
Specifies protection for the file. Specify ownership as SYSTEM, OWNER, 
GROUP, or WORLD and protection as R (read), W (write), E (execute), 
or D (delete). If you do not specify a value for each access category, the 
rnTnTnQnrl annl;.oC! +li.o ,.,,-rr.on+ rl.o.fon 1+ n .... n+a .... +;nn .fn..,. a".:!1,.1.,, nn.,,na,.;-Aa..:I --------- -rr-...-...,. .......... _ --...... "'-' ......... _....., ... ...,..~.., J:' .. ""'"'"'"'"'"'" ........ "" ... ""'"""'"'.&. .. ~ ... ....,.t'""""' ......... "" ...... 
category. 

/VOLUME:n 
Places the file on the specified relative volume of a multivolume set. By 
default, the file is placed arbitrarily in a multivolume set. 



DCL-36 DCL Commands 
CREATE 

example 
$ CREATE MEET.TXT 
John, Residents in the apartment complex will hold their annual meeting 
this evening. We hope to see you there, Regards, Elwood 
ICTRLJZI 

The CREATE command in this example creates a text file named 
MEET. TXT in your default directory. The text file MEET. TXT contains 
the lines that follow until the CTRUZ. 

CREATE/DIRECTORY 
Creates one or more new directories or subdirectories. The /DIRECTORY 
qualifier is required. 

Requires WRITE (W) access to the master file directory (MFD) to 
create a first-level directory. Requires WRITE access to the lowest 
level directory that currently exists to create a subdirectory. 

format 
CREATE/DIRECTORY directory-spec[, ... } 

parameter 
directory-spec[, .•. ] 
Specifies the name of one or more directories or subdirectories to be 
created. The directory specification optionally can be preceded by a device 
name (and colon). The default is the current default directory. Wildcard 
characters are not allowed. When creating a subdirectory, separate the 
names of the directory levels with periods. 

qualifiers 
!LOG 
INOLOG (default) 
Controls whether the CREATE/DIRECTORY command displays the 
directory specification of each directory after creating it. 

/OWNER_ UIC[=option] 
Requires SYSPRV privilege for a UIC (user identification code) 
other than your own. 

Specifies an owner UIC for the directory. The default is your UIC. You 
can specify the keyword PARENT in place of a UIC to mean the UIC of 
the parent (next-higher-level) directory. If a user with privileges creates a 
subdirectory, by default, the owner of the subdirectory will be the owner of 
the parent directory (or the owner of the Master File Directory, if creating 

I 

II 



DCL Commands 
CREATE/DIRECTORY 

DCL-37 

a main level directory). If you do not specifiy the /OWNER_UIC qualifier 
when creating a directory, the command assigns ownership as follows: 
( 1) if you specify the directory name in either alphanumeric or 
subdirectory format, the default is your UIC (unless you are privileged in 
which case the UIC defaults to the parent directory); ( 2) if you specify 
the directory in UIC format, the default is the specified UIC. 

/PROTECTION:( code) 
Specifies protection for the directory. Specify ownership as SYSTEM, 
OWNER, GROUP, or WORLD and protection as R (read), W (write), 
E (execute), or D (delete). The default protection is the protection of the 
parent directory (the next-higher level directory, or the master directory 
for top-level directories) minus any delete access. 

NERSION_LIMIT :n 
Specifies the number of versions of any one file that can exist in the 
directory. If you exceed the limit, the system deletes the lowest numbered 
version. A specification of 0 means no limit. The maximum number 
of versions allowed is 32, 767. The default is the limit for the parent 
(next-higher-level) directory. 

NOLUME:n 
Requests that the directory file be placed on the specified relative volume 
of a multivolume set. By default, the file is placed arbitrarily within the 
multivolume set. 

example 
$ CREATE/DIRECTORY/VERSION_LIMIT=2 $DISK1: [ACCOUNTS.MEMOS] 

In this example, the CREATE/DIRECTORY command creates a 
subdirectory named MEMOS in the ACCOUNTS directory on $DISK1. 
No more than two versions of each file can exist in the directory. 

CREATE/FOL 
TnvnkPi:i. thP C!J"P~tPIFnT. TTt.Hitv (C!R.F.ATF./FnT .) t.n ni:i.P t.hP i:i.nPl'ifi,..~tinni:i. ---· ----- ---- ------·- -- - -----.1 ,----------·- _ ____., _,_ ----- _. ___ -r--------_,_....., ____ _ 

in an FDL file to create a new, empty data file. Use this utility to create 
a data file from a particular FDL specification. The /FDL qualifier is 
required. 

format 
CREATE/FOL =fdl-file-spec [file-spec] 



DCL-38 DCL Commands 
CREATE/NAME_ TABLE 

CREATE/NAME_ TABLE 
Creates a new logical name table. 

format 
CREATE/NAME_ TABLE table-name 

parameter 
table-name 
Specifies a string of 1 to 31 characters that identifies the logical name 
table you are creating. The string can include alphanumeric characters, 
the dollar sign, and the underscore. 

qualifiers 
I ATTRIBUTES[:(keyword[, ••• ])] 
Specifies attributes for the logical name table. If you specify only 
one keyword, you can omit the parentheses. If you do not specify the 
I ATTRIBUTES qualifier, no attributes are set. 

You can specify the following keywords for attributes: 

CONFINE 

NO_ALIAS 

SUPERSEDE 

Does not copy the table name or the logical names contained in the table 
into a spawned subprocess; used only when creating a private logical 
name table. 

No identical names (either logical names or names of logical name tables) 
may be created in an outer (less privileged) mode in the current directory. 
Deletes any previously created identical table names in an outer access 
mode in the same logical name table directory. 

Creates a new table that supersedes any previous (existing) table that 
contains the name, access mode, and directory table that you specify. 

IEXECUTIVE_MODE 
Requires SYSNAM privilege. Creates an executive mode logical name 
table. 

/LOG (default) 
/NO LOG 
Controls whether or not an informational message is generated when the 
SUPERSEDE attribute is specified, or when the table already exists but 
the SUPERSEDE attribute is not specified. The default is /LOG; that is, 
the informational message is displayed. 

IPARENT_ TABLE:table 
Requires EXECUTE (E) access to the parent table and SYSPRV 
privilege to create a shareable logical name table. Specifies the 
name of the parent table. If you do not specify a parent table, the default 
table is LNM$PROCESS_DIRECTORY. A shareable table has 
LNM$SYSTEM_DIRECTORY as its parent table. The parent table must 



DCL Commands 
CREATE/NAME_ TABLE 

DCL-39 

have the same access mode or a higher-level access mode than the one 
you are creating. 

!PROTECTION 
Applies the specified protection to shareable name tables. The ownership 
categories are SYSTEM, OWNER, GROUP, WORLD; the access categories 
are R (READ), W (WRITE), E (EXECUTE) and D (DELETE). The default 
protection is (SYSTEM:RWED,OWNER:RWED,GROUP:,WORLD:) 

/QUOTA:number-of-bytes 
Specifies the size limit of the logical name table. If you do not specify the 
/QUOTA qualifier, or if you specify /QUOTA=O, the table has unlimited 
quota. 

ISUPERVISOR_MODE (default) 
Creates a supervisor mode logical name table. If you do not specify a 
mode, a supervisor mode logical name table is created. 

/USER_MODE 
Creates a user mode logical name table. If you do not explicitly specify a 
mode, a supervisor mode logical name table is created. 

example 
$ CREATE/NAME TABLE TEST TAB 
$ SHOW LOGICAL TEST TAB -
%SHOW-S-NOTRAN, no translation for logical name TEST TAB 
$ SHOW LOGICAL/TABLE=LNM$PROCESS_DIRECTORY TEST_TAB -

In this example, the CREATE/NAME_TABLE command creates a new 
table called TEST_TAB. By default, the name of the table is entered in 
the process directory. The first SHOW LOGICAL command does not find 
the name TEST_TAB because it does not, by default, search the process 
directory table. You must use the /!'ABLE qualifier to request that the 
process directory be searched. 

DEALLOCATE 
Makes an allocated device available to other processes (but does not 
deassign any logical name associated with the device). 

format 

DEALLOCATE device-name[:] 

parameter 
device-name[:] 
Name of the device to be deallocated. The device name can be a physical 
device name or a logical name. On a physical device name, the controller 
defaults to A and the unit to 0. Incompatible with the /ALL qualifier. 



DCL-40 DCL Commands 
DEALLOCATE 

qualifier 
/ALL 
Deallocates all devices currently allocated by your process. Incompatible 
with the device-name parameter. 

example 
$ ALLOCATE MT: TAPE 
%DCL-I-ALLOC, MTBl: allocated 

$ DEALLOCATE TAPE: 

In this example, the ALLOCATE command requests that any magnetic 
tape drive be allocated and assigns the logical name TAPE to the device. 
The response to the ALLOCATE command indicates the successful 
allocation of the device MTBl. The DEALLOCATE command specifies 
the logical name TAPE to release the tape drive. 

DEASSIGN 
Cancels logical name assignments made with the ALLOCATE, ASSIGN, 
DEFINE, or MOUNT command. The DEASSIGN command also deletes 
logical name tables created with the CREATE/NAME_TABLE command. 
Logical names in private tables are deleted automatically when your 
process terminates. All logical names in the job table and the job table 
itself are deleted when your process terminates. User mode logical names 
in the process table are deleted automatically when the next image 
exits. All other logical names in shareable tables remain unless explicitly 
deassigned. All names in descendant tables are deleted when the parent 
table logical name is deassigned. 

format 
DEASSIGN [logical-name[:}} 

parameter 
logical-name[:] 
Specifies the logical name to be deassigned. Logical names can have from 
1 to 255 characters. If the logical name contains any characters other 
than alphanumerics, dollar signs, or underscores, enclose it in quotation 
marks. The logical-name parameter is required unless you use the /ALL 
qualifier. If a colon is present in the logical name, you must type two 



DCL Commands DCL-41 
DEASSIGN 

colons in the logical-name parameter of the DEASSIGN command (for 
example, DEASSIGN FILE::). 

qualifiers 
/ALL 
Deletes all logical names in the same or an outer (less privileged) access 
mode. If no logical name table is specified, the default is the process table, 
LNM$PROCESS. If you specify /ALL, you cannot enter a logical-name 
parameter. 

/EXECUTIVE_MODE 
Requires SYSNAM privilege to deassign executive mode logical 
names. Deletes only entries that were created in the specified mode or 
an outer (less privileged) mode. If you do not have SYSPRV privilege for 
executive mode, a supervisor mode operation is assumed. 

!GROUP 
Requires GRPNAM or SYSPRV privilege to delete entries from the 
group logical name table. Indicates that the specified logical name is 
in the group logical name table. The /GROUP qualifier is synonymous 
with /TABLE=LNM$GROUP. 

!JOB 
Indicates that the specified logical name is in the jobwide logical name 
table. The /JOB qualifier is synonymous with /TABLE=LNM$JOB. If you 
do not explicitly specify a logical name table, the default is /PROCESS. 

/PROCESS (default) 
Indicates that the specified logical name is in the process log
ical name table. The /PROCESS qualifier is synonymous with 
/TABLE=LNM$PROCESS. 

/SUPERVISOR_MODE (default) 
Deletes entries in the specified logical name table that were created in 
supervisor mode. If you specify the /SUPERVISOR_MODE qualifier, the 
DEASSIGN command also deassigns user mode entries with the same 
name. 

/SYSTEM 
Requires SYSNAM or SYSPRV privilege to delete entries from the 
system logical name table. Indicates that the specified logical name is 
in the system logical name table. The /SYSTEM qualifier is synonymous 
with /TABLE=LNM$SYSTEM. 

ffABLE:name 
Requires WRITE (W) access to the table to delete a shareable 
logical name. Requires SYSPRV or DELETE (D) access to delete 
a shareable logical name table. Specifies the table from which the 
logical name is to be deleted. Defaults to LNM$PROCESS. The table can 



DCL-42 DCL Commands 
DEASSIGN 

be the process, group, job, or system table, one of the directory tables, or 
the name of a user-created table. 

!USER_MODE 
Deletes entries in the process logical name table that were created in 
user mode. If you specify the /USER_MODE qualifier, the DEASSIGN 
command can deassign only user mode entries. 

example 
$ DEASSIGN/TABLE=LNM$PROCESS_DIRECTORY TAX 

The DEASSIGN command in this example deletes the logical name 
table TAX, and any descendant tables. When you delete a logical name 
table, you must specify either trABLE=LNM$PROCESS_DIRECTORY or 
trABLE=LNM$SYSTEM_DIRECTORY, because the names of all tables 
are contained in these directories. 

DEASSIGN/QUEUE 
Deassigns a logical queue from a printer or terminal queue and stops the 
logical queue. The DEASSIGN/QUEUE command is the complement of 
the ASSIGN/QUEUE command. 

Requires OPER privilege or EXECUTE access to the queue. 
Cannot be used with batch queues. 

format 

DEASSIGN/QUEUE logical-queue-name[:] 

parameter 

logical-queue-name[:] 
Specifies the name of the logical queue that you want to deassign from a 
specific printer or terminal queue. 

example 
$ ASSIGN/QUEUE LPAO ASTER 

$ DEASSIGN/QUEUE ASTER 
$ ASSIGN/MERGE LPBO ASTER 

The ASSIGN/QUEUE command in this example associates the logical 
queue ASTER with the print queue LPAO. Later, you deassign the logical 



DCL Commands DCL-43 
DEASSIGN/QUEUE 

queue with the DEASSIGN/QUEUE command. The ASSIGN/MERGE 
command reassigns the jobs from ASTER to the print queue LPBO. 

DEBUG 
Invokes the VMS Debugger after program execution is interrupted by 
CTRUY, but only if the /NOTRACEBACK qualifier was not specified with 
the LINK command when the program was linked. 

format 
DEBUG 

DECK 
Marks the beginning of an input stream for a command or program. 
The DECK command is required in command procedures when the first 
nonblank character in any data record in the stream is a dollar sign. 

Can be used only after a request to execute a command or 
program that requires input data. 

format 
DECK 

qualifier 
IDOLLARS[=string] 
Sets the end-of-file indicator to the specified string of 1 through 15 
characters. Enclose the string in quotation marks if it contains literal 
lowercase letters, multiple blanks, or tabs. If you do not specify 
/DOLLARS, or if you specify /DOLLARS without specifying a string, 
you must use the EOD command to signal the end-of-file. 



DCL-44 DCL Commands 
DECK 

example 

Input Stream 
for 
Program A 

$ 86.42 

$DECK 

$AUNA 

$LINK A 

$FORTRANA 

• • • 

$EOJ 

$PRINT SUMMARY.DAT 
$EOD 

• • • 

ZK-0783-GE 

In this example, the FORTRAN and LINK commands compile and link 
program A. When the program is run, any data the program reads from 
the logical device SYS$INPUT is read from the command stream. The 
DECK command indicates that the input stream can contain dollar signs 
in column 1 of the record. The EOD command signals end-of-file for the 
data. 



DEFINE 

DCL Commands 
DEFINE 

DCL-45 

Associates equivalence names with a logical name. If you specify an 
existing logical name, the new equivalence names replace the existing 
equivalence name. 

format 
DEFINE logical-name equivalence-name[, ... ] 

parameters 
logical-name 
Specifies the logical name string, which is a character string containing 
from 1 to 255 characters. If the logical name is to be entered into the 
process or system directory logical name tables (LNM$PROCESS_ 
DIRECTORY, LNM$SYSTEM_DIRECTORY), then the name may only 
have from 1 to 31 alphanumeric characters (including the dollar sign and 
underscore). If the string contains any characters other than uppercase 
alphanumerics, the dollar sign, or the underscore character, enclose the 
string in quotation marks (" ). Use two consecutive quotation marks ( "") 
to denote an actual quotation mark. 

equivalence-name[, ... ] 
Specifies a character string containing from 1 to 255 characters. If the 
string contains any characters other than uppercase alphanumerics, the 
dollar sign, or the underscore character, enclose the string in quotation 
marks. Use two consecutive quotation marks ("")to denote an actual 
quotation mark. Specifying more than one equivalence name for a logical 
name creates a search list. 

qualifiers 
/EXECUTIVE_MODE 
Requires SYSNAM privilege to create an executive mode logical 
name. Creates an executive mode logical name in the specified table. 

if you specify i;he /EXECUTrv"E_:M:ODE qualifier and yc-:.l de ~ct h~:-:e 
SYSNAM, the DEFINE command ignores the qualifier and creates a 
supervisor mode logical name. The mode of the logical name must be 
the same or less privileged than the mode of the table in which you are 
placing the name. 

/GROUP 
Requires GRPNAM or SYSPRV privilege to place a name in 
the group logical name table. Places the logical name in the 
group logical name table. The /GROUP qualifier is synonymous with 
trABLE=LNM$GROUP. 



DCL-46 DCL Commands 
DEFINE 

!JOB 
Places the logical name in the jobwide logical name table. The /JOB 
qualifier is synonymous with /TABLE=LNM$JOB. 

!LOG (default) 
/NO LOG 
Displays a message when a new logical name supersedes an existing 
name. 

/NAME_ATTRIBUTES[:{keyword[, ••• ))) 
Specifies attributes for a logical name. By default, no attributes are set. 
Possible keywords are as follows: 

CONFINE 

NO_ALIAS 

The logical name is not copied into a spawned subprocess. This qualifier 
is relevant only for logical names in a private table. 

A logical name cannot be duplicated in the specified table in a less 
privileged access mode; any previously created identical names in an 
outer (less privileged) access mode within the specified table are deleted. 

If you specify only one keyword, you can omit the parentheses. Only the 
attributes you specify are set. 

/PROCESS (default) 
Places the logical name in the process logical name table. The /PROCESS 
qualifier is synonymous with /TABLE=LNM$PROCESS. 

ISUPERVISOR_MODE (default) 
Creates a supervisor mode logical name in the specified table. The mode 
of the logical name must be the same as or less privileged than the mode 
of the table in which you are placing the name. 

/SYSTEM 
Requires SYSNAM or SYSPRV privilege to place a name in 
the system logical name table. Places the logical name in the 
system logical name table. The /SYSTEM qualifier is synonymous with 
/TABLE=LNM$SYSTEM. 

ffABLE:name 
Requires WRITE (W) access to the table to specify the name of a 
shareable logical name table. Specifies the name of the logical name 
table in which the logical name is to be entered. You can use the /TABLE 
qualifier to specify a user-defined logical name table (created with the 
CREATE/NAME_TABLE command); to specify the process, job, group, 
or system logical name tables; or to specify the process or system logical 
name directory tables. 

If you specify the table name using a logical name that has more than 
one translation, the logical name is placed in the first table found. The 
default is /TABLE=LNM$PROCESS (or /PROCESS). 



DCL Commands 
DEFINE 

ffRANSLATION_ATTRIBUTES[:(keyword[, .•. ])] 

DCL-47 

Equivalence-name qualifier. Specifies one or more attributes that 
modify an equivalence string of the logical name. Possible keywords are 
as follows: 

CONCEALED 

TERMINAL 

!USER_MODE 

Indicates that the equivalence string is the name of a concealed device. 

Logical name translation should terminate with the current equivalence 
string; indicates that the equivalence string should not be translated 
iteratively. 

Creates a user mode logical name in the specified table. User mode 
logical names created within the process logical name tables are used for 
the execution of a single image. 

example 
$ DEFINE/USER_MODE TMl $DISK1: [ACCOUNTS.MEMOS]WATER.TXT 

In this example, the DEFINE command defines TMl as equivalent to 
a file specification. After the next image runs, the logical name TMl is 
automatically. deassigned. 

DEFINE/CHARACTERISTIC 
Assigns a numeric value to a queue characteristic. If a value has 
been assigned to the characteristic, the DEFINE/CHARACTERISTIC 
command alters the assignment of the existing characteristic. The 
/CHARACTERISTIC qualifier is required. 

Requires OPER privilege. 

format 
DEFINE/CHARACTERISTIC characteristic-name characteristic-number 

parameters 
characteristic-name 
Assigns a name to the characteristic being defined. The characteristic 
name can be the name of an existing characteristic or a string of 1 to 
31 characters that defines a new characteristic. The character string 
can include any uppercase and lowercase letters, digits, the dollar sign 
( $ ), and the underscore ( _ ), and must include at least one alphabetic 
character. 

characteristic-number 
Assigns a number in the range 0 through 127 to the characteristic being 
defined. 



DCL-48 DCL Commands 
DEFINE/CHARACTERISTIC 

example 
$ DEFINE/CHARACTERISTIC REDINK 3 

The DEFINE/CHARACTERISTIC command in this example defines 
the characteristic REDINK with the number 3. When a user enters 
the command PRINT/CHARACTERISTICS=REDINK (or PRINT 
/CHARACTERISTICS=3), the job is printed only if the printer queue 
has been established with the REDINK or 3 characteristic. 

DEFINE/FORM 
Assigns a numeric value and attributes to a print form name. If a 
value has been assigned already to the form name, the DEFINE/FORM 
command alters the definition of the existing form. The /FORM qualifier 
is required. 

Requires OPER privilege. 

format 
DEFINE/FORM form-name form-number 

parameters 
form-name 
Assigns a name to the form being defined. The form name can be the 
name of an existing form type or a string of 1 to 31 characters that 
defines a new form type. The character string can include any uppercase 
and lowercase letters, digits, the dollar sign ( $ ), and the underscore ( _ ), 
and must include at least one alphabetic character. 

form-number 
Assigns a number in the range 0 through 999,999,999 to the form being 
defined. The DEFAULT form, which is defined automatically when the 
system is bootstrapped, is assigned number 0. 

qualifiers 
!DESCRIPTION:string 
A string of up to 255 characters used to provide operator-information 
about the form. The default string is the specified form name. Enclose 
strings containing lowercase letters, blanks, or other nonalphanumeric 
characters (including spaces) in quotation marks ( "). 

!LENGTH:n 
Specifies the physical length of a form page in lines. The default page 
length is 66 lines. Then parameter must be a positive integer greater 
than 0 and not more than 255. 



/MARGIN:{ option[, ••• ]) 

DCL Commands 
DEFINE/FORM 

DCL-49 

Specifies one or more of the four margin options: BOTTOM, LEF'r, 
RIGHT, and TOP. 

BOTTOM=n Specifies the number of blank lines between the end of the print image area 
and the end of the physical page; the value of n must be between 0 and the 
value of the /LENGTH parameter. The default value is 6, which generally 
means a one-inch bottom margin. 

LEFT=n Specifies the number of blank columns between the leftmost printing 
position and the print image area; the value of n must be between 0 and 
the value of the /WIDTH parameter. The default is 0. 

RIGHT=n Specifies the number of blank columns between the /WIDTH parameter 
and the image area; the value of n must be between 0 and the value of the 
/WIDTH parameter. The default value is 0. 

TOP=n Specifies the number of blank lines between the top of the physical page and 
the top of the print image; the value of n must be between 0 and the value 
of the /LENGTH parameter. The default value is 0. 

/PAGE_ SETUP=(module[, ••• ]) 
INOPAGE_SETUP (default) 
Specifies one or more modules that set up the device at the start of each 
page. The modules are located in the device control library. While the 
form is mounted, the system extracts the specified module and copies it to 
the printer before each page is printed. 

/SETUP:{ module[, ••• ]) 
Specifies one or more modules that set up the device at the start of each 
file. The modules are located in the device control library. While the form 
is mounted, the system extracts the specified module and copies it to the 
printer before each file is printed. 

/SHEET FEED 
/NOSHEET_FEED (default) 
Specifies that print jobs pause at the end of every physical page so that a 
new sheet of paper can be inserted. 

l!::Tnr.1< "!"'i::trinn 
' - • - -· ----· •• "i;;/I 

Specifies the type of paper stock to be associated with the form. The 
string parameter can be a string of 1 to 31 characters, including the dollar 
sign, underscore, and all alphanumeric characters. If you specify the 
/STOCK qualifier you must specify the name of the stock to be associated 
with the form. If you do not specify the /STOCK qualifier, the name of the 
stock will be the same as the name of the form. 

ffRUNCATE (default) 
INOTRUNCATE 
Discards any characters that exceed the current line length (specified by 
/WIDTH and /MARGIN=RIGHT). /TRUNCATE is incompatible with the 



DCL-50 DCL Commands 
DEFINE/FORM 

/WRAP qualifier. If you specify both /NOTRUNCATE and /NOWRAP, the 
printer prints as many characters on a line as possible. 

/WIDTH:n 
Specifies the physical width of the paper in terms of columns or character 
positions. Then parameter must be an integer from 0 through 65,535; 
the default value is 132. The /MARGIN=RIGHT qualifier overrides the 
/WIDTH qualifier when determining when to wrap lines of text. 

/WRAP 
INOWRAP (default) 
Causes lines that exceed the current line length (specified by /WIDTH and 
/MARGIN=RIGHT) to wrap onto the next line. /WRAP is incompatible 
with the trRUNCATE qualifier. If you specify both /NOWRAP and 
/NOTRUNCATE, the printer prints as many characters on a line as 
possible. 

example 
$ DEFINE/FORM /MARGIN=(TOP=6,LEFT=10) CENTER 3 

The DEFINE/FORM command in this example defines the form CENTER 
to have a top margin of 6 and a left margin of 10. The form is assigned 
the number 3. 

DEFINE/KEY 
Associates an equivalence string and a set of attributes with a key on the 
terminal keyboard. The /KEY qualifier is required. 

format 
DEFINE/KEY key-name equivalence-string 

parameters 
key-name 
Specifies the name of the key that you are defining. The following table 
lists the key names in column one. The remaining three columns indicate 
the key designations on the keyboards of the three different types of 
terminals that allow key definitions. 

Key-Name 

PFl 
PF2 
PF3 

LK201 

PFl 
PF2 
PF3 

VTlOO-Series 

PFl 
PF2 
PF3 

VT52 

[blue] 

[red] 

[gray] 



Key-Name 

PF4 

KPO, KPl, ... , KP9 

PERIOD 
COMMA 
MINUS 
ENTER 
LEFT 

RIGHT 

Find (El) 

Insert Here (E2) 

Remove (E3) 

Select (E4) 

Prev Screen (E5) 

Next Screen (E6) 

HELP 

DO 
F6, F7, ... , F20 

LK201 

PF4 

0, 1, ... , 9 

Enter 

+-

Find 

Insert Here 

Remove 

Select 

Prev Screen 

Next Screen 

Help 

Do 

F6, F7, ... , F20 

DCL Commands DCL-51 
DEFINE/KEY 

VTlOO-Series 

PF4 

0, 1, ... , 9 

ENTER 
+-

VT52 

0, 1, ... , 9 

n/a 

n/a 

ENTER 
+-

On LK201 keyboards, you cannot define the UP and DOWN arrow keys or 
function keys Fl through F5. The LEFT and RIGHT arrow keys and the 
F6 through F14 keys are reserved for command line editing. You must 
enter the SET TERMINAUNOLINE_EDITING command before defining 
these keys. You can also press CTRUV to enable keys F7 through F14. 
Note that CTRUV will not enable the F6 key. 

equivalence-string 
Specifies the character string to be processed when you press the key. 
Enclose the string in quotation marks to preserve spaces and lowercase 
characters. 

qualifiers 
/ECHO (default) 
/NOE CHO 
Displays the equivalence string on your screen after the key has been 
pressed. You cannot use /NOECHO with the /NOTERMINATE qualifier. 

/ERASE 
/NOERASE (default) 
Determines whether the current line is erased before the key translation 
is inserted. 



DCL-52 DCL Commands 
DEFINE/KEY 

llF_ STATE:{state-name, ••• ) 
/NO/F_STATE 
Specifies a list of one or more states, one of which must be in effect for the 
key definition to work. The /NOIF _STATE has the same meaning as 
/IF _STATE=current_state. 

!LOCK STATE 
INOLOCK_STATE (default) 
Specifies that the state set by the /SET_STATE qualifier remain in effect 
until explicitly changed. (By default, the /SET_STATE qualifier is in effect 
only for the next definable key you press or the next read-terminating 
character that you type.) Can only be specified with the /SET_STATE 
qualifier. 

/LOG (default) 
INOLOG 
Displays a message indicating that the key definition has been 
successfully created. 

/SET STATE:state-name 
/NOSET_STATE (default) 
Causes the specified state-name to be set when the key is pressed. 
(By default, the current locked state is reset when the key is pressed.) 
The state name can be any alphanumeric string; specify the state as a 
character string enclosed in quotation marks ( " ). 

ffERMINATE 
INOTERMINATE (default) 
Specifies whether the current equivalence string is to be processed 
immediately when the key is pressed (equivalent to entering the string 
and pressing RETURN). By default, you can press other keys before the 
definition is processed. 

example 
$ DEFINE/KEY PFl "SHOW II /SET_STATE=GOLD/NOTERMINATE/ECHO 
%DCL-I-DEFKEY, DEFAULT key PFl has been defined 
$ DEFINE/KEY PFl " DEFAULT" /TERMINATE/IF_STATE=GOLD/ECHO 
%DCL-I-DEFKEY, GOLD key PFl has been defined 
$ SHOW DEFAULT 
DISKl: [JOHN.TEST] 

In this example, the first DEFINE/KEY command defines the PFl key 
to be the string SHOW. The state is set to GOLD for the subsequent 
key. The /NOTERMINATE qualifier instructs the system not to process 
the string when the key is pressed. The second DEFINE/KEY command 
defines the use of the PFl key when the keypad is in the GOLD state. 
When the keypad is in the GOLD state, pressing PFl causes the current 
read to be terminated. 

If you press the PFl key twice, the system displays and processes the 
SHOW DEFAULT command. 



DCL Commands 
DEFINE/KEY 

DCL-53 

The word DEFAULT in the second line of the example indicates that the 
PFl key has been defined in the default state. Note the space before the 
word DEFAULT in the second DEFINE/KEY command. If the space is 
omitted, the system fails to recognize DEFAULT as the keyword for the 
SHOW command. 

DELETE 
Deletes one or more files from a mass storage disk volume. 

format 
DELETE file spec£ ... ] 

parameter 
file-spec[, ... ] 
Specifies the names of one or more files to be deleted from a mass storage 
disk volume. The first file specification must contain an explicit or 
default directory specification plus an explicit fil~ name, file type, and 
version number. Subsequent file specifications need contain only a version 
number; the defaults will come from the preceding specification. Wildcard 
characters can be used in any of the file specification fields. If you omit 
the directory specification or device name, the current default device and 
directory are assumed. If the file specification contains a null version 
number (a semicolon followed by no file version number), a version 
number of 0, or one or more spaces in the version number, the latest 
version of the file is deleted. To delete more than one file, separate the file 
specifications with commas or plus signs. 

qualifiers 
/BACKUP 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/BACKUP selects files according to the dates of their most recent backups. 
This qualifier is incompatible with the other qualifiers that also allow you 
to seiect flies according to time attributes~ /CREATED, /EXPIRED, and 
/MODIFIED. If you specify none of these four time qualifiers, the default 
is /CREATED. 

IBEFORE[:time] 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 



DCL-54 DCL Commands 
DELETE 

/BY_OWNER[:uic] 
Selects only those files whose owner user identification code (UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

/CONFIRM 
!NOCONFIRM (default) 
Controls whether a request is issued before each DELETE operation to 
confirm that the operation should be performed on that file. The following 
responses are valid: 

YES 

TRUE 

1 

NO 

FALSE 

0 

~ 

QUIT 

CTRUZ 

ALL 

You can use any combination of upper- and lowercase letters for word 
responses. Word responses can be abbreviated to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 
unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and the RETURN key. QUIT or CTRUZ indicates 
that you want to stop processing the command at that point. When you 
respond with ALL, the command continues to process, but no further 
prompts are given. If you type a response other than one of those in the 
list, DCL issues an error message and redisplays the prompt. 

!CREATED (default) 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/CREATED selects files based on their dates of creation. This qualifier is 
incompatible with the other qualifiers that also allow you to select files 
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If 
you specify none of these four time qualifiers, the default is /CREATED. 

/ERASE 
/NOERASE (default) 
When you delete a file, the area in which the file was stored is returned to 
the system for future use. The data that was stored in that location still 
exists in the system until new data is written over it. When you specify 
the /ERASE qualifier, the storage location is overwritten with a system 
specified pattern so that the data no longer exists. 

IEXCLUDE:(file-spec[, •.• ]) 
Excludes the specified files from the DELETE operation. You can include 
a directory but not a device in the file specification. Wildcard characters 
are allowed in the file specification. However, you cannot use relative 
version numbers to exclude a specific version. If you provide only one file 
specification, you can omit the parentheses. 



DCL Commands DCL-55 
DELETE 

/EXPIRED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/EXPIRED selects files according to their expiration dates. (The 
expiration date is set with the SET FILE/EXPIRATION_DATE command.) 
The /EXPIRED qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /MODIFIED. If you specify none of these four time 
qualifiers, ,th~ default is /CREATED. 

/LOG 
INOLOG (default) 
Controls whether the DELETE command displays the file specification of 
each file after its deletion. 

/MODIFIED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/MODIFIED selects files according to the dates on which they were last 
modified. This qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /EXPIRED. If you specify none of these four time 
modifiers, the default is /CREATED. 

ISINCE[:time] 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

example 
$DIRECTORY [.SUBTEST] 
%DIRECT-W-NOFILES, no files found 
$ SET PROTECTION SUBTEST.DIR/PROTECTION=OWNER:D 
$ DELETE SUBTEST.DIR;l 

Before the directory file SUBTEST.DIR is deleted, the DIRECTORY 
...,..., __ "'_.J ! ...... ...,...,..J +~ ··~_;·~u +'I-. ... + +1-.,,....,,,. ..,...,,,. ...,.,,. ~loo 1>..::.+..::.lnO"ot-1 ;n +ho 
"'U.lilil.lQ.J.J.U. .1.b U.OCIU \IV 't"'(;:i..*.~J "£.i.Q.IJ \1.1...llr.~.1.~ u.1....., .a..a.v .a..a..a.v..., "'-....,."....,.. .. ._.b....,._ •-• ..., __ _ 

directory. The SET PROTECTION command redefines the protection 
for the directory file so that it can be deleted; then the DELETE command 
deletes it. 



DCL-56 DCL Commands 
DELETE/CHARACTERISTIC 

DELETE/CHARACTERISTIC 
Deletes the definition of a queue characteristic. 

Requires OPER privilege. 

format 
DELETE/CHARACTERISTIC characteristic-name 

parameter 
characteristic-name 
Specifies the name of the characteristic to be deleted. 

qualifier 
/LOG 
/NOLOG (default) 
Controls whether the DELETE/CHARACTERISTIC command displays 
the name of each characteristic after its deletion. 

example 
$ DEFINE/CHARACTERISTIC BLUE 7 

$ DELETE/CHARACTERISTIC BLUE 
$ DEFINE/CHARACTERISTIC BLUE_INK 7 

The DEFINE/CHARACTERISTIC command in this example estab
lishes the characteristic BLUE, with number 7, to mean blue ink 
ribbons for printers~ To change the name of the characteristic, enter 
the DELETE/CHARACTERISTIC command. Then enter another 
DEFINE/CHARACTERISTIC command to rename the characteristic 
to BLUE_INK, using the characteristic number 7. 



DCL Commands DCL-57 
DELETE/ENTRY 

DELETE/ENTRY 
Deletes one or more print or batch jobs. The jobs can be in progress or 
waiting in the queue. 

Requires OPER privilege, EXECUTE access to the queue, or 
DELETE access to the specified jobs. 

format 
DELETE/ENTRY =(entry-number[, ... }) [queue-name{:]] 

parameters 
entry-number[, .•• ] 
Specifies the entry number (or a list of entry numbers) of jobs to be 
deleted. 

[queue-name[:]] 
Specifies the name of the queue where the jobs are located. 

qualifier 
/LOG 
/NOLOG (default) 
Controls whether the DELETE/ENTRY command displays the entry
number of each batch or print job that it deletes. 

example 
$ PRINT/HOLD ALPHA.TXT 
Job ALPHA (queue SYS$PRINT, entry 110) holding 

$ DELETE/ENTRY=llO SYS$PRINT 

The PRINT command in this example queues a copy of the file 
ALPHA.TXT in a HOLD status, to defer its printing until a SET 
ENTRY/RELEASE command is entered. The system displays the job 
name, the entry-number, the name of the queue in which the job was 
entered, and the status. Later, the DELETE/ENTRY command requests 
that the entry be deleted from the queue SYS$PRINT. 



DCL-58 DCL Commands 
DELETE/FORM 

DELETE/FORM 
Deletes a form (for printer or terminal queues) previously established 
with the DEFINE/FORM command. 

Requires OPER privilege. 

format 
DELETE/FORM form-name 

parameter 
form-name 
Specifies the name of the form to be deleted. 

qualifier 
/LOG 
/NOLOG (default) 
Controls whether the DELETE/FORM command displays the name of 
each form after its deletion. 

example 
$ DELETE/FORM CENTER 

The DELETE/FORM command in this example deletes the form named 
CENTER. 

DELETE/INTRUSION RECORD 
Removes an entry from the break-in database. 

Requires CMKRNL and SECURITY privileges. 

format 
DELETE/INTRUSION_RECORD source 

parameter 
source 
Source field of the entry to be removed from the break-in database. 

example 
$ DELETE/INTRUSION_RECORD TTC2: 

In this example, the DELETE/INTRUSION_RECORD command removes 
all intrusion records generated by break-in attempts on TTC2. No 
usemame is specified because none of the login failures occurred for 
valid users. 



DCL Commands DCL-59 
DELETE/KEY 

DELETE/KEY 
Deletes key definitions that have been established by the DEFINE/KEY 
command. 

format 
DELETE/KEY [key-name] 

parameter 
key-name 
Specifies the name of the key to be deleted. Incompatible with the /ALL 
qualifier. 

qualifiers 
!ALL 
Deletes all key definitions in the specified state; the default is the current 
state. If you use the I ALL qualifier, do not specify a key name. 

!LOG (default) 
INOLOG 
Controls whether messages are displayed indicating that the specified key 
definitions have been deleted. 

!STATE=( state-name[, ... ]) 
!NOSTATE (default) 
Specifies the name of the state for which the specified key definition is to 
be deleted. The default state is the current state. 

example 
$ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE 
%DCL-I-DEFKEY, DEFAULT key PF3 has been defined 
$ ~ 
$ SHOW TIME 

19-APR-1990 14:43:59 

$ DELETE/KEY PF3 
%/DCL-I-DELKEY, DEFAULT key PF3 has been deleted 
$ ~ 
$ 



DCL-60 DCL Commands 
DELETE/KEY 

In this example, the DEFINE/KEY command defines the PF3 key on the 
keypad as SHOW TIME. To undefine the PF3 key, use the DELETE/KEY 
command. When the user presses PF3, only the system prompt is 
displayed. 

DELETE/QUEUE 
Deletes a print or batch queue created by the INITIALIZE/QUEUE 
command. Also deletes all the jobs in the queue. The specified queue 
must be stopped first. The /QUEUE qualifier is required. 

Requires OPER privilege. 

format 
DELETE/QUEUE queue-name[:] 

parameter 
queue-name[:] 
Specifies the name of the queue to be deleted. 

qualifier 
/LOG 
INOLOG (default) 
Controls whether the DELETE/QUEUE command displays the name of 
each queue after it is deleted. 

example 
$ INITIALIZE/QUEUE/DEFAULT=FLAG/START/ON=LPAO LPAO_QUEUE 

$ STOP/QUEUE/NEXT LPAO QUEUE 
$ DELETE/QUEUE LPAO_QUEUE 

In this example, the first command initializes and starts the printer queue 
LPAO_QUEUE. The STOP/QUEUE/NEXT command stops the queue. The 
DELETE/QUEUE command deletes the queue. 



DCL Commands DCL-61 
DELETE/SYMBOL 

DELETE/SYMBOL 
Deletes one or all symbol definitions from a local or global symbol table. 
The /SYMBOL qualifier is required. 

format 
DELETE/SYMBOL [symbol-name] 

parameter 
symbol-name 
Specifies the name of the symbol to be deleted. A name is required 
unless the /ALL qualifier is specified. The symbol-name parameter is 
incompatible with the /ALL qualifier. · 

qualifiers 
/ALL 
Deletes all symbols from the specified table. The I ALL qualifier is 
incompatible with the symbol-name parameter. 

/GLOBAL 
Deletes the symbol from the global symbol table of the current process. 

/LOCAL (default) 
Deletes the symbol from the local symbol table of the current process. 

/LOG 
/NOLOG (default) 
Controls whether an informational message listing each symbol being 
deleted is displayed. 

example 
$ DELETE/SYMBOL/LOG FOO 
%DCL-I-DELSYM, LOCAL symbol FOO has been deleted 

In this example, the DELETE/SYMBOL command deletes the symbol T.'1-- p ______ .Ll __ l ___ l -----'L-1 L-'Ll_ p ___ Ll-- -----------'- -------- T_ --1..l!L!-- L1--
£VV .L.l'Ulll t,,ll~ .lUCC:U r:;y1nuOJ. t,,i::lO.lt: .LUI' t,,.l.lt; curn~.lJ.t,, .l:J.lOCt::bb • .L.l.l C1UUJ.t,,J.UU, t,,J.J.t; 

/LOG qualifier causes an informational message, listing the symbol being 
deleted, to be displayed. 



DCL-62 DCL Commands 
DEPOSIT 

DEPOSIT 
Replaces the contents of the specified locations in virtual memory and 
displays the new contents. If the specified address can be read but not 
written by the current access mode, the original contents are displayed; 
if the specified address can be neither read nor written, asterisks are 
displayed in the data field. The DEPOSIT command maintains a pointer 
at that location (at the byte following the last byte modified). 

Requires user mode read (R) and write (W) access to the virtual 
memory location whose contents you wish to change. 

format 
DEPOSIT location=data[, ... ] 

parameters 
location 
Specifies the starting virtual address or range of virtual addresses (where 
the second address is larger than the first) whose contents are to be 
changed. A location can be any valid integer expression containing an 
integer value, a symbol name, a lexical function, or a combination of these 
entities. Radix qualifiers determine the radix in which the address is 
interpreted; hexadecimal is the initial default radix. Symbol names are 
always interpreted in the radix in which they were defined. The radix 
operators %X, %D, or %0 can precede the location. A hexadecimal value 
must begin with a number (or be preceded by %X). The specified location 
must be within the virtual address space of the image currently running 
in the process. 

data[, ••. ] 
Specifies the data to be deposited into the specified locations. By default, 
the data is assumed to be in hexadecimal format; it is then converted to 
binary format and is written into the specified location. 

qualifiers 
!ASCII 
Indicates that the specified data is ASCII. Only one data item is allowed; 
all characters to the right of the equal sign are considered to be part 
of a single string. Unless they are enclosed within quotation marks, 
characters are converted to uppercase and multiple spaces are compressed 
to a single space before the data is written in memory. The DEPOSIT 
command converts the data to its binary equivalent before placing it in 
virtual memory. When you specify I ASCII, or when ASCII mode is the 
default, the location you specify is assumed to be hexadecimal. 

/BYTE 
Requests that data be deposited one byte at a time. 

I' 



DCL Commands DCL-63 
DEPOSIT 

/DECIMAL 
Indicates that the data is decimal. The DEPOSIT command converts the 
data to its binary equivalent before placing it in virtual memory. 

/HEXADECIMAL 
Indicates that the data is hexadecimal. The DEPOSIT command converts 
the data to its binary equivalent before placing it in virtual memory. 

!LONGWORD 
Requests that data be deposited a longword at a time. 

!OCTAL 
Indicates that the data is octal. The DEPOSIT command converts the 
data to its binary equivalent before placing it in virtual memory. 

/WORD 
Requests that the data be deposited one word at a time. 

example 
$ DEPOSIT/ASCII 2COO=FILE: NAME: TYPE: 
00002COO: FILE: NAME: TYPE: .•• 

In this example, the DEPOSIT command deposits character data at 
hexadecimal location 2COO and displays the contents of the location 
after modifying it. Because the current default length is a longword, the 
response from the DEPOSIT command displays full longwords. Trailing 
dots (ellipses) indicate that the remainder of the last longword of data 
contains information that was not modified by the DEPOSIT command. 

DIFFERENCES 
Compares the contents of two disk files and displays a listing of the 
records that do not match. 

format 
DIFFERENCES 

parameters 
lnput1-flle-spec 

inn11t1 -filR-.c:nRI'! finn11t?-filR-!:nRl'!1 -- -,--- - ---- -,-- - .... -,---- ---- -,---,, 

Specifies the first file to be compared. The file specification must include 
a file name and a file type. Wildcard characters are not allowed. 

lnput2-flle-spec 
Specifies the second file to be compared. Unspecified fields default to 
the corresponding fields in inputl-file-spec. Wildcard characters are not 
allowed. If you do not specify a secondary input file, the DIFFERENCES 
command uses the next lower version of the primary input file. 



DCL-64 DCL Commands 
DIFFERENCES 

qualifiers 
ICHANGE_BAR[=([change-char][,[NO]NUMBER])] 
Marks with the specified character in the left margin each line in the 
inputl file that differs from the corresponding line in the input2 file. If 
you do not specify a change bar character, the default is an exclamation 
point ( ! ) for ASCII output. If you specify hexadecimal or octal output (see 
/MODE qualifier), the change bar character is ignored and differences are 
marked by a "***CHANGE***" string in the record header. The keyword 
NONUMBER suppresses line numbers in the listing. If neither the 
NUMBER ·nor NONUMBER keyword is specified, the default is controlled 
by the /[NO]NUMBER command qualifier. If only one option is specified, 
the parentheses can be omitted. 

ICOMMENT_DELIMITER[:(character[, ••. ])] 
Ignores lines starting with a specified comment character. If the comment 
character is an exclamation point or semicolon, it can appear anywhere 
in. the line and characters to the right of the character are ignored. If 
you specify just one character, you can omit the parentheses. Lowercase 
characters are automatically converted to uppercase unless they are 
enclosed in quotation marks. Non-alphanumeric characters (such as! 
and ,) must be enclosed in quotation marks. You can specify up to 32 
comment characters by typing the character itself or one of the following 
keywords. (Keywords can be abbreviated provided that the resultant 
keyword is not ambiguous and has at least two characters; single letters 
are treated as delimiters.) 

Keyword Character 

COLON Colon ( :) 

COMMA Comma(,) 

EXCLAMATION Exclamation point ( ! ) 

FORM_FEED Form feed 

LEFT Left bracket ( [ ) 

RIGHT Right bracket ( ] ) 

SEMI_ COLON Semicolon ( ; ) 

SLASH Slash(/) 

SPACE Space 

TAB Tab 



DCL Commands 
DIFFERENCES 

DCL-65 

The following characters are the default comment delimiters for files with 
the specified file types: 

File Type 

B2S, B32, BAS, BLI 

CBL,CMD 

COB 

COM,COR 

FOR 

HLP 

MAC, MAR 

R32,REQ 

Default Comment Character 

! and; 

* or I in the first column 

! anywhere and C, D, c, d in the first column 

llGNORE:(keyword[, ••. ]) 
Inhibits the comparison of the specified characters, strings, or records; 
also controls whether the comparison records are output to the listing 
file as edited records or exactly as they appeared in the input file. If you 
specify only one keyword, you can omit the parentheses. The keyword 
parameter refers either to a character or a keyword. The first set of 
keywords determines what, if anything, is ignored during file comparison; 
the second set of keywords determines whether or not ignored characters 
are included in the output. The following keywords are valid options for 
the /IGNORE qualifier: 

BLANK_LINES 

COMMENTS 

FORM_FEEDS 

HEADER[=n] 

TRAILING_SPACES 

SPACING 

EDITED 

EXACT 

PRETTY 

Blank lines between data lines. 

Data following a comment character. 

Form feed character. 

First n records of the file, beginning with a record whose first 
character is a form feed. The first record is not ignored if 
the only character it contains is a form feed. (N indicates the 
number of records and defaults to 2. A record with a single 
p ______ ~---1 ~-- ---L ------L--1 \ 
J.0.l".lll J.t:t:U 11:1 .UUI. \;OWJ.WU,J 

Space and tab characters at the end of a data. line. 

Extra blank spaces or tabs within data lines. 

Omits ignored characters from the output records. 

Includes ignored characters in the output records. 

Formats output records. 



DCL-66 DCL Commands 
DIFFERENCES 

If you specify /PARALLEL, output records are always formatted. To 
format output records, specify the following characters: 

Character 

Tab (CTRUI) 

RETURN (CTRUM) 

Line feed (CTRUJ) 

Vertical tab (CTRUK) 

Form feed (CTRUL) 

Other nonprinting characters 

IMATCH:size 

Formatted Output 

1-8 spaces 

<CR> 

<LF> 

<VT> 

<FF> 

. (period) 

Specifies the number of records that should indicate matching data after 
a difference is found. By default, after DIFFERENCES finds unmatched 
records, it assumes that the files once again match after it finds three 
sequential records that match. Use the /MATCH qualifier to override the 
default match size of 3. 

/MAXIMUM_DIFFERENCES:n 
Terminates DIFFERENCES after a specified number of unmatched 
records (specified with then parameter) is found. 

IMERGED[=n] 
Specifies that the output file contain a merged list of differences with 
the specified number of matched records listed after each group of 
unmatched records. The specified number (the value n) must be less than 
or equal to the number specified in the /MATCH qualifier. By default, 
DIFFERENCES produces a merged listing with one matched record listed 
after each set of unmatched records (that is, /MERGED=l). If neither 
/MERGED nor /SEPARATED nor /PARALLEL is specified, the resulting 
output is merged, with one matched record following each unmatched 
record. 

/MODE:( radix[, .•. ]) 
Specifies the format of the output. You can request that the output 
be formatted in one or more radix modes by specifying the following 
keywords, which may be abbreviated: ASCII (default), HEXADECIMAL, 
or OCTAL. If you specify only one radix, you can omtt the parentheses. If 
you specify /PARALLEL or /SLP, /MODE is ignored for that listing form. 

/NUMBER (default) 
/NON UMBER 
Includes line numbers in the listing of differences. 



DCL Commands DCL-67 
DIFFERENCES 

IOUTPUT[:fi/e-spec] 
Specifies an output file to receive the list of differences. By default, the 
output is written to the current SYS$0UTPUT device. If the file-spec 
parameter is not specified, the output is directed to the first input file 
with a file type of DIF. No wildcard characters are allowed. 

/PARALLEL[=n] 
Lists the records with differences side by side. The value n specifies the 
number of matched records to merge after each unmatched record; the 
value n must be a non-negative decimal number less than or equal to the 
number specified in /MATCH. 

ISEPARATED[:(input1-file-spec[,input2-file-spec])J 
Lists sequentially only the records from the specified file that contain 
differences. If no files are specified, a separate listing is generated for 
each file. If only one file is specified, you can omit the parentheses. 
To specify the inputl-file-spec parameter, use either the first input file 
specified as the DIFFERENCES parameter or the keyword MASTER. To 
specify the input2-file-spec parameter, use either the second input file 
specified as the DIFFERENCES parameter or the keyword REVISION. 
By default, DIFFERENCES creates only a merged list of differences. 

/SLP 
Requests that DIFFERENCES produce an output file suitable for input to 
the SLP editor. If you use the /SLP qualifier, you cannot specify any of the 
following output file qualifiers: /MERGED, /PARALLEL, /SEPARATED, or 
/CHANGE_BAR. 

Use the output file produced by the SLP qualifier as input to SLP to 
update the master input file, that is, to make the master input file match 
the revision input file. 

When you specify /SLP and you do not specify /OUTPUT, DIFFERENCES 
writes the output file to a file with the same file name as the master input 
file with the file type DIF. 

/WIDTH:n 
Specifies the width of the lines in the output file. The default is 132 
characters. If output is written to the terminal, /WIDTH is ignored and 
the terminal line width is used. 

/WINDOW:size 
Searches the number of records specified (the value n) before a record is 
declared as unmatched. By default, DIFFERENCES searches to the ends 
of both input files before listing a record as unmatched. 



DCL-68 DCL Commands 
DIFFERENCES 

example 
$ DIFFERENCES EXAMPLE.TXT 
************ 
File DISKl: [GEORGE.TEXT]EXAMPLE.TXT;2 

1 DEMONSTRATION 
2 OF V3.0 DIFFERENCES 
3 UTILITY 

****** 
File DISKl:[GEORGE.TEXT]EXAMPLE.TXT;l 

1 DEMONSTRATION 
2 OF VMS DIFFERENCES 
3 UTILITY 

************ 
Number of difference sections found: 1 
Number of difference records found: 2 
DIFFERENCES/MERGED=l-

DISKl: [GEORGE.TEXT]EXAMPLE.TXT;2 
DISKl: [GEORGE.TEXT]EXAMPLE.TXT;l 

In this example, the DIFFERENCES command compares the contents of 
the two most recent versions of the file EXAMPLE. TXT in the current 
default directory. DIFFERENCES compares every character in every 
record and displays the results at the terminal. 

DIRECTORY 
Provides a list of files or information about a file or group of files. 

Requires READ (R) access to the directories or sufficient privilege 
to override the protection to obtain information. Requires READ 
access to the files or sufficient privilege to override the protection 
to obtain information other than the file name. 

format 

DIRECTORY [file-spec{, ... ]] 

parameter 

file-spec[, ... ] 
Specifies one or more files to be listed. The syntax of a file specification 
determines which files will be listed, as follows: 

• If you do not enter a file specification, the DIRECTORY command lists 
all versions of the files in the current default directory. 

• If you specify only a device name, the DIRECTORY command uses 
your default directory specification. 

• Whenever the file specification does not include a file name, file type 
and a version number, all versions of all files in the specified directory 
are listed. 



DCL Commands DCL-69 
DIRECTORY 

• If a file specification contains a file name or a file type, or both, and 
no version number, the DIRECTORY command lists all versions. 

• If a file specification contains only a file name, the DIRECTORY 
command lists all files in the current default directory with that file 
type, regardless of file type and version number. 

• If a file specification contains only a file type, the DIRECTORY 
command lists all files in the current default directory with that file 
type, regardless of file name and version number. 

Wildcard characters can be used. Separate multiple file specifications 
with either commas or plus signs. 

qualifiers 
IACL 
Controls whether the access control list (ACL) is displayed for each file. 
The I ACL qualifier overrides the /COLUMNS qualifier. 

/BACKUP 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/BACKUP selects files according to the dates of their most recent backups. 
This qualifier is incompatible with the other qualifiers that also allow you 
to select files according to time attributes: /CREATED, /EXPIRED, and 
/MODIFIED. If you specify none of these four time qualifiers, the default 
is /CREATED. 

IBEFORE[=time] 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

/BRIEF (default) 
Displays only a file's name, type, and version number. You can use 
the /ACL, /DATE, /FILE_ID, /NOHEADING, /OWNER, /PROTECTION, 
/SECURITY, and /SIZE qualifiers to expand a brief display. 

!BY_OWNER[=uic] 
Selects only those files whose owner user identification code (UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

ICOLUMNS:n 
Specifies the number of columns in a brief display. The default is four. 
However, you can request as many columns as you like, restricted by the 
value of the /WIDTH qualifier. The /COLUMNS qualifier is incompatible 
with /ACL, /FULL, and /SECURITY. 



DCL-70 DCL Commands 
DIRECTORY 

!CREATED (default) 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/CREATED selects files based on their dates of creation. This qualifier is 
incompatible with the other qualifiers that also allow you to select files 
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If 
you specify none of these four time qualifiers, the default is /CREATED. 

/DATE[:option] 
/NODATE (default) 
Includes the backup, creation, expiration, or modification date for each 
specified file; the default is /NODATE. If you use the /DATE qualifier 
without an option, the creation date is provided. Possible options are as 
follows: 

ALL 

BACKUP 
CREATED 
EXPIRED 

MODIFIED 

Creation, expiration, backup, and last modification dates 

Last backup date 

Creation date 

Expiration date 

Last modification date 

/EXCLUOE:(file-spec[, ... ]) 
Excludes the specified files from the DIRECTORY operation. When using 
/EXCLUDE in a DIRECTORY operation of a different device, use only the 
file name in the file specification. Wildcard characters are allowed in the 
file specification. However, you cannot use relative version numbers to 
exclude a specific version. If you provide only one file specification, you 
can omit the parentheses. 

!EXPIRED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/EXPIRED selects files according to their expiration dates. (The 
expiration date is set with the SET FILE/EXPIRATION_DATE command.) 
The /EXPIRED qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /MODIFIED. If you specify none of these four time 
qualifiers, the default is /CREATED. 

/FILE_ID 
Controls whether the file's identification number (FID) is displayed. By 
default, a file's identification is not displayed unless the /FULL qualifier is 
specified. 

/FULL 
Displays the following information for each file: 

File name 
File type 
Version number 
Number of blocks used 



Number of blocks allocated 
Date of creation 
Date last modified and revision number 
Date of expiration 
Date of last backup 
File owner's UIC 
File protection 
File identification number (FID) 
File organization 
Journaling information 
Other file attributes 
Record attributes 
Record format 
Access control list (ACL) 

DCL Commands DCL-71 
DIRECTORY 

Value of the stored semantics tag (where applicable) 

/GRAND_ TOTAL 
Displays only the totals for all files and directories that have been 
specified. 

!HEADING 
/NOH EA DING 
Controls whether heading lines consisting of a device description and 
directory specification are printed. The default output format provides 
this heading. When /NOHEADING is specified, the display is in single
column format and the device and directory information appears with 
each file name. The /NOHEADING qualifier overrides /COLUMNS. 

!MODIFIED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/MODIFIED selects files according to the dates on which they were last 
modified. This qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /EXPIRED. If you specify none of these four time 
modifiers, the default is /CREATED. 

!OUTPUT[=file-spec] 
!NOOUTPUT 
Controls where the output of the command is sent. By default, the display 
is written to the current SYS$0UTPUT device. No wildcard characters 
are allowed. 

/OWNER 
/NOOWNER (default) 
Controls whether the file owner's UIC is listed. 



DCL-72 DCL Commands 
DIRECTORY 

/PRINTER 
Puts the display in a file and queues the file to SYS$PRINT for printing 
under the name given by the /OUTPUT qualifier. If you do not specify 
the /OUTPUT qualifier, output is directed to a temporary file named 
DIRECTORY.LIS, which is queued for printing and then deleted. 

/PROTECTION 
INOPROTECTION (default) 
Controls whether the file protection for each file is listed. 

/SECURITY 
Controls whether information about file security is displayed; 
using /SECURITY is equivalent to using the I ACL, /OWNER, and 
/PROTECTION qualifiers together. 

/SELECT =(keyword[, ... ]) 
Allows you to select files for display according to size. Choose one of the 
following keywords: 

SIZE=MAXIMUM=n 

SIZE=MINIMUM:::::n 

Displays files that have fewer blocks than the 
value of n, which defaults to 1,073,741,823. Use 
with MINIMUM=n to specify a size range for 
files to be displayed. 

Displays files that have blocks equal to or greater 
than the value of n, which defaults to 0. Use 
with MAXIMUM=n to specify a size range for 
files to be displayed. 

SIZE=(MAXIMUM=n,MINIMUM=m) Displays files whose blocksize falls within the 
specified MAXIMUM and MINIMUM range. 

/SINCE[:time] 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

!SIZE[=option] 
INOSIZE (default) 
Displays the size in blocks of each file. If you omit the option parameter, 
the default lists the file size in blocks used (USED). Specify one of the 
following options: 

ALL 

ALLOCATION 

USED 

/TOTAL 

Lists the file size both in blocks allocated and blocks used 

Lists the file size in blocks allocated 

Lists the file size in blocks used 

Displays only the directory name and total number of files. 



ff RAILING 
/NOTRAIL/NG 

DCL Commands 
DIRECTORY 

DCL-73 

Controls whether trailing lines that provide the following summary 
information are displayed: 

• Number of files listed 

• Total number of blocks used per directory 

• Total number of blocks allocated 

• Total number of directories and total blocks used or allocated in all 
directories (only if more than one directory is listed) 

By default, the output format includes most of this summary information. 
The /SIZE and /FULL qualifiers determine more precisely what summary 
information is included. Used by itself, trRAILING lists the number 
of files in the directory. Used with /SIZE, trRAILING lists the number 
of files and the number of blocks (displayed according to the option 
of the /SIZE qualifier, FULL or ALLOCATION). Used with /FULL, 
trRAILING lists the number of files as well as the number of blocks 
used and allocated. If more than one directory is listed, the summary 
includes the total number of directories, the total number of blocks used, 
and the total number of blocks allocated. 

/VERSIONS:n 
Specifies the number of versions of a file to be listed. The default is all 
versions of each file. A value less than 1 is not allowed. 

/WIDTH:(keyword[, ... ]) 
Formats the width of the display. Possible keywords are as follows: 

DISPLAY=n Specifies the total width of the display as an integer in the range 1 
through 256 and defaults to 0 (setting the display width to the terminal 
width). 

FILENAME=n Specifies the width of the file name field; defaults to 19 characters. 

OWNER=n Specifies the width of the owner field; defaults to 20. 

SIZE=n Specifies the width of the size field; defaults to 6. 



DCL-74 DCL Commands 
DIRECTORY 

example 

$ DIRECTORY/FULL [JONES.ITALIA]PROJECTIONS.LIS 

Directory WORK:[JONES.ITALIA] 

PROJECTIONS.LIS;! File ID: (7449,36222,2) 
Size: 21/21 Owner: [DOC, JONES] 
Created: 5-MAY-1988 15:49:03.11 
Revised: 5-MAY-1988 15:49:49.39 (2) 
Expires: <None specified> 
Backup: <No backup recorded> 
File organization: Sequential 
File attributes: Allocation: 21, Extend: O, Global buffer count: O, 

No version limit 
Record format: Variable length, maximum 80 bytes 
Record attributes: Carriage return carriage control 
RMS attributes: None 
Journaling enabled: None 
File protection: System:RWED, Owner:RWED, Group:RE, World: 
Access Cntrl List: None 

Total of 1 file, 21/21 blocks. 

The DIRECTORY command in this example shows the date/time format 
using the default language, English, and the default VMS format. You 
can also select other languages and formats that have been defined on 
your systems with international date/time formatting routines available 
in the run-time library. 

DISCONNECT 
Breaks the connection between a physical terminal and a virtual terminal. 
After the physical terminal is disconnected, both the virtual terminal and 
the process using it remain on the system. 

Requires that your physical terminal is connected to a virtual 
terminal. 

format 

DISCONNECT 

parameters 

None. 



qualifier 
/CONTINUE 
/NOCONTINUE (default) 

DCL Commands 
DISCONNECT 

DCL-75 

Controls whether the CONTINUE command is executed in the current 
process just before connecting to another process. This permits an 
interrupted image to continue processing after the disconnection until 
the process needs terminal input or attempts to write to the terminal. At 
that point, the process waits until the physical terminal is reconnected to 
the virtual terminal. 

example 
$ RUN PAYROLL 
ICTRLJVI 
$ DISCONNECT/CONTINUE 

In this example, the RUN command is entered from a physical terminal 
that is connected to a virtual terminal. After the image PAYROLL.EXE 
is interrupted, the DISCONNECT command disconnects the physical and 
the virtual terminals without logging out the process. The /CONTINUE 
qualifier allows the image PAYROLL.EXE to continue to execute until the 
process needs terminal input or attempts to write to the terminal. At that 
point, the process waits until the physical terminal is reconnected to the 
virtual terminal. However, you can use the physical terminal to log in 
again and perform other work. 

DISMOUNT 
Closes a mounted disk or magnetic tape volume for further processing 
and cancels the logical name associated with the device. If the volume 
is mounted with the /SHARE qualifier, its logical name is canceled but 
the volume remains mounted until all processes using it dismount it or 
terminate. 

DISMOUNT checks for open files and other conditions that prevent a 
'):il;loC!.:..11 unlnTnO .f;.n,.,..,. ;1;C!Tnnn'l"'lf;.,..,.... Tf' .,,,,,.\.,. ""' ,.n ..... A;Hn ..... OV;C!TC! nTQl\Jf()TTl\TT - ...... _..., -..- • __ _....... ... _ ...... ..,......, .... ~..., ...... ..,...., .......... .., ...... .A.b• _ ... ...,._...,.A. ... - "'..., ...... ~v.a.v ...... ....,,~...,...,...,, _._..._, ......... .......,, ....,.. ... "_ 

displays messages indicating that the volume cannot be dismounted and 
lists the conditions that prevent the dismount. By default, if such a 
condition exists, DISMOUNT does not mark the volume for dismount. 

Requires the GRPNAM and SYSNAM user privileges to dismount 
group and system volumes. 



DCL-76 

format 

DCL Commands 
DISMOUNT 

DISMOUNT device-name{:] 

parameter 
device-name[:] 
Name of the device containing the volume-either a logical name or a 
physical name. If a physical name is specified, the controller defaults to A 
and the unit defaults to 0. 

qualifiers 
!ABORT 
Requires volume ownership or the user privilege VOLPRO to use 
this qualifier with a volume that is mounted neither group nor 
system. Specifies that the volume is to be dismounted, regardless of who 
mounted it. The primary purpose of the /ABORT qualifier is to terminate 
mount verification. DISMOUNT/ABORT also cancels any outstanding 
1/0 requests. If the volume was mounted with the /SHARE qualifier, the 
/ABORT qualifier causes the volume to be dismounted for all of the users 
who mounted it. 

/CLUSTER 
Dismounts a volume clusterwide. If you specify DISMOUNT/CLUSTER, 
DISMOUNT checks for open files or other conditions that will prevent 
a Files-11 volume on the local node from dismounting. If DISMOUNT 
does not find any open files or other conditions, it checks for conditions on 
all other nodes in the cluster. If DISMOUNT finds one of the conditions 
on any node, it displays an error message identifying the device and 
the nodes on which the error occurred, followed by an error message 
indicating open files or other conditions on the volume. 

After DISMOUNT successfully dismounts the volume on the local node, 
it dismounts the volume on every other node in the existing VAXcluster 
environment. If the system is not a member of a cluster, the /CLUSTER 
qualifier has no effect. 

/OVERRIDE:CHECKS 
Marks .a Files-11 volume for dismounting even if files are open on the 
volume. If you specify DISMOUNT/OVERRIDE=CHECKS, DISMOUNT 
displays messages indicating any open files or other conditions that 
prevent dismounting, immediately followed by a message indicating that 
the volume has been marked for dismounting. 

A substantial amount of time can pass between the time you enter 
DISMOUNT/OVERRIDE=CHECKS and the completion of the dismount. 
Always wait for the dismount to complete before you remove the volume. 
('Th verify that the dismount has completed, enter the SHOW DEVICES 
command.) Note that the final phase of volume dismounting occurs in 



DCL Commands 
DISMOUNT 

DCL-77 

the file system, and all open files on the volume must be closed before 
the actual dismount can be done. Note, also, that the file system cannot 
dismount a volume while any known file lists associated with it contain 
entries. 

/UNIT 
Dismounts only one volume of a volume set on the specified device. By 
default, all volumes in a set are dismounted. 

NOTE: Avoid dismounting the root volume of a volume 
set, because it contains the master file directory. It may 
be impossible to access files on a volume set if the MFD is 
not accessible. 

/UNLOAD 
/NOUNLOAD 
Unloads the device on which the volume is mounted. If you specify 
DISMOUNT/UNLOAD, the volume is unloaded physically. If you specify 
DISMOUNT/NOUNLOAD, the volume is not unloaded physically. If 
you specify DISMOUNT without the /UNLOAD or the /NOUNLOAD 
qualifier, the qualifier that you specified with the MOUNT command 
(either /UNLOAD or /NOUNLOAD) determines whether or not the volume 
is unloaded physically. 

example 
$ MOUNT MT: PAYVOL TAPE 

$ DISMOUNT TAPE 

The MOUNT command in this example mounts the tape whose volume 
;~.ant;f;,.at;nn -iC:? PAVVOT. nn tht:. rfoviP.t:. MTAO· ~nfl ~~s:::iPTI~ thP. loQ'ical 
;;;;;-TAPE-t~-th~-d~vf;.--By-def;~ii,-th~ -~~i~~~ ~is--~~t

0

~ha~~abl;. The 
DISMOUNT command releases access to the volume, deallocates the 
device, and deletes the logical name TAPE. 

$ DISMOUNT $10$DJA100 
%DISM-W-CANNOTDMT, $10$DJA100: cannot be dismounted 
%DISM-W-INSWPGFIL, 4 swap or page files installed on volume 
%DISM-W-SPOOLEDEV, 3 devices spooled to volume 
%DISM-W-INSTIMAGE, 7 images installed on volume 
%DISM-W-USERFILES, 6 user files open on volume 

The DISMOUNT command in this example displays the open files and 
other conditions that prevent device $10$DJA100 from dismounting. 



DCL-78 DCL Commands 
DISMOUNT 

$ DISMOUNT/CLUSTER $10$DJA100 
%DISM-W-RMTDMTFAIL, $10$DJA100: failed to dismount on node SALT 
%DISM-W-FILESOPEN, volume has files open on remote node 
%DISM-W-RMTDMTFAIL, $10$DJA100: failed to dismount on node PEPPER 
%DISM-W-FILESOPEN, volume has files open on remote node 
%DISM-W-CANNOTDMT, $10$DJA100: cannot be dismounted 

The DISMOUNT command in this example displays messages identifying 
device $10$DJA100 and nodes SALT and PEPPER on which errors 
occurred followed by messages indicating open files on the volume. 

DUMP 
Displays the contents of a file, disk volume, or magnetic tape volume in 
decimal, hexadecimal, or octal format, as well as the ASCII conversion. 

format 
DUMP file-spec{, ... ] 

parameter 
file-spec 
Specifies the file or name of the device being dumped. 

qualifiers 
/ALLOCATED 
Includes in the dump all blocks allocated to the file. (By default, the 
dump does not include blocks following the end-of-file.) /ALLOCATED 
and /RECORDS are mutually exclusive. 

/BLOCKS[:(option[, .•. ])] 
Dumps the specified blocks one block at a time, which is the default 
method for all devices except network devices. Block numbers are 
specified as integers relative to the beginning of the file. Typically, blocks 
are numbered beginning with 1. If a disk device is mounted /FOREIGN, 
blocks are numbered beginning with 0. Select a range of blocks to be 
dumped by specifying one of the following options: 

START:n 

END:n 

COUNT:n 

Specifies the number of the first block to be dumped; the default is the 
first block. 

Specifies the number of the last block to be dumped; the default is 
the last block or the end-of-file block, depending on the /ALLOCATED 
qualifier. 

Specifies the number of files to be dumped. COUNT provides an 
alternative to END; you may not specify both. 

If you specify only one option, you can omit the parentheses. /BLOCKS 
and /RECORDS are mutually exclusive. 



DCL Commands DCL-79 
DUMP 

!BYTE 
Formats the dump in bytes. /BYTE, /LONGWORD, and /WORD are 
mutually exclusive. The default format is composed of longwords. 

/DECIMAL 
Dumps the file in decimal radix. /DECIMAL, /HEXADECIMAL (default), 
and /OCTAL are mutually exclusive. 

!FILE_HEADER 
Dumps each data block that is a valid Files-11 header in Files-11 header 
format rather than the selected radix and length. 

!FORMATTED (default) 
INOFORMATTED 
Dumps the file header in Files-11 format; /NOFORMATTED dumps the 
file header in octal format. This qualifier is useful only when /HEADER is 
specified. 

!HEADER 
Dumps the file header and access control list. To dump only the file 
header, and not the file contents, also specify /BLOCK=(COUNT:O). 
/HEADER is invalid for devices mounted /FOREIGN. 

!HEXADECIMAL (default) 
Dumps the file in hexadecimal radix. /DECIMAL, /HEXADECIMAL 
(default), and /OCTAL are mutually exclusive. 

!LONGWORD (default) 
Formats the dump in longwords. /BYTE, /LONGWORD, and /WORD are 
mutually exclusive. 

!NUMBER[=n] 
Specifies how byte offsets are assigned to the lines of output. If you 
specify /NUMBER, the byte offsets increase continuously through the 
dump, beginning with n; if you omit /NUMBER, the first byte offset is 0 
By· default, the byte offset is reset to 0 at the beginning of each block or 
record. 

!OCTAL 
Dumps the file in octal radix. /DECIMAL, /HEXADECIMAL (default), 
and /OCTAL are mutually exclusive. 

IOUTPUT[:file-spec] 
Specifies the output file for the dump. If you do not specify a file 
specification, the default is the file name of the file being dumped 
and the file type DMP. If /OUTPUT is not specified, the dump goes 
to SYS$0UTPUT. No wildcard characters are allowed. /OUTPUT and 
/PRINTER are mutually exclusive. 



DCL-80 DCL Commands 
DUMP 

/PRINTER 
Queues the dump to SYS$PRINT in a file named with the file name of the 
file being dumped and the file type DMP. If /PRINTER is not specified, 
the dump goes to SYS$0UTPUT. No wildcard characters are allowed. 
/OUTPUT and /PRINTER are mutually exclusive. 

/RECORDS[:(option[, ... ])] 
Dumps the file a record at a time rather than a block at a time. (By 
default, input is dumped one block at a time for all devices except network 
devices.) Blocks are numbered beginning with 1. 

Select a range of blocks to be dumped by specifying one of the following 
options: 

START:n 

END:n 

COUNT:n 

Specifies the number of the first record to be dumped; the default is the 
first record. 

Specifies the number of the last record to be dumped; the default is the 
last record of the file. 

Specifies the number of records to be dumped. COUNT provides an 
alternative to END; you may not specify both. 

If you specify only one option, you can omit the parentheses. If you specify 
/RECORDS, you cannot specify /ALLOCATED or /BLOCKS. 

/WORD 
Formats the dump in words. /BYTE, /LONGWORD, and /WORD are 
mutually exclusive. 

example 
$ DUMP TEST.DAT 
Dump of file DISKO: [NORMAN]TEST.DAT;l on 19-APR-1990 15:43:26.08 
File ID (3134,818,2) End of file block 1 I Allocated 3 
Virtual block number 1 (00000001), 512 (0200) bytes 

706D6173 20612073 69207369 68540033 3.This is a samp 000000 
73752065 62206F74 20656C69 6620656C le file to be us 000010 
61786520 504D5544 2061206E 69206465 ed in a DUMP exa 000020 
00000000 00000000 0000002E 656C706D mple •.••••...... 000030 
00000000 00000000 00000000 00000000 ....•..•••...... 000040 
00000000 00000000 00000000 00000000 ....•....•...... 000050 
00000000 00000000 00000000 00000000 •...•...••...... 000060 

00000000 00000000 00000000 00000000 ....•..•••....•• OOOlEO 
00000000 00000000 00000000 00000000 •••••....•.•..•. OOOlFO 

The DUMP command displays the contents of TEST.DAT both in 
hexadecimal longword format and in ASCII beginning with the first 
block in the file. 



DCL Commands DCL-81 
EDIT/ACL 

EDIT/ACL 
Invokes the Access Control List (ACL) Editor to create or modify an access 
control list for a specified object. The /ACL qualifier is required. 

format 
EDIT/ACL object-spec 

EDIT/EDT 
Invokes the VAX EDT interactive text editor. The /EDT qualifier is not 
required, because EDT is the VMS default editor. 

format 
EDIT tile-spec 

parameter 
file-spec 
Specifies the file to be created or edited using the EDT editor. If the file 
does not exist, it is created by EDT. The EDT editor does not provide a 
default file type when creating files; if you do not include a file type, it 
is null. The file must be a disk file on a Files-11 formatted volume. No 
wildcard characters are allowed in the file specification. 

qualifiers 
/COMMAND[=file-spec] 
/NOCOMMAND 
Determines whether or not EDT uses a startup command file. The 
/COMMAND file qualifier should be followed by an equal sign and the 
specification of the command file. The default file type for command 
files is EDT. No wildcard characters are allowed in the file specification. 
If you do not include the /COMMAND=command file qualifier, EDT 
looks for the EDTSYS logical name assignment. If EDTSYS is 
not defined, EDT processes the systemwide startup command file 
SYS$LIBRARY:EDTSYS.EDT. If this file does not exist, EDT looks for 
the EDTINI logical name assignment. If EDTINI is not defined, EDT 
looks for the file named EDTINI.EDT in your default directory. If none of 
these files exists, EDT begins your editing session in the default state. To 
prevent EDT from processing either the systemwide startup command file 
or the EDTINI.EDT file in your default directory, use the /NOCOMMAND 
qualifier as follows: 
$ EDIT/NOCOMMAND MEMO.DAT 



DCL-82 DCL Commands 
EDIT/EDT 

!CREATE (default) 
/NOCREATE 
Controls whether EDT creates a new file when the specified input file is 
not found. 

/JOURNAL[:journal-file] 
!NOJOURNAL 
Determines whether EDT keeps a journal file during your editing session. 
A journal file contains a record of the keystrokes you enter during an 
editing session. The default file name for the journal file is the same 
as the input file name. The default file type is JOU. The /JOURNAL 
qualifier enables you to use a different file specification for the journal 
file. If you are editing a file from another directory and want the journal 
file to be located in that directory, you must use the /JOURNAL qualifier 
with a file specification that includes the directory name. Otherwise, 
EDT creates the journal file in the default directory. The directory that is 
to contain the journal file should not be write-protected. Once you have 
created a journal file, use EDT/RECOVER to execute the commands in the 
journal file. No wildcard characters are allowed in the file specification. 

/OUTPUT :output-file 
INOOUTPUT 
Determines whether EDT creates an output file at the end of your editing 
session. The default file specification for both the input file and the 
output file is the same. Use the /OUTPUT qualifier to give the output file 
a different file specification from the input file. The /NOOUTPUT qualifier 
suppresses the creation of an output file, but not the creation of a journal 
file. A system interruption does not prevent you from re-creating your 
editing session because a journal file is still being maintained. To save 
your editing session, even when you specify /NOOUTPUT, use the line 
mode command WRITE to put the text in an external file before you end 
the session. No wildcard characters are allowed in the file specification. 

!READ ONLY 
!NOREAD_ONLY (default) 
Determines whether EDT keeps a journal file and creates an output file. 
With the default /NOREAD_ONLY, EDT maintains the journal file and 
creates an output file when it processes the line mode command EXIT. 
Using the /READ_ONLY qualifier has the same effect as specifying both 
the /NOJOURNAL and /NOOUTPUT qualifiers. Use /READ_ONLY when 
you are searching a file and do not intend to make any changes to it. To 
modify the file, use the line mode command WRITE to save your changes. 
Remember, however, that you have no journal file. 

!RECOVER 
!NORECOVER (default) 
Determines whether or not EDT reads a journal file at the start of the 
editing session. When you use the /RECOVER qualifier, EDT reads the 
appropriate journal file and processes whatever commands it contains. If 



DCL Commands DCL-83 
EDIT/EDT 

the journal file type is not JOU or the file name is not the same as the 
input file name, you must include both the /JOURNAL qualifier and the 
/RECOVER qualifier as follows: 
$ EDIT/RECOVER/JOURNAL=SAVE.XXX MEMO.DAT 

example 
$ EDIT/OUTPUT=NEWFILE.TXT OLDFILE.TXT 

* 
1 This is the first line of the file OLDFILE.TXT. 

This EDIT command invokes the EDT editor to edit the file OLDFILE. TXT. 
EDT looks for the EDTSYS logical name assignment. If EDTSYS 
is not defined, EDT processes the systemwide startup command file 
SYS$LIBRARY:EDTSYS.EDT. If this file does not exist, EDT looks for the 
EDTINI logical name assignment. If EDTINI is not defined, EDT looks 
for the file named EDTINI.EDT in your default directory. If none of these 
files exists, EDT begins your editing session in the default state. When 
the session ends, the edited file has the name NEWFILE. TXT. 

EDIT/FOL 
Invokes the VMS FDL Editor (EDIT/FDL) to create and modify File 
Definition Language (FDL) files. The /FDL qualifier is required. 

format 
EDIT /FOL file-spec 

EDIT/SUM 
Invokes the SUMSLP batch-oriented editor, to update a single input file 
with multiple files of edit commands. 

format 
ELiiTiSuivi inpui-fiie 



DCL-84 DCL Commands 
EDIT/TECO 

EDIT/TECO 
Invokes the TECO interactive text editor. The trECO qualifier is 
required. 

format 
EDIT/TECO [file-spec] 
EDIT/TECO/EXECUTE:command-file [argument] 

parameter 
file-spec 
Specifies the file to be created or edited using the TECO editor. If the file 
does not exist, it is created by TECO, unless you specify /NOCREATE. No 
wildcard characters are allowed in the file specification. 

qualifiers 
ICOMMAND[:file-spec] 
/NOCOMMAND 
Controls whether a startup command file is used. The /COMMAND file 
qualifier may be followed by an equal sign and the specification of the 
command file. The default file type for command files is TEC. If you 
do not include the /COMMAND qualifier, or if you enter /COMMAND 
without specifying a command file, TECO looks for the TEC$INIT logical 
name assignment. If TEC$INIT is not defined, no startup commands are 
executed. No wildcards are allowed in the file specification. 

/CREATE (default) 
INOCREATE 
Creates a new file when the specified input file cannot be found. If 
/MEMORY is specified and no input file is specified, the file created 
is the one specified by the logical name TEC$MEMORY. Normally, 
TECO creates a new file to match the input file specification if it cannot 
find the requested file name in the specified directory. When you use 
/NOCREATE in the TECO command line and type a specification for a 
file that does not exist, TECO displays an error message and returns you 
to the DCL command level. /EXECUTE is not compatible with /CREATE 
and /NOCREATE. 

IEXECUTE:command-file [argument] 
Invokes TECO and executes the TECO macro found in the command 
file. The argument, if specified, appears in the text buffer when macro 
execution starts. Blanks or special characters must be enclosed in quotes. 
/EXECUTE is incompatible with /CREATE and /MEMORY. 



!MEMORY (default) 
/NOME MORY 

DCL Commands DCL-85 
EDIT/TECO 

Specifies that the last file you edited with TECO, identified by the 
logical name TEC$MEMORY, will be the file edited if you omit the file 
specification to the EDITtrECO command. 

!OUTPUT =output-file 
!NOOUTPUT (default) 
Controls how the output file is named at the end of your editing session. 
By default, the output file has the same name as the input file but is given 
the next higher available version number. Use the /OUTPUT qualifier to 
give the output file a file specification different from the input file. No 
wildcard characters are allowed in the file specification. 

!READ ONLY 
!NOREAD_ ONLY (default) 
Controls whether or not an output file is created. By default, an output 
file is created; /READ ONLY suppresses the creation of the output file. 

example 
$ EDIT/TECO/OUTPUT=NEWFILE.TXT OLDFILE.TXT 

This EDIT command invokes the TECO editor to edit the file OLDFILE.TXT. 
TECO looks for the TEC$INIT logical name assignment. If TEC$INIT is 
not defined, TECO begins the editing session without using a command 
file. When the session ends, the edited file has the name NEWFILE. TXT. 

EDIT/TPU 
Invokes the VAX Text Processing Utility (VAXTPU), running the 
interactive text editor Extensible VAX Editor (EVE). VAXTPU is a 
language-like utility that is useful for creating applications that handle 
text. EVE is an editor that you can customize. 

For information intended for general EVE users on using EDITtrPU and 
its quaiifi.ers, see Chapter 6. 

format 

EDIT/TPU [file-spec] 



DCL-86 DCL Commands 
EOD 

EOD 
Signals the end of a data stream when a command or program is reading 
data from an input device other than an interactive terminal. Used to end 
a data line that begins with a dollar sign. Also, used to end an input file 
if more than one input file is contained in the command stream without 
intervening commands. 

format 

$EOD 

parameters 

None. 

example 
$ CREATE WEATHER.COM 
$ DECK 
$ FORTRAN WEATHER 
$ LINK WEATHER 
$ RUN WEATHER 
$ EOD 
$ @WEATHER 

EOJ 

In this example, the command procedure creates a command procedure 
called WEATHER.COM. The lines delimited by the DECK and EOD 
commands are written to the file WEATHER.COM. Then the command 
procedure executes WEATHER.COM. 

Marks the end of a batch job submitted through a card reader. An EOJ 
card is not required; however, if present, the first nonblank character 
in the command line must be a dollar sign ( $ ). If issued in any other 
context, the EOJ command logs the process out. The EOJ command 
cannot be abbreviated. 

The EOF card is equivalent to the EOJ card. 

format 

$ EOJ 

parameters 

None. 



DCL Commands DCL-87 
EOJ 

example 

$EOJ 

... Command Input Stream ... 

$ PASSWORD HENRY 

$JOB HIGGINS 

ZK-0786-GE 

The JOB and PASSWORD commands mark the beginning of a batch job 
submitted through the card reader; the EOJ command marks the end of 
the job. 

ENDSUBROUTINE 
Defines the end of a subroutine in a command procedure. For more 
information about the ENDSUBROUTINE command, refer to- the 
description of the CALL command 

format 
ENDSUBROUTINE 

EXAMINE 
Displays the contents of virtual memory. 

Requires user mode read ( R) and write ( W) access to the virtual 
memory location whose contents you want to examine. 



DCL-88 

format 

DCL Commands 
EXAMINE 

EXAMINE location[:location] 

parameter 

location[:location] 
Specifies a virtual address or a range of virtual addresses (where the 
second address is larger than the first) whose contents you want to 
examine. If you specify a range of addresses, separate the first and last 
with a colon. A location can be any valid arithmetic expression containing 
arithmetic or logical operators or previously assigned symbols. Radix 
qualifiers determine the radix in which the address is interpreted; 
hexadecimal is the initial default radix. Symbol names are always 
interpreted in the radix in which they were defined. The radix operators 
%X, %D, or %0 can precede the location. A hexadecimal value must begin 
with a number (or be preceded by %X). 

qualifiers 

/ASCII 
Requests that the data at the specified location be displayed in ASCII. 
Binary values that do not have ASCII equivalents are displayed as 
periods(.). When you specify /ASCII, or when ASCII mode is the default, 
hexadecimal is used as the default radix for numeric literals that are 
specified on the command line. 

/BYTE 
Requests that data at the specified location be displayed one byte at a 
time. 

/DECIMAL 
Requests that the contents of the specified location be displayed in 
decimal format. 

/HEXADECIMAL 
Requests that the contents of the specified location be displayed in 
hexadecimal format. 

/LONGWORD 
Requests that data at the specified location be displayed one longword at 
a time. 

/OCTAL 
Requests that the contents of the specified location be displayed in octal 
format. 

/WORD 
Requests that data at the specified location be displayed one word at a 
time. 



example 
$ RUN MYPROG 
ICTRLIYI 
$ EXAMINE 2678 
0002678: 1F4C5026 
$ CONTINUE 

DCL Commands 
EXAMINE 

DCL-89 

In this example, the RUN command begins execution of the image 
MYPROG.EXE. While MYPROG is running, CTRL/Y interrupts its 
execution, and the EXAMINE command requests a display of the contents 
of virtual memory location 2678 (hexadecimal). 

EXCHANGE 
Invokes the Exchange Utility (EXCHANGE) to manipulate mass storage 
volumes that are written in formats other than those normally recognized 
by the VMS operating system. 

EXCHANGE allows you to perform any of the following tasks: 

• Create foreign volumes 

• Transfer files to and from the volume 

• List directories of the volume 

For block-addressable devices, such as RT-11 disks, EXCHANGE performs 
additional operations such as renaming and deleting files. The Exchange 
Utility can also manipulate Files-11 files that are images of foreign 
volumes; these files are called virtual devices. 

The /[NO]MESSAGE qualifier determines whether EXCHANGE 
displays information related to EXCHANGE INITIALIZE, MOUNT, and 
DISMOUNT subcommands. You can also use this qualifier with any of 
these three subcommands to reverse the default. Normally, EXCHANGE 
displays the information. 

For more information about the Exchange Utility, see the VMS System 
Manager's Manual in the VMS base documentation set. 



DCL-90 DCL Commands 
EXCHANGE/NETWORK 

EXCHANGE/NETWORK 
Enables the VMS operating system to transfer files to or from operating 
systems that do not support VMS file organizations. The transfer occurs 
over a DECnet network communications link that connects VMS and 
non-VMS operating system nodes. 

Using DECnet services, the EXCHANGE/NETWORK command can: 

• Transfer files between a VMS node and a non-VMS system node 

• Transfer a group of input files to a group of output files 

• Transfer files between two non-VMS nodes, provided those nodes 
share DECnet connections with the VMS node that issues the 
EXCHANGE/NETWORK command 

format 
EXCHANGE/NETWORK input-file-spec[, ... ] output-file-spec 

parameters 
input-file-spec[, ... ] 
Specifies the name of an existing file to be transferred. Wildcard 
characters are allowed. Use a comma (,)to indicate multiple file 
specifications. 

output-file-spec 
Specifies the name of the output file into which the input is transferred. 
You must specify at least one field in the output file specification. If you 
omit the device or directory, your current default device and directory 
are used. You can use the asterisk wildcard character in place of the 
following: file name, file type, or version number. 

qualifiers 
/BACKUP 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/BACKUP selects files according to the dates of their most recent backup. 
This time qualifier is incompatible with the other time qualifiers that 
also allow you to select files according to time attributes: /CREATED, 
/EXPIRED, and /MODIFIED. If you do not specify any of these four time 
qualifiers, the default is /CREATED. 

IBEFORE[=time] 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, or 
YESTERDAY. Specify one of the following time qualifiers with /BEFORE 



DCL Commands 
EXCHANGE/NETWORK 

DCL-91 

to indicate the time attribute to be used as the basis for selection: 
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED. 

IBY_OWNER[=uic] 
Selects only those files whose owner user identification code (UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

/CONFIRM 
/NOCONFIRM (default) 
Controls whether a request is issued before each file transfer operation to 
confirm that the operation should be performed on that file. The following 
responses are valid: 

YES 
TRUE 

1 

NO 

FALSE 

0 

~ 

QUIT 

CTRUZ 

ALL 

You can use any combination of uppercase and lowercase letters for word 
responses. Word responses can be abbreviated to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 
unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and the RETURN key. QUIT or CTRIJZ indicates 
that you want to stop processing the command at that point. When you 
respond with ALL, the command continues to process, but no further 
prompts are given. If you type a response other than one of those in the 
list, DCL issues an error message and redisplays the prompt. 

!CREATED (default) 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
The /CREATED qualifier selects files based on their date of creation. 
This time qualifier is incompatible with the other time qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/EXPIRED, and /MODIFIED. If you do not specify any of these four time 
-··~l!.t::~-~ +1...~ ..l~.C~ •• l+ !~ /f"'ID"ti'Al'J'11:i'T\ 
'Y, U.Q..L.L.L.Lll:i.L o, 1.1.L.Lot;; U.ot;;.LQ.U..LIJ .LO I '-1.1.".LJL"i.I. ~.LJ. 

!EXCLUDE:(file-spec[, ... ]) 
Excludes the specified files from the file transfer operation. You can 
include a directory but not a device in the file specification. Wildcard 
characters are allowed in the file specification. However, you cannot use 
relative version numbers to exclude a specific version. If you provide only 
one file specification, you can omit the parentheses. 

/EXPIRED 
Modifies the time value specified with the /BEFORE or /SINCE qualifiers. 
/EXPIRED selects files according to their expiration date. (The expiration 
date is set with the SET FILE/EXPIRATION_DATE command.) This time 
qualifier is incompatible with the other time qualifiers that also allow you 



DCL-92 DCL Commands 
EXCHANGE/NETWORK 

to select files according to time attributes: /BACKUP, /CREATED, and 
/MODIFIED. If you do not specify any of these four time qualifiers, the 
default is /CREATED. 

!FDL=fdl-file-spec 
Specifies that the output file characteristics are described in the File 
Definition Language (FDL) file. Use this qualifier when you require 
special output file characteristics. See the VMS File Definition Language 
Facility Manual for more information about FDL files. 

Use of the /FDL qualifier implies that the transfer mode is block by block. 
However, the transfer mode you specify with the t.rRANSFER_MODE 
qualifier prevails. 

!LOG 
INOLOG (default) 
Controls whether the EXCHANGE/NETWORK command displays the file 
specifications of each file copied. 

When you use the /LOG qualifier, the EXCHANGE/NETWORK command 
displays the following for each copy operation: ( 1 ) the file specifications of 
the input and output files, and ( 2 ) the number of blocks or the number of 
records copied (depending on whether the file is copied on a block-by-block 
or record-by-record basis). 

!MODIFIED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
The /MODIFIED qualifier selects files according to the date on which they 
were last modified. This time qualifier is incompatible with the other time 
qualifiers that also allow you to select files according to time attributes: 
/BACKUP, /CREATED, and /EXPIRED. If you do not specify any of these 
four time qualifiers, the default is /CREATED. 

!SINCE[:time] 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, or 
as one of the following keywords: TODAY (default), TOMORROW, or 
YESTERDAY. Specify one of the following time qualifiers with /SINCE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

/TRANSFER_MODE:option 
Specifies the 1/0 method to be used in the transfer. This qualifier is useful 
for all file formats. You can specify any one of the following options: 



Option 

AUTOMATIC 

BLOCK 

CONVERT[=option[, ... ]] 

RECORD 

DCL Commands 
EXCHANGE/NETWORK 

Function 

DCL-93 

Allows EXCHANGE/NETWORK to determine the 
appropriate transfer mode. 

Transfers block by block. 

Reads records from the input file, packs them into 
blocks, and writes to the output file in block mode. 
The options determine what additional information 
is inserted during the transfer. 

Transfers record by record. 

The AUTOMATIC transfer mode option allows EXCHANGE/NETWORK 
to determine the appropriate transfer mode. The default is the 
AUTOMATIC transfer mode. 

If you explicitly select the BLOCK transfer mode option, 
EXCHANGE/NETWORK opens both the input and output files for block 
1/0. EXCHANGE/NETWORK then transfers the files block by block. 

If you explicitly select the RECORD transfer mode option, 
EXCHANGE/NETWORK opens both the input and output files for record 
1/0. The target system must support record operations, and the input file 
must be record oriented. 

If you select the CONVERT transfer mode option, EXCHANGE/NETWORK 
reads records in from the input file, packs them into blocks, and writes 
them to the output file in block mode. There are four options available 
with the CONVERT transfer mode to control the insertion of special 
characters in the records, as explained in the following paragraphs: 

• CARRIAGE_CONTROL 

• COUNTED 

• FIXED_CONTROL 

• RECORD_SEPARATOR=separator 

If you specify CARRIAGE_CONTROL, any carriage control information in 
the input file is interpreted, expanded into actual characters, and included 
with each record. 

If you specify COUNTED, the length of each record in bytes is included at 
the beginning of each record. The length includes all FIXED_CONTROL, 
CARRIAGE_CONTROL, and RECORD_SEPARATOR information in each 
record. 

If you specify FIXED_CONTROL, all variable length with fixed control 
record (VFC) information is written to the output file as part of the data. 
This information follows the record length information if the COUNTED 
option was specified. 



DCL-94 DCL Commands 
EXCHANGE/NETWORK 

If you specify RECORD_SEPARATOR, a 1- or 2-byte record separator is 
inserted between each record. Record separator characters are the last 
characters in the record. The three choices for separator characters are 
CR for carriage return only, LF for line feed only, or CRLF for carriage 
return and line feed. 

example 
$EXCHANGE/NETWORK VMS_FILE.DAT FOO::FOREIGN_SYS.DAT 

EXIT 

In this example, the EXCHANGE/NETWORK command transfers 
the file VMS_FILE.DAT located in the current default device and 
directory to the file FOREIGN_SYS.DAT on the non-VMS node FOO. 
Because the !TRANSFER_MODE qualifier was not explicitly specified, 
EXCHANGE/NETWORK automatically determines whether the transfer 
method should be block or record I/O. 

Terminates processing of a command procedure or subroutine and returns 
control to the next higher command level - either an invoking command 
procedure or interactive DCL. The EXIT command also terminates an 
image normally after a user enters CTRUY (executing another image has 
the same effect). 

format 
EXIT [status-code J 

parameter 
status-code 
Defines a numeric value for the reserved global symbol $STATUS. You 
can specify the status-code as an integer or an expression equivalent to an 
integer value. The low-order three bits of the value determine the value 
of the global symbol $SEVERITY. 

example 
$ ON WARNING THEN EXIT 
$ FORTRAN 'Pl' 
$ LINK 'Pl' 
$ RUN 'Pl' 

The EXIT command in this example is used as the target of an ON 
command; this statement ensures that the command procedure terminates 
whenever any warnings or errors are issued by any command in the 
procedure. 

The procedure exits with the status value of the command or program 
that caused the termination. 



GOSUB 

DCL Commands 
GOSUB 

DCL-95 

Transfers control to a labeled subroutine in a command procedure without 
creating a new procedure level. 

format 
GOSUB label 

parameter 

label 
Specifies a 1- through 255-alphanumeric character label appearing as the 
first item on a command line. A label may not contain embedded blanks. 
When the GOSUB command is executed, control passes to the command 
following the specified label. The label can precede or follow the GOSUB 
statement in the current command procedure. When you use a label in 
a command procedure, it must be terminated with a colon. If you use 
duplicate labels, control is always given to the label most recently read by 
DCL. 

example 

$ ! 
$! GOSUB.COM 
$ ! 
$ SHOW TIME 
$ GOSUB TESTl 
$ WRITE SYS$0UTPUT "success completion" 
$ EXIT 
$ ! 
$! TESTl GOSUB definition 
$ ! 
$ TESTl: 
$ WRITE SYS$0UTPUT "This is GOSUB level 1." 
$ GOSUB TEST2 
$ RETURN %Xl 
$ ! 
$! TEST2 GOSUB definition 
~ ! 
$ TEST2: 
$ WRITE SYS$0UTPUT "This is GOSUB level 2." 
$ GOSUB TEST3 
$ RETURN 
$ 
$ TEST3 GOSUB definition 
$ 
$ TEST3: 
$ WRITE SYS$0UTPUT "This is GOSUB level 3." 
$ RETURN 



DCL-96 DCL Commands 
GOSUB 

This sample command procedure shows how to use the GOSUB command 
to transfer control to labeled subroutines. The GOSUB command 
transfers control to the subroutine labeled TESTl. The procedure 
executes the commands in subroutine TEST!, branching to the subroutine 
labeled TEST2. The procedure then executes the commands in subroutine 
TEST2, branching to the subroutine labeled TEST3. Each subroutine 
is terminated by the RETURN command. After TEST3 is executed, the 
RETURN command returns control back to the command line following 
each calling GOSUB statement. At this point, the procedure has been 
successfully executed. 

GOTO 
Transfers control to a labeled statement in a command procedure. 

format 
GOTO label 

parameter 
label 
Specifies a 1- through 255-alphanumeric character label appearing as the 
first item on a command line. A label may not contain embedded blanks. 
When the GOTO command is executed, control passes to the command 
following the specified label. The label can precede or follow the GOTO 
statement in the current command procedure. When you use a label in 
a command procedure, it must be terminated with a colon. If you use 
duplicate labels, control is always given to the label most recently read by 
DCL. 

example 
$ IF Pl .EQS. "HELP" THEN GOTO TELL 
$ IF Pl .EQS. "" THEN GOTO ·TELL 

$ EXIT 
$ TELL: 
$ TYPE SYS$INPUT 
To use this procedure, you must enter a value for Pl. 

$ EXIT 

In this example, the IF command checks the first parameter passed to 
the command procedure; if this parameter is the string HELP or if the 
parameter is not specified, the GOTO command is executed and control 
is passed to the line labeled TELL. Otherwise, the procedure continues 
executing until the EXIT command is encountered. At the label TELL, a 



DCL Commands 
GOTO 

DCL-97 

TYPE command displays data in the input stream that documents how to 
use the procedure. 

HELP 
Displays information concerning use of the system, including formats and 
explanations of commands, parameters, and qualifiers. 

format 

HELP [keyword .. . ] 

parameter 

keyword ... 
Specifies one or more keywords that refer to the topic or subtopic on which 
you want information from a HELP library. To use the HELP facility in 
its simplest form, enter the HELP command from your terminal. The 
HELP facility displays a list of topics at your terminal and the prompt 
Topic?. To see information on one of the topics, type the topic name after 
the prompt. The system displays information on that topic. 

If the topic has subtopics, the HELP command lists the subtopics and 
displays the Subtopic? prompt. To get information on one of the subtopics, 
type the name after the prompt. To see information on another topic, 
press RETURN. You can now ask for information on another topic when 
HELP displays the Topic? prompt. Press RETURN to exit the HELP 
facility and return to the DCL command level. 

example 
$ HELP 
HELP 

(HELP message text and list of topics) 

Topic? 

In this example, the HELP command is entered without any qualifiers or 
parameters. This produces a display of the HELP topics available from 
the root HELP library, SYS$HELP:HELPLIB.HLB. 

If you type one of the listed topics in response to the Topic? prompt, 
HELP displays information about that topic and a list of subtopics (if 
there are any). If one or more subtopics exist, HELP prompts you for a 
subtopic. 

Topic? ASSIGN 
ASSIGN 

(HELP message text and subtopics) 

ASSIGN Subtopic? 



DCL-98 DCL Commands 
HELP 

IF 

If you type a subtopic name, HELP displays information about that 
subtopic: 

ASSIGN Subtopic? Name 
ASSIGN 

Name 

(HELP message text and subtopics, if any) 

ASSIGN Subtopic? 

If one or more sub-subtopics exist, HELP prompts for a sub-subtopic; 
otherwise, as in the previous example, the facility prompts you for another 
subtopic of the topic you are currently inspecting. 

Typing a question mark redisplays the HELP message and options at your 
current level. Pressing RETURN does either of the following: ( 1 ) move 
you back to the previous HELP level if you are in a subtopic level, or ( 2) 
terminate HELP if you are at the first level. Pressing CTRUZ terminates 
HELP at any level. 

Tests the value of an expression and, depending on the syntax specified, 
executes 

• One command following the THEN keyword if the expression is true 

• Multiple commands following the $THEN command if the expression 
is true 

• One or more commands following the $ELSE command if the 
expression is false 

format 

$ IF expression THEN[$] command 

or 

$ IF expression 
$ THEN [command} 
command 



$[ELSE] [command] 
command 

$ ENDIF 

DCL Commands 
IF 

DCL-99 

parameters 
expression 
Defines the test to be performed. The expression can consist of 
one or more numeric constants, string literals, symbolic names, or 
lexical functions separated by logical, arithmetic, or string operators. 
Expressions in IF commands are automatically evaluated during the 
execution of the command. Character strings beginning with alphabetic 
characters that are not enclosed in quotation marks are assumed 
to be symbol names or lexical functions. The Command Language 
Interpreter ( CLI) replaces these strings with their current values. Symbol 
substitution in expressions in IF commands is not iterative; that is, each 
symbol is replaced only once. However, if you want iterative substitution, 
precede a symbol name with an apostrophe or ampersand. 

command 
The DCL command or commands to be executed, depending on the syntax 
specified, when the result of the expression is true or false. 

example 

$ IF Pl .EQS. 1111 THEN GOTO DEFAULT 
$ IF (Pl .EQS. "A") .OR. (Pl .EQS. "B") THEN GOTO 'Pl' 
$ WRITE SYS$0UTPUT "Unrecognized parameter option ''Pl' " 
$ EXIT 
$ A: ! Process option a 

$ EXIT 
$ B: 

$ EXIT 

Process option b 

$ DEFAULT: Default processing 

$ EXIT 

This example shows a command procedure that tests whether a parameter 
was passed. The GOTO command passes control to the label specified as 
the parameter. 



DCL-100 DCL Commands 
IF 

If the procedure is executed with a parameter, the procedure uses that 
parameter to determine the label to branch to. For example: 

@TESTCOM A 

When the procedure executes, it determines that Pl is not null, and 
branches to the label A. Note that the EXIT command causes an exit from 
the procedure before the label B. 

$ SET NOON 

$ LINK CYGNUS,DRACO,SERVICE/LIBRARY 
$ IF $STATUS 
$ THEN 
$ RUN CYGNUS 
$ ELSE 
$ WRITE SYS$0UTPUT "LINK FAILED" 
$ ENDIF 
$ EXIT 

This command procedure uses the SET NOON command to disable error 
checking by the command procedure. After the LINK command, the IF 
command tests the value of the reserved global symbol $STATUS. If the 
value of $STATUS indicates that the LINK command succeeded, then the 
program CYGNUS is run. If the LINK command returns an error status 
value, the command procedure issues a message and exits. 

INITIALIZE 
Formats a disk or magnetic tape volume and writes a label on the volume. 
At the end of initialization, the disk is empty except for the system files 
containing the structure information. All former contents of the disk are 
lost. 

Requires VOLPRO privilege for most I~TIALIZE operations. 

format 

INITIALIZE device-name[.1 volume-label 

parameters 

device-name[:] 
Specifies the name of the device on which the volume to be initialized is 
physically mounted. 

volume-label 
Specifies the identification to be encoded on the volume. For a disk 
volume, you can specify a maximum of 12 alphanumeric characters; 



DCL Commands 
INITIALIZE 

DCL-101 

for a magnetic tape volume, you can specify a maximum of 6 alphanu
meric characters. Letters are automatically changed to uppercase. 
Nonalphanumeric characters are not allowed in the volume-label 
specification on disk. 

qualifiers 
/ACCESSED=number-of-directories 
Requires OPER privilege. Affects Files-11 Structure Level 1 disks 
ONLY. Specifies, for disk volumes, the number of directories allowed in 
system space must be a value frotn 0 to 255. The default value is 3. 

IBADBLOCKS:(area[, ... ]) 
Specifies, for disk volumes, faulty areas on the volume. The INITIALIZE 
command marks the areas as allocated so that no data is written in them. 

Possible formats for area are as follows: 

lbn[:count] 

sec. trk.cyl[:cnt] 

Logical block number of the first block and optionally a block 
count beginning with the first block, to be marked as allocated 

Sector, track, and cylinder of the first block, and optionally a 
block count beginning with the first block, to be marked as 
allocated 

ICLUSTER_SIZE:number-of-blocks 
Defines, for disk volumes, the minimum allocation unit, in blocks. The 
maximum size you can specify for a volume is one-hundredth the size 
of the volume; the minimum size you can specify is calculated with the 
following formula: 

disk size(number of blocks) 

255 * 4096 

/DATA_CHECK[={option[, ... ])] 
Checks all read and write operations on the disk. By default, no data 
checks are made. Specify one or both options: 

READ Checks all read operations 

WrtITE Checks aii write operations; d.efauit ·if oniy 1DATA_C:iiECK is specifieci 

To override the checking you specify at initialization for disks, enter a 
MOUNT command to niount the volume. 

IDENSITY=density-value 
The /DENSITY qualifier is not applicable to the TK50 tape device. 
For floppy diskette volumes that are to be initialized on RX02 or RX33 
diskette drives, specifies the density at which the floppy disk is to be 
formatted. 



DCL-102 DCL Commands 
INITIALIZE 

RX02 dual-density diskette drives allow floppy diskettes to be initialized 
at single or double density. RX33 diskette drives allow floppy diskettes to 
be initialized at double density only. To specify single-density formatting 
of a floppy diskette, specify the density value SINGLE. To specify 
double-density formatting of a floppy diskette, specify the density value 
DOUBLE. 

If you do not specify a density value for a floppy diskette being initialized 
on a drive, the system leaves the volume at the density to which the 
volume was last formatted. 

For magnetic tape volumes, specifies the density in bytes per inch (bpi)· at 
which the magnetic tape is to be written. 

For magnetic tape volumes, the density value specified can be 800 bpi, 
1600 bpi, or 6250 bpi, as long as the density is supported by the magnetic 
tape drive. 

IDIRECTORIES:number-of-entries 
Specifies, for disk volumes, the number of entries to preallocate for user 
directories. The number of entries must be an integer between 16 and 
16000. The default value is 16. 

/ERASE 
/NOERASE (default) 
Physically destroys deleted data (by writing over it). 

IEXTENSION:number-of-blocks 
Affects Files-11 Structure Level 1 disks ONLY. Specifies, for disk 
volumes, the number of blocks to use as a default extension size for all 
files on the volume. The extension default is used when a file increases 
to a size greater than its initial default allocation during an update. 
The value for the number-of-blocks parameter can range from 0 through 
65,535. The default value is 5. 

/FILE_PROTECTION:code 
Affects Files-11 Structure Level 1 disks ONLY. Defines, for disk 
volumes, the default protection to be applied to all files on the volume. 

/GROUP 
Defines a group volume. The /GROUP qualifier applies protection of 
RWED to all ownership categories unless /GROUP is specified with 
/NOSHARE, in which case the volume protection is RWED for all but 
the world category. The owner UIC of the volume defaults to your group 
number and a member number of 0. 

IHEADERS:number-of-headers 
Specifies, for disk volumes, the number of file headers to be allocated for 
the index file. The minimum and default value is 16. The maximum is 
the value set with the /MAXIMUM_FILES qualifier. 



DCL Commands 
INITIALIZE 

DCL-103 

This qualifier is useful when you want to create a number of files and 
want to streamline the process of allocating space for that number of file 
headers. If you do not specify this qualifier, the file system dynamically 
allocates space as it is needed for new headers on the volume. 

/HIGHWATER (default) 
INOHIGHWATER 
Affects Files-11 Structure Level 2 disks ONLY. Sets the file highwater 
mark (FHM) volume attribute, which guarantees that a user cannot read 
data that he has not written. You cannot specify /NOHIGHWATER for 
magnetic tape. 

The /NOHIGHWATER qualifier disables FHM for a disk volume. 

/INDEX=position 
Specifies the location of the index file for the volume's directory structure. 
Possible positions are as follows: 

BEGINNING 

MIDDLE 

END 
BLOCK:n 

Beginning of the volume 

Middle of the volume (default) 

End of the volume 

Beginning of the logical block specified by n 

/LABEL:option 
Defines characteristics for the magnetic tape volume label, as directed by 
the included option. The available options are as follows: 

• OWNER_IDENTIFIER:"(14 ANSI characters)" 

Allows you to specify the Owner Identifier field in the volume label. 
The field specified can accept up to 14 ANSI characters. 

• VOLUME_ACCESSIBILITY:"character" 

Specifies the character to be written in the volume accessibility field 
of the VMS ANSI volume label VOLl on an ANSI magnetic tape. The 
character may be any valid ANSI "a" character. This set of characters 
! ___ , __ .:J __________ _! __ , ______ ... ____ ----------- ,_ ...... ______ _'.I---- --- -.t'.L.1--
.lllC.lUU~l:i llU.1.l.l~r.lC C.1.li:l.n:t.ct.~n:s, uppc;rCC:l.l:it: .lit:ll~.ll:i, c:U.lU U.1.l.Y V.l.lt:;; UL "LLt:;; 

following nonalphanumeric characters: 
!"%' ()*+,-./:;<=>? 

By default, the VMS operating system provides a routine that checks 
this field in the following manner. 

• If the magnetic tape was created on a version of the VMS 
operating system that conforms to Version 3 of ANSI, then this 
option must be used to override any character other than an 
ASCII space. 



DCL-104 DCL Commands 
INITIALIZE 

• If a VMS protection is specified and the magnetic tape conforms 
to an ANSI standard that is later than Version 3, then this option 
must be used to override any character other than an ASCII 1. 

If you specify any character other than the default, you must specify 
the /OVERRIDE=ACCESSIBILITY qualifier on the INITIALIZE and 
MOUNT commands in order to access the magnetic tape. 

IMAXIMUM_FILES:n 
Restricts the maximum number of files that the volume can contain. 
The IM.AXIMUM_FILES qualifier overrides the default value, which is 
calculated as follows: 

volume size in blocks 
(cluster factor+ 1) * 2 

The maximum size you can specify for any volume is as follows: 

volume size in blocks 
(cluster factor+ 1) 

The minimum value is 0. Note that the maximum can be increased only 
by reinitializing the volume. 

NOTE: The MAXIMUM_FILES qualifier does not 
reserve or create space for new file headers on a volume. 
The file system dynamically allocates space as it is needed 
for new headers. 

/OVERRIDE:( option[, ... ]) 
Requests the INITIALIZE command to ignore data on a magnetic tape 
volume that protects it from being overwritten. You may specify one or 
more of the following options: 

ACCESSIBILITY (For magnetic tapes only.) If the installation allows, this option 
overrides any character in the Accessibility Field of the volume. 
The necessity of this option is defined by the installation. That 
is, each installation has the option of specifying a routine that 
the magnetic tape file system will use to process this field. 
By default, VMS provides a routine that checks this field in 
the following manner. If the magnetic tape was created on a 
version of VMS that conforms to Version 3 of ANSI, this option 
must be used to override any character other than an ASCII 
space. If a VMS protection is specified and the magnetic tape 
conforms to an ANSI standard that is later than Version 3, this 
option must be used to override any character other than an 
ASCII 1. To use the ACCESSIBILITY option, you must have 
the user privilege VOLPRO or be the owner of the volume. 



EXPIRATION 

OWNER_IDENTIFIER 

DCL Commands 
INITIALIZE 

DCL-105 

(For magnetic tapes only.) Allows you to write to a tape that 
has not yet reached its expiration date. You must have the user 
privilege VOLPRO to override volume protection, or your UIC 
must match the UIC written on the volume. 

Allows you to override the processing of the Owner Identifier 
field of the volume label. 

To initialize a volume that was initialized previously with the 
/PROTECTION qualifier, your UIC must match the UIC written on 
the volume or you must have VOLPRO privilege. 

IOWNER_ UIC:uic 
Specifies an owner UIC for the volume. The default is your default UIC. 

For magnetic tapes, no UIC is written unless protection on the magnetic 
tape is specified. If protection is specified, but no owner UIC is specified, 
your current UIC is assigned ownership of the volume. 

IPROTECTION=(ownership[:access], ..• ) 
Applies the specified protection to the volume. Specify ownership as 
SYSTEM, OWNER, GROUP, or WORLD and access as R (read), W 
(write), E (execute), and D (delete). The default is your default protection. 

For magnetic tape, the protection code is written to a VMS-specific volume 
label. The system only applies read and write access restrictions; execute 
and delete access are meaningless. Moreover, the system and the owner 
are always given both read and write access to magnetic tapes, regardless 
of the protection code you specify. 

/SHARE (default) 
INOSHARE 
Permits all categories of access by all categories of ownership. The 
/NOSHARE qualifier denies access to group (unless /GROUP is also 
specified) and world processes. 

ISTRUCTURE:level 
Specifies whether the volume should be formatted in Files-11 Structure 
Level 1 or Structure Level 2 (the detault). Level 1 is incompatibie 
with the /DATA_CHECK and /CLUSTER_SIZE qualifiers. The default 
protection for a Structure Level 1 disk is full access to system, owner, and 
group, and R (read) access to all other users. 

/SYSTEM 
Requires a system UIC or SYSPRV privilege. Defines a system 
volume. The owner UIC defaults to [1,1]. Protection defaults to complete 
access by all ownership categories, except that only system processes can 
create top-level directories. 



DCL-106 DCL Commands 
INITIALIZE 

IUSER_NAME:name 
Specifies a user name to be associated with the volume. The name must 
be 1to12 alphanumeric characters. The default is your user name. 

NERI Fl ED 
/NO VERIFIED 
Indicates whether the disk has bad block data on it. Use the /NOVERIFIED 
qualifier to ignore bad block data on the disk. The default is NERIFIED 
for disks with 4096 blocks or more and /NOVERIFIED for disks with less 
than 4096 blocks. 

IWINDOWS:n 
Specifies the number of mapping pointers (used to access data in the file) 
to be allocated for file windows. The value can be an integer in the range 
of 7 through 80. The default is 7. 

example 
$ INITIALIZE/USER_NAME=CPA $FLOPPY1 ACCOUNTS 

Initializes the volume on $FLOPPY1, labels the volume ACCOUNTS, and 
gives the volume a user name of CPA. 

INITIALIZE/QUEUE 
Creates or initializes queues. You use this command to create queues and 
to assign them names and attributes. The /QUEUE qualifier is required. 
The /BATCH qualifier is required to create a batch queue. 

Requires OPER privilege. 

format 
INITIALIZE/QUEUE queue-name[:} 

parameter 
queue-name[:] 
Specifies the name of an execution queue or a generic queue. The queue 
name may be a string of 1 to 31 characters. The character string can 
include any uppercase and lowercase letters, digits, the dollar sign 
( $ ), and the underscore ( _), and must include at least one alphabetic 
character. 

qualifiers 
/BASE_PRIORITY=n 
Specifies the base process priority at which jobs are initiated from a batch 
execution queue. By default, if you omit the qualifier, jobs are initiated at 
the same priority as the base priority established by DEFPRI at system 



DCL Commands DCL-107 
INITIALIZE/QUEUE 

generation (usually 4). The base priority specifier can be any decimal 
value from 0 through 15. 

You also can specify this qualifier for an output execution queue. In this 
context the /BASE_PRIORITY qualifier establishes the base priority of 
the symbiont process when the symbiont process is created. 

/BATCH 
/NOBATCH (default) 
Specifies that you are initializing a batch queue. If you are reinitializing 
an existing queue, you can use the /BATCH qualifier only if the queue 
was created as a batch queue. A batch queue is classified as either an 
execution or generic queue. By default, the /BATCH qualifier initializes 
an execution queue. To specify a generic batch queue, use the /GENERIC 
qualifier together with the /BATCH qualifier. 

The /[NO]BATCH qualifier of the INITIALIZE/QUEUE command has 
superseded the /[NOJBATCH qualifier of the START/QUEUE command. 
Digital recommends that you use the INITIALIZE/QUEUE/[NOJBATCH 
command to determine queue type. Digital also recommends that you 
update command procedures that use START/QUEUE/[NOJBATCH. The 
·/BATCH and /DEVICE qualifiers are mutually exclusive; the /NOBATCH 
and /NODEVICE qualifiers also cannot be used together. 

/BLOCK_ LIMIT =([lowlim,]uplim) 
INOBLOCK_L/MIT (default) 
Limits the size of print jobs that can be processed on an output execution 
queue. This qualifier allows you to reserve certain printers for certain 
size jobs. You must specify at least one of the parameters. The lowlim 
parameter is a decimal number referring to the minimum number of 
blocks accepted by the queue for a print job. If a print job is submitted 
that contains fewer blocks than the lowlim value, the job remains pending 
until the block limit for the queue is changed. After the block limit for the 
queue is decreased sufficiently, the job is processed. The uplim parameter 
is a decimal number referring to the maximum number of blocks that 
the queue accepts for a print job. If a print job is submitted that exceeds 
this value, the job remains pending until the block limit for the queue is 
changed. After the block limit for the queue is increased sufficiently, the 
job is processed. 

!CHARACTERISTICS:( characteristic[, .•. ]) 
INOCHARACTERISTICS (default) 
Specifies one or more characteristics for processing jobs on an execution 
queue. If you specify only one characteristic, you can omit the 
parentheses. If a queue does not have all the characteristics that have 
been specified for a job, the job remains pending. Each time you specify 
/CHARACTERISTICS, all previously set characteristics are cancelled. 
Only the characteristics specified with the qualifier are established for the 
queue. Queue characteristics are installation-specific. The characteristic 



DCL-108 DCL Commands 
INITIALIZE/QUEUE 

parameter can be either a value from 0 through 127 or a characteristic 
name that has been defined by the DEFINE/CHARACTERISTIC 
command. 

/CLOSE 
Prevents jobs from being entered in the queue through PRINT or SUBMIT 
commands or as a result of requeue operations. To allow jobs to be 
entered, use the /OPEN qualifier. Whether a queue accepts or rejects new 
job entries is independent of the queue's state (such as paused, stopped, 
or stalled). When a queue is marked closed, jobs executing continue 
to execute. Jobs pending in the queue continue to be candidates for 
execution. 

ICPUDEFAULT:time 
Defines the default CPU time limit for all jobs in this batch execution 
queue. You can specify time as delta time, 0, INFINITE, or NONE 
(default). You can specify up to 497 days of delta time. 

If the queue does not have a specified CPUMAXIMUM time limit and the 
value established in the user authorization file (UAF) has a specified CPU 
time limit of NONE, either the value 0 or the keyword INFINITE allows 
unlimited CPU time. If you specify NONE, the CPU time value defaults 
to the value specified either in the UAF or by the SUBMIT command (if 
included). CPU time values must be greater than or equal to the number 
specified by the SYSGEN parameter PQL_MCPULM. The time cannot 
exceed the CPU time limit set by the /CPUMAXIMUM qualifier. 
' /CPUMAXIMUM:time 
Defines the maximum CPU time limit for all jobs in a batch execution 
queue. You can specify time as delta time, 0, INFINITE, or NONE 
(default). You can specify up to 497 days of delta time. 

The /CPUMAXIMUM qualifier overrides the time limit specified in the 
user authorization file (UAF) for any user submitting a job to the queue. 
Either the value 0 or the keyword INFINITE allows unlimited CPU time. 
If you specify NONE, the CPU time value defaults to the value specified 
either in the UAF or by the SUBMIT command (if included). CPU time 
values must be greater than or equal to the number specified by the 
SYSGEN parameter PQL_MCPULM. 

!DEFAULT =(option[, .•. ]) 
INODEFAULT 
Establishes defaults for certain options of the PRINT command. Defaults 
are specified by the list of options. If you specify only one option, you 
can omit the parentheses. After you set an option for the queue with the 
/DEFAULT qualifier, you do not have to specify that option in your PRINT 
commands. If you do specify these options in your PRINT command, the 
values specified with the PRINT command override the values established 
for the queue with the /DEFAULT qualifier. 



DCL Commands 
INITIALIZE/QUEUE 

DCL-109 

You cannot use the /DEFAULT qualifier with the /GENERIC qualifier. 

Possible options are as follows: 

[NO]BURST[=keyword] 

[NO]FEED 

[NO]FLAG[ =keyword] 

FORM=type 

[NO]TRAILER[ =keyword] 

Controls whether two file flag pages with a burst bar 
between them are printed preceding output. If you 
specify the value ALL (default), these flag pages are 
printed before each file in the job. If you specify the 
value ONE, these flag pages are printed once before the 
first file in the job. 

Controls whether a form feed is inserted automatically at 
the end of a page. 

Controls whether a file flag page is printed preceding 
output. If you specify the value ALL (default), a file flag 
page is printed before each file in the job. If you specify 
the value ONE, a file flag page is printed once before the 
first file in the job. 

Specifies the default form for an output execution queue. 
If a job is submitted without an explicit form definition, 
this form is used to process the job. See also /FORM_ 
MOUNTED. 

Controls whether a file trailer page is printed following 
output. If you specify the value ALL (default), a file 
trailer page is printed after each file in the job. If you 
specify the value ONE, a trailer page is printed once 
after the last file in the job. 

When you specify the BURST option for a file, the [NO]FLAG option does 
not add or subtract a flag page from the two flag pages that are printed 
preceding the file. 

!DESCRIPTION:string 
!NODESCRIPTION (default) 
A string of up to 255 characters used to provide operator-supplied 
information about the queue. 

Enclose strings containing lowercase letters, blanks, or other nonalphanu
meric characters (including spaces) in quotation mark1:> (;; ). 

The /NODESCRIPTION qualifier removes any descriptive text that may 
be associated with the queue. 

/DEVICE[=option] 
/NO DEVICE 
Specifies that you are initializing an output queue of a particular type. 
If you are reinitializing an existing queue, you can use the /DEVICE 
qualifier only if the queue was created as an output queue. Possible 
options are as follows: 



DCL-110 DCL Commands 
INITIALIZE/QUEUE 

PRINTER 

SERVER 

TERMINAL 

Indicates a printer queue. 

Indicates ~ server queue. A server queue is controlled by the user
modifi.ed or user-written symbiont specified with the /PROCESSOR 
qualifier. 

Indicates a terminal queue. 

If you specify the /DEVICE qualifier without a queue type, 
/DEVICE=PRINTER is used by default. An output queue is classified as 
either an execution or generic queue. By default, the /DEVICE qualifier 
initializes an execution queue of the designated type. To specify a generic 
printer, server, or terminal queue, use the /GENERIC qualifier with the 
/DEVICE qualifier. You specify the queue type with the /DEVICE qualifier 
for informational purposes. When an output execution queue is started, 
the symbiont associated with the queue determines the actual queue 
type. The /DEVICE and /BATCH qualifiers are mutually exclusive; the 
/NODEVICE and /NOBATCH qualifiers also cannot be used together. 

/DISABLE SWAPPING 
/NODISABi.E_SWAPPING (default) 
Controls whether batch jobs executed from a queue can be swapped in 
and out of memory. 

IENABLE_GENERIC (default) 
INOENABLE_GENERIC 
Specifies whether files queued to a generic queue that does not specify 
explicit queue names with the /GENERIC qualifier can be placed in this 
execution queue for processing. For more information, see the description 
of the /GENERIC qualifier. 

/FORM_MOUNTED:type 
Specifies the mounted form for an output execution queue. If the stock 
of the mounted form does not match the stock of the default form, as 
indicated by the /DEFAULT=FORM qualifier, all jobs submitted to this 
queue without an explicit form definition enter a pending state. If a job 
is submitted with an explicit form and the stock of the explicit form is 
not identical to the stock of the mounted form, the job enters a pending 
state. In both cases, jobs remain pending until the stock of the mounted 
form of the queue is identical to the stock of the form associated with the · 
job. To specify the form type, use either a numeric value or a form name 
that has been defined by the DEFINE/FORM command. Form types are 
installation-specific. You cannot use the /FORM_MOUNTED qualifier 
with the /GENERIC qualifier. 

IGENERIC[:{queue-name[, ... ])] 
/NOGENERIC (default) 
Specifies a generic queue. Also specifies that jobs placed in this queue can 
be moved for processing to compatible execution queues. The /GENERIC 
qualifier optionally accepts a list of target execution queues that have 
been previously defined. For a generic batch queue, these target queues 



DCL Commands 
INITIALIZE/QUEUE 

DCL-111 

must be batch execution queues. For a generic output queue, these target 
queues must be output execution queues, but can be of any type (printer, 
server, or terminal). If you do not specify any target execution queues 
with the /GENERIC qualifier, jobs can be moved to any execution queue 
that ( 1) is initialized with the /ENABLE_ GENERIC qualifier, and ( 2) is 
the same type (batch or output) as the generic queue. To define the queue 
as a generic batch or output queue, you use the /GENERIC qualifier with 
either the /BATCH or /DEVICE qualifiers. If you specify neither /BATCH 
nor /DEVICE on creation of a generic queue, the queue becomes a generic 
printer queue by default. 

/JOB_LIMIT:n 
Indicates the number of batch jobs that can be executed concurrently from 
the queue. Specify a number in the range 0 through 255. The job limit 
default value for n is 1. 

/LIBRARY:file-name 
/NOLIBRARY 
Specifies the file name for the device control library. When you initialize 
an output execution queue, you can use the /LIBRARY qualifier to 
specify an alternate device control library. The default library is 
SYS$LIBRARY:SYSDEVCTL.TLB. You can use only a file name as the 
parameter of the /LIBRARY qualifier. The system always assumes that 
the file is located in SYS$LIBRARY and that the file type is TLB. 

/ON:[node::]device[:] (printer, terminal, server queue) 
ION:node:: (batch queue) 
Specifies the node or device, or both, on which this execution queue is 
located. For batch execution queues, you can specify only the node name. 
For output execution queues, you can include both the node name and the 
device name. By default, a queue executes on the same node from which 
you start the queue. The default device parameter is the same as the 
queue name. 

/OPEN (default) 
Allows jobs to be entered in the queue through PRINT or SUBMIT 
commands or as the result oi requeue operations. To prevent jobs from 
being entered in the queue, use the /CLOSE qualifier. Whether a queue 
accepts or rejects new job entries is independent of the queue's state (such 
as paused, stopped, or stalled). 

!OWNER_ UIC:uic 
Enables you to change the user identification code (UIC) of the queue. 
The default UIC is [1,4]. 

IPROCESSOR:file-name 
/NO PROCESSOR 
Allows you to specify your own print symbiont for an output execution 
queue. You can use any valid file name as a parameter of the 



DCL-112 DCL Commands 
INITIALIZE/QUEUE 

/PROCESSOR qualifier. The system supplies the device and directory 
name SYS$SYSTEM and the file type EXE. If you use this qualifier for 
an output queue, it specifies that the symbiont image to be executed is 
SYS$SYSTEM:filename.EXE. 

IPROTECTION=(ownership[:access], ..• ) 
Specifies the protection of the queue. Ownership categories are SYSTEM, 
OWNER, GROUP, WORLD; each category can be abbreviated to its first 
character. Access categories are R (READ), W (WRITE), E (EXECUTE), 
and D (DELETE); a null access specification means no access. The default 
protection is: (SYSTEM:E, OWNER:D, GROUP:R, WORLD:W). 

IRECORD_BLOCKING (default) 
/NORECORD_BLOCKING 
Determines whether the symbiont can concatenate (or block together) 
output records for transmission to the output device. If you specify 
/NORECORD_BLOCKING, the symbiont sends each formatted record in 
a separate 1/0 request to the output device. For the standard VMS print 
symbiont, record blocking can have a significant performance advantage 
over single-record mode. 

/RETAIN[:option] 
!NORETAIN (default) 
Holds jobs in the queue in a retained status after they have executed. 
The /NORETAIN qualifier enables you to reset the queue to the default. 
Possible options are as follows: 

ALL (default) 

ERROR 

Holds all jobs in the queue after execution 

Holds in the queue only jobs that complete unsuccessfully 

!SCHEDULE:[NO]SIZE 
Specifies whether pending jobs in an output execution queue are 
scheduled for printing based on the size of the job. When the default, 
/SCHEDULE=SIZE, is in effect, shorter jobs print before longer ones. 
When /SCHEDULE=NOSIZE is in effect, jobs are printed in the order 
they were submitted, regardless of size. 

If you enter this command while there are pending jobs in any queue, its 
effect on future jobs is unpredictable. 

!SEPARATE:{ option[, •.• ]) 
/NOSEPARATE (default) 
Specifies the mandatory queue attributes, or job separation options, for an 
output execution queue. Job separation options cannot be overridden by 
the PRINT command. 

You cannot use the /SEPARATE qualifier with the /GENERIC qualifier. 



DCL Commands 
INITIALIZE/QUEUE 

DCL-113 

The job separation options are as follows: 

[NO]BURST 

[NO]FLAG 

[NO]TRAILER 

[NO]RESET=(module[, ... ]) 

Specifies whether two job :flag pages with a burst bar 
between them are printed at the beginning of each 
job. 

Specifies whether a job :flag page is printed at the 
beginning of each job. 

Specifies whether a job trailer page is printed at the 
end of each job. 

Specifies one or more device control library modules 
that contain the job reset sequence for the queue. 
The specified modules from the queue's device control 
library (by default SYS$LIBRARY:SYSDEVCTL) are 
used to reset the device each time a job reset occurs. 
The RESET sequence occurs after any file trailer and 
before any job trailer. Thus, all job separation pages 
are printed when the device is in its RESET state. 

When you specify /SEPARATE=BURST, the [NO]FLAG separation option 
does not add or subtract a flag page from the two flag pages that are 
printed preceding the job. 

For information on establishing queue attributes that can be overridden, 
see the description of the /DEFAULT qualifier. 

!START 
/NOSTART (default) 
Starts the queue being initialized by the current INITIALIZE/QUEUE 
command. 

ffERMINAL 
INOTERMINAL (default) 
Indicates that the output queue is a terminal queue. The /NOTERMINAL 
qualifier cancels the effect of a previous trERMINAL qualifier on 
the same command. It is supported in this release for compatibility 
with VMS V4.n. The /[NO]DEVICE qualifier has superseded the 
/[NO]TERMINAL qualifier. Digital recommends that you use the 
l[NO]DEVICE qualifier to determine queue type. Digital also recommends 
that you use this qualifier to update command procedures that use 
INITIALIZE/QUEUE/[NO]TERMINAL. 

/WSDEFAULT:n 
Defines for a batch job a working set default, the default number of 
physical pages that the job can use. The value set by this qualifier 
overrides the value defined in the user authorization file (UAF) of any 
user submitting a job to the queue. 

If you specify 0 or NONE, the working set default value defaults to the 
value specified in the UAF or by the SUBMIT command (if included). 



DCL-114 DCL Commands 
INITIALIZE/QUEUE 

You also can specify this qualifier for an output execution queue. Used 
in this context, /WSDEFAULT establishes the working set default of 
the symbiont process for an output execution queue when the symbiont 
process is created. 

IWSEXTENT =n 
Defines for the batch job a working set extent, the maximum amount of 
physical memory that the job can use. The job only uses the maximum 
amount of physical memory when the system has excess free pages. 
The value set by this qualifier overrides the value defined in the user 
authorization file (UAF) of any user submitting a job to the queue. 

If you specify 0 or NONE, the working set extent value defaults to the 
value specified in the UAF or by the SUBMIT command (if included). 

You also can specify this qualifier for an output execution queue. Used 
in this context, /WSEXTENT establishes the working set extent of the 
symbiont process for an output execution queue when the symbiont 
process is created. 

IWSQUOTA=n 
Defines for a batch job a working set quota, the amount of physical 
memory that is guaranteed to the job. 

The value set by this qualifier overrides the value defined in the user 
authorization file (UAF) of any user submitting a job to the queue. If 
you specify 0 or NONE, the working set quota value defaults to the value 
specified in the UAF or by the SUBMIT command (if included). 

You also can specify this qualifier for an output execution queue. Used 
in this context, /WSQUOTA establishes the working set quota of the 
symbiont process for an output execution queue when the symbiont 
process is created. 

example 
$ INITIALIZE/QUEUE/START/BATCH/JOB LIMIT=3 SYS$BATCH 
$ INITIALIZE/QUEUE/START/BATCH/JOB=LIMIT=l/WSEXTENT=2000 BIG_BATCH 

In this example, the first INITIALIZE/QUEUE command creates a batch 
queue called SYS$BATCH that can be used for any batch job. The 
/JOB_LIMIT qualifier allows three jobs to execute concurrently. The 
second INITIALIZE/QUEUE command creates a second batch queue 
called BIG_BATCH that is designed for large jobs. Only one job can 
execute at a time. The working set extent can be as high as 2000. 



DCL Commands DCL-115 
INQUIRE 

INQUIRE 
Reads a value from SYS$COMMAND (usually the terminal in interactive 
mode or the next line in the main command procedure) and assigns it to a 
symbol. 

format 

INQUIRE symbol-name (prompt-string] 

parameters 
symbol-name 
Specifies a 1- through 255-alphanumeric character symbol to be given a 
value. 

prompt-string 
Specifies the prompt to be displayed at the terminal when the INQUIRE 
command is executed. String values are automatically converted to 
uppercase. Also, any leading and trailing spaces and tabs are removed, 
and multiple spaces and tabs between characters are compressed to a 
single space. Enclose the prompt in quotation marks ( " ) if it contains 
lowercase characters, punctuation, multiple blanks or tabs, or an at sign 
(@). To denote an actual quotation mark in a prompt-string, enclose 
the entire string in quotation marks and use two consecutive quotation 
marks ( "" ) within the string. If you do not specify a prompt string, the 
command interpreter uses the symbol name to prompt for a value. 

qualifiers 

!GLOBAL 
Specifies that the symbol be placed in the global symbol table. If you 
do not specify the /GLOBAL qualifier, the symbol is placed in the local 
symbol table. 

/LOCAL (default) 
Specifies that the symbol be placed in the local symbol table for the 
current command procedure. 

/PUNCTUATION (default) 
/NOPUNCTUATION 
Inserts a colon ( : ) and a space after the prompt when it is dis
played on the terminal. To suppress the colon and space, specify 
/NO PUNCTUATION. 



DCL-116 DCL Commands 
INQUIRE 

example 
$ INQUIRE CHECK "Enter Y[ES] to continue" 
$ IF .NOT. CHECK THEN EXIT 

The INQUIRE command displays the following prompting message at the 
terminal: 

Enter Y[ES] to continue: 

The INQUIRE command prompts for a value, which is assigned to the 
symbol CHECK. The IF command tests the value assigned to the symbol 
CHECK. If the value assigned to CHECK is true (that is, an odd numeric 
value, a character string that begins with a T, t, Y, or y, or an odd numeric 
character string), the procedure continues executing. 

If the value assigned to CHECK is false (that is, an even numeric value, a 
character string that begins with any letter except T, t, Y, or y, or an even 
numeric character string), the procedure exits. 

INSTALL 

JOB 

Invokes the Install Utility, which enhances the performance of selected 
executable and shareable images by making them "known" to the system 
and assigning them appropriate attributes. For more information about 
the Install Utility, see the VMS System Manager's Manual in the VMS 
base documentation set. 

Identifies the beginning of a batch job submitted through a card reader. 
Each batch job submitted through the system card reader must be 
preceded by a JOB card. 

JOB cannot be abbreviated. 

format 

$ JOB user-name 

parameter 

user-name 
Identifies the user name under which the job is to be run. Specify the 
user name as you would during the login procedure. 



qualifiers 
IAFTER:time 

DCL Commands DCL-117 
JOB 

Holds the job until the specified time. If the specified time has already 
passed, the job is queued for immediate processing. The time can be 
specified as either an absolute time or a combination of absolute and delta 
times. 

/CHARACTERISTICS:{ characteristic[, •.• ]) 
Specifies one or more characteristics required for processing the job. 
If you specify only one characteristic, you can omit the parentheses. 
Codes for characteristics are installation-defined. Use the SHOW 
QUEUE/CHARACTERISTICS command to see which characteristics are 
available on your system. All the characteristics specified for the job must 
also be specified for the queue that will execute the job. If not, the job 
remains pending in the queue until the queue characteristics are changed 
or the entry is deleted with the DELETE/ENTRY command. Users need 
not specify every characteristic of a queue with the JOB command as long 
as the ones they specify are a subset of the characteristics set for that 
queue. The job also runs if no characteristics are specified. 

ICLl:file-name 
Specifies a different command language interpreter (CLI) with which to 
process the job. The file name specifies that the CLI be 
SYS$SYSTEM:filename.EXE. The default CLI is that defined in the user 
authorization file (UAF). 

ICPUTIME:n 
Specifies a CPU time limit for the batch job. Time can be specified as 
delta time, 0, NONE, or INFINITE. Specify 0 or INFINITE to request an 
infinite amount of time. Specify NONE when you want the CPU time to 
default to your UAF value or the limit specified on the queue. Note that 
you cannot request more time than permitted by the base queue limits or 
your UAF. 

/DELETE (default) 
INODELETE . 
Controls whether the batch input file is deleted after the job is processed. 
If you specify /NO DELETE, the file is saved in the user's default directory 
under the default name INPBATCH.COM. If you specify the /NAME 
qualifier, the file name of the batch input file is the same as the job name 
you supply with /NAME. 

/HOLD 
INOHOLD (default) 
Controls whether or not the job is to be made available for immediate 
processing. 



DCL-118 DCL Commands 
JOB 

If you specify /HOLD, the job is not released for processing until you 
specifically release it with the /NOHOLD or /RELEASE qualifier of the 
SET QUEUE/ENTRY command. 

/KEEP 
INOKEEP (default) 
Controls whether the log file is deleted after it is printed. /NOKEEP is 
the default unless /NOPRINTER is specified. 

ILOG_FILE:file-spec 
/NOLOG_FILE 
Controls whether a log file with the specified name is created for the job 
or whether a log file is created. When you use the /LOG_FILE qualifier, 
the system writes the log file to the file you specify. If you use /NOLOG_ 
FILE, no log file is created. If you specify neither form of the qualifier, the 
log file is written to a file in your default directory that has the same file 
name as the first command file in the job and a file type of LOG. Using 
neither /LOG_FILE nor /NOLOG_FILE is the default. You can use the 
/LOG_FILE qualifier to specify that the log file be written to a different 
device. 

/NAME= job-name 
Specifies a file name string to be used as the job name and as the file 
name for both the batch job log file and the command file. The job name 
must be 1 to 39 alphanumeric characters and must be a valid file name. 
The default log file name is INPBATCH.LOG; the default command file 
name is INPBATCH.COM. 

/NOTIFY 
INONOTIFY (default) 
Controls whether a message is broadcast to any terminal at which you are 
logged in, notifying you when your job completes or aborts. 

/PARAMETERS:{parameter[, ••• ]) 
Specifies from 1 through 8 optional parameters that can be passed to 
the command procedure. The parameters define values to be equated to 
the symbols Pl through PS in the batch job. The symbols are local to 
the specified command procedure. If you specify only one parameter, you 
can omit the parentheses. The commas delimit individual parameters. 
If the parameter contains any spaces, special characters or delimiters, 
or lowercase characters, enclose it in quotation marks. Individual 
parameters cannot exceed 255 characters. 

/PRINTER:queue-name 
!NO PRINTER 
Controls whether the job log file is queued to the specified queue for 
printing when the job is complete. The default print queue for the log file 
is SYS$PRINT. 



DCL Commands DCL-119 
JOB 

/PRIORITY:n 
Requires OPER or alter priority (ALTPRI) privilege to raise the 
priority above the value of the SYSGEN parameter MAXQUEPRI. 
Specifies the job scheduling priority for the specified job. The value of n is 
an integer from 0 through 255, where 0 is the lowest priority and 255 is 
the highest. The default value for /PRIORITY is the value of the SYSGEN 
parameter DEFQUEPRI. 

/QUEUE:queue-name[:] 
Specifies the name of the batch queue in which the job is to be entered. If 
you do not specify /QUEUE, the job is placed in the default system batch 
job queue, SYS$BATCH. 

!RESTART 
INORESTART (default) 
Specifies whether the job restarts after a system failure or a 
STOP/QUEUE/REQUEUE command. 

/TRAILING_BLANKS (default) 
INOTRAILING_BLANKS 
Controls whether input cards in the card deck are read in card image 
form or input records are truncated at the last nonblank character. By 
default, the system does not remove trailing blanks from records read 
through the card reader. 

/WSDEFAULT =n 
Defines a working set default for the batch job; the /WSDEFAULT 
qualifier overrides the working set size specified in the user authorization 
file (UAF). 
N can be any positive integer from 1 to 65,535, 0, or the keyword NONE. 
A value of 0 or the keyword NONE sets the default value to the value 
specified either in your UAF or by the working set quota established for 
the queue. You cannot request a value higher than your default. 

/WSEXTENT :n 
Defines a working set extent for the batch job; the /WSEXTENT qualifier 
" .... ,,.~..;i,,.,.. -4.'I"'" ...... "-l •. ~ ......... '"'"'"° "'~"°"'""'"° ~ ..... +1...,.. TT A 14' 1\.T n.,..,... l....o. .,,.,...,.., .... ,..o~+~uo ~ .... +onoo,.. 
v-vc;.L.1..1.u.oc;o ".l.J.~ 'IYVJ.A.M..L.l.6 0~11 'C;;.A.U\J.L.i." .L.i..L "1.1.JL"" ""'""""~·· ..... "&A..a..i. ....,......,. ...-..&..A.J .t''VU.&.W.&.WV ... .&. ... """"b..., ... 

from 1 to 65,535, 0, or the keyword NONE. A value of 0 or the keyword 
NONE sets the default value either to the value specified in the UAF or 
working set extent established for the queue. You cannot request a value 
higher than your default. 

/WSQUOTA:n 
Defines the maximum working set size (working set quota) for the batch 
job; the /WSQUOTA qualifier overrides the value in the UAF. N can be 
any positive integer from 1 to 65,535, 0, or the keyword NONE. You 
cannot request a value higher than your default. 



DCL-120 DCL Commands 
JOB 

example 

$EOJ 

$PRINT AVERAGE 

... Input Data ... 

$RUN AVERAGE 

$ LINK AVERAGE 

... Source Statements ... 

$ON WARNING THEN EXIT 

$ PASSWORD HENRY 

$JOB HIGGINS 

ZK-0787-GE 

The JOB and PASSWORD cards identify and authorize the user 
HIGGINS to enter batch jobs. The command stream consists of a 
FORTRAN command and FORTRAN source statements to be compiled. 
The file name AVERAGE following the device name SYS$INPUT provides 
the compiler with a file name for the object and listing files. The output 
files are cataloged in user HIGGINS's default directory. 

If the compilation is successful, the LINK command creates an executable 
image and the RUN command executes it. Input for the program follows 
the RUN command in the command stream. The last command in the job 
prints the program listing. The last card in the deck contains the EOJ 
(end of job) command. 



Lexical Functions DCL-121 

Lexical Functions 

A set of functions that return information about character strings and 
attributes of the current process. 

description 

The command language includes constructs, called lexical functions, that 
return information about the current process and about arithmetic and 
string expressions. The general format of a lexical function is as follows: 

F$function-name([args, ... ]) 

F$ 

function-name 

() 

args, ... 

Indicates that what follows is a lexical function. 

A keyword specifying the function to be evaluated. 
Function names can be truncated to any unique 
abbreviation. 

Enclose function arguments, if any. The parentheses are 
required for all functions, including functions that do not 
accept any arguments. 

Specify arguments for the function, if any, using integer 
or character string expressions. 

Table DCL-1 lists each lexical function and briefly describes the 
information that each function returns. A detailed description of each 
function, including examples, is given in the following pages. 

Table DCL-1: Summary of Lexical Functions 

Function 

F$CONTEXT 

F$CVSI 

F$CVTIME 

F$CVUI 

F$DffiECTORY 

F$EDIT 

Description 

Specifies selection criteria for use with the F$PID 
function. 

Extracts bit fields from character string data and 
converts the result. as a signed value, to an integer. 

Retrieves information about an absolute, combination, or 
delta time string. 

Extracts bit fields from character string data and 
converts the result, as an unsigned value, to an integer. 

Returns the current default directory name string. 

Edits a character string based on the edits specified. 

(continued on next page) 



DCL-122 Lexical Functions 

Table DCL-1 {Cont.): Summary of Lexical Functions 

Function 

F$ELEMENT 

F$ENVIRONMENT 

F$EXTRACT 

F$FAO 

F$FILE_ATTRIBUTES 

F$GETDVI 

F$GETJPI 

F$GETQUI 

F$GETSYI 

F$IDENTIFIER 

F$INTEGER 

F$LENGTH 

F$LOCATE 

F$MESSAGE 

F$MODE 

F$PARSE 

F$PID 

Description 

Extracts an element from a string in which the elements 
are separated by a specified delimiter. 

Obtains information about the DCL command 
environment. 

Extracts a substring from a character string expression. 

Invokes the $FAO system service to convert the specified 
control string to a formatted ASCII output string. 

Returns attribute information for a specified file. 

Invokes the $GETDVI system service to return a 
specified item of information for a specified device. 

Invokes the $GETJPI system service to return 
accounting, status, and identification information for 
a process. 

Invokes the $GETQUI system service to return 
information about queues, batch and print jobs currently 
in those queues, form definitions, and characteristic 
definitions kept in the system job queue file. 

Invokes the $GETSYI system service to return status 
and identification information about the local system, or 
about a node in the local cluster, if your system is part of 
a cluster. 

Converts an identifier in named format to its integer 
equivalent, or vice versa. 

Returns the integer equivalent of the result of the 
specified expression. 

Returns the length of a specified string. 

Locates a character or character substring within a string 
and returns its offset within the string. 

Returns the message text associated with a specified 
system status code value. 

Shows the mode in which a process is executing. 

Invokes the $PARSE RMS service to parse a file 
specification and return either the expanded file 
specification or the particular file specification field 
that you request. 

For each invocation, returns the next process identifica
tion number in sequence. 

(continued on next page) 



Lexical Functions DCL-123 

Table DCL-1 {Cont.): Summary of Lexical Functions 

Function 

F$PRIVILEGE 

F$PROCESS 

F$SEARCH 

F$SETPRV 

F$STRING 

F$TIME 

F$TRNLNM 

F$TYPE 

F$USER 

F$VERIFY 

F$CONTEXT 

Description 

Returns a value of "TRUE" or "FALSE" depending on 
whether your current process privileges match the 
privileges listed in the argument. 

Returns the current process name string. 

Invokes the $SEARCH RMS service to search a directory 
file, and returns the full file specification for a file you 
name. 

Sets the specified privileges and returns a list of 
keywords indicating the previous state of these privileges 
for the current process. 

Returns the string equivalent of the result of the specified 
expression. 

Returns the current date and time of day, in the format 
dd-mm-yyy hh:mm:ss.cc. 

Translates a logical name and returns the equivalence 
name string or the requested attributes of the logical 
name. 

Determines the data type of a symbol. 

Returns the current user identification code (UIC). 

Returns the integer 1 if command procedure verification 
is set on; returns the integer 0 if command procedure 
verification is set off. The F$VERIFY function also can 
set new verification states. 

Specifies selection criteria for use with the F$PID function. The 
F$CONTEXT function enables the F$PID function to obtain information 
about processes from any node in a VAXciuster. 

format 
F$CONTEXT(contexHype, context-symbol, selection-item, selection-value, 

value-qualifier) 



DCL-124 Lexical Functions 
F$CONTEXT 

arguments 
context-type 
The type of context to be built. The following table shows the valid 
context type that is currently available and the lexical function for which 
a context is built. 

Context 
Type 

PROCESS 

Description 

For use in constructing selection criteria for F$PID 

context-symbol 
A symbol that DCL uses to refer to the context memory being constructed 
by F$CONTEXT. F$PID uses this context symbol to process the 
appropriate list of PIDs. 

Specify the context symbol by using a symbol. The first time you use 
the F$CONTEXT function in a command procedure, use a symbol that is 
either undefined or equated to the null string(""). The symbol created 
will be a local symbol of type "PROCESS_CONTEXT11

• When the context 
is no longer valid-that is, when all PIDs have been retrieved by F$PID 
calls or an error occurs during one of these calls-the symbol no longer 
has a type of 11PROCESS_CONTEXT11

• Then you can use the F$TYPE 
function in the command procedure to find out if it is necessary to cancel 
the context. 

After setting up the selection criteria, use this context symbol when 
calling F$PID. 

selection-item 
The selection item is a keyword that tells F$CONTEXT which selection 
criteria to use. Use only one selection-item keyword per call to 
F$CONTEXT. 

The following table shows valid selection-item keywords for the PROCESS 
context-type: 

Selection Selection Value 
Item Value Qualifiers Comments 

ACCOUNT string EQL,NEQ Valid account name or list of names. 
Wildcard characters are allowed. 

AUTHPRI integer GEQ, GTR, Valid authorized base priority (0-31). 
LEQ, LSS, 
EQL,NEQ 



Lexical Functions DCL-125 
F$CONTEXT 

Selection Selection Value 
Item Value Qualifiers Comments 

CANCEL This keyword will cancel the selection 
criteria for this context. 

CURPRIV keyword ALL, ANY, Valid privilege name keyword or list of 
EQL,NEQ keywords. 

GRP string GEQ, GTR, Group number or name. 
LEQ, LSS, 
EQL,NEQ 

HW_MODEL integer EQL,NEQ Valid hardware model number. 

HW_NAME string EQL,NEQ Valid hardware name or a list of 
keywords. Wildcard characters are 
allowed. 

JOBPRCCNT integer GEQ, GTR, Subprocess count for entire job. 
LEQ, LSS, 
EQL,NEQ 

JOBTYPE keyword EQL,NEQ Valid job-type keyword. Valid keywords 
are DETACHED, NETWORK, BATCH, 
LOCAL, DIALUP, and REMOTE. 

MASTER_PID string EQL,NEQ PID of master process. 

MEM string or GEQ, GTR, UIC member number or name. 
integer LEQ, LSS, 

EQL,NEQ 

MODE keyword EQL, NEQ Valid process mode keyword. Valid 
keywords are OTHER, NETWORK, 
BATCH, and INTERACTIVE. 

NODE_CSID integer EQL,NEQ Node's cluster ID number. 

NODENAME string EQL,NEQ Node name or list of node names. 
Wildcard characters are allowed. The 
default is your local node. To request all 
nodes, use the value"*". 

OWNER string EQL, NEQ PID of immediate parent process. 

PR CC NT integer GEQ, GTR, Subprocess count of process. 
LEQ, LSS, 
EQL,NEQ 

PRCNAM string EQL,NEQ Process name or list of process names. 
Wildcard characters are allowed. 

PRI integer GEQ, GTR, Process priority level number (0-31). 
LEQ, LSS, 
EQL, NEQ 



DCL-126 Lexical Functions 
F$CONTEXT 

Selection Selection 
Item Value 

PRIB integer 

STATE keyword 

STS keyword 

TERMINAL string 

UIC string 

USERNAME string 

selection-value 

Value 
Qualifiers Comments 

GEQ, GTR, Base process priority level number (0-31). 
LEQ, LSS, 
EQL,NEQ 

EQL,NEQ Valid process state keyword. 

EQL,NEQ Valid process status keyword. 

EQL,NEQ Terminal name or list of names. Wildcard 
characters are allowed. 

EQL,NEQ UIC identifier (that is, of the form 
"[group,member]" ). 

EQL,NEQ User name or list of user names. 
Wildcard characters are allowed. 

Value of the selection criteria. For example, to process all the processes 
running on node MYVAX, specify 11MYVAX11 with the 11 NODENAME 11 

keyword. For example: 
$ X = F$CONTEXT("PROCESS", ctx, "NODENAME", "MYVAX", "EQL") 

Values that are lists are valid with some selection items. The items must 
be separated by commas. The following example specifies a list of the 
nodes MYVAX, HERVAX, and HISVAX: 
$ X = F$CONTEXT("PROCESS", ctx, "NODENAME", "MYVAX,HERVAX,HISVAX", "EQL") 

You can use wildcard characters for some values. Using wildcard 
characters for selection items is similar to using wildcard characters 
for file names. Use the asterisk ( *) character to match zero or more 
characters. Use the percent ( % ) character to match exactly one character. 

value-qualifier 
You must qualify selection values. You can qualify a number, for example, 
by requesting that the selection be based on the process value less than 
(LSS), less than or equal to (LEQ), greater than (GTR), greater than or 
equal to (GEQ), equal to (EQL), or not equal to (NEQ) the value specified 
in the call to F$PID. 

You can qualify some lists with the ALL, ANY, EQL, or NEQ keywords. 
Such lists are usually masks such as the process privilege mask, which 
consists of the set of enabled privileges. ALL requires that all items in the 
list be true for a process; ANY requests that any item in the list be part 
of the attributes of a process; EQL means that the values must match 
exactly (that is, values not specified must not be true of the process); and 
NEQ requires that the value must not match. 



Lexical Functions 
F$CONTEXT 

DCL-127 

The difference between ALL and EQL is that the values specified with 
ALL must exist, but other unspecified values can exist also. EQL requires 
that all values specified must exist, and all others may not. For example, 
to request those processes whose current privileges include TMPMBX and 
OPER, but may include other privileges, specify the ALL keyword. To 
request those processes whose current privileges are TMPMBX and OPER 
exclusively, specify the EQL keyword. 

description 

Use the F$CONTEXT function to set up selection criteria for the F$PID 
function. 

The F$CONTEXT function is called as many times as necessary to 
produce the criteria needed; however, each call can specify only one 
selection item. Lists of item values are allowed, where appropriate, and 
more than one context can be operated upon at a time. 

After establishing the selection criteria with appropriate calls to 
F$CONTEXT, F$PID is called repeatedly to return all the process 
identification numbers (PIDs) that meet the criteria specified in the 
F$CONTEXT function. When there are no more such processes, the 
F$PID function returns a null string. 

After the F$PID function is called, the context symbol is considered 
"frozen"; F$CONTEXT cannot be called again with the same context 
symbol until the associated context selection criteria have been deleted. If 
you attempt to set up additional selection criteria with the same context 
symbol, an error message is displayed. However, the context and selection 
criteria are not affected and calls to F$PID can continue. 

The F$CONTEXT function uses process memory to store the selection 
criteria. This memory is deleted under two circumstances. Memory is 
deleted when F$PID is called and a null string is returned-that is, when 
all processes that meet the selection criteria have been returned. Memory 
also is deleted if the CANCEL selection-item keyword is used in a call to 
F$CONTEXT with an established context. This type of call is appropriate 
for a CTRL/Y or another condition handling routine. 



DCL-128 Lexical Functions 
F$CONTEXT 

example 
$!Establish an error and CTRL/Y handler 
$! 
$ ON ERROR THEN GOTO error 
$ ON CONTROL Y THEN GOTO error 
$! -

$ ctx = "" 
$temp= F$CONTEXT ("PROCESS", ctx, "NODENAME", "*","EQL") 
$temp= F$CONTEXT ("PROCESS", ctx, "USERNAME", "M*,SYSTEM","EQL"} 
$ temp= F$CONTEXT ("PROCESS", ctx, "CURPRIV", "SYSPRV,OPER", "ALL") 
$ ! 
$!Loop over all processes that meet the selection criteria. 
$!Print the PIO and the name of the image for each process. 
$ ! 
$loop: 
$ pid = F$PID(ctx) 
$ IF pid .EQS. "" 
$ THEN 
$ GOTO endloop 
$ ELSE 
$ image= F$GETJPI(pid,"IMAGNAME") 
$ SHOW SYMBOL pid 
$ WRITE SYS$0UTPUT image 
$ GOTO loop 
$ ENDIF 
$!The loop over the processes has ended. 
$! 
$endloop: 
$ ! 
$ EXIT 
$! 
$!Error handler. Clean up the context's memory with the CANCEL selection 
$!item keyword. 
$! 
$error: 
$ IF F$TYPE(ctx) .eqs. "PROCESS CONTEXT" THEN -
-$ temp= F$CONTEXT ("PROCESS",-ctx, "CANCEL") 
$ ! 
$ EXIT 

In this example, F$CONTEXT is called three times to set up selection 
criteria. The first call requests that the search take place on all nodes in 
the cluster. The second call requests that only the processes whose user 
name either starts with an "M" or is 11 SYSTEM 11 be processed. The third 
call restricts the selection to those processes whose current privileges 
include both SYSPRV and OPER and can have other privileges set. 

The command lines inside of loop and endloop continually call F$PID to 
obtain the processes that meet the criteria set up in the F$CONTEXT 
calls. After retrieving each PID, F$GETJPI is called to return the name 
of the image running in the process. Finally, the procedure displays the 
name of the image. 



Lexical Functions 
F$CONTEXT 

DCL-129 

In case of error or CTRUY, control is passed to error and the context is 
closed if necessary. In this example, note the check for the symbol type 
PROCESS_ CONTEXT. If the symbol has this type, selection criteria must 
be canceled by a call to F$CONTEXT. If the symbol is not of the type 
PROCESS_CONTEXT, either selection criteria have not been set up yet 
in F$CONTEXT, or the symbol has been used with F$PID until an error 
occurred or until the end of the process list was reached. 

F$CVSI 
Converts the specified bits in the specified character string to a signed 
number. 

format 

F$CVSI (start-bit, number-of-bits, string) 

arguments 
start-bit 
The offset of the first bit to be extracted. The low-order (rightmost) bit of 
a string is position number 0 for determining the offset. Specify the offset 
as an integer expression. 

number-of-bits 
The length of the bit string to be extracted, which must be less than or 
equal to the number of bits in the string. 

string 
The string from which the bits are taken. Specify the string as a 
character string expression. 

example 
$ A[0,32] = %X2B 
$ SHOW SYMBOL A 

A= "+ .. ·" 
$ Y = l<'~rvc:T ~n. ll, n~ 
$ SHOW SYMBOL X 

X = -5 Hex = FFFFFFFB Octal = 37777777773 

This example uses an arithmetic overlay to assign the hexadecimal value 
2B to all 32 bits of the symbol A. See the description of the Assignment 
Statement for more information on arithmetic overlays. 

The symbol A has a string value after the overlay because it was 
previously undefined. (If a symbol is undefined, it has a string value 
as a result of an arithmetic overlay. If a symbol was previously defined, it 
retains the same data type after the overlay.) The hexadecimal value 2B 
corresponds to the ASCII value of the plus sign ( + ). 



DCL-130 Lexical Functions 
F$CVSI 

Next, the F$CVSI function extracts the low-order 4 bits from the 
symbol A; the low-order 4 bits contain the binary representation of the 
hexadecimal value B. These bits are converted, as a signed value, to an 
integer. The converted value, -5, is assigned to the symbol X. 

F$CVTIME 
Converts an absolute or a combination time string to a string of the 
form yyyy-mm-dd hh:mm:ss.cc. The F$CVTIME function can also return 
information about an absolute, combination, or delta time string. 

format 

F$CVTIME([inpuLtime] [,outpuLtime_tormat] [,outpuLfield]) 

arguments 
input_ time 
Specifies a string containing an absolute, combination, or delta time, or 
TODAY, TOMORROW, or YESTERDAY. Specify the input time string 
as a character string expression. If the input_time argument is omitted 
or specified as a null string (" "), the current system date and time, in 
absolute format, is used. If parts of the date field are omitted, the missing 
values default to the current date. If parts of the time field are omitted, 
the missing values default to zero. If the input_time argument is a delta 
time, you must specify the output_time_format argument as DELTA. 

output_time_format 
Specifies the time format for the information you want returned. Specify 
the output_time_format argument as one of the following character string 
expressions: 

ABSOLUTE 

COMPARISON 
(default) 

DELTA 

output_ field 

The requested information should be returned in absolute time 
format, which is dd-mmm-yyyy hh:mm:ss.cc. 

The requested information should be returned in the form yyyy-mm-dd 
hh:mm:ss.cc; used for comparing two times. 

The requested information should be returned in delta format, which 
is dddd-hh:mm:ss.cc. If the input_ time argument is a delta time, the 
output_time_format argument must be DELTA. 

Specifies a character string expression containing one of the following 
(do not abbreviate): DATE, MONTH, DATETIME (default), SECOND, 
DAY, TIME, HOUR, WEEKDAY, HUNDREDTH, YEAR, MINUTE. The 
information fs returned in the time format specified by the output_time_ 
format argument. If the input_time argument is a delta time and the 
output_time_format argument is DELTA, you cannot specify MONTH, 
WEEKDAY, or YEAR. 



example 
$ TIME= F$TIME() 
$ SHOW SYMBOL TIME 

TIME = "19-APR-1990 10:56:23.10" 
$ TIME = F$CVTIME(TIME) 
$ SHOW SYMBOL TIME 

TIME = "1990-04-19 10:56:23.10" 

Lexical Functions DCL-131 
F$CVTIME 

This example uses the F$TIME function to return the system time as a 
character string and to assign the time to the symbol TIME. Then the 
F$CVTIME function is used to convert the system time to an alternate 
time format. Note that you do not need to place quotation marks around 
the argument TIME because it is a symbol. Symbols are automatically 
evaluated when they are used as arguments for lexical functions. 

You can use the resultant string to compare two dates (using .LTS. and 
.GTS. operators). For example, you can use F$CVTIME to convert two 
time strings and store the results in the symbols TIME_l and TIME_2. 
You can compare the two values, and branch to a label, based on the 
following results: 
$ IF TIME 1 .LTS. TIME_2 THEN GOTO FIRST 

F$CVUI 
Extracts bit fields from character string data and converts the result to 
an unsigned number. 

format 

F$CVUI ( start-bit,number-of-bits,string) 

arguments 

start-bit 
Specifies the offset of the first bit to be extracted. The low-order 
(rightmost) bit of a string is position number 0 for determining the offset. 
Specify the offset as an integer expression. 

number-of-bits 
Specifies the length of the bit-string to be extracted, which must be less 
than or equal to the number of bits in the string argument. 

string 
Specifies the character string to be edited. 



DCL-132 

example 

Lexical Functions 
F$CVUI 

$ A[0,32) = %X2B 
$ SHOW SYMBOL A 

A= "+ ... " 
$ X = F$CVUI(0,4,A) 
$ SHOW SYMBOL X 

X = 11 Hex = OOOOOOOB Octal = 00000000013 

This example uses an arithmetic overlay to assign the hexadecimal 
value 2B to all 32 bits of the symbol A. The symbol A has a string value 
after the overlay because it was previously undefined. (If a symbol is 
undefined, it has a string value as a result of an arithmetic overlay. If 
a symbol was previously defined, it retains the same data type after the 
overlay.) The hexadecimal value 2B corresponds to the ASCII 
character"+". 

Next, the F$CVUI function extracts the low-order 4 bits from the 
symbol A; the low-order 4 bits contain the binary representation of the 
hexadecimal value B. These bits are converted, as a signed value, to an 
integer. The converted value, 11, is assigned to the symbol X. 

F$DIRECTORY 
Returns the current default directory name string. The F$DIRECTORY 
function has no arguments, but must be followed by parentheses. 

format 

F$DIRECTORY() 

arguments 

None. 

example 
$ SAVE_DIR = F$DIRECTORY() 
$ SET DEFAULT [MALCOLM.TESTFILES] 

$ SET DEFAULT 'SAVE DIR' 

This example shows an excerpt from a command procedure that uses the 
F$DIRECTORY function to save the current default directory setting. 
The assignment statement equates the symbol SAVE_DIR to the current 
directory. Then the SET DEFAULT command establishes a new default 



Lexical Functions 
F$DIRECTORY 

DCL-133 

directory. Later, the symbol SAVE_DIR is used in the SET DEFAULT 
command that restores the original default directory. 

Note that you can use the F$ENVIRONMENT function with the 
DEFAULT keyword to return the default disk and directory. You should 
use the F$ENVIRONMENT function rather than the F$DIRECTORY 
function in situations involving more than one disk. 

F$EDIT 
Edits the character string based on the edits specified in the edit-list. 

format 
F$EDIT (string, edit-list) 

arguments 
string 
A character string to be edited. Quoted sections of the string are not 
edited. 

edit-list 
A character string containing one or more of the following keywords 
that specify the types of edits to be made to the string. If you use a 
list of keywords, separate them with commas. Do not abbreviate these 
keywords. 

Edit 

COLLAPSE 

COMPRESS 

LOWERCASE 

TRIM 

UNCOMMENT 

UP CASE 

Action 

Removes all spaces or tabs 

Replaces multiple spaces or tabs with a single space 

Changes all uppercase characters to lowercase 

Removes leading and trailing spaces or tabs 

Changes all lowercase characters to uppercase 



DCL-134 

example 

Lexical Functions 
F$EDIT 

$ LINE = " THIS LINE CONTAINS A "" QUOTED "" WORD" 
$ SHOW SYMBOL LINE 

LINE = " THIS LINE CONTAINS A " QUOTED " WORD" 
$NEW LINE= F$EDIT(LINE, "COMPRESS, TRIM") 
$ SHOW SYMBOL NEW_LINE 

NEW LINE = "THIS LINE CONTAINS A " QUOTED " WORD" 

- This example uses the F$EDIT function to compress and trim'. a string by 
replacing multiple blanks with a single blank, and by removing leading 
and trailing blanks. The string LINE contains quotation marks around 
the word QUOTED. (To enter quotation marks into a character string, use 
double quotation marks in the assignment statement.) 

Note that the F$EDIT function does not compress the spaces in the 
quoted section of the string; therefore, the spaces are retained around the 
word QUOTED. 

F$ELEMENT 
Extracts one element from a string of elements. 

format 

F$ELEMENT (element-number, delimiter, string) 

arguments 

element-number 
The number of the element to extract (numbering begins with zero). 
Specify the element-number argument as an integer expression. If the 
element-number argument exceeds the number of elements in the string, 
F$ELEMENT returns the delimiter. 

delimiter 
A character used to separate the elements in the string. Specify the 
delimiter as a character string expression. 

string 
A string containing a delimited list of elements. Specify the string as a 
character string expression. 



Lexical Functions 
F$ELEMENT 

DCL-135 

example 
$ DAY LIST = "MON/TUE/WED/THU/FRI/SAT/SUN" 
$INQUIRE DAY "ENTER DAY (MON TUE WED THU FRI SAT SUN)" 
$ NUM = 0 
$ LOOP: 
$ 
$ 
$ 
$ 
$ 
$ 
$ MON: 

LABEL= F$ELEMENT(NUM,"/",DAY LIST) 
IF LABEL .EQS. "/" THEN GOTO END 
IF DAY .EQS. LABEL THEN GOTO 'LABEL' 
NUM = NUM +1 
GOTO LOOP 

This example sets up a loop to test an input value against the elements in 
a list of values. If the value for DAY matches one of the elements in 
DAY _LIST, control is passed to the corresponding label. If the value 
returned by the F$ELEMENT function matches the delimiter, the value 
DAY was not present in the DAY_LIST, and control is passed to the label 
END. 

F$ENVIRONMENT 
Returns information about the current DCL command environment. 

format 

F$ENVIRONMENT (item) 

argument 

item 
A keyword, specified as a character string, that specifies the type of 
information to be returned. Do not abbreviate these keywords. Specify 
one of the following keywords: 



DCL-136 Lexical Functions 
F$ENVIRONMENT 

Item 

CAPTIVE 

CONTROL 

DEFAULT 

DEPTH 

INTERACTIVE 

KEY_STATE 

MAX_DEPTH 

MESSAGE 

NOCONTROL 

ON_CONTROL_Y 

ON_SEVERITY 

OUTPUT_RATE 

PROCEDURE 

Data Type Information Returned 

String TRUE if you are logged in to a captive 
account. 

String Control characters currently enabled with 
SET CONTROL. Multiple characters are 
separated by commas; if no control characters 
are enabled, the null string("") is returned. 

String 

Integer 

String 

String 

Integer 

String 

String 

String 

String 

String 

String 

Current default device and directory name. 
The returned string is the same as SHOW 
DEFAULT output. 

Current command procedure depth. 

TRUE if the process is executing interactively. 

Current locked keypad state. See the 
description of the DEFINE/KEY command 
for more information on keypad states. 

Maximum allowable command procedure 
depth. 

Current setting of SET MESSAGE qualifiers. 
Each qualifier in the string is prefaced 
by a slash; therefore, the output from 
F$ENVIRONMENT("MESSAGE") can be 
appended to the SET MESSAGE command to 
form a valid DCL command line. 

Control characters currently disabled with 
SET NOCONTROL. Multiple characters are 
separated by commas; if no control characters 
are disabled, the null string is returned. 

If issued from a command procedure, returns 
TRUE if ON_CONTROL_Y is set. ON_ 
CONTROL_Y always returns FALSE at DCL 
command level. 

If issued from a command procedure, returns 
the severity level at which the action specified 
with the ON command is performed. ON_ 
SEVERITY returns "NONE" when SET 
NOON is in effect or at DCL command level. 

Delta time string containing the default 
output rate, which indicates how often data 
is written to the batch job log file while 
the batch job is executing. OUTPUT_RATE 
returns a null string if used interactively. 

File specification of the current command 
procedure. PROCEDURE returns a null 
string if used interactively. 



Item Data Type 

PROMPT String 

PROMPT_CONTROL String 

PROTECTION String 

SYMBOL_SCOPE String 

VERIFY_IMAGE String 

VERIFY_PROCEDURE String 

example 
$ SAVE MESSAGE = F$ENVIRONMENT("MESSAGE") 
$ SET MESSAGE/NOFACILITY/NOIDENTIFICATION 

$ SET MESSAGE'SAVE_MESSAGE' 

Lexical Functions 
F$ENVIRONMENT 

Information Returned 

Current DCL prompt. 

DCL-137 

TRUE if a carriage return and line feed 
precede the prompt. 

Current default file protection. 

[NO]LOCAL,[NO]GLOBAL to indicate the 
current symbol scoping state. 

TRUE if image verification 
(SET VERIFY=IMAGE) is in effect. 

TRUE if procedure verification 
(SET VERIFY=PROCEDURE) is in effect. 

This example uses the F$ENVIRONMENT function to save the current 
message setting before changing the setting. At the end of the command 
procedure, the original message setting is restored. The apostrophes 
surrounding the symbol SAVE_MESSAGE indicate that the value for the 
symbol should be substituted. 

F$EXTRACT 
Extracts the specified characters from the specified string. 

format 

F$EXTRACT (start,length,string) 

arguments 
start 
Specifies the offset of the starting character of the string you want to 
extract. Specify the start argument as an integer expression that is 
greater than or equal to 0. 



DCL-138 Lexical Functions 
F$EXTRACT 

length 
Specifies the number of characters you want to extract; must be less 
than or equal to the size of the string. Specify the length as an integer 
expression that is greater than or equal to 0. 

string 
Specifies the character string to be edited. Specify the string as a 
character string expression. 

example 
$IF F$EXTRACT(12,2,F$TIME()) .GES. "12" THEN GOTO AFTERNOON 
$ MORNING: 
$WRITE SYS$0UTPUT "Good morning!" 
$ EXIT 
$ AFTERNOON: 
$WRITE SYS$0UTPUT "Good afternoon!" 
$ EXIT 

This example shows a procedure that displays a different message, 
depending on whether the current time is morning or afternoon. It first 
obtains the current time of day by using the F$TIME function. The 
F$TIME function returns a character string, which is the string argument 
for the F$EXTRACT function. The F$TIME function is automatically 
evaluated when it is used as an argument, so you do not need to use 
quotation marks. 

Next, the F$EXTRACT function extracts the hours from the date and 
time string returned by F$TIME. The string returned by F$TIME always 
contains the hours field beginning at an offset of 12 characters from the 
start of the string. 

The F$EXTRACT function extracts two characters from the string, 
beginning at this offset, and compares the string value extracted with 
the string value 12. If the comparison is true, then the procedure writes 
"Good afternoon!". Otherwise, it writes "Good morning!". 

Note that you can also use the F$CVTIME function to extract the hour 
field from a time specification. This method is easier than the one shown 
in the above example. 



F$FAO 

Lexical Functions 
F$FAO 

DCL-139 

Invokes the $FAO system service to convert character and numeric 
input to character strings. (FAO stands for formatted ASCII output.) By 
specifying formatting instructions, you can use the F$FAO function to 
convert integer values to character strings, insert carriage returns and 
form feeds, insert text, and so on. 

format 

F$FAO ( control-string[,arg 1,arg2 ... arg 15]) 

arguments 

control-string 
Specifies the fixed text of the output string, consisting of text and any 
number of FAO directives. The control string may be any length. Specify 
the control string as a character string expression. 

Table DCL-2 lists the FAO directives you can specify in a control string. 

arg1,arg2 •.. arg15 
Specifies the arguments required by the FAO directives used in the control 
string. Specify the arguments argl,arg2 ... arg15 as integer or character 
string expressions. Table DCL-2 lists the argument types required by 
each FAO directive. 

If you specify an argument whose type (integer or string) does not match 
that of the corresponding directive, unpredictable results are returned. 
You can use the F$INTEGER and F$STRING lexical functions to convert 
arguments to the proper type. 

description 

Specify an FAO directive using any one of the following formats: 

Format 

!DD 

!n(DD) 

!lengthDD 

!n(lengthDD) 

Function 

One directive 

A directive repeated a specified number of times 

A directive that places its output in a field of a specified length 

A directive that is repeated a specified number of times and 
generates output fields of a specified length 

The exclamation point ( ! ) indicates that the following character or 
characters are to be interpreted as an FAO directive. DD represents a 
one- or two-character uppercase code indicating the action that F$FAO is 
to perform. When specifying repeat counts, n is a decimal value specifying 



DCL-140 Lexical Functions 
F$FAO 

the number of times the directive is to be repeated. The length value is a 
decimal value that instructs F$FAO to generate an output field of ''length" 
characters. 

The FAO directives are grouped in the following categories: 

• Character string insertion 

• Zero-filled numeric conversion 

• Blank-filled numeric conversion 

• Special formatting 

• Parameter interpretation 

Table DCL-2 summarizes the FAO directives and shows the required 
argument types. 

Table DCL-2: Summary of FAO Directives 

Directive Argument Type 

Character string insertion: 

!AS String 

Zero-filled numeric conversion: 

!OB Integer 

!OW Integer 

!OL Integer 

!XB Integer 

!XW Integer 

!XL Integer 

!ZB Integer 

!ZW Integer 

!ZL Integer 

Blank-filled numeric conversion: 

!UB Integer 

!UW Integer 

!UL Integer 

Description 

Inserts a character string as is 

Converts a byte to octal notation 

Converts a word to octal notation 

Converts a longword to octal notation 

Converts a byte to hexadecimal notation 

Converts a word to hexadecimal notation 

Converts a longword to hexadecimal notation 

Converts a byte to decimal notation 

Converts a word to decimal notation 

Converts a longword to decimal notation 

Converts a byte to decimal notation 
without adjusting for negative numbers 

Converts a word to decimal notation 
without adjusting for negative numbers 

Converts a longword to decimal notation 
without adjusting for negative numbers 

(continued on next page) 



Lexical Functions 
F$FAO 

DCL-141 

Table DCL-2 (Cont.): Summary of FAO Directives 

Directive Argument Type 

!SB Integer 

!SW Integer 

!SL Integer 

Special formatting: 

!/ None 

! - None 

!" None 

!! None 

!%I Integer 

!%8 None 

!%U Integer 

!n< .. .!> None 

!n*c None 

!n%C String 

!%E String 

!%F None 

Description 

Converts a byte to decimal notation 
with negative numbers converted properly 

Converts a word to decimal notation 
with negative numbers converted properly 

Converts a longword to decimal notation 
with negative numbers converted properly 

Inserts a carriage return and a line feed 

Inserts a tab 

Inserts a form feed 

Inserts an exclamation mark 

Converts a longword integer to a named 
UIC in the format 
[group-identifier,member-identifier] 

Inserts an "s" if the most recently 
converted number is not 1 (Not recommended 
for use with multilingual products.) 

Converts a longword integer to a numeric 
UIC in the format [g,m], where g is the group 
number and m is the member number 

The directive inserts the brackets and 
the comma. 

Left-justifies and blank-fills all data 
represented by the instructions ... in 
fields n characters wide 

Repeats the character represented 
by c for n times 

Inserts a character string when the most 
-~,,...,~-+1,..,. -....:.,.,... 1,,,,.~o..rl ,,..,.,..,,,-mo-n+ 'haa +ho ,;riai ln~ 
.l. ..... ""~.L.LV.A.J ...... W "411.M-41.4..,,..,..,.._ ~b_..,..,...._..., ....... ..,. ...... _,,.,. ,.._...,....,. ~ -----

n (Recommended for use with multilingual 
products.) 

Inserts a character string when the value of 
the most recently evaluated argument does 
not match any preceding !n%C directives 
(Recommended for use with multilingual 
products.) 

Marks the end of a plurals statement 

(continued on next page) 



DCL-142 Lexical Functions 
F$FAO 

Table DCL-2 (Cont.): Summary of FAO Directives 

Directive 

!%T 

!%D 

Argument Type 

Integer equal to 0 

Integer equal to 0 

Argument interpretation: 

!

!+ 

None 

None 

Description 

Inserts the current time 

Inserts the current date/time 

Reuses the last argument 

Skips the next argument 

Output Strings from Character String Insertion 

The !AS directive inserts a character string (specified as an argument for 
the directive) into the control string. The field length of the character 
string when it is inserted into the control string defaults to the length 
of the character string. If the default length is shorter than an explicitly 
stated field length, the string is left-justified and blank-filled. If the 
default length is longer than an explicitly stated field length, the string is 
truncated on the right. 

Output Strings from Zero-Filled Numeric Conversion 

Directives for zero-filled numeric conversion convert an integer (specified 
as an argument for the directive) to decimal, octal, or hexadecimal 
notation. The ASCII representation of the integer is inserted into the 
control string. Default output field lengths for the converted argument 
are determined as follows. 

Directives that convert arguments to octal notation return 3 digits for 
byte conversion, 6 digits for word conversion, and 11 digits for longword 
conversion. Numbers are right-justified and zero-filled on the left. 
Explicit-length fields longer than the default are blank-filled on the 
left. Explicit-length fields shorter than the default are truncated on the 
left. 

Directives that convert arguments to hexadecimal notation return 2 
digits for byte conversion, 4 digits for word conversion, and 8 digits for 
longword conversion. Numbers are right-justified and zero-filled on the 
left. Explicit-length fields longer than the default are blank-filled on the 
left. Explicit-length fields shorter than the default are truncated on the 
left. 

Directives that convert arguments to decimal notation return the required 
number of characters for the decimal number. Explicit-length fields longer 
than the default are zero-filled on the left. If an explicit-length field is 
shorter than the number of characters required for the decimal number, 
the output field is completely filled with asterisks ( * ). 



Lexical Functions 
F$FAO 

DCL-143 

For byte conversion, only the low-order 8 bits of the binary representation 
of the argument are used. For word conversion, only the low-order 16 
bits of the binary representation of the argument are used. For longword 
conversion, the entire 32-bit binary representation of the argument is 
used. 

Output Strings from Blank-Filled Numeric Conversion 

Directives for blank-filled numeric conversion convert an integer (specified 
as an argument for the directive) to decimal notation. These directives 
can convert the integer as a signed or unsigned number. The ASCII 
representation of the integer is inserted into the control string. 

Output field lengths for the converted argument default to the required 
number of characters. Values shorter than explicit-length fields are right
justified and blank-filled; values longer than explicit-length fields cause 
the field to be filled with asterisks. 

For byte conversion, only the low-order 8 bits of the binary representation 
of the argument are used. For word conversion, only the low-order 16 
bits of the binary representation of the argument are used. For longword 
conversion, the entire 32-bit binary representation of the argument is 
used. 

Output Strings from Special Formatting Directives 

The !n%C and !%E directives insert an ASCII string (based on the value 
of the most recently evaluated argument) into the output string. These 
directives are useful for inserting irregular plural nouns and verbs. 

If the most recently evaluated argument equals n, the text between one 
directive and the next is inserted into the output string. If the most 
recently evaluated argument does not equal n, the next !n%C directive is 
processed. 

If n must be a negative number, you must specify it as an argument and 
use the number sign ( # ). 

You can specify the !n%C and !%E directives with repeat counts. If you 
specify repeat counts, the text between one directive and the next is 
copied to the output string the specified number of times. 

The %F directive marks the end of a plurals statement. 



DCL-144 Lexical Functions 
F$FAO 

example 
$ COUNT = 57 
$ REPORT = F$FAO("NUMBER OF FORMS = !SL",COUNT) 
$ SHOW SYMBOL REPORT 
$ REPORT = "NUMBER OF FORMS = 57" 

In this command procedure, the FAO directive !SL is used in a control 
string to convert the number equated to the symbol COUNT to a character 
string. The converted string is inserted into the control string. 

Note that COUNT is assigned an integer value of 57. The F$FAO function 
returns the ASCII string, 11 NUMBER OF FORMS= 57 11

, and assigns the 
string to the symbol REPORT. 

F$FILE_ATTRIBUTES 
Returns attribute information for a specified file. 

format 

F$FILE_ATTRIBUTES(fi/e-spec,item) 

arguments 
file-spec 
Specifies the name of the file about which you are requesting information. 
You must specify the file name as a character string expression. 

You may specify only one file name. Wildcard characters are not allowed. 

item 
Indicates which attribute of the file is to be returned. The item argument 
must be specified as a character string expression, and can be any one of 
the VMS RMS field names listed in Table DCL-3. 

Table DCL-3: F$FILE_ATTRIBUTES Items 

Item 

AI 

ALQ 

BDT 

Return 
Type 

String 

Integer 

String 

Information Returned 

"TRUE" if AI journaling is enabled; returns "TRUE" or 
"FALSE" 

Allocation quantity 

Backup date/time 

(continued on next page) 



Lexical Functions 
F$FILE_ATTRIBUTES 

DCL-145 

Table DCL-3 (Cont.): F$FILE_ATTRIBUTES Items 

Item 

BI 

BKS 

BLS 

CBT 

CDT 

CTG 

DEQ 

DID 

DVI 

EDT 

EOF 

ERASE 

FFB 

FID 

FSZ 

GBC 

GRP 

JOURNAL_FILE 

KNOWN 

LOCKED 

MBM 

MRN 

MRS 

NOA 

NOK 

ORG 

PRO 

PVN 

Return 
Type 

String 

Integer 

Integer 

String 

String 

String 

Integer 

String 

String 

String 

Integer 

String 

Integer 

String 

Integer 

Integer 

Integer 

String 

String 

String 

Integer 

Integer 

Integer 

Integer 

Integer 

String 

String 

Integer 

Information Returned 

"TRUE" if BI journaling is enabled; returns "TRUE" or 
"FALSE" 

Bucket size 

Block size 

"TRUE" if contiguous-best-try; returns "TRUE" or "FALSE" 

Creation date/time 

"TRUE" if contiguous; returns "TRUE" or "FALSE" 

Default extension quantity 

Directory ID string 

Device name string 

Expiration date/time 

Number of blocks used 

"TRUE" if a file's contents are erased before a file is deleted; 
returns "TRUE" or "FALSE" 

First free byte 

File ID string 

Fixed control area size 

Global buffer count 

Owner group number 

"TRUE" if the file is a journal file; returns "TRUE" or "FALSE" 

Known file; returns "TRUE" or "FALSE" to indicate whether 
file is installed with the Install Utility 

"TRUE" if a file is deaccessed-locked; returns "TRUE" or 
"FALSE" 

Owner member number 

Maximum record number 

Maximum record size 

Number of areas 

Number of keys 

File organization; returns "SEQ", "REL", "!DX" 

File protection string 

Prolog version number 

(continued on next page) 



DCL-146 Lexical Functions 
F$FILE_ATTRIBUTES 

Table DCL-3 {Cont.): F$FILE_ATTRIBUTES Items 

Return 
Item Type Information Returned 

RAT String Record attributes; returns "CR,,, "PRN", "FTN", "" 

RCK String TRUE if read check; returns "TRUE", "FALSE" 

RDT String Revision date/time 

RFM String Record format string; returns the values "VAR", "FIX", ''VFC", 
"UDF", "STM", "STMLF","STMCR,, 

RU String "TRUE" if RU journaling is enabled; returns "TRUE" or 
"FALSE" 

RVN Integer Revision number 

STORED_ String ASCII string that represents stored semantics 
SEMANTICS 

UIC String Owner UIC string 

WCK String "TRUE" if write check; returns "TRUE", "FALSE,, 

example 
$ FILE ORG = F$FILE ATTRIBUTES("QUEST.DAT","ORG") 
$ SHOW-SYMBOL FILE_ORG 

FILE_ORG = "SEQ" 

This example uses the F$FILE_ATTRIBUTES function to assign the 
value of the file organization type to the symbol FILE_ORG. The F$FILE_ 
ATTRIBUTES function returns the character string 11 SEQ 11 to show that 
QUEST.DAT is a sequential file. 

The QUEST.DAT and ORG arguments for the F$FILE_ATTRIBUTES 
function are string literals and must be enclosed in quotation marks when 
used in expressions. 

F$GETDVI 
Invokes the $GETDVI system service to return a specified item of 
information for a specified device. 

format 
F$GETDVl(device-name,item) 



Lexical Functions 
F$GETDVI 

DCL-147 

arguments 
device-name 
Specifies a physical device name or a logical name equated to a physical 
device name. Specify the device name as a character string expression. 

item 
Specifies the type of device information to be returned. The item 
argument must be specified as a character string expression and may 
be any one of the items listed in Table DCL-4. 

description 
The F$GETDVI function returns information on all items that can be 
specified with the $GETDVI system service. In addition to the items that 
the $GETDVI system service allows, the F$GETDVI function allows you 
to specify the item EXISTS. 

Table DCL-4 lists the items you can specify with the F$GETDVI function, 
the type of information returned, and the data types of the return 
values. Table DCL--5 lists the values returned by the DEVCLASS item. 
Table DCL--6 lists the values returned by the DEVTYPE item. 

Table DCL-4: F$GETDVI Items 

Item 

ACPPID 

ACPTYPE 

ALL 

ALLDEVNAM 

. ALLOCLA..SS 

ALT_HOST_AVAIL 

ALT_HOST_NAME 

ALT_HOST_TYPE 

Return 
Type 

String 

String 

String 

String 

Lcng'.'!C!"d 
integer 
between 0 
and 255 

String 

String 

String 

Information Returned 

ACP process ID. 

ACP type code, as one of the following strings: "FllVl", 
"Fl1V2", "JNL", "MTA", "NET", "REM", or "ILLEGAL" if 
the device is not mounted or is mounted FOREIGN. 

"TRUE" or "FALSE" to indicate whether the device is 
allocated. 

Allocation class device name . 

"TRUE" or "FALSE" to indicate whether the host serving 
the alternate path is available. 

Name of the host serving the alternate path. 

Hardware type of the host serving the alternate path. 

(continued on next page) 



DCL-148 Lexical Functions 
F$GETDVI 

Table DCL-4 (Cont.): F$GETDVI Items 

Item 

AVL 

CCL 

CLUSTER 

CONCEALED 

CYLINDERS 

DEVBUFSIZ 

DEV CHAR 

DEVCHAR2 

DEV CLASS 

DEVDEPEND 

DEVDEPEND2 

DEVLOCKNAM 

DEVNAM 

DEVSTS 

DEVTYPE 

DIR 

DMT 

DUA 

ELG 

ERRCNT 

EXISTS 

FOD 

Return 
Type 

String 

String 

Integer 

String 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

String 

String 

Integer 

Integer 

String 

String 

String 

String 

Integer 

String 

String 

Information Returned 

"TRUE" or "FALSE" to indicate whether the device is 
available for use. 

"TRUE" or "FALSE" to indicate whether the device is a 
carriage control device. 

Volume cluster size. 

"TRUE" or ''FALSE" to indicate whether the logical device 
name translates to a concealed device. 

Number of cylinders on the volume (disk). 

Device buffer size. 

Device characteristics. 

Additional device characteristics. 

Device class. See Table DCL-5 for a list of the values 
returned. 

Device-dependent information. 

Additional device-dependent information. 

A unique lock name for the device. 

Device name. 

Device-dependent status information. 

Device type. See Table DCL-6 for a list of the values 
returned. 

"TRUE" or "FALSE" to indicate whether the device is 
directory structured. 

"TRUE" or "FALSE" to indicate whether the device is 
marked for dismount. 

"TRUE" or "FALSE" to indicate whether the device is a 
generic device. 

"TRUE" or "FALSE" to indicate whether the device has 
error logging enabled. 

Error count. 

"TRUE" or "FALSE" to indicate whether the device exists 
on the system. 

"TRUE" or "FALSE" to indicate whether the device is a 
files-oriented device. 

(continued on next page) 



Lexical Functions 
F$GETDVI 

DCL-149 

Table DCL-4 (Cont.): F$GETDVI Items 

Return 
Item Type Information Returned 

FOR String "TRUE" or "FALSE" to indicate whether the device is 
mounted foreign. 

FREEBLOCKS Integer Number of free blocks on the volume (disk). 

FULLDEVNAM String Fully qualified device name. 

GEN String "TRUE" or "FALSE" to indicate whether the device is a 
generic device. 

HOST_AVAIL String "TRUE" or "FALSE" to indicate whether the host serving 
the primary path is available. 

HOST_COUNT Integer Number of hosts that make the device available to other 
nodes in the VAX.cluster. 

HOST_NAME String Name of the host serving the primary path. 

HOST_TYPE String Hardware type of the host serving the primary path. 

IDV String "TRUE" or "FALSE" to indicate whether the device is 
capable of providing input. 

LOCIGD Integer Clusterwide lock identification. 

LOGVOLNAM String Logical volume name. 

MAXBLOCK Integer Number of logical blocks on the volume. 

MAX.FILES Integer Maximum number of files on the volume. This item code is 
applicable only to disks. 

MBX String "TRUE" or "FALSE" to indicate whether the device is a 
mailbox. 

MEDIA_ID String Nondecoded media ID. 

MEDIA_NAME String Either the name of the disk or the tape type. 

MEDIA_ TYPE String Device name prefix. 

MNT String "TRUE" or "FALSE" to indicate whether the device is 
mounted. 

MOUNTCNT Integer Mount count. 

NET String "TRUE" or "FALSE" to indicate whether the device is a 
network device. 

NEXTDEVNAM String Device name of the next volume in a volume set. This item 
applies only to disks. 

ODV String "TRUE" or "FALSE" to indicate whether the device is 
capable of providing output. 

OPCNT Integer Operation count. 

(continued on next page) 



DCL-150 Lexical Functions 
F$GETDVI 

Table DCL-4 (Cont.): F$GETDVI Items 

Item 

OPR 

OWNUIC 

PID 

RCK 

RCT 

REC 

RECSIZ 

REFCNT 

REMOTE_DEVICE 

RND 

ROOTDEVNAM 

RTM 

SDI 

SECTORS 

SERIALNUM 

SERVED_DEVICE 

SHR 

SPL 

SPLDEVNAM 

SQD 

Return 
Type 

String 

Strin~ 

String 

String 

String 

String 

Integer 

Integer 

String 

String 

String 

String 

String 

Integer 

Integer 

String 

String 

String 

String 

String 

Information Returned 

"TRUE" or "FALSE" to indicate whether the device is an 
operator. 

UIC of the device owner. 

Process identification of the device owner. 

"TRUE" or "FALSE" to indicate whether the device has 
read checking enabled. 

"TRUE" or "FALSE" to indicate whether the disk contains 
RCT. 

"TRUE" or "FALSE" to indicate whether the device is 
record oriented. 

Blocked record size. 

Reference count of processes using the device. 

"TRUE" or "FALSE" to indicate whether the device is a 
remote device. 

"TRUE" or "FALSE" to indicate whether the device allows 
random access. 

Device name of the root volume in a volume set. This item 
applies only to disks. 

"TRUE" or "FALSE" to indicate whether the device is 
real-time. 

"TRUE" or "FALSE" to indicate whether the device is 
single-directory structured. 

Number of sectors per track. This item applies only to 
disks. 

Volume serial number. This item applies only to disks. 

"TRUE" or "FALSE" to indicate whether the device is a 
served device. 

"TRUE" or "FALSE" to indicate whether the device is 
shareable. 

"TRUE" or "FALSE" to indicate whether the device is being 
spooled. 

Name of the device being spooled. 

"TRUE" or "FALSE" to indicate whether the device is 
sequential block-oriented (that is, magnetic tape). 

(continued on next page) 



Lexical Functions 
F$GETDVI 

DCL-151 

Table DCL-4 (Cont.): F$GETDVI Items 

Item 

STS 

SWL 

TRACKS 

TRAN SC NT 

TRM 

TT_ACCPORNAM 

TT_ALTYPEAHD 

TT_ANSICRT 

TT_APP _KEYPAD 

TT_AUTOBAUD 

TT_AVO 

TT_BLOCK 

TT_BRDCSTMBX 

TT_CRFILL 

TT_DECCRT 

TT_DECCRT2 

TT_DECCRT3 

TT_DIALUP 

TT_DISCONNECT 

Return 
Type 

Integer 

String 

Integer 

Integer 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

Information Returned 

Status information. 

"TRUE" or "FALSE" to indicate whether the device is 
software write-locked. 

Number of tracks per cylinder. This item applies only to 
disks. 

Volume transaction count. 

"TRUE" or "FALSE" to indicate whether the device is a 
terminal. 

The terminal server name and port name. 

"TRUE" or "FALSE" to indicate whether the terminal has 
an alternate type-ahead buffer (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal is an 
ANSI CRT terminal (terminals only). 

"TRUE" or "FALSE" to indicate whether the keypad is in 
applications mode (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal has 
automatic baud rate detection (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal has 
a VTlOO-family terminal display (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal has 
block mode capability (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal uses 
mailbox broadcast messages (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal 
requires fill after RET (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal is a 
Digital CRT terminal (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal is a 
Digital CRT2 terminal (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal is a 
Digital CRT3 terminal (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal is 
connected to dialup (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal can 
be disconnected (terminals only). 

(continued on next page) 



DCL-152 Lexical Functions 
F$GETDVI 

Table DCL-4 (Cont.): F$GETDVI Items 

Item 

TT_DMA 

TT_DRCS 

TT_EDIT 

TT_EDITING 

TT_EIGHTBIT 

'IT_ESCAPE 

TT_FALLBACK 

TT_HALFDUP 

'IT_HANGUP 

'IT_HOSTSYNC 

TT_INSERT 

TT_LFFILL 

TT_LOCALECHO 

TT_LOWER 

TT_MBXDSABL 

'IT_MECHFORM 

TT_MECHTAB 

Return 
Type 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

Information Returned 

"TRUE" or "FALSE" to indicate whether the terminal has 
DMA mode (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal 
supports loadable character fonts (terminals only). 

"TRUE" or "FALSE" to indicate whether the edit 
characteristic is set. 

"TRUE" or "FALSE" to indicate whether advanced editing 
is enabled (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal uses 
the 8-bit ASCII character set (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal 
generates escape sequences (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal uses 
the multinational fallback option (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal is in 
half-duplex mode (terminals only). 

"TRUE" or "FALSE" to indicate whether the hangup 
characteristic is set (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal has 
host/terminal communication (terminals only). 

"TRUE" or "FALSE" to indicate whether insert-mode is the 
default line editing mode (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal 
requires fill after LF (terminals only). 

"TRUE" or "FALSE" to indicate whether the local echo 
characteristic is set (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal has 
the lowercase characters set. 

"TRUE" or "FALSE" to indicate whether mailboxes 
associated with the terminal will receive unsolicited input 
notification or input notification (terminals only). 

"TRUE" or "FALSE"· to indicate whether the terminal has 
mechanical form feed (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal has 
mechanical tabs and is capable of tab expansion (terminals 
only). 

(continued on next page) 



Lexical Functions 
F$GETDVI 

DCL-153 

Table DCL-4 (Cont.): F$GETDVI Items 

Item 

TI'_MODEM 

TI'_MODHANGUP 

TI'_NOBRDCST 

TI'_NOECHO 

TI'_NOTYPEAHD 

TI'_PHYDEVNAM 

TI'_PRINTER 

TI'_READSYNC 

TI'_REGIS 

TI'_REMOTE 

TI'_SCOPE 

TI'_SETSPEED 

TT_SIXEL 

TI'_TTSYNC 

Return 
Type 

String 

String 

String 

String 

String 

String 

Integer 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

Information Returned 

"TRUE" or "FALSE" to indicate whether the terminal is 
connected to a modem (terminals only). 

"TRUE" or "FALSE" to indicate whether the modify 
hang-up characteristic is set (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal will 
receive broadcast messages (terminals only). 

"TRUE" or "FALSE" to indicate whether the input 
characters are echoed. 

"TRUE" or "FALSE" to indicate whether data must be 
solicited by a read operation. 

"TRUE" or ''FALSE" to indicate whether the terminal is an 
operator terminal (terminals only). 

Terminal page length (terminals only). 

"TRUE" or "FALSE" to indicate whether there is passall 
with flow control (terminals only). 

Physical device name associated with a channel number or 
virtual terminal. 

"TRUE" or "FALSE" to indicate whether there is a printer 
port available (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal has 
read synchronization (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal has 
ReGIS graphics (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal has 
established modem control (terminals only). 

"TRUE" or "FALSE" to indicate whether the terminal is a 
video screen display (terminals only). 

"TRUE" er "F"'A..LSE" to i.~tlic!!te 'tv'J[1hethe~ the termi..."lal c~!! 
recognize the secure server (terminals only). 

"TRUE" or "FALSE" to indicate whether you can set the 
speed on the terminal line (terminals only). 

"TRUE" or "FALSE" to indicate whether the sixel is 
supported (terminals only). 

"TRUE" or "FALSE" to indicate whether there is 
terminal/host synchronization (terminals only). 

(continued on next page) 



DCL-154 Lexical Functions 
F$GETDVI 

Table DCL-4 (Cont.): F$GETDVI Items 

Return 
Item Type Information Returned 

TT_SYSPWD String "TRUE" or ''FALSE" to indicate whether the system 
password is enabled for a particular terminal. 

TT_ WRAP String "TRUE" or "FALSE" to indicate whether a new line should 
be inserted if the cursor moves beyond the right margin. 

UNIT Integer The unit number. 

VOLCOUNT Integer The count of volumes in a volume set. This item applies 
only to disks. 

VOLNAM String The volume name. 

VOLNUMBER Integer Number of the current volume in a volume set. This item 
applies only to disks. 

VOLSETMEM String "TRUE" or "FALSE" to indicate whether the device is a 
volume set (disks only). 

VPRO String The volume protection mask. 

WCK String "TRUE" or "FALSE" to indicate whether the device has 
write checking enabled. 

Table DCL-5: Values Returned by the DEVCLASS Item 

Device Class Value Symbolic Name 

Disk device 1 DC$_DISK 

Tape device 2 DC$_ TAPE 

Synchronous 32 DC$_SCOM 

Communications device 

Card reader 65 DC$_ CARD 

Terminal 66 DC$_TERM 

Line printer 67 DC$_LP 

Real-time 96 DC$_REALTIME 

Bus 128 DC$_BUS 

Mailbox 160 DC$_ MAILBOX 

Journal 161 DC$_JOURNAL 

Miscellaneous device 200 DC$_MISC 



Lexical Functions 
F$GETDVI 

DCL-155 

Table DCL-6: Values Returned by the DEVTYPE Item 

Device Type Value Device Type Value 

Device Class: DC$_DISK 

RK06 1 RD54 32 

RK07 2 CRX50 33 

RP04 3 RX50 33 

RP05 4 RRD50 34 

RP06 5 GENERIC_DU 35 

RM03 6 RX33 36 

RP07 7 RX18 37 

RP07HT 8 RA70 38 

RLOl 9 RA90 39 

RL02 10 RD32 40 

RX02 11 DISK9 41 

RX04 12 RX35 42 

RMSO 13 RF30 43 

TU58 14 RF70 44 

RM05 15 RD33 45 

RXOl 16 ESE20 46 

MLll 17 TU56 47 

RB02 18 RZ22 48 

RBSO 19 RZ23 49 

RASO 20 RZ24 50 

RA81 21 RZ55 51 

RA60 22 RRD40 52 

RZOl 23 GENERIC_DK 54 

RZFOl 24 RX23 55 

RD51 25 FDl 129 

RX50 26 FD2 130 

RC25 23 FD3 131 

(continued on next page) 



DCL-156 Lexical Functions 
F$GETDVI 

Table DCL-6 (Cont.): Values Returned by the DEVTYPE Item 

Device Type Value Device Type Value 

Device Class: DC$_DISK 

RD52 27 FD4 132 

RD53 28 FD5 133 

RD26 29 FD6 134 

RA82 30 FD7 135 

RD31 31 FD8 136 

Device Class: DC$_TAPE 

TE16 1 MW_TSV05 14 

TU45 2 TK70 15 

TU77 3 RV20 16 

TSll 4 RV80 16 

TU78 5 TK60 17 

TA78 6 GENERIC_TU 18 

TU80 7 TA79 19 

TU81 8 TAPE9 20 

TA81 9 TA90 21 

TK50 10 TF30 22 

MR_TU70 11 TF70 23 

MR_TU72 12 RV60 24 

MW_TSU05 13 

Device Class: DC$_SCOM 

DMCll 1 YQ_3271 18 

DMRll 2 YR_DDCMP 19 

XK.._3271 3 YS_SDLC 20 

XJ_2780 4 UK_KTC32 21 

NW_X25 5 DEQNA 22 

NV_X29 6 DMVll 23 

(continued on next page) 



Lexical Functions DCL-157 
F$GETDVI 

Table DCL-6 (Cont.): Values Returned by the DEVTYPE Item 

Device Type Value Device Type Value 

Device Class: DC$_SCOM 

SB_ISBll 7 ES_LANCE 24 

MX_MUX200 8 DELUA 25 

DMPll 9 NQ_3271 26 

DMF32 10 DMB32 27 

XV_3271 11 YI_KMSUK 28 

CI 12 ET_DEBNT 29 

NI 13 ET_DEBNA 29 

UNAll 14 SJ_DSVll 30 

DEUNA 14 SL_DSB32 31 

YN_X25 15 ZS_DST32 32 

YO_X25 16 XQ_DELQA 33 

YP_ADCCP 17 

Device Class: DC$_CARD 

CRll 1 

Device Class: DC$_TERM 

':rrYUNKN 0 LA24 37 

VT05 1 LA100 37 

VKlOO 2 LQP02 38 

VT173 3 LA210 40 

VT5X 64 LN03 41 

TEK401X 10 LNOlK 42 

FTl 16 LASO 43 

FT2 17 VT52 64 

FT3 18 VT55 65 

FT4 19 VTlOO 96 

FT5 20 VT101 97 

FT6 21 VT102 98 

(continued on next page) 



DCL-158 Lexical Functions 
F$GETDVI 

Table DCL-6 {Cont.): Values Returned by the DEVTVPE Item 

Device Type Value Device Type Value 

Device Class: DC$_TERM 

FT7 22 VT105 99 

FT8 23 VT125 100 

LAX 32 VT131 101 

LA36 32 VT132 102 

LA120 33 VT200_Series 110 

LA34 34 Pro_Series 111 

LA38 35 VT300_Series 112 

LA12 36 

Device Class: DC$_LP 

LPll 1 LC_DMF32 4 

LAll 2 LI_DMB32 5 

LA180 3 PRTR9 6 

Device Class: DC$_REALTIME 

LPAll 1 XP_PCLllB 9 

DR780 2 IX_IEXll 10 

DR750 3 FP_FEPCM 11 

DRllW 4 TK_FCM 12 

PCLllR 5 XI_DRllC 13 

PCLllT 6 XA_DRVllWA 14 

DRllC 7 DRB32 15 

XI_DRllC 8 HX_DRQ3B 16 

(continued on next page) 



Lexical Functions DCL-159 
F$GETDVI 

Table DCL-6- (Cont.): Values Returned by the DEVTVPE Item 

Device Type Value Device Type Value 

Device Class: DC$_BUS 

CI780 1 BCI750 15 

CI750 2 BCA 16 

UQPORT 3 RQDX3 17 

UDA50 3 NI SCA 18 

UDA50A 4 AIO 19 

LES! 5 AIE 20 

TU81P 6 DEBNT 20 

RDRX 7 BSA 21 

TK50P 8 KSB50 21 

RUX50P 9 TK70P 22 

RC26P 10 RV20P 23 

QDA50 11 RV80P 23 

KDA50 11 TK60P 24 

BDA50 12 SIT 25 

KDB50 12 KFSQSA 26 

RRD50P 13 SHAC 27 

QDA25 14 CIXCA 28 

KDA25 14 CIXCB 29 

Device Class: DC$_MAILBOX 

MBX 1 

SlffiMBX 2 

NULL 8 

Device Class: DC$_JOURNAL 

UNKNJNL 0 RUJNL 1 

BIJNL 2 AIJNL 3 

ATJNL 4 CLJNL 5 

(continued on next page) 



DCL-160 Lexical Functions 
F$GETDVI 

Table DCL-6 (Cont.): Values Returned by the DEVTYPE Item 

Device Type Value 

Device Class: DC$_MISC 

DNll 

PV 

example 

1 

2 

$ERR= F$GETDVI(" DQAO","ERRCNT") 
$ SHOW SYMBOL ERR -

Device Type 

SFUN9 

USER9 

ERR = 0 Hex = 00000000 Octal = 000000 

Value 

3 

4 

This example shows how to use the F$GETDVI function to return an 
error count for the device DQAO. You must place quotation marks around 
the device name DQAO and the item ERRCNT because they are string 
literals. 

F$GETJPI 
Invokes the $GETJPI system service to return accounting, status, and 
identification information on the specified process. 

Requires GROUP privilege to obtain information on other 
processes in the same group. Requires WORLD privilege to obtain 
information on any other processes in the system. 

format 

F$GET JPl(pid,item) 

arguments 
pid 
Specifies the identification number of the process for which information is 
being reported. Specify the pid argument as a character string expression. 
You can omit the leading zeros. If you specify a null string (" "), the 
current process identification number is used. 

item 
Indicates the type of process information to be returned. Item must be 
specified as a character string expression and may be any one of the items 
listed in Table DCL-7. 



description 

Lexical Functions 
F$GETJPI 

DCL-161 

The F$GETJPI function returns information on all items that can be 
specified with the $GETJPI system service. 

Table DCL-7: F$GET JPI Items 

Return 
Item Type Information Returned 

ACCOUNT String Account name string (8 characters filled with trailing 
blanks) 

APTCNT Integer Active page table count 

ASTA CT Integer Access modes with active ASTs 

AS TC NT Integer Remaining AST quota 

ASTEN Integer Access modes with ASTs enabled 

ASTLM Integer AST limit quota 

AUTHPRI Integer Maximum priority that a process without the ALTPRI 
privilege can achieve with the $SETPRI system service 

AUTHPRIV String Privileges that a process is authorized to enable 

BIOCNT Integer Remaining buffered I/O quota 

BIOLM Integer Buffered I/O limit quota 

BUFIO Integer Count of process buffered I/O operations 

BYTCNT Integer Remaining buffered I/O byte count quota 

BYTLM Integer Buffered I/O byte count limit quota 

CLINAME String Current command language interpreter; always returns 
"DCL" 

CPULIM Integer Limit on process CPU time 

CPUTIM Integer CPU time used in hundredths of a second 

CURPRIV String Current process privileges 

CREPRC_FLAGS Integer Flags specified by the stsflg argument in the $CREPRC 
call that created the process 

DFPFC Integer Default page fault cluster size 

DFWSCNT Integer Default working set size 

DIOCNT Integer Remaining direct I/O quota 

DI OLM Integer Direct I/O limit quota 

DIRIO Integer Count of direct I/O operations for the process 

EFCS Integer Local event flags 0 through 31 

(continued on next page) 



DCL-162 Lexical Functions 
F$GETJPI 

Table DCL-7 (Cont.): F$GET JPI Items 

Return 
Item Type Information Returned 

EFCU Integer Local event flags 32 through 63 

EFWM Integer Event flag wait mask 

ENQCNT Integer Lock request quota remaining 

ENQLM Integer Lock request quota limit 

EXCVEC Integer Address of a list of exception vectors 

FILCNT Integer Remaining open file quota 

FILLM Integer Open file quota 

FINALEXC Integer Address of a list of final exception vectors 

FREPOVA Integer First free page at end of program region (PO space). 
Irrelevant if no image is running. 

FREPlVA Integer First free page at end of control region (Pl space) 

FREPTECNT Integer Number of pages available for virtual memory expansion 

GPGCNT Integer Global page count in working set 

GRP Integer Group number of the UIC 

IMAGECOUNT Integer Number of images that have been run down for the 
process 

IMAGNAME String File name of the current image 

IMAGPRIV String Privileges with which the current image was installed 

JOBPRCCNT Integer Number of subprocesses owned by the process 

JOBTYPE Integer Execution mode of the process at the root of the job tree 

LOGINTIM String Process creation time 

MASTER_PID String Returns the process identification of the process at the 
top of the current job's process tree 

MAXDETACH Integer Maximum number of detached processes allowed the user 
who owns the process 

MAXJOBS Integer Maximum number of active processes allowed for the 
user who owns the process 

MEM Integer Member number of the UIC 

MODE String Current process mode ("BATCH", "INTERACTIVE", 
"NETWORK", or "OTHER") 

MSG MASK Integer Default message mask 

OWNER String Process identification number of process owner 

(continued on next page) 



Lexical Functions 
F$GETJPI 

DCL-163 

Table DCL-7 (Cont.): F$GET JPI Items 

Return 
Item Type Information Returned 

PAGEFLTS Integer Count of page faults 

PAGFILCNT Integer Remaining paging file quota 

PAGFILLOC Integer Location of the paging file 

PGFLQUOTA Integer Paging file quota (maximum virtual page count) 

PHDFLAGS Integer Flags word 

PID String Process identification number 

PPGCNT Integer Process page count 

PRCCNT Integer Count of subprocesses 

PRCLM Integer Subprocess quota 

PRC NAM String Process name 

PRI Integer Process's current priority 

PRIB Integer Process's base priority 

PROC_INDEX Integer Process's index number 

PROCPRIV Integer Process's default privileges 

SHRFILLM Integer Maximum number of open shared files allowed for the job 
to which the process belongs 

SITE SPEC Integer Per-process site-specific longword 

STATE String Process state 

STS Integer Process status flags 

SWPFILLOC Integer Location of the swap file 

TABLENAME String File specification of the process's current command 
language interpreter (CLI) table 

TERMINAL String Login terminal name for interactive users (1-7 
characters) 

TMBU Integer Termination mailbox unit number 

TQCNT Integer Remaining timer queue entry quota 

TQLM Integer Timer queue entry quota 

UAF_FLAGS Integer User Authorization File (UAF) flags from the UAF record 
of the user who owns the process 

UIC String Process's UIC 

USERNAME String User name string ( 12 characters filled with trailing 
blanks) 

(continued on next page) 



DCL-164 Lexical Functions 
F$GETJPI 

Table DCL-7 (Cont.): F$GET JPI Items 

Return 
Item Type Information Returned 

VIRTPEAK Integer Peak virtual address size 

VOLUMES Integer Count of currently mounted volumes 

WSAUTH Integer Maximum authorized working set size 

WSAUTHEXT Integer Maximum authorized working set extent 

WSEXTENT Integer Current working set extent 

WSPEAK Integer Working set peak 

WSQUOTA Integer Working set size quota 

WSSIZE Integer Process's current working set size 

example 
$NAME= F$GETJPI("3B0018","USERNAME") 
$ SHOW SYMBOL NAME 

NAME = "JANE" 

This example shows how to use the F$GETJPI function to return the 
username for the process number 3B0018. The username is assigned to 
the symbol NAME. 

F$GETQUI 
Invokes the $GETQUI system service to return information about queues, 
batch and print jobs currently in those queues, form definitions, and 
characteristic definitions kept in the system job queue file. 

Requires READ access to the job or SYSPRV or OPER privilege to 
obtain job and file information. 

format 

F$GETQUl(function,[item],[object-id],[flags]) 

arguments 

function 
Specifies the action that the F$GETQUI lexical function is to perform. 
F$GETQUI supports all functions that can be specified with the 
$GETQUI system service. 



Function 

CANCEL_ OPERATION 

DISPLAY_CHARACTERISTIC 

DISPLAY_ENTRY 

DISPLAY_FILE 

DISPLAY_FORM 

DISPLAY_JOB 

DISPLAY_QUEUE 

TRANSLATE_ QUEUE 

Description 

Lexical Functions 
F$GETQUI 

DCL-165 

Terminates any wildcard operation that may have been 
initiated by a previous call to F$GETQUI. 

Returns information about a speeific characteristic definition 
or the next characteristic definition in a wildcard operation. 

Returns information about a specific job entry or the next 
job entry that matches the selection criteria in a wildcard 
operation. The DISPLAY_ENTRY fun~tion code is similar 
to the DISPLAY_JOB function code in that both return job 
information. DISPLAY_JOB, however, requires that a call be 
made to establish queue context; DISPLAY_ENTRY does not 
require that queue context be established. 

Returns information about the next file defined for the current 
job context. Before you make a call to F$GETQUI to request 
file information, you must make a call to display queue and 
job information (with the DISPLAY_QUEUE and DISPLAY_ 
JOB function codes) or display entry information (with the 
DISPLAY_ENTRY function code). 

Returns information about a specific form definition or the 
next form definition in a wildcard operation. 

Returns information about the next job defined for the current 
queue context. Before you make a call to F$GETQUI to 
request job information, you must make a call to display 
queue information (with the DISPLAY_QUEUE function 
code). The DISPLAY_JOB function code is similar to the 
DISPLAY_ENTRY function code in that both return job 
information. DISPLAY_JOB, however, requires that a call be 
made to establish queue context; DISPLAY_ENTRY does not 
require that queue context be established. 

Returns information about a specific queue definition or the 
next queue definition in a wildcard operation. 

'franslates a logical name for a queue to the equivalence name 
for the queue. 

Some function arguments cannot be specified with the item-code, object-id, 
or flags argument. The following table lists each function argument and 
corresponding format line to show whether the item-code, object-id, and 
flags arguments are required, optional, or not applicable for that specific 
function. In the following format lines, brackets denote an optional 
argument. An omitted argument means the argument is not applicable 
for that function. Note that two commas must be used as placeholders to 
denote an omitted (whether optional or not applicable) argument. 



DCL-166 Lexical Functions 
F$GETQUI 

Function Format Line 

CANCEL_ OPERATION 

DISPLAY_CHARACTERISTIC 

DISPLAY_ENTRY 

DISPLAY_FILE 

DISPLAY_FORM 

DISPLAY_JOB 

DISPLAY_QUEUE 

TRANSLATE_ QUEUE 

item 

F$GETQUI("CANCEL_OPERATION") or F$GETQUI( 1111 
) 

F$GETQUI("DISPLAY_CHARACTERISTIC",[item],object
id,[flags]) 

F$GETQUI("DISPLAY_ENTRY",[item],[object-id],[fiags]) 

F$GETQUI("DISPLAY_FILE",[item],,[flags]) 

F$GETQUI("DISPLAY_FORM",[item],o~ject-id,[flags]) 

F$GETQUI("DISPLAY_JOB" ,[item],,[flags]) 

F$GETQUI("DISPLAY_QUEUE",[item],object-id,[flags]) 

F$GETQUI("TRANSLATE_QUEUE",[item],object-id) 

Corresponds to a $GETQUI system service output item code. Item 
specifies the kind of information you want returned about a particular 
queue, job, file, form, or characteristic. Table DCL-8 lists each item code 
and the data type of the value returned for each item code. 

object-id 
Corresponds to the $GETQUI system service search-name and search
number input item codes. Object-id specifies either the name or number 
of an object (for example, a specific queue name or form number) about 
which F$GETQUI is to return information. Wildcard names are allowed 
for the following functions: 

• DISPLAY_CHARACTERISTIC 

• DISPLAY_ENTRY 

• DISPLAY_FORM 

• DISPLAY_QUEUE 

By specifying a wildcard as the object-id argument on successive calls, 
you can get status information about one or more jobs in a specific queue 
or about files within jobs in a specific queue. When a wildcard name is 
used, each call returns information for the next object (queue, form, and 
so on) in the list. A null string ( 1111 

) is returned when the end of the list is 
reached. A wildcard can represent only object names, not object numbers. 

flags 
Specifies a list of keywords, separated by commas, that corresponds to 
the flags defined for the $GETQUI system service search-flags input 
item code. (These flags are used to define the scope of the object search 
specified in the call to the $GETQUI system service.) Note that these 
keywords can be used only with certain function codes: 



Keyword 

ALL_JOBS 

BATCH 

EXECUTING_JOBS 

FREEZE_ CONTEXT 

GENERIC 

HOLDING_JOBS 

PENDING_JOBS 

PRINTER 

RETAINED_JOBS 

SERVER 

SYMBIONT 

TERMINAL 

Valid Function Code 

DISPLAY_JOB 

DISPLAY_QUEUE 

DISPLAY_ENTRY 

DISPLAY_ENTRY 

DISPLAY_JOB 

Lexical Functions 
F$GETQUI 

Description 

DCL-167 

Requests that F$GETQUI search 
all jobs included in the established 
queue context. If you do not 
specify this flag, F$GETQUI 
returns information only about 
jobs that have the same user name 
as the caller. 

Selects batch queues. 

Selects executing jobs. 

DISPLAY_CHARACTERISTIC When in wildcard mode, prevents 
advance of wildcard context to the 
next object. If you do not specify 
this flag, the context is advanced 
to the next object. 

DISPLAY_ENTRY 

DISPLAY_FILE 

DISPLAY_FORM 

DISPLAY_JOB 

DISPLAY_QUEUE 

DISPLAY_QUEUE Selects generic queues for 
searching. 

DISPLAY_ENTRY Selects jobs on unconditional hold. 

DISPLAY_JOB 

DISPLAY_ENTRY Selects pending jobs. 

DISPLAY_JOB 

DISPLAY_QUEUE Selects printer queues. 

DISPLAY_ENTRY 

DISPLAY_ENTRY Selects jobs being retained. 

DISPLAY_JOB 

DISPLAY_QUEUE Selects server queues. 

DISPLAY_ENTRY 

DISPLAY_QUEUE Selects all output queues. 
Equivalent to specifying 
"PRINTER,SERVER,TERMINAL". 

DISPLAY_ENTRY 

DISPLAY_QUEUE Selects terminal queues. 

DISPLAY_ENTRY 



DCL-168 Lexical Functions 
F$GETQUI 

Keyword 

THIS_JOB 

TIMED_RELEASE_JOBS 

WILDCARD 

description 

Valid Function Code 

DISPLAY_FILE 

DISPLAY_JOB 

DISPLAY_QUEUE 

DISPLAY_ENTRY 

DISPLAY_JOB 

Description 

Selects all job file information 
about the calling batch job, the 
command file being executed, or 
the queue associated with the 
calling batch job. 

Selects jobs on hold until a 
specified time. 

DISPLAY_CHARACTERISTIC Establishes and saves a context. 

DISPLAY_ENTRY 

DISPLAY_FORM 

DISPLAY_QUEUE 

Because the context is saved, the 
next operation can be performed 
based on that context. 

The F$GETQUI lexical function provides all the features of the $GETQUI 
system service, including wildcard and nested wildcard operations. 

The F$GETQUI function returns information on all items that can be 
specified with the $GETQUI system service. Table DCL-8 lists the items 
you can specify with the F$GETQUI function, the information returned, 
and the data type of this information. 

Table DCL-8: F$GETQUI Items 

Item 

ACCOUNT_NAME 

AFTER_ TIME 

ASSIGNED_QUEUE_NAME 

Return 
Type 

String 

String 

String 

Information Returned 

The account name of the owner of the specified job. 

The system time at or after which the specified job 
can execute. 

The name of the execution queue to which the logical 
queue specified in the call to F$GETQUI is assigned. 

(continued on next page) 



Lexical Functions 
F$GETQUI 

DCL-169 

Table DCL-8 (Cont.): F$GETQUI Items 

Item 

BASE_PRIORITY 

CHARACTERISTICS 

CHARACTERISTIC_NAME 

CHARACTERISTIC_NUMBER 

CHECKPOINT_DATA 

CLI 

COMPLETED_BLOCKS 

CONDITION_ VECTOR 

CPU_DEFAULT 

CPU_LIMIT 

DEFAULT_FORM_NAME 

DEFAULT_FORM_STOCK 

DE'\lICE_NAM:E 

ENTRY_NUMBER 

Return 
Type 

Integer 

String 

String 

Integer 

String 

String 

Integer 

Integer 

String 

String 

String 

String 

S~ring 

Integer 

Information Returned 

The priority at which batch jobs are initiated from a 
batch execution queue or the priority of a symbiont 
process that controls output execution queues. 

The characteristics associated with the specified 
queue or job. 

The name of the specified characteristic. 

The number of the specified characteristic. 

The value of the DCL symbol BATCH$RESTART 
when the specified batch job is restarted. 

The name of the command language interpreter 
used to execute the specified batch job. The file 
specification returned assumes the device name 
SYS$SYSTEM and the file type EXE. 

The number of blocks that the symbiont has 
processed for the specified print job. This item 
code is applicable only to print jobs. 

The completion status of the specified job. 

The default CPU time limit specified for the queue 
in IO-millisecond units. This item code is applicable 
only to batch execution queues. 

The maximum CPU time limit specified for the 
specified job or queue in IO-millisecond units. This 
item code is applicable only to batch jobs and batch 
execution queues. 

The name of the default form associated with the 
specified output queue. 

The name of the paper stock on which the specified 
default form is to be printed. 

The node w:ul device (or both) 011 which the specified 
execution queue is located. For batch execution 
queues, only the node name is returned. For output 
execution queues, only the device name is returned. 
The node name is used only in VAXcluster systems. 
The node name is specified by the SYSGEN 
parameter SCSNODE for the processor on which 
the queue executes. 

The queue entry number of the specified job. 

(continued on next page) 



DCL-170 Lexical Functions 
F$GETQUI 

Table DCL-8 (Cont.): F$GETQUI Items 

Return 
Item Type 

EXECUTING_JOB_COUNT Integer 

FILE_BURST String 

FILE_CHECKPOINTED String 

FILE_ COPIES Integer 

FILE_COPIES_DONE Integer 

FILE_DELETE String 

FILE_DOUBLE_SPACE String 

FILE_EXECUTING String 

FILE_FLAG String 

FILE_FLAGS Integer 

FILE_IDENTIFICATION String 

FILE_PAGE_HEADER String 

FILE_PAGINATE String 

FILE_PASSALL String 

FILE_SETUP _MODULES String 

Information Returned 

The number of jobs in the queue that are currently 
executing. 

''TRUE" or "FALSE" to indicate whether burst and 
flag pages are to be printed preceding a file. 

"TRUE" or ''FALSE" to indicate whether file is 
checkpointed. 

The number of times the specified file is to be 
processed. This item code is applicable only to 
output execution queues. 

The number of times the specified file has been 
process~d. This item code is applicable only to 
output execution queues. 

"TRUE" or "FALSE" to indicate whether file is to be 
deleted after execution of request. 

"TRUE" or "FALSE" to indicate whether the 
symbiont formats the file with double spacing. 

"TRUE" or "FALSE" to indicate whether file is being 
processed. 

''TRUE" or ''FALSE" to indicate whether a flag page 
is to be printed preceding a file. 

The processing options that have been selected for 
the specified file. 

The internal file-identification value that uniquely 
identifies the selected file. 

''TRUE" or "FALSE" to indicate whether page header 
is to be printed on each page of output. 

''TRUE" or "FALSE" to indicate whether symbiont 
paginates output by inserting a form feed whenever 
output reaches the bottom margin of the form. 

"TRUE" or ''FALSE" to indicate whether symbiont 
prints the file in PASSALL mode. 

The names of the text modules that are to be 
extracted from the device control library and 
copied to the printer before the specified file is 
printed. This item code is meaningful only for 
output execution queues. 

(continued on next page) 



Lexical Functions 
F$GETQUI 

DCL-171 

Table DCL-8 (Cont.): F$GETQUI Items 

Item 

FILE_SPECIFICATION 

FILE_STATUS 

FILE_ TRAILER 

FIRST_PAGE 

FORM_DESCRIPTION 

FORM_FLAGS 

FORM_LENGTH 

FORM_MARGIN_BOTTOM 

FORM_MARGIN_LEFT 

FORM_MARGIN_RIGHT 

FORM_MARGIN_TOP 

FORM_NAME 

FORM_NUMBER 

FORM_SETUP _MODULES 

FOHM_SHEET_FEED 

FORM_STOCK 

FORM_ TRUNCATE 

FORM_ WIDTH 

Return 
Type 

String 

Integer 

String 

Integer 

String 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

String 

Integer 

String 

String 

String 

Integer 

Information Returned 

The fully qualified RMS file specification of the file 
about which F$GETQUI is returning information. 

File status information. 

"TRUE" or "FALSE" to indicate whether trailer page 
is to be printed following a file. 

The page number at which the printing of the 
specified file is to begin. This item code is applicable 
only to output execution queues. 

The text string that describes the specified form to 
users and operators. 

The processing options that have been selected for 
the specified form. 

The physical length of the specified form in lines. 
This item code is applicable only to output execution 
queues. 

The bottom margin of the specified form in lines. 

The left margin of the specified form in characters. 

The right margin of the specified form in characters. 

The top margin of the specified form in lines. 

The name of the specified form or the mounted form 
associated with the specified job or queue. 

The number of the specified form. 

The names of the text modules that are to be 
extracted from the device control library and copied 
to the printer before a file is printed on the specified 
form. This item code is meaningful only for output 
execution queues. 

pauses at the end of each physical page so that 
another sheet of paper can be inserted. 

The name of the paper stock on which the specified 
form is to be printed. 

"TRUE" or "FALSE" to indicate whether printer 
discards any characters that exceed the specified 
right margin. 

The width of the specified form. 

(~ontinued on next page) 



DCL-172 Lexical Functions 
F$GETQUI 

Table DCL-8 (Cont.): F$GETQUI Items 

Item 

FORM_ WRAP 

GENERIC_TARGET 

HOLDING_JOB_COUNT 

INTERVENING_BLOCKS 

INTERVENING_JOBS 

JOB_ABORTING 

JOB_COPIES 

JOB_COPIES_DONE 

JOB_CPU_LIMIT 

JOB_EXECUTING 

JOB_FILE_BURST 

JOB_FILE_BURST_ONE 

JOB_FILE_FLAG 

JOB_FILE_FLAG_ONE 

JOB_FILE_PAGINATE 

Return 
Type 

String 

String 

Integer 

Integer 

Integer 

String 

Integer 

Integer 

String 

String 

String 

String 

String 

String 

String 

Information Returned 

"TRUE" or ''FALSE" to indicate whether the printer 
prints any characters that exceed the specified right 
margin on the following line. 

The names of the execution queues that are enabled 
to accept work from the specified generic queue. 
This item code is meaningful only for generic 
queues. 

The number of jobs in the queue being held until 
explicitly released. 

The number of blocks to be processed before the 
specified job can begin to execute. This item code is 
meaningful only for output execution queues. 

The number of jobs that are to be processed before 
the specified job can begin to execute. This item 
code is meaningful only for output execution queues. 

"TRUE" or "FALSE" to indicate whether system is 
attempting to abort execution of job. 

The number of times the specified print job is to be 
repeated. 

The number of times that the specified print job has 
been repeated. 

"TRUE" or "FALSE" to indicate whether a CPU time 
limit is specified for the job. 

"TRUE" or "FALSE" to indicate whether job is 
executing or printing. 

''TRUE" or "FALSE" to indicate whether a burst 
page option is explicitly specified for the job. 

"TRUE" or "FALSE" to indicate whether burst and 
flag pages precede only the first copy of the first file 
in the job. 

"TRUE" or "FALSE" to indicate whether flag page 
precedes each file in the job. 

"TRUE" or ''FALSE" to indicate whether flag page 
precedes only the first copy of the first file in the job. 

''TRUE" or "FALSE" to indicate whether a paginate 
option is explicitly specified for the job. 

(continued on next page) 



Lexical Functions 
F$GETQUI 

DCL-173 

Table DCL-8 {Cont.): F$GETQUI Items 

Item 

JOB_FILE_TRAILER 

JOB_FILE_TRAILER_ONE 

JOB_FLAGS 

JOB_HOLDING 

JOB_INACCESSIBLE 

.T()R T .TMT'I' -------~---

JOB_LOG_DELETE 

JOB_LOG_NULL 

Return 
Type 

String 

String 

Integer 

String 

String 

String 

String 

Information Returned 

"TRUE" or "FALSE" to indicate whether trailer page 
follows each file in the job. 

"TRUE" or "FALSE" to indicate whether trailer page 
follows only the last copy of the last file in the job. 

The processing options that have been selected 
for the specified job. The integer represents a bit 
field. 'lb find the settings of each bit in the field, 
use one of the following items in place of JOB_ 
FLAGS: JOB_CPU_LIMIT, JOB_FILE_BURST, 
JOB_FILE_BURST_ONE, JOB_FILE_FLAG, JOB_ 
FILE_FLAG_ONE, JOB_FILE_PAGINATE, JOB_ 
FILE_TRAILER, JOB_FILE_TRAILER_ONE, JOB_ 
LOG_DELETE,JOB_LOG_NULL,JOB_LOG_ 
SPOOL, JOB_LOWERCASE, JOB_NOTIFY, JOB_ 
RESTAR~JOB_WSDEFAUL~JOB_WSEXTENT, 
and JOB_ WSQUOTA. 

"TRUE" or "FALSE" to indicate whether job will be 
held until it is explicitly released. 

"TRUE" or "FALSE" to indicate whether caller does 
not have READ access to the specific job and file 
information in the system queue file. When FALSE, 
the DISPLAY_JOB and DISPLAY_FILE operations 
can return information for only the following output 
value item codes: 
AFTER_ TIME 
COMPLETED_BLOCKS 
ENTRY_NUMBER 
INTERVENING_BLOCKS 
INTERVENING_JOBS 
JOB_SIZE 
JOB_STATUS 

'!'he n!!.!!!be!' of job!:! that c!:m e~ec-iJ.t.e !'.!Lmtlltaneo1,i;ily 
on the specified queue. This item code is applicable 
only to batch execution queues. 

"TRUE" or "FALSE" to indicate whether the log file 
is deleted after it is printed. 

"TRUE" or "FALSE" to indicate whether no log file 
is created. 

(continued on next page) 



DCL-174 Lexical Functions 
F$GETQUI 

Table DCL-8 (Cont.): F$GETQUI Items 

Item 

JOB_LOG_SPOOL 

JOB_LOWERCASE 

JOB_NAME 

JOB_NOTIFY 

JOB_PENDING 

JOB_PID 

JOB_REFUSED 

JOB_RESET_MODULES 

JOB_RESTART 

JOB_RETAINED 

JOB_SIZE 

JOB_SIZE_MAXIMUM 

JOB_SIZE_MINIMUM 

Return 
Type 

String 

String 

String 

String 

String 

String 

String 

String 

String 

String 

Integer 

Integer 

Integer 

Information Returned 

"TRUE" or "FALSE" to indicate whether job log file 
is queued for printing when job is complete. 

"TRUE" or "FALSE" to indicate whether job is to be 
printed on printer that can print both uppercase and 
lowercase letters. 

The name of the specified job. 

"TRUE" or "FALSE" to indicate whether message is 
broadcast to terminal when job completes or aborts. 

"TRUE" or "FALSE" to indicate whether job is 
pending. 

The process identification (PID) of the executing 
batch job. 

"TRUE" or "FALSE" to indicate whether job was 
refused by symbiont and is waiting for symbiont to 
accept it for processing. 

The names of the text modules that are to be 
extracted from the device control library and copied 
to the printer before each job in the specified queue 
is printed. This item code is meaningful only for 
output execution queues. 

"TRUE" or "FALSE" to indicate whether job will 
restart after a system failure or can be requeued 
during execution. 

"TRUE" or "FALSE" to indicate whether job has 
completed, but is being retained in the queue. 

The total number of blocks in the specified print job. 

The maximum number of blocks that a print job 
initiated from the specified queue can contain. This 
item code is applicable only to output execution 
queues. 

The minimum number of blocks that a print job 
initiated from the specified queue can contain. This 
item code is applicable only to output execution 
queues. 

(continued on next page) 



Lexical Functions 
F$GETQUI 

DCL-175 

Table DCL-8 (Cont.): F$GETQUI Items 

Item 

JOB_STARTING 

JOB_STATUS 

JOB_SUSPENDED 

JOB_TIMED_RELEASE 

JOB_ WSDEFAULT 

JOB_ WSEXTENT 

JOB_ WSQUOTA 

LAST_PAGE 

LIBRARY_SPECIFICATION 

LOG_ QUEUE 

LOG_SPECIFICATION 

NOTE 

OPERATOR_REQUEST 

OWNER_UIC 

Return 
Type 

String 

Integer 

String 

String 

String 

String 

String 

Integer 

String 

String 

String 

String 

String 

String 

Information Returned 

"TRUE" or "FALSE" to indicate whether job 
controller is starting to process the job and has 
begun communicating with an output symbiont or a 
job controller on another node. 

The specified job's status flags. 

"TRUE" or "FALSE" to indicate whether job is 
suspended. 

"TRUE" or "FALSE" to indicate whether job is 
waiting for specified time to execute. 

"TRUE" or "FALSE" to indicate whether default 
working set size is specified for the job. 

"TRUE" or "FALSE" to indicate whether working set 
extent is specified for the job. 

"TRUE" or "FALSE" to indicate whether working set 
quota is specified for the job. 

The page number at which the printing of the 
specified file should end. This item code is applicable 
only to output execution queues. 

The name of the device control library for the 
specified queue. The library specification assumes 
the device and directory name SYS$LIBRARY and a 
file type of TLB. This item code is meaningful only 
for output execution queues. 

The name of the queue into which the log file 
produced for the specified batch job is to be entered 
for printing. This item code is applicable only to 
batch jobs. 

The name of the log file to be produced for the 
specified job. This item code is meaningful only for 
b!!.trh jobs. 

The note that is to be printed on the job flag and 
file flag pages of the specified job. This item code is 
meaningful only for output execution queues. 

The message that is to be sent to the queue operator 
before the specified job begins to execute. This item 
code is meaningful only for output execution queues. 

The owner UIC of the specified queue. 

(continued on next page) 



DCL-176 Lexical Functions 
F$GETQUI 

Table DCL-8 (Cont.): F$GETQUI Items 

Item 

PAGE_SETUP_MODULES 

PARAMETER_! through 
PARAMETER_8 

PENDING_JOB_BLOCK_ 
COUNT 

PENDING_JOB_COUNT 

PENDING_JOB_REASON 

PEND_CHAR_MISMATCH 

PEND_JOB_SIZE_MAX 

PEND_JOB_SIZE_MIN 

PEND_LOWERCASE_ 
MISMATCH 

PEND_NO_ACCESS 

PEND_QUEUE_BUSY 

PEND_QUEUE_STATE 

PEND_STOCK_MISMATCH 

PRIORITY 

Return 
Type 

String 

String 

Integer 

Integer 

Integer 

String 

String 

String 

String 

String 

String 

String 

String 

Integer 

Information Returned 

The names of the text modules to be extracted 
from the device control library and copied to the 
printer before each page of the specified form is 
printed. This item code is meaningful only for 
output execution queues. 

The value of the user-defined parameters that in 
batch jobs become the value of the DCL symbol 
Pl through PS, respectively. 

The total number of blocks for all pending jobs in 
the queue (valid only for output execution queues). 

The number of jobs in the queue in a pending state. 

The reason that the job is in a pending state. 

''TRUE" or "FALSE" to indicate whether job 
requires characteristics that are not available on 
the execution queue. 

"TRUE" or "FALSE" to indicate whether block size 
of job exceeds the upper block limit of the execution 
queue. 

"TRUE" or "FALSE" to indicate whether block size 
of job is less than the lower limit of the execution 
queue. 

''TRUE" or "FALSE" to indicate whether job requires 
lowercase printer. 

"TRUE" or "FALSE" to indicate whether owner of 
job does not have access to the execution queue. 

"TRUE" or "FALSE" to indicate whether job is 
pending because the number of jobs currently 
executing on the queue equals the job limit for 
the queue. 

''TRUE" or "FALSE" to indicate whether job is 
pending because the execution queue is not in a 
running, open state. 

"TRUE" or "FALSE" to indicate whether the stock 
type required by the job's form does not match the 
stock type of the form mounted on the execution 
queue. 

The scheduling priority of the specified job. 

(continued on next page) 



Lexical Functions 
F$GETQUI 

DCL-177 

Table DCL-8 (Cont.): F$GETQUI Items 

Return 
Item Type 

PROCESSOR String 

PROTECTION String 

QUEUE_ACL_SPECIFIED String 

QUEUE_ALIGNING String 

QUEUE_BATCH String 

QUEUE_ CLOSED String 

QUEUE_CPU_DEFAULT String 

QUEUE_CPU_LIMIT String 

QUEUE_FILE_BURST String 

QUEUE_FILE_BURST_ONE String 

QUEUE_FILE_FLAG String 

QUEUE_FILE_FLAG_ONE String 

QUEUE_FILE_PAGINATE String 

Information Returned 

The name of the symbiont image that executes print 
jobs initiated from the specified queue. 

The specified queue's protection mask. 

"TRUE" or "FALSE" to indicate whether an access 
control list has been specified for the queue. 

"TRUE" or "FALSE" to indicate whether queue 
prints a specified amount of output so that paper 
can be properly aligned. 

"TRUE" or "FALSE" to indicate whether queue is a 
batch queue or a generic batch queue. 

"TRUE" or "FALSE" to indicate whether queue is 
closed and will not accept new jobs until the queue 
is put in an open state. 

"TRUE" or "FALSE" to indicate whether a default 
CPU time limit has been specified for all jobs in the 
queue. 

"TRUE" or "FALSE" to indicate whether a maximum 
CPU time limit has been specified for all jobs in the 
queue. 

"TRUE" or "FALSE" to indicate whether burst and 
:flag pages precede each file in each job initiated from 
the queue. 

"TRUE" or "FALSE" to indicate whether burst and 
:flag pages precede only the first copy of the first file 
in each job initiated from the queue. 

"TRUE" or "FALSE" to indicate whether :flag page 
precedes each file in each job initiated from the 
queue. 

"TRUE" or "FALSE" to indicate whether flag page 
precedes only the first copy of the first file in each 
job initiated from the queue. 

"TRUE" or "FALSE" to indicate whether output 
symbiont paginates output for each job initiated 
from this queue. The output symbiont paginates 
output by inserting a form feed whenever output 
reaches the bottom margin of the form. 

(continued on next page) 



DCL-178 Lexical Functions 
F$GETQUI 

Table DCL-8 (Cont.): F$GETQUI Items 

Return 
Item Type 

QUEUE_FILE_TRAILER String 

QUEUE_FILE_TRAILER_ONE String 

QUEUE_FLAGS Integer 

QUEUE_ GENERIC String 

QUEUE_GENERIC_SELECTION String 

QUEUE_IDLE String 

QUEUE_JOB_BURST String 

QUEUE_JOB_FLAG String 

QUEUE_JOB_SIZE_SCHED String 

QUEUE_JOB_TRAILER String 

QUEUE_LOWERCASE String 

QUEUE_NAME String 

QUEUE_PAUSED String 

QUEUE_PAUSING String 

Information Returned 

"TRUE" or "FALSE" to indicate whether trailer page 
follows each file in each job initiated from the queue. 

"TRUE" or "FALSE" to indicate whether trailer page 
follows only the last copy of the last file in each job 
initiated from the queue. 

The processing options that have been selected for 
the specified queue. 

"TRUE" or "FALSE" to indicate whether the queue 
is a generic queue. 

"TRUE" or "FALSE" to indicate whether the queue 
is an execution queue that can accept work from a 
generic queue. 

"TRUE" or ''FALSE" to indicate whether queue 
prints a specified amount of output so that paper 
can be properly aligned. 

"TRUE" or "FALSE" to indicate whether burst and 
flag pages precede each job initiated from the queue. 

"TRUE" or "FALSE" to indicate whether a flag page 
precedes each job initiated from the queue. 

"TRUE" or "FALSE" to indicate whether jobs 
initiated from the queue are scheduled according 
to size, with the smallest job of a given priority 
processed first. (Meaningful only for output queues.) 

"TRUE" or "FALSE" to indicate whether a trailer 
page follows each job initiated from the queue. 

"TRUE" or "FALSE" to indicate whether queue 
is associated with a printer that can print both 
uppercase and lowercase characters. 

The name of the specified queue or the name of the 
queue that contains the specified job. 

"TRUE" or "FALSE" to indicate whether execution of 
all current jobs in the queue is temporarily halted. 

"TRUE" or "FALSE" to indicate whether queue is 
temporarily halting execution. Currently executing 
jobs are completing; temporarily, no new jobs can 
begin executing. 

(continued on next page) 



Lexical Functions 
F$GETQUI 

DCL-179 

Table DCL-8 (Cont.): F$GETQUI Items 

Return 
Item Type 

QUEUE_PRINTER String 

QUEUE_RECORD_BLOCKING String 

QUEUE_REMOTE String 

QUEUE_RESETTING String 

QUEUE_RESUMING String 

QUEUE_RETAIN_ALL String 

QUEUE_RETAIN_ERROR String 

QUEUE_SERVER String 

QUEUE_STALLED String 

QUEUE_STARTING String 

QUEUE_STATUS Integer 

QUEUE_STOPPED String 

QUEUE_STOPPING String 

QUEUE_SWAP String 

Information Returned 

"TRUE" or "FALSE" to indicate whether the queue 
is a printer queue. 

"TRUE" or "FALSE" to indicate whether the 
symbiont is permitted to concatenate, or block 
together, the output records it sends to the output 
device. 

"TRUE" or "FALSE" to indicate whether queue is 
assigned to a physical device that is not connected to 
the local node. 

"TRUE" or "FALSE" to indicate whether queue is 
resetting and stopping. 

"TRUE" or "FALSE" to indicate whether queue is 
restarting after pausing. 

"TRUE" or "FALSE" to indicate whether all jobs 
initiated from the queue remain in the queue after 
they finish executing. Completed jobs are marked 
with a completion status. 

"TRUE" or "FALSE" to indicate whether only jobs 
that do not complete successfully are retained in the 
queue. 

"TRUE" or "FALSE" to indicate whether queue 
processing is directed to a server symbiont. 

"TRUE" or "FALSE" to indicate whether physical 
device to which queue is assigned is stalled; that is, 
the device has not completed the last 1/0 request 
submitted to it. 

"TRUE" or "FALSE" to indicate whether queue is 
starting. 

The specified queue's status flags. 

''TRUE" or "FALSE" to indicate whether queue is 
stopped. 

''TRUE" or "FALSE" to indicate whether queue is 
stopping. 

"TRUE" or "FALSE" to indicate whether jobs 
initiated from the queue can be swapped. 

(continued on next page) 



DCL-180 Lexical Functions 
F$GETQUI 

Table DCL-8 (Cont.): F$GETQUI Items 

Item 

QUEUE_ TERMINAL 

QUEUE_ UNAVAILABLE 

QUEUE_ WSDEFAULT 

QUEUE_ WSEXTENT 

QUEUE_ WSQUOTA 

REQUEUE_QUEUE_NAME 

RESTART_QUEUE_NAME 

RETAINED_JOB_COUNT 

SCSNODE_NAME 

SUBMISSION_TIME 

TIMED_RELEASE_JOB_ 
COUNT 

UIC 

USERNAME 

Return 
Type 

String 

String 

String 

String 

String 

String 

String 

Integer 

String 

String 

Integer 

String 

String 

Information Returned 

"TRUE" or "FALSE" to indicate whether the queue is 
a generic queue that can place jobs only in terminal 
queues. 

"TRUE" or "FALSE" to indicate whether physical 
device to which queue is assigned is not available. 

"TRUE" or "FALSE" to indicate whether default 
working set size is specified for each job initiated 
from the queue. 

"TRUE" or "FALSE" to indicate whether working 
set extent is specified for each job initiated from the 
queue. 

"TRUE" or "FALSE" to indicate whether working 
set quota is specified for each job initiated from the 
queue. 

The name of the queue to which the specified job is 
reassigned. 

The name of the queue in which the job will be 
placed if the job is restarted. 

The number of jobs in the queue retained after 
successful completion plus those retained on error. 

The 6-byte name of the VAX node on which jobs 
initiated from the specified queue execute. The node 
name matches the value of the SYSGEN parameter 
SCSNODE for the target node. 

The time at which the specified job was submitted to 
the queue. 

The number of jobs in the queue on hold until a 
specified time. 

The UIC of the owner of the specified job. 

The user name of the owner of the specified job. 

(continued on next page) 



Lexical Functions 
F$GETQUI 

DCL-181 

Table DCL-8 (Cont.): F$GETQUI Items 

Item 
Return 
Type Information Returned 

WSDEFAULT Integer The default working set size specified for the 
specified job or queue. This value is meaningful 
only for batch jobs and execution and output queues. 

WSEXTENT 

WSQUOTA 

example 

Integer 

Integer 

The working set extent specified for the specified job 
or queue. This value is meaningful only for batch 
jobs and execution and output queues. 

The working set quota for the specified job or queue. 
This value is meaningful only for batch jobs and 
execution and output queues. 

$ BLOCKS= F$GETQUI("DISPLAY_ENTRY", "JOB_SIZE", 1347) 

In this example, the F$GETQUI lexical function is used to obtain the size 
in blocks of print job 134 7. The value returned reflects the total number 
of blocks occupied by the files associated with the job. 

F$GETSYI 
Invokes the $GETSYI system service to return status and identification 
information about the local system (or about a node in the local 
VAXcluster, if your system is part of a VAXcluster). 

format 
F$GETSYl(item [,node]) 

arguments 

item 
Indicates the type of information to be reported about the local node 
(or about another node in your VAXcluster, if your system is part of a 
VAXcluster). Specify the item as a character string expression. You can 
specify the items in Table DCL-9 only for your local node; you cannot 
specify the node argument with these items. You can specify these items 
whether or not you are in a VAXcluster. 

You can specify the items in Table DCL-10 for either your local node 
or for another node in your VAXcluster. The information in this table 
is returned for your local node if you do not specify the node argument; 
the information is returned for the specified node if you include the node 
argument. Your system must be a member of a VAXcluster in order to 
specify the items in this table, except for CLUSTER_MEMBER. 



DCL-182 

node 

Lexical Functions 
F$GETSYI 

Specifies the node in your VAXcluster for which information is to be 
returned. Specify the node as a character string expression. (This 
argument can be specified only if your system is part of a VAXcluster.) 

You can request information about another node in your VAXcluster only 
when you specify an item from Table DCL-10. If you do not specify a 
node, the default is the current node. You cannot use wildcards to specify 
the node argument with the F$GETSYI function (as you can with the 
$GETSYI system service). 

description 
The F$GETSYI returns information on the items that can be specified 
with the $GETSYI system service. 

Table DCL-9 lists the items you can specify with the F$GETSYI lexical 
function to get information about your local node. Table DCL-10 lists the 
items you can specify to get information about either your local node, or 
another node in your VAXcluster. 

Table DCL-9: F$GETSYI Items for the Local Node Only 

Return 
Item Type 

ACTIVECPU_CNT Integer 

AVAILCPU_CNT Integer 

ARCHFLAG String 

BOOTTIME String 

CHA.RACTER_EMULATED String 

CPU Integer 

DECIMAL_EMULATED String 

Information Returned 

The count of CPUs actively participating in 
the current boot of the SMP system. 

The count of CPUs recognized in the system. 

Architecture flags for the system. 

The time the system was booted. 

"TRUE" or "FALSE" to indicate whether the 
character string instructions are emulated on 
the CPU. 

The processor type, as represented in the 
processor's SID register. For example, the 
integer 1 represents a VAX-11/780 and the 
integer 6 represents a VAX 8530, VAX 8550, 
VAX 8700 and VAX 8800. 

"TRUE" or "FALSE" to indicate whether the 
decimal string instructions are emulated on 
the CPU. 

(continued on next page) 



Lexical Functions 
F$GETSYI 

DCL-183 

Table DCL-9 (Cont.): F$GETSYI Items for the Local Node Only 

Return 
Item Type Information Returned 

D_FLOAT_EMULATED String "TRUE" or "FALSE" to indicate whether the 
D_floating instructions are emulated on the 
CPU. 

ERRORLOGBUFFERS Integer Number of system pages in use as buffers for 
error logging. 

F _FLOAT_EMULATED String "TRUE" or "FALSE" to indicate whether the 
F _floating instructions are emulated on the 
CPU. 

G_FLOAT_EMULATED String "TRUE" or "FALSE" to indicate whether the 
G_floating instructions are emulated on the 
CPU. 

PAGEFILE_FREE Integer Number of free pages in the currently 
installed paging files. 

PAGEFILE_PAGE Integer Number of pages in the currently installed 
paging files. 

SID Integer System identification register. 

SWAPFILE_FREE Integer Number of free pages in the currently 
installed swapping files. 

SWAPFILE_PAGE Integer Number of pages in the currently installed 
swapping files. 

VERSION String Version of VMS in use (8-character string 
filled with trailing blanks). 

Table DCL-10: F$GETSYI Items for the Local Node or for Other Nodes in 
the VAXCluster 

Item 

CLUSTER_FSYSID 

CLUSTER_FTIME 

Return 
Type 

String 

String 

Information Returned 

System identification number for first node to 
boot in the VAXcluster (the founding node). This 
number is returned as a character string containing 
a hexadecimal number. 

The time when the first node in the VAXcluster was 
booted. 

(continued on next page) 



DCL-184 Lexical Functions 
F$GETSYI 

Table DCL-1 O (Cont.): F$GETSYI Items for the Local Node or for Other 
Nodes in the VAXCluster 

Return 
Item Type Information Returned 

CLUSTER_MEMBER String ''TRUE" or "FALSE" if the node is a member of the 
local VAXcluster. 

CLUSTER_NODES Integer Total number of nodes in the VAXcluster, as an 
integer. 

CLUSTER_ QUORUM Integer Total quorum for the VAXcluster. 

CLUSTER_ VOTES Integer Total number of votes in the VAXcluster. 

CONTIG_GBLPAGES Integer Total number of free, contiguous global pages. 

FREE_GBLPAGES Integer Current count of free global pages. 

FREE_GBLSECTS Integer Current count of free global section table entries. 

HW_MODEL Integer An integer that identifies the node's VAX model 
type. 

HW_NAME String The VAX model name. 

NODENAME String Node name. 

NODE_AREA Integer The VAX DECnet area for the target node. 

NODE_CSID String The CSID of the specified node, as a string 
containing a hexadecimal number. The CSID is 
a form of system identification. 

NODE_HWTYPE String Hardware type of the specified node. 

NODE_HWVERS String Hardware version of the specified node. 

NODE_NUMBER Integer The VAX DECnet number for the specified node. 

NODE_ QUORUM Integer Quorum that the node has. 

NODE_SWINCARN String Software incarnation number for the specified node. 
This number is returned as a string containing a 
hexadecimal number. 

NODE_SWTYPE String Type of operating system software used by the 
specified node. 

(continued on next page) 



Lexical Functions 
F$GETSYI 

DCL-185 

Table DCL-10 (Cont.): F$GETSYI Items for the Local Node or for Other 
Nodes in the VAXCluster 

Item 

NODE_SWVERS 

NODE_SYSTEMID 

NODE_ VOTES 

SCS_EXISTS 

example 

Return 
Type 

String 

String 

Integer 

String 

Information Returned 

Software version of the specified node. 

System identification number for the specified node. 
This number is returned as a string containing a 
hexadecimalnumbe~ 

Number of votes that the node has. 

"TRUE" or "FALSE" to indicate whether the system 
communication subsystem (SCS) is currently loaded 
on a VAX node. 

$ MEM = F$GETSYI("CLUSTER MEMBER", "LONDON") 
$ SHOW SYMBOL MEM -

MEM = "TRUE" 

This example uses the F$GETSYI function to determine whether the node 
LONDON is a member of the local VAXcluster. The "TRUE" indicates 
that the remote node LONDON is a member of the VAXcluster. 

F$1DENTIFIER 
Converts an alphanumeric identifier to its integer equivalent, or converts 
an integer identifier to its alphanumeric equivalent. An identifier is a 
name or number that identifies a category of users of a data resource. 
The system uses identifiers to determine a user's access to a resource. 

format 

F$1DENTIFIER(identifier,conversion-type) 

arguments 
identifier 
Specifies the identifier to be converted. Specify the identifier as an 
integer expression if you are converting an integer to a name. Specify the 
identifier as a character string expression if you are converting a name 
to an integer. The F$IDENTIFIER function does not convert letters in 
the identifier to uppercase. Therefore, you must specify the identifier the 
same way it is defined in the rights database. 



DCL-186 Lexical Functions 
F$1DENTIFIER 

conversion-type 
Indicates the type of conversion to be performed. If the identifier 
argument is alphanumeric, specify the translation argument as a 
character string containing "NAME_TO_NUMBER". If the identifier 
argument is numeric, specify the translation argument as a character 
string containing "NUMBER_TO_NAME". 

example 
$ UIC INT= F$IDENTIFIER("SLOANE","NAME TO NUMBER") 
$ SHOW SYMBOL UIC INT - -

UIC INT = 15728G65 Hex = OOF00019 Octal = 00074000031 
$ UIC -= F$FAO (" ! %U", UIC INT) 
$ SHOW SYMBOL UIC -

UIC = [360,031] 

This example uses the F$1DENTIFIER to convert the member identifier 
from the UIC [MANAGERS,SLOANE] to an integer. The F$IDENTIFIER 
function shows that the member identifier SLOANE is equivalent to the 
integer 15728665. Note that you must specify the identifier SLOANE 
using uppercase letters. 

To convert this octal number to a standard numeric UIC, use the F$FAO 
function with the !%U directive. (This directive converts a longword to a 
UIC in named format.) In this example, the member identifier SLOANE 
is equivalent to the numeric UIC [360,031]. 

F$1NTEGER 
Returns the integer equivalent of the result of the specified expression. 

format 
F$1NTEGER(expression) 

argument 
expression 
Specifies the expression to be evaluated. Specify either an integer or 
a character string expression. If you specify an integer expression, the 
F$INTEGER function evaluates the expression and returns the result. If 
you specify a string expression, the F$INTEGER function evaluates the 
expression, converts the resulting string to an integer, and returns the 
result. If the string contains characters that do not form a valid integer, 
the F$INTEGER function returns the integer 1 if the string begins with 
T, t, Y, or y. The function returns the integer 0 if the string begins with 
any other character. 



example 
$ A = "23" 
$ B = F$INTEGER("-9" + A) 
$ SHOW SYMBOL B 

B = -923 Hex=FFFFFC65 Octal=176145 

Lexical Functions 
F$1NTEGER 

DCL-187 

This example shows how to use the F$INTEGER function to equate a 
symbol to the integer value returned by the function. 

The F$INTEGER function in the above example returns the integer 
equivalent of the string expression ("-9" + A). First, the F$INTEGER 
function evaluates the string expression by concatenating the string 
literal "-9" with the string literal "23". Note that the value of the 
symbol A is automatically substituted in a string expression. Also note 
that the plus sign ( +) is a string concatenation operator since both 
arguments are string literals. 

After the string expression is evaluated, the F$INTEGER function 
converts the resulting character string (" -923") to an integer, and returns 
the value -923. This integer value is assigned to the symbol B. 

F$LENGTH 
Returns the length of the specified character string. 

format 

F$LENGTH(string) 

argument 
string 
Specifies the character string whose length is being determined. Specify 
the string argument as a character string expression. 

example 
$MESSAGE = F$MESSAGE(%XlC) 
$ SHOW SYMBOL MESSAGE 

MESSAGE = "%SYSTEM-F-EXQUOTA, exceeded quota" 
$ STRING LENGTH = F$LENGTH(MESSAGE) 
$ SHOW SYMBOL STRING_LENGTH 

STRING_LENGTH = 33 Hex = 00000021 Octal = 000041 

The first assignment statement uses the F$MESSAGE function to 
return the message that corresponds to the hexadecimal value lC. The 
message is returned as a character string and is assigned to the symbol 
MESSAGE. 



DCL-188 Lexical Functions 
F$LENGTH 

The F$LENGTH function is then used to return the length of the 
character string assigned to the symbol MESSAGE. You do not need to 
use quotation marks when you use the symbol MESSAGE as an argument 
for the F$LENGTH function. (Quotation marks are not used around 
symbols in character string expressions.) 

The F$LENGTH function returns the length of the character string 
and assigns it to the symbol STRING_LENGTH. At the end of the 
example, the symbol STRING_LENGTH has a value equal to the number 
of characters in the value of the symbol named MESSAGE, that is, 33. 

F$LOCATE 
Locates a specified portion of a character string and returns as an integer 
the offset of the first character. (An offset is the position of a character or 
a substring relative to the begining of the string. The first character in a 
string is always offset position 0 from the beginning of the string.) If the 
substring is not found, F$LOCATE returns the length (the offset of the 
last character in the character string plus one) of the searched string. 

format 

F$LOCATE(substring,string) 

arguments 
substring 
The character string, specified in the string argument, that you want to 
locate within the string. 

string 
The character string to be edited by F$LOCATE. 

example 
$ INQUIRE TIME "Enter time" 
$ IF F$LOCATE(":",TIME) .EQ. F$LENGTH(TIME) THEN -

GOTO NO_COLON 

This section of a command procedure compares the results of the 
F$LOCATE and F$LENGTH functions to see if they are equal. This 
technique is commonly used to determine whether a character or 
substring is contained in a string. 

In the example, the INQUIRE command prompts for a time value and 
assigns the user-supplied time to the symbol TIME. The IF command 
checks for the presence of a colon in the string entered in response to 
the prompt. If the value returned by the F$LOCATE function equals the 
value returned by the F$LENGTH function, the colon is not present. You 
use the .EQ. operator (rather than .EQS.) because the F$LOCATE and 
F$LENGTH functions return integer values. 



Lexical Functions 
F$LOCATE 

DCL-189 

Note that quotation marks are used around the substring argument, the 
colon, because it is a string literal. However, the symbol TIME does not 
require quotation marks because it is automatically evaluated as a string 
expression. 

F$MESSAGE 
Returns as a character string the facility, severity, identification, and text 
associated with the specified system status code. 

format 
F$MESSAGE(status-code) 

argument 
status-code 
The status code for which you are requesting error message text. You 
must specify the status code as an integer expression. 

example 
$ ERROR TEXT = F$MESSAGE(%X1C) 
$ SHOW SYMBOL ERROR_TEXT 

ERROR_TEXT = "%SYSTEM-F-EXQUOTA, exceeded quota" 

This example shows how to use the F$MESSAGE function to determine 
the message associated with the status code %X1C. The F$MESSAGE 
function returns the message string, which is assigned to the symbol 
ERROR_ TEXT. 

F$MODE 
Returns a character string showing the mode in which a process is 
executing. Returns the character string 11INTERACTIVE 11 for interactive 
processes. If the process is noninteractive, the character string 11BATCH 11

, 

11 NETWORK11 or 11 0THER 11 is returned. The return string always 
contains uppercase letters. The F$MODE function has no arguments, 
but must be followed by parentheses. 

format 
F$MODE{} 

arguments 
None. 



DCL-190 Lexical Functions 
F$MODE 

example 
$ IF F$MODE() .NES. "INTERACTIVE" THEN GOTO NON INT DEF 
$ INTDEF: Commands for interactive terminal sessions 

$ EXIT 
$ NON_INT_DEF: !Commands for non-interactive processes 

This example shows the beginning of a login.com file that has two 
sets of initialization commands: one for interactive mode and one for 
noninteractive mode (including batch and network jobs). The IF command 
compares the character string returned by F$MODE with the character 
string INTERACTIVE; if they are not equal, control branches to the label 
NON_INT_DEF. If the character strings are equal, the statements 
following the label INTDEF are executed and the procedure exits before 
the statements at NON_INT_DEF. 

F$PARSE 
Invokes the $PARSE RMS service to parse a file specification and 
return as a character string either the expanded file specification or 
the particular file specification field that you request. 

format 
F$PARSE(file-spec [,default-spec] [,related-spec] {,field] [,parse-type]) 

arguments 
file-spec 
Specifies a character string containing the file specification to be parsed. 
The file specification can contain wildcard characters. If you use a 
wildcard character, the file specification returned by the F$PARSE 
function contains the wildcard. 



default-spec 

Lexical Functions 
F$PARSE 

DCL-191 

Specifies a character string containing the default file specification. The 
fields in the default file specification are substituted in the output string 
if a particular field in the file-spec argument is missing. You can make 
further substitutions in the file-spec argument by using the related-spec 
argument. 

related-spec 
Specifies a character string containing the related file specification. The 
fields in the related file specification are substituted in the output string 
if a particular field is missing from both the file-spec and default-spec 
arguments. 

field 
Specifies a character string containing the name of a field in a file 
specification. Specifying the field argument causes F$PARSE to return a 
specific portion of a file specification. 

Specify one of the following field names (do not abbreviate): 

NODE 

DEVICE 

DIRECTORY 

NAME 

TYPE 

VERSION 

parse-type 

Node name 

Device name 

Directory name 

File name 

File type 

File version number 

The type of parsing to be performed. By default, the F$PARSE function 
verifies that the directory in the file specification exists on the device in 
the file specification. Note that the device and directory can be explicitly 
given in one of the arguments, or can be provided by default. Also, 
by default the F$PARSE function translates logical names if they are 
provided in any of the arguments. You can change how the F$PARSE 
function parses a file specification by using one of the following keywords: 

NO_CONCEAL 

SYNTAX_ ONLY 

Ignores the "conceal" attribute in the translation of a logical name as 
part of the file specification; that is, logical name translation does not 
end when a concealedlogical name is encountered. 

The syntax of the file specification is checked without verifying that 
the specified directory exists on the specified device. 



DCL-192 Lexical Functions 
F$PARSE 

description 
When you use the F$PARSE function, you can omit those optional 
arguments to the right of the last argument you specify. However, you 
must include commas as placeholders if you omit optional arguments 
to the left of the last argument you specify. If you omit the device 
and directory names in the file-spec argument, the F$PARSE function 
supplies defaults, first from the default-spec argument and second from 
the related-spec argument. If names are not provided by these arguments, 
the F$PARSE function uses your current default disk and directory. If you 
omit the file name, file type, or version number, the F$PARSE function 
supplies defaults, first from the default-spec argument and second from 
the related-spec argument. If names are not provided by these arguments, 
the F$PARSE function returns a null specification for these fields. 

example 
$ SET DEF DISK2: [FIRST] 
$SPEC= F$PARSE("JAMES.MAR11 ,"[ROOT] 11

,,,
11 SYNTAX ONLY") 

$ SHOW SYMBOL SPEC -
SPEC= "DISK2:[ROOT]JAMES.MAR;" 

In this example, the F$PARSE function returns the expanded file 
specification for the file JAMES.MAR. The example uses the SYNTAX_ 
ONLY keyword to request that F$PARSE should check the syntax, but 
should not verify that the [ROOT] directory exists on DISK2. 

The default device and directory are DISK2:[FIRST]. Because the 
directory name [ROOT] is specified as the default-spec argument in 
the assignment statement, it is used as the directory name in the output 
string. Note that the default device returned in the output string is 
DISK2, and the default version number for the file is null. You must 
place quotation marks around the arguments JAMES.MAR and ROOT 
because they are string literals. 

If you had not specified syntax-only parsing, and [ROOT] were not on 
DISK2, a null string would have been returned. 

F$PID 
The F$PID function returns a process identification (PID) number 
as a character string and updates the context symbol to point to the 
current position in the system's process list. You can step through all the 
processes on a system, or use the lexical F$CONTEXT to specify selection 
criteria. The lexical F$CONTEXT is not required. 



Lexical Functions DCL-193 
F$PID 

The PIDs returned by the F$PID function depend on the privilege of your 
process. If you have GROUP privilege, the F$PID function returns PIDs 
of processes in your group. If you have WORLD privilege, the F$PID 
function returns PIDs of all processes on the system. If you lack GROUP 
or WORLD privileges, the F$PID function returns only those processes 
that you own. 

After the first call initializes the context symbol, each subsequent F$PID 
function call returns the next process in sequence, using the selection 
criteria set up by the F$CONTEXT function, if any. After the last process 
in the list is returned, the F$PID function returns a null string. 

The F$CONTEXT function enables the F$PID function to retrieve 
processes from any node in a VAXcluster. 

format 
F$PID(context-symbol) 

argument 

context-symbol 
Specifies a symbol that DCL uses to store a pointer into the system's 
list of processes. The F$PID function uses this pointer to return a PID. 
Specify the context symbol by using a symbol. The first time you use the 
F$PID function in a command procedure, you should use a symbol that 
is either undefined or equated to the null string (" ") or a context symbol 
that has been created by the F$CONTEXT function. 

example 
$ CONTEXT = 1111 

$ START: 
$ PID = F$PID(CONTEXT) 
$ IF PID .EQS. "" THEN EXIT 
$ SHOW SYMBOL PID 
$ GOTO START 

This command procedure uses the F$PID function to display a list of 
PIDs. The assignment statement declares the symbol CONTEXT, which 
is used as the context-symbol argument for the F$PID function. Because 
CONTEXT is equated to a null string, the F$PID function returns the 
first PID in the process list that it has the privilege to access. 

The PIDs displayed by this command procedure depend on the privilege of 
your process. When run with GROUP privilege, the PIDs of users in your 
group are displayed. When run with WORLD privilege, the PIDS of all 
users on the system are displayed. Without GROUP or WORLD privilege, 
only those processes that you own are displayed. 



DCL-194 Lexical Functions 
F$PRIVILEGE 

F$PRIVILEGE 
Returns a value of either "TRUE" or "FALSE", depending on whether your 
current process privileges match those specified in the argument. You can 
specify either the positive or negative version of a privilege. 

format 
F$PRIVILEGE(priv-states) 

argument 
priv-states 
A character string containing a privilege or a list of privileges separated 
by commas. Specify any one of the process privileges except [NO]ALL. 

description 
Use the F$PRIVILEGE function to identify your current process 
privileges. 

If ''NO" precedes the privilege, the privilege must be disabled in order for 
the function to return a value of "TRUE". The F$PRIVILEGE function 
checks each of the keywords in the specified list, and if the result for any 
one is false, the string 11FALSE 11 is returned. 

example 
$ PROCPRIV = F$PRIVILEGE ( "OPER, GROUP 1 TMPMBX, NONETMBX") 
$ SHOW SYMBOL PROCPRIV 

PROCPRIV = "FALSE" 

The F$PRIVILEGE function is used to test whether the process has 
OPER, USER, TMPMBX, and NETMBX privileges. 

The process in this example has OPER, GROUP, TMPMBX, and NETMBX 
privileges. Therefore, a value of "FALSE" is returned because the process 
has NETMBX privilege, but NONETMBX was specified in the priv-states 
list. Although the Boolean result for the other three keywords is true, the 
entire expression is declared false because the result for NONETMBX was 
false. 



lexical Functions DCL-195 
F$PROCESS 

F$PROCESS 
Obtains the current process name string. The F$PROCESS function has 
no arguments, but must be followed by parentheses. 

format 

F$PROCESS() 

arguments 

None. 

example 
$ NAME= F$PROCESS() 
$ SHOW SYMBOL NAME 

NAME = "MARTIN" 

In this example, the F$PROCESS function returns the current process 
name and assigns it to the symbol NAME. 

F$SEARCH 
Invokes the $SEARCH RMS service to search a directory file and return 
the full file specification for a file you specify. 

format 

F$SEARCH (file-spec[, stream-id]) 

arguments 

file-spec 
Specifies a character string containing the file specification to be searched 
for. If the device or directory names are omitted, the defaults from your 
current default disk and directory are used. The F$SEARCH function 
does not supply defaults for a file name or type. If the version is omitted, 
the specification for the file with the highest version number is returned. 
If the file-spec argument contains wildcards, each time F$SEARCH is 
called, the next file specification that agrees with the file-spec argument 
is returned. A null string is returned after the last file specification that 
agrees with the file-spec argument. 

stream-id 
A positive integer representing the search stream identification number. 
The search stream identification number is used to maintain separate 
search contexts when you use the F$SEARCH function more than once 
and when you supply different file-spec arguments. If you omit stream
id, the F$SEARCH function assumes an implicit single search stream. 
That is, the F$SEARCH function starts searching at the beginning of the 
directory file each time you specify a different file-spec argument. 



DCL-196 Lexical Functions 
F$SEARCH 

example 
$ START: 
$ COM= F$SEARCH ("*.COM;*",1) 
$ DAT = F$SEARCH ("*.DAT;*",2) 
$ SHOW SYMBOL COM 
$ SHOW SYMBOL DAT 
$ IF (COM.EQS. "") .AND. (DAT.EQS. "") THEN EXIT 
$ GOTO START 

This command procedure searches the default disk and directory for 
both COM and DAT files. Note that the stream-id is specified for each 
F$SEARCH function so that the context for each search is maintained. 

The first F$SEARCH function starts searching from the top of the 
directory file for a file with a type of COM. When it finds a COM file, 
a pointer is set to maintain the search context. When the F$SEARCH 
function is used the second time, it again starts searching from the top of 
the directory file for a file with a type of DAT. When the procedure loops 
back to the label START, the stream-id argument allows each F$SEARCH 
function to start searching in the correct place in the directory file. After 
all versions of COM and DAT files are returned, the procedure exits. 

F$SETPRV 
Invokes the $SETPRV system service to enable or disable specified user 
privileges. The F$SETPRV function returns a list of keywords indicating 
user privileges; this list shows the status of the specified privileges before 
F$SETPRV was executed. Your process must be authorized to set the 
specified privilege. 

format 
F$SETPRV (priv-states) 

argument 
priv-states 
A character string defining a privilege or a list of privileges separated by 
commas. 

example 
$ OLDPRIV = F$SETPRV ( "OPER, NOTMPMBX") 
$ SHOW SYMBOL OLDPRIV 

OLDPRIV = "NOOPER,TMPMBX" 

In this example, the process is authorized to change the OPER and 
TMPMBX privileges. The F$SETPRV function enables the OPER 
privilege and disables the TMPMBX privilege. In addition, the 
F$SETPRV function returns the keywords NOOPER and TMPMBX, 
showing the state of these privileges before they were changed. 



Lexical Functions 
F$SETPRV 

DCL-197 

You must place quotation marks around the list of privilege keywords 
because it is a string literal. 

F$STRING 
Returns the string that is equivalent to the specified expression. 

format 

F$STRING (expression) 

argument 

expression 
The integer or string expression to be evaluated. If you specify an integer 
expression, the F$STRING expression evaluates the expression, converts 
the resulting integer to a string, and returns the result. If you specify a 
string expression, the F$STRING expression evaluates the expression and 
returns the result. When converting an integer to a string, the F$STRING 
function uses decimal representation and omits leading zeroes. When 
converting a negative integer, the F$STRING function places a minus 
sign at the beginning string representation of the integer. 

example 
$ A = 5 
$ B = F$STRING(-2 + A) 
$ SHOW SYMBOL B 

B = "3" 

The F$STRING function in this example converts the result of the integer 
expression (-2 +A) to the numeric string, 11 3". First, the F$STRING 
function evaluates the expression (-2 +A). Note that 5, the value of 
symbol A, is automatically substituted when the integer expression is 
evaluated. 

After the integer expression is evaluated, the F$STRING function 
converts the resulting integer, 3, to the string 11 3". This string is assigned 
to the symbol B. 



DCL-198 Lexical Functions 
F$TIME 

F$TIME 
Returns as a character string the current date and time in absolute time 
format. The returned string has the following fixed, 23-character format: 

dd-mmm-yyyy hh:mm:ss.cc 

The F$TIME function has no arguments, but must be followed by 
parentheses. 

format 
F$TIME() 

arguments 
None. 

example 
$ OPEN/WRITE OUTFILE DATA.DAT 
$ TIME STAMP = F$TIME() 
$ WRITE OUTFILE TIME_STAMP 

This example shows how to use the F$TIME function to time-stamp a file 
that you create from a command procedure. OUTFILE is the logical name 
for the file DATA.DAT, which is opened for writing. The F$TIME function 
returns the current date and time string, and assigns this string to the 
symbol TIME_STAMP. The WRITE command writes the date and time 
string to OUTFILE. 

F$TRNLNM 
Translates a logical name and returns the equivalence name string, or 
the requested attributes of the logical name specified. The return value 
can be a character string or an integer, depending on the arguments you 
specify with the F$TRNLNM function. The translation is not iterative; 
the equivalence string is not checked to determine whether it is a logical 
name. 

format 
F$TRNLNM(/ogica/-name [,table] (,index] [,mode] [,case] [,item]) 

arguments 
logical-name 
Specifies a character string containing the logical name to be translated. 



Lexical Functions DCL-199 
F$TRNLNM 

table 
Specifies a character string containing the logical name table or tables 
that the F$TRNLNM function should search to translate the logical 
name. The table argument must be a logical name that translates to a 
logical name table or to a list of table names. If you do not specify a table, 
the default value is LNM$DCL_LOGICAL. Unless LNM$DCL_LOGICAL 
has been redefined for your process, the F$TRNLNM function searches 
the process, job, group, and system logical name tables, in that order, and 
returns the equivalence name for the first match found. 

index 
Specifies the number of the equivalence name to be returned if the logical 
name has more than one translation. If you do not specify the index 
argument, the default is 0. 

mode 
Specifies a character string containing one of the following access modes 
for the translation: USER (default), SUPERVISOR, EXECUTIVE, or 
KERNEL. The F$TRNLNM function starts by searching for a logical 
name created with the access mode specified in the mode argument. If it 
does not find a match, the F$TRNLNM function searches for the name 
created with each inner access mode and returns the first match found. 

case 
Specifies the type of case translation to be performed. Specify the case 
argument as either of the following character strings: CASE_BLIND 
(default) or CASE_SENSITIVE. If the translation is case blind, the 
F$TRNLNM function first searches for a logical name with characters 
of the same case as the name argument. If no match is found, the 
F$TRNLNM function searches for an uppercase version of the name 
argument and the logical names it is searching. The result of the first 
successful translation is returned. If the translation is case sensitive, the 
F$TRNLNM function searches only for a logical name with characters of 
the same case as the name argument. The F$TRNLNM function returns 
a null string if no exact match is found. 

item 
A character string containing the type of information that F$TRNLNM 
should return about the specified logical name. Specify one of the 
following items: 



DCL-200 Lexical Functions 
F$TRNLNM 

Return 
Item Type 

ACCESS_MODE String 

CONCEALED String 

CONFINE String 

CRELOG String 

LENGTH Integer 

MAX_INDEX Integer 

NO _ALIAS String 

TABLE String 

TABLE_NAME String 

TERMINAL String 

VALUE String 

Information Returned 

One of the following access modes associated 
with the logical name: "US~R", "SUPERVISOR", 
"EXECUTIVE", "KERNEL". 

Either "TRUE" or "FALSE" to indicate whether 
the CONCEALED attribute was specified with the 
ITRANSLATION_ATTRIBUTES qualifier when the 
logical name was created. 

Either "TRUE" or "FALSE" to indicate whether 
the logical name is confined. If the logical name is 
confined (TRUE), then the name is not copied to 
subprocesses. If the logical name is not confined 
(FALSE), then the name is copied to subprocesses. 

"TRUE" or "FALSE" to indicate whether the logical 
name was created with the $CRELOG system service 
or with the $CRELNM system service, using the 
CRELOG attribute. 

Length of the equivalence name associated with the 
specified logical name. If the logical name has more 
than one equivalence name, the F$TRNLNM function 
returns the length of the name specified by the index 
argument. 

The largest index defined for the logical name. The 
index shows how many equivalence names are 
associated with a logical name. The index is zero 
based; that is, the index 0 refers to the first name in a 
list of equivalence names. 

Either "TRUE" or "FALSE" to indicate whether the 
logical name has the NO....ALIAS attribute. The NO_ 
ALIAS attribute means that a logical name must be 
unique within outer access mode. 

Either "TRUE" or "FALSE" to indicate whether the 
logical name is the name of a logical name table. 

Name of the table where the logical name was found. 

Either "TRUE" or "FALSE" to indicate whether 
the TERMINAL attribute was specified with the 
ITRANSLATION_ATTRIBUTES qualifier when the 
logical name was created. The TERMINAL attribute 
indicates that the logical name is not a candidate for 
iterative translation. 

Default. The equivalence name associated with the 
specified logical name. If the logical name has more 
than one equivalence name, the F$TRNLNM function 
returns the name specified by the index argument. 



example 

Lexical Functions 
F$TRNLNM 

$ DEFINE/TABLE=LNM$GROUP TERMINAL 'F$TRNLNM("SYS$0UTPUT")' 

DCL-201 

This example shows a line from a command procedure that ( 1) uses the 
F$TRNLNM function to determine the name of the current output device 
and ( 2 ) creates a group logical name table entry based on the equivalence 
string. 

You must enclose the argument SYS$0UTPUT in quotation marks 
because it is a character string. 

Also, in this example you must enclose the F$TRNLNM function in 
single quotes to force the lexical function to be evaluated. Otherwise, the 
DEFINE command does not automatically evaluate the lexical function. 

F$TYPE 
Returns the data type of a symbol. The string 11 INTEGER11 is returned if 
the symbol is equated to an integer, or if the symbol is equated to a string 
whose characters form a valid integer. 

The string 11 STRING11 is returned if the symbol is equated to a character 
string whose characters do not form a valid integer. 

If the symbol is undefined, a null string is returned. 

format 

F$TYPE(symbol-name) 

argument 

symbol 
The name of the symbol that is evaluated. 

example 
$ NUM = "52" 
$ TYPE = F$TYPE(NUM) 
$ SHOW SYMBOL TYPE 

TYPE = "INTEGER" 

This example uses the F$TYPE function to determine the data type of the 
symbol NUM. NUM is equated to the character string 11 52 11

• Because the 
characters in the string form a valid integer, the F$TYPE function returns 
the string 11 INTEGER11

• 



DCL-202 Lexical Functions 
F$USER 

F$USER 
Returns the current user identification code (UIC) in named format as a 
character string. The F$USER function has no arguments, but must be 
followed by parentheses. 

format 
F$USER() 

arguments 
None. 

example 
$ UIC = F$USER () 
$ SHOW SYMBOL UIC 

UIC = "[GROUP6,JENNIFER]" 

In this example the F$USER function returns the current user 
identification code and assigns it to the symbol UIC. 

F$VERIFY 
Returns an integer value indicating whether the procedure verification 
setting is currently on or off. If used with arguments, the F$VERIFY 
function can tum the procedure and image verification settings on or off. 
You must include the parentheses after the F$VERIFY function whether 
or not you specify arguments. 

format 
F$VERIFY ([procedure-value] [,image-value]) 

arguments 
procedure-value 
An integer expression with a value of 1 to tum procedure verification 
on, or 0 to tum procedure verification off. When procedure verification is 
on, each DCL command line in the command procedure is displayed on 
the output device. Procedure verification allows you to verify that each 
command is executing correctly. 

Image-value 
An integer expression with a value of 1 to tum image verification on, or 0 
to tum image verification off. When image verification is on, data lines in 
the command procedure are displayed on the output device. 



description 

Lexical Functions 
F$VERIFY 

DCL-203 

Using the F$VERIFY function in command procedures allows you to 
test the current procedure verification setting. For example, a command 
procedure can save the current procedure verification setting before 
changing it and then later restore the setting. 

If you do not specify any arguments, neither of the verification settings 
is changed. If you specify only the procedure-value argument, both 
procedure and image verification are turned on (if the value is 1) or off 
(if the value is 0). If you specify both arguments, procedure and image 
verification are turned on or off independently. If you specify the image
value argument alone, only image verification is turned on or off. If you 
specify the image-value argument alone, you must precede the argument 
with a comma. 

DCL performs the F$VERIFY function if it appears after a comment 
character and if it is enclosed in single quotes. This is the only processing 
that DCL performs within a comment. 

example 
$ SAVE PROC VERIFY = F$ENVIRONMENT("VERIFY PROCEDURE") 
$ SAVE-IMAGE VERIFY= F$ENVIRONMENT("VERIFY IMAGE") 
$ SET NOVERIFY -

$ TEMP = F$VERIFY(SAVE_PROC_VERIFY, SAVE_IMAGE_VERIFY) 

This example shows an excerpt from a command procedure. The first 
assignment statement assigns the current procedure verification setting 
to the symbol SAVE_PROC_ VERIFY. The second assignment statement 
assigns the current image verification setting to the symbol 
SAVE_IMAGE_ VERIFY. 

Then, the SET NOVERIFY command disables procedure and image 
verification. Later, the F$VERIFY function resets the verification settings, 
using the original values (equated to the symbols SAVE_PROC_ VERIFY 
and SAVE_IMAGE_ VERIFY). The symbol TEMP contains the procedure 
verification before it is changed with the F$VERIFY function. (In this 
example the value of TEMP is not used.) 



DCL-204 DCL Commands 
LIBRARY 

LIBRARY 
Invokes the Librarian Utility to create, modify, or describe an object, 
macro, help, text, or shareable image library. 

format 
LIBRARY library-file-spec {input-file-spec[, ... ]] 

LICENSE 

LINK 

Invokes the License Management Utility (LICENSE), used to manage 
software licenses on the VMS operating system. For a complete 
description of this utility, see the VMS License Management Utility 
Manual, part of the VMS Base Documentation Set. 

Invokes the VMS Linker to link one or more object modules into a 
program image and defines execution characteristics of the image. 

format 
LINK file-spec[, ... ] 

parameter 
file-spec[, ... ] 
Specifies one or more input files (wildcard characters not allowed). 
Input files may be object modules, libraries to be searched for external 
references or from which specific modules are to be included, shareable 
images to be included in the output image or option files to be read by the 
linker. Separate multiple input file specifications with commas ( , ) or plus 
signs ( + ). In either case, the linker creates a single image file. 

If you omit the file type in an input file specification, the linker supplies 
default file types, based on the nature of the file. For object modules, file 
type OBJ is assumed. 

qualifiers 
/BRIEF 
Requests the linker to produce a brief map file; valid only with the IMAP 
qualifier. 

/CONTIGUOUS 
/NOCONTIGUOUS (default) 
Controls whether the output image file is contiguous. 



/CROSS REFERENCE 
INOCROSS_REFERENCE (default) 

DCL Commands DCL-205 
LINK 

Controls whether the map contains a symbol cross-reference list with 
entries for each global symbol referenced in the image, its value, and all 
modules in the image that refer to it. 

!DEBUG[=file-spec] 
/NODE BUG 
If the object module contains local symbol table or traceback information, 
you can specify /DEBUG to include the information in the image as well. 
If the object module does not contain local symbol table or traceback 
information, only global symbols are available for symbolic debugging. 

If you specify the /DEBUG qualifier, by default, the VAX Symbolic 
Debugger is linked with the image. However, you can use the file-spec 
option to specify an alternate debugger ( wildcard characters are not 
allowed). 

/EXECUTABLE[:file-spec] 
!NOEXECUTABLE 
Permits you to specify whether or not the linker creates an executable 
image. By default the linker creates an executable image with the same 
file name as the first input file and a file type of EXE but this qualifier 
gives you the option of assigning the image a file specification ( wildcard 
characters not allowed). The placement of the command qualifier 
determines the output file specification defaults. 

!FULL 
Requests a full map listing; valid only with IMAP qualifier. 

!HEADER 
Provides a system image header when used with the /SYSTEM qualifier. 

llNCLUDE:{module-name[, .•. J) 
Positional qualifier. Selects modules from the associated object module 
library or image library as input to the linking operation. No wildcard 
characters are allowed in the module name specifications. If you specify 
several modules, separate them with commas and enclose the list in 
parentheses. 

/LIBRARY 
Positional qualifier. Indicates that the associated input file is a library 
(default file type OLB) whose modules should be searched to resolve 
undefined symbols. You are not permitted to specify a library as the 
first input file unless you also specify the /INCLUDE qualifier to indicate 
which modules in the library are to be included in the input. 



DCL-206 DCL Commands 
LINK 

/MAP[:file-spec} 
INOMAP 
Permits you to specify whether or not a memory allocation listing (map) 
is produced and gives you the option of assigning it a file specification. In 
interactive mode, the default is /NOMAP; in batch mode, the default is 
IMAP. You can specify the map's contents using either the /BRIEF, /FULL, 
or /CROSS_REFERENCE qualifiers. 

/OPTIONS 
Positional qualifier. Indicates that the associated input file (default file 
type OPT) contains a list of linking options. 

/PO/MAGE 
Directs the linker to create an image in PO address space together with 
the stack and the VMS RMS buffers that usually go in Pl address space. 

/PROTECT 
When used with the /SHAREABLE qualifier, directs the linker to create 
a protected shareable image that can execute privileged change mode 
instructions even when it is linked into a nonprivileged executable image. 

/SELECTIVE_ SEARCH 
Positional qualifier. Use this qualifier when you want the linker to omit 
from the output image symbol table, all symbols from the associated input 
object module that are not needed to resolve outstanding references. 

ISHAREABLE[=flle-spec} 
/NOSHAREABLE 
Command qualifier. By default, the linker creates an executable image. 
If you specify the /SHAREABLE qualifier, the linker creates a shareable 
image file instead. Optionally, you may designate a name for the output 
file; however, wildcard characters are not permitted. To specify an input 
shareable image, the /SHAREABLE qualifier must be used as an input 
file qualifier in an options file. 

/SHAREABLE 
ISHAREABLE:NOCOPY 
Positional qualifier. Use this positional qualifier in the context of 
an options file only to identify an input file as a shareable image file. 
The keyword NOCOPY tells the linker not to bind a private copy of the 
shareable image to the executable image. 

ISYMBOL_ TABLE[:fl/e-spec} 
/NOSYMBOL_ TABLE 
The default is /NOSYMBOL_TABLE (do not create a symbol table). Use 
the /SYMBOL_TABLE qualifier when you want the linker to create a 
symbol table object module file (default file type STB) that contains 
symbol definitions for all global symbols in the image being linked. The 
symbol table file can be subsequently specified in LINK commands to 
provide the symbol definitions to other images. 



DCL Commands DCL-207 
LINK 

When you specify /SYMBOL_TABLE, you can control the defaults applied 
to the output file specification. Optionally, you may designate a name for 
the symbol table file, but you may not use wildcard characters. 

ISYSLIB 
INOSYSLIB 
The default is /SYSLIB (search the system libraries). Use the /NOSYSLIB 
qualifier to prevent the linking operation from automatically searching 
the default system libraries, SYS$LIBRARY:IMAGELIB.OLB and then 
SYS$LIBRARY:STARLET.OLB, for unresolved references in the input 
files. 

ISYSSHR 
INOSYSSHR 
The default is /SYSSHR (search the default system shareable image 
library). Use the /NOSYSSHR qualifier to prevent the linking operation 
from automatically searching the default system shareable image library, 
SYS$LIBRARY:IMAGELIB.OLB, for unresolved references. 

ISYSTEM[=base-address] 
INOSYSTEM 
The default is /NOSYSTEM (do not produce a system image). Use the 
/SYSTEM qualifier to produce a system image and optionally assign 
it a base address. You cannot use the /SYSTEM qualifier with either 
the /SHAREABLE qualifier or the /DEBUG qualifier. The base address 
specifies where the image is to be loaded in virtual memory. It can 
be expressed in decimal, hexadecimal, or octal format, using the radix 
specifiers %D, %X, or %0, respectively. The default base address is 
%X80000000. 

/TRACEBACK (default) 
INOTRACEBACK 
Default is trRA.CEBACK (include traceback information in the image file 
to help the system trace the call stack when an error occurs). Use the 
/NOTRA.CEBACK qualifier to prevent the linker from including traceback 
information. 

If you specify /DEBUG, trRA.CEBACK is assumed. 

IUSERLIBRARY[=(tab/e[, ••• ])] 
IUSERLIBRARY:ALL 
You use this qualifier to specify which user-defined default libraries 
(process, group, system or, by default, all three) the linker searches after 
it has searched any specified user libraries. The /NOUSERLIBRARY 
qualifier tells the linker not to search any user-defined default libraries. 



DCL-208 

example 

DCL Commands 
LINK 

$ LINK/MAP/FULL DRACO,CYGNUS,LYRA 

The LINK command in this example links the modules DRACO.OBJ, 
CYGNUS.OBJ, and LYRA.OBJ and creates an executable image named 
DRACO.EXE. The IMAP and /FULL qualifiers request a full map of the 
image, with descriptions of each program section, lists of global symbols 
by name and by value, and a summary of the image characteristics. The 
map file is named DRACO.MAP. 

LOGIN Procedure 
Initiates an interactive terminal session. 

format 
ICTRLIC! 

ICTRLIY! 

~ 

qualifiers 
JCLl=command-language-interpreter 
Specifies the name of an alternate command language interpreter (CLI) to 
override the default CLI listed in the user authorization file. The CLI you 
specify must be located in SYS$SYSTEM and have the file type EXE. 

If you do not specify a command interpreter using the /CLI qualifier and 
do not have a default CLI listed in the user authorization file, the system 
supplies a default of /CLl=DCL. 

ICOMMAND[:file-spec] 
INOCOMMAND 
Controls whether to execute your default login command procedure when 
you log in. Use the /COMMAND qualifier to specify the name of an 
alternate login command procedure. If you specify a file name without a 
file type, the default file type COM is used. If you specify /COMMAND 
and omit the file specification, your default login command procedure is 
executed. By default, /COMMAND is assumed. 

Use the /NOCOMMAND qualifier if you do not want your default login 
command procedure to be executed. 

IDISK:device-name[:] 
Specifies the name of a disk device to be associated with the logical device 
SYS$DISK for the terminal session. This specification overrides the 
default SYS$DISK device established in the authorization file. 



!NEW_ PASSWORD 

DCL Commands 
LOGIN Procedure 

DCL-209 

If you specify this qualifier when you log in to the system, you must 
change the account password before logging in (as if the password had 
expired). Use this qualifier as a shortcut if you. had intended to change 
your password after login, or if you suspect that your password has been 
detected. 

ff ABLES=( command-table[, ••• ]) 
Specifies the name of an alternate CLI table to override the default listed 
in the user authorization file (UAF). This table name is considered a file 
specification. The default device and directory is SYS$SHARE and the 
default file type is EXE. 

If a logical name is used, the table name specification must be defined in 
the system logical name table. 

If the /CLI qualifier is set to DCL or MCR, the trABLES qualifier defaults 
to the correct value. If the trABLES qualifier is specified without the /CLI 
qualifier, the CLI specified in the user's UAF will be used. 

The default is !I'ABLES=DCLTABLES. 

example 

~ 
Username: JONES 
Password: 
User authorization failure 
~ 
Username: JONES 
Password: 

$ 

~ 

Welcome to VAX/VMS Version 5.00 on node JUPITER 
Last interactive login on Tuesday, 19-APR-1990 09:16:47.08 
Last non-interactive login on Monday, 19-APR-1990 17:32:34.27 
1 failure since last successful login. 

This example shows the "User authorization failure" message, which 
indicates that the password has been entered incorrectly. After 
successfully logging in, a message is displayed showing the number of 
login failures since your last successful login. This message is displayed 
only if one or more login failures have occurred. 

Username: MIHALY/NEW_PASSWORD 
Password: 
Password: 

Welcome to VAX/VMS Version VS.2 on node JUPITER 
Last interactive login on Tuesday, 19-APR-1990 09:16:47.08 
Last non-interactive login on Monday, 19-APR-1990 17:32:34.27 

Your password has expired; you must set a new password to log in. 

Old password: 

New password: 



DCL-210 DCL Commands 
LOGIN Procedure 

In this example, the user enters the /NEW_PASSWORD qualifer after 
the usemame MIHALY. The system then forces the user to set a new 
password immediately after login. The prompts are the same as those 
provided when you enter the DCL command SET PASSWORD from the 
command line. 

LOGOUT 
Terminates an interactive terminal session. 

format 
LOGOUT 

qualifiers 
!BRIEF 
Prints a brief logout message (process name, date, and time) or a full 
logout message (a brief message plus accounting statistics). 

/FULL 
Requests the long form of the logout message. When you specify /FULL, 
the command interpreter displays a summary of accounting information 
for the terminal session. The default for a batch job is /FULL. 

/HANGUP 
!NOHANGUP 
For dialup terminals, determines whether or not the phone hangs up 
whenever you log out. By default, the /HANGUP setting of your terminal 
port determines whether the line is disconnected. Your system manager 
determines whether you are permitted to use this qualifier. 

example 
$ LOGOUT/FULL 

HIGGINS logged out at 19-APR-1990 14:23:45.30 
Accounting information: 
Buffered I/0 count: 22 Peak working set size: 90 
Direct I/O count: 10 Peak virtual size: 69 
Page faults: 68 Mounted volumes: 0 
Charged CPU time: 0 00:01:30.50 Elapsed time: 0 04:59:02.63 

In this example, the LOGOUT command with the /FULL qualifier 
displays a summary of accounting statistics for the terminal session. 



DCL Commands DCL-211 
MACRO 

MACRO 
Invokes the VAX MACRO assembler to assemble one or more assembly 
language source files. 

See the qualifier descriptions for restrictions. 

format 
MACRO file-spec-list 

parameter 
file-spec-list 
Requests the assembly of one or more VAX MACRO assembly language 
source files. The file-spec-list parameter consists of one or more file 
specifications. For each file specification, the MACRO command supplies 
a default file type of MAR. You cannot include a wildcard character in a 
file specification. 

File specifications separated by commas cause the MACRO assembler to 
produce an object file (and, if indicated, a listing file) for each specified 
file. File specifications separated by plus signs are concatenated into one 
input file and produce a single object file (and listing file). The MACRO 
assembler creates output files of one version higher than the highest 
version existing in the target directory. 

qualifiers 
IANALYSIS_DATA[:flle-spec] 
INOANALYSIS_DATA {default) 
Controls whether the assembler creates an analysis data file for the VAX 
Source Code Analyzer (SCA), and optionally provides the file specification. 

By default, the assembler does not create an analysis data file. If you 
specify /ANALYSIS_DATA without a file specification, the assembler 
creates a file with the same file name as the first input file for the 
MACRO command. The default file type for analysis data files is ANA. 
When you specify /ANALYSIS_DATA, you can control the defaults applied 
to the output file specification by the placement of the qualifier in the 
command. 

ICROSS_REFERENCE[={functlon[, ••• ])] 
INOCROSS_REFERENCE {default) 
Controls whether a cross-reference listing of the locations in the source 
file where the specified function (or functions) is defined or referenced. 
If you specify more than one function, separate each with a comma and 
enclose the entire list in parentheses. You can specify the following 
functions: 



DCL-212 

ALL 

DCL Commands 
MACRO 

DIRECTIVES 

MACROS 

OPCODES 

REGISTERS 

SYMBOLS 

Cross-references directives, macros, operation codes, 
registers, and symbols 

Cross-references directives 

Cross-references macros 

Cross-references operation codes 

Cross-references registers 

Cross-references symbols 

Because the assembler writes the cross-references to the listing file, 
you must specify the /LIST qualifier with the /CROSS_REFERENCE 
qualifier. If you specify no functions in the /CROSS_REFERENCE 
qualifier, the assembler assumes the default value of /CROSS_ 
REFERENCE=(MACROS,SYMBOLS). The /NOCROSS_REFERENCE 
qualifier excludes the cross-reference listing. 

IDEBUG[:option] 
/NODEBUG (default) 
Includes or excludes local symbols in the symbol table or traceback 
information in the object module. You can replace /ENABLE and 
/DISABLE with /DEBUG and /NODEBUG when you use the appropriate 
DEBUG and TRACEBACK options. /DEBUG or /NODEBUG override 
debugging characteristics set with the .ENABLE or .DISABLE assembler 
directives. You can specify one or more of the following options: 

ALL 

NONE 

SYMBOLS 

TRACEBACK 

Includes in the object module all local symbols in 
the symbol table, and provides all traceback informa
tion for the debugger. This qualifier is equivalent to 
/ENABLE=(DEBUG,TRACEBACK). 

Makes local symbols and traceback information in the 
object module unavailable to the debugger. This qualifier is 
equivalent to /DISABLE=<DEBUG,TRACEBACK). 

Makes all local symbols in the object module available to the 
debugger. Makes traceback information unavailable to the 
debugger. This qualifier is equivalent to /ENABLE=DEBUG 
and /DISABLE=TRACEBACK together. 

Makes traceback information in the object module available 
to the debugger and local symbols unavailable to the debug
ger. This qualifier is equivalent to /ENABLE=TRACEBACK 
and /DISABLE=DEBUG together. 

If you specify no options to the /DEBUG qualifier, it assumes the default 
value of /DEBUG=ALL. 

IDIAGNOSTICS[=file-spec] 
NOD/AGNOSTICS (default) 
Creates a file containing assembler messages and diagnostic information. 
If you omit the file specification, the default file name is the same as the 
source program; the default file type is DIA. 



DCL Commands 
MACRO 

DCL-213 

No wildcard characters are allowed in the file spe~ification. 

The diagnostics file is reserved for use with DIGITAL layered products, 
such as, but not limited to, the VAX Language-Sensitive Editor (LSE). 

IDISABLE:{function[, •.. ]) 
/NOD/SABLE 
Provides initial settings for the functions disabled by the .DISABLE 
assembler directive. You can specify one or more of the following 
functions: 

ABSOLUTE 
DEBUG 

TRUNCATION 

GLOBAL 
SUPPRESSION 

TRACEBACK 

Assembles relative addresses as absolute addresses 

Includes local symbol table information in the object file for 
use with the debugger 

Truncates floating-point numbers (if truncation is disabled, 
numbers are rounded) 

Assumes undefined symbols to be external symbols 

Suppresses listing of unreferenced symbols in the symbol 
table 

Provides traceback information to the debugger 

If you specify more than one function, separate each with a comma and 
enclose the list with parentheses. If you specify no functions in the 
/DISABLE qualifier, it assumes the default value of 
/DISABLE=(ABSOLUTE,DEBUG, TRUNCATION). The /NODISABLE 
qualifier has the same effect as not specifying the /DISABLE qualifier, 
or negates the effects of any /DISABLE qualifiers specified earlier on the 
command line. 

IENABLE=(function[, ••• ]) 
INOENABLE 
Provides initial settings for the functions controlled by the .ENABLE 
assembler directive. The /NOENABLE qualifier has the same effect as not 
specifying the /ENABLE qualifier, or negates the effects of any /ENABLE 
qualifiers specified earlier on the command line. You can specify one or 
more of the functions as listed in the description of the /DISABLE quali
fier, separating each with a comma and enclosing the list in parentheses. 
If you specify no functions in the /DISABLE qualifier, it assumes the 
default value of /ENABLE=(GLOBAL,TRACEBACK,SUPPRESSION). 

/LIBRARY 
/NOL/BRA RY 
Positional qualifier. The /LIBRARY qualifier cannot be used with 
the /UPDATE qualifier. The associated input file to the /LIBRARY 
qualifier must be a macro library. The default file type is MLB. The 
/NOLIBRARY qualifier has the same effect as not specifying the 
/LIBRARY qualifier, or negates the effects of any /LIBRARY qualifiers 
specified earlier on the command line. 



DCL-214 DCL Commands 
MACRO 

The assembler can search up to 16 libraries, one of which is always 
STARLET.MLB. This number applies to a particular assembly, not 
necessarily to a particular MACRO command. If you enter the MACRO 
command so that more than one source file is assembled, but the source 
files are assembled separately, you can specify up to 16 macro libraries 
for each separate assembly. More than one macro library in an assembly 
causes the libraries to be searched in reverse order of their specification. 

A macro call in a source program causes the assembler to begin the 
following sequence of searches: 

1. An initial search of the libraries specified with the .LIBRARY 
directive. The assembler searches these libraries in the reverse 
order of that in which they were declared. 

2. If the macro definition is not found in any of the libraries specified 
with the .LIBRARY directive, a search of the libraries specified in the 
DCL MACRO command line (in the reverse order in which they were 
specified). 

3. If the macro definition is not found in any of the libraries specified in 
the command line, a search of STARLET.MLB. 

ILIST[=file-spec] 
/NOL/ST 
Creates or omits an output listing, and optionally provides an output 
file specification for it. The default file type for the listing file is LIS. No 
wildcard characters are allowed in the file specification. 

An interactive MACRO command does not produce a listing file by default. 
/NOLIST, present either explicitly or by default, causes errors to be 
reported on the current output device. 

/LIST is the default. for a MACRO command in a batch. job. /LIST allows 
you to control the defaults applied to the output file specification by the 
placement of the qualifier in the command. 

/OBJECT[:file-spec] 
INOOBJECT 
Creates or omits an object module. It also defines the file specification. 
By default, the assembler creates an object module with the same file 
name as the first input file. The default file type for object files is .OBJ. 
No wildcard characters are allowed in the file specification. 

/OBJECT controls the defaults applied to the output file specification by 
the placement of the qualifier in the command. 



!SHOW[=(function[, ... ]) 
!NOSHOW[:{function[, ... })} 

DCL Commands 
MACRO 

DCL-215 

Provides initial settings for the functions controlled by the assembler 
directives .SHOW and .NOSHOW. You can specify one or more of the 
following functions: 

CONDITIONALS 

CALLS 

DEFINITIONS 

EXPANSIONS 

BINARY 

Lists unsatisfied conditional code associated with .IF and 
.ENDC MACRO directives 

Lists macro calls and repeat range expansions 

Lists macro definitions 

Lists macro expansions 

Lists binary code generated by the expansion of macro calls 

If you specify more than one function, separate each with a comma 
and enclose the list in parentheses. If you specify no functions in the 
/SHOW qualifier, it increments the listing level count; the /NOSHOW 
qualifier decrements the count in similar circumstances. Because these 
qualifiers contribute to the listing file, you must also specify the /LIST 
qualifier when you use them. Updates the input file it qualifies using the 
SLP batch editor and the specified update file or files. By default, the 
assembler assumes that the update file has the same file name as the 
input source file and a file type of UPD. You cannot include a wildcard 
character in the file specifications. If you specify more than one update 
file specification, separating each with a comma and enclosing the list 
in parentheses, the assembler merges the contents into a single list of 
updates before applying the updates to the source file. 

The /NOUPDATE qualifier has the same effect as not specifying the 
/UPDATE qualifier, or negates any /UPDATE qualifiers specified earlier 
on the command line. The input source file and update files are not 
changed by the update operation. The effects of the update appear in the 
compiled output. If you specify the /LIST qualifier with the /UPDATE 
qualifier, the assembler writes an audit trail of the changes to the listing 
file. 

example 
$ MACRO/LIST CYGNUS, LYRA/OBJECT=LYRAN + MYLIB/LIBRARY 

In this example, the MACRO command requests two separate assemblies. 
Using .MAR as the default, MACRO assembles CYGNUS.MAR to produce 
CYGNUS.LIS and CYGNUS.OBJ. Then it assembles LYRA.MAR and 
creates a listing file named LYRA.LIS and an object module named 
LYRAN.OBJ. The default output file type for a listing is .LIS. 

The command requests the search of the MYLIB library file in the current 
directory for macro definitions. 



DCL-216 DCL Commands 
MAIL 

MAIL 
Invokes the Mail Utility (MAIL), which is used to send messages to 
other users of the system. For a complete description of the Mail Utility, 
including more information about the MAIL command and its qualifiers, 
see the Reference Section. 

format 
MAIL [file-spec] [recipient-name] 

MERGE 
Invokes the Sort/Merge Utility to combine two through ten similarly 
sorted input files and create a single output file. Note that input files 
to be merged must be in sorted order. For a complete description of 
the Sort/Merge Utility, including more information about the MERGE 
command and its qualifiers, see the Reference Section. 

format 
MERGE input-file-spec1,input-file-spec2£ ... ] output-file-spec 

MESSAGE 
Invokes the Message Utility (MESSAGE) to compile one or more files of 
message definitions. 

format 

MESSAGE file-spec[, ... ] 

MONITOR 
Invokes the Monitor Utility (MONITOR) to monitor classes of systemwide 
performance data at a specified interval. 

format 

MONITOR [class-name{, ... ]] 



DCL Commands 
MOUNT 

DCL-217 

MOUNT 

NCS 

Invokes the Mount Utility (MOUNT) to make a disk or magnetic tape 
volume available for processing. For more information about the Mount 
Utility, see the VMS System Manager's Manual in the VMS Base 
Documentation Set. 

Invokes the VMS National Character Set Utility to provide a convenient 
method of implementing alternative (non-ASCII) string collating 
sequences, typically using subsets of the DEC Multinational Character 
Set. NCS also facilitates the implementation of string conversion 
functions. 

format 

ON 

NCS [file-spec, ... } 

Performs a specified action when a command or program executed within 
a command procedure encounters an error condition or is interrupted 
by CTRL/Y. The specified actions are performed only if the command 
interpreter is enabled for error checking or CTRL/Y interrupts (the 
default conditions). Use the ON command only in a command procedure. 

format 

ON condition THEN[$] command 

parameters 

condition 
Either the severity level of an error or a CTRL/Y interrupt. Specify one 
of the following keywords, which may be abbreviated to one or more 
characters: 

WARNING 

ERROR 

SEVERE_ERROR 

CONTROL_Y 

Return status of warning occurs ($SEVERITY equals 0) 

Return status of error occurs ($SEVERITY equals 2) 

Return status of error occurs ($SEVERITY equals 4) 

CTRUY character occurs on SYS$INPUT 

The default error condition is ON ERROR THEN EXIT. 



DCL-218 DCL Commands 
ON 

To specify a CRTUY interrupt, use the following keyword: 

CONTROUY 

command 
The DCL command line to be executed. You can optionally precede the 
command line with a dollar sign ( $ ). If you specified an error condition 
as the condition parameter, the action is taken when errors equal to or 
greater than the specified level of error occur. 

example 
$ ON WARNING THEN EXIT 

$ SET NOON 
$ RUN [SSTEST]LIBRA 
$ SET ON 

The ON command requests that the procedure exit when any warning, 
error, or severe error occurs. Later, the SET NOON command disables 
error checking before executing the RUN command. Regardless of 
any status code returned by the program LIBRA.EXE, the procedure 
continues. The next command, SET ON, reenables error checking and 
reestablishes the most recent ON condition. 

OPEN 
Opens a file for reading, writing, or both, assigns a logical name to a file, 
and places the name in the process logical name table. 

See the qualifier descriptions for restrictions. 



format 
OPEN logical-name[:] file-spec 

parameters 
logical-name[:] 

DCL Commands DCL-219 
OPEN 

Specifies the logical name and a character string to be assigned to the file. 

file-spec 
Specifies the name of the file or device being opened for input or output. 
The file type defaults to DAT. Wildcard characters are not allowed. To 
create a new, sequential file, specify the /WRITE qualifier. 

qualifiers 
/APPEND 
Opens an existing file for writing and positions the record pointer at 
the end-of-file. New records are added to the end of the file. Use the 
/APPEND qualifier only to add records to an existing file. The /APPEND 
and the /WRITE qualifiers are mutually exclusive. 

/ERROR:label 
Transfers control to the location specified by the label keyword (in a 
command procedure) if the OPEN operation results in an error. The 
error routine specified for this qualifier overrides any ON condition action 
specified. If /ERROR is not specified, the current ON condition action is 
taken. 

/READ (default) 
Opens the file for reading. If you specify the /READ qualifier without the 
/WRITE qualifier, you must specify an existing file. 

/SHARE[:option] 
Opens the specified file as a shareable file to allow other users read or 
write access. If you specify /SHARE=READ, users are allowed read access 
to the file. If you specify /SHARE= WRITE or omit the option, users are 
allowed read and write access to the specified file. 

/WRITE 
Opens the file for writing. The following restrictions apply to the /WRITE 
qualifier: 

• Use the /WRITE qualifier to open and create a new, sequential file. 

• Use the /READ qualifier with the /WRITE qualifier to open an existing 
file. You cannot use OPEN/READ/WRITE to create a new file. 

• The /WRITE and the /APPEND qualifiers are mutually exclusive. 



DCL-220 DCL Commands 
OPEN 

example 
$ OPEN/WRITE/ERROR=OPEN ERROR OUTPUT FILE TEMP.OUT 
$ COUNT = 0 -
$ WRITE LOOP: 
$ COUNT-= COUNT +l 
$ IF COUNT .EQ. 11 THEN GOTO ENDIT 
$WRITE OUTPUT_FILE "Count is ''COUNT'." 

$ GOTO WRITE LOOP 
$ ENDIT: -
$ CLOSE OUTPUT FILE 
$ EXIT -
$ 
$ OPEN ERROR: 
$ WRITE SYS$0UTPUT "Cannot open file TEMP.OUT" 
$ EXIT 

The OPEN command with the /WRITE qualifier creates the file 
TEMP.OUT and assigns it the logical name OUTPUT_FILE. TEMP.OUT 
is a sequential file. 

The /ERROR qualifier specifies that if any error occurs while opening the 
file, the command interpreter should transfer control to the line at the 
label OPEN_ERROR. The command procedure writes records to the file 
TEMP.OUT until the symbol COUNT equals 11. 

PASSWORD 
When submiting a batch job through a card reader, provides the password 
associated with the user name that is specified with the JOB card. 
Although the PASSWORD card is required, the password on the card 
is optional if the account has a null password. 

The PASSWORD command is valid only in a batch job submitted 
through a card reader and requires that a dollar sign precede the 
PASSWORD command on the card. 

format 

$ PASSWORD [password] 



DCL Commands DCL-221 
PASSWORD 

parameter 

password 
Specifies the password associated with the user name specified with 
the JOB command. Password can be 1 to 31 characters long. If you 
are submitting the job from an account with a null password, omit the 
password specifier on the PASSWORD card. 

example 

l$EOJ 
...I. 

£.command Input Stream.:.:::=-
_[ 

l $ PASSWORD HENRY 
1---1 

$JOB HIGGINS 
I-

1-1-

1-1-
I-

~ 

ZK-0786-GE 

The JOB and PASSWORD commands precede a batch job submitted from 
the card reader. An EOJ command marks the end of the job. 

PATCH 
Invokes the Patch Utility (PATCH) to patch an executable image, 
shareable image, or device driver image. 

format 

PATCH file-spec 



DCL-222 DCL Commands 
PHONE 

PHONE 
Invokes the Phone Utility that allows you to communicate with other 
users on your system or any other VMS system connected to your system 
by DECnet-VAX. 

PHONE can be used only on video terminals that are supported 
by the VMS screen package. These terminals include all terminals 
such as the VTlOO-, VT200-, and VT300-series that support ANSI 
terminal escape sequences and VT52 terminals. 

format 
PHONE [phone-command] 

PRINT 
Queues one or more files for printing. 

Requires OPER privilege, EXECUTE ( E) access to the queue, or 
WRITE ( W) access to the queue. 

format 
PRINT file-spec[, ... ] 

parameter 
file-spec[, ••• ] 
Specifies one or more files to be printed. Wildcard characters are allowed. 
The default file type is that of the preceding file. If no previous file 
specification contains an explicit file type, the default file type is LIS. 

If you specify two or more files, separate the file specifications with either 
commas or plus signs. 

If you specify a node name, you must use the /REMOTE qualifier. 

qualifiers 
IAFTER:time 
!NO AFTER 
Holds the job until the specified time. The time can be specified as 
an absolute time or a combination of absolute and delta times. If the 
specified time has passed, the job is queued for printing immediately. 

!BACKUP 
/NOBACKUP 
Modifies the interpretation of the time value specified with the /BEFORE 
or /SINCE qualifier. /BACKUP selects files according to the dates of 
their most recent backups. This qualifier is incompatible with the other 



DCL Commands DCL-223 
PRINT 

qualifiers that also allow you to select files according to time attributes: 
/CREATED, /EXPIRED, and /MODIFIED. If you specify none of these four 
time qualifiers, the default is /CREATED. 

IBEFORE[=time] 
/NO BEFORE 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

IBURST[:keyword] 
!NO BURST 
Positional qualifier. Controls whether two file flag pages with a burst 
bar between them are printed preceding a file. If the /BURST qualifier is 
specified between the PRINT command and the file specifications, it can 
take either of two keywords: 

ALL Prints the flag pages and a burst bar before each file in the job 

ONE Prints the flag pages and a burst bar before the first file in the job 

If you want the /BURST qualifier to apply to individual files in a multifile 
job, place the qualifier directly after each file that you want to have the 
flag pages and a burst bar. 

IBY_OWNER[:uic] 
/NOBY_ OWNER 
Selects only those files whose owner user identification code {UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

/CHARACTERISTICS:( characteristic[, ..• ]) 
Specifies the name or number of one or more characteristics to be 
associated with the job. Characteristics can refer to such things as color of 
ink. If you specify only one characteristic, you can omit the parentheses. 

/CONFIRM 
INOCONFIRM (default) 
Controls whether a request is issued before each file is queued for printing 
to confirm that the operation should be performed on that file. The 
following responses are valid: 



DCL-224 

YES 

TRUE 

1 

DCL Commands 
PRINT 

NO 
FALSE 

0 

~ 

QUIT 

CTRUZ 

ALL 

You can use any combination of uppercase and lowercase letters for word 
responses. Word responses can be abbreviated to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 
unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and <RET>. QUIT or CTRUZ indicates that you want 
to stop processing the command at that point. When you respond with 
ALL, the command continues to process, but no further prompts are given. 
If you type a response other than one of those in the list, DCL issues an 
error message and redisplays the prompt. 

!COPIES:n 
Positional qualifier. Specifies the number of copies to print. The value 
of n can be from 1 to 255 and defaults to 1. If you place the /COPIES 
qualifier after the PRINT command name, each file in the parameter list 
is printed the specified number of times. If you specify /COPIES following 
a file specification, only that file is printed the specified number of times. 

/CREATED (default) 
/NOCREATED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/CREATED selects files based on their dates of creation. This qualifier is 
incompatible with the other qualifiers that also allow you to select files 
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If 
you specify none of these four time qualifiers, the default is /CREATED. 

!DELETE 
!NODELETE (default) 
Positional qualifier. Controls whether files are deleted after printing. 
If you place the /DELETE qualifier after the PRINT command name, 
all specified files are deleted. If you specify /DELETE after a file 
specification, only that file is deleted after it is printed. 

IDEVICE:queue-name[:] 
Places the print job in the specified queue (rather than the default queue 
SYS$PRINT). This qualifier is synonymous with /QUEUE, except that 
the /DEVICE qualifier is reserved for special use by Digital. Its usage, 
therefore, is not recommended. 

!EXCLUDE=(file-spec[, ... ]) 
INOEXCLUDE 
Excludes the specified files from the print operation. You can include a 
directory but not a device in the file specification. Wildcard characters 
are allowed in the file specification. However, you cannot use relative 



DCL Commands DCL-225 
PRINT 

version numbers to exclude a specific version. If you provide only one file 
specification, you can omit the parentheses. 

/EXPIRED 
INOEXPIRED 
Modifies the interpretation of the time value specified with the /BEFORE 
or /SINCE qualifier. /EXPIRED selects files according to their expiration 
dates. (The expiration date is set with the SET FILE/EXPIRATION_ 
DATE command.) The /EXPIRED qualifier is incompatible with the other 
qualifiers that also allow you to select files according to time attributes: 
/BACKUP, /CREATED, and /MODIFIED. If you specify none of these four 
time qualifiers, the default is /CREATED. 

/FEED 
INOFEED 
Positional qualifier. Controls whether form feeds are inserted into the 
print job when the printer reaches the bottom margin of the form in use. 
The /[NO]FEED qualifier does not affect user-formatted files. 

IFLAG[:keyword] 
/NOFLAG 
Positional qualifier. Controls whether a file flag page is printed 
preceding a file. The flag page contains the name of the user submitting 
the job, the job entry number, and other information about the file being 
printed. If the /FLAG qualifier is positioned between the PRINT command 
and the file specifications, it can take either of two keywords: 

ALL Prints a file flag page before each file in the job 

ONE Prints a file flag page before the first file in the job 

If you want the /FLAG qualifier to apply to individual files in a multifile 
job, place the qualifier directly after each file that you want to have a flag 
page. 

IFORM:form 
Specifies the name or number of the form to be associated with the print 
job. If you omit the /FORM qualifier, the default form for the execution 
queue is associated with the job. To see which forms have been defined 
for your system, use the SHOW QUEUE/FORM command. 

/HEADER 
!NOHEADER (default) 
Positional qualifier. Controls whether a heading line is printed at the 
top of each page. 

/HOLD 
INOHOLD (default) 
Controls whether a job is available for printing immediately. The /HOLD 
qualifier holds the job until released by a SET ENTRY/RELEASE or SET 
ENTRY/NOHOLD command. 



DCL-226 DCL Commands 
PRINT 

/IDENTIFY (default) 
/NO/DENT/FY 
Displays the job name, queue name, entry number, and status of the job 
when it is queued. 

IJOB_COUNT:n 
Prints the job n times. The value of n can be from 1 through 255 and 
defaults to 1. 

/LOWERCASE 
INOLOWERCASE (default) 
Indicates whether the print job must be printed on a printer that can 
print both lowercase and uppercase letters. The /NOLOWERCASE 
qualifier means that files can be printed on printers supporting only 
uppercase letters. If all available printers can print both uppercase and 
lowercase letters, you do not need to specify /LOWERCASE. 

!MODIFIED 
INOMODIFIED 
Modifies the interpretation of the time value specified with the /BEFORE 
or /SINCE qualifier. The qualifier /MODIFIED selects files according to 
the dates on which they were last modified. This qualifier is incompatible 
with the other qualifiers that also allow you to select files according to 
time attributes: /BACKUP, /CREATED, and /EXPIRED. If you specify 
none of these four time modifiers, the default is /CREATED. 

INAME=job-name 
Names the job. The name consists of 1 through 39 alphanumeric 
characters. If characters other than alphanumerics, underscores, or 
dollar signs are used in the name, enclose the name in quotation marks. 
The default is the name of the first (or only) file in the job. 

INOTE:string 
Specifies a message string of up to 255 characters to appear on the flag 
page of the job. 

/NOTIFY 
INONOTIFY (default) 
Controls whether a message is broadcast to your terminal session when 
the job is printed or aborted. 

/OPERATOR:string 
Specifies a message of up to 255 characters to be sent to the operator 
when the job begins to print. 

IPAGES:([lowlim,]up/im) 
Positional qualifier. Specifies the number of pages to print for the 
specified job. The lowlim specifier refers to the first page in the group of 
pages that you want printed for that file. If you omit the lowlim specifier, 
the printing starts on the first page of the file. The uplim specifier refers 



DCL Commands DCL-227 
PRINT 

to the last page of the file that you want printed. If you want to print to 
the end of the file, but do not know how many pages the :file contains, use 
two consecutive quotation marks ( " " ) as the uplim specifier. 

IPARAMETERS:{parameter[, ..• ]) 
Specifies from one to eight optional parameters to be passed to the job; 
each parameter can contain up to 255 characters. Enclose parameters 
containing lowercase letters, blanks, or other nonalphanumeric characters 
(including spaces) in quotation marks ( "). 

IPASSALL 
INOPASSALL (default) 
Positional qualifier. Specifies whether the symbiont bypasses 
all formatting and sends the output QIO to the driver with format 
suppressed. All qualifiers affecting formatting, as well as the /HEADER, 
/PAGES, and /SETUP qualifiers, are ignored. 

IPRIORITY:n 
Requires OPER or ALTPru privilege to raise the priority above 
the SYSGEN parameter MAXQUEPru. Specifies the job-scheduling 
priority of the print job. The value of n can be from 0 through 255, where 
0 is the lowest priority and 255 is the highest. The default value of n is 
the value of the SYSGEN parameter DEFQUEPRI. No privilege is needed 
to set the priority lower than the MAXQUEPRI value. 

/QUEUE:queue-name[:] 
Queues the job to the specified output queue. The default queue is 
SYS$PRINT. This qualifier is synonymous with /DEVICE. 

/REMOTE 
Queues the job to SYS$PRINT on the remote node specified in the file 
specification; the file must exist on the remote node. When you use 
/REMOTE, you must include the node name in the file specification. 

You can only specify the following qualifiers with /REMOTE: /BACKUP, 
/BEFORE, /BY_OWNER, /CONFIRM, /CREATED, /EXCLUDE, 
/EXPIRED, /MODIFIED, and /SINCE. 

/RESTART (default) 
INORESTART 
Indicates whether a job restarts after a system failure or after a 
STOP/QUEUE/REQUEUE command. 

/SETUP:module[, ..• ] 
Extracts the specified modules from the device control library and copies 
the modules to the printer before a file is printed. By default, no device 
control modules are copied. 



DCL-228 DCL Commands 
PRINT 

ISINCE[:time] 
INOSINCE 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /SINCE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

/SPACE 
INOSPACE (default) 
Positional qualifier. Controls whether print job output is double-spaced. 
The default is single-spaced output. 

ffRAILER[=keyword] 
INOTRAILER 
Positional qualifier. Controls whether a file trailer page is printed at 
the end of a file. The trailer page displays the job entry number as well as 
information about the user submitting the job and the files being printed. 
If the !TRAILER qualifier is positioned between the PRINT command and 
the file specificatioD:s, it can take either of two keywords: 

ALL Prints a file trailer page after each file in the job 

ONE Prints a file trailer page after the last file in the job 

If you want the !TRAILER qualifier to apply to individual files in a 
multifile job, place the qualifier directly after each file that you want to 
have a trailer page. 

IUSER=username 
Requires the CMKRNL privilege and R (READ) and W (WRITE) 
access to the user authorization file (UAF). Allows you to print a job 
on behalf of another user. The print job runs exactly as if that user had 
submitted it. 

example 
$ PRINT ALPHA.TXT +BETA/FLAG+ GAMMA/FLAG+ *.LIS/FLAG 

Job ALPHA (queue SYS$PRINT, entry 237) pending 

The PRINT command in this example submits the files ALPHA.TXT, 
BETA.TXT, GAMMA.TXT, and the highest versions of all files with the 
file type LIS as a single print job. Flag pages separate the individual files. 
Notice that the file type for BETA and GAMMA is TXT, the file type of the 
first file in the list. 



DCL Commands DCL-229 
PURGE 

PURGE 
Deletes all but the highest-numbered versions of the specified files. 

format 
PURGE [file-spec{, ... ]] 

parameter 
file-spec[, ... ] 
Specifies one or more files to be purged. Wildcard characters are allowed 
in the directory, file name, and file type fields; however, no version number 
can be specified. As a default, the PURGE command purges all files in 
the current directory. There are no file name or file type defaults with the 
PURGE command. 

qualifiers 
!BACKUP 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/BACKUP selects files according to the dates of their most recent backups. 
This qualifier is incompatible with the other qualifiers that also allow you 
to select files according to time attributes: /CREATED, /EXPIRED, and 
/MODIFIED. If you specify none of these four time qualifiers, the default 
is /CREATED. 

/BEFORE[:time] 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

/BY_OWNER[:uic] 
Selects only those files whose owner user identification code (UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

/CONFIRM 
!NOCONFIRM (default) 
Controls whether a request is issued before each PURGE operation to 
confirm that the operation should be performed on that file. The following 
responses are valid: 



DCL-230 DCL Commands 
PURGE 

YES 

TRUE 

1 

NO 

FALSE 

0 

~ 

QUIT 

CTRUZ 

ALL 

You can use any combination of uppercase and lowercase letters for word 
responses. Word responses can be abbreviated to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 
unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and <RET>. QUIT or CTRUZ indicates that you want 
to stop processing the command at that point. When you respond with 
ALL, the command continues to process, but no further prompts are given. 
If you type a response other than one of those in the list, DCL issues an 
error message and redisplays the prompt. 

!CREATED (default) 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/CREATED selects files based on their dates of creation. This qualifier is 
incompatible with the other qualifiers that also allow you to select files 
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If 
you specify none of these four time qualifiers, the default is /CREATED. 

!ERASE 
INOERASE (default) 
Erases the specified files from the disk so that the purged data no longer 
exists physically on the deallocated disk blocks. 

/EXCLUDE:(file-spec[, .•• ]) 
Excludes the specified files from the PURGE operation. You can include 
a directory but not a device in the file specification. Wildcard characters 
are allowed in the file specification. However, you cannot use relative 
version numbers to exclude a specific version. If you provide only one file 
specification, you can omit the parentheses. 

!EXPIRED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/EXPIRED selects files according to their expiration dates. (The 
expiration date is set with the SET FILE/EXPIRATION_DATE command.) 
The /EXPIRED qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /MODIFIED. If you specify none of these four time 
qualifiers, the default is /CREATED. 

IKEEP=number-of-verslons 
Specifies the maximum number of versions of the specified files to be 
retained in the directory. If you do not include the /KEEP qualifier, all 
but the highest-numbered version of the specified files are deleted from 
the directory. 



DCL Commands DCL-231 
PURGE 

!LOG 
INOLOG (default) 
Controls whether file specifications are displayed as the files are deleted. 

/MODIFIED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/MODIFIED selects files according to the dates on which they were last 
modified. This qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /EXPIRED. If you specify none of these four time 
modifiers, the default is /CREATED. 

ISINCE[:time] 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

example 
$ PURGE [MAL.TESTFILES]/LOG 
%PURGE-I-FILPURG, DISKl:[MAL.TESTFILES]AVE.OBJ;l deleted (3 blocks) 
%PURGE-I-FILPURG, DISKl: [MAL.TESTFILES]BACK.OBJ;2 deleted (5 blocks) 
%PURGE-I-TOTAL, 2 files deleted (8 blocks) 

The PURGE command in this example purges all files cataloged in the 
subdirectory named [MAL.TESTFILES]. The /LOG qualifier requests the 
PURGE command to display the specification of each file it has deleted as 
well as the total number of files that have been deleted. 

READ 
Reads a single record from a specified input file and assigns the record's 
contents to a specified symbol name. 

format 
READ logical-name[:] symbol-name 

parameters 
logical-name[:] 
Specifies the logical name of the input file from which a record is to be 
read. Use the logical name assigned by the OPEN command when the 
file was opened. In addition, you can specify the process-permanent files 
identified by the logical names SYS$INPUT, SYS$0UTPUT, SYS$ERROR, 
and SYS$COMMAND. 



DCL-232 DCL Commands 
READ 

symbol-name 
Specifies the name of a symbol to be equated to the contents of the record. 
The name must be 1 through 255 alphanumeric characters and must start 
with an alphabetic letter, underscore, or dollar sign. When you specify a 
symbol name for the READ command, the command interpreter places 
the symbol name in the local symbol table for the current command level. 
If the symbol has already been defined, the READ command redefines it 
to the new value being read. 

qualifiers 
/DELETE 
Deletes a record from an ISAM file after it has been read. An ISAM file 
must be opened with the /READ and /WRITE qualifiers in order to use 
READ/DELETE. 

IEND_ OF_FILE:label 
Transfers control to the location specified by the label keyword (in the 
current command procedure) when the end of the file is reached When 
the last record in the file is read, the VMS Reco:rd Management Services 
(VMS RMS) return an error condition indicating the end-of-file. If the 
/END_OF _FILE qualifier is specified, the command interpreter transfers 
control to the command line at the specified label. 

If /END_OF _FILE is not specified, control is given to the error label 
specified with the /ERROR qualifier when the end of the file is reached. 
Ifneither /ERROR nor /END_OF_FILE is specified, then the current ON 
condition action is taken. 

IERROR:label 
Transfers control to the location specified by the label keyword (in the 
current command procedure) when a read error occurs. If no error routine 
is specified and an error occurs during the reading of the file, the current 
ON condition action is taken. Overrides any ON condition action specified. 
If an error occurs and the target label is successfully given control, the 
reserved global symbol $STATUS retains the error code. 

/INDEX:n 
Specifies the index (n) to be used to look up keys when reading an ISAM 
file. The default value is 0, the primary index. 

IKEY:string 
Reads a record with the key that matches the specified character string. 
Binary and integer keys are not allowed. This qualifier, when used 
together with /INDEX, allows you random access to ISAM files. Key 
matches are made by comparing the characters in the /KEY string to 
characters in the record key. 



DCL Commands DCL-233 
READ 

IMATCH:option 
Specifies the ISAM key match algorithm to be used when searching for 
matching keys. Specify one of the following options: 

EQ Select keys equal to the match value (default) 

GE Select keys greater than or equal to the match value 

GT Select keys greater than the specified key 

If you are reading ISAM files and you do not use the /MATCH qualifier, 
the default is /MATCH=EQ. 

INOLOCK 
Specifies that the record to be read not be locked and enables a record to 
be read that has been locked by other accessors. By default, records are 
locked as they are read and unlocked on the next I/O operation on the file. 

/PROMPT :string 
Specifies an alternate prompt string to be displayed when reading from 
the terminal. The default prompt string is DATA:. 

/TIME OUT:n 
/NOTiiAE_ OUT (default) 
Specifies the number of seconds after which the READ command is 
terminated if no input is received. If you enter the /TIME_ OUT qualifier, 
you must specify a value from 0 through 255. If you enter both the 
/ERROR=label and /TIME_OUT qualifiers, and the time limit expires, the 
error branch is taken. 

example 
$ READ/ERROR=READERR/END_OF_FILE=OKAY MSGFILE CODE 

$ READERR: 
$ CLOSE MSGFILE 



DCL-234 DCL Commands 
READ 

$ OKAY: 
$ CLOSE MSGFILE 
$ EXIT 

The READ command reads records from the file MSGFILE and places 
the contents into the symbol CODE. The READ command also uses the 
/ERROR and /END_OF _FILE qualifiers to specify labels to receive control 
at the end-of-file and on error conditions. At the end-of-file, control is 
transferred to the label OKAY. On other read errors, control is transferred 
to the READERR label. 

RECALL 
Displays previously entered commands on the screen for subsequent 
execution. 

format 
RECALL [command-specifier] 

parameter 
command-specifier 
Specifies the number or the first several characters of the command 
you want to recall. The specified characters should be unique. If they 
are not unique, the RECALL command displays the most recently 
entered command line that matches those characters. The number of 
the command can be from 1 to 20 (where 1 is the last command entered). 
The RECALL command itself is never assigned a number. If no command 
specifier is entered, the RECALL command recalls the most recently 
entered command. 

qualifiers 
!ALL 
Displays all the commands (and their numbers) available for recall. 

/ERASE 
Erases the contents of the recall buffer. 

example 
$ RECALL T 

The RECALL command in this example recalls the last command entered 
that begins with the letter T. 



DCL Commands DCL-235 
RENAME 

RENAME 
Changes all or part of a file specification of an existing disk file or disk 
directory. 

format 
RENAME input-file-spec[, ... ] output-file-spec 

parameters 
input-file-spec[, .•. ] 
Specifies the name of one or more files whose specifications are to be 
changed. Wildcard characters are allowed. 

output-file-spec 
Provides the new file specification to be applied to the input file. The 
RENAME command uses the device, directory, file name, and file type of 
the input file as defaults for fields in the output file that are either not 
specified, or indicated by a wildcard character. The RENAME command 
supplies output file version numbers in the following ways: 

1. If the output file specification contains an explicit version number, 
that version number is used. 

2. If the output file specification contains a wildcard as the version 
number, the version number of the input file is used. 

3. If the input file specification contains a wildcard as the version 
number, the version number of each input file names a corresponding 
output file. 

4. If no file exists with the same file name and type as the output file, 
version 1 is used. 

5. If a file already exists with the same file name and type as the 
output file, the next higher version number is used (unless the 
/NONEWVERSION qualifier is specified). 

qualifiers 
/BACKUP 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/BACKUP selects files according to the dates of their most recent backups. 
This qualifier is incompatible with the other qualifiers that also allow you 
to select files according to time attributes: /CREATED, /EXPIRED, and 
/MODIFIED. If you specify none of these four time qualifiers, the default 
is /CREATED. 



DCL-236 DCL Commands 
RENAME 

/BEFORE[=time] 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers· with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

IBY_OWNER[:uic] 
Selects only those files whose owner user identification code (UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

/CONFIRM 
/NOCONFIRM (default) 
Controls whether a request is issued before each RENAME operation to 
confirm that the operation should be performed on that file. The following 
responses are valid: 

YES 

TRUE 

1 

NO 
FALSE 
0 

~ 

QUIT 

CTRUZ 

ALL 

You can use any combination of uppercase and lowercase letters for word 
responses. Word responses can be abbreviated to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 
unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and <RET>. QUIT or CTRUZ indicates that you want 
to stop processing the command at that point. When you respond with 
ALL, the command continues to process, but no further prompts are given. 
If you type a response other than one of those in the list, DCL issues an 
error message and redisplays the prompt. 

/CREATED (default) 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/CREATED selects files based on their dates of creation. This qualifier is 
incompatible with the other qualifiers that also allow you to select files 
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If 
you specify none of these four time qualifiers, the default is /CREATED. 

/EXCLUDE=(file-spec[, ••• ]) 
Excludes the specified files from the RENAME operation. You can include 
a directory but not a device in the file specification. Wildcard characters 
are allowed in the file specification. However, you cannot use relative 
version numbers to exclude a specific version. If you provide only one file 
specification, you can omit the parentheses. 



DCL Commands DCL-237 
RENAME 

/EXPIRED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/EXPIRED selects files according to their expiration dates. This qualifier 
is incompatible with the other qualifiers that also allow you to select files 
according to time attributes: /BACKUP, /CREATED, and /MODIFIED. If 
you specify none of these four time qualifiers, the default is /CREATED. 

!LOG 
/NOLOG (default) 
Displays the file specification of each file as it is renamed. 

/MODIFIED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/MODIFIED selects files according to the dates on which they were last 
modified. This qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /EXPIRED. If you specify none of these four time 
modifiers, the default is /CREATED. 

/NEW_ VERSION (default) 
/NONEW_ VERSION 
Assigns a new version number if an output file specification is the same 
as that of an existing file. The /NONEW _VERSION qualifier displays 
an error message if an output file specification is the same as that of 
an existing file. A wildcard appearing in the version field of an input or 
output file overrides these qualifiers. 

!SINCE[=time] 
Selects the RENAME operation only for those files dated after the 
specified time. You can specify time as an absolute time, a combination 
of absolute and delta times, or as one of the following keywords: TODAY 
(default), TOMORROW, or YESTERDAY. Specify one of the following 
qualifiers with /BEFORE to indicate the time attribute to be used as 
the basis for selection: /BACKUP, /CREATED (default), /EXPIRED, or 
/MODIFIED. 

example 
$ RENAME/NONEW_VERSION SCANLINE.OBJ;2 BACKUP.OBJ 

The RENAME command in this example renames the file 
SCANLINE.OBJ;2 to BACKUP.OBJ;2. The /NONEW_VERSION qualifier 
ensures that, ifBACKUP.OBJ;2 already exists, the RENAME command 
does not rename the file, but instead reports the error. 



DCL-238 DCL Commands 
REPLY 

REPLY 
Broadcasts a message to a terminal or terminals. 

See the qualifier descriptions for restrictions. 

format 
REPLY {"message-text'1 

parameter 
message-text 
Specifies the text of the message. The text must be 1 to 128 characters. 
Enclose the text in quotation marks (" ") if it contains spaces, special 
characters, or lowercase characters. 

qualifiers 
/ABORT =identification-number 
Sends a message to the user or magnetic tape file system corresponding 
to the unique identification number and cancels the request. 

/ALL 
Requires OPER privilege. Broadcasts a message to all terminals that 
are attached to the system or VAXcluster. These terminal must be turned 
on and have broadcast-message reception enabled. Incompatible with 
/USERNAME and trERMINAL. 

/BELL 
Rings a bell at the terminal receiving a message when entered with the. 
/ALL, trERMINAL, or /USERNAME qualifiers; two bells when entered 
with /URGENT; and three bells when entered with /SHUTDOWN. 

IBLANK_ TAPE:identification-number 
Requires VOLPRO privilege. Sends a message to the magnetic tape 
file system indicated by the identification number to override the checking 
of volume label information. The volume label must be specified in the 
message text parameter. The current terminal must be enabled as an 
operator terminal for TAPES. 

IDISABLE[=(keyword[, •.• ])] 
Requires OPER privilege. Requires OPER and SECURITY 
privileges for security messages. If the Operator Communication 
Facility (OPCOM) is running, restores to normal (that is, nonoperator) 
status the terminal at which the command is entered. The /DISABLE 
qualifier cannot be entered from a batch job. To restrict the types of 
messages displayed on an operator's terminal, specify one of the following 
keywords: 



CARDS 

CENTRAL 

CLUSTER 

DEVICES 

DISKS 

NETWORK 

OPERl through OPER12 

PRINTER 

SECURITY 

TAPES 

/ENABLE[=(keyword[, ••• ])] 

DCL Commands 
REPLY 

Inhibits messages sent to the card readers 

DCL-239 

Inhibits messages sent to the central system operator 

Inhibits messages from the connection manager 
pertaining to cluster state changes 

Inhibits messages pertaining to mounting disks 

Inhibits messages pertaining to mounting and 
dismounting disk volumes 

Inhibits messages pertaining to networks; the keyword 
CENTRAL must also be specified to inhibit network 
messages 

Inhibits messages sent to operators identified as OPERl 
through OPER12 

Inhibits messages pertaining to print requests 

Inhibits messages pertaining to security events; requires 
SECURITY privilege. 

Inhibits messages pertaining to mounting and 
dismounting tape volumes 

Requires OPER privilege. Requires OPER and SECURITY 
privileges for security messages. If the Operator Communication 
Facility (OPCOM) is running, designates as an operator's terminal the 
terminal at which the REPLY command is entered. Cannot be entered 
from a batch job. To enable the following types of messages displayed on 
an operator's terminal, specify one of the following keywords: 

CARDS 

CENTRAL 

CLUSTER 

DEVICES 

DISKS 

NETWORK 

OPERl through OPER12 

PRINTER 

Displays messages sent to the card readers 

Displays messages sent to the central system operator 

Displays messages from the connection manager 
pertaining to cluster state changes 

Displays messages pertaining to mounting disks 

Displays messages pertaining to mounting and 
dismounting disk volumes 

Displays messages pertaining to networks; the keyword 
CENTRAL must also be specified to inhibit network 
messages 

Displays messages sent to operators identified as OPERl 
through OPER12 

Displays messages pertaining to print requests 



DCL-240 DCL Commands 
REPLY 

SECURITY 

TAPES 

Allows messages pertaining to security events; requires 
SECURITY privilege 

Allows messages pertaining to mounting and dismount
ing tape volumes 

/INITIALIZE_ TAPE=identiflcation-number 
Sends a message to the magnetic tape file system indicated by the 
identification number to initialize a magnetic tape volume. This qualifier 
can be used whenever the file system requests the mounting of a new 
volume. The system performs normal protection and expiration checks 
before initializing the volume. The current terminal must be enabled as 
an operator terminal for TAPES. 

If the tape drive cannot read the volume, the mount fails and an error 
message is returned. Use the /BLANK_TAPE qualifier to override the 
checking of information on a volume label. 

/LOG 
!NO LOG 
Requires OPER privilege. If the Operator Communication Facility 
(OPCOM) is running, closes the current operator's log file and opens a 
new one. (The /NOLOG qualifier closes the current log file, but does not 
open a new log file.) The current terminal must be enabled as an operator 
terminal. 

INODE[=(node-name[, .•• ])] 
Sends a message to the local VAXcluster node only. The optional 
parameter list allows you to specify which nodes will receive the message. 
Default sends messages to all cluster nodes. 

/NOTIFY (default) 
/NONO Tl FY 
Sends a message describing success back to the originating terminal. 

/PENDING:identification-number 
Requires OPER privilege. Sends a message to the user specified by 
the identification number and prevents the user from entering other 
commands until the operator fulfills or aborts the request. The current 
terminal must be enabled as an operator terminal. 

/SHUTDOWN 
Sends a message beginning "SHUTDOWN ... "; if used with /BELL, rings 
three bells at terminals receiving the message. 

/STATUS 
Requires OPER privilege. Reports the current operator status and all 
outstanding user requests for the terminal from which this command was 
entered. The current terminal must be enabled as an operator terminal. 



DCL Commands DCL-241 
REPLY 

ffEMPORARY 
Designates the terminal at which the command is entered to be an 
operator's terminal for the current interactive session only. This qualifier 
is meaningful only when used with the /ENABLE qualifier. 

ffERMINAL=(terminal-name[, ••. ]) 
Requires OPER privilege. Broadcasts the message to specified 
terminals, where the terminal-name keyword is the device name of 
the terminal. Incompatible with /ALL and /USERNAME. 

ffO=identification-number 
Requires OPER privilege. Sends a message to the user or file system 
specified by the identification number and completes the request. The 
current terminal must be enabled as an operator terminal. 

Note that you can also use a variation of REPLYtrO in response to a 
MOUNT/ASSIST command where you redirect the mount operation to 
another device. Whenever you must substitute a device, load the user's 
volume on the alternate device and ready the device before entering the 
REPLY command. Use the following syntax: 

REPLY ITO=identification-number "SUBSTITUTE device-name" 

You can abbreviate the word SUBSTITUTE to S and use upper or 
lowercase characters. After a space, use the remainder of the message
text space to name the substituted device. 

/URGENT 
Sends a message beginning "URGENT ... "; if used with the /BELL qualifier, 
rings two bells at terminals receiving the message. 

/USERNAME[=(username[, ..• ])] 
Requires OPER privilege. Broadcasts a message to all terminals 
at which users are logged in to the system (or VAXcluster), or only 
to the terminals of the specified users. Incompatible with /ALL and 
trERMINAL. 

/WAIT 
Sends a message synchronously and then waits. The default is to send 
a message to OPCOM, which does the actual 1/0. On a VAXcluster, the 
message is sent to the local node. 



DCL-242 

example 

DCL Commands 
REPLY 

%0PCOM, 19-APR-1990 10:19:33.21, request 5, from user SYSTEM 
OPAO, Please mount OPGUIDE on DBA3: 
$ REPLY/PENDING=S "YOU'LL HAVE TO WAIT-THERE ARE SEVERAL REQUESTS BEFORE YOURS" 

REPLY/TO=S 
19-APR-1990 10:20:25.50, request 5 completed by operator OPAO 

In this example the OPCOM message indicates that a user wants 
the operator to place the disk volume labeled OPGUIDE on the disk 
drive DBA3 and ready the device. The REPLY/PENDING command 
indicates that the operator can perform the task but not immediately; 
the /PENDING qualifier prevents the user from entering other commands 
until the operator fulfills or aborts the request. After mounting the disk 
on the drive the operator sends a message indicating that the request has 
been fulfilled. When no message is specified, OPCOM sends a standard 
message indicating that the task has been performed. 

REQUEST 
Displays a message at a system operator's terminal and optionally 
requests a reply. All messages are logged at the operator's console and in 
the operator's log file, if that file is initialized. 

To use this command, you must start the OPCOMprocess at boot time by 
specifying the DCL command @SYS$SYSTEM:STARTUP OPCOM in the 
site-specific startup command file, SYS$MANAGER:SYSTARTUP.COM. 

format 
REQUEST "message-text" 

parameter 
''message-text" 
Specifies the text of the message to be displayed. The string can be up 
to 128 characters. If the string contains spaces, special characters, or 
lowercase characters, enclose it in quotation marks (1111

). 

qualifiers 
/REPLY 
Requests a reply to the message and issues a unique identification 
number to which the operator sends the response. The system displays 
a message that the operator has been notified; you cannot enter any 
commands until the operator responds. If you press CTRUC before the 
operator responds, you can then enter another message to the operator, or 
press CTRUZ to cancel the request. 



ffO=(operator[, ... J) 

DCL Commands 
REQUEST 

DCL-243 

Specifies one or more operators to whom you want to send the message. 
Possible keywords are as follows: 

CARDS 

CENTRAL 

CLUSTER 

DEVICES 

DISKS 

NETWORK 

OPERl through OPER12 

PRINTER 

SECURITY 

TAPES 

example 
$ REQUEST/REPLY "Are you there?" 

Sends the message to operators designated to respond to 
card reader requests 

Sends the message to the central system operator 

Sends the message to operators designated to respond to 
cluster-related requests 

Sends the message to operators who mount and dismount 
disks 

Sends the message to operators who mount and dismount 
disk volumes 

Sends the message to the network operator 

Sends the message to operators identified as OPERl 
through OPER12 

Sends the message to operators designated to handle 
print requests 

Sends the message to operators designated to respond to 
security-related requests 

Sends the message to operators designated to mount and 
dismount tape volumes 

%0PCOM-S-OPRNOTIF, operator notified, waiting •.• 14:54:30.33 
ICTRUCI 
REQUEST-Enter message or cancel request with AZ 
REQUEST-Message?jCTRUZI 
%0PCOM-S-OPRNOTIF, operator notified, waiting ••• 14:59:01.38 
%0PCOM-F-RQSTCAN, request was cancelled 

In this example the REQUEST command issues a message and requests 
a response. When no operator replies to the question, CTRUC is used to 
interrupt the request; then CTRUZ is used to cancel it. 

RETURN 
Terminates a GOSUB subroutine procedure and returns control to the 
command following the calling GOSUB command. 

format 
RETURN [status-code] 



DCL-244 DCL Commands 
RETURN 

parameter 

status-code 
Defines a longword (integer) value or expression equivalent to an integer 
value that gives the exit status of the subroutine by defining a numeric 
value for the reserved global symbol $STATUS. The value can be tested by 
the next outer command level. The low-order three bits of the longword 
integer value change the value of the reserved global symbol $SEVERITY. 

If you do not specify a status-code, the current value of $STATUS is saved. 
When control returns to the outer command level, $STATUS contains the 
status of the most recently executed command or program. 

The low-order three bits of the status value contained in $STATUS 
represent the severity of the condition. The reserved global symbol 
$SEVERITY contains this portion of the condition code. Severity values 
range from zero through four, as shown in the following table: 

Value Severity 

0 Warning 

1 Success 

2 Error 

3 Information 

4 Severe (fatal) error 

example 

$ SHOW TIME 
19-APR-1990 14:25:42 

$ GOSUB SYMBOL 
$ EXIT 
$ SYMBOL: 
$ SHOW SYMBOL RED 

RED= "SET DEFAULT [JONES.DCL]" 
$ RETURN 1 

The GOSUB command transfers control to the subroutine labeled 
SYMBOL. After the subroutine is executed, the RETURN command 
transfers control back to the command following the calling GOSUB 
statement, giving $STATUS and $SEVERITY a value of 1. The procedure 
then exits. 



DCL Commands DCL-245 
RUN (Image) 

RUN {Image) 
Executes an image within the context of your process. You can abbreviate 
the RUN command to a single letter, R. 

If you specify an image name in the command line with an explicit 
version number (or a semicolon), the image runs with current 
process privileges. If you do not specify an explicit version 
number (or semicolon), the image runs with any privileges with 
which it was installed. If you have DECnet software installed and 
want to execute an image over the network, you must have READ 
access to the file. 

format 
RUN file-spec 

parameter 
file-spec 
Specifies an executable image to be executed. The file type defaults to 
EXE. Wildcard characters are not allowed. 

qualifier 
/DEBUG 
/NODE BUG 
Executes the image under control of the debugger. The default is /DEBUG 
if the image is linked with /DEBUG and /NODEBUG if the image is 
linked without /DEBUG. The /DEBUG qualifier is invalid if the image 
is linked with /NOTRACEBACK The /NODEBUG qualifier overrides 
the effect of LINK/DEBUG. If the image was linked with trRACEBACK, 
traceback reporting is performed when an error occurs. 

example 
$ RUN LIBRA 

The image LIBRA.EXE starts executing in the process. If the image 
LIBRA has been installed with amplified privileges, it runs with those 
privileges because you have not explicitly specified a version number 
or a semicolon. Alternatively, the image LIBRA.EXE still runs with its 
amplified privileges, if you enter the RUN command as follows: 

$ RUN LIBRA.EXE 



DCL-246 DCL Commands 
RUN {Process) 

RUN {Process) 
Creates a subprocess or a detached process to run an image and deletes 
the process when the image completes execution. A subprocess is created 
if any of the qualifiers except /UIC or /DETACHED is specified. A 
detached process is created if the /UIC qualifier is specified and you 
have the DETACH user privilege. 

format 
RUN file-spec 

parameter 
file-spec 
Specifies the file name of an executable image to be executed in a separate 
process. The default file type is EXE. Wildcard characters are not allowed 
in the file specification. 

qualifiers 
!ACCOUNTING (default) 
INOACCOUNTING 
Requires ACNT privilege to disable accounting. Logs accounting 
records in the system accounting file for the created process. 

IAST_LIMIT :quota 
Specifies the maximum number of asynchronous system traps (ASTs) that 
the created process can have outstanding. If you do specify an AST limit 
quota, the default quota established at system generation time is used. 
The minimum required for any process to execute is 2. The AST limit 
quota is nondeductible. 

/AUTHORIZE 
INOAUTHORIZE (default) 
Requires DETACH privilege. When the image to be executed is the 
system login image (LOGINOUT.EXE), this qualifier searches the user 
authorization file to validate a detached process. The /NOAUTHORIZE 
qualifier creates a detached process that runs under the control of the 
command interpreter. 

/BUFFER_ LIMIT :quota 
Specifies the maximum amount of memory, in bytes, that the process 
can use for buffered I/O operations or for temporary mailbox creation. If 
you do not specify a buffered I/O quota, the default value established at 
system generation time is used. The minimum amount required for any 
process to execute is 1024 bytes. 



DCL Commands DCL-247 
RUN (Process) 

IDELAY:delta-tlme 
Places the created process in hibernation and awakens it after a specified 
time interval. If you specify both /DELAY and /INTERVAL, the first 
wakeup request occurs at the time specified by /DELAY. All subsequent 
wakeups occur at the interval specified by /INTERVAL. 

/DETACHED 
INODETACHED 
Creates a detached process with the same user identification code (UIC) 
as the current process. (To create a detached process with a different UIC, 
use the /UIC qualifier.) By default, the detached process has the same 
resource quotas as the current process; the DETACH privilege allows you 
to specify any quotas you need for the detached process. Unless you have 
the DETACH privilege, the maximum number of detached processes that 
you can create is limited to the quota defined by MAX_DETACH in your 
user authorization file. 

/DUMP 
INODUMP (default) 
When an image terminates because of an unhandled error, /DUMP 
causes the contents of the address space to be written to the file named 
SYS$LOGIN:IMAGEDUMP.DMP. 

IENQUEUE_LIMIT :quota 
Specifies the maximum number of locks that a process can have 
outstanding at any one time. The default quota is that established 
at system generation time. The minimum required for any process to 
operate is 2. 

IERROR:fl/e-spec 
Defines an equivalence name string of 1 to 63 alphanumeric characters 
for the logical device name SYS$ERROR. The logical name and 
equivalence name are placed in the process logical name table for the 
created process. (The /ERROR qualifier is ignored if you are running 
SYS$SYSTEM:LOGINOUT.) 

/EXTENT :quota 
Specifies the maximum size to which the image being executed in the 
process can increase its physical memory size. The default quota is that 
established at system generation time. The minimum value required for 
any process to execute is 10 pages. The extent quota is nondeductible. 

IFILE_L/MIT :quota 
Specifies the maximum number of files that a process can have open 
at any one time. The default quota is the quota established at system 
generation time. The minimum amount required for any process to 
execute is 2. The file limit quota is pooled. 



DCL-248 DCL Commands 
RUN (Process) 

/INPUT :file-spec 
Defines an equivalence name string of 1 to 63 characters for SYS$INPUT. 
The logical name and equivalence name are placed in the process logical 
name table for the created process. 

llNTERVAL:delta-time 
Requests that the created process be placed in hibernation and 
awakened at regularly scheduled intervals. If you specify the /DELAY 
or /SCHEDULE qualifier with the /INTERVAL qualifier, the first wakeup 
occurs at the time specified by /DELAY or /SCHEDULE; all subsequent 
wakeups occur at intervals specified by /INTERVAL. If you specify neither 
/DELAY nor /SCHEDULE with /INTERVAL, the first wakeup occurs 
immediately by default. 

RO_BUFFERED:quota 
Specifies the maximum number of system-buffered 1/0 operations that 
the created process can have outstanding at any one time. The default 
quota is the quota established at system generation time. The minimum 
required for any process to execute is 2. The buffered 1/0 quota is 
nondeductible. 

/IO_DIRECT:quota 
Specifies the maximum number of direct 1/0 operations that the created 
process can have outstanding at any one time. The default quota is the 
quota established at system generation-time. The minimum required for 
any process to execute is 2. The direct 1/0 quota is nondeductible. 

/JOB_ TABLE_ QUOTA:quota 
Allows you to specify a quota for a detached process's jobwide logical name 
table. Note that the /JOB_TABLE_QUOTA qualifier is relevant only for 
detached processes. If the /JOB_TABLE_QUOTA qualifier is specified in a 
RUN command which results in the creation of a subprocess, it is ignored. 

IMAILBOX:unit 
Specifies the unit number of a mailbox to receive a termination message 
when the created process is deleted. If no mailbox is specified, the 
creating process receives no notification when the subprocess or detached 
process has been deleted. 

IMAXIMUM_ WORKING_SET :quota 
Specifies the maximum size to which the image being executed in the 
process can increase its working set size. The default quota is the quota 
established at system generation time. The minimum value required for 
any process to execute is 10 pages. The maximum working set quota is 
nondeductible. 

!OUTPUT =file-spec 
Defines an equivalence name string of 1 to 63 characters for the logical 
device name SYS$0UTPUT. Both the equivalence name and the logical 
name are placed in the process logical name table for the created process. 



DCL Commands DCL-249 
RUN {Process) 

/PAGE_F/LE:quota 
Specifies the maximum number of pages that can be allocated in the 
paging file for the process. The default quota is the quota established at 
system generation time. The minimum value required for a process to 
execute is 256 pages. The paging file quota is pooled. 

/PRIORITY:n 
Requires ALTPRI privilege to set the priority higher than your 
current process. Specifies the base priority at which the created process 
executes. The value of n is a decimal number from 0 through 31. The 
default priority is that of the current process. 

/PRIVILEGES=(privl/ege[, ... ]) 
Requires SETPRV privilege to specify privileges that you do not 
have. Defines user privileges for the created process. By default, the 
created process has the same privileges as its creator. If you specify only 
one privilege, you can omit the parentheses. 

You can also use the keyword NOSAME as the privilege parameter. If you 
specify /PRIVILEGES=NOSAME, the created process has no privileges. 

If you specify a version number (or semicolon) in the file-spec parameter, 
the current process privileges are used, overriding any privileges specified 
with the /PRIVILEGES qualifier. 

/PROCESS_NAME:process-name 
Specifies a name of 1 to 15 characters for the created process. The process 
name is implicitly qualified by the group number of the process's user 
identification code (UIC). By default, the name is null. 

/QUEUE_L/MIT =quota 
Specifies the maximum number of timer queue entries that· the created 
process can have outstanding at any one time. The default quota is the 
quota established at system generation time. A process does not require 
any timer queue quota in order to execute. The timer queue entry quota 
is pooled. 

/RESOURCE_ WAIT (default) 
/NORESOURCE_ WAIT 
Places the created process in a wait state when a resource required for a 
particular function is not available. If you specify /NO RESOURCE_ WAIT, 
the process receives an error status code when a resource is unavailable. 

/SCHEDULE:absolute-time 
Places the created process in hibernation and awakens it at the specified 
time. 



DCL-250 DCL Commands 
RUN (Process) 

/SERVICE FAILURE 
/NOSERVfcE_FAILURE (default) 
Enables or disables an exception condition notification if an error occurs 
during a system service request. By default, an error status code is 
returned to the process. 

ISUBPROCESS_LIMIT :quota 
Specifies the maximum number of subprocesses that the created process 
is allowed to create. The default quota is the quota established at system 
generation time. A process does not require any subprocess quota in order 
to execute. The subprocess limit quota is pooled. 

!SWAPPING (default) 
/NOSWAPPING 
Requires PSWAPM privilege to inhibit process swapping. Permits 
the process to be swapped. By default, a process may be swapped out of 
the balance set whenever it is in a wait state. 

/TIME_LIMIT:limit 
Specifies the maximum amount of CPU time (in delta time) a created 
process can use. CPU time is allocated to the created process in units of 
10 milliseconds. When it has exhausted its CPU time limit quota, the 
created process is deleted. 

If this quota is not specified and the created process is a detached process, 
the detached process receives a default value of 0, that is, unlimited CPU 
time. 

If this quota is not specified and the created process is a subprocess, the 
subprocess receives half the CPU time limit quota of the creating process. 

If this quota is specified as 0, the created process has unlimited CPU 
time providing that the creating process also has unlimited CPU time. 
If, however, the creating process does not have unlimited CPU time, the 
created process receives half the CPU time limit quota of the creating 
process. 

The CPU time limit quota is a consumable quota; that is, the amount 
of CPU time used by the created process is not returned to the. creating 
process when the created process is deleted. 

IUIC:uic 
Specifies that the created process be a detached process and assigns it a 
user identification code (UIC). 

/WORKING_ SET :default 
Specifies the number of pages in the working set of the created process. 
The default working set size is the size established at system generation 
time. The minimum number of pages required for a process to execute is 
10 pages. The value specified cannot be greater than the quota specified 



DCL Commands DCL-251 
RUN (Process) 

with /MAXIMUM_ WORKING_SET. The maximum working set quota is 
nondeductible. 

example 
$ RUN/INTERVAL=1:40/PROCESS NAME=STAT STATCHK 
%RUN-S-PROC_ID, identification of created process is 00050023 

$ CANCEL STAT 

In this example, the RUN command creates a subprocess named STAT to 
execute the image STATCHK.EXE. The process is scheduled to execute 
the image at intervals of 1 hour and 40 minutes. The process hibernates; 
however, because neither the /DELAY nor /SCHEDULE qualifier is 
specified, the first wakeup occurs immediately. 

The CANCEL command subsequently cancels the wakeup requests posted 
by the /INTERVAL qualifier. If the process is currently executing the 
image, it completes the execution and hibernates. 

RUNOFF 
Invokes the DIGITAL Standard Runoff (DSR) text formatter to format 
one or more ASCII files. Creates formatted files from source DSR (RNO) 
files, unformatted table of contents (RNT) files, and unformatted index 
(RNX) files. Optionally creates intermediate (BRN) files for input to 
RUNOFF/CONTENTS and RUNOFF/INDEX commands. 

For more information about using the commands available within DSR, 
see the Reference Section. For information about the DCL commands 
RUNOFF/CONTENTS and RUNOFF/INDEX, see the DCL command 
descriptions. 

format 

RUNOFF file-spec[, ... ] 

parameter 
file-spec[, ••• ] 
Specifies one or more ASCII files (containing text and DSR commands) 
to be formatted by the RUNOFF command. The input file type defaults 
to RNO; you must specify the file type for RNT and RNX files. Separate 
multiple files with commas. Wildcard characters are not allowed in the 
file specification. 



DCL-252 DCL Commands 
RUNOFF 

DSR produces an output file having the same file name as the input file. 
The output file type depends on the input file type. The default output file 
type is MEM. Specify SYS$INPUT to type the input from your terminal 
or a command procedure; terminate input from the terminal by pressing 
CTRIJZ. 

qualifiers 
/BACKSPACE 
Positional qualifier. Controls whether DSR uses the ASCII backspace 
character to perform character-by-character overprinting. By default, 
DSR performs line-by-line overprinting. 

IBOLD[:n] 
/NO BOLD 
Positional qualifier. Specifies the number of times characters are 
overstruck in a holding operation. You can specify the number of times 
DSR overprints flagged text by stating a value for n. N must be 0 or 
a positive integer and defaults to 1. A specification of /BOLD=O or 
/NO BOLD disables all holding, even if the appropriate flags are recognized 
and enabled. 

/CHANGE_BARS[=''character'1 
INOCHANGE_BARS 
Positional qualifier. Controls whether DSR generates change bars in 
the formatted file. The default change-bar character is the vertical bar 
( I ). The change bars appear 3 spaces to the left of the lines of text that 
you have marked for change bars. You can replace the default change
bar character by supplying a substitute character for the /CHANGE_ 
BARS[="character"] qualifier. You must specify the replacement character 
as either a character enclosed in quotation marks or as an octal, decimal, 
or hexadecimal value for the desired character. 

IDEBUG[={option[, .•• ])] 
/NODEBUG (default) 
Positional qualifier. Traces certain operations by placing the DSR 
commands in the output file. The options are as follows: 

ALL 

CONDITIONALS 

CONTENTS 

Specifies all five options (CONDITIONALS, CONTENTS, 
FILES, INDEX, and SAVE_RESTORE). 

Causes DSR to ignore all conditional processing commands 
(.IF, .IFNOT, .ELSE, .ENDIF) in the input file. DSR includes 
both "true" and "false" conditional information in the output file 
along with formatted text. 

Causes DSR to output all .SEND TOC commands along with 
the text being sent to the table of contents. 



FILES 

INDEX 

SAVE_RESTORE 

DCL Commands 
RUNOFF 

DCL-253 

Causes DSR to output all .REQUIRE commands as well as the 
text of the require files. 

Causes DSR to output the indexing commands, .INDEX and 
.ENTRY, in addition to the text to which they refer. 

Causes DSR to output all .SAVE and .RESTORE commands. 

If you specify more than one option, separate them with commas and 
enclose the list in parentheses. If you specify /DEBUG without specifying 
any options, ALL is assumed. 

/DEVICE:{ option[, ... ]) 
Positional qualifier. Controls whether DSR generates an output file 
(LNI) that is suitable for printing on an LNOl, LNOlE, or an LN03 laser 
printer. You can choose options from the following list to indicate output 
device, page orientation, and type of emphasis for :flagged characters in 
your LNI file: 

LNOl 

LNOlE 

LN03 

LANDSCAPE 

PORTRAIT (default) 

Produces an output file suitable for printing on an LNOl laser 
printer; the default paper size is 8 112 by 11 inches; the default 
mode is PORTRAIT. The output file name is the same as the 
input file name; the default file type is LNI. 

Produces an output file suitable for printing on an LNOlE 
laser printer using the standard European paper size (A4). The 
output file name is the same as the input file name. The default 
file type is LNI; the default mode is PORTRAIT. Incompatible 
with LNOl. 

Produces an output file suitable for printing on an LN03 laser 
printer; the default paper size is 8 112 x 11 inches. The output 
file name is the same as the input file name. The default file 
type is LNI; the default mode is PORTRAIT. 

Causes the appropriate fonts for landscape mode to be loaded 
into the LNOl; pages are printed with the long dimension at 
top using a smaller type size. (The page is 11 inches wide and 
8 112 inches long.) Allowable page dimensions are 0 to 73 lines 
per page and 0 to 132 characters per line. Incompatible with 
PORTRAIT. 

Causes the appropriate fonts for portrait mode to be loaded into 
the LNOl; pages are printed with the short dimension at top 
using a larger type size. (The page is 8 112 inches wide and 
11 inches long.) Allowable page dimensions are 0 to 66 lines 
per page and 0 to 80 characters per line. Incompatible with 
LANDSCAPE. 



DCL-254 DCL Commands 
RUNOFF 

ITALIC (default) 

UNDERLINE 

IDOWN[:n] 
INODOWN (default) 

Causes the italic and bold-italic fonts to be loaded into the 
LNOl printer. Italicizes characters flagged for underlining. 
Italicized characters can also be bolded depending on the type 
of emphasis you specify in your input file. 

Causes the text and bold fonts to be loaded into the LNOl. 
Underlines characters flagged for underlining. The LNOl 
allows only 63 consecutive characters (counting a space as a 
character) to be underlined per line. If you want to underline 
individual words and not the spaces between them, you will 
be able to underline only 63 words per line. Incompatible with 
ITALIC. 

Positional qualifier. Controls whether DSR inserts a specified number 
of blank lines at the top of each page. These blank lines precede any 
header information. The number of blank lines you specify ( n) does not 
affect the number of text lines on a page. 

If you specify the /DOWN qualifier without a value, five blank lines are 
inserted. If you specify /DOWN =0 or omit the qualifier, no blank lines are 
inserted, except those associated with the print device or header layout. 

/FORM_SIZE=n 
Specifies the maximum number of lines per page including running heads 
and running feet. Defaults to /FORM_SIZE=66, which is standard for 
11-inch paper. For laser printers, set the number of lines as follows: 

Paper Size Lines Mode 

8.05 69 Landscape 

8.28 71 Landscape (LNOlE default) 

8.51 73 Landscape (LNOl, LN03 default) 

11.00 66 Portrait (LNOl, LN03 default) 

11.66 70 Portrait (LNOlE default) 

12.33 74 Portrait 

13.00 78 Portrait 

14.00 84 Portrait 

llNTERMED/ATE[=file-spec] 
/NOINTERMEDIATE (default) 
Positional qualifier. Controls whether DSR generates an inter
mediate output file that can be used as input to the DSR table of 
contents utility and the DSR indexing utility. See the descriptions of 
RUNOFF/CONTENTS and RUNOFF/INDEX in the Reference Section for 
more information on producing tables of contents and indexes. 



/LOG 
INOLOG (default) 

DCL Commands 
RUNOFF 

DCL-255 

Controls whether a termination message is displayed at the terminal after 
successful completion of the DSR operation. The message states the DSR 
version number, the number of diagnostic messages (if any), the number 
of output pages, and the output file specification. 

/MESSAGES:{ option[, ..• ]) 
Positional qualifier. Specifies the destination of all DSR error messages. 
To indicate a specific destination, use one or both of the following options: 

OUTPUT 

USER 

Messages are sent to the output MEM file 

Messages are displayed on the terminal (SYS$ERROR) 

If you specify both options, separate them with commas and enclose the 
list in parentheses. The default, /MESSAGES=(OUTPUT,USER), sends 
messages to the output MEM file and displays them on the terminal. 

IOUTPUT[:file-spec] 
/NOOUTPUT 
Positional qualifier. Specifies that an output file is to be produced and 
optionally names it. If you specify /OUTPUT without a file specification, 
or if you omit the qualifier, the directory and file name default to that of 
the DSR file. If you specify /NOOUTPUT, no output file is produced. The 
output file type depends on the input file type. The default input file type 
is RNO and the default output file type is MEM. 

The file type defaults to one of the following: 

BLB For an RNB input file 

CCO For an RNC input file 

DOC For an RND input file 

ERR For an RNE input file 

HLP For an RNH input file 

LN1 For an RNO input file with /DEVICE set to LNOl, LNOlE, or LN03 

MAN For an RNM input file 

MEC For an RNT input file 

MEM For an RNO input file with no /DEVICE specification 

MEX For an RNX input file 

OPR For an RNP input file 

PLM For an RNL input file 

STD For an RNS input file 



DCL-256 DCL Commands 
RUNOFF 

/PAGES:string 
Positional qualifier. Specifies that only the pages within the specified 
range be generated as output. By default, DSR generates output for all 
pages. Specify the range as follows: 
start-page-no:end-page-no, ... 

You can specify up to five ranges (/PAGES="2-9:2-12, 4-1:4-10, 5-9:5-9, 
A-l:A-3, Index-l:lndex-5"). You can omit the colon and the end page 
number on the last range. You can omit the quotation marks if you 
specify only one range. Page numbers must be specified in their default 
form, not the form specified in a .DISPLAY command. You can specify 
just the appendix letter or name to produce an entire appendix. You can 
specify just the word INDEX to produce an entire index. 

!PAUSE 
/NOPAUSE (default) 
Controls whether DSR pauses after printing each page of output. You can 
use the /PAUSE qualifier to insert single sheets of paper or reproduction 
masters into hardcopy output devices. When output is halted, the 
terminal bell rings to remind you to insert a new form. Press the space 
bar to resume processing. Do not use this qualifier in a batch job. 

IREVERSE_EMPHASIS 
Positional qualifier. Directs DSR to change the order in which flagged 
text is underlined on an output device. If you use this qualifier, the 
printer first prints the characters to be underlined, then issues a carriage 
return without a line feed, and prints the underscores to underline the 
flagged text. If you view your file on the terminal, the flagged text is 
overwritten by the underline character. 

/RIGHT[:n] 
INORIGHT (default except for LN01) 
Positional qualifier. Causes the text on each page (including header 
information) to be shifted to the right the number of columns specified by 
n. This qualifier does not affect the page width. If you specify /RIGHT 
without specifying a number, text is shifted to the right five spaces. If you 
specify a value of zero or omit the qualifier, no shift occurs. 

The defaults (if /RIGHT is not specified) for LNOl files are as follows: 

Mode 

Landscape 

Portrait 

LNOl 

9 

2 

LNOlE 

13 

2 

ISEPARATE_ UNDERLINE[="character'1 

LNOS 

9 

2 

Positional qualifier. Prints underlines as separate characters on 
the next line instead of overstriking with underscores on the same 



DCL Commands DCL-257 
RUNOFF 

line. The value specifies the character to be used for the underline 
character and defaults to a hyphen ( - ). You can specify the underline 
character as a single printable character or a number preceded by a radix 
indicator ( %D, %0, or %X) to represent the ASCII value of a printable 
or nonprintable character. Incompatible with the /[NO]UNDERLINE_ 
CHARACTER qualifiers. 

!SEQUENCE 
/NOSEQUENCE (default) 
Positional qualifier. Controls whether DSR precedes the lines in 
the output file with the line numbers of the corresponding lines in the 
DSR file. For editors that generate line numbers in the input file, the 
/SEQUENCE qualifier causes similar numbering to appear in the output 
file. The line numbers appear in the left margin at the beginning of each 
line of output. If the text editor does not generate sequential numbers in 
the input file, sequential numbers are still generated in the output file, 
but without leading zeros. 

!SIMULATE 
/NOSIMULATE (default) 
Controls whether DSR uses line feeds or form feeds to advance to the 
top of each page. For devices that do not have a form-feed capability, use 
/SIMULATE to generate enough blank lines to cause a skip to the top of 
each new page. The /SIMULATE qualifier also causes a pause before the 
first page of output. To continue after the pause, press the space bar. 

/UNDERLINE_ CHARACTER[:"character"] 
!NOUNDERLINE_CHARACTER 
Positional qualifier. Specifies the character to be used for the underline 
character. Defaults to an underscore ( _ ). You can specify the underline 
character as a single printable character (enclosed in quotation marks) 
or as a number preceded by a radix indicator ( %D, %0, or %X) to 
represent the ASCII value of a printable or nonprintable character. 
A specification of /NOUNDERLINE_CHARACTER overrides any 
.ENABLE UNDERLINING command in the DSR file. Incompatible 
with /SEPARATE_UNDERLINE. 

/VARIANT :string 
Positional qualifier. Controls the processing of the conditional 
commands (.IF, .IFNOT, .ELSE, and .ENDIF) by specifying the names 
of the segments to be processed. You must name conditional structures 
introduced by .IF to process them. You must name conditional structures 
introduced by .IFNOT to exclude them. You must not name conditional 
structures introduced by .ELSE to process them. If you specify multiple 
names in a string, separate them by commas and enclose the string in 
quotation marks. 



DCL-258 DCL Commands 
RUNOFF 

example 
$ RUNOFF CHAPT1/RIGHT=10,CHAPT2 

The RUNOFF command in this example produces a CHAPTl.MEM file 
with margins ten spaces to the right of the margins specified in the input 
file CHAPTl.RNO. It also generates a CHAPT2.MEM file whose margins 
are not affected by the /RIGHT=lO qualifier. 

RUNOFF/CONTENTS 
Invokes the DIGITAL Standard Runoff (DSR) table of contents utility 
to create an RNT file that can be processed by DSR to make a table of 
contents. The input file for this command is an intermediate binary 
file (BRN) that is produced with the RUNOFF command and the 
/INTERMEDIATE qualifier (see the RUNOFF command). 

For more information about using the DSR table of contents utility and 
the commands available within DSR, see the Reference Section. 

format 

RUNOFF/CONTENTS file-spec[, ... ] or file-spec[+ ..• ] 

parameter 

file-spec[,. .. ] or file-spec[+ .•. ] 
Specifies one or more intermediate binary files (BRN) that contain 
information (chapter titles, header levels, sections, and so on) for 
making a table of contents. To create a BRN file, use the RUNOFF 
command with the /INTERMEDIATE qualifier. If you omit the input 
file type, the DSR table of contents utility uses a default file type of 
BRN. RUNOFF/CONTENTS will also process BTC files that the previous 
version of DSR produced. For single input files, the table of contents 
utility produces an output file with the same file name as the input file. 
The output file type is RNT. 

If you separate multiple input files with commas, separate RNT files for 
each input file are created. If you separate multiple input files with plus 
signs ( + ), a single RNT file that contains table of contents information 
for all of the input files is created. The default output file name is the 
same as the first input file name; the default file type is RNT. Wildcard 
characters are not allowed in the file specification. 



qualifiers 
/BOLD 
/NOBOLD (default) 

DCL Commands DCL-259 
RUNOFF/CONTENTS 

Controls whether the holding specified in chapter and header titles in the 
input file appears in the table of contents. 

IDEEPEST_HEADER:n 
Controls how many levels of header levels are output in the table of 
contents. You can specify any number of header levels (up to 6) to 
be displayed by changing the value of n. The default is /DEEPEST_ 
HEADER=6. 

/IDENTIFICATION 
/NOIDENTIFICATION (default) 
Controls whether the current version number of the DSR table of contents 
utility is reported. 

/INDENT 
INOINDENT (default) 
Controls how many spaces the header levels after level 1 are indented 
in the table of contents. If you omit this qualifier, or if you specify 
/NOINDENT, all header levels after header level 1 are indented 2 spaces. 
If you specify /INDENT, each header level after header level 1 is indented 
2 spaces beyond the preceding header level. 

!LOG 
INOLOG (default) 
Controls whether the DSR table of contents utility displays the name of 
each input file as it is processed and after it is processed. The name of 
each output file created may also be displayed. If there are any errors 
in processing, the DSR table of contents utility sends messages to the 
terminal even if fNOLOG is in effect. 

IOUTPUT[:file-spec] 
INOOUTPUT 
Specifies that an output file is to be produced and optionally names it. 
If you specify the /OUTPUT qualifier without a file specification, or if 
you omit the qualifier entirely, the output file name matches the input file 
name. The default file type is RNT. The fNOOUTPUT qualifier suppresses 
the creation of an output file. You can use /NOOUTPUT to check an input 
file for errors without using system resources to generate an output file. 

IPA GE_ NUMBERS:( option[, .•• ]) 
Controls whether the page number references in the table of contents are 
running page numbers or chapter-oriented page numbers; also controls 
how many levels of headers have page references listed in the table of 
contents. To specify these options, select from the following list: 



DCL-260 DCL Commands 
RUNOFF/CONTENTS 

Option Purpose 

LEVEL=n Specifies that header levels up to and including header level n have page 
numbers listed in the table of contents. The default is to display page 
numbers for 6 levels of headers. 

NORUNNING Specifies chapter-oriented page numbers (such as 1-3, 10-42). You can 
specify chapter-oriented numbers for the table of contents even if the 
document does not have chapter-oriented numbers. NORUNNING is the 
default. 

RUNNING Specifies running page numbers (such as 3, 42). You can specify running 
page numbers for the table of contents even if the document does not 
have running page numbers. 

If you supply more than one option, separate them with commas and 
enclose the list in parentheses. 

IREQUIRE:file-spec 
/NOREQUIRE (default) 
Allows you to change or delete the heading on the first page of a table of 
contents. The default heading is the word CONTENTS centered on the 
page and followed by one blank line. You can either substitute another 
word as a heading, or have no heading. 

To change the heading, do one of the following: 

• If you do not want any heading, specify a null file as the file 
specification for /REQUIRE. 
$ RUNOFF/CONTENTS/REQUIRE=nl: 

• If you want to use a different heading, create or edit a file that 
specifies the heading that you want. Use the file that you create as 
the file specification for the /REQUIRE qualifier. 

!SECTION_NUMBERS (default) 
INOSECTION_NUMBERS 
Controls whether the DSR table of contents utility displays section 
numbers in the table of contents. The /SECTION_NUMBERS qualifier 
displays section numbers for all header levels in the table of contents. 
/NOSECTION_NUMBERS suppresses the display of section numbers for 
all header levels. 

!UNDERLINE 
INOUNDERLINE (default) 
Controls whether the underlining specified in chapter and header titles in 
the input file appears in the table of contents. 



DCL Commands DCL-261 
RUNOFF/CONTENTS 

example 
$ RUNOFF/INTERMEDIATE CHPT1,CHPT2,CHPT3 

Before using RUNOFF/CONTENTS, you must use 
RUNOFF/INTERMEDIATE to create a BRN file as input for the DSR 
table of contents utility. The command line in this example creates three 
separate files: CHPTl.BRN, CHPT2.BRN, and CHPT3.BRN. 

RUNOFF/INDEX 
Invokes the DIGITAL Standard Runoff (DSR) indexing utility to create 
an RNX file that can be processed by DSR to create an index. The 
input file for this command is an intermediate binary file (BRN) that 
is produced with the RUNOFF command and the /INTERMEDIATE 
qualifier (see the RUNOFF command). For more information about using 
the DSR indexing utility and the commands available within DSR, see the 
Reference Section. 

format 

RUNOFF/INDEX file-spec[, ... ] or file-spec[+ ... ] 

parameter 

file-spec[, ... ] or file-spec[+ .•. ] 
Specifies one or more intermediate binary files (BRN) that contain 
information (index entries, page number references, and so on) for 
making an index. To create a BRN file, use the RUNOFF command 
with the /INTERMEDIATE qualifier. See the RUNOFF command for 
more information on the /INTERMEDIATE qualifier. 

If you omit the input file type, the DSR indexing utility uses a default file 
type of BRN. RUNOFF/INDEX also processes BIX files that the previous 
version of DSR produced. For single input files, the indexing utility 
produces an output file with the same file name as the input file. The 
output file type is RNX. If you separate multiple input files with commas, 
separate RNX files for each input file are created. If you separate multiple 
input files with plus signs ( + ), a single RNX file that contains indexing 
information for all of the input files is created. The default output file 
name is the same as the first input file name; the default file type is RNX. 
Wildcard characters are not allowed in the file specification. 

qualifiers 
/IDENTIFICATION 
/NOIDENTIFICATION (default) 
Reports the current version number of the DSR indexing utility. 



DCL-262 DCL Commands 
RUNOFF/INDEX 

IL/NES_PER_PAGE:n 
The value n specifies the number of lines of index entries on each page 
of the finished index. This number does not include the number of lines 
required for headings and footings. The default is 55 lines. This value is 
designed to work properly in the default formatting environment of DSR. 
You must calculate the value n if you change the default environment in 
any of the following ways: 

• If you use subtitles in the document that requires the RNX file 

• If you make the page length for the document anything other than 58 
lines per page 

• If you use any .LAYOUT other than zero (0) 

To calculate the correct value for /LINES_PER_PAGE use the following 
formula: 
/LINES PER PAGE=n 
n = .PAGE SIZE ( the first parameter is length value) 

minus 4 if subtitles are used, minus 3 if no subtitles 
minus the number of lines reserved for .LAYOUT 1, 

.LAYOUT 2, or .LAYOUT 3. 

/LOG 
INOLOG (default) 
Controls whether the DSR index utility displays the name of each input 
file as it is processed and after it is processed, as well as the name of each 
output file created. If there are any errors in processing, INDEX sends 
messages to the terminal even if /NOLOG is in effect. 

IOUTPUT[:file-spec] 
INOOUTPUT 
Specifies that an output file is to be produced and optionally names it. 
If you specify the /OUTPUT qualifier without a file specification, or if 
you omit the qualifier entirely, the output file name matches the input 
file name. The default file type is RNX. You can change the name of the 
output file by supplying a file specification for the value file-spec. The 
/NOOUTPUT qualifier suppresses the creation of an output file. You can 
use /NOOUTPUT to check an input file for errors without using system 
resources to generate an output file. 

IPAGE_NUMBERS:option 
Controls whether the page number references in the index are running 
page numbers or chapter-oriented page numbers. To specify the type of 
page numbers you want, select from the following options: 



Option Purpose 

DCL Commands 
RUNOFF/INDEX 

DCL-263 

NORUNNING Specifies chapter-oriented page numbers (such as 1-3, 10-42). You can 
specify chapter-oriented numbers for an index even if they do not appear 
in the document. NORUNNING is the default. 

RUNNING Specifies running page numbers (such as 1, 50, 230). You can specify 
running page numbers for an index even if the document does not display 
running page numbers. 

/REQUIRE:file-spec 
INOREQUIRE (default) 
Allows you to change the heading on the first page of an index. The 
default heading is the word INDEX centered on the page and followed 
by three blank lines. The substitute heading is contained in the file you 
specify, which can contain DSR commands and text. 

To change the heading: 

1. Create or edit a file that specifies the format and the text that you 
want as the heading on the first index page. 

2. Use the file you create as the file-spec for /REQUIRE. 

See the /RESERVE qualifier for more information. 

IRESERVE:n 
/NORESERVE (default) 
Allows you to reserve space at the top of the first page of the index for 
text or white space that you want to include with the /REQUIRE=file-spec 
qualifier. Determine how many lines of text or white space you are adding 
to the top of the first page of the index. Use this number as the value n 
for the /RESERVE qualifier. 

example 
$ RUNOFF/INDEX/LINE_PER_PAGE=52 CHPT2 

In this example, the RUNOFF/INDEX command takes the file 
CHPT2.BRN as input and creates CHPT2.RNX. The RNX file produces an 
index with 52 lines of index entries per page. The lines per page had to 
be adjusted because the writer used a page layout with the page numbers 
centered at the bottom of the page (.LAYOUT 1, .LAYOUT 2, 
.LAYOUT 3). This page layout takes up three more spaces than 
.LAYOUT 0, which is the default for DSR. To produce the final index, you 
must use the RNX file as input to DSR. 



DCL-264 

SEARCH 

DCL Commands 
SEARCH 

Searches one or more files for the specified string(s) and displays those 
lines containing that string or strings. 

format 
SEARCH file-spec[, ... ] search-string{, ... ] 

parameters 
file-spec[, ..• ] 
Specifies one or more files to be searched. You must specify at least one 
file name. If you specify two or more file names, separate them with 
commas. Wildcard characters are allowed in the file specification. 

search-string[, ... ] 
Specifies the character string to be located in the specified files. Enclose 
strings containing lowercase letters, blanks, or other nonalphanumeric 
characters (including spaces) in quotation marks. 

qualifiers 
/BACKUP 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/BACKUP selects files according to the dates of their most recent backups. 
This qualifier is incompatible with the other qualifiers that also allow you 
to select files according to time attributes: /CREATED, /EXPIRED, and 
/MODIFIED. If you specify none of these four time qualifiers, the default 
is /CREATED. 

IBEFORE[:time] 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

IBY_OWNER[:uic] 
Selects only those files whose owner user identification code (UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

!CONFIRM 
INOCONFIRM (default) 
Controls whether a request is issued before each SEARCH operation to 
confirm that the operation should be performed on that file. The following 
responses are valid: 



YES 

TRUE 

1 

NO 

FALSE 

0 

~ 

QUIT 

CTRUZ 

ALL 

DCL Commands DCL-265 
SEARCH 

You can use any combination of uppercase and lowercase letters for word 
responses. Word responses can be abbreviated to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 
unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and <RET>. QUIT or CTRUZ indicates that you want 
to stop processing the command at that point. When you respond with 
ALL, the command continues to process, but no further prompts are given. 
If you type a response other than one of those in the list, DCL issues an 
error message and redisplays the prompt. 

/CREATED (default) 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/CREATED selects files based on their dates of creation. This qualifier is 
incompatible with the other qualifiers that also allow you to select files 
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If 
you specify none of these four time qualifiers, the default is /CREATED. 

!EXACT 
INOEXACT (default) 
Controls whether the SEARCH command matches the search string 
exactly or treats uppercase and lowercase letters as equivalents. By 
default, SEARCH ignores case differences in letters. 

IEXCLUDE:(file-spec[, ••• ]) 
Excludes the specified files from the SEARCH operation. You can include 
a directory but not a device in the file specification. Wildcard characters 
are allowed in the file specification. However, you cannot use relative 
version numbers to exclude a specific version. If you provide only one file 
specification, you can omit the parentheses. 

/EXPIRED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/EXPIRED selects files according to their expiration dates. (The 
expiration date is set with the SET FILE/EXPIRATION_DATE command.) 
The /EXPIRED qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /MODIFIED. If you specify none of these four time 
qualifiers, the default is /CREATED. 



DCL-266 DCL Commands 
SEARCH 

/FORMAT :option 
Formats output in one of five ways: 

DUMP 

NO NULLS 

NOFF 

PASSALL 

TEXT 

Displays all control characters (including <HT>, <CR>, and <LF>) and 
nonprintable characters as ANSI mnemonics. 

Same as DUMP, but removes all null characters from the input file before 
reformatting. 

Replaces control characters in text with ANSI mnemonics (for example, 
CTRUC is replaced with <ETX> ). The terminal formatting characters 
<HT>, <CR>, <LF>, <VT> are passed without change. Form feed characters 
are replaced with <FF>. 

Moves control and nonprintable characters to the output device without 
translating them. The terminal driver cannot send 8-bit characters 
to the terminal unless either SET TERMINAI.JPASSALL or SET 
TERMINAUEIGHT_BIT is already in effect. 

Replaces control characters in text with ANSI mnemonics (for example, 
CTRUC is replaced with <ETX> ). The terminal formatting characters 
<HT>, <CR>, <LF>, <VT>, and <FF> are passed without change. TEXT is 
the default format. 

/HEADING (default) 
INOHEADING 
Includes file names in the output file and displays a line of 30 asterisks as 
a window separator between groups of lines that belong to different files. 
With the default heading format, file names are printed only when more 
than one file is specified or when wildcard characters are used. 

/HIGHLIGHT 
IH/GHLIGHT(:option) 
/HIGHLIGHT =BOLD (default on ANSI video terminals with advanced 
video) 
/HIGHLIGHT:REVERSE (default on ANSI video terminals without 
advanced video) 
INOHIGHLIGHT (default for all other output) 
Controls whether the actual strings that are matched are emphasized in 
the output. The emphasis, or highlighting, can be one of several options: 

BLINK 

BOLD 

REVERSE 

The matched strings are highlighted using the ANSI blink 
character attribute (advanced video only). 

The matched strings are highlighted using the ANSI bold 
character attribute (advanced video only). If /lilGHLIGHT is 
used without an option, BOLD is assumed. 

The matched strings are highlighted with the ANSI underline 
video attribute (possible without advanced video). 



UNDERLINE 

DCL Commands 
SEARCH 

DCL-267 

The matched strings are highlighted with the ANSI underline 
video attribute (possible without advanced video). Without the 
advanced video option, either REVERSE or UNDERLINE will 
appear depending on whether the cursor is selected as block or 
underline. The two options REVERSE and UNDERLINE have 
the same effect. 

HARDCOPY(=option) This specifies that the strings should be highlighted in a manner 
suitable for most hardcopy printers. Hardcopy highlighting has 
two options: OVERSTRIKE and UNDERLINE. With overstrike 
highlighting, matched strings are double-printed, so that they 
appear darker. The matched strings are underlined with the 
underscore character. 

/LOG 

Hardcopy printing is accomplished by adding a carriage return 
and spacing back over the line to overprint the string or 
underlines. Note that this can as much as double the length 
of the line, and perhaps lead to truncation if the device buffer 
size is too small. 

Digital recommends that you use /HIGHLIGHT=UNDERLINE 
with the Digital LNOl printer instead of 
/HIGHLIGHT=HARDCOPY=UNDERLINE. The LNOl ignores 
OVERSTRIKE highlighting. 

Digital recommends that you use either /HIGHLIGHT=BOLD or 
IHIGHLIGHT=UNDERLINE with the DIGITAL LN03 printer 
instead of /HIGHLIGHT=HARDCOPY=UNDERLINE. The LN03 
ignores OVERSTRIKE highlighting. 

/NOLOG (default) 
Outputs a message to the current SYS$0UTPUT device for each file 
searched. The message includes the file name, the number of records, and 
the number of matches for each file searched. 

IMATCH:option 
Interprets and matches multiple search strings in one of the following 
ways: 

AND 

NOR 

NAND 

OR 

/MODIFIED 

A match occurs only if the record contains all the strings. 

A match occurs only if the record contains none of the strings. 

A match occurs only if the record does not contain all of the strings. 

A match occurs if the record contains any of the strings. 

Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/MODIFIED selects files according to the dates on which they were last 
modified. This qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /EXPIRED. If you specify none of these four time 
modifiers, the default is /CREATED. 



DCL-268 DCL Commands 
SEARCH 

/NUMBERS 
/NONUMBERS (default) 
Controls whether the source line number is displayed at the left margin 
of each line in the output. 

IOUTPUT[:file-spec] 
INOOUTPUT 
Controls whether the results of the search are output to a specified :file. 
The output is sent to the current default output device (SYS$0UTPUT) 
if you omit the /OUTPUT qualifier or omit the file specification with the 
qualifier. 

/REMAINING 
/NOREMAINING (default) 
Includes in the output all records from the first matched record to the end 
of the file. This qualifier overrides the value n in /WINDOW, but allows 
/WINDOW=nl. 

/S/NCE[=time] 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

/STATISTICS 
/NOSTATISTICS (default) 
Controls whether the following statistics about the search are displayed: 

• Number of files searched 

• Number of records searched 

• Number of characters searched 

• Number of records matched 

• Number of lines printed 

• Buffered 1/0 count 

• Direct 1/0 count 

• Number of page faults 

• Elapsed CPU time 

• Elapsed time 



/WINDOW[:(n1,n2)] 
INOWINDOW (default) 

DCL Commands DCL-269 
SEARCH 

Specifies the number of lines to be displayed with the search string. If you 
specify the /WINDOW qualifier without the value nl and n2, two lines 
above the search string, the search string, and the two lines below the 
search string are included in the output. If you specify /WINDOW with a 
single number (nl), nl specifies the number of lines to display including 
the search string. Half the lines precede the matched search string and 
half follow it. (If n is even, 1 line is added to the lines following the 
matched search string.) If you specify nl and n2, the /WINDOW qualifier 
displays nl lines above the search string, the search string, and n2 lines 
below the search string. Either of these numbers can be zero. If you 
specify /WINDOW=O, the file name of each file containing a match (but 
no records) is included in the output. If you omit the /WINDOW qualifier, 
only the line containing a match is displayed. 

example 
$ SEARCH/OUTPUT=RESULTS.DAT/WINDOW=9 DISLIST.MEM NAME 

The SEARCH command searches the file DISLIST.MEM for occurrences 
of the character string NAME and sends the output to the file 
RESULTS.DAT. The four lines preceding and following each occurrence of 
NAME are included in the output. 

SET ACCOUNTING 
Enables or disables the logging of various activities in the accounting 
log file SYS$MANAGER:ACCOUNTNG.DAT. You can also use SET 
ACCOUNTING to close the current accounting log file and open a new 
one with a version number incremented by 1. 

Requires OPER privilege. 

format 
SET ACCOUNTING 

parameters 
None. 

qualifiers 

/DISABLE[=(keyword[, ••• ])] 
Disables the logging of all activities in the accounting log file. To disable 
specific activities, you include one or more keywords with /DISABLE. You 
can specify the following keywords: 



DCL-270 DCL Commands 
SET ACCOUNTING 

Keyword 

BATCH 

DETACHED 

IMAGE 

INTERACTIVE 

LOGIN_FAILURE 

MESSAGE 

NETWORK 

PRINT 

PROCESS 

SUBPROCESS 

Function 

Inhibits/allows the recording of batch job termination 

Inhibits/allows the recording of detached process termination 

Inhibits/allows the recording of image activation 

Inhibits/allows the recording of interactive job termination 

Inhibits/allows the recording of login failures 

Inhibits/allows the recording of user messages 

Inhibits/allows the recording of network job termination 

Inhibits/allows the recording of all print jobs 

Inhibits/allows the recording of all process termination 

Inhibits/allows the recording of all subprocess termination 

IENABLE[:(keyword[, ... ])] 
Enables the logging of all activities in the accounting file. To enable 
specific activities, you include one or more keywords with /ENABLE. Use 
the same keywords with /ENABLE that you use with /DISABLE. 

/NEW_FILE 
Closes the current accounting file and opens a new version of that file. 

example 
$ SET ACCOUNTING/ENABLE=(BATCH,INTERACTIVE) 

The command in this example requests that all batch and interactive jobs 
be recorded in the accounting file at job termination. 

SETACL 
Allows you to create or modify the access control list (ACL) of an object. 
Alternatively, you may use the VMS Access Control List (ACL) Editor to 
m

1

anipulate ACLs. · 

format 
SET ACL object-name 

parameter 
object-name 
Specifies the object whose access control list (ACL) is being modified. 
Wildcard characters are allowed in object names only if the object type 
is FILE. Each file must be a disk file on a Files-11 Structure Level 2 
formatted volume. Logical name tables must be system logical name 
tables. 



qualifiers 

IACL[=(ace[, ••. ])] 

DCL Commands DCL-271 
SET ACL 

Specifies one or more access control entries (ACEs) to be modified. When 
no ACE is specified, the entire access control list is affected. Separate 
multiple ACEs with commas. The specified ACEs are inserted at the 
top of the ACL unless the I AFTER qualifier is given. (Note that security 
alarm ACEs are always placed at the beginning of the ACL.) 

IAFTER:ace 
Indicates that all access control entries (ACEs) specified with the /ACL 
qualifier will be added after the ACE specified with the I AFTER qualifier. 
By default, any ACEs added to the ACL are always placed at the top 
of the list. (Note that security alarm ACEs are always placed at the 
beginning of the ACL.) 

IBEFORE[=time] 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, or 
YESTERDAY. 

IBY_OWNER[=uic] 
Selects only those files whose owner user identification code (UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

!CONFIRM 
INOCONFIRM (default) 
Issues a request for confirmation before each modification. The following 
responses are valid: 

YES 

TRUE 

1 

NO 

FALSE 

0 

~ 

QUIT 

CTRUZ 

ALL 

You can use any combination of uppercase and lowercase letters for word 
responses. Word responses can be abbreviated to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 
unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and the RETURN key. QUIT or CTRUZ indicates 
that you want to stop processing the command at that point. When you 
respond with ALL, the command continues to process, but no further 
prompts are given. If you type a response other than one of those in the 
list, DCL issues an error message and redisplays the prompt. 



DCL-272 DCL Commands 
SET ACL 

!CREATED 
Modifies the ACLs of files selected according to their creation date. 
Relevant only with the /BEFORE and /SINCE qualifiers. 

!DEFAULT 
Creates an ACL for the specified files as if the files were newly created. 
For a directory file, the /DEFAULT qualifier propagates the entire ACL 
(except ACEs with the NOPROPAGATE option) so that a particular access 
protection can be propagated throughout a directory tree. For all other 
files, the /DEFAULT qualifier propagates the DEFAULT option ACEs in 
the ACL of the parent directory to the ACL of the specified files. 

!DELETE 
Indicates that the access control entries (ACEs) specified with the /ACL 
qualifier are to be deleted. If no ACEs are specified with I ACL, the entire 
ACL is deleted (except those with the PROTECTED option). 

!EDIT 
Invokes the ACL Editor and allows you to use the /JOURNAL, /MODE, 
or /RECOVER qualifiers. Any other qualifiers specified with /EDIT are 
ignored. 

!EXCLUDE:{fi/e-spec[, ••• ]) 
Excludes the specified files from the SET ACL operation. You can include 
a directory but not a device in the file specification. Wildcard characters 
are allowed in the file specification. However, you cannot use relative 
version numbers to exclude a specific version. If you provide only one file 
specification, you can omit the parentheses. 

/JOURNAL[:fi/e-spec] 
!NOJOURNAL 
Controls whether a journal file is created from the editing session. By 
default, a journal file is created if the editing session ends abnormally. 
You must specify /EDIT in order to use this qualifier. 

ILIKE:(OBJECT_ TYPE:type,OBJECT_NAME:name) 
Deletes the ACL of the specified object and replaces it with the ACL of 
the object specified with /LIKE. 

You can specify the following keywords for OBJECT_TYPE: DEVICE, 
FILE, SYSTEM_GLOBAL_SECTION, GROUP _GLOBAL_SECTION, 
QUEUE, or LOGICAL_NAME_TABLE. This qualifier cannot be used with 
the /EDIT qualifier. 

!LOG 
!NOLOG (default) 
Controls whether the SET ACL command displays the object name of the 
object that has been affected by the command. This qualifier cannot be 
used with the /EDIT qualifier. 



DCL Commands DCL-273 
SET ACL 

IMODE:[NO]PROMPT 
Determines whether the ACL editor prompts for field values. By default, 
the ACL editor selects prompt mode. You must specify the /EDIT qualifier 
to use this qualifier. 

!NEW 
Indicates that any existing ACE in the ACL of the object specified with 
SET ACL (except those with the PROTECTED option) is to be deleted. 
To use the /NEW qualifier, you must specify a new ACL or ACE with the 
I ACL, /LIKE, or /REPLACE qualifier. This qualifier cannot be used with 
the /EDIT qualifier. 

IOBJECT_ TYPE:type 
Specifies the type of the object whose ACL is being edited. By default, 
the ACL editor assumes that the object whose ACL is being edited is 
a file. If the object is not a file, the /OBJECT qualifier is required. 
Possible keywords are as follows: FILE (includes directory files), DEVICE, 
SYSTEM_GLOBAL_SECTION, GROUP_GLOBAL_SECTION, QUEUE, 
or LOGICAL_NAME_TABLE. 

IRECOVER[:file-spec] 
INORECOVER (default) 
Specifies the name of the journal file to be used in a recovery operation. If 
the file specification is omitted with /RECOVER, the journal is assumed to 
have the same name as the input file and a file type of JOU. No wildcard 
characters are allowed with the /RECOVER file-spec parameter. You must 
specify /EDIT in order to use this qualifier. 

/REPLACE:( ace[, ••. ]) 
Deletes the access control entries (ACEs) specified with the /ACL qualifier 
and replaces them with those specified with /REPLACE. Any ACEs 
specified with the I ACL qualifier must exist and must be specified in the 
order in which they appear in the ACL. This qualifier cannot be used with 
the /EDIT qualifier. 

ISINCE[:time] 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, or 
as one of the following keywords: TODAY (default), TOMORROW, or 
YESTERDAY. 

example 
$ SET ACL/LIKE=(OBJECT_TYPE=FILE,OBJECT_NAME=USER.LIS) ACCOUNTS.LIS 

This example replaces the ACL of the file ACCOUNTS.LIS with the ACL 
for the file USER.LIS. 



DCL-274 DCL Commands 
SET AUDIT 

SET AUDIT 
Enables or disables security auditing on a VMS system. The SET AUDIT 
command is also used to modify the characteristics of the audit server 
process, set up long-term journaling (archiving) of audit events, and 
monitor resource consumption on the system. (Note that you must specify 
the I ALARM qualifier when enabling or disabling security auditing and 
when using the /FAILURE_MODE qualifier.) 

Requires the SECURITY privilege. 

format 
SET AUDIT 

event definition qualifiers 
!ALARM 
Causes alarm messages to be sent to all terminals enabled as security 
operators. See the description of the DCL command REPLY/ENABLE for 
details on how to enable terminals as security operators. The /ALARM 
qualifier is required when enabling or disabling security auditing with the 
/ENABLE or /DISABLE qualifiers, or when specifying a failure mode with 
the /FAILURE_MODE qualifier. 

IDISABLE:(keyword[, ... ]) 
Disables security auditing for the specified events. To disable alarms for 
all events, specify the keyword ALL. You can also specify the appropriate 
keywords to selectively disable alarms for from one to all events that 
are currently enabled. You must specify at least one keyword. See the 
/ENABLE qualifier description for a list of the keywords to use with the 
/DISABLE qualifier. 

IENABLE=(keyword[, .•. ]) 
Enables security auditing for the specified events. To enable alarms for 
all events, specify the keyword ALL. You can also specify the appropriate 
keywords to selectively enable alarms for from one to all events that are 
currently enabled. You must specify at least one keyword. 

The possible events that may be specified in the keyword list of either the 
/ENABLE or /DISABLE qualifier are as follows: 

ACL 

ALL 

An event requested by an access control list (ACL) 
item, including ACLs on files and global sections. 

All possible events. 



AUTHORIZATION 

BREAKIN=(keyword[, ... ]) 

FILE_ACCESS=(keyword[, ... ]) 

DCL Commands 
SET AUDIT 

DCL-275 

The modification of any portion of the system user 
authorization file (SYSUAF) or network proxy 
authorization file (NETPROXY), including any 
password changes; the modification of any portion 
of the rights database (RIGHTSLIST). 

The occurrence of one or more of the following classes 
of break-in attempts, as specified by one or more of 
the keywords: 
ALL All possible sources of break-ins, as 

defined by the remaining keywords 

DETACHED 

DIAL UP 

LOCAL 

NETWORK 

REMOTE 

Detached process break-in attempt 

Dialup break-in attempt 

Local break-in attempt 

Network server break-in attempt 

Remote break-in attempt 

The occurrence of file and global section access events 
(regardless of the value specified in the object's access 
control list, if any). You can specify one or more of the 
following keywords to describe the object access event 
to be noted. 
ALL All types of object access events, as 

defined by the remaining keywords. 

BYPASS 
[:access 
[,access ... ]] 

FAILURE 
[:access 
[,access ... ]] 

GRPPRV 
[:access 
[,access ... ]] 

READ ALL 
[:access 
[,access ... ]] 

SUCCESS 
[:access 
[,access ... ]] 

SYSPRV 
[:access 
[,access ... ]] 

Successful object access due to the 
use of the BYPASS privilege 

Unsuccessful object access 

Successful object access due to the 
use of the GRPPRV privilege 

Successful object access due to the 
use of the READALL privilege 

Successful object access 

Successful object access due to the 
use of the SYSPRV privilege 



DCL-276 DCL Commands 
SET AUDIT 

INSTALL 

LOGFAILURE=(keyword[, ... ]) 

LOGIN=(keyword[, ... ]) 

Most of the keywords permit you to define the type 
of object access that was obtained with the following 
keywords: 
ALL All types of object access events, as 

defined by the remaining keywords. 
If no access types are specified, ALL 
is assumed by the system. 

READ 

WRITE 

EXECUTE 

DELETE 

CONTROL 

READ access 

WRITE access 

EXECUTE access 

DELETE access 

Owner access 

The occurrence of any INSTALL operations. 

The occurrence of one or more of the following classes 
of login failure, as specified by one or more of the 
keywords: 
ALL 

BATCH 

DETACHED 

DIAL UP 

LOCAL 

NETWORK 

REMOTE 

SUBPROCESS 

All possible types of login 
failures, as defined by the 
remaining keywords 

Batch process login failure 

Detached process login failure 

Dialup interactive login failure 

Local interactive login failure 

Network server task login failure 

Interactive login failure from 
another network node, for 
example, with a SET HOST 
command 

Subprocess login failure 

The occurrence of one or more of the following classes 
of login attempts, as specified by one or more of the 
keywords: 
ALL 

BATCH 

DETACHED 

All possible sources of logins, 
as defined by the remaining 
keywords 

Batch process login 

Detached process login 



LOGOUT=(keyword[, ... ]) 

MOUNT 

IFAILURE_MODE[=keyword] 

DCL Commands 
SET AUDIT 

DCL-277 

DIAL UP 

LOCAL 

NETWORK 

REMOTE 

SUBPROCESS 

Dialup interactive login 

Local interactive login 

Network server task login 

Interactive login from another 
network node, for example, with 
a SET HOST command 

Subprocess login 

The occurrence of one or more of the following classes 
of logouts, as specified by one or more of the keywords: 
ALL All possible sources of logouts, as 

defined by the temaining keywords 

BATCH 

DETACHED 

DIAL UP 

LOCAL 

NETWORK 

SUBPROCESS 

REMOTE 

Batch process logout 

Detached process logout 

Dialup interactive process logout 

Local interactive process logout 

Logout by a network server task 

Subprocess or detached process 
logout 

Logout of a process that logged in 
interactively from another network 
node 

The issuance of a MOUNT or DISMOUNT request. 

Specifies how the VMS operating system proceeds following a failed 
attempt to write a security alarm to OPCOM's mailbox. Specify one of 
the following keywords with the /FAILURE_MODE qualifier: 

Option Description 

WAIT Indicates that processes are placed in the MWAIT state to wait until the 
resource is available. This is the default. 

IGNORE Indicates that failing security alarms are to be ignored. The first failed alarm 
causes an error message to be written to the operator console and log file. 
The system maintains a count of the lost alarms, which can be displayed with 
SHOW AUDIT. 

CRASH Forces a system failure if security alarms cannot be written. 

The I ALARM qualifier is required when specifying an audit failure mode. 

!VERIFY (default) 
!NO VERIFY 
Specifies that control is not returned to the user (at the DCL command 
level) until the audit server has completed the request. 



DCL-278 DCL Commands 
SET AUDIT 

audit journal qualifiers 
IDESTINATION:file-spec 
Specifies the name and location of the security audit log file in the audit 
server database. The device, if part of the file specification, must be a 
disk volume. Because the system security log file is automatically created 
when the system is first installed and restored each time the system 
boots, this qualifier is only required when you want to move the log file. 

Once you have updated the audit server database, execute the command 
SET AUDIT/SERVER=NEW _LOG to make the new location of the log file 
known to all audit server processes in the cluster. The previous audit log 
file is closed, and all subsequent audit event messages generated on the 
cluster are redirected to the new audit log file. 

The /JOURNAL=SECURITY qualifier is required when redirecting the 
system security audit log file with the /DESTINATION qualifier. 

/JOURNAL[=journal-name] 
Specifies the name of the audit journal. The default, 
/JOURNAL=SECURITY, represents the system security audit log file, 
and is currently the only supported audit journal type. The /JOURNAL 
qualifier is required when changing the location of the audit log file with 
the /DESTINATION qualifier. 

audit server qualifiers 
/INTERVAL:( option-keyword[, ..• ]) 
Specifies the delta times to be used for regular audit server operations. 

In most cases, the defaults noted should be sufficient. 

Option Keyword 

ARCHIVE_FLUSH=time 

JOURNAL_FLUSH=time 

Description 

Specifies the period of time the audit server waits 
before flushing information to be archived. The 
default is 1 minute. 

Specifies the period of time the audit server waits 
before flushing information in the various audit 
journal buffers. The default is 5 minutes. 



Option Keyword 

RESOURCE_SCAN=time 

RESUME_SCAN=time 

ILISTENER:device 
!NOL/STEN ER 

Description 

DCL Commands 
SET AUDIT 

DCL-279 

Specifies the period of time the audit server waits 
before monitoring the volume containing the audit 
journal for resource exhaustion. Resource exhaustion 
occurs when the volume has no free disk space. The 
default is 5 minutes. 

Specifies the period of time the audit server waits 
before reviewing an existing resource exhaustion 
condition. The default is 15 minutes. 

Specifies the name of a mailbox device which receives a copy of all security 
audit events. The user-defined mailbox can be used for processing of 
system security events as they occur, rather than logging events to the 
system security audit log file for inspection at a later time. 

Specify the SET AUDIT/NOLISTENER command to remove a listener 
device from the system. 

/SERVER:option-keyword[, ... ] 
Specifies the audit server characteristics to be modified. 

In most cases, the defaults noted should be sufficient. 

Option Keyword 

CREATE_SYSTEM_LOG 

EXIT 

Description 

Causes the audit server to create a new local system 
security audit log file. Other audit servers in the 
cluster are not affected. This keyword may be used 
by sites operating a multiple-environment cluster 
where it may be necessary to create a new log file on 
a specific node in the cluster. CREATE_SYSTEM_ 
LOG is synonomous with NEW _LOG for nonclustered 
systems. 

Initiates an audit server shutdown. This is the only 
method for removing the audit server process from 
the system; the audit server cannot be deleted or 
suspended. 



DCL-280 DCL Commands 
SET AUDIT 

Option Keyword 

FINAL_ACTION=action 

FLUSH 

NEW_LOG 

REDIRECT_SYSTEM_LOG 

RESUME 

START 

/VERIFY (default) 
/NO VERIFY 

Description 

Specifies the action taken by the audit server 
when resource exhaustion conditions have been 
met. Resource exhaustion occurs when the audit 
server attempts to buffer audit messages and runs 
out of virtual memory. (See the Guide to VMS 
System Security for more information about resource 
monitoring.) Specify one of the following values: 
CRASH Crash the system if the system 

runs out of virtual memory. This 
is the default. 

IGNORE_NEW Ignore new event messages until 
resources are available. Events 
messages leading up to the 
resource condition are saved; 
new messages are lost. 

PURGE_OLD Removes old event messages until 
resources are available in order to 
save the most current messages. 

Copies all buffered audit and archive records to the 
audit log file and security archive file, respectively. 

Creates a new clusterwide audit log file. The audit log 
file is created by the audit server process running on 
the local system and is opened by all audit servers in 
the cluster.. (Typically, this is used daily to generate a 
new version of the audit log file.) 

Causes the audit server on the local node to redirect 
security event messages to a new audit log file, 
whose location was previously defined by the 
/DESTINATION qualifier. Audit server processes (and 
log files) on other nodes in the cluster are unaffected. 

Requests the audit server process to resume normal 
activity on the system, if adequate disk space is 
available. Normally, once a resource monitoring 
action threshold has been reached, the audit server 
process suspends most system activity and waits 15 
minutes before attempting to resume normal system 
activity. 

Starts the audit server process on the system. 

Specifies that control is not returned to the user (at the DCL command 
level) until the audit server has completed the request. 



DCL Commands 
SET AUDIT 

DCL-281 

archiving qualifiers 
IARCHIVE:option-keyword[, ••• ] 
Specifies the classes of audit messages events to be written to the security 
archive file. Specify one or more of the following keywords: 

Option Keyword 

NONE 

[NO]ALL 

SYSTEM_ALARM 

SYSTEM_AUDIT 

USER_ALARM 

USER_AUDIT 

IDESTINATION:file-spec 

Description 

Disables archiving on the system. By default, 
archiving is disabled on the system. 

Enables or disables archiving of all system security 
events. 

Enables archiving of all system-generated alarm 
events. 

Enables archiving of all system-generated audit 
events. Reserved for future use. 

Enables archiving of all user-generated alarm events. 
Reserved for future use. 

Enables archiving of all user-generated audit events. 
Reserved for future use. 

Specifies the name of the archive log file. Events may be archived to a 
local or remote file on any file-structured disk device. See the Guide to 
VMS System Security for information about creating a security archive 
file. 

/VERIFY (default) 
/NO VERIFY 
Specifies that control is not returned to the user (at the DCL command 
level) until the audit server has completed the request. 

resource monitoring qualifiers 
/[NO]EXCLUDE:process-id 
Adds a process ID (PID) to the audit server process exclusion list. 
The process exclusion list contains those processes which will not be 
suspended by the audit server process if a resource exhaustion reaches 
the action threshold. By default, the following processes are always 
contained in the process exclusion list and are never candidates for 
process suspension: 

CACHE_SERVER 
CLUSTER_SERVER 
CONFIGURE 
JOB_ CONTROL 
OPCOM 



DCL-282 DCL Commands 
SET AUDIT 

SWAPPER 
VWS$DISPLAYMGR 
VWS$EMULATORS 

Use the SET AUDITINOEXCLUDE=process-id command to remove a 
process from the process exclusion list. (PIDs are not automatically 
removed from the process exclusion list when processes log out from the 
system.) 

/JOURNAL[=journal-name] 
Specifies the name of the audit journal. The default, /JOURNAL=SECURITY, 
represents the system security audit log file, and is currently the only 
supported audit journal type. The /JOURNAL qualifier is required when 
specifying resource monitoring characteristics with the /RESOURCE or 
trHRESHOLD qualifiers. 

IRESOURCE:option-keyword[, ..• ] 
Controls whether resource monitoring is in effect on the system, specifies 
the method used to monitor available resources, and determines the action 
the audit server will take if the available resources are depleted. The 
/JOURNAL qualifier is required when specifying resource monitoring with 
the /RESOURCE qualifier. 

Option Keyword 

DISABLE 

ENABLE 

MONITOR_MODE=mode 

Description 

Disables resource monitoring on the security audit log file. 

Enables resource monitoring on the security audit log file. 
By default, resource monitoring is enabled. 

Specifies the method the audit server uses to monitor 
available resources. Specify one of the following keywords: 
COUNT Controls whether resource monitoring is 

based on the amount of free disk space 
required to store a fixed number of event 
messages. 

PERCENTAGE Controls whether resource monitoring 
is based on the percentage of the disk 
volume or volume set available. 

SPACE Controls whether resource monitoring is 
based on the number of free blocks on 
the disk. The is the default method used 
for resource monitoring. 

TIME Controls whether resource monitoring is 
based on the amount of free disk space 
needed to store events which occur over a 
fixed period of time (in seconds). 



nHRESHOLD:type 

DCL Commands 
SET AUDIT 

DCL-283 

Specifies the thresholds the audit server uses for resource monitoring. 
The values which may be specified for each of the thresholds described 
depends on the mode of resource monitoring enabled on the system (see 
/RESOURCE=MONITOR_MODE). The /JOURNAL qualifier is required 
when modifying audit server thresholds with the !THRESHOLD qualifier. 

Threshold Type Meaning 

WARNING=value Specifies the threshold at which the audit server notifies all 
security operator terminals that resource exhaustion has occurred. 

ACTION=value Specifies the threshold at which the audit server suspends normal 
system activity. 

RESUME=value Specifies the threshold at which the audit server resumes normal 
system activity. 

The following table lists the default warning, action, and resume 
thresholds for each resource monitor mode. Normally, the defaults listed 
should be sufficient. 

Resource Monitoring Threshholds 

Monitor Mode WARNING ACTION RESUME 

SPACE (blocks) 

PERCENTAGE (of volume) 

COUNT (number of messages) 

TIME (seconds) 

/VERIFY (default) 
/NO VERIFY 

1000 

1 

5000 

1000 

250 

0 

1250 

250 

750 

1 

3750 

750 

Specifies that control is not returned to the user (at the DCL command 
level) until the audit server has completed the request. 

example 
$ SET AUDIT/ALARM/DISABLE=ALL 

The SET AUDIT command in this example disables all security alarms 
and audit journal messages. 

$ SET AUDIT/JOURNAL=SECURITY -
$ /DESTINATION=AUDIT$:[AUDIT)SECURITY AUDIT.LOG 

$ SET AUDIT/SERVER=NEW_LOG -

The first SET AUDIT command in this example updates the audit server 
database with the new name and location of the system security audit log 
file. The second command in the example causes all audit server processes 
in the cluster to open the new log file. 



DCL-284 DCL Commands 
SET AUDIT 

$ SET AUDIT/ALARM/ENABLE=ALL/DISABLE=FILE:ALL 

The SET AUDIT command in this example enables all classes of security 
events except file access alarms. 

SET BROADCAST 
Enables you to selectively screen out various kinds of messages from 
being broadcast to your terminal. 

format 

SET BROADCAST:(c/ass-name[, ... JJ 
parameter 

class-name 
Specifies the class of message that you want to enable or disable for 
broadcast to your terminal. If you specify only one class, you can omit the 
parentheses. The class names are as follows: 

ALL 

[NO]DCL 

[NO]GENERAL 

[NO]MAIL 

NONE 

[NO]OPCOM 

[NO]PHONE 

[NO]QUEUE 

[NO]SHUTDOWN 

[NO]URGENT 

[NO]USERl - [NO]USER16 

example 

$ SET BROADCAST=NONE 

All message classes enabled 

CTRW and SPAWN/NOTIFY messages 

All normal REPLY messages or messages from 
$BRDCST 

Notification of mail 

All message classes disabled 

Messages issued by OPCOM 

Messages from the Phone Utility 

Messages referring to print or batch jobs issued by the 
queue manager 

Messages issued from REPLY/SHUTDOWN 

Messages issued from REPLY/URGENT 

Messages from the specified user groups 

$ SET BROADCAST=(SHUTDOWN, URGENT, DCL, OPCOM) 



DCL Commands DCL-285 

SET BROADCAST 

In this example, the first SET BROADCAST command screens out 
all messages. Later the second SET BROADCAST command restores 
shutdown, urgent, DCL, and OPCOM messages. General, phone, mail, 
queue, and user messages are still screened. 

SET CARD _READER 
Defines the default translation mode for cards read from a card reader. 
All subsequent input read from the specified card reader are converted 
using the specified mode. 

format 

SET CARD _READER device-name[.1 

parameter 
device-name[:] 
Specifies the name of the card reader for which the translation mode is to 
be set. The device must not be currently allocated to any other user. 

qualifiers 
1026 
Sets the card reader for cards punched on an 026 punch. 

1029 
Sets the card reader for cards punched on an 029 punch. 

!LOG 
INOLOG (default) 
Controls whether log information is displayed at the terminal to confirni 
that the card reader is set. 

example 
$ ALLOCATE CR: 

CRAO: ALLOCATED 
$ SET CARD READER CRA0:/029 
$ COPY CRAO: [MALCOLM.DATAFILES]CARDS.DAT 

The ALLOCATE command requests the allocation of a card reader by 
specifying the generic device name. When the ALLOCATE command 
displays the name of the device, the SET CARD_READER command 
sets the translation mode at 029. Then the COPY command copies all 
the cards read by the card reader CRAO into the file CARDS.DAT in the 
directory [MALCOLM.DATAFILES]. 



DCL-286 DCL Commands 
SET CLUSTER/EXPECTED_ VOTES 

SET CLUSTER/EXPECTED_ VOTES 
Sets the total expected votes in the cluster to a value that you specify or, 
if no value is specified, sets the total votes to a value determined by the 
system. 

Requires OPER privilege and the /EXPECTED_ VOTES qualifier. 

format 
SET CLUSTER/EXPECTED_ VOTES {=value] 

example 
$ SET CLUSTER/EXPECTED_VOTES=9 

The SET CLUSTER command in this example sets the total expected 
votes to 9, which is the value specified in the command string. 

SET COMMAND 
Invokes the Command Definition Utility to add commands to your process 
command table or to a specified command table file. 

format 
SET COMMAND [file-spec[, ... ]) 

SET CONTROL 
Enables or disables CTRUY or CTRL!r. CTRUY interrupts a command 
and returns you to the DCL command level. CTRL!r momentarily 
interrupts a command to print a line of statistics. 

SET CONTROL=T requires that SET TERMINAUBROADCAST be 
set for the information to be displayed at your terminal. 

format 
SET [NO]CONTROL{=(T, Y)] 

parameter 
(T,Y) 
Specifies that T (CTRL!r) or Y ( CTRUY) be enabled or disabled. If you 
specify both characters, separate them with a comma and enclose the list 
in parentheses. If you do not specify either T or Y, Y is the default. 



DCL Commands DCL-287 

example 
$ ICTRUTI 

SET CONTROL 

NODE22::SMITH 16:21:04 (DCL) CPU=00:03:29.39 PF=14802 !0=18652 MEM=68 
$ SET NOCONTROL=T 
$ lCTRUTI 

As shown in this example, when you press CTRL/T, the system displays 
the appropriate information. The SET NOCONTROL=T command 
disables the CTRL/T function. Now when you press CTRL/T, no 
information is displayed. 

SET DAY 
Sets the default day type specified in the user authorization file (UAF) for 
the current day. 

Requires OPER privilege. 

format 

SET DAY 

qualifiers 

/DEFAULT 
Overrides any previous SET DAY specification and specifies that the 
normal UAF defaults are to be used to determine today's day type. 

!LOG 
INOLOG (default) 
Controls whether log information is displayed at the terminal to confirm 
that the new SET DAY information has been set. 

!PRIMARY 
Sets today until midnight to a primary day. 

!SECONDARY 
Sets today until midnight to a secondary day. 

example 
$ SET DAY/PRIMARY 

The SET DAY command in this example overrides the current default day 
type and sets the today until midnight to a primary day. 



DCL-288 DCL Commands 
SET DEFAULT 

SET DEFAULT 
Sets your default device and directory specifications. The new default is 
applied to all subsequent file specifications that do not explicitly include a 
device or directory name. 

format 

SET DEFAULT [device-name[:]][directory-spec] 

parameters 
device-name[:] 
The name of the device you want to go to. 

directory-spec 
The name of the directory you want to go to. A directory name must 
be enclosed in brackets. Use the minus sign to specify the next higher 
directory from the current default. 

You must specify either the device-name parameter or the directory-spec 
parameter. If you specify only the device name, the current directory 
is the default for the directory-spec parameter. If you specify only the 
directory name, the current device is the default for the device-name 
parameter. 

example 
$SET DEFAULT $FLOPPY1:[WATER.MEMOS] 

The SET DEFAULT command in this example sets your default to the 
WATER.MEMOS subdirectory on $FLOPPY1. 

SET DEVICE 
Establishes a print device or terminal as a spooled device or establishes 
the operational status for a device. 

Requires OPER privilege. 

format 

SET DEVICE device-name[:] 

parameter 
device-name[:] 
Specifies the name of the device whose spooling or operational status is 
to change. The device must be a print device or a terminal if you want to 
change the spooling status; the device must be a disk or magnetic tape if 
you want to change the operational status. 



qualifiers 
!AVAILABLE 
!NOAVAILABLE 

DCL Commands DCL-289 
SET DEVICE 

Controls whether the specified disk or magnetic tape is to be considered 
available. You must dismount the specified disk or magnetic tape before 
entering the SET DEVICE/[NOJAVAILABLE command. If you specify 
/NOAVAILABLE, any attempt to allocate or mount the specified disk or 
magnetic tape is prevented. 

!DUAL PORT 
!NODUAL_PORT 
Controls whether the port seize logic in the device driver of the specified 
disk is to be enabled. This qualifier should be used only on disks that 
contain a dual port kit and have been dismounted. 

!ERROR LOGGING 
!NOERROR_LOGGING 
Controls whether device errors are logged in the error log file. When you 
specify the /ERROR_LOGGING qualifier, all error messages reported by 
the device on which error-logging is enabled are recorded in the error 
log file. Use the SHOW DEVICE/FULL command to find out the current 
status. 

!LOG 
!NOLOG (default) 
Controls whether log information is displayed at the terminal. 

!SPOOLED[=(queue-name[:],intermediate-disk-name[:])J 
!NOSPOOLED 
Controls whether files are spooled to an intermediate disk. The queue 
name indicates the printer queue to which a file is queued. If a queue 
name is not supplied, the default is the name of either the printer or 
terminal. The intermediate disk name identifies the disk to which the 
spooled files are written. If the intermediate disk name is not supplied, 
the default is SYS$DISK (the current default disk). The intermediate 
disk must be mounted before files can be written to it. 

example 
$ SET DEVICE/SPOOLED=(LPAO) LPAO: 

In this example, the /SPOOLED qualifier requests that the printer queue 
LPAO be spooled to an intermediate disk before files directed to the disk 
are printed. Because no intermediate disk was specified, the intermediate 
disk defaults to SYS$DISK. 



DCL-290 DCL Commands 
SET DEVICE/SERVED 

SET DEVICE/SERVED 
Allows you to make a disk on a local node available to all the nodes in a 
cluster. The /SERVED qualifier is required. 

Applies only to VAXcluster environments. 

format 
SET DEVICE/SERVED node-name$DDcu: 

parameter 
node-name$DDcu: 
Specifies the device name of the device that you want to make available 
to the cluster. 

description 
The SET DEVICE/SERVED command is used in conjunction with the 
Mass Storage Control Protocol (MSCP) server to make a disk on a local 
node available to all nodes on the cluster. The local node must be a 
member of a VAXcluster, and the local MSCP server must have been 
invoked by the SYSGEN Utility. 

NOTE: Unless the disk device that you intend to make available 
to the cluster is a system disk, it must not already be mounted 
when you enter the SET DEVICE/SERVED command. 

The SET DEVICE/SERVED command string can be included as part of 
the local startup command file, and entered before the Mount Utility 
mounts the disk to be served (made available to the entire cluster). 

example 
$ SET DEVICE/SERVED DRA4: 

The SET DEVICE/SERVED command in this example instructs the MSCP 
server to make the disk device DRA4 on your local node available to all 
other processors on your cluster. 



DCL Commands DCL-291 

SET DIRECTORY 

SET DIRECTORY 
Modifies the characteristics of one or more directories. 

See the qualifier descriptions for restrictions. 

format 
SET DIRECTORY [device-name[:]]directory-spec[, ... J 

parameters 

device-name[:] 
Specifies the device on which the directory that you want to modify is 
located. The device name parameter is optional. 

directory-spec[, ... ] 
Specifies one or more directories to be modified. If you specify two or more 
directories, separate them with commas. Wildcard characters are allowed. 

qualifiers 
/BACKUP 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/BACKUP selects files according to the dates of their most recent backups. 
This qualifier is incompatible with the other qualifiers that also allow you 
to select files according to time attributes: /CREATED, /EXPIRED, and 
/MODIFIED. If you specify none of these four time qualifiers, the default 
is /CREATED. 

/BEFORE[:time] 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

IBY_OWNER[:uic] 
Selects only those files whose owner user identification code (UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

/CONFIRM 
/NOCONFIRM (default) 
Controls whether a request is issued before each SET DIRECTORY 
operation to confirm that the operation should be performed on that file. 
The following responses are valid: 



DCL-292 DCL Commands 
SET DIRECTORY 

YES 

TRUE 

1 

NO 

FALSE 

0 

filfill 

QUIT 

CTRUZ 

ALL 

You can use any combination of uppercase and lowercase letters for word 
responses. Word responses can be abbreviated to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 
unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and RETURN. QUIT or CTRUZ indicates that you 
want to stop processing the command at that point. When you respond 
with ALL, the command continues to process, but no further prompts are 
given. If you type a response other than one of those in the list, DCL 
issues an error message and redisplays the prompt. 

/CREATED (default) 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/CREATED selects files based on their dates of creation. This qualifier is 
incompatible with the other qualifiers that also allow you to select files 
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If 
you specify none of these four time qualifiers, the default is /CREATED. 

/EXCLUDE:(file-spec[, .•. ]) 
Excludes the specified files from the SET DIRECTORY operation. You 
can include a directory but not a device in the file specification. Wildcard 
characters are allowed in the file specification. However, you cannot use 
relative version numbers to exclude a specific version. If you provide only 
one file specification, you can omit the parentheses. 

!EXPIRED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/EXPIRED selects files according to their expiration dates. (The 
expiration date is set with the SET FILE/EXPIRATION_DATE command.) 
The /EXPIRED qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /MODIFIED. If you specify none of these four time 
qualifiers, the default is /CREATED. 

!LOG 
INOLOG (default) 
Controls whether the system displays the directory specification of each 
directory that is modified as the command executes. 

!MODIFIED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/MODIFIED selects files according to the dates on which they were last 
modified. This qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 



DCL Commands DCL-293 
SET DIRECTORY 

/CREATED, and /EXPIRED. If you specify none of these four time 
modifiers, the default is /CREATED. 

IOWNER_UIC[:uic] 
Requires SYSPRV privilege to specifiy a UIC other than your own. 
Specifies an owner UIC for the directory. The default UIC is that of the 
current process. 

ISINCE[:time] 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

/VERSION_LIMIT[:n] 
Specifies the total number of versions that a file in the specified directory 
can have. If you do not specify a version limit, a value of 0 is used, 
indicating that the number of versions of a file is limited only to the 
Files-11 architectural limit-32, 7 67. If you change the version limit for 
the directory, the new value applies only to files created after the change 
has been made. 

example 
$SET DIRECTORY/VERSION_LIMIT=5/CONFIRM [SMITH ... ] 

The SET DIRECTORY command in this example sets a version limit of 
five for all files in the SMITH directory and all subdirectories of [SMITH]. 
The /CONFIRM qualifier requests that you confirm whether or not the 
specified directory should actually be modified. Note that it only affects 
the files created after the command is entered. 

SET DISPLAY 
Directs the output of a DECwindows application. Output can be directed 
from any VAX processor running a DECwindows application, including 
workstations, to any DECwindows workstation. 

Both source and destination nodes must be part of the same network. 

format 
SET DISPLAY [display-device] 



DCL-294 DCL Commands 
SET DISPLAY 

parameters 

display-device 
Specifies a logical name for the workstation display you are creating 
or modifying. If you are directing application output to multiple 
workstation displays, you can use different logical names to point to 
each display. If you do not specify a display-device string, the logical 
name DECW$DISPLAY is used. This means that by default, application 
output will be displayed on the workstation display device referred to by 
DECW$DISPLAY. 

By entering the command SHOW DISPLAY, you can see the workstation 
node where applications will be displayed by default. If you specified your 
own logical name in the SET DISPLAY/CREATE command, include that 
logical name in the SHOW DISPLAY command. 

qualifiers 

!CREATE 
Creates the workstation display device (WSAn:) on which a DECwindows 
application is displayed. You must specify the /CREATE qualifier the first 
time you use the SET DISPLAY command, but you need not respecify it 
if you continue to redirect output from applications to other workstations 
with subsequent SET DISPLAY commands. 

When /CREATE is specified without /NODE, the workstation device 
defaults to the current node. 

/[NO]PERMANENT 
Cancels the redirected display by deassigning the logical name 
DECW$DISPLAY. If you specified a logical name as the display-device 
parameter with the SET DISPLAY/CREATE command, entering the 
SET DISPLAY/NOPERMANENT display-device command cancels the 
redirected display by deassigning the logical name you specified. 

The DECwindows Session Manager defines DECW$DISPLAY in your job 
logical name table when you open a terminal (DECterm) window. When 
you redirect application output to another workstation with the SET 
DISPLAY/CREATE command, an additional DECW$DISPLAY logical 
name is defined in your process logical name table. This definition 
supersedes the definition in the job logical name table. Output from 
applications run from the process in which you executed the SET 
DISPLAY/CREATE command will be displayed on the workstation 
referred to by the definition of DECW$DISPLAY in the process logical 
name table. Enter the SHOW DISPLAY command to see where this 
application will be displayed. To see whether multiple definitions 
for DECW$DISPLAY exist, enter the command SHOW LOGICAL 
DECW$DISPLAY. 



DCL Commands 
SET DISPLAY 

DCL-295 

If DECW$DISPLAY is still defined (for example, in the job logical name 
table) after you specify the /NOPERMANENT qualifier, any DECwindows 
applications run from this process will be displayed on the workstation 
device to which output is now directed. Enter the SHOW DISPLAY 
command if you are unsure of the node to which DECW$DISPLAY refers. 

Use caution when entering the SET DISPLAY/NOPERMANENT 
command. If you modify or delete the definition of DECW$DISPLAY from 
the job logical name table, you will be unable to start another session. Be 
careful not to specify the /NOPERMANENT qualifier without having first 
redirected the display with the SET DISPLAY/CREATE command. 

You cannot specify /NOPERMANENT and /CREATE on the same 
command line. 

/NODE:workstation_display 
Defines the workstation on which you want to display DECwindows 
applications. The node name you provide cannot be a cluster alias (a 
name that represents multiple nodes configured in a VAXcluster), but 
must instead identify an actual node. 

You must create a workstation display device with the /CREATE qualifier 
before you can redirect the output from applications to other workstations. 
Do not enter the SET DISPLAY/NODE=workstation_display command 
without having previously specified the /CREATE qualifier. 

Make sure that you are authorized to display applications on the 
workstation you specify. See the VMS DECwindows User's Guide for 
more information about using the DECwindows Session Manager to 
authorize yourself to display applications from other nodes. 

Each node, both source and destination, must be defined in each other's 
network node database. For example, to display applications on node 
HUBBUB from ZEPHYR, HUBBUB must be entered in ZEPHYR's 
network node database. ZEPHYR must be defined in HUBBUB's network 
node database. In addition, users on ZEPHYR must be authorized in the 
DECwindows Session Manager to display applications on HUBBUB. See 
the VMS Networking Manual and the VMS Network Control Program 
Manual for information about entering nodes in a network node database. 

ffRANSPORT :transport-name 
Defines the mechanism, for example, DECNET or LOCAL, that passes 
information between the application and the workstation. The transport 
mechanism is used to send input from the user to the application and 
output from the application to the display. If you specify the /CREATE 
qualifier, the default transport is DECNET. 

Use the /TRANSPORT=LOCAL qualifier to optimize the performance of 
applications running and displaying on the same node. 



DCL-296 

example 

DCL Commands 
SET DISPLAY 

$ SHOW DISPLAY 
Device: WSAl: 
Node: 0 
Transport: LOCAL 
Server: 0 
Screen: 0 

$ SET DISPLAY/CREATE/NODE=ZEPHYR 
$ SHOW DISPLAY 

Device: WSA2: 
Node: ZEPHYR 
Transport: DECNET 
Server: 0 
Screen: 0 

$ SPAWN/NOWAIT/INPUT=NL: RUN SYS$SYSTEM:DECW$CLOCK 

$ SET DISPLAY/NOPERMANENT 

$ SHOW DISPLAY 
Device: WSAl: 
Node: 0 
Transport: LOCAL 
Server: 0 
Screen: 0 

In this example, you are logged in to your workstation, here referred to as 
node 0. (0 is the standard shorthand notation for representing your node.) 
You want to run the DECwindows Clock on your workstation and display 
it on another workstation, ZEPHYR. 

Assuming you are authorized to display applications on ZEPHYR, you 
redirect the application's output to ZEPHYR with the SET DISPLAY 
command and enter the SHOW DISPLAY command to verify the 
location of the redirected display. You then run Clock. When you finish 
running Clock, you disable the redirected display by entering the SET 
DISPLAY/NOPERMANENT command. Finally, you enter the SHOW 
DISPLAY command to verify that any applications subsequently run on 
your node will also be displayed there. 

Note that a new workstation display device, WSA2, is created when 
you enter the SET DISPLAY/CREATE command. When you cancel the 
redirected display with the SET DISPLAY/NOPERMANENT command, 
application output is once again displayed on the workstation display 
device referred to by WSAl. 

$ SET DISPLAY/CREATE/NODE=FLOPSY RABBIT 
$ SHOW DISPLAY RABBIT 

Device: WSA2 : 
Node: FLOP SY 
Transport: DECNET 
Server: 0 
Screen: 0 



DCL Commands 
SET DISPLAY 

$ RUN/DETACHED/OUTPUT=WSA2: SYS$SYSTEM:DECW$CLOCK 

$ SET DISPLAY/CREATE/NODE=ZEPHYR ZNODE 
$ SHOW DISPLAY ZNODE 

Device: WSA3: 
Node: ZEPHYR 
Transport: DECNET 
Server: 0 
Screen: 0 

$ RUN/DETACHED/OUTPUT=WSA3: SYS$SYSTEM:DECW$CALENDAR 

$ RUN SYS$SYSTEM:DECW$BOOKREADER 
$ SHOW DISPLAY 

Device: WSAl : 
Node: 0 
Transport: LOCAL 
Server: 0 
Screen: 0 

DCL-297 

In this example, you are logged in to your node, and want to direct the 
output from applications to several workstation displays in the same 
session. By specifying different logical names in the SET DISPLAY 
command, you can redirect the output without changing the logical name 
definition for DECW$DISPLAY. This allows you to display the output 
from most applications on your default display but occassionally display 
output on another workstation. You can also continue to run and display 
applications on your node. In this example, Clock is displayed on node 
FLOPSY, Calendar is displayed on node ZEPHYR, and Bookreader is 
displayed on your workstation. 

Note that to run your applications with the DCL command 
RUN/DETACHED, you must use the device name that equates to the 
logical display device name you specified in the SET DISPLAY command. 
Use the SHOW DISPLAY command to obtain this device name. 

SET ENTRY 
Changes the current status or attributes of a job that is not currently 
executing in a queue. 

Requires OPER privilege, EXECUTE ( E) access to the queue, or 
DELETE ( D) access to the specified jobs. 

format 
SET ENTRY entry-number{, ... ] 



DCL-298 DCL Commands 
SET ENTRY 

parameter 
entry-number[, ... ] 
Specifies the entry number (or a list of entry numbers) of the jobs you 
want to change. 

The system assigns a unique entry number to each queued print or batch 
job in the system. By default, the PRINT and SUBMIT commands display 
the entry number when they successfully queue a job for processing. 
These commands also create or update the local symbol $ENTRY to reflect 
the entry number of the most recently queued job. To find a job's entry 
number, enter the SHOW ENTRY or SHOW QUEUE command. 

qualifiers 
IAFTER:time 
/NO AFTER 
Requests that the specified job be held until after a specific time. If 
the specified time has already passed, the job is queued for immediate 
processing. You can specify either an absolute time or a combination of 
absolute and delta times. 

/BURST 
INOBURST 
Controls whether two file flag pages with a burst bar between them are 
printed preceding each file in a job. 

!CHARACTERISTICS:{ characteristic[, ••• ]) 
INOCHARACTERISTICS 
Specifies the name or number of one or more characteristics to be 
associated with the job. Characteristics can refer to such things as color of 
ink. If you specify only one characteristic, you can omit the parentheses. 

!CLl=filename 
Specifies the name of a command language interpreter ( CLI) to use in 
processing the batch job. The file name specifies that the CLI be 
SYS$SYSTEM:filename.EXE. If you do not specify the /CLI qualifier, the 
job is run by the CLI specified in the user authorization file (UAF), or 
whatever CLI was specified when the job was originally submitted to the 
queue. 

!COPIES:n 
Specifies the number of copies to print. The value of n can be any number 
from 1 to 255. When you use the /COPIES qualifier with the SET ENTRY 
command, the number of copies can apply only to the entire print job. 
You cannot use this qualifier to specify different numbers of copies for 
individual files within a multifile job. 



DCL Commands DCL-299 
SET ENTRY 

/CPUTIME:time 
Specifies a CPU time limit for the batch job. You can specify time as delta 
time, 0, INFINITE, or NONE. 

/FEED 
/NO FEED 
Controls whether form feeds are inserted into the print job when the 
printer reaches the bottom margin of the form in use. You can suppress 
this automatic form feed (without affecting any of the other carriage 
control functions that are in place) by using the /NOFEED qualifier. 
When you use the /FEED qualifier with the SET ENTRY command, the 
qualifier applies to all files in the print job. You cannot use this qualifier 
to specify form feeds for individual files within a multifile job. 

!FLAG 
!NOFLAG 
Controls whether a flag page is printed preceding each file in a print job. 
The flag page contains the name of the user submitting the job, the job 
entry number, and other information about the file being printed. 

/FORM:form 
Specifies the name or number of the form to be associated with the print 
job. If you omit the /FORM qualifier, the default form for the execution 
queue is associated with the job. To see which forms have been defined 
for your system, use the SHOW QUEUE/FORM command. 

/HEADER 
!NOH EADER 
Controls whether a heading line is printed at the top of each output page 
in a print job. 

/HOLD 
INOHOLD 
Controls whether the job is to be made available for immediate processing 
or held for processing later. If you specify /HOLD, the job is not 
released for processing until you enter SET ENTRY/NOHOLD or SET 
ENTRY/RELEASE. You can use the SET ENTRY command to release 
a job that was previously submitted with a /HOLD qualifier, or you can 
place a job on hold so that it will run later. 

/JOB_COUNT:n 
Requests that an entire print job be printed n times, where n is a decimal 
integer from 1 to 255. This qualifier overrides the /JOB_COUNT qualifier 
with the PRINT command. 

/KEEP 
/NO KEEP 
Controls whether the batch job log file is deleted after it is printed. 



DCL-300 DCL Commands 
SET ENTRY 

ILOG_FILE[=file-spec] 
/NOLOG_FILE 
Creates a log file with the specified file specification. You can specify a 
different device name, as long as the process executing the batch job has 
access to the device on which the log file will reside. Logical names in the 
file specification are translated in the context of the process that executes 
the SET ENTRY command. If you omit the /LOG_FILE qualifier and 
specify the /NAME qualifier, the log file is written to a file having the 
same file name as that specified by the /NAME qualifier; the file type is 
LOG. When you omit the /LOG_FILE qualifier, the job-name value used 
with /NAME must be a valid file name. 

/LOWERCASE 
/NOLOWERCASE 
Indicates whether the print job must be printed on a printer that can 
print both uppercase and lowercase letters. The /NOLOWERCASE 
qualifier means that files can be printed on printers that print only 
uppercase letters. If all available printers can print both uppercase and 
lowercase letters, you do not need to specify /LOWERCASE. 

!NAME= Job-name 
Names the job. The job name must be 1 to 39 alphanumeric characters. 
The SHOW ENTRY and SHOW QUEUE commands display the job name. 
For batch jobs, the job name is also used for the batch job log file. For 
print jobs, the job name is also used on the flag page of the printed output. 
The default job name is the name of the first file in the job. 

/NOCHECKPOINT 
For a batch job, erases the value established by the most recently 
executed SET RESTART_ VALUE command. For a print job, clears the 
stored checkpoint so that the job will restart from the beginning. 

/NO DELETE 
Cancels file deletion for a job that was submitted with the /DELETE 
qualifier. If you did not specify the /DELETE qualifier when the job 
was originally submitted to the queue, you cannot use the SET ENTRY 
command to establish file deletion at a later time. You cannot use the 
/NODELETE qualifier to cancel deletion of individual files in a multifile 
job. 

/NOTE:string 
Specifies a message of up to 255 characters to appear on the flag page of 
the print job. Enclose messages containing lowercase letters, blanks, or 
other nonalphanumeric characters (including spaces) in quotation 
marks ( "" ). 



/NOTIFY 
/NONO Tl FY 

DCL Commands DCL-301 
SET ENTRY 

Controls whether a message notifies you when your job has been 
completed or aborted. Notification is sent to any terminal session on 
the same cluster at which you are logged in. 

IOPERATOR:string 
Specifies a message string of up to 255 characters to be sent to the 
operator just before the print job begins to print. Enclose the message in 
quotation marks ( "" ) if it contains spaces, special characters, or lowercase 
characters. 

IPAGES=(flowlim,]uplim) 
Specifies the number of pages to print for the specified job. You can 
use the /PAGES qualifier to print portions of long files. By default, all 
pages of the file are printed. When you use the /PAGES qualifier with 
the SET ENTRY command, the qualifier can apply only to an entire job. 
You cannot use this qualifier to specify different numbers of pages to be 
printed for individual files within a multifile job. The lowlim specifier 
refers to the first page of the file that you want to print. If you omit the 
lowlim specifier, the printing starts on the first page of the file. 

The uplim specifier refers to the last page of the file that you want to 
print. 

/PARAMETERS:{parameter[, ..• ]) 
Specifies from one to eight optional parameters to be passed to the job. 
Each parameter can have as many as 255 characters. If you specify 
only one parameter, you can omit the parentheses. The commas delimit 
individual parameters. To specify a parameter that contains any special 
characters or delimiters, enclose the parameter in quotation marks. 
For batch jobs, the parameters define values to be. equated to the symbols 
named Pl through PB in each command procedure in the job. The symbols 
are local to the specified command procedures. 

/PASSALL 
/NOPASSALL 
Specifies whether the symbiont bypasses all formatting of the print job 
and sends the output QIO to the driver with format suppressed. All 
qualifiers affecting formatting, as well as the /HEADER, /PAGES, and 
/PAGE_SETUP qualifiers, are ignored. When you use the /PASSALL 
qualifier with the SET ENTRY command, the qualifier applies to the 
entire job. You cannot use this qualifier to specify PASSALL mode for 
individual files within a multifile job. 

IPRINTER[=queue-name] 
/NO PRINTER 
Queues the batch job log file for printing when the job is completed. 
The default output queue for the log file is SYS$PRINT. The /PRINTER 



DCL-302 DCL Commands 
SET ENTRY 

qualifier allows you to specify an output queue. The /NOPRINTER 
qualifier assumes the /KEEP qualifier. 

/PRIORITY:n 
Requires OPER or ALTPRI privilege to raise the priority above 
the value of the SYSGEN parameter MAXQUEPRI. Specifies the job
scheduling priority of the job. The value of n is an integ~r in the range of 
0 through 255, where 0 is the lowest priority and 255 is the highest. 

The default value for /PRIORITY is the value of the SYSGEN parameter 
DEFQUEPRI. No privilege is needed to set the priority lower than the 
MAXQUEPRI value. 

/RELEASE 
Releases for processing jobs submitted with the /HOLD qualifier or 
/AFTER qualifier, jobs held in a queue with the /RETAIN qualifier, and 
jobs refused by a user-written symbiont. 

IREQUEUE:queue-name[:] 
Requests that the job be moved from the original queue to the specified 
queue. 

/RESTART 
INORESTART 
Specifies whether a batch or print job is restarted after a system failure 
or a STOP/QUEUE/REQUEUE command. 

ISETUP:module[, ••• ] 
Extracts the specified modules from the device control library (containing 
escape sequence modules for programmable printers) and copies the 
modules to the printer before each file in a print job is printed. When you 
use the /SETUP qualifier with the SET ENTRY command, the qualifier 
applies to the entire print job. You cannot use this qualifier to specify 
different setup modules for individual files within a multifile job. 

/SPACE 
/NOS PACE 
Controls whether the output of a print job is double-spaced. Specifying 
/NOSPACE causes the output to be single-spaced. When you use the 
/SPACE qualifier with the SET ENTRY command, the qualifier applies to 
the entire job. You cannot use this qualifier to specify different spacing 
for individual files within a multifile job. 

/TRAILER 
/NO TRAILER 
Controls whether a trailer page is printed at the end of each file in a print 
job. The trailer page displays the entry number, as well as information 
about the user submitting the job and the files being printed. When you 
use the trRAILER qualifier with the SET ENTRY command, trailer pages 
are placed at the end of each file in a multifile job. 



/WSDEFAULT =n 

DCL Commands 
SET ENTRY 

DCL-303 

Defines for a batch job a working set default, the default number of 
physical pages that the job can use. If the queue on which the job 
executes has a nonzero default working set, the smaller of the specified 
job and queue values is used. If the queue on which the job executes 
has a working set default of 0, the smaller of the specified job value and 
the value established in the user authorization file (UAF) is used. If you 
specify 0 or NONE, the specified queue or UAF value is used. Working set 
default values must range between the numbers specified by the SYSGEN 
parameters PQL_MWSDEFAULT and WSMAX. 

/WSEXTENT =n 
Defines for the batch job a working set extent, the maximum amount of 
physical memory that the job can use. The job uses the maximum amount 
of physical memory only when the system has excess free pages. If the 
queue on which the job executes has a nonzero working set extent, the 
smaller of the specified job and queue values is used. If the queue on 
which the job executes has a working set extent of 0, the smaller of the 
specified job value and the value established in the user authorization 
file (UAF) is used. If you specify 0 or NONE, the specified queue or 
UAF value is used. Working set extent values must range between the 
numbers specified by the SYSGEN parameters PQL_MWSEXTENT and 
WSMAX. 

/WSQUOTA:n 
Defines for the batch job a working set quota, the amount of physical 
memory that the job is guaranteed. If the queue on which the job executes 
has a nonzero working set quota, the smaller of the specified job and 
queue values is used. If the queue on which the job executes has a 
working set quota of 0, the smaller of the specified job value or the value 
established in the user authorization file (UAF) is used. If you specify 
0 or NONE, the specified queue or UAF value is used. Working set 
quota values must range between the numbers specified by the SYSGEN 
parameters PQL_MWSQUOTA and WSMAX. 

example 
$ PRINT/HOLD MYFILE.DAT 

Job MYFILE (queue SYS$PRINT, entry 112) holding 
$ SET ENTRY 112/RELEASE/JOB_COUNT=3 

The PRINT command in this example requests that the file MYFILE.DAT 
be queued to the system printer, but placed in a hold status. The SET 
ENTRY command releases the job for printing and requests that three 
copies of the job be printed. 



DCL-304 DCL Commands 
SET FILE 

SET FILE 
Modifies the characteristics of one or more files. 

See the qualifier descriptions for restrictions. 

format 
SET FILE file-spec£ ... ] 

parameter 
file-spec[, ••• ] 
Specifies one or more files to be modified. If you specify two or more files, 
separate them with commas. Wildcard characters are allowed. 

qualifiers 
/ACL 
Modifies an access control list (ACL) associated with one or more files. For 
more information, see the description of the SET FILE/ACL command. 

/BACKUP 
/NOBACKUP 
Specifies that BAC:kuP records the contents of the file. The /NO BACKUP 
qualifier causes BACKUP to record the attributes of the file but not its 
contents. Valid only for Files-11 Structure Level 2 files. 

/BEFORE[=time] 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, or 
YESTERDAY. 

IBY_OWNER[:uic] 
Selects only those files whose owner user identification code (UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

/CONFIRM 
/NOCONFIRM (default) 
Controls whether a request is issued before each SET FILE operation to 
confirm that the operation should be performed on that file. The following 
responses are valid: 

YES 

TRUE 

1 

NO 

FALSE 

0 

~ 

QUIT 

CTRUZ 

ALL 



DCL Commands DCL-305 
SET FILE 

You can use any combination of upper- and lowercase letters for word 
responses. Word responses can be abbreviated to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 
unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and <RET>. QUIT or CTRUZ indicates that you want 
to stop processing the command at that point. When you respond with 
ALL, the command continues to process, but no further prompts are given. 
If you type a response other than one of those in the list, DCL issues an 
error message and redisplays the prompt. 

/CREATED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/CREATED selects files based on their dates of creation. 

IDATA_ CHECK[=([NO]READ,[NO]WRITE)] 
Specifies whether a READ data check (rereading each record), a WRITE 
data check (reading each record after it is written), or a combination of 
the two is performed on the file during transfers. By default, a WRITE 
data check is performed. 

/END_OF_FILE 
Resets the end-of-file mark to the highest block allocated. 

/ENTER=new-tile-spec 
Use with caution. Assigns an additional name to a single file so that the 
file has a second name, or alias. However, both the original name and 
the alias reference the same file. For this reason, take care when deleting 
files that have aliases. To keep the file but remove one of its names, use 
the /REMOVE qualifier with SET FILE. No wildcards are allowed in the 
file specification. 

/ERASE_ON_DELETE 
Specifies that the specified files are erased from the disk (not just merely 
written over) when the DELETE or PURGE command is issued for the 
files. See DELETE/ERASE for more information. 

/EXCLUDE=(file-spec[, ••• ]) 
Excludes the specified file from the SET FILE operation. You can include 
a directory name but not a device name in the file specifications. Wildcard 
characters are supported for file specifications. However, you cannot use 
relative version numbers to exclude a specific version. If you specify only 
one file, you can omit the parentheses. 

/EXPIRATION DATE:date 
INOEXPIRATibN_DATE 
Requires ownership of the file or access control. Controls whether 
an expiration date is assigned to the specified files. Absolute date 
keywords are allowed. If you specify 0 as the date, today's date is used. 



DCL-306 DCL Commands 
SET FILE 

/EXTENSION[=n] 
Sets the extend quantity default for the file. The value of n can range 
from 0 through 65,535. If you omit the value specification or specify a 
value of 0, VMS RMS calculates its own /EXTENSION value. 

!GLOBAL_BUFFER:n 
Sets the VAX RMS global buffer count (the number of buffers that can be 
shared by processes accessing the file) for the specified files. The value n 
must be an integer in the range 0 through 32,767. A value of 0 disables 
buffer sharing. 

!LOG 
INOLOG (default) 
Displays the file specification of each file modified as the command 
executes. 

!MODIFIED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/MODIFIED selects files according to the dates on which they were last 
modified. This qualifier is incompatible with /CREATED, which also 
allows you to select files according to time attributes. If you do not specify 
/MODIFIED, the default is /CREATED. 

!NOD/RECTORY 
Use with extreme caution. This qualifier removes the directory attributes 
of a file and allows you to delete the corrupted directory file even if 
other files are contained in the directory. When you delete a corrupted 
directory file, the files contained within it are lost. Use ANALYZE/DISK_ 
STRUCTURE/REPAIR to place the lost files in [SYSLOST]. You can then 
copy the lost files to a new directory. This qualifier is valid only for the 
Files-11 Structure Level 2 files. 

IOWNER_UIC[:uic] 
Requires GRPPRV to set the owner to another member of the 
same group. Requires SYSPRV to set the owner to any UIC 
outside your group. Specifies an owner user identification code (UIC) 
for the file. The default is the UIC of your process. 

IPROTECT/ON[=(code)] 
Cannot be used to change the protection on a file via DECnet. 
Enables you to change or reset the protection for one or more of your files. 
The ownership categories are SYSTEM, OWNER, GROUP, AND WORLD. 
The access categories are R (read), W (write), E (execute), and D (delete). 
If you specify /PROTECTION without the ownership and access code, the 
file protection is set according to the current default protection. 



DCL Commands DCL-307 
SET FILE 

!REMOVE 
Use with caution. This qualifier enables you to remove one of the names 
of a file that has more than one name, without deleting the file. If you 
have created an additional name for a file with the /ENTER qualifier 
of SET FILE, you can use the /REMOVE qualifier to remove either the 
original name or the alias. 

ISEMANTICS:semantics-tag 
!NOS EM ANTICS 
Use /SEMANTICS to create or change a semantics tag. 
Use /NOSEMANTICS to remove a semantics tag from a file. 

!SINCE[=time] 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, or 
as one of the following keywords: TODAY (default), TOMORROW, or 
YESTERDAY. 

!STATISTICS 
/NOSTATISTICS (default) 
Enables the gathering of RMS statistics on the specified file. These 
statistics can subsequently be viewed using the Monitor Utility, which is 
invoked with the DCL command MONITOR. 

/TRUNCATE 
Truncates the file at the end of the block containing the end-of-file (EOF) 
marker, that is, releases allocated but unused blocks of the file. 

/UNLOCK 
Makes one or more improperly closed files accessible. 

/VERSION_LIMIT[:n} 
Specifies the maximum number of versions for the specified file. If you 
do not specify a version limit, a value of 0 is used, indicating that the 
number of versions of a file is limited only to the Files-11 architectural 
limit of 32,767. When you exceed that limit, the earliest version of the file 
is deleted from the directory without notification to the user. 

example 
$ SET FILE/EXPIRATION_DATE=l9-APR-1990:11:00 BATCH.COM;3 

The SET FILE command requests that the expiration date of the file 
BATCH.COM;3 be set to 11:00 a.m., April 19, 1990. 



DCL-308 DCL Commands 
SET HOST 

SET HOST 
Connects your terminal (through the current host processor) to another 
processor, called the remote processor. Both processors must be running 
DECnet. 1 

• You can use the SET HOST command only if your system is 
connected by DECnet to another system. 

• You must have an account on the remote system to log in after 
the SET HOST command has made the connection. 

• The SET HOST command requires the network mailbox 
privilege NETMBX. 

format 
SET HOST node-name 

parameter 
node-name 
Specifies the node name of the remote processor to which you will connect. 

qualifiers 
/BUFFER_S/ZE:n 
Changes the packet size of the protocol message sent between the 
terminal and the remote processor if a connection to the remote processor 
is already established. The default buffer size is 1010 bytes; however, n 
can range from 140 bytes to 1024 bytes. The value of n is reset to 140 
bytes if a value below 140 is specified; a value for n above 1024 bytes is 
reset to 1024. 

ILOG[=file-spec] 
/NOLOG (default) 
Controls whether a log file of the entire session is kept. If you use /LOG 
without the file specification, the log information is stored in the file 
SETH OST.LOG. 

/RESTORE 
/NORESTORE 
Saves current terminal characteristics before a remote terminal session is 
begun and restores them when the remote session is terminated. 

1 Available under separate license. 



example 
$ SET HOST ITALIC 
Username: BROWN 
Password: 

DCL Commands 
SET HOST 

Welcome to VAX/VMS Version 5.0 on node ITALIC 

$ LOGOUT 
BROWN logged out at 19-APR-1990 15:04:25.27 
%REM-S-END, Control returned to node _CASLON:: 

DCL-309 

In this example, the name of the local node is CASLON. This SET HOST 
command connects the user terminal to the processor at the network 
node named ITALIC. The remote processor then prompts for user name 
and password. Use the normal login procedure to log in to the remote 
processor. 

Once you are logged in at a remote node, you can use the SET HOST 
command to establish communication with another node. After logging 
into node ITALIC, you could type SET HOST BODONI. You would again 
be prompted for a user name and password. If you then supply a valid 
user name and password, you will be logged in at node BODONI. Note 
that when you log out at node BODONI, control is returned to node 
ITALIC. You must log out from node ITALIC to return to your local node, 
CASLON. 

SET HOST/DTE 
Connects your system to a remote system through an out-going terminal 
line. Exit from the remote system by typing CTRL/\; that is, type a 
backslash(\) while holding down the CTRL key. 

You must have an account on the remote system in order to log 
in to that system after the connection is made. Also requires 
the ability to assign a channel to the terminal port specified. By 
default, SYSPRV privilege is required but can be changed by 
setting the device protection for the terminal port. 



DCL-310 

format 

DCL Commands 
SET HOST/DTE 

SET HOST/DTE terminal-name 

parameter 
terminal-name 
Specifies the name of an out-going terminal line, which connects your 
system directly to another system or to a modem. 

qualifiers 
/DIAL:(NUMBER:number[,MODEM_ TYPE:modem-type]) 
Allows a modem attached to the out-going terminal line to be autodialed 
using the autodial protocol of that modem. The NUMBER keyword is 
the telephone number to be autodialed and is a required parameter. The 
MODEM_TYPE: keyword is optional and can be used to specify a modem
type of DF03, DF112 or DMCL. By default, a modem-type of DF03 is 
assumed. DMCL is any modem that uses the DEC Modem Command 
Language. 

ILOG[=file-spec] 
INOLOG 
Controls whether a log file of the entire session is kept. If you do not 
specify a file, the log information is stored in the file SETHOST.LOG. 

example 
$ SET HOST/DTE/DIAL=(NUMBER:5551234#,MODEM TYPE:DF112) TTA2: 
Username: SMITH -
Password: 

The SET HOST/DTE command in this example accomplishes the same 
thing as in the first example, except that it uses the DF112 modem. Note 
that the number sign ( #) is required to activate the autodialer in the 
DF112. 

SET HOST/DUP 
Connects your terminal to a storage controller through the appropriate 
bus for that controller. 

For use only with storage controllers. Requires the DIAGNOSE 
privilege. 



format 
SET HOST!DUP/SERVER=server-name 
!TASK=task-name node-name 

parameter 
node-name 

DCL Commands DCL-311 
SET HOST/DUP 

Specifies the node name of the storage controller. 

qualifiers 

/LOG[=file-spec] 
/NOLOG (default) 
Controls whether a log file of the entire session is kept. If you use /LOG 
without the file specification, the log information is stored in the file 
HSCPAD.LOG. 

ISERVER:server-name 
Specifies the server name for the target storage controller. 

This qualifier is required. 

ITASK=task-name 
Specifies the utility or diagnostic name to be executed on the target 
storage controller under direction of the server. 

This qualifier is required. 

example 

$ SET HOST/DUP/SERVER=DUP$/TASK=DIRECT BLKHOL 
%HSCPAD-I-LOCPROGEXE, Local program executing - type A\ to exit utility 

The SET HOST/DUP command in this example connects the user 
terminal to the utility program called DIRECT executing on a storage 
controller named BLKHOL under direction of the DUP$ server. 

SET HOST/HSC 
Connects your terminal to a remote HSC50 disk and tape controller 
through the Computer Interconnect bus. 

Used only with remote HSC50s. Requires the DIAGNOSE 
privilege. 



DCL-312 DCL Commands 
SET HOST/HSC 

format 

SET HOST/HSC node-name 

parameter 

node-name 
Specifies the node name of the remote HSC50. 

qualifier 

ILOG[=file-spec] 
/NOLOG (default) 
Controls whether a log file of the entire session is kept. If you use /LOG 
without the file specification, the log information is stored in the file 
HSCPAD.LOG. 

example 

$ SET HOST/HSC HSCOOl 
%HSCPAD-I-LOCPROGEXE, Local program executing - type A\ to exit, AY for prompt 
HSCSO> 

This SET HOST/HSC command connects the user terminal to the HSC 
named HSCOOl. 

SET KEY 
Sets and locks the key definition state for keys defined with the 
DEFINE/KEY command. 

format 

SET KEY 

qualifiers 

!LOG (default) 
!NO LOG 
Controls whether the system displays a message indicating that the key 
state has been set. 

!STATE:state-name 
INOSTATE 
Specifies the name of the state. The state name can be any alphanumeric 
string. If you omit the /STATE qualifier or use /NOSTATE, the current 
state is left unchanged. The default state is DEFAULT. 



DCL Commands DCL-313 
SET KEY 

example 
$ SET KEY /STATE=EDITING 

The SET KEY command in this example sets the key state to the 
EDITING state. You can now use the key definitions that were defined for 
the EDITING state. 

SET LOGINS 
Sets the interactive limit (number of interactive users allowed on the 
system), or displays the interactive limit and the current number of 
interactive users. 

Requires OPER privilege. 

format 
SET LOGINS 

parameters 

None. 

qualifier 
llNTERACTIVE[=n} 
Establishes the number of interactive users allowed to gain access to 
the system. If n is specified, the interactive limit is set to n. If n is not 
specified, the SET LOGINS command displays the current interactive 
limit and the number of interactive users. 

example 
$ SET LOGINS/INTERACTIVE=5 
%SET-T-INTSET, login interactive limit=5, current interactive value=3 

In this example, the SET LOGINS command specifies that only five 
interactive users can be logged in to the system. 

SETMAGTAPE 
Defines the default characteristics associated with a specific magnetic 
tape device for subsequent file operations. 

The SET MAGTAPE command is valid for magnetic tape devices 
mounted with foreign volumes. 



DCL-314 

format 

DCL Commands 
SETMAGTAPE 

SET MAGTAPE device-name[:] 

parameter 
device-name[:] 
Specifies the name of the magnetic tape device for which the characteris
tics are to be set. The device must not be currently allocated to any other 
user. 

qualifiers 
/DENSITY:denslty 
Specifies the default density, in bits per inch (bpi), for all write operations 
on the magnetic tape device when the volume is mounted as a foreign 
tape or as an unlabeled tape. The density can be specified as 800, 1600, 
or 6250, if supported by the magnetic tape drive. 

IEND_OF_FILE 
Writes a tape mark at the current position on the magnetic tape volume. 

!LOG 
/NOLOG 
Displays information about the operations performed on the magnetic 
tape volume. 

ILOGSOFT (default) 
INOLOGSOFT 
Controls whether soft errors on the specified device are to be logged in the 
error log file. Soft errors are errors corrected by the hardware without 
software intervention. This qualifier only affects devices that support 
hardware error correction, such as the TU78 magnetic tape drive. When 
used with other devices, this qualifier has no effect. 

/REWIND 
Requests that the volume on the specified device be rewound to the 
beginning of the magnetic tape. 

ISKIP=option 
Requests that the magnetic tape volume be positioned according to any of 
the following options: 

BLOCK:n Directs the SET MAGTAPE command to skip the specified number of 
blocks 

END_OF _TAPE Directs the SET MAGTAPE command to position the volume at the 
end-of-tape mark 



DCL Commands 
SET MAGTAPE 

DCL-315 

FILES:n Directs the SET MAGTAPE command to skip the specified number of 
files 

RECORD:n 

!UNLOAD 

Directs the SET MAGTAPE command to skip the specified number of 
records 

Requests that the volume on the specified device be rewound and 
unloaded. 

example 
$MOUNT MTBl:/FOREIGN 
$ SET MAGTAPE MTBl: /DENSITY=800 

The MOUNT command in this example mounts a foreign tape on the 
device MTBl. The SET MAGTAPE command defines the density for 
writing the magnetic tape at 800 bpi. 

SET MESSAGE 
Sets the format for system messages or specifies a process level message 
file. Lets you override or supplement the system messages. 

format 

SET MESSAGE [file-spec] 

parameter 

file-spec 
Specifies the name of the process level message file. Messages in this file 
supersede messages for the same conditions in the system message file 
or in an existing process message file. The file type defaults to EXE. No 
wildcard characters are allowed. If you do not specify this parameter, the 
qualifiers apply to the system message file. 

qualifiers 

!DELETE 
Removes any process permanent message files currently in effect. Do not 
specify the file-spec parameter with the /DELETE qualifier. 

!FACILITY (default) 
!NOFACILITY 
Formats messages so that the facility name prefix appears. 

!IDENTIFICATION (default) 
/NOIDENTIFICATION 
Formats messages so that the message identification prefix appears. 



DCL-316 DCL Commands 
SET MESSAGE 

/SEVERITY (default) 
/NOS EVER/TY 
Formats messages so that the severity level appears. 

!TEXT (default) 
/NO TEXT 
Formats messages so that the message text appears. 

example 
$ SET MESSAGE/TEXT/NOFACILITY/NOIDENTIFICATION/NOSEVERITY 
$ SHOW DEVICES/MUONTED 
unrecognized qualifier - check validity, spelling, and placement 
\MUONTED\ 

The SET MESSAGE command in this example formats the error message 
so that only the text appears. 

SETON 
Enables error checking by the command interpreter after the execution of 
each command in a command procedure. Specify SET NOON to disable 
error checking. 

format 
SET [NO]ON 

parameters 
None. 

description 
Use the SET NOON command to override default error checking. When 
SET NOON is in effect, the command interpreter continues to place the 
status code value in $STATUS and the severity level in $SEVERITY, 
but does not perform any action based on the values. As a result, the 
command procedure continues to execute no matter how many errors 
are returned. The SET ON or SET NOON command applies only at the 
current command level. 

example 
$ SET NOON 
$ DELETE *.SAV;* 
$ SET ON 
$ COPY *.OBJ *.SAV 

This command procedure routinely copies all object modules into new files 
with the file type SAV. The DELETE command first deletes all existing 
files with the SAV file type, if any. The SET NOON command ensures 
that the procedure continues executing even if there are no files with the 
SAV file type in the current directory. Following the DELETE command, 



DCL Commands DCL-317 
SETON 

the SET ON command restores error checking. Then the COPY command 
makes copies of all existing files with OBJ file type. 

SET OUTPUT RATE 
Sets the rate at which output is written to a batch job log file. 

For use only within command procedures that are submitted as 
batch jobs. 

format 
SET OUTPUT _RATE[=delta-time] 

parameter 
delta-time 
The time interval at which output is written from the output buffer to the 
batch job log file. If no delta time is specified, the information is written 
in the output buffer to the log file, but the output rate is not changed from 
the default of once per minute. Specify delta-time as [dddd-][hh:mm:ss.cc]. 

example 
$ SET OUTPUT_RATE=:0:30 

This command, when executed within a batch job, changes the default 
output rate from once a minute to once every 30 seconds. 

SET PASSWORD 
Establishes, changes, or removes a password. SET PASSWORD can be 
used by users to change their own passwords and by system managers to 
change the system password. 

See the qualifier descriptions for restrictions. 



DCL-318 DCL Commands 
SET PASSWORD 

format 
SET PASSWORD 

parameters 
None. 

description 
All user accounts on a system have passwords. A password is required 
for logging in to the system. A password contains up to 31 alphanumeric 
characters. The dollar sign ( $ ) and underscore ( _) are also permitted. 
Uppercase and lowercase characters are equivalent. All lowercase 
characters are converted to uppercase before the password is encrypted. 
(For example, EAGLE is the same as eagle.) 

Use the following procedure to change your password: 

1. Enter the SET PASSWORD command. 

2. The system prompts you for your current password. Enter your 
current password. 

3. The system prompts you for a new password. Enter a new password, 
or press the RETURN key to disable your current password. 

4. The system prompts you to verify the password. Enter the new 
password to verify. (If the two entries of the new password do not 
match, the password does not change.) 

The following guidelines are recommended to minimize the chances of 
passwords being discovered by trial-and-error or by exhaustive search: 

• Make passwords at least six characters long. 

• Avoid names or words that are readily associated with you. 

• Change your passwords at least once every month. 

To ensure that the above guidelines are met, use the /GENERATE[=value] 
qualifier. This qualifier generates random passwords of up to 12 
characters in length. The system manager can require individual users to 
use the /GENERATE qualifier. 

qualifiers 
!GENERATE[:value] 
Generates a list of 5 random passwords. Press RETURN to repeat the 
procedure until a suitable password appears. If no value is specified, SET 
PASSWORD uses a default value of 6, and generates passwords from 6 to 
8 characters long. Values greater than 10 are not accepted and produce 
errors. 



/SECONDARY 

DCL Commands 
SET PASSWORD 

DCL-319 

Creates or allows you to replace a secondary password. The procedure is 
the same as setting your primary password. To remove your secondary 
password, press the RETURN key when SET PASSWORD/SECONDARY 
prompts you for a new password and verification. If you remove 
the secondary password, your system manager must restore it. The 
/SECONDARY and /SYSTEM qualifiers are incompatible. 

!SYSTEM 
Requires both SECURITY and CMKRNL privileges. Changes the 
system password, rather than a user password. The /SYSTEM and 
/SECONDARY qualifiers are incompatible. Refer to the Guide to VMS 
System Security for more information about the use of system passwords. 

example 
$ SET PASSWORD 
Old password: HONCHO 
New password: BIG_ENCHILADA 
Verification: BIG_ENCHILADA 

In response to the SET PASSWORD command, the system first prompts 
for the old password and then for the new password. The system then 
prompts again for the new password to verify it. The password changes 
if the user is authorized to change this account's password, if the old 
password is given correctly, and if the new password is given identically 
twice. Otherwise, an error message appears and the password remains 
unchanged. 

In a real session, neither the old password nor the new password and its 
verification appear on the screen or paper. 

SET PRINTER 
Establishes the characteristics of a specific line printer. The default 
values listed for qualifiers to the SET PRINTER command are the 
defaults for an initially bootstrapped system. 

Requires OPER privilege. If the printer is a spooled device, 
the logical 1/0 privilege (LOG_IO) is required to modify its 
characteristics. 

format 

SET PRINTER printer-name[:] 



DCL-320 DCL Commands 
SET PRINTER 

parameter 
printer-name[:] 
Specifies the name of a line printer to set or modify its characteristics. If 
the printer has been set to /SPOOLED, the logical I/O privilege (LOG_IO) 
is required to modify its characteristics. 

qualifiers 
!CR 
INOCR (default) 
Controls whether the printer driver outputs a carriage return character. 
Use this qualifier for printers on which line feeds do not imply carriage 
returns. 

/FALL BACK 
/NOFALLBACK (default) 
Determines whether or not the printer attempts to translate characters 
belonging to the DEC Multinational Character Set into 7-bit equivalent 
representations. If a character cannot be translated, an underscore 
character is substituted. 

!FF (default) 
INOFF 
Indicates whether the printer performs a mechanical form feed. 

ILA11 
Specifies the printer as an LAll. 

ILA180 
Specifies the printer as an LA180. 

/LOG 
INOLOG (default) 
Determines whether information confirming the printer setting is 
displayed at the terminal from which the SET PRINTER command 
was entered. 

/LOWERCASE 
INOLOWERCASE 
Indicates whether the printer prints both uppercase and lowercase letters 
or only uppercase. When the operator specifies the /NOLOWERCASE 
qualifier, all letters are translated to uppercase. 

ILP11 (default) 
Specifies the printer as an LPll. 



DCL Commands DCL-321 
SET PRINTER 

IPAGE=lines-per-page 
Establishes the number of lines per page on the currently installed form; 
the number of lines can range from 1 to 255 and defaults to 64. The 
printer driver uses this value to determine the number of line feeds that 
must be entered to simulate a form feed. 

IPASSALL 
INOPASSALL (default) 
Controls whether the system interprets special characters or passes them 
as 8-bit binary data. 

IPRINTALL 
/NOPRINTALL (default) 
Controls whether the line printer driver outputs printable 8-bit 
multinational characters. 

ff AB 
/NOTAB (default) 
Controls how the printer handles TAB characters. The /NOTAB qualifier 
expands all tab characters to spaces and assumes tab stops at eight 
character intervals. 

ffRUNCATE (default) 
INOTRUNCATE 
Controls whether the printer truncates data exceeding the value specified 
by the /WIDTH qualifier. Note that the trRUNCATE and /WRAP 
qualifiers are incompatible. 

/UNKNOWN 
Specifies the printer as nonstandard. 

/UPPERCASE 
/NOUPPERCASE 
Indicates whether the printer prints both uppercase and lowercase letters 
or only uppercase ones. When you specify /UPPERCASE, all letters are 
translated to uppercase. 

/WIDTH:n 
Establishes the number of characters per output line on currently 
installed forms. The width, n, can range from 0 through 65535 for LPll 
controllers, and from 0 through 255 for DMF32 controllers. The default 
value is 132 characters per line. 

/WRAP 
/NOWRAP (default) 
Controls whether the printer generates a carriage return/line feed when it 
reaches the end of a line. 



DCL-322 DCL Commands 
SET PRINTER 

example 
$ SET PRINTER/PAGE=60/WIDTH=80 LPAO: 

The SET PRINTER command in this example establishes the size of an 
output page as 60 lines and the width of a line as 80 characters for printer 
LPAO. 

SET PROCESS 
Changes the execution characteristics associated with the specified 
process for the current terminal session or job. If no process is specified, 
changes are made to the current process. 

Requires GROUP privilege to change other processes in the same 
group. Requires WORLD privilege to change processes outside 
your group. 

format 
SET PROCESS [process-name] 

parameter 
process-name 
Requires that you own the process or that you have GROUP 
privilege and that the process is in your group. Specifies the name 
of the process for which the characteristics are to be changed. Process 
names can be up to 23 alphanumeric characters long in the following 
format: 

[node-name: :]process-name 

• The node name can have as many as 6 alphanumeric characters. 

• The colons count for 2 characters. 

• The process name can have as many as 15 characters. 

A local process name can look like a remote process name. Therefore, 
if you specify ATHENS::SMITH, the system checks for a process named 
ATHENS::SMITH on the local node before checking node ATHENS for a 
process named SMITH. 

The default process is the current process. The process name is 
compatible only with the /PRIORITY, /RESUME, and /SUSPEND 
qualifiers. 



qualifiers 
/DUMP 
/NODUMP (default) 

DCL Commands 
SET PROCESS 

DCL-323 

Causes the contents of the address space to be written to the file named 
SYS$LOGIN:IMAGEDUMP.DMP when an image terminates due to an 
unhandled error. 

llDENTIFICATION:pld 
Requires GROUP or WORLD privilege for processes other than 
your own. Specifies the process identification value (PID) of the process 
for which characteristics are to be changed. Overrides the process
name parameter. Compatible only with the /PRIORITY, /RESUME, and 
/SUSPEND qualifiers. 

/NAME:strlng 
Changes the name of the current process to a string of 1 through 15 
characters .. 

IPRIORITY:n 
Requires ALTPRI privilege to set the priority higher than the 
base priority of the specified process. Changes the priority for the 
specified process. If you do not have the ALTPRI privilege, the value you 
specify is compared to your current base priority, and the lower value is 
always used. 

IPRIVILEGES:(prlvilege[, •.• ]) 
Requires SETPRV privilege to enable a privilege you do 
not have. Enables privileges for the process. Use the SHOW 
PROCESS/PRIVILEGES command to determine what privileges are 
currently enabled. 

/RESOURCE WAIT 
INORESOURCE_ WAIT 
Enables resource wait mode so that the process waits for resources to 
become available. If you specify the /NORESOURCE_ WAIT qualifier, the 
process receives an error status code when system dynamic memory is 
not available or when the process exceeds one of the following resource 
quotas: direct 1/0 limit, buffered 1/0 limit, or buffered 1/0 byte count 
(buffer space) quota. 

/RESUME 
Allows a process suspended by a previous SET PROCESS/SUSPEND 
command to resume operation. The /RESUME qualifier is equivalent to 
the /NOSUSPEND qualifier. 



DCL-324 DCL Commands 
SET PROCESS 

ISUSPEND[=SUPERVISOR] 
/SUSPEND=KERNEL 
INOSUSPEND 
Requires privileges as described in text. Temporarily stops the 
process's activities. The process remains suspended until another process 
resumes or deletes it. Use the qualifiers /NOSUSPEND and /RESUME to 
resume a suspended process. 

Specify either of the following keywords with /SUSPEND to produce 
different results: 

Keyword Result 

SUPERVISOR Specifies that the named process is to be suspended to allow the delivery 
(default) of Asynchronous System Traps (ASTs) at EXEC or KERNEL mode. 

Specifying this keyword is optional. 

KERNEL Specifies that the named process is to be suspended such that no 
asynchronous system traps (ASTs) can be delivered. 'lb specify the 
KERNEL keyword, you must be in either kernel mode or exec mode, or 
have either CMKRNL or CMEXEC privilege enabled. Note that this was 
the default behavior of SET PROCESS/SUSPEND for versions of VMS 
prior to Version 5.0. 

Depending on the operation, the process from which you specify 
/SUSPEND requires privileges. You must have GROUP privilege to 
suspend another process in the same group, unless that process has the 
same UIC. You must have WORLD privilege to suspend any other process 
in the system. 

Note that you can specify SET PROCESS/SUSPEND=KERNEL. to 
override a previous SET PROCESS/SUSPEND=SUPERVISOR. SET 
PROCESS/SUSPEND=SUPERVISOR does not, however, override SET 
PROCESS/SUSPEND=KERNEL. 

/SWAPPING (default) 
INOSWAPPING 
Requires the user privilege process swap privilege (PSWAPM) 
to disable swapping for your process. Permits the process to be 
swapped. 

example 
$ RUN/PROCESS NAME=TESTER CALC 
%RUN-S-PROC_ID, identification of created process is 0005002F 
$ SET PROCESS/PRIORITY=lO TESTER 

The RUN command in this example creates a subprocess and gives it the 
name TESTER. Subsequently, the SET PROCESS/PRIORITY command 
assigns the subprocess a priority of 10. 



DCL Commands DCL-325 
SET PROMPT 

SET PROMPT 
Replaces the default DCL prompt ( $) with the specified string. 

format 

SET PROMPT[=string] 

parameter 

string 
Specifies the new prompt string. The following rules apply: 

• All valid ASCII characters can be used. 

• No more than 32 characters are allowed. 

• To include spaces or lowercase letters, enclose the string in quotation 
marks. Otherwise, letters are automatically converted to uppercase; 
leading and trailing spaces are removed. 

If you do not specify the string parameter with the SET PROMPT 
command, the default DCL prompt ( $) is restored. 

qualifier 

!CARRIAGE_ CONTROL (default) 
INOCARRIAGE_ CONTROL 
Inserts carriage return and line feed characters before the prompt string. 
Type the qualifier after the string parameter. 

example 
$SET PROMPT ="What's next?" 
What's next? SHOW TIME 

19-APR-1990 14:08:58 

The SET PROMPT command in this example replaces the DCL prompt 
($)with the phrase "What's next?". When you see the prompt on your 
screen, you can enter any DCL command. This example uses the SHOW 
TIME command. 



DCL-326 DCL Commands 
SET PROTECTION 

SET PROTECTION 
Establishes the protection that limits other users' access to a file or a 
group of files. 

You cannot change the protection on a file on a network node 
other than the one you are currently logged in to. 

format 
SET PROTECTION[=(code)J file-spec[, ... } 

parameters 
code 
Defines the protection to be applied to the specified files. If you omit the 
code, the access is set to the current default protection. 

file-spec[, •.• ] 
Specifies one or more files for which the protection is to be changed. A 
file name and file type are required. If you omit a version number, the 
protection is changed only for the highest existing version of the file. 
Wildcard characters are allowed. 

qualifiers 
/CONFIRM 
INOCONFIRM (default) 
Controls whether the SET PROTECTION command displays the file 
specification of each file before applying the new protection, and requests 
you to confirm that the file's protection should be changed. To change the 
protection, type Y (YES) or T (TRUE) at the system prompt and press 
RETURN. If you enter anything else, such as Nor NO, the file protection 
is not changed. 

/LOG 
INOLOG (default) 
Controls whether the system displays the file specification of each file for 
which the protection is changed as the command executes. 

/PROTECTION:( code) 
File-spec qualifier. If you follow a file specification with the 
/PROTECTION qualifier, the code specified with /PROTECTION overrides 
the command's code parameter. The /PROTECTION qualifier lets you 
assign different protection codes to several files with a single SET 
PROTECTION command. 



example 

DCL Commands 
SET PROTECTION 

$ SET PROTECTION A.DAT, B.DAT/PROTECTION=OWNER:RWED, C.DAT 

DCL-327 

The SET PROTECTION command in this example specifies that the 
file A.DAT receive the default protection established for your files. The 
existing protection for the file B.DAT is overridden, only for the owner 
category, to provide read, write, execute, and delete access. Note that no 
protection is specified for the file C.DAT at either the command or file 
level. Like A.DAT, C.DAT receives the default protection. 

Since no version numbers are specified, the protection settings affect only 
the highest versions of the three files. 

$ DIR/PROTECTION INCOME.DAT 
Directory DBAO: [SMITH] 
INCOME.DAT;2 (RWED,RWED,RWED,RWED) 
INCOME.DAT;l (RWED,RWED,RWED,RWED) 
Total of 2 files. 
$ SET PROTECTION=(OWNER:RWE) INCOME.DAT;l 
$ PURGE 

In this example, the file INCOME.DAT;l has been protected against 
deletion by the owner. However, because the owner is also a member of 
the group and world categories, the file is still vulnerable to deletion. The 
subsequent PURGE command deletes INCOME.DAT;!. 

To protect the file against deletion by you (the owner), you also need 
to protect the file against deletion by all outer access categories. The 
following command shows the proper way to do this. 

$ SET PROTECTION=(OWNER:RWE,GROUP:RWE,WORLD:RWE) INCOME.DAT;l 

SET PROTECTION/DEFAULT 
Establishes the default protection to be applied to all files subsequently 
created. 

format 
SET PROTECTION[=(code)]/DEFAULT 

parameter 
code 
Defines the default protection to be applied to all files. To override 
this default protection use either the SET PROTECTION or CREATE 
commands. If you do not specify a protection code, the current default 
protection remains unchanged. 



DCL-328 DCL Commands 
SET PROTECTION/DEFAULT 

example 
$ SET PROTECTION=(GROUP:RWED,WORLD:R)/DEFAULT 

The SET PROTECTION/DEFAULT command in this example sets the 
default protection to grant unlimited access to other users in the same 
group and read access to all users. The default protections for system and 
owner are not changed. 

SET PROTECTION/DEVICE 
Establishes the protection to be applied to a specific non-file-structured 
device. The protection for a device limits the type of access available to 
users. The /DEVICE qualifier is required. 

Requires OPER privilege. 

format 

SET PROTECTION=(ownership[:access], ... )/DEVICE 
device-name[:] 

parameters 
ownership 
An ownership category-SYSTEM, OWNER, GROUP, or WORLD. Each 
category can be abbreviated to its first character. Any protection code 
category that the operator does not specify will remain unchanged. 

access 
An access category-R (READ), W (WRITE), L (LOGICAL 1/0); and P 
(PHYSICAL 110)-to be assigned to a specified type of owner. A null 
access specification means no access. 

device-name[:] 
Specifies the name of the non file-structured device whose protection is to 
be set or modified. 

qualifier 
!OWNER_ UIC:uic 
Requests that the specified user identification code (UIC) be assigned 
ownership of the device for the purpose of access checks. The default 
owner is the UIC of the process entering the SET PROTECTION 
command. 



example 

DCL Commands 
SET PROTECTION/DEVICE 

$ SET PROTECTION=(S:RWLP,O:RWLP,G,W)/DEVICE LAAO: 

DCL-329 

The command in this example requests that the protection for device 
LAAO be set to allow all types of access to system processes and processes 
with the UIC of the current process. This command also denies access to 
anyone else. 

SET QUEUE 
Changes the attributes of the specified queue. The /QUEUE qualifier is 
required. 

Requires OPER privilege or EXECUTE ( E) access to the specified 
queue. 

format 
SET QUEUE queue-name[:] 

parameter 
queue-name[:] 
Specifies the name of an execution queue or a generic queue. 

qualifiers 
/BASE_PRIORITY=n 
Specifies the base process priority at which jobs are initiated from a batch 
execution queue. The base priority specifier can be any decimal value 
from 0 through 15. 

You also can specify this qualifier for an output execution queue. In this 
context the /BASE_PRIORITY qualifier establishes the base priority of 
the symbiont process when the symbiont process is created. 

/BLOCK_LIMIT =([lowlim,]uplim) 
/NOBLOCK_LIMIT 
Limits the size of print jobs that can be processed on an output execution 
queue. This qualifier allows you to reserve certain printers for certain 
size jobs. You must specify at least one of the parameters. The lowlim 
parameter is a decimal number referring to the minimum number of 
blocks that are accepted by the queue for a print job. If a print job is 
submitted that contains fewer blocks than the lowlim value, the job 
remains pending until the block limit for the queue is changed. After the 
block limit for the queue is decreased sufficiently, the job is processed. 



DCL-330 DCL Commands 
SET QUEUE 

The uplim parameter is a decimal number referring to the maximum 
number of blocks that are accepted by the queue for a print job. If a print 
job is submitted that exceeds this value, the job remains pending until the 
block limit for the queue is changed. After the block limit for the queue is 
increased sufficiently, the job is processed. 

!CHARACTERISTICS:{ characteristic[, ... ]) 
/NOCHARACTERIST/CS 
Specifies one or more characteristics for processing jobs on an execution 
queue. If a queue does not have all the characteristics that have been 
specified for a job, the job remains pending. If you specify only one 
characteristic, you can omit the parentheses. Each time you specify 
/CHARACTERISTICS, all previously set characteristics are cancelled. 
Only the characteristics specified with the qualifier are established for the 
queue. Queue characteristics are installation-specific. The characteristic 
parameter can be either a value from 0 through 127 or a characteristic 
name that has been defined by the DEFINE/CHARACTERISTIC 
command. 

/CLOSE 
Prevents jobs from being entered in the queue through PRINT or SUBMIT 
commands or as a result of requeue operations. To allow jobs to be 
entered, use the /OPEN qualifier. Whether a queue accepts or rejects new 
job entries is independent of the queue's state (such as paused, stopped, 
or stalled). When a queue is marked closed, jobs executing continue 
to execute and jobs pending in the queue continue to be candidates for 
execution. 

/CPUDEFAULT:time 
Defines the default CPU time limit for jobs in a batch execution queue. 
You can specify time as delta time, 0, INFINITE, or NONE. You can 
specify up to 497 days of delta time. 

If the queue does not have a defined CPUMAXIMUM time limit and the 
value established in the user authorization file (UAF) has a specified CPU 
time limit of NONE, either the value 0 or the keyword INFINITE allows 
unlimited CPU time. If you specify NONE, the CPU time value defaults 
to the value specified either in the UAF or by the SUBMIT command (if 
included). CPU time values must be greater than or equal to the number 
specified by the SYSGEN parameter PQL_MCPULM. The time cannot 
exceed the CPU time limit set by the /CPUMAXIMUM qualifier. 

/CPUMAXIMUM:time 
Defines the maximum CPU time limit for all jobs in a batch execution 
queue. You can specify time as delta time, 0, INFINITE, or NONE. You 
can specify up to 497 days of delta time. 



DCL Commands 
SET QUEUE 

DCL-331 

The /CPUMAXIMUM qualifier overrides the time limit specified in the 
user authorization file (UAF) for any user submitting a job to the queue. 
Either the value 0 or the keyword INFINITE allows unlimited CPU time. 
If you specify NONE, the CPU time value defaults to the value specified 
either in the UAF or by the SUBMIT command (if included). CPU time 
values must be greater than or equal to the number specified by the 
SYSGEN parameter PQL_MCPULM. 

/DEFAULT ={option[, ... ]) 
INODEFAULT 
Establishes defaults for certain options of the PRINT command. Defaults 
are specified by the list of options. If you specify only one option, you 
can omit the parentheses. After you set an option for the queue with the 
/DEFAULT qualifier, you do not have to specify that option in your PRINT 
commands. If you do specify these options in your PRINT command, the 
values specified with the PRINT command override the values established 
for the queue with the /DEFAULT qualifier. Possible options are as 
follows: 

[NO]BURST[=keyword] 

[NOJFEED 

[NOJFLAG[=keyword] 

FORM=type 

[NOJTRAILER[=keyword] 

Controls whether two file flag pages with a burst bar 
between them are printed preceding output. If you 
specify the value ALL (default), these flag pages are 
printed before each fl.le in the job. If you specify the 
value ONE, these flag pages are printed once before the 
first file in the job. 

Specifies whether a form feed is inserted automatically 
at the end of a page. 

Controls whether a file flag page is printed preceding 
output. If you specify the value ALL (default), a file flag 
page is printed before each file in the job. If you specify 
the value ONE, a file flag page is printed once before 
the first file in the job. 

Specifies the default form for an output execution 
queue. If a job is submitted without an explicit form 
definition, this form is used to process the job. See also 
/FORM_MOUNTED. 

Controls whether a file trailer page is printed following 
output. If you specify the value ALL (default), a trailer 
page is printed with each file in the job. If you specify 
the value ONE, a trailer page is printed once with the 
last file in the job. 

When you specify the BURST option for a file, the [NO]FLAG option does 
not add or subtract a flag page from the two flag pages that are printed 
preceding the file. 

/DESCRIPTION:string 
/NODESCR/PTION 
A string of up to 255 characters used to provide operator-supplied 
information about the queue. 



DCL-332 DCL Commands 
SET QUEUE 

Enclose strings containing lowercase letters, blanks, or other nonalphanu
meric characters (including spaces) in quotation marks (" ). 

The /NODESCRIPTION qualifier removes any descriptive text that may 
have been associated with the queue. 

/DISABLE SWAPPING 
INODISABLE_SWAPPING 
Controls whether batch jobs executed from a queue can be swapped in 
and out of memory. 

/ENABLE GENERIC 
INOENABLE_GENERIC 
Specifies whether files queued to a generic queue that does not specify 
explicit queue names can be placed in this execution queue for processing. 

IFORM_MOUNTED:type 
Specifies the mounted form for an output execution queue. If the stock 
of the mounted form is not identical to the stock of the default form, as 
indicated by the /DEFAULT=FORM qualifier, all jobs submitted to this 
queue without an explicit form definition enter a pending state. If a job 
is submitted with an explicit form and the stock of the explicit form is 
not identical to the stock of the mounted form, the job enters a pending 
state. In both cases, jobs remain pending until the stock of the mounted 
form of the queue is identical to the stock of the form associated with the 
job. To specify the form type, use either a numeric value or a form name 
that has been defined by the DEFINE/FORM command. Form types are 
installation-specific. 

IJOB_L/MIT:n 
Indicates the number of batch jobs that can be executed concurrently from 
the queue. Specify a number in the range 0 through 255. 

/OPEN 
Allows jobs to be entered in the queue through PRINT or SUBMIT 
commands or as the result of requeue operations. To prevent jobs from 
being entered in the queue, use the /CLOSE qualifier. Whether a queue 
accepts or rejects new job entries is independent of the queue's state (such 
as paused, stopped, or stalled). 

/OWNER_ U/C:uic 
Requires OPER privilege or CONTROL and EXECUTE access to 
the queue. Enables you to change the user identification code (UIC) of 
the queue. 

IPROTECTION=(ownership[:access], ... ) 
Requires OPER privilege or CONTROL and EXECUTE access 
to the queue. Specifies the protection of the queue. Ownership 
categories are SYSTEM, OWNER, GROUP, WORLD; each category 
can be abbreviated to its first character. Access categories are R (READ), 



DCL Commands 
SET QUEUE 

DCL-333 

W (WRITE), E (EXECUTE), or D (DELETE); a null access specification 
means no access. If you include only one protection code, you can omit the 
parentheses. 

/RECORD BLOCKING 
INORECORD_BLOCKING 
Determines whether the symbiont can concatenate (or block together) 
output records for transmission to the output device. If you specify 
/NORECORD_BLOCKING, the symbiont sends each formatted record in 
a separate 1/0 request to the output device. For the standard VMS print 
symbiont, record blocking can have a significant performance advantage 
over single-record mode. 

/RETAIN[=option] 
INORETAIN 
Holds jobs in the queue in a retained status after they have executed. 
The /NORETAIN qualifier enables you to reset the queue to the default. 
Possible options are as follows: 

ALL 
ERROR 

Holds all jobs in the queue after execution (default) 

Holds in the queue only jobs that complete unsuccessfully 

/SCHEDULE:[NO]SIZE 
Specifies whether pending jobs in an output queue are scheduled for 
printing based on the size of the job. When the /SCHEDULE=SIZE 
qualifier is in effect, shorter jobs print before longer ones. When 
/SCHEDULE=NOSIZE is in effect, jobs are printed in the order they 
were submitted, regardless of size. 

If you enter this command while there are pending jobs in any queue, its 
effect on future jobs is unpredictable. 

/SEPARATE:( option[, .•. ]) 
/NOSEPARATE 
Specifies the mandatory queue attributes or job separation options for an 
output execution queue. Job separation options cannot be overridden by 
the PRINT command. 

The job separation options are as follows: 

[NO]BURST 

[NO]FLAG 

[NO]TRAILER 

Specifies whether two job flag pages with a burst 
bar between them are printed at the beginning of 
each job. 

Specifies whether a job flag page is printed at the 
beginning of each job. 

Specifies whether a job trailer page is printed at 
the end of each job. 



DCL-334 DCL Commands 
SET QUEUE 

[NO]RESET=(module[, ... ]) Specifies one or more device control library 
modules that contain the job reset sequence 
for the queue. The specified modules from 
the queue's device control library (by default 
SYS$LIBRARY:SYSDEVCTL) are used to reset the 
device each time a job reset occurs. The RESET 
sequence occurs after any file trailer and before 
any job trailer. Thus, all job separation pages are 
printed when the device is in its RESET state. 

When you specify /SEPARATE=BURST, the [NO]FLAG separation option 
does not add or subtract a flag page from the two flag pages that are 
printed preceding the job. 

For information on establishing queue attributes that can be overridden, 
see the description of the /DEFAULT qualifier. 

/WSDEFAULT:n 
Defines for a batch job a working set default, the default number of 
physical pages that the job can use. The value set by this qualifier 
overrides the value defined in the user authorization file (UAF) of any 
user submitting a job to the queue. 

If you specify 0 or NONE, the working set default value defaults to the 
value specified in the UAF or by the SUBMIT command (if included). 

/WSEXTENT =n 
Defines for the batch job a working set extent, the maximum amount 
of physical memory that the job can use. The job uses the maximum 
amount of physical memory only when the system has excess free pages. 
The value set by this qualifier overrides the value defined in the user 
authorization file (UAF) of any user submitting a job to the queue. 

If you specify 0 or NONE, the working set extent value defaults to the 
value specified in the UAF or by the SUBMIT command (if included). 

/WSQUOTA=n 
Defines for a batch job the working set quota, the amount of physical 
memory that is available to the job. The value set by this qualifier 
overrides the value defined in the user authorization file (UAF) of any 
user submitting a job to the queue. If you specify 0 or NONE, the working 
set quota value defaults to the value specified in the UAF or by the 
SUBMIT command (if included). 



DCL Commands DCL-335 
SET QUEUE 

example 
$ INITIALIZE/QUEUE/DEFAULT=BURST/FORM_MOUNTED=LETTER/START SYS$PRINT 

$ STOP/QUEUE/NEXT SYS$PRINT 
$ SET QUEUE /DEFAULT=BURST/FORM_MOUNTED=MEMO SYS$PRINT 

In this example, the queue is initialized with the INITIALIZE/QUEUE 
command. The queue has the following attributes: two file flag pages 
preceding each file in the job and the mounted form LETTER. Later the 
queue is stopped with the STOP/QUEUE/NEXT command so that the 
current job finishes processing before the queue stops. The SET QUEUE 
command changes the mounted form to MEMO. 

SET QUEUE/ENTRY 
Changes the current status or attributes of a job that is not currently 
executing in a queue. The /ENTRY qualifier is required. 

As of VMS Version 5.0, the SET QUEUE/ENTRY command is superseded 
by the SET ENTRY command. Note that the SET ENTRY command 
has the same qualifiers as the SET QUEUE/ENTRY command; only the 
command parameters are different. Digital recommends usage of the SET 
ENTRY command. 

Requires OPER privilege or EXECUTE ( E) access to the specified 
queue. If you have DELETE ( D) access to the specified job, you 
can alter the attributes for that job. In addition, the queue name 
parameter is optional. 

format 
SET QUEUE/ENTRY =entry-number queue-name[:] 



DCL-336 DCL Commands 
SET RESTART_VALUE 

SETRESTART_VALUE 
Assigns a value to the global symbol BATCH$RESTART. This global 
symbol defines the location at which a batch job is restarted after 
its execution has been interrupted. Use the SET RESTART_ VALUE 
command in command procedures. This command has no meaning if you 
enter it interactively. 

format 

SET RESTART_ VALUE=string 

parameter 
string 
A string of up to 255 characters specifying the label at which the batch 
job should begin executing when the batch job is restarted. 

example 

$ IF $RESTART THEN GOTO 'BATCH$RESTART' 

$ FIRSTPART: 
$ SET RESTART VALUE = FIRSTPART 
$ RUN PARTl -

$ SECONDPART: 
$ SET RESTART VALUE = SECONDPART 
$ RUN PART2 -



DCL Commands DCL-337 
SET RESTART_VALUE 

In this example, the first command states that, if $RESTART is true, 
proceed to the value contained in BATCH$RESTART. ($RESTART is true 
only if the job has been executed before, that is, the job is being rerun 
after a crash or after having been requeued.) 

The first SET RESTART_ VALUE command assigns the label FIRSTPART 
to be equal to the symbol BATCH$RESTART. The next line contains the 
command to run PARTl.EXE. 

The second SET RESTART_ VALUE command assigns the label 
SECONDPART to be equal to the symbol BATCH$RESTART. The last 
line shown contains the command to run PART2.EXE. 

When the job is first submitted using the SUBMIT/RESTART command, 
the value of $RESTART is FALSE, so the IF expression is ignored. 
If the job is stopped during the run of PARTl.EXE, the value of 
BATCH$RESTART is FIRSTPART. When the job is restarted, the value of 
$RESTART is TRUE. Thus, the IF expression is processed and transfers 
control to the FIRSTPART label in the procedure. PARTl.EXE is rerun. 

If the job is stopped during the run of PART2.EXE, the value of 
BATCH$RESTART is SECONDPART. Whan the job is restarted, the 
value of $RESTART is TRUE. In this instance, the IF-GOTO command 
transfers control to the SECONDPART label in the procedure so that 
PART2.EXE can be run. PARTl.EXE is not rerun. 

SET RIGHTS_LIST 
Allows users to modify the process or system rights list. You must specify 
either /DISABLE or /ENABLE with the SET RIGHTS_LIST command. 

format 

SET RIGHTS_LIST id-name[, ... ] 

parameter 

id-name[, ..• ] 
Specifies identifiers to be added to or removed from the process or system 
rights list. The id-name parameter is a string of 1 to 31 alphanumeric 
characters, underscores, and dollar signs; each name must contain at 
least one nonnumeric character. 



DCL-338 DCL Commands 
SET RIGHTS_LIST 

qualifiers 
I ATTRIBUTES:(keyword[,. .. ]) 
Specifies attributes to be associated with the identifiers. Attributes may 
be added to new or existing identifiers. The following are valid keywords: 

[NOJDYNAMIC 

[NOJRESOURCE 

!DISABLE 

Indicates whether or not unprivileged holders of the identifiers may 
add or remove them from the process rights list. The default is 
NODYNAMIC. 

Indicates whether or not holders of the identifiers may charge 
resources to them. The default is NORESOURCE. 

Removes the identifiers from the process or system rights list. You cannot 
use /DISABLE with the /ENABLE qualifier. 

/ENABLE 
Adds the identifiers to the process or system rights list. You cannot use 
/ENABLE with the /DISABLE qualifier. 

/IDENTIFICATION:pid 
Specifies the process identification value (PID) of the process whose rights 
list is to be modified. The PID is assigned by the system when the proc·ess 
is created. When you specify a PID, you can omit the leading zeros. 

If you specify the /IDENTIFICATION qualifier, you cannot use the 
/PROCESS qualifier. By default, if neither the /IDENTIFICATION nor 
the /PROCESS qualifier is specified, the current process is assumed. You 
cannot use /IDENTIFICATION with the /SYSTEM qualifier. 

IPROCESS[:process-name] 
Specifies the name of the process whose rights list is to be modified. The 
process name can contain from 1 to 15 alphanumeric characters. 

If you specify the /PROCESS qualifier, you cannot use the 
/IDENTIFICATION qualifier. By default, if neither the /PROCESS nor the 
/IDENTIFICATION qualifier is specified, the current process is assumed. 

/SYSTEM 
Specifies that the desired operation (addition or removal of an identifier) 
be performed on the system rights list. You cannot use /SYSTEM with 
/PROCESS or /IDENTIFICATION. 

example 
$ SET RIGHTS_LIST/ENABLE/ATTRIBUTES=RESOURCE MARKETING 

The SET RIGHTS_LIST command in this example adds the MARKETING 
identifier to the process rights list of the current process. Specifying the 
RESOURCE attribute allows holders of the MARKETING identifier to 
charge resources to it. 



DCL Commands DCL-339 
SET RMS_DEFAULT 

SET RMS_DEFAULT 
Defines default values for the multiblock and multibuffer counts, network 
transfer sizes, prolog level, and extend quantity used by VMS RMS for file 
operations. If you set the default for either the multiblock count or the 
multibuffer count at 0, VMS RMS tries to use the process default value or 
the system default value, in that order. If these are set at 0, VMS RMS 
uses a default value of 1. 

format 
SET RMS_DEFAULT 

parameters 
None. 

qualifiers 
/BLOCK_ COUNT =count 
Specifies a default multiblock count (0 through 127) for record 1/0 
operations only, where count is the number of blocks to be allocated 
for each 1/0 buffer. 

/BUFFER_ COUNT :count 
Specifies a default multibuffer count (0 through 127) for file operations. If 
file type is not specified, the default is applied to sequential files. 

!DISK 
Applies the specified defaults to disk file operations. 

IEXTEND_QUANTITY=n 
Specifies the number of blocks ( n) to extend a sequential file where n 
can range from 0 to 65535. If you do not specify /EXTEND_QUANTITY, 
VMS RMS calculates its own extend value. The /EXTEND_QUANTITY 
qualifier value is used when the program does not explicitly specify an 
extent quantity. 

!INDEXED 
Applies the multibuffer default to indexed file operations. 

/MAGTAPE 
Applies the multibuffer default to magnetic tape operations. 

/NETWORK_BLOCK_ COUNT :count 
Specifies a default block count (0 through 127) for network access to 
remote files, where count represents the number of 1/0 buffers that VMS 
RMS allocates for transmitting and receiving data. If you omit the value 
or specify a value of 0, VMS RMS uses the systemwide block count value. 
If this value is also 0, VMS RMS uses a size of one block. 



DCL-340 DCL Commands 
SET RMS_DEFAULT 

/PROLOG=n 
Specifies a default prolog level for indexed sequential files where 
acceptable values for n are 0, 2 or 3. If 0 (default) is specified, VMS 
RMS sets an appropriate prolog level. 

/RELATIVE 
Applies the multibuffer default to relative file operations. 

/SEQUENTIAL (default) 
Applies the multibuffer default to sequential file operations. 

!SYSTEM 
Requires CMKRNL privilege. Applies specified defaults on a 
systemwide basis to all file operations. 

/UNIT_ RECORD 
Applies the multibuffer default to file operations on unit record devices. 

example 
$ SET RMS DEFAULT/BUFFER COUNT=7/NETWORK BLOCK COUNT=16/SYSTEM 
$ SHOW RMS_DEFAULT - - -

MULTI- MULTIBUFFER COUNTS NETWORK 
BLOCK Indexed Relative Sequential BLOCK 
COUNT Disk Magtape Unit Record COUNT 

Process 24 0 0 0 8 0 0 
System 16 0 0 7 7 7 16 

Prolog Extend Quantity 
Process 0 0 
System 0 0 

The SET RMS_DEFAULT command in this example defines the 
systemwide default multibuffer count at 7 for all sequential file operations 
on disk, magnetic tape, and unit record devices. The command also sets 
the network block count at 16. 

SET SYMBOL 
Controls access to local and global symbols in command procedures. 

format 

SET SYMBOL 

qualifier 

ISCOPE=(keyword, ... ) 
Controls access to local and global symbols. Lets you treat symbols as 
being undefined. Possible keywords are as follows: 



NO LOCAL 

LOCAL 
NOGLOBAL 

GLOBAL 

example 

DCL Commands 
SET SYMBOL 

DCL-341 

Causes all local symbols defined in outer procedure levels to be treated as 
being undefined by the current procedure and all inner procedure levels. 

Removes any symbol translation limit set by the current procedure level. 

Causes all global symbols to be inaccessible to the current procedure level 
and all inner procedure levels unless otherwise changed. 

Restores access to all global symbols. 

$ SET SYMBOL/SCOPE=NOLOCAL 

In this example, all local symbols defined in outer procedure levels are 
now undefined by the current procedure and all inner procedure levels. 

SET TERMINAL 
Sets the characteristics of a terminal. Entering a qualifier changes a 
characteristic; omitting a qualifier leaves the characteristic unchanged. 

format 
SET TERMINAL [device-name[:]] 

parameter 
device-name[:] 
Specifies the device name of the terminal. The default is SYS$COMMAND 
if that device is a terminal. If the device is not a terminal, an error 
message is displayed. 

qualifiers 
/ADVANCED VIDEO 
INOADVANCED_ VIDEO 
Specifies that the terminal has advanced video attributes and is capable 
of 132-column video. If the terminal width is set to 132 columns and 
/ADVANCED_ VIDEO is enabled, the terminal page limit is set to 24 lines. 
If /NOADVANCED_VIDEO is enabled, the terminal page limit is set to 12 
lines. 

IALTYPEAHD 
Causes the terminal driver to create a permanent, alternate type-ahead 
buffer. The SYSGEN parameter TTY_ALTYPAHD determines the size of 
the type-ahead buffer. This specification is effective at your next login and 
stays in effect until you reboot your VAX computer. 

You should specify SET TERMINAUPERMANENT/ALTYPEAHD in 
SYS$SYSTEM:STARTUP.COM for those communication lines that require 
this capability. 



DCL-342 DCL Commands 
SET TERMINAL 

To use this feature interactively, specify SET TERMINAUPERMANENT
/ ALTYPEAHD. This specification is effective at your next login. 

IANSL CRT (default) 
/NOANSLCRT 
Specifies whether the terminal conforms to ANSI CRT programming 
standards. Since ANSI standards are a proper subset of the DEC_CRT 
characteristics, the default for all VTlOO-family terminals is /ANSI_CRT. 

/APPLICATION_KEYPAD 
Specifies that the keypad is to be set to APPLICATION_KEYPAD mode, 
which allows you to enter DCL commands defined with the DEFINE/KEY 
command. By default, the terminal is set to NUMERIC_KEYPAD mode. 

/AUTOBAUD 
INOAUTOBAUD 
Specifies whether the terminal baud rate is set when you log in and 
sets the default terminal speed to 9600. You must press the RETURN 
key two or more times at intervals of at least one second for the baud 
rate to be correctly determined. If you press a key other than RETURN, 
/AUTOBAUD might detect the wrong baud rate. If this happens, wait 
for the login procedure to time out before continuing. The /AUTOBAUD 
qualifier must be used with the /PERMANENT qualifier. 

The valid baud rates are as follows: 

110 
150 
300 
600 

1200 
1800 
2400 
3600 

/BLOCK MODE 
/NOBLOCK_MODE 

4800 
9600 

19200 

Performs block mode transmission, local editing, and field protection. 

/BRDCSTMBX 
INOBRDCSTMBX 
Sends broadcast messages to an associated mailbox if one exists. 

/BROADCAST (default) 
/NOBROADCAST 
Enables reception of broadcast messages (such as those issued by MAIL 
and REPLY). Specify the /NOBROADCAST qualifier when you are using 
a terminal as a noninteractive device or when you do not want special 
output to be interrupted by messages. Use SET BROADCAST to exclude 
certain types of messages from being broadcast, rather than eliminating 
all messages. 



DCL Commands 
SET TERMINAL 

DCL-343 

!CRFILL[=fi/1-count] 
Generates the specified number of null characters after each carriage 
return before transmitting the next meaningful character (to ensure that 
the terminal is ready for reception). The value must be an integer in the 
range 0 through 9. The default is /CRFILL=O. 

IDEC_CRT[=(va/ue1,value2,value3)] 
!NODEC_ CRT[=(value1, value2, value3)] 
Specifies that the terminal conforms to Digital VTlOO-, VT200-, or VT300-
family standards and supports the minimum standards, including the 
additional Digital escape sequences. 

One of the following three optional values may be specified: 

1 (default) 

2 

3 

Requests that the DEC_CRT terminal characteristic be set. 

Requests that the DEC_CRT2 terminal characteristic be set. 

Requests that the DEC_CRT3 terminal characteristic be set. A 
level 3 terminal is described as follows: 

• Supports a status line (line 25, at the bottom of the screen) 

• Supports the IOS Latin-1 character set 

• Has terminal state interrogation (describes what state your 
terminal is in) 

/DEVICE_ TYPE:terminal-type 
Informs the system of the terminal type and sets characteristics according 
to the device type specified. You can specify any of the following terminal 
types: 

UNKNOWN LA34 

FTl -FT8 LA38 

LA12 LAlOO 

LA36 LQP02 

LA120 VT125 

LN03 LNOlK 

VT05 VT131 

VT52 VT132 

VT55 VT173 

VTlOO VT200 

VT101 PRO_SERIES 

VT102 LA210 

VT105 VT300 



DCL-344 DCL Commands 
SET TERMINAL 

The default characteristics for the VTlOO-, VT102-, and VT125-series 
terminals are as follows: 

/ADVANCEDVIDEO /CRFILL=O /LFFILL=O /SPEED=9600 

/NOALTYPEAHD1 /ECHO /LOWERCASE tr AB 

/ANSI_ CRT /NOEIGHT_BIT /NODMA fflSYNC 

/NOAUTOBAUD /NO ESCAPE /PAGE=24 ITYPE_AHEAD 

/NOBLOCK_MODE /NO FORM /NO PARITY /WIDTH=80 

/NOBRDCSTMBX /FULLDUP /NOPASTHRU /WRAP 

/BROADCAST /NOHOSTSYNC /NOREADSYN 

1This is the default characteristic set by the system and is not a valid qualifier for your use. 

/DIAL UP 
INODIALUP (default) 
Specifies that the terminal is a dial-up terminal. 

!DISCONNECT 
/NODISCONNECT (default) 
Specifies that the process connected to this terminal not be disconnected 
if the line detects a hangup. The /DISCONNECT qualifier is valid only 
when /PERMANENT is specified. 

/DISMISS 
!NOD/SM/SS (default) 
Causes the terminal driver to ignore data causing a parity error (instead 
of terminating the currently outstanding I/O with an error status). 

!OMA 
/NOD MA 
Controls the use of direct memory access CDMA) mode on a controller that 
supports this feature. 

!ECHO (default) 
!NO ECHO 
Causes the terminal to display the input it receives. With /NOECHO, the 
terminal displays only system or user application output, or both. 

/EDIT MODE 
/NOEDIT_MODE 
Specifies that the terminal can perform ANSI-defined advanced editing 
functions. 

!EIGHT BIT 
!NOEIGHT_BIT 
Uses 8-bit ASCII protocol rather than 7-bit ASCII protocol. 



/ESCAPE 
INOESCAPE (default) 
Validates escape sequences. 

IFALLBACK 
INOFALLBACK 

DCL Commands DCL-345 
SET TERMINAL 

Displays the 8-bit DEC Multinational Character Set characters on the 
terminal in their 7-bit representation. The default depends on the 
/EIGHTBIT setting of the terminal. 

/FORM 
INOFORM 
Transmits a form feed rather than translating it into multiple line feeds. 

IFRAME:n 
Specifies the number of data bits that the terminal driver expects for 
every character that is input or output. The value of n can be from 
5 through 8. The default value depends on the /PARITY and /EIGHTBIT 
settings of the terminal. 

/FULLDUP (default) 
/NOFULLDUP 
Operates in full duplex mode. The /FULLDUP qualifier is equivalent to 
!NOHALFDUP. 

/HALFDUP 
/NOHALFDUP {default) 
Operates in half duplex mode. The /HALFDUP qualifier is equivalent to 
!NOFULLDUP. 

/HANGUP 
/NOHANGUP (default) 
May require LOG_IO or PHY_IO privilege depending on system 
generation parameter settings. Controls whether the terminal modem 
is hung up when you log out. 

/HARDCOPY 
INOHARDCOPY 
Establishes the device as a hardcopy terminal and outputs a backslash 
( \ ) when the DELETE key is pressed. The /HARDCOPY qualifier is 
equivalent to !NOSCOPE. 

/HOSTSYNC 
INOHOSTSYNC (default) 
When you specify the /HOSTSYNC qualifier, the system stops 
transmission to the terminal (by generating a CTRUS) when the input 
buffer is full and resumes transmission (by generating a CTRUQ) when 
the input buffer is empty. 



DCL-346 DCL Commands 
SET TERMINAL 

/INQUIRE 
Sets the device type according to a response elicited from the terminal; 
the default is UNKNOWN. Works only on Digital terminals, and not on 
the LA36 or VT05 terminals. Some VTlOO-family terminals, including 
the VT101 and VT105, return a VTlOO-type response. LA38 terminals 
respond as LA43 terminals. 

You can include the SET TERMINAL/INQUIRE command in your 
LOGIN.COM file to automatically detect the terminal type. 

CAUTION: This qualifier clears the type-ahead buffer. If 
the response sequence is unrecognized, no action message 
or error message is displayed. The /INQUIRE qualifier 
should be used only on Digital terminals. However, the 
LA36 and VT05 terminals do not support this feature. 

/INSERT 
Sets the terminal to /INSERT mode. This feature allows you to 
insert characters when editing command lines. The default mode is 
/OVERSTRIKE, which allows you to type over the current character wJ::ien 
editing a command line. Use CTRU A to switch from one mode to the 
other. 

/LFFILL[:fill-count] 
Transmits to the terminal the specified number of null characters after 
each line feed before transmitting the next meaningful character (to 
ensure that the terminal is ready for reception). The value must be an 
integer in the range 0 through 9. 

/LINE EDITING 
/NOLiNE_EDITING 
Enables advanced line-editing features for editing command lines: both 
RETURN and CTRUZ are recognized as line terminators, as are escape 
sequences. 

/LOCAL ECHO 
INOLOCAL_ECHO (default) 
Echoes characters locally (rather than the host echoing them) for 
command level terminal functions. (Do not use /LOCAL_ECHO with 
utilities that require control over echoing, such as line editing or EDT's 
screen mode.) 

CAUTION: When logging in t9 terminals with /LOCAL_ 
ECHO set, the VMS operating system has no control over 
the echoing of passwords. 



/LOWERCASE 
/NOLOWERCASE 

DCL Commands DCL-347 
SET TERMINAL 

Passes lowercase characters to the terminal. The /NOLOWERCASE 
qualifier translates all input to uppercase. /LOWERCASE is equivalent to 
/NO UPPERCASE. 

/MANUAL 
Indicates manual switching of terminal lines to dynamic asynchronous 
DDCMP lines when your local terminal emulator does not support 
automatic switching. The /MANUAL qualifier should be specified with the 
/PROTOCOL=DDCMP and /SWITCH=DECNET qualifiers. 

/MODEM 
INOMODEM 
Indicates that the terminal is connected to a modem or a cable that 
supplies standard EIA modem control signals. If your terminal has 
the MODEM characteristic, typing SET TERMINAL/NOMODEM 
automatically logs you out. 

INUMERIC_KEYPAD (default) 
Specifies that the keypad is to be set to /NUMERIC_KEYPAD mode, 
which allows you to use the keys on the numeric keypad to type numbers 
and punctuation marks. In order to use the DEFINE/KEY facility, which 
allows you to enter DCL commands defined with the DEFINE/KEY 
command, set the terminal to /APPLICATION_KEYPAD. Specifies 
whether the keys of the numeric keypad are used to type numbers and 
punctuation marks (/NUMERIC_KEYPAD) or to enter DCL commands 
defined with the DEFINE/KEY command (/APPLICATION_KEYPAD). 

/OVERSTRIKE (default) 
Sets the terminal to /OVERSTRIKE mode. This feature allows you to 
type over the current character when you are editing a command line. Set 
your terminal to /INSERT if you want to insert characters when editing 
command lines. Use CTRU A to switch from one mode to the other. 

IPAGE[=lines-per-page] 
For hardcopy terminals, specifies the number of print lines between 
perforations. (When the terminal reads a form feed, it advances the paper 
to the next perforation.) The value of n can be from 0 through 255 and 
defaults to 0 (which treats a form feed as a line feed). 

/PARITY[=option] 
INOPARITY (default) 
Passes data with odd or even parity, where option equals ODD or EVEN. 
If you specify /PARITY without an option, the value defaults to EVEN. 



DCL-348 DCL Commands 
SET TERMINAL 

/PASTHRU 
INOPASTHRU (default) 
Passes all data (including tabs, carriage returns, line feeds, and control 
characters) to an application program as binary data. The setting of 
/TTSYNC is allowed. 

Make sure that you spell both these qualifiers exactly as they appear in 
the text. 

/PERMANENT 
Requires LOG_IO or PHY_IO privilege. Sets characteristics on 
a permanent basis, that is, over terminal sessions. However, the 
characteristics revert to their initial values if the system is halted and 
restarted. Use in a system startup file to establish characteristics for all 
terminals on the system. 

/PRINTER PORT 
INOPRINTER_PORT 
Specifies that the terminal has a printer port (an attribute not set by the 
SET TERMINAL/INQUIRE command). 

IPROTOCOL:DDCMP 
IPROTOCOL:NONE (default) 
Controls whether the terminal port specified is changed into an 
asynchronous DDCMP line. The /PROTOCOL=NONE qualifier changes 
an asynchronous DDCMP line back into a terminal line. Note that 
/PROTOCOL=DDCMP is a permanent characteristic; therefore, the 
/PERMANENT qualifier is not required. 

IREADSYNC 
INOREADSYNC (default) 
Uses the CTRUS and CTRUQ functions to synchronize data transmitted 
from the terminal. 

The default is /NOREADSYNC; the system does not use CTRUS and 
CTRL/Q to control reads to the terminal. The /READSYNC qualifier is 
useful for certain classes of terminals that demand synchronization or for 
special-purpose terminal lines where data synchronization is appropriate. 

!REGIS 
INOREGIS 
Specifies that the terminal understands ReGIS graphic commands. 

/SCOPE 
!NOS COPE 
Establishes the device as a video terminal. /SCOPE is equivalent to 
/NOHARDCOPY. 



!SECURE SERVER 
INOSECURE_SERVER (default) 

DCL Commands DCL-349 
SET TERMINAL 

Causes the BREAK key on the terminal to log out the current process 
(except on a virtual terminal). With /SECURE_SERVER in effect, 
pressing the BREAK key when there is no current process initiates 
the login sequence. With /NOSECURE_SERVER in effect, the break is 
ignored. 

On terminals set with /AUTOBAUD, with the /SECURE_SERVER 
qualifier in effect, pressing the BREAK key disconnects the current 
process but is not required to start a new login sequence. However, when 
/NOAUTOBAUD is set, the /SECURE_SERVER characteristic requires a 
break to initiate a new login sequence. 

!SET SPEED 
INOSET_SPEED 
Requires either LOG_IO or PHY_IO privilege. Allows the /SPEED 
qualifier to be used to change the terminal speed. 

/SIXEL GRAPHICS 
INOSIXEL_ GRAPHICS 
Specifies that the terminal is capable of displaying graphics using the 
sixel graphics protocol. 

!SOFT CHARACTERS 
INOSOFT_CHARACTERS 
Specifies that the terminal is capable of loading a user-defined character 
set. 

ISPEED=(input-rate,output-rate) 
Sets the baud rate at which the terminal receives and transmits data. If 
the input and output rates are the same, specify /SPEED=rate. 

Not all terminals support different input and output baud rates. For 
specific information on baud rates for your terminal, consult the manual 
for that terminal. 

The default transmission rates are installation-dependent. 

ISWITCH:DECNET 
Causes the terminal lines at each node to be switched to dynamic asyn
chronous DDCMP lines, when specified with the /PROTOCOL=DDCMP 
qualifier. Note that /SWITCH=DECNET is a permanent characteristic; 
therefore, the /PERMANENT qualifier is not required. 

ISYSPASSWORD 
INOSYSPASSWORD (default) 
Requires LOG_IO privilege. Determines whether the terminal requires 
that a system password be entered before the Username: prompt. 



DCL-350 DCL Commands 
SET TERMINAL 

nAB 
/NO TAB 
Does not convert tab characters to multiple blanks. The /NOTAB qualifier 
expands all tab characters to blanks and assumes tab stops at 8-character 
intervals. 

/TTSYNC (default) 
/NOTTSYNC 
Stops transmitting to the terminal when CTRUS is pressed and resumes 
transmission when CTRUQ is pressed. 

nYPE_AHEAD (default) 
/NOTYPE_AHEAD 
Accepts unsolicited input for the terminal to the limit of the type-ahead 
buffer. 

When you specify /NOTYPE_AHEAD, the terminal is dedicated, and 
accepts input only when a program or the system issues a read to the 
terminal. Logins are disabled on a terminal with /NOTYPE_AHEAD 
set. When you specify !TYPE_AHEAD, the amount of data that can be 
accepted is governed by the size of the type-ahead buffer. That size is 
determined by system generation parameters. 

!UNKNOWN 
Specifies a terminal type that is unknown to the system, which then uses 
the default terminal characteristics for unknown terminals. 

/UPPERCASE 
INOUPPERCASE 
Translates lowercase to uppercase characters. The /UPPERCASE qualifier 
is equivalent to /NOLOWERCASE. 

IWIDTH:characters-per-line 
Specifies the maximum characters per line. This value must be an integer 
in the range 1 through 51L With /WRAP, the terminal generates a 
carriage return and line feed when the width specification is reached. 

If the specified width on an ANSI terminal is 132, the screen is set to 
132-character mode. If the terminal does not have advanced video option 
(AVO), the page length limit is set to 12 lines. 

!WRAP (default) 
/NO WRAP 
Generates a carriage return and line feed when the value of /WIDTH is 
reached. 



example 
$ SET TERMINAL/WIDTH=132/PAGE=60/NOBROADCAST 
$ TYPE MEMO.DOC 

$ SET TERMINAL/DEVICE=LA36 

DCL Commands DCL-351 
SET TERMINAL 

In this example, the first SET TERMINAL command indicates that the 
width of terminal lines is 132 characters and that the size of each page 
is 60 lines. The /NOBROADCAST qualifier disables the reception of 
broadcast messages while the terminal is printing the file MEMO.DOC. 
The next SET TERMINAL command restores the terminal to its default 
state. 

SET TIME 
Resets the system clock, which is used both as a timer to record intervals 
between various internal events, and as a source clock for displaying the 
time of day. 

Requires both OPER and LOG_IO privileges. 

format 

SET TIME[=time] 

parameter 
time 
Specifies a date in the format day-month-year, or a time in the format 
hour:minute:second.hundredth, or both. Day must be an integer in the 
range 1 through 31. Month must be JAN, FEB, MAR, APR, MAY, JUN, 
JUL, AUG, SEP, OCT, NOV, or DEC. Year must be an integer in the range 
1858 through 9999. Hour must be an integer in the range 0 through 23. 
Minute must be an integer in the range 0 through 59. Second must be an 
integer in the range 0 through 59. Hundredth (of a second) must be an 
integer in the range 0 through 99. The hyphens, colons, and period are 
required delimiters. Delimit the date and time, when both are specified, 
with a colon. 

example 
$ SET TIME=19-APR-1990:19:31:0.0 

The SET TIME command in this example sets the date/time at April 19, 
1990, 7:31 p.m. 



DCL-352 DCL Commands 
SET UIC 

SETUIC 
Changes the user identification code (UIC) of your process. 

Requires CMKRNL privilege. 

format 
SET UIC [uic] 

parameter 

uic 
Specifies a valid UIC. Square brackets ([])are required around the UIC. 

example 
$ SET ore [370,101 

The SET UIC command in this example establishes your UIC as [370,10]. 
You can now read or modify any files whose access is restricted to this 
UIC. 

SET VERIFY 
Controls whether command lines and data lines in command procedures 
are displayed at the terminal or printed in a batch job log. The 
information displayed by the SET VERIFY command can help you in 
debugging command procedures. 

·format 

SET [NO]VERIFY [=([NO]PROCEDURE, [NO] IMAGE)] 

parameter 
([NO]PROCEDURE, [NO]IMAGE) 
Specifies one or both types of verification. Procedure verification causes 
each DCL command line in a command procedure to be written to the 
output device. Image verification causes data lines (input data that is 
included as part of the SYS$INPUT input stream) to be written to the 
output device. By default, both types of verification are set or cleared 
with SET VERIFY and SET NOVERIFY. If you specify only one keyword, 
the other is not affected. If you specify only one keyword, omit the 
parentheses. 



DCL Commands DCL-353 
SET VERIFY 

description 
By default, the SET VERIFY and SET NOVERIFY commands set or clear 
both types of verification. The default setting for command procedures 
executed interactively is SET NOVERIFY. System responses and error 
messages are, however, always displayed. The default for batch jobs is 
SET VERIFY. 

example 
$ PROC VER= F$ENVIRONMENT("VERIFY PROCEDURE") 
$ IMAGE VER= F$ENVIRONMENT("VERIFY IMAGE") 
$ SET NOVERIFY -

$ TEMP = F$VERIFY(PROC_VER, IMAGE_VER) 

This command procedure uses the lexical function F$ENVIRONMENT to 
save the current procedure and image verification setting. Then the SET 
NOVERIFY command turns off both procedure and image verification. 
Subsequently, the F$VERIFY function is used to restore the original 
verification settings. 

SET VOLUME 
Changes the characteristics of one or more mounted Files-11 volumes. 

Requires WRITE ( W) access to the index file on the volume. If 
you are not the owner of the volume, requires either a system UIC 
or SYSPRV privilege. 

format 
SET VOLUME device-name[:][, ... ] 

parameter 
device-name[:][, ••• ] 
Specifies the name of one or more mounted Files-11 volumes. 



DCL-354 DCL Commands 
SET VOLUME 

qualifiers 
IACCESSED[=n] 
Requires OPER privilege. Specifies the number of directories to be 
maintained in system space for ready access. You can specify a number 
( n) in the range of 0 through 255. If you specify the qualifier I ACCESSED 
and omit the number of directories, a default value of 3 is used. 

IDATA_ CHECK[=(option[, ••• ])] 
Defines a default for data check operations following all reads and 
writes to the specified volume. (If you do not specify the /DATA_ CHECK 
qualifier, no checks are made.) Possible keywords are as follows: 

READ 
WRITE 

Performs checks following all read operations 

Performs checks following all write operations (default) 

/ERASE ON DELETE 
INOERASE_ON_DELETE (default) 
Determines whether the space occupied by a file is overwritten with a 
system specified pattern when a file on the volume is deleted. 

IEXTENSION[:n] 
Specifies the number of blocks to be used as a default extension size 
for all files on the volume. You can specify a number ( n) in the range 
of 0 through 65,535. If you specify the /EXTENSION qualifier without 
specifying a value, a default value of 0 (the VMS RMS default) is used. 

IFILE_PROTECTION=(code) 
Sets the default protection to be applied to all files on the specified disk 
volume. Specify ownership as SYSTEM, OWNER, GROUP, or WORLD 
and access as R (READ), W (WRITE), E (EXECUTE), or D (DELETE). A 
null access specification means no access. 

!HIGHWATER MARKING 
/NOHIGHWATER_MARKING 
Determines whether the File Highwater Mark (FHM) volume attribute is 
set. The FHM attribute guarantees that a user cannot read data that was 
not written by the user. Applies to Structure Level 2 volumes only. 

/LABEL=volume-label 
Specifies a 1- through 12-character alphanumeric name to be encoded on 
the volume. Characters are automatically changed to uppercase. 

!LOG 
/NOLOG (default) 
Determines whether the volume specification of each volume is displayed 
after the modification. 



/MOUNT VERIFICATION 
/NOMOUNT_ VERIFICATION 

DCL Commands 
SET VOLUME 

DCL-355 

Determines whether mount verification is enabled. Mount verification 
prevents interruption to user input/output operations and notifies the 
operator of problems with the disk. 

/OWNER_UIC[:uic] 
Sets the owner UIC of the volume to the specified UIC. The default UIC 
is that of the current process. Brackets are required around the UIC. 

/PROTECTION=( code) 
Specifies the protection to be applied to the volume. The ownership 
categories are SYSTEM, OWNER, GROUP, and WORLD; the access 
categories are R (READ), W (WRITE), E (EXECUTE), and D (DELETE). 
The default protection is all types of access by all categories of user. 

/REBUILD 
Recovers caching limits for a volume that was improperly dismounted. 
If a disk volume was dismounted improperly (such as during a system 
failure), and was then remounted with the MOUNT/NOREBUILD 
command, you can use SET VOLUME/REBUILD to recover the caching 
that was in effect at the time of the dismount. 

/RETENTION:(min[,max]) 
Specifies the minimum and maximum retention times to be used by the 
file system to determine the expiration date for files on the volume. When 
a file is created, its expiration date is set to the current time+ maximum. 
Each time the file is accessed, the current time is added to the minimum 
time. If the sum is greater than the expiration date, a new expiration 
date is computed. 

SET VOLUME/RETENTION=O is the mechanism by which retention 
times are disabled on the volume. 

/UNLOAD (default) 
/NOUN LOAD 
Specifies whether the volume is unloaded (spun down) when the DCL 
command DISMOUNT is entered. 

/USER_NAME[:user-name] 
Specifies a user name of up to 12 alphanumeric characters to be recorded 
on the volume. The default name is the current process user name. 

IWINDOWS[=n] 
Specifies the number of mapping pointers to be allocated for file windows. 
The value of n can be from 7 through 80; the default value is 7. 



DCL-356 

example 

DCL Commands 
SET VOLUME 

$ SET VOLUME/ACCESSED=25/USER_NAME=MANAGER/LOG DBAO: 

The SET VOLUME command in this example specifies that 25 directories 
are to be maintained in system space for ready access for the volume 
DBAO:. The command also assigns the user name MANAGER to the 
volume and displays the volume specification after the volume is modified. 

SET WORKING SET 
Redefines the default working set size for the process, or sets an upper 
limit to which the working set size can be changed by an image that the 
process executes. Working set limits cannot be set to exceed those defined 
in the user authorization file (UAF). 

format 
SET WORKING_SET 

qualifiers 
/ADJUST (default) 
/NO ADJUST 
Enables or disables the system's changing of the process working set. 

IEXTENT:n 
Specifies the maximum number of pages that can be resident in the 
working set during image execution. 

The extent value must be greater than the minimum working set defined 
at system generation, and it must be less than or equal to the authorized 
extent defined in the user authorization file. 

If you specify a value greater than the authorized extent, the command 
sets the working set limit at the maximum authorized value. 

ILIMIT:n 
Specifies the size to which the working set is to be reduced at image exit. 

If you specify a value greater than the current quota, the quota value is 
also increased. 

/LOG 
INOLOG (default) 
Determines whether or not confirmation of the SET WORKING_SET 
command is displayed. 



/QUOTA:n 

DCL Commands 
SET WORKING_SET 

DCL-357 

Specifies the maximum number of pages that any image executing in the 
process context can request. An image can set the working set size for 
the process by calling the Adjust Working Set Limit ($ADJWSL) system 
service. 

example 
$ SHOW WORKING_SET 

Working Set /Limit= 150 /Quota= 700 /Extent= 700 
Adjustment enabled Authorized Quota= 700 Authorized Extent= 700 

$ SET WORKING SET/QUOTA=lOOO 
%SET-I-NEWLIMS, new working set: Limit = 150 Quota = 700 Extent = 700 

The SHOW WORKING_SET command in this example displays the 
current limit, quota, and extent, as well as the authorized quota and 
authorized extent. The SET WORKING_SET command attempts to set a 
quota limiting the maximum number of pages any image can request that 
is greater than the authorized quota. Note from the response that the 
quota was not increased. 

SHOW ACCOUNTING 
Displays the activities for which accounting is currently enabled. For 
more information about the Accounting Utility, see the VMS System 
Manager's Manual in the VMS base documentation set. 

format 
SHOW ACCOUNTING 

parameters 
None. 

qualifier 

!OUTPUT[:file-spec] 
!NOOUTPUT 
Specifies the file to which the display is written; by default, the display is 
written to the current SYS$0UTPUT device. 

example 
$ SHOW ACCOUNTING/OUTPUT=ACCOUNTING.SET 

The SHOW ACCOUNTING command in this example writes the current 
setting of SET ACCOUNTING to the file ACCOUNTING.SET. 



DCL-358 DCL Commands 
SHOWACL 

SHOWACL 
Allows you to display the access control list (ACL) of an object. 

format 
SHOW ACL object-name 

parameter 
object-name 
Specifies the name of the object whose ACL is to be displayed. No 
wildcard characters are allowed in the object-name specification. 

qualifier 
/OBJECT_ TYPE:type 
Defines the object type of the object whose ACL is to be displayed. The 
following keywords are used to specify the object type: 

FILE (default) 

DEVICE 

SYSTEM_GLOBAL_SECTION 

GROUP _GLOBAL_SECTION 

QUEUE 

LOGICAL_NAME_TABLE 

example 
$ SHOW ACL/OBJECT_TYPE=DEVICE TTAl 

The object is a Files-11 disk file. 

The object is a device. 

The object is a system global section. 

The object is a group global section. 

The object is a batch or device (terminal, server, or 
printer) queue. 

The object is a system logical name table. 

Object type: device, Object name: VTAl 
(IDENTIFIER=[SALES,FRANK],ACCESS=READ) 
(IDENTIFIER=[123,321]+NETWORK,ACCESS=NONE) 

The SHOW ACL command in this example displays the ACL of the device 
TTAl. 



SHOW AUDIT 

DCL Commands 
SHOW AUDIT 

DCL-359 

Displays the security auditing characteristics in effect on the system. 

Requires the SECURITY privilege. 

format 
SHOW AUDIT 

qualifiers 
/ALL 
Displays all available auditing information including the following: name 
and location of the system security audit log file; type of security events 
enabled on the system; action the system will take if an attempt to write 
an audit event message fails (failure mode); name and location of the 
security archive file; information about the audit server process, such as 
the action taken if the audit server process runs out of virtual memory. 

/ALARM 
Displays the security events currently enabled on the system. 

!ARCHIVE 
Displays the name and location of the security archive file (if enabled). 

!FAILURE_MODE 
Displays the failure mode currently in effect on the system. 

/JOURNAL 
Displays the name and location of the system security audit log file. 

IOUTPUT[:file-spec] 
/NOOUTPUT 
Controls where the output of the command is sent. If you do not enter the 
qualifier, or if you enter /OUTPUT without a file specification, the output 
is sent to the current process default output stream or device, identified 
by the logical name SYS$0UTPUT. 

example 
$ SHOW AUDIT 
Security alarm failure mode is set to: 

WAIT Processes will wait for resource 

Security alarms currently enabled for: 
BREAKIN: (DIALUP,LOCAL,REMOTE,NETWORK,DETACHED) 
LOGIN: (DIALUP) 
LOGOUT: (DIALUP) 

The SHOW AUDIT command in this example reveals that the terminals 
enabled as security operators will receive an alarm whenever the system 
detects a possible breakin attempt, or when a dialup user logs in or out. 



DCL-360 DCL Commands 
SHOW BROADCAST 

SHOW BROADCAST 
Displays the message classes that are currently affected by the SET 
BROADCAST command. 

format 
SHOW BROADCAST 

qualifier 
IOUTPUT[:file-spec] 
INOOUTPUT 
Controls where the output of the command is sent. If you do not enter the 
qualifier, or if you enter /OUTPUT without a file specification, the output 
is sent to the current process default output stream or device, identified 
by the logical name SYS$0UTPUT. 

example 
$ SHOW BROADCAST 
Broadcasts are currently disabled for: 

MAIL 

The SHOW BROADCAST display in this example indicates that SET 
BROADCAST=NOMAIL is in effect. 

SHOW CLUSTER 
Invokes the Show Cluster Utility (SHOW CLUSTER) to monitor and 
display cluster activity and performance. 

format 
SHOW CLUSTER 

SHOW CPU 
Displays the current state of the processors in a VMS multiprocessing 
system. 

Applies only to VMS multiprocessing systems. Requires change 
mode to kernel (CMKRNL) privilege. 

format 
SHOW CPU [cpu-id, ... ] 



parameter 
cpu-id 

DCL Commands 
SHOW CPU 

DCL-361 

Decimal value representing the identity of a processor in a multiprocess
ing system. In a VAX 8300 system, for instance, the CPU ID is the VAXBI 
node number of the processor; in a VAX 8800, the CPU ID of the left 
processor is 1 and that of the right processor is 0. 

description 
The SHOW CPU command displays information about the status, 
characteristics, and capabilities of the processors active in and available 
to a VMS multiprocessing system. 

You identify the processors to be displayed by using either the I ACTIVE 
qualifier, the I ALL qualifier, a CPU ID, or list of CPU IDs. If you specify 
none of these, the SHOW CPU command uses the /ALL qualifier by 
default. 

You identify the type of information to be displayed by using the /BRIEF, 
/FULL, and /SUMMARY qualifiers. If you specify neither the /SUMMARY, 
/BRIEF, nor /FULL qualifier, SHOW CPU assumes the /BRIEF qualifier 
by default. However, if you likewise do not identify a processor or 
processors as the object of a command, SHOW CPU assumes a default 
of SHOW/ALUSUMMARY. 

The SHOW CPU/FULL command lists the current process on each 
configured processor without stopping other activity on the system. The 
current process might change while the data are displayed. As a result, 
there might be apparent inconsistencies in the display. For example, a 
process might be listed as the current process on more than one CPU. 

qualifiers 
/ACTIVE 
Selects as the subject of the display only those processors that are 
members of the system's active set. 

/ALL 
Selects all configured processors, active and inactive, as the subject of the 
display. 

/BRIEF 
Produces information from the summary display and also lists the 
current CPU state and current process (if any) for each processor in 
the configuration. 



DCL-362 DCL Commands 
SHOW CPU 

/FULL 
Produces information from the summary display. The /FULL qualifier also 
lists the current CPU state, current process (if any), revision levels, and 
capabilities for each configured processor. It indicates which processes 
can execute only on certain processors in the configuration. In addition, if 
one or more uniprocessing drivers are present in the system, the /FULL 
qualifier lists them by name. 

!SUMMARY 
Produces a display listing the processors in the VMS multiprocessing 
system, indicating which is the primary, which are configured, and 
which are active. The /SUMMARY qualifier also indicates the minimum 
revision levels required for processors in the system, which VMS 
synchronization image has been loaded into the operating system, 
and whether multiprocessing is enabled. If the presence of one or 
more uniprocessing drivers in the system prohibits the enabling of 
multiprocessing, the SHOW CPU command displays a warning message. 

SHOW DEFAULT 
Displays the current default device and directory. 

format 
SHOW DEFAULT 

example 
$ SHOW DEFAULT 

DISKl: [ALPHA] 
$SET DEFAULT DISK5:[HIGGINS.SOURCES] 
$ SHOW DEFAULT 

DISKS: [HIGGINS.SOURCES] 

The SHOW DEFAULT command in this example displays the current 
default device and directory names. The SET DEFAULT command 
changes these defaults, and the next SHOW DEFAULT command displays 
the new default device and directory. 



SHOW DEVICES 

DCL Commands 
SHOW DEVICES 

Displays the status of a device on the system. 

See the qualifier descriptions for restrictions. 

format 

SHOW DEVICES [device-name[:]] 

parameter 

device-name[:] 

DCL-363 

Specifies the name of a device for which information is to be displayed. 
You can specify a complete device name or only a portion of a device 
name. 

qualifiers 
/ALLOCATED 
Displays all devices currently allocated to processes. 

!BRIEF (default) 
Displays brief information about the specified devices. 

!FILES 
Requires SYSPRV or BYPASS privileges to list read-protected 
files. Displays a list of the names of all files open on a volume and their 
associated process name and process identification (PID). The specified 
device must be a mounted Files-11 volume. If the specified volume is 
a multivolume set, the files on each volume in the set are listed. If the 
/SYSTEM qualifier is also specified, only the names of installed files and 
files opened by the system are displayed. If the /NOSYSTEM qualifier is 
specified, only those files opened by processes are displayed. 

/FULL 
Displays a complete list of information about the devices. 

/MOUNTED 
Displays all devices that currently have volumes mounted on them. 

IOUTPUT[:file-spec] 
/NOOUTPUT 
Controls where the output of the command is sent. If you do not enter the 
qualifier, or if you enter /OUTPUT without a file specification, the output 
is sent to the current process default output stream or device, identified 
by the logical name SYS$0UTPUT. 



DCL-364 DCL Commands 
SHOW DEVICES 

/SYSTEM 
INOSYSTEM 
Controls whether the names of installed files and files opened by the 
system are displayed. 

/WINDOWS 
Displays the window count and total size of all windows for files open 
on a volume. The file name and related process name and process 
identification (PID) are also displayed. The letter C in a display indicates 
that the file is open with "cathedral windows" (segmented windows). 

example 
$ SHOW DEVICES/FULL DMAO 
Disk NODE1$DMAO:, device type RK07, is online, allocated, mounted, 
error logging enabled 
Error count 
Owner UIC 
Owner process ID 
Reference count 
Volume label 

0 
(1, 4) 

202000C8 
2 

JAKE_X239 
Cluster size 1 
Free blocks 3741 
Extend quantity 5 

Operations completed 1257 
Owner process name VANNOY 
Dev Prot S:RWED,O:RWED,G:RWED,W:RWED 
Default buffer size 512 
Relative volume no. 0 
Transaction count 2 
Maximum files allowed 13447 
Mount count 1 

Volume status Process ACP process name DMAOBACP 
64 File ID cache size 64 Extent cache size 

Quota cache size 64 
Volume is subject to mount verification, file high-water marking 

In this example, the SHOW DEVICES command requests a full listing of 
the status of the RK07 device DMAO. The device is located on NODEl in 
a VAXcluster. 

SHOW DEVICES/SERVED 
Displays information on devices served by the MSCP server on this node. 
The /SERVED qualifier is required. 

format 
SHOW DEVICES/SERVED 

description 
The SHOW DEVICES/SERVED command displays information about the 
MSCP server and the devices it serves. This information is mostly used 
by system managers. 



qualifiers 
/ALL 

DCL Commands 
SHOW DEVICES/SERVED 

DCL-365 

This qualifier displays the information displayed by all of the qualifiers 
listed below except the /OUTPUT qualifier. 

/COUNT 
Displays the number of transfer operations completed, sorted by the size 
of the transfers, and the number of MSCP operations that have taken 
place since the MSCP server was started. 

/HOST 
Displays the names of the processors that have MSCP-served devices on 
line. SYSGEN's MSCP/HOST command determines how many hosts in 
the cluster can connect to the MSCP server at one time. 

/OUTPUT =[filespec] 
Redirects output from your terminal to the specified file. If you do 
not specify a file, or if you do not use this qualifier, output is sent to 
SYS$0UTPUT. 

/RESOURCE 
Displays information on the resources available to the MSCP server for 
use in processing 1/0 requests for the devices it serves. You make these 
resources available to the MSCP server when you use SYSGEN's MSCP 
command to start the MSCP server and use the qualifiers listed in the 
following table: 

Qualifier 

/BUFFER 

/FRACTION 

/SMALL 

/PACKETS 

Item Specified 

The amount of buffer space available to the MSCP server 

The maximum size, in pages, of the buffer granted to an I/O 
request; for transfers of more data than will fit a buffer of the 
size specified by this qualifier, several CI transfers are needed 

The minimum size, in pages, of the buffer that the MSCP server 
can grant to an I/O request; if less than this amount of buffer 
space is available, the I/O request must wait until at least this 
much buffer space becomes available; when this much space 
becomes available, the MSCP server grants the request a buffer 

The number of I/0-request packets (CDRPs) available to the 
MSCP server for processing I/O requests 



DCL-366 

example 

DCL Commands 
SHOW DEVICES/SERVED 

SHOW DEVICES/SERVED 
MSCP Served Devices on BOSTON 19-APR-1990 12:34:56.78 

Device: 
2$DBAO 
2$DMA1 
2$DMAO 

Status 
AVAIL 

ONLINE 
OFFLINE 

Total Size 
340670 

53790 
53790 

Queue Requests 
Current Max 

0 0 
0 0 
0 0 

Hosts 
0 
2 
0 

This example shows the output generated by the command SHOW 
DEVICES/SERVED. The first column in the display shows the names 
of the devices that are served by the MSCP server. The second column 
shows the status of the devices. The third column shows the size, in 
blocks, of the device. 

The Queue Requests columns show the number of I/O requests currently 
awaiting processing by that device and the maximum number of I/O 
requests that have ever been concurrently awaiting processing by that 
device. The last column in the display shows the number of hosts that 
have the device on line. 

SHOW DISPLAY 
Indicates the node where output from a DECwindows application will be 
displayed. 

format 
SHOW DISPLAY [display-device] 

parameters 
display-device 
Refers to the display-device parameter specified with the SET DISPLAY 
command. If you are directing application output to multiple workstations 
in the same session, you can use logical names to point to each 
workstation. Using the SHOW DISPLAY command, you can specify 
this logical name as the display-device parameter to see where application 
output will be displayed. 

If you do not specify a display-device string, the logical name 
DECW$DISPLAY is used. 



example 

$ SHOW DISPLAY 
Device: WSAl: 
Node: 0 
Transport: LOCAL 
Server: 0 
Screen: 0 

$ SET DISPLAY/CREATE/NODE=ZEPHYR 
$ SHOW DISPLAY 

Device: WSA2: 
Node: ZEPHYR 
Transport: DECNET 
Server: 0 
Screen: 0 

DCL Commands 
SHOW DISPLAY 

$ SPAWN/NOWAIT/INPUT=NL: RUN SYS$SYSTEM:DECW$CLOCK 

$ SET DISPLAY/NOPERMANENT 

$ SHOW DISPLAY 
Device: WSAl: 
Node: 0 
Transport: LOCAL 
Server: 0 
Screen: 0 

DCL-367 

In this example, you are logged in to your workstation, here referred to as 
node 0. (0 is the standard shorthand notation for representing your node.) 
You want to run the DECwindows Clock on your workstation and display 
it on another node, ZEPHYR. 

Assuming you are authorized to display applications on ZEPHYR, you 
redirect the application's output to ZEPHYR with the SET DISPLAY 
command and enter the SHOW DISPLAY command to verify the 
location of the redirected display. You then run Clock. When you finish 
running Clock, you disable the redirected display by entering the SET 
DISPLAY/NOPERMANENT command. Finally, you enter the SHOW 
DISPLAY command to verify that any applications subsequently run on 
your node will also be displayed there. 

Note that a new workstation display device, WSA2, is created when 
you enter the SET DISPLAY/CREATE command. When you cancel the 
redirected display with the SET DISPLAY/NOPERMANENT command, 
application output is once again displayed on the workstation display 
device referred to by WSAl. 



DCL-368 DCL Commands 
SHOW ENTRY 

SHOW ENTRY 
Displays information about a user's batch and print jobs or about specific 
job entries. 

Requires GROUP privilege to display all jobs in your group. 
Requires OPER privilege to display all jobs in all groups. 

format 
SHOW ENTRY [entry-number, ... ] 

parameter 
[entry-number, ... ] 
Specifies the entry number of the job you want displayed. If no entry 
number is specified, all your own jobs (or those owned by the user 
specified with the /USER_NAME qualifier) are displayed. 

qualifiers 
/BATCH 
Selects batch jobs for display. If /USER_NAME is not specified, 
information about your own jobs is displayed. 

/BRIEF (default) 
Displays the following information for each job: job name, user name, 
entry number, job size in blocks (for print jobs), status, queue name, and 
queue type. The /FULL and /FILES qualifiers override /BRIEF. Specify 
the /FULL qualifier to obtain more job information. 

IBY_JOB_STATUS[=(keyword, ... )] 
Selects for display only those jobs with the specified status. Specify the 
status with one or more of the following keywords: 

EXECUTING 

HOLDING 

PENDING 

RETAINED 

TIMED_RELEASE 

Requests the display of currently executing jobs. 

Requests the display of jobs on hold. Holding status indicates that 
the job is being held in the queue indefinitely. 

Requests the display of jobs with pending status. Pending status 
indicates that the job is waiting its turn to execute. 

Requests the display of jobs retained in the queue after execution. 
Retained status indicates that the job has completed but remains 
in the queue. For example, a job may be retained in the queue if 
there was an error during its execution. 

Requests the display of jobs on hold until a specified time. Timed 
release status indicates that the job is being held in the queue for 
execution at a future time. 

If no keyword is specified, /BY_JOB_STATUS displays the status of all 
jobs. 



/DEVICE[=(keyword, ... )] 

DCL Commands 
SHOW ENTRY 

DCL-369 

Selects for display only those print jobs in the queue types specified. 
Specify the queue type with one or more of the following keywords: 

PRINTER 

SERVER 

TERMINAL 

Requests the display of jobs in print queues. 

Requests the display of jobs in server queues. 

Requests the display of jobs in terminal queues. 

If no keyword is specified, /DEVICE displays all printer, terminal, and 
server queues. If /USER_NAME is not specified, information about your 
own jobs is displayed. 

!FILES 
Adds to the default display the list of full file specifications for each file in 
each job. 

!FULL 
Displays the following information for each job: job name, user name, 
entry number, job status, full file specification associated with each job, 
date and time of submission, settings specified for the job, queue name, 
and queue type. 

The /FULL qualifier overrides the default brief listing format. 

!GENERIC 
Selects for display only those jobs contained in generic queues. A generic 
queue holds jobs of a particular type (for example, batch or line printer 
jobs) and directs them to execution queues for processing. If /USER_ 
NAME is not specified, information about your own jobs is displayed. 

!OUTPUT[=filespec] 
INOOUTPUT 
Controls where the output of the SHOW ENTRY command is sent. By 
default, the output is sent to the current SYS$0UTPUT device (usually 
your terminal). To send the output to a file, use the /OUTPUT qualifier 
followed by a file specification. The file specification may not include any 
wildcard characters. If you enter a partial file specification (for example, 
specifying only a directory), SHOW is the default file name and LIS is the 
default file type. If you enter /NOOUTPUT, output is suppressed. 

/USER_NAME:username 
Selects for display those jobs owned by the specified user. If /USER_ 
NAME is not specified, information about your own jobs is displayed. The 
name must be 1to12 alphanumeric characters. 



DCL-370 

example 

DCL Commands 
SHOW ENTRY 

$ SHOW ENTRY/DEVICE=(PRINTER,TERMINAL) 
Jobname Username Entry Blocks Status 

FORECAST JONES 422 12 Printing 
On printer queue LN01$PRINT 

MANAGER JONES 431 4 Printing 
On terminal queue LQ$PRINT 

In this example, SHOW ENTRY produces a display of your current job 
entries on all printer and terminal queues. 

SHOW ERROR 
Displays the error count for all devices with error counts greater than 0. 

format 
SHOW ERROR 

parameters 
None. 

qualifiers 
/FULL 
Displays the error count for all devices, including those with no errors. 
(The error count is either 0 or a number greater than 0.) 

IOUTPUT[=file-spec] 
/OUTPUT :SYS$0UTPUT (default) 
Specifies the file to which the display is written. By default, the display is 
written to the current SYS$0UTPUT device. 

example 
$ SHOW ERROR 

Displays the error count for all devices with error counts greater than 0: 
Device Error Count 
CPU 2 
MEMORY 1 
DBBl 9 



SHOW INTRUSION 

DCL Commands 
SHOW INTRUSION 

Displays the contents of the break-in database. 

Requires the CMKRNL and SECURITY privileges. 

format 
SHOW INTRUSION 

qualifiers 
IOUTPUT[:file-spec] 

DCL-371 

Directs the output from the SHOW INTRUSION command to the file 
specified with the qualifier. By default, output from the command is 
displayed to SYS$0UTPUT. 

nYPE:keyword 
Selects the type of information from the break-in database that is 
displayed. The valid keywords are as follows: 

ALL All break-in entries. By default, all entries are displayed. 

SUSPECT Break-in entries for login failures that have occurred but have not yet passed 
the threshold necessary to be identified as an intruder. 

INTRUDER Break-in entries for which the login failure rate was high enough to warrant 
evasive action. 

example 
$ SHOW INTRUSION/TYPE=INTRUDER 

Intrusion Type Count Expiration Source 
TERMINAL INTRUDER 9 10:29:39.16 AV34C2/LC-1-15: 
NETWORK INTRUDER 7 10:47:53.12 STAR::HAMM 

In this example, the SHOW INTRUSION command displays all intruder 
entries currently in the break-in database. 

SHOW KEY 
Displays the key definitions created with the DEFINE/KEY command. 

format 
SHOW KEY [key-name] 



DCL-372 DCL Commands 
SHOW KEY 

parameter 

key-name 
The name of the key whose definition you want displayed. See the 
DEFINE/KEY command for a list of valid key names. 

qualifiers 
/ALL 
Displays all key definitions in the current state (or the state specified with 
the /STATE qualifier). If you use the I ALL qualifier, do not specify a key 
name. 

/BRIEF (default) 
/NO BRIEF 
Displays only the key definition and state. The /BRIEF and /NOFULL 
qualifiers are equivalent. 

/DIRECTORY 
Displays the names of all states for which keys have been defined. 

/FULL 
INOFULL (default) 
Displays all qualifiers associated with a definition. By default, only the 
state of the definition and the definition itself are displayed. The /FULL 
and /NOBRIEF qualifiers are equivalent. 

!STATE=( state-name[, ••• ]) 
/NOSTATE 
Displays the key definitions for the specified state. If you specify only 
one state name, you can omit the parentheses. State names can be any 
appropriate alphanumeric string. State names are created with the 
DEFINE/KEY command. 

example 

$ DEFINE/KEY/TERMINATE PFl "ATTACH GEORGE" 
%DCL-I-DEFKEY, DEFAULT key PFl has been defined 
$ SHOW KEY PFl 
DEFAULT keypad definitions: 

PFl = "ATTACH GEORGE" 
$ SHOW KEY/FULL PFl 
DEFAULT keypad definitions: 

PFl = "ATTACH GEORGE" (noecho,terminate,noerase,nolock) 

The SHOW KEY command in this example displays both the definition 
and the state for the PFl key. This is the default display. The SHOW 
KEY/FULL command displays all qualifiers associated with the key 
definition. 



SHOW LICENSE 

DCL Commands 
SHOW LICENSE 

DCL-373 

Displays all the software product licenses active on the current node. An 
active license is one that has been registered in the LICENSE database 
and loaded into system memory. To register and activate software 
product licenses, use the License Management Utility (LICENSE), or 
VMSLICENSE.COM. Some licenses are registered automatically during 
product installation. 

For a complete description of this utility, see the VMS License 
Management Utility Manual, part of the VMS Base Documentation 
Set. 

To display licenses registered in the LICENSE database, use the 
LICENSE LIST command, described with the utility. 

format 
SHOW LICENSE 

parameters 
None. 

qualifier 
/OUTPUT[=filespec] 
/NOOUTPUT 
By default, the output of the SHOW LICENSE command is sent to the 
current SYS$0UTPUT device (usually your terminal). To send the output 
to a file, use the /OUTPUT qualifier followed by a file specification. 

You cannot use any wildcard characters for the file specification. If you 
enter a partial file specification (for example, specifying only a directory), 
SHOW is the default file name and LIS is the default file type. 

If you enter the /NOOUTPUT qualifier, output is suppressed. 

example 
$ SHOW LICENSE 

Active licenses on node WTPOOH: 

DVNETEND 
Producer: DEC 
Units: 0 
Version: 5.2 
Date: (none) 
Termination Date: (none) 
Availability: E (System Integrated Products) 
Activity: 0 
MOD_UNITS 



DCL-374 DCL Commands 
SHOW LICENSE 

VAX-VMS 
Producer: DEC 
Units: 0 
Version: 5.2 
Date: (none) 
Termination Date: (none) 
Availability: A (VMS Capacity) 
Activity: 0 
MOD_UNITS 
NO_SHARE 

The SHOW LICENSE command in this example displays all the active 
licenses on the current node named WTPOOH. 

SHOW LOGICAL 
Displays translations, the level of translation, and the logical name table 
for a specified logical name. The SHOW LOGICAL command performs 
iterative translations. 

Requires READ ( R) access to the table in which a logical name is 
cataloged to display information about the logical name. 

format 
SHOW LOGICAL [logical-name[:]{, ... ]] 

parameter 
logical-name[:][, •.• ] 
Specifies one or more logical names whose translations you want to 
display. The asterisk ( * ) and percent ( % ) wildcard characters are 
allowed. However, if a wildcard character is used, iterative translation is 
not done. 

qualifiers 
/ACCESS_MODE:mode 
Displays names defined in the specified access mode and any inner 
access modes. You can specify one of the following keywords to indicate 
the access mode: USER_MODE, SUPERVISOR_MODE, EXECUTIVE_ 
MODE, or KERNEL_MODE. 

!ALL (default) 
Indicates that all logical names in the specified logical name tables are to 
be displayed. 

/DESCENDANTS 
INODESCENDANTS (default) 
Controls whether the system displays names from the specified logical 
name table and any descendant tables. A descendant table is created 
by the CREATE/NAME_TABLE command, with the /PARENT_TABLE 



DCL Commands DCL-375 
SHOW LOGl'CAL 

qualifier specifying its parent table. If you use the /DESCENDANTS 
qualifier, you must also use the !TABLE qualifier. 

/FULL 
Displays more detailed information for the specified logical name. The 
information includes the access mode, attributes, the translation, and the 
logical name table. 

/GROUP 
Indicates that only the group logical name table is to be searched. The 
/GROUP qualifier is synonymous with tTABLE=LNM$GROUP. If you 
specify the /GROUP qualifier and you do not also specify a logical name, 
all names in the group table are di.splayed. 

/JOB 
Indicates that only the job logical name table is to be searched. The /JOB 
qualifier is synonymous with tTABLE=LNM$JOB. If you specify the /JOB 
qualifier and you do not also specify a logical name, all names in the job 
logical name table are di.splayed. 

/OUTPUT[:file-spec] 
INOOUTPUT 
By default, the output of the SHOW LOGICAL command is sent to the 
current SYS$0UTPUT device (usually your terminal). To send the output 
to a file, use the /OUTPUT qualifier followed by a file specification. If you 
enter /NOOUTPUT, output is suppressed. 

/PROCESS 
Indicates that only the process logical name table is to be searched. The 
/PROCESS qualifier is synonymous with tTABLE=LNM$PROCESS. If 
you specify the /PROCESS qualifier and you do not also specify a logical 
name, all names in the process table are di.splayed. 

/STRUCTURE 
INOSTRUCTURE (default) 
Controls whether the system di.splays the "family tree" of all accessible 
logical name tables. If you specify /STRUCTURE, you cannot use any 
other qualifiers except /ACCESS_MODE, /FULL, and /OUTPUT. 

/SYSTEM 
Indicates that only the system logical name table is to be searched. The 
/SYSTEM qualifier is synonymous with tTABLE=LNM$SYSTEM. If you 
specify the /SYSTEM qualifier and you do not also specify a logical name, 
all names in the system table are di.splayed. 

/TABLE=( name[, ••• ]) 
Specifies the tables you want to search. If you specify only one table, you 
can omit the parentheses. Wildcards are allowed. Names with wildcards 
are used to match table names. Names without wildcards are treated 
both as table names and table search lists (whichever is appropriate). 



DCL-376 DCL Commands 
SHOW LOGICAL 

example 
$ SHOW LOGICAL/PROCESS 
(LNM$PROCESS TABLE) 

"SYS$COMMAND" = " TTB4:" 
"SYS$DISK" = "WORK6:" 
"SYS$DISK" = "WORK6:" 
"SYS$ERROR" =II TTB4:" 
"SYS$INPUT" = "-TTB4:" 
"SYS$LOGIN" = "WORK6: [ODONNELL]" 
"SYS$LOGIN DEVICE" = "WORK6:" 
"SYS$0UTPUT" = II TTB4:" 
"SYS$0UTPUT" = "DBA2:" 
"SYS$SCRATCH" = "WORK6: [ODONNELL]" 

The SHOW LOGICAL command in this example displays all process log
ical names and their translations. (Note that trABLE=LNM$PROCESS 
would produce the same display as /PROCESS.) 

SHOW MAGTAPE 
Displays the current characteristics and status of a specified magnetic 
tape device. 

format 
SHOW MAGTAPE device-name[:] 

parameter 
device-name[:] 
Specifies the name of the magnetic tape device for which you want to 
display the characteristics and status. 

qualifier 
/OUTPUT[:file-spec] 
INOOUTPUT 
Specifies the file to which the display is written; by default, the display is 
written to the current SYS$0UTPUT device. 

example 
$ SHOW MAGTAPE MTAO: 

MTAO: UNKNOWN, DENSITY=BOO, FORMAT=Normal-11 
Odd Parity 

The SHOW MAGTAPE command in this example displays the 
characteristics of the device MTAO:. The display shows the device type, 
density, and format (default or normal PDP-11). 



DCL Commands DCL-377 
SHOW MAGTAPE 

It also displays the following characteristics: 
Position lost 

End-of-tape 

End-of-file 

Beginning-of-tape 

SHOW MEMORY 

Write-locked 

Even parity 

Odd parity 

Displays the availability and usage of those system resources that are 
related to memory. 

format 
SHOW MEMORY 

qualifiers 
!ALL (default) 
Displays all available information, that is, information displayed by the 
/FILES, /PHYSICAL_PAGES, /POOL, ·and /SLOTS qualifiers. 

!FILES 
Displays information about the use of each paging and swap file currently 
installed. 

/FULL 
When used with the /POOL or /FILES qualifier, displays additional 
information about the use of each pool area or paging and swap file 
currently installed. This qualifier is ignored unless the /FILES or /POOL 
qualifier is explicitly specified. 

/OUTPUT[:file-spec] 
INOOUTPUT 
Controls where the output of the command is sent. If you do not enter the 
qualifier, or if you enter /OUTPUT without a file specification, the output 
is sent to the current process default output stream or device, identified 
by the logical name SYS$0UTPUT. 

IPHYSICAL_PAGES 
Displays information about the amount of physical memory and the 
number of free and modified pages. 

!POOL 
Displays information about the usage of each dynamic memory (pool) 
area, including the amount of free space and the size of the largest 
contiguous block in each area. 

/SLOTS 
Displays information about the availability of PCB vector slots and 
balance slots. 



DCL-378 

example 

DCL Commands 
SHOW MEMORY 

$ SHOW MEMORY/SLOTS 

System Memory Resources on 19-APR-1990 16:11:35.31 
Slot Usage (slots) : Totaltt Freeft Resident@) 
Process Entry Slots 75 28 46 
Balance Set Slots 70 26 44 

Slot Usage (slots) 
Displays the use of process entry slots and balance slots. 

Swapped8 
1 
0 

Orotal Displays the number of process entry slots (the value of the SYSGEN 
parameter MAXPROCESSCNT) and balance slots (the value of the 
SYSGEN parameter BALSETCNT) permanently allocated when the 

8Free 

@)Resident 

8swapped 

SHOW NETWORK 

system was bootstrapped. 

Displays the number of slots currently not in use. 

Displays the number of slots currently used by memory-resident 
processes. The number of balance slots in use can never be any 
larger than the number of process entry slots in use because the 
SWAPPER and NULL processes have process entry slots but do not 
require balance slots. 

Displays the number of slots used by outswapped processes. For 
process entry slots, this number includes all processes that have 
been partially outswapped. For balance slots, this number includes 
those processes that have had their process bodies outswapped but 
have process headers that are still resident. 

Displays the availability of the local node as a member of the network1 

and the addresses and names of all nodes that are currently accessible to 
the local node. The SHOW NETWORK command also displays link and 
cost relationships between the local node and other nodes in the network. 

format 
SHOW NETWORK 

qualifier 
IOUTPUT[:file-spec] 
!NOOUTPUT 
Controls where the output of the command is sent. If you do not enter the 
qualifier, or if you enter /OUTPUT without a file specification, the output 
is sent to the current process default output stream or device, identified 

1 DECnet-VAX is available under separate license. 



DCL Commands 
SHOW NETWORK 

DCL-379 

by the logical name SYS$0UTPUT. If you enter /OUTPUT with a partial 
file specification (for example, specifying only a directory), SHOW is the 
default file name and LIS is the default file type. If you enter a file 
specification, it may not include any wildcard characters. If you enter 
/NOOUTPUT, output is suppressed. 

example 
$ SHOW NETWORK 

VAX/VMS Network Status for local node 2.161 ARAKIS on 19-APR-1990 09:18:03.07 
The next hop to the nearest area router is node 2.62 ZEUS. 

Node Links Cost Hops Next Hop to Node 
2.161 ARAKIS 0 0 0 Local -> 2.161 ARAKIS 
2.1 RAEL 0 8 1 UNA-0 -> 2.1 RAEL 
2.2 PANGEA 0 8 1 UNA-0 -> 2.2 PANGEA 
2.3 TWDEE 0 10 2 UNA-0 -> 2.63 AURORA 
2.4 TWDUM 0 8 1 UNA-0 -> 2.4 TWDUM 
2.11 NEONV 0 8 1 UNA-0 -> 2.11 NEONV 
2.63 AURORA 0 8 1 UNA-0 -> 2.63 AURORA 

Total of 7 nodes. 

If your local node is a nonrouting or end node and you enter the SHOW 
NETWORK command, the following message is displayed: 
This is a nonrouting node, and does not have any network 
information. The designated router for node nodename is 
node_number_name. -

SHOW PRINTER 
Displays the current settings for a printer. 

format 
SHOW PRINTER device-name[:] 

parameter 

device-name[:] 
Specifies the name of the printer for which settings are to be displayed. 

qualifier 
IOUTPUT[:fi/e-spec] 
INOOUTPUT 
By default, the output of the SHOW PRINTER command is sent to the 
current SYS$0UTPUT device (usually your terminal). To send the output 
to a file, use the /OUTPUT qualifier followed by a file specification. If you 
enter /NOOUTPUT, output is suppressed. 



DCL-380 

example 

DCL Commands 
SHOW PRINTER 

$ SHOW PRINTER LPAO: 
Printer LPAO:, device type LPll, is online, allocated, spooled 
Error count 0 Operations completed 880 
Owner process "SYMBIONT 0001" Owner UIC [0,0) 
Owner process ID 21C0008D Dev Prot S:RWLP,O:RWLP,G:RWLP,W:RWLP 
Reference count 2 Default buffer size 132 
Page width 132 Page Length 66 
No Carriage_return Formfeed Lowercase 
No Passall No Wrap Printall 
No Fallback 
Intermediate device: STAR$DBA1: 
Associated queue: LN01$PRINT 

The SHOW PRINTER command in this example displays the settings for 
the printer LPAO. 

SHOW PROCESS 
Displays information about a process and its subprocesses. If no qualifier 
is entered, only a subset of information is displayed: the time, the process 
terminal, the user name and UIC, the node name, the process name and 
the process identification, priority, default directory, and allocated devices. 

Requires GROUP privilege to show other processes in the same 
group. Requires WORLD privilege to show processes outside your 
group. 

format 

SHOW PROCESS [[node-name:.1process-name] 

parameter 
process-name 
Specifies the name of the process about which information is to be 
displayed. Process names can be up to 23 alphanumeric characters 
long in the following format: 

[node-name: :]process-name 

• The node name can have as many as 6 alphanumeric characters. 

• The colons count for 2 characters. 

• The process name can have as many as 15 characters. 

A local process name can look like a remote process name. Therefore, 
if you specify ATHENS::SMITH, the system checks for a process named 
ATHENS::SMITH on the local node before checking node ATHENS for a 
process named SMITH. 



DCL Commands DCL-381 
SHOW PROCESS 

Process names are linked to group numbers. The specified process must 
have the same group number in its user identification code (UIC) as the 
current process. 

qualifiers 
!ACCOUNTING 
Displays the accumulated accounting statistics for the process. 

!ALL 
Displays the basic subset of information as well as accounting statistics, 
privileges, quotas, and subprocesses. Displays memory use for the current 
process. 

!CONTINUOUS 
Displays continuously updated information about the local process in a 
VAXcluster environment. You cannot use the /CONTINUOUS qualifier 
to display information about a process on another node in a VAXcluster 
environment. 

While the continuous display is running, you can press the V key to 
display a map of the pages in the virtual address space of the process. 
To terminate the continuous display, press the E key. To return to the 
original display, press the space bar. The /CONTINUOUS qualifier may 
not be used with the /OUTPUT qualifier. 

llDENTIFICATION:pid 
Requires GROUP or WORLD privilege to access processes other 
than your own. Displays information about the process with the 
specified PID (process identification). The PID is assigned by the system 
when the process is created. When you specify a PID, you can omit 
the leading zeros. If you specify the /IDENTIFICATION qualifier, you 
cannot use the process name parameter. If, in addition, you specify the 
/MEMORY qualifier, the PID value must be that of the current process. 

/MEMORY 
Displays the process's use of dynamic memory areas. The /MEMORY 
qualifier is allowed only for the current process. 

!OUTPUT[:file-spec] 
/NOOUTPUT 
By default, the output of the SHOW PROCESS command is sent to the 
current SYS$0UTPUT device (usually your terminal). To send the output 
to a file, use the /OUTPUT qualifier followed by a file specification. If you 
enter /NOOUTPUT, output is suppressed. The /OUTPUT qualifier may 
not be used with the /CONTINUOUS qualifier. 

/PRIVILEGES 
Displays current privileges for the process. 



DCL-382 DCL Commands 
SHOW PROCESS 

/QUOTAS 
Displays, for each resource, either a quota or a limit. The values displayed 
for quotas reflect any quota reductions resulting from subprocess creation. 
The values displayed for limits reflect the resources available to a process 
at creation. 

!SUBPROCESSES 
Displays the current subprocesses in hierarchical order. 

example 
$ SHOW PROCESS 

19-APR-1990 15:35:19.39 User: MALIK Process ID: 28200364 
Node: OCALA Process name: MALIK 

Terminal: RTA5: 
User identifier: [VMS,MALIK] 
Base priority: 4 
Default file spec: WORK5:[MALIK] 
Devices allocated: RTA5: 

The SHOW PROCESS command in this example is entered on NODE 
ATHENS by the user MALIK. The system displays the subset of 
information for the owned process on node OCALA. 

SHOW PROTECTION 
Displays the current file protection to be applied to all new files created 
during the terminal session or batch job. You can change the default 
protection at any time with the SET PROTECTION command. 

format 
SHOW PROTECTION 

example 
$ SHOW PROTECTION 

SYSTEM=RWED, OWNER=RWED, GROUP=RE, WORLD=NO ACCESS 
$ SET PROTECTION=(GROUP:RWED,WORLD:RE)/DEFAULT 
$ SHOW PROTECTION 

SYSTEM=RWED, OWNER=RWED, GROUP=RWED, WORLD=RE 

The SHOW PROTECTION command in this example requests a display 
of the current protection defaults and the user identifiers; the SET 
PROTECTION/DEFAULT command changes the file access allowed to 
other users in the same group and to miscellaneous system users. The 
next SHOW PROTECTION command shows the modified protection 
defaults. 



SHOW QUEUE 

DCL Commands 
SHOW QUEUE 

DCL-383 

Displays information about queues and the jobs that are currently in 
queues. 

Requires GROUP privilege to show all jobs in your group. 
Requires OPER privilege to show all jobs in all groups. 

format 

SHOW QUEUE [queue-name] 

parameter 

queue-name 
Specifies the name of the queue for which you want information displayed. 
Wildcard characters(* and%) are allowed. The default value for the 
queue-name parameter is the asterisk wildcard ( * ). If no queue name is 
specified, information on all queues is displayed. 

qualifiers 

IALL_JOBS 
Displays all the jobs in the specified queues. If you do not specify a queue 
name, the /ALL_JOBS qualifier displays all job entries on all queues. To 
modify the display, combine this qualifier with the /BY_JOB_STATUS 
qualifier. 

/BATCH 
Displays all batch queues. Use the /BATCH qualifier in conjunction with 
other qualifiers to display specific information about particular batch 
queues. 

!BRIEF 
Displays a one line description of each queue and the jobs that are in it. 
This information includes the name, type, and status of each queue. It 
also includes the user name, entry number, and status for each job. The 
/FULL and /FILES qualifiers override /BRIEF. 

!BY_JOB_STATUS:(keyword-list) 
Displays jobs with the specified status. Specify the status with one or 
more of the following keywords: 

EXECUTING 

HOLDING 

PENDING 

Requests the display of currently executing jobs. 

Requests the display of jobs on hold. Holding status indicates that 
the job is being held in the queue indefinitely. 

Requests the display of jobs with pending status. Pending status 
indicates that the job is waiting its turn to execute. 



DCL-384 DCL Commands 
SHOW QUEUE 

RETAINED 

TIMED_RELEASE 

Requests the display of jobs retained in the queue after execution. 
Retained status indicates that the job has completed, but it 
remains in the queue. For example, a job may be retained in 
the queue if there was an error during its execution. 

Requests the display of jobs on hold until a specified time. Timed 
release status indicates that the job is being held in the queue for 
execution at a future time. 

Note that if you specify the qualifier without a keyword, the system will 
only display queues that actually contain jobs. 

IDEVICE[:{keyword-list)] 
Displays a particular type of queue. Use the /DEVICE qualifier in 
conjunction with other qualifiers to display specific information about 
particular device queues. 

Specify the type of device queue with one or more of the following 
keywords: 

PRINTER 

SERVER 

TERMINAL 

Requests the display of all print queues. 

Requests the display of all server queues. 

Requests the display of all terminal queues. 

You can specify more than one keyword. If you do not specify a keyword, 
/DEVICE displays all printer, terminal, and server queues. 

/FILES 
Adds to the display the list of files associated with each job. 

/FULL 
Displays complete information about queues, the jobs contained in queues, 
and the files associated with the jobs. See /BRIEF. 

/GENERIC 
Displays all generic queues. A generic queue is not an execution queue. 
Its function is to hold jobs of a particular type (line printer jobs, for 
example) and direct them to execution queues for processing. 

Use the /GENERIC qualifier in conjunction with other qualifiers to 
display specific information about particular generic queues. For example, 
use the /GENERIC qualifier along with the /BATCH qualifier to specify 
information about generic batch queues. Use the /GENERIC qualifier 
along with the /DEVICE qualifier to determine information concerning 
generic output queues. 

/OUTPUT[=file-spec] 
INOOUTPUT 
By default, the output of the SHOW QUEUE command is sent to the 
current SYS$0UTPUT device (usually your terminal). To send the output 



DCL Commands 
SHOW QUEUE 

DCL-385 

to a file, use the /OUTPUT qualifier followed by a file specification. If you 
enter /NOOUTPUT, output is suppressed. 

/SUMMARY 
Displays the total number of executing jobs, pending jobs, holding jobs, 
retained jobs, and timed release jobs for each queue. For output queues, 
the total block count for pending jobs is also shown. 

example 
$ SHOW QUEUE/FULL CAXTON_LPAO 

Printer queue CAXTON LPAO, on CAXTON::CAXTON LPAO, mounted form 
80 COLS (stock=BLUE)- -

- /BASE PRIORITY=lOO 
/DEFAULT=(FEED,FLAG,FORM=40 COLS (stock=WHITE),TRAILER=ONE) 
/NOENABLE_GENERIC Lowercase-/OWNER=[l,4] /PROTECTION=(S:E,O:D,G:R,W:W) 

Jobname Username Entry Blocks Status 

ACCOUNT MARTIN 880 10 Printing 
Submitted 9-AUG-1988 12:49 /FORM=80 COLS (stock=BLUE) /PRIORITY=lOO 

REPORT MARTIN 858 - 4 Pending 
Submitted 8-AUG-1988 17:27 /PRIORITY=lOO 

The SHOW QUEUE command in this example lists any current job entry 
you have on the printer queue CAXTON_LPAO. The /FULL qualifier lists 
the submission information, the full file specification, and the current 
settings for both the job and the queue. 

SHOW QUEUE/CHARACTERISTIC 
Displays information about queue characteristics defined for the system. 
A characteristic is a user-defined attribute of a batch or output queue, 
such as ink color. 

format 
SHOW QUEUE/CHARACTERISTIC 
[characteristic-name] 

parameter 
characteristic-name 
Specifies the name of a characteristic. Wildcard characters (* and % ) 
are allowed. The default value for the characteristic-name parameter is 
the asterisk wildcard ( * ). Thus, information about all characteristics is 
displayed when you do not specify a characteristic name. 



DCL-386 DCL Commands 
SHOW QUEUE/CHARACTERISTIC 

qualifier 
IOUTPUT[:filespec] 
/NOOUTPUT 
By default the output of the SHOW QUEUE/CHARACTERISTIC 
command is sent to the current SYS$0UTPUT device (usually your 
terminal). To send the output to a file, use the /OUTPUT qualifier 
followed by a file specification. If you enter /NOOUTPUT, output is 
suppressed. 

example 
$ SHOW QUEUE/CHARACTERISTIC *INK 
Characteristic name Number 

RED INK 0 
BLUE INK 6 
BROWNINK 25 

The SHOW QUEUE/CHARACTERISTIC command in this example 
displays the name and number of all characteristics that end with INK. 

SHOW QUEUE/FORM 
Displays information about forms defined for the system. Forms define 
the size and type paper and the layout of text that are used for print jobs. 

format 
SHOW QUEUE/FORM [form-name] 

parameter 
form-name 
Specifies the name of the form. Wildcard characters are allowed. The 
default value for the form-name parameter is an asterisk ( * ) which 
means that the names of all forms on the system are displayed. 

qualifiers 
!BRIEF (default) 
Displays a brief description (form names, numbers, and descriptions) 
about the forms on the system. 

/FULL 
Displays a full description (including paper size and margin settings) 
about the forms on the system. 



!OUTPUT[:file-spec] 
/NOOUTPUT 

DCL Commands 
SHOW QUEUE/FORM 

DCL-387 

By default the output of the SHOW QUEUE/FORM command is sent to 
the current SYS$0UTPUT device (usually your terminal). To send the 
output to a file, use the /OUTPUT qualifier followed by a file specification. 
If you enter /NOOUTPUT, output is suppressed. 

example 
$ SHOW QUEUE/FORM/FULL 
Form name Number Description 

132 51 STD (stock=DEFAULT) 102 132 by 51 (standard short) 
-/LENGTH=51 /MARGIN=(BOTTOM=6) /STOCK=DEFAULT /TRUNCATE /WIDTH=l32 

40 66 STD (stock=DEFAULT) 103 40 by 66 (standard labels) 
- /LENGTH=66 /MARGIN=(BOTTOM=6) /STOCK=DEFAULT /WIDTH=40 

BLUE PAPER STOCK (stock=DIGITAL 8Xll STOCK1412TEA) 
- - - - 22222 blue paper, DEC order# 22222 
/LENGTH=66 /MARGIN=(BOTTOM=6) /STOCK=DIGITAL_8Xll_STOCK1412TEA 
/TRUNCATE /WIDTH=80 

DEFAULT 0 System-defined default 
/LENGTH=66 /MARGIN=(BOTTOM=6) /STOCK=DEFAULT /TRUNCATE /WIDTH=l32 

LNOl LANDSCAPE (stock=DEFAULT) 105 132 by 66 (landscape) 
fLENGTH=66 /STOCK=DEFAULT /WIDTH=132 

LNOl_LANDSCAPE_INDENTED (stock=DEFAULT) 
107 132 by 65 (landscape) 

/LENGTH=65 /SETUP=(LN01_TOP_MARGIN_150) /STOCK=DEFAULT /WIDTH=132 
LNOl_PORTRAIT (stock=DEFAULT) 106 80 by 60 (portrait) 

/LENGTH=60 /SETUP=(LNOl_PORTRAIT) /STOCK=DEFAUL-<f /WIDTH=80 
MEMO (stock=DEFAULT) 110 LN03 indented memo format 

/LENGTH=64 /MARGIN=(TOP=2,LEFT=5) /STOCK=DEFAULT /TRUNCATE /WIDTH=80 

This SHOW QUEUE/FORM command also displays the names of all form 
types and stock for the system. By using the /FULL qualifier, you can see 
what image size has been set for each form type. 

SHOW QUOTA 
Displays the current disk quota that is authorized for a specific user on 
a specific disk. This display includes a calculation of the amount of space 
available and the amount of overdraft that is permitted. 

Requires READ (R) access to the quota file in order to display the 
quotas of other users. 

format 

SHOW QUOTA 



DCL-388 DCL Commands 
SHOW QUOTA 

qualifiers 
/DISK[=device-name[:]] 
Specifies the disk whose quotas are to be examined. By default, the 
current default disk (defined by SYS$DISK) is examined. 

IUSER:uic 
Specifies which user's quotas are to be displayed. By default, the current 
user's quotas are displayed. 

example 
$SHOW QUOTA /USER=[360,007]/DISK=XXX1: 
%SYSTEM-F-NODISKQUOTA, no disk quota entry for this UIC 

The SHOW QUOTA command in this example displays the fact that the 
user with UIC [360,007] has no disk quota allocation on device XXXl. 

SHOW RMS_DEFAULT 
Displays the current default values for the multiblock count, the 
multibuffer count, the network transfer size, the prolog level, and the 
extend quantity. 

format 
SHOW RMS_DEFAULT 

parameters 
None. 

qualifier 
IOUTPUT[=file-spec] 
INOOUTPUT 
Specifies the file to which the display is written (default is SYS$0UTPUT). 
Wildcard characters are not allowed. 

example 
$ SHOW RMS_DEFAULT 

Process 
System 

Process 
System 

MULTI
BLOCK 
COUNT 

0 
16 

Prolog 
0 
0 

MULTIBUFFER COUNTS 
Indexed 

0 
0 

Relative 

0 
0 

Extend Quantity 
0 
0 

Disk 
0 
0 

Sequential 
Magtape Unit Record 

0 0 
0 0 

NETWORK 
BLOCK 
COUNT 

0 
8 



DCL Commands 
SHOW RMS_DEFAULT 

DCL-389 

The SHOW RMS_DEFAULT command in this example shows a system 
multiblock count of 16 and a network block count of 8. These are typical 
values. 

SHOW STATUS 
The SHOW STATUS command in this example displays the current status 
of your process. 

format 
SHOW STATUS 

parameters 
None. 

example 
$ SHOW STATUS 

Status on 19-APR-1990 12:56:48.68 Elapsed CPU : 0 00:00:55.02 
Buff. I/0 : 5117 Cur. ws. : 300 Open files : 1 
Dir. I/O : 458 Phys. Mem. 162 Page Faults : 8323 

Displays the status of your process. The information includes the 
following: 

• Current time and date 

• Elapsed CPU time used by the current process 

• Buffered 1/0 count 

• Current working set size 

• Open file count 

• Direct 1/0 count 

• Current amount of physical memory occupied 

• Number of page faults 



DCL-390 DCL Commands 
SHOW SYMBOL 

SHOW SYMBOL 
Displays the value of the specified symbol 

format 
SHOW SYMBOL [symbol-name] 

parameter 
symbol-name 
Specifies the name of the symbol whose value you want to display. You 
must specify a symbol name unless you use the I ALL qualifier. Wildcard 
characters are allowed in the symbol-name parameter. 

qualifiers 
/ALL 
Displays the current values of all symbols in the specified symbol table 
(/LOCAL or /GLOBAL). If you specify /ALL and do not specify either 
/LOCAL or /GLOBAL, the SHOW SYMBOL command displays the 
contents of the local symbol table for the current command level. 

!GLOBAL 
Searches only the global symbol table for the specified symbol name. 
If you specify both the /ALL and /GLOBAL qualifiers, all names in the 
global symbol table are displayed. 

!LOCAL 
Searches only the local symbol table for the current command level for 
the specified symbol name. If you specify both the I ALL and /LOCAL 
qualifiers, all names in the local symbol table for the current command 
level are displayed. 

!LOG (default) 
/NOLOG 
Controls whether the system generates an informational message if the 
symbol value has been truncated. The value is truncated if it exceeds 255 
characters. 

example 
$ SHOW SYMBOL/GLOBAL/ALL 

TIME == "SHOW TIME" 
LOG == "@LOG" 
$RESTART == "FALSE" 
$SEVERITY == "1" 
$STATUS == "%X00000001" 

The SHOW SYMBOL command in this example displays all the symbols 
defined in the global symbol table. Note that the symbols $RESTART, 
$STATUS, and $SEVERITY, which are maintained by the system, are 
also displayed. 



DCL Commands DCL-391 
SHOW SYSTEM 

SHOW SYSTEM 
Displays status information about current processes: the time, process 
name and identification, processing state, priority, total process 1/0, 
cumulative processor time used, cumulative page faults, amount of 
physical memory being used, and type of process. 

format 
SHOW SYSTEM 

parameters 
None. 

qualifiers 
/BATCH 
Displays all batch jobs for the local system. When used with /CLUSTER, 
displays all batch jobs in the VAXcluster environment. 

!CLUSTER 
Displays all processes on all nodes in a VAXcluster. 

!FULL 
Displays the user identification code (UIC) in addition to the default 
information. The UIC is displayed underneath the process name. 

/NETWORK 
Displays all network processes in the system. 

INODE[=(name, •.• )] 
Displays all the processes on the specified node or nodes. If you enter 
/NODE without a value, the qualifier displays all the processes on the 
local node of a VAXcluster environment. 

/OUTPUT[:file-spec] 
/NOOUTPUT 
By default, the output of the SHOW SYSTEM command is sent to the 
current SYS$0UTPUT device (usually your terminal). To send the output 
to a file, use the /OUTPUT qualifier followed by a file specification. If you 
enter /NOOUTPUT, output is suppressed. 

!PROCESS (default) 
Displays all processes in the system. 

!SUBPROCESS 
Displays all subprocesses in the system. 



DCL-392 DCL Commands 
SHOW SYSTEM 

example 
$ SHOW SYSTEM 

VAX/VMS 5.2 on node KRYPTON 
Pid Process Name State 

27400201 SWAPPER HIB 
27401E03 DOCBUILD LEF 
27402604 BATCH_789 LEF 
27401C05 BATCH 60 LEF 
27400207 ERRFMT HIB 
27400208 CACHE SERVER HIB 
27400209 CLUSTER SERVER HIB 
2740020C JOB_CONTROL HIB 
27400200 CONFIGURE HIB 

27400E8D Sir Lancelot LEF 
2740049A STILES LEF 
27401EAO BATCH 523 CUR 4 
274026AF YURYAN CUR 6 
27401605 WEINER LEF 
27401ED6 BULMER 1 HIE 
27401207 BATCH 68:::. LEF 
27403209 DECW$MAIL LEF 
274018E3 SERVER 0021 LEF 
274016E8 NMAIL 0008 HIB 
274034EA KAIKOW LEF 
274022EB s. Whiplash CUR 6 
274018EF DwMail LEF 
27401AFO EMACS$RTA43 LEF 
27400CF4 CULVER HIB 
274020F5 GILLIAM LEF 
27400CF6 mr. mike LEF 

19-APR-1990 17:45:47.78 Uptime 2 21:53:59 
Pri I/0 CPU Page flts Ph.Mero 
16 0 0 00:29:52.05 0 0 

4 37530 0 00:05:47.62 96421 601 
4 3106 0 00:00:48.67 4909 2636B 
6 248 0 00:00:06.83 1439 1556B 
8 6332 0 00:00:41.83 89 229 

16 2235 0 00:00:05.85 67 202 
8 4625 0 00:22:13.28 157 448 

10 270920 0 01:07:47.88 5163 1384 
9 125 0 00:00:00.53 104 264 

5 226 0 00:00:07.87 4560 697 
4 160 0 00:00:02.69 534 477 
4 17470 0 03:25:49.67 8128 5616 B 
4 14045 0 00:02:03.24 20032 397 
6 427 0 00:00:09.28 5275 1384 
5 935 0 00'.00 10 17 3029 22048 
4 49216 0 00:14;18.36 7021 3470 B 
4 2626 0 00:00:51.19 4328 3087 B 
6 519 0 00:00:07.07 1500 389N 
4 10955 0 00:00:55.73 5652 151 
4 2132 0 00:00:23.85 5318 452 
4 492 0 00:00:12.15 5181 459 
5 121386 0 00:28:00.97 7233 4094 
4 14727 0 00:03:56.54 8411 4224 s 
5 25104 0 00:06:07.76 37407 1923 
7 14726 0 00:02:10.74 34262 1669 
9 40637 0 00:05:15.63 18454 463 

The SHOW SYSTEM command in this example displays all processes on 
the system. 

The information in this example includes the following: 

• Process identification code (PID)-A 32-bit binary value that uniquely 
identifies a process. 

• Process name-A 1- to 15-character string used to identify a process. 

• Process state-The activity level of the process, such as COM 
(computing), HIB (hibernation), LEF (local event flag) wait, or CUR 
(if the process is current). If a multiprocessing environment exists, 
the display shows the CPU ID of the processor on which any current 
process is executing. 

Note that the SHOW SYSTEM command examines the processes on 
the system without stopping activity on the system. In this example 
process information changed during the time that SHOW SYSTEM 
collected the data to be displayed. As a result, this displays includes 



DCL Commands 
SHOW SYSTEM 

DCL-393 

two processes, named YURYAN and S. Whiplash, with the state CUR 
on the same CPU, CPU ID 6 in the example. 

• Current priority-The priority level assigned to the process (the 
higher the number, the higher the priority ).1 

• Total process 1/0 count1-The number of 1/0 operations involved in 
executing the process. This consists of both the direct I/O count and 
the buffered I/O count. 

• Charged CPU time1-The amount of CPU time that a process has 
used thus far. 

• Number of page faults1-The number of exceptions generated by 
references to pages which are not in the process's working set. 

• Physical memory occupied 1-The amount of space in physical memory 
that the process is currently occupying. 

• Process indicator-Letter B indicates a batch job; letter S indicates a 
subprocess; letter N indicates a network process. 

• User identification code (UIC)-An 8~digit octal number assigned to a 
process. This is only displayed if the /FULL qualifier is specified. 

$ SHOW SYSTEM /CLUSTER 
VAX/VMS V5.2 on node ALPES 19-APR-1990 09:09:58.61 Uptime 0 2:27:11 
Pid Process Name State Pri I/O CPU Page flts Ph. Mem 
31E00041 SWAPPER HIB 16 0 0 00:00:02.42 0 0 
31E00047 CACHE SERVER HIB 16 58 0 00:00:00.26 80 36 
31E00048 CLUSTER SERVER CUR 9 156 0 00:00:58.15 1168 90 
31E00049 OPCOM HIB 7 8007 0 00:00:33.46 5506 305 
31E0004A AUDIT_SERVER HIB 9 651 0 00:00:21.17 2267 22 
31E0004B JOB_CONTROL HIB 10 1030 0 00:00:11.02 795 202 

The SHOW SYSTEM command in this example shows all processes on all 
nodes of the cluster. 

1 This information is displayed only if the process is currently in the balance set; if the process is not 
in the balance set, these columns contain the following message: 

- swapped out -



DCL-394 DCL Commands 
SHOW SYSTEM 

$ SHOW SYSTEM /NODE=EON 
VAX/VMS V5.2 on node EON 19-APR-1990 09:19:15.33 Uptime 0 02:29:07 
Pid Process Name State Pri I/O CPU Page flts Ph. Mem 
36200041 SWAPPER HIB 16 0 0 00:00:12.03 0 0 
36200046 ERRFMT HIB 8 263 0 00:00:05.89 152 87 
36200047 CACHE_SERVER CUR 16 9 0 00:00:00.26 80 51 
36200048 CLUSTER SERVER CUR 8 94 0 00:00:30.07 340 68 
36200049 OPCOM HIB 6 2188 0 00:02:01.04 1999 177 
3620004A AUDIT_SERVER HIB 10 346 0 00:00:10.42 1707 72 

The SHOW SYSTEM command in this example shows all processes on 
the node EON. 

SHOW TERMINAL 
Displays the current characteristics of a specific terminal. Each 
characteristic corresponds to an option of the SET TERMINAL command. 

format 
SHOW TERMINAL [device-name[:]] 

parameter 
device-name[:] 
Specifies the name of the terminal for which you want the characteristics 
displayed. The default is your terminal (SYS$COMMAND). 

qualifiers 
!OUTPUT[:file-spec] 
!NOOUTPUT 
Controls where the output of the command is sent. If you do not enter 
the qualifier, or if you enter /OUTPUT without a file specification, the 
output is sent to the current process default output stream or device, 
identified by the logical name SYS$0UTPUT. If you enter /OUTPUT 
with a partial file specification (for example, specifying only a directory), 
SHOW is the default file name and LIS the default file type. If you enter 
a file specification, it may not include any wildcard characters. If you 
enter /NOOUTPUT, output is suppressed. 

!PERMANENT 
Requires LOG_IO or PHY_IO privilege. Displays the permanent 
characteristics of the terminal. 



example 
$ SHOW TERMINAL 

DCL Commands 
SHOW TERMINAL 

Terminal: TTE4: Device Type: VT102 Owner: FRANKLIN 
Physical Terminal: _LTA49 -

Input: 9600 LFfill: 0 Width: 80 Parity: None 
Output: 9600 CRfill: 0 Page: 24 

Terminal Characteristics: 
Interactive Echo Type_ahead No Escape 
No Hostsync TTsync Lowercase Tab 
Wrap Scope No Remote Eightbit 
Broadcast No Readsync No Form Fulldup 
No Modem No Local_echo No Autobaud Hangup 
No Brdcstrnbx No DMA No Altypeahd Set_speed 
Line Editing Overstrike editing No Fallback No Dialup 

DCL-395 

No Secure server No Disconnect No Pasthru No Syspassword 
No SIXEL Graphics Soft Characters Printer port Numeric Keypad 
ANSI_CRT No Regis No Block_mode Advanced video 
Edit_mode DEC_CRT DEC_CRT2 No DEC_CRT3 

In this example, the SHOW TERMINAL command displays the 
characteristics of this specific terminal. If you are displaying statistics 
about a terminal allocated to another user, the input, output, LFfi.11, 
CRfi.11, width, page, and parity statistics are not shown. 

SHOW TIME 
Displays the current date and time. The DAY element is optional. 

format 
SHOW [DAV]TIME 

parameters 
None. 

example 
$ SHOW TIME 

19-APR-1990 00:03:45 

The SHOW TIME command in this example displays the current date and 
time. 



DCL-396 DCL Commands 
SHOW TRANSLATION 

SHOW TRANSLATION 
Displays the first translation found for the specified logical name. You can 
specify the tables that are searched. 

Requires READ (R) access to a logical name table to display 
information about any logical name cataloged in that table. 

format 
SHOW TRANSLATION logical-name 

parameter 
logical-name 
Specifies the logical name whose translation you want to display. 

qualifier 
ffABLE:name 
Searches the specified table. The default is /TABLE=LNM$DCL_ 
LOGICAL. 

example 
$ SHOW TRANSLATION/TABLE=LNM$SYSTEM USER 

USER= "DBA2:" (LNM$SYSTEM_TABLE) 

The SHOW TRANSLATION command in this example displays the 
translation for the logical name USER. Because a table name is 
specified, the SHOW TRANSLATION command does not use the default 
search order. Only the specified table, LNM$SYSTEM, is searched. 
LNM$SYSTEM is the system logical name table. 

SHOW USERS 
Displays the user name and node name (in a VAXcluster environment) of 
interactive, subprocess, and batch users on the system. 

format 
SHOW USERS {username] 

parameter 
username 
Specifies the user about whom you want information. Wildcard characters 
are allowed. If you specify a string, all users whose user names begin 
with the string are displayed. If you omit the usemame parameter, a list 
of all interactive, subprocess, and batch users is displayed. 



DCL Commands DCL-397 
SHOW USERS 

qualifier 
!BATCH (default) 
Displays all batch users in the VAXcluster environment. To restrict the 
display to users on specific nodes, use /BATCH with the /NODE qualifier. 

!CLUSTER (default) 
Displays all users on all nodes in a VAXcluster environment. 

!FULL 
Displays the user name, the node name, the process name, the process 
identification code (PID), terminal names (both virtual and physical), and 
port information of all interactive, subprocess, and batch users on the 
system. 

/INTERACTIVE (default) 
Displays all interactive users in the VAXcluster environment. To restrict 
the display to users on specific nodes, use /INTERACTIVE with the 
/NODE qualifier. 

!NETWORK 
Displays all network users in the VAXcluster environment. To restrict 
the display to users on specific nodes, use /NETWORK with the /NODE 
qualifier. 

INODE[=(name, •.. )] 
Displays all interactive, subprocess, and batch users on the specified node 
or nodes. If you enter /NODE without a value, the qualifier displays all 
the interactive, subprocess, and batch users on the local node. 

IOUTPUT[:file-spec] 
INOOUTPUT 
By default, the output of the SHOW USERS command is sent to the 
current SYS$0UTPUT device (usually your terminal). To send the output 
to a file, use the /OUTPUT qualifier followed by a file specification. If you 
enter /NOOUTPUT, output is suppressed. 

!SUBPROCESS 
Displays all subprocess users in the VAXcluster environment. To restrict 
the display to users on specific nodes, use /SUBPROCESS with the /NODE 
qualifier. 



DCL-398 

example 

DCL Commands 
SHOW USERS 

$ SHOW USERS *MAR* 
VAX/VMS User Processes at 19-APR-1990 14:06.16.24 

Total number of users = 3, number of processes = 10 

Username Node Interactive Subprocess Batch 
LMARTIN ATHENS 1 
LMARTIN RUMAD 5 2 
MARRA ATHENS 1 
MARSHALL OCALA 1 

The SHOW USERS command in this example displays the user name and 
node names of all users whose user names contains the string MAR. 

$ SHOW USERS YETTO 
VAX/VMS User Processes at 19-APR-1990 08:59:38.76 

Total number of users = 1, number of processes = 2 

Username Node Interactive Subprocess Batch 
YETTO SP HAWK 2 

The SHOW USERS command in this example displays the user name and 
node name of the user YETTO. 

SHOW WORKING SET 
Displays the working set limit, quota, and extent assigned to the current 
process. 

format 
SHOW WORKING_SET 

qualifier 

!OUTPUT[=file-spec] 
!NOOUTPUT 
Controls where the output of the command is sent. If you do not enter the 
qualifier, or if you enter /OUTPUT without a file specification, the output 
is sent to the current process default output stream or device, identified 
by the logical name SYS$0UTPUT. 

example 
$ SHOW WORKING SET 

Working Set - /Limit= 180 /Quota= 350 /Extent= 1200 
Adjustment enabled Authorized Quota= 350 Authorized Extent= 1200 

In this example, the response to the SHOW WORKING_SET command 
indicates that the current process has a working set limit of 180 pages, a 
quota of 350 pages and that the current quota is equal to the authorized 
limit (350 pages). It also shows that the current process has a working 
set extent of 1200 and that the current extent is equal to the authorized 
limit (1200). 



DCL Commands DCL-399 
SORT 

SORT 
Invokes the Sort/Merge Utility (SORT) to reorder the records in a file into 
a defined sequence and to create either a new file of the reordered records 
or an address file by which the reordered records can be accessed. For a 
complete description of the SortJMerge Utility, including more information 
about the SORT command, see the Reference Section. 

format 
SORT input-file-spec[, ... ] output-file-spec 

SPAWN 
Creates a subprocess of the current process. 

The RESOURCE_ WAIT state is required to spawn a process. 
Requires TMPMBX or PRMMBX user privilege. The SPAWN 
command does not manage terminal characteristics. The SPAWN 
and ATTACH commands cannot be used if your terminal has an 
associated mailbox. 

format 
SPAWN [command-string] 

parameter 
command-string 
Specifies a command string of less than 132 characters that is to be 
executed in the context of the created subprocess. When the command 
completes execution, the subprocess terminates and control returns to 
the parent process. If both a command string and the /INPUT qualifier 
are specified, the specified command string executes before additional 
commands are obtained from the /INPUT qualifier. 

qualifiers 
/CARRIAGE CONTROL 
INOCARRIAGE_ CONTROL 
Determines whether carriage return/line feed characters are prefixed to 
the subprocess's prompt string. By default, SPAWN copies the current 
setting of the parent process. 

ICLl=cli-file-spec 
INOCLI 
Specifies the name of a command language interpreter ( CLI) to be used 
by the subprocess. The default CLI is the same as the parent process 
(defined in SYSUAF). If you specify /CLI, the attributes of the parent 
process are copied to the subprocess. 



DCL-400 DCL Commands 
SPAWN 

/INPUT :file-spec 
Specifies an input file containing one or more DCL commands to be 
executed by the spawned subprocess. File type defaults to COM and no 
wildcards are allowed in the file specification. Once processing of the 
input file is complete, the subprocess is terminated. If both a command 
string and the /INPUT qualifier are specified, the specified command 
string executes before additional commands are obtained from the /INPUT 
qualifier. If neither is specified, SYS$INPUT is assumed (in which case 
a SPAWN/NOWAIT command is aborted if CTRUY is pressed to abort 
something running in your parent process). 

/KEYPAD (default) 
!NOKEYPAD 
Copies keypad key definitions and the current keypad state from the 
parent process. 

!LOG (default) 
!NOLOG 
Displays the assigned subprocess name and any messages indicating 
transfer of control between processes. 

/LOGICAL_NAMES (default) 
INOLOGICAL_NAMES 
Copies process logical names and logical name tables to the subprocess. 
By default, all process logical names and logical name tables are copied 
to the subprocess except those explicitly marked CONFINE or created in 
executive or kernel mode. 

!NOTIFY 
/NONOTIFY (default) 
Controls whether a message is broadcast to your terminal notifying you 
that your subprocess has completed or aborted. This qualifier should not 
be used unless you specify the /NOWAIT qualifier. /NOTIFY cannot 
be specified when the SPAWN command is executed from within a 
noninteractive process. 

!OUTPUT :file-spec 
Specifies the output file to which the results of the SPAWN operation are 
written. No wildcards can be used in the file specification. (Do not specify 
SYS$COMMAND as a file specification for /OUTPUT when using the 
/NOWAIT qualifier; both parent and subprocess output will be displayed 
simultaneously on your terminal.) 

IPROCESS=subprocess-name 
Specifies the name of the subprocess to be created. The default subprocess 
name format is username_n. 



/PROMPT{:string] 

DCL Commands 
SPAWN 

DCL-401 

Specifies the prompt string for DCL to use in the subprocess. The default 
is the prompt of the parent process. The string must be enclosed in 
quotation marks if it contains spaces, special characters, or lowercase 
characters. 

/SYMBOLS (default) 
INOSYMBOLS 
Determines whether global and local symbols (except $RESTART, 
$SEVERITY, and $STATUS) are passed to the subprocess. 

ITABLE:command-table 
Specifies the name of an alternate command table to be used by the 
subprocess. 

!WAIT (default) 
/NOWAIT 
Requires that you wait for the subprocess to terminate before you enter 
another DCL command. The /NOWAIT qualifier allows you to enter 
new commands while the subprocess is running. (Use the /OUTPUT 
qualifier with the /NOWAIT qualifier to avoid displaying both parent and 
subprocess output on the terminal simultaneously.) 

example 
$ RUN MYPROG 

$ ICTRLJYI 

$ SPAWN MAIL 
%DCL-S-SPAWNED, process SMITH_l spawned 
%DCL-S-ATTACHED, terminal now attached to process SMITH_l 
MAIL> READ 

MAIL> EXIT 
%DCL-S-RETURNED, control returned to process SMITH 
$ CONTINUE 

The SPAWN command in this example allows you to enter the VMS Mail 
Utility without terminating the currently running program. After you exit 
from MAIL, control is returned to the parent process. 



DCL-402 DCL Commands 
START/CPU 

START/CPU 
Starts the specified secondary processor or processors in a VMS 
multiprocessing system. The /CPU qualifier is required. 

Applies only to VMS multiprocessing systems. Requires change 
mode to kernel (CMKRNL) privilege. 

format 
START/CPU [cpu-id, ... ] 

parameter 
[cpu-id, •.. J 
Decimal value representing the identity of a processor in a VMS 
multiprocessing system. In a VAX 8300 system, for instance, the CPU ID 
is the VAXBI node number of the processor; in a VAX 8800, the CPU ID 
of the left processor is 1 and that of the right processor is 0. If you do not 
specify a CPU ID and do not include the I ALL qualifier, the START/CPU 
command selects a single available processor to join the multiprocessing 
system. 

description 
The START/CPU command starts a secondary processor in a VMS 
multi processing system. 

You can issue a START/CPU command only for processors in the 
STOPPED or TIMOUT state, as represented by the SHOW CPU 
command. Otherwise, the START/CPU command has no effect. 

qualifier 
/ALL 
Selects all remaining processors in the system's available set to join the 
multiprocessing system. 

START/QUEUE 
Starts or restarts the specified queue after it has been initialized. You 
also can use this command to change the attributes of the specified queue. 
The /QUEUE qualifier is required. 

Requires OPER privilege or EXECUTE ( E) access to the specified 
queue. 



format 
START/QUEUE queue-name[:] 

parameter 
queue-name[:] 

DCL Commands 
START/QUEUE 

Specifies the name of the queue to be started or restarted. 

qualifiers 
IALIGN[:(optlon[, ... ])] 

DCL-403 

Prints alignment pages to aid in aligning printer forms. Use this qualifier 
only when restarting an output execution queue from a paused state. 

After the alignment is complete, the queue enters a paused state until 
you restart it by reentering the START/QUEUE command. Printing 
resumes from the point where alignment data started; that is, the task is 
backspaced over the pages printed for alignment. 

Possible options are as follows: 

MASK 

n 

Specifies that input data are masked by replacing alphabetic characters with 
x's and numbers with 9's; nonalphanumeric characters are not masked. Mask 
characters allow you to prevent the printing of sensitive information. If you 
omit the MASK option, data are printed unaltered. 

Specifies the number of alignment pages to print. The value of n can be from 
1 through 20. By default, one page of alignment data is printed. 

IBACKWARD:n 
Restarts a print queue n pages before the current page; n defaults to 1. If 
you omit the page value, printing resumes at the top of the current page. 
Use this qualifier only when restarting an output execution queue from a 
paused state. 

/BASE_PRIORITY:n 
Specifies the base process priority at which jobs are initiated from a batch 
execution queue. By default, if you omit the qualifier, jobs are initiated at 
the same priority as the base priority established by DEFPRI at system 
generation (usually 4). The base priority specifier can be any decimal 
value from 0 through 15. 

/BATCH 
/NOBATCH 
Specifies that you are starting or restarting a batch queue. The 
/NOBATCH qualifier cancels the effect of a previous /BATCH qualifier 
on the same command. It is supported in this release for compat-
ibility with VMS Version 4.n. The /[NO]BATCH qualifier of the 
INITIALIZE/QUEUE command has superseded the /[NO]BATCH qualifier 
of the START/QUEUE command. Digital recommends that you use the 
INITIALIZE/QUEUE/[NO]BATCH command to determine queue type. 



DCL-404 DCL Commands 
START/QUEUE 

Digital also recommends that you update command procedures that use 
START/QUEUE/[NOJBATCH. 

/BLOCK_ LIMIT =([lowlim,]uplim) 
INOBLOCK_LIMIT 
Limits the size of print jobs that can be processed on an output execution 
queue. This qualifier allows you to reserve certain printers for certain 
size jobs. You must specify at least one of the parameters. The lowlim 
parameter is a decimal number referring to the minimum number of 
blocks that are accepted by the queue for a print job. If a print job is 
submitted that contains fewer blocks than the the lowlim value, the job 
remains pending until the block limit for the queue is changed. After the 
block limit for the queue is decreased sufficiently, the job is processed. 

The uplim parameter is a decimal number referring to the maximum 
number of blocks that are accepted by the queue for a print job. If a print 
job is submitted that exceeds this value, the job remains pending until the 
block limit for the queue is changed. After the block limit for the queue is 
increased sufficiently, the job is processed. 

/CHARACTERISTICS:( characteristic[, ... ]) 
INOCHARACTERIST/CS 
Specifies one or more characteristics for processing jobs on an execution 
queue. If a queue does not have all the characteristics that have been 
specified for a job, the job remains pending. If you specify only one 
characteristic, you can omit the parentheses. Each time you specify 
/CHARACTERISTICS, all previously set characteristics are canceled. 
Only the characteristics specified with the qualifier are established for the 
queue. Queue characteristics are installation-specific. The characteristic 
parameter can be either a value from 0 through 127 or a characteristic 
name that has been defined by the DEFINE/CHARACTERISTIC 
command. 

/CLOSE 
Prevents jobs from being entered in the queue through PRINT or SUBMIT 
commands or as a result of requeue operations. To allow jobs to be 
entered, use the /OPEN qualifier. Whether a queue accepts or rejects new 
job entries is independent of the queue's state (such as paused, stopped, 
or stalled). When a queue is marked closed, jobs executing continue to 
execute. Jobs already pending in the queue continue to be candidates for 
execution. 

/CPUDEFAULT:time 
Defines the default CPU time limit for jobs in this batch execution queue. 
You can specify time as delta time, 0, INFINITE, or NONE. You can 
specify up to 497 days of delta time. 



DCL Commands 
START/QUEUE 

DCL-405 

If the queue does not have a specified CPUMAXIMUM time limit and the 
value established in the user authorization file (UAF) has a specified CPU 
time limit of NONE, either the value 0 or the keyword INFINITE allows 
unlimited CPU time. If you specify NONE, the CPU time value defaults 
to the value specified either in the UAF or by the SUBMIT command (if 
included). CPU time values must be greater than or equal to the number 
specified by the SYSGEN parameter PQL_MCPULM. 

/CPUMAXIMUM:time 
Defines the default CPU time limit for all jobs in this batch execution 
queue. You can specify time as delta time, 0, INFINITE, or NONE. You 
can specify up to 497 days of delta time. 

If the queue does not have a specified CPUMAXIMUM time limit and the 
value established in the user authorization file (UAF) has a specified CPU 
time limit of NONE, either the value 0 or the keyword INFINITE allows 
unlimited CPU time. If you specify NONE, the CPU time value defaults 
to the value specified either in the UAF or by the SUBMIT command (if 
included). CPU time values must be greater than or equal to the number 
specified by the SYSGEN parameter PQL_MCPULM. The time cannot 
exceed the CPU time limit set by the /CPUMAXIMUM qualifier. 

!DEFAULT ={option[, ..• ]) 
/NODEFAULT 
Establishes defaults for certain options of the PRINT command. Defaults 
are specified by the list of options. If you specify only one option, you 
can omit the parentheses. After you set an option for the queue with the 
/DEFAULT qualifier, you do not have to specify that option in your PRINT 
commands. If you do specify these options in your PRINT command, 
the values specified with the PRINT command override the values 
established for the queue with the /DEFAULT qualifier. For information 
on establishing mandatory queue attributes, see the description of the 
/SEPARATE qualiifer. 

You cannot use the /DEFAULT qualifier with the /GENERIC qualifier. 

Possible options are as follows: 

[NO]BURST[=keyword] 

[NO]FEED 

Controls whether two file flag pages with a burst bar 
between them are printed preceding output. If you 
specify the value ALL (default), these flag pages are 
printed before each file in the job. If you specify the 
value ONE, these flag pages are printed once before 
the first file in the job. 

Specifies whether a form-feed is inserted automati
cally at the end of a page. 



DCL-406 DCL Commands 
START/QUEUE 

[NOJFLAG[=keyword] 

FORM=type 

[NO]TRAILER[ =keyword] 

Controls whether a file flag page is printed preceding 
output. If you specify the value ALL (default), a flag 
page is printed before each file in the job. If you 
specify the value ONE, a flag page is printed once 
before the first file in the job. 

Specifies the default form for an output execution 
queue. If a job is submitted without an explicit form 
definition, this form is used to process the job. See 
also /FORM_MOUNTED. 

Controls whether a file trailer page is printed 
following output. If you specify the value ALL 
(default), a trailer page is printed after each file 
in the job. If you specify the value ONE, a trailer 
page is printed once after the last file in the job. 

When you specify the BURST option for a file, the [NO]FLAG option does 
not add or subtract a flag page from the two flag pages that are printed 
preceding the file. 

!DESCRIPT/ON:string 
INODESCRIPTION 
A string of up to 255 characters used to provide operator-supplied 
information about the queue. 

Enclose strings containing lowercase letters, blanks, or other nonalphanu
meric characters (including spaces) in quotation marks (" ). 

The /NODESCRIPTION qualifier removes any descriptive text that may 
be associated with the queue. · 

/DISABLE SWAPPING 
INODISABLE_SWAPPING 
Controls whether batch jobs executed from a queue can be swapped in 
and out of memory. 

!ENABLE GENERIC 
INOENABLE_ GENERIC 
Specifies whether files queued to a generic queue that does not specify 
explicit queue names with the /GENERIC qualifier can be placed in this 
execution queue for processing. For more information, see the description 
of the /GENERIC qualifier. 

IFORM_MOUNTED:type 
Specifies the mounted form for an output execution queue. If the stock 
of the mounted form does not match the stock of the default form, as 
indicated by the qualifier /DEFAULT=FORM, all jobs submitted to this 
queue without an explicit form definition enter a pending state. If a job is 
submitted with an explicit form and the stock of the explicit form does not 
match the stock of the mounted form, the job enters a pending state. In 
both cases, the jobs remain pending state until the stock of the mounted 



DCL Commands DCL-407 
START/QUEUE 

form of the queue matches the stock of the form a$sociated with the job. 
To specify the form type, use either a numeric value or a form name 
that has been defined by the DEFINE/FORM command. Form types are 
installation-specific. You cannot use the /FORM_MOUNTED qualifier 
with the /GENERIC qualifier. 

/FORWARD=n 
Advances the specified number of pages before resuming printing the 
current file in the current job; the default is 1. If you omit the page value, 
printing resumes at the top of the next page. Use this qualifier only when 
restarting an output execution queue from a paused state. 

/GENERIC[=( queue-name[, ••• ])] 
/NOGENERIC 
Specifies a generic queue. Also specifies that jobs placed in this queue can 
be moved for processing to compatible execution queues. The /GENERIC 
qualifier optionally accepts a list of target execution queues that have 
been previously defined. For a generic batch queue, these target queues 
must be batch execution queues. For a generic output queue, these target 
queues must be output execution queues, but can be of any type (printer, 
server, or terminal). If you do not specify any target execution queues 
with the /GENERIC qualifier, jobs can be moved to any execution queue 
that ( 1) is initialized with the /ENABLE_ GENERIC qualifier, and ( 2) is 
the same type (batch or output) as the generic queue. To define the queue 
as a generic batch or output queue, you use the /GENERIC qualifier with 
either the /BATCH or /DEVICE qualifier. If you specify neither /BATCH 
nor /DEVICE on creation of a generic queue, by default the queue becomes 
a generic printer queue. 

/JOB_L/MIT =n 
Specifies the number of batch jobs that can be executed concurrently from 
the queue. Specify a number in the range 0 through 255. 

/LIBRARY:file-name 
/NOLIBRARY 
Specifies the file name for the device control library. When you initialize 
an output execution queue, you can use the /LIBRARY qualifier to specify 
an alternate device control library. You can use only a file name as the 
parameter of the /LIBRARY qualifier. The system always assumes that 
the file is located in SYS$LIBRARY and that the file type is TLB. 

/NEXT 
Aborts the currently suspended print job and begins processing of the first 
pending job in the queue. 



DCL-408 DCL Commands 
START/QUEUE 

!ON=[node::]device[:] {printer, terminal, server queue) 
!ON=node:: (batch queue) 
Specifies the node or device, or both, on which this execution queue is 
located. For batch execution queues, you can specify only the node name. 
For output execution queues, you can include both the node name and the 
device name. 

/OPEN 
Allows jobs to be entered in the queue through PRINT or SUBMIT 
commands or as the result of requeue operations. To prevent jobs from 
being entered in the queue, use the /CLOSE qualifier. Whether a queue 
accepts or rejects new job entries is independent of the queue's state (such 
as paused, stopped, or stalled). 

/OWNER_ UIC=uic 
Requires OPER privilege or CONTROL and EXECUTE access to 
the queue. Enables you to change the user identification code (UIC) of 
the queue. 

IPROCESSOR:f ilename 
!NO PROCESSOR 
Allows you to specify your own print symbiont for an output execution 
queue. You can use any valid file name as a parameter of the 
/PROCESSOR qualifier. The system supplies the device and directory 
name SYS$SYSTEM and the file type EXE. If you use this qualifier for 
an output queue, it specifies that the symbiont image to be executed is 
SYS$SYSTEM:filename.EXE. 

!PROTECTION=(ownership[:access], .•• ) 
Requires OPER privilege or CONTROL and EXECUTE access 
to the queue. Specifies the protection of the queue. Ownership 
categories are SYSTEM, OWNER, GROUP, WORLD; each category can be 
abbreviated to its first character. Access categories are R (READ), 
W (WRITE), E (EXECUTE), and D (DELETE); a null access specification 
means no access. 

!RECORD BLOCKING 
INORECORD_BLOCKING 
Determines whether the symbiont can concatenate (or block together) 
output records for transmission to the output device. If you specify 
/NORECORD_BLOCKING, the symbiont sends each formatted record in 
a separate I/O request to the output device. For the standard VMS print 
symbiont, record blocking can have a significant performance advantage 
over single-record mode. 



/RETAIN[=option] 
INORETAIN 

DCL Commands 
START/QUEUE 

DCL-409 

Holds jobs in the queue in a retained status after they have executed. 
The /NORETAIN qualifier enables you to reset the queue to the default. 
Possible options are as follows: 

ALL 
ERROR 

Holds all jobs in the queue after execution 

Holds in the queue only jobs that complete unsuccessfully 

!SCHEDULE=[NO]SIZE 
Specifies whether pending jobs in an output queue are scheduled for 
printing based on the size of the job. When the /SCHEDULE=SIZE 
qualifier is in effect, shorter jobs are printed before longer ones. When 
/SCHEDULE=NOSIZE is in effect, jobs are printed in the order they were 
submitted, regardless of size. 

If you enter this command while there are pending jobs in any queue, its 
effect on future jobs is unpredictable. 

!SEARCH=''search-string" 
Specifies that printing is to resume at the page containing the specified 
string. The search for the string moves forward, beginning on the page 
following the current page. During the search, consecutive tabs and 
spaces are treated as a single space, and character case is ignored. The 
string can be from 1 through 63 characters and must be enclosed in 
quotation marks. Use this qualifier only when restarting an output 
execution queue from a paused state. 

/SEPARATE=( option[, ••• ]) 
INOSEPARATE 
Specifies the mandatory queue attributes, or job separation options, for an 
output execution queue. Job separation options cannot be overridden by 
the PRINT command. 

You cannot use the /SEPARATE qualifier with the /GENERIC qualifier. 

The job separation options are as follows: 

[NO]BURST 

[NO]FLAG 

Specifies whether two job flag pages with a burst 
bar between them are printed at the beginning of 
each job. 

Specifies whether a job flag page is printed at the 
beginning of each job. 



DCL-410 DCL Commands 
START/QUEUE 

[NO]TRAILER 

[NO]RESET=(module[, ... ]) 

Specifies whether a job trailer page is printed at 
the end of each job. 

Specifies one or more device control library 
modules that contain the job reset sequence 
for the queue. The specified modules from 
the queue's device control library (by default 
SYS$LIBRARY:SYSDEVCTL) are used to reset the 
device each time a job reset occurs. The RESET 
sequence occurs after any file trailer and before 
any job trailer. Thus, all job separation pages are 
printed when the device is in its RESET state. 

When you specify /SEPARATE=BURST, the [NO]FLAG separation option 
does not add or subtract a flag page from the two flag pages that are 
printed preceding the job. 

For information on establishing queue attributes that can be overridden, 
see the description of the /DEFAULT qualifier. 

/TERMINAL 
!NOTERMINAL 
Indicates that the output queue is a terminal queue. The /NOTERMINAL 
qualifier cancels the effect of a previous trERMINAL qualifier on the 
same command. The /[NO]DEVICE qualifier of the INITIALIZE/QUEUE 
command has superseded the /[NO]TERMINAL qualifier. Digital rec
ommends that you use the INITIALIZE/QUEUE command to determine 
queue type. Digital also recommends that you use this qualifier to update 
command procedures that use START/QUEUE/[NOJTERMINAL. 

/TOP_ OF_FILE 
Resumes printing at the beginning of the file that was current when the 
output execution queue paused. Use this qualifier only when restarting 
an output execution queue from a paused state. 

/WSDEFAULT:n 
Defines for a batch job a working set default, the default number of 
physical pages that the job can use. The value set by this qualifier 
overrides the value defined in the user authorization file (UAF) of any 
user submitting a job to the queue. 

If you specify 0 or NONE, the working set default value defaults to the 
value specified in the UAF or by the SUBMIT command (if included). 

/WSEXTENT:n 
Defines for the batch job a working set extent, the maximum amount 
of physical memory that the job can use. The job uses the maximum 
amount of physical memory only when the system has excess free pages. 
The value set by this qualifier overrides the value defined in the user 
authorization file (UAF) of any user submitting a job to the queue. 



DCL Commands DCL-411 
START/QUEUE 

If you specify 0 or NONE, the working set extent value defaults to the 
value specified in the UAF or by the SUBMIT command (if included). 

/WSQUOTA:n 
Defines for a batch job a working set quota, the amount of physical 
memory that is guaranteed to the job. The value set by this qualifier 
overrides the value defined in the user authorization file (UAF) of any 
user submitting a job to the queue. 

Working set default, working set quota, and working set extent values are 
included in each user record in the system user authorization file (UAF). 
You can specify working set values for individual jobs and/or for all jobs in 
a given queue. 

example 
$ STOP/QUEUE LPAO 
$ START/QUEUE/TOP_OF_FILE LPAO 

The STOP/QUEUE command in this example suspends operation ofthe 
printer queue LPAO. Then the START/QUEUE/TOP_OF_FILE command 
resumes operation. The file that was being printed when the queue was 
stopped is started again from the beginning. 

START/QUEUE/MANAGER 
Starts the queue manager for the batch/print facility and opens the 
queue file. After the system is bootstrapped, you must execute this 
command before you can execute any other queue management or 
job submission command. The /QUEUE qualifier is optional, but the 
/MANAGER qualifier is required. 

Requires both OPER and SYSNAM privileges. 

format 
START/QUEUE/MANAGER [file-spec} 

parameter 
[file-spec] 
Specifies the name of the queue file. This file contains information about 
batch and print jobs, queues, form definitions, and characteristics. 
The file specification parameter is used in VAXcluster systems. The 
default file specification is SYS$SYSTEM:JBCSYSQUE.DAT. Any 
elements that you omit from the file specification default to those of 
SYS$SYSTEM:JBCSYSQUE.DAT. No wildcard characters are permitted 
in the file specification. 



DCL-412 DCL Commands 
START/QUEUE/MANAGER 

qualifiers 
!BUFFER_ COUNT =n 
Specifies the number of buffers in a local buffer cache to allocate for 
performing 1/0 operations to the queue file. Specify a positive integer in 
the range of 1 through 1500, or 0. If you specify 0, the default value of 50 
is used. 

/EXTEND_ QUANTITY:n 
Specifies the number of blocks by which the queue file is extended, when 
necessary. This value is also used as the initial allocation size when the 
queue file is created. Specify a positive integer in the range of 10 through 
65,535, or 0. If you specify 0, the default value of 100 is used. 

/NEW VERSION 
INONEW_ VERSION (default) 
Specifies that a new version of the queue file be created to supersede 
an existing version. If you specify a new version all jobs in the previous 
version are lost. The new queue file contains no information until you 
enter a subsequent INITIALIZE/QUEUE command. 

/RESTART 
/NORESTART (default) 
The /RESTART qualifier specifies that the queue manager be restarted 
automatically on recovery from a job controller abort. In addition, batch 
and output queues are restored to the states that existed prior to the 
interruption of service. The queue file that is opened is the queue file that 
was open before the abort. When the job controller incurs an internal 
fatal error, the process aborts and restarts itself. By default, the queue 
manager is not restarted. Intervention by a user with OPERATOR 
privilege is necessary to restart the queue manager and to restore the 
queuing environment using START/QUEUE/MANAGER and appropriate 
START/QUEUE commands. Note that in order to prevent a looping 
condition, the job controller does not restart the queue manager if it 
detects an error within two minutes of starting the queue manager. 

example 
$ START/QUEUE/MANAGER DUAS: [SYSQUE] 

The START/QUEUE/MANAGER command in this example opens the 
queue file JBCSYSQUE.DAT on the cluster-accessible disk volume DUA5, 
in directory SYSQUE. You must mount the disk before you enter the 
START/QUEUE/MANAGER command. 



STOP 

DCL Commands 
STOP 

DCL-413 

Terminates execution of a command, an image, a command procedure, 
a command procedure that was interrupted by CTRUY, or a detached 
process or subprocess. 

Req~es GROUP privilege to stop other processes in the same 
group. Requires WORLD privilege to stop processes outside your 
group. 

format 
STOP [process-name] 

parameter 

process-name 
Requires that the process be in your group. 

Specifies the name of the process to be deleted. The process name can 
have from 1 to 15 alphanumeric characters. The specified process must 
have the same group number in its user identification code (UIC) as the 
current process; you cannot use the process-name parameter to stop a 
process outside of your group. To stop a process outside of your group, you 
must use the qualifier /IDENTIFICATION=pid. 

qualifier 
/IDENTIFICATION:pid 
Specifies the system-assigned process identification code (PID). 
/IDENTIFICATION can be used in place of the process name parameter. 

example 
$ RUN/PROCESS NAME=LIBRA LIBRA 
%RUN-S-PROC_ID, identification of created process is 00133400 

$ STOP LIBRA 

The RUN command in this exallnple creates a subprocess named LIBRA to 
execute the image LIBRA.EXE. Subsequently, the STOP command causes 
the image to exit and deletes the process. 



DCL-414 DCL Commands 
STOP/CPU 

STOP/CPU 
Stops the specified secondary processor or processors in a VMS 
multiprocessing system. The /CPU qualifier is required. 

Applies only to VMS multiprocessing systems. Requires change 
mode to kernel (CMKRNL) privilege. 

format 
STOP/CPU [cpu-id, ... ] 

parameter 
cpu-id 
Decimal value representing the identity of a processor in a VMS 
multiprocessing system. In a VAX 8300 system, for instance, the CPU 
ID is the VAXBI node number of the processor; in a VAX 8800, the CPU 
ID of the left processor is 1 and that of the right processor is 0. If you do 
not specify a CPU ID, the STOP/CPU command selects a processor in the 
current active set to stop. 

description 
The STOP/CPU command removes a secondary processor from the active 
set in a VMS multiprocessing system. If the secondary processor is not 
executing a process when the STOP/CPU command is issued, it enters the 
STOPPED state. If the secondary is executing a process at the time, it 
continues to execute the current process until it becomes a candidate for 
rescheduling on another processor in the system. When this occurs, the 
secondary enters the STOPPED state. 

The VMS operating system subjects a processor to a set of checks when 
it is the object of a STOP/CPU command. As a result, you may not be 
permitted to stop certain processors that are vital to the functioning of 
the system. In these cases, there is usually a process in the system that 
can execute only on the processor you intend to stop. You can determine 
this by issuing a SHOW CPU/FULL command. In unusual circumstances, 
you can bypass the checking mech~nism by using the /OVERRIDE_ 
CHECKS qualifier in the command. 

The STOP/CPU command has no effect if its object processor is already in 
the STOPPED state when it is issued. 

qualifiers 
/ALL 
Stops all eligible secondary processors in the system's active set. 



DCL Commands DCL-415 
STOP/CPU 

/OVERRIDE_ CHECKS 
Directs the STOP/CPU command to bypass a series of checks that 
determine whether the specified processor is eligible for removal from 
the active set. 

STOP/QUEUE 
The STOP/QUEUE command causes the specified execution queue to 
pause. All jobs currently executing in the queue are suspended (until the 
queue is restarted with the START/QUEUE command), and no new jobs 
can be initiated. The /QUEUE qualifier is required. 

Requires OPER privilege or EXECUTE (E) access to the queue. 

format 

STOP/QUEUE queue-name[:] 

parameter 

queue-name[:] 
Specifies the name of the queue that you want to pause. 

example 
$ STOP/QUEUE TEXTBATCH 

$ START/QUEUE/BLOCK_LIMIT=SOO TEXTBATCH 

The STOP/QUEUE command in this example halts all batch jobs that are 
currently executing on the queue TEXTBATCH and places that queue in 
the paused state. Later the START/QUEUE command releases the queue 
from the paused state. All the jobs that were halted resume processing, 
but the START/QUEUE command now limits any further jobs to 500 
blocks or smaller. 



DCL-416 DCL Commands 
STOP/QUEUE/ABORT 

STOP/QUEUE/ ABORT 
Aborts a job that is printing or processing on an output queue, deletes it 
from the queue, and begins processing the first pending job in the queue. 
The /QUEUE qualifier is optional, but the /ABORT qualifier is required. 

Requires OPER privilege, EXECUTE (E) access to the queue, or 
DELETE (D) access to the current job. 

format 
STOP/QUEUE/ABORT queue-name[:} 

parameter 
queue-name[:] 
Specifies the name of the queue containing the job you want to abort. 

example 
$ STOP/QUEUE/ABORT LPAO 

This example aborts the current print job on the queue LPAO. The print 
symbiont begins to process the first pending job in the queue. Assuming 
there is no problem with the printer, the current page of the file completes 
printing. If the printer queue has been set up to put trailer pages at the 
end of jobs, a trailer page is printed after the current page is completed. 

STOP/QUEUE/ENTRY 
Aborts one or more jobs that are executing on a batch queue or printing 
on an output queue, deletes them from the queue, and begins processing 
the first pending job in the queue. The /QUEUE qualifier is optional, but 
the /ENTRY qualifier is required. 

Requires OPER privilege, EXECUTE ( E) access to the queue, or 
DELETE ( D) access to the current job. 

format 
STOP/QUEUE/ENTRY =(entry-number[, ... ]) [queue-name[:]] 

parameters 
entry-number[, ... ] 
Specifies the entry number (or a list of entry numbers) of jobs to be 
deleted. 

[queue-name[:]] 
Specifies the name of the queue that contains the jobs that you want to 
abort. 



DCL Commands DCL-417 
STOP/QUEUE/ENTRY 

example 
$ STOP/QUEUE/ENTRY=365 SYS$BATCH 

The STOP/QUEUE/ENTRY command in this example aborts batch job 
number 365 currently executing on the SYS$BATCH queue and begins 
the first pending job in the queue. 

STOP/QUEUE/MANAGER 
Performs an orderly shutdown of the system job queue manager on the 
node from which the command is entered. The /QUEUE qualifier is 
optional, but the /MANAGER qualifier is required. 

Requires both OPER and SYSNAM privileges. 

format 
STOP/QUEUE/MANAGER 

parameters 
None. 

example 
$ STOP/QUEUE/MANAGER 

The STOP/QUEUE/MANAGER command in this example performs a 
shutdown of all queues on the node from which the command is entered. 

STOP/QUEUE/NEXT 
Stops the specified queue after all executing jobs have completed 
processing. No new jobs can be initiated; the START/QUEUE command 
restarts the queue. The /QUEUE qualifier is optional, but you must 
specify the /NEXT qualifier. 

Requires OPER privilege or EXECUTE ( E) access to the specified 
queue. 

format 
STOP/QUEUE/NEXT queue-name[:] 

parameter 
queue-name[:] 
Specifies the name of the queue that you want to stop. 



DCL-418 

example 

DCL Commands 
STOP/QUEUE/NEXT 

$ STOP/QUEUE/NEXT LPAO 
$ SHOW QUEUE/ALL LPAO 
Printer queue LPAO 
$ DELETE/QUEUE LPAO 

This example shows how to delete the printer queue LPAO. First, the 
STOP/QUEUE/NEXT command is entered, which stops the printer after 
the current job is printed. Then the SHOW QUEUE/ALL command is 
entered to ensure that no jobs are pending in the queue. The screen 
display shows that no jobs are pending. Finally, the DELETE/QUEUE 
command is entered to delete the printer queue LPAO. 

STOP/QUEUE/REQUEUE 
Stops the current jobs on the specified queue and requeues them for later 
processing. The queue does not stop; processing of the first pending job in 
the queue begins. The /QUEUE qualifier is optional, but the /REQUEUE 
qualifier is required. The /ENTRY qualifier is required to requeue batch 
jobs. 

Requires OPER privilege, EXECUTE access to the queue or 
DELETE access to the current job. 

format 

STOP/QUEUE/REQUEUE[=queue-name] queue-name[:] 
STOP/QUEUE/REQUEUE/ENTRY =(entry-number{, ... ]) 

[=queue-name] queue-name[:] 

parameters 
queue-name[:] 
Specifies the name of the queue that contains the jobs that you want to 
stop. When you specify a queue name as a parameter for the /REQUEUE 
qualifier, the jobs are requeued to that queue. Otherwise, the jobs are 
requeued in the current queue. 

entry-number[, ... ] 
Specifies the entry number (or a list of entry numbers) of the jobs you 
want to requeue. If you specify only one entry number, you can omit the 
parentheses. 

The system assigns a unique entry number to each queued print or batch 
job in the system. By default, the PRINT and SUBMIT commands display 
the entry number when they successfully queue a job for processing. 
These commands also create or update the local symbol $ENTRY to reflect 
the entry number of the most recently queued job. To find a job's entry 
number, enter the SHOW ENTRY or SHOW QUEUE command. 



qualifiers 

!ENTRY=(entry-number[, .•• J) 

DCL Commands DCL-419 
STOP/QUEUE/REQUEUE 

Specifies the entry number of one or more jobs you want to abort. If you 
specify only one entry number, you can omit the parentheses. 

The system assigns a unique entry number to each queued print or batch 
job in the system. By default, the PRINT and SUBMIT commands display 
the entry number when they successfully queue a job for processing. 
These commands also create or update the local symbol $ENTRY to reflect 
the entry number of the most recently queued job. To find a job's entry 
number, enter the SHOW ENTRY or SHOW QUEUE command. 

You must use the /ENTRY qualifier when you enter the 
STOP/QUEUE/REQUEUE command for a batch queue. Entry numbers 
specified must match entry numbers of executing jobs. 

!HOLD 
Places the aborted job or jobs in a hold state for later release with the 
SET ENTRY/RELEASE or SET ENTRY/NOHOLD command. 

IPRIORITY:n 
Requires OPER or ALTPRI privilege to raise the priority value 
above the value of the SYSGEN parameter MAXQUEPRI. Changes 
the priority of the requeued job or jobs. The n parameter can be from 0 to 
255; the default value of the n parameter is the same as the priority value 
that the job or jobs had when it was stopped. 

example 
$ STOP/QUEUE/REQUEUE=LPBO LPAO 

In this example, the current print job on queue LPAO is stopped 
and requeued to queue LPBO. If the print symbiont sent checkpoint 
information about the print job to the job controller, printing resumes on 
LPBO at the last checkpoint recorded. 

STOP/QUEUE/RESET 
Abruptly stops the queue and returns control to the system. Any jobs 
currently executing are stopped immediately. The START/QUEUE 
command restarts the queue. Current jobs that can be restarted (all 
print jobs and any batch jobs submitted with the /RESTART qualifier) 
are requeued for processing. Current jobs that cannot be restarted are 
aborted and must be resubmitted for processing. The /QUEUE qualifier is 
optional, but you must specify the /RESET qualifier. 

Requires OPER privilege or EXECUTE ( E) access to the specified 
queue. 



DCL-420 

format 

DCL Commands 
STOP/QUEUE/RESET 

STOP/QUEUE/RESET queue-name[:] 

parameter 
queue-name[:] 
Specifies the name of the queue you want to reset. 

example 
$ STOP/QUEUE/RESET TEXBATCH 

The STOP/QUEUE/RESET command in this example stops the 
TEXBATCH queue. Any current job that was submitted with the 
/RESTART qualifier is requeued for processing when the queue is 
restarted. Current jobs that did not specify /RESTART must be 
resubmitted to the queue. 

SUBMIT 
Queues one or more files containing command procedures to a batch 
queue. 

Requires OPER privilege, EXECUTE ( E) access to the queue, or 
WRITE ( W) access to the queue. 

format 
SUBMIT file-spec[, ... ] 

parameter 
file-spec[, ••• ] 
Specifies one or more files containing command procedures. Wildcard 
characters are allowed in the directory specification, file name, file type, 
and version number fields. The default file type is that of the preceding 
file. If no previous file specification contains an explicit file type, the 
default file type is COM. If you specify a node name, you must use the 
/REMOTE qualifier. 

qualifiers 
/AFTER:time 
/NO AFTER 
Requests that the job be held until after a specific time. If the specified 
time has passed already, the job is processed immediately. You can specify 
time as either an absolute time or as a combination of absolute and delta 
times. 



!BACKUP 
!NOBACKUP 

DCL Commands DCL-421 
SUBMIT 

Modifies the interpretation of the time value specified with the /BEFORE 
or /SINCE qualifier. /BACKUP selects files according to the dates of 
their most recent backups. This qualifier is incompatible with the other 
qualifiers that allow you to select files according to time attributes: 
/CREATED, /EXPIRED, and /MODIFIED. If you specify none of these four 
time qualifiers, the default is /CREATED. 

IBEFORE[:time] 
/NOBEFORE 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

IBY_OWNER[=uic] 
/NOBY_ OWNER 
Selects only those files whose owner user identification code (UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

!CHARACTERISTICS:( characteristic[, ... ]) 
Specifies the name or numbers of one or more characteristics to be 
associated with the the job. Characteristics can refer to such things 
as color of ink. If you specify only one characteristic, you can omit the 
parentheses. 

ICLl=filename 
Specifies the command language interpreter ( CLI) to be used to process 
the job. The file specification assumes the device name SYS$SYSTEM: 
and the file type EXE (SYS$SYSTEM:filename.EXE). 

/CONFIRM 
INOCONFIRM (default) 
Controls whether a request is issued before each submit operation to 
confirm that the operation should be performed on that file. The following 
responses are valid: 

YES 

TRUE 

1 

NO 

FALSE 

0 

~ 

QUIT 

CTRUZ 

ALL 

You can use any combination of uppercase and lowercase letters for word 
responses. You can abbreviate word responses to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 



DCL-422 DCL Commands 
SUBMIT 

unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and <RET>. QUIT or CTRUZ indicates that you want 
to stop processing the command at that point. When you respond with 
ALL, the command continues to process, but no further prompts are given. 
If you type a response other than one of those in the list, DCL issues an 
error message and redisplays the prompt. 

!CPUTIME=time 
Defines a CPU time limit for the batch job. You can specify time as delta 
time, 0, INFINITE, or NONE. 

!CREATED (default) 
INOCREATED 
Modifies the interpretation of the time value specified with the /BEFORE 
or /SINCE qualifier. The qualifier /CREATED selects files based on their 
dates of creation. This qualifier is incompatible with the other qualifiers 
that allow you to select files according to time attributes: /BACKUP, 
/EXPIRED, and /MODIFIED. If you specify none of these four time 
qualifiers, the default is /CREATED. 

/DELETE 
INODELETE (default) 
Positional qualifier. Controls whether files are deleted after processing. 
If you specify the /DELETE qualifier after the SUBMIT command 
name, all files in the job are deleted after processing. If you specify 
the /DELETE qualifier after a file specification, only that file is deleted 
after it is processed. 

IEXCLUDE:(file-spec[, ••. ]) 
/NOEXCLUDE 
Excludes the specified files from the submit operation. You can include 
a directory but not a device in the file specification. Wildcard characters 
are allowed in the file specification. However, you cannot use relative 
version numbers to exclude a specific version. If you provide only one file 
specification, you can omit the parentheses. 

/EXPIRED 
/NOEXPIRED 
Modifies the interpretation of the time value specified with the /BEFORE 
or /SINCE qualifier. The /EXPIRED qualifier selects files according 
to their expiration dates. (The expiration date is set with the SET 
FILE/EXPIRATION_DATE command.) The /EXPIRED qualifier is 
incompatible with the other qualifiers that allow you to select files 
according to time attributes: /BACKUP, /CREATED, and /MODIFIED. 
If you specify none of these four time qualifiers, the default is /CREATED. 



DCL Commands DCL-423 
SUBMIT 

!HOLD 
/NOHOLD (default) 
Controls whether the job is made available for immediate processing. 
The /HOLD qualifier holds the job until it is released by the SET 
ENTRY/RELEASE or SET ENTRY/NOHOLD command. 

!IDENTIFY (default) 
/NO/DENT/FY 
Displays the job name, the queue name, the entry number, and the status 
of the job when it is queued. 

/KEEP 
INOKEEP 
Controls whether the log file is deleted after it is printed; /NOKEEP is the 
default unless /NOPRINTER is specified. 

!LOG_FILE[:file-spec] 
/NOLOG_FILE 
Names the log file. No wildcards are allowed in the file specification. You 
can use the /LOG_FILE qualifier to write the log file to a different device. 
Logical names in the file specification are translated in the context of the 
process that submits the job. 

!MODIFIED 
/NOMODIFIED 
Modifies the interpretation of the time value specified with the /BEFORE 
or /SINCE qualifier. /MODIFIED selects files according to the dates on 
which they were last modified. This qualifier is incompatible with the 
other qualifiers that allow you to select files according to time attributes: 
/BACKUP, /CREATED, and /EXPIRED. If you specify none of these four 
time modifiers, the default is /CREATED. 

!NAME: job-name 
Names the job (and possibly the batch job log file). The job name must be 
1 to 39 alphanumeric characters. If characters other than alphanumeric 
characters, underscores, or dollar signs are used in the name, enclose the 
name in quotation marks. The default job name is the name of the first 
file in the job. 

/NOTIFY 
/NONOTIFY (default) 
Controls whether a message is broadcast to your terminal session_ when 
the job is completed or aborted. 

!PARAMETERS:(parameter[, ..• ]) 
Provides the values of up to eight optional parameters (equated to the 
symbols Pl through PS, respectively, for each command procedure in the 
job). The symbols are local to the specified command procedure. If the 
parameter contains spaces, special characters, or lowercase characters, 



DCL-424 DCL Commands 
SUBMIT 

enclose it in quotation marks. The size of the parameter can be from 1 to 
255 characters. 

IPRINTER[=queue-name](default) 
/NOPRINTER 
Queues the job log file for printing when your job is completed. /PRINTER 
allows you to specify a particular print queue; the default print queue is 
SYS$PRINT. If you specify /NO PRINTER, /KEEP is assumed. 

IPRIORITY:n 
Requires OPER or ALTPRI privilege to specify a priority greater 
than the value of the SYSGEN parameter MAXQUEPRI. Specifies 
the job-scheduling priority for the batch job with respect to other 
jobs in the same queue. The value of n is an integer in the range of 
0 through 255. The default value is the value of the SYSGEN parameter 
DEFQUEPRI. 

IQUEUE:queue-name[:] 
Identifies the batch queue on which the job is entered. The default queue 
is SYS$BATCH. 

!REMOTE 
Queues the job to SYS$BATCH on the remote node specified. When 
you use /REMOTE, you must include the node name in the file 
specification. You can specify only the following qualifiers with /REMOTE: 
/BACKUP, /BEFORE, /BY_OWNER, /CONFIRM, /CREATED, /EXCLUDE, 
/EXPIRED, /MODIFIED, and /SINCE. 

!RESTART 
INORESTART (default) 
Indicates whether the job restarts after a system failure or after a 
STOP/QUEUE/REQUEUE command. 

!SINCE[=time] 
INOSINCE 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /SINCE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

/USER:username 
Requires CMKRNL privilege and R (read) and W (write) access to 
the user authorization file (UAF). Allows you to submit a job on behalf 
of another user. The job runs exactly as if that user had submitted it. 



DCL Commands DCL-425 
SUBMIT 

/WSDEFAULT=n 
Defines for a batch job a working set default, the default number of 
physical pages that the job can use. If the queue on which the job 
executes has a nonzero default working set, the smaller of the specified 
job and queue values is used. If the queue on which the job executes 
has a working set default of 0, the smaller of the specified job and UAF 
values (value established in the user authorization file) is used. If you 
specify 0 or NONE, the specified queue or UAF value is used. Working 
set default values must range between the numbers specified by the 
SYSGEN parameters PQL_MWSDEFAULT and WSMAX. 

/WSEXTENT=n 
Defines for the batch job a working set extent, the maximum amount 
of physical memory that the job can use. The job uses the maximum 
amount of physical memory only when the system has excess free pages. 
If the queue on which the job executes has a nonzero working set extent, 
the smaller of the specified job and queue values is used. If the queue 
on which the job executes has a working set extent of 0, the smaller 
of the specified job and the value established in the user authorization 
file (UAF) is used. If you specify 0 or NONE, the specified queue or 
UAF value is used. Working set extent values must range between the 
numbers specified by the SYSGEN parameters PQL_MWSEXTENT and 
WSMAX. 

/WSQUOTA=n 
Defines for the batch job a working set quota, the amount of physical 
memory that the job is guaranteed. If the queue on which the job executes 
has a nonzero working set quota, the smaller of the specified job and 
queue values is used. If the queue on which the job executes has a 
working set quota of 0, the smaller of the specified job or the value 
established in the user authorization file (UAF) is used. If you specify 
0 or NONE, the specified queue or UAF value is used. Working set 
quota values must range between the numbers specified by the SYSGEN 
parameters PQL_MWSQUOTA and WSMAX. 

example 
$DEFINE JUNE WORKZ:[JONES]ANNUAL REPORT.COM 
$ SUBMIT JUNE -

Job ANNUAL_REPORT (queue SYS$BATCH, entry 229) started on ZOO_BATCH 

In this example, the logical name JUNE is created and equated to 
ANNUAL_REPORT~COM with the DEFINE command. Using the logical 
name JUNE, the user submits ANNUAL_REPORT.COM to the 
batch queue. Note that the system translates the logical name JUNE to 
ANNUAL_REPORT.COM before ANNUAL_REPORT.COM is submitted to 
the batch queue. Also, the log file produced is named 
ANNUAL_REPORT.COM rather than JUNE.COM. 



DCL-426 DCL Commands 
SUBMIT 

Note also that the job is submitted to the generic queue SYS$BATCH, but 
runs on the execution queue ZOO_BATCH. 

SUBROUTINE 
Defines the beginning of a subroutine in a command procedure. The 
SUBROUTINE command must be the first executable statement in a 
subroutine. For more information about the SUBROUTINE command, 
refer to the description of the CALL command. 

SYNCHRONIZE 
Holds the process issuing the command until the specified job completes 
execution. 

format 
SYNCHRONIZE Uob-name] 

parameter 
Oob-name] 
Specifies the name of the job as defined when the job was submitted. To 
specify a job that does not have a unique name, use the /ENTRY qualifier 
to specify the entry number. If you specify both the job name and the 
/ENTRY qualifier, the job name is ignored. 

qualifiers 
!ENTRY:entry-number 
Identifies the job by the system-assigned entry number. 

If you specify both the job-name parameter and the /ENTRY qualifier, the 
job name is ignored. 

/QUEUE:queue-name[:] 
Names the queue containing the job. If you use the /QUEUE qualifier, 
you must specify either the job-name parameter or the /ENTRY qualifier. 
If you specify the job-name parameter, the default queue is SYS$BATCH. 
If you specify the /ENTRY qualifier, there is no default queue. 



DCL Commands DCL-427 
SYNCHRONIZE 

example 
$ SUBMIT/NAME=TIMER COMP.COM 

Job TIMER (queue SYS$BATCH, entry 214) started on queue SYS$BATCH 
$ SYNCHRONIZE /ENTRY=214 

In this example, a batch job named TIMER is submitted. Then the 
SYNCHRONIZE command is entered interactively. This command places 
the interactive process in a wait state until entry number 214 (TIMER) 
completes. You cannot enter subsequent commands from your terminal 
session until the SYNCHRONIZE command completes and your process is 
released from the wait state. 

TYPE 
Displays the contents of a file or group of files on the current output 
device. 

format 
TYPE file-spec[, ... ] 

parameter 
file-spec[,. •• ] 
Specifies one or more files to be displayed. If you specify a file name and 
not a file type, the file type defaults to LIS. The TYPE command displays 
all files that satisfy the file description. 

Wildcard characters are allowed in place of the directory name, file name, 
file type, or file version number field. Either commas or plus signs can 
be used to separate two or more files. The files are displayed in the order 
listed. 

qualifiers 

/BACKUP 
Modifies the time value specified with the /BEFORE or /SINCE qualifier., 
/BACKUP selects files according to the dates of their most recent backups. 
This qualifier is incompatible with the other qualifiers that also allow you 
to select files according to time attributes: /CREATED, /EXPIRED, and 
/MODIFIED. If you specify none of these four time qualifiers, the default 
is /CREATED. 

/BEFORE[:time] 
Selects only those files dated prior to the specified time. You can specify 
time as an absolute time, as a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 



DCL-428 DCL Commands 
TYPE 

IBY_OWNER[:uic] 
Selects only those files whose owner user identification code (UIC) 
matches the specified owner UIC. The default UIC is that of the current 
process. 

/CONFIRM 
/NOCONFIRM (default) 
Controls whether a request is issued before each TYPE operation to 
confirm that the operation should be performed on that file. The following 
responses are valid: 

YES 
TRUE 

1 

NO 

FALSE 

0 

~ 

QUIT 

CTRUZ 

ALL 

You can use any combination of uppercase and lowercase letters for word 
responses. Word responses can be abbreviated to one or more letters 
(for example, T, TR, or TRU for TRUE), but these abbreviations must be 
unique. Affirmative answers are YES, TRUE, and 1. Negative answers 
are NO, FALSE, 0, and <RET>. QUIT or CTRUZ indicates that you want 
to stop processing the command at that point. When you respond with 
ALL, the command continues to process, but no further prompts are given. 
If you type a response other than one of those in the list, DCL issues an 
error message and redisplays the prompt. 

!CREATED (default) 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/CREATED selects files based on their dates of creation. This qualifier is 
incompatible with the other qualifiers that also allow you to select files 
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If 
you specify none of these four time qualifiers, the default is /CREATED. 

!EXCLUDE:{file-spec[, ••. ]) 
Excludes the specified files from the TYPE operation. You can include a 
directory but not a device in the file specification. Wildcard characters 
are allowed in the file specification. However, you cannot use relative 
version numbers to exclude a specific version. If you provide only one file 
specification, you can omit the parentheses. 

!EXPIRED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/EXPIRED selects files according to their expiration dates. (The 
expiration date is set with the SET FILE/EXPIRATION_DATE command.) 
The /EXPIRED qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /MODIFIED. If you specify none of these four time 
qualifiers, the default is /CREATED. 



DCL Commands DCL-429 
TYPE 

/MODIFIED 
Modifies the time value specified with the /BEFORE or /SINCE qualifier. 
/MODIFIED selects files according to the dates on which they were last 
modified. This qualifier is incompatible with the other qualifiers that 
also allow you to select files according to time attributes: /BACKUP, 
/CREATED, and /EXPIRED. If you specify none of these four time 
modifiers, the default is /CRE~rED. 

IOUTPUT[:file-spec] 
/NOOUTPUT 
Controls where the output of the command is sent. If you specify 
/OUTPUT=file-spec, the output is sent to the specified file, rather than to 
the current output device, SYS$0UTPUT. 

!PAGE 
INOPAGE (default) 
Controls whether output from the TYPE command is displayed one screen 
at a time. 

ISINCE[:time] 
Selects only those files dated after the specified time. You can specify 
time as an absolute time, a combination of absolute and delta times, 
or as one of the following keywords: TODAY (default), TOMORROW, 
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to 
indicate the time attribute to be used as the basis for selection: /BACKUP, 
/CREATED (default), /EXPIRED, or /MODIFIED. 

example 
$TYPE LETTER*.MEM 
April 19, 1990 

ICTRUYI 
Interrupt 

$ SHOW TIME 
19-APR-1990 15:48:07 

$ CONTINUE 
Sincerely yours, 



DCL-430 DCL Commands 
TYPE 

In this example, the TYPE command displays all files whose names begin 
with the word LETTER and have the file type MEM. While the files are 
being displayed, the user presses CTRUY to interrupt the TYPE operation 
and display the time. After entering the SHOW TIME command, the user 
enters the CONTINUE command to resume the TYPE operation. 

UNLOCK 
Makes an improperly closed file accessible. 

format 
UNLOCK file-spec[, ... } 

parameter 

file-spec[, ••. ] 
Specifies the name of the file to be unlocked. Wildcard characters are 
allowed. If you include two or more file specifications, separate them with 
either commas or plus signs. 

qualifiers 
/CONFIRM 
/NOCONFIRM (default) 
For each file being unlocked, displays a query to which you must respond 
Y (YES) or T (TRUE) to unlock the file. Any other response aborts the 
unlock operation. 

!LOG 
INOLOG (default) 
Controls whether the UNLOCK command displays the file specification of 
each file being unlocked. 

example 
$ TYPE TST. OUT 
%TYPE-E-OPENIN, error opening DISKl: [STEVE]TST.OUT;3 as input 
-SYSTEM-W-FILELOCKED, file is deaccess locked 
$ UNLOCK TST. OUT 
$ TYPE TST. OUT 

In this example, the request to type the output file TST.OUT returns an 
error message indicating that the file is locked. The UNLOCK command 
unlocks it. Then the TYPE command is reentered to display the contents 
of the file. 



VIEW 

DCL Commands 
VIEW 

DCL-431 

Invokes the DDIF Viewer, which lets you view a compound document 
file on a character cell terminal or DECwindows display. For a complete 
description of the DDIF Viewer, including more information about the 
VIEW command and its qualifiers, see the VMS Compound Document 
Architecture Manual. 

format 

WAIT 

VIEW input-file-spec 

Puts your process into a wait state for the specified amount of time. The 
WAIT command is used in a command procedure to delay processing of 
either the procedure itself or a set of commands in the procedure. 

format 
WAIT delta-time 

parameter 
delta .. time 
Specifies a delta time interval in the following format. (A delta time is an 
offset from the current time to a time in the future.) 

hour:minute:second.hundredth 

The fields on the format line indicate the following: 

hour 

minute 

second 

hundredth 

An integer in the range 0 through 59 

An integer in the range 0 through 59 

An integer in the range 0 through 59 

An integer in the range 0 through 99. 

The colons and period are required delimiters; also, the delta time must 
begin with the number of hours and not a colon. Note that the days field, 
usually included in the delta time format, must be omitted here. 



DCL-432 

example 
$ LOOP: 
$ RUN ALPHA 
$ WAIT 00:10 
$ GOTO LOOP 

DCL Commands 
WAIT 

In this example, the command procedure executes the program image 
ALPHA. After the RUN command executes the program, the WAIT 
command delays execution of the GOTO command for 10 minutes. 
Note that 00 is specified for the number of hours, because the time 
specification cannot begin with a colon. After 10 minutes, the GOTO 
command executes, and the procedure transfers control to the label LOOP 
and executes the program ALPHA again. The procedure loops until it is 
interrupted or terminated. 

If the procedure is executed interactively, terminate it by pressing CTRUC 
or CTRUY and entering the STOP command or another DCL command 
that runs a new image in the process. If the procedure is executed in a 
batch job, enter the DELETE/ENTRY command to terminate it. 

WRITE 
Writes the specified data as one record to an open file specified by a logical 
name. 

All qualifiers must precede all data-item expressions. 

format 
WRITE logical-name expression[, ... ] 

parameters 

logical-name 
Specifies the logical name assigned to the output file. Use the logical 
name assigned by the OPEN command. In interactive mode, specify 
the process-permanent files identified by the logical names SYS$INPUT, 
SYS$0UTPUT, SYS$ERROR, and SYS$COMMAND. 

expression[, •.. ] 
Specifies data to be written as a single record to the output file. You 
can specify data items using character string expressions, which may be 
symbol names, character strings in quotation marks, literal numeric 
values, or a lexical function. You can specify a list of expressions 
separated by commas; the command interpreter concatenates the items 
into one record and writes the record to the output file. The maximum 
size of any record that can be written is less than 1024 bytes. If, however, 
you specify the /SYMBOL qualifier, the maximum record size is 2048 
bytes. 



DCL Commands 
WRITE 

DCL-433 

qualifiers 
/ERROR:/abel 
Transfers control on an I/O error to the location specified by label (in a 
command procedure). If no error routine is specified and an error occurs 
during the writing of the file, the current ON condition action is taken. 
/ERROR overrides any ON condition action specified. If an error occurs 
and control passes successfully to the target label, the reserved global 
symbol $STATUS retains the error code. 

/SYMBOL 
Causes the expression to be interpreted and its expanded value placed in 
a 2048-byte (instead of a 1024-byte) buffer before the write operation 
is performed. If you specify multiple expressions, their values are 
concatenated and placed in the 2048-byte buffer. Use the /SYMBOL 
qualifier to write a very large record. Each expression specified must be a 
symbol. 

!UPDATE 
Replaces the last record read with the record specified with the expression 
parameter. You must be able to read and write to a file to use the 
/UPDATE qualifier. Use the WRITE/UPDATE command only after a 
READ command. The WRITE/UPDATE command modifies the last record 
you have read. 

example 
$ OPEN/WRITE OUTPUT FILE TESTFILE.DAT 
$ INQUIRE ID "Assign Test-id Number" 
$ WRITE/ERROR=WRITE ERROR OUTPUT FILE "Test-id is ",ID 
$ WRITE/ERROR=WRITE-ERROR OUTPUT=FILE 
$ ! -

$ WRITE_LOOP: 

$ GOTO WRITE LOOP 
$ END LOOP: -
$ ! -
$ CLOSE OUTPUT FILE 
$ PRINT TESTFILE.DAT 
$ EXIT 
$ ! 
$ WRITE ERROR: 
$ WRITE-SYS$0UTPUT "There was a WRITE error." 
$ CLOSE OUTPUT FILE 
$ EXIT -

In this example, the open command opens the file TESTFILE.DAT; the 
INQUIRE command requests an identification number to be assigned to 
a particular run of the procedure. The number entered is equated to the 
symbol ID. The WRITE commands write a text line concatenated with the 
symbol name ID and a blank line. 



DCL-434 DCL Commands 
WRITE 

The lines between the label WRITE_LOOP and END_LOOP process 
information and write additional data to the file. When the processing is 
finished, control is transferred to the label END_LOOP. The CLOSE and 
PRINT commands at this label close the output file and queue a copy of 
the file to the system printer. 

The label WRITE_ERROR is used as the target of the /ERROR qualifier 
on the WRITE command; if an error occurs when a record is being 
written, control is transferred to the label WRITE_ERROR. 



DIGITAL Standard Runoff (DSR) Commands DSR-1 

DIGITAL Standard Runoff {DSR) Commands 
DIGITAL Standard Runoff (DSR) is a text-formatting facility consisting of DSR 
commands, DSR flags, the DCL command RUNOFF, the DSR Table of Contents 
Utility, and the DSR Indexing Utility. You enter DSR commands and flags in a 
file along with the text you want to format. The output file that results from DSR 
processing is a formatted document. Neither the DSR commands nor the DSR 
flags appear in the final document. 

The following steps summarize the process of producing a document with DSR: 

1. Use a text editor such as EDT to create or edit a file that contains DSR 
commands, DSR flags, and text. 

2. Use the RUNOFF command to process your file and format the text according 
to DSR defaults and DSR commands that you enter. 

3. Print the formatted document. 

1 DSR Command Format 
A DSR command consists of the following parts: 

• A Control :ftag ( . ) that introduces a DSR command. Begin a command in 
column 1 unless it follows other DSR commands on the same line. 

• A keyword that immediately follows the Control flag to specify the command 
function. A keyword can be a single word or several words separated by 
spaces. The letters of a keyword may be entered in uppercase, lowercase, or 
both. Keywords may be abbreviated to uniqueness. 

• An argument that provides additional information for some commands. Use 
commas or spaces to separate multiple arguments (for example, 
.LAYOUT 1,3). 

Many commands have optional arguments. If you do not enter a value for 
the argument, DSR supplies a predetermined standard numeric or alphabetic 
value. This standard value is known as a default. 

• A terminator that ends the command or string of commands. Commands 
are most commonly terminated by the end of the line. However, you can 
terminate a command with a semicolon ( ; ). You can terminate a command 
and begin a comment with an exclamation point ( ! ). Or you can terminate a 
command and begin another one with a period ( . ). 



DSR-2 DIGITAL Standard Runoff (DSR) Commands 
Entering DSR Commands 

2 Entering DSR Commands 
You can put each DSR command on a separate line or you can put several 

DSR commands on the same line. You must always type the Control flag ( . ) in 
column 1 of a line. The following example shows a single command on each line: 
.BLANK 
.LEFT MARGIN 0 
.INDENT 10 

To put more than one DSR command on a line, you must follow these rules: 

• You must type the first command in column 1 of a line. 

• You can put one command after another if all commands on the line either 
take no values or take numeric values. 

• You can (except where explicitly disallowed) include a command that takes an 
alphabetic argument, as long as it is the last command on the line. 

• You must precede each command with a Control flag ( . ). 

The following example shows multiple commands on a single line: 
.BLANK.LEFT MARGIN 0.INDENT 10 

There are exceptions to these rules. Some commands that take alphabetic values 
(such as the .DISPLAY commands) can appear anywhere in a line of commands. 
Other commands take text, but they must be followed by a semicolon ( ; ) for 
another command to follow on the same line. Some commands that take text 
after them (.TITLE and .CHAPTER) cannot be followed by any other commands. 
DSR Commands describes the formats of the individual commands. 

To terminate a command or line of commands, you usually enter a carriage 
return. However, you can terminate a command by typing a semicolon if you want 
to enter text on the same line with the command. The text must immediately 
follow the semicolon. For example: 
We sail the ocean blue, 
.BLANK;And our saucy ship's a beauty. 

In the preceding example, the semicolon after the .BLANK command tells DSR 
that the command is terminated and that text now follows. DSR inserts a blank 
line between the two lines of text, as shown in the following output: 
We sail the ocean blue, 

And our saucy ship's a beauty. 



DIGITAL Standard Runoff (DSR) Commands DSR-3 
.APPENDIX 

3 DSR Commands 
This chapter contains an alphabetical list of all DSR commands with a description 
of each command . 

. APPENDIX 
The .APPENDIX command specifies the beginning of an appendix, assigns 
an identifying lette'f to it, and allows you to supply a title. Successive 
.APPENDIX commands assign identifying letters in alphabetical order. 
(See also .NUMBER APPENDIX and .DISPLAY APPENDIX.) 

.AUTOJUSTIFY, .NO AUTOJUSTIFY 
When you enter .AUTOJUSTIFY, the following commands automatically 
execute .JUSTIFY (as well as .FILL) commands: 

.APPENDIX 

.CHAPTER 

.HEADER LEVEL 

.NOTE 

If you disable automatic justification by entering .NO AUTOJUSTIFY, 
DSR does not disturb either the justify/no-justify or the fill/no-fill 
states that are in effect (whether by default or as a result of a previous 
.JUSTIFY or .NO JUSTIFY command) at the time you use one of these 
commands. Whichever state is in effect remains in effect when you enter 
.NO AUTOJUSTIFY. (See also .JUSTIFY, .NO JUSTIFY, .FILL, and .NO 
FILL.) 

.AUTOPARAGRAPH, .NO AUTOPARAGRAPH 
The .AUTOPARAGRAPH and .NO AUTOPARAGRAPH commands tum 
the automatic paragraph capability on and off. If .AUTOPARAGRAPH 
is in effect, you do not have to insert .PARAGRAPH commands each 
time you want to format a paragraph. When you start a line with a 
space or tab or insert a blank line, DSR automatically formats a new 
paragraph, using the values of .PARAGRAPH or ~SET PARAGRAPH. 
You can specify values for .PARAGRAPH or you can use the default 
values (see .PARAGRAPH) .. AUTOPARAGRAPH functions the same way 
.AUTOTABLE does, except that .AUTOTABLE starts a new paragraph 
each time a line does not start with a space or tab (see .AUTOTABLE). 



DSR-4 DIGITAL Standard Runoff (DSR) Commands 
.AUTOSUBTITLE, .NO AUTOSUBTITLE 

.AUTOSUBTITLE, .NO AUTOSUBTITLE 
The .AUTOSUBTITLE command causes DSR to use .HEADER LEVEL 
titles for running-head subtitles. Subtitles therefore can change 
according to the section title that applies to a given page. The .NO 
AUTOSUBTITLE command cancels the .AUTOSUBTITLE function. (See 
.HEADERS ON, .SUBTITLE, and .HEADER LEVEL.) 

.AUTOTABLE, .NO AUTOTABLE 
The .AUTOTABLE and .NO AUTOTABLE commands turn the automatic 
paragraph capability on and off. If .AUTOTABLE is in effect, DSR 
formats a new paragraph for each line that does not start with a 
space or tab. It is formatted according to .PARAGRAPH or .SET 
PARAGRAPH values, whether they are specified or supplied by default 
(see .PARAGRAPH) .. AUTOTABLE functions the same way that 
.AUTOPARAGRAPH does, except that .AUTOPARAGRAPH starts 
a new paragraph for each line that starts with a space or tab (see 
.AUTO PARAGRAPH) . 

. BLANK 
The .BLANK command inserts exactly the number of blank lines that 
you specify. It is different from .SKIP, which inserts a multiple of the 
number of blank lines specified in the .SPACING command (see .SKIP 
and .SPACING) . 

. BREAK 
The .BREAK command ends the current line immediately, without filling 
or justifying. Enter .BREAK when .FILL is in effect and you want a few 
short lines of text with no blank lines in between. 



DIGITAL Standard Runoff (DSR) Commands DSR-5 
.CENTER (.CENTRE) 

.CENTER (.CENTRE) 
The . CENTER command centers a single line of text around a character 
position on a line (compare with .RIGHT) . 

. CHAPTER 
The .CHAPTER command specifies the beginning of a chapter, numbers 
it, and allows you to supply a chapter title. Successive .CHAPl'ER 
commands number the chapters sequentially. (See also .NUMBER 
CHAPl'ER and .DISPLAY CHAPTER.) 

.CONTROL CHARACTERS, .NO CONTROL CHARACTERS 
The .CONTROL CHARACTERS command causes DSR to accept control 
characters as normal text in your irput file. The characters that are 
affected by this command are the characters in the DEC Multinational 
Character set with the following decimal values; 1-31, 128-159, and 255. 
The control characters 0 (NULL) and 127 (DEL) can only be inserted into 
a document by using the accept flag (_). A form feed (ASCII 12) must be 
preceded by the accept flag if used in column 1. 

The .NO CONTROL CHARACTERS command does not accept control 
characters as normal text . 

. DATE, .NO DATE 
The .DATE and .NO DATE commands control whether the current date 
appears in running heads. The date appears in the following format: 22 
August 1988. The .SUBTITLE command must be included for .DATE to 
be effective. (See also .HEADERS ON and .SET DATE.) 

.DISPLAY APPENDIX 
The .DISPLAY APPENDIX command allows you to specify the form that 
the lettering (or numbering) of appendixes will take. The form you specify 
appears in the title, the page numbers, and the first character of header 
level numbers throughout the appendix. This command does not change 
any values; it only affects the way the values are displayed. (See also 
.APPENDIX and .NUMBER APPENDIX.) 



DSR-6 DIGITAL Standard Runoff (DSR) Commands 
.DISPLAY CHAPTER 

.DISPLAY CHAPTER 
The .DISPLAY CHAPTER command allows you to specify the form that 
the numbering (or lettering) of chapters will take. The form you specify 
appears in the title, the page numbers, and the first character of header 
level numbers throughout the chapter. This command does not change 
any values; it only affects the way the values are displayed. (See also 
.CHAPTER and .NUMBER CHAPTER.) 

.DISPLAY ELEMENTS 
The .DISPLAY ELEMENTS command allows you to specify the form 
that sequential numbering or lettering of items in a list will take. This 
command does not change any values; it only affects the way the values 
are displayed. (See also .LIST, .END LIST, and .NUMBER LIST.) 

.DISPLAY LEVELS 
The .DISPLAY LEVELS command allows you to specify the form that 
sequential numbering (or lettering) of section headers will take. You 
can control the form of individual numbers within a section number for 
a header (that is, those numbers preceding or following a dot). This 
command does not change any values; it only affects the way the values 
are displayed. (See also .HEADER LEVEL, .NUMBER LEVEL, and 
.STYLE HEADERS.) 

Default Header Level Numbering 

Non chapter Chaptern Appendix A 

.HEADER LEVEL 1 1 n.1 A.1 

.HEADER LEVEL 2 1.1 n.1.1 A.1.1 

.HEADER LEVEL 3 1.1.1 n.1.1.1 A.1.1.1 



DIGITAL Standard Runoff (DSR) Commands DSR-7 
.DISPLAY NUMBER 

.DISPLAY NUMBER 
The .DISPLAY NUMBER command allows you to specify the form that 
sequential numbering (or lettering) of pages will take. This command does 
not change any values; it only affects the way the values are displayed. 
(See also .HEADERS ON, .NUMBER PAGE, .NO NUMBER, .LAYOUT, 
.NUMBER RUNNING, and .NO PAGING.) 

.DISPLAY SUBPAGE 
The .DISPLAY SUBPAGE command allows you to specify the form that 
sequential lettering (or numbering) of subpage characters will take. 
Subpage characters are the characters that are appended to the page 
numbers of subpages. This command does not change any values; it 
only affects the way the values are displayed. (See also .SUBPAGE and 
.NUMBER SUBPAGE.) 

.ENABLE BAR, .DISABLE BAR, .BEGIN BAR, .END BAR 
The bar commands control the insertion of vertical bars ( I ) at the 
beginning of lines of text. The bars (usually called change bars) are 
normally inserted to indicate where changes in text have occurred since 
the previous edition of a document. You can specify a character other 
than the default character (vertical bars) to indicate changes. 

The .ENABLE BAR command shifts all text following it three spaces to 
the right to make room for the bars on the left. The width of the lines of 
actual text is not altered. 

The .BEGIN BAR command causes DSR to start inserting vertical bars at 
the beginning of lines. 

The .END BAR command causes DSR to stop putting vertical bars at the 
beginning of lines. 

The .DISABLE BAR command disables the bar commands but does not 
shift the lines of text back to their original position. 



DSR-8 DIGITAL Standard Runoff (DSR) Commands 
.ENABLE BOLDING, .DISABLE BOLDING 

.ENABLE BOLDING, .DISABLE BOLDING 
The .ENABLE BOLDING and .DISABLE BOLDING commands enable 
and disable the holding function. You can perform holding only if 
recognition of the Bold flag ( * ) is turned on and the bold function is 
enabled . 

. ENABLE HYPHENATION, .DISABLE HYPHENATION 
The .ENABLE HYPHENATION and .DISABLE HYPHENATION 
commands enable and disable the hyphenation function. 

You can use hyphenation to close up excessive spacing between words. 
Extra spaces often are placed between words when margins are narrow 
and a line contains several long words . 

. ENABLE INDEXING, .DISABLE INDEXING 
These commands enable and disable the operation of the indexing 
commands (.INDEX and .ENTRY), and the Index flag(>) . 

. ENABLE OVERSTRIKING, .DISABLE OVERSTRIKING 
The .ENABLE OVERSTRIKING and .DISABLE OVERSTRIKING 
commands enable and disable the overstrike function. 

You use the Overstrike flag ( % ) to create special characters that are not 
available on the terminal by overstriking any printing character with 
another. For example, you can overstrike a 7 with a hyphen to create a 
European 7 . 

. ENABLE TOC, .DISABLE TOC 
These commands enable and disable DSR1 s collection of information for 
the table of contents. 



DIGITAL Standard Runoff (DSR) Commands DSR-9 
.ENABLE UNDERLINING, .DISABLE UNDERLINING 

.ENABLE UNDERLINING, .DISABLE UNDERLINING 
The .ENABLE UNDERLINING and .DISABLE UNDERLINING 
commands enable and disable the underline function. You can perform 
underlining only if recognition of the Underline flag ( & ) is turned on and 
the underline function is enabled . 

• ENTRY 
The .ENTRY command creates an index entry without a page number 
reference. It is usually used for "See . . . " or "See also . . . " index entries . 

. FIGURE DEFERRED, .FIGURE 
The .FIGURE DEFERRED command leaves room on a page for you to 
insert a figure later. You specify the number of blank lines you need, and 
DSR leaves that amount of space on the current page if there is enough 
room. 

If there is not enough room on the current page, .FIGURE DEFERRED 
first adds enough text to complete the page and then puts the required 
number of blank lines at the top of the next page. 

The .FIGURE command is the same as .FIGURE DEFERRED except 
that, if there is not enough room on the current page, DSR ends the page 
immediately and then puts the blank lines at the top of the next page . 

• FILL, .NO FILL 
The .FILL command causes DSR to treat line endings exactly like spaces 
(see also .NO SPACE). Line-filling is the accumulation of words on a line 
until the addition of one more word would exceed the right margin. If 
.NO FILL is in effect, line endings in the input file are duplicated in the 
output file (see also .KEEP). 



DSR-10 DIGITAL Standard Runoff (DSR) Commands 
.FIRST TITLE 

.FIRST TITLE 
The .FIRST TITLE command allows running-head information to appear 
on the first page of a document with no chapters. (See also .HEADERS 
ON, .LAYOUT, .TITLE, .SUBTITLE, and .AUTOSUBTITLE.) 

.FLAGS ACCEPT, .NO FLAGS ACCEPT 
The .FLAGS ACCEPT and .NO FLAGS ACCEPT commands turn on and 
turn off recognition of the Accept flag character ( _ ) . 

. FLAGS ALL, .NO FLAGS ALL 
The .FLAGS ALL and .NO FLAGS ALL commands function as master 
switches for all other .FLAGS/.NO FLAGS flag-name command settings, 
except the .FLAGS/.NO FLAGS COMMENT and .FLAGS/.NO FLAGS 
CONTROL commands. 

The .FLAGS ALL and .NO FLAGS ALL commands turn on and turn off 
recognition of all flags without disturbing other flag command settings. 
(An analogy for flag recognition is turning on a master switch [entering 
.FLAGS ALL] - those lights whose switches are in the ON position will 
go on and those whose switches are in the OFF position will not go on.) 
See also .ENABLE/.DISABLE BOLDING, HYPHENATION, INDEXING, 
OVERSTRIKING, and UNDERLINING commands . 

. FLAGS BOLD, .NO FLAGS BOLD 
The .FLAGS BOLD and .NO FLAGS BOLD commands turn on and turn 
off recognition of the Bold flag character ( * ) . 

. FLAGS BREAK, .NO FLAGS BREAK 
The .FLAGS BREAK and .NO FLAGS BREAK commands turn on and 
turn off recognition of the Break flag character ( I ). 



DIGITAL Standard Runoff (DSR) Commands DSR-11 
.FLAGS CAPITALIZE, .NO FLAGS CAPITALIZE 

.FLAGS CAPITALIZE, .NO FLAGS CAPITALIZE 
The .FLAGS CAPITALIZE and .NO FLAGS CAPITALIZE commands turn 
on and turn off recognition of the Capitalize flag character ( < ) . 

• FLAGS COMMENT, .NO FLAGS COMMENT 
The .FLAGS COMMENT and .NO FLAGS COMMENT commands tum on 
and turn off recognition of the Comment flag character ( ! ) . 

• FLAGS CONTROL, .NO FLAGS CONTROL 
These commands control recognition of the Control flag character (the 
dot that begins a DSR command). You can enter .FLAGS CONTROL 
to change the character that precedes the commands from a dot to a 
character of your choice. You can enter .NO FLAGS CONTROL to tum off 
recognition of the Control flag character. 

NOTE: There is no way to reenable recognition of the 
Control flag once you enter the .NO FLAGS CONTROL 
command . 

. FLAGS HYPHENATE, .NO FLAGS HYPHENATE 
The .FLAGS HYPHENATE and .NO FLAGS HYPHENATE commands 
turn on and turn off recognition of the Hyphenate flag character ( = ) . 

. FLAGS INDEX, .NO FLAGS INDEX 
These commands respectively turn on and turn off recognition of the 
Index flag character ( > ). 



DSR-12 DIGITAL Standard Runoff (DSR) Commands 
.FLAGS LOWERCASE, .NO FLAGS LOWERCASE 

.FLAGS LOWERCASE, .NO FLAGS LOWERCASE 
The .FLAGS LOWERCASE and .NO FLAGS LOWERCASE commands 
tum on and tum off recognition of the Lowercase flag character ( \ ) . 

. FLAGS OVERSTRIKE, .NO FLAGS OVERSTRIKE 
The .FLAGS OVERSTRIKE and .NO FLAGS OVERSTRIKE commands 
enable and disable recognition of the Overstrike flag character ( % ) . 

. FLAGS PERIOD, .NO FLAGS PERIOD 
The .FLAGS PERIOD and .NO FLAGS PERIOD commands tum on and 
tum off recognition of the Period flag character ( + ) . 

. FLAGS SPACE, .NO FLAGS SPACE 
The .FLAGS SPACE and .NO FLAGS SPACE commands tum on and tum 
off recognition of the Space flag character ( # ) . 

. FLAGS SUBINDEX, .NO FLAGS SUBINDEX 
The .FLAGS SUBINDEX and .NO FLAGS SUBINDEX commands turn 
on and tum off recognition of the Subindex flag ( > ). You can also use the 
.FLAGS SUBINDEX command to change the Subindex flag to another 
character. If you enter .NO FLAGS SUBINDEX, the command will cause 
a right angle bracket ( > ) to be printed as part of your indexed text, 
instead of causing subindexing . 

. FLAGS SUBSTITUTE, .NO FLAGS SUBSTITUTE 
The .FLAGS SUBSTITUTE and .NO FLAGS SUBSTITUTE commands 
tum on and tum off recognition of the Substitute flag character ( $ ). The 
default Substitute flag character ( $ ) or any replacement character you 
specify must be used in pairs. 



DIGITAL Standard Runoff (DSR) Commands DSR-13 
.FLAGS UNDERLINE, .NO FLAGS UNDERLINE 

.FLAGS UNDERLINE, .NO FLAGS UNDERLINE 
The .FLAGS UNDERLINE and .NO FLAGS UNDERLINE commands 
turn on and turn off recognition of the Underline flag character ( & ) . 

. FLAGS UPPERCASE, .NO FLAGS UPPERCASE 
The .FLAGS UPPERCASE and .NO FLAGS UPPERCASE commands 
turn on and turn off recognition of the Uppercase flag ( ") . 

. FOOTNOTE, .END FOOTNOTE 
The .FOOTNOTE command places the text following it at the bottom 
of the current page if there is room. If there is not enough room on the 
current page for the entire footnote, DSR places the entire note at the 
bottom of the next page. 

The .END FOOTNOTE command ends the footnote and restores any 
case, fill, justify, spacing, or margin settings that you might have changed 
within the footnote. 

The right margin of the footnote will be the same as the right margin 
in effect for the document at the time the footnote is created. If you 
change the right margin of the document but want the right margin 
of all footnotes to be the same, enter the .RIGHT MARGIN command 
immediately after each .FOOTNOTE command to set the same right 
margin for each footnote. 

The left margin setting of the footnote is defaulted to 0 . 

. HEADER LEVEL 
The .HEADER LEVEL command allows you to specify both a section 
number and a section title. Successive .HEADER LEVEL commands 
of the same value (all .HEADER LEVEL l's for example) cause the 
section numbers to increase sequentially. This happens at all six levels of 
headers. If your current section is in Chapter 2 and is numbered 2.5.2.4, 
then the following numbering would result depending upon the .HEADER 
LEVEL command you used: 

• .HL3 (or .HL without a value) would number the next section 2.5.2.5 

• .HL2 would number the next section 2.5.3 

• .HLl would number the next section 2.6 



DSR-14 DIGITAL Standard Runoff (DSR) Commands 
.HEADER LEVEL 

(See also .DISPLAY LEVELS, .NUMBER LEVEL, .SET LEVEL, and 
.STYLE HEADERS.) 

Following is a summary of default header level numbering for three levels 
of three different types of documents: 

Default Header Level Numbering 

Nonchapter Chaptern Appendix A 

.HEADER LEVEL 1 1 n.1 A.1 

.HEADER LEVEL 2 1.1 n.1.1 A.1.1 

.HEADER LEVEL 3 1.1.1 n.1.1.1 A.1.1.1 

.HEADERS ON, .NO HEADERS 
The .HEADERS ON and .NO HEADERS commands restore and cancel, 
respectively, the capability of having one or two lines of information at the 
top of a page. These lines indicate the content of the page and the page 
number. They are called running heads, which you should not confuse 
with section heads (specified with .HEADER LEVEL commands) . 

. HEADERS UPPER, .HEADERS LOWER, .HEADERS 
MIXED 

The .HEADERS UPPER/LOWER/MIXED commands specify the case of 
the word page that precedes the page number. The commands produce, 
respectively, PAGE, page, and Page. In an index, these commands also 
affect the word index that is part of the page number, for example, Page 
lndex-3. The command normally takes effect on the next page . 

.IF, .IFNOT, .ELSE, .ENDIF 
The .IF, .IF NOT, .ELSE, and .ENDIF commands (also known as the 
conditional commands) cause portions of a DSR file to be processed or not 
processed, according to conditions that you specify. The commands refer 
to the NARIANT qualifier that you specify on the DSR command line. 
(See also /DEBUG=CONDITIONALS and .VARIABLE.) 



DIGITAL Standard Runoff (DSR) Commands DSR-15 
.INDENT 

.INDENT 
The .INDENT command causes the first line of text following it to begin 
at a position relative to the left margin . 

.INDEX 
The .INDEX command creates an index entry with a page number 
reference . 

• JUSTIFY, .NO JUSTIFY 
The .JUSTIFY command causes DSR to insert exactly enough space 
between words so that the last character reaches the right margin. The 
.NO JUSTIFY command disables justification . 

. KEEP, .NO KEEP 
The .KEEP command allows you to keep in the output file blank lines 
that are present in the input file when .NO FILL is in effect. Normally, 
multiple blank lines in the input file are discarded in the output file while 
.NO FILL is in effect .. NO KEEP also discards blank lines when .NO 
FILL is in effect. (See also .LITERAL.) 

.LAYOUT 
The .LAYOUT command rearranges running-head and running-foot 
information on pages. (See the .HEADERS ON command.) When the 
default .LAYOUT operates, page numbering is not displayed on the first 
page, it starts on page 2 . 

• LEFT MARGIN 
The .LEFT MARGIN command sets the left margin to the specified 
position. 



DSR-16 DIGITAL Standard Runoff (DSR) Commands 
.LIST, .END LIST 

.LIST, .END LIST 
The .LIST command specifies the beginning of a list by resetting the left 
margin farther to the right, by setting a .SKIP command value to take 
effect before each item in the list, and by executing .TEST PAGE. Use 
the .LIST ELEMENT command to specify each item in the list. .LIST 
ELEMENT commands also give you numbers or letters in sequence in 
the left margin or let you substitute a single character of your choice for 
each of the numbers or letters (for example, the lowercase letter o, which 
is known as a "bullet"). (See also .DISPLAY ELEMENTS and .NUMBER 
LIST.) 

The .END LIST command ends a list, restoring any fill, justify, case, 
margin, or spacing settings that were in effect before you entered the 
most recent .LIST command. You can also specify a value With .END 
LIST that puts blank lines after the last item in the list (as with .SKIP) . 

• LIST ELEMENT 
The .LIST ELEMENT command specifies the beginning of each item in a 
list. If you specify a character in a .LIST command, it appears, followed 
by two spaces, before each item. Otherwise, a sequence of numbers or 
letters, as defined in the .DISPLAY ELEMENTS command, appears 
when you enter successive .LIST ELEMENT commands. If you have not 
entered the .DISPLAY ELEMENTS command, you will get a sequence of 
decimal numbers, each followed by a period and two spaces. (See .LIST, 
.END LIST, .DISPLAY ELEMENTS, and .NUMBER LIST.) 

.LITERAL 
The .LITERAL command allows you to have your text formatted exactly 
as you have typed it. This means that you will get a blank line in the 
output file wherever a blank line occurs in the input file. (If the value 
specified by the .SPACING command is anything other than one, you will 
get the spacing value that you specified.) 

Commands are not recognized when .LITERAL is in effect and are treated 
as ordinary text if you enter them. DSR flags are also treated as normal 
text. Tab stops set prior to the .LITERAL command, however, are still 
in effect within the block of .LITERAL text (see .TAB STOPS). You must 
enter .END LITERAL when you want DSR to resume normal formatting. 



DIGITAL Standard Runoff (DSR) Commands DSR-17 
.NO SPACE 

.NO SPACE 
The .NO SPACE command prevents the insertion of the end-of-line space 
for one line of text only, causing the characters at the end of one line and 
the beginning of the next to be adjacent. 

Without the .NO SPACE command, when .FILL is in effect, DSR treats 
the end of an input line exactly like a space. That is, it inserts a space 
in the output file at the place where each input line ended (this is the 
meaning of "fill\ nospace"). 

If you ever have occasion to use this command, you should enter it 
immediately after the end-of-line space that you want to affect . 

. NOTE, .END NOTE 
The .NOTE command highlights a portion of text by narrowing the 
margin settings, centering the text on the page, and printing a title 
centered over the text. 

The .END NOTE command restores the fill, justify, case, margin, and 
spacing settings that were in effect just before you entered the .NOTE . 

. NUMBER APPENDIX 
The .NUMBER APPENDIX command allows you to specify an identifying 
letter with which a sequence of appendixes will begin. The next 
.APPENDIX command starts the sequence. Subsequent .APPENDIX 
commands cause appendixes to be lettered in alphabetic order. See also 
.DISPLAY APPENDIX . 

. NUMBER CHAPTER 
The .NUMBER CHAPTER command allows you to specify the number 
with which a sequence of chapters will begin. The next .CHAPTER 
command starts the sequence. Subsequent .CHAPTER commands will 
cause each chapter to be numbered one higher than the previous chapter. 
(See also .DISPLAY CHAPTER.) 



DSR-18 DIGITAL Standard Runoff (DSR) Commands 
.NUMBER LEVEL 

.NUMBER LEVEL 
The .NUMBER LEVEL command allows you to specify the beginning 
number of a sequence of headers. Enter this command immediately 
before the first .HEADER LEVEL command that you want to affect. 
Subsequent .HEADER LEVEL commands will each be one higher than 
the preceding one according to its level (see .HEADER LEVEL). (See also 
.STYLE HEADERS and .DISPLAY LEVELS.) 

Default Header Level Numbering 

Nonchapter Chaptern Appendix A 

.HEADER LEVEL 1 1 n.1 A.1 

.HEADER LEVEL 2 1.1 n.1.1 A.1.1 

.HEADER LEVEL 3 1.1.1 n.1.1.1 A.1.1.1 

.NUMBER LIST 
The .NUMBER LIST command allows you to specify, anywhere in a list, 
the number with which a sequence of items in a list will begin. Enter 
this command just before the .LIST ELEMENT command that you want 
to affect. Subsequent list elements will each have a number that is one 
greater than the number for the preceding .LIST ELEMEMr command. 
(See also .DISPLAY ELEMENTS, with which you can specify the form the 
number will take.) 

.NUMBER PAGE, .NO NUMBER 
The .NO NUMBER command suspends normal page numbering. The 
.NUMBER PAGE command resumes normal page numbering, having kept 
track of the numbering while .NO NUMBER was in effect; or it allows 
you to specify the beginning of a new number sequence by specifying a 
number for the next page. (See also .NUMBER RUNNING, .DISPLAY 
NUMBER, .NO PAGING, and .HEADERS ON.) 



DIGITAL Standard Runoff (DSR) Commands DSR-19 
.NUMBER RUNNING 

.NUMBER RUNNING 
The .NUMBER RUNNING command allows you to specify the beginning 
of a new sequence of running page numbers. This command affects page 
numbers only if you have entered a .LAYOUT command with an nl value 
of 3. (See .LAYOUT, .HEADERS ON, and .NO NUMBER.) 

.NUMBER SUBPAGE 
The .NUMBER SUBPAGE command allows you to specify the beginning 
of a new sequence of subpage numbers, for example, l-16A, 1-16B, 1-16C, 
and so on. This command affects only the letters that the .SUBPAGE 
command appends to the normally numeric page number. .NUMBER 
SUBPAGE takes effect on the next page. (See also .SUBPAGE and 
.DISPLAY SUBPAGE.) 

.PAGE 
The .PAGE command starts a new page . 

. PAGE SIZE 
The .PAGE SIZE command sets the page "frame" by specifying the page 
length (the maximum number of lines of text on a page) and the page 
width for the running heads. (Compare with .RIGHT MARGIN, which 
sets the text width.) The width component of .PAGE SIZE and the value 
established by .RIGHT MARGIN are separate values . 

. PAGING, .NO PAGING 
The .PAGING command enables paging. The .NO PAGING command 
disables it. 



DSR-20 DIGITAL Standard Runoff (DSR) Commands 
.PARAGRAPH 

.PARAGRAPH 
The .PARAGRAPH command controls spacing and page placement 
associated with the creation of paragraphs. It executes . TEST PAGE, 
followed by .SKIP and .INDENT. (See also .SET PARAGRAPH.) 

.PERIOD, .NO PERIOD 
DSR normally adds an extra space after any of the following punctuation 
marks in your text: period ( . ), colon ( : ), question mark (? ), and 
exclamation point ( ! ). 

The .NO PERIOD command cancels the extra space that DSR inserts 
after any of the punctuation marks listed above. The .NO PERIOD 
command is used to differentiate between punctuation used in the syntax 
of a sentence and punctuation used for other purposes. 

The .PERIOD command restores the routine insertion of an extra space 
following any of the punctuation marks listed above . 

. REPEAT 
The .REPEAT command allows you to specify up to 150 characters to be 
printed a specified number of times, either horizontally or vertically . 

. REQUIRE 
The .REQUIRE command allows you to process several DSR files at the 
same time and merge them in an output file . 

. RIGHT 
The .RIGHT command positions a single line of text relative to the right 
margin. (See also .CENTER.) 



DIGITAL Standard Runoff (DSR) Commands DSR-21 
.RIGHT MARGIN 

.RIGHT MARGIN 
The .RIGHT MARGIN command sets the right margin to the position 
that you specify. This is the position to which a line of text normally 
extends. If .JUSTIFY is in effect, the .RIGHT MARGIN value is the 
position against which text is justified. If .NO JUSTIFY is in effect, the 
.RIGHT MARGIN value specifies the maximum number of characters on 
any text line. (Compare with .PAGE SIZE, which sets the page width for 
running heads.) 

.SAVE, .RESTORE 
These commands maintain the formatting context of a document for 
the user. The files produced by the DSR utilities make changes to the 
formatting context. In order not to disturb the user's context, the RNT 
and RNX files execute .SAVE and .RESTORE commands . 

. SAVE stores information about the current RUNOFF formatting context; 
this includes DSR defaults and DSR commands and flags issued by the 
user . 

. RESTORE restores the formatting information saved by the last-issued 

.SAVE command . 

• SENDTOC 
The .SEND TOC command allows you to insert DSR commands, DSR 
flags, and text into the table of contents (RNT) file. The items that you 
insert affect the appearance of the table of contents. For example, you 
can send emphasis flag characters to cause holding and underlining in the 
table of contents . 

• SET DATE, .SET TIME 
The .SET DATE and .SET TIME commands let you specify a date and 
time to be inserted in your file when you issue the Substitute flag pair, 
$$, with any of the appropriate date or time parameters. .SET DATE also 
sets the date for the .DATE command, which causes the date to appear in 
running heads. 



DSR-22 DIGITAL Standard Runoff (DSR) Commands 
.SET LEVEL 

.SET LEVEL 
The .SET LEVEL command allows you to preset the level of the next 
section head without entering a .HEADER LEVEL command (see 
.HEADER LEVEL) . 

. SET PARAGRAPH 
The .SET PARAGRAPH command allows you to set values for 
.PARAGRAPH without entering .PARAGRAPH. The .SET PARAGRAPH 
command can be especially useful if you plan to execute .AUTO PARAGRAPH 
or .AUTOTABLE. (See .PARAGRAPH.) 

.SKIP 
The .SKIP command inserts a multiple of the number of blank lines 
that has been specified by the .SPACING command. Contrast this with 
.BLANK, which inserts only the number of blank lines specified with the 
.BLANK command itself. (See .BLANK) 

.SPACING 
The .SPACING command changes the amount of spacing between lines of 
text . 

• STYLE HEADERS 
The .STYLE HEADERS command changes the formats of the various 
levels of section heads (.HEADER LEVEL n). Do not confuse the numbers 
that identify the header level (in the range of 1 through 6) with the 
numbers that get printed just to the left of the header title (3.5.2, for 
example). See .HEADER LEVEL. (See also .NUMBER LEVEL and 
.DISPLAY LEVEL.) 

Default Header Level Numbering 

Nonchapter Chaptern Appendix: A 

.HEADER LEVEL 1 1 n.1 A.1 

.HEADER LEVEL 2 1.1 n.1.1 A.1.1 

.HEADER LEVEL 3 1.1.1 n.1.1.1 A.1.1.1 



DIGITAL Standard Runoff (DSR) Commands DSR-23 
.SUBPAGE, .END SUBPAGE 

.SUBPAGE, .END SUBPAGE 
The .SUBPAGE command begins a new page and a new format for page 
numbering. It numbers the new page by keeping the previous page 
number and appending the letter A to it. For example, if the previous 
page is 10, the first subpage is lOA and the next page becomes lOB 
unless you have entered an .END SUBPAGE in the meantime. (See also 
.NUMBER SUBPAGE, .DISPLAY SUBPAGE, .HEADERS ON, .LAYOUT, 
and .PAGE.) 

The .END SUBPAGE command begins a new page and goes back to 
normal page numbering. If you entered the .END SUBPAGE command on 
page 2-SD, for example, the next page would be numbered 2-9 . 

. SUBTITLE, .NO SUBTITLE 
The .SUBTITLE command allows you to specify a subtitle for a running 
head (see .HEADERS ON). When using the default .LAYOUT command, 
the subtitle appears on the second line of every page (except page 1) at 
the leftmost position on a line (character position 0), regardless of the left 
margin setting. The .NO SUBTITLE command cancels the .SUBTITLE 
command. (See also .AUTOSUBTITLE, .TITLE, .FIRST TITLE, and 
.LAYOUT.) 

.TAB STOPS 
The .TAB STOPS command changes the current positions of tab stops. 
Each tab character in the input file advances the print carriage to the 
right to the next tab stop . 

. TEST PAGE 
The .TEST PAGE command allows you to keep a specified amount of text 
entirely on a single page. If there is not enough room on the current page 
to accommodate that amount, DSR ends the current page and puts the 
entire text on the next page. 



DSR-24 DIGITAL Standard Runoff (DSR) Commands 
.TITLE 

.TITLE 
The . TITLE command allows you to specify a title for a running head 
(see .HEADERS ON). This title normally appears at the top of every 
page but the first, at the leftmost position on the line (character position 
0), regardless of the .LEFT MARGIN setting. (See also .FIRST TITLE, 
.SUBTITLE, and .LAYOUT~) 

.VARIABLE 
The .VARIABLE command allows you to specify a character that 
corresponds to the name you have given the commands and text 
in an .IF (or .IFNOT) block. This identifying character is placed 
in the left margin when you process your file with the /DEBUG or 
/DEBUG=CONDITIONALS command line qualifier . 

. XLOWER, .XUPPER 
The .XLOWER command allows you to control the case of index entries 
specified by the .INDEX and the .ENTRY commands, or by the Index flag 
( > ). The case of the index entries will match exactly the case that you 
enter when you make the index entry. 

The .XUPPER command lets DSR control the case of index entries. 
If .XUPPER is in effect (as it is by default), DSR capitalizes the first 
character of every index entry, and drops everything else in the entry to 
lowercase. 



EDT Keypad Commands EDT-1 
ADVANCE Function 

EDT Keypad Commands 
This section contains descriptions of the EDT keypad commands, qualifiers, and 
specifiers. The command descriptions are given in alphabetical order. 

ADVANCE Function 
description 

Pressing ADVANCE sets the direction for subsequent editing work to 
forward (to the right of the cursor and down toward the end of the buffer). 

ADVANCE is the default direction and remains in effect until you press 
BACKUP. 

You can also use the ADVANCE key to set the direction of and process 
the FIND function. Press the GOLD and FIND keys, enter the string you 
want to locate, then press ADVANCE to move the cursor forward to find 
the string. 

APPEND Function 
description 

Pressing APPEND deletes the select range from the current buffer and 
adds it to the end of the PASTE buffer. The previous contents of the 
PASTE buffer are not deleted. 

BACKSPACE Function CTRL/H 
description 

Pressing BACKSPACE causes the cursor to move to the beginning of the 
current line. If the cursor is already at the beginning of a line, pressing 
BACKSPACE moves it to the beginning of the previous line. 

The BACKSPACE key and CTRLJH always have the same preset function 
in EDT. When you redefine the BACKSPACE key, you redefine CTRUH 
(except for terminals with LK201 keyboards when they are operating 
in VT200 mode). To redefine the BACKSPACE key using the line-mode 
DEFINE KEY command, enter DEFINE KEY CONTROL H. To find the 
definition of the BACKSPACE key, enter SHOW KEY CONTROL H. For 
terminals with LK201 keyboards, use DEFINE KEY FUNCTION 24 and 
SHOW KEY FUNCTION 24 for the F12 key. 



EDT-2 EDT Keypad Commands 
BACKUP Function 

BACKUP Function 
description 

Pressing BACKUP sets the direction for subsequent editing work to 
backward (to the left of the cursor toward the beginning of the buffer). 

You can use the BACKUP key to set the direction of and process the FIND 
function. Press the GOLD and FIND keys, enter the string you want to 
locate, and then press BACKUP to move the cursor backward to find the 
string. 

To change EDT's direction to forward, use ADVANCE. The RESET 
function also sets EDT's direction to forward. 

BOTTOM Function 
description 

Pressing BOTTOM moves the cursor to the end of the buffer, after the 
last character position in the buffer. The cursor is positioned at the end of 
buffer ([EOB]) mark. 

CHAR (Chara~ter) Function 
description 

Pressing CHAR (character) moves the cursor one character in the current 
direction (forward or backward, depending on whether ADVANCE or 
BACKUP is in effect). 

This key is not on the VT52 keypad. However, the LEFT and RIGHT 
arrow keys can be used to move the cursor one character position. 

CHNGCASE (Change Case) Function 
description 

Pressing CHNGCASE (change case) changes the case of letters in your 
text. Uppercase letters become lowercase; lowercase letters become 
uppercase. The number of letters affected by this function depends 
on several factors: active select range, cursor location, SET SEARCH 
parameter, and repeat count. The following chart shows what happens 
when you use CHNGCASE under various conditions: 



EDT Keypad Commands 
CHNGCASE (Change Case) Function 

EDT-3 

Conditions 

SELECT RANGE ACTIVE 

NO SELECT RANGE ACTIVE 

la. SET SEARCH BEGIN in effect. 
Cursor on first character 

of current search string. 
Repeat count = 0 or 1. 

lb. SET SEARCH END in effect. 
Cursor to the right of 

current search string. 
Repeat count = 0 or 1. 

2a. Current direction is 
forward. 

*Cursor not at active end 
of current search string. 

Repeat count = 0 or 1. 

2b. Current direction is 
backward. 

*Cursor not at active end 
of current search string. 

Repeat count = 0 or 1. 

3a. Repeat count greater 
than 1. 

Current direction is 
forward. 

3b. Repeat count greater 
than 1. 

Current direction is 
backward. 

* Active end of select range: 

SET SEARCH BEGIN 

SET SEARCH END 

Results 

Changes the case of every letter in 
the select range. All lowercase 
letters become uppercase; all upper
case letters become lowercase. 

Changes the case of every letter in 
the search string. All lowercase 
letters become uppercase; all upper
letters become lowercase. Moves 
the cursor to the character 
to the right of the search string. 

Changes the case of every letter in 
the search string. All lowercase 
letters become uppercase; all upper
case letters become lowercase. 
Moves the cursor to the first 
character of the search string. 

Changes the case of the letter that 
the cursor is on. Moves the cursor 
one column to the right. 

Changes the case of the letter to the 
left of the cursor. The cursor 
remains on the altered letter. 

Changes the case of the number of 
letters given in the repeat count. 
Moves the cursor to the right of 
the last altered character. 

Changes the case of the number of 
letters given in the repeat count. 
Moves the cursor to the leftmost 
altered letter. 

Positions cursor on first character of 
current search string. 

Positions cursor 6ne character to the 
right of current search string. 



EDT-4 EDT Keypad Commands 
COMMAND Function 

COMMAND Function 
description 

Pressing COMMAND enables you to enter a line-mode command while 
EDT is still in keypad mode. When you press GOLD and COMMAND, 
EDT prompts you with Command: at the bottom of the screen. Enter the 
line-mode command you want to use, for example EXIT, then press the 
ENTER key on the keypad to send the command to EDT. 

Use CTRUZ to shift from keypad to line editing if you want to enter 
several line-mode commands in a row. 

You can enter two or more line-mode commands on the same line by 
separating the commands with semicolons. If you want to put nokeypad 
commands after the line-mode command, use CHANGE ;nokeypad
commands form. You can use EDT macros with the COMMAND function 
just as you would any other line-mode command. 

CTRL/A (Control A) Function 
description 

Pressing CTRU A establishes the tab position at the present cursor 
position and resets the indentation level count to be the quotient of 
the cursor position divided by the SET TAB value. To use CTRU A, the 
current cursor position must be a multiple of the SET TAB value. For 
example, if the SET TAB value is 5, you can use CTRUA for cursor 
locations at positions 5, 10, 15, 20, and so on. If the cursor is at some 
other column, for example 13, and you press CTRU A, EDT prints an 
error message. 

CTRU A does not move text. You must use the TAB function to indent a 
line. CTRUA works only if SET TAB is in effect. EDT's default is SET 
NOTAB. 

CTRL/C (Control C) Function 
description 

Pressing CTRUC interrupts certain operations before EDT finishes 
processing them. You can use CTRUC to stop a runaway search through 
a long file or to stop a long repeat count. CTRUC can also be used to 
halt certain EDT operations. For example, you can use CTRUC to stop 
EDT from displaying a whole buffer when you use the line-mode TYPE 
command to move to another buffer. 



EDT Keypad Commands EDT-5 
CTRUC {Control C) Function 

When EDT aborts the operation, it prints the message "Aborted by 
CTRUC." If EDT cannot stop a particular process, it prints the message 
"CTRUC ignored." 

Note: You cannot redefine the CTRUC function. 

CTRL/D (Control D) Function 
description 

Pressing CTRUD decreases the TAB level count one tab setting. The tab 
level count is the multiple of the SET TAB value that determines the tab 
indentation level. Suppose the SET TAB value is 5, the tab level count is 
3, and the current indentation level is 15. If you press CTRUD and then 
the TAB key, the subsequent text will be moved over 10 columns. The 
SET TAB value is still 5, but the tab level count is now 2 and the current 
indentation level is 10. 

CTRUD does not move text. You must use the TAB function to indent a 
line. CTRUD only works if SET TAB is in effect. EDT's default is SET 
NOTAB. 

CTRL/E (Control E) Function 
description 

Pressing CTRUE increments the tab level count by 1. The tab level count 
is the multiple of the SET TAB value that determines the tab indentation 
level. Suppose the SET TAB value is 5, the tab level count is 2, and 
the current indentation level is 10. If you press CTRUE and then the 
TAB key, the subsequent text will be moved over 15 columns. The SET 
TAB value is still 5, but the tab level count is now 3 and the current 
indentation level is 15. 

CTRUE does not move text. You must use the TAB function to indent a 
line. CTRUE only works if SET TAB is in effect. EDT's default is SET 
NOTAB. 



EDT-6 EDT Keypad Commands 
CTRL/K (Control K) Function 

CTRL/K {Control K) Function 
description 

Pressing CTRL/K starts the key definition process in keypad mode. You 
can create key definitions using both nokeypad commands and predefined 
function keys. You can define a key by using only nokeypad commands, by 
pressing predefined function keys, or by combining nokeypad commands 
with pressing predefined function keys. 

Five types of keys can be defined or redefined: 

• A keypad key with or without GOLD 

All keypad keys can be redefined. 

If the current definition of a key is GOLD, you must use the line-mode 
DEFINE KEY command to redefine that key. GOLD is the default 
definition for the top left-hand keypad key (PFl on VTlOO; blue on 
VT52). If you are defining a key to have the RESET function, you 
must enter the word RESET in the definition line. 

• CONTROL with a keyboard character, with or without GOLD 

EDT does not allow you to redefine CTRUC. Some CONTROL 
character combinations are system commands and, for that reason, 
cannot be redefined. These include 0, P, Q, S, X, Y, and[. 

Note that you cannot press CTRIJU to enter its definition in the 
definition line. 

• GOLD with a keyboard character 

GOLD can be used with any keyboard character except the digits 0 
through 9 and the minus sign. 

• The DELETE key with or without GOLD 

The DELETE key can be redefined by itself or with GOLD. 

You cannot press DELETE or <XI to enter its definition in the 
definition line. 

• FUNCTION keys on the LK201 keyboard 

These include the six keys located above the arrow keys on the 
terminal's "editing'' keypad as well as keys F6 through F20 on the 
function key row across the top of the keyboard. 

To define a key in keypad-mode, first press CTRL/K. EDT displays the 
message: 
Press the key you wish to define 



EDT Keypad Commands EDT-7 
CTRUK (Control K) Function 

Press the key or key sequence you want to define. EDT then displays the 
message: 

Now enter the definition and press ENTER 

Enter your definition and/or press existing keypad function keys and then 
press the ENTER key as instructed. (The DO key on LK201 keyboards 
does not process a CTRUK key definition.) The process is now complete. 
If you want to review the definition of any key, use the line-mode SHOW 
KEY command. 

Any nokeypad command can be used in a key definition. The same entity 
specifiers that are available in nokeypad mode are available for key 
definitions. Most preset EDT function keys have nokeypad definitions. 
(GOLD and RESET are exceptions.) Use the SHOW KEY command to see 
these definitions. 

When you look at the definitions for most preset functions, notice that 
they end with a period. This period is the definition for the ENTER 
function. When you complete your definition with a period, EDT processes 
the command as soon as you press the key or key sequence. If the period 
is omitted, EDT stores the command and does not show the results until 
you press RETURN, ENTER, or another function key with the period 
at the end of its definition .. For example, if you define GOLD/P to be 
2DL., when you press the GOLD key and then the P key, two lines will 
disappear from your screen. If the definition is 2DL, no change appears 
on the screen after pressing GOLD and then P. But as soon as you press 
another function key, the two lines vanish. Be sure to use the period 
key on the main keyboard, not the one on the keypad, to complete your 
definitions. 

CTRL/L (Control L) Function 
description 

Pressing CTRUL inserts a form feed character (<FF>) into your text. 
You can also use CTRIJL to enter a form feed in search strings and SET 
commands. 



EDT-8 EDT Keypad Commands 
CTRL/M (Control M) Function 

CTRL/M {Control M) Function 
description 

Pressing CTRUM inserts a carriage return character (<CR>) into your 
text. You can also use CTRIJM to enter a carriage return character (<CR> 
or "M) in strings and SET commands. CTRIJM is not identical to an EDT 
line terminator. However, in keypad mode, you can use CTRIJM to mean 
a line terminator in search and substitute strings. 

When you redefine the CTRIJM key sequence, you also automatically 
redefine the RETURN key. It is recommended that you do not alter the 
preset. definition of CTRIJM for that reason. 

CTRL/R {Control R) Function 
description 

Pressing CTRUR (in keypad mode) refreshes the screen display. This 
function has no effect on the text you are editing. It simply clears and 
redraws the screen, eliminating any extraneous characters or messages 
that might have appeared on the screen but are not part of the current 
text you are editing. Note that CTRUR performs the same function as 
CTRUW in keypad-mode. 

CTRL/T {Control T) Function 
description 

Pressing CTRI/T indents the lines in a select range that must contain 
only whole lines. After creating the select range, press CTRIJr to move 
the select range lines over one tab stop to the right. Use a repeat count to 
indent the lines more than one tab stop. To move the text one tab stop to 
the left, press GOLD and then the minus sign(-) before CTRIJr. You can 
move the lines several tab stops to the left by using both the minus sign 
and a repeat count. 

CTRI.11' works only if SET TAB is in effect. EDT's default is SET NOTAB. 
To determine the current SET TAB value, use the SHOW TAB command. 
Note that CTRI.11' is not affected by the tab level count, nor does that 
count have any effect on how far text is indented. 

When the DCL command SET CONTROL=T is in effect, you cannot use 
CTRIJr in EDT to perform tabbing. If DCL is set to. NOCONTROL=T 
(the default), CTRI/T will perform tabbing in EDT. GOLDtr always 
performs its tabbing function in EDT, unless you have redefined the key 
sequence. 



EDT Keypad Commands EDT-9 
CTRUU {Control U) Function 

CTRL/U (Control U) Function 
description 

Pressing CTRUU deletes everything from the character to the left of the 
cursor to the beginning of the line. If the cursor is in the middle or at 
the end of the line and CTRUU is pressed, EDT deletes the characters 
between the cursor and the beginning of that line. If the cursor is at the 
beginning of a line when CTRUU is pressed, the line above the cursor is 
deleted. Text deleted by CTRUU is stored in the delete line buffer. Use 
UND L to insert or restore the deleted text. 

CTRUU can be used to cancel a COMMAND, FIND, or CTRUK operation. 
For example, if you have pressed GOLD/COMMAND and have started to 
enter a line-mode command, you can press CTRUU to return the cursor 
to the text. If you have pressed GOLD/FIND and have started to enter a 
search string, you can also press CTRUU to return the cursor to the text. 
The string in the search buffer remains the same as it was before you 
pressed GOLD/FIND. Similarly, if you are in the process of creating a key 
definition with CTRUK, you can press CTRL/U to cancel the definition 
process. 

CTRIJX always performs the same function as CTRL/U, regardless of the 
definition assigned to CTRIJX. 

CTRL/W (Control W) Function 
description 

Pressing CTRUW or GOLD/W refreshes the screen display. This function 
has no effect on the text you are editing; it simply clears and redraws 
the screen, eliminating any extraneous characters or messages that 
have appeared on the screen but are not part of the current text you are 
editing. Note that CTRUW performs the same function as CTRL/R in 
keypad mode. 

CTRL/Z (Control Z) Function 
description 

Pressing CTRUZ shifts EDT from keypad mode to line mode. After 
you have pressed CTRUZ, the line mode asterisk prompt ( * ) appears 
indicating that EDT is ready to accept line-mode commands. To resume 
keypad editing, use the line-mode CHANGE command. 



EDT-10 EDT Keypad Commands 
CUT Function 

CUT Function 
description 

Pressing CUT removes the active select range from the current buffer 
and stores it in the PASTE buffer. You can use CUT to delete large or 
small sections of text. When you use CUT in conjunction with the PASTE 
function, you can move or copy text from one place in the current buffer 
to another place in that buffer. 

When you use CUT to delete only part of a line, EDT adds a line 
terminator at the end of the text being stored in the PASTE buffer. 
The line terminator is necessary because EDT cannot store partial lines 
in the PASTE buffer. When you use the PASTE function, EDT removes 
the added line terminator. Thus, when you insert the text, you do not 
have an extra line terminator. 

The steps for moving and copying text are described under the keypad 
PASTE function. 

DEL C (Delete Character) Function 
description 

Pressing DEL C (delete character) deletes the character on which the 
cursor is positioned. The cursor stays in the same position, but the 
remaining characters on the line shift one position to the left. 

The deleted character is stored in the delete character buffer. Only 
one character .at a time can occupy that buffer. Each time you delete 
a character with DEL Corwith the DELETE function, the contents of 
the delete character buffer are overwritten. Remember that the delete 
character buffer is inaccessible to you and that its name does not appear 
in the list displayed by the SHOW BUFFER command. 

Use UND C to restore or insert the contents of the delete character buffer 
into your text. 

DEL C deletes the character the cursor is on; the DELETE function 
always deletes the character to the left of the cursor. (D-C. is the 
nokeypad definition for DELETE.) 



EDT Keypad Commands EDT-11 
DEL EOL {Delete to End of Line) Function 

DEL EOL (Delete to End of Line) Function 
description 

Pressing DEL EOL (delete to end of line) deletes everything on a line from 
the character the cursor is on up to, but not including, the line terminator. 
The cursor remains in the same position as it was before DEL EOL was 
pressed. If the cursor is on a line terminator, DEL EOL deletes that line 
terminator and all the text up to the next line terminator. 

The characters deleted from the line are placed in the delete line buffer. 
Each time DEL EOL, DEL L, or CTRUU is used, the contents of that 
buffer are overwritten. Use UND L to restore or insert the contents of the 
buffer in your text. 

When you use DEL EOL, EDT deletes the characters up to the line 
terminator to the right of the cursor. DEL L deletes those same 
characters, but also deletes the line terminator and positions the cursor 
on the first character of the next line. CTRUU deletes the text from the 
character to the left of the cursor to the beginning of the line. 

DELETE Function 
description 

Pressing the DELETE key deletes the character to the left of the cursor. 
If the cursor is at the beginning of a line, pressing DELETE deletes the 
preceding line terminator. 

When a character is deleted using the DELETE key, that character is 
placed in the delete character buffer. The contents of the buffer are 
overwritten each time a character is deleted either by the DELETE 
function or by DEL C. Use UND C to restore or insert the contents of the 
delete character buffer into the text you are editing. 

Use the DELETE key to edit the text you enter in response to EDT 
prompts· such as Search for: or Command:. These deleted characters 
are not stored in the delete character buffer. 

The difference between DELETE and DEL C is that DEL C deletes the 
character that the cursor is on; DELETE deletes the character to the left 
of the cursor. 



EDT-12 EDT Keypad Commands 
DEL L (Delete Line) Function 

DEL L {Delete Line) Function 
description 

Pressing DELL (delete line) deletes everything on a line starting with the 
character that the cursor is on up to and including the line terminator. 
The cursor position remains unchanged on the screen. 

If the cursor is on the first character of the line when you press DEL L, 
the entire line is deleted and the cursor is positioned on the first character 
of the following line. 

The characters deleted by DELL, DEL EOL, or CTRUU are stored in the 
delete line buffer. Each time a line or piece of line is deleted, the contents 
of the delete line buffer are overwritten. Use UND L to restore or insert 
the contents of the delete line buffer into the text you are editing. 

DEL L always deletes the line terminator to the right of the cursor; DEL 
EOL deletes only the characters up to that line terminator. CTRUU 
deletes the text from the character to the left of the cursor to the 
beginning of the line. 

DEL W {Delete Word) Function 
description 

Pressing DEL W (delete word) deletes words or parts of words. When 
the cursor is at the beginning of the word, the entire word and the space 
following it are deleted. If the cursor is in the middle of the word, only 
the character that the cursor is on and those characters to the right of the 
cursor, up to and including the spaces that come after, are deleted. The 
characters to the left of the cursor in that word remain in the text. If the 
word being deleted is at the end of a line, all characters up to, but not 
including, the line terminator are deleted. 

The characters deleted by DEL W and LINEFEED (F13 on LK201 
keyboards) are stored in the delete-word buffer. Each time DEL W 
or LINEFEED is used, the contents of the delete-word buffer are 
overwritten. Use UND W to restore or insert the contents of the delete
word buffer into the text you are editing. 

DEL W always deletes the cursor character and the remaining characters 
in the word to the right of the cursor. LINEFEED deletes the word or 
part of the word to the left of the cursor. 



DO Function {LK201 only) 
description 

EDT Keypad Commands EDT-13 
DO Function (LK201 only) 

Pressing DO processes searches and line editing commands in keypad 
mode. Although DO has the same definition as ENTER, you cannot use 
the DO key to enter a key definition with CTRUK. 

When you receive a prompt from EDT in keypad mode, you can use DO to 
send EDT the information you enter in response to the prompt. The two 
preset EpT functions that have prompts are COMMAND and FIND. 

To use COMMAND, press the GOLD and COMMAND keys. When EDT 
displays the Command: prompt, enter the line mode command. Then 
press DO to send the command to EDT for processing. 

To use FIND, press either the LK201 FIND key or the GOLD and FIND 
keys on the numeric keypad. When EDT displays the Search for: prompt, 
enter the search string. Then press DO to send the string to EDT so it 
can perform the search. 

DOWN Arrow 
description 

Pressing the DOWN arrow key moves the cursor down one line toward 
the bottom of the buffer regardless of EDT's direction. 

When you use the DOWN arrow, EDT attempts to maintain the same 
vertical column as it moves the cursor from one line to the next. If there 
are not enough characters to fill out a line of text, the cursor moves to 
the end of that line. If you continue to use the DOWN arrow, the cursor 
will return to the same vertical column for all lines that have enough 
characters. However, once you press some other key, EDT cancels the 
column position for the DOWN arrow and resets it the next time you use 
the function. 



EDT-14 EDT Keypad Commands 
ENTER Function 

ENTER Function 
description 

Pressing ENTER processes searches, line editing commands, and key 
definitions in keypad mode. EDT generally uses the ENTER function to 
process keypad editing functions. 

When you receive a prompt from EDT in keypad mode, use ENTER to 
send EDT the information you type in response to the prompt. The two 
preset EDT functions that have prompts are COMMAND and FIND. 

To use COMMAND, press the GOLD and COMMAND keys. When EDT 
displays the Command: prompt, enter the line-mode command. Then 
press ENTER to send the command to EDT for processing. 

To use FIND, press the GOLD and FIND keys. When EDT displays the 
Search for: prompt, enter the search string. Then press ENTER to send 
the string to EDT so it can perform the search. 

You are asked to press the ENTER key when you complete a keypad 
definition using CTRUK in keypad mode. When the message "Now enter 
the definition terminated by ENTER" appears, type the definition and 
then press the ENTER key. 

EOL (End of Line) Function 
description 

Pressing EOL (end of line) moves the cursor to the end of the current line 
if the direction is forward. If the current direction is backward, the cursor 
moves to the end of the previous line. If the cursor is already at the end 
of a line, EOL moves it to the end of the next or previous line, depending 
on the current direction. Use BACKSPACE (F12 on LK201 keyboards) to 
move the cursor to the beginning of a line. 

FILL Function (VT100) 
description 

Pressing FILL takes a select range of lines and reorganizes the text so 
that the maximum number of whole words can fit within the current 
line width. The default line width for EDT is the terminal width that 
the operating system passes to EDT. Use the line-mode SHOW SCREEN 
command to find the current screen and line width. The valid screen 
width values for screen-mode editing are 80 and 132. (The 132 screen 
width is only valid for VTlOO-series terminals with AVO - advanced 



EDT Keypad Commands EDT-15 
FILL Function (VT100) 

video option.) If your screen width is set to 80, EDT will fill lines to 
column 79; if your screen width is 132, EDT will fill lines to column 131. 

If you want to use a line length other than 80 or 132 for filling text, you 
must use the line-mode SET WRAP command. The SET WRAP command 
also affects the line length that EDT uses for inserting text in keypad 
mode. EDT uses the SET SCREEN value to determine the line length 
for filling text only if SET NOWRAP (the default) is in effect. If SET 
WRAP is in effect, EDT always uses the wrap value, regardless of the 
SET SCREEN width. You can use the SHOW WRAP command to find out 
the current wrap value or setting. 

The filling process considers a blank line to be a break between 
paragraphs. Even if there are spaces on the blank line, EDT fills the 
text up to the blank line and then resumes filling with the next line that 
contains text. 

The nokeypad definition for FILL on VTlOO-series terminals and for 
CTRUF on VT52 terminals is FILLSR. 

The FILL function is available on all VTlOO-series terminals. You must 
use CTRUF on VT52 terminals to perform the FILL function. 

FIND Function 
description 

Pressing FIND sets up a search procedure. When you press GOLD and 
then FIND, EDT di.splays the prompt Search for: at the bottom of the 
screen. Enter the string you want to locate. Then press ENTER to 
process the search in the current direction. 

After you have typed in your search string, you can press ADVANCE 
instead of ENTER to search toward the end of the buffer, or you can press 
BACKUP to search backward toward the top. The direction you use to 
process FIND becomes EDT's current direction. 

EDT can perform searches in several ways. The defaults are GENERAL, 
BEGIN, and UNBOUNDED. GENERAL means that EDT ignores the 
case and diacritical marks of letters in performing searches. BEGIN 
means that EDT places the cursor on the first character of the search 
string. UNBOUNDED means that EDT performs the search in the 
portion of the buffer between the cursor position and the beginning or 
end of the buffer, depending on the direction of the search. Use the 
SET SEARCH command to change the way EDT performs searches. 
The SHOW SEARCH command tells you which search parameters are 
currently in effect. 



EDT-16 EDT Keypad Commands 
FNDNXT (Find Next) Function 

FNDNXT {Find Next) Function 
description 

After a search string has been established by FIND, you can use FNDNXT 
(find next) to locate the next occurrence of that string. The direction for 
FNDNXT is always the current EDT direction. You can change directions 
without affecting the search string. 

The search string established by FIND remains in effect until you use 
FIND again or use some other EDT function that overwrites the contents 
of the search buffer. 

EDT can perform searches in several ways. The defaults are GENERAL, 
BEGIN, and UNBOUNDED. GENERAL means that EDT ignores the 
case and diacritical marks of letters in performing searches. BEGIN 
means that EDT places the cursor on the first character of the search 
string. UNBOUNDED means that EDT performs the search on the 
portion of the buffer between the cursor position and the beginning or 
end of the buffer, depending on the direction of the search. Use the 
SET SEARCH command to change the way EDT performs searches. 
The SHOW SEARCH command tells you which search parameters are 
currently in effect. 

GOLD Function 
description 

Pressing GOLD together with other keypad and keyboard keys performs 
various editing functions. GOLD is like the SHIFT key in that it does 
nothing by itself. 

When used with a keypad key, GOLD causes EDT to perform that key's 
alternate function. For example, to use the COMMAND function, you 
must first press GOLD and then the 7 key on the keypad. If you do 
not press GOLD, EDT performs the PAGE function. Using EDT's key 
definition facility, you can redefine any GOLD/keypad sequence to perform 
a different function during your EDT session. 

The define key feature allows you to designate a GOLD/keyboard key 
sequence to perform a keypad editing function for the duration of 
your editing session. You can also use GOLD in combination with a 
CTRUcharacter sequence and with the DELETE key to define new 
keypad-mode functions. GOLD/FUNCTION key sequences can be defined 
on terminals that have LK201 keyboards. 



EDT Keypad Commands EDT-17 
GOLD Function 

GOLD can be used with keyboard number keys to designate the number 
of times for EDT to repeat a keypad editing function. First press GOLD, 
next the keyboard number keys, and then the keypad function keys that 
you want EDT to repeat. When EDT's direction is set to forward, you 
can use GOLD followed by a minus sign ( - ) to change EDT's direction 
to backward temporarily. This feature allows you to process an EDT 
function in the opposite direction, without having to reset EDT's direction. 
For example, you can use GOLD/-2 with WORD to have the cursor back 
up two words without changing EDT's direction. The maximum number of 
times you can repeat a function with the GOLD/repeat feature is 32,767. 

When you use the SPECINS function, you first press GOLD, then the 
keyboard digits for the decimal equivalent value of the character you want 
to insert. Then press GOLD again - this time to access the alternate 
function on the keypad function key - and finally the SPECINS key. 

GOLD is the nokeypad definition for GOLD. Note that there is no period 
at the end of the definition because GOLD is not a nokeypad command. 
You must use the line-mode DEFINE KEY command to redefine a key 
that has GOLD as its definition. 

HELP Function 
description 

Pressing HELP provides information on EDT's preset keypad and control 
functions. Pressing HELP puts you in touch with EDT's HELP facility; 
it has no effect on your editing session. When you exit from HELP, the 
screen is redrawn exactly as it was before you pressed HELP and the 
cursor is in the same position as before. 

When you press HELP, EDT displays a diagram of the keypad functions 
and a list of preset control-key functions. For help on a particular keypad 
function key, press the appropriate keypad key. For information on a 
GOLD/keypad sequence, press only the keypad key. Information for 
both the primary and alternate functions of that key will be displayed. 
For information on a control key sequence, press both the CTRL and 
keyboard keys after you are in the keypad HELP facility. For help on a 
GOLD/keyboard key sequence, press only the keyboard key; do not press 
GOLD. 

To exit from HELP, press the spacebar. 

If you have access to more than one HELP file, use the SET HELP 
command to change HELP files. The SHOW HELP command displays the 
name of the HELP file that is currently available for your editing session. 

To define another key to perform the HELP function, use the nokeypad 
HELP command. 



EDT-18 EDT Keypad Commands 
LEFT Arrow 

LEFT Arrow 
description 

Pressing the LEFT arrow moves the cursor one character to the left, 
regardless of EDT's direction. 

If the cursor is at the first character position of a line, pressing LEFT 
arrow moves the cursor to the line terminator of the previous line. 

LINE Function 
description 

Pressing LINE moves the cursor to the beginning of the next line if the 
direction is forward or to the beginning of the current line if the direction 
is backward. If the cursor is at the beginning of a line and the direction 
is backward, the cursor moves to the beginning of the previous line. 

LINEFEED Function 
description 

Pressing LINEFEED deletes the word or characters in a word to the left 
of the cursor up to the beginning of the previous word. It is similar to 
DEL W, which deletes the word or characters in a word to the right of the 
cursor up to the beginning of the next word. 

If the cursor is on a space when LINEFEED is pressed, the word 
preceding the space is deleted, usually leaving two spaces in a row. If 
the cursor is at the end or in the middle of a word, all characters in that 
word to the left of the cursor are deleted. The letter that the cursor is on 
remains in the text. 

When the cursor is at the beginning of a word, the preceding word and 
space are deleted by LINEFEED. If the cursor is at the beginning of a 
line, LINEFEED deletes the preceding line terminator. 

All characters deleted by LINEFEED are stored in the delete word buffer. 
Each time DEL W or LINEFEED is used, the contents of the delete word 
buffer are overwritten. Use UND W to insert or restore the contents of 
the delete word buffer in your text. 

The LINEFEED key and CTRUJ always have the same preset function in 
EDT. When you redefine the LINEFEED key, you redefine CTRUJ (except 
for terminals with LK201 keyboards when they are operating in VT200 
mode). To redefine the LINEFEED key using the line-mode DEFINE 
KEY command, enter DEFINE KEY CONTROL J. To find out what the 



EDT Keypad Commands EDT-19 
LINEFEED Function 

definition of the LINEFEED key is, enter SHOW KEY CONTROL J. For 
terminals with LK201 keyboards, use DEFINE KEY FUNCTION 25 and 
SHOW KEY FUNCTION 25 for the F13 key. 

OPEN LINE Function 
description 

Pressing OPEN LINE inserts a line terminator in the text you are editing 
at the current cursor position and makes the line terminator the new 
cursor character. If the cursor is initially at the beginning of a line, the 
text on that line is moved down so that the cursor is on the blank line. 

When the cursor is in the middle of a line, the text to the right of the 
cursor and the cursor character itself move to a new line. The cursor is 
now on the line terminator that OPEN LINE inserts. When the cursor 
is at the end of a line, a line terminator is added, creating a blank line 
below the current line. 

RETURN and CTRUM also insert line terminators in your text. However, 
neither of these functions moves the cursor to the inserted line terminator. 
The cursor remains on the same character. 

PAGE Function 
description 

Pressing PAGE moves the cursor to a position at the right of the next page 
marker in your text. The cursor is always located after the page marker, 
but the direction that EDT moves to find the page marker depends on the 
current direction. In order to use PAGE, the text you are editing must 
have PAGE boundary markers. The default page marker is the form feed 
character ( CTRUL, decimal value 12, displayed by EDT as <FF>). 

If you have no page markers in your buffer, the PAGE entity is the same 
as the whole buffer. When EDT's direction is forward, PAGE moves the 
cursor to the end of buffer ([EOB]) mark. If the current direction is 
backward, PAGE moves the cursor to the beginning of the buffer. 

You can use the SET ENTITY PAGE command to define any string of 
characters as the page marker for the duration of your editing session. 
The marker can be either a single character that you insert in the text, 
such as an exclamation point ( ! ), or a series of characters, such as a 
RUNOFF header level (.HLl). 

If you are using the default page marker, you can use SET TEXT PAGE 
to have EDT display some other text in place of the <FF> page marker for 
the duration of your EDT session. 



EDT-20 EDT Keypad Commands 
PASTE Function 

PASTE Function 
description 

Pressing PASTE in conjunction with CUT or APPEND copies or moves 
text within a buffer. PASTE copies the text currently residing in the 
PASTE buffer into the current buffer. The PASTE buffer contents are 
inserted to the left of the cursor regardless of EDT's current direction. 
PASTE has no effect on the contents of the PASTE buffer. 

To move text from one place in your buffer to another, you need to use 
SELECT, CUT, and PASTE in the following order: 

1. Use SELECT to create a select range of the text you want to move. 

2. Press CUT to delete the text from the current buffer and put it into 
the PASTE buffer. 

3. Move the cursor to the location where you want to insert the deleted 
text. 

4. Press PASTE to have EDT copy the PASTE buffer text into your 
current buffer to the left of the cursor. 

You can use SELECT, CUT, and PASTE to copy text that exists in one 
place in your buffer to a second location. Follow the same procedure as 
for moving text, but add an additional step between· the second and third 
steps: 

2a. Press PASTE to have EDT restore the deleted text in its original location. 

Each time you use CUT, EDT overwrites the contents of the PASTE 
buffer. If you want to add more text to the buffer before you insert it in 
the new location, you can use APPEND. APPEND deletes the select range 
text from its current location and adds it to the end of the PASTE buffer. 
When you press PASTE, both the text you deleted with CUT and the text 
you deleted with APPEND are inserted to the left of the cursor. 

It is possible to edit the PASTE buffer. By entering the line-mode 
FIND=buffer command, you can enter the PASTE buffer, make your 
changes, and then return to your original buffer. Now, when you use 
PASTE, the revised buffer contents are inserted at the cursor location. 

When you use CUT to put part of a line into a buffer, EDT adds a line 
terminator at the end of the text since EDT buffers cannot hold partial 
lines. PASTE removes the added line terminator so that when you insert 
the text, you do not have an extra line terminator. 

You can use the line-mode FIND command to move from one buffer to 
another during your EDT session. Then you can use PASTE to put the 
contents of the PASTE buffer in that buffer. 



EDT Keypad Commands EDT-21 

REPLACE Function 
description 

REPLACE Function 

Pressing REPLACE deletes the text in the select range and replaces it 
with the contents of the PASTE buffer. REPLACE enables you to delete 
different blocks of text and replace them all with the same text. EDT 
stores the deleted text in a buffer called DELETE. If the buffer does not 
exist, EDT creates it. If you have created a buffer called DELETE, EDT 
overwrites the text you had in that buffer with the newly deleted text. 
Each time you use REPLACE, EDT overwrites the text in the DELETE 
buffer. The DELETE buffer can be entered and edited and its name 
appears on the SHOW BUFFER list. 

You can use CUT to put the replacement text into the PASTE buffer, or 
you can move to the PASTE buffer with the line-mode FIND command 
and insert the text directly there. 

RESET Function 
description 

Pressing RESET changes several conditions of your editing session: 

• Cancels an active select range 

• Sets EDT's current direction to ADVANCE 

• Sets EDT to the default DMOV state 

RESET also has a special function within the CTRLJK key definition 
facility. Namely, you can use RESET to delete the text on the definition 
line if you want to start your definition over again. 

RESET is the nokeypad definition for RESET. Note that there is no period 
at the end of the definition. This is because RESET is not a nokeypad 
command. 



EDT-22 EDT Keypad Commands 
RETURN Function 

RETURN Function 
description 

Pressing RETURN adds a line terminator to the text you are editing. 
The new line terminator is inserted to the left of the current cursor 
position. The cursor remains on the same character where it was before 
you pressed RETURN. If the cursor is at the beginning of the line, a blank 
line is created above the current cursor line. 

When the cursor is in the middle of a line, RETURN moves the cursor 
character and all the text to the right of the cursor to a new line. When 
the cursor is at the end of a line, RETURN adds a line terminator, 
creating a blank line below the current line. The cursor is then positioned 
at the beginning of the new blank line. OPEN LINE also inserts a 
line terminator in your text, but it positions the cursor on the new line 
terminator. 

You can redefine the RETURN key, although this is not recommended. 
When you redefine the RETURN key, you also redefine CTRL/M. To find 
out the definition of the RETURN key, enter SHOW KEY CONTROL M. 

RIGHT Arrow 
description 

Pressing the RIGHT arrow moves the cursor one character to the right, 
regardless of EDT's direction. 

If the cursor is on a line terminator, RIGHT arrow moves the cursor to 
the first character on the next line. 

SECT {Section) Function 
description 

Pressing SECT (section) moves the cursor one section - 16 lines -
toward the end or beginning of the buffer, depending on EDT's current 
direction. The cursor is always placed at the beginning of the new current 
line regardless of its previous position. 



EDT Keypad Commands EDT-23 

SELECT Function 
description 

SELECT Function 

Pressing SELECT sets up a select range for use with keypad functions 
such as APPEND, CHNGCASE, CUT, FILL, REPLACE, SUBS, and 
CTRI.lr. Start with the cursor at one end of the text you want selected. 
Next press SELECT to mark that position as the beginning of the select 
range. Then, using the arrow keys and/or function keys that move the 
cursor, mark the other end of the text being selected. Now you are ready 
to press a function key that uses a select range. 

The RESET function cancels the select range. If you have included more 
text than you wanted in the select range, you can move the cursor back 
toward the position initially marked by SELECT, using arrow keys and 
cursor moving functions, thus reducing the size of the range. Adjusting 
select ranges on VTlOO terminals is easy because EDT shows the text in 
reverse video. On VT52 terminals, you might find it easier to use RESET 
to cancel the select range and then start over. 

You can use a select range with line-mode commands by entering the 
line mode range specifier SELECT. However, line mode requires that the 
select range contain only whole lines. 

SPECINS {Special Insert) Function 
description 

Pressing SPECINS (special insert) enables you to insert any character 
from the DEC Multinational Character Set into your text, using the 
character's decimal equivalent value. You can use SPECINS to enter 
ASCII control characters, such as CTRI.JL, or letters with diacritical 
marks such as the umlaut ( ··) or acute accent ( '). 

To use SPECINS, first press GOLD. Next, type the decimal equivalent 
number for the character you want to insert. Use the main keyboard 
digits to type this number; do not use the keypad number keys. EDT 
displays the number you typed at the bottom of the screen. You can use 
the DELETE key to edit the number. Now press GOLD again, this time 
followed by the SPEC INS· key. The EDT symbol for the character you 
inserted appears on the screen to the left of the cursor. 

Each time you want to· enter a special character, you must repeat the 
entire procedure. You cannot enter two characters with one SPECINS 
function, nor can you use the GOLD repeat feature to enter the same 
character several times in one location. 



EDT-24 EDT Keypad Commands 
SPECINS (Special Insert) Function 

SPECINS cannot be used if SET NOREPEAT is in effect for your editing 
session. 

The maximum decimal character value for SPECINS is 255. 

string specifier 
description 

The string specifier is generally used either to locate characters in a 
buffer or to replace the located characters. When a string specifier is used 
to locate a piece of text, it is referred to as the search string. All three 
editing modes use search strings. Line mode and nokeypad mode use 
substitute strings. 

Whenever you enter a search string, EDT overwrites the contents of 
the search buffer. (Similarly, when you enter a substitute string, EDT 
overwrites the contents of the substitute buffer.) 

The search and substitute buffers cannot be edited or entered. Their 
names never appear in the SHOW BUFFER list. You can use the 
nokeypad CLSS (clear search string) command to delete the contents 
of the search buffer. 

EDT has a number of ways to perform searches. See the discussion 
of the SET SEARCH command for information about the EDT search 
parameters. 

SUBS (Substitute) Function 
description 

Pressing SUBS (substitute) replaces the current search string with the 
contents of the PASTE buffer. In order to use SUBS, you must first put 
the string you want to replace in the search buffer and the new text in 
the PASTE buffer. All searches and substitutions are made in the current 
direction. 

CUTSR=DELETE PASTEKS11
" is the nokeypad definition for SUBS. This 

means that the select range - in most cases the current search string -
is deleted from the current buffer and placed in a buffer named DELETE. 
The contents of the PASTE buffer are inserted in the text, and the cursor 
is placed on the last character of the inserted text if EDT's direction 
is forward. (If EDT's direction is backward, the cursor is positioned on 
the first character of the inserted text.) Finally, EDT moves to the next 
occurrence of the current search string. 



Using SUBS involves four steps: 

EDT Keypad Commands 
SUBS {Substitute) Function 

EDT-25 

1. Put the search string in the search buffer - The easiest way to load 
the search buffer is with the FIND function. You can also use any line 
mode or nokeypad command that involves a search string. Remember, 
the search buffer cannot be entered or edited. 

2. Put the replacement text in the PASTE buffer - There are two ways 
to load the PASTE buffer. 

• You can type the replacement text in your current buffer, make 
it a select range, and then use CUT to transfer it to the PASTE 
buffer. 

• Since you can enter the PASTE buffer and edit its contents, you 
can use the line-mode FIND command to move to the PASTE 
buffer and then insert the replacement text there. Use the FIND 
command to return to the buffer you are editing. 

3. Locate the search string - If you reverse the order of steps 1 and 
2, the cursor will already be at the search string. Otherwise, you 
must be sure that the cursor is positioned on the first character of the 
search string before you press SUBS. This is because SUBS performs 
the substitution first and then moves to the next occurrence of the 
search string. The order allows you to decide whether you want to 
perform the substitution on that instance of the search string or go on 
to the next one. (Use FNDNXT to skip the substitution on the current 
search string match and advance to the next occurrence.) 

4. Press GOLD and then SUBS - If the cursor is not on the search 
string, EDT prints the message "No select range active". If there is 
no other search string match in the remaining portion of your buffer, 
EDT prints the message "String was not found". 

SUBS is the only substitute function that can use a line terminator in the 
replacement text. 

TAB Function 
description 

Pressing TAB ( CTRIJI) moves text to the right. The number of column 
positions that the text moves depends on the cursor position; the value set 
by the SET TAB command, if one is in effect; and the indentation level 
count, if one is in effect. (SET NOTAB is the default.) 



EDT-26 EDT Keypad Commands 
TAB Function 

EDT has preset tab stops every eight characters, regardless of how your 
terminal is set. If no SET TAB command has been entered, pressing TAB 
moves the cursor character, as well as all the characters on the current 
line to the right of the cursor, to the nearest preset tab position. Text is 
always moved to the right, regardless of EDT's current direction. 

When a SET TAB value is in effect, TAB moves the entire line to the 
column designated by the SET TAB value only if the cursor is located in 
column 1. If the cursor is located anywhere else on the line, TAB moves 
the text to the nearest preset EDT tab stop. 

If a tab indentation level count is in effect and the cursor is located 
in column 1 of the line, TAB moves the text to the indentation level 
position. The indentation level count is determined by three functions: 
( 1) CTRU A, which can be used to compute the indentation level count, 
(~) CTRUD, which decrements the count, and (3) CTRUE, which 
iricrements the count. Use the SHOW TAB command to find out the 
current SET TAB value and the indentation level count. 

CTRL/T indents whole lines of text by the SET TAB value. 

The TAB key and CTRUI always have identical functions in EDT. When 
you redefine the TAB key, you redefine CTRUI. To redefine the TAB 
key using the line-mode DEFINE KEY command, enter DEFINE KEY 
CONTROL I. When you want to find out the definition of the TAB key, 
enter SHOW KEY CONTROL I. 

TOP Function 
description 

Pressing TOP moves the cursor to the first character position at the 
beginning of the buffer. TOP has no effect on EDT's current direction. 

UND C (Undelete Character) Function 
description 

Pressing UND C (undelete character) inserts the current contents of the 
delete character buffer into your text to the left of the cursor. The cursor 
character, as well as the text to the right of the cursor, moves to the 
right. The cursor is located on the inserted character if you used DEL C 
to delete the character. If you used DELETE to delete the character, the 
cursor is located to the right of the inserted character. 



EDT Keypad Commands EDT-27 
UND C (Undelete Character) Function 

The keypad functions DEL C and DELETE both place the character 
they delete in the delete character buffer. Each time you use DEL C or 
DELETE, the contents of the delete character buffer are overwritten. The 
buffer contains only the most recently deleted character. When you use a 
repeat count with DEL C or DELETE, only the last character deleted is 
in the delete character buffer. If no character has been deleted during the 
current EDT session, UND C inserts nothing. Note that, if you use the 
DELETE key to delete characters in a command line or prompt line, these 
characters are not stored in the delete character buffer and will not affect 
the character inserted by UND C. 

EDT represents a line terminator as the character <CR> (CTRIJM, 
decimal 13) in all three of its delete entity buffers. Suppose you have a 
<CR> character in your text and you delete it. When you undelete this 
character, EDT changes the <CR> character into a line terminator and 
inserts the line terminator in your text. 

UNO L {Undelete Line) Function 
description 

Pressing UND L (undelete line) inserts the current contents of the delete 
line buffer to the left of the cursor. The cursor character, as well as the 
text to the right of the cursor, moves to a new line below the current line 
if the buffer contents end with a line terminator. Otherwise, text just 
moves to the right. The cursor is located on the first character of the 
inserted text if you used DEL L or DEL EOL to delete the text. If you 
used CTRUU to delete the text, the cursor is located to the right of the 
inserted text. 

The delete line buffer is loaded by using DELL, DEL EOL, or CTRUU. 
Each time one of these three functions is used, the contents of the delete 
line buffer are overwritten. The current contents of the buffer are the 
most recently deleted line or line portion. When you use a repeat count 
with a delete line function, only the last line or line portion that was 
deleted is in the delete line buffer. If no line has been deleted in your 
EDT session, UND L inserts nothing. 

EDT represents a line terminator as the character <CR> (CTRIJM, 
decimal 13) in all three of its delete entity buffers. Suppose you have a 
<CR> character in the text you are deleting. When you undelete this text, 
EDT changes the <CR> character into a line terminator and inserts the 
line terminator in the current buffer. 



EDT-28 EDT Keypad Commands 
UNO W (Undelete Word) Function 

UND W (Undelete Word) Function 
description 

Pressing UND W (undelete word) inserts the current contents of the 
delete word buffer to the left of the cursor. The cursor character, as well 
as the text to the right of the cursor, moves to the right. The cursor is 
located on the first character of the inserted word or word portion if you 
used DEL W to make the deletion. If you used LINEFEED, the cursor is 
located to the right of the inserted word or word portion. 

The delete word buffer is loaded by using DEL W or LINEFEED (CTRUJ, 
F13 - LK201). Each time you use DEL W or LINEFEED, the contents 
of the delete word buffer are overwritten. The current contents of the 
buffer are the most recently deleted word or word portion. When you use 
a repeat count with a delete word function, only the last word or word 
portion deleted is in the delete word buffer. If no word has been deleted 
in your EDT session, UND W inserts nothing. 

EDT represents a line terminator as the character <CR> (CTRL/M, 
decimal 13) in all three of its delete entity buffers. Suppose you have a 
<CR> character in the text you are deleting. When you undelete this text, 
EDT changes the <CR> character into a line terminator and inserts the 
line terminator in the current buffer. 

UP Arrow 
description 

Pressing the UP arrow key moves the cursor up one line toward the top of 
the buffer regardless of EDT's direction. 

When you use the UP arrow, EDT attempts to maintain the same vertical 
column as it moves the cursor from one line to the next. If there are not 
enough characters to fill out a line of text, the cursor moves to the end of 
the short line. If you continue to use the UP arrow, the cursor will return 
to the same vertical column for all lines that have enough characters. 
However, once you press some other key, EDT cancels the column position 
for the UP arrow and resets it the next time you use the function. 



WORD Function 
description 

EDT Keypad Commands EDT-29 
WORD Function 

Pressing WORD moves the cursor to the beginning of the next word in the 
current direction (forward or backward, depending on whether ADVANCE 
or BACKUP is in effect). 

An EDT word is any group of characters bounded by a space, horizontal 
tab, line feed <LF>, vertical tab <VT>, form feed <FF>, or carriage return 
<CR>. You can establish different word boundaries with the line-mode 
SET ENTITY WORD command. Use the line-mode SHOW ENTITY 
WORD command to find the current boundary markers for the word 
entity. 

The SET WORD [NOJDELIMITER command affects how EDT interprets 
word boundaries. With SET WORD DELIMITER (the default) in 
effect, EDT considers all word boundaries, except the space, as words 
themselves. 





I 

I 

EVE Commands 
@ 

EVE-1 

EVE Commands 
This section describes each EVE command. The command descriptions are given 
in alphabetical order. Most of the information in this section is available by using 
EVE online help, so that even when this manual is not at hand, you can can 
find out about EVE commands. EVE online help includes topics for each EVE 
command, each EDT keypad or WPS keypad key, and other features. 

If there are default key bindings for a command, the command description 
includes a list of the keys defined on VT300-, VT200-, and VTlOO-series terminals; 
control keys are defined the same on all three series of terminals. 

In some cases, there is a GOLD key combination for a command. However, EVE 
does not have a default GOLD key. You set the GOLD key with the SET GOLD KEY, 
SET KEYPAD EDT, or SET KEYPAD WPS command. This also enables several 
GOLD key combinations, such as GOLD-! for BOTTOM. (See Table EVE-1.) Note 
that some GOLD key combinations require a VT300- or VT200-series terminal (for 
example, GOLD-HELP). 

@ 
format 

@ init-filespec 

description 
Executes the initialization file you specify. This lets you execute a 
series of commands at the same time, such as setting the left and right 
margins or defining several keys for particular kinds of editing. For more 
information about initialization files, see Section 6.5.9. 

parameter 
init-filespec 
The initialization file you want to execute. The default file type is 
EVE. You can use logical names in the file specification, but cannot 
use wildcards. For example, you can use SYS$LOGIN or another logical 
name to specify the device or 4i.rectory for the initialization file. You 
can use several initialization files during an editing session, but execute 
only one at a time. If you do not specify a file, EVE prompts you for one. 
Pressing RETURN or DO at the prompt without typing anything cancels the 
operation. 



EVE-2 EVE Commands 
@ 

example 
The following command executes an initialization file called MYINIT.EVE 
in your top-level (or login) directory: 

Conunand: @ sys$login:myinit 
Executing commands in initialization file: DISK$1: [GEOFF]MYINIT.EVE;l 

ATTACH 
format 

ATTACH [process-name] 

description 

Suspends your editing session, without ending it, and attaches the 
terminal to another process or subprocess. The other process or 
subprocess must already exist; the ATTACH command does not create 
it. Using ATTACH and SPAWN commands, in EVE and at the DCL level 
or in other utilities such as MAIL, lets you keep an editing session active 
throughout your VMS session (or login)-effectively making EVE a ''kept" 
editor. This makes it faster to resume editing, but uses more system 
resources. To find out the names of your processes and subprocesses, use 
the DCL command SHOW PROCESS/SUBPROCESS. 

The ATTACH command is not supported if you invoke EVE using 
/DISPLAY=DECWINDOWS. 

parameter 

process-name 
Optionally, the process or subprocess to which you want to attach the 
terminal. Process names are case sensitive, and must be from 1 to 15 
alphanumeric characters. You cannot specify a process ID. If you do not 
specify a process or subprocess, EVE attaches the terminal to the parent 
process. 

example 
In the following example, the DCL command SPAWN creates a subprocess 
named SMITH_l, invoking EVE to edit a file called MEMO.TXT. While 
you are editing the MEMO.TXT buffer, the EVE command ATTACH 
returns control to process SMITH (the parent process). After you complete 
work at the DCL level, the DCL command ATTACH SMITH_l resumes 
the editing session. Exiting from EVE terminates the subprocess. 



1 
I 

EVE Commands 
ATTACH 

$SPAWN EDIT/TPU memo.txt 
%DCL-S-SPAWNED, process SMITH 1 spawned 
%DCL-S-ATTACHED, terminal now-attached to process SMITH_l 

[ editing MEMO.TXT (subprocess SMITH_l) 

Command: ATTACH 
%DCL-S-RETURNED,control returned to parent process SMITH 
$ 

[ at DCL level (process SMITH) ] 

$ ATTACH SMITH 1 

BOTTOM 
format 

BOTTOM 

VT300, VT200: 

GOLD-! 

VT100: 

GOLD-! 

description 

[ editing MEMO.TXT (subprocess SMITH_l) 

EVE-3 

Moves the cursor to the end of the current buffer unless it is already 
there. The bottom of the buffer is marked [End of file]. 

BUFFER 
format 

BUFFER buffer-name 



EVE-4 EVE Commands 
BUFFER 

description 
Puts a buffer you specify into the current EVE window. If the buffer 
exists, EVE returns the cursor to your last position in that buffer. If the 
buffer does not exist, EVE creates a new buffer and puts the cursor at 
the top of that buffer (upper left corner). To return to a buffer that you 
previously viewed, use the BUFFER command and specify the buffer 
name. Typically, a buffer name is the same as the file it contains-that is, 
the file specified when you invoked EVE or when you used the GET FILE, 
OPEN, or OPEN SELECTED command. For a list of the buffers you have 
created, use the SHOW BUFFERS command. 

parameter 
buffer-name 
The buffer you want to edit or create. In returning to an existing buffer, 
you can abbreviate the buffer name; also, buffer names are not case 
sensitive. You cannot use wildcards (for example, an asterisk is treated 
as a character in the buffer name). If more than one name matches your 
request, EVE shows a list of the matching names so you can choose the 
one you want. If you do not specify a buffer, EVE prompts you for one. 
Pressing RETURN or DO at the prompt without typing anything cancels the 
operation. 

example 
The following command puts a buffer named MEMO.TXT into the current 
window, returning the cursor to your last position in that buffer, or 
creating a new buffer: 

Command: BUFFER memo.txt 

CAPITALIZE WORD 
format 

CAPITALIZE WORD 

description 
Capitalizes a single word, select range, or found range-making the first 
character uppercase (if it is a letter) and the other letters lowercase. 
With a select range or found range, CAPITALIZE WORD works on each 
word in the range, starting with the first character of the range. If the 
highlighted range ends in the middle of a word, the case change continues 
to the. end of that word. A select range takes precedence over a found 
range. If there is no select range or found range, CAPITALIZE WORD 
works on the current word. If you are between words, it works on the 
next word on the line. 



I 

'1 

EVE Commands EVE-5 
CENTER LINE 

CENTER LINE 
format 

CENTER LINE· 

description 
Centers the current line between the left and right margins of the buffer, 
by inserting spaces at the start of the line. If you are on a blank line, 
CENTER LINE inserts spaces to move the cursor to the center column 
between the left and right margins. 

CHANGE DIRECTION 
format 

CHANGE DIRECTION 

VT300, VT200: 

Fll 

VT100: 

PF3 

description 
Changes the direction of the current buffer from forward to reverse or 
conversely. The direction of the buffer is shown in the status line. It 
affects commands such as FIND, REPLACE, MOVE BY LINE, MOVE 
BY WORD, and MOVE BY PAGE. For buffers you create, the default 
direction is forward (right and down). Note that direction is a buffer
specific setting; you can have one buffer set to forward and another buffer 
set to reverse. For editing EVE command lines, the default direction is 
reverse. To change the direction when you are editing a command line, 
press a key defined as CHANGE DIRECTION. This direction remains 
in effect until you change it again-it does not revert to the previous 
direction after you finish typing a command. It is independent of the 
direction of your text buffers. 



EVE-6 EVE Commands 
CHANGE MODE 

CHANGE MODE 
format 

CHANGE MODE 

VT300, VT200: 

VT100: 

F14 
CTRUA 

ENTER 
CTRUA 

description 

Changes the mode of the current buffer from insert to overstrike or 
conversely. The mode of the buffer is shown in the status line. It affects 
not only how text is entered, but also some EVE commands, such as 
DELETE, ERASE CHARACTER, and RESTORE CHARACTER. For 
buffers you create, the default mode is insert. Note that the mode is a 
buffer-specific setting; you can have one buffer set to insert and another 
buffer set to overstrike. For typing or editing command lines, the default 
mode matches your terminal setting (according to the DCL command SET 
TERMINAL). To change the mode when you are editing a command line, 
press CTRUA or other key defined as CHANGE MODE. This mode remains 
in effect until you change it again-it does not revert to the previous mode 
after you finish typing a command. It is independent of the mode of your 
text buffers. 

If you set the buffer to unmodifiable (for example, by using the command 
SET BUFFER READ_ONLY), then Unmodifiable appears in the 
status line, instead of Insert or Overstrike. To change the mode of an 
unmodifiable buffer, first use the command SET BUFFER MODIFIABLE. 

COPY 
format 

COPY 

description 

Same as the STORE TEXT command-copies a select range or found 
range, without removing it, so you can insert the text elsewhere. 



I 

I 

1 
I 

CUT 
format 

CUT 

description 

EVE Commands EVE-7 
CUT 

Same as the REMOVE command-removes a select range or found range, 
which you can then paste elsewhere. 

DCL 
format 

DCL dcl-command 

description 
Executes the DCL command you specify, and puts the command and 
any output from it into the DCL buffer in a second EVE window. One 
window shows the buffer you are editing. The other window shows the 
DCL buffer. (If you are already using two or more windows, EVE uses the 
next or other window to show the DCL buffer. If you are using only one 
window, EVE splits the main window in two.) EVE creates a subprocess 
for executing the DCL command. When the command is completed, the 
cursor automatically returns to your last position in the buffer you are 
editing in the other window. The DCL window stays on the screen. You 
can edit the DCL buffer to move the output from the DCL command into 
another buffer. To delete the DCL window, typically you use the ONE 
WINDOW command. 

parameter 
dcl-commsnd 
The DCL command you want to execute, including any required 
parameters. If you do not specify a command, EVE prompts you for one. 
Pressing RETURN or DO at the prompt without typing anything cancels the 
operation. 

example 
The following command splits the EVE window (unless it is already 
split), and displays the DCL command DIRECTORY and its output (the 
directory listing) in the second window: 

Command: DCL DIRECTORY *.txt 



EVE-8 EVE Commands 
DEFINE KEY 

DEFINE KEY 
format 

DEFINE KEY [=key-name] eve-command 

description 
Defines a key to execute an EVE command or an EDT keypad or WPS 
keypad function you specify. You can type the key name (preceded by an 
equal sign) on the command line or let EVE prompt you to press the key 
you want to define. For information about key names and nondefinable 
keys, see Section 6.4.3. Generally, the DEFINE KEY command overrides 
any current definition of the specified key, whether EVE default, EDT 
keypad, WPS keypad, or your own. For example, if you define a key that 
is ordinarily defined by a keypad setting, such as EDT or WPS, your 
definition overrides the keypad definition. Use the UNDEFINE KEY 
command to restore the keypad definition of the key. Setting the EDT 
keypad or WPS keypad makes PF1 the GOLD key, overriding any definition 
you have given PF1-unless you set a different key as GOLD (with the SET 
GOLD KEY command). 

The key definition remains in effect throughout the editing session or 
until you redefine or undefine the key. To save key definitions for future 
sessions, put the DEFINE KEY commands in your EVE initialization file 
or use the SAVE EXTENDED EVE command to create a section file. To 
show the definition of a key, use the SHOW KEY command. To cancel a 
key definition, use the UNDEFINE KEY command. 

parameters 
key-name 
The key you want to define. You cannot abbreviate the key name. Note 
that the key name must be preceded by an equal. sign to distinguish it 
from the command you are assigning to the key. For more information 
about EVE key names, see Section 6.4.3. If you do not type a key name on 
the command line, EVE prompts you to press the key you want to define. 
Pressing the RETURN key or CTRUM at the prompt cancels the operation, 
because those keys cannot be redefined. 

eve-command 
The command you want to bind to the key, or the name of an EDT key 
or WPS key whose function you want to bind to the key. If you do not 
specify a command, EVE prompts you for one. Pressing RETURN or DO at 
the prompt without typing anything cancels the operation. 



.., 
,1 

I 

I 

I 

I 

I 

EVE Commands EVE-9 
DEFINE KEY 

example 
The following command defines F20 as the INCLUDE FILE command. 
Thereafter, when you press the key, EVE prompts you to type the name of 
the file to be included. 

Command: DEFINE KEY include file 
Press the key that you want to define: ~ 

DELETE 
format 

DELETE 

VT300, VT200: 

<X1 

VT100: 

DELETE 

description 
Erases the character left of the cursor, or replaces it with a space, 
depending on the mode of the buffer. In insert mode, the rest of the 
line moves left one character to close the space. In overstrike mode, the 
erased character is replaced by a space. At the start of a line, DELETE 
erases the carriage return for the previous line-regardless of the mode
causing the current line to move up. This is useful to erase blank lines 
to form paragraphs for FILL commands. To put back the character you 
erased, use the RESTORE CHARACTER command, which is also mode 
sensitive. If you enable pending delete and then select text, DELETE 
erases the selected text. To put back the erased text, use the RESTORE 
SELECTION command. For more information, see the description of the 
SET PENDING DELETE command. 



EVE-10 EVE Commands 
DELETE BUFFER 

DELETE BUFFER 
format 

DELETE BUFFER buffer-name 

description 
Deletes the buffer you specify by name. If the specified buffer is displayed 
in a window, EVE deletes the buffer, and then displays another buffer
usually the first buffer viewed in the editing session. If you specify 
a buffer that has been modified and is not empty, EVE asks you to 
confirm that you want to delete it. The following table shows the possible 
responses and the effect of each response. You need only type the first 
letter of the response (and press RETURN). 

Response 

DELETE_ ONLY 

WRITE_FIRST 

QUIT 

Effects 

Deletes the specified buffer. 

Writes out the buffer to a file before deleting it. If there is no file 
specification for the buffer-that is, if you invoked EVE without 
specifying an input file or if you created the buffer with the BUFFER or 
NEW command-EVE prompts you for one, as with the WRITE FILE 
command. 

Cancels the operation-the buffer is not deleted. This is the default 
response: you can simply press RETURN or CTRUZ. 

You can also delete buffers by using REMOVE or CUT in the Buffer List 
buffer, without having to type the buffer name. See the description of the 
SHOW BUFFERS command. 

parameter 
buffer-name 
The buffer you want to delete. The buffer name must match exactly-no 
wildcards ·or abbreviations. Buffer names are not case sensitive. Typically, 
a buffer name is the same as the file it contains (as specified when you 
invoked EVE or when you used the BUFFER, GET FILE, NEW, OPEN, 
or OPEN SELECTED command). If you do not specify a buffer, EVE 
prompts you for one. Pressing RETURN or DO at the prompt without typing 
anything cancels the operation. 



~1 

I 

I 

I 

1 

EVE Commands EVE-11 
DELETE BUFFER 

example 
The following command deletes a buffer named MEMO.TX.T. In this case, 
because the buffer has been modified (and not yet written out), EVE 
prompts you to confirm the deletion. 

Command: DELETE BUFFER memo.txt 
That's a modified buffer. Type Delete_only, Write_first, or Quit: D 

DELETE WINDOW 
format 

DELETE WINDOW 

description 

DO 

Deletes the current window, if you are using more than one window in 
EVE. Deleting a window does not delete the buffer that was displayed in 
the window. 

format 
DO 

VT300, VT200: 

VT100: 

DO 
PF4 

PF4 

description 
Enters or terminates an EVE command that you type, as follows: 

1. Press DO or PF4. The cursor moves to the command window (just 
below the status line), and the Command: prompt appears. 

2. Type the EVE command you want to execute, such as CENTER 
LINE, GET FILE, or SET RIGHT MARGIN. You can abbreviate the 
command, usually using the first letters of the command. Also, you 
can use EVE keys to edit the command line. 



EVE-12 EVE Commands 
DO 

3. Press RETURN or DO to terminate the command. EVE then executes 
the command or prompts you for more information. 

To cancel the command, erase the command line (for example, by 
pressing CTRUU). 

Pressing DO twice repeats the last command you entered. If you press 
DO and then press RETURN without typing a command, no command is 
executed. 

END OF LINE 
format 

END OF LINE 

VT300, VT200: 

VT100: 

CTRIJE 
GOLD--+ 

CTRIJE 
GOLD--+ 

description 
Moves the cursor to the end of the current line. If you are already at the 
end of the line, the cursor does not move. 

ENLARGE WINDOW 
format 

ENLARGE WINDOW integer 

description 
Enlarges the current window by the number of lines you specify-if you 
are using more than one window in EVE. The lines are added to the 
bottom of the window, unless the window is the bottommost window. 

parameter 
integer 
The number of screen lines you want to add to the current window. The 
maximum size of a window· depends on the size and type of terminal you 
are using. The minimum size is one line of text, one line for the status 
line, and on DECwindows, one line for the horizontal scroll bar. If there 



i 

l 

EVE Commands EVE-13 
ENLARGE WINDOW 

is not enough room on the screen to enlarge the window as specified, EVE 
enlarges it as much as possible. If you do not specify a number, EVE 
prompts you for one. Pressing RETURN or DO at the prompt without typing 
anything cancels the operation. 

example 
The following commands form two windows, and then enlarge the lower of 
the two windows by five lines: 

Command: TWO WINDOWS 
Command: ENLARGE WINDOW 5 

ERASE CHARACTER 
format 

ERASE CHARACTER 

description 
Erases the character that the cursor is on, or replaces it with a space, 
depending on the mode of the buffer. In insert mode, the rest of the line 
moves left one character to close up the space. In overstrike mode, the 
erased character is replaced by a space. If you are at the end of a line, 
ERASE CHARACTER erases only the carriage return for that line
regardless of the mode-causing the next line (if any) to move up. This 
is useful to erase blank lines to form paragraphs for FILL commands. 
To put back the character you erased, use the RESTORE CHARACTER 
command, which is also mode sensitive. 

ERASE LINE 
format 

ERASE LINE 

description 
Erases the current line, starting with the character that the cursor is on. 
The next line (if any) moves up. If you are at the end of a line, ERASE 
LINE erases only the carriage return for that line; the next line (if any) 
moves up. This is useful to erase blank lines to form paragraphs for 
FILL commands. To reinsert the erased text, use the RESTORE LINE 
command. 



EVE-14 EVE Commands 
ERASE PREVIOUS WORD 

ERASE PREVIOUS WORD 
format 

ERASE PREVIOUS WORD 

description 
Erases all of the previous word or all of the current word, depending on 
your cursor position. If you are between words or on the first character of 
a word, the previous word is erased (left of the cursor). In the middle of a 
word, all of that word is erased (same as the ERASE WORD command). 
If you are at the start of a line, ERASE PREVIOUS WORD erases only 
the carriage return for the previous line (if any), causing the current line 
to move up. This is useful to erase blank lines to form paragraphs for 
FILL commands. To reinsert the erased text, use the RESTORE WORD 
command. 

Note that if you are editing an EVE command line, any keys defined as 
ERASE WORD work like ERASE PREVIOUS WORD. Thus, you can use 
CTRUJ for editing command lines much as at the DCL level. 

ERASE START OF LINE 
format 

ERASE START OF LINE 

VT300, VT200: 

VT100: 

CTRUU 
CTRU<XJ 

CTRUU 
CTRUDELETE 

description 
Erases the current line, starting with the character left of the cursor until 
the start of the line. If you are already at the start of a line, nothing is 
erased. To reinsert the erased text, use the RESTORE LINE command. 



ERASE WORD 
format 

ERASE WORD 

VT300, VT200: 

VT100: 

F13 
CTRUJ 

COMMA 
CTRUJ 
LINEFEED 

description 

EVE Commands EVE-15 
ERASE WORD 

Erases all of the current word or, if you are between words, erases all of 
the next word. Erasing a word also erases the trailing spaces and tabs. 
If you are at the end of a line, ERASE WORD erases only the carriage 
return for that line; the next line (if any) moves up. This is useful to 
erase blank lines to form paragraphs for FILL commands. To put back 
the erased text, use the RESTORE WORD command. 

Note that if you are editing an EVE command line, any keys defined as 
ERASE WORD work like ERASE PREVIOUS WORD. Thus, you can use 
CTRUJ for editing command lines much as at the DCL level. 

EXIT 
format 

EXIT 

VT300, VT200: 

VT100: 

FlO 
CTRUZ 

CTRIJZ 



EVE-16 EVE Commands 
EXIT 

description 
Ends the editing session and, typically, produces a new file or a new 
version of an existing file. When you exit, EVE writes out (saves) the 
current buffer, unless you have made no edits or unless there are no 
changes since you previously wrote out the buffer during the session. If 
there is no file specification for the buffer-that is, if you invoked EVE 
without specifying an input file or if you created the buffer with the 
BUFFER or NEW command-EVE asks you for one. Simply pressing 
RETURN at the prompt discards the buffer and continues exiting. If you 
have modified other buffers (as in editing more than one file in the 
session), EVE asks if you want to write out those buffers. Respond YES 
or NO. If necessary, EVE prompts you for any output file specifications. If 
you have not modified any buffers, the EXIT and QUIT commands are the 
same-exiting does not produce a new file or new version of a file. The 
output file for a buffer is typically the same as its input file-that is, the 
file specified when you invoked EVE or when you used the GET FILE, 
OPEN, or OPEN SELECTED command. If you wrote out (saved) the 
buffer with the WRITE FILE or SAVE FILE AS command and specified 
an output file, that file specification is used for writing out the buffer on 
exiting. 

EXTEND ALL 
format 

EXTEND ALL 

description 
Compiles all the VAXTPU procedures in the current buffer. (Same as the 
command EXTEND EVE* or EXTEND TPU *.) EXTEND commands do 
not execute procedures. To execute a compiled procedure, use the EVE 
command TPU followed by the name of the procedure. To save compiled 
procedures for future editing sessions, use the SAVE EXTENDED EVE 
command to create a section file. 



EXTEND EVE 
format 

EXTEND EVE { erocedure-name } 

description 

EVE Commands EVE-17 
EXTEND EVE 

Compiles one or more VAXTPU procedures to extend EVE (same as the 
EXTEND TPU command). You can specify the name of a procedure in 
the current buffer or use the asterisk wildcard ( * ) to specify all the 
procedures in the current buffer. 

EXTEND commands do not execute procedures. 'lb execute a compiled 
procedure, use the EVE command TPU followed by the name of the 
procedure. To save compiled procedures for future editing sessions, use 
the SAVE EXTENDED EVE command to create a section file. 

parameters 
procedure-name 
The VAXTPU procedure you want to compile. The procedure must be in 
the current buffer. You can abbreviate the procedure name, but cannot 
use wildcards; the name is not case sensitive. If more than one name 
matches your request, EVE shows a list of the matching names so you can 
choose the one you want. If you do not specify a procedure, EVE prompts 
you for one. Pressing RETURN or DO at the prompt without typing anything 
cancels the operation. 

Asterisk wildcard symbol specifying that you want to compile all the 
procedures in the buffer. This is the same as using the EXTEND ALL 
command. 

example 
The following command compiles a procedure named USER_PROC: 

Conunand: EXTEND EVE user_proc 
EVE extended by: USER_PROC 



EVE-18 EVE Commands 
EXTEND THIS 

EXTEND THIS 
format 

EXTEND THIS 

description 
Compiles the VAXTPU procedure that the cursor is in. This is the same as 
using the EXTEND EVE command without having to type the procedure 
name. This is useful for compiling a procedure with a lengthy name or a 
name similar to other procedures, without having to type it exactly. 

Steps: 

1. Put the cursor anywhere in the procedure you want to compile (that 
is, anywhere between the PROCEDURE and ENDPROCEDURE 
statements). 

2. Use the EXTEND THIS command. 

EXTEND commands do not execute procedures. To execute a compiled 
procedure, use the EVE command TPU followed by the name of the 
procedure. To save compiled procedures for future editing sessions, use 
the SAVE EXTENDED EVE command to create a section file. 

EXTENDTPU 
format 

EXTEND TPU { ~rocedure-name } 

description 
Same as the EXTEND EVE command-compiles one or more VAXTPU 
procedures to extend EVE. 

FILL 
format 

FILL 



I 

~ 
I 

I 

EVE Commands EVE-19 
FILL 

description 
Reformats (rewraps) a select range, found range, or the current 
paragraph, so that the maximum number of words fits on a line according 
to the margins of the buffer. Typically, you use FILL commands to rewrap 
text after making some change in the buffer, such as inserting new text or· 
changing the margins. 

Steps: 

1. Optionally, use SELECT, FIND, or WILDCARD FIND to highlight the 
text you want to fill. (A select range takes precedence over a found 
range.) Or put the cursor anywhere in the paragraph you want to fill. 

2. Use the FILL command. The highlighting, if any, is canceled. The 
cursor stays at the end of the range you fill or moves to the end of the 
paragraph you fill. 

In EVE, a paragraph is bounded by any of the following: 

Blank line 
Bottom or top of the buffer 
Page break (form-feed character) 
DIGITAL Standard Runoff command (such as .BLANK) 

FILL PARAGRAPH 
format 

FILL PARAGRAPH 

description 

Reformats (rewraps) the current paragraph so that the maximum number 
of words fits on a line according to the margins of the buffer. 

FILL RANGE 
format 

FILL RANGE 

description 
Reformats (rewraps) a select range or found range, so that the maximum 
number of words fits on a line according to the margins of the buffer. 
Filling a range keeps blank lines and page breaks as. paragraph 
boundaries, which is useful if you select several paragraphs or the entire 
buffer for reformatting. 



EVE-20 EVE Commands 
FIND 

FIND 
format 

FIND search-string 

VT300, VT200: 

FIND 

VT100: 

PFl 

description 
Searches the current buffer for the text string you specify (or for one 
already entered). If the string is found, EVE puts the cursor at the 
beginning of the string and highlights the found text. If the string is 
found only in the opposite direction, EVE asks if you want to change the 
direction of the search and go there. Press RETURN if you want to go there, 
or type NO and press RETURN to end the search. If the string is not found, 
the cursor does not move. 

The found text is highlighted (video bold), with the cursor at the 
beginning of the string. If there is no select range, you can use a 
command such as COPY, FILL, REMOVE, or UPPERCASE WORD with 
the found range much the same as with a select range. If there is a select 
range, the operation works on the selected text, which may not include 
the found range. To cancel the highlighting, move the cursor off the found 
range or use the RESET command. 

parameter 
search-string 
The text you want to find. Use all lowercase to find any occurrence of the 
string. Use mixed case or all uppercase to find an exact match. EVE is 
also sensitive to diacritical marks, such as accents, in the search string. If 
you do not specify a search string, EVE prompts you for one. Pressing the 
FIND key at the prompt without typing anything searches for the previous 
string, if any; pressing RETURN at the prompt without typing anything 
cancels the operation. 

example 
The following command searches for the word digital, finding any 
occurrence regardless of its case in the buffer: 

Command: FIND digital 



~1 
I 
I 

FIND NEXT 
format 

FIND NEXT 

description 

EVE Commands EVE-21 
FIND NEXT 

Searches the current buffer for another occurrence of a string already 
entered with the FIND, FIND SELECTED, REPLACE, or WILDCARD 
FIND command. If the string is found only in the opposite direction, EVE 
asks if you want to change the direction of the search and go there. Press 
RETURN if you want to go there, or type NO and press RETURN to end the 
search. If the string is not found, the cursor does not move. 

If the string is found, EVE puts the cursor at the beginning of the string 
and highlights the found text (video bold). If there is no select range, 
you can use COPY, FILL, REMOVE, UPPERCASE WORD, or other 
commands that work on a range of text. (If there is a select range, the 
operation works on the selected text, which may not include the found 
range.) 

FIND SELECTED 
format 

FIND SELECTED 

description 

Searches the current buffer for the text string you have selected, rather 
than for a typed string. This is particularly useful to find a lengthy 
mixed-case string (such as a book title or a person's name) without having 
to type it exactly. 

Steps: 

1. Select the text you want to find. 

On DECwindows, the select range can be in EVE or in. another 
DECwindows application running concurrently. 

2. Use the FIND SELECTED command. The selection is canceled. 

EVE searches the buffer first in the current direction and then in the 
opposite direction. If the string is found only in the opposite direction, 
EVE asks if you want to change the direction of the search and go there. 
Press RETURN if you want to go there, or type NO and press RETURN to end 
the search. If the string is not found, the cursor does not move. 



EVE-22 EVE Commands 
FIND SELECTED 

If the string is found, EVE puts the cursor at the beginning of the string, 
highlights the found text (video bold), and cancels the select range. You 
can then use COPY, FILL, REMOVE, UPPERCASE WORD, or other 
commands that work on a range of text. To find another occurrence of the 
same string, use the FIND NEXT command or press FIND twice. 

If there is a found range (highlighted found text), and no select range, 
FIND SELECTED is the same as FIND NEXT. If there are both a found 
range and a select range, FIND SELECTED uses the select range .. 

FORWARD 
format 

FORWARD 

description 
Sets the direction of the current buffer to forward (right and down). The 
direction of the buffer is shown in the status line. It affects commands 
like FIND and MOVE BY LINE and some EDT keypad and WPS keypad 
keys. For buffers you create, the default direction is forward. Note that 
direction is a buffer-specific setting; you can have one buffer set to forward 
and another buffer set to reverse. For editing EVE command lines, the 
default direction is reverse, independent of the direction of your text 
buffers. 

GET FILE 
format 

GET FILE filespec 

description 
Puts the file you specify into the current EVE window, creating a new 
buffer if necessary (same as the OPEN command). This lets you edit 
another file in the same session. If the file exists, EVE copies it into a 
new buffer in the current window. If the file does not exist, EVE creates 
a new, empty buffer, using the file name and file type for the buffer name. 
If you specify a file you have already opened in the editing session-that 
is, a file for which there is already a buffer-EVE returns to your last 
location in the buffer for that file, if the buffer still exists. 



~1 

parameter 
files pee 

EVE Commands 
GET FILE 

EVE-23 

The file you want to edit or create. You can use logical names and 
wildcards in the file specification. If more than one file matches your 
request, EVE shows a list of the matching files so you can choose the one 
you want. You can edit several files in an editing session, but can specify 
only one file at a time. If you do not specify a file, EVE prompts you 
for one. Pressing RETURN or DO at the prompt without typing anything 
cancels the operation. 

example 
The following command gets a file called MEMO.TXT, returning the 
cursor to your last position in the buffer or creating a new buffer: 

Corcunand: GET FILE memo.txt 

GOTO 
format 

GO TO marker-name 

description 

Moves the cursor to the position you specify, as previously labeled with 
the MARK command. Using MARK and GO TO commands makes it 
easier to move through a large buffer or to move between buffers. To find 
out marker names, use the SHOW command. 

parameter 
marker-name 
The marker you want to go to, as previously specified with the MARK 
command. You can abbreviate the marker name, but cannot use wildcards 
(for example, an asterisk is treated as a character in the marker name). 
Marker m;unes are not case sensitive. If more than one name matches 
your request, EVE shows a list of the matching names so you can choose 
the one you want. If you do not specify a marker, EVE prompts you 
for one. Pressing RETURN or DO at the prompt without typing anything 
cancels the operation. 



EVE-24 EVE Commands 
GOTO 

example 
The following commands mark the current position as INTRO SEC, and 
later move the cursor to that position: 

Command: MARK intro sec 

Command: GO TO intro sec 
Going to mark: intro sec 

HELP 
format 

HELP [topic-name] 

VT300, VT200: 

VT100: 

HELP 
GOLD-HELP 

PF2 

description 
Displays online help on EVE commands, keys, or other topics, including 
VAXTPU built-in procedures. By default, HELP (or PF2 on VTlOO-series 
terminals) is defined as HELP KEYPAD, which draws a keypad diagram, 
showing the mini keypad, keypad, or both, depending on which keys are 
defined. You can then press keys you want help on. To get a list of all key 
definitions, use the command HELP KEYS or, if the GOLD key is set, press 
GOLD-HELP. This lists all the currently defined keys, including control keys 
and GOLD key combinations, if any. You can then press keys you want 
help on. 

parameter 
topic-name 
An EVE command or other topic on which you want help. You can 
abbreviate the topic name. (You cannot type the name of an EDT keypad 
or WPS keypad function.) If more than one name matches your request, 
EVE shows a list of the matching topics so you can choose the one you 
want. (For example, if you type HELP SET, EVE lists all the SET 
commands.) If you specify a question mark (? ), or if you do not specify 
any topic, EVE displays the list of topics. Pressing RETURN at the prompt 
exits from HELP. 



I 

I 

I 
I 

I 

1 
! 

I 

I 

11 

EVE Commands EVE-25 
HELP 

example 
The following command displays the list of topics on which help is 
available. You can then type the name of a topic you want help on. 

Command: HELP 

INCLUDE FILE 
format 

INCLUDE FILE filespec 

description 
Copies the file you specify into the current buffer, inserting its contents 
before the current line. The text of the included file is inserted whether 
the mode of the buffer is insert or overstrike. The cursor remains on the 
current character after the text of the included file is inserted. Including 
a file does not change the name of the buffer or the output file associated 
with the buffer. If the file you are including contains tab characters, the 
tab stops of the current buffer apply. Including a file does not reformat 
(rewrap) the text. To reformat text according to the margins of the buffer, 
use FILL commands. 

parameter 
filespec 
The file you want to include. You can use logical names and wildcards 
in the file specification. If more than one file matches your request, EVE 
shows a list of the matching files so you can choose the one you want. You 
can include several files in a buffer, but can include only one file at a time. 
If you do not specify a file, EVE prompts you for one. Pressing RETURN or 
DO at the prompt without typing anything cancels the operation. 

example 
The following command includes a file called MORE.DAT, copying it into 
the current buffer: 

Command: INCLUDE FILE more.dat 



EVE-26 EVE Commands 
INSERT HERE 

INSERT HERE 
format 

INSERT HERE 

VT300, VT200: 

INSERT HERE 

VT100: 

KP9 

description 
Inserts at your current position what you previously copied or removed 
(same as the PASTE command). The text is inserted whether the mode 
of the buffer is insert or overstrike. Existing text is pushed to the right 
or down. Depending on the amount of text inserted and where you are 
on the line, your text may go past the right margin or even partly out of 
view. Use FILL commands, if necessary, to reformat (rewrap) your text. 

Depending on your setting, the text is inserted either from the Insert 
Here buffer in EVE or from the DECwindows clipboard. The default 
setting is NOCLIPBOARD, which uses the Insert Here buffer. For more 
information, see the description of the SET CLIPBOARD command. 

INSERT MODE 
format 

INSERT MODE 

description 
Sets the mode of the current buffer to insert, as opposed to overstrike. 
As you type, the new text is inserted at the current position, pushing the 
cursor and any existing text to the right or down. The mode of the buffer 
is shown in the status line. For editing text, the default mode is insert. 
Note that the mode is a buffer-specific setting; you can have one buffer set 
to insert and another buffer set to overstrike. For editing EVE command 
lines, the default mode matches your terminal setting (according to the 
DCL command SET TERMINAL), independent of the mode of your text 
buffers. 



I 

~ 

EVE Commands EVE-27 
INSERT PAGE BREAK 

INSERT PAGE BREAK 
format 

INSERT PAGE BREAK 

VT300, VT200: 

CTRL/L 

VT100: 

CTRL/L 

description 
Inserts at your current position a "hard" page break-a form feed, 
appearing as a small ~ . EVE puts the form feed on a line by itself, 
as follows: 

• If you are at the start of a line of text, EVE inserts a form feed and 
does a RETURN. 

• At the start of a blank line, EVE inserts a form feed and moves the 
cursor to the start of the next line-without doing a RETURN. 

• If you are not at the start of a line, EVE first does a RETURN to start 
a new line, inserts a form feed, and then does another RETURN. 

To erase a page break, use the MOVE BY PAGE command to put the 
cursor on a page break, and then use the ERASE LINE command or a 
similar EDT keypad or WPS keypad key. To insert a "soft" page break for 
a 54-line page, use the PAGINATE command. 

LEARN 
format 

LEARN 

description 
Learns a sequence of keystrokes and remembers them as a single key. 
The sequence can comprise commands, text, or both. (In some text editors 
and word processors, this is called a macro.) 



EVE-28 EVE Commands 
LEARN 

Steps: 

1. Use the LEARN command to begin recording your keystrokes. 

2. EVE prompts you to enter the keystrokes you want learned. You 
can. enter text, commands, or both, including pressing keys already 
defined. 

3. To end or remember the learn sequence, press CTRUR (defined as 
REMEMBER). Do not type the REMEMBER command. 

4. EVE then prompts you to press the key to be defined. You can press 
any of the following keys. Do not press a key you have used in the 
sequence being remembered. 

LINE 
format 

• A function key such as PF4, KP7, or F20 

• A control key such as CTRUN 

• A GOLD key combination, such as GOLD-KP7 or GOLD-A 

To cancel the definition, press the RETURN key or CTRUM, which 
cannot be redefined. For information about nondefinable keys, see 
Section 6.4.3. 

LINE integer [procedure-name] 

description 
Moves the cursor to the start of a line you specify by number-either in 
the current buffer or within a specified VAXTPU procedure in the buffer. 
To find out the current line number and total number of lines in the 
buffer, use the WHAT LINE command. 

parameters 
integer 
The number of the line you· want to go to. If you specify a number greater 
than the total number of lines in the buffer, EVE moves the cursor to the 
end of the buffer. If you do not specify a line number, EVE prompts you 
for one. Pressing RETURN or DO at the prompt without typing anything 
cancels the operation. 

procedure-name 
Optionally, the VAXTPU procedure in which you want to go to the 
specified line. The procedure must be in the current buffer. You can 
abbreviate the procedure name, but cannot use wildcards; the name is not 
case sensitive. If more than one procedure matches your request, EVE 



;.I 

I 

I 

I 

:I 

EVE Commands 
LINE 

EVE-29 

shows a list of the matching procedures so you can choose the one you 
want. Specifying a procedure is useful because some compiler messages 
refer to line numbers in a procedure. 

example 
The following command moves the cursor to the start of line 10 in the 
current buffer: 

Command: LINE 10 

LOWERCASE WORD 
format 

LOWERCASE WORD 

description 
Makes letters lowercase in a single word, select range, or found range. 
With a select range or found range, LOWERCASE WORD changes the 
letters in the range, starting with the first letter in the range (even if it 
is not the first letter of the word). A select range takes precedence over 
a found range. If there is no select range or found range, LOWERCASE 
WORD works on the current word. If you are between words, it works on 
the next word on the line. 

MARK 
format 

MARK marker-name 

description 
Puts an invisible marker at the current position, and associates it with 
the name you specify. Later, using the GO TO command, you can return 
to the marked position. This makes it easier to move through a large 
buffer or between buffers. To find out marker names, use the SHOW 
command. 

parameter 
marker-name 
The name you want to mark the current position in the buffer. Marker 
names are not case sensitive and may. contain embedded spaces. You 
cannot use wildcards (for example, an asterisk is treated as a character in 
the marker name). If you specify a marker name that is already used, the 
previous marker is canceled. If you do not specify a marker, EVE prompts 



EVE-30 EVE Commands 
MARK 

you for one. Pressing RETURN or DO at the prompt without typing anything 
cancels the operation. 

example 
The following commands mark the current position as INTRO SEC, and 
later move the cursor to that position: 

Command: MARK intro sec 
Current position marked as: intro sec 

Command: GO TO intro sec 

MOVE BY LINE 
format 

MOVE BY LINE 

VT300, VT200: 

F12 

VT100: 

MINUS 

description 

Moves the cursor a line at a time in the direction of the buffer-forward 
or reverse, as shown in the status line. In forward direction, the cursor 
moves to the end of the current line or, if you are already there, to the end 
of the next line. In reverse direction, it moves to the start of the current 
line or, if you are already there, to the start of the previous line. You can 
repeat the operation until you reach the bottom or top of the buffer. 



EVE Commands EVE-31 
MOVE BY PAGE 

MOVE BY PAGE 
format 

MOVE BY PAGE 

description 
Moves the cursor a page at a time in the direction of the buffer-forward 
or reverse, as shown in the status line. Pages are bounded by a form-feed 
character (usually appearing as a small ~ ) or by the top or bottom of the 
buffer. For more information about page breaks, see the descriptions of 
the INSERT PAGE BREAK and PAGINATE commands. 

MOVE BYWORD 
format 

MOVE BYWORD 

description 
Moves the cursor a word at a time in the direction of the buffer-forward 
or reverse, as shown in the status line. In forward direction, the cursor 
moves to the start of the next word, if any-that is, the first nonspace 
character in the word. In reverse direction, it moves to the start of the 
current word or, if you are already there, to the start of the previous word, 
if any. You can repeat the operation until you reach the bottom or top of 
the buffer. 

MOVE DOWN 
format 

MOVE DOWN 

VT300, VT200: 

VT100: 

t 

t 
KP2 



EVE-32 EVE Commands 
MOVE DOWN 

description 

Moves the cursor down a line at a time. If the cursor is free-which is 
the default setting-it moves down in the same column on the screen, 
regardless of whether text is there or not. If the cursor is bound, it moves 
down to the corresponding line position, as in EDT, WPS, and other 
editors. For example, from the end of a line longer than the next line, 
MOVE DOWN moves the cursor to the end of the next line. It does not 
move into the unused portion of the buffer. For information about setting 
the type of cursor motion, see the descriptions of the SET CURSOR 
BOUND and SET CURSOR FREE commands. 

MOVE LEFT 
format 

MOVE LEFT 

VT300, VT200: 

VT100: 

+-
KPl 

description 

Moves the cursor left one character or column at a time. If the cursor 
is free-which is the default setting- you can move it anywhere in the 
buffer, whether characters are already there or not. For example, if the 
left margin is greater than 1, you can move left of the left margin. If the 
cursor is bound, then from the start of a line it moves to the end of the 
previous line, if there is one. When you edit an EVE command line, the 
cursor is always bound and does not move past the start of the line. For 
information about setting the type of cursor motion, see the descriptions 
of the SET CURSOR BOUND and SET CURSOR FREE commands. 



i 

1 MOVE RIGHT 
format 

MOVE RIGHT 

VT300, VT200: 

VT100: 

KP3 

description 

EVE Commands EVE-33 
MOVE RIGHT 

Moves the cursor right one character or column at a time. If the cursor 
is free-which is the default setting- you can move it anywhere in the 
buffer, whether characters are already there or not. For example, you 
can move right of the right margin. If the cursor is bound, then from the 
end of a line it moves to the start of the next line, if there is one. When 
you edit an EVE command line, the cursor is always bound and does not 
move past the end of the line. For information about setting the type of 
cursor motion, see the descriptions of the SET CURSOR BOUND and 
SET CURSOR FREE commands. 

MOVE UP 
format 

MOVE UP 

VT300, VT200: 

VT100: 

t 

t 
KP5 



EVE-34 EVE Commands 
MOVE UP 

description 
Moves the cursor up a line at a time. If the cursor is free-which is the 
default setting-it moves up in the same column on the screen, regardless 
of whether text is there or not. If the cursor is bound, it moves up to 
the corresponding line position, as in EDT, WPS, and other editors. For 
example, from the end of a line longer than the previous line, MOVE UP 
moves the cursor to the end of the previous line. It does not move into 
the unused portion of the buffer. For information about setting the type 
of cursor motion, see the descriptions of the SET CURSOR BOUND and 
SET CURSOR FREE commands. 

NEW 
format 

NEW 

description 
Creates a new buffer, putting it into the current EVE window. The cursor 
moves to the top of the new buffer. The new buffer is named MAIN. If 
a buffer named MAIN already exists, EVE asks you for the name of the 
new buffer to create. Pressing RETURN or DO at the prompt without typing 
anything cancels the operation. 

You cannot create a buffer with the same name as an existing buffer. For 
example, you cannot create a buffer named MESSAGES, because EVE 
has a system buffer with that name (for storing the messages you receive 
during your editing session). For a list of the buffers you have created, 
use the SHOW BUFFERS command. For a list of the buffers created by 
EVE, use the SHOW SYSTEM BUFFERS command. 

example 
The following command creates a new buffer. Since a buffer named MAIN 
already exists, EVE asks for you a buffer name. In this case, you call the 
new buffer TEST. 

Command: NEW 
Type a new buffer name or press RETURN to cancel: test 



~-1 
i 

I 

I 

1 
I NEXT BUFFER 

format 

NEXT BUFFER 

description 

EVE Commands EVE-35 
NEXT BUFFER 

Puts your next buffer into the current EVE window and returns the 
cursor to your last position in that buffer-if the buffer still exists. This 
lets you toggle between two buffers or cycle through several buffers 
without having to type their names. (It does not create a new buffer or 
re-create a deleted buffer.) If you have only two buffers, repeating NEXT 
BUFFER toggles between them. If you have more than two buffers, the 
next buffer is determined by the order in which you created the buffers. 
For a list of your buffers, use the SHOW BUFFERS command. 

example 
In the following example, you first edit a file called ALPHA.TXT, and then 
edit a file called BETA.TXT. The NEXT BUFFER command then returns 
you to the ALPHA.TXT buffer. 

Command: GET FILE alpha.txt 

Command: GET FILE beta.txt 

Command: NEXT BUFFER 

NEXT SCREEN 
format 

NEXT SCREEN 

VT300, VT200: 

NEXT SCREEN 

VT100: 

KPO 



EVE-36 EVE Commands 
NEXT SCREEN 

description 
Scrolls vertically to show the next screen's worth of text-roughly, the 
length of the current EVE window. If the cursor is free-which is the 
default setting- it moves down in the same column on the screen, 
regardless of whether text is there or not. If the cursor is bound, it moves 
down by the corresponding line positions, depending on the shape of your 
text. For information about setting the type of cursor motion, see the 
descriptions of the SET CURSOR BOUND and SET CURSOR FREE 
commands. 

NEXT WINDOW 
format 

NEXT WINDOW 

VT300, VT200: 

GOLD-NEXT SCREEN 

description 
Puts the cursor at your last position in the next window, if you are using 
two or more windows in EVE (same as the OTHER WINDOW command). 
For example, if you split the EVE main window into three windows, the 
NEXT WINDOW command does the following: 

• From the top window, the cursor returns to your last position in the 
middle window. 

• From the middle window, the cursor returns to your last position in 
the bottom window. 

• From the bottom window, the cursor returns to your last position in 
the top window. 

If you are using only two windows, the NEXT WINDOW, OTHER 
WINDOW, and PREVIOUS WINDOW commands are the same. 



I 

""1 

I 

ONE WINDOW 
format 

ONE WINDOW 

description 

EVE Commands EVE-37 
ONE WINDOW 

Restores a single, large window when the EVE main window is split into 
two or more windows. 

OPEN 
format 

OPEN filespec 

description 

Same as the GET FILE command-puts the file you specify into the 
current EVE window, creating a new buffer if necessary. This lets you 
edit another file in the same session. 

OPEN SELECTED 
format 

OPEN SELECTED 

description 

Opens the file whose name you have selected or found-same as using 
the GET FILE or OPEN command, without having to type the file name. 
This is particularly useful to open a file that has a long name, or a name 
similar to other files, without having to type it exactly. 

Steps: 

1. Use SELECT, FIND, or WILDCARD FIND to highlight the name of 
the file you want to edit or create. 

A select range takes precedence over a found range. On DECwindows, 
the select range can be in EVE or in another DECwindows application 
running concurrently. 



EVE-38 EVE Commands 
OPEN SELECTED 

2. Use the OPEN SELECTED command. 

If the file exists, EVE copies it into a new buffer in the current window. 
If the file does not exist, EVE creates a new, empty buffer, using the file 
name and file type for the buffer name. If you specify a file you have 
already opened in the editing session-that is, a file for which there is 
already a buffer-EVE returns to your last location in the buffer for that 
file, if the buffer still exists. 

OTHER WINDOW 
format 

OTHER WINDOW 

description 

Same as the NEXT WINDOW command-puts the cursor at your last 
position in the next window, if you are using two or more windows in 
EVE. 

OVERSTRIKE MODE 
format 

OVERSTRIKE MODE 

description 

Sets the mode of the current buffer to overstrike, as opposed to insert. 
Each character you type replaces the character at the current position. 
(In some editors, this is called typeover mode or replace mode.) The mode 
of the buffer is shown in the status line. For editing text, the default 
mode is insert. Note that the mode is a buffer-specific setting; you can 
have one buffer set to insert and another buffer set to overstrike. For 
editing command lines, the default mode matches your terminal setting 
(according to the DCL command SET TERMINAL), independent of the 
mode of your text buffers. 



.. I 

I 

i" 
I 

PAGINATE 
format 

PAGINATE 

description 

EVE Commands EVE-39 
PAGINATE 

Inserts a "soft" page break for a 54-line page, erasing any existing soft 
breaks within the 54 lines. A soft page break is a form feed followed by 
the null character-appearing as a small ~ ~ . 

Steps: 

1. Use the PAGINATE command. EVE then moves back to the previous 
page break or to the top of the buffer, and checks ahead for page 
breaks within the next 54 lines. 

2. If soft breaks are found within the 54 lines, EVE deletes them, moves 
down to insert a soft break for a 54-line page, and then puts the 
cursor on the next line. The page break always appears on a line by 
itself. 

You can then repeat the PAGINATE command to continue paginating the 
buffer. 

If a "hard" page break is found, EVE stops on the line after that page 
break, in case you want to erase it. A hard page break is a form feed only, 
typically inserted with the INSERT PAGE BREAK command (CTRUL key). 

PASTE 
format 

PASTE 

description 
Same as the INSERT HERE command-inserts the text you have copied 
or removed. 

Note that the PASTE command is not the same as the WPS keypad 
Paste key. The PASTE (or INSERT HERE) command uses either the 
Insert Here buffer in EVE or the DECwindows clipboard, depending on 
your setting. The WPS Paste key uses either the Insert Here buffer or a 
WPS-style alternate paste buffer-but does not use the clipboard. 



EVE-40 EVE Commands 
PREVIOUS SCREEN 

PREVIOUS SCREEN 
format 

PREVIOUS SCREEN 

VT300, VT200: 

PREVSCREEN 

VT100: 

PERIOD 

description 
Scrolls vertically to show the previous screen's worth of text-roughly, 
the length of the current EVE window. If the cursor is free-which is the 
default setting-it moves up in the same column on the screen, regardless 
of whether text is there or not. If the cursor is bound, it moves up by the 
corresponding line positions, depending on the shape of your text. For 
information about setting the type of cursor motion, see the descriptions 
of the SET CURSOR BOUND and SET CURSOR FREE commands. 

PREVIOUS WINDOW 
format 

PREVIOUS WINDOW 

VT300, VT200: 

GOLD-PREV SCREEN 

description 
Puts the cursor at your last position in the previous window, if you are 
using two or more windows in EVE. For example, if you split the EVE 
main window into three windows, the PREVIOUS WINDOW command 
does the following: 

• From the bottom window, the cursor returns to your last position in 
the middle window. 

• From the middle window, the cursor returns to your last position in 
the top window. 

• From the top window, the cursor returns to your last position in the 
bottom window. 



EVE Commands 
PREVIOUS WINDOW 

EVE-41 

If you are using only two windows, the PREVIOUS WINDOW, NEXT 
WINDOW, and OTHER WINDOW commands are the same. 

QUIT 
format 

QUIT 

description 

Ends the editing session without writing out a new file or new version 
of an existing file. Quitting discards the edits made during the session, 
except those you have already saved by using SAVE FILE or WRITE FILE 
commands. If you have modified any buffers that you created, EVE asks 
you to confirm that you want to quit (to prevent accidentally discarding 
your edits). If you want to quit, simply press RETURN at the prompt. If 
you do not want to quit, type NO and press RETURN. 

example 
The following command ends the editing session without saving your 
edits: 

Command: QUIT 
Buffer modifications will not be saved, continue quitting? IRETURNI 

QUOTE 
format 

QUOTE 

VT300, VT200: 

CTRLN 

VT100: 

CTRLN 



EVE-42 EVE Commands 
QUOTE 

description 

Enters a control code or other character you specify by a key press. You 
can quote a character either as part of a command string or to enter the 
character as text in the buffer. Some control codes appear as a backwards 
question mark. QUOTE is sensitive to the mode of the buffer (shown in 
the status line). In insert mode, the quoted character is inserted at the 
current position. In overstrike mode, the quoted character replaces the 
current character. You can quote a control code or other character when 
you enter a string for the FIND or REPLACE commands. 

example 
The following example inserts an escape character in the buffer: 

Command: QUOTE 
Press the key to be added: lCTRLJII 

RECALL 
format 

RECALL 

VT300, VT200: 

CTRL/B 

VT100: 

CTRL/B 

description 

Recalls a previous EVE command, which you can edit (if necessary) and 
execute again. 

Do not type the command RECALL. If you type RECALL, that command 
itself is recalled. Instead, use CTRL/B or a key you have defined as 
RECALL. 



REFRESH 
format 

REFRESH 
VT300, VT200: 

CTRUW 

VT100: 

CTRIJW 

description 

EVE Commands EVE-43 
REFRESH 

Refreshes (repaints) the screen, typically to remove extraneous characters 
that are the result of a system broadcast. 

REMEMBER 
format 

REMEMBER 
VT300, VT200: 

CTR UR 

VT100: 

CTRUR 

description 

Ends ("remembers") a learn sequence and prompts you to press the 
key to be defined for the sequence. (See the description of the LEARN 
command.) 

Do not type the REMEMBER command. If you type REMEMBER, that 
command itself is remembered as part of the learn sequence. Instead, use 
CTRUR or a key you have defined as REMEMBER. 



EVE-44 EVE Commands 
REMOVE 

REMOVE 
format 

REMOVE 
VT300, VT200: 

REMOVE 

VT100: 

KPB 

description 
Removes a select range or found range, which you can insert elsewhere 
(same as the CUT command). In the Buffer List buffer, deletes the buffer 
whose name the cursor is on. 

Steps: 

1. Use SELECT, FIND, or WILDCARD FIND to highlight the text you 
want to remove. (A select range takes precedence over a found range.) 

2. Use the REMOVE command. 

3. To insert the removed text elsewhere, use the INSERT HERE or 
PASTE command. 

The removed text is stored either in the Insert Here buffer in EVE or in 
the DECwindows clipboard, depending on your setting, and replaces in 
that storage area whatever you previously removed or copied. The default 
setting is NOCLIPBOARD, which uses the Insert Here buffer. For more 
information, see the description of the SET CLIPBOARD command. 

When you are in the Buffer List buffer, REMOVE deletes a buffer without 
your having to type the buffer name, as follows: 

1. Use the SHOW BUFFERS command to list the buffers you have 
created. 

2. Put the cursor on the name of the buffer you want to delete. 

3. Use REMOVE to delete that buffer. 

For more information about deleting buffers, see the description of the 
DELETE BUFFER command. 



REPEAT 
format 

EVE Commands 
REPEAT 

EVE-45 

REPEAT integer 

description 
Repeats the next command or keystroke as often as you specify, without 
your having to retype it. For example, you can repeat an arrow key or a 
cursor-movement command, or you can repeat a typing key (such as the 
dash) or an editing operation (such as an ERASE command). To cancel a 
pending repeat count, use the RESET command. 

parameter 
integer 

NOTE: Do not use CTRUC to cancel a REPEAT operation. 
Pressing CTRUC may cancel the operation, but CTRUC 
is not recorded in the journal file, which may make it 
impossible to recover your work if your editing session is 
interrupted by a system failure. If you use CTRUC to cancel 
an operation, you should exit immediately, saving your 
edits, and then restart the editing session. 

The number of times you want the next operation repeated. Must be 
greater than 1. If you do not specify a number, EVE prompts you for one. 
Pressing RETURN or DO at the prompt without typing anything cancels the 
operation. 

example 
In the following example, you repeat the ERASE WORD command five 
times-that is, you erase the current word and the next four: 

Command: REPEAT 5 
Command: ERASE WORD 



EVE-46 EVE Commands 
REPLACE 

REPLACE 
format 

REPLACE 

description 

{ 
"old-string" ["new-string'1 } 
old-string [new-string] 

Replaces one text string with another-that is, EVE searches for the 
old string you specify and replaces it· with the new string you specify. 
EVE searches for the old string first in the current direction and then, 
if necessary, in the opposite direction. If the old string is found in the 
opposite direction, EVE asks if you want to change the direction of the 
search and go there. If you want to go there, press RETURN. If you do not 
want to go there, type NO and press RETURN. 

If the old string is found, EVE puts the cursor at the beginning of the 
string, highlights the found text, and asks you for one of the following 
choices. You need only type the first letter of the response (and press 
RETURN). 

Response 

YES 

NO 

ALL 

LAST 

QUIT 

Effects 

Replaces this occurrence of the old string and searches for the next 
occurrence. This is default choice: you can simply press RETURN. 

Skips this occurrence and searches for the next occurrence. 

Replaces all the occurrences, starting with this one, without moving the 
cursor to each successively found occurrence. 

Replaces this occurrence and stops here. 

Skips this occurrence and stops here. (You can also press CTRUZ.) 

With YES or ALL, if the search covers the buffer more than once, EVE 
asks if you want to continue (so you can avoid replacing a string again 
when the old and new strings are similar). 

The REPLACE command is case sensitive. If the old string is all 
lowercase, EVE searches for any occurrence, regardless of its case 



EVE Commands 
REPLACE 

EVE-47 

in the buffer (much like the FIND command). If the new string is 
also all lowercase, EVE tries to match the case appropriately for each 
replacement, as follows: 

• A capitalized version of the old string (first letter uppercase, others 
lowercase) is replaced by a capitalized version of the new string. 

• An all-uppercase version of the old string is replaced by an all
uppercase version of the new string. 

• Otherwise, the old string is replaced by an all-lowercase version of the 
new string. 

parameters 
old-string 
The text you want to remove. If the string is more than one word, put 
it in quotation marks or let EVE prompt you for the string. Use all 
lowercase to search for any occurrence; use mixed case or all uppercase 
to search for an exact match. If you do not specify an old string, EVE 
prompts you for one. Pressing RETURN or DO at the prompt without typing 
anything cancels the operation. 

new-string 
The text you want to replace the old string. If the string is more than one 
word, put it in quotation marksor let EVE prompt you for the string. If 
you do not specify a new string-that is, if you simply press RETURN at the 
prompt-REPLACE deletes the old string without substituting any text. 

example 
In the following example, you replace all occurrences of the word butter 
with the word margarine. Because the old string is lowercase, EVE finds 
any occurrence of butter regardless of its case in the buffer. Because the 
new string is also lowercase, EVE matches the case appropriately in the 
replacement. 

Command: REPLACE butter margarine 
Replace? Type yes, no, all, last, or quit: A 
Replaced 8 occurrences. 



EVE-48 EVE Commands 
RESET 

RESET 
format 

RESET 

VT300, VT200: 

GOLD-SELECT 

description 
Cancels any of the following and sets the direction of the buffer to 
forward: 

• Highlighting of a select range or found range 

• A press of the GOLD key or GOLD-number combination for a repeat 
count (with the EDT keypad or WPS keypad) 

• An incomplete or recalled command line, or a Choices buffer display 
when you type an ambiguous command 

• Display from the SHOW, SHOW DEFAULTS BUFFER, SHOW 
SUMMARY, or SHOW WILDCARDS command, thus returning you to 
the buffer you were working in 

RESTORE 
format 

RESTORE 
VT300, VT200: 

GOLD-INSERT HERE 

description 
Reinserts at your current position what you last erased with most 
ERASE commands or similar EDT keypad or WPS keypad keys-same 
as using RESTORE LINE, RESTORE SENTENCE, or RESTORE WORD, 
depending on what you last erased. The restored text is inserted whether 
the mode of the buffer is insert or overstrike. Existing text is pushed to 
the right or down. Depending on the amount of text restored and where 
you are on the line, your text may go past the right margin or even partly 
out of view. Use FILL commands, if necessary, to reformat (rewrap) your 
text. 



RESTORE CHARACTER 
format 

RESTORE CHARACTER 

description 

EVE Commands EVE-49 
RESTORE CHARACTER 

Puts back at your current position what you last erased with DELETE, 
ERASE CHARACTER, or similar EDT keypad or WPS keypad keys. 
RESTORE CHARACTER is sensitive to the mode of the buffer (shown in 
the status line). In insert mode, the restored character is inserted at the 
current position. In overstrike mode, the restored character replaces the 
current character. 

RESTORE LINE 
format 

RESTORE LINE 

description 
Reinserts at your current position what you last erased with ERASE 
LINE, ERASE START OF LINE, or similar EDT keypad or WPS keypad 
keys. The restored text is inserted whether the mode of the buffer 
is insert or overstrike. Existing text is pushed to the right or down. 
Depending on the amount of text restored and where you are on the line, 
your text may go past the right margin or even partly out of view. Use 
FILL commands, if necessary, to reformat (rewrap) your text. 

RESTORE SELECTION 
format 

RESTORE SELECTION 

description 
Reinserts at your current position what you last erased with a pending 
delete operation. This is useful if you inadvertently erased a selection, 
and it also lets you use the pending delete feature as another way to cut 
and paste text. The restored text is inserted whether the mode of the 
buffer is insert or overstrike. Existing text is pushed to the right or down. 
Depending on the amount of text restored and where you are on the line, 
your text may go past the right margin or even partly out of view. Use 
FILL commands, if necessary, to reformat (rewrap) your text. 



EVE-50 EVE Commands 
RESTORE SENTENCE 

RESTORE SENTENCE 
format 

RESTORE SENTENCE 

description 
Reinserts at your current position what you last erased with the WPS 
Delete Beginning Sentence key (GOLD-F13 or GOLD-CTRUJ). The restored 
text is inserted whether the mode of the buffer is· insert or overstrike. 
Existing text is pushed to the right or down. Depending on the amount 
of text restored and where you are on the line, your text may go past 
the right margin or even partly out of view. Use FILL commands, if 
necessary, to reformat (rewrap) your text. 

RESTORE WORD 
format 

RESTORE WORD 

VT300, VT200: 

GOLD-F13 (except with the WPS keypad) 

description 
Reinserts at your current position what you last erased with ERASE 
PREVIOUS WORD, ERASE WORD, or similar EDT keypad or WPS 
keypad keys. The restored text is inserted whether the mode of the buffer 
is insert or overstrike. Existing text is pushed forward. Depending on the 
length of the restored text and where you are on the line, your text may 
go past the right margin or even partly out of view. Use FILL commands, 
if necessary, to reformat (rewrap) your text. 

RETURN 
format 

RETURN 

VT300, VT200: 

RETURN 
CTRUM 
ENTER 



VT100: 

RETURN 
CTRUM 

EVE Commands 
RETURN 

EVE-51 

description 

Inserts a carriage return at your current position to start a new line 
of text, or terminates an EVE command or a response to a prompt. In 
terminating a command or response to a prompt, you can have the cursor 
anywhere on the command line. Generally, if an EVE command prompts 
you for required information, such as a file name, search string, or other 
parameter, simply pressing RETURN at the prompt without typing anything 
cancels the operation. In some cases, pressing RETURN indicates a default 
choice. 

EVE does not let you define the RETURN key or CTRUM. You can redefine 
ENTER. 

REVERSE 
format 

REVERSE 
description 

Sets the direction of the current buffer to reverse (left and up). The 
direction of the buffer is shown in the status line. It affects commands 
like FIND and MOVE BY LINE and some EDT keypad and WPS keypad 
keys. For buffers you create, the default direction is forward. Note that 
direction is a buffer-specific setting; you can have one buffer set to forward 
and another buffer set to reverse. For editing EVE command lines, the 
default direction is reverse, independent of the direction of your text 
buffers. 



EVE-52 EVE Commands 
SAVE EXTENDED EVE 

SAVE EXTENDED EVE 
format 

SAVE EXTENDED EVE section-filespec 

description 

Creates a section file you specify, saving your current key definitions 
and other extensions for future editing sessions (same as the SAVE 
EXTENDED TPU command). 

Steps: 

1. Compile any VAXTPU procedures you have written to extend EVE. 
You can use EXTEND commands during the editing session, or you 
can put the procedures in a command file executed when you invoke 
the editor (with the /COMMAND qualifier). 

2. Define any keys you want by using DEFINE KEY, LEARN, SET 
GOLD KEY, and SET KEYPAD commands. You can do the commands 
during the editing session, or you can put the commands in an EVE 
initialization file. 

3. To create a section file, use the SAVE EXTENDED EVE command 
and specify the name of the section file. The default file type is 
TPU$SECTION. For example, the following command creates a 
section file called MYEVE.TPU$SECTION in your current (default) 
directory: 
Conunand: SAVE EXTENDED EVE myeve 

4. To use a section file, invoke the editor using the /SECTION qualifier, 
or define the logical name TPU$SECTION (particularly if there is a 
section file you want to use for all or most sessions). For example, 
the following command invokes the editor using a section file called 
MYSEC.TPU$SECTION in your top-level (or login) directory: 
$ EDIT/TPU/SECTION=sys$login:mysec 

In specifying the section file, include the device (disk) and directory. 
Otherwise, VAXTPU assumes the section file is in SYS$SHARE. 

A section file is in binary form, so it is executed quickly. You use one 
section file at a time. Section files are cumulative, saving the current 
key definitions and extensions done during the editing session and 
adding them to those already saved in the section file you are using. 
Effectively, the section file is your own, customized version of EVE. 
However, a section file usually does not save margins, tabs, and other 
settings. Therefore, you may want to use an EVE initialization file to 
save your editing preferences. (See Section 6.5.9.) The default section file 
is SYS$SHARE:EVE$SECTION.TPU$SECTION. 



parameter 
section-fitespec 

EVE Commands 
SAVE EXTENDED EVE 

EVE-53 

The section file you want to create. The default file type is TPU$SECTION. 
You can use logical names in the file specification, but cannot use 
wildcards. For example, you can use SYS$LOGIN or other logical names 
to specify the device or directory where you want the section file created. 
By default, the section file is created in your current (default) directory. If 
you do not specify a file, EVE prompts you for one. Pressing RETURN or DO 
at the prompt without typing anything cancels the operation. 

SAVE EXTENDED TPU 
format 

SAVE EXTENDED TPU section-filespec 

description 
Same as the SAVE EXTENDED EVE command-creates a section file 
you specify, saving your current key definitions and other extensions for 
future editing sessions. 

SAVE FILE 
format 

SAVE FILE 

description 
Saves (writes out) the current buffer, without ending the editing session. 
Similar to the WRITE FILE command, except that you do not specify an 
output file on the command line. Instead, SAVE FILE uses the output 
file specification associated with the buffer. Typically, this is the same 
as the file specified when you invoked EVE or when you used the GET 
FILE, OPEN, or OPEN SELECTED command. If there is no output file 
associated with the buffer-for example, if you invoked EVE without 
specifying a file, or if you created the buffer with the BUFFER or NEW 
command, or if you are saving an EVE system buffer-then EVE prompts 
you to enter an output file name. In such a case, specifying an output 
file does not change the buffer name, but does associate that file with 
the buffer for later SAVE FILE or WRITE FILE commands or for exiting 
(except with system buffers). To check the output file specification of the 
buffer, use the SHOW command. 



EVE-54 EVE Commands 
SAVE FILE 

example 
The following commands open a file called MEMO.TXT and then save 
your edits in a new version of that file: 

Command: OPEN memo.txt 

Command: SAVE FILE 
45 lines written to file DISK$1:[GEOFF]MEMO.TXT;2 

SAVE FILE AS 
format 

SAVE FILE AS output-filespec 

description 
Saves (writes out) the current buffer to the file you specify, without ending 
the editing session. Similar to the SAVE FILE or WRITE FILE command, 
except that SAVE FILE AS requires an output file specification. This 
lets you save your edits in a file with a different name from the input 
file. Specifying an output file does not change the buffer name, but does 
associate that file with the buffer for later SAVE FILE or WRITE FILE 
commands or for exiting (except with system buffers). To check the output 
file specification of the buffer, use the SHOW command. 

parameter 
output-filespec 
The output file you want to create for saving the contents of the current 
buffer. If you do not specify a file, EVE prompts you for one. Pressing 
RETURN or DO at the prompt without specifying a file, writes the buffer to 
the output file associated with that buffer, if there is one (same as with 
the SAVE FILE or WRITE FILE command). 

example 
The following commands open a file called ROUGH.DAT and then save 
your edits as. a file called FINAL.TXT: 

Command: OPEN rough.dat 

Command: SAVE FILE AS final.txt 
38 lines written to DISK$1: [GEOFF]FINAL.TXT;l 



I 

I 
I 

EVE Commands EVE-55 
SELECT 

SELECT 
format 

SELECT 
VT300, VT200: 

SELECT 

VT100: 

KP7 

description 
Selects text for an editing operation such as COPY, FILL, REMOVE, 
OPEN SELECTED, or UPPERCASE WORD. In the Buffer List buffer, 
lets you view the buffer whose name the cursor is on. 

Steps: 

1. Put the cursor where you want to begin the selection. 

2. Use the SELECT command to begin selecting text. 

3. Move the cursor to select text. Whatever text the cursor crosses is 
highlighted in reverse video. Blank lines are not highlighted. If you 
move the cursor forward, the select range begins with the current 
character. If you move the cursor back (reverse direction), the select 
range begins with the character left of the cursor. If you move the 
cursor by using FIND, FIND NEXT, or WILDCARD FIND in forward 
direction, the select range ends at the start of the found string-that 
is, the found text is not part of the select range. 

You can then use a command such as COPY, FILL, REMOVE, or 
UPPERCASE WORD with the select range. 

On DECwindows, you can select text by using MBl as follows. The cursor 
moves where you are pointing. 



EVE-56 EVE Commands 
SELECT 

Mouse 
Action 

1 Click 

2 Clicks 

3 Clicks 

4 Clicks 

5 Clicks 

Drag (press
move-release) 

Selection 

Cancels a selection, if any. 

Selects all of the word that the pointer is on. 

Selects all of the line that the pointer is on. 

Selects all of the paragraph that the pointer is on. 

Selects all of the buffer (same as the SELECT ALL command). 

Selects a block of text, starting with the character the pointer is on when 
you press MBl, and ending with the character the pointer is on when you 
release MBl. 

To cancel the selection, do any of the following: 

• Use the RESET command. 

• Repeat the SELECT command (for example, by pressing the SELECT 
key again). 

• Click MBl once. 

• If the selection was done by clicking or dragging the mouse, you 
can simply move the cursor out of the select range (for example, by 
pressing the down arrow key). 

When you are in the Buffer List buffer, SELECT is specially redefined to 
view a buffer, as follows: 

1. Use the SHOW BUFFERS command to get a list of the buffers you 
have created, or use the SHOW SYSTEM BUFFERS command to get 
a list of the buffers EVE creates. 

2. Put the cursor on a buffer name in the list, and use SELECT or, on 
DECwindows, click MBl twice. 

EVE then puts that buffer into the current window. Effectively, this is the 
same as using the BUFFER command without having to type the buffer 
name. 



SELECT ALL 
format 

SELECT ALL 

description 

EVE Commands EVE-57 
SELECT ALL 

Selects all of the current buffer-regardless of your position-so you can 
perform an editing operation, such as COPY, FILL, or REMOVE. 

Using SELECT ALL or clicking MBl five times temporarily disables 
pending delete, to prevent accidentally erasing all of the buffer. 

SET BUFFER 
format 

SET BUFFER 

description 

{ 

MODIFIABLE } 
READ ONLY 
UNMODIFIABLE 
WRITE 

Sets the editing status of the current buffer-whether you can modify 
the buffer or whether EVE saves (writes out) the buffer on exiting. The 
modification status is indicated in the status line by Insert or Overstrike 
(if the buffer is modifiable) or by Unmodifiable. The read/write status is 
shown by Read-only or Write in the status line. Typically you set a buffer 
to read-only, unmodifiable, or both to prevent inadvertently changing text 
you want to keep intact, such as reference data or a previous draft. If you 
create a "scratchpad" buffer as a temporary work area, you may want to 
set it to read-only and modifiable. This lets you edit the buffer, but EVE 
does not write out (save) that buffer on exiting. 

parameters 

MODIFIABLE 
Default setting. The buffer can be modified (edited). Also restores the 
previous mode of the buffer (insert or overstrike). 

READ_ONLY 
The buffer is write-locked and unmodifiable. Text-editing functions do 
not work in the buffer, and on exiting, EVE does not write out (save) the 
buffer. However, you can write out the buffer by using the WRITE FILE, 
SAVE FILE, or SAVE FILE AS command. 



EVE-58 EVE Commands 
SET BUFFER 

UNMODIFIABLE 
The buffer cannot be modified. For example, you cannot insert or erase 
text in the buffer. In the status line, Unmodifiable replaces the Insert or 
Overstrike indicator. 

WRITE 
Default setting. The buffer is write-enabled (opposite of READ_ONLY). 
On exiting, if the buffer has been modified, EVE writes it out or asks if 
you want to write it out. 

You can specify only one keyword per command. If you do not specify a 
keyword, EVE prompts you for one. Pressing RETURN or DO at the prompt 
without typing anything cancels the operation. 

example 
The following command sets the current buffer to read-only and 
modifiable. 

Command: SET BUFFER READ_ONLY 
Command: SET BUFFER MODIFIABLE 

SET CLIPBOARD 
format 

SET CLIPBOARD 

description 
Enables the DECwindows clipboard for copying, cutting, and pasting text, 
instead of the Insert Here buffer in EVE. Using the clipboard lets you 
transfer text between EVE and other DECwindows applications. 

You can enable the clipboard only if you invoke EVE using 
/DISPLAY=DECWINDOWS. Otherwise, the command is invalid. The 
default setting is NOCLIPBOARD, which uses the Insert Here buffer. 



SET CURSOR BOUND 
format 

SET CURSOR BOUND 

description 

EVE Commands EVE-59 
SET CURSOR BOUND 

Enables bound cursor motion, similar to that in EDT and WPS. A bound 
cursor cannot move into unused portions of the buffer. For example, if you 
are at the end of a line and press the right arrow key, the cursor moves to 
the start of the next line. If you want bound cursor motion for all or most 
editing sessions, put the SET CURSOR BOUND command in your EVE 
initialization file. (See Section 6.5.9.) 

The SET KEYPAD WPS command automatically sets the cursor to bound. 

SET CURSOR FREE 
format 

SET CURSOR FREE 

description 
Enables free cursor motion, which lets you move anywhere in the buffer 
and insert text whether characters are already there or not. (Default 
setting.) If you move up and down, the cursor stays in the same column 
on the screen. You can move left of the left margin (if the left margin is 
greater than 1), right of the right margin, or past the [End of file] marker 
(if the buffer is shorter than the current window). For example, if you 
are at the end of a line and press the right arrow key, the cursor moves 
past the end of the line and you can put text there. By contrast, a bound 
cursor moves to the start of the next line. 



EVE-60 EVE Commands 
SET FIND NOWHITESPACE 

SET FIND NOWHITESPACE 
format 

SET FIND NOWHITESPACE 

description 

Enables FIND and WILDCARD FIND commands to match spaces and 
tabs exactly as in the search string, rather than as "white space," and 
to search for multiword strings that are entirely on one line. (Default 
setting.) 

example 
In the following example, you search for Mark Twain with exactly one 
space between the words and entirely on one line: 

Command: SET FIND NOWHITESPACE 
Command: FIND Mark Twain 

SET FIND WHITESPACE 
format 

SET FIND WHITESPACE 

description 

Enables FIND and WILDCARD FIND commands to treat spaces, tabs, 
and up to one line break as "white space." This lets you search for a 
string of two or more words, regardless of how they are separated. The 
default setting is NOWHITESPACE-that is, EVE matches spaces and 
tabs in the search string exactly, and search strings do not span a line 
break. If you want white-space find for all or most editing sessions, put 
the SET FIND WHITESPACE command in your EVE initialization file. 
(See Section 6.5.9.) 

example 
In the following example, you search for Mark Twain whether there is one 
or more spaces or tabs between the words or if Mark is at the end of one 
line and Twain at the start of the next line: 

Command: SET FIND WHITESPACE 
Command: FIND Mark Twain 



SET GOLD KEY 
format 

EVE Commands 
SET GOLD KEV 

EVE-61 

SET GOLD KEY [key-name] 

description 

Defines a key as the GOLD key for use with other keys, and enables several 
GOLD key combinations. You can type the key name on the command line 
or let EVE prompt you to press the key you want to set as GOLD. The 
GOLD key increases the possible key bindings. For example, you can 
define F20 to execute one command and define the GOLD-F20 combination to 
execute another command. To execute one function, you press F20 alone; 
to execute the other function, you press GOLD and then press F20. You can 
also define combinations of GOLD and a typing key, such as GOLD-C. Setting 
the GOLD key-by itelf or by setting the EDT keypad or WPS keypad
automatically defines some GOLD combinations for the arrow keys and the 
mini keypad, unless you have defined the keys otherwise. Table EVE-1 
lists the default GOLD combinations. Note that some GOLD combinations 
require a VT300- or VT200-series terminal (for example, GOLD-HELP). 

Table EVE-1: EVE Default GOLD Key Combinations 

Key 

GOLD-F13 

GOLD-HELP 

GOLD-FIND 

GOLD-INSERT HERE 

GOLD-REMOVE 

GOLD-SELECT 

GOLD-PREV SCREEN 

GOLD-NEXT SCREEN 

GOLD-t 

GOLD-+-

GOLD-! 

GOLD--+ 

Definition 

RESTORE WORD or WPS Delete Beginning Sentence 

HELP KEYS (list) 

WILDCARD FIND 

RESTORE 

STORE TEXT 

RESET 

PREVIOUS WINDOW 

NEXT WINDOW 

TOP 

START OF LINE 

BOTTOM 

END OF LINE 

SET GOLD KEY overrides any current definition of the key you specify, 
whether the key is defined by EVE, the EDT keypad, the WPS keypad, 
or a definition of your own. You can have only one key set as GOLD at a 
time. Setting the EDT keypad or WPS keypad makes PF1 the GOLD key, 
overriding any current definition of PF1. However, if you set a different 
key as the GOLD key, then the EDT keypad and WPS keypaduse your GOLD 



EVE-62 EVE Commands 
SET GOLD KEY 

key. In such a case, using the SET NOGOLD KEY command cancels your 
GOLD key and restores PF1 as the GOLD key for the EDT keypad or WPS 
keypad. 

parameter 
key-name 
The key you want to set as GOLD. You cannot abbreviate the key name. 
For more information about EVE key names, see Section 6.4.3. If ymjl 
do not specify a key name, EVE prompts you to press the key you want 
to define. Pressing the RETURN key or CTRUM at the prompt cancels the 
operation, because those keys cannot be redefined. 

example 
The following commands set PF1 as the GOLD key, and then define the 
combination of GOLD and the letter C as the CENTER LINE command. 
Typing a C or c by itself still inserts that letter. In specifying a GOLD key 
combination, use a dash, slash, or underscore as a delimiter in the key 
name. 

Command: SET GOLD KEY pfl 
Command: DEFINE KEY= gold-c center line 

SET KEYPAD EDT 
format 

SET KEYPAD EDT 

description 
Enables the EDT-style keypad, defining the numeric keypad keys and 
other keys. To save the EDT keypad for future sessions, put the SET 
KEYPAD EDT command in your EVE initialization file, or use the SAVE 
EXTENDED EVE command to create a section file. 

Setting the EDT keypad does not completely emulate EDT. The following 
is a list of the important differences between the EDT keypad in EVE 
and real EDT. For information on converting from EDT to EVE, see 
Section 6.8. 

• The EDT keypad makes PF1 the GOLD key, overriding any current 
definition of PF1. However, if you set a different key as GOLD (with the 
SET GOLD KEY command), your GOLD key is used. You can have only 
one key set as the GOLD key at a time. 

• If you define keys that EDT ordinarily defines, such as KPS, GOLD-KPS, 
or CTRUU, your definitions override the EDT definitions. 



EVE Commands 
SET KEYPAD EDT 

EVE-63 

• In addition to EDT keys, setting the EDT keypad defines the same 
GOLD combinations as the SET GOLD KEY command. For example, 
GOLD-FIND is defined as WILDCARD FIND and GOLD-! is defined as 
BOTTOM. (See Table EVE-1.) 

• PF2 is defined as HELP KEYPAD, which draws a diagram of the 
current keypad, and GOLD-PF2 is defined as HELP KEYS, which lists 
all the current key definitions. 

• GOLD-KP7 is defined as DO, for typing EVE commands. EVE does not 
support EDT line-mode commands or nokeypad commands. 

• GOLD-KP8 is defined as FILL, to reformat a select range, found range, 
or the current paragraph. If you want the key to fill only a select 
range or found range, as in real EDT, redefine the key as FILL 
RANGE. 

• On VT300- and VT200-series terminals, NEXT SCREEN and PREV SCREEN 
on the mini keypad are defined slightly differently from EVE. In 
EVE, the keys scroll the length of the current window. With the EDT 
keypad, the keys scroll 7 5% of the window size. 

• CTRUH, CTRUJ, and CTRUU are defined to emulate EDT. Their standard 
EVE definitions are slightly different. Also, the EDT keypad defines 
CTRUK as LEARN. 

• CTRUZ is defined as EXIT, to end the editing session. In real EDT, 
CTRUZ exits to line mode. To emulate this in EVE, you can redefine 
CTRUZ as follows: 
Command: DEFINE KEY= CTRL/Z DO 

• Some other control keys are defined differently from real EDT: CTRUA 
is defined as CHANGE MODE (to switch between insert mode and 
overstrike). CTRUE is defined as END OF LINE (which is slightly 
different from the EDT keypad EOL key). CTRUR is defined as 
REMEMBER (to end a learn sequence). 

• CTRUC may cancel an operation, but its use is not recommended, 
because CTRUC is not recorded in the journal file, which may make it 
impossible to recover your work if your editing session is interrupted 
by a system failure. If you use CTRUC to cancel an operation, you 
should exit immediately, saving your edits, and then restart the 
editing session. 

• The EDT keypad defines ENTER as RETURN, to terminate a command 
or start a new line. You can redefine the ENTER key, but cannot 
redefine the RETURN key or CTRUM. 



EVE-64 EVE Commands 
SET KEYPAD EDT 

• Some EDT keypad definitions use the corresponding EVE commands, 
which may have slightly different names but are usually functionally 
similar to EDT. The KP1 key is defined as MOVE BY WORD, which 
uses slightly different word boundaries. In EVE, a word includes 
the trailing spaces or tabs until the next word separator (typically, a 
printing character). 

• EVE key names are usually the same as at the DCL level and 
therefore are different from EDT key names. For more information 
about EVE key names, see Section 6.4.3. For examples of equivalent 
EDT and EVE key names, see Section 6.8. 

• In EVE, using the SELECT command and then the REMOVE (or 
CUT) command-without moving the cursor-does not clear the paste 
buffer. Instead, it selects and removes the current character. 

• The following EDT keypad keys use either the Insert Here buffer in 
EVE or the DECwindows clipboard, depending on your setting: 

INSERT HERE or GOLD-KP6 
REMOVE (KP6) 
Append (KP9) 
EDT Replace ( GOLD-KP9) 
Subs (GOLD-ENTER) 

The default setting is NOCLIPBOARD, which uses the Insert Here 
buffer. See the description of the SET CLIPBOARD command. 

• By default EVE uses a free cursor, which you can move anywhere in 
the buffer regardless of whether text is already there. To enable an 
EDT-style bound cursor, use the SET CURSOR BOUND command. 
The type of cursor motion affects the following EDT keypad keys: 

EDT Next Screen (NEXT SCREEN) 
EDT Previous Screen (PREV SCREEN) 
Sect (KP8) 

The EDT Char key (KP3) uses bound cursor motion even if the cursor 
is set to free. 

• Some key functions are sensitive to the mode of the buffer (insert or 
overstrike): 

Del C (COMMA) 
Specins (GOLD-KP3) 

Also, remember that some EVE commands are mode sensitive, 
such as RESTORE CHARACTER, which the EDT keypad binds to 
GOLD-COMMA. 



EVE Commands 
SET KEYPAD EDT 

EVE-65 

• To set distances for scrolling to begin automatically, use the SET 
SCROLL MARGINS command, in place of the EDT command SET 
CURSOR. Note that in EVE, scroll margins are measured from the 
top and the bottom respectively. For example, with a 24-line terminal 
screen (21-line main window), the command SET SCROLL MARGINS 
5 6 is equivalent to the EDT command SET CURSOR 5:15. The 
default settings are 0 0 (scrolling begins when you move past the top 
or bottom of the window). 

• Searches follow EVE rules for case sensitivity and direction. Because 
EVE does not define the RETURN and ENTER keys differently, as EDT 
does, search strings cannot contain a carriage return. However, you 
can use the SET FIND WHITESPACE command to enable searching 
across line breaks or use the WILDCARD FIND command to search 
for text at the start or end of a line. 

• Exiting from EVE creates a new file only if you have made changes to 
the buffer (and not yet written it out). Quitting discards your edits, 
but if you have made changes to the buffer, EVE asks you to confirm 
that you want to quit. Also, if the buffer or buffers have not been 
modified (or already written out and not modified since then), EXIT 
and QUIT are the same-no new file is produced. 

• The EVE commands SHIFT LEFT and SHIFT RIGHT moves the 
horizontal position of the window relative to the buffer; whereas the 
EDT nokeypad commands SHL and SHR move the buffer relative 
to the window. Thus, in EVE, the command SHIFT RIGHT 8 is 
equivalent to SHL in EDT-column 9 of your text appears in the 
leftmost column of the screen. 

• EDT features not implemented in EVE: 

GOLD key equivalents for control keys. For example, GOLD-U and 
GOLD-Z are not defined, although CTRUU and CTRUZ are defined. 

Keys for tab adjustments. To change tab stops, use the SET TABS 
AT or SET TABS EVERY command. You can also define a key for 
the WPS keypad Ruler key (WPS GOLD-A) and use the ruler to add or 
delete tab stops. 

For information about customizing EVE to emulate EDT more closely, see 
Section 6.8. 



EVE-66 EVE Commands 
SET KEYPAD NOEDT 

SET KEYPAD NOEDT 
format 

SET KEYPAD NOEDT 

description 
Disables (undefines) the EDT keypad, restoring the default keypad for the 
type of terminal you are using: 

• On a VT300- or VT200-series terminal, the effect is the same as using 
the SET KEYPAD NUMERIC command. 

• On a VTlOO-series terminal, it is the same as the SET KEYPAD 
VTlOO command. 

Keys defined with DEFINE KEY, LEARN, or SET GOLD KEY commands 
remain defined. However, remember that any learn sequences that use 
EDT keypad keys will not work properly, because the keys are now 
undefined or defined differently. SET KEYPAD NOEDT cancels the 
current GOLD key if it was set by enabling the EDT keypad, but does not 
cancel the GOLD key if you set it with the SET GOLD KEY command. 

SET KEYPAD NOWPS 
format 

SET KEYPAD NOWPS 

description 
Disables (undefines) the WPS keypad, restoring the default keypad for the 
type of terminal you are using: 

• On a VT300- or VT200-series terminal, the effect is the same as using 
the SET KEYPAD NUMERIC command. 

• On a VTlOO-series terminal, it is the same as the SET KEYPAD 
VTlOO command. 

Keys defined with DEFINE KEY, LEARN, or SET GOLD KEY commands 
remain defined. However, remember that any learn sequences that use 
WPS keypad keys will not work properly, because the keys are now 
undefined or defined differently. SET KEYPAD NOWPS cancels the 
current GOLD key if it was set by enabling the WPS keypad, but does not 
cancel the GOLD key if you set it with the SET GOLD KEY command. 

Disabling the WPS keypad does not restore free cursor motion. To restore 
free cursor motion, use the SET CURSOR FREE command. 



I 

' 

SET KEYPAD NUMERIC 
format 

SET KEYPAD NUMERIC 

description 

EVE Commands EVE-67 
SET KEYPAD NUMERIC 

Sets the numeric keypad to the default state, canceling the current 
keypad setting (EDT, VTlOO, or WPS). 

This is the default setting except on VTlOO-series terminals. The 
command is not valid on VTlOO-series terminals. 

Keys defined with DEFINE KEY, LEARN, or SET GOLD KEY commands 
remain defined. However, remember that any learn sequences that use 
EDT keypad or WPS keypad keys will not work properly, because the 
keys are now undefined or defined differently. SET KEYPAD NUMERIC 
cancels the current GOLD key if it was set by the EDT keypad or WPS 
keypad, but does not cancel the GOLD key if you set it with the SET GOLD 
KEY command. Figure EVE-1 shows the EVE default keypad for VT300-
and VT200-series terminals. 

SET KEYPAD VT100 
format 

SET KEYPAD VT100 

description 

Enables the VTlOO-style keypad, canceling the current keypad setting 
(EDT, NUMERIC, or WPS). 

This is the default setting if you are using a VTlOO-series terminal. 

Keys defined with DEFINE KEY, LEARN, or SET GOLD KEY commands 
remain defined. However, remember that any learn sequences that use 
WPS keypad keys will not work properly, because the keys are now 
undefined or defined differently. SET KEYPAD VTlOO cancels the current 
GOLD key if it was set by the EDT keypad or WPS keypad, but does not 
cancel the GOLD key if you set it with the SET GOLD KEY command. 
Figure EVE-2 shows the EVE default keys for VTlOO-series terminals. 



Result of SET KEYPAD NOEDT or SET KEYPAD NOWPS Commands lB Exit Change Move By Erase 
Direction Line Word 

l :11:111:1:1:1111111:1li!li 
F9 F10 F11 F12 F13 

~DELETE 
Tab TAB 
Return RETURN 
Enter RETURN 
PF4 DO 

CTRL/A CHANGE MODE 
B RECALL 
E ENDOFLINE 
H STARTOFLINE 
I TAB 
J ERASEWORD 
L INSERT PAGE BREAK 
M RETURN 
R REMEMBER 
U ERASE START OF LINE 
V QUOTE 
W REFRESH 
Z EXIT 

Change 
Mode 

F14 

Help 

Keypad 

Find 
Insert 
Here 

Prev 
Screen 

Do 

Remove 

lllll1llllil!lllll' ................ _. 

l 

GOLD key functions are shown inr.HJl:n!l'§. 

Sample Function or Keypad Key 

Key label 

Default Function 

GOLD Function 

ZK-1055A-GE 

.,, m 
c5" < c ! ; 
m Q) 

< 
'l1 en m ..... 

~< 
m " m < mO 
m -< 0 
c ~3 
! c3 
c < Sl> = .... ::J ..... a. 
~ 

0 CJ) 
0 

'< tn -0 ... 
~ 
0 
0 
I 

D> 
:J 
Q,, 

~ 
0 
0 

I en 
CD ... a;· 
tn 

~ ... 
3 :;· 
D> 
ii 



. 

EVE Commands 
SET KEYPAD VT100 

EVE-69 

Figure EVE-2: EVE Default Keys for VT100-Series Terminals 

Default on VT100 Terminal 
Available on VT200 Terminal With SET KEYPAD VT100 Command 

Delete DELETE 
Tab TAB 
Return RETURN 
Backspace START of LINE 
Linefeed ERASE WORD 

CTRLJA CHANGE MODE 
B RECALL 
E ENDofLINE 
H STARTofLINE 
I TAB 
J ERASEWORD 
L INSERT PAGE BREAK 
M RETURN 
R REMEMBER 
U ERASE START OF LINE 
V QUOTE 
W REFRESH 
Z EXIT 

SET KEYPAD WPS 
format 

SET KEYPAD WPS 

description 

Find 
Help Change Do Keypad Direction 

Insert 
Move 

Select Remove Here 
By 
Line 

l Erase 
Word 

.___ l _. 

Change 
Mode 

Next Prev 
Screen Screen 

GOLD key functions are shown in~. 

ZK-6301-GE 

Enables the WPS-style keypad, defining the numeric keypad and other 
keys, and setting the cursor to bound. To save the WPS keypad for future 
sessions, put the SET KEYPAD WPS command in your EVE initialization 
file, or use the SAVE EXTENDED EVE command to create a section file. 

SET KEYPAD WPS provides most WPS keypad keys for "GOLD-key 
editing." It does not fully implement or emulate WPS. The following is a 
list of differences between the WPS keypad in EVE and real WPS: 

• The WPS keypad makes PF1 the GOLD key, overriding any current 
definition of PF1. However, if you set a different key as GOLD (with the 
SET GOLD KEY command), your GOLD key is used. You can have only 
one key set as the GOLD key at a time. 



EVE-70 EVE Commands 
SET KEYPAD WPS 

• In addition to WPS keys, setting the WPS keypad defines the same 
GOLD combinations as the SET GOLD KEY command-except that 
GOLD-F13 is defined as Delete Beginning Sentence. (See Table EVE-1.) 

• You can use GOLD-number combinations for repeat counts. For 
example, to repeat the next keystroke or command five times, you 
can press GOLD-5. However, you cannot repeat the WPS Paste key 
this way, because WPS Paste interprets GOLD-1 through GOLD-9 as 
specifying WPS-style alternate paste buffers. 

• If you define keys that WPS ordinarily defines, such as KPS or GOLD-R, 
your definitions override the WPS definitions. 

• GOLD-[ is defined as DO for typing EVE commands, and defines both 
GOLD-> and CTRL/K as LEARN. To end a learn sequence, press a key 
defined as REMEMBER (CTRL/R), or press the WPS Halt key (GOLD-'). 

• CTRL/J and F13 are both defined as Delete Previous Word. GOLD-F13 and 
GOLD-CTRL/J are both defined as Delete Beginning Sentence. 

• Both GOLD-PF3 and GOLD-PF4 are defined as RESTORE, which reinserts 
what you last erased with the WPS Delete Word key (PF3), WPS 
Delete Beginning Sentence key, ERASE LINE command, and so on, 
but does not put back the last character erased or deleted. Therefore, 
you may want to define GOLD-PF3 as RESTORE WORD, and define 
GOLD-PF4 as RESTORE CHARACTER. 

• The RESTORE SENTENCE command reinserts what you last erased 
with the Delete Beginning Sentence key ( GOLD-F13 or GOLD-CTRL/J). 
Setting the WPS keypad does not define a key for RESTORE 
SENTENCE. Therefore, you may want to define a key for RESTORE 
SENTENCE. 

• With the WPS keypad, pressing either SELECT on the mini keypad or 
PERIOD on the keypad also sets the direction of the buffer to forward. 
However, typing the SELECT command or using the mouse to select 
text does not change the direction. 

• When you are in the Buffer List buffer, you can press the WPS Cut 
key (MINUS or REMOVE) to delete the buffer whose name the cursor is 
on (same as REMOVE). For more information, see the description of 
the SHOW BUFFERS command. 

• WPS keypad keys do not use the DECwindows clipboard. For 
example, the WPS Copy, Cut, and Paste keys use EVE's Insert Here 
buffer or a WPS-style, alternate paste buffer which you specify by 
number (GOLD-1 through GOLD-9). EVE commands and EDT keypad 
keys use either the Insert Here buffer or the clipboard, depending on 
your setting. (See the description of the SET CLIPBOARD command.) 



EVE Commands 
SET KEYPAD WPS 

EVE-71 

• When you use the WPS Ruler key ( GOLD-R), only one ruler can 
be active at a time. Rulers cannot be embedded in a document. 
Setting margins or paragraph indent does not automatically rewrap or 
reformat text. To reformat text, use FILL commands. 

• Scrolling with WPS keypad keys is halted when you press any key
not just the WPS Halt key (GOLD-·). Pressing a key to stop scrolling 
executes whatever function is assigned to that key. 

• Setting the WPS keypad automatically sets the cursor to bound, which 
does not move into the unused portion of the buffer. To enable a free 
cursor, use the SET CURSOR FREE command, which is otherwise the 
EVE default setting. The type of cursor motion affects the following 
WPS keypad keys: 

Advance (KPO) 
Backup (KP1) 
Scroll Advance ( GOLD-KPO) 
Scroll Backup ( GOLD-KP1) 

• The WPS keypad defines the following keys for pagination: 

Key 

PF2 

GOLD-PF2 

GOLD-N 

GOLD-P 

Definition 

MOVE BY PAGE. Puts the cursor on the next or previous page break, 
depending on the direction of the buffer. 

PAGINATE. Inserts a "soft" break for a 54-line page-a form feed and a 
null character, appearing as a small EE-~. 

INSERT PAGE BREAK. Inserts a "hard" page break-a form feed 
appearing as a small EE- . Same as CTRUL. 

WPS Page Marker. Inserts a "soft" page break. 

• Searches follow EVE rules for case sensitivity and direction. For more 
information, see the description of the FIND command. 

• In EVE, paragraphs are bounded by a blank line, the top or bottom 
of the buffer, a page break, or a DIGITAL Standard Runoff command 
(such as .BLANK). Sentences are bounded by a period, question mark, 
or exclamation point. Periods in Runoff commands or in decimal 
numbers are treated as sentence boundaries. 

• Paragraph indent done with the SET PARAGRAPH INDENT 
command is relative to the left margin of the buffer; done with the 
WPS Ruler key (GOLD-R), it is independent of the margin. 

• GOLD-C is defined as CENTER LINE, which uses spaces to center the 
current line between the left and right margins. It does not leave a 
centering mark. 



EVE-72 EVE Commands 
SET KEYPAD WPS 

• Exiting does not delete the old version of the input file. Also, if the 
buffer or buffers have not been modified (or already written out and 
not modified since then), EXIT and QUIT are the same-no new file is 
produced. EVE defines both F1 o and CTRL/Z as EXIT. The WPS keypad 
defines GOLD-F as EXIT, and defines GOLD-K as QUIT. 

• WPS features not implemented in EVE: 

Abbreviation or library documents 
Control commands for printing 
Editor math 
Footnotes, paragraph numbering, or table of contents 
Hyphenation and nonbreaking spaces 
Output files other than ASCII 
Superscripts, subscripts, or composite characters 
VIEW mode 
TDE (two-dimension editor) 
UDP (user-defined WPS procedures) 
Word-wrap returns (In EVE, all lines end in a ''hard" return.) 

SET LEFT MARGIN 
format 

SET LEFT MARGIN integer 

description 
Sets the left margin of the current buffer to the column you specify. 
This does not change existing text, but only affects new text or text 
you reformat with CENTER LINE or FILL commands. When you press 
RETURN or use FILL commands, or when EVE wraps text automatically, 
lines start at the left margin. The left margin is a buffer-specific setting; 
you can have a different left margin for each buffer. To find out the 
current margins of the buffer, use the SHOW command. If you want a 
particular left margin for all or most editing sessions, put the SET LEFT 
MARGIN command in your initialization file. When you invoke EVE 
using that initialization :file, the setting then applies to the main (or :first) 
buffer and to an EVE system buffer named $DEFAULTS$, so that each 
buffer you create has the same left margin. (See Section 6.5.9.) 

parameter 
integer 
The column at which you want the left margin. Must be less than the 
right margin. If you do not specify a number, EVE prompts you for one. 
Pressing RETURN or DO at the prompt without typing anything cancels the 
operation. The default left margin is 1 (leftmost column). 



EVE Commands EVE-73 
SET LEFT MARGIN 

example 
The following command sets the left margin to 5. To reformat existing 
text according to the new margin, use FILL commands. 

Command: SET LEFT MARGIN 5 

SET NOCLIPBOARD 
format 

SET NOCLIPBOARD 

description 
Disables the DECwindows clipboard for copying, cutting, and pasting text, 
and enables the Insert Here buffer in EVE. (Default setting.) 

SET NOGOLD KEY 
format 

SET NOGOLD KEY 

description 
Cancels (unde:fi.nes) the current GOLD key, so you can define that key by 
itself. (Default setting.) You can have only one key set as GOLD at a time. 
If you set the GOLD key other than PF1 and set the EDT keypad or WPS 
keypad, your GOLD key is used. You can then define PF1 like any other 
key, or use SET NOGOLD KEY to restore PF1 as the GOLD key for the 
EDT keypad or WPS keypad, canceling your GOLD key. SET NOGOLD 
KEY does not cancel or undefine GOLD key combinations, but they cannot 
be executed unless another key is set as GOLD, either by using the SET 
GOLD KEY command or by setting the EDT keypad or WPS keypad. 

example 
In the following example, you set F20 as the GOLD key, and then enable 
the EDT keypad, which ordinarily uses PF1 as the GOLD key. The SET 
NOGOLD KEY command then cancels F20, making PF1 the GOLD key: 

Command: SET GOLD KEY F20 
Command: SET KEYPAD EDT 
Command: SET NOGOLD KEY 
GOLD key restored to PFl in the EDT keypad. 



EVE-74 EVE Commands 
SET NOPENDING DELETE 

SET NOPENDING DELETE 
format 

SET NOPENDING DELETE 

description 
Disables the deletion of selected text when you use DELETE or type new 
text. (Default setting.) If you select text in the buffer, typing new text 
adds characters to the select range, and using DELETE erases only the 
character left of the cursor. In other words, if pending delete is disabled, 
DELETE works the same whether there is a select range or not. 

SETNOWRAP 
format 

SETNOWRAP 

description 
Disables automatic wrapping in the current buffer, so that as you type at 
the end of a line, your text may go past the right margin. This is useful 
for editing very long lines, such as wide multicolumn tables or lengthy 
program statements that are progressively indented. Depending on the 
width of the EVE window, your text may go out of view. 

SET PARAGRAPH INDENT 
format 

SET PARAGRAPH INDENT [{+/-}]integer 

description 
Sets the number of spaces to be added or subtracted at the start of 
paragraphs in the current buffer-relative to the left margin. This 
does not change existing text, but only affects paragraphs you create 
or reformat with FILL commands. In EVE, a paragraph is. bounded by 
any of the following: 

• Blank line 

• Top or bottom of the buffer 

• Page break (form-feed character) 

• DIGITAL Standard Runoff command (such as .BLANK) 



EVE Commands 
SET PARAGRAPH INDENT 

EVE-75 

Paragraph indent is a buffer-specific setting; you can have a different 
setting for each buffer. If you want a particular paragraph indent for all 
or most editing sessions, put the SET PARAGRAPH INDENT command 
in your initialization file. When you invoke EVE using that initialization 
file, the setting then applies to the main (or first) buffer and to an EVE 
system buffer named $DEFAULTS$, so that each buffer you create has 
the same paragraph indent. (See Section 6.5.9.) 

If the paragraph indent is other than 0 (the default setting), you cannot 
use FILL or FILL RANGE commands to reformat a range that does not 
begin at the beginning of a paragraph. 

parameter 

integer 
The number of spaces to be added or subtracted to the start of 
paragraphs, relative to the· left margin of the buffer. If the value 
is positive (or unsigned), the sum of the left margin and paragraph 
indent must be less than the right margin. A negative value produces 
a "hanging" paragraph-its first line starts left of the left margin. The 
algebraic sum of a negative indent and the left margin must be at least 
1. If you do not specify a paragraph indent, EVE prompts you for one. 
Pressing RETURN or DO at the prompt without typing anything cancels the 
operation. The default setting is 0 (no indent). 

example 
The following examples show how to set paragraph indent, including a 
negative indent for a ''hanging" paragraph: 

Command: SET PARAGRAPH INDENT 4 

Sets the paragraph indent at 4 columns from the left margin. Thus, if 
your left margin is 5, the first line of a new paragraph starts at 
column 9 and the remaining lines in column 5. To reformat existing text 
use the FILL or FILL PARAGRAPH command. 

Command: SET LEFT MARGIN 4 
Command: SET PARAGRAPH INDENT -3 

Command: SET PARAGRAPH INDENT 0 
Command: SET LEFT MARGIN 1 

Sets the left margin at column 4 and the paragraph indent at three 
columns to the left of the left margin. Thus, the first line of a new 
paragraph starts in column 1, and the rest of the lines in column 4 (called 
a ''hanging" paragraph). This is useful to format lists, for example, to 
have a bullet or counter three spaces left of the left margin. In restoring 
your previous settings, note the order of the commands (paragraph indent 
0, left margin 1). 



EVE-76 EVE Commands 
SET PENDING DELETE 

SET PENDING DELETE 
format 

SET PENDING DELETE 

description 

Enables deletion of a select range when you use DELETE or type new 
text. This is useful for quickly erasing or replacing a block of text. 

Steps: 

1. Use the SET PENDING DELETE command. 

2. Select text you want to erase. (See the description of the SELECT 
command.) 

3. Use the DELETE command or type new text. The selected text is 
erased, or it is replaced by the new text. 

To reinsert what you erased, use the RESTORE SELECTION command. 
If you want pending delete enabled for all or most editing sessions, put 
the SET PENDING DELETE command in your EVE initialization file. 
(See Section 6.5.9.) The default setting is NOPENDING DELETE. If you 
have selected text, using DELETE erases the character left of the cursor 
and typing new text inserts the new characters. 

If you select the entire buffer (with the SELECT ALL command or 
by clicking MBl five times), pending delete is disabled, to prevent 
accidentally erasing all of the buffer. 

SET RIGHT MARGIN 
format 

SET RIGHT MARGIN integer 

description 

Sets the right margin of the current buffer to the column you specify. 
This does not change existing text, but only affects new text or text you 
reformat with CENTER LINE or FILL commands. When EVE wraps text 
automatically, or when you. use FILL commands, no characters will go 
beyond the right margin. The right margin is a buffer-specific setting; 
you can have a different right margin for each buffer. To find out the 
current margins of the buffer, use the SHOW command. If you want 
a particular right margin for all or most editing sessions, put the SET 
RIGHT MARGIN command in your initialization file. When you invoke 



EVE Commands EVE-77 
SET RIGHT MARGIN 

EVE using that initialization file, the setting then applies to the main (or 
first) buffer and to an EVE system buffer named $DEFAULTS$, so that 
each buffer you create has the same right margin. (See Section 6.5.9.) 

parameters 
integer 
The column at which you want the right margin. Must be greater than 
the left margin (or greater than the sum of the left margin and the 
paragraph indent). If you do not specify a number, EVE prompts you 
for one. Pressing RETURN or.DO at the prompt without typing anything 
cancels the operation. The default right margin is one column less than 
the screen width. Typically, the width is 80 columns; the default right 
margin is then 79. 

example 
The following command sets the right margin to 65. To reformat existing 
text according to the new margin, use FILL commands. 

Command: SET RIGHT MARGIN 65 

SET SCROLL MARGINS 
format 

SET SCROLL MARGINS integer1 [%] integer2{%] 

description 
Sets the top and bottom distances at which scrolling begins automatically 
as you move the cursor up and down. You specify these distances as 
numbers of lines or as percentages of the window size. Scroll margins 
apply to all windows in EVE. Also, EVE converts numbers of lines into 
percentages, and uses the percentages when you split the main window 
into two or more windows. If you want particular scroll margins for all or 
most editing sessions, put the SET SCROLL MARGINS command in your 
EVE initialization file. (See Section 6.5.9.) 

parameters 
lnteger1 
The number of lines down from the top of a window at which you want 
scrolling to begin. Cannot overlap the bottom scroll margin (integer2). 
The default setting is 0-that is, scrolling starts when you move past the 
top of the window. If you do not specify a value, EVE prompts you for one. 
Pressing RETURN or DO at the prompt without typing anything keeps the 
current value. 



EVE-78 EVE Commands 
SET SCROLL MARGINS 

integer2 
The number of lines up from the bottom of a window at which you want 
scrolling to begin. Cannot overlap the top scroll margin (integer 1 ). The 
default setting is 0-that is, scrolling starts when you move past the 
bottom of the window. If you do not specify a value, EVE prompts you for 
one. Pressing RETURN or DO at the prompt without typing anything keeps 
the current value. 

% 
Percent sign, specifying that scroll margins are percentages of the window 
height, rounded to the nearest line. This is useful if you frequently split 
the EVE main window into two or more windows. 

example 
The following command sets the scroll margins at two lines from the top 
and three lines from the bottom of the window: 

Command: SET SCROLL MARGINS 2 3 

SET TABS 
format 

SET TABS 

description 

AT integer1 [integer2 ... ] 
EVERY integer 
INSERT 
INVISIBLE 
MOVEMENT 
SPACES 
VISIBLE 

Sets tab stops for the buffer (AT or EVERY), tab modes (INSERT, 
MOVEMENT, or SPACES), or the appearence of tab characters during 
editing (INVISIBLE or VISIBLE). Tab stops are buffer-specific settings; 
you can have different tab stops for each buffer. Changing the tab stops 
affects any tab characters already in the buffer. To find out the current 
tab stops of the buffer, use the SHOW command. If you want particular 
tab stops for all or most editing sessions, put the SET TABS AT or SET 
TABS EVERY command in your initialization file. When you invoke EVE 
using that initialization file, the setting then applies to the main (or first) 
buffer and to an EVE system buffer named $DEFAULTS$, so that each 
buffer you create has the same tab stops. (See Section 6.5.9.) 



parameters 

AT integer1 [integer2 .•. ] 

EVE Commands 
SET TABS 

EVE-79 

The column or columns at which you want a tab stop in the current buffer. 
The new tab stops are applied to any tab characters already in the buffer. 
Enter the numbers in ascending order, separated by spaces. If you do not 
specify a number, EVE prompts you for one. Pressing RETURN or DO at the 
prompt without typing anything cancels the operation. 

EVERY integer 
An equal interval for all tab stops in the current buffer. The new tab 
stops are applied to any tab characters already in the buffer. If you do 
not specify a number, EVE prompts you for one. Pressing RETURN or DO 
at the prompt without typing anything cancels the operation. The default 
setting is EVERY 8 (that is, tab stops are set at columns 9, 17, 25, 33, 
and so on.) 

INSERT 
Default setting. Makes TAB insert a tab character, pushing the cursor 
and any existing text on the line to the next tab stop. The setting applies 
to all buffers. 

MOVEMENT 
Makes TAB move the cursor to the next tab stop, without inserting 
anything. The cursor stays on the current line and can move into the 
unused portion of the buffer, even if the cursor is set to bound. The setting 
applies to all buffers. This is useful for moving through tab-aligned ten, 
such as tables and multicolumn lists. 

SPACES 
Makes TAB insert the appropriate number of spaces, instead of a tab 
character, pushing the cursor and any existing text on the line to the next 
tab stop. The setting applies in all buffers, but does not affect existing 
tabs-for example, does not convert tab characters to spaces. This is 
useful for editing text to be printed or displayed on different devices, 
because the spacing will be the same regardless of the tab stops set for 
the printer or display device. 

VISIBLE 
Makes tab characters visible-appearing as a small Jt (horizontal tab). 
The setting applies to all buffers. Visible tabs are an editing convenience 
only; the setting does not affect how tab characters appear when the text 
is printed. 

INVISIBLE 
Default setting. Makes tab characters invisible-appearing as white 
space. The setting applies to all buffers. 



EVE-80 

example 

EVE Commands 
SET TABS 

The following example sets tab stops every 10 columns in the current 
buffer (11, 21, 31, and so on), changing any tab characters already in 
the buffer, and sets the tab mode to move the cursor to the next tab stop 
without inserting anything. Thus, pressing TAB moves the cursor 
10 columns or less, to the next tab stop. 

Command: SET TABS EVERY 10 
Command: SET TABS MOVEMENT 

SET WIDTH 
format 

SET WIDTH integer 

description 
Sets the width of the EVE screen layout to the number of columns you 
specify. This does not affect how many characters you can put on a line 
(which is determined by the right margin), but only how many characters 
are visible. The setting applies to all windows in EVE. When you end the 
editing session, your terminal setting is restored. If you want a particular 
width for all or most editing sessions, put the SET WIDTH command 
in your EVE initialization file. The width determines the default right 
margin, unless you specify otherwise by using the SET RIGHT MARGIN 
command. Thus, if you use a width of 120 columns, the default right 
margin is 119. To find out the current width, use the SHOW command. 
Also, the horizontal length of the status line indicates the width of the 
window. 

SET WIDTH makes the right margin of the $DEFAULTS$ buffer one 
column le!3S than the width. Buffers you create thereafter will have the 
same right margin as $DEFAULTS$. For example, the command SET 
WIDTH 132 makes the default right margin 131; the command SET 
WIDTH 80 makes the default right margin 79. This does not affect the 
right margin of other, existing buffers, but only buffers you create after a 
SET WIDTH command. 

parameter 
integer 
The number of columns you want for the width of the display. If you 
specify a value greater than 80, EVE sets the terminal to 
132-character mode, which uses a smaller video font. If you do not specify 
a number, EVE prompts you for one. Pressing RETURN or DO at the prompt 
without typing anything cancels the operation. The default width is 



EVE Commands EVE-81 
SET WIDTH 

the same as your terminal setting (according to the DCL command SET 
TERMINAL)-typically, 80 columns. 

Do not use a width greater than 80 on VTlOO-series terminals without 
the advanced video option (AVO). 

example 
The following commands set the width of the display to 132 columns and 
later restore it to 80 columns (which is typically the default setting): 

Command: SET WIDTH 132 

Command: SET WIDTH 80 

SET WILDCARD ULTRIX 
format 

SET WILDCARD ULTRIX 

description 
Enables ULTRIX-style wildcards for the WILDCARD FIND command. 
ULTRIX-style wildcards (sometimes called regular expressions or meta
characters) include the period ( . ) to match any single character on a line, 
the dollar sign ( $ ) to match end-of-line, and the circumflex ( A ) to match 
beginning-of-line. For a list of the available wildcards, use the SHOW 
WILDCARDS command. If you want ULTRIX-style wildcards for all or 
most editing sessions, put the· SET WILDCARD ULTRIX command in 
your EVE initialization file. (See Section 6.5.9.) The default setting is 
VMS. 

SET WILDCARD VMS 
format 

SET WILDCARD VMS 

description 
Enables VMS-style wildcards for the WILDCARD FIND command. 
(Default setting.) VMS-style wildcards (sometimes called meta-characters) 
include the percent sign ( % ) to match any single character on a line, the 
asterisk ( * ) to match any amount of text on a line, and the backslash and 
right angle bracket (\ >) to match end-of-line. For a list of the available 
wildcards, use the SHOW WILDCARDS command. 



EVE-82 EVE Commands 
SET WRAP 

SET WRAP 
format 

SET WRAP 

description 
Enables automatic wrapping in the current buffer, so that as you type 
at the end of a line, EVE starts a new line when your cursor goes past 
the right margin, without your having to press RETURN or use FILL 
commands. (Default setting.) The SET WRAP command does not by itself 
rewrap or reformat existing text. To reformat text, use FILL commands. 
To disable wrapping, use the SET NOWRAP command, so that lines 
can go past the right margin. This is useful for editing very long lines, 
such as multicolumn tables or program statements that are progressively 
indented. Note that wrapping is a buffer-specific setting; you can disable 
and enable wrapping for the current buffer, without affecting other 
buffers. 

SHIFT LEFT 
format 

SHIFT LEFT integer 

description 
Shifts the current EVE window to the left by the number of columns 
you specify. You can use SHIFT LEFT commands only if you have used 
SHIFT RIGHT. Using SHIFT LEFT and SHIFT RIGHT commands lets 
you view the undisplayed portion of very wide text, such as lines 100 
characters long, without having to change the width of the window or use 
132-column mode. This does not shift text within the buffer, but shifts 
the window's horizontal position relative to the buffer. SHIFT LEFT and 
SHIFT RIGHT commands affect only the current window, if you are using 
two or more windows in EVE. To find out the current width and any shift, 
use the SHOW command. 

parameter 
integer 
The number of columns you want to shift the window to the left. You 
cannot shift the window left past column 1. If you do not specify a 
number, EVE prompts you for one. Pressing RETURN or DO at the prompt 
without typing anything cancels the operation. 



I 

""I 
I 

I 

I 

example 

EVE Commands 
SHIFT LEFT 

EVE-83 

In the following example, you shift the current window five columns to 
the right, and then another five columns to the right. (Thus, column 11 of 
the buffer appears in the leftmost column of the screen.) You then shift 
the window back 10 columns to the left (so that column 1 of the buffer is 
in the leftmost column of the screen). Note that for each shift right, EVE 
tells you the cumulative shift. 

Command: SHIFT RIGHT 5 
Window now shifted right 5 columns. 
Command: SHIFT RIGHT 5 
Window now shifted right 10 columns. 

Command: SHIFT LEFT 10 
Window now shifted right 0 columns. 

SHIFT RIGHT 
format 

SHIFT RIGHT integer 

description 
Shifts the current EVE window to the right by the number of columns 
you specify. Using SHIFT RIGHT and SHIFT LEFT commands lets 
you view the undisplayed portion of very wide text, such as lines 100 
characters long, without having to change the width of the window or use 
132-column mode. This does not shift text within the buffer, but shifts 
the window's horizontal position relative to the buffer. SHIFT RIGHT and 
SHIFT LEFT commands affect only the current window, if you are using 
two or more windows in EVE. To find out the current width and any shift, 
use the SHOW command. 

parameter 
Integer 
The number of columns you want to shift the window to the right. If you 
do not specify a number, EVE prompts you for one. Pressing RETURN or DO 
at the prompt without typing anything cancels the operation. 



EVE-84 

example 

EVE Commands 
SHIFT RIGHT 

In the following example, you shift the current window five columns to 
the right, and then another five columns to the right. (Thus, column 11 of 
the buffer appears in the leftmost column of the screen.) You then shift 
the window back 10 columns to the left (so that column 1 of the buffer is 
in the leftmost column of the screen). Note that for each shift right, EVE 
tells you the cumulative shift. 

Corrunand: SHIFT RIGHT 5 
Window now shifted right 5 columns. 
Corrunand: SHIFT RIGHT 5 
Window now shifted right 10 columns. 

Corrunand: SHIFT LEFT 10 
Window now shifted right 0 columns. 

SHOW 
format 

SHOW 

description 
Shows the following information about the current buffer: 

• Name of the buffer 

• Input file for the buffer, if any 

• Output file for the buffer, if any (typically the same as the input file) 

• Whether the buffer has been modified 

• Total number of lines in the buffer 

• Margins, tab stops, and other buffer settings 

• Window width and any shift 

• Nam es of markers in the buffer, if any 

• List of nondefault keymaps for the buffer, if any 



EVE Commands EVE-85 
SHOW 

Steps: 

1. Use the SHOW command. The output appears in an EVE system 
buffer named Show in the current window. 

2. If you created other buffers, EVE first shows information about the 
current buffer. To show information about your other buffers, if any, 
press DO. To return to the buffer you were editing, press any other 
key. 

If you created only one buffer, press any key to return to that buffer. 

SHOW BUFFERS 
format 

SHOW BUFFERS 

description 

Lists the buffers you have created and puts the cursor in the list so you 
can view or delete a buffer without having to type the buffer name. The 
list also tells you the total number of lines in each buffer, whether the 
buffer has been modified, and other information. 

Steps: 

1. Use the SHOW BUFFERS command. The output (the list of buffers 
you have created) appears in an EVE system buffer named Buffer List 
in the current window. 

2. Put the cursor on the name of a buffer in the list. (To scroll through 
the list, you can press the up and down arrow keys or other cursor
movement keys.) 

3. To view that buffer, use SELECT. (On DECwindows, you can click 
MBl twice.) EVE then puts that buffer into the current window. 

To delete that buffer, use REMOVE or CUT. 

This is effectively the same as using the BUFFER or DELETE BUFFER 
commands respectively, without having to type the buffer name. For more 
information about deleting buffers, see the description of the DELETE 
BUFFER command. 



EVE-86 EVE Commands 
SHOW DEFAULTS BUFFER 

SHOW DEFAULTS BUFFER 
format 

SHOW DEFAULTS BUFFER 

description 

Shows information about the $DEFAULTS$ buffer-margins, tab stops, 
direction, mode, maximum lines, and so on. The $DEFAULTS$ buffer 
is an EVE system buffer whose settings are used when you create new 
buffers. If you use an initialization file when you invoke EVE, commands 
in the initialization file for buffer settings apply to the $DEFAULTS$ 
buffer as well as to the main (or first) buffer, so that each buffer you 
create has the same setting (effectively, setting your own, private 
defaults). If your initialization file does not have commands for buffer 
settings, the EVE default settings are used. For more information about 
EVE default settings, see Section 6.5.9. 

SHOW KEY 
format 

SHOW KEY [key-name] 

description 

Shows the definition of a key, telling you the command or keypad function 
bound to the key, if any. You can type the name of the key on the 
command line or let EVE prompt you to press the key. 

parameter 

key-name 
The key you want to know about. You cannot abbreviate the key name. 
For more information about EVE key names, see Section 6.4.3. If you do 
not specify a key name, EVE prompts you to press the key you want to 
know about. 

example 
The following command shows the definition of GOLD-KP8 when you set the 
EDT keypad. In specifying control keys or GOLD key combinations, use a 
slash, dash, or underscore as a delimiter in the key name. 

Command: SHOW KEY gold-kp8 
GOLD/KP8 is defined as 'fill' in the EDT keypad. 



SHOW SUMMARY 
format 

SHOW SUMMARY 

description 

EVE Commands EVE-87 
SHOW SUMMARY 

Shows statistics and other information about EVE, such as the following: 

• Version number of the software 

• Current journal file specification, if any 

• Current section file specification 

• Total number of buffers (system- and user-created) 

• Modules used in the current section file 

• Other information about the EVE configuration 

This information is useful for VAXTPU programming or in case you have 
to submit a software performance report (SPR). 

SHOW SYSTEM BUFFERS 
format 

SHOW SYSTEM BUFFERS 

description 
Lists the buffers created by EVE and puts the cursor in the list so you 
can view a buffer without having to type its name. This makes it easy to 
view the Messages buffer (for example, to check compiler messages), the 
Insert Here buffer (to check what text you have removed or copied), or the 
$RESTORE$ buffer (to check what you last erased). 

Steps: 

1. Use the SHOW SYSTEM BUFFERS command. The output (the list of 
buffers EVE creates) appears in an EVE system buffer named Buffer 
List in the current window. 

2. Put the cursor on the name of a buffer in the list, such as Messages. 
(To scroll through the list, you can press the up and down arrow keys 
or other cursor-movement keys.) 

3. To view that buffer, use SELECT. (On DECwindows, you can click 
MBl twice.) EVE then puts that buffer into the current window. 



EVE-88 EVE Commands 
SHOW SYSTEM BUFFERS 

As a rule, do not delete system buffers or change their read/write status, 
because they may be required for some EVE commands to work. Some 
system buffers cannot be deleted and are marked permanent in the list. 

SHOW WILDCARDS 
format 

SHOW WILDCARDS 

description 
Lists the wildcards available for the WILDCARD FIND command-either 
VMS or ULTRIX, depending on your setting. 

Steps: 

1. Use the SHOW WILDCARDS command. The output (the list of 
wildcards) appears in an EVE system buffer named Show in the 
current window. 

2. To scroll through the list, you can press the up and down arrow keys 
or other cursor-movement keys. 

3. To return to the buffer you were editing, press DO or use the RESET 
command. 

SHRINK WINDOW 
format 

SHRINK WINDOW integer 

description 
Shrinks the current window by the number of lines you specify-if you 
are using more than one window in EVE. The lines are subtracted from 
the bottom unless the window is the bottommost window. 

parameter 
integer 
The number of screen lines you want to subtract from the· current window. 
The minimum size of a window is one line of text, one line for the status 
line, and on DECwindows, one line for the horizontal scroll bar. If the 
number you specify would shrink the window beyond these limits, EVE 
shrinks the window as much as possible. The maximum size depends 
on the size and type of terminal you are using. If you do not specify a 
number, EVE prompts you for one. Pressing RETURN or DO at the prompt 
without typing anything cancels the operation. 



example 

EVE Commands 
SHRINK WINDOW 

EVE-89 

The following commands form two windows, and then shrink the lower of 
the two windows by five lines: 

Command: TWO WINDOWS 
Command: SHRINK WINDOW 5 

SPAWN 
format 

SPAWN [command-string) 

description 
Spawns a subprocess, suspending, but not ending, your editing session. 
This lets you return to the DCL level or run another utility, such as 
MAIL, without having to end your editing session. Using SPAWN and 
ATTACH commands, in EVE and at the DCL level or in other utilities 
such as MAIL, lets you keep an editing session active throughout your 
VMS session (or login)-effectively making EVE a "kept" editor. This 
makes it faster to resume editing, but uses more system resources. 

The SPAWN command is not supported if you invoke EVE using 
/DISPLAY=DECWINDOWS. 

parameter 
command-string 
Optionally, the DCL command you want executed in the subprocess, 
such as a utility you want to invoke. Exiting from that utility ends the 
subprocess and resumes your editing session. If you do not specify a 
command string, EVE spawns a subprocess for DCL. To resume your 
editing session, use the LOGOUT command. 

example 
The following command spawns a subprocess for MAIL. Exiting from 
MAIL resumes your editing session. 

Command: SPAWN mail 
MAIL> 

MAIL> EXIT 



EVE-90 EVE Commands 
SPELL 

SPELL 
format 

SPELL 
description 

Runs DECspell (if it is installed on your system) to check the currently 
selected text or the entire buffer. 

The SPELL command is not supported if you invoke EVE using 
/DISPLAY=DECWINDOWS. 

Steps: 

1. Optionally, select the text you want to check. (See the description of 
the SELECT command.) 

If you select less than a full line, EVE extends the select range to 
include the start and end of the line. If you do not select any text, 
SPELL checks the entire buffer. 

2. Use the SPELL command. 

EVE spawns a subprocess to run DECspell, and writes out the current 
buffer or select range to a temporary file in a system directory called 
SYS$SCRATCH. 

3. Use DECspell commands to correct your text. 

After you make the corrections, exiting from DECspell resumes your 
editing session. EVE then replaces the buffer or range with the new 
version of the temporary file, containing any corrections, and deletes 
the temporary file. 

NOTE: Do not use CTRLIY while using SPELL. This 
deletes lines in the temporary output file, and therefore 
destroys the select range or current buffer. 



I 

I 

SPLIT WINDOW 
format 

SPLIT WINDOW [integer] 

description 

EVE Commands EVE-91 
SPLIT WINDOW 

Splits the current EVE window into two or more smaller windows. This 
lets you view different buffers at the same time or different parts of the 
same buffer. The cursor then appears in the bottommost new window. 
Each window has its own status line and displays the buffer you are 
currently editing. To put a different buffer into the window, use one of the 
following commands: 

BUFFER 
GET FILE or OPEN 
NEW 
NEXT BUFFER (if you have created more than one buffer) 
OPEN SELECTED 
SHOW BUFFERS (to choose a buffer from the list) 

parameter 
integer 
Optionally, the number of windows you want to form. The default is 
2 (effectively the same as using the TWO WINDOWS command). The 
maximum number of windows in EVE depends on the size and type of 
terminal you are using. 

example 
The following command splits the current window into three smaller 
windows, putting the cursor in the bottommost of the three windows: 

Command: SPLIT WINDOW 3 

START OF LINE 
format 

START OF LINE 

VT300, VT200: 

CTRUH 
GOLD-+-



EVE-92 EVE Commands 
START OF LINE 

VT100: 

CT RUH 
GOLD-+
BACKSPACE 

description 

Moves the cursor to the start of the current line. If you are already at the 
start of the line, the cursor does not move. 

STORE TEXT 
format 

STORE TEXT 

VT300, VT200: 

GOLD-REMOVE 

description 

Copies a select range or found range, without removing it, so you can 
insert the text elsewhere (same as the COPY command). 

Steps: 

1. Use SELECT, FIND, or WILDCARD FIND to highlight the text you 
want to copy. (A select range takes precedence over a found range.) 

2. Use the STORE TEXT command. The highlighting is canceled. A 
message tells you that the copying has been completed. 

3. To paste the copied text elsewhere, use the INSERT HERE or PASTE 
command. 

The copied text is stored either in the Insert Here buffer in EVE or in 
the DECwindows clipboard, depending on your setting, and replaces in 
that storage area whatever you previously copied or removed. The default 
setting is NOCLIPBOARD, which uses the Insert Here buffer. For more 
information, see the description of the SET CLIPBOARD command. 



TAB 
format 

TAB 

VT300, VT200: 

VT100: 

TAB 
CTRUI 

TAB 
CTRUI 

description 

EVE Commands EVE-93 
TAB 

Inserts a tab at the current position, according to the current tab stops of 
the buffer and the tab modes. Note that redefining either the TAB key or 
CTRL/I affects the other as well. 

TOP 
format 

TOP 

VT300, VT200: 

GOLD-t 

VT100: 

GOLD-t 

description 
Moves the cursor to the top of the current buffer-upper left corner
unless it is already there. 



EVE-94 EVE Commands 
TPU 

TPU 
format 

TPU procedure-name 

description 

Executes the VAXTPU procedure or statement you specify. You can 
execute a VAXTPU built-in procedure or a procedure you have compiled. 

parameter 

procedure-name 
The VAXTPU procedure or statement you want to execute, including any 
required parameters or arguments. You cannot abbreviate the procedure 
name or statement, and cannot use wildcards. If you do not specify a 
procedure or statement, EVE prompts you for one. Pressing RETURN or DO 
at the prompt without typing anything cancels the operation. 

example 
The following command executes the COPY_TEXT built-in procedure to 
insert the current date: 

Command: TPU COPY TEXT (FAO (' !11%D', 0)) 

TWO WINDOWS 
format 

TWO WINDOWS 

description 

Splits the current EVE window into two smaller windows. (Same as the 
SPLIT WINDOW command, except that it does not take a parameter.) 
This lets you view different buffers at the same time or different parts of 
the same buffer. The cursor then appears in the new, lower window. Each 
window has its own status line and displays the buffer you are currently 
editing. To put a different buffer into the window, use one of the following 
commands: 

BUFFER 
GET FILE or OPEN 
NEW 
NEXT BUFFER (if you have created more than one buffer) 
OPEN SELECTED 
SHOW BUFFERS (to choose a buffer from the list) 



EVE Commands 
TWO WINDOWS 

EVE-95 

You can repeat the TWO WINDOWS command to continue splitting 
windows. The maximum number of windows in EVE depends on the size 
and type of terminal you are using. 

UNDEFINE KEY 
format 

UNDEFINE KEY key-name 

description 
Cancels the current definition of a key, if it was done with the DEFINE 
KEY or LEARN command. It does not cancel definitions done by a SET 
KEYPAD command or with the SET GOLD KEY command. You can type 
the key name on the command line or let EVE prompt you to press the 
key to be undefined. If the key you specify was previously defined by a 
SET KEYPAD command, its previous definition is restored, if the keypad 
setting is still in effect. You cannot undefine a key defined as DO unless 
there is another key defined as DO, and you cannot undefine or redefine 
the RETURN key or CTRUM. 

parameter 
key-name 
The key you want to undefine. You cannot abbreviate the key name. For 
more information about EVE key names, see Section 6.4.3. If you do not 
specify a key name, EVE prompts you to press the key to be undefined. 
Pressing the RETURN key or CTRUM at the prompt cancels the operation, 
because those keys cannot be undefined. 

example 
In the following example, you set the EDT keypad, then redefine KP9 as 
CENTER LINE, overriding its EDT definition. The UNDEFINE KEY 
command then cancels that definition, restoring its EDT keypad definition 
(Append). 

Command: SET KEYPAD EDT 
Command: DEFINE KEY= kp9 center line 
Command: UNDEFINE KEY kp9 



EVE-96 EVE Commands 
UPPERCASE WORD 

UPPERCASE WORD 
format 

UPPERCASE WORD 

description 

Makes letters uppercase in a single word, select range, or found range. 
With a select range or found range, UPPERCASE WORD changes the 
letters in the range, starting with the first letter in the range (even if it 
is not the first letter of the word). A select range takes precedence over 
a found range. If there is no select range or found range, UPPERCASE 
WORD works on the current word. If you are between words, it works on 
the next word on the line. 

WHAT LINE 
format 

WHAT LINE 

description 

Shows the current line number, total number of lines in the buffer, and 
percentage of that position in the buffer. This is useful if you want to 
know whether to insert a page break or simply to find out how many lines 
are in the buffer. To go to a particular line by number, use the LINE 
command. For example, the command LINE 10 puts the cursor at the 
start of line 10 in the current buffer. 

example 
The following example shows the output from the WHAT LINE command: 

Command: WHAT LINE 
You are on lihe 35 of 45 (78%). 



WILDCARD FIND 
format 

WILDCARD FIND search-pattern 

VT300, VT200: 

GOLD-FIND 

description 

EVE Commands EVE-97 
WILDCARD FIND 

Searches for a pattern of text using wildcards, literal text, or both. You 
can use VMS or ULTRIX wildcards, depending on your setting. The 
default setting is VMS. For a list of the available wildcards, use the 
SHOW WILDCARDS command. 

If the string is found only in the opposite direction, EVE asks if you want 
to change the direction of the search and go there. Press RETURN if you 
want to go there, or type NO and press RETURN to end the search. If the 
string is not found, the cursor does not move. 

EVE highlights the found text (video bold), with the cursor at the 
beginning of the string. If there is no select range, you can use COPY, 
FILL, REMOVE, UPPERCASE WORD, or other commands that work 
on a range of text. (If there is a select range, the operation works on 
the selected text, which may not include the found range.) To cancel 
the highlighting, move the cursor off the found range or use the RESET 
command. To find another occurrence of the same string, use the FIND 
NEXT command or press FIND twice. 

parameter 
search-string 
The pattern of text you want to find, using wildcards, literal text, or both. 
WILDCARD FIND follows the same rules as the FIND command for case 
sensitivity and white space-unless specified otherwise by a wildcard. If 
you do not specify a string, EVE prompts you for one. Pressing RETURN or 
DO at the prompt without typing anything cancels the operation. 

example 
The following command, using VMS wildcards, finds a string like bet or 
But at the end of a line. The equivalent using ULTRIX wildcards is b.t$. 

Command: WILDCARD FIND b%t\> 



EVE-98 EVE Commands 
WRITE FILE 

WRITE FILE 
format 

WRITE FILE output-filespec 

description 
Writes out (saves) the current buffer, without ending the editing session. 
The buffer is written out to the file you specify or to the output file 
associated with the buffer. (Similar to the SAVE FILE or SAVE FILE AS 
command.) If you do not specify a file on the command line, EVE writes 
out the buffer using the output file associated with the buffer. Typically, 
this is the same as the file specified when you invoked EVE or when you 
used the GET FILE, OPEN, or OPEN SELECTED command. If there 
is no file associated with the buffer-for example, if you invoked EVE 
without specifying a file, or if you created the buffer with the BUFFER 
or NEW command, or if you are writing out an EVE system buffer-then 
EVE prompts you to type a file name. Specifying an output file does not 
change the buffer name, but does associate that file with the buffer for 
later SAVE FILE or WRITE FILE commands or for exiting (except with 
system buffers). To check the output file specification of the buffer, use 
the SHOW command. 

parameter 
output-filespec 
Optionally, the output file you want to create for saving the contents of 
the current buffer. If you do not specify a file, EVE uses the file associated 
with the buffer. If there is no file associated with the buffer, EVE prompts 
you to type a file name. In such a case, simply pressing RETURN or DO at 
the prompt without specifying a file cancels the operation. 

example 
In the following example, you are editing a file called ROUGH.DAT and 
write out (saves) your edits as a file called FINAL.DAT, rather than as a 
new version of ROUGH.DAT: 

Command: GET FILE rough.dat 

Command: WRITE FILE final.txt 
38 lines written to DISK$1: [GEOFF]FINAL.TXT;l 



Mail Utility MAIL-1 

Mail Utility 

You can use the VMS Mail Utility (MAIL) to send messages to other users 
on your system or on any other computer that is connected to your system 
by means of DECnet-VAX. You can also read, file, forward, delete, print, 
and reply to messages that other users send to you. 

format 
MAIL [filespec] [recipient-name] 

parameters 
files pee 
Specifies the name of the file to be mailed. 

recipient-name 
Specifies the name of a user (or users) or a distribution list to which the 
file is mailed. 

When you specify a list of users, separate each name by a comma. 

When you specify a distribution list, precede the name of the list with 
an at sign (@) and enclose both the at sign and the name in quotation 
marks, as the following example shows: 
$ MAIL JOKES.DAT "@LIST" 

usage summary 

To use MAIL interactively, enter the following command in response to 
the DCL prompt: 

$MAIL 

The Mail Utility responds with the following prompt: 
MAIL> 

Once MAIL has been invoked, you can enter any of the MAIL commands. 
To exit from MAIL, enter the EXIT command at the MAIL> prompt. 
MAIL> EXIT 

You can also exit from MAIL by pressing CTRUZ or using the QUIT 
command. 



MAIL-2 MAIL 
/EDIT 

MAIL Qualifiers 

You can supply the /EDIT, /PERSONAL_NAME, /SELF, and /SUBJECT qualifiers 
when invoking MAIL. 

/EDIT 

Sets the default to /EDIT for the SEND and REPLY commands and allows 
you to edit your mail messages. 

format 

MAIL/EDIT [=(keyword[=option], ... )] 

qualifier values 

keyword 
Allowed keywords are FORWARD, REPLY, and SEND. 

option 
The EXTRACT option can be used with the REPLY keyword. 

example 
$ MAIL/EDIT 
MAIL> SEND 
To: EARTH: :MAX 
Subj: Experiment 

[EOB] 
*exit 
MAIL> 

This example shows how to use the /EDIT qualifier with the MAIL 
command enabling you to create and edit a new message. Press CTRUZ 
to return to the line-editing prompt ( * ). Type EXIT to send the message. 



~I 

MAIL 
/PERSONAL_NAME:name 

MAIL-3 

/PERSONAL_NAME=name 

Specifies the personal name to be used when sending a message. This 
qualifier does not override the default personal name specified by the SET 
PERSONAL_NAME command; the personal name is only changed for the 
current message. 

format 

MAIL/PERSONAL_NAME =name file-name recipient-name 
MAIL/NOPERSONAL_NAME 

parameter values 

name 
Personal name to be used. Use quotes around the personal name to 
include more than one word or to print in lowercase letters. 

file-name 
Name of file to be sent. 

recipient-name 
Nam es of users to whom the message is sent. 

example 
$ MAIL/PERSONAL_NAME ="Joe M." test.dat smith 

/SELF 

This example shows the user's personal name defined as Joe M. in the 
current message containing the file TEST.DAT sent to user SMITH. 

Sends a copy of the message containing the file specification on the 
command line back to you as well as to other users~ 

format 

MAIL/SELF filespec recipient-name 

parameter values 

filespec 
Name of file to be sent. 

recipient-name 
Names of users to whom the message is sent. 



MAIL-4 MAIL 
/SELF 

example 
$ MAIL/SELF experiments.dat smith,jones 

This example shows how to use the /SELF qualifier to send a copy of the 
message containing the file named EXPERIMENTS.DAT back to you and 
to users SMITH and JONES. 

/SUBJECT 

Specifies the subject of the message for the heading. If the text consists of 
more than one word, enclose the text in quotation marks. 

format 

MAIL/SUBJECT ="text" filespec recipient-name 

parameter values 
files pee 
Name of file to be sent. 

recipient-name 
Names of users to whom the message is sent. 

example 
$ MAIL/SUBJECT="Life in the Big City" newfile. txt JOHNSON 

This example shows how to use the /SUBJECT qualifier to send a file 
named NEWFILE. TXT with a subject heading of "Life in the Big City." 
Use quotation marks around the subject heading to include more than one 
word or to print in lowercase letters. 



MAIL MAIL-5 
BACK 

MAIL Commands 

To enter MAIL commands, first invoke MAIL at the DCL prompt($) and then 
enter the MAIL commands at the MAIL> prompt~ These commands can be 
abbreviated to unique, shorter forms (usually as short as one letter). Note that 
D is the short form of DELETE (not DIRECTORY) and R is the short form of 
REPLY (not READ). 

MAIL provides commands that enable you to do the following: 

• Read and organize mail messages. 

• Exchange mail messages with other users. 

• Remove mail messages. 

• Tailor the Mail Utility. 

• Exit from MAIL or transfer control to another process while still in MAIL. 

• Make hardcopies of mail messages. 

BACK 

Displays the message preceding the current or last-read message when 
the last command issued was READ. When the last command issued was 
DIRECTORY, the BACK command displays the preceding screen of the 
directory listing. 

format 

BACK 

qualifier 

/EDIT 
Indicates that the default editor is invoked. You can use the editor to 
easily peruse the previous message. When you are done, enter the QUIT 
command. You will see the MAIL> prompt. If you decide to edit the 
message and want to keep a copy of the newly edited message, enter the 
appropriate command to exit from your editor (use the EXIT command 
with the EDT editor) and supply a file name. 



MAIL-6 MAIL 

COPY 

COPY 

Copies a message to another folder without deleting it from the current 
folder. If the specified folder does not exist, it is created. 

If you want to copy a message to a sequential file (outside of MAIL) 
instead of to a mail file, use the EXTRACT command. 

If you decide (after entering the COPY command, pressing RETURN, 
and supplying a folder name at the prompt, but before pressing RETURN 
again) that you do not want to copy the message, press CTRUC. CTRUC 
aborts the operation and keeps you within MAIL. 

format 
COPY foldername [filename] 

parameters 
foldername 
Indicates the name of the folder to which the message is to be copied. If 
the specified folder does not exist (and you have not entered the qualifier 
/NOCONFIRM), you are asked whether you want to create it. If you 
respond with Y, the new folder is created. A folder name can be 1 to 39 
characters in length. Valid characters for folder names are A through Z, a 
through z, dollar sign ( $ ), underscore ( _ ), and 0 through 9. 

filename 
Indicates the name of the mail file to which the message is to be copied. 
If the specified mail file does not exist, it is created. If a file name is 
omitted, the message is copied to the specified folder in the current file. 

qualifiers 
/ALL 
Indicates that all of the currently selected messages are to be copied 
to another message folder. You select a folder by entering the SELECT 
command followed by the name of the folder. (See the SELECT command 
for more information.) If the /ALL qualifier is omitted, only the current 
message is copied. 

/CONFIRM 
/NOCON FIRM 
Determines whether you will be queried about creating a new folder or 
file. The default is /CONFIRM. 



example 
MAIL> DIRECTORY 

# From Date 

1 MARK 

Subject 

Upcoming Meetings 
Horror Stories 

MAIL 

2 GRIM 
3 KATE 

29-NOV-1988 
3-DEC-1988 
7-DEC-1988 Getting a Court for Fridays 

MAIL> 2 

MAIL> COPY 
Folder: TALES 

-File: ~ 
MAIL> SELECT TALES 
%MAIL-I-SELECTED, 1 message selected 
MAIL> DIRECTORY 

# From Date Subject 

1 GRIM 3-DEC-1988 Horror Stories 

TALES 

MAIL 
COPY 

MAIL-7 

This example shows how to put a copy of a mail message (from a user 
named GRIM) into another folder (TALES) and how to move to that folder 
to see the copy of the mail message. 

DELETE 

Deletes either the message you are currently reading or the message you 
just read and moves it to the WASTEBASKET folder. When you enter 
the EXIT or PURGE commands, your WASTEBASKET folder empties 
automatically. 

To recover a message accidentally deleted (while it is still in the 
WASTEBASKET folder), select the WASTEBASKET folder, read the 
desired message, and move it to another folder. 

Usually you delete only one mail message at a time, but you may also 
delete several mail messages using one DELETE command. You may 
specify a range or a list of messages to be deleted. 

format 
DELETE [message-number] 

parameter 
message-number 
Deletes the message specified by its number, or deletes a range or list of 
messages. 



MAIL-8 MAIL 
DELETE 

qualifier 
/ALL 
Deletes all the currently selected messages. You select a folder by 
entering the SELECT command followed by the name of the folder. 
(See the SELECT command for more information.) 

example 
MAIL> DELETE 1,3,5-7,9:11 
MAIL> 

This example shows how to delete mail messages 1, 3, 5, 6, 7, 9, 10, and 
11. The hyphen and colon are used to designate a range of numbers. 

DIRECTORY 
Displays a list of the messages in the current mail file, including message 
number, sender's name, date, and subject. 

You create a new set of selected messages every time you use the following 
qualifiers: 

format 

/BEFORE 
/CC_SUBSTRING 
/NEW 
/SINCE 
/MARKED 
/FROM_SUBSTRING 
trO_SUBSTRING 
/SUBJECT_SUBSTRING 

DIRECTORY [foldername] 

parameter 
foldername 
Specifies the name of the folder. If you omit this parameter and you have 
already specified a folder, messages from that folder are· displayed. If 
you have not selected a folder, messages from the NEWMAIL folder are 
displayed. If the NEWMAIL folder does not exist, messages from the 
MAIL folder are displayed. 



qualifiers 
IBEFORE:date 

MAIL MAIL-9 
DIRECTORY 

Displays a listing of all the mail messages received before the specified 
date. If no date is specified, a listing of all the mail messages received 
before the current day ("today") is displayed. 

!CC_ SUBSTRING:text 
Selects messages containing "text" in the CC field of the message. 

!EDIT 
Invokes the editor using the output of the DIRECTORY command as 
input to the editor. Enables you to find messages easily by scrolling 
through the folders or searching text. 

IFROM_SUBSTRING:text 
Selects messages containing "text" in the FROM field of the message. 

/FOLDER 
Displays a listing of all the folders contained in the current mail file. 

/FULL 
Displays the number of records in the message and whether you have 
replied to the message. External message identification numbers (for 
messages larger than 3 blocks) are also displayed. 

/MARKED 
/NOMARKED 
Selects messages that have been marked. The /NOMARKED qualifier 
selects messages that are not marked. 

/NEW 
Displays a listing of any new (unread) mail messages. When there are no 
unread messages, MAIL displays the message "No new messages." 

!REPLIED 
/NORE PLIED 
Selects messages that have been replied to via the REPLY command. The 
/NOREPLIED qualifier selects messages that have not been replied to. 

!SINCE:date 
Displays a listing of all the mail messages received on or after the 
specified date. If no date is specified, a listing of all the mail messages 
received on the current day ("today") is displayed. 

!START =Start-point 
Indicates the first message number you want to display. For example, 
to display all the messages beginning with number three, enter the 
command line DIRECTORY/START=3. Use the /START qualifier with the 
/FOLDER qualifier to indicate the first folder name you want to display. 



MAIL-10 MAIL 
DIRECTORY 

For example, to display all the folder names alphabetically following 
PLEAT, enter the command line DIRECTORY/START=PLEAT/FOLDER. 

!SUBJECT_SUBSTRING:text 
Selects messages containing "text" in the SUBJECT field of the message. 

/TO_ SUBSTRING:text 
Selects messages containing "text" in the TO field of the message. 

example 
MAIL> DIRECTORY/SUBJECT_SUBSTRING= POUND 

MAIL 
# From Date Subject 

1 BILL 13-APR-1988 The Pound 

This example shows how to use the /SUBJECT_SUBSTRING qualifier 
with the DIRECTORY command to find messages that contain the 
substring POUND. 

MAIL> DIRECTORY/FOLDER 
Listing of folders in DISK$:[BACON]MAIL.MAI;l 

Press CTRL/C to cancel listing 
MAIL NEW HIRES 
PROJECTS SALES LEADS 

EXIT 

This example shows how to display a listing of all the folders in the 
current mail file. 

Allows you to exit from MAIL. You can also exit from MAIL by pressing 
CTRUZ. 

format 
EXIT 

EXTRACT 

Places a copy of the current message into a sequential file. If you want 
to copy a mail message to a folder in an indexed sequential mail file, use 
either the COPY, FILE, or MOVE command. 

format 
EXTRACT filespec 



1 parameter 
files pee 

MAIL MAIL-11 
EXTRACT 

Specifies the name of the output file to which the message is copied. The 
default file type is TXT. By default, the device and directory matches your 
current default device and directory. 

qualifiers 
!ALL 
Copies all the currently selected messages to the specified file. Each 
message is separated by a form feed. 

/APPEND 
Adds the selected message to the end of the specified file. If the file does 
not exist, it is created. When you do not specify /APPEND, MAIL creates 
a new sequential file. 

/MAIL 
Specifies that the output file be a sequential mail file with a default file 
type of MAI and a protection code of (S:RW,O:RW,G,W). By default, the 
protection codes of the device and directory match those of your mail file 
directory. Like I APPEND, /MAIL adds the selected message to the end of 
the specified file. 

/NOH EADER 
Removes the header information (To: CC: From: Subject:) from the mail 
message. 

example, 
MAIL> EXTRACT/ALL/NOHEADER 
_File: OUTER.DAT 
%MAIL-I-CREATED, DISK$MEGAWORK: [CROWN]OUTER.DAT;l created 
MAIL> 

This example shows how to place a copy of all the messages in the 
currently selected folder into a sequential file called OUTER.DAT. The 
/NOHEADER qualifier prevents the header information from being 
copied. 



MAIL-12 MAIL 

FILE 

FILE 

Moves the current message to the specified folder. You can use the 
FILE command and the MOVE command interchangeably because they 
work the same way. (Note, however, that the FILE command deletes 
the message from the original folder, unlike the COPY command, which 
leaves a copy.) 

If (after entering the FILE command, pressing RETURN, and supplying 
a folder name at the prompt, but before pressing RETURN again) you 
decide that you do not want to file the message, press CTRUC. CTRUC 
aborts the operation and keeps you within MAIL. 

format 
FILE foldername [filename] 

parameters 
foldername 
Indicates the name of the folder to which the current message is to be 
moved. If the specified folder does not exist, you are asked whether you 
want to create it. If you respond with Y, the new folder is created. 

A folder name can be 1 to 39 characters in length. Valid characters for 
folder names are A through Z, a through z, dollar sign ( $ ), underscore 
(_), and 0 through 9. 

filename 
Indicates the name of the mail file to which the current message is to be 
moved. If the file name is omitted, the message is moved to the specified 
folder in the current file. 

qualifiers 
/ALL 
Moves all the messages in the current folder to the specified folder. 

/CONFIRM 
/NOCON FIRM 
Determines whether you are queried about creating a new folder or file. 
The default is /CONFIRM. 



I 

..,.1 

I 

I 

I 

example 
MAIL> 2 
MAIL> FILE. 
Folder: WINNERS • 

=FILE: ~. 
Folder WINNERS does not exist. 
Do you want to create it (Y/N, default is N)? y 
%MAIL-I-NEWFOLDER, folder WINNERS created 
MAIL> SELECT WINNERS • 
%MAIL-I-SELECTED, 1 message selected 
MAIL> DIRECTORY • 

#' From Date Subject 

1 BURK 18-APR-1988 Early American Art 

MAIL> 

WINNERS 

MAIL 
FILE 

MAIL-13 

8 Enter the FILE command to move the current message to a new 
folder. 

8 Specify a name for the new folder. 

0 Press RETURN to retain the default file. 

8 To move to the new folder, enter the SELECT command followed by 
the name of the new folder (WINNERS). 

• Enter the DIRECTORY command to see the transferred message in 
the newly created folder (WINNERS). 

This example shows how to FILE a message in a new folder named 
WINNERS. 

FORWARD 

Sends a copy of the message you are currently reading (or have just read) 
to one or more users. MAIL prompts you for the name of the user or users 
to whom you want to forward the message. 

If you change your mind about forwarding a message after you have 
already entered the FORWARD command, press CTRUC to abort the 
message. The MAIL> prompt is displayed. 



MAIL-14 MAIL 
FORWARD 

format 
FORWARD 

qualifiers 
ICC PROMPT 
!NOCC_PROMPT 
Prompts for CC: line in the mail header. Overrides the SET CC_PROMPT 
command. 

!EDIT 
Determines whether the default editor is invoked to edit the message you 
are forwarding. 

!NOH EADER 
Enables you to forward a message without the original header information 
supplied from the user that sent it. The default is /HEADER. 

!PERSONAL NAME:name 
!NOPERSONAL_NAME 
Specifies the personal name to be used when forwarding the message. 
Overrides the default personal name specified with the SET PERSONAL_ 
NAME command for this message only. The /NOPERSONAL_NAME 
qualifier sends a message with a null personal name field. 

/SELF 
!NOS ELF 
Specifies that a copy of the forwarded message is to be sent to you. 
Overrides the SET COPY_SELF command. 

!SUBJECT ="subject-text" 
Prompts for the subject of the mail message to be sent. 

example 
MAIL> 3 
From: PRESTON 
To: MARLEY 
Subj: Snakes 

Beasts, under the earth, crawling ... 

MAIL> FORWARD/NOHEADER 
To: SOUND::BURTON 
Subj: Snakes Again 



MAIL 
FORWARD 

MAIL-15 

MAIL> READ 
From: MARLEY 
To: SOUND::BURTON 
Subj: Snakes Again 

Beasts, under the earth, crawling ... 

HELP 

This example shows how to forward a message to a user 
(SOUND::BURTON) without the original header information (From: 
PRESTON, To: MARLEY, Subj: Snakes). 

Enables you to obtain information about the Mail Utility. 

To obtain information about all of the MAIL commands, enter the 
following command: 

MAIL> HELP 

To obtain information about individual commands or topics, enter HELP 
followed by the command or topic name. 

format 
HELP [topic] 

parameter 
topic 

MARK 

Indicates a topic about which you want information. To display the list of 
available topics, enter the HELP command at the MAIL> prompt. 

The MARK command sets a flag in the message header setting the 
current or message-identification message as marked. Marked messages 
are displayed with an asterisk ( *) in the left-hand column of the directory 
listing. A marked message can serve as a reminder of important 
information. The /ALL qualifier sets all currently selected messages 
as unmarked. 

The UNMARK command clears a flag in the message header setting the 
current or message-id message as unmarked (asterisk is deleted). 



MAIL-16 

format 

MAIL 
MARK 

MARK [/ALL] [message-number] 
UNMARK [/ALL] [message-number] 

parameter 
message-number 
Indicates the message number to be marked or unmarked. 

qualifier 
/ALL 
Sets all currently selected messages as marked. 

example 
MAIL> DIR MISC 

1 
2 
3 

# From 

MARS::SMITH 
JUPITER::COLLINS 
JUPITER: : PETERS 

MAIL> MARK 2,3 
MAIL> DIR 

1 

* 2 
* 3 

# From 

MARS: : SMITH 
JUPITER::COLLINS 
JUPITER: :PETERS 

Date 

13-AUG-1988 
22-AUG-1988 
24-AUG-1988 

Date 

13-AUG-1988 
22-AUG-1988 
24-AUG-1988 

Subject 

Training Information 
Ideas 
Meeting 

Subject 

Training Information 
Ideas 
Meeting 

In this example, messages 2 and 3 in folder MISC are marked with an 
asterisk. 

MOVE 

NEXT 

The MOVE command is synonymous with the FILE command. 

Skips to the next message and displays it. This command is useful if, 
while reading through your messages, you encounter a long message that 
you would like to skip over. 

format 
NEXT 



... ! 

I 

1 

I 

11 

'I 

I 

qualifier 
/EDIT 

MAIL MAIL-17 
NEXT 

Invokes your default editor. You can use your editor to peruse the next 
message. When you are done, enter the QUIT command. You see the 
MAIL> prompt. If you decide to edit the message and want to keep a copy 
of the newly edited message, enter the appropriate command to exit from 
your editor (enter the EXIT command with the EDT editor) and supply a 
file name. 

PRINT 

Adds a copy of the message you are currently reading to the print queue. 
The files created by the PRINT command are not actually released to 
the print queue until you exit from MAIL, so that multiple messages are 
concatenated into one print job (unless the /NOW or /PRINT qualifier is 
specified). 

format 
PRINT 

qualifiers 
IAFTER:time 
Requests that the job not be printed until a specific time of day. You can 
specify either absolute or delta time. 

/ALL 
Indicates that all the currently selected messages be printed. 

/BURST :keyword 
!NO BURST 
Controls whether a burst page is printed preceding a message. The 
/BURST qualifier can take either of two keywords: ALL or ONE. The ALL 
keyword indicates that each file in the job is to be preceded by a burst 
page and flag page. The ONE keyword indicates that a burst page applies 
only to the first copy of the first file in the job. 

/CANCEL 
Cancels all messages that have been queued for printing during this 
session. 

ICOPIES:n 
Indicates the number of copies of the print job to be printed. 



MAIL-18 MAIL 
PRINT 

!FEED 
!NOFEED 
Controls whether the PRINT command automatically inserts form feeds 
when it nears the end of a page. /FEED is the default. 

!FLAG:keyword 
!NOFLAG 
Controls whether a flag page is printed preceding a message. The /FLAG 
qualifier can take either of two keywords: ALL or ONE. The ALL keyword 
indicates that each file in the job is preceded by a flag page. The ONE 
keyword indicates that a flag page applies only to the first copy of the first 
file in the job. 

!FORM:form-name 
Specifies the name or number of the form that you want for the print 
job. Enter the DCL command SHOW QUEUE/FORM to list the available 
forms. 

/HOLD 
/NOHOLD 
Controls· whether the message is available for print immediately. The 
print job is not released for actual printing until you use the DCL 
command SET QUEUE/ENTRY/RELEASE to release it. 

/NAME: job-name 
Defines the name string to identify the job. 

/NOTIFY 
Indicates that you are to be notified by a broadcast message when the file 
or files have been printed. /NONOTIFY is the default. 

/NOW 
Sends all messages that have been queued for printing with the PRINT 
command during this session to the printer. Allows the job to print 
without exiting mail. This qualifier is synonymous with the /PRINT 
qualifier. 

/PARAMETERS:(parameter[, ••. ]) 
Specifies from one to eight optional parameters to be passed to the job. 

/PRINT 
The /PRINT qualifier is synonymous with the /NOW qualifier. 

/QUEUE:queue-name 
The name of the queue to which the message is to be sent. If the /QUEUE 
qualifier is not specified, the message is queued to the SYS$PRINT 
printer. If you enter the PRINT command more than once and specify a 
different queue name, any previously queued messages are released to 
that print queue. 



I 

! 

/SPACE 
/NOSPACE 
Controls whether output is double-spaced. 

ffRAILER:keyword 
/NO TRAILER 

MAIL MAIL-19 
PRINT 

Controls whether a trailer page is printed at the end of the message. The 
trRAILER qualifier can take either of two keywords: ALL or ONE. The 
ALL keyword indicates that each file in the job is preceded by a trailer 
page. The ONE keyword indicates that a trailer page applies only to the 
last copy of the last file in the job. 

example 
MAIL> 5 
MAIL> PRINT/QUEUE=LMNO 
MAIL> EXIT 

Job MAIL (queue LMNO_PRINT, entry 333) started on LMNO_PRINT 

$ 

READ 

This example shows how to add message number 5 to queue 
LMNO_PRINT. 

Displays your messages. 

The READ command can be entered with or without parameters. 
Pressing the RETURN key is the same as entering the READ command 
without parameters. If you press RETURN immediatedly after MAIL 
is invoked, MAIL displays the first unread message in your NEWMAIL 
folder. If all messages have been read or you have no new messages, 
MAIL displays the first message in the MAIL folder. Each time you 
enter the READ command without parameters or press RETURN, MAIL 
displays the next message. 

If a new message arrives while you are in MAIL, you can enter 
READ/NEW to read the message, and then return to the previous MAIL 
activity. 

You create a new set of selected messages every time you use the following 
qualifiers: 

/BEFORE 
/CC_SUBSTRING 
/NEW 
/SINCE 
/MARKED 



MAIL-20 MAIL 

format 

READ 

/FROM_SUBSTRING 
trO_SUBSTRING 
/SUBJECT_SUBSTRING 

READ [foldername] [message-number] 

parameters 
foldername 
Specifies the name of the folder. If you omit this parameter and you have 
already specified a folder, messages from that folder are displayed. If 
you have not selected a folder, messages from the NEWMAIL folder are 
displayed. If the NEWMAIL folder does not exist, messages from the 
MAIL folder are displayed. 

message-number 
Indicates the number of the message to be read. The message number 
represents the position of a message in a folder. If you specify a number 
greater than the number of messages in the folder, MAIL displays the last 
message in the folder. Therefore, to read the latest message in a folder, 
specify a large message number or enter the LAST command. 

qualifiers 
IBEFORE:date 
Displays mail messages received before the specified date. If no date is 
specified, all the mail messages received before the current day ("today") 
are displayed. 

ICC_ SUBSTRING:text 
Selects messages containing "text" in the CC field of the message. 

/EDIT 
Invokes the default editor. You can use the editor to easily peruse the 
next message. When you are done, enter the QUIT command and return 
to the MAIL> prompt. If you decide to edit the message aµd want to keep 
a copy of the newly edited message, enter the appropriate 'c_ommand to 
exit from your editor (use the EXIT command with the EDT editor) and 
supply a file name. 

IFROM_SUBSTRING:text 
Selects messages containing "text" in the FROM field of the message. 

/MARKED 
INOMARKED 
Selects messages that have been marked. The /NOMARKED qualifier 
selects messages that are not marked. 



I 

I 

MAIL MAIL-21 
READ 

!NEW 
Displays new mail messages received while you are in MAIL. If there are 
no new messages, the message "No new messages" is displayed. 

/REPLIED 
/NOREPLIED 
Selects messages that have been replied to via the REPLY command. The 
/NOREPLIED qualifier selects messages that have not been replied to. 

/SINCE:date 
Displays mail messages received on or after the specified date. If no date 
is specified, all the mail messages received after the current day ("today'') 
are displayed. 

/SUBJECT_SUBSTRING:text 
Selects messages containing "text" in the SUBJECT field of the message. 

ITO _SUBSTRING:text 
Selects messages containing "text" in the TO field of the message. 

example 
MAIL> READ/SUBJECT_SUBSTRING= MEETINGS 
MAIL 
# From Date Subject 

1 BILL 16-APR-1988 Future Meetings 

This example shows how to use the /SUBJECT_SUBSTRING qualifier 
with the READ command to find messages that contain the substring 
MEETINGS. 

REPLY 
The REPLY command is synonymous with the ANSWER command. 

SEARCH 
Searches the currently selected folder for the message containing the first 
occurrence of the specified text string. 

format 
SEARCH search-string 



MAIL-22 MAIL 
SEARCH 

parameter 
[search-string] 
Indicates the text string that MAIL searches for in the currently selected 
messages. The search starts from the beginning of the messages in the 
current folder. If search-string is not specified, a search is made for the 
previously specified string, starting after the message you are currently 
reading (or have just read). 

example 
MAIL> SEARCH "under the" 

From: BURT 
To: ANTON 
Subj: Coal Mines 

They commute under the earth ... 

MAIL> 

This example shows how to search for the string under the. 

SELECT 

Establishes a set of messages that you can manipulate. You can copy or 
move selected messages from one folder to another; or you can read and 
delete, or search and extract, a set of messages. After you select a set of 
messages, you can use the following commands to affect them: 

COPY 
DELETE 
DIRECTORY 
EXTRACT 
FILE 
MOVE 
READ 
SEARCH 

You can also use the SELECT command to move from one folder to 
another. If you select a folder that does not exist, MAIL displays the 
following message: 

%MAIL-E-NOTEXIST, folder "foldername" does not exist 

format 

SELECT [foldername] 



parameter 
foldername 

MAIL MAIL-23 
SELECT 

Specifies the name of the folder. If you omit this parameter and have 
already specified a folder, messages from that folder are selected. If you 
have not specified a folder, messages from the NEWMAIL folder are 
selected. If the NEWMAIL folder does not exist, messages from the MAIL 
folder are selected. 

qualifiers 
/BEFORE:date 
Indicates that messages dated before the specified date be selected. If 
no date is specified, all the messages received before the current day 
("today" ) are selected. 

ICC_SUBSTRING:text 
Selects messages containing "text" in the CC field of the message. 

/FROM_SUBSTRING:text 
Selects messages containing "text" in the FROM field of the message. 

!MARKED 
INOMARKED 
Selects messages that have been marked. The /NOMARKED qualifier 
selects messages that are not marked. 

/NEW 
Indicates that new (unread) messages be selected. When a mail file other 
than your default mail file is open, MAIL closes the file and opens your 
default mail file. 

/REPLIED 
!NORE PLIED 
Selects messages that have been replied to via the REPLY command. The 
/NOREPLIED qualifier selects :n;iessages that have not been replied to. 

/SINCE:date 
Indicates that messages dated after the specified date be selected. If no 
date is specified, all the messages received on the current day ("today'') 
are selected. 

/SUBJECT_SUBSTRING:text 
Selects messages containing "text" in the SUBJECT field of the message. 

/TO_ SUBSTRING:text 
Selects messages containing "text" in the TO field of the message. 



MAIL-24 MAIL 
SELECT 

example 
MAIL> DIRECTORY/FOLDERS • 
Listing of folders in DISK$APEX:[HARRIS)MAIL.MAI;l 
Press CTRL/C to cancel listing 

MAIL NEWMAIL 
WASTEBASKET JUNK 
COURSES 

MAIL> SELECT WASTEBASKET • 
%MAIL-I-SELECTED, 3 messages selected 
MAIL> DIRECTORY • 

:ft 

1 
2 
3 

WASTEBASKET 
From Date Subject 

MORRIS 19-APR-1988 Venus Fly Traps 
MORRIS 21-APR-1988 The Aloe 
BURT 22-APR-1988 Scales 

8 Enter the DIRECTORY/FOLDERS command to display all currently 
existing folders. 

9 Enter the SELECT command to move to the WASTEBASKET folder. 

e Enter the DIRECTORY command to display the contents of the 
WASTEBASKET folder. 

This example shows how to use the SELECT command to move from the 
MAIL folder to the WASTEBASKET folder. 

SEND 
Sends a message to one or more other users. You can use the SEND 
command and the MAIL command interchangeably because they work the 
same way. 

MAIL prompts you first for the name of the user or users to receive 
the message. You reply with the user names or with the file names of 
distribution lists, in the following format: 

[[nodename::]username, ... ] [,] [@listname[, ... ]] 

If you have entered the SET CC_PROMPT command, you can specify 
names of users to receive carbon copies of the message at the CC: prompt. 

Next, MAIL prompts you for the subject of the mail. To avoid the 
Subj: prompt, specify the /SUBJECT qualifier with the SEND command. 



,.I 

I 

I 

l 

I 

I 

I 

I 

I 

I 

MAIL MAIL-25 
SEND 

You can include a file specification with the SEND command. If you do, 
the text in that file is sent to the specified users. If you do not specify a 
file, MAIL prompts you for the text of your message. 

Enter the message you want to send, then press CTRUZ. Note that, once 
you have typed a line and pressed RETURN, there is no way to edit it. 
Using the /EDIT qualifier enables you to edit the entire message before 
you send it. The /LAST qualifier enables you to send the last message. 
The /LAST qualifier, used with the /EDIT qualifier, enables you to edit 
the last message you sent. If you decide not to send a message you are 
typing but want to stay within the Mail Utility, press CTRUC to abort the 
message. You then receive the MAIL> prompt. CTRUY exits you from 
MAIL. 

format 
SEND [filespec) 

parameter 

filespec 
Indicates the name of the file to be sent. 

qualifiers 
ICC PROMPT 
INOCC_PROMPT 
Prompts for CC: line in the mail header. Overrides the SET CC_PROMPT 
command. 

/EDIT 
INOEDIT 
Determines whether the default editor is invoked to edit the message you 
are sending. The /NOEDIT qualifier overrides the SEND/EDIT default if 
you entered the DCL command MAIL/EDIT. 

If you are interrupted while editing a mail message, a journal file is 
created containing your edits. To recover your edits, enter the following 
command line. (You may substitute another word of your choice for the 
word OOPS.) 
$ EDIT/RECOVER/JOURNAL=SYS$SCRATCH:MAIL.JOU SYS$SCRATCH:OOPS.TMP 

The editor is invoked displaying the text of the message you were 
editing. After you exit from the editor, you can mail the file (in this 
case, OOPS.TMP) by using the MAIL command SEND, as follows: 
MAIL> SEND OOPS.TMP 
To: MCNALLY 
Subject: Vacationing in Venice 



MAIL-26 MAIL 
SEND 

/LAST 
Specifies that the last message be used as the text for the message you 
are currently sending. You can use /LAST with the /EDIT qualifier to 
edit the message before sending it. Press CTRUC and enter the following 
command: 
MAIL> SEND/LAST/EDIT 

This command invokes the editor and allows you to edit the last message. 
Send the revised message by entering the EXIT command. 

/PERSONAL NAME:name 
INOPERSONAL_NAME 
Specifies the personal name to be used when sending this message. The 
/NOPERSONAL_NAME qualifier sends a message with a null personal 
name field. 

/SELF 
INOSELF 
Determines whether MAIL sends a copy of the message you are sending 
back to you. The /NOSELF qualifier overrides the SET COPY_SELF 
SEND command. 

/SUBJECT =usubject-text" 
Specifies the subject of the mail message to be sent. 

example 
MAIL> SEND 
To: FLIGHT::WRIGHT 
Subj: Meeting 
Enter your message below. Press CTRL/Z when complete, CTRL/C to quit: 
We will have our meeting on Monday, August 31st, as scheduled. 
Please make sure you are prompt. 

ICTRUCI 
% MAIL_E_SENDABORT, no message sent 
MAIL> SEND/LAST/EDIT 
To: FLIGHT::WRIGHT 
Subj: Meeting date correction 
We will have our meeting on Friday, September 4th, as scheduled. 
Please make sure you are prompt. 



I 

I 

1 [EOB] 
ICTRUZI 
*EXIT 
MAIL> 

MAIL MAIL-27 
SEND 

This example shows how to edit the last message before sending it to user 
WRIGHT on node FLIGHT. To make a change in text, enter CTRUC and 
invoke the editor by entering the SEND/LAST/EDIT command. Edit the 
message you were in the process of entering, and send it by entering the 
EXIT command. 

SET/SHOW CC_PROMPT 

Sets the default for determining whether the carbon copy (CC:) prompt 
appears when sending a message. 

format 
SET CC_PROMPT 
SET NOCC_PROMPT 
SHOW CC_PROMPT 

example 
MAIL> SET CC PROMPT 
MAIL> SEND -
To: Smith 
CC: Jones 
Subject: 

This example shows how to set the carbon copy prompt. A copy of the 
message is sent to JONES. 

SET/SHOW EDITOR 

Invokes a text editor. Use the MAIL command SEND/EDIT to edit the 
message. The SHOW EDITOR command displays the name of the editor. 

format 
SET EDITOR editor-name 
SHOW EDITOR 

parameter 
editor-name 
Indicates the name of the editor. You can use any callable editor available 
on your system. 



MAIL-28 MAIL 
SET/SHOW EDITOR 

qualifiers 
None. 

example 
MAIL> SHOW EDITOR 
Your editor is EDT 

MAIL> SET EDITOR TPU 
MAIL> SHOW EDITOR 
Your editor is TPU 

MAIL> SEND/EDIT 
To: WHITE::STAFFORD 
Subject: Manufacturing Office 

This example shows how to change the editor from the default EDT editor 
to the TPU editor. Enter the MAIL command SEND/EDIT to edit the text 
of a message. Send the message by pressing CTRUZ. 

SET/SHOW COPY_SELF 

Sets the default for determining whether the SEND, REPLY, or 
FORWARD commands return to the sender a copy of the message being 
sent. 

By specifying NOSEND, NOREPLY, or NOFORWARD with the SET 
COPY_SELF command, you can clear any default copying you have 
established with the SET COPY_SELF command. 

The SHOW COPY_SELF command displays which command (SEND, 
REPLY, or FORWARD) automatically sends a copy of the message to you. 

format 
SET COPY _SELF command [,command} 
SHOW COPY_SELF 

parameter 
command 
The command parameter can be any one of the following: SEND, 
NOSEND, REPLY, NOREPLY, FORWARD, or NOFORWARD. You can 
use NOSEND, NOREPLY, and NOFORWARD to reverse previous settings 
of SEND, REPLY, or FORWARD. 



~I 

example 
MAIL> SET COPY SELF SEND 
MAIL> SHOW COPY SELF 
Automatic copy to yourself on SEND 

MAIL MAIL-29 
SET/SHOW COPY_SELF 

This example shows how to use the SET COPY_SELF command to enable 
copies of mail messages you send to be returned back to you. The SHOW 
COPY_SELF command indicates that you have enabled automatic copying 
when you enter a SEND command. 

SET/SHOW FORWARD 

Sets a forwarding address for your mail. After you enter the SET 
FORWARD command, the address you specify will receive mail messages. 

The default you establish with the SET FORWARD command remains in 
effect until you enter the SET NOFORWARD command. 

The SHOW FORWARD command displays the name of the specified 
forwarding address. 

If you have SYSNAM privilege, you can set and show forwarding 
addresses for other users. 

format 

SET FORWARD address 
SET NOFORWARD 
SHOW FORWARD 

parameter 

address 
Indicates the address (NODE::NAME) to which your mail is forwarded. 

qualifiers 

/ALL 
The I ALL qualifier lists forwarding information or displays a message if 
the specified user does not have forwarding enabled. 

/USER:username 
Indicates the name of another user for whom you are setting or showing 
a forwarding address. You can use the /USER qualifier only if you have 
SYSNAM privilege. With the SHOW FORWARD command, there are two 
ways to show a user's forwarding address: You can specify the user name, 
or you can use the wildcard characters (* or %) to search for names with 
a particular string in common. 



MAIL-30 MAIL 
SET/SHOW FORWARD 

example 
MAIL> SET FORWARD NEXUS::LARS 
MAIL> SHOW FORWARD 
Your mail is being forwarded to NEXUS::LARS 

MAIL> 

This example shows how a user named LARS establishes a forwarding 
address on node NEXUS with the SET FORWARD command, and displays 
the forwarding address with the SHOW FORWARD command. 

SET/SHOW PERSONAL_NAME 

Enables you to append a field to the end of the From: field of mail 
messages you send. You can fill this field with your full name or any 
other information. 

The SET NOPERSONAL_NAME command clears any name you 
previously specified with the SET PERSONAL_NAME command. 

The SHOW PERSONAL_NAME command displays a user's personal 
name. 

format 

SET PERSONAL_NAME "text-string" 
SET NOPERSONAL_NAME 

SHOW PERSONAL_NAME 

parameter 
"text-string" 
Specifies the string for the From: field of mail messages you send. You 
must enclose the string in quotation marks; otherwise, MAIL converts 
it to uppercase letters. You must begin the string with an alphabetic 
character and avoid two consecutive embedded spaces within the string. 
The length of the text string should not exceed 127 characters. 

qualifiers 
/ALL 
The I ALL qualifier lists personal name information or displays a message 
if the specified user has not entered a personal name. 

IUSER:name 
Used with the SHOW PERSONAL_NAME command to allow a user with 
SYSNAM privilege to list personal names set by other users. There are 
two ways to show a user's personal name. The user name can be specified, 
or you can use the wildcard characters (* or % ) to search for names with 
a particular string in common. 



~I 

example 

MAIL 
SET/SHOW PERSONAL_NAME 

MAIL> SET PERSONAL NAME "Catherine the Great" 

MAIL> SEND 

New mail on node FLAXEN from ALPHA::BELLINI "Catherine the Great" 

From: ALPHA::BELLINI "Catherine the Great" 19-APR-1988 15:34 
To: FLAXEN::STARCK 

MAIL-31 

This example shows how a user named BELLINI sets her personal name 
to Catherine the Great. 





) 
I 

I 

~ 
I 

Sort/Merge Utility SORT-1 

Sort/Merge Utility 

The VMS Sort/Merge Utility sorts records or merges input files. To sort 
one or more input files, specify the SORT command. These files are 
sorted according to the fields you select and one reordered output file is 
generated. To merge up to 10 input files that have previously been sorted 
according to the same key fields, specify the MERGE command. One 
output file is generated. 

format 
SORT input-files output-file 

parameters 
input-files 
Specifies the files to be sorted. Up to 10 input files can be sorted to create 
one output file. Multiple input file specifications must be separated by 
commas. The default file type is DAT. 

output-file 
Specifies the file to be created. Only one file can be specified. If you omit 
a file type in the file specification, SORT defaults to the file type of the 
first input file. 

format 
MERGE input-files output-file 

parameters 
input-files 
Specifies the files to be merged. Up to 10 files, presorted by the same 
keys, can be specified. Multiple file specifications must be separated by 
commas. The default file type is DAT. 

output-file 
Specifies the merged file to be created. Only one output file can be 
specified. If you omit a file type in the file specification, MERGE defaults 
to the file type of the first input file. 

usage summary 

Both the SORT and MERGE commands invoke the VMS Sort/Merge 
Utility. After completing an operation, the Sort/Merge Utility exits and 
returns the user to DCL command level. You can specify where you want 
the results of a SORT/MERGE operation with the output file parameter. 



SORT-2 SORT/MERGE 
/CHECK_ SEQUENCE 

SORT/MERGE Qualifiers 

This section describes the qualifiers to the SORT and MERGE commands. These 
qualifiers enable you to define your key fields, to describe the data in those fields, 
and to specify various SORT options. 

/CH ECK_ SEQUENCE 

Verifies the sequence of the records in MERGE input files. By default, the 
sequence of records is checked. 

format 

/CHECK_SEQUENCE 
/NOCHECK_SEQUENCE 

example 
$ MERGE/KEY=(SIZE:4,POSITION:3)/NOCHECK SEQUENCE PRICELDAT -
_$ PRICE2.DAT PRICE.LIS -

The /NOCHECK_SEQUENCE qualifier specifies that sequence of the 
input files, PRICEl.DAT and PRICE2.DAT, need not be checked because 
the records in those files were sorted on the same key and the sequence of 
records is correct. 

/COLLATING_ SEQUENCE 

Selects one of three predefined collating orders for character key fields, or 
specifies the name of a National Character Set (NCS) collating sequence to 
be used in comparing character keys. SORT arranges characters in ASCII 
sequence by default; the EBCDIC and MULTINATIONAL sequences can 
also be used. 

format 

/COLLATING_SEQUENCE:type 
/COLLATING_SEQUENCE:cs-name 

parameters 

ASCII 
Arranges characters according to ASCII sequence. ASCII is the default 
sequence and need not be specified. 

EBCDIC 
Arranges characters according to EBCDIC sequence. The characters 
remain in ASCII representation; only the order is changed. 



~I 

... 

I 

SORT/MERGE SORT-3 
/COLLATING_ SEQUENCE 

MULTINATIONAL 
Arranges characters according to MULTINATIONAL sequence, 
which collates the international character set. When you use the 
MULTINATIONAL sequence, characters are ordered according to the 
following rules: 

• All diacritical forms of a character are given the collating value of the 
character (N., A11

, A' collate as A). 

• Lowercase characters are given the collating value of their uppercase 
equivalents (a collates as A, a" collates as A11

). 

• If two strings compare as equal, tie-breaking is performed. The 
strings are compared to detect differences due to diacritical marks, 
ignored characters, or characters that collate as equal although they 
are actually different. If the strings still compare as equal, another 
comparison is done based on the numeric codes of the characters. 
In this final comparison, lowercase characters are ordered before 
uppercase. 

Care should be taken when sorting or merging files for further processing 
using the MULTINATIONAL sequence. Sequence checking procedures 
in most programming languages compare numeric characters. Because 
MULTINATIONAL is based on actual graphic characters and not on the 
codes representing those characters, normal sequence checking does not 
work. 

Note that, some languages do not support MULTINATIONAL comparisons 
and instead can use the LIB$COMPARE_MULTI routine. 

CS-NAME 
Arranges character keys according to the named sequence, which must be 
a collating sequence defined in a VAX NCS library. 

example 
$ SORT/COLLATING SEQUENCE=MULTINATIONAL -
_$ NAMES.DAT,NOM~DAT LIST.LIS 

This SORT command arranges the input files NAMES.DAT and 
NOM.DAT according to the MULTINATIONAL collating sequence to 
create the output file LIST.LIS. 



SORT-4 SORT/MERGE 
/DUPLICATES 

/DUPLICATES 
Eliminates all but one of multiple records with duplicate keys. By default, 
SORT retains multiple records with duplicate keys. 

format 
/DUPLICATES 
/NODUPLICATES 

example 
$ SORT/KEY=(POSITION:3,SIZE:S,DECIMAL)/NODUPLICATES -
_$ ACCT1,ACCT2 ACCT.LIS 

/KEV 

This SORT command arranges the two input files according to the key 
supplied and eliminates all but one of multiple records with equal keys. 

Describes key fields, including the position, size, sorting order, and data 
type. By default, SORT reorders a file by sorting entire records with 
character data in ascending order. Any other type of key field must be 
specified. When specifying multiple keys, use a separate /KEY qualifier 
for each key. 

format 
/KEV:(field [, ... ]) 

qualifier values 
POS/TION:n 
Specifies the position of the first byte in the key field. A value of 1 to 
32, 767 may be specified. The first byte in a record is considered position 
1. Both the position and the size of the key field must be specified. If 
a decimal sign is stored in a separate byte in the key field, that byte is 
counted when you determine position. 

SIZE:n 
Specifies the length of the key field. Both the position and size of the 
key field must be specified. The total composite size of all keys and the 
original input record length must be less than 32, 767 bytes. If the decimal 
sign is stored in a separate byte in the key field, that byte is not counted 
toward the size of the data. 

The data type of the key determines what values are acceptable when 
specifying size: 

• 1 to 32,767 characters for character data 



-i 
SORT/MERGE 

/KEV 
SORT-5 

• 1, 2, 4, 8, or 16 bytes for binary data 

• 1 to 31 digits for decimal data 

• No value is necessary for floating point data 

ASCENDING 

DESCENDING 

CHARACTER 

BINARY 

Orders the sorting operation in ascending alphabetical or 
numerical order. ASCENDING is the default order. 

Orders the sorting operation in descending alphabetical or 
numerical order. 

Specifies character data in the key field. CHARACTER is the 
default data type. 

Specifies binary data in the key field. 

SIGNED-Specifies signed binary or decimal data in key field. SIGNED is the default for binary 
and decimal data. 
UNSIGNED-Specifies unsigned binary or decimal data in the key field. 

F_FLOATING 

D_FLOATING 

G_FLOATING 

H_FLOATING 

DECIMAL 

Specifies F _FLOATING format data in the key field. 

Specifies D_FLOATING format data in the key field. 

Specifies G_FLOATING format data in the key field. 

Specifies H_FLOATING format data in the key field. 

Specifies decimal data in the key field. 

TRAILING_SIGN-Specifies trailing sign decimal data in the key field. TRAILING_SIGN is the 
default for decimal data. 
LEADING_SIGN-Specifies leading sign decimal data in the key field. 
OVERPUNCHED_SIGN-Specifies overpunched decimal data in the key field. OVERPUNCHED_ 
SIGN is the default for decimal data. 
SEPARATE_SIGN-Specifies separate sign decimal data in the key field. 

ZONED 

PACKED_DECIMAL 

NUMBER:n 

example 

Specifies zoned decimal data in the key field. 

Specifies packed decimal data in the key field. 

Specifies the order of priority of each key if you do not list 
multiple keys in the order of their priority. A value of 1 to 255 
may be specified. 

$ SORT/KEY=(POS:16,SIZ:3)/KEY=(POS:l,SIZ:ll) -
_$ /KEY=(POS:40,SIZ:2,DESC) YRENDAVG.DAT YRAVGSRT.LIS 

This SORT command identifies three key fields. The input file, YRENDAVG, 
is first sorted by the key beginning in position 16, then by the key 
beginning in position 1, and finally by the key beginning in position 40. 
The third key used sorts in descending order. 



SORT-6 SORT/MERGE 
/PROCESS 

/PROCESS 
Defines the internal sorting process. The /PROCESS qualifier allows you 
to choose one of four processes: record, tag, address, or index. By default, 
SORT uses a record sorting process. Use only with the SORT command. 

format 
/PROCESS:type 

qualifier values 
RECORD 
Keeps records intact while sorting and produces an output file consisting 
of complete records. Record is the default sorting process. 

TAG 
Sorts only the keys and then rereads the input file to produce an output 
file consisting of complete records. 

ADDRESS 
Sorts only the keys and produces an output file that is an index of record 
addresses in binary format. The index must be submitted to a program 
for further processing. 

INDEX 
Sorts only the keys and produces an output file that is an index of keys 
and of record addresses in binary form. The index must be submitted to a 
program for further processing. 

example 
$ SORT/KEY=(POS:40,SIZ:2,DESC)/PROCESS=TAG YRENDAVG.DAT
_$ DESCYRAVG.LIS 

This SORT operation uses a tag sorting process to create the output file, 
DESCYRAVG.LIS. 

/SPECIFICATION 
Identifies a SORT or MERGE specification file. 

format 
/SPECIFICATION:filespec 



~ 
I 

I 

I 

' 

qualifier value 
files pee 

SORT/MERGE SORT-7 
/SPECIFICATION 

Specifies the SORT/MERGE specification file. The default file type is SRT. 

example 
$ SORT/SPECIFICATION=ACCTS.SRT SALES1.DAT,SALES2.DAT MAILING.LIS 

This SORT command arranges the input files according to the instructions 
detailed in the specification file, ACCTS.SRT. 

/STABLE 
Directs records with equal keys to the output file in their input file order. 
The default condition is /NOSTABLE. 

format 
/STABLE 
/NOSTABLE 

example 
$ SORT/KEY={POS:l,SI:S,DECIMAL)/STABLE PRICESA.DAT,PRICESB.DAT -
_$ PRICESC.DAT SUMMARY.LIS 

In this SORT operation, records with equal keys from PRICESADAT will 
be listed first, followed by those from PRICESB.DAT, followed by those 
from PRICESC.DAT. 

/STATISTICS 
Displays a statistical summary that can be used for optimization. 

format 
/STATISTICS 



SORT-8 

example 

SORT/MERGE 
/STATISTICS 

$ SORT /STATISTICS PRICE1.DAT,PRICE2.DAT PRICE.LIS 

This SORT command results in the following statistical display: 
VMS Sort/Merge Statistics 

Records read: 793 
Records sorted: 793 

793 
100 
433 

Records output: 
Working set extent: 
Virtual memory: 
Direct I/O: 
Buffered I/0: 
Page faults: 
Elapsed time: 

22 
9 

3418 
00:00:05.98 

Input record length: 80 
Internal length: 80 
Output record length: 80 
Sort tree size: 412 
Number of initial runs: 2 
Maximum merge order: 2 
Number of merge passes: 1 
Work file allocation: 114 
Elapsed CPU: 00:00:03.63 

In the sample statistics display, the sort data structure size is limited by 
the small working set extent. By doubling the working set extent you can 
almost double the sort data structure size, enabling all the records to fit 
in memory without using work files. 

/WORK_FILES 
Used for optimization. 

format 
/WORK_FILES:n 

qualifier value 
n 
Specifies the number of work files requested; 0 to 10 files may be specified. 

example 
$ ASSIGN ORAS: SORTWORKO 
$ ASSIGN DBO: SORTWORKl 
$ ASSIGN DBl: SORTWORK2 
$ SORT/KEY=(POS:l,SI:80)/WORK FILES=3 -
_$ STATS1,STATS2,STATS3,STATS4 SUMMARY.LIS 

Since the input files in this sort operation are large files, specifying three 
work files improves the efficiency of the sort operation. 



~·I 

SORT/MERGE SORT-9 
/FORMAT 

Input File Qualifiers 
This section describes the qualifier to the input file. This qualifier should be 
specified immediately after the input file specification. 

/FORMAT 

Input File Qualifier 

Defines input file characteristics; allows you to specify or override record 
or file size. 

format 
input fi/espec/FORMAT =(type:n,{ ... ]) 

qualifier values 
RECORD_ SIZE:n 
Specifies the file's longest record length (LRL) in bytes. 

The maximum longest record length that can be specified depends on the 
file organization: 

Sequential files 

Relative files 

Indexed-sequential files 

32,767 

16,383 

16,362 

These totals include control bytes for variable records with fixed-length 
control (VFC) format. 

FILE_ SIZE:n 
Specifies input file size in blocks. The maximum file size accepted is 
4,294,967 ,295 blocks. 



SORT--10 SORT/MERGE 
/ALLOCATION 

Output File Qualifiers 
This section describes the qualifiers to the output file. These qualifiers should be 
specified immediately after the output file specification. 

/ALLOCATION 

Output File Qualifier 

Used for optimization. 

format 
output filespecl ALLOCATION:n 

qualifier value 
n 
Specifies the number of blocks to be allocated. A value of 1 to 
4,294,967 ,295 is allowed. 

/BUCKET_SIZE 

Output File Qualifier 

Used for optimization. 

format 
output filespec/BUCKET _SIZE:n 

qualifier value 
n 
Specifies the bucket size. A value of 1 to 32 is allowed. 

/CONTIGUOUS 

Output File Qualifier 

Used for optimization. 

format 
output filespec/CONTIGUOUS 



-

! 

SORT/MERGE SORT-11 
/FORMAT 

/FORMAT 

Output File Qualifier 

Specifies the output file record format if it differs from the input file 
format. 

format 
output filespec/FORMAT =(type:n ... ) 

qualifier values 
FIXED:n 
Specifies fixed-length records in the output file. 

VARIABLE:n 
Specifies variable-length records in the output file. 

CONTROLLED:n 
Specifies variable with fixed-length control (VFC) records in the output 
file. 

n 
Optionally indicates the maximum record size (in bytes) of the output 
records. The maximum record size allowed depends on the file 
organization. 

Sequential files 

Relative files 

Indexed-sequential files 

32,767 

16,383 

16,362 

These totals include control bytes. If you do not specify the maximum 
record size, the default is a length large enough to hold the longest output 
record. 

SIZE:n 
Specifies the size, in bytes, of the fixed portion of VFC (CONTROLLED) 
records, up to a maximum of 255 bytes. If you do not specify SIZE, the 
default is the size of the fixed portion of the first input file. If you specify 
this size as 0, RMS defaults the value to 2 bytes. 

BLOCK_SIZE:n 
Specifies the output file's block size, in bytes, if you have directed the file 
to magnetic tape. You can also accept the default. If the input file is a 
tape file, the block size of the output file defaults to that of the input file. 
Otherwise, the output file block size defaults to the size used when the 
tape was mounted. 



SORT-12 SORT/MERGE 
/FORMAT 

Acceptable values for block size n range from 20 to 65,532. To ensure 
correct data interchange with other Digital systems, however, specify 
a block size of not more than 512 bytes. For compatibility with most 
non-Digital systems, the block size should not exceed 2048 bytes. 

/INDEXED _SEQUENTIAL 

Output File Qualifier 

Defines file organization. 

format 
output fi/espec/INDEXED _SEQUENTIAL 

/OVERLAY 

Output File Qualifier 

Specifies that the output file is to be overlaid on, or written to, an existing 
empty file. 

format 
output fi/espec/OVERLAY 

/RELATIVE 

Output File Qualifier 

Defines output file organization as relative. 

format 

output fi/espec/RELATIVE 

/SEQUENTIAL 

Output File Qualifier 

Defines output file organization as sequential. 

format 

output fi/espec/SEQUENTIAL 



I 

~ 
I 

I 

Appendix A 

TFF Facility 

A.1 Using the Terminal Fallback Facility 
The VMS Terminal Fallback Facility (TFF) provides table-driven character 
conversion for terminals. Because every computer terminal can display only one 
set of characters at a time and each keyboard has a limited number of keys, 
software developed with one character set or terminal can be impossible to use 
with another character set or terminal. To help you bridge the gap between 
incompatible character sets and incompatible terminals, TFF converts characters 
transparently to software applications (unnoticed by the application software 
unless explicit inquiries are made). TFF can convert one character to many 
for characters sent to a terminal, and one to one for characters entered from a 
terminal. 

TFF provides terminal fallback. When an application program sends a character 
that a terminal cannot display, TFF replaces that character with the closest 
possible visual character that the terminal can display. This is called fallback. 

Finally, TFF can perform character compose emulation on input from a terminal. 
You can create characters that have no associated face on the keyboard by 
combining two existing characters. This process is known as composing. 
Although TFF offers compose sequence tables, you can also control which keys 
are auto-compose keys. 

One of the applications of TFF is to allow users with National Replacement 
Character (NRC) set terminals to use software developed with the DEC 
Multinational Character Set (MCS). MCS is essentially the ASCII character 
set plus 128 characters currently used by owners of NRC terminals around the 
world. 

TFF supersedes the function formerly provided by the (VMS Version 4.x) DCL 
command SET TERMINAUFALLBACK. Your system manager uses Terminal 
Fallback Utility (TFU) commands to set up the TFF environment; you can use 
TFU commands to set your TFF terminal parameters. 



A-2 TFF Facility 

A.1.1 The Purpose of Terminal Fallback 

Terminals have physical limits. Every computer terminal can display one set 
of characters and each keyboard has a limited number of keys. Characters are 
arranged into character sets, where each character has a cardinal number (1, 2, 
3, and so forth). Computers then use a character's cardinal number to tell the 
terminal to display that character. For example, to display the character A, a 
computer sends the binary value 64 to the terminal. In the same way, when you 
press the key labeled A, the terminal sends the binary value 64 to the computer. 

One common character set is the ASCII character set, designed by the United 
States primarily for the English language. The ASCII character set, however, 
does not include many characters used in languages other than English. For 
example, the ASCII character set does not include accented characters. 

Because of the limitations of the ASCII character set, many countries replace 
some symbols in ASCII with local characters, mostly accented, to produce their 
own variant of ASCII. A country-specific variant of ASCII is called a National 
Replacement Character set (NRC). 

NRCs do not, however, solve the needs of all countries. Few countries are able 
to get all the characters they want into ASCII, because ASCII consists of a fixed 
set of symbols. Also, different countries replace the same ASCII symbol with 
different local characters. This leaves application software highly dependent on 
a country's NRC. Software designed using one country's NRC cannot be used in 
other countries. 

In an effort to solve these problems, Digital Equipment Corporation designed 
a Multinational Character Set (MCS). MCS contains twice as many characters 
as ASCII, and covers the needs of most European languages. The VT200-series, 
VT300-series, and VAX workstation terminals, for example, use MCS. 

To use an NRC terminal with an MCS-specific application, characters must be 
converted going to and from the terminal to MCS. The Terminal Fallback Facility 
provides this conversion transparently to the application through a library of 
character tables. 

Because most NRC terminals cannot display all the MCS characters, TFF 
replaces those characters with fallback characters. For example, if a terminal 
cannot display the Japanese yen sign Y, TFF sends a Y. 

A.1.2 The Purpose of Compose Characters 

Sometimes, you cannot use software developed with one character set on a 
terminal that does not include all of the required characters. Because each 
terminal keyboard has a limited number of keys, you must use compose sequences 
to create characters that have no associated face on the keyboard. TFF provides 
two compose sequence tables, LATIN_l and ISO_COMPOSE. The default compose 
sequence table is LATIN_l. You should use this table with Digital applications. 
However, if an application uses a character set other than MCS, you need a 



j 
I 

I 

I 

I 

I 

I 

TFF Facility A-3 

matching compose sequence table. For example, to use the ISO table 
ISO_VTlOOMCS, you need the compose sequence table ISO_COMPOSE. Use 
Terminal Fallback Utility commands to choose TFF tables. After you choose the 
tables, TFF handles the conversion process. 

A.1.2.1 Composing Characters with TFF 
To compose a character in the TFF environment, you press CTRUK, and then 
enter the two existing keyboard characters that make up the compose sequence. 
For example, to compose the copyright sign,©, press CTRUK followed by CO; to 
compose ii, press CTRUK followed by n- (lower case n followed by tilde). You can 
create some characters from more than one compose sequence. Some compose 
sequences are order or case sensitive, or both. To abort a compose sequence, press 
the DELETE key. If you press CTRIJK before completing the compose sequence, 
TFF restarts the compose sequence. If you press any other control key before 
completing the compose sequence, the compose sequence fails and the control 
character is sent to the application. 

A.1.2.2 Compose Sequences-Dlgltal LK201 Keyboard and the LATIN_ 1 Table 
Table A-1 contains the sequences defined for the standard LK201 keyboard used 
with VT200-series terminals, DECmate, VAXmate, and Digital workstations. 

TFF converts characters that do not have an accurate visual representation to the 
closest possible fallback representation. If no such fallback exists, TFF replaces 
the character with an underscore. 

Table A-1: LATIN_ 1 Compose Sequence Table 

Fallback Character Name Compose Sensitivity 

II " quotation mark 11 space 

# # number sign ++ 

apostrophe , space 

@ @ commercial at aa 

opening bracket ( ( 

\ \ backslash II or I 

closing bracket )) 

/\ /\ circumflex accent "space 

single quote , space 

{ { opening brace ( -
vertical line I" 

(continued on next page) 



A-4 TFF Facility 

Table A-1 (Cont.): LATIN_ 1 Compose Sequence Table 

Fallback Character Name Compose Sensitivity 

} } closing brace ) -
tilde - space 

inverted exclamation ! ! 

c ¢ cent sign cl or c 

L £ pound sign 1-orl= 
y y yen sign y-ory= 

§ section sign so ors 0 ors! 

a currency sign xoorxO 

© copyright sign coorcO 

a D female ordinal indicator a-

< (( double open angle << 
brackets 

degree sign 0 I\ 

± plus/minus sign +-
1 superscript 1 1 I\ 

2 superscript 2 2 I\ 

3 superscript 3 3 I\ 

u µ micro sign /u Order 

'JI paragraph sign (pilcrow) P! 

middle dot I\ 

0 masculine ordinal o_ 
indicator 

> » double close angle >> 
brackets 

'i4 fraction one-quarter 14 Order 

~ fraction one-half 12 Order 

? l. inverted question mark ? ? 
A A A grave A' Case 

A A A acute A' Case 

A A A circumflex A" Case 

A A A tilde A- Case 

A A A umlaut A" Case 

(continued on next page) 



TFF Facility A-5 

Table A-1 (Cont.): LATIN_ 1 Compose Sequence Table 

Fallback Character Name Compose Sensitivity 

A A Aring A* Case 
}E A E ligature AE Order & Case 

11 

c c C cedilla c, Case 

E :E Egrave E' Case 

E E Ea.cute E' Case 

E E E circumflex E" Case 

E E E umlaut E II Case 

I 1 I grave I' Case 

I f I acute I, Case 

I j I circumflex I" Case 

I i I umlaut I" Case 

N N N tilde N- Case 

0 0 Ograve 0' Case 

0 6 0 acute O' Case 

0 0 0 circumflex 0" Case 

0 0 0 tilde 0- Case 

0 0 0 umlaut 0" Case 

0 0 0 slash 01 Case 

<E 0 E ligature OE Order & Case 

u u U grave U' Case 

u u U acute U' Case 

u u U circumflex u I\ Case 

u u Uumlaut U" Case 
y y Yumlaut Y" Case 

.13 German small sharp s SS Case 

a a a grave a' Case 

a a a acute a' Case 

a a a circuinfl.ex a " Case 

a a a tilde a- Case 

a a a umlaut a II Case 

a a a ring a* Case 

(continued on next page) 



A-6 TFF Facility 

Table A-1 (Cont.): LATIN_ 1 Compose Sequence Table 

Fall back Character Name Compose Sensitivity 

m a e ligature ae Order & Case 

c ~ c cedilla c' Case 

e e e grave e' Case 

e e e acute e' Case 

e ~ e circumflex eA Case 

e e e umlaut e II Case 

l i grave i' Case 

i acute i' Case 

i circumflex iA Case 

i'. i umlaut i II Case 

n ii n tilde n- Case 

0 0 o grave 0' Case 

0 6 o acute 0' Case 

0 6 o circumflex 0A Case 

0 0 o tilde o- Case 

0 6 o umlaut 0 II Case 

0 f6 o slash o/ Case 

re o e ligature oe Order & Case 

u u u grave u' Case 

u u u acute u' Case 

u u u circumflex UA Case 

u ii u umlaut U II Case 

y y yumlaut y II Case 

Note that the characters circumflex (/\),tilde(-), and grave accent(') are used 
frequently to compose MCS characters. Many NRC sets, however, replace them 
with an NRC character. Thus, they are not available on an NRC keyboard. 
For each one of these keys, TFF accepts a replacement key. If you use this 
replacement key, however, you must begin the compose sequence with it; these 
compose sequences are order sensitive. For example, you can compose E with AE, 
EA or $E, but not with E$. TFF offers the following replacement keys: 

• $ (dollar sign) replaces /\ (circumflex) 

• % (percent) replaces - (tilde) 

• & (ampersand) replaces' (grave accent) 



~·I 

TFF Facility A-7 

A.1.3 Setting TFF Terminal Parameters 

After your system manager· has installed and set up the environment for TFF 
on your system, you can use Terminal Fallback Utility (TFU) commands to set, 
change, and display TFF terminal parameters. You can choose and set the default 
conversion tables for your terminal. 

Typically, your system manger sets one fallback table and one compose sequence 
table as system defaults. These, and perhaps other tables, are loaded into 
nonpaged dyna~ic memory pool, making them available to you. If you want 
to make use of the system conversion table defaults, you can log in to any local 
terminal and enter a DCL or TFU SET TERMINAUFALLBACK command. In 
addition, you can use the TFU SET TERMINAUFALLBACK command to set 
your own default fallback tables from any tables previously loaded into nonpaged 
dynamic memory pool. If you need a table that is available in the TFF library, 
but not loaded into nonpaged dynamic memory pool, you must ask your system 
manager to load the table. 

After your system manager sets up the TFF environment, you can make full use 
of the Terminal Fallback Utility SET TERMINAIJFALLBACK command and its 
many options. For a detailed description of these options, see the TFU Commands 
section. 

Use the following commands to manage TFF terminal parameters: 

Command 

DIRECTORY 

SET TERMINAUFALLBACKC=option] 

SHOW DEFAULT_TABLE 

SHOW TABLES 

SHOW TERMINAIJFALLBACK 

Use 

Displays the conversion tables available in the TFF 
library. 

Enables or modifies TFF terminal parameters. This 
is the primary Terminal Fallback Utility command. 
Use this command to activate the desired behavior 
at the specified terminal. 

Displays the default fallback character conversion 
table. 

Displays information about loaded conversion tables. 
This information is helpful before you try to enable 
TFF terminal parameters. 

Displays TFF terminal parameters. 





I 

.. I 

I 

Appendix B 

Character Sets 

The following tables present the ASCII character set and the DEC Multinational 
Character Set. 

B.1 ASCII Character Set 
The ASCII character set consists of the characters shown in the following table. 
The characters with names are not printable. You can calculate the numeric 
value of a character by constructing a 2-digit hexadecimal number in which the 
column position of the character represents the 16 position of the hexadecimal 
number and the row position of the character represents the units position of the 
number. For example, an uppercase A has the numeric value 41 hexadecimal. 
String comparisons are made using these values. 

Hex 
Values 0 1 2 3 4 5 6 7 

0 NUL DLE SP 0 @ p p 
1 SOH DCl 1 A Q a q 
2 STX DC2 " 2 B R b r 
3 ETX DC3 # 3 c s c s 
4 EOT DC4 $ 4 D T d t 
5 ENQ NAK % 5 E u e u 
6 ACK SYN & 6 F v f v 
7 BEL ETB 7 G w g w 
8 BS CAN ( 8 H x h x 
9 HT EM ) 9 I y i y 
A LF SUB * J z j z 
B VT ESC + K [ k { 
c FF FS < L \ 1 I 
D CR GS M ] m } 
E so RS > N A n 
F SI us I ? 0 0 DEL 

ZK-1774-GE 



e-2 Character Sets 

B.2 ASCII and DEC Multinational Character Set Tables 
Figure B-1 represents the ASCII character set (characters with decimal values 
0 through 127). The first half of each of the numbered columns identifies the 
character as you would enter it on a VT300-, VT200-, or VTlOO-series terminal 
or as you would see it on a printer (except for the nonprintable characters). The 
remaining half of each column identifies the character by the binary value of the 
byte; the value is stated in three radixes-octal, decimal, and hexadecimal. For 
example, the uppercase letter A has, under ASCII conventions, a storage value 
of hexadecimal 41 (a bit configuration of 01000001), equiva.Ient to 101 in octal 
notation and 65 in decimal notation. 

The ASCII character set comprises the first half of the DEC Multinational 
Character Set. Figure B-2 represents the second half of the DEC Multinational 
Character Set (characters with decimal values 128 through 255). The first half of 
each of the numbered columns identifies the character as you would see it on a 
VT300- or VT200-series terminal or printer (these characters cannot be output on 
a VTlOO-series terminal). 



.,I 
I 

J 
I 

I 

Character Sets B-3 

Figure B-1: Graphical Representation of the ASCII Character Set 

Column 0 1 2 3 4 5 6 7 
b8 Bits 0 0 0 0 0 0 0 0 

b7 0 0 0 0 1 1 1 1 
b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 
Row b4 b3 b2 b1 

0 20 40 60 100 120 ' 140 160 
0 0 0 0 0 NUL 0 OLE 16 SP 32 0 48 @ 64 p 80 96 p 112 

0 10 20 30 40 50 60 70 
1 DC1 21 41 61 101 121 141 161 

1 0 0 0 1 SOH 1 17 I 33 1 49 A 65 Q 81 a 97 q 113 
1 (XON) 11 21 31 41 51 61 71 
2 22 

" 
42 62 102 122 142 162 

2 0 0 1 0 STX 2 DC2 18 34 2 50 B 66 R 82 b 98 r 114 
2 12 22 32 42 52 62 72 
3 DC3 23 43 63 103 123 143 163 

3 0 0 1 1 ETX 3 19 # 35 3 51 c 67 s ~ c 99 s 115 
3 (XOFF) ta 23 33 43 63 73 
4 24 44 64 104 124 144 164 

4 0 1 0 0 EOT 4 DC4 20 $ 36 4 Ji D 68 T 84 d 100 t 116 
4 14 24 44 54 64 74 
5 25 45 65 105 125 145 165 

5 0 1 0 1 ENQ 5 NAK 21 % 37 5 53 E 69 u 85 e 101 u 117 
5 15 25 35 45 55 65 75 
6 26 46 66 106 126 146 166 

6 0 1 1 0 ACK 6 SYN 22 & 

=-
6 54 F 70 v 

-=-
f ~ v 118 

6 1.§_ 36 46 76 
7 27 ~ 47 67 107 127 147 167 

7 0 1 1 1 BEL 7 ETB 23 39 7 55 G 71 w 87 g 103 w 119 
7 17 27 37 47 57 67 n 
10 30 50 70 110 130 150 170 

8 1 0 0 0 BS 8 CAN 24 ( 40 8 56 H 72 x 88 h 104 x 120 
8 18 28 38 48 58 68 ~ 
11 31 51 71 111 131 151 171 

9 1 0 0 1 HT 9 EM 25 ) 41 9 S7 I 73 y 89 I 10S y 121 
9 19 29 39 49 S9 _§_9 79 
12 32 

* 
52 72 112 132 1S2 172 

10 1 0 1 0 LF 10 SUB 26 42 : 58 J 74 z 90 J 106 z 122 
A 1A 2A 3A 4A SA 6A 7A 
13 33 53 73 113 133 153 173 

11 1 0 1 1 VT 11 ESC 27 + 43 ; 59 K 7S [ 91 k 107 { 123 
B 18 28 38 48 SB 68 78 
14 34 54 74 114 134 154 174 

12 1 1 0 0 FF 12 FS 28 ' 44 < 60 L 76 \ 92 I 108 I 124 
c 1C 2C 3C 4C SC 6C 7C 

13 CR 
1S 

GS 
35 56 75 115 135 155 175 

1 1 0 1 13 29 - 45 = 61 M n ] 93 m 109 } 12S 
0 10 20 30 40 _§_O 6_0 70 
16 36 56 76 116 136 156 176 

14 1 1 1 0 so 14 RS 30 46 > 62 N 78 A 94 n 110 - 126 
E 1E 2E_ 3E 4E SE 6-E 7E 
17 37 S7 n 117 137 1S7 1n 

15 1 1 1 1 SI 1S us 31 I 47 ? _:_ 0 79 - ··~·~· 0 1~ DEL ~ F 1F 2F 4F 

Key 

Charaderl ESC I ~ I ~n& 
ZK-1752-GE 



B-4 Character Sets 

Figure B-2: Graphical Representation of the DEC Multinational Extension to 
the ASCII Character Set 

8 9 10 11 12 13 14 15 Column 

1 1 1 1 1 1 1 1 b8 Bits 
0 0 0 0 1 1 1 1 b7 

0 0 1 1 0 0 1 1 b6 
0 1 0 1 0 1 0 1 b5 

b4b3b2 b1 Row 

~~ DCS ~~ 
240 

0 ~~~ A. ~~ 320 
a 

340 ~ 0 160 20S 224 0 0 0 0 
so 90 AO BO co DO EO FO 

1g~ PU1 ~~ I -m ± ~~ A ~g~ A fa~ a ~~~ f'i ~~~ 0 0 0 1 1 
S1 91 A1 B1 C1 01 E1 F1 

~~ PU2 ~~ ¢ ~~~ 2 ~~~ A ~g~ 0 ~~~ A ~~~ 0 ~~ 0 0 1 0 2 
82 92 A2 B2 C2 02 E2 F2 

~03 223 243 263 
A 

303 
6 

323 343 ~: 131 STS 147 £ 163 3 179 195 211 a 227 6 0 0 1 1 3 
83 93 A3 B3 C3 03 'E3 F3 

IND ~g~ CCH ~~ ~: 1: A 
304 

0 
324 

i 
~ 

0 g: 4 196 212 22S 0 1 0 0 
S4 94 A4 B4 C4 04 E4 F4 

NEL ~: MN ~~~! ¥ ~~~ m A .~~! 0 
325 

A 
345 

6 ~:1 5 µ 213 229 0 1 0 1 
S5 95 A5 B5 C5 05 ES F5 

~: l~ 1: ~~ 306 
0 ~~~ ~g 366 

SSA SPA 1I IE. 19S ae 0 246 0 1 1 0 6 
86 96 A6 B6 C6 06 E6 F6 

ESA ~~ EPA m § ~~~ ~g c; ~g~ CE m ~ ~~ CB ~~ 0 1 1 1 7 
87 97 A7 87 C7 07 E7 F7 

~~ ~30 ~~ ~ E 
310 330 350 370 

HTS 152 a 200 "' 216 a 232 f/J 248 1 0 0 0 8 
S8 98 AS B8 cs 08 ES FS 

HTJ m 231 
© ~~ 1 ~~ E ~~~ u -~i e ~~~ u ~~~ 9 153 1 0 0 1 

S9 99 A9 B9 C9 09 E9 F9 

VTS ~~ ~~ I ~~~ II -~~~ ! -~~~ (J -~~ 6 
··~~ u ~~ 1 0 1 0 10 

SA 9A AA BA CA DA EA FA 

PLD ~~~ CSI ~: cc m » m E ~~~ 0 m i ~~~ Q ~~~ 1 0 1 1 11 
SB 9B AB BB CB DB EB FB 

PLU 
-~ 

ST ~: ~~~ 1/4 ~~ ) ~~: 0 
··~ 

l ·~~ u ~~~ 1 1 0 0 12 
SC 9C AC BC cc DC EC FC 

RI m osc ~~ ~~~ Y.z ~~~ i ~~~ ~ ~~ ( ~~~ 9 ~~ 1 1 0 1 13 
SD 90 AD BO CD DD ED FD 

SS2 m PM ~~ ~~ ~~g t ~~ ·~~ i ~= ~~ 1 1 1 0 14 
SE 9E AE BE CE DE EE FE 

SS3 m APC ~~~ m -277 
I ·-~~~ B ]~ T -~~~ g~ 15 l, 191 1 1 1 1 

SF 9F AF BF CF OF EF FF 

Key 

Charaaer I ESC I ~ I~~ 
ZK-1753-GE 



Appendix C 

Expressions 

The following table lists data operations and comparisons in order of precedence, 
beginning with the highest: 

Operator Precedence Description 

+ 1 Indicates a positive number 

1 Indicates a negative number 

* 2 Multiplies two numbers 

I 2 Divides two numbers 

+ 3 (1) Adds two numbers ( 2) Concatenates two character strings 

3 (1) Subtracts two numbers ( 2) Subtracts two character strings 

.EQS. 4 Tusts if two character strings are equal 

.GES. 4 Tusts if first character string is greater than or equal 

.GTS. 4 Tusts if first character string is greater than 

.LES. 4 Tusts if first character string is less than or equal 

.LTS. 4 Tusts if first character string is less than 

.NES. 4 Tusts if two character strings are not equal 

.EQ. 4 Tusts if two numbers are equal 

.GE. 4 Tusts if first number is greater than or equal to 

.GT. 4 Tusts if first number is greater than 

.LE. 4 Tusts if first number is less than or equal to 

.LT. 4 Tusts if first number is less than 

.NE. 4 Tusts if two numbers are not equal 

.NOT. 5 Logically negates a number 

.AND. 6 Combines two numbers with a logical AND 

.OR. 7 Combines two numbers with a logical OR 



e-2 Expressions 

The following tables demonstrate the results of logical operations on a bit-by-bit 
basis and a number-by-number basis. In logical operations, a character string 
beginning with an uppercase or lowercase Tor Y is treated as the number 1; a 
character string beginning with any other character is treated as the number 0. 
In logical operations, odd numbers are considered true and even numbers and 
zero are considered false. 

Given Results 
Bit A BitB .NOT.A A.AND.B A.OR.B 

1 1 0 1 1 

1 0 0 0 1 

0 1 1 0 1 

0 0 1 0 0 

Given Results 
Number A NumberB .NOT.A A.AND. B A.OR.B 

odd odd even odd odd 
odd even even even odd 
even odd odd even odd 
even even odd even even 



~I 

I 

I 

'I 

Appendix D 

Terminal Keys 

The following tables present the operating system's interpretation of keys on 
terminals in the VT300-, VT200-, and VTlOO-series. 

D.1 VT300 and VT200 Terminal Series 
The following table describes how the operating system responds when various 
keys and control characters are pressed on VT300- or VT200-series terminals. 
The table assumes that line editing is enabled (the default). (Characters not 
mentioned in the table are treated as null characters.) 

Character 

CTRUA 

CTRUB 

CTRUC 

CTRUD 

CTRUE 

CTRUF 

CTRUH 

CTRUI 

CTRUJ 

CTRUM 

CTRUO 

CTRUQ 

CTRI/R 

CTRUS 

CTRUT 

HEX 

01 

02 

03 

04 

05 

06 

08 

09 

OA 

OD 

OF 

11 

12 

13 

14 

System Response 

Switches between overstrike and insert modes 

Recalls previous line 

Interrupts current image (image may define alternate CTRUC action) 

Moves cursor left one character 

Moves cursor to end of line 

Moves cursor right one character 

Moves cursor to beginning of line 

Horizontal tab 

Deletes previous word 

Line terminator 

Suspends/resumes echoing of output 

Resumes output (see CTRUS) 

Refreshes current line 

Suspends output (see CTRUQ) 

Displays process information (must be enabled with SET CONTROL=T 
command) 



0-2 Terminal Keys 

Character 

CTRUU 

CTR UV 

CTRI/X 

CTRUY 

CTRUZ 

Data keys 

<&J 

CTRL 

CTRU[ (ESC) 

CTRIJF5 

DOWN ARROW 

Fl (No Scroll) 

F5 (Break) 

F6 (Interrupt) 

Flo (Exit) 

Fl2 (Backspace) 

Fl3 (Line Feed) 

Fl4 ("A) 

LEFT ARROW 

PFn 

RETURN 
RIGHT ARROW 

TAB 

UPARROW 

HEX System Response 

15 Deletes characters from cursor to beginning of line 

16 Passes next character or escape sequence to the image without 
interpreting it as described in this table 

18 Purges type-ahead buffer; if characters are on the current line, deletes 
characters from cursor to beginning of line 

19 Interrupts current image 

1A Indicates end of file 

1B 

08 

01 

Enter appropriate character 

Deletes previous character 

Modifies another key 

Begins escape sequence 

Executes answerback message 

Repeats current line 

Suspends/resumes output 

Shuts down transmission line 

Interrupts the current image 

Terminates the current image or command procedure 

Moves cursor to beginning of line 

Deletes previous word 

Switches between overstrike and insert modes 

Moves cursor left one character 

Can be defined (see DEFINE/KEY) 

Line terminator 

Moves cursor right one character 

Horizontal tab 

Repeats current line 

D.2 VT100 Terminal Series 
The following table describes how the operating system responds when various 
keys and control characters are pressed on VTlOO-series terminals~ The table 
assumes that line editing is enabled (the default). (Characters not mentioned in 
the table are treated as null characters.) 



··I 
Terminal Keys D-3 

Character HEX System Response 

CTRUA 01 Switches between overstrike and insert modes 

CTRUB 02 Recalls previous line 

CTRUC 03 Interrupts current image (image may define alternate CTRUC 
action) 

CTRIJD 04 Moves cursor left one character 

CTRUE 05 Moves cursor to end of line 

CTRUF 06 Moves cursor right one character 

CTRUH 08 Moves cursor to beginning of line 

CTRUI 09 Horizontal tab 

CTRUJ OA Deletes previous word 

CTRI.JM OD Line terminator 

CTRUO OF Suspends/resumes echoing of output 

CTRUQ 11 Resumes output (see CTRUS) 

CTRUR 12 Refreshes current line 

CTRUS 13 Suspends output (see CTRUQ) 

CTRUT 14 Displays process information 

CTRUU 15 Deletes characters from cursor to beginning of line 

CTRIN 16 Passes next character or escape sequence to the image without 
interpreting it as described in this table 

CTRUX 18 Purges type-ahead buffer; if characters are on the current line, 
deletes characters from cursor to beginning of line 

CTRUY 19 Interrupts current image 

CTRUZ 1A Indicates end of file 

Data keys Enter appropriate character 

Backspace ( "H) 08 Moves cursor to beginning of line 

BREAK Shuts down transmission line 

CTRL Modifies another key 

CTRI/BREAK Executes answerback message 

DELETE Deletes previous character 

DOWN ARROW Repeats current line 

ESC 1B Begins escape sequence 

LEFT ARROW Moves cursor left one character 

LINEFEED Deletes previous word 

NO SCROLL Suspends/resumes output 



D-4 Terminal Keys 

Character HEX System Response 

PFn 

RETURN 
RIGHT ARROW 

TAB 

UPARROW 

Can be defined (see DEFINE/KEY) 

Line terminator 

Moves cursor right one character 

Horizontal tab 

Repeats current line 



Index 

A 
Absolute time 

combijlled with delta time, 3-14 
default values, 3-12 
examples, 3-13 
rules for entering, 3-12 
syntax, 3-12 

Access control list 
SeeACL 

Access control string 
copying files between nodes with, 4-6 
in a logical node name, 11-14 

Access mode 
and the DEFINE command, 11-11 
for a logical name, 11-11 
for a logical name table, 11-11 
using qualifiers to specify, 11-11 

ACL (access control list) 
default protection, 4-10 
definition, 1-11 

ADVANCE command (EDT), 7-12 
ALLOCATE command (DCL), 1-7 
Arrow key 

See Down arrow key, Left arrow key, 
Right arrow key, Up arrow key 

ASCII 
collating sequence, 9-3 

ASSIGN command (DCL), 11-2 
Assignment statement 

creating a blank line with, 12-18 
creating a global symbol with, 12-4 
creating a local symbol with, 12-4 
formatting output records with, 12-18 
for numeric overlay, 12-18 
including a symbol as part of a 

character string, 12-11 

Assignment statement (cont'd.) 
syntax, 12-4 

for numeric overlay, 12-17 
for string overlay, 12-17 

Asterisk (*) wildcard character 
rules for using, 4-5 

ATTACH command 
restriction on using, 6-33 

ATTACH command (DCL), 10-5 

B 
BACKSPACE key, 3-17 
BACKUP command (EDT), 7-12 
Batch job 

job number of, 10-8 
log file, 10-8 
output, 10-8 
passing parameters to, 13-10, 13-13 
restarting, 10-9, 13-24 
submitting, 10-8 
submitting command procedure as, 

1-3 
submitting program as, 1-3 
submitting sort operation as, 9-5 

Batch mode 
definition, 1-3 

BOTTOM command (EDT), 7-11 
Buffer 

displaying, 6-14 
displaying list of system buffers, 6-14 
editing multiple buffers, 6-14 
EDT commands for using, 7-25 
listing all, 6-14 
MAIN, 7-25 
PASTE, 7-22 



lndex-2 

Buffer (cont'd.) 
reading file into 

with EDT, 7-25 
writing 

with EDT, 7-25 
Buffer (EVE), 6-1 
BUFFER command 

changing buffers using, 6-14 
creating a new buffer with, 6-14 
putting specific buffer into current 

window, 6-14 
writing buffer to a file using, 6-15 

Buffer List buffer 
displaying, 6-14 

Built-in command 
definition, 1-3 

c 
CHANGE command (EDT), 7-6 
Character data 

See also Character string 
alphanumeric, 12-7 
expression, 12-12 
nonprintable, 12-8 
special, 12-8 

Character string 
comparison operators in expression, 

12-12 
concatenation, 12-12 
creating, 12-8 
evaluation of, 12-5 
expression, 12-12 
multiple string values in an expression, 

12-12 
passing to command procedure, 13-11 
reduction, 12-12 
substring replacement in, 12-17 
symbol substitution in, 12-6 
used as symbol, 12-3 

CHAR command (EDT), 7-8, 7-18 
CLOSE command (DCL), 13-18 
Collating sequence 

ASCII, 9-3 
EBCDIC, 9-3 
multinational, 9-4 

Combination time 
examples, 3-14 
rules for entering, 3-14 
syntax, 3-14 

Command 
See also Command procedure 
abbreviating, 3-6 

in command procedures, 3-6 
built-in, 1-3 
canceling, 3-5 
DCL command line syntax, 1-3, 3-3 
rules for entering, 3-5 
types, 1-3 

Command image 
definition, 1-3, 1-8 

Command level 
nesting, 13-5 

Command line 
continuation over multiple lines, 3-6 
editing 

list of keys for, 3-15, 3-18 
parts of, 1-3 
recalling, 3-10, 3-11 
syntax, 1-3 

Command procedure 
and file 1/0, 13-17 
cleanup, 13-25 
comments in, 13-2 
creating global symbol in, 13-15 
data line in, 13-9 
definition, 13-1 
directing output to terminal, 13-16 
executing 

interactively, 13-3 
on remote node, 13-3 

exiting, 13-5 
format, 13-2 
1/0 errors in, 13-24 
input, 13--10 

from file, 13-14 
from terminal, 13-14 

invoking within a command procedure, 
13-3 

loop in, 13-7 
nested, 13-4 
passing character string to, 13-11 



Command procedure (cont'd.) 
passing data to, 13-9 
passing parameters to, 12-5, 13-10 
passing symbols to, 13-11 
redirecting output, 13-16 
returning status value in, 13-5 
SET DEFAULT command (DCL) in, 

13-17 
submitting as batch job, 1-3 
writing file from a, 13-18 

Command qualifier, 3-8 
definition, 3-8 
rules for entering, 3-8 

Command values 
date and time formats, 3-12 

Comment 
in a command procedure, 13-2 

CONTINUE command (DCL), 10-4 
CONTINUE command (EDT), 7-7 
Controller designation field 

definition, 1-7 
Converting from EDT to EVE, 6-33 
COPY command (DCL), 4-6 
COPY command (MAIL), 8-10 
CREATE/DIRECTORY command (DCL), 

5-3,5-6 
CREATE/NAME_TABLE command (DCL), 

11-12 
CREATE command (DCL), 4-5 
CTRUA 

command line editing with, 6-6 
CTRUB, 6-7 

recalling commands with, 3-10, 3-16 
CTRUC 

canceling a MAIL message with, 8-5, 
8-7 

canceling EDT command with, 7-5 
interrupting or canceling DCL 

commands with, 3-16 
restriction with journaling facility, 

6-13 
CT RUE 

command line editing with, 6-6 
CTRL/T 

checking the status of your process, 
2-5 

lndex-3 

CTRL/T (cont'd.) 
interrupting DCL commands with, 

3-16 
CTRUU 

command line editing with, 6-6 
CTRUW, 6-12 

refreshing screen display in EDT with, 
7-7 

refreshing screen display with, 3-16, 
10-4 

CTRUY 
aborting remote session with, 2-7 
interrupting an EDT editing session 

with, 7-7 
interrupting an image with, 10-4 
interrupting or canceling DCL 

commands with, 3-16 
CTRUZ 

as end-of-file terminator, 3-15, 4-6 
sending a file in MAIL with, 8-7 
sending a MAIL message with, 8-5 
writing a file in EDT with, 7-2 

CTRL keys, 3-15, 3-18 
Cursor control 

in EDT, 7-8, 7-12 
CUT command (EDT), 7-21 

D 
$DEFAULTS$ buffer, 6-18 
Data 

logical, 12-10, 12-16 
numeric, 12-8, 12-14 
passing to command procedure, 13-9 

Date 
See also Absolute time 
See also Combination time 
See also Delta time 
specifying absolute and delta date and 

time combinations, 3-14 
specifying absolute date and time, 

3-12 
specifying delta date and time, 3-13 

DCL (DIGITAL Command Language) 
definition, 2-1 



lndex-4 

DCLcommand 
interrupting or canceling 

with CTRUC, 3-16 
with CTRUY, 3-16 

interrupting with CTRL/T, 3-16 
recalling 

with CTRUB, 3-16 
with Down arrow key, 3-16 
with Up arrow key, 3-16 

using in EVE, 6-33 
DEASSIGN command (DCL), 11-4 

and process logical name table, 11-5 
DECK command (DCL), 13-9 
DECnet 

See also Network 
logging in to remote systems with, 1-2 

DECnet-VAX 
access violation, 4--6 
and logical node name, 11-14 
file manipulation with, 4--6 

Default 
definition, 2-4 

Default protection, 4-9 
Default settings, 6-15 
Default values 

provided by system, 3-5, 3-6 
DEFINE/KEY command (MAIL), 8-13 
DEFINE command (DCL), 11-2 

and process logical name table, 11-5 
example with access mode qualifier, 

11-11 
specifying the access mode with, 11-11 

DEFINE KEY command (EDT), 7-42 
DEFINE MACRO command (EDT), 7-44 
DEL C command (EDT), 7-14 
DEL EOL command (EDT), 7-16 
DELETE/SYMBOL command (DCL), 

12-3 
DELETE command (DCL), 4-8 

and wildcard characters, 4-8 
DELETE command (MAIL), 8-11 
DELETE key, 3-17 
DEL L command (EDT), 7-15 
Delta time 

combined with absolute time, 3-14 
default values, 3-13 

Delta time (cont'd.) 
examples, 3-14 
rules for entering, 3-13 
syntax, 3-13 

DEL W command (EDT), 7-15 
Detached process 

batch job as, 1-3 
definition, 1-7 

Device, 1--6 
mass storage, 1-6 
record oriented, 1-6 
unit record, 1-6 

Device code 
definition, 1-7 

Device field 
in full file specification, 1-5 

Device name 
See also Device field 
See also Physical device name 
generic, 1-7 
logical name equated to, 1-7 
rules for entering, 1-6 

DIGITAL Command Language 
See DCL 

directory 
definition, 5-1 

DIRECTORY command (DCL), 5-3 
DIRECTORY command (MAIL), 8-4, 

8-10 
Directory field 

in full file specification, 1-5 
using an asterisk wildcard character in, 

4-5 
using a percent sign wildcard character 

in, 4-5 
Directory file 

See also Directory structure 
creating, 5-3 
default, 1-5, 5-4 
definition, 1-5 
deleting, 5-5 
login, 1--5 
named format, 5-3 
protection, 5-6 
setting default to another, 5-4 
top level, 1-5 



~I 
I 

Directory name 
named format in a file specification, 

5-3 
replacing 

with the ellipsis (. .. ) wildcard 
character, 5-7 

with the hyphen (-) wildcard 
character, 5-8 

Directory structure 
master file directory in, 1-5 
sample, 5-1 
subdirectory in, 1-5 
top level directory in, 1-5 
user file directory in, 1-5 

Disk, 1-6 
See also Device 
contents of, 1-5, 1-6 

Displaying EVE command list, 6-2 
Distribution list 

creating in MAIL, 8-6 
Do key 

entering commands with, 6-7 
recalling EVE command with, 6-7 

Down arrow key 
recalling commands with, 3-10, 3-16 

E 
EBCDIC 

collating sequence, 9-3 
EDIT/EDT command (DCL) 

/READ_ONLY qualifier to, 4-8 
EDITtrPU command 

EVE 
using /RECOVER qualifier with, 

6-13 
invoking EVE with, 6-1 

EDITtrPU command (DCL) 
/READ_ONLY, 4-8 

EDIT command (DCL), 7-1 
Editing session 

beginning, 6-1 
EVE 

recovering after system 
interruption, 6-13 

Editing session (cont'd.) 
exiting from EDT, 7-2 
recovering EDT after system 

interruption, 7-7 

lndex-5 

refreshing screen display during EDT, 
7-7 

refreshing the screen during, 6-12 
EDT, defining keys in, 7-27 
EDT conversion, 6-33 
EDT editor 

as default MAIL editor, 8-14 
buffer 

commands for using, 7-25, 7-27 
definition, 7-1 

changing modes in, 7-6 
cursor control in, 7-8, 7-12 
defining macros in, 7-44 
displaying a file with, 7-3 
exiting from, 7-2 
invoking, 7-1 
keypad commands, 7-3 
line-editing commands, 7-3, 7-6 
reading a file with, 7-25 
recovering session after system 

interruption, 7-7 
replacing text with, 7-19 
setting screen display in, 7-42 
writing text to a file with, 7-25 

Ellipsis( ... ) wildcard character 
in a directory name, 5-7 

ENTER command (EDT), 7-6 
EOB (End-of-buffer) symbol, 7-2 
EOD command (DCL), 13-9 
EOL command (EDT), 7-9 
Equivalence name 

definition, 1-10 
Error message 

description of, 2-4 
EVE 

status line 
definition of, 6-2 

EVE, defining keys in, 6-18 
EVE command line 

correcting mistakes on, 6-6 
EVE commands 

HELP command, 6-2 



lndex-6 

EVE commands (cont'd.) 
recalling, 6-7 
REPEAT command, 6-7 
SPAWN command, 6-33 

EVE editing keys 
Find key, 6-9 

EVE editing session 
ending, 6-2 

EVE editor 
as default MAIL editor, 8-14 
buffer 

definition of, 6-2 
creating buffers, 6-14 
creating subprocess, 6-33 
editing command lines, 6-6 
editing session 

saving text created during, 6-2 
entering commands, 6-4, 6-7 
finding text, 6-9 
getting started with, 6-1 
leaving subprocess, 6-33 
message window 

description of, 6-2 
modes of editing, 6-2 
reaching DCL, 6-33 
reading batch job log file with, 10-8 
reading file into buffer, 6-14 
replacing text, 6-11 
window 

definition of, 6-2 
Executable image 

See Image 
Execute procedure(@) 

executing command procedure 
interactively with, 13-3 

EXIT command (DCL), 13-5 
EXIT command (EDT), 7-2 
EXIT command (EVE), 6-3 
Expression 

character, 12-12 
definition, 12-11 
logical, 12-16 
numeric, 12-14 
rules for determining the value of, 

12-20 
string comparison operators, 12-12 

Expression (cont'd.) 
summary of operators, 12-19 

EXTRACT command (MAIL), 8-8 

F 
F$ELEMENT lexical function, 13-9 
F$ENVIRONMENT lexical function, 

13-26 
F$EXTRACT lexical function, 13-8 
F$GETJPI lexical function, 13-25 
F$SEARCH lexical function, 13-19 
F6 through F14 keys, 3-15, 3-18 
File 

See also Directory file 
copying, 4-6 

between nodes, 4-6 
with access control string, 4-12 

creating in command procedure, 13-18 
definition, 4-1 
editing in command procedure, 13-21 
merging, 9-5 

and sequence checking, 9-6 
merging multiple, 1-9 
open file quota, 13-25 
purging, 4-9 
reading from command procedure, 

13-20 
renaming, 4-7 
sorting, 1-9 
writing in command procedure, 13-18 

FILE command (MAIL), 8-9 
File name 

See also File name field 
definition, 4-2 
rules for entering, 4-2 
valid characters in, 4-2 

File name field 
in full file specification, 1-5 
using an asterisk wildcard character in, 

4-5 
using a percent sign wildcard character 

in, 4-5 
File protection, 4-9 

See also Protection 



File specification 
See also Wildcard character 
as a search list, 11-13 
device field in, 1-5 
directory field in, 1-5 
file name field in, 1-5 
file type field in, 1-5 
file version number field in 1-5 
format, 1-5 ' 
logical name in, 1-10, 11-1 
node field in, 1-5 
node name in, 4-6 

File type 
definition, 4-2 
list of default, 4-2 
rules for entering, 4-2 

File type field 
asterisk wildcard character in, 4-5 
in full file specification, 1-5 
using a percent sign wildcard character 

in, 4-5 
File version number 

definition, 4-4 
File version number field 

in full file specification, 1-5 
using an asterisk wildcard character in 

4-5 ' 
FILL command (EDT), 7-23, 7-24 
FIND command (EDT), 7-17 
FIND command (EVE) 

using, 6-9 
Find key 

using in EVE, 6-9 
FNDNXT command (EDT), 7-19 
Foreign command 

definition, 1-3 
Function keys, 3-15, 3-18 

G 
Generic device name 

definition, 1-7 
GET FILE command 

creating a new buffer with, 6-14 
reading file into buffer with, 6-14 

lndex-7 

Global symbol 
command levels available to, 12-4 
creating in command procedure, 13-15 

Global symbol table 
DCL reserved symbols, 12-5 
definition, 12-5 

GOLD key 
in EDT, 7-3 

Group logical name table 
definition, 11-6 
logical name for, 11-6 

H 
HELP command (DCL), 2-5 
HELP command (EDT), 7-5 
HELP command (EVE), 6-2 

displaying command list, 6-2 
with specific command, 6-2 

HELP command (MAIL), 8-2 
HELP facility 

EDT, 7-5 
Hyphen 

and command line continuation, 3-6 
Hyphen (-) wildcard character 

in a directory name, 5-8 

I 
I/O error 

in command procedures, 13-24 
Image 

See also Command image 
definition, 1-7, 1-8 
noncommand, 1-8 
See also Foreign command, 1-3 

INCLUDE command (EDT), 7-25 
INCLUDE FILE command 

reading file into buffer with, 6-14 
Initialization file 

for default settings, 6-17 
Input stream 

definition, 11-5 
INQUIRE command (DCL), 13-13 



lndex-8 

Integer 
See Number 

Interactive mode 
definition, 1-3 

Interactive utility 
See Utility 

Iterative translation 
See also Logical name translation 

J 
Job logical name 

definition, 11-6 
in a job tree, 11-6 

Job logical name table 
list of default contents of, 11-6 
logical name for, 11-6 

Job tree 
definition, 11-5 

Journal file 
EDT, 7-7 
EVE, 6-12 

Journaling facility 
EVE 

using to recover editing session, 
6-13 

Journaling facility (EVE) 
restrictions on using, 6-13 

K 
Key 

See also Key definition 
function, 3-15, 3-18 
sort, 9-3 

Key definition 
assigning, 3-15 

in EDT, 7-42 
Key names (EVE), 6-7 
Keypad 

default editing keys for EVE, 6-4 
EDT, 7-3 
MAIL diagram, 8-13 

Keyword 
definition, 1-4, 3-4 

L 
Label 

definition, 1-4, 3-3 
in DCL command line, 1-3, 3-3 

Left arrow key 
moving cursor with, 3-17 

Lexical function 
definition, 12-9 
evaluating, 12-10 
invoking, 12-9 
list of functions used to save and 

restore process characteristics, 
13-26 

symbol substitution in, 12-6 
syntax, 12-9 
using in command procedure, 12-9, 

13-16 
LINE command (EDT), 7-10 
LINEFEED key, 3-17 
LNM$GROUP, 11-6 
LNM$JOB, 11-6 
LNM$PROCESS, 11-5 
LNM$PROCESS_DIRECTORY, 11-8 
LNM$SYSTEM, 11-7 
LNM$SYSTEM_DIRECTORY, 11-8 
Local node 

definition, 1-2 
Local symbol, 12-4 
Local symbol table 

definition, 12-5 
Pl through PS, 12-5 

Log file 
for batch job, 10-8 

Logical name 
See also Job logical name 
See also Logical name table 
See also Process logical name 
access mode, 11-11 
as device name, 1-7 
defined as a search list, 11-13 
equivalence name, 1-10 



.. 1 

i 

Logical name (cont'd.) 
for a mounted disk or tape, 11-6 
for a network, 11-14 
for a node specification, 11-14 
overview, 1-10 
preventing definition in subprocesses, 

10-7 
process-permanent, 11-15, 11-16 
rules for creating, 11-2 
search lists, 11-13 
system-created, 11-15 
system-permanent, 11-18 
translation in file specifications, 11-2 

Logical name directory table 
definition, 11-8 
process, 11-8 
system, 11-9 

Logical name table 
See also Group logical name table 
See also Job logical name table 
See also Process logical name table 
See also System logical name table 
creating, 11-12 
defining access mode, 11-11 
definition, 11-4 
deleting, 11-12 
list of system-provided, 11-4 
process-private, 11-4 
search order, 11-4 
shareable, 11-6 

definition, 11-4 
Logical name translation 

and wildcards, 11-13 
Logical operators, 12-13 
Login 

manual, 2-1 
network, 2-2 

LOGIN.COM 
See Login command procedure 

Login command procedure 
personal, 13-5 

defining logical names in, 1-10 
definition, 1-11, 13-5 
executed as batch jobs, 10-8 
location of, 13-5 
sample, 13-6 

lndex-9 

Login command procedure (cont'd.) 
system, 1-11 

Login directory file, 1-5 
Logout, 2-8 

network, 2-7 
LOGOUT command (DCL), 2-8, 10-5 

M 
MAIL command (DCL), 8-2 
MAIL folder 

creating, 8-9 
deleting, 8-10 
displaying list of, 8-10 
MAIL, 8-3 
NEWMAIL, 8-2 
selecting, 8-10 
WASTEBASKET, 8-11 

Mail subdirectory 
creating, 8-12 

Mail Utility (MAIL) 
creating mail files, 8-11 
deleting a message in, 8-11 
extracting a message to a file with, 

8-8 
keypad 

commands, 8-12 
diagram, 8-13 

reading a message in, 8-2 
sending a file from DCL level with, 

8-7 
sending a file in MAIL with, 4-6, 8-7 
sending a message over network with, 

8-5 
sending a message to a distribution list 

with, 8-6 
setting default editor in, 8-14 
using text editor in, 8-13 

Mass storage device 
definition, 1-6 

MERGE command (DCL), 1-9, 9-5 
See also Sort/Merge Utility 

MFD (master file directory), 1-5 
See also Directory structure 

MOUNT command (DCL), 1-7 



lndex-10 

MOVE command (MAIL), 8-9 
Multinational collating sequence, 9-4 

N 
Named directory specification 

definition, 5-3 
format in a file specification, 5-3 
rules for entering, 5-3 

Network 
executing programs across, 10-7 
login, 2-2 
logout, 2-7 
sending mail over, 8-5 

Network file specification 
See File specification 

NEW command 
writing buffer to a file using, 6-15 

Node field 
in full file specification, 1-5 

Node name 
using a logical name, 11-14 

Noncommand image, 1-8 
Nondefinable keys, 6-29 
Number 

as fraction, 12-9 
assigning to a symbol, 12-8 
converting to a string value, 12-16 
evaluation of, 12-5 
in an expression, 12-14 
integer values recognized by DCL, 

12-8 
internal storage of, 12-9 

0 
Offset 

definition, 12-17 
OPEN command 

creating a new buffer with, 6-14 
reading file into buffer with, 6-14 

OPEN command (DCL), 13-18 
OPEN LINE command (EDT), 7-10 
OPEN SELECTED command 

creating a new buffer with, 6-14 

OPEN SELECTED command (cont'd.) 
reading file into buffer with, 6-14 

Operator 
character string, 12-12 
concatenation, 12-12 
definition, 12-11 
logical, 12-13, 12-16 
numeric, 12-14 
order of evaluation, 12-19 
reduction, 12-12 
string comparison, 12-12 

Output stream 
definition, 11-5 

Overlay, numeric, 12-17, 12-18 

p 
Pl through PS, 12-5 
PAGE command (EDT), 7-11 
Parameter 

definition, 1-4, 3-4 
in DCL command line, 1-3, 3-3 
passing to a command procedure, 

12-5, 13-10 
rules for entering, 3-7 
syntax, 3-7 

Parameter list 
syntax, 3-7 

Parameter qualifier 
definition, 3-8 

Parent process 
definition, 1-7 

Password 
changing, 2-3 
creating, 2-3 

PASTE command (EDT), 7-21 
Percent sign(%) wildcard character 

rules for using, 4-5 
Physical device name 

controller designation field, 1-6 
device code field, 1-6 
format in a file specification, 1-6 
unit number field, 1-6 

PID (process identification number) 
and process context, 10-2 



·I 
,I 

Positional qualifier 
definition, 3-8 
rules for entering, 3-8 

PRINT command (DCL), 4-12 
Printjob, 4-11 

delaying, 4-12 
list of DCL commands to use with 

4-12 ' 
obtaining multiple copies of, 4-12 
priorities, 4-11 

Print queue 
and print job execution, 4-11 
controlling, 4-12 

Process 
and job tree, 10-3 
checking status with CTRur 2-5 
creating, 10-1 ' 
definition, 1-7, 10-1 
types of, 10-1 

Process characteristics 
lexical functions used to save and 

restore, 13-26 
obtained from UAF, 1-7 

Process context 
list of characteristics, 10-1 

Process directory logical name table 
list of default contents of, 11-8 

Process identification number 
See PID 

Process logical name 
in a job tree, 11-5 

Process logical name table 
definition, 11-5 
list of default contents in, 11-5 
logical name for, 11-5 

Process-permanent logical names 
list of, 11-15 

Process privilege 
and process context, 10-3 

Process rights identifier 
and process context, 10-3 

Program 
as batch job, 1-3 
command image, 1-8 
definition, 1-8 

Program (cont'd.) 
executing 

across network, 10-7 
noncommand image, 1-8 

Prompt 

lndex-11 

system in a command line, 3-5, 3-6 
Protection, 1-11 

default, 4-9 
directory, 5-6 
file, 4-9 

PURGE command (DCL), 4-9 

Q 
Qualifier 

abbreviating, 3-8 
command, 3-8 
default values, 3-9 
definition, 1-4, 3-4 
format, 3-9 
in DCL command line, 1-3, 3-3 
parameter, 3-9 
positional, 3-8 
rules for entering, 3-8 
types of, 3-8, 3-9 

Qualifier values 
date and time formats, 3-12 
rules for entering, 3-12 
types of, 3-12 

QUIT command (EDT), 7-2 
QUIT command (~VE), 6-3 

R 
Radix 

specifying in symbol assignment, 12-9 
READ command (DCL), 13-14, 13-20 
READ command (MAIL), 8-2 
RECALL command (DCL), 3-10 
Recalling commands, 3-10, 3-11 
Record 

deleting in command procedure, 13-23 
modifying in command procedure, 

13-21 



lndex-12 

Record (cont'd.) 
writing from command procedure, 

13-23 
Record-oriented device 

definition, 1-6 
Record sort, 9-1 
/RECOVER qualifier 

EDITtrPU command, 6-13 
Remote node 

definition, 1-2 
printing file on, 4-12 

RENAME command (DCL), 4-7 
REPEAT command (EVE), 6-7 
REPLACE command (EVE) 

case sensitivity of, 6-11 
using, 6-11 

RESET command (EDT), 7-21 
$RESTART global symbol, 12-6 
RETURN key, 3-15 
Right arrow key 

moving cursor with, 3-17 
RUN (Image) command (DCL), 1-8 
RUN (Process) command (DCL), 10-1 

s 
SEARCH command (MAIL), 8-4 
Search list 

definition, 11-13 
example, 11-13 
in a file specification, 11-13 
translation, 11-13 

Search string 
definition of, 6-9 

SECT command (EDT), 7-11 
SELECT command (EDT), 7-17 
SELECT command (MAIL), 8-10 
SEND/EDIT command (MAIL), 8-14 
SEND command (MAIL), 8-5, 8-7 
SET DEFAULT command (DCL), 5-4 
SET EDITOR command (MAIL), 8-14 
SET ENTITY command (EDT), 7-43 
SET HOST command (DCL), 2-2 
SET LINES command (EDT), 7-42 
SET MODE command (EDT), 7-43 
SET NUMBERS command (EDT), 7-17 

SET PASSWORD command (DCL), 2-3 
SET PROTECTION command (DCL), 

4-9,4-10 
SET QUIET command (EDT), 7-43 
SET SCREEN command (EDT), 7-42, 

7-43 
SET SEARCH command (EDT), 7-18, 

7-20 
SET TERMINAL command (DCL), 10--5 
SET TRUNCATE command (EDT), 7-43 
SET WRAP command (EDT), 7-23, 7-43 
$SEVERITY global symbol, 12-6 
Shareable tables 

group logical name table, 11-6 
system logical name table, 11-7 

SHOW BUFFER command (EDT), 7-26 
SHOW BUFFERS command 

using, 6-14 
SHOW DEFAULT command (DCL), 5-5 
SHOW ENTRY command (DCL), 4-11, 

10-8 
SHOW LOGICAL command (DCL) 

and logical name access mode, 11-11 
and logical name table structure, 11-8 

SHOW PROCESS command (DCL), 10-1 
SHOW QUEUE command (DCL), 4--ll 
SHOW SYSTEM BUFFERS command 

using, 6-14 
Sort 

batch job, 9-5 
character data, 9-3 
collating sequence, 9-3 
key, 9-3 
single key, 9-2 
terminalinput, 9-4 
types of, 9-1 

Sort/Merge Utility (SORT/MERGE) 
See also Sort 
collating sequences 

ASCII, 9-3 
EBCDIC, 9-3 

entering records from terminal with, 
9-4 

invoking, 1-9 
merging files with, 9-5 



Sort/Merge Utility (SORT/MERGE) 
(cont'd.) 

sorting noncharacter data files with, 
9-4 

sorting records with, 9-1 
SORT command (DCL), 1-9, 9-2 

See also Sort/Merge Utility 
SPAWN command 

restriction on using, 6-33 
using, 6-33 

SPAWN command (DCL), 10-3 
$STATUS global symbol, 12-6 
STOP command (DCL), 13-5 
Subdirectory 

creating, 5-3 
definition, 1-5 
setting default to another, 5-4 
syntax, 5-3 

SUBMIT command (DCL), 10-8 
Subprocess, 1-7 

and job tree, 10-3 
and process identification number, 

10-6 
context, 10-6 
creating, 6-33, 10-4 
definition, 10-3 
deleting, 10-5 
exiting from, 10-5 
leaving, 6-33 

SUBSTITUTE command (EDT), 7-19 
Substring replacement, 12-17 
Symbol 

as another symbol, 12-11 
as foreign command, 1-3 
assignment, 12-4 
creating, 12-4 
defined as a lexical function, 12-9 
defining in command procedure, 13-13 
definition, 1-10 
deleting, 12-3 
displaying, 12-3 

in command procedure, 13-16 
evaluation, 12-5 
global, 12-4 
indicating a numeric value, 12-5, 12-8 
local, 12-4 

lndex-13 

Symbol (cont'd.) 
logical data, · 12-10 
numeric overlay with, 12-18 
passing to a command procedure, 

13-11 
precedence, 12-5 
preventing assignment in subprocesses, 

10-7 
substitution, 12-6 

automatic, 12-6 
forced, 12-6 
order of, 12-7 

substring replacement with, 12-17 
used as variable, 12-4 
used in expressions, 12-7, 12-8, 12-11 
uses of, 12-3 

Symbol table 
See Local symbol table, Global symbol 

table 
SYS$BATCH, 10-8 
SYS$COMMAND 

redefining, 11-18 
SYS$ERROR 

redefining, 11-17 
SYS$INPUT 

redefining, 11-16 
in command procedure, 13-14 

SYS$0UTPUT 
redefining, 11-16 

SYS$PRINT, 4-11 
and batch job log files, 10-8 

System directory logical name table 
list of default contents of, 11-9 

System interruption 
recovering editing session after, 6-13 

System logical name table 
definition, 11-7 
list of default contents of, 11-7 
logical name for, 11-7 

System-permanent logical name, 11-18 

T 
TAB key, 3-17 



lndex-14 

Terminal (cont'd.) 
display 

stopping and starting, 3-18 
1/0 

Time 

in command procedure, 13-14, 
13-16 

See also Absolute time 
See also Combination time 
See also Delta time 
specifying absolute and delta date and 

time combinations, 3-14 
specifying absolute date and time, 

3-12 
specifying delta date and time, 3-13 

TOP command (EDT), 7-11 
Top level directory file, 1-5 
TPU editor 

as default MAIL editor, 8-14 
TYPE command (DCL), 13-17 

and wildcard characters, 4-8 
displaying files with, 4-7 
executing command procedure on 

remote node with, 13-3 

u 
UAF (user authorization file) 

and process characteristics, 1-7 
UFD (user file directory) 

See also Directory structure 
contents of, 1-5 
location of, 1-6 

UIC (user identification code) 
and process context, 10-3 
default protection, 4-10 

UND C command (EDT), 7-14 
UND L command (EDT), 7-16 
UND W command (EDT), 7-15 
Unit number field 

definition, 1-7 
Unit record device 

definition, 1-6 
Up arrow key 

recalling commands with, 3-10, 3-16 

User authorization file 
See UAF 

/USER_MODE qualifier 
redefining SYS$INPUT with, 11-16 
redefining SYS$0UTPUT with, 11-17 

Utility 

v 
definition, 1-8 
types of, 1-8 

Value 
definition, 1-4, 3-4 
in DCL command line, 1-3, 3-3 

w 
Wildcard 

matching file names with, 6-14 
Wildcard character 

asterisk (*), 4-5 
ellipsis ( .. .), 5-7 
hyphen(-), 5-8 
in file specifications containing logical 

names, 11-13 
percent sign(%), 4-5 

WORD command (EDT), 7-8 
WPS Ruler key 

for tab stops, 6-36 
WRITE command (DCL), 13-16, 13-18 
WRITE command (EDT), 7-25 
WRITE FILE command 

restriction with journaling facility, 
6-13 

writing buffer to a file using, 6-15 



+I 
·' 

How to Order Additional Documentation · 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 
before placing your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using 
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store, 
call 800-DIGITAL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 
Continental USA, 
Alaska, or Hawaii 

Puerto Rico 

Canada 

International 

Internal1 

Call 

800-DIGITAL 

809-754-7575 

800-267-6215 

Contact 
Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local DIGITAL subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local DIGITAL subsidiary or 
approved distributor 

SDC Order Processing - WMO/El5 
or 
Software Distribution Center 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





~-1 

I 

-1 
I 

Reader's Comments VMS User's Manual 
AA-LA988-TE 

Please use this postage-paid form to comment on this manual. If you require a written 
reply to a software problem and are eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent 
Accuracy (software works as manual says) D 
Completeness (enough information) D 
Clarity (easy to understand) D 
Organization (structure of subject matter) D 
Figures (useful) D 
Examples (useful) D 
Index (ability to find topic) D 
Page layout (easy to find information) D 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Good 

D 
D 
D 
D 
D 
D 
D 
D 

Additional comments or suggestions to improve this manual: 

I am using Version --- of the software this manual describes. 
Nametritle Dept. 

Company 

Mailing Address 

Phone 

Fair Poor 

D D 
D D 
D D 
D D 
D D 
D D 
D D 
D D 

Date 



Do Not Tear - Fold Here and Tape 

Do Not Tear - Fold Here 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POST AGE WILL BE PAID BY ADDRESSEE 

DIGIT AL EQUIPMENT CORPORATION 
Corporate User Publications-Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

111 ..... 11.11 .... 11 .... 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1 

No Postage 
Necessary 
if Mailed 

in the 
United States 



Reader's Comments VMS User's Manual 
AA-LA988-TE 

Please use this postage-paid form to comment on this manual. If you require a written 
reply to a software problem and are eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR form. 
Thank you for your assistance. 

I rate this manual's: Excellent 

Accuracy (software works as manual says) D 
Completeness (enough information) D 
Clarity (easy to understand) D 
Organization (structure of subject matter) D 
Figures (useful) D 
Examples (useful) D 
Index (ability to find topic) D 
Page layout (easy to find information) D 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Good 

D 
D 
D 
D 
D 
D 
D 
D 

Additional comments or suggestions to improve this manual: 

I am using Version ___ of the software this manual describes. 
Namefl'itle Dept. 

Company 

Mailing Address 

Phone 

Fair Poor 

D D 
D D 
D D 
D D 
D D 
D D 
D D 
D D 

Date 



Do Not Tear - Fold Here and Tape 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGIT AL EQUIPMENT CORPORATION 
Corporate User Publications-Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

111 ..... 11.11 .... 11 .... 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1 

No Postage 
Necessary 
if Mailed 

in the 
United States 

Do Not Tear - Fold Here --------------------------------------------


