VMS User’s Manual

Order Number: AA-LA98B-TE

June 1989

This manual describes tasks you can perform using the VMS operating system.
The information contained in this manual is intended for all users and is

applicable to all members of the VAX and MicroVAX families of computers
running the VMS operating system.

Revision/Update Information: This manual supersedes the VMS General User’s
Manual, Version 5.0.

Software Version: VMS Version 5.2

digital equipment corporation
maynard, massachusetts

June 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1989.

All Rights Reserved.

Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA MASSBUS VAX RMS
DDIF PrintServer 40 VAXstation
DEC Q-bus VMS
DECnet ReGIS VT
DECUS ULTRIX XUI
DECwindows UNIBUS

DIGITAL VAX

LN03 VAXcluster diloli]t]a]1 |8

The following is a third-party trademark:
PostScript is a registered trademark of Adobe Systems, Inc.

ZK4323

Production Note

This book was produced with the VAX DOCUMENT electronic publishing system,
a software tool developed and sold by Digital. In this system, writers use an
ASCII text editor to create source files containing text and English-like code;
this code labels the structural elements of the document, such as chapters,
paragraphs, and tables. The VAX DOCUMENT software, which runs on the
VMS operating system, interprets the code to format the text, generate a table
of contents and index, and paginate the entire document. Writers can print

the document on the terminal or line printer, or they can use Digital-supported
devices, such as the LN03 laser printer and PostScript printers (PrintServer 40
or LNO3R ScriptPrinter), to produce a typeset-quality copy containing integrated
graphics.

Contents

Preface

Chapter 1

1.1
1.2
1.3
14

1.5

1.7
1.8
1.9

1.10
1.11
1L.12
1.13
1.14

Introduction: VMS Concepts and
Definitions

How to Use This Manual essenn
Logging In to the System.......... ceeens ceeeens
Using a Networkccovveeveentcssonnscncnas
The DIGITAL Command Language (DCL).........

141 TheDCLCommandLine..................
Files and Directories
1.5.1 File and Directory Specifications
1.5.2 Directory Structures
DeviCes . covvverrosersoessosssssssssssssssssses
1.6.1 Physical Device Names
1.6.2 Logical Device Names
16.3 GenericDeviceNames

Processes 0000000000000 0000000000000000000s000
P!‘Ograms 0000000000000 00000000006000000000000

Utilities ® @ 0.0 0.0 0006000000 00000000 ® @ 0 0 6000 0000 oo
191 MAIL ...ttt it
192 VMSSORTMERGE......................

Text EQItOrs . . .ocovveeereneensssececssssnsnnes
DIGITAL Standard Runoff DSR)c......
Logical Names . . . cccovevvveoeonconsrsossssocnne
SYmDbBOIS «vvvvverrrressterssersencsssssnconnns

Command Procedurescoceeeevsecceocene .o

Xxix

1-1
1-2
1-2

1-2
1-3
1-4

14
1-5

1-6
1-6
1-7
1-7

1-7
1-8

1-8
1-9
1-9

1-9
1-9

1-10
1-10
1-11

vi Contents

1.15 Account and System Security cesesssecenes

Chapter 2 Getting Started: Interacting with VMS

2.1
2.2
2.3
24
2.5
2.6
2.7

LoggingIntotheSystem........cccec0eeeeeness
LoggingIntoaRemote Nodeciec0veeeennn

Changing Your Password.....
Recognizing System Responses ceseseaes
Getting Help
Ending a Remote Session secesasencaas
Logging Out of the System

Chapter 3 The DIGITAL Command Language:

3.1
3.2

3.4
3.5

3.6
3.7

Communicating with VMS
Using DCL Commandsccc00.e

Constructing a DCLCommandcoc0veeeee
3.2.1 Vocabulary of a DCL Command
3.2.2 Putting the Parts in Order: Syntax

Enteringa DCLCommandc00000ceeennen
3.3.1 Rules for Entering a DCL Command
3.3.2 Entering an Incomplete Command Line.
3.3.3 Entering a Command Longer Than One Line ..
3.3.4 Entering Parametersc.....
3.3.5 Entering Qualifiers

Recalling Commandscco0vevvosoccsscccncs

Entering Dates and Times as Values ceeans
3.5.1 Absolute Timeccvun...
3.5.2 DeltaTimeciuiieinerennnnnnn.
3.5.3 CombinationTimecciveeen..

Defining Terminal Keys

Summary of Key Combinationscc00..

2-1
2-2
2-3

2-7
2-7

3-1

3-3
34

3-5
3-5
3-6
3-6
3-7
- 3-8

3-10

3-12
3-12
3-13
3-14
3-15

3-15

Contents vii

Chapter 4 Files: Storing Information

4.1 Understanding File Names and Specifications..... 4-2
42 Using Wildcards with Filescccvevececcsnenss 44
421 The Asterisk (*) Wildcard Character......... 4-5
422 The Percent (%) Wildcard Character......... 4-5
4.3 Creating and Modifying Files ceseceacnes e 4-5
43.1 CreatingFiles 45
4.3.2 CopyingFilescoiinn... 4-6
44 RenamingFilescivc0eeeertcveccccssscens 4-7
4.5 Displaying the Contentsof Filesccc00000e 4-7
4,6 DeletingFiles 4-8
4.7 Protecting a File from Other Users ceesne 4-9
4.7.1 Default File Protection.................... 4-9
4.7.2 Explicit File Protection 4-10
48 PrintingFilesc0000tteeeevscconcsceans 4-11
4.8.1 Displaying Queue Information.............. 4-11
48.2 Stopping and Deleting a PrintJob........... 4-12
4.8.3 Printing a File on Another Node 4-12
484 DCL Commands That Control Print Jobs 4-12

Chapter 5 Directories: Organizing and Managing

Files

5.1 Understanding Directory Structures 5-1
5.2 Understanding Directory Names and

Specificationsc.cce00eceencccccnssscccns 5-3
5.3 CreatingDirectories....l'..‘..........‘...l..‘ 5-3
54 Displaying Directoriescccoccevesccacssennns 5-3
5.5 Setting a Default Directory......cccccveeeveeces 54
56 Deleting Directoriescco0eeeeece. ceesesacnn . 5-5
5.7 Protecting a Directory from Other Users 5-6

- 5.8 Using Wildcards to Search the Directory
Structure........... ® & 0 0% 0 0 ® 0 0 0 000 00 5-6
5.8.1 The Ellipsis (...) Wildcard Character 5-7

5.8.2 The Hyphen (-) Wildcard Character 5-8

vii Contents

Chapter 6 Editing Text Files: Using EVE

6.1
6.2
6.3

6.5

6.6

6.7

6.8
6.9

Beginning an Editing Session.......cccc000e0eeee
UsingOnlineHelpcc0000ceevecacenccss
Ending an Editing Session00000000000000

6.3.1 Saving Your Edits
6.3.2 Ending the Session Without Saving Your
Editsciiiiiiiiiiiiiiiii

Entering EVE Commandsc0000000000000ae
6.4.1 Using Defined Keys to Enter EVE

Commandscviviiiinnnnnnnnn
642 Typing EVECommands...................
643 EVEKeyNamescc0vveenenn..
Editing Text . .covcceveeerrearseessssrsoscsonsanas
651 LocatingText...............ccoiiuv....
652 ReplacingTextcccuvev..
6.5.3 Recovering from System Interruptions........
6.5.4 Refreshingthe Screen
6.5.5 UsingthedournalFile....................
6.5.6 ListingBuffers..........................
6.5.7 [EditingTwoBuffers......................
6.5.8 Reading and Writing Files
6.5.9 EVE Default Settings.....................

Saving Time and Keystrokes—Defining Keys in

6.6.1 Using EVE to Emulate EDT
6.6.2 Using EVE to Emulate WPS
6.6.3 Defining a Key While Using EVE
6.6.4 Using Startup Files to Define Keys
Using DCLWithin EVEc00000teetrceccsns
6.7.1 Executing a DCL Command................
6.72 Creatinga Subprocesscccu...

Converting from EDTtoEVEcccvevveccccens

EVECOlnmandsummal'y 000000 e 0000000000000

6-1
6-2
6-2

6-7
67

6-9
6-11
6-12
6-12
6-12
6-14
6-14
6-14
6-15

6-18
6-18
6-21
6-22
6-25

6-32
6-33
6-33

6-33
6-37

Contents

Chapter 7 Editing Text Files: Using EDT

7.1

7.2

73

74

7.5
7.6

7.7

7.8

Invoking and Ending an EDT Session

711 InvokingEDTccieinn..
712 Endingan EDT Session
Entering EDT Commandsccccceeeeesecees
72.1 Entering EDT Line Commands
7.2.2 Entering Keypad Commands
7.2.3 Canceling EDT Commands
Getting HELPIn EDTcccvveveverrsnscsces
7.3.1 Getting HELP with Keypad-Editing

Commandscovviiviinnnnnnnn
73.2 Getting HELP with Line-Editing Commands. . .
Changing EditingModesccccceeeeans e
7.4.1 Changing from Keypad to Line Editing
7.4.2 Changing from Line to Keypad Editing
74.3 Entering Line-Editing Commands from Keypad

Modeciiiiiiiii ittt ittt
Recovering from Interruptions..................
EDT Keypad Editingccc0eeensencecscnsns
7.6.1 Manipulatingthe Cursor
7.6.2 Inserting Textcciiiiieinn.nn
7.6.3 Deleting and Restoring Text................
764 LocatingText
765 SubstitutingText
766 MovingText..............oiiiiiiian.
7.6.7 Moving Text Withinthe File
7.6.8 Using Multiple Buffers.

Saving Time and Keystrokes—Defining Keys in

EDT.Q.--oooooouoooooooooooo.ooooooooooo'ooov

7.71 Defining Keys While n EDT '
7.72 Advanced Key Definitions
7.1.3 Permanent Key Definitions
774 Summaryoeeeinrennnneeeens

ControllingEDTSessions ® 0 & 00 0 0O 0SSO0 O O e
7.8.1 Controlling Screen Format with SET

Commandscovviiiiiiinnnennnnnn
7.8.2 Controlling Editing Functions with SET
Commandsccoiiiiiiennnennnnn

78.3 Defining EDT Macros........ooveeeeeeeennn

ix

7-1
7-1
7-2

7-3
7-3
7-3
7-5

7-5

7-5
7-5

7-5
7-6
7-6

7-6
7-7

7-8

7-8
7-13
7-14
7-17
7-19
7-21
7-21
7-25

7-27
7-27
7-31
7-34
7-41

7-42
742

743
744

x Contents

Chapter 8 MAIL: Communicating with Other

Users
8.1 Invoking and Exiting MAII‘. ® ® 9 6 0 0 00 0 0P OO OO OO0 &2
8.2 ReadingMessages........C.........I........‘. &2
8.2.1 Readinga NewMessageco0000eee. 8-3
822 ReadingOldMessagesccvovvvnvnnn 8-3
83 SendingaMesSSaAZe .vvvveeessscosssscsscccncssoes 84
8.3.1 Sending MAIL over the Network 8-5
8.3.2 Sending a Message to More Than One User ... 8-5
8.3.3 SendingaPFileciiivi.. 8-17
8.34 Creating a File froma Message 8-8
84 [ReplyingtoaMessageccceeveeeseccocscecns 8-9
85 Forwarding a MeSSage ...ccoeesscccsssossoonscs . 89
8.6 Organizing Your Messages....ccceeeecoccccnoccs 8-9
8.6.1 Creating and Modifying Folders............. 89
8.7 Selecting Folders cesevevnanes 8-10

88 Deleting Messagesoesveassessccrrsoossesscs 8-11
8.9 Customizing Your MAIL Environment............ 8-12

8.9.1 Creating a Mail Subdirectory............... 8-12
892 Usingthe MailKeypad 8-12
8.9.3 Using a Text Editorin MAIL 8-13

Chapter 9 VMS SORT/MERGE: Sorting and
Merging Files
9.1 SortingRecordscccocceeseesvcccsscsssns 9-1
9.2 Sorting Character DataFiles ...ccccvveeecroenss 9-3
9.3 Sorting Noncharacter Data Files . ..ccvcoveevvones 94
9.4 Entering Records from a Terminal eeeenan 94
9.5 Submitting Batch Jobs......... 9-5
96 MergingFilesccicitititteccenccnnnnns 9-5

Contents xi

Chapter 10 Processes: Using the VMS
Environment

10.1 Imterpreting Your Process Contexto

10.2 Using Subprocessescoeveeeeeeccccasscsas
10.2.1 Creating a Subprocess
10.2.2 Exiting from a Subprocess
10.2.3 Looking at a Subprocess Context

10.3 Executing Programs Across the Network

104 UsingBatchdobscccvveeenrsncscccccnnns
10.4.1 SubmittingaBatchdJob...................
10.4.2 BatchdobOutput........................
10.4.3 Restartinga BatchdJob

Chapter 11 Logical Names: Defining Names for
Devices and Files

11.1 Creating Logical Names.......ccccceeecrancsnns
11.1.1 Rules for Creating Logical Names
11.1.2 Equating More Than One Equivalence Name .

1102 DisplayingLogicalNames.......0.........‘..'.
11.3 Deleting Logical Names Ceeececeitnansaans

11.4 Understanding Logical Name Tablesc.0..
1141 TheProcessTable
1142 ThedobTable............. ...,
1143 TheGroupTable
11.44 TheSystem Table........................

11.5 Directory Logical Name Tables......... N
11.5.1 The Process Directory Table................
11.5.2 The System Directory Table................

11.6 Logical Name Access Modescccoeeesecsscns
11.7 Creating a Logical Name Table..................
11.8 Using Search Listscccvvveeescscsssnsncsns
11.9 Using Logical Node Namescccceevseeenness

11010 SyStem-Cl'eated Logica]. NameS Se e p e oo s so o000
11.10.1 Process-Permanent Logical Names
11.10.2 System-Permanent Logical Names...........

10-1

10-3
104
10-5
10-6

10-7

10-7
10-7
10-8
10-9

11-1
11-2
11-3
11-3
114

11-4
11-5
11-6
11-6
11-7

11-8
11-8
11-9

11-11
11-12
11-13
11-14

11-15
11-15
11-18

xii Contents

Chapter 12 Symbols: Defining Commands and
Expressions

12.1 Using Symbols to Represent DCL Commands 12-1
12,2 Using Symbols to Collect, Store, and Manipulate

Data ..ovvveveeenesssssssssssessscsssssnccsns 12-3
12.2.1 Defining Symbols as Character Strings 12-3
1222 CreatingSymbols........................ 124
12.2.3 Understanding Symbol Tables 12-5
12.2.4 Understanding Symbol Substitution 12-6
12.2.5 Using SymbolValues 12-7
12.2.6 Using Symbols in Expressions 12-11

Chapter 13 Command Procedures: Programming

with DCL
13.1 Formatting a Command Procedurecc000e.. 13-2
13.2 Executing a Command Procedurece000000 13-2
13.2.1 Changing Command Procedure Levels........ 134
13.2.2 Exiting from a Command Procedure 13-5
13.3 Designing a Login Command Procedure.......... 13-5
134 UsingLloops.......... ceeesssensae 13-7
135 PassingDataccc0veevteessecccccsssccsss 13-9
13.5.1 Using ParameterstoPassData............. 13-10
13.5.2 Using the INQUIRE Command 13-13
18.5.3 Using the READ Command 13-14
13.5.4 Obtaining Data from SYS$INPUT..... e 13-14
136 ReturningDatacovvvvverneennccosceeess 1315
13.7 DisplayingDataccccceverrnrscrsens ceseses 13-16
13.7.1 Displaying Character Strings and Symbols 13-16
13.72 DisplayingText 13-17
13.73 DisplayingFilesccivuereernn. 13-17

13.8 Reading and Writing Files (File I/o) ® 0 & 000000 000 1&17
13.8.1 Specifying Files in Batch Job Command

Procedurescoiireeennan... 13-17
13.82 WritingtoaPFile......................... 13-18
13.8.3 ReadingfromaPFile...................... 13-20
13.84 ModifyingaPFile......................... 13-21

13.8.5 Handling Input/Output (I/0) Errors.......... 13-24

Contents xiii

13.9 RestmingBatchJobs.0...0.0......Q.......Q.. 13_24
13.10 Cleanup Operationscccveeeeececsccoase 13-25

Reference Section

DCL Commands DCL-1
= (Assignment Statement) i, DCL~1
= (String Assignment) i il DCL-2
@ (Execute Procedure)cciiiiiiiineinnn. DCL-2
ACCOUNTINGcviitintieeernenereneoneonennnas DCL-4
ALLOCATEttt ittt et eaneaaneenn. DCL-4
ANALYZE/AUDIT ...ttt it et eenanneennn DCL-5
ANALYZE/CRASH_DUMP......... ettt DCL-5
ANALYZE/DISK STRUCTUREc0iivennennn. DCL-5
ANALYZE/ERROR LOGiiiiiiiiiniinanennn. DCL-6
ANALYZE/IMAGEttt ittt e iiie i ennnaen DCL-6
ANALYZE/MEDIA ittt DCL-7
ANALYZE/OBJECTttt ieeeiiieeaneeeannn DCL-7
ANALYZE/PROCESS_ DUMP.cciiiiiiinnnnnnn. DCL-9
ANALYZE/RMS FILE0iiniiiiinnernnennnnn DCL-11
ANALYZE/SYSTEMttt ittt ieeeannn DCL-12
APPEND ittt ittt i e DCL~-12
ASSIGN .. it i e et e e it e e DCL-16
ASSIGN/MERGE ittt iiiiieinnennnns DCL-18
ASSIGN/QUEUE it ierineieenneranenanns DCL-19
ATTACHcciiiii it P DCL-20
BACKUP ...ttt ittt et iiiite e iennneseaneeanns DCL-20
07N Y P DCL-21
CANCEL . ..ottt it ettt ettt e eaeeannnn DCL-23
CLOSE......cciiiiiiiinaennnnn et DCL-25
CONNECT ..ottt ittt ettt i reeneeerananannnns DCL-26
010)5 1 DCL-27
CONVERT ...ttt i ittt ettt e eineeanns DCL-28
CONVERT/DOCUMENTciitiiiiiiieenannrannnn DCL-28
CONVERT/RECLAIMc0iuiiennnneeennnnannans DCL-28
COPY .. ittt ettt itene e DCL-29
CREATEiiiiiiiit ittt teeennaannannnannns DCL-35
CREATE/DIRECTORYciiiiiiiiiiiiiiiennrnanas DCL-36
CREATE/FDL ... ittt iiiietieennananenanaanns DCL-37
CREATE/NAME_TABLEcciiiiurtivennrnnnns DCL-38
DEALLOCATEottt ittt ittt teennneananarannns DCL-39
DEASSIGN .. .iiiiiitttit ittt ettt DCL—40

DEASSIGN/QUEUEottt iiiiiinennnnn DCL—42

Xiv

Contents

DEBUG it it e DCL~-43
DECK. . e e e DCL-43
DEFINE. it DCL—45
DEFINE/CHARACTERISTIC., DCL—47
DEFINE/FORMottt DCL—48
DEFINE/KEY............. e e e e DCL-50
DELETE i i ittt i e DCL-53
DELETE/CHARACTERISTIC, DCL-56
DELETE/ENTRY i DCL-57
DELETE/FORM.ttt ittt DCL-58
DELETE/INTRUSION_RECORD. DCL-58
DELETE/KEYt DCL-59
DELETE/QUEUE it DCL-60
DELETE/SYMBOL0.iitiiiiiiiinnnnnns DCL-61
DEPOSIT i it e i DCL-62
DIFFERENCES ittt DCL-63
DIRECTORY oottt it ie it DCL—68
DISCONNECTttt ittt i i DCL-74
DISMOUNT it e i DCL-75
DUMP e DCL-78
EDIT/ACL e e DCL-81
EDIT/EDT i i DCL-81
EDIT/FDL it e e e DCL-83
EDIT/SUM o i i i DCL-83
EDIT/TECO i i e i e DCL-84
EDIT/TPU et ii i eee e DCL-85
EOD . .. e e DCL~86
EOd .. e DCL-86
ENDSUBROUTINEttt DCL-87
EXAMINE ittt e e e DCL-87
EXCHANGEc ittt DCL-89
EXCHANGE/NETWORKciiiiiiiiiinn, DCL~90
EXIT . e e e DCL-94
GOSUB ... i i i e e e e e DCL-95
GOTO .. e i i e DCL-96
HELP. i i i DCL-97
TF . i e e DCL-98
INITIALIZE o e it e DCL-100
INITIALIZE/QUEUEottt it i i iinieinens DCL-106
INQUIRE i i ittt e e DCL-115
INSTALL ..ot e ittt DCL-116

JOB .. e e DCL-116

Contents xv

Lexical Functions DCL-~121
010\ .« DCL-123
LAY/ DCL-129
FOCVTIMEttt ettt ettt ettt e DCIL~130
T 0174 11 DCL-131
F$DIRECTORY C ettt et e e DCL~-132
3 D) & DCL-133
FOELEMENTttt ettt et ean DCL-134
FSENVIRONMENT . ..ottt ittt ittt eeeeeeeer e DCL-135
3 0, o = X 0 S DCL-137
FRAO .. e DCL-139
FS$FILE ATTRIBUTES . ..ottt ittt ettt DCL-144
63 D N)2 R DCL-146
B GETIPL ...ttt e e et et DCL-160
FSGETQUI. . ..ottt et ettt et e e DCL-164
PO GETSYL . ittt ittt ettt ettt e DCL-181
FSIDENTIFIERottt et et et et e e DCL-185
FSINTEGER ... ottt et e e e DCL-186
FOLENGTHttt ettt et ee e DCL-187
FOLOCATE ...ttt ettt ettt et e eieeans DCL-188
FEMESSAGE . . oottt ettt ettt DCL-189
FOMODEttt e e DCL-189
P PARSEottt e e DCL~190
X 22 1 2 DCL~-192
FEPRIVILEGE oottt et ettt eeeeenen DCL-194
FPROCESS ..ttt e e e e DCL-195
FEOSEARCH ...ttt e e e e DCL-195
FESETPRYV . . .ottt et ettt et ettt DCIL-196
FESTRING . . .ottt ettt ettt e ettt et e eee DCL-197
FETIMEottt e et e e e e DCL-~198
P T RNLNM . ..ottt et ettt e e e DCL-198
BT Y PE ...ttt et e e e DCL-201
T O . ottt e e e e DCL-202
BV RIFY ..ttt ettt et ettt ettt DCL~-202

DCL Commands DCL-204
LIBRARY ..ottt ittt et it i e e e e DCL-204
LICENSE . .ottt ittt ettt ittt et e DCL-204
LINK ..t it ittt i it ettt DCL-204
LOGIN Procedurecoouietinenmeeneeneneennnnns DCL-208
LOGOUT ... ittt ittt ii ittt enneenneennnnnns DCL-210
MACRO ...ttt e e e e e e e e DCL-211
BT 7N 1 DCL-216

MERGEttt ittt i eaans DCL-216

xvi

Contents

MESSAGEottt ittt ittt ettt e e e e DCL-216
MONITOR . ..ottt ittt ittt ittt ettt inieaaanannns DCL-216
MOUNT . ..ttt ettt ettt e et ittt DCL-217
NCS o e e e e e DCL-217
[) DCL-217
() 5 4 [DCL-218
PASSWORDottt ittt ittt e e e DCL-220
7 DCL-221
PHONE ittt ittt ittt i eeeeaean DCL-222
PRINT .. ittt ittt ettt ittt e e DCL-222
PURGEttt it ittt eeeeeenn DCL-229
S 7 N DCL-231
RECALL ...ttt e it DCL-234
RENAMEttt ittt ettt e e i eieennn DCL-235
REPLY .. ittt ettt et e e DCL-238
REQUEST . ..ottt e e e e DCL—242
RETURN .. ittt ittt ittt eti ettt ennnnnnnnnnns DCL-243
RUN(MAZE) « oottt teiiieet it i it eeteieeeneennnn DCL-245
RUN (Process) « . ovviiietiteineseeeennneneeeeeeeeens DCL-246
RUNOFF ..ttt ettt et i e DCL-251
RUNOFF/CONTENTSttt i it it etiiieneenn DCL-258
RUNOFF/INDEXoii ittt e it eeeeenn DCL-261
SEARCH ... ittt i e i e e e, DCL-264
SET ACCOUNTING. . .ottt t ettt ittt i e ee e DCL-269
SET ACL ... i i i e e DCL-270
SET AUDIT ...ttt ittt e e DCL-274
SET BROADCASTttt i DCL-284
SET CARD _READER.ciiiiiiiiiiniiiinnnneennnn DCL-285
SET CLUSTER/EXPECTED_VOTES..........covviunn.. DC1-286
SET COMMANDiiitittitiitiiiieiitiieereeennnn DCL--286
SET CONTROLoiiiii ittt ittt e eenns DC1-286
S DCL-287
SET DEFAULT ...ttt iiiiieeeeeeeenn DCL-288
SET DEVICEttt iieeeeeenn DCL-288
SET DEVICE/SERVED0iiiiiiiineterennnnnnnn DCL-290
SET DIRECTORY ...ttt iiiiiieienennnn DCL-291
SET DISPLAY ...ttt ittt ittnnriitneereeenanans DCL-293
SET ENTRY ...ttt ittt it eeeeeas DC1-297
SET FILE . ..ottt titeneininnanannaenas DCL-304
1 O R > 00 1 1 DCL-308
SET HOST/DTEiii it ittt ittt ittt eeeeannnnan DCL-309
SET HOST/DUP. . ..ottt ittt ittt eeeienn DCL-310
SET HOST/HSC . . . ittt ittt ettt e eieeeeen DCL-311

SET KEY ... i i i i DCL-312

Contents xvii

SET LOGINS . ..ottt it i e DCL-313
SETMAGTAPEottt ittt DCL-313
SETMESSAGE0iuiiiiiiiiiiiiiiiiniinennn, DCL-315
SET ON ..o i i it ca e DCL-316
SETOUTPUT RATEccitiiiiiii i, DCL-317
SETPASSWORDttt DCL-317
SETPRINTER....... ..ottt DCL-319
SETPROCESS, DCL—-322
SETPROMPT i DCL-325
SETPROTECTIONottt DCL-326
SET PROTECTION/DEFAULTcovvuvnn.. DCL-327
SET PROTECTION/DEVICEo iiiiiiiinnnn DCL-328
SETQUEUE ittt DCL-329
SETQUEUE/ENTRYcciiiiiiiiiiiiiii i, DCL-335
SETRESTART VALUEo, DCL-336
SET RIGHTS_LIST i, DCL-337
SETRMS_DEFAULTcoiiiiiiiiiiiiiininennn, DCL-339
SET SYMBOLcciittiiiiiiiiiitiiiiiieiiinnns DCL-340
SETTERMINALot DCL-341
SETTIME it it DCL-351
SETUIC ... i i ii i DCL—-352
SET VERIFYttt i DCL-352
SETVOLUMEt DCL-353
SET WORKING_SETottt DCL-356
SHOWACCOUNTING.ciiiiiiiiii i i DCL-357
SHOW ACL i it i DCL-358
SHOWAUDIT i DCL-359
SHOWBROADCASTttt i DCL-360
SHOWCLUSTERc. ittt DCL-360
SHOW CPU i i c i DCL-360
SHOWDEFAULT00iiiiiiiiiiiiiiiieninnenn, DCL-362
SHOWDEVICESottt iiii i DCL-363
SHOWDEVICES/SERVED DCI384
SHOWDISPLAYc0iitiiiiiiiiiiiiiiininnenn, DCL-366
SHOWENTRY.........oiiiiiiiiii ittt i DCL-368
SHOWERRORttt DCL-370
SHOW INTRUSIONc0itiiiiiiiiiiiiinnnenns DCL-371
SHOW RKEYttt et eeci e e ea s DCL-371
SHOWLICENSEttt i DCL-373
SHOWLOGICAL. ittt iiie e DCL-374
SHOWMAGTAPE it DCL-376
SHOWMEMORY i DCL-377
SHOWNETWORK ...t DCL-378

SHOWPRINTERttt DCL-379

xviii

Contents

SHOWPROCESSccitiiiiiiiiiiiiiiiiiinn, DCL-380
SHOWPROTECTIONo, DCL-382
SHOWQUEUEottt i, DCL-383
SHOW QUEUE/CHARACTERISTIC DCL-385
SHOWQUEUE/FORM.ottt DCL-386
SHOW QUOTA i i DCL-387
SHOWRMS DEFAULT0iit ittt DCL-388
SHOW STATUS oo DCL-389
SHOWSYMBOLottt DCL-390
SHOW SYSTEMttt DCL-391
SHOWTERMINALccii it DCL-394
SHOWTIME it DCL-395
SHOW TRANSLATIONcoiuiiiiiiiiiinnnn.. DCL-396
SHOWUSERSttt e DCL-396
SHOWWORKING_SETttt DCL-398
SORT ... DCL-399
SPAWN .. e DCL-399
START/CPUot i it e c e i eas DCL—402
START/QUEUEttt DCL~402
START/QUEUE/MANAGER.cciiiiiiiinnnnn. DCL—411
STOP . .. e e e DCL—-413
STOP/CPU i e it cii DCL-414
STOP/QUEUEc.iiiiiiiiiiiiiiiiiiinnnnnn. DCL-415
STOP/QUEUE/ABORToiiiiiiiiniiiiiannnnn. DCL-416
STOP/QUEUE/ENTRYot DCL-416
STOP/QUEUE/MANAGER., DCL—417
STOP/QUEUE/NEXT, DCL-417
STOP/QUEUE/REQUEUEcoiiiiiiininvnn. DCL—418
STOP/QUEUE/RESETcoiuiiiiiiiiinnnnnn. DCL—419
SUBMIT. ... e DCIL—420
SUBROUTINE DCL-426
SYNCHRONIZE.ottt it iii e DCL-426
TYPE ... e DCL-427
UNLOCK . . i ettt c e DCL-430
VIEW . e DCL—-431
WAL .. e DCL—-431

Contents xix

DIGITAL Standard Runoff (DSR) Commands DSR-1
1 DSR Command Format ceceessenne ceeeens DSR-1
2 Entering DSR Commands cecieecces DSR-2
3 DSRCommandscce0000. cevessssssssescsss DSR-3

APPENDIX ... it e e e e e DSR-3
AUTOJUSTIFY, NO AUTOJUSTIFY DSR-3
AUTOPARAGRAPH, .NO AUTOPARAGRAPH DSR-3
AUTOSUBTITLE, .NO AUTOSUBTITLE DSR4
AUTOTABLE, NO AUTOTABLE DSR4
BLANK i e e e DSR-4
BREAK ...t e e e DSR4
CENTER ((CENTRE)c ittt ittt DSR-5
CHAPTER.o ittt ii e i DSR-5
.CONTROL CHARACTERS, .NO CONTROL

CHARACTERSttt e ittt te et DSR-5
DATE, NODATEttt DSR-5
DISPLAY APPENDIXttt DSR-5
DISPLAY CHAPTER it en DSR-6
DISPLAY ELEMENTSottt ittt DSR-6
DISPLAY LEVELS ... ottt it i i i eeen DSR-6
DISPLAY NUMBERttt DSR-7
DISPLAY SUBPAGE ittt DSR-7
.ENABLE BAR, .DISABLE BAR, .BEGIN BAR, .END

57N DSR-7
.ENABLE BOLDING, .DISABLE BOLDING DSR-8
.ENABLE HYPHENATION, .DISABLE

HYPHENATIONt iiiiitteeeneeninnnnnn DSR-8
.ENABLE INDEXING, DISABLE INDEXING DSR-8
.ENABLE OVERSTRIKING, .DISABLE

OVERSTRIKINGci ittt ie i DSR-8
.ENABLE TOC, . DISABLETOC DSR-8
.ENABLE UNDERLINING, .DISABLE

UNDERLINING . . . oo oottt et et e e e e e DSR-9
ENTRY ..o e DSR-9
.FIGURE DEFERRED, FIGURE DSR-9
JILL, NOFILL ... oottt i it it i i DSR-9
FIRSTTITLE ittt i DSR-10
FLAGS ACCEPT, .NO FLAGS ACCEPT DSR-10
JFLAGSALL, NOFLAGSALLcccvvvvn... DSR-~10
JFLAGS BOLD, NOFLAGSBOLDoivvvunn DSR-10
.FLAGS BREAK, .NO FLAGSBREAK DSR-10
FLAGS CAPITALIZE, .NO FLAGS CAPITALIZE DSR-11

.FLAGS COMMENT, .NO FLAGS COMMENT DSR-11

XX

Contents

.FLAGS CONTROL, .NO FLAGS CONTROL.
.FLAGS HYPHENATE, .NO FLAGS HYPHENATE.
.FLAGS INDEX, .NO FLAGSINDEX
.FLAGS LOWERCASE, .NO FLAGS LOWERCASE
.FLAGS OVERSTRIKE, .NO FLAGS OVERSTRIKE
.FLAGS PERIOD, .NO FLAGS PERIOD
.FLAGS SPACE, .NO FLAGSSPACE
.FLAGS SUBINDEX, .NO FLAGS SUBINDEX
FLAGS SUBSTITUTE, .NO FLAGS SUBSTITUTE
.FLAGS UNDERLINE, .NO FLAGS UNDERLINE
.FLAGS UPPERCASE, .NO FLAGS UPPERCASE
JFOOTNOTE, .END FOOTNOTE.
HEADERLEVELo oo
.HEADERS ON, NOHEADERS
.HEADERS UPPER, .HEADERS LOWER, .HEADERS

INDENT .« o .ovee et e e e e e e
INDEX .« oo e e e e
JUSTIFY, NOJUSTIFYo oeeeeeeaannnnn.
KEEP, NOKEEP0uoeeeaienenaennnn..
BN'Co) i
LEFTMARGIN . .. oo vveeee e
LIST, END LIST ..o,
LISTELEMENT ooee e e e
LITERAL ..ottt
NOSPACE . .o vee et e
NOTE, ENDNOTEovoieannnnannnnnn.
NUMBER APPENDIXoououaiannannnnnn.
NUMBER CHAPTERouoaeennannnnn...
NUMBERLEVEL oot eeee e
NUMBERLIST . . .« e eeeeeee e e
NUMBER PAGE, NONUMBER
NUMBER RUNNING . . .« eeeeeiaeeeaeannns
NUMBER SUBPAGEooeneeneaeaanannns
PAGE ..ot
PAGE SIZE . . o e oee e e e
PAGING, NOPAGING eoeeeeeeeaeeannnn.
PARAGRAPHvoieteeee e
PERIOD, NOPERIODo eoveanaeannnnnnn.
B 13012107
REQUIREovvieeee et
RIGHT .. ovooee e e e

DSR-11
DSR-11
DSR-11
DSR-12
DSR-12
DSR-12
DSR~12
DSR-12
DSR-12

DSR-15

DSR-15

Contents xxi

SAVE, RESTORE0iiiiiiiiiiiiennnnn. DSR-21
SEND TOCttt i i i et et iiiiennnnn DSR-~-21
SETDATE, SETTIMEccovviirnnnnn. DSR-21
SET LEVELciiiiiiiiitieeennnnnnnns DSR-22
SETPARAGRAPH i, DSR-22
1 & DSR-22
SPACING e e DSR-22
STYLEHEADERSciiiiiitiiiiiiiinnnnn DSR-22
SUBPAGE, ENDSUBPAGE.cciuuu... DSR-23
SUBTITLE, NOSUBTITLEcooivivennn. DSR-23
JTAB STOPS i e DSR-23
TESTPAGEci ittt DSR-23
B 1 17 DSR-24
VARIABLEii ittt iiiiiinniannnns DSR-24
XLOWER, XUPPERttt DSR-24
EDT Keypad Commands EDT-1
ADVANCE Functionciiiieiinnnnnnn. EDT-1
APPEND Functioncvitinrininnennnn. EDT-1
BACKSPACE Function CTRL/H EDT-1
BACKUPFunctionoitieuienneeenenns EDT-2
BOTTOMFunctioncoiiiieerennnnn. EDT-2
CHAR (Character) Function EDT-2
CHNGCASE (Change Case) Function EDT-2
COMMAND Function.coiiiiineernnenn. EDT-4
CTRL/A (Control A) Functioncvvvn... EDT-4
CTRL/C (Control C) Function EDT-4
CTRL/D (Control D) Function EDT-5
CTRL/E (Control E) Function EDT-5
CTRL/K (Control K) Function EDT-6
CTRL/L (Control L) Function EDT-7
CTRL/M (Control M) Function EDT-8
CTRI/R (Control R) Function FEDT-R
CTRL/T (Control T) Funetionccvuvn. EDT-8
CTRL/U (Control U) Functionccu.... EDT-9
CTRL/W (Control W) Function EDT-9
CTRL/Z (Control Z) Function EDT-9
CUT FUnCtioncoviiinreveenennnnnnonnnnn EDT-10
DEL C (Delete Character) Function EDT-10
DEL EOL (Delete to End of Line) Function EDT-11
DELETE Functionc0iiiiiinnnnennns EDT-11
DEL L (Delete Line) Functionc.c.... EDT-12
DEL W (Delete Word) Function EDT-12

DO Function (LK201 only)ccoiiiiiinnn. EDT-13

xxii Contents
DOWN AXTowW ..ottt ittt iteiieeeeeeaennnn EDT-13
ENTER Functionc0iiiiiiriennennnn EDT-14
EOL (End of Line) Function EDT-14
FILL Function (VT100)civiviiereeennn. EDT-14
FINDFunctionc.iitiiiiinieennnnnnn EDT-15
FNDNXT (Find Next) Function EDT-16
GOLDFunction000veeeeeei.... EDT-16
HELPFunctioncciviiiirirnneennnennn EDT-17
LEFT ArroW. . oottt ettt et EDT-18
LINEFunctioncouiviiiiimunnenenneenn EDT-18
LINEFEED Functioncvviiin i iiieennnnnnn EDT-18
OPENLINEFunctioncciiiiiiirnnnnnn. EDT-19
PAGEFunctioncciiiiiiieernnnnnnns EDT-19
PASTE Function00iiiiirinnrennnenns EDT-20
REPLACE Functionc.iiiiiiinennennnn EDT-21
RESET Functionciviiiiirrnnnrennnenns EDT-21
RETURN Functionciiiiiiinnnnnnnnn. EDT-22
RIGHT ATrowW .. .oiiiie ittt ieeeininnnnns EDT-22
SECT (Section) Functioncovvvvvunn.. EDT-22
SELECT Functioncutiiiinneeennnnnn. EDT-23
SPECINS (Special Insert) Function EDT-23
string specifier e EDT-24
SUBS (Substitute) Function EDT-24
TABFuUnctionoiiiiiiiuninnennennnns EDT-25
TOPFuUnctioniiiiinirnnennnnennns EDT-26
UND C (Undelete Character) Function EDT-26
UND L (Undelete Line) Function EDT-27
UND W (Undelete Word) Function EDT-28
UP ArTOW . . .ttt ettt e e e ettt EDT-28
WORD Functioncouiiiiiinnnnnnnn. EDT-29
EVE Commands EVE-1
L EVE-1
AT TACH ... ittt ettt ie ey EVE-2
BOTTOM ...ttt ittt i it e EVE-3
BUFFER ...ttt i i e et ieinnnann EVE-3
CAPITALIZEWORDcoiiiiiiii i ii i, EVE-4
CENTERLINEt iiiiiitnennnnns EVE-5
CHANGE DIRECTION ...t iiiiiiinnenn EVE-5
CHANGE MODE . ..ottt e e i i iiannn EVE-6
(070) > EVE-6
021 1 EVE-7
DL ..t e e e EVE-7

Contents xxiii

DELETEttt EVE-9
DELETEBUFFER.......... ..o iiiiiiinnnn.. EVE-10
DELETEWINDOW, EVE-11
DO .. e EVE-11
ENDOFLINE..........ciiiiiiiiiiiiiiiaen, EVE-12
ENLARGE WINDOWo, EVE-12
ERASE CHARACTERo, EVE-13
ERASELINE i, EVE-13
ERASE PREVIOUSWORDcovviivenn. EVE-14
ERASE STARTOFLINE.......... EVE-14
ERASEWORD....... ..o, EVE-15
. 1 EVE-15
EXTEND ALL it EVE-16
EXTENDEVE i, EVE-17
EXTENDTHISci i, EVE-18
EXTENDTPUiii it iiiii i EVE-18
17 EVE-18
FILLPARAGRAPH i, EVE-19
FILLRANGE ittt EVE-19
FIND ... e EVE-20
FINDNEXTci ittt inennnn EVE-21
FINDSELECTEDi0iiiiniiiiiinnnnn, EVE-21
FORWARDttt EVE-22
GETFILE i i EVE-22
GOTO ... e e EVE-23
HELP. it EVE-24
INCLUDEFILE.ttt EVE-25
INSERTHERE, EVE-26
INSERTMODE, EVE-26
INSERTPAGEBREAK oiat EVE-27
LEARN ... i i it EVE-27
LINE .. i i it EVE-28
LOWERCASEWORDovvvniiiininnnenn, EVE-29
MARK .. e EVE-29
MOVEBYLINE i, EVE-30
MOVEBYPAGE, EVE-31
MOVEBYWORDottt EVE-31
MOVEDOWN it EVE-31
MOVELEFT i it EVE-32
MOVERIGHT, EVE-33
MOVEUP ittt i e EVE-33
NEW e EVE-34
NEXTBUFFERttt EVE-35

NEXTSCREENcoiuiiniiiiiiiiiiiin, EVE-35

xxiv

Contents

NEXTWINDOW ittt i EVE-36
ONEWINDOWottt EVE-37
OPEN. ..ot i ittt ei e EVE-37
OPEN SELECTED...........coiiiiiiiiiinnnnn. EVE-37
OTHERWINDOW it EVE-38
OVERSTRIKEMODEcoiiiiiininn, EVE-38
PAGINATE.ot it it i i as EVE-39
PASTE i e EVE-39
PREVIOUSSCREEN.......... ..o, EVE—40
PREVIOUSWINDOWo, EVE-40
QUIT ... i i i EVE-41
QUOTE ... i e EVE-41
RECALL ...t ittt it i i EVE-42
REFRESHo EVE—43
REMEMBERottt EVE—43
REMOVE ittt it iii e EVE—44
REPEAT.o i EVE—45
REPLACEt ittt i EVE—46
RESET ... i EVE—48
RESTOREot EVE-48
RESTORECHARACTERciiiiiininnnn. EVE—49
RESTORELINE EVE-49
RESTORE SELECTIONccoiiininnnn. EVE-49
RESTORE SENTENCEcoviiiiiinennnn. EVE-50
RESTOREWORDciiiiiiiiiiiiinn, EVE-50
RETURN ... oo i i EVE-50
REVERSEo EVE-51
SAVE EXTENDEDEVEo, EVE-52
SAVE EXTENDEDTPUciiiininn. EVE-53
SAVEFILE ...t EVE-53
SAVEFILEAS.ot EVE-54
SELECTttt it it it i e as EVE-55
SELECT ALL. ...ttt EVE-57
SET BUFFERottt EVE-57
SETCLIPBOARDciiitiiiiiiiiannnnnnn EVE-58
SETCURSORBOUNDcoiiiiiiinn... EVE-59
SETCURSORFREEo, EVE-59
SET FIND NOWHITESPACE EVE-60
SET FIND WHITESPACEot EVE-60
SETGOLDKEYciiiiitiiiiiininnnenns EVE-61
SETKEYPADEDTcciiiiiiiiiinnnn, EVE-62
SETKEYPADNOEDT............coiviiiiiennnn. EVE-66
SETKEYPADNOWPSciiiiiiiiinennne. EVE-66

SET KEYPAD NUMERIC EVE-67

Contents xxv

SETKEYPADVT100............coiiitiiienvnnn. EVE-67
SETKEYPADWPS ..., EVE-69
SETLEFTMARGINciiiiiiiiinnnnnn. EVE-72
SETNOCLIPBOARDcoiiiiiinnnnnn. EVE-73
SETNOGOLDKEY............cciiiiiiiiienann.. EVE-73
SET NOPENDING DELETE EVE-74
SETNOWRAPttt ittt iiannee EVE-74
SET PARAGRAPHINDENTccou... EVE-74
SET PENDINGDELETEcc0u... EVE-76
SETRIGHTMARGINoiiiiiiiiinnnnnn. EVE-76
SET SCROLLMARGINS, EVE-77
SETTABS . ..ottt it it e ia e EVE-78
SETWIDTH0, EVE-80
SET WILDCARDULTRIXcoviiuinn... EVE-81
SET WILDCARD VMS. ...ttt EVE-81
SETWRAP ittt ittt iiineanenn EVE-82
SHIFTLEFTot EVE-82
SHIFTRIGHT i, EVE-83
SHOW ... i i i i EVE-84
SHOWBUFFERScciiiiiiiiiininn. EVE-85
SHOW DEFAULTS BUFFER.............coovuenn. EVE-86
SHOWKEYttt iii e EVE-86
SHOWSUMMARY.iiiiiiiiiiiiiinnns EVE-87
SHOW SYSTEM BUFFERS..............c.cvvntn. EVE-87
SHOWWILDCARDScciiiiiiiiinennnn.. EVE-88
SHRINKWINDOWt EVE-88
SPAWN ... i i e EVE-89
SPELLt it i i e EVE-90
SPLITWINDOWttt EVE-91
STARTOFLINE i, EVE-91
STORETEXTc0iitiiiiiiiiiiiinnnenn, EVE-92
TAB .. e e e EVE-93
P EVE-53
TPU .. e EVE-94
TWOWINDOWS i EVE-94
UNDEFINEKEY.........coiiiiiiiiiiiiinann. EVE-95
UPPERCASEWORDciiiiiiiiininnnn, EVE-96
WHATLINE i, EVE-96
WILDCARD FIND ittt it iiiiiianenen EVE-97
WRITEFILE i, EVE-98
Mail Utility MAIL-1

Sort/Merge Utility SORT-1

xxvi Contents

Appendix A TFF Facility
A.1 Using the Terminal Fallback Facility A-1

All
A1l2
Al3

The Purpose of Terminal Fallback A2
The Purpose of Compose Characters A-2
Setting TFF Terminal Parameters A-7

Appendix B Character Sets
B.1 ASCIICharacter Set.......e0000000cc0eccccsccocecs B-1

B.2 ASCII and DEC Multinational Character Set
Tables ceceas Ceeecarecnnes ceescsaceccens . B-2

Appendix C Expressions

Appendix D Terminal Keys
D.1 VT300 and VT200 Terminal Seriesccce00eveeee D=1
D.2 VTI100 Terminal Serieso00eeecssesccccssss D=2

Index

Figures

3-1
5-1
6-1

6-2
8-1
EVE-1

EVE-2
B-1

B-2

Parts of a DCL Command Line 3-3
Directory Structure 5-2
Editing Keys-—-VT200-Series and VT300-Series

Terminalsccittiiiinnnnnnnnnn. 6-5
Editing Keys—VT100-Series Terminals 6-6
Sample Mail Message 8-1
EVE Default Keys for VI300- and VT200-Series

Terminalsccovteiiiiinnnnnnnnnn. EVE-68
EVE Default Keys for VT'100-Series

Terminalsccciiiiineennnnnnn. EVE-69
Graphical Representation of the ASCII
CharacterSet................ ... iiin. B-3

Graphical Representation of the DEC
Multinational Extension to the ASCII Character
S = P B4

Tables

3-1
3-2
3-3
41
6-1
6-2
6-3

7-1

11-1
11-2
11-3
114
11-5
11-6

12-1
DCL-1
DCL-2
DCL-3
DCL—4
DCL-5
DCL-6
DCL-7
DCL-8
DCL-9
DCI~10

EVE-1
A-1

Contents xxvii

Commonly Used DCL Commands 3-2
Commonly Used DCL Key Combinations 3-2
Keys That Execute Terminal Functions 3-15
Default File Typesco .. 4-3
EVEKeyNamescccvviievnn.. 6-8
EVE Default Settings. 6-15
EVE Commands and Default Predefined

Reys..ovvii i i i e 6-37
Symbols for EDT Functions 7-36
Default Process Logical Names 11-5
Default Job Logical Names 116
Default System Logical Names 11-7
Default Process Directory Logical Names 11-9
Default System Directory Logical Names. 11-9
Equivalence Names for Process-Permanent

Logical Namesiiiiiean.. 11-15
Determining the Value of an Expression 12-20
Summary of Lexical Functions.............. DCL~121
Summary of FAO Directives................ DCL-140
F$FILE_ATTRIBUTES Items DCL-144
FSGETDVIItems...........ccovevvnnnnn.. DCL-147
Values Returned by the DEVCLASS Item DCL-154
Values Returned by the DEVTYPE Item DCL-155
FSGETJPIItemsccovvvvnvnnnnn. DCL-161
F$GETQUIItems..........coovuevnennnnn. DCL-168
F$GETSYI Items for the Local Node Only DCIL-182
FSGETSYT Ttems for the Loecal Node or for

Other Nodes in the VAXCluster DCL-183
EVE Default GOLD Key Combinations EVE-61

LATIN_1 Compose Sequence Table A-3

Preface

The VMS User’s Manual provides an overview of the VMS operating system.

Intended Audience

This manual is intended for all users of the VMS operating system.

Document Structure

This manual is organized into two major parts. Chapters 1 through 13 describe
VMS concepts and procedures users need to perform basic computing tasks. The
Reference Section contains the following VMS user reference information:

DCL commands—In alphabetical order, describes all Digital Command
Language (DCL) commands and lexical functions.

DIGITAL Standard Runoff (DSR) commands—Contains the rules you must
follow and commands, in alphabetical order, you use to format output with
DSR.

EDT Editor—Provides reference information about EDT keypad editing.
EVE Commands—In alphabetical order, describes all EVE editing commands.

MAIL—Describes the commands and qualifiers you can use to send messages
to other users.

VMS Sort/Merge—Describes VMS Sort/Merge Utility, which you can use to

507t records o Lo merge inpui iiies.

Four appendixes contain tables that list the following information:

Terminal Fallback Facility
ASCII character set

DCL Expressions
Terminal Keys

xxx Preface

Conventions

The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the
key labeled Ctrl while you press another key or a pointing device
button.

PF1 x A sequence such as PF1 x indicates that you must first press and

release the key labeled PF1, then press and release another key or
a pointing device button.

RET] A key name is shown enclosed to indicate that you press a key on
the keyboard.

In examples, a horizontal ellipsis indicates one of the following
possibilities:

* Additional optional arguments in a statement have been
omitted.

* The preceding item or items can be repeated one or more
times.

¢ Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because they
are not important to the topic being discussed.

O In format descriptions, parentheses indicate that, if you choose
more than one option, you must enclose the choices in parentheses.

[1] In format descriptions, brackets indicate that whatever is enclosed
is optional; you can select none, one, or all of the choices.

{ In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

red ink Red ink indicates information that you must enter from the
keyboard or a screen object that you must choose or click on.
For online versions, user input is shown in bold.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

italic text Italic text represents information that can vary in system messages
(for example, Internal error number).

UPPERCASE TEXT Uppercase letters indicate that you must enter a command (for
example, enter OPEN/READ).

Uppercase letters can also indicate the name of a command,
the name of a file, the name of a file protection code, or the
abbreviation for a system privilege.

numbers

Preface xxxi

Hyphens in coding examples indicate that additional arguments to
the request are provided on the line that follows.

Unless otherwise noted, all numbers in the text are assumed to be
decimal. Nondecimal radixes—binary, octal, or hexadecimal—are
explicitly indicated.

Chapter 1
Introduction: VMS Concepts and Definitions

Your VAX computer operates under the control of the VMS (Virtual Memory
System) operating system. The VMS operating system controls VAX computer
system resources and schedules access to these resources.

VMS is an interactive operating system. While you are logged in to the
computer, you and the system conduct a dialogue using the DIGITAL Command
Language. You use DCL by entering commands, called DCL Commands, which
are read and translated by the system. You enter a command by typing it on your
keyboard and pressing the RETURN key; the system responds by executing your
command or by displaying an error message on your screen if it cannot interpret
what you entered.

In this manual, VMS is sometimes used to refer to the VMS operating system.
System refers to a VAX computer that is running the VMS operating system.

1.1 How to Use This Manual

The VMS User’s Manual is divided into two parts. Chapters 1 through 13
describe VMS concepts and procedures users need to perform basic computing
tasks. The Reference Section contains VMS user reference information.

This chapter describes the concepts and definitions used in the VMS User’s
Manual. Chapters 2 through 13 describe the tasks you can perform on the VMS
operating system. Read this chapter to understand basic concepts about the VMS
operating system and its components. Read chapters 2 through 13 to find out how
to do specific tasks on the VMS operating system.

A system manager performs the administrative tasks that create and maintain
an efficient computing environment. If you are a system manager or want to
understand system management concepts and procedures, refer to the VMS
System Manager’s Manual.

The topics discussed in this manual require you to be familiar with your terminal.
For information on setting up or using your terminal, see the owner’s manual
supplied with your terminal.

1-2 Introduction: VMS Concepts and Definitions

1.2 Logging In to the System

To interact with the VMS operating system, you must log in to a user account.
An account is a name or number that identifies a user to the system when the
user logs in. That name or number tells the system where the user’s files are and
the type of access to other files the user has. User accounts are either privileged
or nonprivileged. System managers grant privileges according to users’ needs.

Logging in consists of getting the system’s attention and identifying yourself as
an authorized user. Your system manager (or whoever authorizes system use

at your installation) usually sets up accounts. This person provides you with
your user name and password. Your user name identifies you to the system and
distinguishes you from other users. In many cases, a user name is your first or
last name. Your password is for your protection. If you maintain its secrecy, other
users cannot use system resources under your user name.

Chapter 2 describes how to log in to and out of the system.

1.3 Using a Network

Your system might be part of a DECnet-VAX network. When computer systems

are linked together, they form a network. VMS systems in a DECnet network are
able to communicate with each other and share information and resources. Each

system in a network is called a network node and is identified by a unique node

name.

When you are logged in to a network node, you can communicate with other
nodes in the network. The node at which you are logged in is called the local
node; other nodes on the network are called remote nodes. If you have access
to an account on a remote node, you can log in to that account from your local
node and perform tasks on that node while remaining connected to your local
node.

Chapter 2 describes how to log in to a remote node. Additional tasks you can
perform on remote nodes are described in the appropriate chapters of this book.

NOTE: In the examples of remote operations in this manual,
proxy accounts enable users to perform operations on remote
systems. Proxy accounts are one way users can access remote
systems. For more information, about additional ways to access
remote systems, see the VMS System Manager’s Manual.

1.4 The DIGITAL Command Language (DCL)

DCL (DIGITAL Command Language) is a set of English-like instructions that
tell the VMS operating system to perform specific operations. DCL provides you
with over 200 commands and functions to use in communicating with the VMS
operating system to accomplish your computing tasks.

Introduction: VMS Concepts and Definitions 1-3

You can use DCL in the following two modes:

¢ Interactive—In interactive mode, you enter commands from your terminal.
One command has to finish executing before you can enter another.

¢ Batch—In batch mode, the system creates another process to execute
commands on your behalf. Batch jobs and network processes use DCL in
batch mode. A process is an environment created by the system that makes it
possible for you to work with the system. (See Section 1.7 and Chapter 10 for
more information about processes.) A batch job is a command procedure or
program that is submitted to the operating system for execution as a separate
user process. After you submit the command procedure for batch execution,
you can continue to use your terminal interactively.

When you enter a DCL command, it is read and translated by the DCL
interpreter. The way the command interpreter responds to a command is

determined by the type of command entered. The three types of DCL commands
are as follows:

¢ Built-in commands—These commands are built into the DCL interpreter and
are executed internally.

¢ Commands that invoke programs—DCL calls another program to execute the
command rather than executing it internally. The program invoked to execute
a command is referred to as a command image. This command image can

be either an interactive program like MAIL or a noninteractive program like
COPY.

* Foreign commands—A symbol that executes an image is referred to as a
foreign command. (See Section 1.13 for more information about symbols.)
A foreign command executes an image whose name is not recognized by the
command interpreter as a DCL command. The following example defines the
symbol FUN as a foreign command. (No DCL command FUN exists.)

$ FUN := $DISK1:[ROY.PROGRAMS]GAMES.EXE

1.4.1 The DCL Command Line

DCL, like any language, has its own vocabulary and usage rules. The vocabulary
consists of commands, parameters, and qualifiers, which are put together in a
way that DCL can interpret. The way in which the parts of a command line are
put together is referred to as the command line syntax. A DCL command line
contains the following information in the format shown:

[$] [label:] command [/qualifier[=value]...] [parameter[/qualifier...]]

NOTE: Items in square brackets [] are optional and might not
be required by a specific command.

1-4 Introduction: VMS Concepts and Definitions

The following table briefly describes the components of a DCL command line:

$ The dollar sign is the DCL prompt. When you work interactively with DCL,
DCL displays the prompt when it is ready to accept a command.

Label Identifies a line in a command procedure. Labels are not used for commands
that are entered interactively.

Command Specifies the name of the command.

Qualifier Modifies the action taken by the command. Some qualifiers can modify

parameters. Some can accept values.

Parameter Specifies what the command acts upon. You must position parameters in a
specified order within the command.

Value Modifies a qualifier and is often preceded by an equal sign. A value can be a
file specification, a character string, a number, or a DCL keyword. A keyword
is a word reserved for use in certain specified syntax formats.

Chapter 3 shows a sample command line and describes how to use DCL
commands.

The Reference Section lists in alphabetical order and describes all DCL commands
and lexical functions. (Lexical functions are command language constructs that
the DCL interpreter evaluates and substitutes before it interprets a command
string. Chapter 12 discusses lexical functions in more detail.)

1.5 Files and Directories

A file contains information. This information can be machine-readable data that
the computer understands. It can also be text you enter and manipulate. The
text in the file might be the text of a document, a program, or a list of addresses.
You can examine the data in these files by displaying the files on a terminal
screen or by printing them on paper.

A file is listed in a directory. A directory is a special kind of file that contains
the names and locations of files. Directory files are stored on disks. Disks are the
one of the hardware devices the VMS operating system uses to store information.
See Section 1.6 for more information about disks.

Chapter 4 describes how to create and organize files to store information.
Chapter 5 describes how to use directories to organize and manage files.

1.5.1 File and Directory Specifications

Every file must have a file name or file type to identify it to both the system and
you. A file also has a version number. You can have several versions of a file.
Unless you specify a version number, the system uses the highest existing version
number of a file. When you edit a file, the system saves the original file and
produces a modified output file. By default, the output file has the same name
and type as the original, but the version number is incremented by one. The file
name, type, and version number form a file specification. This information is
specified in the following format:

Introduction: VMS Concepts and Definitions 1-5

filename.type;version

A directory file has the following format:

directory.DIR;1

For example, DOG.DIR;1 is a directory file. You cannot edit a directory file.

A full file specification contains the following information in the format shown:

node-name::device:[directory]filename.type;version

Because a full file specification describes the network node on which the file
resides, a full file specification is also known as a network file specification.

A full file specification completely describes the access path the system uses to
locate and identify a file. In addition to the file name, a file specification can
include the directory in which the file is located. For example, in the following
t[:ggllglé.g]d line, the file STAFF_VACATIONS.TXT is located in the directory

$ PRINT [JONES]STAFF_VACATIONS.TXT

If you omit the directory name from the file specification, the current directory is
assumed by default.

When using file and directory specifications to create and manipulate files

and directories, you can use wildcard characters. A wildcard character is a
nonalphanumeric character, such as an asterisk or a percent sign, that is used
within, or in place of, a file name, file type, directory name, or version number in
a file specification to indicate (all) for the given field. Chapter 4 and Chapter 5
describe how to use wildcard characters in file and directory operations.

As mentioned previously, a directory stores files on a disk in a special format.
This format is called a directory structure; Section 1.5.2 describes the
components of a directory structure.

1.5.2 Directory Structures

Each disk contains a main directory, which can be set up by a system manager
or by the system itself. This main directory is called the master file directory
(MFD) and contains a list of user file directories (UFDs). User file directories are
files in the master file directory that point to top level directories. Your top level
directory is usually your login or default directory. Unless your account has
been modified to do otherwise, by default the system places you in your top level
directory when you log in.

In most cases, a UFD exists for each user on the system. It contains the names
of and pointers to files cataloged in a user’s directory. A subdirectory is any
directory file that is not an MFD or a UFD. Subdirectories let you organize files
into meaningful groups. Like a directory, a subdirectory contains names and
pointers for the files cataloged within it. It can contain an entry for another

1-6 Introduction: VMS Concepts and Definitions

subdirectory, which can contain an entry for another subdirectory, and so on
to seven levels of subdirectories. This structure (a top level directory plus a
maximum of seven levels of subdirectories) is called a hierarchical directory
structure. Chapter 5 contains more information about directory structures.

1.6 Devices
In the VMS operating system, devices are classified as follows:

¢ Mass Storage Devices—These devices, such as disks and magnetic tapes,
save the contents of files on a magnetic medium. Files saved this way can be
accessed, updated, modified, or reused at any time.

¢ Record-oriented Devices—These devices, such as terminals, printers,
mailboxes, and card readers read and write only single physical units of
data at a time and do not provide online storage of the data. (Printers and
card readers are also called unit-record devices.)

A device name has the following three parts:

* The device type, which identifies the hardware device. (For example, an RP06
disk has the device type DB, and a TE16 magnetic tape has the device type
"MT)

e A controller designator, which identifies the hardware controller to which the
device is attached.

* The unit number, which uniquely identifies a device on a particular controller.

The files you commonly access are stored on disks or magnetic tape. Your user file
directory (UFD) and your default directory with all your files and subdirectories
are located on a disk. You can use a file specification that contains directory
information only if the file is located on a disk. Magnetic tapes do not have
directory structures. To obtain a file stored on tape, use a file specification that
contains only file information.

If you want to access a file that is not located on your default device, you must
specify the device name. For files on disks, you must also specify the directory
where the file is cataloged.

You can use physical, logical, or generic names, described in the following
sections, to refer to devices.
1.6.1 Physical Device Names

Each physical device known to the system is uniquely identified by a physical
device name. The physical device name identifies the kind of device, for
example, a storage disk or a terminal. A device name has the following format:

ddcu

Introduction: VMS Concepts and Definitions 1-7

The fields are as follows:

dd Device code that represents a device type.

c Controller designation. The controller designation, along with the unit number, identifies
the location of the device within the hardware configuration of the system. Controllers are
designated with alphabetic letters A through Z.

u Unit number. The unit number, along with the controller designation, identifies the
location of the device within the hardware configuration of the system. Unit numbers are
decimal numbers from 0 through 65535.

The maximum length of the device name field, including the controller and the
unit number, is 15 characters. When you specify a device name as part of a file
specification, end it with a colon (:). If you do not specify a logical or physical

device name, your default device name is supplied.

1.6.2 Logical Device Names

Your system manager has probably set up logical device names to represent
the devices on your system. Logical device names can be used to equate a
somewhat cryptic device name to a short, meaningful name. Use these logical
device names, rather than the physical device names, to refer to devices.

Chapter 11 describes how to use logical names.

1.6.3 Generic Device Names

A generic device name consists of the device code and omits the specific
controller or unit number. When you use a generic device name, the system
locates the first available controller or device unit whose physical name satisfies
the portions of the generic device name you specified.

1.7 Processes

When you log in, the system creates an environment from which you can enter
commands. This environment is called your process. The system obtains the
characteristics that are unique to your process from the user authorization file
(UAF'). The UAF lists those users permitted to access the system and defines the
characteristics for each user’s process. The system manager usually maintains
the UAF. It is within your process that the system executes your programs (also
called images or executable images) one at a time.

A process can be a detached process (a process that is independent of other
processes) or a subprocess (a process that is dependent on another process for
its existence and resources). Your main process, also called your parent process,
is a detached process.

Chapter 10 describes how to use processes to perform computing tasks.

1-8 Introduction: VMS Concepts and Definitions

1.8 Programs

A program, also called an image or an executable image, is a file that contains
instructions and data in machine-readable format. A program can be either a
command image or a noncommand image as follows:

¢ Command image—A command image is a program associated with and
invoked by a DCL command. For example, when you type the DCL
command COPY, the system executes the program SYS$SYSTEM:COPY.EXE.
COPY.EXE is a command image. A system directory named SYS$SYSTEM
contains a number of command image files, most of which are VMS-supplied.
Use the DCL command DIRECTORY SYS$SYSTEM to examine this system
directory.

* Noncommand image—A noncommand image is a program not associated with
a DCL command. To invoke a noncommand image, name the file containing
the program as the parameter to the RUN command.

Image files can be VMS- or user-supplied and usually have a file type of EXE.
You cannot examine an image file with the DCL commands TYPE, PRINT, or
EDIT because image files do not consist of ASCII characters. (Text files contain
ASCII characters, which are a standard method of representing the alphabet,
punctuation marks, numerals, and other special symbols.) Chapter 10 contains
more information about using programs.

1.9 Utilities

A utility is a computer program that provides a service. Utilities are invoked
with DCL commands. Some utilities—interactive utilities—provide a special
environment from which you can perform a specific set of tasks. You work
interactively with these utilities by entering subcommands and other information
in response to the utility’s prompt. For example, MAIL is an interactive utility; it
has its own prompt and subcommands.

Other utilities are noninteractive. Noninteractive utilities look and act like DCL
commands; when you invoke a noninteractive utility, it occupies your terminal
and executes a task. When the task is complete, you are returned to DCL
level and your terminal is once again available. The SORT/MERGE and the
LIBRARIAN utilities are two examples of noninteractive utilities.

Some utilities, both interactive and noninteractive, prompt you for a file name

or other information. When you are using such a utility (for example, BACKUP,
MESSAGE, PATCH, and SORT/MERGE), you can add qualifiers to the DCL
command line to tailor the utility to your specific needs, as shown in the following
example:

$ BACKUP/RECORD/IMAGE/LOG
From:

Introduction: VMS Concepts and Definitions 1-9

1.9.1 MAIL

MAIL allows you to send messages to and receive messages from other users
on your system or on any VAX computer that is connected to your system by
DECnet-VAX,

Chapter 8 describes how to use MAIL.

1.9.2 VMS SORT/MERGE

The VMS Sort Utility (SORT), invoked with the DCL command SORT, sorts
records from one or more input files according to the fields you select and
generates one reordered output file. The Sort Utility reorders records in a file
(or files) so that they are in alphabetic or numeric order, either low to high
(ascending) or high to low (descending), based on a portion of each record that
you define to be the key.

The VMS Merge Utility (MERGE), invoked with the DCL command MERGE,
combines up to ten previously sorted files into one ordered output file.

For information about using SORT/MERGE, see Chapter 9 and the Reference
Section.

1.10 Text Editors

Text editors allow you to create and modify text files. With a text editor, you can
enter text from a keyboard and modify the text using text editing commands. For
example, you can type in data for a report and then rearrange sections, duplicate
information, substitute phrases, or format text. You can use text editors to create
and modify source files for programming languages (such as PASCAL or VAX
BASIC) or text formatters (such as VAX DOCUMENT or DIGITAL Standard
Runoff). The VMS operating system supports several text editors. Chapter 6
describes how to use EVE; and Chapter 7 describe how to use EDT. The Reference
Section lists EVE and EDT commands in alphabetical order.

1.11 DIGITAL Standard Runoff (DSR)

DIGITAL Standard Runoff (DSR) is a text formatter that processes source files
into formatted text and intermediate files, and creates tables of contents and
indexes. You use a text editor to create a source file, to which you should give a
file type of RNO. This file contains text, DSR formatting commands, flags (special
instruction characters you insert), and control characters.

The Reference Section describes how to use DSR and lists each DSR command.

1-10 Introduction: VMS Concepts and Definitions

1.12 Logical Names

A logical name is a name equated to an equivalence string name or to a

list of equivalence strings. When you define a logical name, you equate one
character string to an equivalence name, which is usually a full or partial

file specification, another logical name, or any other character string. Once you
have equated a logical name to one or more equivalence names, you can use the
logical name to refer to those equivalence names. For example, you might assign
a logical name to your default disk and directory. Logical names serve two main
functions:

* Shorthand and readability—You can define commonly used files, directories,
and devices with short, meaningful logical names. Such names are easier
to remember and type than the full file specifications. Names that you use
frequently can be defined in your login command procedure. Names that most
users on your system use frequently can be defined by a system manager in
the site-specific system startup command procedure.

¢ File independence—You can use logical names to keep your programs and
command procedures independent of physical file specifications. For example,
if a command procedure references the logical name ACCOUNTS, you can
equate ACCOUNTS to any file on any disk before executing the command
procedure.

Chapter 11 contains more information about logical name tables and describes
how to use logical names.

1.13 Symbols

Entering DCL command lines that include parameters, multiple qualifiers, and
values can make for much typing and can be time-consuming. To simplify your
interaction with DCL and save time, you can establish symbols to use in place
of command names and entire command strings you type frequently. A symbol
is a name that represents a numeric, character, or logical value. When you use

a symbol in a DCL command line, DCL uses the value you assign to the symbol.
By defining a symbol as a command line, you can execute the command by typing
only the symbol name.

Symbols can also be used (especially in command procedures) to collect, store, and
manipulate certain types of data.

Chapter 12 describes how to use symbols in DCL commands and command
procedures.

Introduction: VMS Concepts and Definitions 1-11

1.14 Command Procedures

A command procedure is a file that contains a series of DCL commands. Some
simple command procedures might only contain one or two DCL commands;
complex command procedures can function as sophisticated computer programs.
When a command procedure is executed, the DCL interpreter reads the file and
executes the commands it contains.

If your system manager has set up a system login command procedure, it
is executed when you log in. A login command procedure allows your system
manager to ensure that certain commands are always executed when you and
other users on your system log in.

After executing the system login command procedure, the system executes your
personal login command procedure, if one exists. Your personal login command
procedure allows you to customize your computing environment. The commands
contained in it are executed every time you log in. Each time you log in, the
system automatically executes up to two login command procedures.

The person who set up your account might have placed a login command
procedure in your top level directory. (Unless your account has been specially
modified to do otherwise, the system automatically places you in your top level
directory when you log in.) If a login command procedure is not in your top level
directory, you can create one yourself, name it LOGIN.COM, and place it in your
top level directory unless your system manager tells you otherwise. A sample
personal login command procedure is described in Chapter 13.

1.15 Account and System Security

The VMS operating system provides two related mechanisms to control the access
that users have to system objects as follows:

¢ UIC-based protection—Each user process in the system is assigned a
user identification code (UIC) in the user authorization file (UAF) with the
Authorize Utility. Each object on the system, such as a file, is also assigned a
UIC (typically the UIC of its creator). Each object also maintains a protection
masK, a structure which defines the type of access allowed to users, based

upon the relationship between the user UIC and the object UIC.

¢ ACL-based protection—An access control list (ACL) specifying the type of
access to be granted or denied to a particular user or group of users can be
associated with a system object. An ACL is an optional form of protection
that is typically created by the object owner using the ACL editor (invoked
with the DCL command EDIT/ACL) or the SET ACL command.

The system objects for which ACL-based protection can be specified are files,
directories, devices, batch and print queues, logical name tables, and global
sections. Users are specified by identifiers in the rights database that are
assigned with the Authorize Utility.

1-12 Introduction: VMS Concepts and Definitions

Each VMS system site has unique security requirements. For this reason,
every site should have a system security policy that outlines physical and
software security requirements for system managers and users. The VMS
System Manager’s Manual describes the security features available with the VMS
operating system and tasks system managers can perform to maintain account
and system security. Chapter 4 describes how users can protect their files from
unauthorized access.

Chapter 2
Getting Started: Interacting with VMS

This chapter describes the following basic tasks you use to interact with the VMS
operating system:

¢ Logging in to the system

¢ Logging in to a remote node

* Changing your password

* Recognizing system responses
¢ Getting help about the system
¢ Terminating a remote session
¢ Logging out of the system

The way you log in to and out of the VMS operating system depends on how
the system is set up at your site. This section provides a general description
of logging in to and out of the VMS operating system. Check with your system
manager for the procedures specific to your site.

2.1 Logging In to the System

You need two pieces of information to log in to the system: your user name and
your password. Your system manager usually sets up accounts and gives you your
user name and password.

To log in to the system, use the following procedure:
1. Make sure your terminal is plugged in and the power is turned on.

2. Press the RETURN key to signal the system that you want to log in. (You
might need to press RETURN several times.) The system displays a prompt
for your user name:

Username:

2-2 Getting Started: Interacting with VMS

3. Enter your user name and press RETURN. (You have about 30 seconds to do
this, otherwise the system “times out” and you must start the login procedure
again.) The system displays your user name on the screen as you type it. For
example:

Username: CASEY

The system prompts you for your password as follows:

Password:

4. Enter your password and press RETURN. The system does not display your
password.

The following example shows a successful login:

RET]
Username: CASEY
Password:

Welcome to VAX/VMS Version 5.2 on node MARS
Last interactive login on Friday, 19-APR-1990 08:41
Last non-interactive login on Thursday, 19-APR-1990 11:05

$

If you make a mistake entering your user name or password, or if your password
has expired, the system displays the message “User authorization failure,” and
you are not logged in. If you make a mistake, press RETURN and try again.

If your password has expired, you need to change your password using the
procedure in Section 2.3. If you have any other problems logging in, get help
from the person who set up your account.

If your login is successful, the system displays a dollar sign ($) in the left margin
of your screen. The dollar sign symbol is the DCL prompt; it indicates that the
system is ready to use.

2.2 Logging In to a Remote Node

If you have access to an account on a remote node, you can log in to that account
from your local node and use the facilities of that remote node while remaining
physically connected to your local node.

For example, to access a remote node HUBBUB on the network using the DCL
command SET HOST, enter the following command;

$ SET HOST HUBBUB

You can then log in to your account on the remote node using the remote node’s
login procedure. When you use the SET HOST command to log in to a remote
node, you can perform any operation on the remote node as though it were your
local node. Note that the remote node need not be a VMS system. If the network
link cannot be established, you receive an error message.

Getting Started: Interacting with VMS 2-3

To abort the login procedure, enter CTRL/Z at the user name or password prompt
or enter CTRL/Y twice. The host system should respond with the question,

“Are you repeating AY to abort the remote session?” Answering Y (uppercase

or lowercase) aborts the remote session.

See the Reference Section for more information about the DCL command SET
HOST.

NOTE: In the examples of remote operations in this chapter,
proxy accounts enable users to perform operations on remote
systems. Proxy accounts are one way users can access remote
systems. For more information about additional ways to access
remote systems, see the VMS System Manager’s Manual.

2.3 Changing Your Password

Change your password after you log in for the first time or if your password
is soon to expire. You should also change your password frequently to ensure
system security.

To change your password, use the following procedure:
1. At the DCL prompt ($), enter SET PASSWORD and press RETURN.

The system prompts you for your current password as follows:

0ld password:

2. Enter your current password and press RETURN. (The system does not
display what you enter.)

The system prompts you for a new password as follows:

New password:
3. Enter your new password and press RETURN.

The system prompts you to confirm your new password as follows:

Verification:

4. Enter your new password again to verify that you have entered it correctly
and press RETURN.

The following example shows the series of set password prompts:

$ SET PASSWORD
0ld password:
New password:
Verification:

$

NOTE: If you are managing your own system, see the VMS
System Manager’s Manual for instructions about setting up a user
account and establishing a password.

2-4 Getting Started: Interacting with VMS

2.4 Recognizing System Responses

The system responds to the commands you enter in several ways. It can execute
the command. Generally, you know your command has executed successfully
when the system prompt returns (by default, the dollar sign). It can execute the
command and inform you in a message what it has done. It can, if execution is
not successful, inform you of errors. It can even act for you, supplying values
(defaults) you have not supplied yourself.

Understanding Defaults

A default is the value supplied by the operating system when you do not specify
one yourself. For instance, if you do not specify the number of copies as a qualifier
for the PRINT command, the system uses the default value of 1. By not explicitly
stating a value, the system assumes that you have chosen the default. The VMS
operating system supplies default values in several areas, including command
qualifiers and parameters. The defaults used with individual commands are
specified with each command’s description in the VMS DCL Dictionary.

Looking at Informational Messages

The system responds to some commands by displaying information about what it
has done. For example, when you use the PRINT command, the system displays
the job identification number it assigned to the print job and shows the name of
the print queue the job has entered.

$ PRINT MYFILE.LIS
Job MYFILE (queue SCALE_PRINT, entry 210) started on SYS$PRINT

Not all commands display informational messages. Successful completion of a
command is usually indicated when the dollar sign prompt returns. Unsuccessful
completion is always indicated by one or more error messages.

Looking at Error Messages

If you enter a command incorrectly, the system displays an error message and
prompts you for the correct command string, as the following example shows:
$ capy
$DCL-W-IVVERB, unrecognized command verb - check validity and spelling
\ CAPY\
$

The three-part code preceding the text of the message indicates the following
information:

* DCL means that the message is from DCL, the default command interpreter.

¢ Wis a warning message.

Getting Started: Interacting with VMS 2-5

* IVVERB shows the type of message. The message can be identified by the
mnemonic IVVERB in the VMS System Messages and Recovery Procedures
Reference Volume

You can also receive error messages during command execution if the system
cannot perform the function you have requested. For example, if you type a
PRINT command correctly, but the file you specify does not exist, the PRINT
command informs you of the error with a message like the following:

$ PRINT NOFILE.DAT

$PRINT-E-OPENIN, error opening CLASS1:[MAYMON]NOFILE.DAT; as input

-RMS-E-FNF, file not found
$

The first message is from the PRINT command. It tells you it cannot open the
specified file. The second message indicates the reason for the first, that is,

the file cannot be found. RMS refers to the VMS file handling facility, Record
Management Services; error messages related to file handling are generally VMS
RMS messages.

Checking Your Current Process

If you suspect that your system is not doing what you think it should be doing,
press CTRL/T. CTRL/T displays a single line of statistical information about the
current process. When you press CTRL/T during an interactive terminal session,
it momentarily interrupts the current command, command procedure, or image in
order to display statistics.

Although CTRL/T disrupts the characters on the screen, it does not impact any
procedure or editing session. To refresh the screen, press CTR/W. The statistical
information includes node and user name, current time, current process, CPU
usage, number of page faults, level of I/O activity, and memory usage. The
following example shows a user named BEAN on node GREEN using the EDT
editor:

GREEN::BEAN 13:45:02 EDT CPU=00:00:03.33 PF=778 I0=295 MEM=315

If you know that your system is running, and CTRL/T does not display statistical
information, enter the SET CONTROL=T at the dollar sign ($) prompt, then
press CTRL/T again.

2.5 Getting Help

When you are logged in to the VMS operating system, you can obtain information
about using the system and available commands by using the HELP command.

Use the following procedure to get help:

1. Enter HELP at the DCL prompt and press RETURN:
$ HELP

2-6 Getting Started: Interacting with VMS

HELP displays a list of topics and the Topic? prompt.
HELP
:(HELP message text and subtopics)
T;pic?
2. To see information about one of the topics, type the topic name after the
prompt.
Topic? NAME
HELP displays information about that topic. If the topic has subtopics, HELP
lists the subtopics and displays the Subtopic? prompt.
NAME
: (HELP message text and subtopics)
ﬁAME Subtopic?
3. If you want information on one of the subtopics, type the name after the
prompt.
NAME Subtopic? Subtopic Name
HELP displays information about that subtopic.

Subtopic
Name

. (HELP message text and subtopics, if any)

4. If you want information on another topic, press RETURN.
5. To exit HELP, press RETURN until you return to the DCL prompt.

If you know the command you need information about, type HELP and the
command name. For example, to get help about the SHOW USERS command
enter the following command:

$ HELP SHOW USERS
HELP displays the following information:

SHOW
USERS

Displays the terminal name, username, and process
identification code (PID) of either specific interactive
users or all interactive users on the system.

Format:

SHOW USERS [username]

Getting Started: Interacting with VMS 2-7

Additional information available:

Parameters Command Qualifiers
/OUTPUT
Examples

SHOW USERS Subtopic?

If you need help but do not know what command or system topic to specify, enter
the command HELP with the word HINTS as a parameter. Each task name listed
in the HINTS text is associated with a list of related command names and system
information topics.

The Reference Section contains more information about the HELP command.

2.6 Ending a Remote Session

You can end a remote session in two ways:

* Use the remote system’s logout procedure (for example, on a VMS system, use
the LOGOUT command).

* Press CTRL/Y twice to obtain the host system’s prompt, which asks whether
you want to abort the remote session. Answer Y if you want to abort the
remote session. This method works regardless of the system running on the
remote node.

When you end a remote session, the message “%REM-S-END, control returned
to node _NODENAME::” is displayed, and you are returned to the system from
which you made the remote node connection.

If the DECnet network has made intermediate connections for you and one of
the intermediate systems goes down, DECnet either attempts to reroute the
connection or waits a few seconds to determine whether the system will recover.
If DECnet is able to recover the connection, the interruption might be so brief
that you do not notice it, or it may last as long as 60 seconds. If DECnet cannot
recover the connection, the remote session is ended and the message “Path lost to
partner” may be displayed.

2.7 Logging Out oi ine Sysiein

When you finish using the system, always log out. This prevents unauthorized
users from accessing your account and the system. It is also a wise use of system
resources; the resources you no longer need are available for other users.

To log out, enter LOGOUT at the DCL prompt. For example:
$ LOGOUT

2-8 Getting Started: Interacting with VMS

The system displays a message, similar to the following message, confirming that
you are logged out of the system:

$ LOGOUT
HARRIS logged out at 19-APR-1990 12:42:48.12

NOTE: You can log out of the system only when you are at the
DCL prompt ($). You cannot enter the LOGOUT command while
you are compiling or executing a program, using a text editor
(such as EDT or EVE), or running a utility (such as MAIL). First
you must exit the program, editor, or utility. When the system
displays the DCL prompt, you can log out.

To find out how much time you spent at the terminal (elapsed time), how much
computer time you used (charged CPU time), and other accounting information,
enter LOGOUT/FULL at the DCL prompt. For example:

$ LOGOUT/FULL
The system displays information similar to the following:
SIMPSON logged out at 19-APR-1990 12:42:48.12

Accounting information:

Buffered I/0 count: 8005 Peak working set size: 212
Direct I/0 count: 504 Peak virtual size: 770
Page faults: 1476 Mounted volumes: 0

Charged CPU time:0 00:00:50.01 Elapsed time:0 02:27:43.06

Chapter 3

The DIGITAL Command Language:
Communicating with VMS

This chapter describes how to use the DIGITAL Command Language. The
DIGITAL Command Language (DCL) is a limited set of English-like instructions
that tell the VMS operating system to perform specific operations.

DCL commands let you do the following:

* Get information about the system

* Work with files

* Work with disks, magnetic tapes, and other devices
¢ Modify your work environment

¢ Develop and execute programs

® Provide security and ensure that resources are used efficiently

3.1 Using DCL Commands

To enter a DCL command, type the command (in uppercase or lowercase letters)
at the DCL prompt ($) and press RETURN. For example, to use the DCL
command SHOW TIME, enter the following command:

$ SHOW TIME
The system responds by displaying the current date and time and returns the
DCL prompt to indicate it is ready to accept another command:

19-APR-1990 15:41:43
$

Table 3-1 lists a few common computing tasks and the DCL commands you need
to perform them. The Reference Section describes DCL commands in alphabetical
order.

3-2 The DIGITAL Command Language: Communicating with VMS
Table 3-1: Commonly Used DCL Commands
Task Command
Displaying the contents of a current directory DIRECTORY
(list of files)

Making a copy of a specified file COPY
Erasing a specified file and removing it froma DELETE
directory

Changing the name of a specified file RENAME
Sending a specified file to a printer for printing PRINT
Viewing and changing the contents of a text file ~EDIT
Ending your VMS session LOGOUT
Creating files or directories CREATE
Controlling how you see the system SET
Displaying the status of the system SHOW
Displaying the contents of a specified file on the TYPE

screen

In addition to these English-like commands, the VMS operating system
understands specific key combinations. A key combination is a shortcut or a
way to get the system’s attention while it is processing another command.

To enter a key combination, hold down the first key while you press and release

the second key.

Table 3-2 describes a few key combinations. (Additional key combinations are

listed in Section 3.7.)

Table 3-2: Commonly Used DCL Key Combinations

Function Use

CRTL/C During command entry, cancels command processing. CRTL/C is displayed
as (Cancel).

CRTL/Y Interrupts command processing. CRTL/Y is displayed as (Interrupt).

CTRL/T Displays information about current process.

The DIGITAL Command Language: Communicating with VMS 3-3

3.2 Constructing a DCL Command
Like a spoken language, DCL is made up of words (vocabulary) and word order

(syntax). The following sections describe these two elements and explain how to
construct a valid DCL command.

3.2.1 Vocabulary of a DCL Command
Figure 3-1 shows the general format and parts of a DCL command line:

Figure 3-1: Parts of a DCL Command Line

$ PRINT/COPIES=5 GROCERY.LIS

T ! ! T
DCL Parameter
Prompt (In this case, the
Qualifier that parameter is a file
modifies the specification)
command
Value that
modifies the
qualifier
DCL Command
ZK-0950A-GE

The following sections describe the parts of a DCL command line,

DCL Prompt

The dollar sign ($) is the DCL. prompt. When von work interactively with DCL,

DCL displays the prompt when it is ready to accept a command. When you write
a command procedure, you must type the dollar sign at the beginning of each
line.

Label

Identifies a line in a command procedure. Use labels only within command
procedures, which are described in Chapter 18.

DCL Command

Specifies the name of the command.

34 The DIGITAL Command Language: Communicating with VMS

Parameter

Specifies what the command acts upon. You must place parameters in a specified
order within the command. The DCL command descriptions in the Reference
Section describe what parameter values are allowed for each command and where
they must be placed. Examples of parameter values include file specifications,
queue names, and logical names.

Qualifier

Modifies the action taken by the command. Some qualifiers modify the whole
command, while others can modify specific parameters. Some qualifiers can
accept values. The DCL command descriptions in the Reference Section indicate
whether a specific qualifier can accept a value and what kind of value is
acceptable.

Value

Modifies a qualifier and is often preceded by an equal sign (=). A value can be a
file specification, a character string, a number, or a DCL keyword.

Keyword

A keyword is a word defined for use in certain specified syntax formats. You must
use keywords exactly as listed in the description of the particular DCL command
you want to specify. For example, SYSTEM, OWNER, GROUP, and WORLD are
DCL keywords for the /PROTECTION qualifier of the SET FILE command. (A
DCL keyword can also have a value.)

Wildcard character

A wildcard character is a nonalphanumeric character such as an asterisk (*) or a
percent sign (%) that is used within, or in place of, a file name, file type directory
name, or version number in a file specification to indicate “all” for the given field.
For information about using wildcard characters with files and directories, see
Chapter 4 and Chapter 5. For information about using wildcard characters with
a particular DCL command, see the Reference Section.

3.2.2 Putting the Parts in Order: Syntax

Just as a spoken language depends on the order of words to create meaning, DCL
requires that you put the correct elements of the command line in a specific word
order. This word order or syntax is shown in a syntax diagram.

The following syntax diagrams show the structure of typical DCL commands:

'$ label: command/qualifier=value

The DIGITAL Command Language: Communicating with VMS 3-5

or

$ label: command parameter/qualifier

3.3 Entering a DCL Command

When you enter a DCL command, some items must be entered on the command
line. If you do not enter them, the system prompts you to supply the missing
information.

In the following example, the TYPE command expects a file specification. Because
a file specification is a required parameter, if you do not enter one, the system
requests it. A line beginning with an underscore (_) means that the system is
waiting for your response.

$ TYPE
_File: WATER.TXT

When you are prompted for an optional parameter, press RETURN to omit it.
At any prompt, you can enter one or more of the remaining parameters and any
additional qualifiers.

If you press CTRL/Z after a command prompt, DCL ignores the command and
redisplays the DCL prompt.

Some items need not be specified on the command line. These are called defaults.
When DCL does something by default, it assumes that you want a command

to use certain values or to take certain actions without your having to explicitly
specify them. In general, the values and actions are those considered typical or
expected by users.

For example, if you do not specify the number of copies as a qualifier for the
PRINT command, DCL uses the default value of 1. Unless you specify otherwise,
DCL assumes that you have chosen the default. You can override this default
behavior and print multiple copies of a file by specifying the following command:

$ PRINT/COPIES=4 MYFILE.TXT
DCL supplies default values in several areas, including command parameters and

qualifiers. Parameter defaults are described in the following section; qualifier
defaults are described in Section 3.3.5.2.

3.3.1 Rules for Entering a DCL Command
Use the following rules to enter a DCL command:

¢ Use any combination of uppercase and lowercase letters. The DCL inter-
preter translates lowercase letters to uppercase. Uppercase and lowercase
characters in parameter and qualifier values are equivalent unless enclosed
in quotation marks.

3-6 The DIGITAL Command Language: Communicating with VMS

* Separate the command name from the first parameter with at least one blank
space.

* Separate each additional parameter from the previous parameter qualifier
with at least one blank space.

¢ Begin each qualifier with a slash (/); the slash serves as a separator and need
not be preceded by blank spaces or tabs.

¢ A command line can contain a maximum of 128 elements (for example, a file
specification or qualifier).

* You can abbreviate a command name as long as the abbreviated name
remains unique among all DCL command names.

For example, the following commands are equivalent:

$ PR/C=2 FORMAL_ART.TXT
$ PRINT/COPIES=2 FORMAL ART.TXT

Do not, however, abbreviate commands in command procedures.

Additional rules govern the format of commands when they are used in command
procedures. See Chapter 13 for more information about using commands in
command procedures.

3.3.2 Entering an Incomplete Command Line

If you do not enter all the information that the system needs to process a
command, the system displays a prompt for the missing information. A line
beginning with an underscore (_) means that the system is waiting for your
response.

In the following example, the system displays a prompt because the name of the
file is a required parameter for the TYPE command.

$ TYPE

_File: WATER.TXT

3.3.3 Entering a Command Longer Than One Line

If you enter a command longer than one line, you can continue the command onto
the next line. To continue a command line onto the next line, use the following
procedure:

1. End the command line with a hyphen and press RETURN.
The system displays an underscore (_) followed by the DCL prompt ($).

2. Enter the rest of the command line after this prompt. A line beginning with
an underscore means that the system is waiting for your response, as shown
in the following example:

$ COPY/LOG FORMAT.TXT,FIGURE.TXT,ARTWORK.TXT -~
_$ SAVE.TXT

The DIGITAL Command Language: Communicating with VMS 3-7

Note that you must include the appropriate spaces between command names,
parameters, and so on. Pressing RETURN after the hyphen does not add a space.

3.3.4 Entering Parameters

DCL supplies default values for some command parameters. The parameters
accepted by a command as well as the specific command parameter defaults

supplied by DCL are described in each command description in the Reference
Section.

The following rules apply when specifying parameters in a command line:

Square brackets ([]) in commands indicate optional items. For example, you
do not have to enter a file specification in the following command:

DIRECTORY [file-spec]

Anything not enclosed in square brackets is required. For example, you must
enter a device name in the following command:

SHOW PRINTER device-name

In general, precede an output file parameter with an input file parameter. For
example, to copy the input file, LISTS.TXT, to the output file, FORMAT.TXT,
enter the following command:

$ COPY LISTS.TXT FORMAT.TXT

A parameter can be one item or a series of items. If you enter a series

of items, separate them with commas (,) or plus signs (+). Any number
of spaces or tab characters can precede or follow a comma or a plus sign.
Note that some commands regard the plus sign as a concatenator, not as a
separator. The parameter section of each DCL command description in the
Reference Section describes how each command interprets commas and plus
signs.

The following command syntax line shows that you can optionally enter a list
of files as the parameter:

DELETE file-spec],...]

The following example shows how to specify a list of parameters. Here, three
files are copied to a fourth file. The three file specifications—PLUTO.TXT,
SATURN.TXT, and EARTH.TXT—constitute the first parameter.
PLANETS. TXT is the second parameter.

$ COPY PLUTO.TXT, SATURN.TXT,EARTH.TXT PLANETS.TXT

3-8 The DIGITAL Command Language: Communicating with VMS

3.3.5 Entering Qualifiers

The qualifiers accepted by a command are described in each command description
in the Reference Section. The DCL command description also indicates whether a
qualifier accepts a value and what kind of value is required.

You can abbreviate any qualifier name as long as the abbreviated name remains
unique among all qualifier names for the same command. However, you should
not abbreviate commands in command procedures.

Commands have default qualifiers; you do not have to specify a qualifier unless
it is different from the command default. The following sections describe types
of qualifiers and qualifier defaults. The Reference Section contains default
information for specific commands.

3.3.5.1 Types of Qualifiers
The three types of qualifiers are as follows:

¢ Command qualifiers—A command qualifier modifies a command and can
appear anywhere in the command line. However, it is a good practice to
place the qualifier after the command name. If you are specifying multiple
qualifiers, you should place a command qualifier after other command
qualifiers that follow the command name.

In the following example, /QUEUE is a command qualifier. The files
SATURN.TXT and EARTH.TXT are queued to the print queue LNO3_PRINT.

$ PRINT/QUEUE=LNO3_PRINT SATURN.TXT, EARTH.TXT

¢ DPositional qualifiers—A positional qualifier can modify commands or
parameters and has different meanings depending on where you place it
in the command string. If you place a positional qualifier after the command
but before the first parameter, it affects the entire command string. If you
place a positional qualifier after a parameter, it affects only that parameter.

In the following example, the first PRINT command requests two copies of the
files SPRING.SUM and FALL.SUM. The second PRINT command requests
two copies of the file SPRING.SUM, but only one copy of FALL.SUM.

$ PRINT/COPIES=2 SPRING.SUM,FALL.SUM
$ PRINT SPRING.SUM/COPIES=2,FALL.SUM

¢ Parameter qualifiers—A parameter qualifier can be used only with certain
types of parameters, such as input files and output files.

For example, the BACKUP command accepts several parameter qualifiers
that apply only to input and output file specifications. In the following
example, the /CREATED and /BEFORE qualifiers, which can be specified only

The DIGITAL Command Language: Communicating with VMS 3-9

with input files, select specific input files for the backup operation. (For this
example, multiple copies of the file MYFILE.TXT exist. Only those versions
that were created before April 19, 1990 are selected for the backup operation.)

$ BACKUP MYFILE.TXT/CREATED/BEFORE=19-APR-1990 NEWFILE.TXT

3.3.5.2 Qualifier Defaults

When you omit a specific qualifier from the command line, the system responds
with default behavior. For example, when you delete a file with the DELETE
command, the system by default does not request confirmation of each delete
operation. However, by specifying the DELETE/CONFIRM command, you can
override that default behavior and request that you be prompted for confirmation
before each file is deleted.

You can specify qualifiers in several ways. The qualifier syntax required by a
specific DCL command is given in the command descriptions in the Reference
Section. The following paragraphs explain the syntax used to describe qualifiers
and their defaults:

* Qualifiers with positive and negative forms—These qualifiers have a value of
true or false. You indicate a true value by naming the qualifier. Negate the
qualifier by inserting the prefix NO.

For example, the /CONFIRM qualifier can be expressed positively or
negatively. If you omit the qualifier from the command line, the default action
is /NOCONFIRM. The syntax for the /CONFIRM qualifier is given in a DCL
command description as follows:

/CONFIRM
/NOCONFIRM (default)

* Qualifiers that require values—If you use a qualifier that accepts a value, you
must specify a value. If you omit the qualifier completely, the default value is
applied. For example, if you use the /COPIES qualifier, you must provide a
numeric value. If you omit the /COPIES qualifier, the default is /COPIES=1.
The syntax for the /COPTES qua]iﬁer is given in a DCL command degerintion
as follows:

/COPIES=n

If the qualifier accepts a list of values, you must enclose the values in
parentheses and separate them with commas as follows:

$ DELETE/ENTRY=(230,231) LNO3_PRINT

The command deletes jobs 230 and 231 from the queue LNO3_PRINT.

3-10 The DIGITAL Command Language: Communicating with VMS

® Qualifiers that accept value and positive/negative combinations—Some
qualifiers combine value and positive/negative characteristics so that the
qualifier both accepts a value and allows you to negate the qualifier by
inserting the prefix NO. For example, the SET TERMINAL command permits
the following choices for the /PARITY qualifier:
$ SET TERMINAL/PARITY=EVEN

$ SET TERMINAL/PARITY=0DD
$ SET TERMINAL/NOPARITY

¢ Qualifiers that affect command execution only if specified—The qualifier has
no corresponding default. For example, the /BY_OWNER qualifier does not
affect the command if it is not specified. The syntax for the /BY_OWNER
qualifier is given in a DCL command description as follows:

/BY_OWNER

* Qualifiers that override other qualifiers—Sometimes a command has a
qualifier that is automatically applied as a default. Other qualifiers are
available to override the default qualifier.

For example, the /BRIEF qualifier is applied by default when you specify
the DIRECTORY command. That is, the DIRECTORY command generates

a listing that includes only the file name, file type, and version number of
each file in the directory. You must specify the /FULL qualifier to generate a
listing that includes the file name, file type, and version number as well as
the number of blocks used, the date of the file’s creation, the date the file was
last backed up, and so on.

Some commands contain conflicting qualifiers that cannot be specified in the same
command line. If you use incompatible qualifiers, the system usually displays an
error message. The command descriptions in the Reference Section indicate
which qualifiers cannot be used together.

3.4 Recalling Commands

At DCL level, you recall previously typed command lines and avoid the
inconvenience of retyping long command lines. The recall buffer holds up to 20
previously entered commands. Once a command is displayed, you can reexecute
or edit it.

You can display your previously entered commands by using one of the following
methods:

* Pressing CTRL/B
¢ Using up and down arrow keys
¢ Entering the RECALL command

Pressing CTRL/B once recalls the previous command line. Pressing CTRL/B again
recalls the line before the previous line, and so on to the last saved command line.

The DIGITAL Command Language: Communicating with VMS ~ 3-11

Pressing the up and down arrow keys recalls the previous and successive

command, respectively. Press the arrow keys repeatedly to move through the
commands.

To examine up to 20 previously typed command lines, type RECALL/ALL.
Following is a sample display generated by typing RECALL/ALL:

$ RECALL/ALL

SET DEFAULT DISK2: [MARSHALL]
EDIT ACCOUNTS.COM

PURGE ACCOUNTS.COM
DIRECTORY/FULL ACCOUNTS.COM
COPY ACCOUNTS.COM [.ACCOUNTS]*
SET DEFAULT [.ACCOUNTS]

S B WP

Having reviewed the available commands, you can recall a particular command
line by typing RECALL and the number of the desired command. The following
example shows how to recall the fourth command line:

$ RECALL 4

After you press RETURN, the fourth command in the list is displayed at the DCL
prompt. (The RECALL command itself is not placed in the buffer.)

You can also follow RECALL with the first characters of the command line you
want to display. RECALL scans the previous command lines (beginning with
the most recent one) and returns the first command line that begins with the
characters you typed. For example, to recall a previously entered command,
EDIT ACCOUNTS.COM, enter the following command:

$ RECALL E

After you press RETURN, the system displays the following command line:
$ EDIT ACCOUNTS.COM

TIP: If you are running a utility or an application program that
uses VMS screen management software, you can use CTRL/B and
the up and down arrow keys to perform command recall. Line
editing must be enabled. Some utilities that have this feature are
MAIL, DEBUG, SHOW CLUSTER, the System Dump Analyzer
(SDA), and the VAXTPU editor.

To erase the contents of the recall buffer, enter the RECALL command with the
ERASE qualifier. For example:

$ RECALL/ERASE

3-12 The DIGITAL Command Language: Communicating with VMS

3.5 Entering Dates and Times as Values

Certain commands and qualifiers accept date and time values. You can specify
these values in one of the following formats:

¢ Absolute time
¢ Delta time
¢ Combination time (combines absolute and delta time formats)

The DCL command descriptions in the Reference Section indicate the time
formats accepted by individual commands and qualifiers.

3.5.1 Absolute Time

Absolute time is a specific date or time of day. The format for an absolute time is
as follows:

[dd-mmm-yyyy][:][hh:mm:ss.cc]

The fields are as follows:

Field Meaning

dd Day of the month; an integer in the range 1 to 31

mmm Month; JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC
yyyy Year; an integer

hh Hour; an integer in the range 0 to 23

mm Minute; an integer in the range 0 to 59

88 Seconds; an integer in the range 0 to 59

cc Hundredths of a second; an integer in the range 0 to 99

You can truncate the date or the time on the right. However, if you are specifying
both date and time, you must include a colon between them. The date must
contain at least one hyphen. You can omit any of the fields within the date and
time as long as you include the punctuation marks that separate the fields. A
truncated or omitted date field defaults to the corresponding fields for the current
date. A truncated or omitted time field defaults to zero. If you specify a past time
in a command that expects the current or a future time, the current time is used.

The DIGITAL Command Language: Communicating with VMS ~ 3-13

You can also specify an absolute time as one of the following keywords:

Keyword Meaning

TODAY The current day, month, and year at 00:00:00.0 o’clock
TOMORROW 00:00:00.00 o’clock tomorrow
YESTERDAY 00:00:00.00 o’clock yesterday

The following table shows some examples of absolute time specifications:

Time Specification Result

19-APR-1990:13 1 PM. on April 19, 1990

19-APR Midnight at the beginning of April 19 this year

15:30 3:30 PM. today

19- Midnight on the 19th day of the current year and month
19-::30 12:30 A.M. on the 19th of this month

3.5.2 Delta Time

Delta time is an offset (a time interval) from the current date and time to a time
in the future. The general format of a delta time is as follows:

[dddd-][hh:mm:ss.cc]

The fields are as follows:

Field Meaning

dddd Number of days; an integer in the range 0 to 9999

hh Number of hours; an integer in the range 0 to 23

mm Number of minutes; an integer in the range 0 to 59

ss Number of seconds; an integer in the range 0 to 59

ce Number of hundredths of seconds; an integer in the range 0 to 99

You can truncate a delta time on the right. If you specify the number of days,
include a hyphen. You can omit fields within the time as long as you include the
punctuation that separates the fields. If you omit the time field, the default is
Zero.

3-14 The DIGITAL Command Language: Communicating with VMS

The following table shows some examples of delta time specifications:

Time Specification Result

3- 3 days from now (72 hours)

3 3 hours from now

:30 30 minutes from now

3-:30 3 days and 30 minutes from now
15:30 15 hours and 30 minutes from now

3.5.3 Combination Time

To combine absolute and delta time, specify an absolute time plus or minus a
delta time. The format for combination time is as follows:

"[absolute time][+delta time]"

or

[absolute time][-delta time]

The variable fields and default fields for absolute and delta time values are the
same as those described in the preceding sections. The delta time value must
always be preceded by a plus sign (+) or minus sign (-). (Note that the minus
sign is the same keyboard key as the hyphen.) Whenever a plus sign precedes
the delta time value, enclose the entire time specification in quotation marks. In
addition, you can omit the absolute time value. If you do, the delta time is offset
from the current date and time.

The following table shows some examples of combination time specifications:

Time Specification Result

“+5” 5 hours from now

“+:5” 5 minutes from now

-5 Current time minus 5 minutes

-1-00 Current time minus 1 day. The minus sign (-) indicates a negative

offset. The dash (-) separates the day from the time field.

If a qualifier is described as a value that can be expressed as an absolute time,

a delta time, or a combination of the two, you must specify a delta time as if it
were part of a combination time. For example, to specify a delta time value of five
minutes from the current time, use “+:5” (not “0-0:5”).

The DIGITAL Command Language: Communicating with VMS 3-15

3.6 Defining Terminal Keys

Using key definitions, you can customize your keyboard so that you can enter
DCL commands with fewer keystrokes. A key definition is a string of characters
that you assign to a particular terminal key. When a key is defined, you can press
it instead of typing the string of characters. A key definition usually contains all
or part of a command line. When you press a defined key, the command is either
displayed on your terminal or executed.

Some definable keys are automatically enabled for definition (like keys PF1
through PF4 and keys F17 through F20 on VT200- and VT300-series terminals).
However, before you can define other keys, including keypad 0 (KP0) through KP9
and the keypad keys PERIOD, COMMA, MINUS, and ENTER, you must enable
them for definition by entering either the SET TERMINAI/APPLICATION_
KEYPAD or the SET TERMINAL/NONUMERIC command.

For a complete list of definable keys and for more information on how to create
key definitions, see the description of the DCL command DEFINE/KEY in the
Reference Section.

3.7 Summary of Key Combinations

Table 3-3 lists and describes the key combinations that let you enter and edit
DCL commands.

Table 3-3: Keys That Execute Terminal Functions

Key Function

Keys That Enter DCL Commands

CTRL/Z and F10! Signals the end of the file for data entered from the
terminal. CTRL/Z is displayed as “Exit.”
RETURN Sends the current line to the system for processing. (On

some terminals, the RETURN key is labeled CR.)

Before a terminal session, RETURN initiates a login
sequence.

IThis key is available only on an LK201 keyboard.

(continued on next page)

3-16 The DIGITAL Command Language: Communicating with VMS

Table 3-3 (Cont.): Keys That Execute Terminal Functions

Key

Function

Keys That Interrupt DCL Commands

CTRL/C and Fé!

CTRL/T

CTRL/Y

During command entry, cancels command processing.
CTRL/C is displayed as “Cancel.”

Momentarily interrupts terminal output to display a line
of statistical information about the current process. This
display includes your node and user name, the time, the
name of the image you are running, and information
about system resources used during your current terminal
session.

You can also use the CTRL/T key to determine whether the
system is operating. CTRL/T does not return information if
the system is temporarily unresponsive or if your terminal
is set to NOBROADCAST. In order to use CTRL/T, SET
CONTROL=T must be enabled either in the system login
command procedure or by you, either interactively or in
your login command procedure.

Interrupts command processing. CTRL/Y is displayed as
“Interrupt.” You can disable CTRL/Y with the command
SET NOCONTROL=Y.

Under most conditions, CTRL/Y returns you to the DCL
prompt. The program running is still active. You can enter
any built-in command then continue the program with

the CONTINUE command. (Press CTRL/W to refresh the
screen after you enter the CONTINUE command.)

Keys That Recall Commands

CTRL/B and Up arrow
Down arrow

Recalls up to 20 previously entered commands.
Disgplays the next line in the recall buffer.

1This key is available only on an LK201 keyboard.

(continued on next page)

The DIGITAL Command Language: Communicating with VMS 3-17

Table 3-3 (Cont.): Keys That Execute Terminal Functions

Key

Function

Keys That Control Cursor Position

<X], DELETE

CTRL/A, F14!

CTRL/D and Left arrow

CTRL/E

CTRL/F and Right arrow
CTRL/H, BACKSPACE, and F12!
CTRL/I and TAB

CTRL/J, LINEFEED, and F13!
CTRL/K
CTRL/L

CTRL/R

CTRL/U
CTRI/WV

CTRLX

F7,F8, F9, F11

Deletes the last character entered at the terminal. (On
some terminals, the DELETE key is labeled RUBOUT.)
The DELETE key also works when line editing is disabled.

Switches between overstrike and insert mode. The default
mode (as set with the SET TERMINAL/LINE_EDITING
command) is reset at the beginning of each line.

Moves the cursor one character to the left.
Moves the cursor to the end of the line.
Moves the cursor one character to the right.
Moves the cursor to the beginning of the line.

Moves the cursor to the next tab stop on the terminal.
The system provides tab stops at every eighth character
position on a line. Tab settings are hardware terminal
characteristics that, in general, you can modify. The TAB
key also works when line editing is disabled.

Deletes the word to the left of the cursor.
Advances the current line to the next vertical tab stop.

Causes the cursor to go to the beginning of the next page.
This use of this key is ignored when line editing is enabled.

Repeats the current command line and leaves the cursor
positioned where it was when you pressed CTRL/R.

Cancels the current input line.

Turns off some of the line editing function keys. For
example, if you press CTRL/V followed by CTRL/D, a
CTRL/D is generated instead of the cursor moving left one
character. CTRL/D is a line terminator at DCL level.

When combined with CTRL/V, characters that are not line

o 1 ot lna ava MTRT /IT AnAd
terminators have ne effect, Examples are CTRL/H and

CTRL/J. However, certain control keys, such as CTRL/U,
retain their line editing functions.

Cancels the current line and deletes data in the type-ahead
buffer.

Reserved by Digital.

1This key is available only on an LK201 keyboard.

(continued on next page)

3-18 The DIGITAL Command Language: Communicating with VMS

Table 3-3 (Cont.): Keys That Execute Terminal Functions

Key Function

Keys That Control Screen Display

CTRL/O Alternately suspends and continues display of output to
the terminal. CTRL/O is displayed as “Output off” and
“Output on.”

CTRL/S Suspends terminal output until CTRL/Q is pressed.

CTRL/Q Resumes terminal output suspended by CTRL/S.

HOLD SCREEN!and NO SCROLL? Suspends terminal output until the key is pressed again.

IThis key is available only on an LK201 keyboard.
2This key is available only on a VT100 keyboard.

Chapter 4
Files: Storing Information

A file is a unit the VMS operating system uses to store human-readable and
machine-readable data. This chapter describes the following tasks you can
perform with files locally, and if you have sufficient privileges, over a DECnet-VAX
network.

Understanding file names and file specifications
Using wildcard characters to access files
Creating files

Modifying files

Copying files

Renaming files

Displaying the contents of text files

Deleting files

Protecting a file from other users

Printing files

The descriptions of the DCL commands in the Reference Section describe specific
file operations you can perform locally and over the network.

NOTE: In the examples of remote operations in this chapter,
proxy accounts enable users to perform operations on remote
systems. Proxy accounts are one way users can access remote
systems. For more information, about additional ways to access
remote systems, see the VMS System Manager’s Manual.

4-2 Files: Storing Information

4.1 Understanding File Names and Specifications

When you create a file, you must specify certain information so that the system
can locate and identify the file. A complete file specification has the following
format:

node::device:[directory]filename.type;version

You must provide a complete file specification if you are performing file operations
over a network.

When you name a file, you do not have to include all the elements of a complete
file specification. However, you must include a file name or file type to identify it
to both the system and you. The system automatically assigns a version number
unless you specify one. To name a file, use the following format:

filename.type;version
Use the following rules to specify the elements of a file specification:

* Give the file a name that is meaningful to you. The file name can be up to 39
characters chosen from the letters A through Z (uppercase or lowercase), the
numbers 0 through 9, an underscore (_), a hyphen (-), or a dollar sign ($).

¢ Do not use a hyphen as the first or last character in the file name.

* Do not begin a file name with a dollar sign; you can use a dollar sign only
within the file name.

¢ A file type, which identifies the kind of file, can be from 0 through 39
characters.

* Precede a file type by a period.

®* Precede version numbers with a semicolon or a period. (When the system
displays file specifications, it displays a semicolon in front of the file version
number.)

Including a file type is optional. With certain commands, if you omit the file type,
the system applies a default value. Table 4-1 lists some of the more common
default file types used by DCL commands. It also lists the default file types for
some high-level language source programs.

Files: Storing Information 4-3

Table 4-1: Default File Types

File Type Contents

Default File Types for DCL Commands

CLD Command description file

COM Command procedure file

DAT Data file

DIS Distribution list file for the MAIL command

DIR Directory file

EDT Startup command file for the EDT editor

EXE Executable program image file created by the linker

HLP Input source file for help libraries

Jou Journal file created by the EDT editor

LIS Listing file created by a language compiler or assembler; default input file for the
PRINT and TYPE commands

LOG Batch job output file

MAI MAIL message file

MEM Output file created by DIGITAL Standard Runoff (DSR)

OBJ Object file created by a language compiler or assembler

RNO Input source file for DIGITAL Standard Runoff

SIX Sixel graphic file

SYS System image

TJL Journal file created by the VAXTPU and ACL editors

T™P Temporary file

TPU Command file for the VAXTPU editor

TXT Input file for text libraries or MAIL command output

(continued on next page)

4-4 Files: Storing Information

Table 4-1 (Cont.): Default File Types
File Type Contents

Default File Types for Language Source Programs

ADA Input source file for the VAX Ada compiler

BAS Input source file for the VAX BASIC compiler
B32 Input source file for the VAX BLISS-32 compiler
C Input source file for the VAX C compiler

COB Input source file for the VAX COBOL compiler
FOR Input source file for the VAX FORTRAN compiler
MAR Input source file for the VAX MACRO compiler
PAS Input source file for the VAX Pascal compiler
PLI Input source file for the VAX PL/I compiler

In addition to a file name and file type, every file has a version number. Version
numbers are decimal numbers from 1 to 32,767 that differentiate versions of a
file. When you initially create a file, the system assigns it a version number of 1.

You may have several versions of a file. Unless you specify a version number, the
system uses the highest existing version number of that file. When you modify
that file, the system saves the original file and produces a modified output file.
By default, this output file has the same name and type as the original, but the
version number is incremented by one.

Version numbers must be preceded with a semicolon or a period. When the
system displays file specifications, it generally displays a semicolon in front of
the file version number.

4.2 Using Wildcards with Files

Use wildcard characters to apply a DCL command to multiple files rather than to
one file at a time. The command applies to all files that match the portion of the
file specification entered.

With many DCL commands you can use an asterisk (*) or a percent sign (%) as
a wildcard in directory names, file names, and file types. You can also use the
asterisk, but not the percent sign, in version numbers.

Many examples in this chapter show the use of wildcard characters in file
operations. The use of wildcard characters in DCL commands varies with
the individual command. For more information about using wildcards with a
particular DCL command, see the Reference Section.

Files: Storing Information 4-5

4.2.1 The Asterisk (*) Wildcard Character
Use the asterisk wildcard character to match the following:

* An entire field, or a portion of it, in the directory, file name, and file type
fields

* The entire version number field, but not a portion of it

4.2.2 The Percent (%) Wildcard Character

Use the percent sign wildcard character as a substitute for any single character
in a file specification. You can use the percent sign in the directory, file name, and
file type fields. You cannot, however, use the percent sign in the version number
field.

The following example displays the latest versions of all DAT files whose names
begin with DISTRICT:

$ TYPE [JONES.TAXES.PROPERTY]DISTRICT%.DAT

This display would include the files DISTRICT1.DAT, DISTRICT2.DAT, and
DISTRICT3.DAT. The file DISTRICT4_5.DAT would not be displayed because it
has more than one character after DISTRICT, nor would the file DISTRICT.DAT
be displayed. The percent sign replaces one character position in a field, but there
must be a character to replace.

4.3 Creating and Modifying Files

The most versatile interactive tool for creating and modifying text files is the
interactive text editor. EVE and EDT are two text editors that are included in
VMS; other text editors may also be available on your system.

You can also create and modify files by using the DCL commands CREATE,
COPY, and RENAME. The following sections describe how to create and modify
files using these commands.

AD 4 Nuantkima Eilas

“FaWe I L lu 1 eV

The CREATE command creates a text file. For example, to create a file named
POUND.LIS, enter the CREATE command and then type lines of text:

$ CREATE POUND.LIS

Tag #23, Elmer Doolittle, notified

Tag #37, James Watson, notified

No tag, light brown, 30 lbs., looks part beagle

Pressing CTRL/Z signals the end of the file and returns you to DCL command
level. You cannot modify a file with the CREATE command; after you have
pressed RETURN, you cannot return to a previous line to modify a word. You

4-6 Files: Storing Information

must use a text editor such as EDT or EVE to modify a file created with the
CREATE command.

4.3.2 Copying Files

The COPY command duplicates the contents of an existing file in a new file. For
example, to copy FEES.DAT to RECORDS.DAT, enter the following command:

$ COPY FEES.DAT RECORDS.DAT

The COPY command can duplicate many files at a time. For example, to copy
all TXT files in the default directory to another directory, enter the following
command.:

$ COPY *.TXT;* [SAVETEXT]*.*;*

Concatenating Files

The COPY command can concatenate files. For example, to append FEES1.DAT
to FEES.DAT (forming a new version of FEES.DAT) in your default directory,
enter the following command:

$ COPY FEES.DAT,FEES1.DAT FEES.DAT

Copying Files from a Remote Node to Your Node

Use the COPY command to copy files from another node to your node. For
example, to copy the latest version of all files in DISK2:[PUBLIC] on node
CHAOS to files with the same names in your default directory, enter the following
command:

$ COPY CHAOS::DISK2:[PUBLIC]*.* *

Copying Files from Your Node to a Remote Node

Use the COPY command to copy files from your node to another node. For
example, to copy the latest version of all files in your default directory to files
with the same names in the directory DISK2:[STAFF_BACKUP] on node CHAOS,
enter the following command:

$ COPY *.* CHAOS::DISK2: [STAFF_BACKUP}

If you receive a protection violation or DECnet-VAX error message when you
attempt to copy a file across systems, you have two recourses:

¢ TIf the file is yours, you can use MAIL to send it to a user account on the other
node.

* You can follow the node name in the file specification with an access control
string. ‘

Files: Storing Information 4-7

Use the /SINCE qualifier with the COPY command to select only those files that
meet the specified criterion. For example, to copy to the default directory only
those files in the directory [JONES.LICENSES.DOG] that have been modified
since April 19, 1990, enter the following command:

$ COPY/SINCE=19-APR-1990/MODIFIED [JONES.LICENSES.DOG]*.* *

4.4 Renaming Files

Use the RENAME command to give the file a new name and optionally to locate
it in a different directory. For example, to give the file FEES.DAT the new name
RECORDS.DAT and move it from the default directory to another directory, enter
the following command:

$ RENAME FEES.DAT;4 [SAVETEXT]RECORDS.DAT
Note that after being renamed, the file FEES.DAT;4 no longer exists in the

default directory. When you use the RENAME command, the input and output
locations must be on the same device.

4.5 Displaying the Contents of Files

To display the contents of a file on your screen, enter the TYPE command and the
file name at the DCL prompt. For example, to display the latest version of the
file STAFF_VACATIONS.TXT, enter the following commapd:

$ TYPE STAFF VACATIONS.TXT

You do not have to specify the version number in the file specification because the
system displays the latest version of a file by default.

Displaying a File on a Remote Node

To display the contents of a file on a remote node, include the node name, disk,
and directory in the file specification. For example, to display the file COMPANY_
HOLIDAYS.TXT, which is located on remote node CHAOS, enter the following
command:

$ TYPE CHAOS::DISK2:[PUBLIC]COMPANY HOLIDAYS.TXT

Displaying Files with Wildcards

You can use the asterisk wildcard (*) to display all versions of a specific file. For
example, to display all versions of the file LOGIN.COM in the directory [JONES],
enter the following command:

$ TYPE [JONES]LOGIN.COM;*

To display all versions and all file types of all files that begin with the word
STAFF in the directory [JONES], enter the following command:

$ TYPE [JONES]STAFF*.*;*

4-8 Files: Storing Information

Displaying More Than One File

If more than one file is listed in the TYPE command, the files are displayed in
the order specified; if wildcard characters are used, the files are displayed in
alphabetical order.

To stop the scrolling of the text on the screen temporarily, press the HOLD
SCREEN key (F1 on VT200- and VT300-series terminals); to resume scrolling,
press the HOLD SCREEN key again. To stop the display and return to DCL
command level, press CTRL/Y or CTRL/O.

If you specify the /PAGE qualifier to the TYPE command, you can view one screen
at a time. The system prompts you to press RETURN when you want to see the
next screen.

TIP: By invoking an interactive text editor (for example, EVE
or EDT) with the /READ_ONLY qualifier, you can use interactive
editing commands to move around in a file and search for specific
sequences of characters. The /READ_ONLY qualifier prevents you
from modifying the file as you display it.

4.6 Deleting Files

The DELETE command removes files from directories and releases the disk space
they occupy for use by other files. When you use the DELETE command, you
must specify a version number or the asterisk wildcard character as a version
number in each file specification. For example, to delete version 17 of the file
POUND.LIS, enter the following command:

$ DELETE POUND.LIS;17

To delete versions 16 and 17 of the file POUND.LIS, enter the following command:
$ DELETE POUND.LIS;16,;17

To delete all versions of the file POUND.LIS, enter the following command:
$ DELETE POUND.LIS;*

When you delete many files with wildcard characters, you might want to confirm
each deletion by using the /CONFIRM qualifier. For example, to confirm the

deletion of all the files in the subdirectory [JONES.LICENSES.DOG], enter the
following command:

$ DELETE/CONFIRM * ;%

DISK1: [JONES.LICENSES.DOG]FEES.DAT; 4, delete? [N]: Y
DISK1: [JONES.LICENSES.DOG]FEMALE.LIS; 6, delete? [N]: Y
DISK1: [JONES.LICENSES.DOGIMALE.LIS;3, delete? [N]: N
DISK1: [JONES.LICENSES.DOG]POUND.LIS;17, delete? [N]: Y

Files: Storing Information 4-9

Similarly, you might want to display the names of files as they are deleted. To do
this, specify the /LOG qualifier with the DELETE command. For example, if you
enter the command in the following example, the system displays the names of
the files after they are deleted:
$ DELETE/LOG *.LIS;*

$DELETE-I-FILDEL, DISK1:[JONES.LICENSES.DOG]FEMALE.LIS;6 deleted (35 blocks)

:%DELETE—I—FILDEL, DISK1: [JONES.LICENSES.DOG]MALE.LIS;3 deleted (5 blocks)
_%DELETE-I-FILDEL, DISK1:[JONES.LICENSES.DOG]POUND.LIS;17 deleted (9 blocks)

The PURGE command deletes all except the latest version of the specified file
(or all files) in the default directory or any other specified directory. Purging old
versions of files after updating them enables you to retain more free space on
your disk.

For example, to purge all except the latest two versions of each file in your default
directory, enter the following command:

$ PURGE/KEEP=2

4.7 Protecting a File from Other Users

To prevent other users from accessing your files, you can set protection or modify
the access control list (ACL) of your files. To set protection or modify the ACL
of a file, you must own the file, have control access to the file, or have GRPPRYV,
SYSPRYV, BYPASS, or READALL privilege.

NOTE: To protect a file completely, you must apply the same or
greater protection to the directory in which the file resides. See
Chapter 5 for information on directory protection.

4.7.1 Default File Protection

A new file receives default UIC-based protection and the default access control
list entries (if any) of its parent directory. (Access control list entries (ACEs)
may specify identifiers and the access rights to be granted or denied the holders
of the identifiers, defaults protection for directories, or security alarm details.)

A renamed file’s protection is unchanged. A new version of an existing file
receives the UIC-based protection and ACL of the previous version. (Use the
/PROTECTION qualifier of the BACKUP, COPY, CREATE, and SET FILE
commands to override the default UIC-based protection.)

You can use either of the following methods to override the default UIC-based
protection given to new files:

* Default UIC protection—The operating system provides each process with a
default UIC-based protection of (S:RWED,O:RWED,G:RE,W). This indicates
that SYSTEM users and the owners of objects have full access to the object,
users in the same UIC group as the object owner have read and execute
access to the object, and all other users are denied access to the object.

4-10 Files: Storing Information

To change the default protection for files that you create, invoke the SET
PROTECTION command with the /DEFAULT qualifier. For example, if you
enter the following command in your login command procedure, you grant all
processes read and execute access to any files that you create. (Remember
that you must execute the login command procedure for this command to
execute.)

$ SET PROTECTION = (S:RWED,Q:RWED,G:RE,W:RE)/DEFAULT

* Default ACL protection—You can override default UIC protection for specified
directories or subdirectories by placing a default protection ACE in the ACL
of the appropriate directory file. The default protection specified in the ACE
is applied to any new file created in the specified directory or subdirectory of
the directory. The following ACE, which must be in the ACL of a directory
file, specifies that the default protection for that directory and the directory’s
subdirectories allow system and owner processes full access, group processes
read and execute access, and world users no access.

(DEFAULT_PROTECTION, S:RWED, O:RWED, G:RE, W:)
To specify a default identifier ACE to be copied to the ACL of any file
subsequently created in the directory, specify the DEFAULT option in the

directory file’s identifier ACL. For example, the following ACE, applied to a
directory file, denies network users access to all files created in the directory:

(IDENTIFIER=NETWORK, OPTIONS=DEFAULT, ACCESS=NONE)

4.7.2 EXxplicit File Protection

You can explicitly specify UIC-based protection for a new file with the /PROTECTION
qualifier (valid with the BACKUP, COPY, and CREATE commands) as shown in
the following example:

$ CREATE MAST12.TXT/PROTECTION=(S:RWED,O:RWED,G, W)
You can change the UIC-based protection on an existing file with the SET

PROTECTION command. For example, to change the UIC-based protection on
the file MAST12.TXT, enter the following command:

$ SET PROTECTION=(S:RWED,O:RWED,G,W) MAST12.TXT

After a file is created and you have created an ACL for the file, you can modify
the ACL and add as many ACEs to the ACL as you want. The protection specified
by the ACL overrides the file’s UIC protection.

Files: Storing Information 4-11

4.8 Printing Files

To print a file or files, use the PRINT command. For example, to place a print job
containing three files in the default print queue, SYS$PRINT, enter the following
command:

$ PRINT POUND,MALE,FEES.DAT
Job POUND (queue SYS$PRINT, entry 202) started on SYS$PRINT

The file types of the files named in the PRINT command default to LIS or the
last explicitly named file type; thus, the preceding example queues POUND.LIS,
MALE.LIS, and FEES.DAT to SYS$PRINT. The system displays the job name
(POUND), the queue name (SYS$PRINT), and the job number (202). The system
also indicates whether the job has started or is pending. By default, the job name
is the name of the first (or only) file specification in the PRINT command. After a
job is submitted to a queue, you reference it using the job number. After the job
is queued, it will be printed when no other jobs precede it in the queue and when
the printer is physically ready to print.

A print queue can execute only one job at a time. Print jobs are scheduled

for printing according to their priority, and the job with the highest priority is
printed first. If more than one job exists with the same priority, the smallest job
is usually printed first. Jobs of equal size having the same priority are selected
for printing according to their submission time.

4.8.1 Displaying Queue Information

The default print queue, SYS$PRINT, is usually initialized and started as part
of the site-specific system startup procedure. To display the queues that are
initialized at your site, enter the SHOW QUEUE command as follows:

$ SHOW QUEUE

To display the status of your print jobs, enter the SHOW ENTRY command as
follows:

S SHOW ENTRY

Mha avatam Aienlaxw tha fallavrine ot
2228 SOOI GASPLAy wail LT CWillg i,

Jobname Username Entry Blocks Status

POUND JONES 202 38 Printing
On printer queue SYS$PRINT

To see jobs queued by other users, specify the USERNAME parameter to the
SHOW ENTRY command.

4-12 Files: Storing Information

4.8.2 Stopping and Deleting a Print Job

To stop a print job and delete it from the print queue, enter the entry-number
parameter to the DELETE/ENTRY command. For example, to delete entry 202,
enter the following command:

$ DELETE/ENTRY=202

4.8.3 Printing a File on Another Node

To print a file on another system, copy that file to the remote node and specify
the /REMOTE qualifier to the PRINT command. For example, to copy the file
COMPANY_HOLIDAYS.TXT from your local node to the remote node CHAOS
and queue the file for printing to the default system print queue (SYS$PRINT) on
node CHAOS, enter the following commands:

$ COPY COMPANY HOLIDAYS.TXT CHAOS"JONES PANDEMONIUM"::DISK2:[JONES] *
$ PRINT/REMOTE CHAOS::DISK2:[JONES]COMPANY HOLIDAYS.TXT

In the previous example, an access control string was specified to indicate that
you are authorized to copy files to the directory [JONES] on node CHAOS.
However, if you have a proxy account on that remote node, the asterisk wildcard
at the end of the file specification in the previous command instructs the system
to duplicate the file name COMPANY_HOLIDAYS.TXT when that file is copied to
the remote node.

NOTE: Not all qualifiers to the PRINT command are compatible
with the /REMOTE qualifier. For example, you cannot queue a job
to a specific print queue; all jobs are queued to the default system
print queue (SYS$PRINT). See the description of the /REMOTE
qualifier to the DCL command PRINT in the Reference Section for
a list of PRINT command qualifiers compatible with /REMOTE.

4.8.4 DCL Commands That Control Print Jobs

The DCL commands listed in the following table allow you to control print jobs
in various ways. For example, you can specify the number of copies printed or
you can request that the system notify you when your print job is complete. For
more information on any of these commands, see the descriptions of the DCL
commands in the Reference Section.

Files: Storing Information

4-13

Print Operations Print Job Commands and Qualifiers
Number of copies
By job PRINT/JOB_COUNT=n1
By file PRINT/COPIES=n!
Specified file only file-spec/COPIES=n1
Number of pages PRINT/PAGES=1
Print features
Flag pages PRINT/FLAG=!
Type of forms (paper) PRINT/FORM=!
Special features PRINT/CHARACTERISTICS=!
Double-spacing PRINT/SPACE!
Page heading PRINT/HEADER!
Notification of job execution PRINT/NOTIFY
Delay execution of a job
For a specified time PRINT/AFTER
Indefinitely PRINT/HOLD
Release a delayed job SET QUEUE/ENTRY/RELEASE
Display your print jobs SHOW ENTRY
Stop a print job
Delete job DELETE/ENTRY=job-number
Stop currently printing STOP/ABORT
job and begin printing
the next job in the
queue
Stop currently printing STOP/REQUEUE
job and requeue it for
printing

IParallel qualifiers for the SET QUEUE/ENTRY command allow you to specify these operations for
print jobs that are already queued but not yet printing.

Chapter 5

Directories: Organizing and Managing Files

Directories are files that store the names of files. Well-organized directories help
you manage files efficiently.

This chapter describes how files are stored in directories and describes the
following directory tasks you can perform to organize and manage your files:

® Creating directories

¢ Displaying directories

* Setting a default directory

* Deleting directories

* Protecting a directory from other users

* Searching the directory structure with wildcards

The descriptions of the DCL commands in the Reference Section describe specific
directory tasks you can perform locally and over the network.

NOTE: In the examples of remote operations in this chapter,
proxy accounts enable users to perform operations on remote
systems. Proxy accounts are one way users can access remote
systems. For more information about additional ways to access
remote systems, see the VMS System Manager’s Manual.

5.1 Understanding Directory Structures

Figure 5-1 shows a sample directory hierarchy. At the top of the structure is
the master file directory (MFD). Its directory name is [000000]. Figure 5-1
contains entries for user file directories including MARTINO.DIR, PUBLIC.DIR,
SCHULTZ.DIR, and JONES.DIR. The top level directory [JONES] is a user file
directory named JONES.DIR;1 in [000000].

5-2 Directories: Organizing and Managing Files
Figure 5-1: Directory Structure
000000}
MARTINODIR
Master Directory:| PUBLIC.DIR
JONESDIR,
IJONES)
LOGIN.COM:3
LOGIN.COM:4
STAFF.DIS
STAFF VAGATIONS.TXT2
Top Lavel Drectory: | SSeeS b
[JONES. TAXES] [JONES.LICENSES]
Yot e MAILING.LIS:6
LOCAL.DIS2 ity
y | RECEIFTSDAT;1S !
Second Level Directory:| | .
; : DOG.DIR;1
PROPERTYDIRT *— MARRIAGE. DIR;1
*)
[JONES.TAXES.SALES] _ _[JONES.TAXES.PROPERTY] [JONES.LICENSES.MARRIAGE] _[JONES.LICENSES.DOG]
FEES.DAT:4
' DISTRICT1.DAT;1 CURRENT.DAT:S 4
Third Level Directory:| SERERALLISIS DISTRICT2 DAT}4 FEES.DAT:11 FoNALELISS
: DISTRICT3.DAT2 19808.DAT2 PoURD Lis:17
2ZK-1746-GE

Assume that you are user JONES. When you log in, the system places you
in [JONES], your default directory. [JONES] contains the following four
nondirectory files:

¢ LOGIN.COM;3
e LOGIN.COM;4
o STAFFDIS;3

¢ STAFF_VACATIONS.TXT

[JONES] also contains the following two directory files:
¢ TAXES.DIR
e LICENSES.DIR

Directories: Organizing and Managing Files 5-3

The directory file TAXES.DIR;1 points to the [JONES.TAXES] subdirectory;
LICENSES.DIR;1 points to the [JONES.LICENSES] subdirectory. (Subdirectories
are specified by concatenating the subdirectory name to the name of the directory
one level above it.)

The [JONES.LICENSES] subdirectory contains three nondirectory files and two
directory files. The directory file DOG.DIR;1 points to the
[JONES.LICENSES.DOG] subdirectory; MARRIAGE.DIR points to the
[JONES.LICENSES.MARRIAGE] subdirectory.

This sample directory structure is the basis for the examples in this chapter.

5.2 Understanding Directory Names and Specifications

Use a named directory specification to refer to a directory. A named directory
specification consists of a top level directory name that can be followed by a
maximum of seven subdirectory names.

A named directory specification has the following format:

[directory.subdirectory[.subdirectory...]]

A directory name can contain up to 39 alphanumeric characters. Any characters
valid for file names are also valid for directory names. Enclose the directory name
in either square brackets ([]) or angle brackets (<>).

5.3 Creating Directories

To create a directory, enter the CREATE/DIRECTORY command. For example, to
create a directory [JONES.LICENSES], enter the following command:

$ CREATE/DIRECTORY [JONES.LICENSES]

If you want to create a subdirectory under your current directory, you do not
have to specify the current directory name; you can enter the subdirectory name
preceded by a period. For example, if your current default directory is [JONES],
enter the following command:

$ CREATE/DIRECTORY [.LICENSES]

5.4 Displaying Directories

To display the names of files in a directory, enter DIRECTORY at the DCL
prompt. For example, to list the files in [JONES], enter the following command:

$ DIRECTORY

54 Directories: Organizing and Managing Files

The system diplays the contents of [JONES] as follows:

Directory DISK1: [JONES]

LICENSES.DIR;1
LOGIN.COM; 3
LOGIN.COM; 4
STAFF.DIS;3
STAFF_VACATIONS.TXT;2
TAXES.DIR;1

Total of 5 files.

This example shows that [JONES] contains two subdirectories—
[JONES.LICENSES] and [JONES.TAXES]-—and four nondirectory files—
STAFF.DIS, STAFF_VACATIONS.TXT, and two versions of LOGIN.COM.

To list the files in a subdirectory, enter the DIRECTORY command and the
subdirectory name preceded by a period. For example, assuming that the
default directory remains [JONES], to list the contents of the subdirectory
[JONES.LICENSES], enter the following command:

$ DIRECTORY/[.LICENSES]

The system displays the contents of [.LICENSES] as follows:

Directory DISK1l: [JONES.LICENSES]

MAILING.LIS; 6
TOTAL.DAT; 2
DEPT.DAT;3
DOG.DIR; 1
MARRIAGE.DIR;1

Total of 6 files.

TIP: If you want to move one level down the directory structure,
you need to specify only the next subdirectory name preceded by a
period, as shown in the previous example.

5.5 Setting a Default Directory

To create a file in a subdirectory, you must be located at that directory, making
it your new default directory. To change your default directory, use the SET
DEFAULT command. The default remains in effect until you enter another SET
DEFAULT command.

For example, to set default to the directory [JONES] and then display the file
STAFF_VACATIONS.TXT, enter the following commands:

¢ SET DEFAULT [JONES]
$ TYPE STAFF_VACATIONS.TXT

Directories: Organizing and Managing Files 5-5

To specify a subdirectory, combine the subdirectory name to the name of the
directory one level above it. For example, to display the file BILLING.DAT
located in the subdirectory [JONES.TAXES], enter the following commands:

$ SET DEFAULT [JONES.TAXES]
$ TYPE BILLING.DAT

To display your current default directory, enter the command SHOW DEFAULT,
as shown in the following example:
$ SHOW DEFAULT
DISK1: [JONES.TAXES]
$ SET DEFAULT [PUBLIC]

$ SHOW DEFAULT
DISK1: [PUBLIC]

5.6 Deleting Directories

To delete a directory, use the following procedure:

1. Make sure that the directory contains no files. To find out if the directory
contains files, enter the DIRECTORY command, as shown in the following
example:

$ DIRECTORY

If there are no files in the directory, the system displays the following
message:

No files found.

If the directory contains files, copy them to another directory to save them;
delete them if you do not want to save them. If the directory contains
subdirectories, examine those subdirectories, copy or delete their files, and
delete the subdirectories.

2. Move to the directory one level above the directory you want to delete. For
example, if you want to delete [JONES.LICENSES], you should set default
to [JONES]. Remember that the subdirectory [JONES.LICENSES] exists as
a file named LICENSES.DIR;1 in the directory [JONES]. When you delete a
directory, you delete the file that points to that directory.

3. Change the file protection of a directory to allow delete access to the file. (See
Chapter 4 for more information about file protection.) For example, to change
the file protection of LICENSES.DIR, enter the following command:

$ SET PROTECTION=OWNER:D LICENSES.DIR

4. Delete the directory file. For example, to delete the directory file LICENSES,
enter the following command:

$ DELETE LICENSES.DIR;*

5-6 Directories: Organizing and Managing Files

The following example shows how to delete the subdirectory [JONES.LICENSES]:

$ SET DEF [JONES.LICENSES]

$ DIR

NO FILES FOUND

$ SET DEFAULT [JONES]

$ SET PROTECTION=OWNER:D LICENSES.DIR
$ DELETE LICENSES.DIR;1

The directory files (for example, JONES.DIR;1) in the master file directory
require SYSPRV privilege to delete. See the VMS System Manager’s Manual
for a discussion of user privileges.

5.7 Protecting a Directory from Other Users

You cannot completely protect a file without applying at least the same protection
to the directory in which the file resides. For example, if you deny a user all
access to a file but allow that user read access to the file’s directory, the user
cannot access the contents of the file but can see that it exists. Conversely, a
user allowed access to a file and denied access to the file’s directory (or one of the
parent directories) cannot see that the file exists.

NOTE: To protect sensitive files, directory protection alone is not
adequate. You must also protect each file within the directory.

By default, top level directories receive UIC-based protection
(S:RWE,O:RWE,G:RE,W:E) and no ACL. Subdirectories receive UIC-based
protection from the parent directory.

To specify UIC-based protection explicitly when creating a directory, use the
/PROTECTION qualifier of the CREATE/DIRECTORY command. You cannot
specify an ACL for the directory until the directory is created. To change the UIC-
based protection of an existing directory, use the SET PROTECTION command
(apply this command to the directory file).

You can limit but not prohibit directory access by specifying execute access but
not read access. Execute access on a directory permits you to examine and read
files that you know are contained in the directory (that is, you know the file
specifications), but prevents you from displaying a list of the files in the directory.

5.8 Using Wildcards to Search the Directory Structure

From any point in a directory structure, you can refer to another directory or
subdirectory in the structure. Do this by specifically naming the directory or
subdirectory you want or by using the ellipsis (...) and hyphen (-) wildcard
characters.

Directories: Organizing and Managing Files 5-7

5.8.1 The Ellipsis (...) Wildcard Character

Use the ellipsis wildcard character to search down into the directory hierarchy.
To search the current directory and all the subdirectories below it, use the ellipsis
by itself as shown in the following command:

$ DIRECTORY [...]

For example, assuming the current directory is [JONES], to display the latest
versions of all files named FEES.DAT in [JONES] and all subdirectories under
[JONES], enter the following command:

$ TYPE [JONES...)FEES.DAT

If you begin the directory specification with an ellipsis, the search begins from
your current directory. For example, assuming the current default directory is
[JONES], to search all subdirectories that end in .SALES and display the latest
versions of the file FEDERAL.LIS, enter the following command:

$ TYPE [...SALES]FEDERAL.LIS

The following command displays the latest versions of all files named DEPT.DAT
in [JONES] and all subdirectories under [JONES]:

$§ TYPE [...]DEPT.DAT

However, if you begin the directory specification with a period, only the
subdirectory that is one level lower than the current directory is searched.
Assuming the current directory is [JONES], the following command searches
only the [.LETTERS] subdirectory that is one level lower than [JONES] for the
file INVITATION.TXT. The subdirectory [JONES.LETTERS] is searched, but
[JONES.WORK.LETTERS] is not:

$ TYPE [.LETTERS]INVITATION.TXT

Assuming the current directory is [JONES], the following command displays the
latest versions of all files named DEPT.DAT in the [LICENSES] subdirectory
under [JONES] and all subdirectories under the [.LICENSES] subdirectory:

$ TYPE [...LICENSES...]DEPT.DAT

navah o o Tawral Alemmmbmed e meed Ao 22 o L TS g Y) o
To search all top level directories and their subdirectories 1rom wheréver you are

in the directory structure, use an asterisk (*) followed by an ellipsis (...). The
following command (which requires READALL privilege) searches as many as
eight levels of directory names (the top level directory and seven subdirectories),
if they exist. It does not search the MFD.

$ DIRECTORY [*...]

5-8 Directories: Organizing and Managing Files

5.8.2 The Hyphen (-) Wildcard Character

Use the hyphen wildcard character to move up through the directory structure.
Each hyphen refers to the directory one level up from the current one. You can
follow the hyphens with directory and subdirectory names to move down the
directory structure on another path.

For example, if your current directory is [JONES.LICENSES], enter the following
command to display the latest version of STAFF.DIS in [JONES]:

$ TYPE [-]STAFF.DIS

If your current directory is [JONES.LICENSES], enter the following command to
display the latest version of BILLING.DAT in [JONES.TAXES]:

$ TYPE [-.TAXES]BILLING.DAT

You can specify more than one hyphen. The following command moves you up
two levels in the directory hierarchy. From there, you are placed in the top level
directory [JONES].

$ SET DEFAULT [--JONES]

If you enter so many hyphens that you point above the master file directory
(MFD), the system displays an error message.

Chapter 6
Editing Text Files: Using EVE

EVE is a general-purpose text editor that is included with the VMS operating
system. You can use EVE to create and edit new files or to edit existing files.
EVE is interactive, so you see the changes to a file as you make them. You can
use EVE on VT300-, VT200-, or VT'100-series terminals but not on hardcopy
terminals.

EVE provides extensive online help. For more information about online help, see
Section 6.2. EVE also provides two optional keypads: an EDT keypad or a WPS
keypad. The EDT and WPS keypads provide most (but not all) of the EDT and
WPS key functions. For more information about the EDT and WPS keypads, see
Section 6.6.1 and Section 6.6.2.

6.1 Beginning an Editing Session

You can start an EVE editing session either by creating and editing a new file or
by editing an existing file. To begin an editing session, enter the DCL command
EDIT/TPU followed by the name of the new file you want to create or the existing
file you want to edit. For example, to invoke EVE and create a new file named
NEWFILE.DAT, enter the following command:

$ EDIT/TPU NEWFILE.DAT

(If you wanted to edit an existing file, you would use the same format, substitut-
ing the name of the existing file for NEWFILE.DAT.)

This command produces a screen that appears as follows:
[End of file]

Buffer: NEWFILE.DAT | Write | Insert | Forward
Editing new file: could not find WORKDISK: [USER]NEWFILE.DAT

6-2 Editing Text Files: Using EVE

If you specify a file on the command line, EVE inserts the text of the file you are
editing into a temporary holding area called a buffer. The contents of the buffer
are shown in an area of your screen called a window. EVE buffers exist only
during the editing session.

The end-of-file marker marks the end of an EVE buffer. It is visible only on the
screen and does not become part of your file. When you add text to the buffer,
the end-of-file marker moves down. Depending on the length of your terminal
screen, the marker may not be visible when you view the beginning of a buffer
that contains many lines of text.

A highlighted status line appears at the bottom of the EVE window and provides
information about the buffer you are viewing in the window. The status line
shows the buffer name, editing status (write or read-only), current mode (insert
or overstrike), and current direction (forward or reverse).

When you invoke EVE to edit a file, an informational message appears in the
message window beneath the highlighted status line. The message states either
that the file is a new file or that a certain number of lines were read from an
existing file. During the editing session, EVE displays other messages in the
message window.,

6.2 Using Online Help

EVE has online help that supplies information on editing commands and keys
without disturbing your work. You can get help by entering the HELP command
or by pressing the Help key.

Use the Previous Screen and Next Screen keys (PERIOD and KPO on the keypad of a
VT100-series terminal) to scroll through the list of EVE topics. To get information
on a particular command, type a command name after the help prompt and press
Return. The help text appears on the screen.

If you know the name of a specific command for which you want help, press the
Do key, type HELP followed by the name of the command, and press Retun. The
help text for that command appears on the screen. For example, to get help on
the MOVE BY LINE command, enter the command HELP MOVE BY LINE.

6.3 Ending an Editing Session

When you are finished with the editing session, you can either save your edits or
discard them.

Editing Text Files: Using EVE 6-3

6.3.1 Saving Your Edits

To end the editing session and save your edited text, use the EXIT command. You
can enter the EXIT command by pressing the F10 key (on VT200-series or VT300-
series terminals) or by pressing CTRLZ. When you use the EXIT command, EVE
produces a new version of the edited file.

If you have modified the current buffer, EVE creates a new version of the file with
the same file name and file type as the original version, with the version number
incremented by one. For example, if you use the EXIT command after modifying

a file named FUN.DAT;1, the output file is named FUN.DAT;2:

Command: EXIT
4 lines written to file WORKDISK: [USER]FUN.DAT;2

6.3.2 Ending the Session Without Saving Your Edits

To end the editing session without saving the edits that you made, use the QUIT
command. With the QUIT command, the editing session ends and any edits
that you made are ignored. Any existing versions of the files remain unchanged
regardless of how the editing session is ended. To execute the QUIT command, do
the following:

1. Press the Do key (PF4 on VT'100-series terminals).
2. Type QUIT at the Command: prompt.
3. Press Retun.

For example, if you have made edits to a file named FUN.DAT and enter the
QUIT command, the system displays the following:

Command: QUIT
Buffer modifications will not be saved, continue quitting (Y or N)?

Type Y and press Return if you want to quit without saving the edits. If you change
your mind and decide to save your edits, type N, press Retumn, and exit from the
file using the EXIT command.

ENENES Iy

6.4 Entering EVE Commands

After you invoke EVE, you can enter EVE commands to edit text, move the
cursor, and perform other operations. You can enter EVE commands in either of
two ways:

* By pressing predefined keys
* By typing the commands themselves

The following sections describe how to enter commands. Table 6-3 at the end of
this chapter lists many EVE commands that you can use and the keys that are
predefined to execute them.

6-4 Editing Text Files: Using EVE

6.4.1 Using Defined Keys to Enter EVE Commands

EVE defines some keys by default. The predefined keys on VI300-series and
VT200-series terminals include the minikeypad (located between the main
keyboard keys and the numeric keypad), certain function keys, and certain control
key sequences. Figure 6-1 shows the predefined keys for the VI'300-series and
VT200-series terminals. On VT100-series terminals, EVE automatically defines
most of the numeric keypad keys, the four arrow keys, and certain control keys.
Figure 6-2 shows the predefined keys for the VT'100-series terminal.

Control keys, arrow keys, the Tab, Return, and Delete keys have the same definitions
on all three types of terminal. For example, the Tab key on a VT'100-series
terminal does the same thing as the Tab key on a VT300- or VI200-series
terminal.

Throughout this chapter, EVE editing keys are referred to by their names, rather
than by their locations on the keyboard. For example, on a VI'300-series or
VT200-series terminal, two keys are defined as the Do key: the key located at the
top of the editing keypad, labeled Do, and the PF4 key located on the upper right
of the numeric keypad. On a VT100-series terminal, the Do key is the PF4 key
located at the upper right of the numeric keypad.

H)esult of SET KEYPAD NOEDT or SET KEYPAD NOWPS Commands

\

Exit

F9 F10

<{X] DELETE
Tab TAB

Retum RETURN
Enter RETURN
PF4 DO

Change Move By
Direction Line

NE<CDErce—Imw

F11 F12

CTRU/A CHANGE MODE

RECALL

END OF LINE

START OF LINE

TAB

ERASE WORD
INSERT PAGE BREAK
RETURN
REMEMBER

ERASE START OF LINE
QUOTE

REFRESH

EXIT

Help
Keypad Do

Find Insert

Prev Next

GOLD key functions are shown i

Sample Function or Keypad Key

Key Label
Default Function
GOLD Function

ZK-~1055A-GE

1~9 ainfi4

so|i4 1xa] Bunip3

S|eujwiol SaL18S-00ELA PUB S819S-00ZLA—SAe) Bump3

-9 3JA3Z bBuisn

6-6 Editing Text Files: Using EVE

Figure 6-2: Editing Keys—VT100-Series Terminals

Default on VT100 Terminal
Avallable on VT200 Terminal With SET KEYPAD VT100 Command

Help Change
Find Keypad Direction Do
Select Remove Insert e
® Line
Delste DELETE CTRL/A CHANGE MODE
Tab TAB B RECALL
Retum RETURN E END of LINE Erase
Backspace START of LINE H STARTof LINE Word
Linefeed ERASE WORD 1 TAB
J ERASE WORD
L INSERT PAGE BREAK
M RETURN
R REMEMBER
U ERASE START OF LINE l
V QUOTE
W REFRESH Change
Z EXIT Mode
Next Prev
Screen Screen

GOLD key functions are shown in SiSEEFHEIS.
ZK-6301-GE

You can also use DCL line-editing keys in an EVE session. For example, use
CTRLU to erase to the beginning of the line, CTRLE to move to the end of the line,
and CTRUB to recall the last command entered. By default, the editing mode
(insert or overstrike) of the EVE command line is the same as the editing mode
of your terminal. (You can change the default with the DCL command SET
TERMINAL prior to invoking EVE. Once in EVE, you can change the editing
mode by pressing CTRL/A.)

In addition to providing the default predefined keys, EVE lets you do any of the
following:

¢ Use an EDT-like keypad

¢ Use a WPS-like keypad

* Define your own keys

* Redefine any of the keys predefined by default

See Section 6.6 for more information about these features.

Editing Text Files: Using EVE 6-7

6.4.2 Typing EVE Commands

In addition to using defined keys to enter commands, you can type commands at
the Command: prompt. To type EVE commands, do the following:

1. Press the Do key. EVE displays the Command: prompt in the command
window beneath the highlighted status line.

2. Type the EVE command after the prompt. The following example shows how
to enter the EXIT command:

Command: EXIT
3. Press Return or the Do key to enter the command.
To save keystrokes when you are typing EVE commands, do the following:

* To recall the last EVE command you entered, press CTRLB. Pressing CTRL/B
again recalls the next to the last command and so forth. Continue pressing
CTRL/B until the command you want appears on your screen, and press Return
to enter it.

* To abbreviate EVE command names, use the first letters of each command
term, make sure to use enough letters to uniquely identify the command. For
example, if you wanted to give the OVERSTRIKE command, you could enter
OVER at the Command: prompt.

¢ To repeat an EVE command or keystroke a specified number of times, use the
REPEAT command. Enter the REPEAT command and the number of times it
is to be repeated. EVE repeats the next character or command you enter the
specified number of times. For example, the following commands erase five
words (the current word and the four previous):

Command: REPEAT 5
Will repeat next command 5 times.
Command: ERASE WORD

* To repeat the last command entered, press the Do key twice.
6.4.3 EVE Kev Names

You can type the name of a key as a parameter for the DEFINE KEY, SET GOLD
KEY, SHOW KEY, and UNDEFINE KEY commands. Generally, EVE key names
are the same as DCL key names. For example, the 7 on the numeric keypad is
named KP7. Key names cannot be abbreviated; they are not case sensitive. In
specifying control keys or GOLD key combinations, use a slash, dash, or underscore
in the key name—for example, CTRUN or GOLD-F20. Thus, in an initialization file,
you can use commands with typed key names such as the following:

DEFINE KEY= CTRL/P MOVE BY PAGE

DEFINE KEY= GOLD-N NEXT BUFFER

DEFINE KEY= KP7 CENTER LINE
SET GOLD KEY F17

6-8 Editing Text Files: Using EVE

Table 6-1 lists EVE key names and how the keys are labeled on the keyboard or
keypads. Note that some keys may not appear on some terminals. (For example,
VT100-series terminals do not have the Fi through F20 keys. VT200- and VT300-
series terminals do not have BACKSPACE and LINEFEED keys.)

Table 6-1: EVE Key Names

Key Name Label

F7...F20 F7...F20
HELP or F15 Help

DO or F16 Do

E1 Find

E2 Insert Here

E3 Remove

E4 Select

E5 Prev Screen

E6 Next Screen

upP 1

LEFT —

DOWN 1

RIGHT —

PF1...PF4 PF1 ... PF4

KPO ... KP9 0 ... 9 (numeric keypad)
MINUS — (numeric keypad)
PERIOD . (numeric keypad)
COMMA , (numeric keypad)
DELETE <Xl or DELETE
TAB or CTRL/I Tab or TAB

BS or CTRL/H BACKSPACE (VT100-series terminals)
LF or CTRLA

LINEFEED (VT100-series terminals)

6.5 Editing Text

Once you know how to invoke the EVE editor and how to enter commands, you
can use EVE commands to create and edit files. Editing keys and commands let
you move the cursor and perform editing operations such as moving, erasing, and
restoring text.

Editing Text Files: Using EVE 6-9

Before you begin typing text, look at the highlighted status line to check whether
the buffer is in insert or overstrike mode. If the buffer is in insert mode, text is
inserted at the cursor position, and text that already appears in the file moves to
accommodate your insertions. If the buffer is in overstrike mode, text that you
type at the keyboard is inserted at the cursor position, and the text that already
appears in the file is overwritten as the cursor moves through it. Press CTRL/A to
change from one mode to the other.

You can add text to your buffer in the following ways:

o Text—You can type characters at the keyboard. EVE adds the characters to
the buffer at the current cursor position according to the current mode of the
buffer (insert or overstrike). In insert mode, the new characters move existing
characters to the right and down. In overstrike mode, the new characters
replace existing characters.

¢ Files—You can add an entire file by pressing the Do key and entering the EVE
command INCLUDE FILE. Type the file specification at the File to include:
prompt and press Return. Regardless of the current mode (insert or overstrike)
of the buffer, EVE inserts the entire contents of the specified file into the
buffer just before the line where the cursor currently appears.

¢ Inserting or restoring text—You can include text that you erased (deleted)
or removed (cut). To include text that you erased, use the appropriate
RESTORE command; to include text that you removed, use the INSERT
HERE command.

Table 6-3, located at the end of this chapter, lists many EVE commands that you
can use to move the cursor and manipulate text. This table also indicates when
the command has corresponding predefined keys. Note that the keys correspond
to the commands only when the default EVE keypad is used; other key definitions
might apply if you use alternate keypads (EVE or WPS) or if the keys have been
redefined.

6.5.1 Locating Text

To locate specific text in the current buffer, enter the FIND command. Then type
ihe text you want to locate, which is called the search string. For example,
enter the following commands to find the search string rhAymes with in the
forward direction.

Command: FIND
Forward Find: rhymes with

If the string is found, EVE moves the cursor to the beginning of the specified
string.

If the search string contains all lowercase letters, EVE disregards the case of
letters and locates any occurrence of the string. Thus, the search string the
matches the, THe, and thE. If the search string contains one or more uppercase
letters, EVE finds only the occurrences of the string in which the case of each

6-10 Editing Text Files: Using EVE

letter is exactly the same. Therefore, the only match for the search string tHis is
tHis.

EVE is sensitive to accent marks and locates only those occurrences of the string
in which the accent marks are exactly the same. For example, in searching for &,
EVE does not locate occurrences of e, ¢, &, or é.

The current direction of the buffer determines whether EVE first searches in a
forward or reverse direction.

If the editor cannot find the string in the current direction but finds it in the
opposite direction, EVE prompts you to change direction. The following example
shows the system response when the string rhymes with is found in the opposite
direction from the search:

Forward Find: rhymes with
Found in reverse direction. Go there?

To search in the opposite direction, type Y. EVE moves the cursor to the first
occurrence of the string in the opposite direction. The current direction in the
highlighted status line does not change, however.

When EVE finds the search string, the editor highlights it and moves the cursor
to the first letter of the string. You can use any one of the following commands on
a highlighted search string:

CAPITALIZE WORD
COPY

CUT

FILL

FILL RANGE

FIND NEXT

FIND SELECTED
LOWERCASE WORD
OPEN SELECTED
REMOVE

STORE TEXT
UPPERCASE WORD
Some EDT or WPS keypad keys

To cancel the highlighting, move the cursor off the search string or use the
RESET command.

To find the next occurrence of the search string, press the Find key twice or enter
the FIND NEXT command.

Editing Text Files: Using EVE 6-11

6.5.2 Replacing Text

The REPLACE command lets you replace a text string in the current buffer
with another text string. This is useful if you have spelled a word incorrectly

throughout a long file and you want to fix every occurrence of the misspelled
word.

For example, to use the REPLACE command to replace every occurrence of the
string ee with the string oo, use the following procedure:

Move the cursor to the top of the buffer.

Press the Do key, type REPLACE, and press Return.

Type ee at the highlighted Old string: prompt and press Return.
Type oo at the highlighted New string: prompt and press Return.

A

Type all and press Return. All occurrences of the string ee are replaced with
the string oo.

If the old string is found, EVE highlights the text and asks you to choose one of
the following; you need only type the first letter of the response and press Return:

Response Effect

Yes Replace this occurrence and find the next one. (Default. You can simply press
Return.)

No Skip this occurrence and find the next one.

All Replace all the occurrences (no further prompting unless EVE finds an occurrence
in the opposite direction).

Last Replace this occurrence and stop here.

Quit Skip this occurrence and stop here.

The REPLACE command is case sensitive. If the old string has any uppercase
letters, EVE searches for exact case matches. If the old stnng is all lowercase,

U F Al AL aA TLLL .
) gsearches for any ceourrence of the Strlng regariuess Tx its case. If wince ncw

string has any uppercase letters, EVE replaces the string exactly. If the old and
new strings are all lowercase, EVE replaces the string according to the following
rules:

* A capitalized version of the old string (first letter uppercase, others lowercase)
is replaced by a capitalized version of the new string.

® An all-uppercase version of the old string is replaced by an all-uppercase
version of the new string.

* Otherwise, the old string is replaced by an all-lowercase version of the new
string.

6-12 Editing Text Files: Using EVE

The following table shows how EVE uses the case of the strings:

Old String New String Highlights Replacements

butter margarine butter margarine
Butter Margarine
BUTTER MARGARINE
BUtteR margarine

Butter margarine Butter margarine

butter Margarine butter Margarine
Butter Margarine
BUTTER Margarine
BUtteR Margarine

Butter Margarine Butter Margarine

6.5.3 Recovering from System Interruptions

EVE has recovery procedures for two types of system interruptions. You can
remove extraneous characters that appear on your screen, and you can recover a
“lost” editing session with the journaling facility.

6.5.4 Refreshing the Screen

If extraneous characters, such as an operator message, appear on your terminal
screen while you are editing, press CTRLW to refresh the screen. The screen
becomes blank, and then all characters are redrawn, minus any extraneous
characters.

6.5.5 Using the Journal File

If you are editing a file and a system interruption occurs (that is, a break in
communication between your terminal and the computer), you can recover your
“lost” editing session. By default, EVE records every keystroke you enter during
an editing session in a journal file that has the same file name as the file you are
editing and a file type of TJL.

Typically, an editing session ends without interruption, so the system deletes the
journal file. When the system fails, however, the journal file is saved. EVE can
use the journal file to reconstruct your editing session so that only the last few
keystrokes of your editing session are lost and sometimes nothing is lost.

Editing Text Files: Using EVE 6-13

To recover an editing session, enter the DCL command you used to invoke EVE
plus the /RECOVER qualifier. For example, to recover an editing session you
began with the command EDIT/TPU LETTER.RNO, type the following command
and file name and press Return:

$ EDIT/TPU/RECOVER letter.rno

You must recover an editing session at a terminal of the same type as the one you
used for your editing session. When EVE finishes recovering the session, check
to be sure that the last few keystrokes of your editing session were recovered and
continue editing the file. If another system interruption occurs before you exit, a
journal file containing the keystrokes from both editing sessions is saved.

The vjoumal file is saved in the current default directory. However, you can create
a journal file in another directory by using the /JJOURNAL qualifier, as in the
following DCL command:

$ EDIT/TPU/JOURNAL=[alexis.travels]letter.tjl letter.rno

If you use the /JOURNAL qualifier to create a journal file with a different

file name or a different directory, then you must use the /JJOURNAL qualifier
and the file name when you recover the file. For example, to recover the file
LETTER.RNO when the journal file is in directory [ALEXIS.TRAVELS], enter the
following command:

$ EDIT/TPU/JOURNAL=[alexis.travels]letter.tjl/RECOVER letter.rno
The journaling facility has the following two restrictions:

¢ All relevant files and terminal settings must be the same as they were
before the system interruption or the recovery might fail or might not work
as expected. For example, if you used the WRITE FILE command during
your editing session to copy the contents of the buffer to another file then,
in recovering your edits, you must specify the original version number. In
this example, you are editing an existing file called LETTER.RNO;1 and
use the WRITE FILE command; EVE creates LETTER.RNO;2. The system
then fails and you must enter the original version of LETTER.RNO on
the EDIT/TPU/RECOVER command line. In this example you would type
LETTER RNO:1 (Sce Section 8 5.8 for more information on the WRITE FTLE
command.)

* If you press CTRL/C during an editing session, immediately exit from the

editing session and invoke EVE again. EVE does not include CTRLC in the
journal file so the recovery will not work as expected.

6-14 Editing Text Files: Using EVE

6.5.6 Listing Buffers

To display a list of all the buffers you have created during an editing session,
enter the SHOW BUFFERS command. To display a list of all buffers that EVE
has created, enter the SHOW SYSTEM BUFFERS command. You can scroll
through the list and specify the buffer you want to view by moving the cursor to
the ‘li)uffer name and pressing the Select key. EVE puts the buffer in your current
window.

NOTE: Do not delete system buffers, such as Insert Here,
Messages, $RESTORES$, or $DEFAULTS, because these buffers
are necessary for some commands to work properly.

6.5.7 Editing Two Buffers

During an editing session you can use several buffers if you want to edit more
than one file or if you want temporary storage areas for manipulating blocks of
text.

You can create a new buffer using one of the following commands: GET FILE or
OPEN, OPEN SELECTED, or BUFFER. If the buffer you specify does not already
exist, EVE creates a new buffer. You can use the asterisk wildcard character (*)
as a substitute for all or some of the characters in the file name and file type.
You can use the percent wildcard character (%) as a substitute for one character
in the file name and file type, and you can use the ellipsis wildcard ([... }) as a
substitute for a directory specification.

If the specified file exists, EVE reads the contents of the file into a new buffer and
displays the buffer in the current window. If there is more than one match for a
file specification with a wildcard, EVE displays a list of choices and prompts you
to provide a more complete file specification. Otherwise, EVE creates an empty
buffer and displays the buffer in the current window.

To change the buffer in the current window, press the Do key, type BUFFER and
the name of the buffer you want to display on the screen, and press Retumn. If you
forget a buffer name, enter the SHOW BUFFERS command to display the names
of active buffers in your editing session and specify a buffer with the Select key.

6.5.8 Reading and Writing Files
There are four ways to read a file into an EVE buffer.

* Invoke EVE with a file specification.

¢ Enter the INCLUDE FILE command and the name of the file you want to
include. EVE reads the entire contents of the file into the buffer just before
the line where the cursor is located. Using the INCLUDE FILE command
does not change the name of the buffer on the status line.

Editing Text Files: Using EVE 6-15

* Enter the GET FILE or OPEN command and the name of the file you want
to use. Either command creates a new buffer and reads the contents of an
existing file into the buffer. The name of the buffer on the status line is the
same as the file name you specify with the GET FILE or OPEN command.
(See Section 6.5.7.)

* Select or find a file name, then enter the OPEN SELECTED command.

To write the contents of the current buffer to a file, enter the WRITE FILE
command. You can include a file specification with the WRITE FILE command.
If you do not include a file specification, EVE writes the file using the input
file specification. If you created the current buffer with the BUFFER or NEW
command, EVE prompts you for a file specification to which it writes the file.

6.5.9 EVE Default Settings

Table 6-2 lists the EVE default settings—the settings EVE uses unless you
specify otherwise. You may want to refer to this table in creating an initialization
file, to check which settings you want to change. Note that some settings are
global (applying in all buffers you edit), and others are buffer-specific. For
example, the type of cursor motion (bound or free) and tab mode (insert, spaces,
or movement) are the same in all buffers you edit, whereas margins, paragraph
indent, and tab stops can be set differently for each buffer. (You may want one
buffer to have a right margin of 75 and another to have a right margin of 68.)

Table 6-2: EVE Default Settings

Default Setting Effects

Global Settings (Applying

to All Buffers)

SET NOCLIPBOARD Copy, cut, and paste operations use the EVE Insert Here buffer.
On DECwindows, you can enable the clipboard, which lets you
transfer text between EVE and other DECwindows applications.
WPS keypad keys do not use the clipboard, regardless of the
setting.

SET CURSOR FREE You can move the cursor anywhere in the buffer and enter text

there, as opposed to a bound cursor, which cannot move into the
unused portion of the buffer. Note that using SET KEYPAD WPS
automatically enables a bound cursor.

SET FIND NOWHITESPACE FIND and WILDCARD FIND commands match spaces and tabs
in the search string exactly as entered, and do not search across
a line break.

(continued on next page)

6-16 Editing Text Files: Using EVE

Table 6-2 (Cont.): EVE Default Settings

Default Setting Effects

Global Settings (Applying

to All Buffers)

SET NOGOLD KEY EVE does not have a default GOLD key. Setting the EDT or
WPS keypad makes PF1 the GOLD key, overriding any current
definition of PF1, unless you set a different key as GOLD.

SET KEYPAD NUMERIC On VT300-series and VT200-series terminals, keys on the

or SET KEYPAD VT100 numeric keypad are undefined, except for the PF4 and ENTER
keys. On VT100-geries terminals, the numeric keypad is used for
the EVE default key bindings. Control keys are defined the same
on either type of terminal. Also, you can set the EDT keypad or
WPS keypad on either type of terminal.

SET NOPENDING DELETE Using DELETE or typing new text does not erase a select range.

SET SCROLL MARGINS 0 0 Scrolling begins automatically when you move past the top or
bottom of the window.

SET TABS INSERT Using TAB inserts a tab character. You can set the tab mode to
insert spaces instead of a tab character, or to move the cursor
without inserting anything.

SET TABS INVISIBLE Tab characters appear during editing as blank space, as opposed
to visible tabs, which appear as a small I-{, (horizontal tab).

SET WIDTH 80 The width of the EVE screen layout is the same as your terminal
setting—typically 80 columns.

SET WILDCARDS VMS The WILDCARD FIND command uses VMS-style wildcards, such
as the asterisk (*) to match any amount of text on a line, the
percent sign (%) to match a single character on a line, and so on.
You can enable ULTRIX-style wildcards.

Buffer-Specific Settings

FORWARD Commands like FIND and MOVE BY LINE move the cursor to
the right and down. You can change the direction to reverse (left
and up).

INSERT MODE Characters you type are inserted at the current position, pushing
existing text to the right and down. You can change the mode to
overstrike.

SET BUFFER MODIFIABLE Buffers you create can be modified (edited). You can set the
buffer to unmodifiable.

(continued on next page)

Editing Text Files: Using EVE 6-17

Table 6-2 (Cont.): EVE Default Settings

Default Setting Effects

Buffer-Specific Settings

SET BUFFER WRITE On exiting, EVE writes out (saves) your buffers if you have made
any changes. You can set the buffer to read-only.

SET LEFT MARGIN 1 This is the leftmost column. When you press Return or use FILL
commands or when EVE wraps text, new lines start at the left
margin of the buffer.

SET PARAGRAPH INDENT 0 Paragraphs you create or ones you reformat with FILL
commands start at the current left margin of the buffer—with no
indent.

SET RIGHT MARGIN 79 The default right margin is one column less than the width set
for your terminal. If the width is 80 columns, the default right
margin is 79. When you use FILL commands or when you type
at the end of a line, EVE wraps text at the right margin of the

buffer.

SET TABS EVERY 8 Tab stops are set at columns 9, 17, 25, 33, 41, and so on. You can
set tab stops at different intervals.

SET WRAP As you type text at the end of a line, EVE wraps text at the right

margin of the buffer, without your having to press the Return key
or use FILL commands.

Note: For editing EVE command lines—such as when you recall a command—
the default direction is reverse, the default mode matches your terminal setting,
and the cursor is bound.

EVE settings such as margins, tabs, and type of cursor motion are not usually
saved when you create a section file. Instead, to save these editing preferences,
you can use an initialization file, which contains EVE commands—effectively,
setting your own private defaults. You can also put key definitions in an

initialization file instead of (or in addition to) saving them in a section file. For
sxample, the following EVE initialization file setg the EDT keynad, defines some

1
GAaauyle, VAILG AVLAV VY aaags

keys, sets bound cursor motion, sets the right margin to 70, and sets the tab mode
to insert spaces:

! MYINIT.EVE initialization file
1

SET KEYPAD EDT

DEFINE KEY= gold-c center line
DEFINE KEY= f20 show buffers

1

SET CURSOR BOUND

SET RIGHT MARGIN 70

SET TABS SPACES

6-18 Editing Text Files: Using EVE

When you invoke EVE using an initialization file, commands in the initialization
file for margins, tabs stops, and other buffer-specific settings apply to the

main (or first) buffer and to an EVE system buffer named $DEFAULTS$. The
$DEFAULTSS$ buffer is a template buffer: when you create a buffer—for example,
by using the GET FILE command—EVE uses the settings of the $DEFAULTS$
buffer, so that each new buffer has the same settings. Thus, if your initialization
file contains the command SET RIGHT MARGIN 70, each buffer you create will
have that right margin.

To find out the default settings, use the SHOW DEFAULTS BUFFER command.
To find out the settings of the buffer you are editing, use the SHOW command.

6.6 Saving Time and Keystrokes—Defining Keys in EVE

Although only a few keys are defined when you first use EVE, there are several
ways that you can define keys to perform a wide range of editing functions. This
section describes three ways to define keys in EVE:

¢ Emulating a keypad similar to the EDT or WPS editor
* Defining keys while using EVE
¢ Making permanent key definitions

Read this section if you want to learn about some of the methods of defining keys
in EVE.

6.6.1 Using EVE to Emulate EDT

If you are familiar with the keypad available with the EDT editor, then you can
readily set a similar environment while using EVE.

To use a keypad similar to the EDT keypad, do the following:
1. Enter the EVE editor using the following DCL-level command:
EDIT/TPU file-name

2. Press the DO key (or PF4). The Command: prompt is displayed at the bottom
of the terminal.

3. Type SET KEYPAD EDT (as shown) and press Return.

- FILE-PMAME. AT | write | Insert | Forward
Command: set keypad edt_

After you give this command, your keypad resembles the EDT keypad. Note
that although your keypad is similar to the EDT keypad, you are still in the EVE

Editing Text Files: Using EVE 6-19

environment and some EDT functions (for example, line editing) are not available.
However, you can continue to use any of the features that EVE provides.

For example, you can use the EDT keypad and take advantage of the multiple
windows in EVE. You could set your keypad to EDT, as described above, create
two windows, and then define a key to switch back and forth between the two
windows.

Use the following procedure to set up your editing in this way:

1. Enter the EVE editor and set your keypad to EDT, as described in the
previous example.

2. To create two windows on your terminal, press the DO key.

NOTE: Before you gave the SET KEYPAD EDT command,
the PF4 key gave you the Command: prompt. To emulate
EDT, the Command: prompt is redefined as the sequence
PF1-KP7 after you give the SET KEYPAD EDT command.

At the Command: prompt, type TWO WINDOWS and press Return. Your
screen will look like this:

[End of filel

[Euifer: FILE-tAME, DAT | Write | Inzert | Forwsrd

[End of filel

Faf fery FTLE-MARE. TIAT | bWirite | Imzert | Forwerd

3. Define a key that will let you switch back and forth between the windows,
using the following procedure:
a. Press CTRLK to indicate that you want to define a key. The bottom of your
terminal looks as follows:

[End of file]
Fiaf fav: FTLE-MAME TAT | bhrite | Tr=ert | Foreard

Press keystrokes to be learned. Press CTRL/R to remember these keystrokes.

6-20 Editing Text Files: Using EVE

b. Press DO or the PF1-KP7 sequence to get the Command: prompt, and then
type OTHER WINDOW, as shown, and then press Return.

[End of file]

Euffar: FILE-MAME. DRT

Command: other window_
Press keystrokes to be learned. Press CTRL/R to remember these keystrokes.

c. Press CTRUR to end the key definition. The bottom of your screen displays
the following:

[End of filel
Euf fer FTILE=MAME. TIKT
Frozcn bhoe baeg oo wanh Lot Lo do whiat owes just learned

| Whrite | Insert | Forward

d. Press any valid CTRL key or PFi- sequence, for example, CTRL/A.

Now, when you press CTRUA, the cursor switches between the two windows on the
screen.

If you want to edit (or read) two files at the same time, use the GET file-name
command after you have created the two windows. The file that you name in the
GET command is displayed in one window, and the original file that you were
editing is displayed in the other window.

If you want to save this environment (that is, the EDT keypad emulation and the
key that you defined to switch between windows), then do the following before
you exit from EVE:

1. Get the Command: prompt by pressing DO or the sequence PF1-KP7.

2. Type SAVE EXTENDED TPU [directorylfile-name, without giving a file type
(for example, SAVE EXTENDED TPU [THOMASIEVE-KEYDEFS), as shown,
and then press Return:

3. Exit from EVE by pressing CTRUZ to write the files that you have edited, or by
typing QUIT at the Command: prompt. If you have made edits to more than
one file when you press CTRL/Z, you will be asked if you want to write each file
(except for the buffer in which the cursor is located—that file is automatically
written).

4. After you exit from EVE, give the following command (or define a symbol)
to use EVE with the EDT keypad and CTRUA defined as switching between
windows:

$ EDIT /TPU /SECTION={THOMAS]EVE-KEYDEFS filename.ext

Editing Text Files: Using EVE 6-21

When you enter EVE, the EDT keypad is in place, and the CTRUA key is defined
as switching between windows. Note that only one window is on the screen
when you enter EVE, and that you must first create two windows (with the TWO
WINDOWS command) before you can meaningfully use CTRU/A.

6.6.2 Using EVE to Emulate WPS

If you are familiar with the keypad available with the WPS editor, then you can
readily set a similar environment while using EVE. To use a keypad similar to
the WPS keypad, do the following:

1. Enter the EVE editor using the following DCL-level command:
EDIT/TPU file-name

2. Press the DO key (or PF4). The “Command:” prompt is displayed at the bottom
of the terminal.

3. Type SET KEYPAD WPS (as shown) and press Return.

Command: SET KEYPAD WPS_

EJPFE“ FILE-MAME.DAT | trite | Insert | Forward

After you give this command, your keypad resembles the WPS keypad, and you
can use any of the features that EVE provides (for example, multiple windows).
However, although your keypad resembles the WPS keypad, you are still in the
EVE environment and some WPS functions may not be available (for example,
only one ruler is active per document, rulers cannot be embedded in documents,
and scrolling functions slightly differently).

If you want to automatically use the WPS keypad each time you enter the EVE
editor, follow this procedure:

1. Enter the EVE editor and set your keypad to WPS, as described above.

2. Get the “Command:” prompt by pressing DG or the sequeice TF il

3. Type SAVE EXTENDED TPU [directorylfile name, without giving a file
extension (for example, SAVE EXTENDED TPU [THOMAS]JEVE-KEYDEFS),
as shown, and then press Return.

FILE~MAME, DAT | Write | Insert | Forward
Command: SAVE EXTENDED TPU [THOMAS]EVE-KEYDEFS_

WPS keypad defined (for more information, see help on WPS DIFFERENCES).

Erffer:

4. Exit from EVE by pressing CTRUZ to write the files that you have edited, or by
typing QUIT at the “Command:” prompt.

6-22 Editing Text Files: Using EVE

5. After you exit from EVE, give the following command (or define a symbol) to
use EVE with the WPS keypad:

$ EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS filename.ext

6.6.3 Defining a Key While Using EVE
There are two basic types of key definitions that you can make while using EVE:
1. A key that is defined to be a single, specific EVE function

2. A key that replicates a series of keystrokes, such as inserting text, a series of
EVE functions, or both

You can define keys by the methods described in this section regardless of the
type of keypad that you might be using.

6.6.3.1 Defining a Key to Perform a Single EVE Function
To define a key that performs a single EVE funection, use the following procedure:

1. At the “Command:” prompt (press the DO key), type DEFINE and press Return.

2. Type the EVE command that you want to use, for example OTHER WINDOW,
as shown, and then press Return. (The Reference Section contains a list of EVE
commands.)

Euffer: | Write | Imsert | Forward

g

FILE-MAMD. DRT
corrasd s OTHER WIMD

3. You are prompted to press the key that you want to define, as shown:

4. Press any valid control or PF1 sequence, and the key definition is complete.

Caf fer:
Fress

FILE-MAME. TIAT

want bo

|

| brite

thie oy gou o v

When you define a key during an EVE editing session, the key definition is
normally valid only until you exit from the EVE session. However, one way to
make a key definition permanent is to use the following procedure, described in
more detail in Section 6.6.1 and Section 6.6.2:

1. At the “Command:” prompt, type SAVE EXTENDED TPU [directorylfile-
name, without giving a file extension (for example, SAVE EXTENDED TPU
[THOMAS]JEVE-KEYDEFS), and then press Return.

2. After you exit from EVE, give the following command (or define a symbol)
to use EVE with the keys that you have defined (substituting the proper
directory and file name):

$ EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS filename.ext

Editing Text Files: Using EVE 6-23

6.6.3.2 Defining a Key to Perform a Series of Keystrokes

If you have a series of keystrokes that you repeat frequently, then you can save
time and keystrokes by using a feature of EVE that lets you associate a set of
keystrokes with a particular key sequence. With this feature, you can define a
key to output a string of text, to execute a series of EVE functions, or to combine
one or more text strings with one or more EVE functions.

When you are already in an EVE editing session, and you want to define a key
that executes a series of keystrokes, you always follow the same general process:

1. At the “Command:” prompt, type LEARN and press Retumn.

2. Type the keystrokes that you want the defined key to repeat. You can insert
text, give EVE commands, or use any keys that are defined.

3. When you have finished typing the keystrokes, press CTRLR to signal EVE
that the sequence is complete.

4. Press the key that you want to define, and the key definition is complete.

For example, suppose that you often type the words International Development
Organization. To include this expression in your text simply by pressing CTRUA,
use the following steps:

1. Be sure your cursor is at a point where you want the text to appear first.
2. At the “Command:” prompt (press the DO key), type LEARN and press Return.

3. Type the text International Development Organization. Your screen now looks
like the following:

19 April 1990
Dr. Yvonne Curry

President
International Development Organization_

[End of file]

Euffoer: FILE-MAME. DAT

Press keystrokes to be learned. Press CIKRL/R TO remember inese Keysirokes. |

4. Press CTRLR. The bottom of the terminal looks as follows:

[End of file]
Euffor: FILE-MAME. DOT
Fress Lhae beg gou

folrite

wand Lo ogse Lo da was just learned:

5. Now press CTRUA. The key definition is complete, and the message “Key
sequence remembered” is displayed at the bottom of your screen. If you press

6-24 Editing Text Files: Using EVE

CTRU/A, the text International Development Organization is inserted in your
buffer.

You follow exactly the same procedure to define a key that includes EVE
functions. For example, suppose that you are editing the following text file, which
has four columns of data. In this example, you want to eliminate the last two
columns (“Price” and “Total”) in each row:

Item Quantity Price Total
Apples 20 1.00 20.00
Bananas 40 1.850 60.00
Beets 25 2.00 60.00
Carrots 30 2.00 60.00
Oranges 20 4,00 80,00
Peaches 10 3.00 30.00
Pears 3 6.00 30.00
Potatoes 50 1.00 50,00
[End of file]

Euffar: WEEKLY-ORDER, IRT

You could go through the procedure manually, which could be painstaking if your
file contained a great deal of data. Alternatively, you could define a key to do
most of the work for you.

To define the CTRLD key to do the work, use the following steps:
Move the cursor to the beginning of the first line (the word Item).
Press the DO key to get the “Command:” prompt, and type LEARN.

Move the cursor ahead two words by giving the command “MOVE BY WORD”
twice at the “Command:” prompt. If you have a key defined that already
moves the cursor ahead one word (for example, if you have set your keypad
to emulate the EDT or WPS editor, or if you have defined a key as described
earlier in this section), you can simply press that key twice.

4. Now you must delete the rest of the text in the line. In EVE, a simple way
to do this is to use the REMOVE (cut) function. Press the SELECT key, give
the command END OF LINE (at the “Command:” prompt), and then press
the REMOVE key. (If your terminal does not have the SELECT and REMOVE
keys, then you can either give the commands SELECT and REMOVE at the
“Command:” prompt, or you can use keys that have been defined as SELECT
and REMOVE.)

5. Give the MOVE BY WORD command once again (or use a key defined as
such), which moves the cursor to the beginning of the next line.

Press CTRLR to signal the end of the learn sequence.
7. Press CTRLD to define that key, and the key definition is complete.

When CTRLD is pressed, the cursor moves forward two words, removes the
remainder of the line, and moves the cursor to the beginning of the next line.

Editing Text Files: Using EVE 6-25

You can repeat virtually any series of keystrokes with the learn sequence,
including searching for text, writing the contents of a buffer to a file, moving
from one window to another, substituting text, or any other EVE function.

You can use most CTRL keys, PF1- sequences, and function keys F7 through F20
for the keys that you define. However, you cannot redefine the DO key, and you
should not redefine any of the following keys:

HELP

CTRL/C
CTRL/O
CTRL/Q
CTRL/R
CTRL/S
CTRL/T
CTRL/U
CTRL/X
CTRL/Z

As with other keys defined during an EVE editing session, keys that you define
with the LEARN command would normally not be valid after you exit from the
EVE editor. However, you can keep and reuse keys that you define during an
EVE session by following this same process that was described in preceding
sections:

1. Give the command SAVE EXTENDED TPU [directorylfilename at the
“Command:” prompt; for example:

Peaches i0
Pears 6
Potatoes 50

[End of file]
Tiarfer: WEFY LY =ORTER . TWT

Command: SAVE EXTENDED TPU [THOMASIEVE-KEYDEFS_

2. After you exit from EVE, give the following command (or define a symbol) to
use EVE with the keys that you have defined:

$ EDIT /TPU /SECTION=[THOMAS]EVE~KEYDEFS filename.ext

6.6.4 Using Startup Files to Define Keys

The TPU/EVE editor provides a wide range of features, and your editing
environment can be defined in a number of ways. This section discusses two
methods that you can use to set your editing environment:

¢ An EVE initialization file
¢ A TPU section file

626 Editing Text Files: Using EVE

6.6.4.1 EVE Initialization Files

An EVE initialization file lets you set your editing environment and define keys
to be specific EVE commands. For example, you could use an EVE initialization
file to set your keypad to an EDT-like environment whenever you use EVE, to set
the left and right margins of your buffers, and to define keys to create two buffers
and switch between them.

To use an EVE initialization file, use the following procedure:
1. Create the EDT initialization file, using any text editor.

2. Specify the initialization file that you want by using the /INITIALIZATION=
qualifier in your EDIT/TPU command line. For example, if your EVE
initialization file is [THOMAS]JEVES$INIT.EVE, then you would use the
following DCL-level command to edit a file named REPORT.TEXT using
your initialization file:

$ EDIT /TPU /INITIALIZATION=[THOMAS]EVESINIT.EVE REPORT.TEXT

You can of course define a symbol in your login command file that would
reduce the number of keystrokes that you need; for example:

$ EDIT :== EDIT /TPU /INITIALIZATION=[THOMAS]EVESINIT.EVE
In the EVE initialization file, each line should contain a single command or key

definition. The following sample shows an EVE initialization file that you could
use or adapt to meet your needs:

SET KEYPAD EDT @

SET LEFT MARGIN 8 @

SET RIGHT MARGIN 72

DEFINE KEY=CTRL/D TWO WINDOWS @

DEFINE KEY=CTRL/A OTHER WINDOW ©
DEFINE KEY GOLD/Q quiT @

In this EVE initialization file, the lines have the following meanings:
EVE provides an EDT-like keypad.

The left margin of your text is set at 8.

The right margin of your text is set at 72.

When you press the CTRL/D key, two windows are created on your terminal.

When you press the CTRU/A key, the cursor switches from one window on your
terminal to the other window.

® When you press the GOLD-Q sequence, you quit the editing session without
writing the file.

Initialization files are simple to create and use. However, you may also want to
use section files to define your EVE editing environment, because they allow you
to define more complicated key sequences.

Editing Text Files: Using EVE 6-27

When you use the TPU/EVE editor, you can specify an initialization file (and no
section file), a section file (and no initialization file), or you can specify both an
initialization file and a section file.

6.6.4.2 EVE/TPU Section Files

A section file lets you define your EVE/TPU editing environment much more
fully than with an EVE initialization file. This section describes how to create
one type of section file.

To create and use an EVE/TPU section file, use the following procedure:

1. Create an EVE/TPU command file using a text editor. The command file is
a text file that can be read on your terminal or printed.

2. Use the SAVE command in EVE/TPU to generate a section file from the
command file. You cannot read a section file on your terminal, but EVE/TPU
uses the information in the section file to create your editing environment.

3. Specify the section file that you want by using the /SECTION qualifier in
your EDIT/TPU command line. For example, if your EVE/TPU section file is
[THOMAS]EVE-KEYDEFS.TPU$SECTION, then you would use the following
DCL-level command to edit a file named REPORT.TEXT using your section
file:

$ EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS REPORT.TEXT

(Note that you do not need to specify a file extension for a section file when
the default, TPU$SECTION, is used.)

As always, you can define a symbol similar to the following in your login
command file to expedite the process:
$ EDIT :== EDIT /TPU /SECTION=[THOMAS]EVE KEYDEFS

The EVE/TPU section file is built from a command file that you create with a text

editor. One type of command file (and subsequent section file) that sets up your
environment and defines keys uses the following process:

1. Regin vour command file with the following line:
procedure tpu$local_init

2. Use valid TPU commands (such as DEFINE_KEY) and the proper syntax for
each command. The sample command file shown later in this section includes
examples of syntax for defining keys that perform EVE commands, insert
text, and set certain parameters.

3. End your command file with the following two lines:

endprocedure;
tpu$local_init;

6-28 Editing Text Files: Using EVE

4. Edit the command file using EVE. At the “Command:” prompt, type EXTEND
TPU *, as shown, and press Return.

define.key ("eve_set_left_margin(8)", key_name(’g’, shift_key));
define.key ("eve_set_right_margin(79)", key_name(’r’, shift.key)):

define_key ("eve_buffer(’’)",f17,"buffer” ,evesx_user-keys);
set{margins,current_buffer,1,72);

endprocedure;

tpuslocal_init;

[End of file)

Command: EXTEND TRU *_

5. At this point, a series of messages flashes across the bottom of your screen.
If no serious errors are found, the message EVE extended. is displayed. You
can see the list of messages displayed by typing EVE BUFFER MESSAGES
at the “Command:” prompt. If the attempt to extend EVE was unsuccessful
because of one or more errors, edit your command file to correct the errors
and redo this step.

If you are ready to proceed with the next step, make sure that you are in the
buffer with your command file. If your command file is not displayed on the
terminal, press the DO key and type the command BUFFER command-file-
name (for example, BUFFER EVE KEYDEFS if your command file is named
EVE-KEYDEFS.TPU).

6. Press the DO key, and give the command SAVE section-file-name; it is not
necessary to specify a file extension, because the default file extension
(TPU$SECTION) is automatically supplied. For example, if you wanted your
section file to be named [THOMASIEVE-KEYDEFS.TPU$SECTION, you type
the command as shown, and then press Return:

define_key (“eve_set.left_margin(8)", key_name(’g’, shift_key)):
define_key (“eve.set_right._margin(79)", key_name(’r’, shift_key)):
define_key ("eve_buffer(’’')" , f17,"buffer” evesx_user.keys);
set(margins,current_buffer,1,72);

endprocedure;

tpuslocal_init;

[End of file]

Euffer: EYWE-KEVYLEFS. TRU

Command: SAVE [THOMAS)EVE-KEYDEFS_
EVE extended.

Exit from EVE by pressing the DO key, typing EXIT, and pressing Return.

Now, to use the key definitions that you have created, include the following
lines in your login command file:
$ ED*IT :== EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS

If you want to use the keys that you defined in your command file with an EDT-
like keyboard, do the following:

Editing Text Files: Using EVE 6-29

1. Create the command and section files as described in the previous example.

2. Create an initialization file that includes only the following line:
SET KEYPAD EDT

3. If the section and initialization files are named
[THOMAS]EVE-KEYDEFS.TPU$SECTION and [THOMAS]EVE-INIT.EVE,
respectively, then include the following line in your login command file:

EDIT :== EDIT /TPU /SECTION=[THOMAS]EVE-KEYDEFS /INIT=[THOMAS]}EVE~-INIT

4. After you execute your login command file, you use the key definitions
specified in your section file and the EDT-like keyboard specified in your
initialization file when you use the EVE editor (by using the command EDIT).

NOTE: If you want to use this same editing environment by
default whenever you send or reply to mail, then you should also
include the following two lines in your login command file:

$ assign callable_tpu mail$edit:
$ mail :== mail /edit=(send, reply)

6.6.4.3 Nondefinable Keys
You cannot define any of the following keys:

F1 through Fe
COMPOSE CHARACTER
CTRL (by itself)
Return or CTRL/M
BREAK

ESCAPE or CTRL/[
LOCK or CAPS LOCK
NO SCROLL

SET-UP

SHIFT

Also, EVE does not let you define typing keys on the main keyboard (except in
combination with the GOLD key), a key defined as DO if it is the only key defined
as DO, or the key currently set as GOLD, if any.

Digital recommends that you do not define the following keys and control
keys. Some of these control keys cannot be defined unless you set terminal
characteristics accordingly.

DELETE or <Xl (which EVE defines as DELETE)

HELP or on VT100 terminals, PF2

CTRUB (which EVE defines as RECALL)

CTRL/C

CTRL/O

CTRL/Q

CTRLR (which EVE defines as REMEMBER, to end a learn sequence)
CTRL/S

CTRUT

6-30 Editing Text Files: Using EVE

CTRWU (which EVE defines as ERASE START OF LINE)
CTRWV (which EVE defines as QUOTE)

CTRW/X

CTRLY

If you redefine CTRL/B or CTRL/R, you should define other keys as RECALL and
REMEMBER, because those commands can only be executed by a key press.

6.6.4.4 Sample EVE/TPU Command File

The following example shows an EVE command file that you can use or adapt to
meet your needs. To use the key definitions and margin settings in this file, you
should follow the steps described in Section 6.6.4.2.

Note the following syntax rules for defining a key in a command file;

Use the DEFINE_KEY command to begin the key definition.
The key definition begins with an open parenthesis.

The first part of the key definition uses EVE and TPU commands to describe
the text to be inserted and/or the actions to be taken; this part of the key
definition must be enclosed in quotation marks. To use an EVE command,
use the syntax EVE_command_name (for example, EVE_OTHER_WINDOW).
To insert text, use the COPY_TEXT command, with the text enclosed in
parentheses and single quotation marks, as shown throughout the sample
command file. If you use more than one command in this section, separate
commands using a semicolon.

The second part of the key definition specifies the key that is to be defined.

End the key definition with a close parenthesis and a semicolon.

Note the syntax that you use for describing a key sequence with the DEFINE_
KEY statement in a command file, as in this example for specifying the sequence
PF1-M:

KEY_NAME(U’, SHIFT_KEY)

procedure tpu$local_init 1]
set (shift key, pfl); @

define_key ("copy_text (' International Development Organization’)", ctrl n key): 9
define_key ("eve_return; eve_return; copy_text (’<p>’)", ctrl p_key);
define_key ("eve_return; eve_return; copy_text (/<list>(unnumbered)’);" + (5]

"eve_return; copy_text(’<le>’)", key_name('m’, shift_key));

define _key ("eve_return; eve_return; copy_text(’<endlist>’); eve_return;" + @

"copy_text (’/<p>’); eve_return; eve_return",
key name(’n’, shift key));

define key
define_ key
define_key
define_key
define key
define key
define key
define_key

define_key
define key

define key
define key

Editing Text Files: Using EVE 6-31

("eve_two_windows", ctrl d_key); 7]

("eve_other window", ctrl a key); @
("eve_one_window", key_name(’o’, shift_key)); o
("eve_fill paragraph", ctrl_f key); (1)
("eve_lowercase_word", key name(’l’, shift_key)); ®
("eve_uppercase_word", key_name(’u’, shift_key)); @
("eve_quit", key_name(’q’, shift_key)):; @
("eve_exit", ctrl_z_key);

("eve_move_left; eve_move_left; eve_select; eve_move_right;" + ®
"eve_remove; eve_move_right; eve_insert_here", ctrl_e_key);

("eve_set_left margin(8)", key_name(’g’, shift_key)):; @
("eve_set_right_margin(79)", key name(’r’, shift_key)); 0
("eve_buffexr(’’)", £17, "", eve$x user_keys); ®

set (margins, current_buffer,1,72); @

endprocedure;
tpus$local_init; [21)

In this example, line 1 is the text with which you should begin this command
file. Line 2 defines PF1 (also known as the GOLD key) as the key used in a 2-
key sequence. You should define the shift key before you make any other key
definitions in your command file.

The following table lists the keys that are defined by the command file in the
previous example:

Line Key or

Number Sequence Action Taken When Key or Sequence is Pressed

3 CTRLN The text International Development Organization is inserted in the
editing buffer.

4 CTRL/P Two carriage returns and the text <P> are inserted in the current
editing buffer.

5 PF1-M Two carriage returns and the following text are inserted in your

A LTRS B B e
€uLLLy VUG,

<list> (unnumbered)

<le>

6-32 Editing Text Files: Using EVE

Line Key or

Number Sequence Action Taken When Key or Sequence is Pressed

6 PF1-N Two carriage returns, the following text, and then two more
carriage returns are inserted in your editing buffer:
<endlist>
<p>

7 CTRL/D A new window is created on your terminal screen.

8 CTRL/A The cursor moves from the current window to the other window.

9 PF1-O A single window is displayed on the terminal, using the current
buffer.

10 CTRLUF The current paragraph is filled.

11 PF1-L The current word is set to all lowercase.

12 PF1-U The current word is set to all uppercase.

13 CTRL/Q You exit from the file and your changes are not saved.

14 CTRL/Z The file is written and you exit from EVE.

15 CTRL/E The two characters that immediately precede the cursor are
transposed. For example, to change teh to the with a single
keystroke, you could use this CTRL/E key definition.

16 PF1-G The left margin is set to 8. (The default left margin setting is set
to 1 in a subsequent statement in this command file.)

17 PF1-R The right margin is set to 79. (The default right margin setting is
set to 72 in a subsequent statement in this command file.)

18 F17 EVE prompts you for a buffer name. When you type a buffer

name and press Return, EVE switches to that buffer. (Note that
this DEFINE_KEY statement uses a third and fourth section that
had not previously been used in this example. These parts of the
DEFINE_KEY statement are optional, but they must be used in
this example as shown.)

The final lines of the sample command file (line numbers 19 through 21) set the
default left and right margins for any editing buffer to 1 and 72, and provide the
closing context.

6.7 Using DCL Within EVE

You can execute a DCL command from within EVE, or you can use a subprocess
to switch between the DCL command level and an EVE editing session quickly.

Editing Text Files: Using EVE 6-33

6.7.1 Executing a DCL Command

To enter a DCL command from within EVE, enter the EVE command DCL with
the DCL command you want to execute, and press Return. The message Creating
DCL subprocess ... appears in the message window.

6.7.2 Creating a Subprocess

You can create a subprocess to switch between an EVE editing session and DCL
command level without terminating your editing session. To create a subprocess,
enter the SPAWN command. EVE suspends the current editing session and
connects your terminal to a new VMS subprocess. The DCL prompt ($) appears
on your terminal screen.

NOTE: The SPAWN and ATTACH commands are sup-
ported on DECwindows only if you invoke EVE with the
/DISPLAY=CHARACTER_CELL qualifier (which is the default).

The most common reasons to spawn a subprocess are to invoke the Mail Utility
and to run screen-oriented programs, although your subprocess can invoke any
VMS utility or execute any DCL command.

To return to your editing session, log out of the subprocess by entering the DCL
command LOGOUT. EVE resumes the editing session, and the cursor appears in
the location it occupied before you spawned the subprocess.

6.8 Converting from EDT to EVE

If you are accustomed to the EDT editor, you can customize EVE to work in
similar ways by using a section file or an initialization file (or both), or by using
VAXTPU procedures.

Typically, you save key definitions, learn sequences, and other extensions in a
section file (created with the SAVE EXTENDED EVE command), and use an
EVE initialization file to set editing preferences or private defaults, such as
margins and tabs, that are not saved in the section file. The following are hints
Oil COLVErting from LU L0 BV L.

Use the SET KEYPAD EDT Command

The SET KEYPAD EDT command defines several keys to emulate EDT. You can
put the command in your EVE initialization file, or save the keypad setting in
your section file.

6-34 Editing Text Files: Using EVE

Define Keys for EVE Commands

Use DEFINE KEY commands to define keys that are not otherwise defined by
SET KEYPAD EDT. Put the key-definition commands in your initialization file, or
save the definitions in your section file. For example, the following sets of EDT
and EVE key definitions are equivalent:

e InEDT:

DEF KEY gold
DEF KEY gold
DEF KEY gold
DEF KEY gold AS T"iInteroffice Memo"Z."
DEF KEY gold 10 AS "ext find=?.."

DEF KEY 7 AS "501.v

DEF KEY gold 9 AS ‘'"cutsr paste."

DEF KEY cont n AS "ext quit."

DEF KEY func 34 AS ‘"“shl."

e In EVE:

DEF KEY= gold-b show buffers

DEF KEY= gold-1 lowercase word

DEF KEY= gold-u uppercase word

DEF KEY= gold-e2 tpu eve$insert_text ("Interoffice Memo")
DEF KEY= gold-pf2 buffer

DEF KEY= kp7 tpu move_vertical (+50)

DEF KEY= gold-kp9 store text

DEF KEY= ctrl/n quit

DEF KEY= f£20 shift right 8

AS ‘'"ext show buffer."
AS "chglw."
AS "chguw."

HNGS D

Note the differences between EDT and EVE in some key names, as well as
differences in command names. For more information about key names, see
Section 6.4.3.

Set Bound Cursor Motion

Put the SET CURSOR BOUND command in your EVE initialization file to enable
an EDT-style bound cursor that follows the shape or flow of your text. By default,
EVE uses a free cursor, which can move anywhere in the buffer regardless of
whether text is already there.

Set the Right Margin for Wrapping Text

Put the SET RIGHT MARGIN command in your EVE initialization file to set a
wrap limit for entering text and for FILL commands. For example, the following
EDT and EVE commands are equivalent:

e InEDT:
SET WRAP 70

Editing Text Files: Using EVE 6-35

e In EVE:
SET RIGHT MARGIN 70

(The EVE command SET WRAP corresponds to the EDT command SET
NOTRUNCATE.) '

Set Scroll Margins for Moving the Cursor

Put the SET SCROLL MARGINS command in your EVE initialization file to set
distances for scrolling to begin automatically as you move the cursor up or down.
For example, with a 24-line terminal screen (21-line main window), the following
EDT and EVE commands are equivalent:

e InEDT:
SET CURSOR 5:15
¢ In EVE:

SET SCROLL MARGINS 5 6

Note that EVE scroll margins are measured from the top and bottom respectively,
whereas in EDT, both are measured from the top. You can specify numbers of
lines or percentages of the window size. Also, the size of the EVE main window
depends on your terminal settings. For example, on a workstation, the EVE main
window may be longer than 21 lines.

Convert EDT Macros to VAXTPU Procedures

Use VAXTPU procedures in place of EDT macros. Create a buffer containing
the procedures and then compile the procedures with EXTEND commands, or
put the procedures in a VAXTPU command file and then invoke EVE with the
/COMMAND qualifier. In either case, you can save the compiled procedures in
your section file. The following examples show a macro from an EDT startup file
translated into a VAXTPU procedure. Each creates a new command, WIDEN,
which sets the display to 132 columns and sets the right margin to 120.

e EDT macro:

TIND ~widei
INSERT; SET SCREEN 132
INSERT; SET WRAP 120
FIND =main.

¢ VAXTPU procedure:

PROCEDURE eve_widen;
EVE_SET WIDTH (132);
EVE_SET_RIGHT MARGIN (120);
ENDPROCEDURE;

6-36 Editing Text Files: Using EVE

To execute the macro or procedure, do the following commands:

e InEDT:
* DEFINE MACRO widen
* WIDEN

e InEVE:

Command: EXTEND EVE widen
Command: WIDEN

Alternatively, use the learn command to bind the corresponding EVE commands
to a single key; you can then save the key definition in your section file. Another
method is to put the corresponding EVE commands in an initialization file that
you can use during an editing session (see the description of the @ command).

Convert EDT Nokeypad Statements to VAXTPU Procedures

EDT macros and key definitions that use nokeypad specifiers can usually be
converted into VAXTPU procedures or into LEARN sequences. The following ex-
amples show an EDT key definition using nokeypad mode and the corresponding
VAXTPU procedure and key definition. In each case, you define COMMA on the
numeric keypad to transpose or swap the current and previous character. Note
that —C in EDT nokeypad statements can be translated as MOVE_HORIZONTAL
(-1) in VAXTPU procedures.

e In EDT:
DEFINE KEY 19 AS "-c dlc +c undec."
¢ In VAXTPU:

PROCEDURE user_transpose
LOCAL swap_this;

swap_this := ERASE CHARACTER (1);

MOVE_HORIZONTAL (-1);
EVE$INSERT TEXT (swap_this);
RETURN (TRUE);

ENDPROCEDURE;

EVESDEFINE_KEY ("user_transpose", COMMA, , EVE$X USER_KEYS);

Use the WPS Keypad Ruler Key to Adjust Tab Stops |

Setting the EDT keypad does not define keys for EDT-style tab adjustment.
However, you can get similar effects by defining a key for the WPS keypad Ruler
key (GOLD-R) and then using the ruler to add or delete tab stops.

Editing Text Files: UsingEVE 6-37

For example, the following command defines F20 as the WPS Ruler key (without
having to enable the WPS keypad):

Command: DEFINE KEY= F20 WPS GOLD-R

Then, to add or delete tab stops, do the following:

1.

5.

Press whatever key you have defined as the Ruler key.

EVE displays a ruler at the bottom of the current window (just above the
status line for the window). The cursor appears in the ruler. Tab stops are
marked with a 7.

Put the cursor where you want to add or delete a tab stop. For example, you
can press the left and right arrow keys to move to a particular column in the
ruler, or press the TAB key to move to the next tab stop (7') in the ruler.

Type a T or ¢ at that location to set the tab stop or, if there is already a tab
there, to delete it. The new tab stops are immediately applied to the buffer
you were editing.

Repeat steps 2 and 3 to add or delete other tab stops.

To exit from the ruler and resume editing, press Return or GOLD-RETURN.

6.9 EVE Command Summary

Section 6.9 shows EVE commands and the keys that are predefined by default for
those commands.

Table 6-3: EVE Commands and Default Predefined Keys

Command Key What It Does

BOTTOM GOLD-|

BUFFER None

CAPITALIZE WORD None

Moves the cursor to the end of the current
buffer.

Puts a specified buffer in the current window
and moves the cursor to the last place it
occupied in the buffer. (Buffers are storage
areas that exist only during an editing
session.) If the specified buffer does not
exist, creates a new buffer and moves the
cursor to the start of the buffer.

Capitalizes a single word or each word in the
text highlighted by FIND or SELECT.

(continued on next page)

6-38 Editing Text Files: Using EVE

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command Key What It Does

CENTER LINE None Centers the current line between the left and
right margins. The cursor moves with the
line, remaining on the same character as the
line moves.

CHANGE DIRECTION None Changes the direction of the current buffer.
The direction of the buffer is shown in the
status line.

CHANGE MODE CTRL/A. Also, F14 Changes the current editing mode as

on VT300-series and displayed on the highlighted status line. In

VT200-series terminals; insert mode, EVE inserts text at the current

Enter on VT'100-series character position, moving existing text to

terminals accommodate the insertion. In overstrike
mode, EVE overwrites text at the current
position.

COPY GOLD-Remove Copies text that was marked with SELECT

or STORE TEXT or FIND, putting it in the Insert Here buffer.
Text that is copied is not removed from its
original position.

CuT Same as REMOVE

DELETE <X] or Delete Erases the character to the left of the cursor.
In insert mode, the rest of the line moves left
one character to close the space. In overstrike
mode, the erased character is replaced by
a space. At the start of a line, DELETE
erases the carriage return for the previous
line (regardless of mode) and the current line
moves up.

DELETE BUFFER None Deletes a buffer you specify by name.

DELETE WINDOW None Deletes the window the cursor is in, if you are
using more than one window.

END OF LINE CTRL/E or GOLD-— Moves the cursor to the end of the current
line.

ENLARGE WINDOW None Enlarges the window the cursor is in by

a specified number of lines. For example,
ENLARGE WINDOW 5 enlarges the window
by five lines. The adjacent window shrinks
accordingly.

(continued on next page)

Editing Text Files: Using EVE 6-39

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command

Key

What It Does

ERASE CHARACTER

ERASE LINE

ERASE PREVIOUS
WORD

ERASE START OF LINE

ERASE WORD

FILL

FILL PARAGRAPH

FILL RANGE

None

None

None

CTRL/U

CTRL/J. Also, F13

on VT300-series

and VT200-series
terminals; COMMA
(on the keypad) on
VT100-series terminals

None

None

None

Erases the character the cursor is on. In
insert mode, the rest of the line moves to

the left one character to close the space.

In overstrike mode, the erased character is
replaced by a space. If the cursor is at the
end of the line, the carriage return is erased—
regardless of the mode—and the next line
moves up.

Erases from the current character to the end
of the line, appending the next line to the end
of the current line. If the cursor is at the end
of the line, only the carriage return is erased
and the next line moves up.

Erases the previous word or the word the
cursor is on. If the cursor is between words or
on the first character of a word, the previous
word is erased. If the cursor is in the middle
of a word, all of that word is erased (same as
ERASE WORD). If the cursor is at the start
of a line, the carriage return at the end of the
previous line is erased and the current line
moves up.

Erases characters left of the cursor to the
start of the line.

Erases the current word or, if the cursor

is between words, erases the next word. If

the cursor is at the end of the line, only the
carriage return is erased and the next line

moves up.

Reformats the current paragraph, select
range, or found range, according to the
margins of the buffer, so the maximum
number of words fits on a line.

Reformats the paragraph the cursor is in,
according to the margins set for the buffer.

Reformats the current select range or found
range, according to the current margin
settings.

(continued on next page)

640 Editing Text Files: Using EVE

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command Key What It Does

FIND Find on VT300-series Searches the current buffer for the text string

and VT200-series you specify and highlights the found text. The
terminals text that is highlighted is called the found
range.

FIND NEXT Find-Find on VT300- Searches for the string of text you last

series and VT200-series specified with the FIND, REPLACE, or
terminals WILDCARD FIND command.

FIND SELECTED Find-Insert Here on Searches for a string of text you have selected,

VT300-series and rather than for a typed string.
VT200-series terminals

FORWARD None Sets the direction of the current buffer to
forward (that is, to the right and down). The
direction of the buffer is shown in the status
line. FORWARD is the default setting when
you enter EVE.

GET FILE None Puts the specified file into the current window

or OPEN and puts the cursor at the beginning of the
buffer. If the file does not exist, EVE puts an
empty buffer in the current window.

GO TO None Returns the cursor to the location labeled by
the MARK command. If the labeled location
is found in another buffer, EVE moves the
cursor to the other buffer and puts that buffer
into the current window.

INCLUDE FILE None Inserts the contents of the specified file into
the current buffer at the line above the cursor
location.

INSERT HERE Insert Here on the Inserts the text you copied or removed.

or PASTE minikeypad on VT300-

series and VT200-series
terminals; KP9 on
VT100-series terminals

INSERT PAGE BREAK CTRL/L Inserts a form-feed character at the current
position to mark the beginning of a new page.
A page break appears as a small double F
(Fi“) and is always on a line by itself.

LINE None Moves the cursor to the beginning of the

specified line number in the current buffer.

(continued on next page)

Editing Text Files: Using EVE 641

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command Key What It Does

LOWERCASE WORD None Changes the current word, select range, or
found range to lowercase.

MARK None Puts an invisible mark at the current cursor
location. The mark exists for the rest of an
editing session or until you change it but is
not saved when you exit.

MOVE BY LINE F12 on VT300-series In forward direction: moves the cursor to
and VT200-series the end of the current line or, if the cursor
terminals; MINUS is already at the end of a line, to the end of
(on the keypad) on the next line. In reverse direction: moves the
VT100-series cursor to the beginning of the current line or,

if the cursor is already at the beginning of a
line, to the beginning of the previous line.

MOVE BY PAGE None Moves the cursor to the next or previous page
break (form feed), depending on the current
direction. If there is no page break in the
current direction, the cursor moves to the
bottom or top of the buffer.

MOVE BY WORD None In forward direction: moves the cursor to the
beginning of the next word or, if the cursor is
already at the end of a line, to the beginning
of the next line. In reverse direction: moves
the cursor to the beginning of the previous
word or, if the cursor is already at the
beginning of a line, to the end of the previous
line.

MOVE DOWN 1. Also, KP2 on VT100- Moves the cursor down one line.

series terminals

MOVE LEFT +. Also, KP1 on Moves the cursor one character or column to
VT100-series terminals the left.

MOVE RIGHT —. Also, KP3 on Moves the cursor one character or column to
VT100-series terminals the right.

MOVE UP 1. Also, KP5 on VT100- Moves the cursor up one line.
series terminals

NEW None Creates a new buffer, putting it in the current

EVE window, and moves the cursor to the top
of the new buffer. The new buffer is named
MAIN. If a buffer named MAIN already
exists, EVE prompts you for a buffer name.

(continued on next page)

6-42 Editing Text Files: Using EVE

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command Key What It Does
NEXT BUFFER None Puts your next buffer (if there is one) into the
current window, returning the cursor to your
last position in that buffer. This lets you move
v between buffers without typing buffer names.
NEXT SCREEN E6 on VT300-series and Scrolls forward in the current buffer by the

VT200-series terminals; number of lines in the current window minus
KPO on VT100-series one, For example, if the current window is

NEXT WINDOW
ONE WINDOW

OPEN
OPEN SELECTED

OTHER WINDOW

PAGINATE

terminals

None

None

GOLD—-Next Screen

None

12 lines long, the NEXT SCREEN command
scrolls the cursor forward 11 lines.

Same as OTHER WINDOW

Restores the window the cursor is in as a
single, large window. EVE deletes all other
windows from the screen. However, the
buffers associated with those windows are not
deleted.

Same as GET FILE

Opens a file whose name you have selected or
found. This command is the same as using
the GET FILE or OPEN command without
having to type the file name.

Moves the cursor to the next window on your
screen, if there is one. The cursor appears in
the last location it occupied in that window.

Inserts a “soft” page break for a 54-line page.
A soft page break appears as a form feed
followed by the null character — (Eﬁ, li).

When the PAGINATE command is entered,
EVE moves back to the previous page break
(if any) then checks ahead for page breaks
within the next 54 lines. If any soft breaks
are found within those 54 lines, EVE removes
them. EVE then moves down 54 lines, inserts
a soft break, and puts the cursor on the next
line. The soft break is inserted on a line by
itself. If a hard page break is found within
the 54 lines, EVE stops on the line after the
hard break, in case you want to erase the
break.

(continued on next page)

Table 6-3 (Cont.):

Editing Text Files: Using EVE 6-43

EVE Commands and Default Predefined Keys

Command

Key

What It Does

PREVIOUS SCREEN

PREVIOUS WINDOW

QUOTE

REMOVE
or CUT

RESET

RESTORE

Prev Screen on VT300-
series and VT200-series
terminals; PERIOD

(on the keypad) on
VT100-series terminals

None
CTRL/NV

Remove on the
minikeypad on VT200-
series and VT300-series
terminals; KP8 on
VT100-series terminals

GOLD-Select

GOLD—Insert Here

RESTORE CHARACTER None

Scrolls backward in the current buffer by the
number of lines in the current window minus
one. For example, if the current window is 12
lines long, the PREVIOUS SCREEN command
scrolls the cursor backward 11 lines.

Puts the cursor in the previous (or other)
window.

Lets you insert nonprinting characters or
control codes.

Removes the text that was marked with
SELECT or highlighted by FIND, and places
it in the Insert Here buffer.

Cancels any of the following and resets the
direction of the buffer to forward:

e Highlighting of a select or found range

* A press of the GOLD key (or GOLD—
number combination for a repeat count)

e An incomplete or recalled command line,
or Choices buffer display

e The output of SHOW, SHOW DEFAULTS
BUFFER, SHOW SUMMARY, or SHOW
WILDCARDS, thereby returning you to
the buffer you were working in

Reinserts, at the current cursor position,

the word, or line that you erased most
recently with an EVE command or editing key.
RESTORE does not restore single characters.

Reinserts, at the current cursor position,

the character you have erased most recently
with an EVE command or editing key. In
overstrike mode, the restored character
replaces the character the cursor is on. In
insert mode, the restored character is inserted
at the cursor position and existing text moves
to accommodate it.

(continued on next page)

6-44 Editing Text Files: Using EVE

Table 6-3 (Cont.):

EVE Commands and Default Predefined Keys

Command

Key

What It Does

RESTORE LINE

RESTORE SELECTION

RESTORE WORD

REVERSE

SAVE FILE

SAVE FILE AS

SELECT

None

None

GOLD-F13 on VT200-
series and VT300-series
terminals; none on
VT-100 series terminals

None

None

None

Select on VT200-series
and VT300-series
terminals; KP7 on
VT100-series terminals

Reinserts, at the current cursor position, the
line that you have erased most recently with
an EVE command or editing key.

Reinserts the text erased with a pending
delete operation.

Reinserts, at the current cursor position, the
word that you have erased most recently with
an EVE command or editing key.

Sets the direction of the current buffer to
reverse, that is, to the left and up. The
direction of the buffer is shown in the status
line.

Writes the contents of the current buffer to
the file associated with the buffer without
ending the editing session. If you do not
specify a file name with the SAVE FILE
command, EVE prompts you for an output file
specification. Similar to WRITE FILE.

Writes the contents of the current buffer to
the file you specify without ending the editing
session. Thus, if you are editing a file named
FIRST.DAT you can save it as SECOND.TXT.
This command does not change the name

of the buffer. It does, however, associate

the buffer with the file you name so any
subsequent SAVE FILE or WRITE FILE
commands or an EXIT command write the
buffer to the file you named. This command
requires you to supply a file specification.

Marks text (highlighting it in reverse video)
from the initial cursor location to wherever
you move the cursor. The text that is
highlighted is called the select range.

To cancel the selection, enter the SELECT
command again or use RESET.

(continued on next page)

Editing Text Files: Using EVE 6-45

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys
Command Key What It Does

SELECT ALL None Marks all text (highlighting it in reverse
video) in the current buffer regardless of the
cursor position. The text that is highlighted
is called the select range. To cancel the
selection, enter the SELECT command or
use RESET. Pending delete is temporarily
disabled when the SELECT ALL command is
used to avoid accidentally erasing all of the
buffer.

SET BUFFER None Lets you specify the editing status of the
buffer: whether the buffer can be modified or
can be written to a file when you exit from
EVE.

SET CURSOR BOUND None Makes the cursor follow the flow of text. The
cursor cannot move into an unused portion of
the buffer. Similar to cursor behavior in EDT,
WPS, and other editors.

SET CURSOR FREE None Default setting. Allows the cursor to be
put anywhere in the buffer and text can be
entered there.

SET FIND None Default setting. Sets FIND and WILDCARD

NOWHITESPACE FIND commands to match tabs and spaces
exactly as you specify in the search string,
and to search for strings that are entirely on
one line.

SET FIND WHITESPACE None Sets FIND and WILDCARD FIND commands
to treat spaces, tabs, and up to one line break
as “white space” so you can search for strings
of two or more words regardless of how they
are separated.

SET LEFT MARGIN None Sets the left margin in the current buffer. The
left margin must be greater than 0 but less
than the right margin. By default, the left
margin is 1 (leftmost column).

SET NOPENDING None Default setting. Disables deletion of selected

DELETE text when you use DELETE or type new text.
If you select text in the buffer, typing new text
adds characters to the select range and using
DELETE erases only the character to the left
of the cursor.

(continued on next page)

6-46 Editing Text Files: Using EVE

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command Key What It Does

SET NOWRAP None Disables word wrapping at the right margin

SET PENDING DELETE None

SET RIGHT MARGIN None
SET PARAGRAPH None
INDENT

SET TABS AT None
SET TABS EVERY None
SET TABS INSERT None

of the buffer. You must start new lines
by pressing Return or by using the FILL
command.

Enables pending delete, which lets you
quickly erase blocks of text. First, enable
pending delete, then use the SELECT
command to choose the text you want to
erase. Erase the text by pressing the Delete
key (or any other typing key). To reinsert
what you deleted, move the cursor where you
want the text to be and enter the RESTORE
SELECTION command. The default is SET
NOPENDING DELETE.

Sets the right margin for the current buffer.
The right margin must be greater than the
left margin, By default, the right margin

is one less than the width. The width is
typically 80, so the default margin is typically
79.

Specifies the number of spaces to be added to
or subtracted from the first line of paragraphs
you create or reformat. The default is 0 (no
indent).

Sets tab stops at the columns that you specify.
The column numbers must be in ascending
order and separated by spaces. By default,
tab stops are set every eight columns, The
command does not affect the hardware tab
settings of your terminal.

Sets tab stops at the specified interval. By
default, tab stops are set every eight columns.
The command does not affect the hardware
tab settings of your terminal.

Default setting. Changes the tab mode so that
EVE inserts a tab character at the current
column when you press the Tab key. The
cursor and text move to the next tab stop.

(continued on next page)

Editing Text Files: UsingEVE 647

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys
Command Key What It Does

SET TABS SPACES None Changes the tab mode to insert an
appropriate number of spaces, rather than
a tab character, when the Tab key is pressed.
Previously existing tab characters are not
affected.

SET TABS MOVEMENT None Changes the tab mode so the Tab key becomes
a cursor-movement key. Pressing the Tab key
moves the cursor to the next tab stop but does
not insert a tab character.

SET TABS VISIBLE None Displays a tab character as a visible character
on the screen, appearing as a small Hl‘
(horizontal tab).

SET TABS INVISIBLE None Default setting. Makes a tab character
invisible on the screen, appearing as white
space.

SET WILDCARD None Enables ULTRIX patterns for WILDCARD

ULTRIX FIND.

SET WILDCARD VMS None Default setting. Enables VMS patterns for
WILDCARD FIND.

SET WIDTH None Sets the width of lines displayed on the

screen. Specify width as a positive integer.
By default, the screen width is your terminal
setting. (It is typically 80 columns.) If the
width is set greater than 80, EVE sets the
terminal to 132-column mode for the current
editing session. When you exit from EVE, the
terminal is restored to the default setting.
Setting the width changes the display of text
in all windows.

SET WRAP None Default setting. Enables word wrapping at
the right margin of the buffer. EVE starts'
new lines without your pressing netum or
using the FILL command.

SHIFT LEFT None Moves the window the cursor is in to the left
a specified number of columns. The SHIFT
LEFT command can be used only to reverse
the effect of the SHIFT RIGHT command.

(continued on next page)

6-48 Editing Text Files: Using EVE

Table 6-3 (Cont.):

EVE Commands and Default Predefined Keys

Command

Key

What It Does

SHIFT RIGHT

SHRINK WINDOW

SHOW

SHOW BUFFERS

SHOW SYSTEM
BUFFERS

SHOW WILDCARDS

SPLIT WINDOW

START OF LINE

STORE TEXT
TOP

None

None

None

None

None

None

None

CTRL/H. Also,
GOLD—«

GOLD-1

Moves the window the cursor is in to the right
a specified number of columns, allowing you
to view columns of characters that do not
currently appear on the terminal screen.

Shrinks the window the cursor is in by a
specified number of lines. For example,
SHRINK WINDOW 5 shrinks the window
by five lines. The adjacent window expands
accordingly.

Displays information about the buffers you
have created during the editing session.

If more than one buffer is active in your
editing session, the SHOW command displays
information about the buffer you are currently
editing. For information about the other
active buffers, press the Do key. To resume
editing, press any other key.

Lists the buffers you have created during

an editing session. You can move the cursor
through the list and specify a particular buffer
for viewing by using the Select key.

Lists the system buffers created by EVE, such
as the Message buffer, Help buffer, Insert
Here buffer, and $RESTORES$ buffer. You can
move the cursor through the list and specify a
buffer for viewing by using the Select key.

Lists the wildcard patterns you can use with
WILDCARD FIND, either VMS or ULTRIX.

Splits the window the cursor is in, forming
two smaller windows. You can divide

the window into more than two parts by
specifying a number with the command.
For example, SPLIT WINDOW 3 splits the
window into three windows.

Moves the cursor to the beginning of the
current line.

Same as COPY.

Moves the cursor to the beginning of the
current buffer (upper left corner).

(continued on next page)

Editing Text Files: Using EVE 6-49

Table 6-3 (Cont.): EVE Commands and Default Predefined Keys

Command Key What It Does

TWO WINDOWS None Creates two windows; equivalent to SPLIT
WINDOW 2 command.

UPPERCASE WORD None Changes the current word, select range, or
found range to uppercase.

WILDCARD FIND None Searches for a pattern of text, using either
VMS or ULTRIX wildcards, depending on
your setting.

WRITE FILE None Writes the contents of the current buffer to

the file associated with the buffer or to the
file you specify on the command line without
ending the editing session. If the current
buffer does not have a file specification
associated with it, EVE prompts you for

an output file specification.

Chapter 7
Editing Text Files: Using EDT

EDT is an interactive text editor. With EDT you can create a new file, insert text
into it, and modify that text. You can also edit text in existing files.

EDT provides both line and keypad editing. In line editing, you type the editing
command and the range of text you want the command to affect. In keypad
editing, you move the cursor directly to the text you want to change and press
keypad keys to enter the editing commands.

EDT provides many predefined keys that let you enter commands quickly, as
described in Section 7.2. In addition, you can define your own keys for EDT, as
described in Section 7.7.

7.1 Invoking and Ending an EDT Session

An editing session begins when you invoke EDT with the DCL command EDIT. In
an editing session, you can create and edit a new file, or you can edit an existing
file. The session ends when you enter the EXIT or QUIT command.

7.1.1 Invoking EDT

To invoke EDT, type the DCL command EDIT and specify as a parameter the
file you want to edit. If the specified file already exists, EDT saves the existing
versions and places a copy of the latest version in your buffer. (A buffer is the
temporary storage area in which vou edit text.) The existing versions of the file
remain unchanged. For example, to edit an existing file named MEMO.TXT,
enter the following command line:

$ EDIT MEMO.TXT
Once the weather turns cold, mice may find a crack in your

foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]
The first few lines of the latest version of the file appear on the screen. The

cursor is positioned at the top of the screen, and EDT is ready to receive a
keypad-editing command.

7-2 Editing Text Files: Using EDT

If you invoke EDT to create a file, the following message appears:
$ EDIT NEWFILE.TXT

[EOB]

Input file does not exist

Only the EDT message and the end-of-buffer symbol, [EOB], appear on the
screen, and EDT is ready to receive keypad-editing commands. See Section 7.2.1
for a description of EDT line commands.

NOTE: In the previous examples, you enter EDT in keypad

(change) mode because a startup command file (SYS$LOGIN:EDTINIL.EDT)
containing the SET MODE CHANGE command has been

executed. If this command is not executed in an EDT startup

command file, you will enter EDT in line mode.

7.1.2 Ending an EDT Session

To terminate an EDT session, press CTRL/Z. This puts you into line-editing
mode. You can type EXIT or QUIT at the asterisk (*) prompt. QUIT terminates
the editing session and does not save your edits. EXIT saves your edits in a new
version of the file. (Note that the existing versions of a file remain unchanged
regardless of how the editing session is terminated.)

To save your edited text, use the line-editing command EXIT to terminate EDT.
When you enter the EXIT command, EDT creates an output file containing the
edited version of the input file. By default, the output file has the same name and
type as the input file, with the version number incremented by 1.

For example, if you enter the EXIT command after editing a file named
MEMO.TXT;3, EDT creates a higher version named MEMO.TXT;4 as follows:

*EXIT
DISK1: [USER]MEMO.TXT;4 2 lines
$

To override the default output file name, enter the EXIT command with a new file
specification as the parameter. For example, if you end the same editing session
with EXIT MICE.TXT, EDT names the output file MICE.TXT;1, provided no other
file named MICE.TXT exists.

*EXIT MICE.TXT
DISK1: [USER]MICE.TXT;1l 2 lines
$

To terminate EDT without saving your edits, use the line-editing command QUIT.
All edits you have made to the text are ignored, and no output file is created.

*QUIT
$

Editing Text Files: Using EDT 7-3

The QUIT command is a useful way to terminate EDT when you have opened a
file by mistake. No new file version is created.

7.2 Entering EDT Commands

Enter most keypad-editing commands by pressing a keypad key. Enter line-
editing commands by typing them after the line-editing prompt and pressing
RETURN.

7.2.1 Entering EDT Line Commands

EDT prompts for line-editing commands with an asterisk. Line-editing commands
usually operate on a range of one or more lines of text that you specify as a
parameter for the command. For example, to display an entire file on your screen,
enter the TYPE command and specify WHOLE as the parameter as follows:

*TYPE WHOLE

You can abbreviate EDT line-editing commands. For clarity, the examples in this
chapter show complete line-editing commands.

7.2.2 Entering Keypad Commands

In keypad editing, the screen displays editing changes as you make them. You
type text from the main keyboard and enter keypad-editing commands from the
numeric keypad. (To initiate keypad editing, you must first enter the line-editing
command CHANGE or have SET MODE CHANGE in your EDT startup file. See
Section 7.4.2 for information on the CHANGE command.)

(See the description of EDT line-editing commands in the Reference Section for
more information about keypad editing keys.)

Each key in the keypad performs at least one editing command; most perform
two. Pressing a key invokes the regular, or upper, function. To invoke the
alternate, or lower, function of a key, press the GOLD key (labeled PF1) first,
followed by the desired key. In the examples that follow, a small diagram

of the keypad highlights the key or keys that perform the command being
described. The text associated with the keypad iliusirates the eiifeci of that
editing command.

For example, keypad key 1 performs both the WORD and the CHNGCASE
functions. To invoke the WORD command, press WORD: the cursor moves to the
beginning of the next word.

7-4 Editing Text Files: Using EDT

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

To invoke the CHNGCASE command, press the GOLD key first and then
CHNGCASE. The character at the cursor or the characters highlighted with the
select key changes from lowercase to uppercase or from uppercase to lowercase.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

CHNGCASE

|_{H/mm
[| |
oood

|||
C10a

Once The weather turns cold, mice may find a crack in your foundation
and enter your house. They’re looking for food and shelter from the harsh
weather ahead.

[EOB]

The supplemental editing keys on the VT200 keypad perform the same
functions as some of the EDT keypad keys. (See the description of EDT line-
editing commands in the Reference Section for more information about these
supplemental editing keys.)

Editing Text Files: Using EDT 7-5

7.2.3 Canceling EDT Commands

Use CTRL/C to cancel the currently executing EDT command without affecting
previous edits. For example, to stop the display of a long file, press CTRL/C.

*TYPE WHOLE

CTRL/C

CANCEL
Aborted by CTRL/C
*

The display stops and the CTRL/C message appears.

7.3 Getting HELP in EDT
EDT provides a help facility for each of the EDT editing modes.

7.3.1 Getting HELP with Keypad-Editing Commands

To display a diagram of the keypad keys and their functions, enter change
mode (assuming you are in line-editing mode) and then press the HELP key
(labeled PF2). (On VT200-series terminals, you can also use the HELP key on the
supplemental editing keypad.) To display information about a particular keypad
command, first press the HELP key and then press the keypad key.

7.3.2 Getting HELP with Line-Editing Commands

To display a list of EDT topics on which information is available, type HELP and
press RETURN. To display information about a particular command or topic, type
HELP followed by the name of the topic and press RETURN. EDT responds with
a display of information about the topic and a list of related topics about which
information is available. To display information about the use of a particular
command qualifier, type HELP plus the command and that qualifier and press
RETURN. For example, to display information on the use of /QUERY with the
COPY command, enter the following command line:

*HELP COPY /QUERY

7.4 Changing Editing Modes

You can easily switch back and forth between line and keypad editing; you
can also enter line-editing commands from keypad mode. Before using keypad
commands, be sure that your terminal type is set properly. (Use SHOW
TERMINAL to display the setting and SET TERMINAL/INQUIRE to set the

terminal type.)

7-6 Editing Text Files: Using EDT

7.4.1 Changing from Keypad to Line Editing

To change from keypad editing to line editing, press CTRL/Z. The asterisk prompt
appears at the bottom of your screen, indicating EDT is ready to accept line-
editing commands.

Once the weather turns cold, mice may find a crack in your

foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

*

7.4.2 Changing from Line to Keypad Editing

To change from line editing to keypad editing, enter the CHANGE command:
*CHANGE

The first 22 lines of the file are displayed on your screen. If the file has fewer
than 22 lines, the [EOB] symbol appears below the last line of the file.

7.4.3 Entering Line-Editing Commands from Keypad Mode

The keypad COMMAND function allows you to enter line-editing commands
without leaving keypad mode. First, enter COMMAND (by pressing GOLD and
then COMMAND) to invoke the Command: prompt, then type the line-editing
command and press ENTER. (If you press RETURN by mistake, AM appears;
delete the "M by pressing the DELETE key on the main keyboard, and press
ENTER.) The following example enters the line-editing command SET QUIET,
which suppresses the sound made when EDT issues an error message:

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

COMMAND

_|H[E
HO00
aoao
||
10

Editing Text Files: Using EDT 7-7

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]
Command: SET QUIET

7.5 Recovering from Interruptions

You can recover from interruptions to your editing session in the following ways:

Deleting extraneous characters—Pressing CTRL/W removes extraneous
characters (such as a broadcast message or a message indicating that you
have received electronic mail) from the screen and restores the previous
display. Use CTRL/W to ensure that the cursor is in the correct position.

Resuming an interrupted editing session—The DCL command CONTINUE
resumes an editing session that was interrupted by pressing CTRL/Y, so long
as only built-in DCL commands were entered after pressing CTRL/Y. For
example, you could press CTRL/Y, enter the command SHOW TIME, and
return to your editing session with the CONTINUE command.

(Press CTRL/W to refresh the screen display. The text of your editing session
is once again displayed.)

Recovering a lost session—By default, EDT keeps a journal file with the
same file name as the input file and a file type of JOU. If the editing session
ends without interruption, the journal file is deleted when you terminate the
session. If the editing session is aborted (for example, during a system failure,
in response to pressing CTRL/Y, or entering the QUIT/SAVE command), you
can recover your edits (with the exception of those commands entered just
prior to the interruption). Enter the same command line you used to begin
the editing session, adding the /RECOVER qualifier. For example:

$ EDIT/RECOVER MEMO.TXT

EDT will reproduce the editing session, reading the commands from the
journal file and executing them on the screen.

7-8 Editing Text Files: Using EDT

7.6 EDT Keypad Editing

While line editing allows you to manipulate large portions of text easily, keypad
editing provides easy manipulation of small units of text. Several EDT keypad
commands enable you to find, insert, delete, substitute, and move text in a file.
The cursor can be moved through a file in a variety of ways, and the position of
the cursor in a file determines how text will be affected by EDT commands.

7.6.1 Manipulating the Cursor

You can manipulate the cursor with commands that move it unit by unit through
the text or with commands that move it directly to a particular location. Several
commands that move the cursor are controlled by the ADVANCE and BACKUP
commands, which set the cursor’s direction forward and backward. Unless
otherwise stated, this chapter assumes the default direction of the cursor to

be ADVANCE.

You can move the cursor by character, word, and line units. Use one of the
following keys to move the cursor by character:

¢ RIGHT ARROW — Moves the cursor one character to the right.
e LEFT ARROW — Moves the cursor one character to the left.

e CHAR — Moves the cursor one character in the current direction.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

CHAR

ooog
ooog
oooo

] |
0

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

The WORD command moves the cursor to the beginning of the next or previous
word.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

Editing Text Files: Using EDT

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

The following keys move the cursor by line:

UP ARROW—Moves the cursor up one line.
DOWN ARROW—Moves the cursor down one line.

EOL—Moves the cursor to the end of the current or previous line.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

EOL

oo
oooo
oooc

Om0
0

Once the weather turns could, mice way [iad a cGiack i youx
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

7-9

F12 (the BACKSPACE key on VT100-series terminals)—Moves the cursor to

the beginning of the previous line.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and

shelter from the harsh weather ahead. [12] ([BACKSPACE))

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

7-10 Editing Text Files: Using EDT

¢ LINE—Moves the cursor to the beginning of the next line or previous line.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

LINE

aood
oooo
a0

LICI0]
L[|

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

The OPEN LINE command terminates a line without moving the cursor. (The
RETURN key also terminates a line, but moves the cursor to the next line.) The
OPEN LINE command is useful when you want to insert a blank line or a new
line of text. When the cursor is placed at the beginning of a line and the OPEN
LINE command is entered, the text on that line is moved down so that the cursor
is at the beginning of a blank line as follows:

Once the weather turns cold, mice may find a crack in your

foundation and enter your house. They’re looking for food and

shelter from the harsh weather ahead.
[EOB]

OPEN LINE

mO0o0
oooo
oo
mjmn
W

Once the weather turns cold, mice may find a crack in your

foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.
[EOB]

To move the cursor by large units, use the SECT and PAGE commands. The
SECT and PAGE commands allow you to scan several lines of text at a time. The

direction in which EDT moves depends upon whether ADVANCE or BACKUP is
set.

Editing Text Files: Using EDT 7-11

SECT—Moves the cursor across a 16-line section of text in EDT’s current
direction. If there are fewer than 16 lines, SECT moves the cursor across the
existing lines.

(On the VT200-series terminals, the supplemental editing keypad key Next
Screen moves the cursor 16 lines forward, regardless of EDT’s current
direction. The supplemental editing keypad key Prev Screen moves the cursor
16 lines backward, regardless of EDT’s current direction.)

PAGE—Moves the cursor to the next or previous page boundary (form feed) or
to the end or top of the buffer if there is no boundary. To insert form feeds in
your text, use CTRL/L.

The TOP and BOTTOM commands allow you to move directly to the beginning or
end of a buffer. (See Section 7.6.8 for more information about buffers.)

TOP—Moves the cursor to the beginning, or top, of the buffer.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

TOP

W00
good
COmcc
||
100

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

BOTTOM-—Moves the cursor to the end, or bottom, of the buffer.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB}

BOTTOM

7-12 Editing Text Files: Using EDT

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

The ADVANCE and BACKUP commands control the cursor’s direction for the
following EDT keypad-editing commands: CHAR, CHNGCASE, EOL, FIND,
FNDNXT, LINE, PAGE, SECT, SUBS, and WORD. Each of the directional
commands remains in effect until you set the cursor in the opposite direction

with the other command.

ADVANCE—Sets the cursor’s direction forward so that subsequent commands
move the cursor in the forward direction. For example, if you enter the
WORD command after using ADVANCE, the cursor moves forward one word.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

ADVANCE

[||
aooo
| _|m|m|m
|
10

WORD

|
oogo
|-
WO
10

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

BACKUP—Sets the cursor’s direction in the backward direction so that
subsequent commands move the cursor toward the top of the buffer. For
example, if you enter the WORD command after using BACKUP, the cursor
moves backward one word.

Editing Text Files: Using EDT 7-13

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

BACKUP

Oooo
|
CIl 00
good
0

WORD

oo
0000
oann
W0
—10

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

The cursor remains set in the backward direction until you press ADVANCE. For
example, if you enter a second WORD command in the preceding example you
receive a message indicating that the command requests EDT to back up past the
top of the buffer.

The ADVANCE and BACKUP commands are particularly important in string
searches; see Section 7.6.4 for more information on searches.

7.6.2 Inserting Text

To insert text in EDT keypad editing, position the cursor where you want the text
to be inserted and begin typing; the cursor remains one position to the right of
the last character inserted. Inserting text in the middle of a line moves both the
cursor and the remainder of the line one position to the right for each character
inserted. When the line exceeds 80 characters, the text you type will either wrap
to the following line or disappear off your screen, depending on the status of the
SET SCREEN, SET [NOITRUNCATE, and SET [NOJWRAP commands. (See
Section 7.8.1 for information about screen formatting commands.)

7-14 Editing Text Files: Using EDT

7.6.3 Deleting and Restoring Text

The delete commands work like the cursor movement commands. In EDT keypad
editing, you can delete by character using the Delete key (<XJ) (DELETE on
VT100-series terminals) and DEL C; by word using F13 (LINEFEED on VT100-
series terminals) and DEL W; and by line using DEL L, DEL EOL, and CTRL/U.

The deleted text is stored in a buffer so that you can also restore the character
(UND C), word (UND W), or line (UND L) most recently deleted wherever and
as many times as you need. Note that the undelete commands restore only the
corresponding units of text that were most recently deleted. For example, if
you have deleted two lines of text with the DEL L (delete line) command, the
UND L (undelete line) command will restore only one line, the line most recently
deleted.

The <X1 key on the main keyboard (the DELETE key on VT'100-series terminals)
deletes the character immediately to the left of the cursor. The EDT keypad-
editing command DEL C deletes the character directly at the cursor. The UND C
command restores the last character deleted with either the <X (DELETE) key or
the DEL C command. For example:

Once the weather turns cold, mice may find a crack in your

foundation and enter your house. They’re looking for food and

shelter from the harsh weather ahead.
[EOB]

DELC

[[
aoog
ofm
g0
10

nce the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

UNDC

_|minim
aood
Oofm
oo
10

Editing Text Files: Using EDT 7-15

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

The F13 key on the main keyboard (the LINEFEED key on VT100-series
terminals) deletes to the beginning of the current or preceding word. The DEL
W command deletes to the end of the current word. Blank spaces are considered
part of the word they follow, while all other word delimiters are considered to be
separate words. The UND W command restores the last word deleted with either
the F13 (LINEFEED) key or the DEL W command. For example:

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

DEL W

0ooo
Him[m] |
0000

|
0

Once the weather turns cold, may find a crack in your
foundation and enter your house. They’re looking for food
and shelter from the harsh weather ahead.

[EOB]

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]

The following commands delete a line (or part of a line) of text:

e DEL L—Deletes from the cursor to the end of the line, including the line
terminator. If the cursor is at the beginning of the line, the entire line is
deleted, and the cursor is positioned at the beginning of the next line.

7-16 Editing Text Files: Using EDT

¢ DEL EOL—Deletes from the cursor to the end of the line (excluding the line
terminator), leaving the cursor at the end of the truncated line.

¢ CTRL/U—Deletes from the cursor to the next previous beginning of line,
leaving the cursor at the beginning of the previous line. (If CTRL/U is used
when the cursor is at the beginning of the line, the previous line is deleted.)

The UND L command restores the last line (or part of a line) that was deleted
with the DEL L, DEL EOL, or CTRL/U command. For example:
Once the weather turns cold, mice may find a crack in your

foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

[EOB]
DELL
OoC0Om
Ooon
Oo0on
DDDD
0O

Once the weather foundation and enter your house. They’re looking for
food and shelter from the harsh weather ahead.
[EOB]

UNDL

HOOW
oo
oo
oo
—10

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

{EOB]

The EDT line-editing command DELETE is useful for deleting large sections
of text. Generally, you use line numbers to specify a range for a line-editing
command. For example, to delete lines 306 through 860, enter the following:

*DELETE 306 THRU 860

555 lines deleted
861 Rodents have had a profound effect on human civilization.
*

Editing Text Files: Using EDT 7-17

Note that the EDT line-editing command SET NUMBERS (the default) must be
in effect for line numbers to be displayed in EDT line editing.

You can also use certain keywords (such as WHOLE, REST, BEFORE) as range
specifiers. For example, if you are in the middle of a long buffer and want to
delete from the cursor to the end of the buffer, enter the following:

*DELETE REST

43 lines deleted

[EOB]
*

(You can also specify range by using the EDT keypad-editing command SELECT.
See Section 7.6.7 for information on SELECT.)

7.6.4 Locating Text

You can move the cursor to a character string you specify with the FIND and
FNDNXT EDT keypad-editing commands. The FIND command searches for

the specified character string between the current position of the cursor and

the beginning or end of the buffer (depending on whether the ADVANCE or the
BACKUP command is in control). EDT does not distinguish between uppercase
and lowercase letters unless you use the SET SEARCH EXACT line-editing
command. When EDT finds the string, it positions the cursor at the first
character in the string (unless the SET SEARCH END command is in effect,
and the cursor is positioned at the last character in the string). In a long file, the
message “Working” may flash on the screen while EDT searches for the string.

For example, to delete a comma after the word “house” in the following text, you
can use the FIND command to move the cursor to the string "house." First, enter
the EDT keypad command FIND by pressing the GOLD key and then the FIND
key (on the VT200-series terminal you can also use the FIND key located on
the supplemental editing keypad). Next, type the string you want to locate (the
search string) after the Search for: prompt.

(20w
OOOL) &
Oooom
oan

7-18 Editing Text Files: Using EDT

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead. Once inside, they may gnaw
through electrical wires and raid your food. Because mice reproduce
so quickly, what started as one or two mice can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.

[EOB]

Search for: house

To search in the forward direction, use the ADVANCE command to enter the
search string.

ADVANCE

aooo
[||

| |m|mim
oo
0

Once the weather turns cold, mice may find a crack in your

foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because mice reproduce so
quickly, what started as one or two mice can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.

[EOB]

Use the CHAR command to move the cursor to the comma after the word “house.”
Then use the DEL C command to delete the comma.

CHAR

aood
0000
| |
[m]
0

Once the weather turns cold, mice may find a crack in your

foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because mice reproduce so
quickly, what started as one or two mice can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house you can prevent these rodents from ever getting in.

[EOB]

Editing Text Files: Using EDT 7-19

To find the next occurrence of the string located with the FIND command, use the
FNDNXT (find next) command. If there is no other occurrence of the string (as in
the example above), EDT issues the message "String was not found."

NOTE: The directional setting of the cursor determines the
direction of the search. After you press FIND, you can press
either ADVANCE or BACKUP (depending on the direction in
which you want to search) to enter the search string. You can also
use the ENTER command, which applies the current direction to
the search.

7.6.5 Substituting Text

To substitute one character string for another, you can use the SUBS keypad-
editing command or the SUBSTITUTE line-editing command. The EDT line-
editing command can make global substitutions; that is, it can replace every
occurrence of one character string in the specified range with another string using
only one EDT line-editing command. In contrast, you must use the keypad SUBS
command (press the GOLD key followed by the SUBS key) for each substitution
you make. (If you do not specify a range, the line-editing command SUBSTITUTE
replaces only the first occurrence of the search string in the current line with the
substitute string.)

For example, to substitute the string "mice" for "elephants" throughout a buffer,
enter the line-editing command SUBSTITUTE, the old string, and the new string,
separating all three with the same delimiter. You can use any nonalphanumeric
character (except the percent sign and underscore) as a delimiter for the
SUBSTITUTE command, as long as the delimiting character is not part of
either string. To apply the command to the entire buffer in a global substitution,
specify WHOLE as the parameter. When the operation has been completed, EDT
displays each occurrence of the substitution and the total number of substitutions.
The following example substitutes the string "mice" for each occurrence of the
string "elephants" in the following text:

COMMAND

7-20 Editing Text Files: Using EDT

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because elephants reproduce so
quickly, what started as one or two elephants can quickly become an
invasion. 1If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.

[EOB]

ENTER

aooc
OO0
oo
Qoo
10

1 Once the weather turns cold, elephants may find a crack

4 in your electrical wires and raid your food. Because elephants reproduce
5 so quickly, what started as one or two elephants can quickly become an
3 substitutions

Press return to continue

Once the weather turns cold, elephants may find a crack in your

foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because elephants reproduce so
quickly, what started as one or two elephants can quickly become an
invasion. If you seal the cracks and holes on the exterior of your

house, you can prevent these rodents from ever getting in.

[EOB]

Note that a global substitution replaces all occurrences of the string, regardless of
case or surrounding characters. If you want EDT to search for exact comparisons
of case, use the SET SEARCH EXACT command. If the search string occurs in
the middle of a longer string, the substitution will still be made. For instance, a
global substitution of "IN for "AT" would change all words containing the string
"AT." ("LATER" would become "LINER", "THAT" would become "THIN, "SAT™
would become "SIN*, and so on.)

To get EDT to prompt you before each substitution, use the /QUERY qualifier
with the SUBSTITUTE command. i

Command: SUBSTITUTE\AT\ IN\ WHOLE/QUERY

EDT prompts you with a question mark (?) to verify each substitution. You can
respond with one of the following:

Y Yes, do the substitution.
N No, do not do the substitution.

Editing Text Files: Using EDT 7-21

Q Quit, terminate the command.
A All, do the rest of the substitutions without query.

7.6.6 Moving Text

Both EDT keypad and line commands can move text; however, only line-editing
commands transfer text between buffers and files.

7.6.7 Moving Text Within the File

The EDT keypad-editing command CUT deletes a selected range of text and the
PASTE command inserts it at the cursor’s current position. (On the VT200-series
terminals, the supplemental editing keys Remove and Insert Here perform the
same functions as the EDT keypad commands CUT and PASTE.) For instance,
to move the first sentence in the second paragraph of the example to the end

of that paragraph, move the cursor to the beginning of the sentence and press
SELECT. (On the VT200-series terminals, the supplemental editing key SELECT
performs the same function as the EDT keypad command SELECT.) This marks
the beginning of the selected range. (You can cancel the SELECT command with
the RESET command.)

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead. Once inside, they may gnaw
through electrical wires and raid your food. Because mice reproduce
so quickly, what started as one or two mice can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.

[EOB]

To mark the end of the selected range, move the cursor to the end of the sentence.
The terminal highlights a selected range in reverse video. (The selected range
includes the text up to the character preceding the cursor.)

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because elephants reproduce so
quickly, what started as one or two elephants can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.

[EOB]

7-22 Editing Text Files: Using EDT

Press CUT to delete the selected text.
CuUT

O
O
O
O

DDDDD
oomoo
000

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in.

[EOB]

Deleted text remains in the PASTE buffer until you perform another CUT
operation. To restore the text, move the cursor to the appropriate position and
enter the PASTE command. (The text will be inserted directly in front of the
cursor.)

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in.

[EOB]

PASTE

/0

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.

[EOB]

Editing Text Files: Using EDT 7-23

Because the selected text is held in the PASTE buffer until you perform another
CUT operation (or give the line-editing command CLEAR PASTE), you can paste
the text contained in the PASTE buffer as many times as you want. You can
also enter the PASTE buffer to edit the text it contains. (See Section 7.6.8 for
information on using multiple buffers.)

After moving the text, you may want to use the FILL command to reorganize
selected text so that the maximum number of whole words are fitted within the
current line width. The default line width is 80 characters, but you can use the
SET WRAP command to use another line length for filling text. For example, you
can set the line length to 71 characters with the EDT line-editing command SET
WRAP and then fill a selected range of text.

COMMAND

|_|m[mim]
|_|m[mim
Oooo
m|mjm
0

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.

[EOB]

Command: SET WRAP 71

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.

[EOB)

7-24 Editing Text Files: Using EDT

EDT will now wrap lines of inserted text and fill lines of selected text at a line
width of 71 characters. Use the SELECT command to mark the text you want to
affect and then enter the EDT keypad command FILL.

SELECT

Oooo
|]
oo
i
I

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as
one or two elephants can quickly become an invasion.

[EOB]

FILL

|_|m[mim
Omcin

Oo0n
a0
0

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.

[EOB]

There are several EDT line-editing commands that move text. For example, the
MOVE and COPY commands each perform a function similar to those of the
keypad CUT and PASTE operations. MOVE deletes text from one location and
inserts it in another; COPY inserts a copy of the text where specified without
deleting any text. The EDT line-editing commands INCLUDE and WRITE
perform tasks not possible with EDT keypad-editing commands:

¢ INCLUDE—Copies a file into the buffer you are currently editing or the
buffer you specify. Follow the VMS conventions for file specifications when ‘

Editing Text Files: Using EDT 7-25

specifying the file to be copied to the buffer. For example, the following
command copies the file named MEM.DAT to the buffer named BUF1:

Command: INCLUDE MEM.DAT =BUF1

¢ WRITE—Copies a specified range of text from a buffer (the current buffer by
default) to a specified file. If you do not specify a range, the WRITE command
copies the entire contents of the current buffer. For example, the following
command copies the contents of the current buffer to the file ANIMALS.TXT:

Command: WRITE ANIMALS.TXT
$DISK1: [USER]ANIMALS.TXT;1 11 lines

The message displays the new file specification and length.

7.6.8 Using Multiple Buffers

When you begin editing a file with EDT, you are working on a copy of the file in a
buffer called MAIN. (EDT also uses a buffer called PASTE to store the text that
you delete with the CUT and APPEND commands; you can edit this buffer just
as you can edit other text buffers.) You can create other buffers to store pieces of
text during your EDT editing session. You can enter and edit these buffers; you
can copy text to and from them; and you can write their contents to specified files.

To create a buffer, press the COMMAND key. Type the line-editing command
FIND followed by the equal sign and the name you are giving the buffer, then
press the ENTER key. For example, the following command creates a buffer
named BUF1:

COMMAND

|||
W00

aogo
0od
—1a

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.

[EOB]

Command: FIND=BUF1

7-26 Editing Text Files: Using EDT

When you enter this command, the system responds by displaying only the [EOB]
symbol, which indicates that the current buffer, BUF1, is empty. You can now
insert and edit text just as you would in the MAIN buffer. To return to the MAIN
buffer, follow the same procedure, typing FIND=MAIN rather than FIND=BUF1.
To return to your previous position in the MAIN buffer, include a period after the
buffer’s name as follows:

Command : FIND=MAIN.

The buffer named BUF1 remains intact until you exit from EDT, regardless of
whether you enter the EXIT or QUIT command. That is, you can enter, edit,
and exit from a buffer as necessary. However, when you exit from EDT, only the
buffer MAIN is saved.

The SHOW BUFFER command displays the number of lines contained in each
buffer and indicates (with an equal sign) the current buffer. The following
example indicates that there are three buffers (including MAIN and PASTE,
which always exist) and that MAIN is the current buffer:

COMMAND

__|m[mim|
mOoOod
00oon
u|mjm
0

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.

[EOB]
Command : SHOW BUFFER
=MAIN 11 lines
PASTE 3 lines
BUF'1 2 lines
Press return to continue

Pressing the RETURN key returns the cursor to its previous position in the
buffer.

You can further manipulate the contents of a buffer by specifying the buffer’s
name in an EDT line-editing command. For example, if you are in the MAIN
buffer and want to save the contents of BUF1 in a file named RODENT.TXT
before exiting from EDT, enter the following command:

Editing Text Files: Using EDT 7-27

COMMAND

moood
mooo
oo
a0
0

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They’re looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.

[EOB]
Command: WRITE RODENT.TXT =BUF1

$DISK1: [USER]RODENT.TXT;1l 2 lines

EDT returns a message indicating that the file has been created, and the cursor
is returned to its previous location in the buffer.

7.7 Saving Time and Keystrokes—Defining Keys in EDT

If you have a series of keystrokes that you repeat frequently, then you can save
time and keystrokes by using a feature of EDT that lets you associate a set of
keystrokes with a particular key sequence. With this feature, you can define a
key to output a string of text, to execute a series of EDT functions, or to combine
one or more text strings with one or more EDT functions.

The easiest way to define keys is while you are already in the EDT editor.
However, anv kev definitions that vou make during an EDT editing session will be
canceled when you exit from EDT. You can also make permanent key definitions
that will apply whenever you use the EDT editor. This section describes how to
define keys in EDT.

7.7.1 Defining Keys While in EDT

To define a key while you are already in an EDT editing session, you always
follow the same general process:

@ Signal EDT that you want to define a key by pressing

® Select the key (either a CTRL key or GOLD- sequence) that you want to
define.

7-28 Editing Text Files: Using EDT

© Begin the key definition with an open parenthesis.

O Describe the text that you want to insert and/or the EDT functions that you
want to execute.

© End the key definition by typing a closed parenthesis and a period, and then
pressing

When you define a key while already in the EDT editor, the key definition will
end when you exit from EDT. (See Section 7.7.3 for information about making key
definitions that apply every time you use the EDT editor.)

Defining a Key to Insert Text

For example, suppose that you often type the words International Development
Organization. To include this expression in your text simply by pressing [CTRUA],
use the following steps:

1. Press [cRK]. This tells EDT that you want to define a key.

When you press the message “Press the key you wish to define” is
displayed on your terminal.

2. Press This tells EDT that it is the key that you want to define.

When you press [CTrUAl,the message “Now enter the definition terminated by
ENTER?” is displayed on your terminal.

3. Enter the following text, exactly as it is shown below:
(iInternational Development Organization[CIRLZ]) .
(Note that when you press in the context of defining a key, the symbol
AZ is displayed).

4. Press [ENTER].

Now press the words International Development Organization are inserted
in your text.

When you entered the definition of the key, the entire expression was enclosed
in parentheses. After the first (open) parenthesis, the first character in the key
definition was the letter i. This signifies that everything following the letter i will
be text, until is pressed. When you pressed it signified the end of

Editing Text Files: Using EDT 7-29

the text. The closed parenthesis and the final period signified the end of the key
definition; the key definition is terminated when you pressed [ERTER].

You can also define a key that includes more than one line of text, simply by using
the key in your definition. For example, suppose that you were using text
formatting software in which you type the following text from time to time:

<list> (unnumbered)
<le>

You could define the key to do this for you, as follows:
1. Press
2. Press

3. Type the following, exactly as shown:
(i<list> (unnumbered) [RETURN Kle> [CTRLUZ)) . [ENTER]

As in the previous example, you type the letter i to signify the beginning of
the text that is to be included in the key definition, and that you press [cTRZ]
to signify the end of the text. Also note that when you press in the
context of defining a key, the symbol ~M is displayed on the terminal.

4. Press and see that the text is included in your file.

Defining a Key to Use EDT Functions

You can also define a key that performs one or more consecutive EDT functions.
For example, suppose that you are editing the following text file, which has four
columns of data. In this example, you want to eliminate the last two columns
(“Price” and “Total”) in each row:

Item Quantity Price Total
Apples 20 1.00 20.00
Bananas 40 1.680 60.090
Beets 26 2.00 650,00
Carrots 30 2.00 60,00
Oranges 20 4,00 80.00
reachnes 0 3.00 530,30
Pears 3 6.00 30,00
Potatoes 50 1.00 50,00_
[EOB}

You could move the cursor to the first line (“Item”), press =] twice to move the
cursor two words (to “Price”), press to delete the text from the cursor to
the end of the line, press to move the cursor to the beginning of the next line,
and then start the process all over again. Alternatively, you could define a key to
do most of the work for you.

7-30 Editing Text Files: Using EDT

To define the key to do the work, use the following steps:
1. Press[cTrok]. This tells EDT that you want to define a key.

When you press the message “Press the key you wish to define” is
displayed on your terminal.

2. Press[crop). This tells EDT that it is the key that you want to define.

When you press [cTruol,the message “Now enter the definition terminated by
ENTER” is displayed on your terminal.

3. Type these keys, exactly in the order shown:

1. (

2.

3.

4. [GoLoKP2

5.

6.).[ENTER]

The bottom of the screen will now look like this:
Item Quantity Price Total
Apples 20 1.00 20,00
Bananas 40 1.50 60,00
Beets 25 2.00 650.00
Carrots 30 2.00 60,00
Oranges 20 4.00 80,00
Peaches 10 3.00 30.00
Pears 5 6.00 30.00
Potatoss 60 1.00 60. 00
[EoB]

(T3]
LD v EL L

enter th

This representational text is associated with the EDT functions that you
select for the key definition. Notice that the key definition begins with an
open parenthesis, and it ends with a closed parenthesis followed by a period.
When you press to complete the key definition, the text is removed from
the screen.

When you are in the EDT editor and define a key to be a series of EDT
functions, you can either press the function keys or actually type the
representational text (in this case, WWD+ELL).

Editing Text Files: Using EDT 7-31

Keys Available for Definitions

The only keys that can be defined in EDT are control keys and two-key sequences
beginning with the GOLD (PF1) key.

7.7.2 Advanced Key Definitions

In addition to straightforward text insertions and series of functions, you can
combine functions with text insertions. You use the same principles as when you
define keys for text insertion only or functions only:

* Always begin your key definition with an open parenthesis.

¢ When you want to include text in your key definition, signal the beginning of
the text by typing i, and signal the end of the text by pressing [ETAzzZ].

¢ When you want to include EDT functions in your definition, simply use the
function keys from the keypad.

¢ End the key definition with a closed parenthesis and a period, and then press
[ENTER],

For example, suppose that you are editing the following command procedure:

$ COPY [MONTHLYJREGION-1.DAT [FINANCE]=*, *
$ COPY [MONTHLYIREGION-2.DAT [FINANCE]=*. *
$ COPY [MONTHLYIREGION-3.DAT [FINANCEl#.*
¢ COPY [MONTHLY)JREGION-4.BAT [FINANCE]=*. *
$ COPY [MONTHLYJREGION-5.DAT [FINANCE]=*. *
$ COPY [MONTHLYIREGION-6.DAT [FINANCE]x.*
$ COPY [MONTHLYIREGION-7.DAT [FINANCE]l*, *
$ COPY [MONTHLYJREGION-8.DAT [FINANCE]*, *
$ COPY [MONTHLYIREGION-S.DAT [FINANCE]=*.*
$ COPY [MONTHLYIREGION-10,DAT [FINANCE]*,*
[EOB]

Due to a change on your system, it is now necessary to modify the command
procedure to specify the devices on which the files reside. For each filespec, the
directory [MONTHLY] must be preceded by the device name DISK1:, and the
directory [FINANCE] must be preceded by the device name DISK2:.

To expedite the editing process, you could define a key in EDT that edits each line
automatically. The key that you define would move the cursor to MONTHLY],
insert the text DISK1:, move the cursor to [FINANCE], insert the text DISK2:,
and finally move the cursor to the beginning of the next line.

To define the key sequence to replicate this series of keystrokes, do the
following:

1. Press to signal a key definition.
2. Press to signify the key that you are defining.
3. Type an open parenthesis to begin the key definition.

7-32 Editing Text Files: Using EDT

4. Press two times, to represent the cursor moving ahead two words.

5. Type the following, to insert the appropriate text:

iDISK1:

Press once, to represent the cursor moving ahead one word.

Type the following, to insert the appropriate text:

iDISK2:

Press to move the cursor to the beginning of the next line.

Type a closed parenthesis followed by a period. The bottom line of your
terminal now looks like this:

$ COPY [MONTHLY]REGION-1.DAT
$ COPY [MONTHLYJREGION-2.DAT
$ COPY [MONTHLYIREGION-3.DAT
$ COPY [MONTHLY]JREGION-4.DAT
$ COPY [MONTHLYJREGION-5.DAT
$ COPY [MONTHLY]JREGION-6.DAT
$ COPY [MONTHLYIREBION-7.DAT
$ COPY [MONTHLYIREGION-8.DAT
$ COPY [MONTHLYIREGION-9.DAT

s ZWIDTEE D

vt

[FINANCE]*,
[FINANCE] *,
[FINANCE] *,
[FINANCE] *,
[FINANCE] *,
{FINANCE]*,
[FINANCE] %,
[FINANCE] *,
[FINANCE] *,

* X N X X X X X X

$ COPY [MONTHLYIREGION-10.DAT [FINANCE]*. *
[(EOB]

airated by EMTER

10. End the key definition by pressing [ENTER],

With the cursor at the beginning of the first line of your command procedure,
press [GotoF]. The edits are automatically inserted on the first line, and the cursor
is at the beginning of the second line.

You could complete the edits by pressing [6o5F] 9 more times, or you could further
expedite the process by using the REPEAT function in EDT, with the following

sequence:
1. Press the key

2. Type 10 (from the keyboard, not the keypad)
3. Press the sequence

This executes the sequence ten times.

Editing Text Files: Using EDT 7-33

Using the Find Function

To use the EDT find function in a key definition, you must use quotation
marks around the text for which you are searching. That is, the expression
"subroutine" in a key definition means “search for the text string subroutine
and move the cursor to the beginning of that text string.” For example, suppose
you have a source program that includes several instances of the following text,
with the name of various subroutines in place of subroutine-name:

.SUBROUTINE subroutine-name

You now find that some additional code is needed after each subroutine, in order
to resolve potential errors, and you want to add the following line after each
subroutine call:

.GO TO ERROR-CHECKING

A key defined for this would first search for the text string .SUBRQUTINE and
move the cursor to the beginning of the next line. You would then use the OPEN
LINE function (to make sure there is a blank line), and then insert the text .GO
TO ERROR-CHECKING. To define the key to do this, you would use the
following steps:

1. Press

2. Press

3. Type an open parenthesis to begin the key definition

4. Type the following to search for the string .SUBROUTINE:

" .SUBROUTINE"

5. Press to represent the cursor moving to the beginning of the next line,
then press the sequence to represent the OPEN LINE function

6. Type the following to include the appropriate text:
i.GO TO ERROR-CHECKING [CTRLZ]

The bottom lines of your screen now look like this:

[E0B]

cher bl

WITIME" L

Sted by EMTER
OE-CHECK ING T

7. Type a closed parenthesis and a period, then press to complete the key
definition.

7-34 Editing Text Files: Using EDT

7.7.3 Permanent Key Definitions

The previous section explained how to define a key while in EDT. This is easy
and quick to do, but any keys that you define during an editing session will apply
only during that editing session. You can also define keys that will apply every
time that you use the EDT editor. It is a more complex process than defining keys
during an editing session, but it might save you time in the long run.

To define keys that will apply whenever you use the EDT editor, you use the
following process:

* (Create a file in which your keys are defined. This file is called an EDT
initialization file, and it is a text file that can contain key definitions and
other set-up information about your EDT session.

¢ Specify the initialization file that you will use by using the /COMMAND=
qualifier in your EDIT/EDT command line. For example, if your EDT
initialization file is [THOMAS]EDTINI.EDT, then you would use the
following DCL-level command to edit a file named REPORT.TEXT using
your initialization file:
$ EDIT /EDT /COMMAND=[THOMAS]EDTINI.EDT REPORT.TEXT

You can of course define a symbol in your login command file that would
reduce the number of keystrokes that you need; for example:

$ EDT :== EDIT /EDT /COMMAND=[THOMAS]EDTINI.EDT

The EDT Initialization File

The EDT initialization file is a text file that you can create to define keys and set-
up parameters for your EDT editing session. Set-up parameters include any SET
command that EDT allows, as described in the EDT reference documentation.

Defining Keys in the EDT Initialization File
To define a key in an EDT initialization file, use the following format:

DEFINE KEY key-name AS ‘'key-definition.’

The key-name can be either a CTRL key or a sequence using the key. For
CTRL keys, use the word CONTROL followed by a single space and the CTRL
character; for sequences, use the word GOLD followed by a single space
and the appropriate character. For example, the following lines would begin key
definitions for the [cTAUA), [cTRuB), [GorbL), and [Gob3) keys:

DEFINE KEY CONTROL A AS’

DEFINE KEY CONTROL B AS ’....’

DEFINE KEY GOLD L AS ’....'
DEFINE KEY GOLD 3 AS '....'

Each key definition in the EDT initialization file must be on a single line, and the
line can include up to 255 characters.

Editing Text Files: Using EDT 7-35

The next section describes the syntax that you use for the key definitions.

Key Definitions in the EDT Initialization File — Text

Key definitions in an EDT initialization file are similar to the key definitions
made during an editing session. The letter i in a key definition signifies the
beginning of text, and the text continues until a [€TRTZ] is reached.

When defining a key in the EDT editor, you could press and the symbol
(~Z) would appear in the right place. However, if you are creating your EDT
initialization file pressing will have a different meaning. Therefore,
you have to use the SPECIAL INSERT function to insert the into your
initialization file.

To insert a into your file, you type the following sequence:

GOLD

26 [from the keyboard]
GOLD

3 [from the keypad]

If you are using EDT, the symbol ~Z is displayed on your terminal.

So to define the key to insert the text International Development
Organization, you would include the following line in your initialization file:

DEFINE KEY CONTROL A AS ’‘iInternational Development Organization”Z.’

Remember that the ~Z is a symbol for that is inserted into your file with
the following sequence:

GOLD
26
GOLD
3

Also remember to complete the key definition with a period, and then to enclose
the key definition in quotation marks.

if you want to insert multiple lines of toxt in your key definition then yvon must
use the symbols for carriage-returns and line-feeds in the text that you insert. In
Section 7.7.1, you learned how to define a key that would include the following

text in a file:

<list> (unnumbered)
<le>

When defining a key in the EDT editor, you could insert a carriage-return simply
by pressing the key. However, when you are editing your initialization file,
you must insert the symbol for the [RETURN] key in a similar way as you inserted
the symbol for the key. The key is considered to be text, so the
symbol for it must also be preceded by i and followed by AZ.

7-36 Editing Text Files: Using EDT

In EDT, the symbol for the key is represented by <CR>. To insert the
symbol for [RETURN], use the following sequence:

GOLD
13 (Keyboard)

When you do this, the symbol <CR> is displayed on your terminal.

So, to define key to output this text, you would use the following line in
your EDT initialization file:

DEFINE KEY CONTROL E AS ’i<LIST> (UNNUMBERED)<CR><LE>"Z.’

In this example, the symbol <CR> is inserted using the sequence GOLD-13-
GOLD-KP3, and the symbol AZ is inserted using the sequence GOLD-26-GOLD-
KP3.

Key Definitions in the EDT Initialization File — EDT Function

To indicate EDT functions, specific symbols are used in your EDT initialization
file. Table 7~1 lists these symbols; they are the same symbols displayed on your
terminal when you define keys while in an EDT session.

Table 7-1: Symbols for EDT Functions

EDT Function Key Symbol Explanation

FIND PF3 anl Search for a string of
text

DELETE LINE PF4 D+NL Delete Line

UNDELETE LINE GOLD-PF4 UNDL Insert contents of delete
line buffer

SECTION KP8 (16L) Moves cursor one
section (16 lines)

FILL GOLD-PF8 FILLSR Fills a selected range of
text

PAGE KP7 PAGETOP Moves cursor to right of

next page marker

1Enclose the string in quotes

(continued on next page)

Table 7-1 (Cont.): Symbols for EDT Functions

Editing Text Files: Using EDT 7-37

EDT Function

Key

Symbol

Explanation

APPEND

REPLACE

DELETE WORD
UNDELETE WORD

ADVANCE

BOTTOM

BACKUP

TOP

cuT

PASTE

DELETE CHARACTER

UNDELETE CHARACTER

WORD

KP9

GOLD-KP9

MINUS (-)
GOLD-
MINUS
KP4

GOLD-KP4

GOLD-KP6

COMMA (KP)

GOLD-
COMMA

KP1

APPENDSR

CUTSR=DELETE
PASTE

DEW
UNDW

ER

BACK

BR

CUTSR

PASTE

D+C

UNDC

Removes contents of
selected range from
the current buffer
and appends it to the
contents of the paste
buffer

Deletes text in selected
range and replaces it
with the contents of the
paste buffer

Deletes a word

Inserts the contents of
the Delete word buffer

Sets cursor direction
forward

Moves cursor to end of
the buffer

Sets eursor direction
backward

Moves cursor to first
character at the
beginning of the buffer

Replaces contents
of paste buffer with
the selected range;
the selected range
is removed from the
current buffer

Inserts contents of the
paste buffer into the
current buffer

Deletes a single
character

Inserts the contents
of the delete character
buffer

Move ahead one word

(continued on next page)

7-38 Editing Text Files: Using EDT

Table 7-1 (Cont.): Symbols for EDT Functions

EDT Function Key Symbol Explanation

CHANGE CASE GOLD-KP1 CHGCSR Change the case of
current character, or
entire select range if
one is active

END OF LINE KP2 EL Move cursor to end of
line

DELETE TO END OF LINE GOLD-KP2 D+EL Delete text from cursor
to end of the line

CHARACTER KP3 +C Move ahead one
character

LINE KPO L Move cursor to
beginning of next line

OPEN LINE GOLD-KP0 (<CR>-C) Insert open line

SELECT PERIOD (KP) SEL Begin a select range

RIGHT Right arrow +C Move right one
character

LEFT Left arrow -C Move left one character

UpP Up arrow v Move up one line

DOWN Down arrow +V Move down one line

To use the EDT functions in a key definition, use the symbols shown in the table.
For example, consider the example shown earlier, where a key was defined to
delete the last two columns of a list such as this:

Item Quantity
Apples 20
Bananas 40
Beets 25
Carrots 30
Peaches 10
Pears 5
Potatoes 50
Oranges 20

The desired series of steps was as follows:

1. Move the cursor ahead two words.

2. Delete the text from the cursor to the end of the line.

3. Move the cursor to the beginning of the next line.

As shown in Table 7-1, the symbols for these functions are as follows:

B FAOAWNDNDE
e s v e s+ s e

Editing Text Files: Using EDT 7-39

1. WW [To move the cursor ahead two words]
2. D+EL [To delete the text from the cursor to the end of the line]
3. L [To move the cursor to the beginning of the next line]

So, to define the key to move the cursor ahead two words, then delete to the
end of the line, and then move to the next line, you would include the following
line in your EDT initialization file:

DEFINE KEY CONTROL E AS 'WWD+EL.’

As you see, the symbols for the various EDT functions are simply listed one right
after the other, with no intervening punctuation.

Here is another example of a useful key definition, for people who sometimes type
letters in not quite the proper order:

DEFINE KEY CONTROL D AS /-C-CD+C+CUNDC+C.’

This key definition transposes the last two letters that you just typed. For
example, suppose you type the following:

To be or not to be, thta

If you have defined as shown above, you could simply press and the
typographical error will be corrected.

Sample EDT Initialization File

The following example shows an EDT initialization file that you could use or
adapt to meet your needs. After this initialization file is created, you specify its
use with the /COMMAND-= qualifier in the EDIT/EDT command line.

In this example, the symbols *Z and <CR> represent and
respectively, as explained earlier in this section.

set entity word ’<>])’0

set mode change!

set quiet@

sel wrap 70wsr

define key gold a as ’i<p><cr><list>(unnumbered) <cr><le>"z.’©
define key gold b as ’i<CR><endlist><p><CR>"Z.’@

define key gold d as '"("+csel")"i<CR>"Zappendsrl) .'0

define key gold e as ’i<CR>“Zext delete . thru end.’@

define key control e as '-c—cd+c+cundc+c.’@

define key gold f as ‘brext delete . thru end.'@

define key control f as 'brselerfillsrbr.'m fills entire buffer
define key control 1 as ’i<CR><le>"z.'@

define key control z as ’‘ext ex.’@

define key gold m as ‘ext =main..’®

define key gold w as ’‘ext set screen 132.’@

define key gold x as ’‘ext =x..'®

7-40 Editing Text Files: Using EDT

The first four lines of this sample initialization file have the following effect:

@ The WORD function stops at the symbols listed, in addition to the existing
defaults, each time you use EDT.

® Puts EDT in keypad mode when you enter the editor.
© Turns off the terminal bell that would otherwise go BRAP! when a message is

displayed.

® Sets the right margin to 70 when you use EDT.
The following table lists the keys that are defined in this initialization file:

Key or
Ref. Sequence

Action Taken When Key or Sequence Is Pressed

GOLD-D

A carriage return and the following text are inserted in the editing
buffer:

<p>
<1list> (unnumbered)
<le>

A carriage return and the following text are inserted in the editing
buffer:

<endlist>
<p>

The text within the next set of parentheses is removed from the current
buffer and appended (with a carriage return) to the paste buffer. Using
this key, you can extract data that is enclosed in parentheses, and
create a list of the data elements in the paste buffer (which can then be
written to a file).

Deletes all of the text between the cursor position and the end of the
buffer.

The two characters that immediately precede the cursor are transposed.
For example, to change teh to the with a single keystroke, you could use
this key definition.

Deletes the entire contents of the buffer (from beginning to end).
The entire buffer is placed in a select range and filled.

Editing Text Files: Using EDT 7-41

Key or
Ref. Sequence Action Taken When Key or Sequence Is Pressed
A carriage return and the following text are inserted in the editing
buffer:
<le>
The edits you have made are saved, the file is written, and you exit

from EDT. This is the same as pressing [CTALZ] and then typing EXIT
at the asterisk (*) prompt.

EDT switches to the default buffer (MAIN), at the same cursor position
as when you were last in that buffer.

The screen width on your terminal is set to to 132 columns.

GOLD-X EDT switches to a buffer named X. If buffer X does not exist, this

command creates it; if buffer X does exist, the cursor position is the
same as when you were last in that buffer.

7.7.4 Summary

You can define keys and key sequences in EDT. Key definitions can
either insert text, reproduce EDT functions, or combine text insertions with
EDT functions.

You can define keys during an EDT editing session, or you can define keys
in an EDT initialization file. Keys defined during an editing session do not
apply after you exit from EDT, but keys defined in an initialization file apply
whenever the initialization file is specified with the /COMMAND= qualifier in
the EDIT/EDT command line,

To define a key during an editing session, press then press the key
that you want to define. Begin the key definition with an open parenthesis.
When you want to insert text, signal the beginning of the text by typing the
letter i, and signal the end of the text by pressing [cTAizl When you want

to include EDT functions in your key definition, just press the appropriate
keypad function key. To indicate that you want to search for a text string in
your key definition, enclose the text in quotes. Complete the key definition by
typing a closed parenthesis and a period, and then by pressing [ENTER]

To define keys in an initialization file, put the definition for each key on a
single line, and begin each line with the syntax:

DEFINE KEY key-name AS key-definition

The key definition should begin with a single quote, and it should end with a
period followed by a single quote.

742 Editing Text Files: Using EDT

To include text in a key definition, indicate the start of text with the letter
i, and indicate the end of the text by inserting the symbol for You
can insert the symbol in your initialization file using the sequence

To include EDT functions in your key definitions, use the function symbols
listed in Table 7-1. To search for text, use quotation marks to enclose the text
that is the search string.

Troubleshooting

If you are having trouble defining a key, be sure of the following:
e All text strings begin with i and end with

* Use quotation marks to search for text strings

* When defining keys in an initialization file, use the proper symbols for EDT
functions (as shown in Table 7-1)

7.8 Controlling EDT Sessions

You can control some of the characteristics of an EDT editing session with

the SET commands. You can also define a macro (a sequence of line-editing
commands) and define keys in EDT. You can enter these control commands
interactively, or you can include them in an EDT startup command file.

7.8.1 Controlling Screen Format with SET Commands

Several EDT commands control the format of a screen display. Some are listed
below. See the EDT commands in the Reference Section for a comprehensive list
of the SET commands.

¢ SET LINES n—Controls the number of lines that EDT displays on the screen.
This number, which can be set from 1 to 22, defaults to 22. To set the screen
to 15 lines, for example, type:

Command: SET LINES 15

Note that if you are editing at slow baud rates, setting the number of lines
low will increase your editing speed.

¢ SET SCREEN width—Controls the maximum length of the line EDT displays;
the default width is 80 characters. (When there are more characters than the
SET SCREEN command specifies, EDT displays a diamond at the end of the
line.)

Command: SET SCREEN 132
If you use the SET SCREEN command to make the screen wider than 80 on

either a VT100- or VT200-series terminal, EDT changes the terminal’s screen
width to 132.

Editing Text Files: Using EDT 7-43

SET [NOITRUNCATE—Controls whether the characters that exceed the
SET SCREEN width are displayed on the next line. The default is SET
TRUNCATE, which ends the display of a line at the value of SET SCREEN.

Command: SET [NO]TRUNCATE

SET [NOJWRAP n—Specifies n character positions as the point at which
text will be moved to the beginning of the next line. When you are inserting
text in EDT keypad mode and the cursor position exceeds the value of n,
EDT wraps the next full word to the next line. (However, when you insert
text in the middle of a line, that line does not always wrap.) The default is
NOWRAP. To wrap the text exceeding 75 characters, for example, type:

Command: SET WRAP 75

The SET commands have corresponding SHOW commands; see the EDT
commands in the Reference Section for a list of SHOW commands.

7.8.2 Controlling Editing Functions with SET Commands

Several commands control EDT’s responses during an editing session, as follows.
(See the EDT commands in the Reference Section for a comprehensive list of the
SET commands.)

SET ENTITY—Defines boundaries for the WORD, SENTENCE, PARAGRAPH,
and PAGE entities. (The SENTENCE and PARAGRAPH entities are not used
by any default key definitions; consequently, they are useful only in the key
definitions you create with the DEFINE KEY command.) For example, the
default boundaries for the WORD entity are a line feed, tab, form feed, line
terminator, and space. To make the period and comma the only delimiters of
the word entity, enter the following SET ENTITY command:

Command: SET ENTITY WORD ’,.’

SET MODE—Controls the EDT editing mode to be entered when the
processing of the EDTINIL.EDT file is completed (either line or change mode,
which is keypad mode). For example, to enter change mode instead of line
mode at the beginning of editing sessions, insert the following command at
tne end of your EDT staitup coinimand file:

SET MODE CHANGE

SET QUIET—Suppresses the sound made when EDT issues an error message
in keypad mode. The default is NOQUIET.

7-44 Editing Text Files: Using EDT

7.8.3 Defining EDT Macros

An EDT macro allows you to execute a sequence of EDT line-editing commands
whenever you invoke the macro. To define a macro, use the EDT line-editing
command DEFINE MACRO to define the name of a buffer as the macro
name. Then create and enter a buffer with the same name as the macro. (See
Section 7.6.8 for information about using multiple buffers.) Once in the buffer,
type the EDT line-editing commands in the desired sequence, one command per
line. For example, the following macro inserts a four-line heading:

INSERT;NAME:
INSERT;DEPT:
INSERT;DATE:
INSERT; SUBJ:
[EOB]

Then exit from the buffer. To invoke the macro, enter its name as an EDT line-
editing command. The lines of the heading are inserted at the cursor position:

NAME :
DEPT:
DATE:
SUBJ:

To make a macro available during other editing sessions, you can place the
DEFINE MACRO command and the macro command sequence in an EDT startup
command file. When you include a macro definition in a startup command file,
be sure the command sequence contains the commands for entering the macro
buffer (FIND=buffer-name.) and returning to the MAIN buffer (FIND=MAIN.).
Note that you must precede each command in the sequence with the INSERT
command. For more information about macro definitions, see Section 7.8.3.

Chapter 8
MAIL: Communicating with Other Users

MAIL lets you send messages to other users on your system or on any other
computer that is connected to your system with the DECnet-VAX network. This
chapter describes the routine tasks you can perform using MAIL and how you can
customize MAIL to fit your needs.

For more information about MAIL commands and qualifiers, see the MAIL
description in the Reference Section or type HELP at the MAIL> prompt.

Figure 8-1 shows a sample mail message and its components.

Figure 8-1: Sample Mail Message

Message Number Date Time Folder Name
#1 19-APR-1990 14:12:27 NEWMAIL

Address { From: STONE::FELLINI
Information Tos JONES

Subject Prompt— Subj: Sales presentation on April 20

The meeting to discuss the Hubbub Cola account has been
moved from our conference room to the auditorium.

Message
Text See yon theval
Joe
MAIL Prompt —* MAIL>

ZK-0980A-GE

8-2 MAIL: Communicating with Other Users

8.1 Invoking and Exiting MAIL

To perform MAIL tasks, you invoke MAIL and enter MAIL commands at the
MAIL> prompt.

When the MAIL> prompt has been displayed, you can enter the appropriate
MAIL commands to perform the following tasks:

* Read a mail message
¢ Send a mail message
* Reply to a mail message
¢ Forward a mail message
¢ Organize mail messages

The remaining sections in this chapter describe these tasks and provide examples
for performing them. The Reference Section lists and describes the MAIL
commands and their qualifiers.

Invoking MAIL

To invoke MAIL, enter the following command at the DCL prompt:
$ MAIL

MAIL displays the following prompt:
MAIL>

Exiting from MAIL

To exit from MAIL, enter the EXIT command at the MAIL prompt.
MAIL> EXIT

You can also exit from MAIL by pressing CTRL/Z or using the QUIT command.

NOTE: If you have entered the text of a message, pressing
CTRL/Z will send the message. To cancel a send operation without
exiting from MAIL, press CTRL/C.

8.2 Reading Messages

Invoke MAIL to read an old or new mail message. Messages you receive are
stored in mail files, which have a default file type of MAI. In this file, by default,
MAIL provides two folders that store old and new messages. New messages are
automatically placed in a folder called NEWMAIL; old messages are placed in a
folder called MAIL. After you read a new message, the message is automatically
moved from the NEWMAIL folder to the MAIL folder. You can move between

MAIL: Communicating with Other Users 8-3

these folders to read old or new mail messages by using the SELECT command.
For information about reading old messages, see Section 8.2.2.
8.2.1 Reading a New Message

When you are logged in to your account and receive a mail message, MAIL
notifies you. For example, notification of a message sent by user FELLINI is
displayed as follows:

New mail on node DOODAH from STONE::FELLINI (10:02:23)
To read a new message, use the following procedure:
1. Invoke MAIL.

2. Press RETURN at the MAIL> prompt.
MAIL>

If you have more than one new message, press RETURN at the MAIL> prompt
to read the other messages. When you have read all your new messages, MAIL
issues the message “PMAIL-E-NOMOREMSG, no more messages,” and continues
to prompt for commands until you exit MAIL.

If you receive a mail message while you are in MAIL, enter the READ/NEW
command to read the new message.

8.2.2 Reading Old Messages

To reread old mail messages in your default MAIL folder, use the following
procedure:

1. Enter the SELECT command at the MAIL> prompt:
MAIL> SELECT MAIL

MAIL places you in the MAIL folder.

2. To read the first message in your default MAIL folder, press RETURN at the
MAIL> prompt or enter the READ command.

MAIL displays the first message (1) in your default mail file on the screen.
To display the next message, press RETURN.

If the message is too long to display on one screen, press RETURN to display
the next part of the message.

5. To skip part of a message and display the next message, enter NEXT.

8-4 MAIL: Communicating with Other Users

To read a particular message in your default MAIL folder, use the following
procedure:

1. Enter the DIRECTORY command at the MAIL> prompt:

MAIL> DIRECTORY

MAIL displays a list like the following:
MAIL> DIRECTORY

MAIL
From Date Subject
1 DOLCE: :FELLINI 19-APR-1990 Sales presentation on April 20
2 DOODAH: : JONES 19-APR-1990 Status
MAIL>

2. Enter the number of the message you want to read at the MAIL> prompt.
MAIL> 2

MAIL displays the message that you selected.

If you have many messages, you can locate a particular message by using the
SEARCH command to find a specified string. To search for a string, specify
that string as a parameter to the SEARCH command, as shown in the following
example:

MAIL> SEARCH "appointment"

The SEARCH command selects and displays the first message in the current
folder that contains the specified string.

To search for a new string, specify the string as a parameter to the SEARCH
command. Each time you specify a new string, the SEARCH command starts
the search at message number 1. To continue searching the folder for messages
that contain the specified string, use the SEARCH command without specifying a
parameter.

8.3 Sending a Message
To send a mail message to any user on your system, do the following:
1. Enter SEND at the MAIL> prompt:

MAIL> SEND
MAIL prompts you for the name of the user you want to receive the message.
To:
2. Type the name of the user receiving the message and press RETURN.
To: THOMPSON

MATL prompts you for the subject of the message.
Subj:

MAIL: Communicating with Other Users 8-5

3. Enter the subject of the message and press RETURN. Entering this
information is optional.

Subj: Meeting on April 20

MAIL prompts you for the text of the message.
Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:

4. Enter the text of a message, or just press RETURN. Entering this information
is optional.

I have some new ideas about the Hubbub Cola account. Let me know
when you're available to talk about them.

--Jeff

5. Press CTRL/Z to send the message. If you decide not to send the message,
press CTRL/C, which cancels the send operation without exiting from MAIL.

8.3.1 Sending MAIL over the Network

If your computer system is part of a network, you can send mail to any other user
on the network. If you are sending mail to someone on a different node, you must
enter the user’s node name and user name at the To: prompt using the following
format:

nodename::username
For example, to send a message to user HIGGINS on node CHEETA, enter the
following command and user name:

MAIL> SEND
To: CHEETA::HIGGINS

MAIL displays a message if the network connection to the remote node is not
available. Wait a while and try to send the message later.

8.3.2 Sending a Message to More Than One User

You can send maii to several users at the same time in two ways: using individuai
user names at the To: prompt or using a distribution list.

To send the same message to several users using their user names, enter the user
names at the To: prompt and separate them with commas. For example, to send
a message to Thompson, Jones, and Barney, enter the following:

MAIL> SEND
To: THOMPSON, JONES , BARNEY
Subj: Meeting on January 9

86 MAIL: Communicating with Other Users

Creating a Distribution List

A distribution list is a file that contains a list of users and their node names. You
must use a text editor to create distribution lists; distribution lists are not created
within MAIL,

To create a distribution list, use the following procedure:

1. Create a file, with the file type DIS, using a text editor.

2. Enter one user name per line in the file.

3. To include the names of other distribution lists in the file, specify an at sign
(@) followed by the name of the distribution list.

4. To include comments in the file, enter an exclamation point (!).

The following example shows a distribution list file:

! ALLBUDGET.DIS
]

! Budget Committee Members
@BUDGET { listed in BUDGET.DIS.
! Staff

Thompson

BRUTUS: : JONES

PORTIA: :BARNEY

In the preceding example, if the file BUDGET.DIS is not in the same directory as
the new distribution list file you are creating (ALLBUDGET.DIS), include the file
specification for BUDGET.DIS in the new distribution file. Depending on where
you create ALLBUDGET.DIS, you might have to specify the device and directory
in which BUDGET.DIS is located. (See Chapter 1 for more information about file
specifications.)

Sending a Message to a Distribution List

To send mail to several users using a distribution list, use the following
procedure:

1. Use a text editor to create a distribution list file.
2. Invoke MAIL.

3. Type SEND at the MAIL> prompt and press RETURN:
MAIL> SEND
4. Type an at sign (@) and the file name at the To: prompt. Press RETURN.

To: @ALLBUDGET

5. Type the subject of the message at the Subj: prompt and press RETURN.
Subj: Tomorrow’s Meeting

MAIL: Communicating with Other Users 8-7

6. Enter the text of the message at the text prompt.
Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:
The meeting about the Hubbub Cola account is tomorrow at 2:00.

--Jeff

By default, the system looks for a distribution list file with the file type DIS. If
the file containing your distribution list has a different file type, you must specify
the file name and file type at the To: prompt. If you invoke MAIL while in one
directory and the file containing the distribution list is in another, enter the
distribution list’s full directory name at the To: prompt.

8.3.3 Sending a File

You can send a file to other users from within MAIL or from DCL level. Use the
following procedure to send a file from within MAIL:

1. At the MAIL> prompt, enter SEND and the name of the file you want to send.
MAIL> SEND MEMO.TXT

2. At the To: prompt, enter the user name of the person you want to receive the
file.

To: EDGELL

3. At the Subj: prompt, enter the subject of the file.

Subj: Another memo

4. To send the file, press RETURN; to cancel the send operation, press CTRL/C
or CTRL/Y. CTRL/C keeps you within MATL; CTRL/Y returns you to DCL
level.

When you send a file from DCL level, MAIL is invoked, but you do not enter an
interactive session, nor do you see the MAIL> prompt. When the file is sent, you
are automatically returned to DCL level. When you are sending a file from DCL
level, the argument to the (optional) /SUBJECT qualifier must be enclosed in
quotation marks if it contains any spaces or nonalphanumeric characters.

For example, to send the file MEMO.TXT to user EDGELL on node CHEETA at
DCL level, use the following procedure:

1. At the DCL prompt, enter the following command:

$ MAIL/SUBJECT="Another memo" MEMO.TXT CHEETA::EDGELL
2. Press RETURN to send the file; press CTRL/C to cancel the send operation.

8-8 MAIL: Communicating with Other Users

8.3.4 Creating a File from a Message

To create a text file from a message, enter the EXTRACT command and the file
name at the MAIL> prompt while you are reading the message. For example, to
create a file named JAN_MEETINGS.TXT from the following mail message, enter
the following command:

#1 19-APR-1990 14:12:27 NEWMAIL

From: STONE::FELLINI
To: Thompson
Subj: Dates for January sales meetings

Sales meetings in January will be held on the following dates:
Wednesday Jan. 3, 1990
Tuesday Jan. 9, 1990
Monday Jan. 15, 1990
Thursday Jan. 25, 1990
MAIL>EXTRACT JAN_ MEETINGS.TXT

MAIL displays a message like the following one:
$MAIL-CREATED, DISK:[THOMPSON]JAN MEETINGS.TXT.

When you exit from MAIL, the file is listed in your current directory (unless you
specify another directory).

The mail header is composed of the From:, To:, and Subj: lines. To create a file
that does not include header information, specify the /NOHEADER qualifier to
the MAIL command.

The following example shows how to create a file named
JANUARY_MEETINGS.TXT containing the text of message number 3:

MAIL> READ 3

MAIL> EXTRACT/NOHEADER JANUARY_ MEETINGS.TXT
$MAIL-I-CREATED, DISK1:[JONES]JANUARY MEETINGS.TXT;1 created
MAIL>

If the message has more than one header (for example, a forwarded message),
only the topmost header is deleted.

Use the /APPEND qualifier to the EXTRACT command to copy a message to the
end of an existing file. Use the /ALL qualifier to copy all the files in the current
folder to an existing file.

MAIL: Communicating with Other Users 8-9

8.4 Replying to a Message

To reply to a message you have received, use the following procedure:
1. Type REPLY at the MAIL> prompt and press RETURN.
MAIL displays the following header information:

To: STONE::THOMPSON
Subj: RE: Budget Meeting
Enter your message below. Press CTRL/Z when complete. CTRL/C to quit:

2. Type your message and press CTRL/Z to send the message; press CTRL/C to
quit.

8.5 Forwarding a Message

To forward a mail message to other users, enter the FORWARD command at the
MAIL> prompt after you have read the message.

8.6 Organizing Your Messages

To organize your mail messages, you can create your own mail folders and files.
Each folder and file can contain any number of messages. The name of the
current folder is displayed in the top right corner of the screen each time you
enter a READ or DIRECTORY command. You can work only with messages that
are in your current folder.

Like the default mail folders NEWMAIL, MAIL, WASTEBASKET), the folders
you create are normally stored in the mail file MAIL.MAL

8.6.1 Creating and Modifying Folders
The following MAIL commands allow you to create and modify folders:

¢ FILE or MOVE—Files the current message in the folder you specify. If the
folder does not exist, MAIL displays a message asking if you want to create it.
Aftor being filed, the message is automatically deleted froin the current foider.

¢ COPY—Places a copy of the current message into the folder you specify. If the
folder does not exist, MAIL displays a message asking if you want to create it.
The following commands copy all messages containing the word MEETING
from the current folder to a folder named SCHEDULE. After the commands

8-10 MAIL: Communicating with Other Users

are executed, you have two copies of each message, one in the current folder
and one in the folder SCHEDULE. The first command selects and displays
the first message containing the word meeting:

MAIL> SEARCH MEETING

MAIL> COPY SCHEDULE

Folder SCHEDULE does not exist.

Do you want to create it (Y/N, default is N)?Y
$MAIL-I-NEWFOLDER, folder SCHEDULE created

This command selects and displays the next message containing meeting:
MAIL> SEARCH

MAIL> COPY SCHEDULE
MAIL> SEARCH
$MAIL-E-NOTFOUND, no messages containing 'MEETING’ found

8.7 Selecting Folders

To display a list of the folders in your current mail file, enter the
DIRECTORY/FOLDER command, as shown in the following example:

MAIL> DIRECTORY/FOLDER
Listing of folders in SYSSLOGIN:[JONES]MAIL.MAI;1
Press CTRL/C to cancel listing

MAIL MEETING_MINUTES
MEMOS PROJECT_NOTES
STAFF

To select a new folder as your current folder, use one of the following commands:
¢ SELECT—Selects the specified folder as the current folder.

¢ DIRECTORY—Selects the specified folder as the current folder and lists the
messages in the folder.

e READ—Selects the specified folder as the current folder and displays the
specified message (by default, the first message in the folder).

Deleting Folders

To delete a mail folder, delete all the messages in the folder or move them to
another folder. For example, to delete the messages in the MUSIC folder, enter
the following commands:

MAIL> SELECT MUSIC
$MAIL-I-SELECTED, 2 messages selected
MAIL> DELETE/ALL

MAIL: Communicating with Other Users 8-11

Creating and Accessing Mail Files

To create a mail file, move a message into the file by entering the COPY, MOVE,
or FILE command as you would to create a folder. When MAIL prompts you for
the name of the folder, specify the name of the mail file after the name of the
folder.

For example, to create the mail file ACCOUNTS.MAI, move the current message
into a folder named FEED in the file ACCOUNTS.MAI, and delete the message
from its current folder and file, enter the following commands:

MAIL> MOVE

_Foldexr: FEED
_File: ACCOUNTS

To work within a mail file other than the default mail file, use the MAIL
command SET FILE to specify the alternate file. (The MAIL command SHOW
FILE displays the name of the current mail file.) When you change mail files, the
WASTEBASKET folder of the current mail file is emptied and deleted, and the
mail file is closed.

8.8 Deleting Messages

To delete a mail message from the current folder, either enter the DELETE
command while you are reading the message or enter the DELETE command
followed by the number (or range of numbers) of the message you want to delete.
For example, to delete messages 4, 5, 6, 11, 12, 14, 15, 16, and 17, enter the
following at the MAIL> prompt and press RETURN:

MAIL> DELETE 4-6,11,12,14:17

You can use either the hyphen (-) or the colon (:) to define the range of messages
to be deleted.

Recovering Deleted Messages

When you delete a message, the message is moved to a folder called WASTEBASKET.
Deleted messages collect in the WASTEBASKET folder until you exit from the
rurrent mail fila (cnfhnr hv nvnhng from MATT. or 'hv qnnmﬁnng a difforent mail

file). When you exit from the current mail file, WASTEBASKET is emptied and

the folder itself is deleted. During your interactive MAIL session, you can recover
any deleted message by moving the message out of the wastebasket folder.

8-12 MAIL: Communicating with Other Users

8.9 Customizing Your MAIL Environment

This section describes the following tasks that can help you use MAIL more
efficiently. These tasks are as follows:

* Creating a mail subdirectory
¢ Using a text editor in MAIL
¢ Using the MAIL keypad

8.9.1 Creating a Mail Subdirectory

When you receive mail messages, they are by default written to files named
MAIL$xxxxxxxxxx.MAI located in your top level directory. (Note that the X’s
represent a long, random file specification.) Your default mail file, MAIL.MAI, is
created in your top level directory the first time you receive a mail message. To
avoid the display of MAI files in your top level directory, use the MAIL command
SET MAIL_DIRECTORY. This command creates a mail subdirectory and moves
all your MALI files to that subdirectory. To move the MAI files from a subdirectory
back to your top level directory, use the SET NOMAIL_DIRECTORY command.

TIP: To display the name of the subdirectory that contains all
your MAI files, enter SHOW MAIL_DIRECTORY at the MAIL>
prompt.

MAIL> SHOW MAIL DIRECTORY

MAIL displays the following message:
Your mail file directory is DISKS$: [FELLINI.MAIL]

8.9.2 Using the Mail Keypad

You can use the numeric keypad on your keyboard to execute commands in MATL.
Most keypad keys can execute two commands. To enter the top command for
each key shown in the following diagram, press the appropriate key. To enter the
bottom command shown in the following diagram, press the PF1 key before you
press the key.

MAIL: Communicating with Other Users 8-13

PF1 PF2 PF3 PF4
GOLD HELP EXTMAIL ERASE
DIR/FOLDER EXTRACT SEL/MAIL
7 8 9 -_—
SEND REPLY FORWARD READNEW

SEND/EDIT REP/ED/EXT || FORWD/EDIT || SHOWMNEW

4 5 6 3
CURRENT FIRST LAST DIRINEW

[CURRENT/EDIT| | FIRST/EDIT LAST/EDIT DIR MAIL

1 2 3 ENTER
BACK PRINT DIR

BACK/EDIT || PRINT/PRINOT | | DIR/ST=89999

SELECT

0 -
NEXT FILE

NEXT/EDIT DELETE

ZK-1744-GE

For example, to execute the MAIL command SEND, press the keypad key 7. To
execute the MAIL command SEND/EDIT, press the PF1 key first and then press
keypad key 7. (For more information about mail keypad commands, see MAIL in
the Reference Section.)

You can redefine the keypad keys to execute MAIL commands when you are
in MAIL. Defining keypad keys in MAIL is similar to deﬁmng keypad keys to

+a DOT Ane ana +ha MDOTITNT/IZEVY oo a3 2 NAATT VT T
CXLTULWE L' vas COMIMAnaGs; S€C it wadd N/ ul i COLGMaa i tae MAIL paLu 0L uic

Reference Section for more information.

8.9.3 Using a Text Editor in MAIL

You can use a VMS text editor to write your message before you send it. To do so,
specify the /EDIT qualifier with the SEND command as shown in the following
example:

MAIL> SEND/EDIT

After you respond to the To: and Subj: prompts, MAIL invokes the text editor.
By default, MAIL invokes the EDT editor.

8-14 MAIL: Communicating with Other Users

If you see an asterisk (*) after you enter the subject line and press RETURN,
press the C key to enter the screen editor. To send the message, press CTRL/Z
and enter the EXIT command; to cancel the send operation, press CTRL/Z and
enter the QUIT command.

TIP: By specifying /EDIT when you invoke MAIL, you can use
the editor for send, reply, and forward operations during the
ensuing mail session.

Setting the Default Editor

By default, MAIL invokes the EDT editor when you specify the MAIL command
SEND/EDIT. By entering the TPU parameter to the MAIL command SET
EDITOR, you can specify that the Text Processing Editor be invoked instead.
(EVE is the default TPU editor.) The TPU editor remains your default MAIL
editor (even if you log out of the system and log back in) until you enter the SET
EDITOR EDT command.

For example, to set the default MAIL editor to TPU, enter the following command
at the MAIL> prompt:

MAIL> SET EDITOR TPU

In the following example, the default MAIL editor has been set to TPU, and the
MAIL command SEND/EDIT has been entered at the MAIL> prompt. MAIL
displays the following screen:

Buffer MAIN | Insert | Forward

Enter the text of your message using EVE commands to move around in the
buffer. A buffer is a temporary storage area that exists only during an editing
session. To send the message, press CTRL/Z.

To display the name of the default MAIL editor, enter the MAIL command SHOW
EDITOR.

MAIL> SHOW EDITOR
MAIL displays the default MAIL editor as follows:

Your editor is TPU.

Chapter 9

VMS SORT/MERGE: Sorting and Merging
Files

This chapter describes how to use VMS SORT/MERGE to perform the following
tasks:

* Sort records from one or more input files according to the fields you select and
generate one reordered output file.

* Merge up to 10 input files that have been previously sorted according to the
same key fields and generate one output file.

9.1 Sorting Records

A file record is similar to a line of text in a file. Record sorting, the default

sort operation, keeps records intact and produces an output file consisting of
complete records. Records can be subdivided into fields, which describe individual
segments of the record. A field is specified by the starting position of its first
character in the record and the length, in characters, of the field. You can sort
records based on the contents of certain fields by specifying the field as a sort key.

The following example illustrates an ascending (the default) record sort based on
that portion of each record starting at character position 8 and extending to the
end of the record (the name):

$ SURL/AmI=(FU51T10N=-0,5185-10) LHMrLOYEm.LST BYWAHE.LOT

—BYNAME.LST

EMPLOYEE.LST—

B 7828 MCMAHON JANE

A 7933 ROSENBERG HARRY
C 8102 KNIGHT MARTHA

A 8042 BENTLEY PETER

B 7951 LONG FRANK

A 8042 BENTLEY PETER

C 8102 KNIGHT MARTHA

B 7951 LONG FRANK

B 7828 MCMAHON JANE

A 7933 ROSENBERG HARRY

ZK-1748-GE

9-2 VMS SORT/MERGE: Sorting and Merging Files

The following example sorts the same file in descending order using the field in

character positions 3 through 6 (the number) as the sort key:
$ SORT/KEY= (POSITION=3, SIZE=4,DESCENDING) EMPLOYEE.LST BYNUMBER.LST

B 7828 MCMAHON JANE
A 7933 ROSENBERG HARRY
C 8102 KNIGHT MARTHA
A 8042 BENTLEY PETER

EMPLOYEE.LST—

BYNUMBER.LST——

C 8102 KNIGHT MARTHA

A 8042 BENTLEY PETER

B 7951 LONG FRANK

A 7933 ROSENBERG HARRY

B 7951 LONG FRANK B 7828 MCMAHON JANE

ZK-1749-GE

The first parameter of the SORT command names the file or files to be sorted.
Multiple files are treated as one large file for sorting purposes. The second
parameter provides a name for the ordered output file that the sort will create.
The following example sorts the records in two files, EMPLOYEE.LST and
EMPLOYER.LST, and creates the ordered output file BYNAME.LST:

$ SORT EMPLOYEE.LST,EMPLOYER.LST BYNAME.LST

Single Key

By default, the SORT command assumes that a key field in a record has the
following characteristics:

* Begins in the first position of a record
* Includes the entire record

* Contains character data

¢ Will be sorted in ascending order

Use the /KEY qualifier to specify characteristics of the key field other than those
assumed by default.

In the following example, the /KEY qualifier specifies that the key field starts in
position 8 and is 15 characters long:

$ SORT/KEY=(POSITION=8,SIZE=15) EMPLOYEE.LST BYNAME.LST

(If an actual key would have to extend beyond the end of the record to meet the

size specification—for example, if the key is the last item in a variable-length
format—the missing characters are treated as null characters.)

VMS SORT/MERGE: Sorting and Merging Files 9-3

Multiple Keys

You can specify more than one key field, up to a limit of 255 characters. Each
key can be ascending or descending. Specify multiple keys in the order of their
priority in the sort. For example, the following command sorts records first on the
value of position 1 in descending order, then on the value of positions 8 through

27 (or the end of the record) in ascending order:

$ SORT/KEY=(POSITION=1,SIZE=1,DESCENDING) -

_$ /KEY=(POSITION=8, SIZE=15) -
_$ EMPLOYEE.LST DEPTNAME.LST

The results of the sort specified in the preceding example are as follows:

B 7828 MCMAHON JANE

A 7933 ROSENBERG HARRY
C 8102 KNIGHT MARTHA

A 8042 BENTLEY PETER

B 7951 LONG FRANK

——EMPLOYEE.LST—

—DEPTNAME.LST—

C 8102 KNIGHT MARTHA

B 7951 LONG FRANK

B 7828 MCMAHON JANE

A 8042 BENTLEY PETER

A 7933 ROSENBERG HARRY

ZK-1764-GE

By default, records with identical keys are kept but not sorted predictably. To
retain identical keys and arrange them according to the input file order, specify
the /STABLE qualifier. To eliminate duplicate keys, specify the / NODUPLICATES

qualifier.

9.2 Sorting Character Data Files

The SORT command assumes by default that the files to be sorted contain
character data. Characters are sorted according to a collating sequence, which
describes the order in which characters are arranged (A, B, C, and so on).

ASCII is the default collating sequence for character data. In general, ASCII
orders numbers (0 through 9) firsi, then uppercase letters (A through Zj, and
then lowercase letters (a through z).

You can specify the EBCDIC collating sequence to generate an output file
that is ordered in EBCDIC sequence (although it remains in ASCII repre-
sentation). To use the EBCDIC collating sequence, specify the /COLLATING_
SEQUENCE=EBCDIC qualifier.

The multinational collating sequence collates characters according to the
international character set defined by Digital (see the Reference Section).
The multinational collating sequence compares for different characters first,
then for different diacritical forms of the same character (formed by using
diacritical marks as part of “compose sequences” on VIT200-series terminals),
and then for different cases (uppercase or lowercase) of the same character.

9-4 VMS SORT/MERGE: Sorting and Merging Files

To use the multinational collating sequence, specify the /COLLATING._
SEQUENCE=MULTINATIONAL qualifier.

NOTE: Use caution when using the multinational collating
sequence to sort or merge files for further processing. Sequence-
checking procedures in most programming languages compare
numeric characters. Because the multinational sequence is based
on actual graphic characters (and not the codes representing those
characters), normal sequence checking will not work.

9.3 Sorting Noncharacter Data Files

If you sort files containing items other than character data, you must specify the
data type of each key. Also, you must take care in calculating starting positions
and sizes, because the items being compared may occupy more than 1 byte.

For example, if you are sorting a file that contains 20 characters followed by 3
floating-point numbers in F_floating format, and the key is the last floating-point
number, you must make the following specification:

$ SORT/KEY=(POSITION=29,F FLOATING) STATS.RAW STATS.SOR

In the example, the character data occupies positions 1 through 20 (20
characters), the first F_floating-point number occupies position 21 through 24,
the second F_floating-point number occupies positions 25 through 28, and the
third F_floating-point number occupies positions 29 through 32. The size of the
floating-point number is not specified (because it is fixed at 4 bytes).

9.4 Entering Records from a Terminal

The records to be sorted or merged need not be in a file. You can enter the records
directly from the terminal as you enter the SORT or MERGE command.

To enter the input records for a sort or merge operation from your terminal,
specify SYS$INPUT as the input file parameter, qualifying it with the size of the
longest record (in bytes) and the approximate size of the input file (in blocks).
After you enter the command, enter the input records on successive terminal
lines. End each record by pressing RETURN. End the file by pressing CTRL/Z.

The following example demonstrates a sort operation in which the input records
to be sorted are entered directly from the terminal:

$ SORT/KEY=(POSITION=8,SIZE=15) -

_$ SYS$INPUT/FORMAT=(RECORD_SIZE=22,FILE_SIZE=10) BYNAME.LST
B 7828 MCMAHON JANE

A 7933 ROSENBERG HARRY [RET]

C 8102 KNIGHT MARTHA [RET]

A 8042 BENTLEY PETER[RET]

B 7951 LONG FRANK [RET]

-

VMS SORT/MERGE: Sorting and Merging Files 9-5

9.5 Submitting Batch Jobs

If you are sorting large files, you should consider submitting the sort operation
as a batch job, because the sort will require some time. Batch jobs are programs
or DCL command procedures that run independently of your current session. See
Section 10.4 and Section 13 for more information about batch jobs and command
procedures, respectively.

If the records to be sorted are in a file, the command procedure you submit as
a batch job must contain the SORT command and explicitly set your default
directory or include the directory in the command file specifications. The
following example submits the DCL command procedure SORTJOB.COM as a
batch job. The text of the command procedure is shown following the command
line:

$ SUBMIT SORTJOB

! SORTJOB.COM

]

$ SET DEFAULT [USER.PER] ! Set default to location of input files
$ SORT/KEY=(POSITION=8,SIZE=15) EMPLOYEE.LST BYNAME.LST

You can include the input records in the batch job by placing them after the
SORT command, one record per line, as shown in the following example. As with
terminal input of records, you specify the input file parameter as SYSSINPUT
and qualify it with the record size (in bytes) and the approximate file size (in
blocks):

$ SUBMIT SORTJOB

! SORTJOB.COM
!

$ SET DEFAULT [USER.PER]

$ SORT/KEY=(POSITION=8,SIZE=15)-
SYS$SINPUT-

/FORMAT= (RECORD_SIZE=22,FILE_SIZE=10) -
BYNAME.LST

B 7828 MCMAHON JANE

A 7933 ROSENBERG HARRY

C 8102 KNIGHT MARTHA

A 804z BENTLEY PETER

B

7951 LONG FRANK

9.6 Merging Files

The MERGE command combines up to 10 sorted files into one ordered output file.
The input files must all have the same format, and all must have been sorted on
the same key fields.

The following example demonstrates the merging of two files based on the field
in each record starting at position 8 and extending to the end of the record (the
name field):

$ MERGE/KEY=(POSITION=8, SIZE=15) BYNAMEl.LST,BYNAME2.LST BYNAME3.LST

9-6 VMS SORT/MERGE: Sorting and Merging Files

BYNAME1.LST

A 8042 BENTLEY PETER

C 8102 KNIGHT MARTHA

B 7951 LONG FRANK

B 7828 MCMAHON JANE

A 7933 ROSENBERG HARRY

C 7212 KRAMER KARL
C 8323 NORTON FLORENCE
A 8240 TROUT SAM

BYNAME2 LST—

——»

By default, MERGE does sequence checking to ensure that the input files are in

BYNAMES.LST

A 8042 BENTLEY PETER

C 8102 KNIGHT MARTHA

C 7212 KRAMER KARL

B 7951 LONG FRANK

B 7828 MCMAHON JANE

C 8323 NORTON FLORENCE
A 7933 ROSENBERG HARRY
A 8240 TROUT SAM

ZK-1771-GE

order. The sequence check stops the merge and reports an error if a record is

found to be out of order. To prevent sequence checking during the merge, specify

the /NOCHECK_SEQUENCE qualifier.

Chapter 10
Processes: Using the VMS Environment

A process is an environment created by the system that lets you interact with the
VMS operating system.

The system creates a process for you when you perform one of the following tasks:
¢ Log in—The system creates a process for each interactive user.

¢ Submit a batch job—The system creates a process for each batch job. When
the batch job is completed, the system deletes the process.

* Spawn a subprocess—The system creates a process when you use the SPAWN
command.

¢ Run a program using either the /DETACHED qualifier or the /UIC=uic
qualifier.

This chapter describes how and when to use the following processes:
* Subprocesses

* Programs

¢ Batch jobs

10.1 Interpreting Your Process Context

Characteristics that a process uses, such as privileges, symbols, and logical names
form a process context. To display the process context for your current process,
enter the SHOW PROCESS/ALL command. The following example shows a
sample process context:

19-APR-1990 13:30:37.12 @ User: CLEAVER @

pid: 24£0030C @ Proc. name: cLEAvER 1 @ vIC: [DOC,CLEAVER] ©

Priority: 4 @ Default file spec: DISK1: [CLEAVER] e

10-2 Processes: Using the VMS Environment

Process Quotas: @
Account name: DOC

CPU limit: Infinite Direct I/O limit: 18
Buffered I/0 byte count quota: 31808 Buffered I/O limit: 25
Timer queue entry quota: 10 Open file quota: 57
Paging file quota: 22276 Subprocess quota: 4
Default page fault cluster: 64 AST quota: 38
Enqueue quota: 600 Shared file limit: 0
Max detached processes: 0 Max active jobs: 0

Accounting information: @

Buffered I/0 count: 140 Peak working set size: 383
Direct I/0 count: 7 Peak virtual size: 2336
Page faults: 304 Mounted volumes: 0
Images activated: 1

Elapsed CPU time: 0 00:00:00.55

Connect time: 0 00:00:22.76
Process privileges: ﬂ@

GROUP may affect other processes in same group
TMPMBX may create temporary mailbox

OPER operator privilege

NETMBX may create network device

Process rights identifiers: 0
INTERACTIVE

LOCAL

SYS$NODE_ZEUS

Process Dynamic Memory Area @

Current Size (bytes) 25600 Current Total Size (pages) 50
Free Space (bytes) 19592 Space in Use (bytes) 6008
Size of Largest Block 19520 Size of Smallest Block 24
Number of Free Blocks 3 Free Blocks LEQU 32 Bytes 1

Processes in this tree: @
CLEAVER
CLEAVER 1 (%)

© Current date and time—The date and time when the SHOW PROCESS/ALL
command is executed.

® User name—The user name assigned to the account that is associated with
the process.

© Process identification number (PID)—A unique number assigned to the
process by the system. The SHOW PROCESS command displays the PID as
a hexadecimal number.

® Process name—The name assigned to the process. Since process names
are unique, the first process logged in under an account is assigned the
user name, and subsequent processes logged in under the same account are
assigned the terminal name. You can change your process name with the
DCL command SET PROCESS/NAME.

Processes: Using the VMS Environment 10-3

@ User identification code (UIC)—The group and member numbers (or letters)
assigned to the account that is associated with the process (for example,
[PERSONNEL,RODGERS]). Part of your UIC identifies the group to which
you belong. Within a group, users are allowed to share files or system
resources more freely than between groups.

Priority—The current priority of the process.

o

Default file specification—The current device and directory. Change your
current defaults with the DCL command SET DEFAULT.

® Process quotas—The quotas (limits) associated with the process. Examine
these quotas with the /QUOTAS or /ALL qualifiers of the SHOW PROCESS
command.

© Accounting information—The continuously updated account of the process’s
use of memory and CPU time. Examine this information with the
/ACCOUNTING or /ALL qualifiers of the SHOW PROCESS command.

@ Process privileges—The privileges granted to your processes. Privileges
restrict the performance of certain system activities to certain users. Examine
your privileges with the /PRIVILEGES or /ALL qualifiers of the SHOW
PROCESS command.

@® Process rights identifiers—System-defined identifiers that are used in
conjunction with access control list protection. Identifiers provide the means
of specifying the users in an access control list. An access control list is a
security tool that defines the kinds of access to be granted or denied to users
of an object, such as a file, device, or mailbox.

® Process dynamic memory area—The process’s current use of dynamic memory.
Dynamic memory is allocated by the system to an image when that image is
executing. When that memory is no longer needed by one process, the system
allocates it to another process. Examine this information with the /MEMORY
or /ALL qualifiers of the SHOW PROCESS command.

® Processes in this tree—A list of subprocesses belonging to the parent process.
An asterisk appears after the current process. Examine this with the DCL
SHOW PROCESS/SUBPROCESSES or /ALL command.

10.2 Using Subprocesses

The SPAWN command enables you to create a subprocess of your current process.
Within this subprocess, you can interact with the system and log out of the
subprocess to return to your parent process, or switch between your parent
process and subprocesses. Only one of your processes is executing at any time.

104 Processes: Using the VMS Environment

By default, the subprocess assumes the name of the parent process followed by
an underscore and a unique number. For example, if the parent process name is

DOUGLASS, the subprocesses are named DOUGLASS_1, DOUGLASS_2, and so
on.

Typically, you use a subprocess in one of the following two ways:

* To interrupt a task, perform a second task, then return to the original task—
You can use CTRL/Y to interrupt one task, spawn a subprocess to perform
a second task, exit from the subprocess, and then enter the CONTINUE
command to return to the original task. By default, when you create a
subprocess, the parent process hibernates, and you are given control at DCL
level within the subprocess. Your default directory is the current directory of
the parent process. (If you interrupt the EDT editor, enter the CONTINUE
command and press CTRL/W to refresh the screen.)

¢ To perform a second task while continuing to work on your original task—
You can create the subprocess with the SPAWN/NOWAIT command.
SPAWN/NOWAIT generates a noninteractive, batch-like subprocess and is
used to execute only commands that do not require input.

Because both the parent and the subprocess are executing concurrently,
both attempt to control the terminal. To prevent conflicts, also specify the
following:

— /OUTPUT qualifier—Indicates that the subprocess should write output to
a specified file rather than to the terminal.

~ SPAWN command parameter or /INPUT qualifier—Indicates that the
subprocess should execute the specified commands rather than reading
input from the terminal.

When you specify the /INPUT qualifier of the SPAWN command, the
subprocess is created as a noninteractive process that exits upon encountering
a severe error or an end-of-file indicator. At DCL level, CTRL/Z is treated as
an end-of-file indicator.

10.2.1 Creating a Subprocess

In the following example, a user interrupts a command image (the TYPE
command) with CTRL/Y, spawns a subprocess, exits from the subprocess, and
returns to the original process:

Processes: Using the VMS Environment

$ TYPE MICE.TXT

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They’re looking for food and
shelter from the harsh weather ahead.

$ SPAWN

$DCL-S~-SPAWNED, process DOUGLASS_1 spawned

%DCL-S-ATTACHED, terminal now attached to process DOUGLASS_1
$ MAIL .

MAIL>

MAIL> EXIT
$ LOGOUT

Process DOUGLASS_1 logged out at 31-DEC-1988 12:42:12.46
$DCL-S~-RETURNED, control returned to process DOUGLASS
$ CONTINUE
Once inside, they may gnaw through electrical wires and raid
your food. Because mice reproduce so quickly, what started
as one or two mice can quickly become an invasion. If you seal
the cracks and holes on the exterior of your foundation, you can
prevent these rodents from ever getting in.

10-5

Because each process you create is unique, commands executed in one process do
not usually affect any other process. However, because control of the terminal
passes between processes, commands that affect the terminal characteristics (for
example, SET TERMINAL) affect any process controlling that terminal. For
example, if one process inhibits echoing and exits without restoring it, echoing
remains inhibited for the next process that gains control of the terminal. Reset

any altered terminal characteristics with the SET TERMINAL command.

10.2.2 Exiting from a Subprocess

To exit from a subprocess created by SPAWN, use one of the following commands:

* LOGOUT—When you exit from a subprocess with the LOGOUT command,
the subnrocess is deleted (along with any subprocesses that it created), and

you are returned to the parent process.

¢ ATTACH—When you exit from a subprocess with the ATTACH command,
the subprocess hibernates, and control of your terminal is transferred to the
specified process. (You must specify either a process name as a parameter to
the ATTACH command or a process identification number (PID) as a value of
the /IDENTIFIER qualifier of the ATTACH command.) The following example

shows how to exit from the subprocess DOUGLASS_1 and attach to the

process DOUGLASS:

106 Processes: Using the VMS Environment

$ ATTACH DOUGLASS
$DCL-S-RETURNED, control returned to process DOUGLASS
$ SHOW PROCESS

19-APR-1990 10:34:58.50 VTA303 User: DQUGLASS
Pid: 25C002B4 Proc. name: DOUGLASS UIC: [200,200]
Priority: 4 Default file spec: SYS$SYSDEVICE: [DOUGLASS]

Devices allocated: 11VTA303:

10.2.3 Looking at a Subprocess Context

By default, a subprocess inherits the following items from the parent process:
defaults, privileges, symbols, logical names, control characters, message format,
verification state, and key definitions. The environment that these items
collectively create is called the process context. The following items, however,
are not inherited from the parent process:

* Process identification number (PID)—The system assigns each created
subprocess a unique process identification number.

¢ Process name—By default, the subprocess name consists of the name of the
parent process followed by an underscore and an integer. Use the /PROCESS
qualifier of the SPAWN command to specify a process name other than the
default. A process name must be unique.

® Created commands—Commands that are defined by a parent process using
the SET COMMAND command are not copied to a subprocess. To use a
created command in a subprocess, you must use SET COMMAND to create
that command for the subprocess.

e Authorize privileges—When you spawn to a subprocess, the process context
contains the privileges of the parent process, not the privileges that you are
authorized to enable. For example, if you spawn to a subprocess while in
MAIL and want to perform a privileged operation, you need to have set the
proper privilege in the parent process before you invoked MAIL.

You can use the following SPAWN qualifiers to prevent the subprocess from
inheriting a number of these items:

Qualifier Items Inhibited or Changed
/CARRIAGE_CONTROL, /PROMPT DCL prompt

/NOCLI CLI (command language interpreter; DCL by default)
/NOKEYPAD Keypad definitions ‘
/NOLOGICAL_NAMES Logical names

/NOSYMBOL Symbols

Processes: Using the VMS Environment 10-7

The /SYMBOL and /LOGICAL _NAMES qualifiers do not affect system-defined
symbols (such as $SEVERITY and $STATUS) or system-defined logical names
(such as SYS$COMMAND and SYS$OUTPUT). Symbols are described in
Chapter 12, and logical names are described in Chapter 11.

Because copying logical names and symbols to a subprocess can be time-
consuming (a few seconds), you may want to use the /NOLOGICAL_NAMES
and /NOSYMBOL qualifiers to the SPAWN command unless you plan to use the
logical names or symbols in the subprocess. If you use subprocesses frequently,
the ATTACH command provides the most efficient way to enter and exit a
subprocess. This method allows you to transfer control quickly between the
parent process and subprocess rather than repeatedly waiting for the system to
create a new subprocess for you.

10.3 Executing Programs Across the Network

Because of support provided by DECnet-VAX, programs can execute across the
network as if they were executing locally. Because DECnet-VAX is integrated
within the VMS operating system, it is easy to write programs that access remote
files. To access a remote file in an application program, you need only include

in your file specification the name of the remote node and any required access
control information.

Task-to-task communications, a feature common to all DECnet implementations,
allows two application programs running on the same or different operating
systems to communicate with each other regardless of the programming
languages used. Examples of network applications are distributed processing
applications, transaction processing applications, and applications providing
connection to servers.

10.4 Using Batch Jobs

A batch job is a noninteractive process. Because a batch job executes in a process
of its own, you can have two or more processes doing different things at the same
time. For example, you can perform a computer task interactively while the
system executes a program or command procedure in batch mode.

The following sections describe how to use batch jobs to perform computing tasks.

10.4.1 Submitting a Batch Job

To run a job in batch mode, submit your job to a batch queue (a list of batch jobs
waiting to execute) by entering the DCL command SUBMIT. When you submit
a job, it is directed to the default batch queue, SYS$BATCH, where it is added
to the end of the queue of jobs waiting to be executed. When the jobs preceding
yours are completed, your job is executed. (On a VMS system, the number of
batch jobs that can execute simultaneously is specified when the batch queue is
created by the system manager.)

10-8 Processes: Using the VMS Environment

By default, the SUBMIT command uses a file type of COM. For example, the
following command enters JOB1.COM into SYS$BATCH:

$ SUBMIT JOBL
Job JOBl (queue SYS$BATCH, entry 651, started on SYSS$BATCH)

The system displays the name of the job, the queue containing the job, and the
entry number assigned to the job. You receive the DCL prompt once your job is
submitted to the batch queue. If you need to reference your batch job in any DCL
commands (DELETE/ENTRY, for example), do so by using the job entry number.
(You can obtain the job entry number by using the SHOW ENTRY command.)
Note that if multiple procedures are submitted in a batch job, the batch job
terminates when any procedure exits with an error or fatal error status.

Your batch job does not necessarily have to start running at the time you submit
it to the batch queue. To specify a different time, enter the SUBMIT/AFTER
command. In the following example, the job is submitted after 11:30 p.m.:

$ SUBMIT/AFTER=23:30 JOBl.COM

10.4.2 Batch Job Output

By default, accumulated output from a batch job is written to a log file once
each minute. (To specify a different time interval, include the SET OUTPUT_
RATE command in your command procedure.) If you attempt to use the EDT
editor to read the log file while the system is writing to it, you receive a message
indicating that the file is locked by another user. Wait a few seconds and try
again. The EVE editor, however, allows you to read the batch job’s log file. By
specifying EDIT/TPU/READ_ONLY and the name of the log file, you can use EVE
commands to move around the log file and ensure that any changes you make to
the file are not saved. If you omit the /READ_ONLY qualifier and modify the log
file in any way, the batch job terminates.

Because your batch job is a process that logs in under your user name and
executes your login command procedure, the output from a batch job includes the
contents of your login command procedure. The output also includes everything
written to the batch job log file (command procedure output, error messages, and
so on) and the full logout message. To prevent your login command procedure
from being written to the batch log file, add the following command to the
beginning of your login command procedure:

$ IF F$MODE() .EQS. "BATCH" THEN SET NOVERIFY

By default, the log file name is the name under which you submitted the job.
Also by default, the log file has a file type of LOG and assumes the device and
directory specified by your login defaults. To specify a different log file name when
you submit the job, use the /LOG_NAME qualifier to the SUBMIT command.

When the batch job completes, the log file is queued to the default system printer
(SYS$PRINT), printed, and deleted. To save the log file after printing it, use the
/KEEP qualifier to the SUBMIT command. To save the log file without printing
it, use the /NOPRINT qualifier to the SUBMIT command.

Processes: Using the VMS Environment 10-9

10.4.3 Restarting a Batch Job

If the system fails while your batch job is executing, your job does not complete.
When the system recovers and the queue is restarted, your job is aborted, and the
next job in the queue is executed. However, by specifying the /RESTART qualifier
when you submit a batch job, you indicate that the system should reexecute your
job if the system crashes before the job is finished.

By default, a batch job is reexecuted beginning with the first line. See Chapter 13
for more information about symbols you can add to your command procedures to
specify a different restarting point.

Chapter 11

Logical Names: Defining Names for Devices
and Files

A logical name is a string of characters (for example, WORK_DISK or PAY_FILE)
that is usually equated to a file name, device name, or other logical name. For
example, when you equate the name WORK_DISK to a physical device DRA1,
then WORK_DISK is a logical name and DRA1 is an equivalence string.

Logical names can be defined by you or by the system. This chapter describes
how you can create and use logical names to perform the following tasks:

* Reduce typing by using logical names as a short way of specifying files or
directories you refer to frequently.

¢ Avoid confusion about the location of disk volumes.

¢ Keep your programs and command procedures independent of physical file
specifications. (For example, if a command procedure references the logical
name ACCOUNTS, you can equate ACCOUNTS to any file on any disk before

executing the command procedure.)

This chapter also discusses the logical names created by the system.

11.1 Creating Logical Names

You can create your own logical names with either the ASSIGN or the DEFINE
command. Usually, you define logical names in your login command procedure
(login.com), so you can use the logical name whenever you are logged in. You
can also create logical names interactively; however, you will be able to use these
logical names only while your current process is active. Your system manager can
also create logical names that can be used by anyone logged in to the system.

This section uses the DEFINE command to create logical names. (Note that
the syntax for the ASSIGN command differs from the syntax for the DEFINE
command. For information on using the ASSIGN command, see the Reference
Section.

11-2 Logical Names: Defining Names for Devices and Files

The syntax for defining a logical name is as follows:

DEFINE logical-name equivalence-namel,...]

For example, to associate the logical name WORK_DISK with the equivalence
name DRAI, use the following command either at DCL level or in your login.com:

$ DEFINE WORK_DISK DRAL:

After you have defined this logical name, you can use the logical name
(WORK_DISK) interchangeably with the equivalence name (DRA1).

11.1.1 Rules for Creating Logical Names

Observe the following rules when creating a logical name with the DEFINE
command:

* A logical name and its equivalence name can each have a maximum of 255
characters. A logical name can contain alphanumeric characters, as well as
the underscore (_), dollar sign ($), and hyphen (-).

¢ When specifying an equivalence name, you must include the punctuation
marks (colons, brackets, periods) that would be required if it were part of
a file specification. For example, a device name is terminated by a colon,
a directory specification is enclosed in square brackets, and a file type is
preceded by a period.

¢ You can optionally terminate a logical name with a colon. If you do this, the
ASSIGN command removes the colon before placing the logical name in a
logical name table. The DEFINE command does not remove the colon before
placing the name in a logical name table.

In general, you should not specify a colon at the end of a logical name when
you are creating it. However, if you do so and want to save the colon as part
of the logical name, use the DEFINE command. (Note that when you delete a
logical name ending with a colon, you need to specify two colons because the
DEASSIGN command, like the ASSIGN command, removes one colon before
it searches the logical name table for a match.)

If the logical name is part of a file specification, the logical name must be the
leftmost component of the file specification and must be separated from the rest
of the file specification by a colon. When you use a logical name to represent a
complete file specification, the terminating colon is not needed. For example, the
following commands display the file DISK1:[SALES_STAFF]PAYROLL.DAT:

Logical Names: Defining Names for Devices and Files 11-3

DEFINE PAY DISK1:[SALES_ STAFF]PAYROLL.DAT
TYPE PAY

DEFINE PAY FILE DISKLl:[SALES_STAFF]PAYROLL
TYPE PAY FILE:.DAT

DEFINE PAY DIR DISK1: [SALES_STAFF]
TYPE PAY DIR:PAYROLL.DAT

DEFINE PAY DISK DISK1:
TYPE PAY DISK: {SALES_STAFF]PAYROLL.DAT

wvr ey A

By default, the DEFINE command places logical names in your process logical
name table, where the logical name is available only to your process and
subprocesses. Section 11.4 describes logical name tables.

11.1.2 Equating More Than One Equivalence Name

You can equate more than one logical name with an equivalence name. For
example, you can equate the logical names $TERMINAL and CONSOLE to the
physical name of a terminal so that both logical names translate to the same
device. (If you equate a logical name to more than one equivalence string in a
single command, you create a search list for the system to use to translate the
names. See Section 11.8 for information about search list translation.)

If you equate a logical name to one equivalence string and then equate the same
logical name to another equivalence string, the second definition supersedes the
first. You can, however, equate the same logical name to different equivalence
strings if the logical name definitions are in different tables (described in
Section 11.4). You can equate the same logical name to different equivalence
strings in the same table if they are defined in different access modes (described
in Section 11.6).

If you cannot access a file and the command you are specifying and the file
specification seem in order, check the left-hand component of the file specification
(with SHOW LOGICAL) to be sure that it is not defined as a logical name.

11.2 Displaying Logical Names

You can show the equivalence name for a logical name with the SHOW LOGICAL
command. For example, to display the equivalence name for the logical name
WORK_DISK, enter the following command:

$ SHOW LOGICAL WORK_DISK

The system displays the following information:
"WORK_DISK" = "DRAL:"" (LNM$PROCESS_TABLE)

114 Logical Names: Defining Names for Devices and Files

11.3 Deleting Logical Names

To delete a logical name, use the DEASSIGN command. For example, to define
the logical name STAFF to the subdirectory, [JONES.STAFF1], enter the following
command:

$ DEFINE STAFF [JONES.STAFF]

To delete this logical name, enter the following command:
$ DEASSIGN STAFF

Logical names in your process and job tables are automatically deleted when
your process terminates. However, if you specify the /USER_MODE qualifier to
the DEFINE command, you can place a logical name in the process logical name
table and execute one command image before the logical name is deleted.

11.4 Understanding Logical Name Tables

The system stores logical names and their equivalence strings in tables called
logical name tables. The system provides the following logical name tables:

* Process table

e Job table

* Group table

* The system table

Some logical name tables are available only to your process; these tables are
called process-private. Other tables are shareable; that is, they are available
to other users on the system.

When you enter a logical name as part of a command line, the system translates
the logical name by searching the logical name tables in a certain order.
Information about existing logical name tables and the order in which they are
searched is stored in two logical name directory tables.

Identical logical names can exist in more than one table. The logical name that
is used depends on the order in which the logical name tables are searched.

For example, when the system attempts to translate a logical name in order to
identify the location of a file, it uses the logical name LNM$FILE_DEV to provide
the list of tables in which to look for the name. The order in which the tables
are listed is also the order in which they are searched. The precedence order
defined by LNM$FILE_DEYV is (1) process table, (2) job table, (3) group table,
and (4) system table. Therefore, if a logical name exists in both the process and
the group logical name tables, the logical name within the process table is used.
See Section 11.5.2 for more information about LNM$FILE_DEV.

Within each table, the system defines some logical names for you. Each table and
its system-defined logical names are described in the following sections.

Logical Names: Defining Names for Devices and Files 11-5

11.4.1 The Process Table

Your process logical name table, named LNM$PROCESS_TABLE, contains logical
names that are available only to your process and any subsequent subprocesses.
Use the logical name LNM$PROCESS to refer to the process table.

Process logical names are recognized by the process they were created in and by
any subsequent subprocesses. However, process logical names are not recognized
by any parent process.

To display the logical names in your process table, use the following command:

$ SHOW LOGICAL/PROCESS

You can also specify the SHOW LOGICAL/TABLE=table_name command to
display the contents of any logical name table.

By default, the DEFINE and DEASSIGN commands place names in and delete
names from your process table.

Every process on the system has a process logical name table. When you log in,
the system creates logical names for your process and places them in your process
table. These names are listed in Table 11-1.

Table 11-1: Default Process Logical Names

Logical Name Description

SYS$COMMAND The initial file (usually your terminal) from which DCL reads input.
(A file from which DCL reads input is called an input stream.) The
command interpreter uses SYSSCOMMAND to “remember” the original
input stream.

SYS$DISK Default device established at login or changed by the SET DEFAULT
command.

SYS$ERROR The default device or file to which DCL writes error messages generated
by warnings, errors, and severe errors.

SYS$INPUT The default file from which DCL reads input.

SYSSNET The source process that invokes a target process in DECnat-VAY

task-to-task communication. When opened by the target process,
SYS$NET represents the logical link over which that process can
exchange data with its partner. SYS$NET is defined only during
task-to-task communication.

SYS$OUTPUT The default file (usually your terminal) to which DCL writes output. (A
file to which DCL writes output is called an output stream.)
T Default device name for terminals.

Note that the logical names SYS$INPUT, SYS$OUTPUT, SYS$ERROR, and
SYS$COMMAND refer to files that remain open for the life of the process.

11-6 Logical Names: Defining Names for Devices and Files

They are referred to as process-permanent files. For more information on
process-permanent files, see Section 11.10.1.

11.4.2 The Job Table

Your job logical name table contains logical names that are available to all
processes in your job tree, no matter what process or subprocess you are currently
in. Your job table is named LNM$JOB_xxx, where xxx is the Job Information
Block address (defined by the system) for your job tree. Use the logical name
LNM$JOB to refer to your job table.

When you log in, the system creates certain logical names and places them in the
job logical name table. These names are listed in Table 11-2. In addition, the
logical names created for mounted disks and tapes and temporary mailboxes are
also placed in the job logical name table.

Table 11-2: Default Job Logical Names

Logical Name Description

SYS$LOGIN Your default device and directory when you log in.
SYS$LOGIN_DEVICE Your default device when you log in.

SYS$REM_ID For jobs initiated through a DECnet network connection, the

identification of the process on the remote node from which the job
was originated. On VMS operating systems, if proxy logins are enabled,
this identification is the process’s user name, or, if proxy logins are not
enabled, this is the process identification number (PID). (Proxy logins
to proxy accounts allow users to access files across the network without
specifying an access control string.)

SYS$REM_NODE For jobs initiated through a DECnet network connection, the name of
the remote node from which the job was originated.
SYS$SCRATCH . Default device and directory to which temporary files are written.

There is one job table for each job tree in the system. All job tables are shareable
so that all users may access them. However, to access a job logical name table
other than your own, you must redefine LNM$JOB in your process directory
logical name table. For more information about LNM$JOB, see Section 11.5.

11.4.3 The Group Table

The group logical name table contains logical names that are available to all
users with the same user identification code (UIC) group number. The group
table is named LNM$GROUP_xxx, where xxx represents your UIC group number.
Use the logical name LNM$GROUP to refer to your group table. Every group on
the system has a corresponding group logical name table.

Logical Names: Defining Names for Devices and Files 11-7

To create or delete a name in your group table, you need GRPNAM, GRPPRY, or
SYSPRYV privilege. See the VMS System Manager’s Manual for a description of

user privileges.

11.4.4 The System Table

The system logical name table contains logical names that are available to all
users on the system. The system table is named LNM$SYSTEM_TABLE; use
the logical name LNM$SYSTEM to refer to it. To create or delete a name in the
system table, you must have a UIC group number between 0 and 10, or SYSNAM

or SYSPRYV privilege.

There is only one system logical name table for the system. It contains the names

shown in Table 11-3.

Table 11-3: Default System Logical Names

Logical Name Description

DBGS$INPUT Default input stream for the VMS Debugger; equated to
SYS$INPUT

DBG$OUTPUT Default output stream for the VMS Debugger; equated to
SYS$OUTPUT

SYS$COMMON Device and directory name for the common part of SYS$SYSROOT

SYS$ERRORLOG Device and directory name of error log data files

SYS$EXAMPLES Device and directory name of system examples

SYS$HELP Device and directory name of system HELP files

SYS$INSTRUCTION Device and directory name of system instruction data files

SYS$LIBRARY Device and directory name of system libraries

SYS$LOADABLE_IMAGES

SYS$MAINTENANCE
SYS$MANAGER
SYS$MESSAGE
SYS$NODE

SYS$SHARE
SYS$SPECIFIC
SYS$STARTUP
SYS$SYSDEVICE

Device and directory of operating system executive loadable
images, device drivers, and other executive loaded code

Device and directory name of system maintenance files
Device and directory name of system manager files
Device and directory name of system message files

Network node name for the local system if DECnet-VAX is active
on the system

Device and directory name of system shareable images

Device and directory name for node-specific part of SYS$SYSDEVICE
Device and directory name of system startup files

VMS system disk containing system directories

(continued on next page)

11-8 Logical Names: Defining Names for Devices and Files

Table 11-3 (Cont.): Default System Logical Names

Logical Name Description

SYS$SYSROOT Device and root directory for system directories

SYS$SYSTEM Device and directory of operating system programs and procedures

SYS$TEST Device and directory name of User Environment Test Package
(UETP) files

SYS$UPDATE Device and directory name of system update files

11.5 Directory Logical Name Tables

The system provides the following two directory tables to catalog your logical
name tables:

e LNM$PROCESS_DIRECTORY catalogs your process tables (LNM$PROCESS
and LNM$JOB).

e LNMS$SYSTEM_DIRECTORY catalogs your shareable tables (LNM$GROUP
and LNM$SYSTEM).

Both of these directories contain logical names that translate iteratively to table
names. The name of a logical name table must be recorded in one of these
directory tables in order for the system to find it.

To see the relationship of directory tables to logical name tables enter the SHOW
LOGICAL/STRUCTURE command, as shown in the following example:

$ SHOW LOGICAL/STRUCTURE

(LNM$PROCESS_DIRECTORY)
(LNM$PROCESS_TABLE)

(LNM$SYSTEM_DIRECTORY)
(LNM$GROUP_000360)
(LNM$JOB_806E98EO)
(LNM$SYSTEM_TABLE)

11.5.1 The Process Directory Table

Each process on the system has its own process directory logical name table.
When you log in, the VMS operating system places certain logical names in your
process directory table. These names are listed in Table 11-4.

Logical Names: Defining Names for Devices and Files 11-9

Table 11—4: Default Process Directory Logical Names

Logical Name

Description

LNM$GROUP

LNM$JOB

LNM$PROCESS

LNM$PROCESS_DIRECTORY
LNM$PROCESS_TABLE

A logical name that is defined as LNM$GROUP_xxx, where xxx
represents your group number. LNM$GROUP_xxx is the logical
name table used by your UIC group. (The table LNM$GROUP_
xxx is cataloged in the system directory table.) Therefore,
LNM$GROUP is a logical name that translates iteratively to
the name of your group logical name table.

A logical name that is defined as LNM$JOB_xxx, where xxx
represents-a number unique to your job tree.

LNM$JOB_xxx is the logical name table used by your job. (The
table LNM$JOB_xxx is cataloged in the system directory table.)
Therefore, LNM$JOB is a logical name that translates iteratively
to the name of your job logical name table.

A logical name that translates iteratively to LNM$PROCESS_
TABLE, which is the name of your process logical name table.

The name of your process directory logical name table.

The name of your process logical name table.

11.5.2 The System Directory Table

There is one system directory logical name table. The VMS operating system
places certain logical names in the system directory table. These names are listed

in Table 11-5.

Table 11-5: Default System Directory Logical Names

Logical Name

Description

LNM$DCL_LOGICAL

LNM$DIRECTORIES

A logical name that is defined as LNM$FILE_DEV. This logical
name iteratively translates into the list of logical name tables
searched and displayed by the SHOW LOGICAL and SHOW
TRANSLATION commands and the FETRNLNM levical function,
By default, these commands search and display the process, job,
group, and system logical name tables, in that order.

A logical name that is defined as LNM$PROCESS_DIRECTORY
and LNM$SYSTEM_DIRECTORY.

(continued on next page)

11-10 Logical Names: Defining Names for Devices and Files

Table 11-5 (Cont.): Default System Directory Logical Names

Logical Name Description

LNM$FILE_DEV A logical name that is defined as the list of logical name tables
searched by the system when processing a file specification.
By default, it is defined as LNM$PROCESS, LNM$JOB,
LNM$GROUP, and LNM$SYSTEM. This means that the process,
job, group, and system logical name tables are searched, in that
order.

LNM$GROUP_xxx The name of a group logical name table, where xxx is a group
number. There is an LNM$GROUP_xxx logical name table for
each group in the system.

LNM$JOB_xxx The name of a job logical name table, where xxx is a number
unique to this job tree. There is an LNM$JOB_xxx logical name
table for each job in the system.

LNM$SYSTEM A logical name that translates iteratively to LNM$SYSTEM_
TABLE, which is the name of the system logical name table.

LNM$SYSTEM_DIRECTORY The name of the system directory logical name table.
LNM$SYSTEM_TABLE The name of the system logical name table.

Generally, you do not need to change the default logical name table definitions set
up in the directory tables, LNM$PROCESS_DIRECTORY and LNM$SYSTEM_
DIRECTORY. Two reasons for changing the entries in the directory tables are
(1) to create another logical name table, and (2) to change the search order for
file specification logical names by redefining LNM$FILE_DEV. See Section 11.7
for information about creating your own logical name table and changing the
order in which the system searches the logical name tables.

Multiple tables with the same name may exist. For example, there may exist
both a process-private and a shareable table called MY_TABLE. The process-
private version always takes precedence over the shareable table in all logical
name table processing. When a logical name, such as LNM$FILE_DEYV, is used
as a table name, the logical name is iteratively translated until a list of table
names is formed. During this iterative translation, each name is first translated
in the process directory. If this translation fails, it is then translated in the
system directory. This order of precedence cannot be changed. As a consequence
of this ordering, a logical name placed in the process directory table for use as a
table name will always take precedence over any identical name residing in the
system directory.

Logical Names: Defining Names for Devices and Files 11-11

11.6 Logical Name Access Modes

The four access modes in the VMS operating system are as follows:
* User-mode (the outermost and least privileged mode)

* Supervisor-mode

¢ Executive-mode

¢ Kernel-mode (the innermost and most privileged mode)

When you create a logical name with DCL commands, it has an access mode of
user, supervisor, or executive. By default, logical names are created in supervisor
mode; you must have SYSNAM privilege to create an executive mode logical

name. To see the access mode for a logical name, use the SHOW LOGICAL/FULL
command, as follows:

$ SHOW LOGICAL/FULL PROJECT
“"PROJECT" [super] = "DISKl:[JONES]" (LNM$PROCESS_TABLE)

This shows that the logical name PROJECT was created in supervisor mode.

You can equate the same logical name to different equivalence strings in the
same logical name table by specifying different access modes for each definition.
The following example equates the logical name ACCOUNTS to two different
equivalence names in the process logical name table—one in supervisor-mode and
one in executive-mode:

$ DEFINE ACCOUNTS DISK1: [ACCOUNTS]CURRENT.DAT
$ DEFINE/EXECUTIVE_MODE ACCOUNTS DISK1: [JANE.ACCOUNTS]OBSOLETE.DAT

Logical names created in user mode are temporary. Define a logical name in user
mode when you want to define it only for the execution of the next image. In the
following example, the logical name ADDRESSES is automatically deleted after
the execution of the program PAYABLE:

$ DEFINE/USER_MODE ADDRESSES DISK1:[SAM.ACCOUNTS]OVERDUE.LIS
$ RUN PAYABLE

In logkine un 1nmno] names, all nm‘n]nn‘nﬂ 1m9gncz and 11+111+1n¢ ench ag

S0 8-804 e

LOGINOUT and MAIL, bypass the user— and supervisor-mode portlons

of the system logical name table. Therefore, DIGITAL recommends that
logical names for important system components (public disks and directo-
ries, for example) be defined in executive mode, using the DCL command
DEFINE/SYSTEM/EXECUTIVE. (Only the operating system and privileged
programs can create logical names in kernel-mode.) This operation requires
either the SYSPRV or SYSNAM privilege.

11-12 Logical Names: Defining Names for Devices and Files

11.7 Creating a Logical Name Table

The CREATE/NAME_TABLE command creates a logical name table and catalogs
it in one of the directory logical name tables. (Logical names that identify logical
name tables or that translate iteratively to logical name tables must always

be entered into one of the directory logical name tables.) To create a logical
name table that is private to your process, create the table in LNM$PROCESS_
DIRECTORY (the default). If you want the table to be shareable, specify
/PARENT_TABLE=LNM$SYSTEM_DIRECTORY with the CREATE/NAME _
TABLE command. Creating shareable name tables requires SYSPRV privilege
or ENABLE access to the parent table.

The following example creates a process-private logical name table named
TAX, places the definition for the logical name CREDIT in the table, and
verifies the table’s creation. (You must specify the /TABLE qualifier with the
SHOW LOGICAL command to display a logical name in any table other than
LNM$SYSTEM or LNM$PROCESS.)

$ CREATE/NAME_TABLE TAX

$ DEFINE/TABLE=TAX CREDIT [ACCOUNTS.CURRENT]CREDIT.DAT
$ SHOW LOGICAL/TABLE=TAX CREDIT

"CREDIT" = " [ACCOUNTS.CURRENT]CREDIT.DAT" (TAX)

To make the system search a user-created logical name table automatically when
processing file specifications, you must create a process-private version of the
default search list (LNM$FILE_DEV) in LNM$PROCESS_DIRECTORY. To add
the created table’s name to the default search list, you can define LNM$FILE_
DEV as follows:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNMS$SFILE DEV -
_$ TAX, LNM$PROCESS, LNM$JOB, LNM$GROUP , LNM$SYSTEM

Placing the table’s name first specifies that the system search that table first, and
so on in the order of specification.

To delete a logical name table, specify the table that contains it (the system

or process directory logical name table) and the name of the table. Deleting a \
shareable logical name table requires DELETE access to the table or SYSPRV !
privilege. For example, to delete the logical name table TAX of the preceding ‘
example, specify the following command line:

$ DEASSIGN/TABLE=LMN$PROCESS_DIRECTORY TAX

Note that all logical names in descendant tables (and the descendant tables
themselves) are deleted when a parent logical name table is deleted.

Logical Names: Defining Names for Devices and Files 11-13

11.8 Using Search Lists

A search list is a logical name that has more than one equivalence name. You can
use a search list in any place you can use a logical name. For example:

$ DEFINE GETTYSBURG [JONES.HISTORY], [JONES.WORKFILES]
$ SHOW LOGICAL GETTYSBURG

"GETTYSBURG" = "[JONES.HISTORY]" (LNM$PROCESS_TABLE)
= " [JONES.WORKFILES]"

The logical name GETTYSBURG is a search list because it has more than one
equivalence name.

When you use a logical name that is a search list, the system translates

the logical name until it finds a match. The order in which you specify the
equivalence strings determines the order in which the system translates the
names. It uses each equivalence name listed in the definition until a match is
found.

A search list is not a wildcard. It is a list of places to look. Once a file is found,
the search is ended. For example:
$ TYPE GETTYSBURG:SPEECH.TXT

DISK1: [JONES.HISTORY]SPEECH.TXT; 2

Fourscore and seven years ago, our fathers brought forth on
this continent a new nation, conceived in liberty, and
dedicated to the proposition that all men are created equal.

In the previous example, the TYPE command searches the equivalence names
[JONES.HISTORY] and [JONES.WORKFILES] in the order they were listed
when GETTYSBURG was defined. Once it finds a file named SPEECH.TXT, the
search is halted and the file is displayed.

You can use a search hst w1th a command that accepts wildcards. When you use
wuut..cu. ua, bu.t: bybuslu I.U.l. s u..u: 3 pvbuxbauuub u.bulg r.‘a.\.,h cquxva}.\:u\.c iaiie i
the search list. The command operates on each file specification that identifies an
existing file.

For example, if you specify the DIRECTORY command with a wildcard character
in the version field, it finds all versions of SPEECH.TXT in the search list defined
by GETTYSBURG, as shown in the following example:

$ DIRECTORY GETTYSBURG:SPEECH.TXT;*

Directory DISK1l:[JONES.HISTORY]
SPEECH.TXT; 2 SPEECH.TXT; 1
Total of 2 files.

11-14 Logical Names: Defining Names for Devices and Files

Directory DISK1l: [JONES.WORKFILES]
SPEECH.TXT;1
Total of 1 file.

Grand total of 2 directories, 3 files.

The DIRECTORY command searches the equivalence names [JONES.HISTORY]
and [JONES.WORKFILES] in the order they were listed when GETTYSBURG
was defined. It finds a file named SPEECH.TXT in each directory. If
SPEECH.TXT exists in only one of the directories, only one directory listing

is displayed. If SPEECH.TXT does not exist in either directory, an error message
is displayed indicating that the file was not found.

When you use a search list with a command that does not accept wildcards in
a file specification, the system forms a file specification using each equivalence
name in the search list until a file specification for an existing file is found. The
command affects only the first file found. For example:

$ DEFINE DECEMBER DISK1:[FRED],WORK2: [BARNEY]
$ EDIT/EDT DECEMBER:QUOTAS.TXT

First, the system forms the file specification DISK1:[FREDIQUOTAS.TXT and
searches for that file. If QUOTAS.TXT is found in DISK1:[FRED], it is opened
for editing. No other files are subsequently opened. If QUOTAS.TXT is not
found in DISK1:[FRED], the system searches for it in WORK2:[BARNEY]. If
QUOTAS.TXT is found there, it is opened. If it is not found, an error message
is displayed. The system displays an error message only after it checks all
equivalence names in a search list. Then the system reports an error only on the
last file it attempted to find.

The RUN command is an exception. When the RUN command is followed by a
search list, the system forms file specifications as described previously. However,
the system then checks to see whether any of the files in the list are installed
images. It runs the first file in the search list that is an installed image. Then
the RUN command terminates.

If none of the file specifications are installed images, the system repeats the
process of forming file specifications. This time it looks for each file specification
on the disk. It runs the first file it finds there. An error message is displayed if
none of the specified files is found in either the known file list or on the disk.

11.9 Using Logical Node Names

A logical node name is a special type of logical name that can be used in place
of a network node name or in place of a node name and an access control string.
For example:

$ DEFINE BOS "BOSTON""ADAMS JOHN""::"

The logical name BOS is equated to the node name BOSTON and an access
control string, where ADAMS is the user name and JOHN is the password.

Logical Names: Defining Names for Devices and Files 11-15

Use the logical name BOS to avoid typing (and displaying) your user name and
password on the terminal screen.

NOTE: Do not place a DEFINE command that includes a
password in a file (your login command procedure, for example). If
others read the file, they will see the password.

11.10 System-Created Logical Names

The system creates a number of logical names for you when you start the system
and log in. By default, DCL creates and assigns logical names to four process-
permanent files. When you redefine these logical names, only your process is
affected. The system defines other logical names that you can reassign only with
special privileges.

11.10.1 Process-Permanent Logical Names

Process-permanent logical names are created by DCL when you log in and
remain defined for the life of your process. You cannot deassign these logical
names. You can redefine them (by specifying the same name in a DEFINE
command), but if the redefined name is later deassigned, the process-permanent
name is reestablished. These process-permanent logical names, as follows, are
available to each user of the system at the process level:

* SYS$INPUT—Logical name that refers to the default input device or file
* SYS$OUTPUT—Logical name that refers to the default output device or file

* SYS$ERROR—Logical name that refers to the default device or file to which
the system writes messages

¢ SYS$COMMAND—Logical name that refers to the value of SYS$INPUT
when you log in

Table 11-6 shows what these logical names are equated to by default.

Tabie 1i-9: Equivaience iNames for Fiocess-rerinaineii Logicai Naimes

Logical Interactive Batch Command
Name Mode Mode Procedure
SYS$COMMAND Terminal® Disk? Terminal
SYS$INPUT Terminal Disk Disk

1Device name of your terminal

2Device name of the initial default device

(continued on next page)

11-16 Logical Names: Defining Names for Devices and Files

Table 11-6 (Cont.): Equivalence Names for Process-Permanent Logical Names

Logical Interactive Batch Command
Name Mode Mode Procedure
SYS$ERROR Terminal Log file3 Terminal
SYS$OUTPUT Terminal Log file Terminal
3Batch job log file

The following sections describe how to use process-permanent logical names as
file specifications.

11.10.1.1 Redefining SYS$INPUT

You can redefine SYS$INPUT so that a command procedure reads input from the
terminal or another file. For example, to edit a file from a command procedure,
include the following lines in the command procedure:

$ DEFINE/USER_MODE SYS$SINPUT SYS$COMMAND
$ EDIT/TPU MYFILE.DAT

In the previous example, SYS$INPUT is redefined as SYSSCOMMAND so that
the editor obtains input from the terminal rather than from the command
procedure file (the default). SYSSCOMMAND refers to the terminal, the initial
input stream when you logged in. The /USER_MODE qualifier tells the command
procedure that SYS$INPUT is redefined only for the duration of the next image.
In this example, the next image is the editor. When the editor is finished,
SYS$INPUT resumes its default value; in this case, the default value is the
command procedure file.

Note that if you redefine SYS$INPUT, DCL ignores your definition. DCL always
obtains input from the default input stream. However, images, such as command
procedures, can use your definition for SYS$INPUT.

11.10.1.2 Redefining SYS$OUTPUT

You can redefine SYS$OUTPUT to redirect output from your default device
to another file. When you redefine SYS$OUTPUT, the system opens a file
with the name you specify in the logical name assignment. When you define
SYS$OUTPUT, all subsequent output is directed to the new file.

In the following example, SYS$OUTPUT is defined as MYFILE.LIS before
the SHOW DEVICES command is entered. The display produced by SHOW
DEVICES is directed to MYFILE.LIS in your current directory rather than to
your terminal. You can manipulate this data as you would any other text file.

$ DEFINE SYS$OUTPUT MYFILE.LIS
$ SHOW DEVICES

Logical Names: Defining Names for Devices and Files 11-17

Remember to deassign SYS$OUTPUT, or output will continue to be written to
the file you specify. Note that you can redefine SYS$OUTPUT in user mode
(with DEFINE/USER_MODE) to redirect output from an image. This definition
is in effect only until the next command image is executed. Once the command
image is executed (that is, the output is captured in a file), the logical name
SYS$OUTPUT resumes its default value.

When you log in, the system creates two logical names called SYS$OUTPUT. One
name is created in executive mode; the other name is created in supervisor mode.
You can supersede the supervisor mode logical name by redefining SYS$OUTPUT.
If you deassign the supervisor mode name, the system redefines SYS$OUTPUT
in supervisor mode, using the executive mode equivalence name. You cannot
deassign the executive mode name.

In the following example, SYS$OUTPUT is redefined to the file TEMP.DAT.
When SYS$OUTPUT is redefined, output from DCL and from images is directed
to the file TEMP.DAT. The output from the SHOW LOGICAL command and
from the SHOW TIME command is also sent to TEMP.DAT. When you deassign
SYS$OUTPUT, the system closes the file TEMP.DAT and redefines SYS$OUTPUT
to your terminal. When you enter the TYPE command, the output collected in
TEMP.DAT is displayed on your terminal.
$ DEFINE SYS$OUTPUT TEMP.DAT
$ SHOW LOGICAL SYS$OUTPUT
$ SHOW TIME
$ DEASSIGN SYS$OUTPUT
$ TYPE TEMP.DAT
"SYS$OUTPUT" = "DISK1:" (LNMSPROCESS_TABLE)
31-DEC-JAN-1988 13:26:53

When you redefine SYS$OUTPUT to a file, the logical name contains only the
device portion of the file specification, even though the output is directed to the
file you specify. In the previous example, when SYS$OUTPUT was redefined, the
equivalence name contained the device name DISK1, not the full file specification.

If the system cannot open the file you specify when you redefine SYS$OUTPUT,
an error message is displayed.

After you redefine SYS3CUTEUT, most cominands direct cutput tc the oxisting
version of the file. However, certain commands create a new version of the file
before they write output.

11.10.1.3 Redefining SYSSERROR

You can redefine SYS$ERROR to direct error messages to a specified file.
However, if you redefine SYS$ERROR so it is different from SYS$OUTPUT

(or if you redefine SYS$OUTPUT without also redefining SYSSERROR), DCL
commands send informational, warning, error, and severe error messages to both
SYS$ERROR and SYS$OUTPUT. Therefore, you receive these messages twice—
once in the file indicated by the definition of SYS$ERROR and once in the file
indicated by SYS$OUTPUT. Success messages are sent only to the file indicated
by SYS$OUTPUT.

11-18 Logical Names: Defining Names for Devices and Files

If you redefine SYSSERROR and then run an image that references SYS$ERROR,
the image sends error messages only to the file indicated by SYS$ERROR even if
SYS$ERROR is different from SYS$OUTPUT. Only DCL commands and images
using standard VMS error display mechanisms send error messages to both
SYS$ERROR and SYS$OUTPUT when these files are different.

11.10.1.4 Redefining SYS$SCOMMAND

Although you can redefine SYSSCOMMAND, DCL ignores your definition. DCL
always uses the default definition for your initial input stream. However, if you
execute an image that references SYSSCOMMAND, the image can use your new
definition.

11.10.2 System-Permanent Logical Names
The following table lists the logical names automatically defined when the system

starts up. These names are available to all users of the system at the system

level.

Logical Name Equivalence Name

DBG$INPUT SYSS$INPUT at the process level

DBG$OUTPUT SYS$OUTPUT at the process level

SYS$COMMON SYS$SYSDEVICE:[SYSr.SYSCOMMON.], where 7 is the root
directory number of your processor

SYS$ERRORLOG SYS$SYSROOT:SYSERR]

SYS$EXAMPLES SYS$SYSROOT[SYSHLP.EXAMPLES]

SYS$HELP SYS$SYSROOT:[SYSHLP]

SYS$INSTRUCTION SYS$SYSROOT:[SYSCBI]

SYS$LIBRARY SYS$SYSROOT{SYSLIB]

SYS$LOADABLE_IMAGES SYS$SYSROOT{SYS$LDR]

SYS$MAINTENANCE SYS$SYSROOT:[SYSMAINT]

SYS$MANAGER SYS$SYSROOT:[SYSMGRI

SYS$MESSAGE SYS$SYSROOT[SYSMSG]

SYS$NODE Name of your node if you are on a network

SYS$SHARE SYS$SYSROOT:[SYSLIB]

SYS$SPECIFIC SYS$SYSDEVICE:[SYSn.], where n is the root directory
number of your processor

SYS$STARTUP As a search list, points first to SYS$SYSROOT:[SYS$STARTUP],
then to SYSSMANAGER

SYS$SYSDEVICE System disk (usually SYS$DISK)

Logical Names: Defining Names for Devices and Files 11-19

Logical Name Equivalence Name

SYS$SYSROOT As a search list, points first to SYS$SYSDEVICE:[SYSn.],
where 7 is the root directory number of your processor; then to
SYS$COMMON

SYS$SYSTEM SYS$SYSROOT[SYSEXE]

SYS$TEST SYS$SYSROOT:[SYSTEST]

SYS$UPDATE SYS$SYSROOT:[SYSUPD]

Chapter 12

Symbols: Defining Commands and
Expressions

Symbols are similar to logical names, because they equate a character-string
expression to another expression. Whereas logical names were used to represent
devices, files, or another logical names, symbols can represent DCL commands
(for example, "MAIL"), character or numeric values (for example, "17 or "DOG"),
or a logical value (such as "TRUE"). Symbols are useful shortcuts for entering
DCL-level commands that you frequently use, and they can be essential aids in
representing data in command procedures.

This chapter describes how to use symbols. Read this chapter to learn how to do
the following:

¢ Define a symbol to represent a DCL-level command

* Use symbols to collect, store, and manipulate data

12.1 Using Symbols to Represent DCL Commands

You can define a symbol to represent a DCL command either in your login
command file (LOGIN.COM) or interactively, at DCL level. Usually, it is a good
idea to define symbols for frequently-used commands in your login command file.
When you define the symbol in your login command file, you can use the symbol
each time that you log in; when you define the symbel interactively the symhol
can be used only during the current process.

To define a symbol to represent a DCL command, use the following syntax:

$ symbol_name :== DCL_command_line

For example, suppose you often use the DIRECTORY command with the
qualifiers /NOTRAILING and /COLUMN=2. You could include the following line
in your login command file, allowing you to enter this command just by entering
the two-character symbol DI:

$ DI :== DIRECTORY /NOTRAILING /COLUMN=2

12-2 Symbols: Defining Commands and Expressions

You can also use symbols to enter DCL command lines that execute images or
command procedures.

The following sample section of a login command file gives some examples of
using symbols for DCL command line substitution. Descriptions of the individual
symbols follows the sample code section:

L W A

DEL == DELETE /LOG /CONFIRME)

ED == EDpIT /TPU ©®

HOST == ser HOST®

HR == Ser mOST RED@

M*ATL == MAIL /EDIT=(SEND,REPLY)®

PROT == SET PROT=(0:RWED,G:RWE, W:RWE) /10O
TIME == @[JONES]TIME

PRINTALL :== $[ACCOUNTS]PRINTALLO

@ Defines the symbol DEL to represent the command line DELETE /LOG

/CONFIRM. When this line is in your login command file and you enter the
command DEL, it is equivalent to entering the complete command DELETE
/LOG /CONFIRM. For example, the following sequence could take place:

$ DEL OLD_ACCOUNTS.TXT;1

DELETE SYS$SYSDEVICE: [JONES]OLD_ACCOUNTS.TXT;1 ? [N}: Y

$DELETE-I-FILDEL, SYS$SYSDEVICE: [JONES]OLD_ ACCOUNTS.TXT;1l deleted
(20 blocks)

Defines the symbol ED to be equivalent to the DCL command EDIT /TPU.
For example, if you have defined this symbol, you would edit the file
MANAGERS.DIS with the TPU (EVE) editor by entering the following
command:

$ ED MANAGERS.DIS

Defines the symbol HOST to be equivalent to the DCL command SET HOST.
As with the SET HOST command, you must supply the name of the node to
which you want to set host.

Defines the symbol HR to be equivalent to the DCL command line SET HOST
RED. In this case, the argument to the SET HOST command is supplied as
part of the symbol definition.

Defines a symbol to be equivalent to the DCL-level MAIL command. In this
symbol, the asterisk (*) is used to indicate that any of the following symbols
are equivalent to the command MAIL:

M
MA
MAI
MAIL

Defines the symbol TIME to be equivalent to the DCL command that executes
the command procedure [JONES]TIME.COM.

Symbols: Defining Commands and Expressions 12-3

@ Defines the symbol PRINTALL to execute the image
WORK_DISK:[ACCOUNTSIPRINTALL.EXE. Note that when the dollar
sign ($) precedes a file specification at the beginning of a symbol definition
(without any space between the dollar sign and the file specification), then the
dollar sign has the meaning of "RUN".

TIP: When using symbols to represent DCL commands or collect,
store, and manipulate data you can use several DCL commands.
Two of the commands you can use are SHOW SYMBOL and
DELETE SYMBOL.

The SHOW SYMBOL command displays symbol values. Specify
the name of the symbol to display the value of a particular local
symbol. Specify the name of the symbol and /GLOBAL to display
the value of a particular global symbol. Specify /ALL to display all
local symbols and /ALL/GLOBAL to display all global symbols.

The DELETE/SYMBOL command deletes a symbol. You must
include the /GLOBAL qualifier to delete a global symbol. In the
following example, the global symbol TEMP is deleted:

$ DELETE/SYMBOL/GLOBAL TEMP

12.2 Using Symbols to Collect, Store, and Manipulate
Data

You can use symbols to store and manipulate a variety of values. This section
describes the values that can be stored in symbols. It also describes how symbols
can be combined in expressions to manipulate the values the symbols contain.

12.2.1 Defining Symbols as Character Strings

Defining a symbol as a character string allows you to insert that string in a
command line by typing the symbol (with surrounding apostrophes to force
substitution, as described in Section 12.2.4). In the following example, the symbol
FILE ig first defined as a complete file specification and then used in the TYPE
command:

$ FILE == "DISKL: [JONES.TAXES]CORPORATE.DAT"
$ TYPE 'FILE’

The string can be a directory you often access. In the following example,
whenever the symbol TAXES occurs in a command line, the literal value replaces
the symbol before the line is executed.

$ TAXES == "[JONES.TAXES]"
$ COPY ’TAXES’OVERDUE.DAT OVERDUE.TMP

12-4 Symbols: Defining Commands and Expressions

Symbols can also be variables, which hold values that you calculate or that you
assign as something other than a literal. For example, you might assign the
value of a lexical function to a variable or read the value of a file record into a
variable. As variables, symbols are most often used in command procedures (see
Chapter 13).

12.2.2 Creating Symbols

To create a symbol, assign a value to a symbolic name using the following format:
symbol-name =[=] value

The symbol name can be 1 through 255 characters long and must begin with a
letter, an underscore (_), or a dollar sign ($). In a symbol name, both lowercase
and uppercase letters are treated as uppercase.

The value you assign to a symbol can be made either locally or globally available
to the command interpreter:

¢ Tocal—A local symbol is available to the command level that defined it, to
any command procedure executed from that level, and to lower command
levels. (By convention, DCL level—command level 0—is the highest command
level and command level 31 the lowest command level. Thus, when you
move from command level 3 to command level 2, you are moving to the next
higher command level. If you execute a command procedure interactively, the
commands in the procedure are executed at command level 1. You can create
a maximum of 31 command levels.)

e Global—A global symbol is available to any command level regardless of the
level at which it was defined.

To create a local symbol, use a single equal sign in the assignment statement. To
create a global symbol, use two equal signs. The following commands define the
local symbol FILE as the character string DISK2:[BOLIVARJPRICES.CUR and
the global symbol MAX_VALUE as the number 24.

$ FILE = "DISK2: [BOLIVAR]PRICES.CUR"
$ MAX_VALUE == 24

You can omit the quotation marks around character strings in assignment
statements if you precede the equal sign or signs with a colon. Symbol
assignments that omit quotation marks automatically change the character
string to uppercase letters and compress multiple spaces and tabs to a single
space. The following example again creates the local symbol FILE, this time
omitting the quotation marks because of the included colon:

$ FILE := ACCOUNTS:[BOLIVAR]PRICES.84

Symbols: Defining Commands and Expressions 12-5

The result of DCL’s evaluation of a symbol is either a character string or an
integer value. The data type (character or integer) of a symbol is determined by
the data type of the value currently assigned. The type is not permanent: if the
value changes type, as in the following example, the symbol changes type. In the
following example, the local symbol NUM is first assigned a character value and
then converted to an integer value when assigned an integer expression:

$ NUM
$ NUM

HABC "
2 +5

Local symbols take precedence over global symbols with the same name. Symbols
take precedence over identical command names. This means that if you define

a symbol with the same name as a DCL command, your definition overrides the
command name. For example, if you define the symbol HELP as the command
TYPE HELP.LST, you can no longer invoke the system’s HELP facility by typing
HELP.

12.2.3 Understanding Symbol Tables

Symbols are stored in the following tables, which are maintained by the operating
system:

* Local symbol table—DCL maintains a local symbol table for your main
process and for every command level that you create when you execute a
command procedure, use the CALL command, or submit a batch job. A
local table is deleted when its associated command level terminates. (See
Chapter 10 for more information about processes, command procedures, and
batch jobs.)

In addition to the local symbols you create, a local symbol table contains
eight symbols that are maintained by DCL. These symbols, named P1,
P2, and so on through P8, are used for passing parameters to a command
procedure. Parameters passed to a command procedure are regarded as
character strings. Otherwise, P1 through P8 are defined as null character
strings (""). They are stored in the local symbol table.

¢ Global symbol table—DCL maintains only one global symbol table for the
duration of a process. In addition to the glohal symhale you ereate, the global
symbol table contains the reserved global symbols described in the following
table. These global symbols give you status information on your programs
and command procedures as well as on system commands and utilities.

12-6 Symbols: Defining Commands and Expressions

Reserved
Global
Symbols Definition

$STATUS The condition code returned by the most recently executed command. $STATUS
conforms to the format of a VMS message code. Applications programs can set
the value of the global symbol $STATUS by including a parameter value to the
EXIT command. The system uses the value of $STATUS to determine which
message, if any, to display and whether to continue execution at the next-higher
command level. The value of the lower three bits in $STATUS is placed in the
global symbol $SEVERITY.

$SEVERITY The severity level of the condition code returned by the most recently executed
command. $SEVERITY, which is equal to the lower three bits of $STATUS, can
have the following values:

0 Warning

1 Success

2 Error

3 Information

4 Severe (fatal) error

$RESTART Has the value TRUE if a batch job was restarted after it was interrupted by a
system crash. Otherwise, RESTART has the value FALSE.

12.2.4 Understanding Symbol Substitution

When a command line is executed, symbols in the following positions are
automatically substituted:

¢ On the right side of an [:]= or [:]== assignment statement
* In a lexical function

¢ In the brackets on the left side of an assignment statement when you are
performing substring substitution or number overlays (see Section 12.2.6.4)

¢ In a DEPOSIT, EXAMINE, IF, or WRITE command
* At the beginning of a command line

To force substitution of a symbol that is not in one of the positions listed, enclose
the symbol with apostrophes as follows:

$ TYPE ’B’

To force substitution of a symbol within a quoted character string, precede that
symbol with two apostrophes and follow it with a single apostrophe as follows:

$ T = "TYPE ’''B’"

Symbols: Defining Commands and Expressions 12-7

When processing a command line, DCL replaces symbols with their values in the
following order:

* Forced substitution—From left to right, DCL replaces all strings delimited
by apostrophes (or double apostrophes for strings within quotation marks).
Symbols preceded by single apostrophes are translated iteratively; symbols
preceded by double apostrophes are not.

* Automatic substitution—From left to right, DCL evaluates each value in the
command line, executing it if it is a command and evaluating it if it is an
expression. Symbols in expressions are replaced by their assigned values; this
substitution is not iterative.

The following example demonstrates the effect of the order in which DCL
substitutes symbols. Assume the following symbol definitions:
$ PN = "PRINT/NOTIFY"

$ FILE1l = "[BOLIVAR]TEST CASE.TXT"
$ NUM = 1

Given the preceding symbol definitions, the following commands print the file
named [BOLIVAR]TEST_CASE.TXT:

$ FILE = "/FILE'/NUM/’"
$ PN 'FILE’

In the first command, forced substitution causes NUM to become 1, making
FILE’"NUM’ become FILE1. If you enter the command SHOW SYMBOL FILE,
you will see that FILE = "FILE1™.

The second command performs two substitutions. First, 'FILE’ is substituted
with 'FILEY’. ’FILEY’ also requires substitution because it is enclosed in
single quotation marks. Automatic substitution causes FILE1 to become
[BOLIVAR]TEST_CASE.TXT. This file name is then appended to the value of
PN, which is PRINT/NOTIFY. The resulting string is as follows:

$ PRINT/NOTIFY [BOLIVAR]TEST CASE.TXT

12.2.5 Using Symbol Values

A symbol can be defined with a character string, a number, a lexical function, a
logical value, or another symbol. The following sections describe these values.

12.2.5.1 Character String Values
Characters fall into the following three main categories:
* Alphanumeric characters—The uppercase letters A through Z, the lowercase

letters a through z, the digits 1 through 9, the dollar sign ($), the underscore
(_), and the hyphen (-).

¢ Special characters—All other characters that can be displayed or printed: the
exclamation point (!), quotation marks ("), number sign (#), and so on.

12-8 Symbols: Defining Commands and Expressions

¢ Nonprintable characters—All characters that cannot be printed or displayed.
In general, nonprintable characters are ignored for display and print
purposes. However, several nonprintable characters serve control functions as
follows:

Character Function

HT Starts printing or typing at the next horizontal tab

LF Starts printing or typing on the next line

FF Starts printing or typing at the top of the next page

CR Starts printing or typing at the first space on the same line
ESC Introduces a terminal escape sequence

SP Inserts one space

You can define a character string by enclosing it in quotation marks. In this way,
alphabetic case and spaces are preserved when the symbol assignment is made.

12.2.5.2 Numeric Values
A number can have the following values:

¢ Decimal—The ASCII characters 0 through 9
¢ Hexadecimal—The ASCII characters 0 through 9 and A through F
* Octal—The ASCII characters 0 through 7

The number you assign to a symbol must be in the range —2147483648 through
2147483647 (decimal). (An error is not reported if a number outside this range is
specified or calculated, but an incorrect value results.)

At DCL command level and within command procedures, specify a number as
follows:

¢ Positive numbers—Specify a positive number by typing the appropriate digits.
The following example assigns the number 13 to the symbol DOG_COUNT:

$ DOG_COUNT = 13
$ SHOW SYMBOL DOG_COUNT
DOG_COUNT = 13 Hex = 0000000D Octal = 00000000015

* Negative numbers—Precede a negative number with a minus sign, as in the
following example:
$ BALANCE = -15237

$ SHOW SYMBOL BALANCE
BALANCE = -15237 Hex = FFFFC47B Octal = 37777742173

Symbols: Defining Commands and Expressions 12-9

* Radix—Specify a number in a radix other than decimal by preceding the
number (but not the minus sign) with %X for hexadecimal numbers and %0
for octal numbers. For example:
$ DOG_COUNT = %XD

$ SHOW SYMBOL DOG_COUNT
DOG_COUNT = 13 Hex = 0000000D Octal = 00000000015

$ BALANCE = -%X3B85
$ SHOW SYMBOL BALANCE
BALANCE = -15237 Hex = FFFFC47B Octal = 37777742173

¢ Fractions—A number cannot include a decimal point. In calculations,
fractions are truncated; for example, 8 divided by 3 equals 2.

Numbers are stored internally as signed 4-byte integers, called longwords;
positive numbers have values of 0 through 2147483647 and negative numbers
have values of 4294967296 minus the absolute value of the number. The number
-~15237, for example, is stored as 4294952059. Negative numbers are converted
back to minus-sign format for ASCII or decimal displays; however, they are not
converted back for hexadecimal and octal displays. For example, the number
-15237 appears in displays as hexadecimal FFFFC47B (decimal 4294952059)
rather than hexadecimal —00003B85.

Numbers are stored in text files as a series of digits using ASCII conventions (for
example, the digit 1 has a storage value of 49).

12.2.5.3 Values Returned by Lexical Functions

Typically used in command procedures, lexical functions provide users with a
means to obtain information from the system, including information about system
processes, batch and print queues, and user processes. You can also use lexical
functions to manipulate character strings and translate logical names. When you
assign a lexical function to a symbol, the symbol is equated to the information
returned by the lexical function (for example, a number or character string). At
DCL level, you can then display that information with the DCL command SHOW
SYMBOL. In a command procedure, the information stored in the symbol can be
used later in the procedure. See the description of the DCL commands and lexical
functions in the Reference Section.

To use a lexical function, type the name of the lexical function (which always
begins with F$) and its argument list. Use the following syntax:

F$function-name(argsl,...])

The argument list follows the function name with any number of intervening
spaces and tabs. When using a lexical function, observe the following rules:

¢ Enclose the argument list in parentheses.

¢ Within the list, specify arguments in exact order and separate them with
commas; even if you omit an optional argument, do not omit the comma.

* If no arguments are required, type an empty set of parentheses.

12-10 Symbols: Defining Commands and Expressions ;

* Do not enclose lexical functions in quotation marks.

¢ If an argument contains a character string, enclose the character string in
quotation marks.

e If an argument contains an integer, a symbol, or another lexical function, do
not enclose these values in quotation marks.

Use lexical functions the same way you would use character strings, integers,
and symbols. The following example uses the F$LENGTH function. FSLENGTH
returns an integer that specifies the length of the string. The returned value is
assigned to the symbol LEN.

$ LEN = FSLENGTH("The cow jumped over the moon.")

$ SHOW SYMBOL LEN
LEN = 29 Hex = 0000001D Octal = 00000000035

You can use a lexical function in any position that you can use a symbol. In
positions where symbol substitution must be forced by enclosing the symbol in
apostrophes, lexical function evaluation must be forced by placing the lexical
function within apostrophes. Lexical functions can also be used as argument
values in other lexical functions.

The following example equates the length of the character symbol LINE to a
numeric symbol named L:
$ L = F$LENGTH (LINE)

The following example strips the last two characters from the character string
that is the value of the symbol LINE:

$ LINE = F$EXTRACT (0,FS$LENGTH(LINE)-2,LINE)

12.2.5.4 Logical Values

Some operations interpret numbers and character strings as logical data with
values as follows:

* True—A number has a logical value of true if it is odd (that is, the low-order
bit is 1). A character string has a logical value of true if the first character is
an uppercase or lowercase T or Y.

* False—A number has a logical value of false if it is even (that is, the low-order
bit is 0). A character string has a logical value of false if the first character is
not an uppercase or lowercase T or Y.

In both of the following examples, DOG_COUNT is assigned the value 13. IF
STATUS means if the logical value of STATUS is true.

$ STATUS = 1

$ IF STATUS THEN DOG_COUNT = 13
$ STATUS = "TRUE"
$ IF STATUS THEN DOG_COUNT = 13

Symbols: Defining Commands and Expressions 12-11

12.2.5.5 Using a Symbol as a Value for Another Symbol

After a symbol is defined, it can be used as a value for another symbol. A symbol
can be interpreted as a character string or a number, depending on the context in
which it is used. For example, suppose a symbol, COUNT, is assigned the integer
value 3 as follows:

$ COUNT = 3

Then the value of COUNT can be used in other assignment statements. In the
following example, the value of COUNT is added to 1:

$ TOTAL = COUNT + 1

The result, 4, is equated to the symbol TOTAL. You can confirm the assignment
of the value to TOTAL by entering the SHOW SYMBOL command as follows:

$ SHOW SYMBOL TOTAL
TOTAL = 4 Hex = 00000004 Octal = 00000000004

You can include the symbol COUNT in a string assignment statement as follows:
$ BARK := P’COUNT’

COUNT is converted to a string value and appended to the character P. BARK
now has the same value as P3.

To include a symbol in a string assignment, use either a colon and an equal sign
(:=) or a colon and two equal signs (:==), and enclose the symbol in apostrophes.
Otherwise, DCL will not recognize it as a symbol.

If you define a null character string for a symbol, that symbol has a value of 0, as
shown in the following example:

ww

2
$§C=A+B
$ SHOW SYMBOL C
C = 2 Hex = 00000002 Octal = 00000000002

£%3
i
ko

12.2.6 Using Symbols in Expressions

An expression is a combination of values. Each value in an expression is
connected to another value by an operator. Operators are denoted in the
following ways:

* Special characters—Asterisk (*), slash (/), plus sign (+), and minus sign (-).

¢ Special names—.EQ., .EQS., .GE., .GES., .GT,, .GTS,, .LE,, .LES,, .LT,,
LTS., .NE.,, .NES,, NOT,, .AND,, and .OR.; the names can be uppercase
or lowercase.

12-12 Symbols: Defining Commands and Expressions

Data entities and operators can be adjacent or can be separated by any number
of spaces or tabs. The values in the expression can be symbols or literal values
(such as 3 or “DOG”). Expressions take the following two forms:

¢ Operations—An operation combines two data entities or alters a data entity.
The following example combines the literal values 10 and 3 by adding them:
$ DOG_COUNT = 10 + 3

$ SHOW SYMBOL DOG_COUNT
DOG_COUNT = 13 Hex = 0000000D Octal = 00000000015

* Comparisons—A comparison evaluates a relationship between two entities
as true or false. A true comparison evaluates to a numeric value of 1, and a
false comparison evaluates to a numeric value of 0. The following example
compares the value of the symbol DOG_COUNT with the literal value 13 and
finds them to be equal:

$ DOG_CHECK = DOG_COUNT .EQ. 13
$ SHOW SYMBOL DOG_CHECK
DOG_CHECK = 1 Hex = 00000001 Octal = 00000000001

You can create character string expressions, numeric expressions, and logical
expressions. These are described in the following sections.

12.2.6.1 Character String Expressions

A character string expression can contain character strings, lexical functions
that evaluate to character strings, or symbols that have character string values.
Attempting an operation or comparison between a character string and a number
causes the character string to be converted to a number.

You can specify the following character string operations:

¢ Concatenation—The plus sign concatenates two character strings. For
example:

$ COLOR = "light brown"
$ WEIGHT = "30 lbs."
$ DOG2 = "No tag, " + COLOR + ", " + WEIGHT
$ SHOW SYMBOL DOG2
DOG2 = "No tag, light brown, 30 lbs."

¢ Reduction—The minus sign removes the second character string from the first
character string. For example:

$ SHOW SYMBOL DOG2

DOG2 = "No tag, light brown, 30 lbs."
$ DOG2 = DOG2 - ", 30 lbs."
$ SHOW SYMBOL DOG2

DOG2 = "No tag, light brown"

If the second character string occurs more than once in the first character
string, only the first occurrence of the string is removed.

Symbols: Defining Commands and Expressions 12-13

When you compare two character strings, the strings are compared character by
character; strings of different lengths are not equal (for example, “dogs” is greater
than “dog”). ‘

The comparison criteria are the ASCII values of the characters. Under this
criterion, the digits 0 through 9 are less than the letters A through Z, and the
uppercase letters A through Z are less than the lowercase letters a through z. A
character string comparison ends when either of the following conditions is true:

1. All the characters have been compared, in which case the strings are equal.
2. The first mismatch occurs.

You can specify the following varieties of string comparisons. In the examples,
assume that the symbol LAST NAME has the value “WHITFIELD.”

¢ Equal to—The operator .EQS. compares one character string to another for
equality. The following comparison evaluates to 0 to indicate that the value of
the symbol LAST_NAME does not equal the literal “NORMAN™:

$ TEST_NAME = LAST_NAME .EQS. "NORMAN"
$ SHOW SYMBOL TEST NAME
TEST NAME = 0 Hex = 00000000 Octal = 00000000000

¢ Greater than or equal to—The operator .GES. compares one character string
to another for a greater or equal value in the first specified string. The
following comparison evaluates to 1 to indicate that the value of the symbol
LAST_NAME is greater than or equal to the literal “NORMAN":

$ TEST_NAME = LAST_NAME .GES. "NORMAN"
$ SHOW SYMBOL TEST NAME
TEST NAME = 1 Hex = 00000001 Octal = 00000000001

* Greater than—The operator .GTS. compares one character string to another
for a greater value in the first specified string. The following comparison
evaluates to 1 to indicate that the value of the symbol LAST NAME is greater
than the literal “NORMAN”:

$ TEST NAME = LAST NAME .GTS. "NORMAN"
$ SHOW SYMBOL TEST NAME
TooL _NAME = L Hex = vuuvuuvuul octalL = vuuuuuuvuulL
® Less than or equal to—The operator .LES. compares one character string to
another for a lesser or equal value in the first specified string. The following
comparison evaluates to 0 to indicate that the value of the symbol

LAST_NAME is not less than or equal to the literal “NORMAN":
$ TEST_NAME = LAST NAME .LES. "NORMAN"

$ SHOW SYMBOL TEST_ NAME
TEST_NAME = 0 Hex = 00000000 Octal = 00000000000

12-14 Symbols: Defining Commands and Expressions

* Less than—The operator .LTS. compares one character string to another for a
lesser value in the first specified string. The following comparison evaluates
to O to indicate that the value of the symbol LAST NAME is not less than the
literal “NORMAN™:
$ TEST NAME = LAST NAME .LTS. "NORMAN"

$ SHOW SYMBOL TEST NAME
TEST NAME = 0 Hex = 00000000 Octal = 00000000000

* Not equal—The operator .NES. compares one character string to another for
inequality. The following comparison evaluates to 1 to indicate that the value
of the symbol LAST_NAME does not equal the literal “NORMAN":
$ TEST_NAME = LAST NAME .NES. "NORMAN"

$ SHOW SYMBOL TEST NAME
TEST_NAME = 1 Hex = 00000001 Octal = 00000000001

12.2.6.2 Numeric Expressions

In a numeric expression, the values involved must be literal numbers (such as 3)
or symbols with numeric values. In addition, you can use a character string that
represents a number (for example, “23” or “~51”). Attempting an operation or
comparison between a number and a character string causes the character string
to be converted to a number.

You can specify the following numeric operations:

* Multiplication—The asterisk multiplies two numbers. For example:

$ BALANCE = 142 * 14
$ SHOW SYMBOL BALANCE
BALANCE = 1988 Hex = 000007C4 Octal = 00000003704

¢ Division—The slash divides the first specified number by the second specified
number. For example:
$ BALANCE = BALANCE / 14

$ SHOW SYMBOL BALANCE
BALANCE = 142 Hex = 0000008E Octal = 00000000216

If a number does not divide evenly, the remainder is lost. (No rounding takes
place.)

* Addition—The plus sign adds two numbers. For example:

$ BALANCE = BALANCE + 37
$ SHOW SYMBOL BALANCE
BALANCE = 179 Hex = 000000B3 Octal = 00000000263

¢ Subtraction—The minus sign subtracts the second specified number from the
first specified number. For example:
$ BALANCE = BALANCE - 15416

$ SHOW SYMBOL BALANCE
BALANCE = -15237 Hex = FFFFC47B Octal = 00000142173

Symbols: Defining Commands and Expressions 12-15

Unary plus and minus—The plus and minus signs change the sign of the
number they precede. For example:

$ BALANCE = -(-142)
$ SHOW SYMBOL BALANCE
BALANCE = 142 Hex = 0000008E Octal = 00000000216

You can specify the following numeric comparisons:

Equal to—The operator .EQ. compares one number to another for equality.
The following comparison evaluates to 1 to indicate that BALANCE equals
-15237:

$ TEST_BALANCE = BALANCE .EQ. -15237
$ SHOW SYMBOL TEST_BALANCE
TEST BALANCE = 1 Hex = 00000001 Octal = 00000000001

Greater than or equal to—The operator .GE. compares one number to another
for a greater or equal value in the first number. The following comparison
evaluates to 1 to indicate that BALANCE is greater than or equal to —15237:

$ TEST BALANCE = BALANCE .GE. -15237
$ SHOW SYMBOL TEST BALANCE
TEST_BALANCE = 1 Hex = 00000001 Octal = 00000000001

Greater than—The operator .GT. compares one number to another for a
greater value in the first number. The following comparison evaluates to 0
to indicate that BALANCE is not greater than —15237:

$ TEST BALANCE = BALANCE .GT. -15237
$ SHOW SYMBOL TEST BALANCE
TEST _BALANCE = 0 Hex = 00000000 Octal = 00000000000

Less than or equal to—The operator .LE. compares one number to another
for a lesser or equal value in the first number. The following comparison
evaluates to 1 to indicate that BALANCE is less than or equal to —15237:

$ TEST_BALANCE = BALANCE .LE. -15237
$ SHOW SYMBOL TEST_ BALANCE
TEST BALANCE = 1 Hex = 00000001 Octal = 00000000001

Less than—The operator .LT. compares one number to another for a lesser
value in the first number. The following comparison evaluates to 0 to indicate
that BALANCE is not less than —15237:

$ TEST_BALANCE = BALANCE .LT. -15237
$ SHOW SYMBOL TEST_ BALANCE
TEST BALANCE = 0 Hex = 00000000 Octal = 00000000000

Not equal to—The operator .NE. compares one number to another for
inequality. The following comparison evaluates to 0 to indicate that
BALANCE equals —15237:

$ TEST_BALANCE = BALANCE .NE. -15237
$ SHOW SYMBOL TEST_BALANCE
TEST BALANCE = 0 Hex = 00000000 Octal = 00000000000

12-16 Symbols: Defining Commands and Expressions

12.2.6.3 Logical Expressions

A logical operation affects all the bits in the number being acted upon. The values
for logical expressions are integers, and the result of the expression is an integer

as well. If you specify a character string value in a logical expression, the string

is converted to an integer before the expression is evaluated.

String and integer values are evaluated as follows:

¢ Ifthe first character is T, t, Y, or y, a character string has a logical value of
true (1).

* TIfthe first character is not T, t, Y, or y, a character string has a logical value
of false (0).

¢ If an integer is odd (the low-order bit is 1), it has a logical value of true (1).
e If an integer is even (the low-order bit is 0), it has a logical value of false (0).

Typically, you use logical expressions to evaluate the low-order bit of a logical
value; that is, to determine whether the value is true or false. You can specify the
following logical operations:

* Not—The operator .NOT. reverses the bit configuration of a logical value.
A true value becomes false and a false value becomes true. The following
example reverses a true value to false. The expression evaluates to —2; the
value is even and is therefore false:

$ SHOW SYMBOL STATUS

STATUS = 1 Hex = 00000001 Octal = 00000000001
$ STATUS = .NOT. STATUS
$ SHOW SYMBOL STATUS

STATUS = -2 Hex = FFFFFFFE Octal = 37777777776

¢ And—The operator .AND. combines two logical values as follows:

Bit Level Entity Level
1.AND.1=1 true .AND. true = true
1.AND.0=0 true .AND. false = false
0. AND.1=0 false .AND. true = false
0.AND.0=0 false .AND. false = false

The following example combines a true value and a false value to produce a
false value:

$ STAT1 "TRUE"
$ STAT2 "FALSE"
$ STATUS = STAT1 .AND. STAT2
$ SHOW SYMBOL STATUS
STATUS = 0 Hex = 00000000 Octal = 00000000000

Symbols: Defining Commands and Expressions 12-17

* Or—The operator .OR. combines two logical values as follows:

Bit Level Entity Level
10R.1=1 true .OR. true = true
1.0R.0=1 true .OR. false = true
00R. 1=1 false .OR. true = true
0.0R.0=0 false .OR. false = false

The following example combines a true value and a false value to produce a
true value:

$ STAT1 "TRUE"
$ STAT2 "FALSE"
$ STATUS = STAT1 .OR. STAT2
$ SHOW SYMBOL STATUS
STATUS = 1 Hex = 00000001 Octal = 00000000001

o

12.2.6.4 Substring Replacement and Numeric Overlays

You can replace a part of a character string with another character string. The
assignment statement has the following format for local symbols:

symbol-name][offset,size] := replacement-string
The assignment statement has the following format for global symbols:

symbol-name[offset,size] :== replacement-string
The fields are as follows:

* Offset is an integer that indicates the position of the replacement-string
relative to the first character in the original string. An offset of 0 means
the first character in the symbol, an offset of 1 means the second character,
and so on.

* Size is an integer that indicates the length of the replacement-string.
To replace substrings, observe the following rules:

* The square brackets are required notation. No spaces are allowed between
the symbol name and the left bracket.

* Integer values for size and offset values can be in the range of 0 through 768.
¢ The replacement-string must be a character string.

In the following example, the first assignment statement gives the symbol A the
value PACKRAT. The second statement specifies that MUSK replace the first four
characters in the value of A. The result is that the value of A becomes MUSKRAT.

12-18 Symbols: Defining Commands and Expressions

$ A := PACKRAT

$ A[O0,4] := MUSK

$ SHOW SYMBOL A
A = "MUSKRAT"

The symbol name you specify can be undefined initially. The assignment
statement creates the symbol name and, if necessary, provides leading or trailing
spaces in the symbol value. For example:

$ B[4,3] := RAT
If the symbol B does not have a previous value, it is given a value of four leading

spaces followed by RAT. This format creates a blank line of any length. The
following example gives the symbol LINE a value of 80 blank spaces:

$ LINE[O0,80]):= " "

Lining up records in columns makes a list easier to read and sort. You can use
this format to specify how you want data to be stored. For example:

$ DATA[O0,15]
$ DATA[17,1} :

The first statement fills in the first 15 columns of DATA with whatever value
NAME has. The second statement fills in column 18 with whatever value GRADE
has. Columns 16 and 17 contain blanks.

A specjal format of the assignment statement can also be used to perform binary
(bit-level) overlays of the current symbol value. This format for local symbols is
as follows:

* NAME'
' GRADE’

$ symbol-name[bit-position,size] = replacement-expression
The format for global symbols is as follows:

$ symbol-namelbit-position,size] == replacement-expression
The fields are as follows:

* Bit-position is an integer that indicates the location relative to bit 0 at which
the overlay is to occur.

* Size is an integer that indicates the number of bits to be overlaid. ‘
When using numeric overlays, observe the following rules: ‘

* The square brackets are required notation. No spaces are allowed between ‘
the symbol name and the left bracket.

¢ Literal values are assumed to be decimal.
¢ The maximum length for size is 32 bits.

* Replacement-expression must be a numeric expression.

Symbols: Defining Commands and Expressions 12-19

¢ When symbol-name is either undefined or defined as a string, the result of the
overlay is a string. Otherwise, the result is an integer.

The following example defines the symbol BELL as the value 7. The low-order
byte of BELL has the binary value 00000111. By changing the 0 at offset 5 to
1 (beginning with 0, count bits from right to left), you create the binary value
00100111 (decimal value 39).

$ BELL = 7

$ BELL[S5,1] =1

$ SHOW SYMBOL BELL

BELL = 39 Hex = 00000027 Octal = 00000000047

12.2.6.5 Order of Operations and the Results of Evaluations

An expression can contain any number of operations and comparisons. You
can indicate precedence (the order in which operation and comparison should
be evaluated) by placing operations to be performed first in parentheses.
(Parentheses can be nested.) Otherwise, operations within an expression are
evaluated in the following order:

Unary plus (+) and minus (-)
Multiplication and division

All other numeric and character operations
All numeric and character comparisons
Logical NOT operations

Logical AND operations

N oe LN

Logical OR operations

Operations and comparisons that have the same precedence are evaluated from
left to right. The following examples illustrate precedence of operations in
expressions;

$ BALANCE = 150 + 20 * 4
(BALANCE = 150 + 80)
$ SHUW SIMBUL BALANCE
BALANCE = 230 Hex = 000000E6 Octal = 00000000346

$ BALANCE = (150 + 20) * 4
(BALANCE = 170 * 4)
$ SHOW SYMBOL BALANCE
BALANCE = 680 Hex = 000002A8 Octal = 00000001250

$ STATUS = 150 * 4 .GT. 80 * 2
(STATUS = 600 .GT. 160)
$ SHOW SYMBOL STATUS
STATUS = 1 Hex = 00000001 Octal = 00000000001

12-20 Symbols: Defining Commands and Expressions

An expression has either an integer or a string value, depending on the types

of values and the operators used. Table 12—-1 summarizes how DCL evaluates
expressions. The first column lists the different values and operators that an
expression might contain. The second column tells, for each case, what the entire
expression is equated to. Within the table any value stands for a string or an
integer.

Table 12-1: Determining the Value of an Expression

Resulting

Expression Value Type
Integer value Integer
String value String
Integer lexical function Integer
String lexical function String
Integer symbol Integer
String symbol String

+, —, or .NOT. any value Integer
Any value .AND. or .OR. any value Integer
String + or—string String
Integer + or—any value Integer
Any value + or—integer Integer
Any value * or / any value Integer
Any value (string comparison) any value Integer

Any value (numeric comparison) any value Integer

Chapter 13

Command Procedures: Programming with
DCL

A command procedure is a file that contains DCL commands and data lines
used by the DCL commands. You can write both simple and complex command
procedures. A simple command procedure executes a series of DCL commands
in the order in which they are written. For example, the following command
procedure sets your default directory and examines it:

$ | PROCEDURES.COM

$!

$! Enter [MAINT.PROCEDURES] and examine it
$ SET DEFAULT [MAINT.PROCEDURES]

$ DIRECTORY

A complex command procedure performs program-like functions. For example,
the following command procedure asks for directory names and examines the
directories:

$! DIRECTORY.COM

$!

$! Examine directories

$START:

$ INQUIRE DIR_NAME "Directory name"
$ IF DIR_NAME .EQS. "" THEN GOTO END
$ DIRECTORY ‘DIR_NAME’

$ GOTO START

$END:

This chapter describes how to create and use simple command procedures. For
information about designing, coding, and testing complex command procedures,
refer to the Guide to Using VMS Command Procedures.

13-2 Command Procedures: Programming with DCL

13.1 Formatting a Command Procedure

Use the following rules to format a command procedure:

¢ Use a dollar sign ($) to begin each line containing a command, comment, or
label.

¢ Do not begin data lines with a dollar sign.

* Use comments to explain the command procedure to anyone who must
maintain it. Place comments at the beginning of a procedure to describe
the procedure and the parameters passed to it; place them at the beginning
of each block of commands to describe that section of the procedure. The
command interpreter ignores comments when the command procedure
executes. Precede a comment with an exclamation point; the comment is
all text to the right of an exclamation point. (To include a literal exclamation
point in a command line, precede and follow it with quotation marks.)

¢ Use complete names for commands and qualifiers. Commands and qualifiers
are usually self-explanatory when they are not abbreviated. Abbreviated
commands and qualifiers may no longer be unique when new commands and
qualifiers are added to the VMS operating system.

* Put labels on separate lines to make loops, subroutines, and conditional code
easier to understand. (Labels mark the beginning of loops, subroutines, and
conditional code.) You may choose to differentiate labels from commands by
placing labels immediately after the dollar sign and by preceding commands
with spaces. A label can have up to 255 characters, cannot contain embedded
spaces, and must be ended with a colon. (The GOTO, GOSUB, and CALL
commands transfer control to labels, which mark the beginning of a loop, a
section of code, or a subroutine.)

* Separate command sequences with lines containing a dollar sign and an
exclamation point ($!). This makes it easier to see the outline of the
command procedure. (If you insert blank lines, the command interpreter
interprets them as data lines and produces a message warning you that the
data lines were ignored.)

13.2 Executing a Command Procedure

You can execute command procedures as follows:
¢ Interactively from DCL level

¢ From within another command procedure

®* On a remote node

¢ In batch mode

The following sections contain procedures for each of these methods.

Command Procedures: Programming with DCL 13-3

Executing a Command Procedure Interactively

To execute a command procedure interactively, type an at sign (@) followed by the
file specification of the procedure. The file type defaults to COM. For example,
the following command executes the procedure SETD.COM in the directory
[MAINT.PROCEDURES] on the disk WORKDISK:

$ @WORKDISK: [MAINT.PROCEDURES]SETD

To simplify the execution of a command procedure, create a global symbol or

a logical name, and place the symbol or logical name definition in your login
command procedure. (Section 13.3 describes how to create a login command
procedure. Symbols are described in Chapter 12; logical names are described in
Chapter 11.) Equating the command line to a global symbol allows you to invoke
the command procedure from any directory by entering the global symbol name
as shown in the following example:

$ SETD == "@WORKDISK: [MAINT.PROCEDURES]SETD"
$§ SETD

Equating the file specification to a logical name allows you to invoke the command
procedure from any directory by entering an at sign (@) followed by the logical
name as shown in the following example:

$ DEFINE SETD WORKDISK:[MAINT.PROCEDURES]SETD.COM
$ @SETD

Executing a Command Procedure from Within Another Command Procedure

To execute a command procedure from within another command procedure, use
the at sign (@) followed by the file specification of the procedure. For example,
the following command procedure, WRITEDATE.COM, invokes the command
procedure GETDATE.COM:

$! WRITEDATE.COM
$ INQUIRE TIME "What is the current time in hh:mm format?"
$ QGETDATE [JONES.COM]GETDATE.COM

Executing a Command Proced