
VMS 1/0 User's Reference
Manual: Part I

Order Number: AA-LA84A-TE

April 1988

This document contains the information necessary to interface directly
with the 1/0 device drivers supplied as part of the VMS operating system.
Several examples of programming techniques are included. This document
does not contain information on 1/0 operations using the VMS Record
Management Services.

Revision/Update Information: This document supersedes the
VAX/VMS 1/0 User's Reference
Manual: Part/, Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS Edu System VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DEC US RSTS

t:JD~Dll~D TM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA 8r. PUERTO Rico* CANADA INTERNATIONAL

ZK4513

Digital Equipment Corporation
P.O. Box CS2008

Digital Equipment
of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire
03061

100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital's local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

®> PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE xix

NEW AND CHANGED FEATURES xx iii

CHAPTER 1 ACP-QIO INTERFACE 1-1

1.1 ACP FUNCTIONS AND ENCODING 1-2

1.2 FILE INFORMATION BLOCK (FIB) 1-3

1.3 ACP SUBFUNCTIONS 1-8
1.3.1 Directory Lookup 1-9
1.3.1.1 Input Parameters • 1-9
1.3.1.2 Operation • 1-1 0
1.3.1.3 Directory Entry Protection • 1-11
1.3.2 Access 1-11
1.3.2.1 Input Parameters • 1-11
1.3.2.2 Operation • 1-1 3
1.3.3 Extend 1-13
1.3.3.1 Input Parameters • 1-13
1.3.3.2 Operation • 1-1 5
1.3.4 Truncate 1-15
1.3.4.1 Input Parameters • 1-1 6
1.3.4.2 Operation • 1-1 6
1.3.5 Read/Write Attributes 1-17
1.3.5.1 Input Parameters • 1-1 7

1.4 ACP QIO RECORD ATTRIBUTES AREA 1-21

1.5 ACP-QIO ATTRIBUTES STATISTICS BLOCK 1-23

1.6 MAJOR FUNCTIONS 1-25
1.6.1 Create File 1-25
1.6.1.1 Input Parameters • 1-25
1.6.1.2 Disk ACP Operation• 1-27
1.6.1.3 Directory Entry Creation • 1-28
1.6.1.4 Magnetic Tape ACP Operation • 1-28
1.6.2 Access File 1-29

v

Contents

1.6.2.1 Input Parameters • 1-29
1.6.2.2 Operation • 1-31
1.6.3 Deaccess File 1-31
1.6.3.1 Input Parameters • 1-31
1.6.3.2 Operation • 1-32
1.6.4 Modify File 1-32
1.6.4.1 Input Parameters • 1-32
1.6.4.2 Operation • 1-33
1.6.5 Delete File 1-33
1.6.5.1 Operation • 1-34
1.6.6 Mount 1-34
1.6.7 ACP Control 1-34
1.6.7.1 Input Parameters • 1-35
1.6.7.2 Magnetic Tape Control Functions • 1-36
1.6.7.3 Miscellaneous Disk Control Functions • 1-36
1.6.7.4 Disk Quotas • 1-37

1.7 1/0 STATUS BLOCK 1-40

CHAPTER 2 CARD READER DRIVER 2-1

2.1 SUPPORTED CARD READER DEVICE 2-1

2.2 DRIVER FEATURES 2-1
2.2.1 Special Card Punch Combinations 2-1
2.2.1.1 End-of-File Condition • 2-2
2.2.1.2 Set Translation Mode• 2-2
2.2.2 Submitting Batch Jobs Through the Card Reader 2-2
2.2.3 Passing Data to Commands and Images 2-3
2.2.4 Error Recovery 2-4

2.3 DEVICE INFORMATION 2-5

2.4 CARD READER FUNCTION CODES 2-5
2.4.1 Read 2-6
2.4.2 Sense Mode 2-7
2.4.3 Set Mode 2-7
2.4.3.1 Set Mode • 2-8
2.4.3.2 Set Characteristic • 2-1 0

2.5 1/0 STATUS BLOCK 2-11

vi

Contents

CHAPTER 3 DISK DRIVERS 3-1

3.1 SUPPORTED DISK DEVICES AND CONTROLLERS 3-1
3.1.1 UDA50 UNIBUS Disk Adapter 3-2
3.1.2 KDA50 Disk Controller 3-3
3.1.3 KDB50 Disk Controller 3-3
3.1.4 HSC50 Controller 3-3
3.1.5 RA60 Pack Disk 3-4
3.1.6 RB02 and RL02 Cartridge Disks 3-4
3.1.7 RM03 and RM05 Pack Disks 3-4
3.1.8 RA80/R80/RM80 and RA81 Fixed Media Disks 3-4
3.1.9 RP05 and RPO& Pack Disks 3-5
3.1.10 R.P07 Fixed Media Disk 3-5
3.1.11 RK06 and RK07 Cartridge Disks 3-5
3.1.12 RC25 Disk 3-5
3.1.13 RRD50 Read-Only Memory (CDROM) 3-5
3.1.14 RX01 Console Disk 3-6
3.1.15 RX02 Disk 3-6
3.1.16 TU58 Magnetic Tape (DECtape II) 3-7

3.2 DRIVER FEATURES 3-7
3.2.1 Dual Porting (MASSBUS) 3-8
3.2.1.1 Port Selection and Access Modes • 3-8
3.2.1.2 Disk Use and Restrictions • 3-9

3.2.1.2.1 Restriction on Dual-Ported Non-DSA Disks in a
V AXcluster • 3-9

3.2.1.3 Dual-Porting DSA Disks • 3-1 0
3.2.2 Data Check 3-10
3.2.3 Overlapped Seeks 3-11
3.2.4 Error Recovery 3-11
3.2.4.1 Skip Sectoring • 3-12
3.2.5 Logical-to-Physical Translation (RX01 and RX02) 3-12
3.2.6 DIGITAL Storage Architecture (DSA) Devices 3-13
3.2.6.1 Bad Block Replacement and Forced Errors for DSA

Disks• 3-14
3.2.7 VAXstation 2000 and MicroVAX 2000 Disk Driver 3-15

3.3 DEVICE INFORMATION 3-16

3.4 DISK FUNCTION CODES 3-17
3.4.1 Read 3-22
3.4.2 Write 3-23
3.4.3 Sense Mode 3-24
3.4.4 Set Density 3-24

vii

Contents

3.4.5 Search 3-25
3.4.6 Pack Acknowledge 3-25
3.4.7 Unload 3-25
3.4.8 Available 3-26
3.4.9 Seek 3-26
3.4.10 Write Check 3-26

3.5 1/0 STATUS BLOCK 3-27

3.6 PROGRAMMING EXAMPLE 3-27

CHAPTER4 LABORATORY PERIPHERAL ACCELERATOR DRIVER 4-1

4.1 SUPPORTED DEVICE 4-1
4.1.1 LPA 11-K Modes of Operation 4-1
4.1.2 Errors 4-2

4.2 SUPPORTING SOFTWARE 4-3

4.3 DEVICE INFORMATION 4-4

4.4 LPA 11-K FUNCTION CODES 4-7
4.4.1 Load Microcode 4-7
4.4.2 Start Microprocessor 4-8
4.4.3 Initialize LPA 11-K 4-8
4.4.4 Set Clock 4-9
4.4.5 Start Data Transfer Request 4-10
4.4.6 LPA11-K Data Transfer Stop Command 4-13

4.5 HIGH-LEVEL LANGUAGE INTERFACE 4-13
4.5.1 High-Level Language Support Routines 4-13
4.5.1.1 Buffer Queue Control • 4-14
4.5.1.2 Subroutine Argument Usage• 4-15
4.5.2 LPASADSWP - Initiate Synchronous A/D Sampling

Sweep 4-18
4.5.3 LPASDASWP - Initiate Synchronous D/A Sweep 4-19
4.5.4 LPASDISWP - Initiate Synchronous Digital Input Sweep - 4-20
4.5.5 LPASDOSWP - Initiate Synchronous Digital Output

Sweep 4-21
4.5.6 LPA$LAMSKS - Set LPA 11-K Masks and NUM Buffer 4-21
4.5.7 LPASSETADC - Set Channel Information for Sweeps -- 4-22

viii

Contents

4.5.8 LPA$SETIBF - Set IBUF Array for Sweeps 4-23
4.5.9 LPASSTPSWP- Stop In-Progress Sweep 4-23
4.5.10 LPA$CLOCKA- Clock A Control 4-24
4.5.11 LPA$CLOCKB - Clock B Control 4-25
4.5.12 LPASXRATE - Compute Clock Rate and Preset Value 4-26
4.5.13 LPA$1BFSTS - Return Buffer Status 4-26
4.5.14 LPA$1GTBUF - Return Buffer Number 4-27
4.5.15 LPA$1 NXTBF - Set Next Buffer to Use 4-28
4.5.16 LPA$1WTBUF - Return Next Buffer or Wait 4-29
4.5.17 LPA$RLSBUF - Release Data Buffer 4-29
4.5.18 LPA$RMVBUF - Remove Buffer from Device Queue 4-30
4.5.19 LPA$CVADF - Convert A/D Input to Floating-Point 4-31
4.5.20 LPA$FL T16 - Convert Unsigned 16-bit Integer to

Floating-Point 4-31
4.5.21 LPA$LOADMC - Load Microcode and Initialize LPA11-K 4-31

4.6 1/0 STATUS BLOCK 4-32

4.7 LOADING LPA11-K MICROCODE 4-33
4.7.1 Microcode Loader Process 4-33
4.7.2 Operator Process 4-34

4.8 RSX-11 M/M-PLUS AND VMS DIFFERENCES 4-34
4.8.1 General 4-34
4.8.2 Alignment and Length 4-35
4.8.3 Status Returns 4-35
4.8.4 Sweep Routines 4-35

4.9 PROGRAMMING EXAMPLES 4-35
4.9.1 LPA11-K High-Level Language Program (Program A) 4-36
4.9.2 LPA11-K High-Level Language Program (Program B) 4-37
4.9.3 LPA 11-K QIO Functions Program (Program C) 4-43

CHAPTER 5 LINE PRINTER DRIVER 5-1

5.1 SUPPORTED LINE PRINTER DEVICES 5-1
5.1.1 LP11 Line Printer Controller 5-1
5.1.2 DMF32 and DMB32 Line Printer Controllers 5-1
5.1.3 LP27 Line Printer 5-1
5.1.4 LA 11 DECprinter I 5-2
5.1.5 LN01 Laser Page Printer 5-2

ix

Contents

5.1.6 LN03 Laser Page Printer 5-2

5.2 DRIVER FEATURES 5-2
5.2.1 Output Character Formatting 5-2
5.2.2 Error Recovery 5-3

5.3 DEVICE INFORMATION 5-3

5.4 LINE PRINTER FUNCTION CODES 5-5
5.4.1 Write 5-5
5.4.1.1 Write Function Carriage Control • 5-6
5.4.2 Sense Printer Mode 5-8
5.4.3 Set Mode 5-9

5.5 1/0 STATUS BLOCK 5-10

5.6 PROGRAMMING EXAMPLE 5-10

CHAPTER 6 MAGNETIC TAPE DRIVERS 6-1

6.1 SUPPORTED MAGNETIC TAPE CONTROLLERS 6-2
6.1.1 TM03 Magnetic Tape Controller 6-2
6.1.2 TS11 Magnetic Tape Controller 6-2
6.1.3 TM78 Magnetic Tape Controller 6-2
6.1.4 TU80 Magnetic Tape Subsystem 6-3
6.1.5 TU81 and TA81 Magnetic Tape Subsystems 6-3
6.1.6 TK50 Cartridge Tape System 6-3

6.2 DRIVER FEATURES 6-3
6.2.1 Master Adapters and Slave Formatters 6-4
6.2.2 Data Check 6-4
6.2.3 Error Recovery 6-5
6.2.4 Streaming Tape Systems 6-5

6.3 DEVICE INFORMATION 6-6

6.4 MAGNETIC TAPE FUNCTION CODES 6-8
6.4.1 Read 6-12
6.4.2 Write 6-13

x

Contents

6.4.3 Rewind 6-14
6.4.4 Skip File 6-14
6.4.5 Skip Record 6-15
6.4.5.1 Logical End-of-Volume Detection• 6-15
6.4.6 Write End-of-File 6-16
6.4.7 Rewind Offline 6-16
6.4.8 Unload 6-16
6.4.9 Sense Tape Mode 6-16
6.4.10 Set Mode 6-17
6.4.11 Data Security Erase 6-21
6.4.12 Pack Acknowledge 6-21
6.4.13 Available 6-21

6.5 1/0 STATUS BLOCK 6-21

6.6 PROGRAMMING EXAMPLES 6-22

CHAPTER 7 MAILBOX DRIVER 7-1

7.1 MAILBOX OPERATIONS 7-1
7.1.1 Creating Mailboxes 7-1
7.1.2 Deleting Mailboxes 7-2
7.1.3 Mailbox Message Format 7-3
7.1.4 Mailbox Protection 7-3

7.2 DEVICE INFORMATION 7-4

7.3 MAILBOX FUNCTION CODES 7-5
7.3.1 Read 7-6
7.3.2 Write 7-7
7.3.3 Write End-of-File Message 7-8
7.3.4 Set Attention AST 7-9
7.3.5 Set Protection 7-11

7.4 1/0 STATUS BLOCK 7-12

7.5 PROGRAMMING EXAMPLE 7-13

xi

Contents

CHAPTERS TERMINAL DRIVER 8-1

8.1 SUPPORTED TERMINAL DEVICES 8-1

8.2 TERMINAL DRIVER FEATURES 8-2
8.2.1 Input Processing 8-3
8.2.1.1 Command Line Editing and Command Recall • 8-3
8.2.1.2 Control Characters and Special Keys • 8-4
8.2.1.3 Read Verify • 8-7
8.2.1.4 Escape and Control Sequences • 8-8
8.2.1.5 Type-Ahead Feature• 8-9
8.2.1.6 Line Terminators • 8-1 0
8.2.1.7 Special Operating Modes • 8-10
8.2.2 Output Processing 8-11
8.2.2.1 Duplex Modes • 8-11
8.2.2.2 Formatting of Output • 8-12
8.2.3 Dial-Up Support 8-12
8.2.3.1 Modem Signal Control • 8-12
8.2.3.2 Hangup on Logging Out • 8-1 6
8.2.3.3 Preservation of a Process Across Hangups • 8-1 6
8.2.4 Terminal/Mailbox Interaction 8-17
8.2.5 Autobaud Detection 8-18
8.2.6 Out-of-Band Control Character Handling 8-19

8.3 DEVICE INFORMATION 8-19
8.3.1 Terminal Characteristics Categories 8-26

8.4 TERMINAL FUNCTION CODES 8-27
8.4.1 Read 8-27
8.4.1.1 Function Modifier Codes for Read 010 Functions • 8-28
8.4.1.2 Read Function Terminators • 8-29
8.4.1.3 ltemlist Read Operations • 8-30
8.4.1.4 Read Verify Function• 8-35
8.4.2 Write 8-37
8.4.2.1 Function Modifier Codes for Write 010 Functions • 8-37
8.4.2.2 Write Function Carriage Control • 8-38
8.4.3 Set Mode 8-40
8.4.3.1 Hangup Function Modifier • 8-44
8.4.3.2 Enable CTRL/C AST and Enable CTRL/Y AST Function

Modifiers • 8-44
8.4.3.3 Set Modem Function Modifier • 8-45
8.4.3.4 Loopback Function Modifier • 8-46
8.4.3.5 Enable Out-of-Band AST Function Modifier • 8-4 7
8.4.3.6 Broadcast Function Modifier • 8-48
8.4.4 LAT Port Driver QIO Interface 8-49

xii

Contents

8.4.4.1 LAT Port Driver Functions • 8-50
8.4.4.2 Application Services Creation • 8-52
8.4.4.3 Hangup Notification • 8-53
8.4.5 Sense Mode and Sense Characteristics 8-53
8.4.5.1 Type-ahead Count Function Modifier • 8-54
8.4.5.2 Read Modem Function Modifier • 8-55
8.4.5.3 Broadcast Function Modifier • 8-56

8.5 1/0 STATUS BLOCK 8-56

8.6 PROGRAMMING EXAMPLES 8-59

APPENDIX A 1/0 FUNCTION CODES A-1

A.1 ACP-QIO INTERFACE DRIVER A-1

A.2 CARD READER DRIVER A-2

A.3 DISK DRIVERS A-2

A.4 LABORATORY PERIPHERAL ACCELERATOR DRIVER A-4

A.5 LINE PRINTER DRIVER A-5

A.6 MAGNETIC TAPE DRIVERS A-6

A.7 MAILBOX DRIVER A-7

A.8 TERMINAL DRIVER A-8

APPENDIX B TABLES B-1

B.1 DEC MULTINATIONAL CHARACTER SET B-1

B.2 TERMINAL SEQUENCES AND MODES B-9

xiii

Contents

INDEX

EXAMPLES
3-1 Disk Program Example 3-28

4-1 LPA11-K High-Level Language Program (Program A) 4-36

4-2 LPA11-K High-Level Language Program (Program B) 4-38

4-3 LPA 11-K QIO Functions Program (Program C) 4-44

5-1 Line Printer Program Example 5-11

6-1 Magnetic Tape Program Example 6-23

6-2 Device Characteristic Program Example 6-27

6-3 Set Mode and Sense Mode Program Example 6-28

7-1 Mailbox Driver Program Example 7-14

8-1 Terminal Program Example 8-60

8-2 Read Verify Program Example 8-69

8-3 LAT Application Device Program 8-73

FIGURES
1-1 ACP-QIO Interface 1-1

1-2 ACP Device- or Function-Dependent Arguments 1-3

1-3 ACP Device/Function Argument Descriptor Format 1-3

1-4 File Information Block Format 1-4

1-5 Typical Short File Information Block 1-5

1-6 Attribute Control Block Format 1-17

1-7 ACP-QIO Record Attributes Area 1-21

1-8 ACP-QIO Attributes Statistics Block 1-23

1-9 Quota File Transfer Block 1-39

1-10 IOSB Contents - ACP-QIO Functions 1-40

2-1 A Card Reader Batch Job 2-3

2-2 Binary and Packed Column Storage 2-7

2-3 Set Mode Characteristics Buffer 2-8

2-4 Set Characteristic Buffer 2-11

2-5 IOSB Contents 2-11

3-1 Disk Physical Address 3-6

3-2 Dual-Ported Disk Drives 3-8

3-3 Starting Physical Address 3-21

3-4 Physical Cylinder Number Format 3-22

3-5 IOSB Contents 3-27

xiv

Contents

3-6 IOSB Contents - Sense Mode 3-27

4-1 Relationship of Supporting Software to LPA11-K 4-4

4-2 Data Transfer Command Table 4-11

4-3 Buffer Queue Control 4-15

4-4 1/0 Functions IOSB Content 4-32

5-1 P4 Carriage Control Specifier 5-6

5-2 Write Function Carriage Control (Prefix and Postfix
Coding) 5-8

5-3 Set Mode Buffer 5-9

5-4 Set Characteristics Buffer 5-9

5-5 IOSB Contents -Write Function 5-10

5-6 IOSB Contents - Set Mode Function 5-10

6-1 10$_SKIPFILE Argument 6-14

6-2 10$_SKIPRECORD Argument 6-15

6-3 Sense Mode P1 Buffer 6-17

6-4 Set Mode Characteristics Buffer 6-18

6-5 Set Characteristics Buffer 6-19

6-6 IOSB Contents 6-22

7-1 Multiple Mailbox Channels 7-3

7-2 Typical Mailbox Message Format 7-4

7-3 Read Mailbox 7-7

7-4 Write Mailbox 7-8

7-5 Write Attention AST (Read Unsolicited Data) 7-10

7-6 Read Attention AST 7-10

7-7 Protection Mask 7-11

7-8 IOSB Contents - Read Function 7-12

7-9 IOSB Contents - Write Function 7-12

7-10 IOSB Contents - Set Protection Function 7-13

8-1 Modem Control - Two-Way Simultaneous Operation 8-14

8-2 Terminal Mailbox Message Format 8-18

8-3 Short and Long Forms of Terminator Mask Quadwords 8-30

8-4 ltemlist Read Descriptor 8-31

8-5 P4 Carriage Control Specifier 8-38

8-6 Write Function Carriage Control (Prefix and Postfix
Coding) 8-41

8-7 Set Mode and Set Characteristics Buffers 8-42

8-8 Set Mode P1 Block 8-45

8-9 Relationship of Out-of-Band Function with Control
Characters 8-48

8-10 10$M_LT_MAP_PORT Item List 8-52

8-11 Sense Mode Characteristics Buffer 8-54

xv

Contents

8-12 Sense Mode Characteristics Buffer (type-ahead) 8-55

8-13 Sense Mode P1 Block 8-55

8-14 IOSB Contents-Read Function 8-57

8-15 IOSB Contents-ltemlist Read Function 8-57

8-16 IOSB Contents-Write Function 8-57

8-17 IOSB Contents-Set Mode, Set Characteristics, Sense
Mode, and Sense Characteristics Functions 8-58

8-18 IOSB Contents-LAT Port Driver Function 8-59

TABLES
1-1 Contents of the File Information Block 1-5

1-2 FIB Fields (Lookup Control) 1-9

1-3 Fl B Fields (Access Control) 1-11

1-4 FIB Fields (Extend Control) 1-13

1-5 Fl B Fields (Truncate Control) 1-16

1-6 Attribute Control Block Fields 1-17

1-7 ACP-QIO Attributes 1-18

1-8 File Characteristics Bits 1-21

1-9 ACP Record Attributes Values 1-22

1-10 Contents of the Statistics Block 1-24

1-11 Disk Quota Functions (Enable/Disable) 1-37

1-12 Disk Quota Functions (Individual Entries) 1-38

2-1 Card Reader Device-Independent Characteristics 2-5

2-2 Device-Dependent Characteristics for Card Readers 2-5

2-3 Card Reader 1/0 Functions 2-6

2-4 Set Mode and Set Characteristic Card Reader
Characteristics 2-8

2-5 Card Reader Codes 2-8

3-1 Supported Disk Devices 3-1

3-2 Disk Device Characteristics 3-16

3-3 Disk 1/0 Functions 3-18

4-1 Minimum and Maximum Configurations per LPA 11-K 4-1

4-2 LPA11-K Device-Independent Characteristics 4-5

4-3 LPA11-K Device-Dependent Characteristics 4-5

4-4 VAX Procedures for the LPA11-K 4-13

4-5 Subroutine Argument Usage 4-15

4-6 LPA$1GTBUF Call - IBUFNO and IOSB Contents 4-28

4-7 LPA$1WTBUF Call - IBUFNO and IOSB Contents 4-29

4-8 Program A Variables 4-36

xvi

Contents

4-9 Program B Variables 4-38

5-1 Printer Device-Independent Characteristics 5-4

5-2 Device-Dependent Characteristics for Line Printers 5-4

5-3 Write Function Carriage Control (FORTRAN: byte 0 not
equal to 0) 5-6

5-4 Write Function Carriage Control (P4 byte 0 equal to 0) 5-7

6-1 Supported Magnetic Tape Devices 6-1

6-2 Magnetic Tape Device-Independent Characteristics 6-6

6-3 Device-Dependent Information for Tape Devices 6-7

6-4 Extended Device Characteristics for Tape Devices 6-8

6-5 Magnetic Tape 1/0 Functions 6-9

6-6 Set Mode and Set Characteristics Magnetic Tape
Characteristics 6-19

6-7 Extended Device Characteristics for Tape Devices 6-20

7-1 Mailbox Read and Write Operations 7-1

7-2 Mailbox Characteristics 7-5

8-1 Supported Terminal Devices 8-1

8-2 Terminal Control Characters 8-4

8-3 Control and Data Signals (Full Modem Mode
Configuration) 8-15

8-4 Terminal Device-Independent Characteristics 8-20

8-5 Terminal Characteristics 8-20

8-6 Extended Terminal Characteristics 8-22

8-7 Read QIO Function Modifiers for the Terminal Driver 8-28

8-8 Item Codes for ltemlist Read Operations for the Terminal
Driver 8-31

8-9 Write QIO Function Modifiers for the Terminal Driver -- 8-37

8-10 Write Function Carriage Control (FORTRAN: byte 0 not
equal to 0) 8-39

8-11 Write Function Carriage Control (P4 byte 0 = 0) 8-40

8-12 Broadcast Requester I Os 8-49

8-13 10$M_LT_CQNNECT Request Status 8-51

8-14 10$M_LT_MAP_PORT and 10$M_LT_RATING Request
Status 8-52

8-15 LAT Rejection Codes 8-59

B-1 DEC Multinational Character Set B-1

B-2 Sequences and Modes B-10

xvii

Preface

Intended Audience
This manual is intended for system programmers who want to take advantage
of the time and space savings that result from direct use of I/O devices.
Users of VMS who do not require such detailed knowledge of I/O drivers can
use the device-independent services described in the VMS Record Management
Services Manual.

Document Structure
This manual is organized into eight chapters and two appendixes, as follows:

• Chapter 1 describes the Queue I/O (QIO) interface to file system ancillary
control processes (ACPs).

• Chapters 2 through 8 describe the use of VMS file-structured and real
time I/O device drivers, the drivers for storage devices such as disks and
magnetic tapes, and terminal devices supported by VMS:

Chapter 2 discusses the card reader driver.

Chapter 3 discusses disk drivers.

Chapter 4 discusses the LPAll-K driver.

Chapter 5 discusses the line printer drivers.

Chapter 6 discusses the magnetic tape drivers.

Chapter 7 discusses the mailbox driver.

Chapter 8 discusses the terminal driver.

• Appendix A summarizes the QIO function codes, arguments, and function
modifiers used by the drivers listed above.

• Appendix B lists the DEC Multinational Character Set and the ANSI and
DIGITAL-private escape sequences for terminals.

Associated Documents
The following documents provide additional information:

• VMS System Services Reference Manual

• VMS Software Information Management Handbook

• VMS Software VMS System Software Handbook

• Guide to VMS Programming Resources

• VMS Record Management Services Manual

• LPAl 1-K Laboratory Peripheral Accelerator User's Guide

xix

Preface

Conventions

xx

• VMS Networking Manual

• VMS System Messages and Recovery Procedures Reference Volume

• VMS Device Support Manual

Convention

CTRL/C

$
05-JUN-1988 11 :55:22

$

input-file, ...

[logical-name]

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

quotation marks
apostrophes

numbers

Preface

The term quotation marks is used to refer
to double quotation marks (,.) . The term
apostrophe (') is used to refer to a single
quotation mark.

Hyphens in coding examples indicate that
additional arguments to the request are provided
on the line that follows. For example:

CMDOFAB: $FAB fac=put,fnm=sys$output: ,-
mrs=132,rat=cr,rfm=var

CMDORAB: $RAB ubf=cmdbuf ,usz=cmdbsz.-
fab=cmdofab

Unless otherwise noted, all numbers in the
text are assumed to be decimal. Nondecimal
radixes-binary, octal, or hexadecimal-are
explicitly indicated in the coding examples.

xxi

New and Changed Features

This revision of the VMS I/O User's Reference Manual: Part I reflects the
technical changes since VMS Version 4.4. The following chapters contain
new or changed information:

• Chapter 1

Sections 1.3.1.3 and 1.6.1.3 describe directory entry protection and
creation.

• Chapter 2

Section 2.2.1.2 describes the methods you use to change the
translation mode.

Section 2.2.2 describes how you submit batch jobs through the card
reader.

• Chapter 3

Table 3-1 includes the new disk devices supported for VS.O.

Section 3.2.1.2.1 describes a restriction on dual-ported non-DSA disks
in a VAXcluster.

Section 3.2. 7 provides information on the VAXstation 2000 /Micro VAX
2000 disk driver.

• Chapter 6

Section 6.4 provides an example of how to correctly define the P 1
parameter in a IQ$_SKIPRECORD QIO.

Table 6-1 includes the new magnetic tape devices supported for
vs.o.

• Chapter 8

Section 8.4.3 describes the consequences if you use
TT2$V_FALLBACK for a disconnected virtual terminal (_ VTAx:) or if
the Terminal Fallback Facility is not activated.

Section 8.4.4 describes the LAT port driver QIO interface.

xxiii

1 ACP-QIO Interface

An ancillary control process (ACP) is a process that interfaces between the
user process and the driver, and performs functions that supplement the
driver's functions. Virtual I/O operations involving file-structured devices
(disks and magnetic tapes) often require ACP intervention. In most cases,
ACP intervention is requested by VMS Record Management Services (RMS)
and is transparent to the user process. However, user processes can request
ACP functions directly by issuing a QIO request and specifying an ACP
function code, as shown in Figure 1-1.

Executing physical and logical 1/0 operations on a device being managed
by a file ACP will interfere with the operation of the ACP and will result in
unpredictable consequences, including system failure in certain cases.

In addition to the ACP, the VMS operating system also provides the XQP
(extended QIO processor) facility to supplement the QIO driver's functions
when performing virtual I/O operations on file-structured devices (ACP for
Files-11 On-Disk Structure Level 1 and XQP for Files-11 On-Disk Structure
Level 2). However, rather than being a separate process, the XQP executes as
a kernel mode thread in the process of its caller.

This chapter describes the QIO interface to ACPs for disk and magnetic tape
devices (file system ACPs). The sample program in Chapter 6 performs QIO
operations to the magnetic tape ACP.

Figure 1-1 ACP-QIO Interface

-- -User
Process _..J L _ Driver

-- ACP __..

l r -

ZK-635-82

This section also describes a number of structures and field names of the
form xxx$name. A VAX MACRO program can define symbols of this form by
invoking the $xxxDEF macro.

The following macros are available in SYS$LIBRARY:STARLET.MLB:

$IODEF
$FIBDEF
$ATRDEF
$SBKDEF

1-1

ACP-QIO Interface

The following macros are available in SYS$LIBRARY:LIB.MLB:

$FATDEF
$DQFDEF
$FCHDEF

Programs written in BLISS-32 can use these symbols by referencing them and
including the correct library, SYS$LIBRARY:STARLET.L32 (for the macros
listed under SYS$LIBRARY:STARLET.MLB), and SYS$LIBRARY:LIB.L32 (for
the macros listed under SYS$LIBRARY:LIB.MLB).

References to ANSI refer to the American National Standard Magnetic Tape
Labels and File Structures for Information Interchange, ANSI X3.27-1978.

1 .1 ACP Functions and Encoding

1-2

All VMS ACP functions can be expressed using seven function codes and four
function modifiers. The function codes are as follows:

• IO$_CREATE-Creates a directory entry or file

• IO$__ACCESS-Searches a directory for a specified file and accesses the
file, if found

• IO$_DEACCESS-Deaccesses a file and, if specified, writes the final
attributes in the file header

• IO$_MODIFY-Modifies the file attributes and file allocation

• IO$_DELETE-Deletes a directory entry and file header

• IO$_MOUNT-Informs the ACP when a volume is mounted; requires
MOUNT privilege

• IO$--ACPCONTROL-Performs miscellaneous control functions

The function modifiers are:

• IO$M--ACCESS-Opens a file on the user's channel

• IO$M_CREATE-Creates a file

• IO$M_DELETE-Deletes a file (or marks it for deletion)

• IO$M_DMOUNT-Dismounts a volume

In addition to the function codes and modifiers, VMS ACPs take five device
or function-dependent arguments, as shown in Figure 1-2. The first
argument, Pl, is the address of the file information block (FIB) descriptor.
Section 1.2 describes the FIB in detail.

The second argument, P2, is an optional argument used in directory
operations. It specifies the address of the descriptor for the file name string to
be entered in the directory.

Argument P3 is the address of a word to receive the resultant file name string
length. The resultant string is not padded. The actual length is returned in
P3. P4 is the address of a descriptor for a buffer to receive the resultant file
name string. Both of these arguments are optional.

ACP-QIO Interface
1 .1 ACP Functions and Encoding

Figure 1-2 ACP Device- or Function-Dependent Arguments

31 0

P1: Address of FIB descriptor

P2: Address of file name string descriptor (optional)

P3: Address of word to receive resultant string length (optional)

P4: Address of resultant string descriptor (optional)

P5: Address of attribute control block (optional)

ZK-636-82

The fifth argument, PS, is an optional argument containing the address of the
attribute control block. Section 1.3.5 describes the attribute control block in
detail.

All areas of memory specified by the descriptors must be capable of being
read or written to.

Figure 1-3 shows the format for the descriptors. The count field is the length
in bytes of the item described.

Figure 1-3 ACP Device/Function Argument Descriptor Format

31 16 15 0

I

not used I count

address

ZK-637-82

1.2 File Information Block (FIB)
The file information block (FIB) contains much of the information that is
exchanged between the user process and the ACP. Figure 1-4 shows the
format of the FIB. The FIB must be writable. Because the FIB is passed by
a descriptor (see Figure 1-3), its length can vary. Thus, a short FIB can be
used in ACP calls that do not need arguments near the end of the FIB. The
ACP treats the omitted portion of the FIB as if it were 0. Figure 1-5 shows
the format of a typical short FIB that would be used to open an existing file.
Table 1-1 gives a brief description of each of the FIB fields. More detailed
descriptions are provided in Sections 1.3 and 1.6.

1-3

ACP-QIO Interface
1.2 File Information Block (FIB)

Figure 1-4 File Information Block Format

31 2423 16 15 87 0

FIB$B_WSIZE FIB$LACCTL

FIB$W_FID

FIB$W_DID

FIB$L_WCC

FIB$W_CNTRLFUNC/FIB$W_EXCTL FIB$W_NMCTL

FIB$L _CNTRLVAL/FIB$L _EXSZ

FIB$L _EXVBN

FIB$8_ ALALIGN I FIB$8_ ALOPTS

FIB$W_ ALLOC

reserved FIB$W_ VERLIMIT

FIB$L _ ACLCTX

FIB$L _ ACLSTATUS

FIB$L _STATUS

FIB$L _ ACL.ACCESS

ZK-638-82

1-4

ACP-QIO Interface
1.2 File Information Block (FIB)

Figure 1-5 Typical Short File Information Block

31 24 23 16 15 8 7 0

FIB$B_WSIZE I FIB$L_ACCTL

FIB$W_DID

FIB$L_wcc

-o

FIB$W_FID

FIB$W_NMCTL

--o
ZK-639-82

Table 1-1 Contents of the File Information Block

Field Subfields

FIB$L_ACCTL

FIB$B_WSIZE

FIB$W_FID

FIB$W _FID_NUM

Meaning

Contains flag bits that control
the access to the file. Sections
1.3. 1. 1, 1.3.2. 1, 1.6. 1. 1,
1.6.4. 1, and 1.6.5 describe the
FIB$L_ACCTL field flag bits.

Controls the size of the file
window used to map a disk
file. If a window size of 255
is specified, the file is mapped
completely through the use of
segmented windows.

Specifies the file identification.
You supply the file identifier
when it is known; the ACP
returns the file identifier when it
becomes known, for example,
as a result of a create or
directory lookup. A 0 file
identifier can be specified when
an operation is performed on
a file that is already open on
a particular channel. The ACP
returns the file identifier of
the open file. The following
subfields are defined:

File number.

1-5

ACP-QIO Interface
1 .2 File Information Block (Fl B)

Table 1-1 (Cont.) Contents of the File Information Block

Field

FIB$W_DID

FIB$L_WCC

FIB$W _NMCTL

FIB$W_EXCTL

FIB$W_CNTRLFUNC

1-6

Subfields

FIB$W_FID_SEQ

FIB$W _FID_RVN

FIB$B_FID_RVN

FIB$B_FID_NMX

FIB$W_DID_NUM

FIB$W_DID_SEQ

FIB$W_DID_RVN

FIB$B_DID_RVN

FIB$B_DID_NMX

FIB$C_USEREOT

Meaning

File sequence number.

Relative volume number (only for
magnetic tape devices).

Relative volume number (only for
disk devices).

File number extension (only for
disk devices).

Contains the file identifier of
the directory file. The following
subfields are defined:

File number.

File sequence number.

Relative volume number (only for
magnetic tape devices).

Relative volume number (only for
disk devices).

File number extension (only for
disk devices).

Maintains position context when
processing wildcard directory
operations.

Contains flag bits that control
the processing of a name
string in a directory operation.
Sections 1.3. 1.1 and 1.6.1. 1
describe the FIB$W_NMCTL
field flag bits.

Contains flag bits that specify
extend control for disk devices.
Sections 1.3.3. 1 and 1.3.4. 1
describe the FIB$W _EXCTL field
flag bits.

In an 10$_ACPCONTROL
function, this field contains
the code that specifies which
ACP control function is to be
performed (see Section 1.6. 7).
This field overlays FIB$W _
EXCTL.

User EQT mode. In an 10$_
CREA TE or 10$_ACCESS
function, you can set this mode
on a per file basis. (See Sections
1.6. 1 and 1.6.2.)

ACP-QIO Interface
1 .2 File Information Block (Fl B)

Table 1-1 (Cont.) Contents of the File Information Block

Field

FIB$L_EXSZ

FIB$L _CNTRL VAL

FIB$L _EXVBN

FIB$B_ALOPTS

FIB$B_ALALIGN

FIB$W _ALLOC

FIB$W _ VERLIMIT

FIB$L _ACLCTX

Subfields

FIB$W _LQC_FID

FIB$W _LQC_NUM

FIB$W _LQC_SEQ

FIB$B_LOC_RVN

FIB$B_LOC_NMX

FIB$L _LQC_ADDR

Meaning

Specifies the number of blocks
to be allocated in an extend
operation on a disk file.

Contains a control function value
used in an 10$_ACPCONTROL
function (see Section 1.6. 7).
The interpretation of the
·value depends on the control
function specified in FIB$W _
CNTRLFUNC. This field overlays
FIB$L_EXSZ.

Specifies the starting disk file
virtual block number at which a
file is to be truncated.

Contains option bits that control
the placement of allocated
blocks. Section 1.3.3. 1
describes the FIB$B_ALOPTS
field flag bits.

Contains the interpretation
mode of the allocation (FIB$W _
ALLOC) field.

Contains the desired physical
location of the blocks being
allocated. Interpretation of the
field is controlled by the FIB$8_
ALALIGN field. The following
subfields are defined:

Three-word related file ID for RFI
placement.

Related file number.

Related file sequence number.

Related file RVN or placement
RVN.

Related file number extension.

Placement LBN, cylinder, or
VBN.

Contains the version limit of the
directory entry.

Maintains position context when
processing ACL attributes from
the attribute (P5) list.

1-7

ACP-QIO Interface
1.2 File Information Block (FIB)

Table 1-1 (Cont.) Contents of the File Information Block

Field

FIB$L_ACL_
STATUS

FIB$L_ST A TUS

FIB$L_ALT_
ACCESS

Subfields

FIB$V_AL T_REO

FIB$V_ALT_
GRANTED

Meaning

Status of the requested ACL
attribute operation, if any. The
ACL attributes are included in
Table 1-7. If no ACL attributes
are given, SS$_NORMAL is
returned here.

Access status. Applies to all
major functions. The following
bits are supported:

Set to indicate whether the
alternate access bit is required
for the current operation. If not
set, the alternate access bit is
optional.

If FIB$V_AL T_REO = 0, the FIB
bit returned from the file system
is set if the alternate access
check succeeded.

A 32-bit mask that represents
an access mask to check against
file protection; for example,
opens a file for read access
and checks whether it can be
deleted. The mask has the same
configuration as the standard
protection mask.

1.3 ACP Subfunctions

1-8

The operations that the ACP performs can be organized into two categories:
major ACP functions and subfunctions. Each ACP operation performs one
major function. That function is specified by an 1/0 function code, such
as 10$-ACCESS, 10$_CREATE, or 10$_MODIFY. While executing the
major function, one or more subfunctions can be performed. A subfunction
is an operation such as looking up, accessing, or extending a file. Most
subfunctions can be executed by more than one of the major functions.
Sections 1.3.1 through 1.3.5 describe the following subfunctions in detail:

• Directory Lookup

• Access

• Extend

• Truncate

• Read Attributes

• Write Attributes

Section 1.6, which contains the descriptions of the major functions, lists the
subfunctions available to each major function.

1.3.1 Directory Lookup

1.3.1.1

ACP-QIO Interface
1 .3 ACP Subfunctions

The directory lookup subfunction is used to search for a file in a disk directory
or on a magnetic tape. This subfunction can be invoked using the major
functions 10$_ACCESS, IQ$_MODIFY, 10$_DELETE, and
10$_ACPCONTROL. A directory lookup occurs if the directory file ID field
in the FIB (FIB$W_DID) is a nonzero number.

Input Parameters
Table 1-2 lists the FIB fields that control the processing of a lookup
subfunction.

Table 1-2 FIB Fields (Lookup Control)

Field

FIB$W _NMCTL

FIB$W_FID

FIB$W_DID

FIB$L_WCC

FIB$L_ACCTL

Field Values

FIB$M_WILD

FIB$M_ALLNAM

FIB$M_ALL TYP

FIB$M_ALL VER

FIB$M_FINDFID

FIB$M_REWIND

Meaning

Name string control. The following
name control bits are applicable to
a lookup operation:

Set if name string contains
wildcards. Setting this bit causes
wildcard context to be returned in
FIB$L_WCC.

Set to match all name field values.

Set to match all field type values.

Set to match all version field
values.

Set to search a directory for the file
identifier in FIB$W _FID.

File identification. The file ID of the
file found is returned in this field.

Contains the file identifier of the
directory file. This field must be a
nonzero number.

Maintains position context when
processing wildcard directory
operations.

The following access control flag is
applicable to a lookup subfunction:

Set to rewind magnetic tape before
lookup. If not set, a magnetic
tape is searched from its current
position.

QIO arguments P2 through P6 are passed as values. The second argument,
P2, specifies the address of the descriptor for the file name string to be
searched for in the directory.

The file name string must have one of the following two formats:

name. type ;version

name. type. version

1-9

ACP-QIO Interface
1 .3 ACP Subfunctions

1.3.1.2

1-10

The name and type can be any combination of alphanumeric characters, and
the dollar sign ($), asterisk (*), and percent (%) characters. The version
must consist of numeric characters optionally preceded by a minus sign (-)
(only for disk devices) or a single asterisk. The total number of alphanumeric
and percent characters in the name field and in the type field must not exceed
39. Any number of additional asterisks can be present.

If any of the bits FIBM_ALLNAM, FIBM_ALLTYP, and FIB$M_ALLVER
are set, then the contents of the corresponding field in the name string are
ignored and the contents are assumed to be an asterisk.

Note that the file name string cannot contain a directory string. The directory
is specified by the FIB$W_DID field (see Table 1-1). Only VMS RMS can
process directory strings.

Argument P3 is the address of a word to receive the resultant file name string
length.

Argument P4 is the address of a descriptor for a buffer to receive the
resultant file name string. The resultant string is not padded. The P3 and
P4 arguments are optional.

Operation
The system searches either the directory file specified by FIB$W_DID or
the magnetic tape for the file name specified in the P2 file name parameter.
The actual file name found and its length are returned in the P3 and P4
length and result string buffers. The file ID of the file found is returned in
FIB$W_FID and can be used in subsequent operations as the major function
is processed.

Zero and negative version numbers have special significance in a disk lookup
operation. Specifying 0 as a version number causes the latest version of the
file to be found. Specifying -1 locates the second most recent version, -2 the
third most recent, and so forth. Specifying a version of -0 locates the lowest
numbered version of the file. For magnetic tape lookups, a version number
of 0 locates the first occurrence of the file encountered; negative version
numbers are not allowed.

Wildcard lookups are performed by specifying the appropriate wildcard
characters in the name string and setting FIB$M_WILD. (The name control
bits FIBM_ALLNAM, FIBM_ALLTYP, and FIB$M_ALLVER can also be
used in searching for wildcard entries, but they are intended primarily for
compatibility mode use.) On the first lookup, FIB$L_WCC should contain
zero entries. On each lookup, the ACP returns a nonzero value in
FIB$L_WCC, which must be passed back on the next lookup call. In
addition, you must pass the resultant name string returned by the previous
lookup using the P4 result string buffer, and its length in the P3 result length
word. This string is used together with FIB$L_WCC to continue the wildcard
search at the correct position in the directory.

Perform a lookup by file ID by setting the name control bit FIB$M_FINDFID.
When this bit is set, the system searches the directory for an entry containing
the file ID specified in FIB$W_FID, and the name of the entry found is
returned in the P3 and P4 result parameters. Note that if a directory contains
multiple entries with the same file ID, only the first entry can be located with
this technique.

Lookups by file ID should be done only when the file name is not available,
because lookups by this method are often significantly slower than lookups
by file name.

1.3.1.3

1.3.2 Access

1.3.2.1

Directory Entry Protection

ACP-QIO Interface
1 .3 ACP Subfunctions

A directory entry is protected with the same protection code as the file itself.
For example, if a file is protected against delete access, then the file name
has the same protection. Consequently, a nonprivileged user (that is, a user
who is not the volume owner or a user who does not have SYSPRV) cannot
rename a file because renaming a file is essentially the same as deleting
the file name. This protection is applied regardless of the protection on the
directory file.

Nonprivileged users can neither write directly into a .DIR;l directory file nor
turn off the directory bit in a directory file header.

The access subfunction is used to open a file so that virtual read or write
operations can be performed. This subfunction can be invoked using the
major functions IQ$_CREATE and 10$_ACCESS (see Sections 1.6.1 and
1.6.2). An access subfunction is performed if the 10$M_ACCESS modifier is
specified in the 1/0 function code.

Input Parameters
Table 1-3 lists the FIB fields that control the processing of an access
subfunction.

Table 1-3 FIB Fields (Access Control)

Field

FIB$L _ACCTL

Field Values

FIB$M_ WRITE

FIB$M_NOREAD

FIB$M_NOWRITE

FIB$M_NOTRUNC

FIB$M_DLOCK

Meaning

Specifies field values that control
access to the file. The following
access control bits are applicable
to the access subfunction:

Set for write access; clear for
read-only access.

Set to deny read access to others.
(You must have write privilege to
the file to use this option.)

Set to deny write access to others.

Set to prevent the file from being
truncated; clear to allow truncation.

Set to enable deaccess lock (close
check). Used only for disk devices.

Used to flag a file as inconsistent
if the program currently modifying
the file terminates abnormally.
If the program deaccesses the
file without performing a write
attributes operation, the file is
marked as locked and cannot be
accessed until it is unlocked.

1-11

ACP-QIO Interface
1 .3 ACP Subfunctions

Table 1-3 (Cont.) FIB Fields (Access Control)

Field

FIB$8_WSIZE

FIB$W_FID

1-12

Field Values

FIB$M_UPDA TE

FIB$M_READCK

FIB$M_ WRITECK

FIB$M _EXECUTE

FIB$M_NOLOCK

Meaning

Set to position at start of a
magnetic tape file when opening
file for write; clear to position at
end-of-file.

Set to enable read checking of
the file. Virtual reads to the file
are performed using a data check
operation.

Set to enable write checking of
the file. Virtual writes to the file
are performed using a data check
operation.

Set to access the file in execute
mode. The protection check is
made against the EXECUTE bit
instead of the READ bit. Valid
only for requests issued from
SUPERVISOR, EXEC, or KERNEL
mode.

Set to override exclusive access
to the file, allowing you to access
the file when another user has the
file open with FIB$M_NOREAD
specified. You must have SYSPRV
privilege or ownership of the
volume to use this option. FIB$M_
NOREAD and FIB$M_NQWRITE
must be clear for this option to
work.

FIB$M_NORECORD Set to inhibit recording of the file's
expiration date. If not set, the file's
expiration date can be modified,
depending on the file retention
parameters of the volume.

Controls the size of the file window
used to map a disk file. The ACP
uses the volume default if FIB$8_
WSIZE is 0. A value of 1 to 127
indicates the number of retrieval
pointers to be allocated to the
window. A value of -1 indicates
that the window should be as large
as necessary to map the entire file.
Note that the window is charged to
the user's BYTELIM quota.

Specifies the file identification of
the file to be accessed.

1.3.2.2

1.3.3 Extend

1.3.3.1

Operation

ACP-QIO Interface
1.3 ACP Subfunctions

The file is opened according to the access control specified (see Table 1-3).

The extend subfunction is used to allocate space to a disk file. This
subfunction can be invoked using the major I/O functions IQ$_CREATE
and IO$_MODIFY (see Sections 1.6.1 and 1.6.4). The extend subfunction
is performed if the bit FIB$M_EXTEND is set in the extend control word
FIB$W_EXCTL.

Input Parameters
Table 1-4 lists the FIB fields that control the processing of an extend
subfunction.

Table 1-4 FIB Fields (Extend Control)

Field Field Values Meaning

FIB$W _EXCTL Extend control flags. The following
flags are applicable to the extend
subfunction:

FIB$L_EXSZ

FIB$M_EXTEND Set to enable extension.

FIB$M_NOHDREXT Set to inhibit generation of
extension file headers.

FIB$M_ALCON Allocates contiguous space.

FIB$M_ALCONB

FIB$M_FILCON

FIB$M_ALDEF

The extend operation fails if the
necessary contiguous space is not
available.

Allocates the maximum amount of
contiguous space.

If both FIB$M_ALCON and
FIB$M_ALCONB are set, a single
contiguous area, whose size is
the largest available but not
greater than the size requested,
is allocated.

Marks the file contiguous. This bit
can only be set if the file does not
have space already allocated to it.

Allocates the extend size (FIB$L_
EXSZ) or the system default,
whichever is greater.

Specifies the number of blocks to
allocate to the file.

1-13

ACP-QIO Interface
1 .3 ACP Subfunctions

Table 1-4 {Cont.) FIB Fields {Extend Control)

Field Field Values

FIB$L _EXVBN

FIB$B_ALOPTS

FIB$M_EXACT

FIB$M_ONCYL

FIB$B_ALALIGN

(zero)

FIB$C_CYL

FIB$C_LBN

FIB$C_VBN

1-14

Meaning

The number of blocks actually
allocated for this operation
is returned in this longword.
More blocks than requested
can be allocated to meet cluster
boundaries.

Returns the starting virtual block
number of the blocks allocated.
FIB$L_EXVBN must initially contain
0 blocks.

Contains option bits that control
the placement of allocated blocks.
The following bits are defined:

Set to require exact placement;
clear to specify approximate
placement. If this bit is set and the
specified blocks are not available,
the extend operation fails.

Set to locate allocated space within
a cylinder. This option functions
correctly only when FIB$M_ALCON
or FIB$M_ALCONB is specified.

Contains the interpretation mode
of the allocation (FIB$W _ALLOC)
field. One of the following values
can be specified:

No placement data. The remainder
of the allocation field is ignored.

Location is specified as a byte
relative volume number (RVN) in
FIB$B_LQC_RVN and a cylinder
number in FIB$L _LQC_ADDR.

Location is specified as a byte RVN
in FIB$B_LQC_RVN, followed by
a longword logical block number
(LBN) in FIB$L _LQC_ADDR.

Location is specified as a longword
virtual block number (VBN) of the
file being extended in FIB$L _LQC_
ADDR. A 0 VBN or one that fails to
map indicates the end of the file.

1.3.3.2

1.3.4 Truncate

ACP-QIO Interface
1 .3 ACP Subfunctions

Table 1-4 (Cont.) FIB Fields (Extend Control)

Field

FIB$W_ALLOC

Operation

Field Values

FIB$C_RFI

FIB$W_LQC_FID

FIB$W_LQC_NUM

FIB$W _LQC_SEO

FIB$B_LQC_RVN

FIB$B_LQC_NMX

FIB$L _LQC_ADDR

Meaning

Location is specified as a three
word file ID in FIB$W_LQC_FID,
followed by a longword VBN of
that file in FIB$L_LQC_ADDR. A
0 file ID indicates the file being
extended. A 0 VBN or one that
fails to map indicates the end of
that file.

Contains the desired physical
location of the blocks being
allocated. Interpretation of the
field is controlled by the FIB$8_
ALALIGN field. The following
subfields are defined:

Three-word related file ID for RFI
placement.

Related file number.

Related file sequence number.

Related file RVN or placement RVN.

Related file number extension.

Placement LBN, cylinder, or VBN.

The specified number of blocks are allocated and appended to the file. The
virtual block number assigned to the first block allocated is returned in
FIB$L_EXVBN. The actual number of blocks allocated is returned in
FIB$L_EXSZ.

The actual number of blocks allocated is also returned in the second longword
of the user's If O status block. If a contiguous allocation (FIB$M_ALCON)
fails, the size of the largest contiguous space available on the disk is returned
in the second longword of the user's 1/0 status block.

The truncate subfunction is used to remove space from a disk file. This
subfunction can be invoked by the major 1/0 functions 10$_DEACCESS
and 10$_MODIFY (see Sections 1.6.3 and 1.6.4). The truncate subfunction
is performed if the bit FIB$M_TRUNCATE is set in the extend control word
FIB$W_EXCTL.

1-15

ACP-QIO Interface
1 .3 ACP Subfunctions

1.3.4.1

1.3.4.2

1-16

Input Parameters
Table 1-5 lists the FIB fields that control the processing of a truncate
subfunction.

Table 1-5 FIB Fields (Truncate Control)

Field Field Values Meaning

FIB$W _EXCTL Extend control flags. The following
flags are applicable to the truncate
subfunction:

FIB$M_ TRUNC Must be set to enable truncation.

FIB$M_MARKBAD Set to append the truncated blocks
to the bad block file, instead of
returning them to the free storage
pool. Only one cluster can be
deallocated. This is most easily
accomplished by specifying the last
VBN of the file in FIB$L_EXVBN.
SYSPRV privilege or ownership of
the volume is required to deallocate
blocks to the bad block file.

FIB$L _EXSZ Returns the actual number of
blocks deallocated. FIB$L_EXSZ
must initially contain a value of 0.

FIB$L_EXVBN Specifies the first virtual block
number to be removed from the
file. The actual starting virtual block
number of the truncate operation is
returned in this field.

Operation
Blocks are deallocated from the file, starting with the virtual block specified
in FIB$L_EXVBN and continuing through the end of the file. The actual
number of blocks deallocated is returned in FIB$L_EXSZ. The virtual block
number of the first block actually deallocated is returned in FIB$L_EXVBN.
Because of cluster round-up, this value might be greater than the value
specified. If FIB$M_MARKBAD is specified, the truncation VBN is rounded
down instead of up, and the value returned in FIB$L _EXVBN might be less
than that specified.

The number of blocks by which FIB$L_EXVBN was rounded up is returned
in the second longword of the 1/0 status block.

The truncate subfunction normally requires exclusive access to the file at run
time. This means, for example, that a file cannot be truncated while multiple
writers have access to it.

An exception occurs when a truncate subfunction is requested for a write
accessed file that allows other readers. Although the truncate subfunction
returns success status in this instance, the actual file truncation (the return of
the truncated blocks to free storage) is deferred until the last reader deaccesses
the file. If a new writer accesses the file after the truncate subfunction is
requested, but before the last deaccess, the deferred truncation is ignored.

1.3.5

ACP-QIO Interface
1 .3 ACP Subfurictions

Read/Write Attributes

1.3.5.1

The read and write attributes subfunctions are used for operations such as
reading and writing file protection and creating and revising dates. A read or
write attributes operation is invoked by specifying an attribute list with the
QIO parameter PS. A read attributes operation can be invoked by the major
I/O function 10$_.ACCESS (see Section 1.6.2); a write attributes operation
can be invoked by the major I/O functions 10$_CREATE, IO$_DEACCESS,
and 10$_MODIFY (see Sections 1.6.1, 1.6.3, and 1.6.4).

Input Parameters
The read or write attributes subfunction is controlled by the attribute list
specified by PS. The list consists of a variable number of two longword
control blocks, terminated by a 0 longword, as shown in Figure 1-6. The
maximum number of attribute control blocks in one list is 30. Table 1-6
describes the attribute control block fields.

Figure 1-6 Attribute Control Block Format

31 16 15 0

ATR$W_ TYPE I ATR$W_SIZE

ATR$L_ADDR

1--- -
~ (additional control blocks) ~

I---- -
0

ZK-640-82

Table 1-6 Attribute Control Block Fields

Field

ATR$W_SIZE

ATR$W_TYPE

ATR$L_ADDR

Meaning

Specifies the number of bytes of the attribute to be
transferred. Legal values are from 0 to the maximum size
of the particular attribute (see Table 1-7).

Identifies the individual attribute to be read or written.

Contains the buffer address of the memory space to or
from which the attribute is to be transferred. The attribute
buffer must be writable.

Table 1-7 lists the valid attributes for ACP-QIO functions. The maximum
size (in bytes) is determined by the required attribute configuration. For
example, the Radix-SO file name (ATR$S_FILNAM) uses only 6 bytes, but it
is always accompanied by the file type and file version, so a total of 10 bytes

1-17

ACP-QIO Interface
1.3 ACP Subfunctions

1-18

is required. Each attribute has two names: one for the code (for example,
ATR$C_UCHAR) and one for the size (for example, ATR$S_UCHAR).

Table 1-7 ACP-QIO Attributes

Attribute Name 1

A TR$C_UCHAR2 4

A TR$C_RECA TTR3

A TR$C_FILNAM

A TR$C_FIL TYP

A TR$C_FILVER

A TR$C_EXPDA T2

A TR$C_ST A TBLK5

A TR$C_HEADER5

A TR$C_BLOCKSIZE

A TR$C_USERLABEL 6

A TR$C_ASCDA TES2 4

ATR$C_ALCONTROL

A TR$C_ENDLBLAST

Maximum
Size
(bytes)

4

32

10

4

2

7

32

512

2

80

35

14

4

Meaning

4-byte file characteristics. (The
file characteristics bits are listed
following this table.)

Record attribute area. Section 1.4
describes the record attribute area
in detail.

6-byte Radix-50 file name plus
A TR$C_FIL TYP and A TR$C_
FILVER.

2-byte Radix-50 file type plus
A TR$C_FIL VER.

2-byte binary version number.

Expiration date in ASCII. Format:
DDMMMYY.

Statistics block. Section 1.5
describes the statistics block in
detail.

Complete file header.

Magnetic tape block size.

User file label.

Revision count (2 binary bytes),
revision date, creation date,
and expiration date, in ASCII.
Format: DDMMMYY (revision
date), HHMMSS (time), DDMMMYY
(creation date), HHMMSS (time),
DDMMMYY (expiration date). (The
format contains no embedded
spaces or commas.)

Compatibility mode allocation data.

End of magnetic tape label
processing; provides AST control
block.

1 Attributes with an ATR$C_ prefix have two names: one with the ATR$C_ prefix for the
code and one with an A TR$S_ prefix for the size, which is not included in the list.

2 Protected (can be written to only by system or owner).

3 Locked (cannot be written to while the file is locked against writers).

4 Not supported on write operations to MTAACP; defaults are returned on read operations.

5 Read only.

6 Not supported for disk devices.

ACP-QIO Interface
1 .3 ACP Subfunctions

Table 1-7 (Cont.) ACP-QIO Attributes

Attribute Name 1

A TR$C_ASCNAME

A TR$C_CREDA TE2

A TR$C_REVDA TE2 3

A TR$C_EXPDA TE2

A TR$C_BAKDA TE3 10

ATR$C_UIC2

A TR$C_FPR02 3

A TR$C_RPRO 10

A TR$C_ACLEVEL2 3 10

A TR$C_SEMASK 10

A TR$C_UIC_R05

A TR$C_DIRSEQ 10

A TR$C_BACKLINK 10

ATR$C_JOURNAL 10

ATR$C_HDRLACC

ATR$C_ADDACLENT7 10 11

A TR$C_DELACLENT7 10 11

A TR$C_MODACLENT7 10 11

A TR$C_FNDACLENT10 11

Maximum
Size
(bytes) Meaning

20 Disk: file name, type, and version,
in ASCII, including punctuation.
Format: name.type;version.

8

8

8

8

4

2

2

1

8

4

2

6

2

255

255

255

255

Magnetic tape: contains 17-
character file identifier (ANSI a);
no version number. Overrides
all other file name and file type
specifications if supplied on input
operations. If specified on an
access operation and you want
only a value to be returned, specify
(in A TR$W _SIZE) a buffer of
greater than 17 bytes.

64-bit creation date and time.

64-bit revision date and time.

64-bit expiration date and time.

64-bit backup date and time.

4-byte file owner UIC.

File protection.

2-byte record protection.

File access level.

File security mask and limit.

4-byte file owner UIC.

Directory update sequence count.

File back link pointer.

Journal control flags.

ANSI magnetic tape header label
accessibility character.

Add one or more access control
entries.

Remove an access control entry.

Modify an ACL entry.

Locate an ACL entry.

1 Attributes with an ATR$C_ prefix have two names: one with the ATR$C_ prefix for the
code and one with an ATR$S_ prefix for the size, which is not included in the list.

2 Protected (can be written to only by system or owner).

3 Locked (cannot be written to while the file is locked against writers).

5Read only.

7 Exclusive access required. This operation does not complete successfully if other readers
or writers are allowed.
10Not supported for Files-11 On-Disk Structure Level 1 or magnetic tapes.

11 The status from this attribute operation is returned in FIB$L _ACL _ST A TUS.

1-19

ACP-QIO Interface
1 .3 ACP Subfunctions

1-20

Table 1-7 (Cont.) ACP-QIO Attributes

Attribute Name 1

A TR$C_FNDACETYP 10 11

ATR$C_DELETEACL7 10 11

A TR$C_READACL 10 11

A TR$C_ACLLENGTH 10 11

ATR$C_READACE 10 11

A TR$C_RESERVED9 10

A TR$C_HIGHWA TER 10

A TR$C_PRIVS_USED8 10

A TR$C_MA TCHING_ACE8 10

A TR$C_ACCESS_MODE

ATR$C_FILE_SPEC 10

A TR$C_BUFFER_OFFSET4

Maximum
Size
(bytes) Meaning

255 Find a specific type of ACE.

255 Delete the entire ACL.

512 Read the entire ACL or as much as
will fit in the supplied buffer. Only
complete ACEs are transferred.
Thus, the supplied buffer can not
be completely filled.

4

255

380

4

4

255

512

2

Return the length of the ACL.

Read a single ACE.

Modify reserve area.

High-water mark (user read-only).

Privileges used to gain access.

ACE used to gain access (if any).

Access mode for following attribute
descriptors.

Convert FID to file specification.

Offset length for ANSI magnetic
tape header label buffer.

1 Attributes with an ATR$C_ prefix have two names: one with the ATR$C_ prefix for the
code and one with an A TR$S_ prefix for the size, which is not included in the list.

4 Not supported on write operations to MT AACP; defaults are returned on read operations.

7 Exclusive access required. This operation does not complete successfully if other readers
or writers are allowed.
8 This attribute can only be retrieved on the initial file access or create operation.

9The actual length available can decrease if the file is extended in a noncontiguous manner
or if an ACL is applied to the file.

10Not supported for Files-11 On-Disk Structure Level 1 or magnetic tapes.

11 The status from this attribute operation is returned in FIB$L _ACL _ST A TUS.

Table 1-8 lists the bits contained in the file characteristics longword, which is
read with the ATR$C_UCHAR attribute.

ACP-QIO Interface
1 .3 ACP Subfunctions

Table 1-8 File Characteristics Bits

FCHNOBACKUP

FCH$M _READCHECK

FCH$M_ WRITCHECK

FCH$M_CONTIGB

FCH$M_LOCKED

FCH$M_CONTIG

FCH$M_BADACL

FCH$M_SPOOL

FCH$M_DIRECTORY

FCH$M _BADBLOCK

FCH$M _MARKDEL

FCH$M_ERASE

1.4 ACP QIO Record Attributes Area

File is not to be backed up.

Verify all read operations.

Verify all write operations.

Keep file as contiguous as possible.

File is deaccess-locked.

File is contiguous.

File's ACL is corrupt.

File is an intermediate spool file.

File is a directory.

File contains bad blocks.

File is marked for deletion.

Erase file contents before deletion.

Figure 1-7 shows the format of the record attributes area.

Figure 1-7 ACP-QIO Record Attributes Area

31 24 23 16 15 87 0

FAT$W_RSIZE FAT$8_RATTRIB l FAT$B_RTYPE *

4

FAT$L_HIBLK

8

FAT$L_EFBLK

FAT$8_VFCSIZE I FAT$B_BKTSIZE FAT$W_FFBYTE

12

16

FAT$W_DEFEXT FAT$W_MAXREC

20

FAT$W_GBC

24

(6 bytes reserved for future use)

28

FAT$W_VERSIONS not used

*FAT$V_RTYPE bits 0-3; FAT$V_FILEORG bits 4-7

ZK-641-82

1-21

ACP-QIO Interface
1.4 ACP QIO Record Attributes Area

1-22

Table 1-9 lists the record attributes values and their meanings.

Table 1-9 ACP Record Attributes Values

Field Value

FAT$B_RTYPE

FA T$V_RTYPE

FAT$V_FILEORG

FA T$B_RA TTRIB

FAT$W_RSIZE

FAT$L_HIBLK2

FAT$L_EFBLK23

FAT$W_FFBYTE3

FA T$B_BKTSIZE

Meaning

Record type. Contains FAT$V_RTYPE and
FAT$V_FILEORG.

Record type. The following bit values are defined:
FA T$C_FIXED Fixed-length record

FA T$C_ VARIABLE

FAT$C_VFC

FA T$C_UNDEFINED

FA T$C_STREAM

FA T$C_STREAMLF

FAT$C_STREAMCR

Variable-length record

Variable-length record with fixed
control

Undefined record format (stream
binary)

RMS stream format

Stream terminated by LF

Stream terminated by CR

File organization. The following bit values are defined:
FA T$C_DIRECT Direct file organization 1

FAT$C_INDEXED Indexed file organization

FA T$C_RELA TIVE

FAT$C_
SEQUENTIAL

Relative file organization

Sequential file organization

Record attributes. The following bit values are defined:
FAT$M_ FORTRAN carriage control
FORTRANCC

FAT$M_IMPLIEDCC Implied carriage control

FAT$M_PRINTCC Print file carriage control

FAT$M_NOSPAN No spanned records

Record size in bytes.

Highest allocated VBN. The ACP maintains this field when
the file is extended or truncated. Attempts to modify this
field in a write attributes operation are ignored.
FAT$W_HIBLKH High-order 16 bits

FA T$W _HIBLKL

End-of-file VBN
FAT$W _EFBLKH

FAT$W_EFBLKL

Low-order 1 6 bits

High-order 16 bits

Low-order 16 bits

First free byte in FAT$L_EFBLK.

Bucket size in blocks.

1 Defined but not implemented.

2 1nverted format field. The high- and low-order 16 bits are transposed for compatibility
with PDP-11 software.
3 When the end-of-file position corresponds to a block boundary, by convention
FAT$L_EFBLK contains the end-of-file VBN plus 1, and FAT$W_FFBYTE contains 0.

ACP-QIO Interface
1 .4 ACP QIO Record Attributes Area

Table 1-9 (Cont.) ACP Record Attributes Values

Field Value Meaning

FAT$B_VFCSIZE Size in bytes of fixed-length control for VFC records.

FAT$W_MAXREC Maximum record size in bytes.

FA T$W _DEFEXT Default extend quantity.

FAT$W_GBC Global buffer count.

FA T$W _VERSIONS Default version limit; valid only if the file is a directory.

1 .5 ACP-QIO Attributes Statistics Block
Figure 1-8 shows the format of the attributes statistics block. Table 1-10 lists
the contents of this block.

Figure 1-8 ACP-QIO Attributes Statistics Block

31 16 15 8 7 0

SBK$L_STLBN

SBK$L_FILESIZE

[SBK$L_FCB SBK$B_LCNT 1 SBK$B_ACNT

(not used)

SBK$W_LCNT SBK$W_ACNT

SBK$W_TCNT SBK$W_WCNT

SBK$L_READS

SBK$L_WRITES

ZK-642-82

1-23

ACP-QIO Interface
1.5 ACP-QIO Attributes Statistics Block

Table 1-10 Contents of the Statistics Block

1-24

Field

SBK$L_STLBN

SBK$L _FILESIZE

SBK$8_ACNT 1

SBK$8_LCNT 1

SBK$L_FCB

SBK$W_ACNT 1

SBK$W_LCNT1

SBK$W_WCNT 1

SBK$W_ TCNT 1

SBK$L _READS

SBK$L_WRITES

Field Values

SBK$W _STLBNH

SBK$W_STLBNL

SBK$W _FILESIZH

SBK$W_FILESIZL

Meaning

Contains the starting LBN of the file
if the file is contiguous. If the file is
not contiguous, this field contains
a value of 0. The LBN appears as
an inverted longword (the high- and
low-order 16 bits are transposed
for PDP-11 compatibility). The
following subfields are defined:

Starting LBN (high-order 16 bits).

Starting LBN (low-order 16 bits).

Contains the size of the file in
blocks. The file size appears as an
inverted longword (the high- and
low-order 16 bits are transposed
for PDP-11 compatibility). The
following subfields are defined:

File size (high-order 16 bits).

File size (low-order 16 bits).

Access count (low byte). This
field is present for PDP-1 1
compatibility.

Lock count (low byte). This field is
present for PDP-11 compatibility.

System pool address of the file's
file control block.

Access count (the number of
channels that currently have the file
open).

Lock count (the number of access
operations that have locked the file
against writers).

Writer count (the number of
channels that currently have the
file open for write).

Truncate lock count (the number of
access operations that have locked
the file against truncation).

The number of read operations
executed for the file on this
channel.

The number of write operations
executed for the file on this
channel.

1 Accesses from processes on the local node in a cluster are counted.

1 .6 Major Functions

1.6.1 Create File

1.6.1.1

ACP-QIO Interface
1 .6 Major Functions

The following sections describe the operation of the major ACP functions.
Each section describes the required and optional parameters for a particular
function, as well as the sequence in which the function is performed. For
clarity, when a major function invokes a subfunction, the input parameters
used by the subfunction are omitted.

Create file is a virtual 1/0 function that creates a directory entry or a file on a
disk device, or a file on a magnetic tape device.

The following is the function code:

• 10$_CREATE

The following are the function modifiers:

• 10$M_CREATE-Creates a file.

• 10$M_ACCESS-Opens the file on your channel.

• 10$M_DELETE-Marks the file for deletion (applicable only to disk
devices).

Input Parameters
The following are the device- or function-dependent arguments for
IO$_CREATE:

• Pl-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional).

• P3-The address of the word that is to receive the length of the resultant
file name string (optional).

• P4-The address of a descriptor for a buffer that is to receive the resultant
file name string (optional).

• PS-The address of a list of attribute descriptors (optional).

The following fields in the FIB are applicable to the 10$_CREATE operation:

Field Field Values

FIB$L_ACCTL

FIB$M_REWIND

Meaning

Specifies field values that control
access to the file. The following
bits are applicable to the
10$_CREATE function:

Set to rewind magnetic tape
before creating the file. Any
data currently on the tape is
overwritten.

1-25

ACP-010 Interface
1 .6 Major Functions

Field

FIB$W _CNTRLFUNC

FIB$W_FID

FIB$W_DID

1-26

Field Values

FIB$M _CURPQS

Meaning

Set to create magnetic tape file at
the current tape position. (Note:
a magnetic tape file is created
at the end of the volume set
if neither FIB$M_REWIND nor
FIB$M_CURPQS is set.) If the
tape is not positioned at the end
of a file, FIB$M_CURPQS creates
a file at the next file position.
Any data currently on the tape
past the current file position is
overwritten.

FIB$M _ WRITETHRU Specifies that the file header is to
be written back to the disk. If not

FIB$C_USEREQT

specified and the file is opened,
writing of the file header can be
deferred to some later time.

Specifies the following value,
which allows you to control
actions subsequent to EQT
detection on a magnetic tape file.

Set on a per file basis to specify
user EQT mode. If this bit is set,
the magnetic tape driver notifies
the magnetic tape system if EQT
has been detected (considered
a 1serious exception1

) during the
creation of a file. The magnetic
tape system, in turn, returns
the alternate success code
SS$_ENDQFTAPE or SS$_
ENDQFVQLUME. All subsequent
l/Q requests are completed with
a failure status return of SS$_
SERIQUSEXP. The driver does
not execute any l/Q functions
until the serious exception has
been explicitly cleared by issuing
an IQ$_ACPCQNTROL function
(see Section 1.6. 7). If the file is
deaccessed or closed, the user
EQT mode is cleared after further
processing of the magnetic tape.

Contains the file ID of the file
created or entered.

Contains the file identifier of the
directory file.

1.6.1.2

Field

FIB$W_NMCTL

FIB$W _ VERLIMIT

FIB$L_ACL_
STATUS

Disk ACP Operation

Field Values

FIB$M_NEWVER

ACP-QIO Interface
1.6 Major Functions

Meaning

Controls the processing of the
file name in a directory operation.
The following bits are applicable
to the 10$_CREA TE function:

Set to create file of same name
with next higher version number.
Only for disk devices.

FIB$M_SUPERSEDE Set to supersede an existing file
of the same name, type, and
version. Only for disk devices.

FIB$M_LOWVER

FIB$M_HIGHVER

Set on return if a lower numbered
version of the file exists. Only for
disk devices.

Set on return if a higher numbered
version of the file exists. Only for
disk devices.

Specifies the version limit for the
directory entry created. Used only
for disk devices and only when
the first version of a new file is
created. If 0, the directory default
is used. If a directory operation
was performed, FIB$W_VERLIMIT
always contains the actual version
limit of the file.

Status of the requested ACL
attribute operation, if any. The
ACL attributes are included in
Table 1-7. If no ACL attributes
are given, SS$_NORMAL is
returned here.

If the modifier 10$M_CREATE is specified, a file is created. The file ID of
the file created is returned in FIB$W_FID. If the modifier 10$M_DELETE is
specified, the file is marked for deletion.

If a nonzero directory ID is specified in FIB$W_DID, a directory entry is
created. The file name specified by parameter P2 is entered in the directory,
together with the file ID in FIB$W_FID. (Section 1.3.1.1 describes the format
for the file name string.) Wildcards are not permitted. Negative version
numbers are treated as equivalent to a 0 version number. If a result string
buffer and length are specified by P3 and P4, the actual file name entered,
and its length, are returned.

The version number of the file receives the following treatment:

• If the version number in the specified file name is 0 or negative, the
directory entry created gets a version number one greater than the highest
previously existing version of that file (or version 1 if the file did not
previously exist).

1-27

ACP-010 Interface
1.6 Major Functions

1.6.1.3

1.6.1.4

1-28

• If the version number in the specified file name is a nonzero number and
FIB$M_NEWVER is set, the directory entry created gets a version number
one greater than the highest previously existing version of that file, or the
specified version number, whichever is greater.

• If the version number in the specified file name is a nonzero number and
the directory already contains a file of the same name, type, and version,
the previously existing file is set aside for deletion if FIB$M_SUPERSEDE
is specified. If FIB$M_SUPERSEDE is not specified, the create operation
fails with an SS$_DUPFILNAM status.

• If, after creating the new directory entry, the number of versions of the
file exceeds the version limit, the lowest numbered version is set aside for
deletion.

• If the file did not previously exist, the new directory entry is given a
version limit as follows: the version limit is taken from FIB$W_ VERLIMIT
if it is a nonzero number; if it is 0, the version limit is taken from the
default version limit of the directory file; if the default version limit of the
directory file is 0, the version limit is set to 32,767 (the highest possible
number).

The file name string entered in the directory is returned using the P3 and P4
result string parameters, if present. The file name string is also written into
the header. If no directory operation was requested (FIB$W_DID is 0), the file
name string specified by P2, if any, is written into the file header.

If an attribute list is specified by PS, a write attributes subfunction is
performed (see Section 1.3.5).

If the modifier 10$M_ACCESS is specified, the file is opened (see
Section 1.3.2).

If the extend enable bit FIB$M_EXTEND is specified in the FIB, an extend
subfunction is performed (see Section 1.3.3).

Finally, if a file was set aside for deletion (10$M_DELETE is specified), that
file is deleted. If the file is deleted because the FIB$M_SUPERSEDE bit was
set, the alternate success status SS$_SUPERSEDE is returned in the 1/0
status block. If the file is deleted because the version limit was exceeded, the
alternate success status SS$JILEPURGED is returned.

If an error occurs in the operation of an 10$_CREATE function, all actions
performed to that point are reversed (the file is neither created nor changed),
and the error status is returned to the user in the 1/0 status block.

Directory Entry Creation
Creating a new version of a file eliminates default access to the previously
highest version of the file. For example, creating RESUME.TXT;4 masks
RESUME. TXT;3 so that the DCL command TYPE RESUME. TXT yields the
contents of version 4, not version 3. To protect the contents of the earlier
version of a file, the creator of a file must have write access to the previous
version of a file of the same name.

Magnetic Tape ACP Operation
No operation is performed unless the IO$M_CREATE modifier is specified.
The magnetic tape is positioned as specified by FIB$M_REWIND and
FIB$M_CURPOS, and the file is created. The name specified by the P2
parameter is written into the file header label.

1.6.2 Access File

1.6.2.1

ACP-QIO Interface
1.6 Major Functions

If PS specifies an attribute list, a write attributes subfunction is performed (see
Section 1.3.5).

If the modifier 10$M_ACCESS is specified, the file is opened (see
Section 1.3.2).

This virtual I/O function searches a directory on a disk device or a magnetic
tape for a specified file and accesses that file if found.

The following is the function code:

• 10$_ACCESS

The following are the function modifiers:

• 10$M_CREATE-Creates a file.

• 10$M_ACCESS-Opens the file on your channel.

Input Parameters
The following are the device- or function-dependent arguments for
10$_ACCESS:

• Pl-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional).

• P3-The address of the word that is to receive the length of the resultant
file name string (optional).

• P4-The address of a descriptor for a buffer that is to receive the resultant
file name string (optional).

• PS-The address of a list of attribute descriptors (optional).

1-29

ACP-QIO Interface
1.6 Major Functions

The following FIB fields are applicable to the 10$_ACCESS operation:

1-30

Field

FIB$W _CNTRLFUNC

FIB$W _ VERLIMIT

FIB$L_ACL_
STATUS

FIB$L _ST A TUS

Field Values

FIB$C_USEREQT

FIB$V_AL T _REO

Meaning

Specifies the value that allows the
user to control actions subsequent
to EQT detection on a magnetic
tape file.

Set on a per file basis to specify
user EQT mode. If this bit is
set, the magnetic tape driver
notifies the magnetic tape system
when EQT has been detected
(considered a serious exception')
when a file is accessed. The
magnetic tape system, in turn,
returns the alternate success
code SS$_ENDQFT APE or SS$_
ENDQFVQLUME. All subsequent
l/Q requests are completed with
a failure status return of SS$_
SERIQUSEXP. The driver does
not execute any 1/0 functions
until the serious exception has
been explicitly cleared by issuing
an IQ$_ACPCONTROL function
(see Section 1.6. 7). If the file is
deaccessed or closed, the user
EQT mode is cleared after further
processing of the magnetic tape.

Receives the version limit for the
file. Applicable only if FIB$W_DID
is a nonzero number (if a directory
lookup is done). Used only for
disk devices.

Status of the requested ACL
attribute operation, if any. The
ACL attributes are included in
Table 1-7. If no ACL attributes
are given, SS$_NQRMAL is
returned here.

Alternate access status. The
following bits are supported:

Set to indicate whether the
alternate access bit is required
for the current operation. If not
set, the alternate access bit is
optional.

1.6.2.2

1.6.3 Deaccess File

1.6.3.1

Field

FIB$L_ALT_
ACCESS

Operation

Field Values

FIB$V_ALT_
GRANTED

ACP-QIO Interface
1 . 6 Major Functions

Meaning

If FIB$V_AL T _REO = 0 and the
alternate access check succeeded,
the FIB bit returned from the file
system is set.

A 32-bit mask that represents an
access mask to check against file
protection; for example, to open a
file for read and to check whether
it can be deleted. The mask has
the same configuration as the
standard protection mask.

If a nonzero directory file ID is specified in FIB$W_DID, a lookup subfunction
is performed (see Section 1.3.1.) The version limit of the file found is returned
in FIB$W_VERLIMIT.

If the directory search fails with a 'file not found' condition and the
10$M_CREATE function modifier is specified, the function is reexecuted as a
CREATE. In that case, the argument interpretations for 10$_CREATE, rather
than those for 10$-.ACCESS, appiy.

If 10$M_ACCESS is specified, an access subfunction is performed to open
the file (see Section 1.3.2).

If PS specifies an attribute list, a read attributes subfunction is performed (see
Section 1.3.S).

Deaccess file is a virtual 1/0 function that deaccesses a file and, if specified,
writes final attributes in the file header.

The following is the function code:

• 10$_DEACCESS

10$_DEACCESS takes no function modifiers.

Input Parameters
The following are the device- or function-dependent arguments for
10$_DEACCESS:

• Pl-The address of the file information block (FIB) descriptor.

• PS-The address of a list of attribute descriptors (optional).

1-31

1.6.4

ACP-QIO Interface
1 .6 Major Functions

1.6.3.2

Modify File

1.6.4.1

1-32

The following FIB field is applicable to a 10$_DEACCESS function:

Field

FIB$W_FID

FIB$L_ACL_
STATUS

Operation

Field Values Meaning

File identification of the file being
deaccessed. This field can contain
a value of 0. If it does not, it
must match the file identifier of the
accessed file.

Status of the requested ACL
attribute operation, if any. The
ACL attributes are included in
Table 1-7. If no ACL attributes are
given, SS$_NORMAL is returned
here.

For disk files, if PS specifies an attribute control list and the file was accessed
for a write operation, a write attributes subfunction is performed (see
Section 1.3.5). If the file was opened for write, no attributes were specified,
and FIB$M_DLOCK was set when the file was accessed, the deaccess lock bit
is set in the file header, inhibiting further access to that file.

For disk files, if the truncate enable bit FIB$M_TRUNCATE is specified in the
FIB, a truncate subfunction is performed (see Section 1.3.4).

Finally, the file is closed. Trailer labels are written for a magnetic tape file
that was opened for write.

Modify file is a virtual 1/0 function that modifies the file attributes or
allocation of a disk file. The 10$_MODIFY function is not applicable to
magnetic tape.

The following is the function code:

• 10$_MODIFY

10$_MODIFY takes no function modifiers.

Input Parameters
The following are the device- or function-dependent arguments for
10$_MODIFY:

• Pl-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional). If specified,
the directory is searched for the name.

• P3-The address of the word that is to receive the length of the resultant
file name string (optional).

• P4-The address of a descriptor for a buffer that is to receive the resultant
file name string (optional).

• PS-The address of a list of attribute descriptors (optional).

1.6.4.2

1.6.5 Delete File

ACP-QIO Interface
1 . 6 Major Functions

The following FIB fields are applicable to the IO$_MODIFY function:

Field

FIB$L_ACCTL

FIB$W _ VERLIMIT

FIB$L_ACL_
STATUS

Operation

Field Values

FIB$M_
WRITETHRU

Meaning

Specifies field values that control
access to the file. The following
bits are applicable to the
10$_MODIFY function:

Specifies that the file header is to
be written back to the disk. If not
specified and the file is currently
open, writing of the file header can
be deferred to some later time.

If a nonzero number, specifies the
version limit for the file.

Status of the requested ACL
attribute operation, if any. The
ACL attributes are included in
Table 1-7. If no ACL attributes are
given, SS$_NQRMAL is returned
here.

If a nonzero directory ID is specified in FIB$W_DID, a lookup subfunction is
executed (see Section 1.3.1). If a nonzero version limit is specified in
FIB$W_ VERLIMIT and the directory entry found is the latest version of that
file, the version limit is set to the value specified.

If PS specifies an attribute list, a write attributes subfunction is performed (see
Section 1.3.5).

The file can be either extended or truncated. If FIB$M_EXTEND is specified
in the FIB, an extend subfunction is performed (see Section 1.3.3). If
FIB$M_TRUNCATE is specified in the FIB, a truncate subfunction is
performed (see Section 1.3.4). Extend and truncate operations cannot be
performed at the same time.

Delete file is a virtual 1/0 function that removes a directory entry or file
header from a disk volume.

The following is the function code:

• IO$_DELETE

The following is the function modifier:

• IO$M_DELETE-Deletes the file (or marks it for deletion).

The following are the device- or function-dependent arguments for
IO$_DELETE:

• Pl-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional).

1-33

1.6.6

1.6.7

ACP-QIO Interface
1.6 Major Functions

1.6.5.1

Mount

ACP Control

1-34

• P3-The address of the word that is to receive the length of the resultant
file name string (optional).

• P4-The address of a descriptor for a buffer that is to receive the resultant
file name string (optional).

The following FIB fields are applicable to the IO$_DELETE function:

Field

FIB$L_ACCTL

FIB$W_FID

Operation

Field Values

FIB$M_
WRITETHRU

Meaning

Specifies field values that control
access to the file. The following
bit is applicable to the 10$_0ELETE
function:

Specifies that the file header is to
be written back to the disk. If not
specified and the file is currently
open, writing of the file header can
be deferred to some later time.

Specifies the file identification to be
deleted.

If a nonzero directory ID is specified in FIB$W_DID, a lookup subfunction
is performed (see Section 1.3.1). The file name located is removed from the
directory.

If the function modifier IO$M_DELETE is specified, the file is marked for
deletion. If the file is not currently open, it is deleted immediately. If the file
is open, it is deleted when the last accessor closes it.

Mount is a virtual I/O function that informs the ACP when a disk or magnetic
tape volume is mounted. MOUNT privilege is required. IO$_MOUNT takes
no arguments or function modifiers. This function is a part of the volume
mounting operation only, and it is not meant for general use. Most of the
actual processing is performed by the MOUNT command or the Mount
Volume ($MOUNT) system service.

ACP Control is a virtual I/O function that performs miscellaneous control
functions, depending on the arguments specified.

The following is the function code:

• IO$_ACPCONTROL

The following is the function modifier:

• IO$M_DMOUNT-Dismounts a volume.

1.6.7.1 Input Parameters

ACP-QIO Interface
1 . 6 Major Functions

The following are the device- or function-dependent arguments for
10$_ACPCONTROL:

• Pl-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional).

• P3-The address of the word that is to receive the length of the resultant
file name string (optional).

• P4-The address of a descriptor for a buffer that is to receive the resultant
file name string (optional).

The following FIB fields control the processing of the 10$_ACPCONTROL
function:

Field

FIB$W _CNTRLFUNC

FIB$L _CNTRL VAL

FIB$L_ACL _STATUS

FIB$L_STATUS

FIB$L_AL T_ACCESS

Field Values

FIB$V_AL T_REQ

Meaning

Specifies the control function
to be performed. This field
overlays FIB$W _EXCTL.

Specifies additional function
dependent data. This field
overlays FIB$L _EXSZ.

Status of the requested
ACL attribute operation, if
any. The ACL attributes are
included in Table 1-7. If
no ACL attributes are given,
SS$_NORMAL is returned
here.

Alternate access status. The
following bits are supported:

Set to indicate whether
the alternate access bit
is required for the current
operation. If not set, the
alternate access bit is
optional.

FIB$V_AL T_GRANTED If FIB$V_AL T_REO = 0
and the alternate access
check succeeded, the FIB bit
returned from the file system
is set.

A 32-bit mask that represents
an access mask to check
against file protection; for
example, to open a file for
read and to check whether
it can be deleted or not.
The mask has the same
configuration as the standard
protection mask.

1-35

ACP-QIO Interface
1 . 6 Major Functions

1.6.7.2

1.6.7.3

1-36

Magnetic Tape Control Functions
The following FIB field is applicable to magnetic tape operations:

Field

FIB$W _CNTRLFUNC

Field Values

FIB$C_REWINDFIL

FIB$C_REWINDVOL

FIB$C_PQSEND

FIB$C_NEXTVOL

FIB$C_SPACE

FIB$C_CLSEREXCP

Meaning

Several ACP control functions
are used for magnetic tape
positioning. These functions
are specified by supplying a
FIB with P 1 containing the FIB
descriptor address. Modifiers
and parameters P2, P3, and
P4 are not allowed. These
functions clear serious exceptions
in magnetic tape drivers. The
following control functions can be
specified to control magnetic tape
positioning:

Rewind to beginning-of-file.

Rewind to beginning-of-volume
set.

Position to end-of-volume set.

Force next volume.

Space n blocks forward
or backward. The FIB$L_
CNTRL VAL field specifies the
number of magnetic tape blocks
to space forward if positive or to
space backward if negative.

If set, clears the serious exception
in the magnetic tape driver (see
FIB$C_USEREOT in Sections
1.6. 1 and 1.6.2). This allows
the user to write data blocks
beyond the EQT marker, which
can result in the magnetic tape
not conforming to the ANSI
standard for magnetic tapes (see
ANSI Standard X3.27 - 1978).

Miscellaneous Disk Control Functions
Several ACP control functions are available for disk volume control. The
following function does not use parameters P2, P3, and P4:

10$M_DMOUNT Specifying the dismount modifier on the 10$_ACPCNTRL
function executes a dismount 010. No parameters in
the FIB are used; the FIB can be omitted. This function
does not perform a dismount by itself, but is used to
synchronize the ACP with the DISMOUNT command and
the Dismount Volume ($DISMOUNT) system service.

1.6.7.4

ACP-QIO Interface
1 . 6 Major Functions

The FIB$W_CNTRLFUNC field of the FIB specifies the following
miscellaneous control functions (with no modifier on the 10$_ACPCONTROL
function code). These functions use no other parameters.

FIB$C_REMAP

FIB$C_LOCK_ VQL

FIB$C_UNLK_ VQL

Disk Quotas

Remap a file. The file window for the file open on the
user's channel is remapped so that it maps the entire file.

Allocation lock the volume. Operations that change the
file structure, such as file creation, deletion, extension,
and deaccess, are not permitted. If such requests are
queued to the file system for an allocation-locked volume,
they are not processed until the FIB$C_UNLK_ VQL
function is issued to unlock the volume.

To issue the FIB$C_LQCK_VOL function, you must have
either a system UIC or SYSPRV privilege, or be the owner
of the volume.

Unlock the volume. Cancels FIB$C_LOCK_VQL. To issue
this function, you must have either a system UIC or
SYSPRV privilege, or be the owner of the volume.

Disk quota enforcement is enabled by a quota file on the volume, or relative
volume 1 if the file is on a volume set. The quota file appears in the volume's
master file directory (MFD) under the name QUOTA.SYS;l. This section
describes the control functions that operate on the quota file.

Table 1-11 lists the enable and disable quota control functions.

Table 1-11 Disk Quota Functions (Enable/Disable)

Value Meaning

FIB$C_ENA_QUOT A

FIB$C_DSA_QUOT A

Enable the disk quota file. If a nonzero directory file
ID is specified in FIB$W_DID, a lookup subfunction is
performed to locate the quota file (see Section 1.3.1).
To issue this function, you must have either a system
UIC or SYSPRV privilege, or be the owner of the
volume.

The quota file specified by FIB$W _FID, if present,
is accessed by the ACP, and quota enforcement is
turned on. By convention, the quota file is named
[O,O]OUOTA.SYS;1. Therefore, FIB$W_DID should
contain the value 4,4,0 and the name string specified
with P2 should be "QUOT A.SYS; 1 ".

Disable the disk quota file. The quota file is
deaccessed and quota enforcement is turned off.
To issue this function, you must have either a system
UIC or SYSPRV privilege, or be the owner of the
volume.

Table 1-12 lists the quota control functions that operate on individual entries
in the quota file. Each operation transfers quota file data to and from the ACP
using a quota data block. This block has the same format as a record in the
quota file. Figure 1-9 shows the format of this block.

1-37

ACP-QIO Interface
1 . 6 Major Functions

1-38

10$-.ACPCONTROL functions that transfer quota file data between the caller
and the ACP use the following device- or function-dependent arguments:

• P2-The address of a descriptor for the quota data block being sent to the
ACP.

• P3-The address of a word that returns the data length.

• P4-The address of a descriptor for a buffer to receive the quota data
block returned from the ACP.

Table 1-12 Disk Quota Functions (Individual Entries)

Value Meaning

FIB$C_ADD_QUOT A

FIB$C_EXA_QUOT A

FIB$C_MOD_QUOT A

Add an entry to the disk quota file, using the UIC and
quota specified in the P2 argument block. FIB$C_
ADD_QUOTA requires write access to the quota file.

Examine a disk quota file entry. The entry whose UIC
is specified in the P2 argument block is returned in
the P4 argument block, and its length is returned in
the P3 argument word. Using two flags in
FIB$L _CNTRL VAL, it is possible to search through
the quota file using wildcards. The two flags are:

FIB$M_ALL_MEM Match all UIC members

FIB$M_ALL_GRP Match all UIC groups

The ACP maintains position context in FIB$L_WCC.
On the first examine call, you specify 0 in
FIB$L _WCC; the ACP returns a nonzero value so
that each succeeding examine call returns the next
matching entry.

Read access to the quota file is required to examine
all non-user entries.

Modify a disk quota file entry. The quota file entry
specified by the UIC in the P2 argument block is
modified according to the values in the block, as
controlled by three flags in FIB$L _CNTRL VAL:

FIB$M_MOD_ Change the permanent quota
PERM

FIB$M_MOD_
OVER

FIB$M_MOD_USE

Change the overdraft quota

Change the usage data

The usage data can be changed only if the volume is
locked by FIB$C_LOCK_VOL (see Section 1.6.7.3).
FIB$C_MQD_QUOT A requires write access to the
quota file.

The P3 and P4 arguments return the modified quota
entry to you.

By using the flags FIB$M_ALL_MEM and FIB$M_
ALL_GRP, you can search through the quota file
using wildcards just as you would with the
FIB$C_EXA_QUOT A function.

ACP-QIO Interface
1 . 6 Major Functions

Table 1-12 (Cont.) Disk Quota Functions (Individual Entries)

Value Meaning

FIB$C_REM_QUOT A Remove a disk quota file entry whose UIC is specified
in the P2 argument block. FIB$C_REM_QUOT A
requires write access to the quota file.

The P3 and P4 arguments return the removed quota
file entry to you.

By using the flags FIB$M_ALL_MEM and
FIB$M_ALL_GRP, you can search through the quota
file using wildcards just as you would with the
FIB$C_EXAQUOT A function.

Figure 1-9 Quota File Transfer Block

31 0

Flags Longword (DOF$L_FLAGS)

User Identification Code (DQF$L_UIC)

Current Usage (DQF$L_USAGE)

Permanent Quota (DQF$L_PERMOUOTA)

Overdraft Limit (DQF$L_OVERDRAFT)

.,...__
~

(reserved for future use)

.,..___ ~

ZK-643-82

1-39

ACP-QIO Interface
1 . 7 1/0 Status Block

1 . 7 1/0 Status Block

1-40

Figure 1-10 shows the 1/0 status block (IOSB) for ACP-QIO functions.
Appendix A lists the status returns for these functions. (The VMS System
Messages and Recovery Procedures Reference Volume provides explanations and
suggested user actions for these returns.)

The file ACP returns a completion status in the first longword of the IOSB.
In an extend operation, the second longword is used to return the number of
blocks allocated to the file. If a contiguous extend operation
(FIB$M__ALCON) fails, the second longword is used to return the size of the
file after truncation.

Values returned in the IOSB are most useful during operations in
compatibility mode. When executing programs in the native mode, use
the values returned in FIB locations.

Figure 1-10 1058 Contents - ACP-QIO Functions

+2 IOSB

not used status

+4

ZK-644-82

If an extend operation (including CREATE) was performed, IOSB+4 contains
the number of blocks allocated, or the largest available contiguous space if a
contiguous extend operation failed. If a truncate operation was performed,
IOSB+4 contains the number of blocks added to the file size to reach the next
cluster boundary.

2 Card Reader Driver

This chapter describes the use of the VMS card reader driver that supports
the CR 11 card reader.

2.1 Supported Card Reader Device

2.2 Driver Features

The CR11 card reader reads standard 80-column punched data cards.

The VMS card reader driver provides the following features:

• Support for multiple controllers of the same type; for example, more than
one CR 11 can be used on the system

• Binary, packed Hollerith, and translated 026 or 029 read modes

• Unsolicited interrupt support for automatic card reader input spooling

• Special card punch combinations to indicate an end-of-file condition and
to set the translation mode

• Error recovery

The following sections describe the read modes, special card punch
combinations, and error recovery in greater detail.

The VMS operating system provides the following card reader device- or
function-dependent modifier bits for read data operations:

• 10$M_P ACKED-Read packed Hollerith code

• 10$M_BINARY-Read binary code

If 10$M_P ACKED is set, the data is packed and stored in sequential bytes
of the input buffer. If 10$M_BINARY is set, the data is read and stored in
sequential words of the input buffer. 10$M_BINARY takes precedence over
10$M_PACKED.

The read mode can also be set by a special card punch combination that sets
the translation mode (see Section 2.2.1.2), or by the set mode function (see
Section 2.4.3).

2.2.1 Special Card Punch Combinations
The VMS card reader driver recognizes three special card punch combinations
in column 1 of a card. One combination signals an end-of-file condition. The
other two combinations set the current translation mode.

2-1

2.2.2

Card Reader Driver
2.2 Driver Features

2.2.1.1

2.2.1.2

End-of-File Condition
A card with the 12-11-0-1-6-7-8-9 holes punched in column 1 signals an
end-of-file condition. If the read mode is binary, the first eight columns must
contain that punch combination.

Set Translation Mode
If the read mode is nonbinary, nonpacked Hollerith (the 10$M_BINARY
and 10$M_P ACKED function modifiers are not set), the current translation
mode can be set to the 026 or 029 punch code. (Table 2-5 lists the 026
and 029 punch codes.) A card with the 12-2-4-8 holes punched in column
1 sets the translation mode to the 026 code. A card with the 12-0-2-4-6-8
holes punched in column 1 sets the translation mode to the 029 code. The
translation mode can be changed as often as required.

If a translation mode card contains punched information in columns 2
through 80, it is ignored.

The system can read cards that were punched on an 026 punch or an 029
punch. By default, the translation mode is 029; that is, the system reads cards
from an 029 punch. However, you can change the translation mode by using
the following:

• The SET CARD-READER command

• Translation mode cards

Use the SET CARD_READER command, with the /026 or /029 qualifier, to
set the card reader to accept cards from either an 026 or an 029 card punch.

Logical, virtual, and physical read functions result in only one card being
read. If a translation mode card is read, the read function is not completed,
and another card is read immediately.

Submitting Batch Jobs Through the Card Reader

2-2

When you submit a batch job through a system card reader, precede the
card deck containing the command procedure with cards containing JOB and
PASSWORD commands. These cards specify your user name and password
and, when executed, effect a login for you. The last card in the deck must
contain the EOJ (End of Job) command. The EOJ card is equivalent to logging
out. You can also use an overpunch card instead of an EOJ card to signal the
end of a job. To do this, use an EOF card (12-11-0-1-6-7-8-9) overpunch or
use the EOJ command. Figure 2-1 illustrates a card reader batch job.

2.2.3

Card Reader Driver
2.2 Driver Features

Figure 2-1 A Card Reader Batch Job

L___SEOJ

... command mput stream ...

,IC. L $PASSWORD HENRY

$JOB HIGGINS

ZK-812-82

When the system reads a job from the card reader, it validates the user name
and password specified on the JOB and PASSWORD cards. Then, it copies
the entire card deck into a temporary disk file named INPBATCH.COM in
your default disk and directory, and it queues the job for batch execution.
Thereafter, processing is the same as for jobs submitted interactively with the
SUBMIT command. When the batch job is completed, the operating system
deletes the INPBATCH.COM file.

You can prevent other users from seeing your password by suppressing
printing when you keypunch the PASSWORD card.

Passing Data to Commands and Images
To pass data to commands and images in batch jobs that you submit through
a card reader, you can do the following:

• Include the data in the command procedure by placing the data on the
lines after the command or image that uses the data. Use the DECK and
EOD commands if the data lines begin with dollar signs.

• Temporarily redefine SYS$INPUT as a file by using the
DEFINE/USER_MODE command.

2-3

2.2.4

Card Reader Driver
2.2 Driver Features

Error Recovery

2-4

The VMS card reader driver performs the following error recovery operations:

• If the card reader is offline for 30 seconds, a /1 device not ready" message
is sent to the system operator.

• If a recoverable card reader failure is detected, a /1 device not ready"
message is sent every 30 seconds to the system operator.

• The current operation is retried every two seconds to test for a changed
situation, such as the removal of an error condition.

• The current I/O operation can be canceled at the next timeout without
the card reader being online. When the card reader comes online, device
operation resumes automatically.

When a recoverable card reader failure is detected and an error message is
displayed on the system operator console, examine the card reader indicator
lights to determine the reason for the failure. Any errors that occur must be
fixed manually. The recovery is transparent to the user program issuing the
IfO request.

The four categories of card reader failures and their respective recovery
procedures are as follows:

• Pick check-The next card cannot be delivered from the input hopper
to the read mechanism. To recover from this error, remove the next
card to be read from the input hopper and smooth the leading edge
(the edge that enters the read mechanism first). Replace the card in the
input hopper and press the RESET button. The card reader operation
resumes automatically. If a pick check error occurs again on the same
card, remove the card from the input hopper and repunch it. Place the
duplicate card in the input hopper and press the RESET button. If the
problem persists, either an adjustment is required, or nonstandard cards
are in the input hopper.

• Stack check-The card just read did not stack properly in the output
hopper. To recover from this error, remove the last card read from the
output hopper and examine it. If it is excessively worn or mutilated,
repunch it. Place either card in the read station of the input hopper
and press the RESET button. The card reader operation resumes
automatically. If the stack check error recurs immediately, an adjustment
is required.

• Hopper check-Either the input hopper is empty or the output hopper is
full. To recover from this error, examine the input hopper and, if empty,
either load the next deck of input cards or an end-of-file card. If the input
hopper is not empty, remove the cards that have accumulated in the
output hopper and press the RESET button. The card reader operation
resumes automatically.

• Read check-The last card was read incorrectly. To recover from this
error, remove the last card from the output hopper and examine it. If it
is excessively worn, mutilated, or contains punches before column 0 or
after column 80, repunch the card. Place either card in the read station of
the input hopper and press the RESET button. The card reader operation
resumes automatically. If the read check error recurs immediately, an
adjustment is necessary.

Card Reader Driver
2.3 Device Information

2.3 Device Information
You can obtain information on card reader characteristics by using the Get
Device/Volume Information ($GETDVI) system service. See the VMS System
Services Ref ere nee Manual.

$GETDVI returns card reader characteristics when you specify the item
codes DVl$_DEVCHAR and DVl$_DEVDEPEND. Tables 2-1 and
2-2 list these characteristics. The $DEVDEF macro defines the device
independent characteristics; the $CRDEF macro defines the device-dependent
characteristics.

DVl$_DEVTYPE and DVl$_DEVCLASS return the device type and device
class names, which are defined by the $DCDEF macro. The device class for
card readers is DC$_CARD. The device type for the CR 11 is DT$_CR 11.
DVl$_DEVBUFSIZ returns the buffer size. The default buffer size to be used
for all card reader devices is 80 bytes.

Table 2-1 Card Reader Device-Independent Characteristics

Characteristic 1

DEV$M_AVL

DEV$M_IDV

DEV$M_REC

Meaning

Dynamic Bit (Conditionally Set)

Device is online and available

Static Bits (Always Set)

Device is capable of input

Device is record-oriented

1 Defined by the $DEVDEF macro.

Table 2-2 Device-Dependent Characteristics for Card Readers

Value1

CR$V_TMODE
CR$S_TMODE

Meaning

Specifies the translation mode for nonbinary, nonpacked
Hollerith data transfers. 2 Possible values are:
CR$K_ T026 Translate according to 026 punch code

CR$K_ T029 Translate according to 029 punch code

1 Defined by the $CRDEF macro.

2Section 2.2.1.2 describes the set translation mode punch code.

2.4 Card Reader Function Codes
The VMS card reader can perform logical, virtual, and physical 1/0 functions.
Table 2-3 lists these functions and their function codes. These functions are
described in more detail in the sections that follow.

2-5

2.4.1

Card Reader Driver
2.4 Card Reader Function Codes

Read

2-6

Table 2-3 Card Reader 1/0 Functions

Function Code and
Arguments Type 1

10$_READLBLK P 1 ,P2 L

10$_READVBLK P 1,P2 v

10$_READPBLK P1 ,P2 p

10$_SENSEMODE L

10$_SETMODE P 1 L

10$_SETCHAR P 1 p

1 V = virtual; L = logical; P = physical

Function
Modifiers

10$M_BINARY
10$M_PACKED

10$M_BINARY
10$M_PACKED

10$M_BINARY
10$M_PACKED

Function

Read logical block.

Read virtual block.

Read physical block.

Sense the card reader
characteristics and
return them in the 1/0
status block.

Set card reader
characteristics for
subsequent operations.

Set card reader
characteristics for
subsequent operations.

Read is a function that reads data from the next card in the card reader input
hopper into the designated memory buffer in the specified format. Only one
card is read each time a read function is specified.

The VMS operating system provides the following read function codes:

• 10$_READVBLK-Read virtual block

• 10$_READLBLK-Read logical block

• 10$_READPBLK-Read physical block

The following function-dependent arguments are used with these codes:

• Pl-The starting virtual address of the buffer that is to receive the data

• P2-The number of bytes that are to be read in the specified format

The read binary function modifier (10$M_BINARY) and the read packed
Hollerith function modifier (10$M_P ACKED) can be used with all read
functions. If 10$M_BINARY is specified, successive columns of data are
stored in sequential word locations of the input buffer. If 10$M_PACKED is
specified, successive columns of data are packed and stored in sequential byte
locations of the input buffer. If neither of these function modifiers is specified,
successive columns of data are translated in the current mode (026 or 029)
and are stored in sequential bytes of the input buffer. Figure 2-2 shows how
data is stored by 10$M_BINARY and 10$M_PACKED.

2.4.2 Sense Mode

2.4.3 Set Mode

Card Reader Driver
2.4 Card Reader Function Codes

Figure 2-2 Binary and Packed Column Storage

Binary column (10$M_BINARY):

15 1211 0

I . 11211 o 1 2 3 4 5 6 7 8 91
*Bi ts 12 - 1 5 a re 0

Packed column (10$M_PACKED):

7 3 2 0

112 11 o 9 81 n· I

*n = 0 if no punches in rows 1 - 7
= 1 if a punch in row 1
= 2 if a punch in row 2

= 7 if a punch in row 7

ZK-646-82

Regardless of the byte count specified by the P2 argument, a maximum
of 160 bytes of data for binary read operations and 80 bytes of data for
nonbinary read operations (10$M_PACKED, or 026 or 029 modes) are
transferred to the input buffer. If P2 specifies less than the maximum quantity
for the respective mode, only the number of bytes specified are transferred;
any remaining buffer locations are not filled with data.

Sense mode is a function that senses the current device-dependent card
reader characteristics and returns them in the second longword of the 1/0
status block (see Table 2-2). No device- or function-dependent arguments are
used with 10$_SENSEMODE.

Set mode operations affect the operation and characteristics of the associated
card reader device. The VMS operating system defines the following types of
set mode functions:

• Set mode

• Set characteristic

2-7

Card Reader Driver
2.4 Card Reader Function Codes

2.4.3.1

2-8

Set Mode
The set mode function affects the characteristics of the associated card reader.
Set mode is a logical 1/0 function and requires the access privilege necessary
to perform logical 1/0. The following function code is provided.

• 10$_SETMODE

This function takes the following device- or function-dependent argument:

• Pl-The address of a characteristics buffer

Figure 2-3 shows the quadword set mode characteristics buffer.

Figure 2-3 Set Mode Characteristics Buffer

31 16 15

buffer size I not used

card reader characteristics

0

ZK-647-82

Table 2-4 lists the card reader characteristics and their meanings. The
$CRDEF macro defines the characteristics values. Table 2-5 lists the 026 and
029 card reader codes.

Table 2-4 Set Mode and Set Characteristic Card Reader
Characteristics

Value1

CR$V_TMODE
CR$S_TMODE

Meaning

Specifies the translation mode for non binary, non packed
Hollerith data transfers. Possible values are:
CR$K_ T026 Translate according to 026 punch code

CR$K_T029 Translate according to 029 punch code

1 If neither the 026 nor 029 mode is specified, the default mode can be set by the
SET CARD_READER command.

Table 2-5 Card Reader Codes

Character ASCII a DEC029 DEC026

173 12 0 12 0

175 11 0 11 0

SPACE 40 NONE NONE

41 11 8 2 12 8 7

42 8 7 085

Card Reader Driver
2.4 Card Reader Function Codes

Table 2-5 (Cont.) Card Reader Codes

Character ASClls DEC029 DEC026

43 83 086

$ 44 11 8 3 11 8 3

% 45 084 087

& 46 12 11 8 7

47 85 8 6

50 12 8 5 084

51 1 1 8 5 12 8 4

52 11 8 4 11 8 4

+ 53 12 8 6 12

54 083 083

55 11 11

56 12 8 3 12 8 3

I 57 0 1 0 1

0 60 0 0

1 61 1 1

2 62 2 2

3 63 3 3

4 64 4 4

5 65 5 5

6 66 6 6

7 67 7 7

8 70 8 8

9 71 9 9

72 82 11 8 2

73 11 8 6 082

< 74 12 8 4 12 8 6

75 86 83

> 76 086 11 8 6

? 77 087 12 8 2

@ 100 84 84

A 101 12 1 12 1

B 102 12 2 12 2

c 103 12 3 12 3

D 104 12 4 12 4

E 105 12 5 12 5

F 106 12 6 12 6

G 107 12 7 12 7

H 110 12 8 12 8

2-9

Card Reader Driver
2.4 Card Reader Function Codes

2.4.3.2

2-10

Table 2-5 (Cont.) Card Reader Codes

Character ASCII a DEC029 DEC026

I 111 12 9 12 9

J 112 11 1 11 1

K 113 11 2 11 2

L 114 11 3 11 3

M 115 11 4 11 4

N 116 11 5 11 5

0 117 11 6 11 6
p 120 11 7 11 7
Q 121 11 8 11 8

R 122 11 9 11 9

s 123 02 02

T 124 03 03

u 125 04 04

v 126 05 05

w 127 06 06

x 130 07 07
y 131 08 08

z 132 09 09

133 12 8 2 11 8 5

\ 134 11 8 7 87

] 135 082 12 8 5

j or A 136 12 8 7 85

+-or_ 137 085 82

Application programs that change specific card reader characteristics should
first use the 10$_SENSEMODE function to read the current characteristics,
modify them, and then use the set mode function to write back the
results. Failure to follow this sequence results in clearing any previously
set characteristic.

Set Characteristic
The set characteristic function also affects the characteristics of the associated
card reader device. Set characteristic is a physical 1/0 function, and requires
the access privilege necessary to perform physical 1/0 functions. The
following function code is provided:

• 10$_SETCHAR

This function takes the following device- or function-dependent argument:

• Pl-The address of a characteristics buffer

2.5 1/0 Status Block

Card Reader Driver
2.4 Card Reader Function Codes

Figure 2-4 shows the set characteristic characteristics buffer.

Figure 2-4 Set Characteristic Buffer

31 16 15 8 7

buffer size I type I
card reader characteristics

0

class

ZK-648-82

The device type value is DT$_CR1 l. The device class value is DC$_CARD.
Table 2-4 lists the card reader characteristics for the Set Characteristic
function.

The 1/0 status block (IOSB) format for QIO functions on the card reader is
shown in Figure 2-5. Appendix A lists the status returns for these functions.
(The VMS System Messsages and Recovery Procedures Reference volume provides
explanations and suggested user actions for these returns.) Table 2-2 lists the
device-dependent data returned in the second longword. The
10$_SENSEMODE function can be used to obtain this data.

Figure 2-5 IOSB Contents

31 16 15 0

byte count l status

device-dependent data

ZK-649-82

2-11

3 Disk Drivers

This chapter describes the use of VMS disk drivers. These drivers support the
devices listed in Table 3-1.

All disk drivers support Files-11 On-Disk Structure Level 1 and Level 2 file
structures. Access to these file structures is through the DCL commands
INITIALIZE and MOUNT, followed by the VMS RMS calls described in the
VMS Record Management Services Manual. Files in RT-11 format can be read
or written with the file exchange facility EXCHANGE.

3.1 Supported Disk Devices and Controllers
The following sections provide greater detail about the disk devices listed
in Table 3-1. To obtain additional information about a device, use the DCL
command SHOW DEVICE with the /FULL qualifier, the Get Device/Volume
Information ($GETDVI) system service (from a program), or the F$GETDVI
lexical function (in a command line or command procedure). Section 3.3 lists
the information on disk devices returned by $GETDVI.

Table 3-1 Supported Disk Devices

Disk
Device Code Type DSA Logical Blocks/Drive

RA60 DJ Packed Yes 400, 176

RA70 DU Fixed Yes 547,041

RASO DU Fixed Yes 236,964

RA81 DU Fixed Yes 891,072

RA82 DU Fixed Yes 1,216,665

RB02 DQ Cartridge No 20,480

RB80 DQ Fixed No 242,606

RC25 DA Fixed, Yes 1 102,4002

Cartridge

RRD50 DU Optical Yes 1 1,669,400

RD32 DU Fixed Yes 1 83,204

RD51 DU Fixed Yes 1 21,600

RD52 DU Fixed Yes 1 60,480

RD53 DU Fixed Yes 1 138,672

RD54 DU Fixed Yes 1 311,200

RL02 DL Cartridge No 20,480

RM03 DR Packed No 131,680

1 Incompatible with the UDA50, KDA50 and KDB50 disk devices.

2 51,200 fixed; 51,200 cartridge.

3-1

3.1.1

Disk Drivers
3.1 Supported Disk Devices and Controllers

Table 3-1 (Cont.) Supported Disk Devices

Disk
Device Code Type DSA Logical Blocks/Drive

RM05 DR Packed No 500,384

RM80 DR Fixed No 242,606

RP05 DB Packed No 171, 798

RP06 DB Packed No 340,670

RP07 DR Fixed No 1,008,000

RK06 DM Cartridge No 27' 126

RK07 DM Cartridge No 53,790

RX01 DX Flexible No 494

RX02 DY Flexible No 4943

9884

RX33 DU Flexible Yes 1 2,400

RX50 DU Flexible Yes 1 800

TU585 DD Cartridge No 512

1 Incompatible with the UDA50, KDA50 and KDB50 disk devices.

3 Single density (See Section 3.3).

4 Double density (See Section 3.3).

5 A magnetic tape device, the TU58 operationally resembles a disk device. See
Section 3.1.16 for a description of the TU58 in disk terms.

UDASO UNIBUS Disk Adapter

3-2

The UDASO UNIBUS Disk Adapter (UDASO) is a microprocessor-based disk
controller for mass storage devices that implement the DIGITAL Storage
Architecture (DSA); for more information on the DSA, see Section 3.2.1.3.

The UDASO is used to connect any combination of four RA60, RASO, and
RA81 disk drives to the UNIBUS. Two UDASO controllers can be attached
to a single UNIBUS for a maximum of eight disk drives per UNIBUS. On
the VAX-11 /780 processor, the VMS operating system supports one UDASO
on the first UNIBUS, which can accomodate certain other options. Adding
a second UDASO requires a second UNIBUS. With the exception of the first
UNIBUS, a maximum of two UDASOs per UNIBUS are supported. If two
UDASOs are on a UNIBUS, no other options can be placed on that UNIBUS.
The VAX-11/730 processor supports only one UDASO per UNIBUS.

The UDASO, in implementing DSA, takes over the control of the physical
disk unit. The VMS operating system processes request virtual or logical 1/0
on disks controlled by the UDASO. The VMS operating system maps virtual
block addresses into logical block addresses. The UDASO then resolves logical
block addresses into physical block addresses on'the disk.

The UDASO corrects bad blocks on the disk by requesting that the disk class
driver revector a failing physical block to another, error-free physical block on
the disk; the logical block number is not changed (see Section 3.2.6.1). Any
bad blocks might exist on a disk attached to a UDASO are transparent to the

3.1.2

3.1.3

3.1.4

Disk Drivers
3.1 Supported Disk Devices and Controllers

VMS operating system, which does logical or virtual I/O to such a disk. The
UDASO also corrects most data errors.

KDASO Disk Controller
The KDASO disk controller is a two-module disk controller that allows the
RA series DSA disk drives to be attached to Q-BUS systems. The KDASO
performs the same functions as the UDASO (see Section 3.1.1).

KDBSO Disk Controller
The KDBSO disk controller is a two-module disk controller that allows the RA
series DSA disk drives to be attached to BI bus systems, such as the
VAX 8200 processor. The KDBSO performs the same functions as the UDASO
(see Section 3.1.1).

HSCSO Controller
The HSCSO is a high-speed, high-availability controller for mass storage
devices that implement the DIGITAL Storage Architecture (DSA); for more
information about the DSA, see Section 3.2.1.3. The HSCSO is connected
to a processor by a Computer Interconnect (CI). The VMS operating system
supports the use of the HSCSO in controlling the RA60, RASO, and RA81
disks.

The HSCSO, in implementing DSA, takes over the control of the physical disk
unit. VMS operating system processes request virtual or logical I/O on disks
controlled by the HSCSO. The VMS operating system maps virtual block
addresses into logical block addresses. The HSCSO then resolves logical block
addresses into physical block addresses on the disk.

The HSCSO corrects bad blocks on the disk by revectoring a failing physical
block to another, error-free physical block on the disk; the logical block
number is not changed. The VMS operating system, which does logical or
virtual I/O to such a disk, does not recognize that any bad blocks might exist
on a disk attached to an HSCSO. The HSCSO also corrects most data errors.

The HSCSO provides access to disks despite most hardware failures, and it
enables two or more processors to access files on the same disk.

Note: Only one system should have write access to a Files-11 On-Disk Structure
Level 1 disk or to a foreign-mounted disk; all other systems should only
have read access to the disk. For Files-11 On-Disk Structure Level 2
volumes, the VMS operating system enables read/write access to all
nodes that are members of the same V AXcluster.

The HSCSO enables you to add or subtract disks from the device configuration
without rebooting the system.

3-3

3.1.5

3.1.6

3.1.7

3.1.8

Disk Drivers
3.1 Supported Disk Devices and Controllers

RAGO Pack Disk
The RA60 is a large-capacity, removable disk that provides 205 MB of usable
storage (7.5 million bits of data per square inch) with transfer rates
of 1.9 MB/second (burst) and 950 KB/second (sustained). The RA60 belongs
to the DIGITAL Storage Architecture (DSA) family of disk devices (see
Section 3.2.1.3). It is connected to either a UNIBUS Disk Adapter (UDA50) or
an HSC50 controller. Up to 4 disk drives can be connected to each UDA50.
Up to 24 disk drives can be connected to each HSC50.

RB02 and RL02 Cartridge Disks
The RL02 cartridge disk is a removable, random-access mass storage device
with two data surfaces. The RL02 is connected to the system by an RLl 1
controller that interfaces with the UNIBUS adapter. Up to four RL02 disk
drives can be connected to each RLl 1 controller. For physical 1/0 transfers,
the track, sector, and cylinder parameters describe a physical 256-byte RL02
sector (see Section 3.4).

When the RL02 is connected to an RB730 controller on a VAX-11/730
processor, it is identified internally as an RB02 disk drive. Disk geometry
is unchanged and RL02 disk packs can be exchanged between drives on
different controllers. Up to four drives can be connected to the RB730
controller.

RM03 and RM05 Pack Disks
The RM03 and RM05 pack disks are removable, moving-head disks that
consist of five data surfaces for the RM03 and 19 data surfaces for the RM05.
These disks are connected to the system by a MASSBUS adapter (MBA). Up
to eight disk drives can be connected to each MBA.

RA80/R80/RM80 and RA81 Fixed Media Disks

3-4

The R80 is a nonremovable, large capacity, moving-head disk that consists of
14 data surfaces. Depending on how it is connected to the system, the R80 is
identified internally as an RASO, RB80, or RM80, as follows:

• RASO-An R80 connected to the system through a UNIBUS disk adapter
(UDASO) or an HSC50 controller. Up to four disk drives can be connected
to each UDA50. Up to 24 disk drives can be connected to each HSC50.

• RB80-An R80 connected to the system through an RB730 controller on
a VAX 11/730 processor. Of the maximum of four drives that can be
connected to an RB730 controller, only one can be an RB80.

• RM80-An R80 connected to the system through a MASSBUS adapter
(MBA). Up to eight disk drives can be connected to each MBA.

The RA81 is a large-capacity, nonremovable disk that can hold more than
890,000 blocks of data. This translates into more than 455 MB per spindle.
The RA81 is connected to a UDA50 or an HSC50 controller. Up to four disk
drives can be connected to each UDA50. Up to 24 drives can be connected to
each HSCSO.

Disk Drivers
3.1 Supported Disk Devices and Controllers

The RASO and RA81 belong to the DIGITAL Storage Architecture (DSA)
family of disk devices (see Section 3.2.1.3).

3.1.9 RPOS and RP06 Pack Disks
The RP05 and RP06 pack disks consist of 19 data surfaces and a moving
read/write head. The RP06 pack disk has approximately twice the capacity of
the RP05. These disks are connected to the system by an MBA. Up to eight
disk drives can be connected to each MBA.

3.1.10 RP07 Fixed Media Disk
The RP07 is a 516 MB, fixed media disk drive that attaches to the MASSBUS
of the VAX-11/780 system. The RP07 transfers data at 1.3 million bytes per
second or as an option at a peak rate of 2.2 million bytes per second. The
nine platters rotate at 3600 rpm and their data is accessed at an average speed
of 31.3 milliseconds. These disks are connected to the system by an MBA. Up
to eight disk drives can be connected to each MBA.

3.1.11 RK06 and RK07 Cartridge Disks

3.1 .12 RC25 Disk

The RK06 cartridge disk is a removable, random-access, bulk storage device
with three data surfaces. The RK07 cartridge disk is a double-density RK06.
The RK06 and RK07 are connected to the system by an RK611 controller that
interfaces to the UNIBUS adapter. Up to eight disk drives can be connected
to each RK611.

The RC25 disk is a self-contained, Winchester-type, mass storage device
that consists of a disk adapter module, a disk drive, and an integrated disk
controller. The drive contains two 8-inch, double-sided disks. One of the
disks (RCF25) is a sealed, nonremovable, fixed-media disk. The other disk
is a removable cartridge disk that is sealed until it is loaded into the disk
drive. The disks share a common drive spindle, and together they provide 52
million bytes of storage. Adapter modules interface the RC25 with either a
UNIBUS system or with a Q-BUS system.

3.1 .13 RRDSO Read-Only Memory (CDROM)
The RRDSO is a Compact Disc Read-Only Memory (CDROM) device that uses
replicated media with a formatted capacity of 600 MB. The RRDSO consists
of a table-top drive unit and a dual-board Q-BUS controller; the RRDSO
subsystem is a standard disk MSCP device.

3-5

Disk Drivers
3.1 Supported Disk Devices and Controllers

3. 1 .14 RX01 Console Disk

3.1.15 RX02 Disk

3-6

The RXOl disk uses a diskette. The disk is connected to the LSI console
on the VAX-11/780, which the driver accesses using the MTPR and MFPR
privileged instructions.

For logical and virtual block 1/0 operations, data is accessed with one block
resolution (four sectors). The sector numbers are interleaved to expedite data
transfers. Section 3.2.5 describes sector interleaving in greater detail.

For physical block 1/0 operations, the track, sector, and cylinder parameters
describe a physical, 128-byte RXOl sector (see Figure 3-1 and Section 3.4).
Note that the driver does not apply track-to-track skew, cylinder offset, or
sector interleaving to this physical medium address.

Figure 3-1 Disk Physical Address

31 16 15 8 7 0

P3:1 -~~~~~~cy-li-nd_e_r~~~~~~.._~~-tr-ac-k~~-----~~se_c-to_r~~~
(except RXO 1 and RX02)

31 16 15 0

P3: track sector

(RXO 1 and RX02 only)
ZK-652-82

The RX02 disk is a mass storage device that uses removable diskettes. The
RX02 supports existing single-density, RXOl-compatible diskettes. A double
density mode allows diskettes to be recorded at twice the linear density. An
entire diskette must be formatted in either single or double density. Mixed
mode diskettes are not allowed.

The RX02 is connected to the system by an RX211 controller that interfaces
with the UNIBUS adapter. Up to two disk drives can be controlled by each
RX211.

For logical and virtual block 1/0 operations, data is accessed with single
block resolution (four single-density sectors or two double-density sectors).
The sector numbers are interleaved to expedite data transfers. Section 3.2.5
describes this feature in greater detail.

Disk Drivers
3.1 Supported Disk Devices and Controllers

For physical block I/O operations, the track and sector parameters shown in
Figure 3-1 describe a physical sector (128 bytes in single density; 256 bytes
in double density). The driver does not apply track-to-track skew, cylinder
offset, or sector interleaving to the physical medium address.

3.1 .16 TU58 Magnetic Tape (DECtape II)

3.2 Driver Features

The TU58 is a random-access, mass storage magnetic tape device capable
of reading and writing 256K bytes per drive of data on block-addressable,
preformatted cartridges at 800 bits per inch. Unlike conventional magnetic
tape systems, which store information at variable positions on the tape,
the TU58 stores information at fixed positions on the tape, as do magnetic
disk or floppy disk devices. Thus, blocks of data can be placed on tape in a
random fashion, without disturbing previously recorded data. In its physical
geometry, the tape is conceptually viewed as having one cylinder, four tracks
per cylinder, and 128 sectors per track. Each sector contains one 512-byte
block.

The TU58 uses two vectors. NUMVEC=2 is required on the CONNECT
command when specifying SYSGEN parameters.

The TU58 interfaces with the UNIBUS adapter through a DLl 1-series
interface device. Both the TU58 and the DLl 1 should be set to 9600 baud.
(Because the TU58 is attached to a DLl 1, the user cannot directly access the
TU58 registers if the TU58 is on the UNIBUS.) The DIGITAL Terminals and
Communications Handbook provides additional information on the DLl 1. The
TU58, which has its own controller, can access either one or two tape drives.

VMS disk drivers provide the following features:

• Multiple controllers of the same type (except RB730), for example, more
than one MBA or RK611 can be used on the system

• Multiple disk drives per controller (The exact number depends on the
controller.)

• Different types of disk drives on a single controller

• Static dual porting (MBA drives only)

• Overlapped seeks (except RL02, RXOl, RX02, and TU58)

• Data checks on a per-request, per-file, or per-volume basis (except RXOl
and RX02)

• Full recovery from power failure for online disk drives with volumes
mounted

• Extensive error recovery algorithms, such as error code correction and
offset (except RB02, RL02, RXOl, RX02, and TU58); for DSA disks, these
algorithms are implemented in the controller

• Dynamic, as well as static, bad block handling

• Logging of device errors in a file that can be displayed by field service
personnel or customer personnel

• Online diagnostic support for drive level diagnostics

3-7

3.2.1

Disk Drivers
3.2 Driver Features

• Multiple-block, noncontiguous, virtual 1/0 operations at the driver level

• Logical-to-physical sector translation (RXOl and RX02 only)

The following sections describe the data check, overlapped seek, error
recovery, and logical-to-physical translation features in greater detail.

Dual Porting (MASSBUS)

3.2.1.1

3-8

The VMS MASSBUS disk drivers, DBDRIVER and DRDRIVER, support static
dual porting. Dual porting allows two MASSBUS controllers to access the
same disk drive. Figure 3-2 shows this configuration. The RPOS, RP06,
RP07, RM03, RMOS, and RM80 disk drives can be ordered, or upgraded in
the field, with the MASSBUS dual port option.

Figure 3-2 Dual-Ported Disk Drives

VAX VAX
CPU A CPU B

~

controller controller

~
disk

~
drive

ZK-650-82

Port Selection and Access Modes
The port select switches, on each disk drive, select the ports from which the
drive can be accessed. A drive can be in one of the following access modes:

• Locked on Port A-The drive is in a single-port mode (Port A). It does
not respond to any request on Port B.

• Locked on Port B-The drive is in a single-port mode (Port B). It does not
respond to any request on Port A.

• Programmable A/B-The drive is capable of responding to requests on
either Port A or Port B. In this mode, the drive is always in one of the
following states:

The drive is connected and responding to a request on Port A. It is
closed to requests on Port B.

The drive is connected and responding to a request on Port B. It is
closed to requests on Port A.

3.2.1.2

Disk Drivers
3.2 Driver Features

- The drive is in a neutral state. It is equally available to requests on
either port on a first-come, first-serve basis.

The operational condition of the drive cannot be changed with the port select
switches after the drive becomes ready. To change from one mode to another,
the drive must be in a nonrotating condition. After the new mode selection
has been made, the drive must be restarted.

If a drive is in the neutral state and a disk controller either reads or writes
to a drive register, the drive immediately connects a port to the requesting
controller. For read operations, the drive remains connected for the duration
of the operation. For write operations, the drive remains connected until
a release command is issued by the device driver or a one second timeout
occurs. After the connected port is released from its controller, the drive
checks the other port's request flag to determine whether there has been a
request on that port. If no request is pending, the drive returns to the neutral
state.

Disk Use and Restrictions
If the volume is mounted foreign, read/write operations can be performed at
both ports provided the user maintains control of where information is stored
on the disk.

The Autoconfigure Utility currently may not be able to locate the nonactive
port. For example, if a dual-ported disk drive is connected and responding at
Port A, the CPU attached to Port B might not be able to find Port B with the
Autoconfigure Utility. If this problem occurs, execute the
AUTOCONFIGURE ALL/LOG command after the system is running.

3.2.1 .2.1 Restriction on Dual-Ported Non-DSA Disks in a V AXcluster
Do not use SYSGEN to AUTOCONFIGURE or CONFIGURE a dual-ported,
non-DSA disk that is already available on the system through use of an
MSCP server. Establishing a local connection to the disk when a remote path
is already known creates two uncoordinated paths to the same disk. Use of
these two paths may corrupt files and data on any volume mounted on the
drive.

Note: If the disk is not dual-ported or is never served by an MSCP server on the
remote host, this restriction does not apply.

In a VAXcluster, dual-ported non-DSA disks (MASSBUS or UNIBUS) can be
connected between two nodes of the cluster. These disks can also be made
available to the rest of the cluster using the MSCP server on either or both of
the hosts to which a disk is connected.

If the local path to the disk is not found during the bootstrap, then the
MSCP server path from the other host will be the only available access to the
drive. The local path will not be found during a boot if any of the following
conditions exist:

• The port select switch for the drive is not enabled for this host.

• The disk, cable, or adapter hardware for the local path is broken.

• There is sufficient activity on the other port to hide the existence of the
port.

3-9

3.2.2

Disk Drivers
3.2 Driver Features

3.2.1.3

Data Check

3-10

• The system is booted in such a way that the SYSGEN
AUTOCONFIGURE ALL command in the SYS$SYSTEM:STARTUP.COM
procedure was not executed.

Use of the disk is still possible through the MSCP server path.

After the configuration of the disk has reached this state, it is important not
to add the local path back into the system 1/0 database. Because the VMS
operating system does not provide an automatic method for adding this local
path, the only possible way that you can add this local path is to use the
Sysgen Utility (SYSGEN) qualifiers AUTOCONFIGURE or CONFIGURE to
configure the device. SYSGEN is currently not able to detect the presence
of the disk's MSCP path, and will incorrectly build a second set of data
structures to describe it. Subsequent events could lead to incompatible and
uncoordinated file operations, which might corrupt the volume.

To recover the local path to the disk, it is necessary to reboot the system
connected to that local path.

See the VMS VAXcluster Manual for additional information on dual-ported
disk operation.

Dual-Porting DSA Disks
Although all DSA disks (see Section 3.2.6) can be dual-ported, only one
DSA controller (UDASO or HSCSO) can control a disk at a time. These disks
have a DSA controller connected to each port, but control cannot be shifted
from one controller to another automatically. However, if one port fails, it is
possible to access the information on the disk through the other port. Except
for UDASDs, the VMS operating system automatically switches access to
the operational port provided the allocation class information has been set
up correctly (see the VMS VAXcluster Manual) and the volume is mounted
Files-11 (the volume is not mounted foreign).

A data check is made after successful completion of a read or write operation
and, except for the TU58, compares the data in memory with the data on disk
to make sure they match.

Disk drivers support data checks at the following levels:

• Per request-You can specify the data check function modifier
(IO$M_DATACHECK) on a read logical block, write logical block, read
virtual block, write virtual block, read physical block, or write physical
block operation. IO$M_DATACHECK is not supported for the RXOl and
RXO 1 drivers.

• Per volume-You can specify the characteristics "data check all reads"
and "data check all writes" when the volume is mounted. The VMS DCL
Dictionary describes volume mounting and dismounting. The VMS System
Services Reference Manual describes the Mount Volume ($MOUNT) and
Dismount Volume ($DISMOU) system services.

• Per file-You can specify the file access attributes "data check on read"
and "data check on write." File access attributes are specified when the file
is accessed. Chapter 1 of this manual and the VMS Record Management
Services Manual describe file access.

3.2.3

3.2.4

Disk Drivers
3.2 Driver Features

Offset recovery is performed during a data check but Error Code Correctable
(ECC) correction is not performed (see Section 3.2.4). For example, if a read
operation is performed and an ECC correction is applied, the data check
would fail even though the data in memory is correct. In this case, the driver
returns a status code indicating that the operation was successfully completed,
but the data check could not be performed because of an ECC correction.

Data checks on read operations are extremely rare, and you can either accept
the data as is, treat the ECC correction as an error, or accept the data but
immediately move it to another area on the disk volume.

A data check operation directed to a TU58 does not compare the data in
memory with the data on tape. Instead, either a read check or a write check
operation is performed (see Sections 3.4.1 and 3.4.2).

Overlapped Seeks

Error Recovery

A seek operation involves moving the disk read/write heads to a specific
place on the disk without any transfer of data. All transfer functions,
including data checks, are preceded by an implicit seek operation (except
when the seek is inhibited by the physical I/O function modifier
IO$M_INHSEEK). Except on RL02, RXOl, RX02, TU58 drives, MicroVAX
2000, VAXstation 2000, or on controllers with floppy disks (for example,
RQDX3) when the disk is doing I/O, seek operations can be overlapped.
That is, when one drive performs a seek operation, any number of other
drives can also perform seek operations.

During the seek operation, the controller is free to perform transfers on other
units. Thus, seek operations can also overlap data transfer operations. For
example, at any one time, seven seeks and one data transfer could be in
progress on a single controller.

This overlapping is possible because, unlike I/O transfers, seek operations
do not require the controller once they are initiated. Therefore, seeks are
initiated before I/O transfers and other functions that require the controller
for extended periods.

All DSA controllers perform extensive seek optimization functions as part of
their operation; IO$M_INHSEEK has no effect on these controllers.

Error recovery in the VMS operating system is aimed at performing all
possible operations to complete an I/O operation successfully. Error recovery
operations fall into the following categories:

• Handling special conditions such as power failure and interrupt timeout.

• Retrying nonfatal controller and drive errors. For DSA disks, this function
is implemented by the controller.

• Applying error correction information (not applicable for RB02, RL02,
RXOl, RX02, and TU58). For DSA disks, error correction is implemented
by the controller.

• Offsetting read heads to try to obtain a stronger recorded signal (not
applicable for RB02, RL02, RB80, RM80, RXOl, RX02, and TU58). For
DSA disks, this function is implemented by the controller.

3-11

3.2.5

Disk Drivers
3.2 Driver Features

3.2.4.1

The error recovery algorithm uses a combination of these four types of error
recovery operations to complete an I/O operation.

Power failure recovery consists of waiting for mounted drives to spin up
and come online, followed by reexecution of the I/O operation that was in
progress at the time of the power failure.

Device timeout is treated as a nonfatal error. The operation that was in
progress when the timeout occurred is reexecuted up to eight times before a
timeout error is returned.

Nonfatal controller/drive errors are executed up to eight times before a fatal
error is returned.

All normal error recovery procedures (nonspecial conditions) can be inhibited
by specifying the inhibit retry function modifier (I0$M_INHRETRY). If any
error occurs and this modifier is specified, the virtual, logical, or physical 1/0
operation is immediately terminated, and a failure status is returned. This
modifier has no effect on power recovery and timeout recovery.

Skip Sectoring
Skip sectoring is a bad block treatment technique implemented on R80 disk
drives (the RB80 and RM80 drives). In each track of 32 sectors, one sector is
reserved for bad block replacement. Consequently, an R80 drive has available
only 31 sectors per track. The Get Device/Volume Information ($GETDVI)
system service returns this value.

You can detect bad blocks when a disk is formatted. Most formatters
place these blocks in a bad block file. On an R80 drive, the first bad block
encountered on a track is designated as a skip sector. This is accomplished
by setting a flag in the sector header on the disk and placing the block in the
skip sector file.

When a skip sector is encountered during a data transfer, it is skipped over,
and all remaining blocks in the track are shifted by one physical block. For
example, if block number 10 is a skip sector, and a transfer request was made
beginning at block 8 for four blocks, then blocks 8, 9, 11, and 12 will be
transferred. Block 10 will be "skipped."

Because skip sectors are implemented at the device driver level, they are not
visible to you. The device appears to have 31 contiguous sectors per track.
Sector 32 is not directly addressable, although it is accessed if a skip sector is
present on the track.

Logical-to-Physical Translation (RX01 and RX02)

3-12

Logical block-to-physical sector translation on RXOl and RX02 drives adheres
to the standard VMS format. For each 512-byte logical block selected, the
driver reads or writes four 128-byte physical sectors (or two 256-byte physical
sectors if an RX02 is in double-density mode). To minimize rotational latency,
the physical sectors are interleaved. Interleaving allows the processor time to
complete a sector transfer before the next sector in the block reaches the
read/write heads. To allow for track-to-track switch time, the next logical
sector that falls on a new track is skewed by six sectors. (There is no
interleaving or skewing on read physical block and write physical block
If O operations.) Logical blocks are allocated starting at track 1; track 0 is not
used.

3.2.6

Disk Drivers
3.2 Driver Features

The translation procedure, in more precise terms, is as follows:

1 Compute an uncorrected medium address using the following
dimensions:

Number of sectors per track = 26

Number of tracks per cylinder = 1

Number of cylinders per disk = 77

2 Correct the computed address for interleaving and track-to-track skew (in
that order) as shown in the following VAX FORTRAN statements. ISECT
is the sector address and ICYL is the cylinder address computed in step
1:

Interleaving:

ITEMP = ISECT*2
IF (ISECT .GT. 12) ITEMP ITEMP-25
ISECT = ITEMP

Skew:

ISECT = ISECT +(6*1CYL)
ISECT = MOD (ISECT I 26)

3 Set the sector number in the range of 1 through 26 as required by the
hardware:

ISECT = ISECT + 1

4 Adjust the cylinder number to cylinder 1 (cylinder 0 is not used):

ICYL = ICYL+ 1

DIGITAL Storage Architecture (DSA) Devices
The DIGITAL Storage Architecture (DSA) is a collection of specifications that
cover all aspects of a mass storage product. The specifications are grouped
into the following general categories:

• Media format-Describes the structure of sectors on a disk and the
algorithms for replacing bad blocks

• Drive-to-controller interconnect-Describes the connection between an
RA60, RASO, or RA81 drive and its controller

• Controller-to-host communications-Describes how hosts request
controllers to transfer data

Because the VMS operating system supports all DSA disks, it supports all
controller-to-host aspects of DSA. Some of these disks, such as the RA60,
RASO, and RA81, use the standard drive-to-controller specifications. Other
disks, such as the RC25, RD51, RD52, RD53, and RXSO, do not. Disk systems
that use the standard drive-to-controller specifications employ the same
hardware connections and use the HSCSO and UDASO interchangeably.
Disk systems that do not use the drive-to-controller specifications provide
their own internal controller, which conforms to the controller-to-host
specifications.

3-13

Disk Drivers
3.2 Driver Features

3.2.6.1

3-14

DSA disks differ from MASSBUS and UNIBUS disks in the following ways:

• DSA disks contain no bad blocks. The hardware and the disk class driver
(DUDRIVER) function to ensure a logically contiguous range of good
blocks. If any block in the user area of the disk develops a defective
area, all further access to that block is revectored to a spare good block.
Consequently, it is never necessary to run the Bad Block Locator Utility
(BAD) on DSA disks. There is no manufacturer's bad block list and the
file BADBLK.SYS is empty. (The Verify Utility, which is invoked by the
ANALYZE /DISK_STRUCTURE /READ_CHECK command, can be
used to check the integrity of newly received disks.) See Section 3.2.6.1
for additional information about bad block replacement for DSA disks.

• Insert a WAIT statement in your SYSTARTUP_VSO.COM file prior to the
first MOUNT statement for a DSA disk. The wait period should be about
two to four seconds for the UDASO and about 30 seconds for the HSCSO.
The wait time is controller-dependent and can be as much as several
minutes if the controller is offline or otherwise inoperative. If this wait is
omitted, the MOUNT request may fail with a "no such device" status.

• The DUDRIVER and the DSA device controllers allow multiple,
concurrently outstanding QIO requests. The order in which these requests
complete might not be in the order in which they were issued.

• All DSA disks can be dual-ported, but only one HSC/UDA controller
can control a disk at a time (see Section 3.2.1.3). DSA disks that use an
internal controller cannot be dual-ported.

• In many cases, you can attach a DSA disk to its controller on a running
VMS operating system and then use it immediately without manual
intervention.

• DSA disks and the DUDRIVER do not accept physical QIO data transfers
or seek operations.

Bad Block Replacement and Forced Errors for DSA Disks
Disks that are built according to the DSA specifications appear to be error
free. Some number of logical blocks are always capable of recording data.
When a disk is formatted, every user-addressable logical block is mapped to
a functioning portion of the actual disk surface, which is known as a physical
block. The physical block has the true data storage capacity represented by
the logical block.

Additional physical blocks are set aside to replace blocks that fail during
normal disk operations. These extra physical blocks are called replacement
blocks. Whenever a physical block to which a logical block is mapped begins
to fail, the associated logical block is remapped (revectored) to one of the
replacement blocks. The process that revectors logical blocks is called a
badblock replacement operation. Bad block replacement operations use data
stored in a special area of the disk called the Replacement and Caching
Table (RCT).

When a drive-dependent error threshold is reached, the need for a bad block
replacement operation is declared. Depending on the controller involved, the
bad block replacement operation is performed either by the controller itself
(as is the case with HSCs) or by the host (as is the case with UDAs). In either
case, the same steps are performed. After inspecting and altering the RCT,
the failing block is read and its contents are stored in a reserved section of the
RCT.

3.2.7

Disk Drivers
3.2 Driver Features

The design goal of DSA disks is that this read operation proceeds without
error and that the RCT copy of the data is correct (as it was originally written).
The failing block is then tested with one or more data patterns. If no errors
are encountered in this test, the original data is copied back to the original
block and no further action is taken. If the data-pattern test fails, the logical
block is revectored to a replacement block. After the block is revectored, the
original data is copied back to the revectored logical block. In all these cases,
the original data is preserved and the bad block replacement operation occurs
without the user being aware that it happened.

However, if the original data cannot be read from the failing block, a best
attempt copy of the data is stored in the RCT and the bad block replacement
operation proceeds. When the time comes to write-back the original data,
the best attempt data (stored in the RCT) is written back with the forced error
flag set. The forced error flag is a signal that the data read is questionable.
Reading a block that contains a forced error flag causes the status SS$_
FORCEDERROR to be returned. This status is displayed by the following
message:

%SYSTEM-F-FORCEDERROR, forced error flagged in last sector read

Writing into a block always clears the forced error flag.

Note that most VMS utilities and DCL commands treat the forced error flag as
a fatal error and terminate operation when they encounter it. However, the
Backup Utility (BACKUP) continues to operate in the presence of most errors,
including the forced error. BACKUP continues to process the file, and the
forced error flag is lost. Thus, data that was formerly marked as questionable
may become "correct" data.

System managers (and other users of BACKUP) should assume that forced
errors reported by BACKUP signal possible degradation of the data.

To determine what, if any, blocks on a given disk volume have the forced
error flag set, use the ANALYZE /DISK_STRUCTURE /READ_CHECK
command, which invokes the Verify Utility. The Verify Utility reads every
logical block allocated to every file on the disk and then reports (but ignores)
any forced error blocks encountered.

VAXstation 2000 and MicroVAX 2000 Disk Driver
The VAXstation 2000 and MicroVAX 2000 disk driver supports some DSA
disk operation. In particular, the driver supports block revectoring and bad
block replacement. This provides the system with a logically perfect disk
medium.

Like other DSA disks, if a serious error occurs during a replacement operation,
the disk is write-locked to prevent further changes. This is done to preserve
data integrity and minimize damage that could be caused by failing hardware.
Unlike other DSA disks, there is no visible indication on the drive itself
that the disk is write-locked. However, the following indicators help you
determine that the disk has become write-protected:

• ERRFMT messages show that the disk is write-locked.

• The disk enters mount verification and hangs.

• DCL command SHOW DEVICE output shows that the disk is write
locked.

3-15

Disk Drivers
3.2 Driver Features

• Error messages from programs and utilities attempting to write to the
disk.

If the disk becomes write-locked, you should use the following procedure:

1 Shut down the system.

2 Use standalone BACKUP to create a full backup of the disk.

3 Format the disk with the disk formatter.

4 Restore the disk from the backup using standalone BACKUP. Note that
any files with sectors flagged with a forced error may be corrupted and
may need to be restored from a previous backup.

If errors occurring during replacement operations persist, call DIGITAL Field
Service.

3.3 Device Information

3-16

You can obtain information on all disk device characteristics by using the Get
Device/Volume Information ($GETDVI) system service (see the VMS System
Services Reference Manual).

$GETDVI returns disk characteristics when you specify the item codes
DVI$_DEVCHAR and DVI$_DEVCHAR2. Table 3-2 lists the possible
characteristics for disk devices.

Table 3-2 Disk Device Characteristics

Characteristic 1 Meaning

Dynamic Bits (Conditionally Set)

DEV$M_AVL

DEV$M_CDP2

DEV$M_CLU2

DEV$M_2P2

DEV$M_FOR

DEV$M_MNT

DEV$M_RCK

DEV$M_WCK

DEV$M_MSCP2

DEV$M_RCT

DEV$M_SRV2

1 Defined by the $DEVDEF macro

Device is online and available.

Dual-path device with two UCBs.

Device is available clusterwide.

Device is dual-pathed.

Device is foreign.

Volume is mounted.

Perform data check all reads.

Perform data check all writes.

Device is accessed using the mass storage control
protocol.

Disk contains Replacement and Caching Table.

For a VAXcluster, device is served by the MSCP
server.

2These bits are located in DVl$_DEVCHAR2.

Disk Drivers
3. 3 Device Information

Table 3-2 (Cont.) Disk Device Characteristics

Characteristic 1 Meaning

Static Bits (Always Set)

DEV$M_FOD

DEV$M_IDV

DEV$M_QDV

DEV$M_RND

DEV$M_SHR

1 Defined by the $DEVDEF macro

Device is file-oriented.

Device is capable of input.

Device is capable of output.

Device is capable of random access.

Device is shareable.

DVl$_DEVBUFSIZ returns the buffer size. The buffer size is the default to be
used for disk transfers (this default is normally 512 bytes). DVl$_DEVTYPE
and DVl$_DEVCLASS return the device type and class names, which are
defined by the $DCDEF macro. The disk model determines the device type.
For example, the device type for the RA81 is DT$_RA81. (Foreign device
types take the form DT$JD1 through DT$_FD8.) The device class for disks
is DC$_DISK.

DVl$_CYLINDERS returns the number of cylinders per volume (that is, per
disk), DVl$_TRACKS returns the number of tracks per cylinder, and
DVl$_SECTORS returns the number of sectors per track. Values are returned
as four-byte decimal numbers.

DVl$_MAXBLOCK returns the maximum number of blocks (1 block= 512
bytes) that can be contained on the volume (that is, on the disk). Values are
returned as four-byte decimal numbers. This information can be used, for
example, to determine the density of an RX02 diskette (single density = 494
blocks, double density = 988 blocks).

3.4 Disk Function Codes
VMS disk drivers can perform logical, virtual, and physical 1/0 functions.
Foreign-mounted devices do not require privilege to perform logical and
virtual 1/0 requests.

Logical and physical 1/0 functions allow access to volume storage and require
only that the issuing process have access to the volume. However, DSA disks
and the disk class driver (DUDRIVER) do not accept physical QIO data
transfers or seek operations.

Note: The results of logical and physical 1/0 operations are unpredictable if
an ancillary control process (ACP) or extended QIO processing (XQP) is
present.

Virtual I/ 0 functions require an ACP for Files-11 On-Disk Structure Level 1
files or an XQP for Files-11 On-Disk Structure Level 2 files. Virtual 1/0
functions must be executed in a prescribed order. First, you create and access
a file, then you write information to that file, and lastly you deaccess the file.
Subsequently, when you access the file, you read the information, and then
deaccess the file. Delete the file when the information is no longer useful.

3-17

Disk Drivers
3.4 Disk Function Codes

Non-DSA disk devices can read or write up to 65,535 bytes in a single
request. DSA devices connected to an HSC50 can transfer up to 4 billion
bytes in a single request. In all cases, the maximum size of the transfer is
limited by the number of pages that can be faulted into the process's working
set, and then locked into physical memory. (The disk driver is responsible
for any memory management functions of this type.) The size of the transfer
does not affect the applicable quotas (direct 1/0 count, buffered 1/0 count,
and AST count limit). These quotas refer to the number of outstanding 1/0
operations of each type, not the size of the 1/0 operation being performed.

The volume to which a logical or virtual function is directed must be mounted
for the function actually to be executed. If it is not mounted, either a "device
not mounted" or "invalid volume" status is returned in the 1/0 status block.

Table 3-3 lists the logical, virtual, and physical disk IjO functions and their
function codes. Chapter 1 describes the QIO level interface to the disk device
ACP.

Table 3-3 Disk 1/0 Functions

Function Code and
Arguments Type1

10$_CREA TE P 1,[P2],- v
[P3],[P4],[P5]

10$_ACCESS P 1, [P2],- v
[P3],[P4],[P5]

IQ$_DEACCESS P1 ,[P2],- v
[P3],[P4],[P5]

10$_MQDIFY P 1 ,[P2], - v
[P3],[P4],[P5]

10$_DELETE P 1,[P2],- v
[P3],[P4],[P5]

10$_ACPCONTROL P 1,- v
[P2],[P3],[P4],[P5]

10$_READVBLK P 1,P2,P3 v

10$_READLBLK P1 ,P2,P3 L

10$_READPBLK P 1 ,P2,P3 p

1 V = virtual; L = logical; P = physical

2 Not for RX01 and RX02

Function
Modifiers

10$M_CREATE
10$M_ACCESS
10$M_DELETE

10$M _CREA TE
10$M_ACCESS

10$M_DELETE

10$M _DMOUNT

10$M_
DATACHECK2

10$M_INHRETRY

10$M_
DATACHECK2

10$M _INHRETRY

10$M_
DATACHECK2

10$M _INHRETRY
10$M_INHSEEK3

3 Not for TU58, RX01, RX02, RB02, and RL02

5 Not for DSA disks

3-18

Function

Create a directory entry or a file.

Search a directory for a specified file and
access the file if found.

Deaccess a file, and if specified, write final
attributes in the file header.

Modify the file attributes or allocation, or
both.

Remove a directory entry or file header, or
both.

Perform miscellaneous control functions.

Read virtual block.

Read logical block.

Read physical block. 5

Table 3-3 (Cont.) Disk 1/0 Functions

Function Code and
Arguments Type 1

10$_ WRITEVBLK P 1,P2,P3 V

10$_WRITELBLK P1 ,P2,P3 L

10$_WRITEPBLK P1 ,P2,P3 P

10$_WRITECHECK P1 ,- p

P2,P3

10$_SENSEMODE L

10$_SENSECHAR p

IQ$_FORMA T P 1 p

10$_SEARCH P 1 p

10$_PACKACK p

10$_A V AILABLE p

10$_UNLOAD p

10$_SEEK P1 p

1 V = virtual; L = logical; P = physical

2 Not for RXO 1 and RX02

Function
Modifiers

10$M_
DATACHECK2

10$M_ERASE
10$M_INHRETRY

10$M_
DATACHECK2

10$M_ERASE
10$M_INHRETRY

10$M_
DATACHECK2

10$M_ERASE
10$M_INHRETRY
10$M _INHSEEK3

10$M_DELDA TA 4

3Not for TU58, RX01, RX02, RB02, and RL02
4 RX02 only

5 Not for DSA disks

Disk Drivers
3.4 Disk Function Codes

Function

Write virtual block.

Write logical block.

Write physical block.5

Verify data written to disk by a previous
write 010.2

Sense the device-dependent characteristics
and return them in the 1/0 status block.

Sense the device-dependent characteristics
and return them in the 1/0 status block.

Set density (RX02 only).

Search for specified block or sector (only
for TU58).

Update UCB fields if RX02; initialize volume
valid on other devices. Bring DSA units
on line.

Clear volume valid; make DSA units
available.

Clear volume valid; make DSA units
available and spin down the volume.

Seek to specified cylinder. 5

The function-dependent arguments for IQ$_CREATE, IO$_ACCESS,
IO$_DEACCESS, I0$_MODIFY, and I0$_DELETE are as follows:

• P 1-The address of the file information block (FIB) descriptor.

• P2-The address of the file name string descriptor (optional). If specified,
the name is entered in the directory specified by the FIB.

• P3-The address of the word that is to receive the length of the resulting
file name string (optional).

3-19

Disk Drivers
3.4 Disk Function Codes

3-20

• P4-The address of a descriptor for a buffer that is to receive the resulting
file name string (optional).

• PS-The address of a list of attribute descriptors (optional). If specified,
the indicated attributes are read (IO$-ACCESS) or written (IO$_CREATE,
IQ$_DEACCESS, and I0$_MQDIFY).

See Chapter 1 for more information on these functions.

The function-dependent arguments for IO$_READVBLK, IO$_READLBLK,
IQ$_WRITEVBLK, and IO$_WRITELBLK are as follows:

• Pl-The starting virtual address of the buffer that is to receive the data
from a read operation; or, in the case of a write operation, the virtual
address of the buffer that is to be written on the disk.

• P2-The number of bytes that are to be read from the disk, or written
from memory to the disk. An even number must be specified if the
controller is an RK61 l, RLl l, RX21 l, or UDASO.

• P3-The starting virtual/logical disk address of the data to be transferred
in a read operation; or, in a write operation, the disk address of the area
that is to receive the data.

In a virtual read or write operation, the address is expressed as a block
number within the file, that is, block 1 of the file is virtual block 1.
(Virtual block numbers are converted to logical block numbers using
mapping windows that are set up by the file system ACP process.)

In a logical read or write operation, the address is expressed as a block
number relative to the start of the disk. For example, the first sector on
the disk contains block 0 (or at least the beginning of block 0).

The function-dependent arguments for I0$_WRITEVBLK, IO$_WRITELBLK,
and IO$_WRITEPBLK functions that include the IO$M_ERASE function
modifier are as follows:

• Pl-The starting virtual address of the buffer that contains a four-byte,
user-specified erase pattern. If the Pl address is 0, a longword of 0 will
be used for the erase pattern. If the Pl address is nonzero, the contents
of the four bytes starting at that address will be used as the erase pattern.
DIGITAL recommends that the user specify a Pl address of 0 to lower
system overhead.

Note: DSA disk controllers provide controlled, assisted erasing for the
10$M_ERASE modifier (with virtual and logical write functions) only
when the erase pattern is all Os. If a nonzero erase pattern is used,
there is a significant performance degradation with these disks. DSA
disks do not accept physical QIO transfers.

• P2-The number of bytes of erase pattern to write to the disk. The
number specified is rounded up to the next highest block boundary (512
bytes).

• P3-The starting virtual, logical, or physical disk address of the data to
be erased.

Disk Drivers
3.4 Disk Function Codes

The function-dependent arguments for 10$_WRITECHECK,
10$_READPBLK, and 10$_ WRITEPBLK are as follows:

• Pl-The starting virtual address of the buffer that is to receive the data
in a read operation; or, in a write operation, the starting virtual address of
the buffer that is to be written on the disk. Passed by reference.

• P2-The number of bytes that are to be read from the disk, or written
from memory to the disk. Passed by value. An even number must be
specified if the controller is an RK61 l, RLl l, or UDA50.

• P3-The starting physical disk address of the data to be read in a read
operation; or, in a write operation, the starting physical address of
the disk area that is to receive the data. Passed by value. The address is
expressed as sector, track, and cylinder in the format shown in Figure 3-3.
(On the RXOl and RX02, the high word specifies the track number rather
than the cylinder number.) Check the UCB of a currently mounted device
to determine the maximum physical address value for that type of device.

Note: On the RB80 and RMSO, do not address cylinders 560 and 561. These
two cylinders are used for diagnostic testing only.

The function-dependent argument for 10$_SEARCH is as follows:

• Pl-The physical disk address where the tape is positioned. The
address is expressed as sector, track, and cylinder in the format shown in
Figure 3-3.

Figure 3-3 Starting Physical Address

31 16 15 8 7

P3: cylinder track sector

(except RXO 1 and RX02)

31 16 15

P3: track sector

(RXO 1 and RX02 only)

0

0

ZK-652-8~

The function-dependent argument for 10$_SEEK is as follows:

• Pl-The physical cylinder number where the disk heads are positioned.
The address is expressed in the format shown in Figure 3-4.

3-21

3.4.1

Disk Drivers
3.4 Disk Function Codes

Read

3-22

Figure 3-4 Physical Cylinder Number Format

31 16 15 0

not used cylinder

ZK-653-82

The function dependent argument for 10$_FORMAT is as follows:

• Pl-The density at which an RX02 diskette is reformatted (see
Section 3.4.4).

The read function reads data into a specified buffer from disk starting at a
specified disk address.

The VMS operating system provides the following read function codes:

• 10$_READVBLK-Read virtual block

• 10$__READLBLK-Read logical block

• IQ$_READPBLK-Read physical block

If a read virtual block function is directed to a volume that is mounted
foreign, that function is converted to read logical block. If a read virtual block
function is directed to a volume that is mounted structured, the volume is
handled in the same way as for a file-structured device.

Three function-dependent arguments are used with these codes: Pl, P2, and
P3. These arguments are described in Section 3.4.

The data check function modifier (10$M_DATACHECK) can be used with
all read functions. If this modifier is specified, a data check operation is
performed after the read operation completes. A data check operation is
also performed if the volume that has been read, or the volume on which
the file resides (virtual read), has the characteristic "data check all reads."
Furthermore, a data check is performed after a virtual read if the file has the
attribute "data check on read." The RXOl and RX02 drivers do not support the
data check function.

If 10$M_DATACHECK is specified with a read function code to a TU58, or
if the volume read has the characteristic "data check all reads," a read check
operation is performed. This alters certain TU58 hardware parameters when
the tape is read. (The read threshold in the data recovery circuit is increased;
if the tape has any weak spots, errors are detected.)

The data check function modifier to a disk or tape can return five error codes
in the 1/0 status block:

SS$_CTRLERR SS$_DRVERR SS$_MEDOFL

SS$_NONEXDRV SS$_NORMAL

If no errors are detected, the disk or tape data is considered reliable.

3.4.2 Write

Disk Drivers
3.4 Disk Function Codes

The inhibit retry function modifier (10$M_INHRETRY) can be used with all
read functions. If this modifier is specified, all error recovery attempts are
inhibited. IO$M_INHRETRY takes precedence over 10$M_DATACHECK. If
both are specified and an error occurs, there is no attempt at error recovery
and no data check operation is performed. If an error does not occur, the data
check operation is performed.

The write function writes data from a specified buffer to disk starting at a
specified disk address.

The VMS operating system provides the following write function codes:

• I0$_WRITEVBLK-Write virtual block

• I0$_WRITELBLK-Write logical block

• I0$_WRITEPBLK-Write physical block

If a write virtual block function is directed to a volume that is mounted
foreign, the function is converted to write logical block. If a write virtual
block function is directed to a volume that is mounted structured, the volume
is handled in the same way as for a file-structured device.

Three function-dependent arguments are used with these codes: Pl, P2, and
P3. These arguments are described in Section 3.4.

The data check function modifier (IO$M_DATACHECK) can be used with
all write operations. If this modifier is specified, a data check operation is
performed after the write operation completes. A data check operation is
also performed if the volume written, or the volume on which the file resides
(virtual write), has the characteristic "data check all writes." Furthermore, a
data check is performed after a virtual write if the file has the attribute "data
check on write." The RXOl and RX02 drivers do not support the data check
function.

If IO$M_DATACHECK is specified with a write function code to a TU58, or
if the volume written has the characteristic "data check all writes," a write
check operation is performed. The write check verifies data written on the
tape. First, the specified data is written on the tape. Then the tape is reversed
and the TU58 controller reads the data internally to perform a checksum
verification. If the checksum verification is unsuccessful after eight attempts,
the write check operation is aborted and an error status is returned.

The inhibit retry function modifier (10$M_INHRETRY) can be used with all
write functions. If that modifier is specified, all error recovery attempts are
inhibited. IO$M_INHRETRY takes precedence over 10$M_DATACHECK. If
both IO$M_INHRETRY and I0$M_DATACHECK are specified and an error
occurs, there is no attempt at error recovery, and no data check operation is
performed. If an error does not occur, the data check operation is performed.
IO$M_INHRETRY has no affect on DSA disks.

The write deleted data function modifier (10$M_DELDATA) can be used
with the write physical block (IQ$_WRITEPBLK) function to the RX02. If this
modifier is specified, a deleted data address mark instead of the standard data
address mark is written preceding the data. Otherwise, the operation of the
10$_WRITEPBLK function is the same; write data is transferred to the disk.
When a successful read operation is performed on this data, the status code

3-23

3.4.3

3.4.4

Disk Drivers
3.4 Disk Function Codes

Sense Mode

Set Density

3-24

SS$-RDDELDATA is returned in the I/O status block rather than the usual
SS$_NORMAL status code.

The 10$M-ERASE function modifier can be used with all write function
codes to erase a user-selected part of a disk. This modifier propagates an
erase pattern through the specified range. Section 3.4 describes the write
function arguments to be used with 10$M-ERASE.

Sense mode operations obtain current disk device-dependent characteristics
that are returned to the caller in the second longword of the 1/0 status block
(see Figure 3-6). The VMS operating system provides the following function
codes:

• 10$_SENSEMODE-Sense characteristics

• 10$_SENSECHAR-Sense characteristics

10$_SENSEMODE is a logical function. 10$_SENSECHAR is a physical 1/0
function and requires the access privilege necessary to perform physical 1/0.
No device- or function-dependent arguments are used with either function.

The set density function assigns a new density to an entire RX02 floppy
diskette. The diskette is also reformatted: new data address marks are written
(single or double density) and all data fields are zeroed. Set density is a
physical 1/0 function and requires the access privilege necessary to perform
physical 1/0. The following function code is provided:

• 10$JORMAT

10$JORMAT takes the following function-dependent argument:

• Pl-The density at which the diskette is reformatted:

0 = single density (default)
1 =single density
2 = double density

The set density operation should not be interrupted before it is completed
(about 15 seconds). If the operation is interrupted, the resulting diskette
might contain illegal data address marks in both densities. The diskette must
then be completely reformatted and the function reissued.

3.4.5

3.4.6

3.4.7

Search

Disk Drivers
3.4 Disk Function Codes

The search function positions a TU58 magnetic tape to the block specified.
Search is a physical 1/0 function and requires the access privilege necessary
to perform physical 1/0. The VMS operating system provides a single
function code:

• I0$_SEARCH

This function code takes the following function-dependent argument:

• Pl-Specifies the block where the read/write head will be positioned.
The low byte contains the sector number in the range 0 to 127; the high
byte contains the track number in the range 0 to 3.

10$_SEARCH can save time between read and write operations. For
example, nearly 30 seconds are required to completely rewind a tape. If
the last read or write operation is near the end of the tape and the next
operation is near the beginning of the tape, the search operation can begin
after the last operation completes, and the tape will rewind while the process
is otherwise occupied. (The search QIO is not completed until the search is
completed. Consequently, if a $QIOW system service request is issued, the
process will be held up until the search is completed.)

Pack Acknowledge

Unload

The pack acknowledge function sets the volume valid bit for all disk devices.
Pack acknowledge is a physical 1/0 function and requires the access privilege
to perform physical 1/0. If directed to an RX02 drive, pack acknowledge
also determines the diskette density and updates the device-dependent
information returned by $GETDVI item codes DVI$_CYLINDERS, DVI$_
TRACKS, DVl$_SECTORS, DVl$_DEVTYPE, DVl$_CLASS, and DVI$_
MAXBLOCK. If directed to a DSA disk, pack acknowledge also sends the
online packet to the controller. The following function code is provided:

• 10$_PACKACK

This function code takes no function-dependent arguments.

10$_P ACKACK must be the first function issued when a volume (pack,
cartridge, or diskette) is placed in a disk drive. 10$_PACKACK is issued
automatically when the DCL commands INITIALIZE or MOUNT are issued.

For DSA disks, the 10$_P ACKACK function involves at least one disk read
and four disk writes. It also locks the drive's port selector on the port that
initiated the pack acknowledge function.

The unload function clears the volume valid bit for all disk drives, makes
DSA disks available, and issues an unload command to the drive (spins down
the volume). The unload function reverses the function performed by pack
acknowledge (see Section 3.4.6). The following function code is provided:

• 10$_UNLOAD

This function takes no function-dependent arguments.

3-25

Disk Drivers
3.4 Disk Function Codes

3.4.8 Available

3.4.9 Seek

3.4.10 Write Check

3-26

The available function clears the volume valid bit for all disk drives; that is,
it reverses the function performed by pack acknowledge (see Section 3.4.6).
No unload function is issued to the drive. Therefore, those drives capable of
spinning down do not spin down. The following function code is provided:

• 10$--A VAILABLE

This function takes no function-dependent arguments.

The seek function directs the read/write heads to move to the cylinder
specified in the Pl argument (see Sections 3.2.3 and 3.4, and Figure 3-4).

The write check function verifies that data was written to disk correctly. The
data to be checked is addressed using physical disk addressing (sector, track,
and cylinder) (see Figure 3-3). If the request is directed to a DSA disk, you
must specify a logical block number, even though 10$_WRITECHECK is a
physical 1/0 function. The following function code is provided:

• 10$_WRITECHECK

A write QIO must be used to write data to disk before you enter this
command. 10$_ WRITECHECK then reads the same block of data and
compares it with the data in the specified buffer. Three function-dependent
arguments are used with this code: Pl, P2, and P3. These arguments are
described in Section 3.4.

10$_WRITECHECK is similar to the 10$M_DATACHECK function modifier
for write QIOs, except that IO$_WRITECHECK does not write the data
to disk; it is specified after data is written by a separate write QIO.
Nonprivileged processes can use the IO$M_DATACHECK modifier with
IO$_WRITEVBLK (which does not require access privilege) to determine
whether data is written correctly. The RXOl and RX02 drivers do not support
the write check function.

The write check function and the data check function modifier to a TU58 can
return six error codes in the IjO status block: SS$_NORMAL,
SS$_CTRLERR, SS$_DRVERR, SS$_MEDOFL, SS$_NONEXDRV, and
SS$_WRTLCK.

3.5 1/0 Status Block

Figure 3-5 IOSB Contents

31 16 15

byte count
(low-order word)

0

Figure 3-6 IOSB Contents - Sense Mode

31 16 15 87 0

0 status

cylinders tracks l sectors

ZK-657-82

Disk Drivers
3.5 1/0 Status Block

0

status

byte count
(high-order word)

ZK-656-82

Figure 3-5 shows the 1/0 status block (IOSB) for all disk device QIO
functions except Sense Mode. Figure 3-6 shows the IjO status block for
the Sense Mode function. Appendix A lists the status messages for all
functions and devices. (The VMS System Messages and Recovery Procedures
Reference Volume provides explanations and suggested user actions for these
messages.)

The byte count is a 32-bit integer giving the actual number of bytes
transferred to or from the process buffer.

The second longword of the 1/0 status block for the Sense Mode function
returns information on the cylinder, track, and sector configuration for the
particular device.

3.6 Programming Example
This sample program (Example 3-1) provides an example of optimizing
access time to a disk file. The program creates a file using VMS RMS,
stores information concerning the file, and closes the file. The program then
accesses the file and reads and writes to the file using the Queue 1/0 ($QIO)
system service.

3-27

Disk Drivers
3.6 Programming Example

3-28

Example 3-1 Disk Program Example

**

.TITLE Disk Driver Programming Example

. !DENT /01/

Define necessary symbols.

$FIBDEF
$IODEF
$RMSDEF

;Define file information block Offsets
;Define I/O function codes
;Define RMS-32 Return Status Values

Local storage

Define number of records to be processed.

NUM_RECS=100 ;One hundred records

Allocate storage for necessary data structures.

Allocate File Access Block.

A file access block is required by RMS-32 to open and close a
file.

FAB_BLOCK:
$FAB ALQ 100,-

FAC PUT,-
FNA FILE_NAME,
FNS FILE_SIZE,
FOP CTG,-
MRS 512,-

NAM = NAM_BLOCK,
ORG SEQ,-

REM FIX

Allocate file information block.

;Initial file size is to be
;100 blocks
;File Access Type is output
;File name string address
;File name string size
;File is to be contiguous
;Maximum record size is 512
;bytes
;File name block address
;File organization is to be
;sequential
;Record format is fixed length

A file information block is required as an argument in the
Queue I/O system service call that accesses a file.

FIB_BLOCK:
.BLKB FIB$K_LENGTH

Allocate file information block descriptor.

FIB_DESCR:
.LONG FIB$K_LENGTH

.LONG FIB_BLOCK

Example 3-1 Cont'd. on next page

;Length of the file
;information block
;Address of the file
;information block

Disk Drivers
3.6 Programming Example

Example 3-1 (Cont.) Disk Program Example

Allocate File Name Block

A file name block is required by RMS-32 to return information
concerning a file (for example, the resultant file name string
after logical name translation and defaults have been applied).

NAM_BLOCK:
$NAM

Allocate Record Access Block

A record access block is required by RMS-32 for record
operations on a file.

RAB_BLOCK:
$RAB FAB FAB_BLOCK,

RAC SEQ,-

RBF RECORD_BUFFER,
RSZ 512

Allocate direct address buff er

BLOCK_BUFFER:
.BLKB 1024

;File access block address
;Record access is to be
;sequential
;Record buffer address
;Record buffer size

;Direct access buffer is 1024
;bytes

Allocate space to store channel number returned by the $ASSIGN
Channel system service.

DEVICE_CHANNEL:
.BLKW 1

Allocate device name string and descriptor.

DEVICE_DESCR:
.LONG
.LONG

10$: .ASCII

20$:

20-10
10$
/SYS$DISK/

;Length of device name string
;Address of device name string
;Device on which created file
; wil 1 reside
;Reference label to calculate
;length

Allocate file name string and define string length symbol.

FILE_NAME:
.ASCII /SYS$DISK:MYDATAFIL.DAT/ ;File name string

FILE_SIZE=.-FILE_NAME ;File name string length

Allocate I/0 status quadword storage.

Example 3-1 Cont'd. on next page

3-29

Disk Drivers
3.6 Programming Example

3-30

Example 3-1 (Cont.} Disk Program Example

IO_STATUS:
.BLKQ 1

Allocate output record buffer.

RECORD_BUFFER:
.BLKB 512 ;Record buffer is 512 bytes

**

Start Program

**

The purpose of the program is to create a file called MYDATAFIL.DAT
using RMS-32; store information concerning the file; write 100
records, each containing its record number in every byte;
close the file; and then access, read, and write the file directly,
using the Queue I/0 system service. If any errors are detected, the
program returns to its caller with the final error status in
register RO .

. ENTRY DISK_EXAMPLE,-M<R2,R3,R4,R5,R6> ;Program starting
;address

First create the file and open it, using RMS-32.

PART_1:
$CREATE FAB = FAB_BLOCK
BLBC R0,20$

;First part of example
;Create and open file
;If low bit = 0, creation
;failure

Second, connect the record access block to the created file.

$CONNECT RAB = RAB_BLOCK

BLBC R0,30$

;Connect the record access
;block
;If low bit = 0, creation
;failure

Now write 100 records, each containing its record number.

MOVZBL #NUM_RECS,R6 ;Set record write loop count

Fill each byte of the record to be written with its record number.

10$: SUBB3 R6,#NUM_RECS+1,R5 ;Calculate record number

MOVC5 #O,(R6),R5,#512,RECORD_BUFFER ;Fill record buffer

Now use RMS-32 to write the record into the newly created file.

Example 3-1 Cont'd. on next page

Disk Drivers
3.6 Programming Example

Example 3-1 (Cont.) Disk Program Example

$PUT RAB = RAB_BLOCK
BLBC R0,30$
SOBGTR R6,10$

;Put record in file
;If low bit= O. put failure
;Any more records to write?

The file creation part of the example is almost complete. All that
remains to be done is to store the file information returned by
RMS-32 and close the file.

20$

MOVW NAM_BLOCK+NAM$W_FID,FIB_BLOCK+FIB$W_FID ;Save file
; identification

MOVW NAM_BLOCK+NAM$W_FID+2,FIB_BLOCK+FIB$W_FID+2 ;Save
;sequence number

MOVW NAM_BLDCK+NAM$W_FID+4,FIB_BLOCK+FIB$W_FID+4 ;Save

$CLOSE FAB = FAB_BLOCK
BLBS RO,PART_2

RET

;relative volume
;Close file
;If low bit set. successful
;close
;Return with RMS error status

Record stream connection or put record failure.

Close file and return status.

30$: PUSHL RO
$CLOSE FAB FAB BLOCK
POPL RO
RET

;Save error status
;Close file
;Retrieve error status
;Return with RMS error status

The second part of the example illustrates accessing the previously
created file directly using the Queue I/0 system service, randomly
reading and writing various parts of the file, and then deaccessing
the file.

First, assign a channel to the appropriate device and access the
file.

PART 2:
$ASSIGN_S DEVNAM = DEVICE_DESCR,- ;Assign a channei to file

CHAN = DEVICE_CHANNEL ;device
BLBC R0,20$;If low bit= 0, assign

; failure
MOVL #FIB$M_NOWRITE!FIB$M_WRITE,- ;Set for read/write

FIB_BLOCK+FIB$L_ACCTL ;access
$QIOW_S CHAN DEVICE_CHANNEL,- ;Access file on device channel

FUNC #IO$_ACCESS!IO$M_ACCESS.- ;I/O function is

IOSB IO_STATUS,-

P1 = FIB_DESCR

BLBC R0, 10$

MOVZWL IO_STATUS,RO

Example 3-1 Cont'd. on next page

;access file
;Address of I/0 status
;quadword
;Address of information block
;descriptor
;If low bit= O. access
;failure
;Get final I/O completion
;status

3-31

Disk Drivers
3.6 Programming Example

3-32

Example 3-1 (Cont.) Disk Program Example

10$:

20$:

BLBS R0,30$

PUSHL RO
$DASSGN_S CHAN
POPL RO
RET

;If low bit set, successful
;I/0 function
;Save error status

DEVICE_CHANNEL ;Deassign file device channel
;Retrieve error status
;Return with I/0 error status

The file is now ready to be read and written randomly. Since the
records are fixed length and exactly one block long, the record
number corresponds to the virtual block number of the record in the
file. Thus a particular record can be read or written simply by
specifying its record number in the file.

The following code reads two records at a time and checks to see
that they contain their respective record numbers in every byte.
The records are then written back into the file in reverse order.
This results in record 1 having the old contents of record 2 and
record 2 having the old contents of record 1, and so forth. After
the example has been run, it is suggested that the file dump
utility be used to verify the change in data positioning.

30$ MOVZBL #1,R6 ;Set starting record (block)
;number

Read next two records into block buffer.

40$: $QIO_S CHAN DEVICE_CHANNEL,- ;Read next two records from
;file channel

FUNC #IO$_READVBLK,- ;I/O function is read virtual
;block

IOSB IO_STATUS,- ;Address of I/O status
;quadword

P1 BLOCK_BUFFER,- ;Address of I/0 buffer
P2 #1024,- ;Size of I/0 buffer
P3 R6 ;Starting virtual block of

;transfer
BSBB 50$;Check I/0 completion status

Check each record to make sure it contains the correct data.

SKPC R6,#512,BLOCK_BUFFER

BNEQ 60$

ADDL3 #1,R6,R5

;Skip over equal record
;numbers in data

;If not equal, data match
;failure
;Calculate even record number

SKPC R5,#512,BLOCK_BUFFER+512 ;Skip over equal record
;numbers in data

BNEQ 60$;If not equal, data match
; failure

Record data matches.

Write records in reverse order in file.

Example 3-1 Cont'd. on next page

Disk Drivers
3.6 Programming Example

Example 3-1 (Cont.) Disk Program Example

$QIOW_S CHAN= DEVICE_CHANNEL,-

FUNC = #IO$_WRITEVBLK,-

IOSB = IO_STATUS,-

P1 = BLOCK_BUFFER+512,
P2 = #512,-
P3 = R6

BSBB 50$
ADDL3 #1,R6,R5
$QIOW_S CHAN= DEVICE_CHANNEL,-

FUNC = #IO$_WRITEVBLK,-

IOSB = IO_STATUS,-

P1 = BLOCK_BUFFER,
P2 = #512,-
P3 = R5

BSBB 50$
ACBB #NUM_RECS-1,#2,R6,40$

BRB 70$

Check I/0 completion status.

50$: BLBC R0,70$

MOVZWL IO_STATUS,RO

BLBC R0,70$
RSB

Record number mismatch in data.

60$: MNEGL #4,RO

;Write even-numbered record in
;odd slot
;I/0 function is write virtual
;block
;Address of I/O status
;quadword
;Address of even record buffer
;Length of even record buffer
;Record number of odd record
;Check I/O completion status
;Calculate even record number
;Write odd numbered record in
;even slot
;I/0 function is write virtual
;block
;Address of I/O status
;quadword
;Address of odd record buffer
;Length of odd record buffer
;Record number of even record
;Check I/O completion status
;Any more records to be read?

;If low bit = 0, service
;failure
;Get final I/0 completion
;status
;If low bit = 0, I/0 function
;failure

;Set dummy error status value

All records have been read, verified, and odd/even pairs inverted

70$: PUSHL RO
$QIOW_S CHAN= DEVICE_CHANNEL,-

FUNC = #IO$_DEACCESS
$DASSGN_S CHAN = DEVICE_CHANNEL
POPL RO
RET

.END DISK_EXAMPLE

;Save final status
; Deaccess file
;I/O function is deaccess file
;Deassign file device channel
;Retrieve final status

3-33

4 Laboratory Peripheral Accelerator Driver

4.1 Supported Device

This chapter describes the VMS laboratory peripheral accelerator (LPAll-K)
driver and the high-level language procedure library that interfaces with
it. The procedure library is implemented with callable assembly language
routines that translate arguments into the format required by the LPAll-K
driver and that handle buffer chaining operations. Routines for loading the
microcode and initializing the device are also described.

Refer to the LPA11-K Laboratory Peripheral Accelerator User's Guide for
additional information.

The LPAll-K is a peripheral device that controls analog-to-digital (A/D) and
digital-to-analog (D /A) converters, digital 1/0 registers, and real-time clocks.
It is connected to the VAX processor through the UNIBUS adapter.

The LPAll-K is a fast, flexible microprocessor subsystem designed for
applications requiring high-speed, concurrent data acquisition and data
reduction. The LPAll-K allows aggregate analog input and output rates of
up to 150,000 samples per second. The maximum aggregate digital input and
output rate is 15,000 samples per second.

Table 4-1 lists the useful minimum and maximum LPAll-K configurations
supported by the VMS operating system.

4.1.1 LPA11-K Modes of Operation
The LPAll-K operates in two modes: dedicated and multirequest.

In dedicated mode, only one user (one request), can be active at a time, and
only analog 1/0 data transfers are supported. Up to two A/D converters can
be controlled simultaneously. One D/ A converter can be controlled at a time.
Sampling is initiated either by an overflow of the real-time clock or by an
externally supplied signal. Dedicated mode provides sampling rates of up to
150,000 samples per second.

Table 4-1 Minimum and Maximum Configurations per LPA11-K

Minimum Maximum

1 DD 11-Cx or Ox backplane

1 KW 11-K real-time clock

1 of the following:

AD 11-K A/D converter

AA 11-K A/D converter

DR 11-K digital 1/0 register

2 DD 11-Cx or Ox backplanes

1 KW 11-K real-time clock

2 AD 11-K A/D converters

2 AM 11-K multiplexers for AD 11-K converters

1 AA 11-K D /A converter

5 DR 11-K digital 1/0 registers

4-1

4.1.2

Laboratory Peripheral Accelerator Driver
4. 1 Supported Device

Errors

4-2

In multirequest mode, sampling from all of the devices listed in Table 4-1
is supported. The LPAll-K operates like a multicontroller device; up to
eight requests (from one through eight users) can be active simultaneously.
The sampling rate for each user is a multiple of the common real-time clock
rate. Independent rates can be maintained for each user. Both the sampling
rate and the device type are specified as part of each data transfer request.
Multirequest mode provides a maximum aggregate sampling rate of 15,000
samples per second.

The LP A 11-K returns the following classes of errors:

1 Errors associated with the issuance of a new LPAll-K command
(SS$_DEVCMDERR)

2 Errors associated with an active data transfer request (SS$_DEVREQERR)

3 Fatal hardware errors that affect all LPAll-K activity (SS$_CTRLERR)

Appendix A of the LPAll-K Laboratory Peripheral Accelerator User's Guide lists
these three classes of errors and the specific error codes for each class. The
LP All-K aborts all active requests if any of the following conditions occur:

• Power failure

• Device timeout

• Fatal error

Power failure is reported to any active users when power is recovered.

The LADRIVER times out all $QIOs after two seconds if they have not
completed. The driver does not provide any parameters that allow the user to
change the length of the timeout.

The timeout period applied to all $QIOs can be changed with the following
PATCH commands executed from a privileged account:

$ PATCH SYS$SYSTEM:LADRIVER.EXE/OUTPUT=SYS$SYSTEM:LADRIVER.EXE
PATCH>SET ECO 25
PATCH>REPLACE/INSTRUCTION LA$TIMEOUT_VALUE
OLD>'PUSHL r-#00000002'
OLD> EXIT
NEW>'PUSHL r-#0000003C'
NEW> EXIT
PATCH>UPDATE
PATCH> EXIT

Substitute the desired timeout value for the "0000003C" in the example above.
When you reboot, the system loads the new copy of the driver containing the
new timeout value.

Device timeouts are monitored only when a new command is issued. For
data transfers, the time between buffer full interrupts is not defined. Thus, no
timeout errors are reported on a buffer-to-buffer basis.

If a required resource is not available to a process, an error message is
returned immediately. The driver does not place the process in the resource
wait mode.

Laboratory Peripheral Accelerator Driver
4.2 Supporting Software

4.2 Supporting Software
The LP All-K is supported by a device driver, a high-level language
procedure library of support routines, and routines for loading the microcode
and initializing the device. The system software and support routines provide
a control path for synchronizing the use of buffers, specifying requests, and
starting and stopping requests; the actual data algorithms for the laboratory
data acquisition 1/0 devices are accomplished by the LPAll-K.

The LPAll-K driver and the associated 1/0 interface have the following
features:

• They permit multiple LPAll-K subsystems on a single UNIBUS adapter.

• They operate as an integral part of the VMS operating system.

• They can be loaded on a running VMS operating system without relinking
the executive.

• They handle 1/0 requests, function dispatching, UNIBUS adapter
map allocation, interrupts, and error reporting for multiple LPAll-K
subsystems.

• The LPAl 1-K functions as a multibuffered device. Up to eight buffer
areas can be defined per request. Up to eight requests can be handled
simultaneously. Buffer areas can be reused after the data they contain is
processed.

• Because the LPAll-K chains buffer areas automatically, a start data
transfer request can transfer an infinite and noninterrupted amount of
data.

• Multiple ASTs are dynamically queued by the driver to indicate when a
buffer has been filled (the data is available for processing) or emptied (the
buffer is available for new data).

The high-level language support routines have the following features:

• They translate arguments provided in the high-level language calls into
the format required for the Queue 1/0 interface.

• They provide a buffer chaining capability for a multibuffering
environment by maintaining queues of used, in use, and available buffers.

• They adhere to all VMS conventions for calling sequences, use of
shareable resources, and reentrancy.

• They can be part of a resident global library, or they can be linked into a
process image as needed.

The routines for loading microcode and initializing devices have the following
features:

• They execute, as separate processes, images that issue 1/0 requests.
These 1/0 requests initiate microcode image loading, start the LPAll-K
subsystem, and automatically configure the peripheral devices on the
LP All-K internal 1/0 bus.

4-3

Laboratory Peripheral Accelerator Driver
4.2 Supporting Software

• They can be executed at the request of the user or an operator.

• They can be executed at the request of other processes.

• They can be executed automatically when the system is initialized and on
power recovery.

Figure 4-1 shows the relationship of the supporting software to the LPAll-K.

Figure 4-1 Relationship of Supporting Software to LPA11-K

µCODE LOADING
AND DEVICE

INITIALIZATION
ROUTINES

QIO REQUESTS

rv AXivM5 OPERATING SY"s-TEM - - - - - -,

I I
J. QIO LPA11-K l t-------+-11-.. INTERFACE ~ DRIVER "

HIGH-LEVEL
LANGUAGE

SUPPORT
ROUTINES

T

HIGH-LEVEL I
APPLICATION I

PROGRAM I

i

I I
L ____________ _J

DATA
BUFFER
AREAS

BUFFER
CHAINING
ROUTINES

DATA

LPA11-K

ZK-658-82

4.3 Device Information

4-4

You can obtain information on all peripheral data acquisition devices on the
LPAll-K internal 1/0 bus by using the Get Volume Information ($GETDVI)
system service. (See the VMS System Services Reference Manual.)

$GETDVI returns device characteristics when you specify the item
codes DVl$_DEVCHAR and DVl$_DEVDEPEND. Tables 4-2 and
4-3 list these characteristics. The $DEVDEF macro defines the device
independent characteristics; the $LADEF macro defines the device-dependent
characteristics. Device-dependent characteristics are set by the set clock,
initialize, and load microcode 1/0 functions to any one of, or a combination
of, the values listed in Table 4-3.

DVl$_DEVCLASS and DVl$_DEVTYPE return the device class and device
type names, which are defined by the $DCDEF macro. The device class for
the LP A 11-K is DC$_REAL TIME; the device type is DT$_LP A 11.
DVl$_DEVBUFSIZ is not applicable to the LP A 11-K.

Laboratory Peripheral Accelerator Driver
4.3 Device Information

Table 4-2 LPA11-K Device-Independent Characteristics

Characteristic 1

DEV$M_AVL

DEV$M_IDV

DEV$M_ODV

DEV$M_RTM

DEV$M_SHR

Meaning

Dynamic Bit (Conditionally Set)

Device is online and available.

Static Bits (Always Set)

Device is capable of input.

Device is capable of output.

Device is real-time.

Device is shareable.

1 Defined by the $DEVDEF macro.

Table 4-3 LPA11-K Device-Dependent Characteristics

Field1

LA$M_MCVAUD
LA$V_MCV AUD

LA$V_MCTYPE
LA$S_MCTYPE

Meaning

The load microcode 1/0 function (10$_LOADMCODE) was
performed successfully. LA$M_MCVAUD is set by
10$_LOADMCODE. Each microword is verified by reading it
back and comparing it with the specified value.
LA$M_MCV AUD is cleared if there is no match.

The microcode type, set by the load microcode 1/0 function
(10$_LOADMCODE), is one of the following values:

Value

LA$K_MRMCODE

LA$K_ADMCODE

LA$K_DAMCODE

Meaning

Microcode type is in multirequest
mode.

Microcode type is in dedicated A/D
mode.

Microcode type is in dedicated D /A
mode.

1 Defined by the $LADEF macro.

4-5

Laboratory Peripheral Accelerator Driver
4.3 Device Information

4-6

Table 4-3 (Cont.) LPA 11-K Device-Dependent Characteristics

Field1

LA$V_CONFIG
LA$S_CONFIG

LA$V_RATE
LA$S_RATE

Meaning

The bit positions, set by the initialize 1/0 function
(10$_1NITIALIZE), for the peripheral data acquisition devices
on the LP A 11-K internal I /0 bus are one or more of the
following:

Value Meaning

LA$V_CLOCKA Clock A
LA$M_CLOCKA

LA$V_CLOCKB Clock B
LA$M_CLOCKB

LA$V_AD1 A/D device 1
LA$M_AD1

LA$V_AD2 A/D device 2
LA$M_AD2

LA$V_DA D/A device 1
LA$M_DA

LA$V_Dl01 Digital 1/0 buffer 1
LA$M_DI01

LA$V_DI02 Digital 1/0 buffer 2
LA$M_DI02

LA$V_DI03 Digital I /0 buffer 3
LA$M_DI03

LA$V_Dl04 Digital 1/0 buffer 4
LA$M_DI04

LA$V_Dl05 Digital 1/0 buffer 5
LA$M_DI05

The Clock A rate, which is set by the set clock function
(10$_SETCLOCK), is one of the following values:

Value Meaning

0 Stopped

1 1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger

7 Line frequency

1 Defined by the $LADEF macro.

Laboratory Peripheral Accelerator Driver
4.3 Device Information

Table 4-3 (Cont.) LPA 11-K Device-Dependent Characteristics

Field1

LA$V_PRESET
LA$S_PRESET

Meaning

The Clock A preset value set by the set clock

1 Defined by the $LADEF macro.

4.4 LPA11-K Function Codes

4.4.1 Load Microcode

The LPAll-K 1/0 functions are as follows:

• Load the microcode into the LPAll-K.

• Start the LP A 11-K microprocessor.

• Initialize the LPAll-K subsystem.

• Set the LPAll-K real-time clock rate.

• Start a data transfer request.

The first three functions are normally performed by the loader process, not by
the user's data transfer program. See Section 4.5.21 for a description of the
loader process interface.

The Cancel 1/0 on Channel ($CANCEL) system service is used to abort data
transfers.

This I/O function resets the LPAll-K and loads an image of LPAll-K
microcode. Physical 1/0 privilege is required. The following function code is
provided:

• 10$_LOADMCODE-Load microcode

The load microcode function takes the following device- or function
dependent arguments:

• Pl-The starting virtual address of the microcode image that is to be
loaded into the LPAll-K

• P2-The number of bytes (usually 2048) that are to be loaded

• P3-The starting microprogram address (usually 0) in the LPAll-K that
is to receive the microcode

If any data transfer requests are active at the time a load microcode request is
issued, the load request is rejected and SS$_DEVACTIVE is returned in the
I/O status block.

Each microword is verified by comparing it with the specified value in
memory. If all words match (the microcode was loaded successfully)
the driver sets the microcode valid bit (LA$V_MCVALID) in the device
dependent characteristics longword (see Table 4-3). If there is no match,

4-7

4.4.2

4.4.3

Laboratory Peripheral Accelerator Driver
4.4 LPA11-K Function Codes

SS$_DATACHECK is returned in the 1/0 status block and LA$V_MCVALID
is cleared to indicate that the microcode was not properly loaded. If the
microcode was loaded successfully, the driver stores one of the microcode
type values (LAK_MRCODE, LAK_ADCODE, or LA$K_DAMCODE) in
the characteristics longword.

After a load microcode function is completed, the second word of the IjO
status block contains the number of bytes loaded.

Start Microprocessor
This 1/0 function resets the LPAll-K and starts (or restarts) the LPAll-K
microprocessor. Physical 1/0 privilege is required. The following function
code is provided:

• 10$_STARTMPROC-Start microprocessor

This function code takes no device- or function-dependent arguments.

The start microprocessor function can return five error codes in the 1/0 status
block (see Section 4.6):

SS$_CTRLERR

SS$_POWERFAIL

SS$_DEV ACTIVE

SS$_ TIMEOUT

SS$_MCNOTV AUD

Appendix A of the the LPAll-K Laboratory Peripheral Accelerator User's Guide
provides additional information on error codes.

Initialize LPA 11-K

4-8

This 1/0 function issues a subsystem initialize command to the LPAll-K.
This command specifies LPAll-K laboratory 1/0 device addresses and other
table information for the subsystem. It is issued only once after restarting
the subsystem and before any other LPAll-K command is given. Physical
1/0 privilege is required. The VMS operating system defines the following
function code:

• 10$-1NITIALIZE-lnitialize LP Al 1-K

The initialize LP A 11-K function takes the following device- or function
dependent arguments:

• Pl-The starting, word-aligned, virtual address of the initialize command
table in the user process. This table is read once by the LPAll-K during
the execution of the initialize command. See the LPAll-K Laboratory
Peripheral Accelerator User's Guide for additional information.

• P2-Length of the initialize command buffer (always 278 bytes).

If the initialize function is completed successfully, the appropriate device
configuration values are set in the device-dependent characteristics longword
(see Table 4-3).

4.4.4 Set Clock

Laboratory Peripheral Accelerator Driver
4.4 LPA 11-K Function Codes

The initialize function can return the following 10 error codes in the 1/0
status block:

SS$_BUFNOT ALIGN SS$_CANCEL SS$_CTRLERR

SS$_DEVCMDERR SS$_INCLENGTH SS$_1NSFMAPREG

SS$_1VMODE SS$_MCNOTVALID SS$_POWERFAIL

SS$_ TIMEOUT

If a device specified in the initialize command table is not in the LPAll-K
configuration, an error condition (SS$_DEVCMDERR) occurs and the address
of the first device not found is returned in the LP All-K maintenance status
register (see Section 4.6). A program can use this characteristic to poll the
LPAll-K and determine the current device configuration.

This virtual function issues a clock control command to the LPAll-K. The
clock control command specifies information necessary to start, stop, or
change the sample rate at which the real-time clock runs on the LPAll-K
subsystem.

Note: If the LPAll-K has more than one user, caution should be exercised when
the clock rate is changed. In multirequest mode, a change in the clock
rate affects all users.

The following function code is provided:

• 10$_SETCLOCK-Set clock

The set clock function takes the following device- or function-dependent
arguments:

• P2-Mode of operation. The VMS operating system defines the following
clock start mode word (hexadecimal) values:

Value Meaning

KW11-K Clock A

11 KW11-K Clock B

• P3-Clock control and status. The VMS operating system defines the
following clock status word (hexadecimal) values:

Value Meaning

0 Stop clock

143 1 MHz clock rate

145 100 kHz clock rate

147 10 kHz clock rate

149 1 kHz clock rate

148 100 Hz clock rate

140 Clock rate is Schmidt trigger 1

14F Clock rate is line frequency

4-9

4.4.5

Laboratory Peripheral Accelerator Driver
4.4 LPA11-K Function Codes

• P4-The two's complement of the real-time clock preset value. The range
is 16 bits for the KWll-K Clock A and 8 bits for the KWll-K Clock B.

The LPA11-K Laboratory Peripheral Accelerator User's Guide describes the clock
start mode word and the clock status word in greater detail.

If the set clock function is completed successfully for Clock A, the clock rate
and preset values are stored in the device-dependent characteristics longword
(see Table 4-3).

The set clock function can return six error codes in the 1/0 status block (see
Section 4.6):

SS$_CANCEL

SS$_MCNOTV ALID

SS$_CTRLERR

SS$_POWERFAIL

SS$_DEVCMDERR

SS$_ TIMEOUT

Appendix A of the the LPA11-K Laboratory Peripheral Accelerator User's Guide
provides additional information on error codes.

Start Data Transfer Request

4-10

This virtual IjO function issues a data transfer start command that specifies
the buffer addresses, sample mode, and sample parameters used by the
LPAll-K. This information is passed to the data transfer command table. The
following function code is provided:

• 10$_STARTDATA-Start data transfer request

The start data transfer request function takes the following function modifier:

• 10$M_SETEVF-Set event flag

The start data transfer request function takes the following device- or
function-dependent arguments:

• Pl-The starting virtual address of the data transfer command table in
the user's process.

• P2-The length in bytes (always 40) of the data transfer command table.

• P3-The AST address of the normal buffer completion AST routine
(optional).

• P4-The AST address of the buffer overrun completion AST routine
(optional). This argument is used only when the buffer overrun bit
(LA$M_BFROVRN) is set, that is, when a buffer overrun condition is
classified as a nonfatal error.

A buffer overrun condition differs from a data overrun condition. The
LPAll-K fetches data from, or stores data in, memory. If data cannot be
fetched quickly enough (for example, when there is too much UNIBUS
activity) a data underrun condition occurs. If data cannot be stored quickly
enough, a data overrun condition occurs. After each buffer is filled or
emptied, the LP All-K obtains the index number of the next buffer to process
from the user status word (USW). (See Section 2.5 of the LPA11-K Laboratory
Peripheral Accelerator User's Guide.) A buffer overrun condition occurs if
the LPAll-K fills or empties buffers faster than the application program
can supply new buffers. For example, buffer overrun can occur when the

Laboratory Peripheral Accelerator Driver
4.4 LPA11-K Function Codes

sampling rate is too high, the buffers are too small, or the system load is too
heavy.

The LPAll-K driver accesses the 10-longword data transfer command table,
shown in Figure 4-2, when the data transfer start command is processed.
After the command is accepted and data transfers begin, the driver does not
access the table.

Figure 4-2 Data Transfer Command Table

31 24 23 16 15 87 0

highest available
buffer and buffer mode

overrun bit

user status word address

overall data buffer length

overall data buffer address

random channel list length

random channel list address

channel
start

increment
channel delay
number

dwell number of channels

event I digital
digital trigger mask mark trigger

channel channel

event mark mask

ZK-660-82

In the first longword of the data transfer command table, the first two bytes
contain the LPA11-K start data transfer request mode word. (Section 3.4.1
of the LPA11-K Laboratory Peripheral Accelerator User's Guide describes the
functions of this word.)

The third byte contains the number (0-7) of the highest buffer available and
the buffer overrun flag bit (bit 23; values: LA$M_BFROVRN and
LA$V_BFROVRN). If this bit is set, a buffer overrun condition is a nonfatal
error.

The second longword contains the user status word address (see Section 3.4.3
of the LPA11-K Laboratory Peripheral Accelerator User's Guide). This virtual
address points to a two-byte area in the user-process space and must be word
aligned.

4-11

Laboratory Peripheral Accelerator Driver
4.4 LPA 11-K Function Codes

4-12

The third longword contains the size (in bytes) of the overall buffer area. The
virtual address in the fourth longword is the beginning address of this area.
This address must be longword aligned. The overall buffer area contains
a specified number of buffers (the number of the highest available buffer
specified in the first longword plus one). Individual buffers are subject to
length restrictions: in multirequest mode the length must be in multiples of
two bytes; in dedicated mode the length must be in multiples of four bytes.
All data buffers are virtually contiguous for each data transfer request.

The fifth and sixth longwords contain the random channel list (RCL) length
and address, respectively. The RCL address must be word aligned. The last
word in the RCL must have bit 15 set. (See Section 3.4.6 of the LPA11-K
Laboratory Peripheral Accelerator User's Guide for additional information on
the RCL.)

The seventh through tenth longwords contain LPAll-K-specific sample
parameters. The driver passes these parameters directly to the LPAll-K.
(See the LPA11-K Laboratory Peripheral Accelerator User's Guide for a detailed
description of their functions.)

The start data transfer request function can return the following 15 error
codes in the 1/0 status block (see Section 4.6):

SS$_ABORT

SS$_CTRLERR

SS$_EXQUOT A

SS$_1NSFMAPREG

SS$_PARITY

SS$_BUFNOT ALIGN SS$_CANCEL

SS$_DEVCMDERR SS$_DEVREQERR

SS$_1NCLENGTH SS$_1NSFBUFDP

SS$_1NSFMEM SS$_MCNOTV AUD

SS$_POWERFAIL SS$_ TIMEOUT

Data buffers are chained and reused as the LPAll-K and the user process
dispose of the data. As each buffer is filled or emptied, the LPAll-K driver
notifies the application process either by setting the event flag specified by
the QIO request efn argument or by queuing an AST. Since buffer use is a
continuing process, the event flag is set or the AST is queued a number of
times. The user process must clear the event flag (or receive the AST), process
the data, and specify the next buffer for the LPAll-K to use.

If the set event flag function modifier (10$M_SETEVF) is specified, the event
flag is set repeatedly: when the data transfer request is started, after each
buffer completion, and when the request completes. If 10$M_SETEVF is not
specified, the event flag is set only when the request completes.

ASTs are preferred over event flags for synchronizing a program with the
LPAll-K, because AST delivery is a queued process, while the setting of
event flags is not. If only event flags are used, it is possible to lose buffer
status.

Three AST addresses can be specified. For normal data buffer transactions
the AST address specified in the P3 argument is used. If the buffer overrun
bit in the data transfer command table is set and an overrun condition occurs,
the AST address specified in the P4 .argument is used. The AST address
specified in the astadr argument of the QIO request is used when the entire
data transfer request is completed. The astprm argument specified in the QIO
request is passed to all three AST routines.

4.4.6

Laboratory Peripheral Accelerator Driver
4.4 LPA11-K Function Codes

If insufficient dynamic memory is available to allocate an AST block, an error
(SS$_INSFMEM) is returned. If the user does not have sufficient AST quota
remaining to allocate an AST block, an error (SS$_EXQUOTA) is returned. In
either case, the request is stopped. Normally, there are never more than three
outstanding ASTs per LPAll-K request.

LPA11-K Data Transfer Stop Command
The Cancel 1/0 on Channel ($CANCEL) system service is used to abort
data transfers for a particular process. When the LPAll-K driver receives a
$CANCEL request, a data transfer stop command is issued to the LPAll-K.

To stop a data transfer, set bit 14 of the user status word. If this bit is set, the
transfer stops at the end of the next buffer transaction (see Section 2.5 of the
LPA11-K Laboratory Peripheral Accelerator User's Guide).

4.5 High-Level Language Interface

4.5.1

The VMS operating system supports several program-callable procedures that
provide access to the LPAll-K. The formats of these calls are documented
in this manual for VAX FORTRAN users. VAX MACRO users must set up
a standard VMS argument block and issue the standard CALL procedure.
(VAX MACRO users can also access the LPAll-K directly through the use
of the device-specific QIO functions described in Section 4.4.) Users of
other high-level languages must specify the proper subroutine or procedure
invocation.

High-Level Language Support Routines
The VMS operating system provides 20 high-level language procedures for
the LPAll-K. These procedures are divided into four classes. Table 4-4 lists
the classes and the VAX procedures for the LPAll-K.

Table 4-4 VAX Procedures for the LPA11-K

Class

Sweep Control

Clock control

Subroutine Function

LPA$ADSWP Start A/D converter sweep

LPA$DASWP Start D/A converter sweep

LP A$DISWP Start digital input sweep

LP A$DOSWP Start digital output sweep

LP A$LAMSKS Specify LP A 11-K controller and digital mask
words

LP A$SET ADC Specify channel select parameters

LP A$SETIBF Specify buffer parameters

LP A$STPSWP Stop sweep

LP A$CLOCKA Set Clock A rate

LP A$CLOCKB Set Clock B rate

LPA$XRATE Compute clock rate and preset value

4-13

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4.5.1.1

4-14

Table 4-4 (Cont.) VAX Procedures for the LPA11-K

Class

Data Buffer

Control

Miscellaneous

Subroutine Function

LPA$1BFSTS Return buffer status

LPA$1GTBUF Return next available buffer

LPA$1NXTBF Alter buffer order

LPA$1WTBUF Return next buffer or wait

LPA$RLSBUF Release buffer to LPA 11-K

LP A$RMVBUF Remove buffer from device queue

LPA$CV ADF Convert A/D input to floating point

LP A$FL T 16 Convert unsigned integer to floating point

LPA$LOADMC Load microcode and initialize LPA 11-K

Buffer Queue Control
This section is provided for informational purposes only.

Buffer queue control for data transfers by LP All-K subroutines involves the
use of the following queues:

• Device queue (DVQ)

• User queue (USQ)

• In-use queue (IUQ)

Each data transfer request can specify from one through eight data buffer
areas. The user specifies these buffers by address. During execution of the
request, the LPAll-K assigns an index from 0 through 7 when a buffer is
referenced.

The DVQ contains the indexes of all the buffers that the user has released
(buffers made available to be filled or emptied by the LP Al 1-K). For output
functions (D /A and digital output), these buffers contain data to be output by
the LPAll-K. For input functions (A/D and digital input), these buffers are
empty and waiting to be filled by the LPAll-K.

The USQ contains the indexes of all buffers that are waiting to be returned
to the user. The LPA$IWTBUF and LPA$IGTBUF calls are used to return the
index of the next buffer in the USQ. For output functions (D/ A and digital
output), these buffers are empty and waiting to be filled by the application
program. For input functions (A/D and digital input), these buffers contain
data to be processed by the application program.

The IUQ contains the indexes of all buffers that are currently being processed
by the LPAll-K. Normally, the IUQ contains the indexes of the following
buffers:

• The buffer currently being filled or emptied by the LPAll-K

• The next buffer to be filled or emptied by the LP A 11-K. (This is the buffer
specified by the next buffer index field in the user status word.)

Because the LPAll-K driver requires that at least one buffer be ready when
the input or output sweep is started, the user must call the LP A$RLSBUF
subroutine before the sweep is initiated.

Figure 4-3 shows the flow between the buffer queues.

4.5.1.2

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Subroutine Argument Usage
Table 4-5 describes the general use of the subroutine arguments. The
subroutine descriptions in the following sections contain additional
information on argument usage. The (IBUF), (BUF), and (ICHN) (random
channel list address) arguments must be aligned on specific boundaries.

Figure 4-3 Buffer Queue Control

BUFFER 0

l BUFFER OVERRUN
AST HANDLER

NORMAL BUFFER
AST HANDLER

l
HEAD

DEVICE
QUEUE

TAIL

J

NORMAL BUFFER
AST HANDLER

l
HEAD

IN-USE
QUEUE

TAIL

j

LPA$1WTBUF
LPA$1GTBUF

(TO APPLICATION
PROGRAM)

l
HEAD

USER
QUEUE

TAIL

J

--

LPA$RLSBUF
(FROM APPLICATION

PROGRAM)
ZK-661-8

Table 4-5 Subroutine Argument Usage

Argument

IBUF

LBUF

Meaning

A 50-longword array initialized by the LPA$SETIBF subroutine.
IBUF is the impure area used by the buffer management
subroutines. A unique IBUF array is required for each
simultaneously active request. IBUF must be longword aligned.

The first quadword in the IBUF array is an 1/0 status block
(IOSB) for high-level language subroutines. The LPA$1GTBUF and
LPA$1WTBUF subroutines fill this quadword with the current and
completion status (see Section 4.6).

Specifies the size of each data buffer in words (must be even
for dedicated mode sweeps). All buffers are the same size.
The minimum value for LBUF is 6 for multirequest mode data
transfers and 258 for dedicated mode data transfers. The
aggregate size of the assigned buffers must be less than 32, 768
words. Thus, the maximum size of each buffer (in words) is
limited to 32, 768 divided by the number of buffers. The LBUF
argument length is one word.

4-15

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4-16

Table 4-5 (Cont.) Subroutine Argument Usage

Argument

NBUF

MODE

IRATE

IPRSET

DWELL

Meaning

Specifies the number of times the buffers are to be filled during
the life of the request. If 0 (default) is specified, sampling
is indefinite and must be stopped with the LPA$STPSWP
subroutine. The NBUF argument length is one longword.

Specifies sampling options. MODE bit values are listed in the
appropriate subroutine descriptions. The default is 0. MODE
values can be added to specify several options. No options are
mutually exclusive, although not all bits can be applicable at the
same time. The MODE argument length is one word.

Specifies the clock rate as follows:

Value Meaning

-1 Direct-coupled Schmidt trigger 1 (Clock A only)

0 Clock B overflow or no rate

1 1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger

7 Line frequency

The IRA TE argument length is one longword.

Specifies the hardware clock preset value. This value is
the two's complement of the desired number of clock ticks
between clock interrupts. (The maximum value is 0, the two's
complement of 65,536.) IPRSET can be computed by the
LPA$XRA TE subroutine. The IPRSET argument length is one
word.

Specifies the number of hardware clock overflows between
sample sequences in multirequest mode. For example, if DWELL
is 20 and NCHN is 3, then after 20 clock overflows one channel
is sampled on each of the next three successive overflows;
no sampling occurs for the next 20 clock overflows. This
allows different users to use different sample rates with the
same hardware clock overflow rate. In dedicated mode, the
hardware clock overflow rate controls sampling and DWELL is
not accessed. Default for DWELL is 1. The DWELL argument
length is one word.

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Table 4-5 (Cont.) Subroutine Argument Usage

Argument

IEFN

LDELAY

ICHN

NCHN

IND

Meaning

Specifies the event flag number or completion routine address.
The selected event flag is set at the end of each buffer
transaction. If IEFN is 0 (default), event flag 22 is used.

IEFN can also specify the address of a completion routine.
This routine is called by the buffer management routine when
a buffer is available and when the request is terminated, either
successfully or with an error. The standard VMS calling and
return sequences are used. The completion routine is called from
an AST routine and is therefore at AST level.

If IEFN specifies the address of a completion routine, the
program must call the LPA$1GTBUF subroutine to obtain the
next buffer. If IEFN specifies an event flag, the program must call
the LP A$1WTBUF subroutine to obtain the next buffer and must
use the % VAL operator:

,%VAL(3),

,BFRFULL,

(Event flag 3)

(Address of completion
routine)

The IEFN argument length is one longword.

If multiple sweeps are initiated, they must use different event
flags. The software does not enforce this policy.

Event flag 23 is reserved for use by the LP A$CLOCKA and
LPA$CLOCKB subroutines. If either of these subroutines is
included in the user program, event flag 23 cannot be used.
Also, if IEFN is defaulted, event flag 22 cannot be used in the
user program.

Specifies the delay, in IRA TE units, from the start event until the
first sample is taken. The maximum value is 65,535; default is
1 . The LDELA Y argument length is one word. The LP A 11-K
supports the LDELA Y argument in multirequest mode only.

Specifies the number of the first 1/0 channel to be sampled.
Default is channel 0. The ICHN argument length is one byte. The
channel number is not the same as the channel assigned to the
device by the $ASSIGN system service. The LPA 11-K uses the
channel number to specify the multiplexer address of an A/D,
D/ A, or digital 1/0 device on the LPA 11-K internal 1/0 bus.

Specifies the number of 1/0 device channels to sample in a
sample sequence. Default is 1. If the NCHN argument is 1,
the single channel bit is set in the mode word of the start
request descriptor array (RDA) when the sweep is started. The
RDA contains the information needed by the LP A 11-K for each
command (see the LPA 11-K Laboratory Peripheral Accelerator
User's Guide). The NCHN argument length is one word.

Receives the VMS success or failure code of the call. The IND
argument length is one longword.

4-17

4.5.2

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

LPA$ADSWP- Initiate Synchronous A/D Sampling Sweep

4-18

The LP A$ADSWP subroutine initiates A/D sampling through an ADl 1-K.

The format of the LP A$ADSWP subroutine call is as follows:

CALL LPA$ADSWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN],
[LDELA Y],[ICHN],[NCHN],[IND])

Arguments are as described in Section 4.5.1.2, with the following additions:

MODE Specifies sampling options. The VMS operating system defines the
following sampling option values:

Value Meaning

32 Parallel A/D conversion sample algorithm is used if dual A/D
converters are specified (value= 8192). Absence of this bit
implies the serial A/D conversion sample algorithm.

64 Multirequest mode request. Absence of this bit implies a
dedicated mode request.

512 External trigger (Schmidt trigger 1). Dedicated mode only.
This value is used when a user-supplied external sweep
trigger is desired. The external trigger is supplied by the
KW 11-K (Schmidt trigger 1 output) to the AD 11-K (external
start input). If MODE=512, the user process must specify
a Clock A rate of -1 for proper A/D sampling. This is
nonclock-driven sampling (see Section 4.5. 10). (The
LPA 11-K Laboratory Peripheral Accelerator User's Guide
provides additional information on the use of external
triggers.)

1024 Time stamped sampling with Clock B. The double word
consists of one data word followed by the value of the
LP A 11-K' s internal 16-bit counter at the time of the sample
(see Section 2.4.3 in the LPA 11-K Laboratory Peripheral
Accelerator User's Guide). Multirequest mode only.

2048 Event marking. Multirequest mode only. (The LPA 11-K
Laboratory Peripheral Accelerator User's Guide describes
event marking.)

4096 Start method. If selected, the digital input start method is
used. If not selected, the immediate start method is used.
Multi request mode only.

81 92 Dual A/D converters are to be used. Dedicated mode only.

16384 Buffer overrun is a nonfatal error. The LPA 11-K will
automatically default to fill buffer 0 if a buffer overrun
condition occurs.

If MODE is defaulted, A/D sampling starts immediately with absolute
channel addressing in dedicated mode. The LPA 11-K does not
support delays in dedicated mode.

4.5.3

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPA$RLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed
by the LP A$SETIBF subroutine call.

1 = successful sweep started

nnn = VMS status code

LPA$DASWP- Initiate Synchronous D/A Sweep
The LPA$DASWP subroutine initiates D/A output to an AA11-K.

The format for the LP A$DASWP subroutine call is as follows:

CALL LPA$DASWP (IBUF ,LBUF ,[NBUF],[MODE],[DWELL],[IEFN],
[LDELA Y],[ICHN],[NCHN],[IND])

Arguments are as described in Section 4.5.1.2, with the following additions:

MODE Specifies the sampling options. The VMS operating system defines
the following start criteria values:

Value Meaning

0 Immediate start. This is the default value for MODE.

64 Multirequest mode. If not selected, this request is for
dedicated mode.

4096 Start method. If selected, the digital input start method is
used. If not selected, the immediate start method is used.
Multirequest mode only.

1 6384 Buffer overrun is a nonfatal error. The LP A 11-K will
automatically default to empty buffer 0 if a buffer overrun
condition occurs.

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPA$RLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed
by the LP A$SETIBF subroutine call.

1 = successful sweep started

nnn = VMS status code

4-19

4.5.4

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

LPA$DISWP - Initiate Synchronous Digital Input Sweep

4-20

The LP A$DISWP subroutine initiates digital input through a DRll-K. It is
applicable in multirequest mode only.

The format of the LP A$DISWP subroutine call is as follows:

CALL LPA$DISWP (IBUF ,LBUF ,[NBUF],[MODE],[DWELL],[IEFN],
[LDELA Y],[ICHN],[NCHN],[IND])

Arguments are as described in Section 4.5.1.2, with the following additions:

MODE Specifies sampling options. The VMS operating system defines the
following sampling option values:

Value Meaning

0 Immediate start. This is the default value for MODE.

5 12 External trigger for DR 11-K. (The LPA 11-K Laboratory
Peripheral Accelerator User's Guide describes the use of
external triggers.)

1024 Time stamped sampling with Clock B. The double word
consists of one data word followed by the value of the
internal LPA 11-K 16-bit counter at the time of the sample
(see Section 2.4.3 in the LPA 11-K Laboratory Peripheral
Accelerator User's Guide).

2048 Event marking. (The LPA 11-K Laboratory Peripheral
Accelerator User's Guide describes event marking.)

4096 Start method. If selected, the start method is digital input.
If not selected, the start method is immediate. Multirequest
mode only.

16384 Buffer overrun is a nonfatal error. The LPA 11-K will
automatically default to fill buffer 0 if a buffer overrun
condition occurs.

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPA$RLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed
by the LPA$SETIBF subroutine call.

1 = successful sweep started

nnn = VMS status code

4.5.5

4.5.6

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

LPA$DOSWP - Initiate Synchronous Digital Output Sweep
The LP A$DOSWP subroutine initiates digital output through a DRl 1-K. It is
applicable in multirequest mode only.

The format of the LP A$DOSWP subroutine call is as follows:

CALL LPA$DOSWP (IBUF ,LBUF ,[NBUF],[MODE],[DWELL],[IEFN],
[LDELA Y],[ICHN],[NCHN],[IND])

Arguments are as described in Section 4.5.1.2, with the following additions:

MODE Specifies the sampling options. The VMS operating system defines
the following values:

Value Meaning

0 Immediate start. This is the default value for MODE.

512 External trigger for DR 11-K. (The LPA 11-K Laboratory
Peripheral Accelerator User's Guide describes the use of
external triggers.)

4096 Start method. If selected, digital input start. If not selected,
immediate start.

16384 Buffer overrun is a nonfatal error. The LP A 11-K will
automatically default to empty buffer 0 if a buffer overrun
condition occurs.

IND Returns the success or failure status as follows:

0 =Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPA$RLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed
by the LPA$SETIBF subroutine call.

1 = successful sweep started

nnn =VMS status code

LPA$LAMSKS-Set LPA11-K Masks and NUM Buffer
The LP A$LAMSKS subroutine initializes a user buffer that contains a number
to append to the logical name LPA11$, a digital start word mask, an event
mark mask, and channel numbers for the two masks.

The LPA$LAMSKS subroutine must be called in the following cases:

• If users intend to use digital input starting or event marking

• If users do not want to use the default of LAAO assigned to LP Al 1$0

• If multiple LP All-Ks are used

The format of the LPA$LAMSKS subroutine call is as follows:

CALL LPA$LAMSKS (LAMSKB,[NUM],[IUNIT],[IDSC],[IEMC],[IDSW],
[IEMW],[IND])

4-21

4.5.7

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Argument descriptions are as follows:

LAMSKB

NUM

IUNIT

IDSC

IEMC

IDSW

IEMW

IND

Specifies a four-word array.

Specifies the number appended to LPA 11$. The sweep is
started on the LPA 11-K assigned to LPA 11$num.

Not used. This argument is present for compatibility only.

Specifies the digital ST ART word channel. Range is 0 through 4.
The IDSC argument length is one byte.

Specifies the event MARK word channel. Range is 0 through 4.
The IEMC argument length is one byte.

Specifies the digital ST ART word mask. The IDSW argument
length is one word.

Specifies the event MARK word mask. The IEMW argument
length is one word.

Always equal to 1 (success). This argument is present for
compatibility only.

LPA$SETADC - Set Channel Information for Sweeps

4-22

The LP A$SETADC subroutine establishes channel start and increment
information for the sweep control subroutines (see Table 4-4). It must be
called to initialize IBUF before the LP A$SETADC subroutine is called.

The LP A$SETADC subroutine can be called in either of the following
formats:

CALL LPA$SET ADC (IBUF ,[IFLAG],[ICHN],[NCHN],[INC],[IND])

or

IND=LPA$SET ADC (IBUF ,[IFLAG],[ICHN],[NCHN],[INC])

Argument descriptions are as follows:

IND

IBUF

IFLAG

ICHN

NCHN

INC

Returns the success or failure status as follows:

0 = LP A$SETIBF was not called prior to the LP A$SET ADC call

1 = LPA$SETADC call successful

The IBUF array specified in the LPA$SETIBF call.

Reserved. This argument is present for compatibility only.

Specifies the first channel number. Range is 0 through 255;
default is 0. The ICHN argument length is one longword.

If INC = 0, ICHN is the address of a random channel list. This
address must be word aligned.

Specifies the number of samples taken per sample sequence.
Default is 1 .

Specifies the channel increment. Default is 1. If INC is 0, ICHN is
the address of a random channel list. The INC argument length
is one longword.

4.5.8

4.5.9

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

LPA$SETIBF- Set IBUF Array for Sweeps
The LP A$SETIBF subroutine initializes the IBUF array for use with the
following subroutines:

LPA$ADSWP

LPA$DOSWP

LPA$1NXTBF

LPA$RMVBUF

LPA$DASWP

LPA$1BFSTS

LPA$1WTBUF

LPA$SETADC

LPA$DISWP

LPA$1GTBUF

LPA$RLSBUF

LPA$STPSWP

The format of the LP A$SETIBF subroutine call is as follows:

CALL LPA$SETIBF (IBUF,[IND],[LAMSKB],BUFO,[BUF1 , ... ,BUF7])

Arguments are as described in Section 4.5.1.2, with the following additions:

IBUF

IND

LAMSKB

BUFO, ...

Specifies a 50-longword array that is initialized by this
subroutine. IBUF must be longword-aligned. (See Table 4-5
for additional information on IBUF.)

Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: incorrect
number of arguments; IBUF array not longword-aligned; buffer
addresses not equidistant.

1 = IBUF initialized successfully

Specifies the name of a four-word array. This array allows
the use of multiple LP A 11-Ks within the same program
because the argument used to start the sweep is specified
by the LPA$LAMSKS subroutine call. (See Section 4.5.6 for a
description of the LPA$LAMSKS subroutine.)

Specify the names of the buffers. A maximum of eight buffers
can be specified. At least two buffers must be specified to
provide continuous sampling. The LP A 11-K driver requires that
all buffers be contiguous. To ensure this, the LPA$SETIBF
subroutine verifies that all buffer addresses are equidistant.
Buffers must be longword-aligned.

LPA$STPSWP-Stop In-Progress Sweep
The LP A$STPSWP subroutine allows you to stop a sweep that is in progress.

The format of the LP A$STPSWP subroutine call is as follows:

CALL LPA$STPSWP (IBUF,[IWHEN],[IND])

4-23

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Arguments are as described in Section 4.5.1.2, with the following additions:

IBUF The IBUF array specified in the LPA$ADSWP, LPA$DASWP,
LPA$DISWP, or LPA$DOSWP subroutine call that initiated the
sweep.

IWHEN

IND

Specifies when to stop the sweep. The VMS operating system
defines the following values:

0 = Abort sweep immediately. Uses the $CANCEL system
service. This is the default sweep stop.

1 = Stop sweep when the current buffer transaction is
completed. (This is the preferred way to stop requests.)

Receives a success or failure code in the standard VMS format:

1 =Success

nnn = VMS error code issued by the $CANCEL system service

Note that, when the LPA$STPSWP subroutine is returned, the sweep cannot
be stopped. If it is necessary to wait until the sweep has stopped, you can
call the LP A$IWTBUF subroutine in a loop until it returns IBUFNO = -1 (see
Section 4.5.16).

4.5.10 LPA$CLOCKA - Clock A Control

4-24

The LP A$CLOCKA subroutine sets the clock rate for Clock A.

The format of the LP A$CLOCKA subroutine call is as follows:

CALL LPA$CLOCKA (IRA TE,IPRSET ,(IND],(NUM])

Arguments are as described in Section 4.5.1.2, with the following additions:

IRATE

IPRSET

Specifies the clock rate. One of the following values must be
specified:

Value Meaning

-1 Direct-coupled Schmidt trigger 1 . Used only for A/D
sweeps in dedicated mode, that is, MODE = 512 (see
Section 4.5.2).

0 Clock B overflow or no rate

1 1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger 1

7 Line frequency

Specifies the clock preset value. Maximum of 16 bits. The
LPA$XRATE subroutine can be used to calculate this value. The
clock rate divided by the clock preset value yields the clock
overflow rate.

IND

NUM

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Receives a success or failure code as follows:

1 = Clock A set successfully

nnn = VMS error code indicating an 1/0 error

Specifies the number to be appended to the logical name
LPA 11$. The default value is 0. This subroutine sets Clock A
on the LPA 11-K assigned to LPA 11 $num.

4.5.11 LPA$CLOCKB-Clock B Control
The LPA$CLOCKB subroutine provides the user with control of the KWll-K
Clock B.

The format of the LP A$CLOCKB subroutine call is as follows:

CALL LPA$CLOCKB ([IRA TE],IPRSET ,MODE,[IND],[NUM])

Arguments are as described in Section 4.5.1.2, with the following additions:

IRATE

IPRSET

MODE

IND

Specifies the clock rate. One of the following values must be
specified:

Value Meaning

0 Stops Clock B

1 1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger 3

7 Line frequency

If IRA TE is 0 (default), the clock is stopped and the IPRSET and
MODE arguments are ignored.

Specifies the preset value by which the clock rate is divided to
yield the overflow rate. Maximum of eight bits. Overflow events
can be used to drive Clock A. The LPA$XRATE subroutine can
be used to calculate the IPRSET value.

Specifies options. The VMS operating system defines the
following values:

1 =Clock B operates in noninterrupt mode.

2 = The feed B to A bit in the Clock B status register will be
set (see Section 3.3 of the LPA 11-K Laboratory Peripheral
Accelerator User's Guide).

Receives a success or failure code as follows:

1 = Clock B set successfully

nnn = VMS error code indicating an 1/0 error

4-25

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

NUM Specifies the number to be appended to the logical name
LPA 11$. The default value is 0. This subroutine sets Clock 8 on
the LP A 11-K assigned to LPA 11 $num.

4.5.12 LPA$XRATE - Compute Clock Rate and Preset Value
The LP A$XRATE subroutine computes the clock rate and preset value
for the LP A$CLOCKA and LP A$CLOCKB subroutines using the specified
intersample interval (AINTRVL).

The LPA$XRATE subroutine can be called in either of the following formats:

CALL LPA$XRATE (AINTRVL,IRATE,IPRSET,IFLAG)

or

ACTUAL =LPA$XRA TE(AINTRVL,IRATE,IPRSET ,IFLAG)

Arguments are as described in Section 4.5.1.2, with the following additions:

AINTRVL

IRATE

IPRSET

IFLAG

ACTUAL

Specifies the intersample time selected by the user. The time is
expressed in decimal seconds. Data type is floating point.

Receives the computed clock rate as a value from 1 through 5.

Receives the computed clock preset value.

If the computation is for Clock A, IFLAG is 0; if for Clock B,
IFLAG is not 0 (the maximum preset value is 255). The IFLAG
argument length is one byte.

Receives the actual intersample time if called as a function. Data
type is floating point. If there are truncation and round-off errors,
the resulting intersample time can be different from the specified
intersample time. Note that when the LPA$XRATE subroutine
is called from VAX FORTRAN IV-PLUS programs as a function,
it must be explicitly declared a real function. Otherwise, the
LPA$XRATE subroutine defaults to an integer function.

If AINTRVL is either too large or too small to be achieved, both IRATE and
ACTUAL are returned to 0.

4.5.13 LPA$1BFSTS - Return Buffer Status

4-26

The LP A$IBFSTS subroutine returns information on the buffers used in a
sweep.

The format of the LPA$IBFSTS subroutine call is as follows:

CALL LPA$1BFSTS (IBUF ,IST AT)

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Argument descriptions are as follows:

IBUF

ISTAT

The IBUF array specified in the call that initiated the sweep.

Specifies a longword array with as many elements as there are
buffers involved in the sweep (maximum of eight). LP A$1BFSTS
fills each array element with the status of the corresponding
buffer:

+2 = Buffer in device queue. LPA$RLSBUF has been called for
this buffer.

+ 1 = Buffer in user queue. The LPA 11-K has filled (data input) or
emptied (data output) this buffer.

0 = Buffer is not in any queue.

-1 = Buffer is in the in-use queue; that is, it is either being
filled or emptied, or it is the next to be filled or emptied by the
LPA 11-K.

4.5.14 LPA$1GTBUF- Return Buffer Number
The LP A$IGTBUF subroutine returns the number of the next buffer to be
processed by the application program, the buffer at the head of the user
queue (see Figure 4-3). It should be called by a completion routine at AST
level to determine the next buffer to process. If an event flag was specified
in the start sweep call, the LP A$IWTBUF, not the LP A$IGTBUF subroutine,
should be called.

The LP A$IGTBUF subroutine can be called in either of the following
formats:

CALL LPA$1GTBUF (IBUF,IBUFNO)

IBUFNO=LPA$1GTBUF(IBUF)

Arguments are as described in Section 4.5.1.2, with the following additions:

IBUF

IBUFNO

The IBUF array specified in the call that initiated the sweep.

Returns the number of the next buffer to be filled or emptied by
the application program.

Table 4-6 lists the possible combinations of IBUFNO and IOSB contents on
the return from a call to the LP A$IGTBUF subroutine. The first four words
of the IBUF array contain the IjO status block (IOSB). If IBUFNO is -1, the
IOSB must be checked to determine the reason.

4-27

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Table 4-6 LPA$1GTBUF Call - IBUFNO and IOSB Contents

18UFNO 1058(1} 1088(2) 1058(3),(4) Meaning

n 0

-1 0

-1

-1 VMS
error
code

(byte
count)

0

0

0

0

0

0

LP A 1 1-K ready-
out and main-
tenance regis-
ters (only if
SS$DEVREOERR
SS$_CTRLERR, or
SS$DEVCMDERR
is returned)

Normal buffer
complete.

No buffers in queue.
Request still active.

No buffers in queue.
Sweep terminated
normally.

No buffers in
queue. Sweep
terminated due to
error condition.
Section 4.6 describes
the VMS error codes;
Appendix A of the
LPA 11-K Laboratory
Peripheral Accelerator
User's Guide lists the
LPA 11-K error codes.

4.5.15 LPA$1NXTBF-Set Next Buffer to Use

4-28

The LP A$INXTBF subroutine alters the normal buffer selection algorithm so
that you can specify the next buffer to be filled or emptied. The specified
buffer is reinserted at the head of the device queue.

The LP A$INXTBF subroutine can be called in either of the following formats:

CALL LPA$1NXTBF (IBUF,IBUFNO,IND)

IND=LPA$1NXTBF(IBUF ,IBUFNO)

Arguments are as described in Section 4.5.1.2, with the following additions:

IBUF

IBUFNO

IND

The IBUF array specified in the call that initiated the sweep.

Specifies the number of the next buffer to be filled or emptied.
The buffer must already be in the device queue.

Returns the result of the call as follows:

0 = Specified buffer not in the device queue

1 = Next buffer successfully set

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4.5.16 LPA$1WTBUF- Return Next Buffer or Wait
The LP A$1WTBUF subroutine returns the next buffer to be processed by the
application program, the buffer at the head of the user queue. If the user
queue is empty, the LPA$1WTBUF subroutine waits until a buffer is available.
If a completion routine was specified in the call that initiated the sweep, the
LP A$1GTBUF, not the LP A$1WTBUF subroutine, should be called.

The LP A$1WTBUF subroutine can be called in either of the following
formats:

CALL LPA$1WTBUF (IBUF ,[IEFN],IBUFNO)

IBUFNO=LPA$1WTBUF(IBUF ,[IEFN])

Arguments are as described in Section 4.5.1.2, with the following additions:

IBUF

IEFN

IBUFNO

The IBUF array specified in the call that initiated the sweep.

Not used. This argument is present to provide compatibility with
the operating system. (The event flag is the one specified in the
start sweep call.)

Returns the number of the next buffer to be filled or emptied by
the application program.

Table 4-7 lists the possible combinations of IBUFNO and 1/0 status block
contents on the return from a call to the LP A$1WTBUF subroutine. The first
four words of the IBUF array contain the 1/0 status block. If IBUFNO is -1,
the If O status block must be checked to determine the reason.

Table 4-7 LPA$1WTBUF Call - IBUFNO and 1058 Contents

18UFNO 1058(1) 1058(2) 1058(3),(4) Meaning

n 0

-1

-1 VMS
error
code

(byte
count)

0

0

4.5.17 LPA$RLSBUF - Release Data Buffer

0

0

LP A 1 1-K ready-
out and main-
tenance regis-
ters (only if
SS$_DEVREOERR
SS$_CTRLERR, or
SS$_DEVCMDERR
is returned)

Normal buffer
complete.

No buffers in queue.
Sweep terminated
normally.

No buffers in
queue. Sweep
terminated due to
error condition.
Section 4.6 describes
the VMS error codes;
Appendix A of the
LPA 11-K Laboratory
Peripheral Accelerator
User's Guide lists the
LPA 11-K error codes.

The LP A$RLSBUF subroutine declares one or more buffers available to be ,
filled or emptied by the LPAll-K. It inserts the buffer at the tail of the device
queue (see Figure 4-3).

4-29

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

The format of the LP A$RLSBUF subroutine call is as follows:

CALL LPA$RLSBUF (IBUF ,[IND],INDEXO,INDEX 1, ... ,INDEXN)

Arguments are as described in Section 4.5.1.2, with the following additions:

IBUF

IND

INDEXO, ...

The IBUF array specified in the call that initiated the sweep.

Returns the success or failure status as follows:

0 = Buffer number was illegal, the number of arguments
specified was incomplete, or a double buffer overrun occurred.
A double buffer overrun can occur only if buffer overrun was
specified as a nonfatal error, a buffer overrun occurs, and
buffer 0 was not released (probably on the user queue after a
previous buffer overrun).

1 = Buffer(s) released successfully.

Specify the indexes (0-7) of the buffers to be released. A
maximum of eight indexes can be specified.

The LPA$RLSBUF subroutine must be called to release a buffer (or buffers)
to the device queue before the sweep is initiated. (See Section 4.5.1.1 for a
discussion of buffer management.) Note that the LPA$RLSBUF subroutine
does not verify whether the specified buffers are already in a queue. If
a buffer is released when it is already in a queue, the queue pointers are
invalidated and unpredictable results can occur.

If buffer overrun is specified as a nonfatal error, buffer 0 should not be
released before the sweep is initiated. However, if either the LP A$IGTBUF or
LP A$IWTBUF subroutine returns buffer 0, it should be released. In this case,
buffer 0 is set aside (not placed on a queue) until the buffer overrun occurs.
If a buffer overrun occurs and buffer 0 was not released, the LP A$RLSBUF
subroutine returns an error the next time buffer 0 is released.

4.5.18 LPA$RMVBUF- Remove Buffer from Device Queue

4-30

The LPA$RMVBUF subroutine removes a buffer from the device queue.

The format of the LP A$RMVBUF subroutine call is as follows:

CALL LPA$RMVBUF (IBUF,IBUFNO,[IND])

Arguments are as described in Section 4.5.1.2, with the following additions:

IBUF

IBUFNO

IND

The IBUF array specified in the call that initiated the sweep.

Specifies the number of the buffer to remove from the device
queue.

Returns the success or failure status as follows:

0 = Buffer not found in the device queue

1 = Buffer successfully removed from the device queue

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4.5.19 LPA$CVADF - Convert A/D Input to Floating-Point
The LP A$CV ADF subroutine converts A/D input values to floating-point
numbers. It is supported to provide compatibility with the VMS operating
system.

The LP A$CVADF subroutine can be called in either of the following formats:

CALL LP A$CV ADF (IV AL, VAL)

VAL =LPA$CV ADF(IV AL)

Argument descriptions are as follows:

IV AL Contains the value (bits 11 :0) read from the A/D input. Bits
15:12are0.

VAL Receives the floating-point value.

4.5.20 LPA$FL T16 - Convert Unsigned 16-bit Integer to Floating-Point
The LPA$FLP16 subroutine converts unsigned 16-bit integers to floating
point. It is supported to provide compatibility with the VMS operating
system.

The LP A$FL Tl 6 subroutine can be called in either of the following formats:

CALL LP A$FL T 16 (IV AL, VAL)

VAL =LPA$FL T 16(1V AL)

Argument descriptions are as follows:

IV AL An unsigned 16-bit integer.

VAL Receives the converted value.

4.5.21 LPA$LOADMC - Load Microcode and Initialize LPA11-K
The LPA$LOADMC subroutine provides a program interface to the LPAl 1-K
microcode loader. It sends a load request through a mailbox to the loader
process to load microcode and to initialize an LPAll-K. (Section 4.7.1
describes the microcode loader process.)

The format of the LPA$LOADMC subroutine call is as follows:

CALL LPA$LOADMC ([ITYPE][,NUM][,IND][,IERROR])

4-31

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4.6 1/0 Status Block

4-32

Argument descriptions are as follows:

ITYPE

NUM

IND

I ERROR

The type of microcode to be loaded. The VMS operating system
defines the following values:

Value Meaning

Multirequest mode; default value

2 Dedicated A/D mode

3 Dedicated D /A mode

The number to be appended to the logical name LPA 11$. The
default value is 0.

Receives the completion status as follows:

1 = Microcode loaded successfully

nnn = VMS error code

Provides additional error information. Receives the second
longword of the 1/0 status block if SS$_CTRLERR,
SS$_DEVCMDERR, or SS$_DEVREOERR is returned in IND.
Otherwise, the contents of IERROR are undefined.

The 1/0 status block (IOSB) format for the load microcode, start
microprocessor, initialize LPAll-K, set clock, and start data transfer request
QIO functions is shown in Figure 4-4.

Figure 4-4 1/0 Functions 1058 Content

31 1615 0

byte count status

LPA11-K
maintenance status LPA 11-K ready-out

ZK-662-82

VMS status values and the byte count are returned in the first longword.
Status values are defined by the $SSDEF macro. The byte count is the
number of bytes transferred by a 10$_LOADMCODE request. If
SS$_CTRLERR, SS$_DEVCMDERR, or SS$_DEVREQERR is returned in
the status word, the second longword contains the LPAll-K ready-out
register and LPAll-K maintenance status register values present at the
completion of the request. The high byte of the ready-out register contains
the specific LPAll-K error code (see Appendix A of the LPA11-K Laboratory
Peripheral Accelerator User's Guide). Appendix A of this manual lists the status
returns for LPAll-K 1/0 functions. (The VMS System Messages and Recovery
Procedures Reference Volume provides explanations and suggested user actions
for these returns.)

Laboratory Peripheral Accelerator Driver
4. 6 1/0 Status Block

If high-level language library procedures are used, the status returns listed in
Appendix A can be returned from the resultant QIO functions. Since buffers
are filled by these procedures asynchronously, two I/O status blocks are
provided in the IBUF array: one for the high-level language procedures and
one for the LPAll-K driver. The first four words of the IBUF array contain
the I/O status block for the high-level language procedures.

4.7 Loading LPA11-K Microcode

4.7.1

The microcode loading and device initialization routines automatically
load microcode during system initialization (if specified in the system
manager's startup file) and during power recovery. These routines also
allow a nonprivileged user to load microcode and to restart the system.

The LPAll-K loader and initialization routines consist of the following parts:

• A microcode loader process that loads any of the three microcode
versions, initializes the LPAll-K, and sets the clock rate. Loading is
initiated by either a mailbox request or a power recovery AST. This
process requires permanent mailbox (PRMMBX) and physical 1/0
privileges.

• An operator process that accepts operator commands or indirect file
commands to load microcode and to initialize an LP All-K. This process
uses a mailbox to send a load request to the loader process; temporary
mailbox (TMPMBX) privilege is required.

• An LPAll-K procedure library routine that provides a program interface
to the LPAll-K microcode loader. The procedure sends a load request
through a mailbox to the loader process to load microcode and to initialize
an LPAll-K. Section 4.5.21 describes that routine in greater detail.

Microcode Loader Process
The microcode loader process loads microcode, initializes a specific LPAll-K,
and sets the clock at the default rate (10 kHz interrupt rate). A bit set in
a controller bit map indicates that the specified controller was loaded. The
process specifies a power recovery AST, creates a mailbox whose name
(LP A$LOADER) is entered in the system logical name table, and then
hibernates.

The correct device configuration is determined automatically. When LPAll-K
initialization is performed, every possible device (see Table 4-1) is specified as
present on the LPAll-K. If the LPAll-K returns a "device not found" error,
the LPAll-K is reinitialized with that device omitted.

On receipt of a power recovery AST, the loader process examines the
controller bit map to determine which LPAll-Ks have been loaded. For
each LP A 11-K, the loader process performs the following functions:

• Obtains device characteristics

• Reloads the microcode previously loaded

• Reinitializes the LPAll-K

• Sets Clock A to the previous rate and preset value

4-33

4.7.2

Laboratory Peripheral Accelerator Driver
4.7 Loading LPA11-K Microcode

Operator Process
The operator process loads microcode and initializes an LPAll-K through
either terminal or indirect file commands. To run the operator process, type
RUN SYS$SYSTEM:LALOAD. The command input syntax is as follows:

devname/type

devname is the device name of the LP A 11-K to be loaded. A logical name
can be specified. However, only one level of logical name translation is
performed. If devname is omitted, LAAO is the default name. If /type appears,
it specifies one of the following types of microcode to load:

• /MUL TI_REQUEST-Multirequest mode

• /ANALQG_DIGITAL-Dedicated A/D mode

• /DIGITAL-.ANALOG-Dedicated D/A mode

If /type type is omitted, /MULTLREQUEST is the default.

After receiving the command, the operator process formats a message and
sends it to the loader process. Completion status is returned through a return
mailbox.

4.8 RSX-11 M/M-PLUS and VMS Differences

4.8.1 General

4-34

This section lists those areas of the VMS high-level language support routines
that differ from the RSX-llM LPAll-K routines. The RSX-llM-PLUS
and Micro/RSX I/O Drivers Manual provides a detailed description of
the RSX-llM LPAll-K support routines. Differences between the VMS
and RSX-llM/M-PLUS routines can be determined by comparing the
descriptions in the RSX-llM-PLUS and Micro/RSX I/O Drivers Manual with
the descriptions for the VMS routines in the preceding sections of this chapter.

The following are general features of VMS high-level support routines:

• The LUN argument is not used. The NUM argument specifies the number
to be appended to the logical name LP All$.

• All routine names have the prefix LP A$.

• In the LPA$SETIBF routine, buffer addresses are checked for contiguity.

• In the LP A$LAMSKS routine, the IUNIT argument is not used.

• In the LP A$IWTBUF routine, the IEFN argument is not used. The event
flag specified in the sweep routine is used.

• The combinations of IBUFNO and If O status block (IOSB) values
returned by the LP A$IWTBUF and LP A$IGTBUF subroutines are
different.

4.8.2

4.8.3

4.8.4

Laboratory Peripheral Accelerator Driver
4.8 RSX-11 M/M-PLUS and VMS Differences

Alignment and Length

Status Returns

Sweep Routines

The following are features of alignment and length in VMS high-level support
routines:

• Buffers must be contiguous.

• Buffers must be longword-aligned.

• The random channel list (RCL) must be word-aligned.

• The IBUF array length is 50 longwords and must be longword-aligned.

The following are features of status returns in VMS high-level support
routines:

• The 1/0 status block (IOSB) length is eight bytes; numeric values of
errors differ.

• Several routines return the following:

1 =Success

0 =Failure detected in support routine

nnn = VMS status code; failure detected in system service

The following are features of sweep routines in VMS high-level support
routines:

• If an event flag is specified, it must be within a % VAL() construction.

• A tenth argument, IND, is added to return the success or failure status.

4.9 Programming Examples
The following programming examples use LPAll-K high-level language
procedures and LPAll-K Queue 1/0 functions.

The VMS Device Support Manual volume contains information that is
applicable to LP Al 1-K programming.

4-35

4.9.1

Laboratory Peripheral Accelerator Driver
4.9 Programming Examples

LPA 11-K High-Level Language Program (Program A)

4-36

This sample program (Example 4-1) is an example of how the LPAll-K high
level language procedures perform an A/D sweep using three buffers. The
program uses default arguments whenever possible to illustrate the simplest
possible calls. The program assumes that dedicated mode microcode has
previously been loaded into the LPAll-K. Table 4-8 lists the variables used
in this program.

Table 4-8 Program A Variables

Variable Description

BUFFER The data buffer array. BUFFER is a common area to guarantee
longword alignment.

IBUF The LP A 11-K high-level language procedures use the IBUF array
for local storage.

BUFNUM BUFNUM contains the buffer number returned by LPA$1WTBUF.
In this example, the possible values are 0, 1, and 2.

IST AT IST AT contains the status return from the high-level language
calls.

Example 4-1 LPA11-K High-Level Language Program (Program A)

c ***
c
C PROGRAM A
c
c ***

c

INTEGER*2
INTEGER*4

BUFFER(1000,0:2) ,IOSB(4)
IBUF(50),ISTAT,BUFNUM

COMMON/AREA1/BUFFER

EQUIVALENCE (IOSB(1),IBUF(1))

C Set clock rate to 1 khz, clock preset to -10.
c

c

CALL LPA$CLOCKA(4,-10,ISTAT)
IF (.NOT. !STAT) GO TO 950

C Initialize IBUF array for sweep.
c

c

CALL LPA$SETIBF(IBUF,ISTAT, ,BUFFER(1,0),BUFFER(1,1),BUFFER(1,2))
IF (.NOT. !STAT) GO TO 950

C Release all the buffers. Note use of buffer numbers rather than
C buffer names.
c

CALL LPA$RLSBUF(IBUF,ISTAT,0,1,2)
IF (.NOT. !STAT) GO TO 950

Example 4-1 Cont'd. on next page

4.9.2

Laboratory Peripheral Accelerator Driver
4.9 Programming Examples

Example 4-1 (Cont.) LPA11-K High-Level Language Program
(Program A)

c
C Start A/D sweep
c

c

CALL LPA$ADSWP(IBUF,1000,50,,, ,, , ,!STAT)
IF (.NOT. !STAT) GO TO 950

C Get next buffer filled with data. If BUFNUM is negative, there
C are no more buffers and the sweep is stopped.
c
100 BUFNUM = LPA$IWTBUF(IBUF)

IF (BUFNUM .LT. 0) GO TO 800
c
C Process data in buffer (1,BUFNUM) to buffer (1000,BUFNUM).

(Application-dependent code is inserted at this point.)

C Release buffer is filled again.
c
200 CALL LPA$RLSBUF(IBUF,ISTAT,BUFNUM)

IF (.NOT. !STAT) GO TO 950
GO TO 100

c
C There are no more buffers to process. Check to ensure that the
C sweep ended successfully. IOSB(1) contains either 1 or a
C VMS status code.
c
800 IF (.NOT. IOSB(1)) CALL LIB$STOP(%VAL(IOSB(1)))

PRINT *·'SUCCESSFUL COMPLETION'
GO TO 2000

c
C Error return from subroutine. !STAT contains either 0 or a
C VMS error code.
c
950 IF (!STAT .NE. 0) CALL LIB$STOP(%VAL(ISTAT))

PRINT *·'ERROR IN LPA11-K SUBROUTINE CALL'
2000 STOP

END

c **

LPA 11-K High-Level Language Program (Program 8)
This program (Example 4-2) is a more complex example of LPAll-K
operations performed by the LPAll-K high-level language procedures.
The following operations are demonstrated:

• Program-requested loading of LPAll-K microcode

• Setting the clock at a specified rate

• Use of nondefault arguments whenever possible

• An A/D sweep that uses an event flag

• A D /A sweep that uses a completion routine

4-37

Laboratory Peripheral Accelerator Driver
4.9 Programming Examples

4-38

• Buffer overrun set (buffer overrun is a nonfatal error)

• Random channel list (RCL) addressing

• Sequential channel addressing

Table 4-9 lists the variables used in this program.

Table 4-9 Program B Variables

Variable Description

AD An array of buffers for ahA/D sweep (8 buffers of 500 words
each)

DA An array of buffers for a D/ A sweep (2 buffers of 2000 words
each)

IBUFAD The IBUF array for an A/D sweep

IBUFDA The IBUF array for a D /A sweep

RCL The array that contains the random channel list (RCL)

ADIOSB The array that contains the 1/0 status block for the A/D sweep.
Equivalenced to the beginning of IBUFAD

DAIOSB The array that contains the 1/0 status block for the D/ A sweep.
Equivalenced to the beginning of IBUFDA

IST AT Contains the status return from the high-level language calls

Example 4-2 LPA11-K High-Level Language Program (Program B)

c ***
c
C Program B
c
c ***

c

EXTERNAL FILLBF
REAL*4 LPA$XRATE

INTEGER*2 AD(500,0:7),DA(2000,0:1),RCL(5),MODE,IPRSET
INTEGER*2 ADIOSB(4),DAIOSB(4)

INTEGER*4 IBUFAD(50),IBUFDA(50),LAMSKB(2)
INTEGER*4 ISTAT,IERROR,IRATE,BUFNUM

REAL*4 PERIOD

COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

EQUIVALENCE (IBUFAD(1),ADIOSB(1)),(IBUFDA(1),DAIOSB(1))

PARAMETER MULTI=!, HBIT='8000'X, LSTCHN=HBIT+7

C Set up random channel list. Note that the last word must have bit
C 15 set.
c

DATA RCL/2,6,3,4,LSTCHN/

Example 4-2 Cont'd. on next page

Laboratory Peripheral Accelerator Driver
4.9 Programming Examples

Example 4-2 (Cont.) LPA11-K High-Level Language Program
(Program B)

c ***
c
C Load multirequest mode microcode and set the clock overflow rate
C to 5 khz.
c
c ***
c
C Load microcode on LPA11-K assigned to LPA11$3.
c

c

CALL LPA$LOADMC(MULTI,3,ISTAT,IERROR)
IF (.NOT. !STAT) GO TO 5000

C Compute clock rate and preset. Set clock 'A' on LPA11-K
C assigned to LPA11$3.
c

PERIOD = LPA$XRATE(.0002,IRATE,IPRSET,O)
IF (PERIOD .EQ. 0.0) GO TO 5500

CALL LPA$CLOCKA(IRATE,IPRSET,ISTAT,3)
IF (.NOT. !STAT) GO TO 5000

c ***
c
C Set up for A/D sweep
c
c ***
c
C Initialize IBUF array. Note the use of the LAMSKB argument because
C the LPA11-K assigned to LPA11$3 is used.
c

CALL LPA$SETIBF(IBUFAD,ISTAT,LAMSKB,AD(1,0) ,AD(1,1),AD(1,2),
1 AD(1,3),AD(1,4),AD(1,5),AD(1,6),AD(1,7))
IF (.NOT. !STAT) GO TO 5000

CALL LPA$LAMSKS(LAMSKB,3)
c
C Set up random channel list sampling (20 samples in a sample
C sequence).
c

c

CALL LPA$SETADC(IBUFAD, ,RCL,20,0,ISTAT)
IF (.NOT. !STAT) GO TO 5000

C Release buffers for A/D sweep. Note that buffer 0 is not
C released because buffer overrun will be specified as nonfatal.
c

CALL LPA$RLSBUF(IBUFAD,ISTAT,1,2,3,4,5,6,7)
IF (.NOT. !STAT) GO TO 5000

Example 4-2 Cont'd. on next page

4-39

Laboratory Peripheral Accelerator Driver
4.9 Programming Examples

4-40

Example 4-2 (Cont.) LPA 11-K High-Level Language Program
(Program B)

c ***
c
C Set up for D/A sweep
c
c ***
c
C Note that the same LAMSKB array can be used because the LAMSKB
C contents apply to both A/D and D/A sweeps.
c

c

CALL LPA$SETIBF(IBUFDA,ISTAT,LAMSKB,DA(1,0) ,DA(1,1))
IF (.NOT. ISTAT) GO TO 5000

C Set up sampling parameters as follows: initial channel = 1.
C Number of channels sampled each sample sequence = 2, channel
C increment = 2, that is, sample channels 1 and 3 each sample
C sequence.
c

c

CALL LPA$SETADC(IBUFDA,,1,2,2,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

C Fill buffers with data for output to D/A.
c

(Application-dependent code is inserted here to fill buffers
DA(1,0) through DA(2000,0) and DA(1,1) through DA(2000,1) with data).

c
C Release buffers for DIA sweep.
c

CALL LPA$RLSBUF (IBUFDA,ISTAT,0,1)
IF (.NOT. ISTAT) GO TO 5000

Example 4-2 Cont'd. on next page

Laboratory Peripheral Accelerator Driver
4.9 Programming Examples

Example 4-2 (Cont.) LPA 11-K High-Level Language Program
(Program B)

c ***
c
C Start both sweeps
c
c ***
c
C Start A/D sweep. Mode bits specify buffer overrun is nonfatal and
C multirequest mode. Sweep arguments specify 500 samples/buffer,
C Indefinite sampling, dwell = 10 clock overflows, synchronize using
C event flag 15, and a delay of 50 clock overflows.
c

c

MODE = 16384 + 64
CALL LPA$ADSWP(IBUFAD,500,0,MODE,10,%VAL(15),50, ,,!STAT)
IF (.NOT. !STAT) GO TO 5000

C Start D/A sweep. Mode specifies multirequest mode. Other
C arguments specify 2000 samples/buffer, fill 15 buffers, dwell = 25
C clock overflows, synchronize by calling the completion routine
C 'FILLBF', and delay = 10 clock overflows. (See the FILLBF listing
C after the program B listing.)
c

MODE = 64
CALL LPA$DASWP(IBUFDA,2000,15,MODE,25,FILLBF,10,, ,!STAT)
(.NOT. !STAT) GO TO 5000

c ***
c
C Wait for an A/D buffer and then process the data it contains. D/A
C buffers are filled asynchronously by the completion routine FILLBF.
c
c ***
c
C Wait for a buffer to be filled by A/D. If BUFNUM is less than
C zero, the sweep has stopped (either successfully or with an error).
c
100 BUFNUM = LPA$IWTBUF(IBUFAD)

IF (BUFNUM .LT. 0) GO TO 1000
c
C There is A/D data in AD(1,BUFNUM) through AD(500,BUFNUM)
c

(Process the A/D data with the application-dependent code inserted
here.)

Example 4-2 Cont'd. on next page

4-41

Laboratory Peripheral Accelerator Driver
4.9 Programming Examples

4-42

Example 4-2 (Cont.) LPA11-K High-Level Language Program
(Program B)

c
C Assume sweep should be stopped when the last sample in buff er
C equals 0. Note that the sweep actually stops when the buffer
C currently being filled is full. Also note that LPA$IWTBUF
C continues to be called until there are no more buffers to process.
c

c

IF (AD(500,BUFNUM) .NE. 0) GO TO 200
CALL LPA$STPSWP(IBUFAD,1,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

C After the data is processed, the buffer is released to be
C filled again. Then the next buffer is obtained from A/D.
c
200 CALL LPA$RLSBUF(IBUFAD,ISTAT,BUFNUM)

IF (.NOT. ISTAT) GO TO 5000
GO TO 100

c
C Enter here when A/D sweep has ended. Check for error or
C successful end. (Note: Assume that the D/A sweep has already
C ended - see completion routine FILLBF.)
c
1000 IF(ADIOSB(1)) GO TO 6000

CALL LIB$STOP(%VAL(ADIOSB(1)))

c
C Enter here if there was an error returned from one of the
C LPA11-K high-level language calls. ISTAT contains either 0
C or a VMS status code.
c
5000
5500

IF (ISTAT .NE. 0) CALL LIB$STOP (%VAL(ISTAT))
PRINT *,'ERROR IN LPA11-K SUBROUTINE CALL'
GO TO 7000

6000 PRINT *,'SUCCESSFUL COMPLETION'
7000 STOP

END
c ***
c
C Subroutine FILLBF
c
c ***
c
C The FILLBF subroutine is called whenever the D/A has emptied a
C buffer, and that buffer is available to be refilled. This
C subroutine gets the buffer, fills it, and releases it back to the
C LPA11-K. Note that the D/A sweep is stopped automatically after
C 15 buffers have been filled. Also note that FILLBF is called by
C an AST handler. It is therefore called asynchronously from the
C main program at AST level. Care should be exercised when accessing
C variables that are common to both levels.
c

INTEGER*2 AD(500,0:7) ,DA(2000,0:1),DAIOSB(4)
INTEGER*4 IBUFAD(50),IBUFDA(50),BUFNUM,ISTAT
EQUIVALENCE (IBUFDA(1),DAIOSB(1))
COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

Example 4-2 Cont'd. on next page

4.9.3

Laboratory Peripheral Accelerator Driver
4.9 Programming Examples

Example 4-2 (Cont.) LPA11-K High-Level Language Program
(Program B)

c
C Get buffer number of next buffer to fill.
c

BUFNUM = LPA$IGTBUF(IBUFDA)
IF (BUFNUM .LT. 0) GO TO 3000

c
C Fill buffer with data for output to D/A.

(Application-dependent code is inserted here to fill buff er
DA(1,BUFNUM) through DA(2000,BUFNUM) with data.)

c
C Release buff er
c

c

CALL LPA$RLSBUF(IBUFDA,ISTAT,BUFNUM)
GO TO 4000

C Check for successful end of sweep.
c
3000 IF(DAIOSB(1)) GO TO 4000

c
C Error in sweep
c

CALL LIB$STOP(%VAL(DAIOSB(1)))

4000 RETURN
END

c ***

LPA 11-K QIO Functions Program (Program C)
This sample program (Example 4-3) uses QIO functions to start an A/D
data transfer from an LPAll-K. (The program assumes multirequest mode
microcode has been loaded.) Sequential channel addressing is used. The
data transfer is stopped after 100 buffers have been filled; no action is taken
with the data as the buffers are filled. Note that this program starts the data
transfer and then waits until the QIO operation completes.

4-43

Laboratory Peripheral Accelerator Driver
4.9 Programming Examples

Example 4-3 LPA 11-K QIO Functions Program (Program C)

Program C

. TITLE LPA11-K EXAMPLE PROGRAM
. !DENT /V01/

.PSECT LADATA,LONG

IOSB: .BLKQ 1 I/O status block
COUNT: .LONG 0 Count of buffers filled

CBUFF: Command buff er for start
Data QIO

.WORD -x20A Mode = Sequential channel
Addressing, A/D,
multirequest mode

.WORD 3 Valid buff er mask
(4 buffers)

.LONG usw User Status Word address

.LONG 4000 Aggregate buff er length

.LONG DATA_BUFFERO Address of data buffers

.LONG 0 No random channel list
length

.LONG 0 No random channel list
address

.WORD 10 Delay

.BYTE 0 Start channel

.BYTE 1 Channel increment

.WORD 16 Number of samples in
sample sequence

.WORD 1 Dwell

.BYTE 0 Start word number

.BYTE 0 Event mark word

.WORD 0 Start word mask

.WORD 0 Event mark mask

.WORD 0 Fills out command buff er

USW: .WORD 0 User Status Word

.ALIGN LONG Buffers must be
longword aligned

DATA_BUFFERO: .BLKW 500 Data buffers
DATA_BUFFER1: .BLKW 500
DATA_BUFFER2: .BLKW 500
DATA_BUFFER3: .BLKW 500

Example 4-3 Cont'd. on next page

4-44

Laboratory Peripheral Accelerator Driver
4.9 Programming Examples

Example 4-3 (Cont.) LPA 11-K QIO Functions Program (Program C)

DEVNAME: .ASCID /LAAO/

CHANNEL: .BLKW 1 Contains channel number

.PSECT LACODE,NOWRT

START: .ENTRY START,-m<>
$ASSIGN_S DEVNAM=DEVNAME,CHAN=CHANNEL ; Assign channel
BLBS R0,5$ No error
BRW ERROR Error

5$: Set clock overflow rate
To 2 khz. (1 mhz rate

; divided by 500 preset)
$QIOW_S ,CHAN=CHANNEL,FUNC=#IO$_SETCLOCK,-

IOSB=IOSB,,, ,P2=#1,P3=#-X143,P4#-500
BLBC RO.ERROR Error
MOVZWL IOSB,RO Pick up I/0 status
BLBC RO.ERROR Error

Start data transfer
CLRW USW Clear USW (start with

buffer 0)
MOVL #100,COUNT ; Fill 100 buffers
$QIOW_S ,CHANNEL,#IO$_STARTDATA,-

IOSB=IOSB, ,,P1=CBUFF,P2=#40,P3=#BFRAST
BLBC RO.ERROR ; Error

Note that the QIO waits until it finishes. Normally, the data is
processed here as the buffers are filled. Check for error when
the QIO completes.

ERROR:

MOVZWL
BLBC
RET

PUSHL
CALLS

IOSB,RO
RO.ERROR

RO
#1,G-LIB$STOP

BFRAST: BFRAST,m-<>

.WORD 0
INCB USW+1
CMPZV #0,#3,USW+l,#3

BLEQ 10$
CLRB USW+1

10$: DECL COUNT
BGTR 20$
BISB #-X40,USW+1

20$: BICB #-xao.usw+1
RET

.END START

Pick up I/O status
Error
All done - exit

Enter here if error
status in RO
Push onto stack
Signal error

Buff er AST routine
BFRAST is called whenever
a buff er is filled

Add 1 to buff er number
Handle wraparound

Use buff er 0
Decrement buff er count

Enough buffers filled -
Set stop bit
Clear done bit

4-45

5 Line Printer Driver

This chapter describes the use of the line printer drivers LPDRIVER and
LCD RIVER.

5.1 Supported Line Printer Devices

5.1.1

5.1.2

5.1.3

The following sections describe the line printer controllers and line printers
supported by the VMS operating system.

LP11 Line Printer Controller
The LPl 1 line printer controller provides an interface between the
VAX UNIBUS adapter and the line printer. The LPll performs the following
functions:

• Synchronizes single-character data transfers from the UNIBUS to the
printer

• Informs the VMS operating system about printer status

• Enables the printer to gain control of the UNIBUS to report interrupts

DMF32 and DMB32 Line Printer Controllers

LP27 Line Printer

The DMF32 and DMB32 line printer controllers provide a direct memory
access (DMA) interface between the VAX UNIBUS adapter (for the DMF32),
or the VAXBI adapter (for the DMB32), and the line printer. The
DMF32/DMB32 optionally perform the following functions:

• Tab expansion

• Carriage control

• Line wrapping and truncation

• Case conversion

• Passall mode

• Printall mode

The LP27 line printer is a high-speed, 132-column line printer, available with
either a 64- or 96-character ASCII print set. The LP27-U is a fully buffered
model that operates at a standard speed of up to 1200 lines per minute.
Forms with up to six parts can be used for multiple copies. A version of the
LP27 is available for operation of the printer up to 24.5 meters (1000 feet)
from the host.

5-1

5.1.4

5.1.5

5.1.6

Line Printer Driver
5.1 Supported Line Printer Devices

LA 11 DECprinter I
The LAl 1 DECprinter I is a medium-speed printer that operates at a standard
speed of 180 characters per second. It provides a forms length switch to set
the top of form to any of 11 common lengths, a paper-out switch and alarm,
and a variable forms width. The LAll uses a 96-character ASCII set; the
column width is 132 characters.

LN01 Laser Page Printer
The LNOl laser page printer is a nonimpact printer that employs laser
technology to produce high-quality print. Using electrophotographic imaging
and xerographic printing, the LNOl prints one page at a time at a rate of 12
pages per minute. The print resolution of 300 x 300 dots per square inch
produces characters of even density and alignment. The LNOl uses two,
188-character, fixed-space fonts; the column width is 132 characters.

LN03 Laser Page Printer
The LN03 laser page printer is a table-top, nonimpact page printer that
uses laser imaging and xerographic printing techniques. The LN03 has a
printing speed of 8 pages per minute with a print resolution of 300 x 300 dots
per square inch. Four built-in fonts are available. Several column widths,
including 80 or 132 characters, are also available.

5.2 Driver Features

5.2.1

The line printer drivers provide output character formatting and error
recovery. These features are described in the following sections.

Output Character Formatting

5-2

In write virtual and write logical block operations, user-supplied characters
are output as follows (write physical block data is not formatted, but output
directly):

•
•

•

•

Rubouts are discarded .

Tabs move the horizontal print position to the next MODULO (8) position
unless the LP$M_TAB characteristic is clear.

All lowercase alphabetic characters are converted to uppercase before
printing (unless the characteristic specifying lowercase characters is set;
see Section 5.4.3 and Table 5-2).

On printers where the line-feed, form-feed, vertical-tab, and carriage
return characters empty the printer buffer, returns are held back and
output only if the next character is not a form feed, line feed, or vertical
tab. Carriage returns are always output on units that have the LP$M_CR
characteristic set (see Section 5.4.3 and Table 5-2).

5.2.2 Error Recovery

Line Printer Driver
5.2 Driver Features

• The horizontal print position is incremented on the output of all
characters, including the space character. Characters are discarded if
the horizontal print position is equal to or greater than the carriage width,
unless the LP$M_WRAP characteristic is set or the LP$M_TRUNCATE
characteristic is clear (see Section 5.3).

• On printers without a mechanical form feed (the form-feed function
characteristic is not set; see Section 5.4.3 and Table 5-2), a form feed is
converted to multiple line feeds. The number of line feeds is based on
the current line count and the page length.

• Print lines are counted and returned to the caller in the s~cond longword
of the 1/0 status block.

The VMS line printer drivers perform the following error recovery operations:

• If the printer is off line for 30 seconds, a "device not ready" message is
sent to the system operator process.

• If the printer runs out of paper or has a fault condition, a "device not
ready" message is sent to the system operator after 30 seconds. Successive
messages, if they occur, are sent 1, 2, 4, 8, ... minutes after the initial
message.

• The current operation is retried every two seconds to test for a changed
situation, such as the printer coming on line.

• The current 1/0 operation can be canceled at the next timeout without
the printer being on line.

• When the printer comes on line, device operation resumes automatically.

5.3 Device Information
You can obtain information on printer characteristics by using the Get
Device/Volume Information ($GETDVI) system service. (See the VMS System
Services Reference Manual.)

$GETDVI returns line printer characteristics when you specify the item
codes DVl$_DEVCHAR and DVl$_DEVDEPEND. Tables 5-1 and
5-2 list these characteristics. The $DEVDEF macro defines the device
independent characteristics; the $LPDEF macro defines the device-dependent
characteristics. DVl$_DEVDEPEND returns a longword field that contains
the device-dependent characteristics in the three low-order bytes and the page
length in the high-order byte. Maximum page length is 255.

DVl$_DEVTYPE and DVl$_DEVCLASS return the device type and class
names, which are defined by the $DCDEF macro. The device type is a value ·
that corresponds to the printer, for example, LP$_LP27 or LP$_LA11. The
device class for printers is DC$_LP. DVl$_DEVBUFSIZ returns the page
width, which is a value in the range of 0 through 255 on a DMF32 controller
and 0 through 65535 on an LPl 1 or a DMB32 controller.

5-3

Line Printer Driver
5.3 Device Information

5-4

Table 5-1 Printer Device-Independent Characteristics

Characteristic 1

DEV$M_SPL

DEV$M_AVL

DEV$M_REC

DEV$M_CCL

DEV$M_ODV

Meaning

Dynamic Bits (Conditionally Set)

Device is spooled.

Printer is on line and available.

Static Bits (Always Set)

Device is record-oriented.

Carriage control is enabled.

Device is capable of output.

1 Defined by the $DEVDEF macro.

Table 5-2 Device-Dependent Characteristics for Line Printers

Value 1 Meaning

LP$M_CR Printer requires carriage return. (See Section 5.2.1).

LP$M_FALLBACK

LP$M_LOWER

LP$M_MECHFORM

LP$M_PASSALL

LP$M_PRINT ALL

LP$M_TAB

LP$M_ TRUNCATE

LP$M_WRAP

Printer translates multinational characters to a seven
bit equivalent representation if possible. Otherwise,
an underscore character (_) replaces the character.
LPM$M_FALLBACK has no effect on physical block
operations. See Appendix B for a list of multinational
characters.

Printer can print lowercase characters. If this value is not
set, all lowercase characters are converted to uppercase
when output. (LP$M_LOWER has no effect on write
physical block operations.)

Printer has mechanical form feed. This characteristic is
used when variable form length is required, such as in
check printing. Driver sends ASCII form feed (decimal
12). Otherwise, multiple line feeds are generated. The
page length determines the number of line feeds.

All output data is in binary (no data interpretation occurs).
Data termination occurs when the buffer is full (default
buffer size is 132 bytes). Character formatting is disabled.

All printing and nonprinting characters are transferred to
the printer, while character formatting remains enabled.

Printer enables tab expansion.

Printer truncates records that are larger than the carriage
width.

Printer wraps records that are larger than the carriage
width. If a string of text is longer than the width specified
in the second longword, the string is continued on the
next line.

1 Defined by the $LPDEF macro.

Line Printer Driver
5.4 Line Printer Function Codes

5.4 Line Printer Function Codes

5.4.1 Write

The basic line printer 1/0 functions are write, sense mode, and set mode.
None of the function codes take function modifiers.

The line printer write functions print the contents of the user buffer on the
designated printer.

The write functions and their QIO function codes are:

• 10$_WRITEVBLK-Write virtual block

• 10$_WRITELBLK-Write logical block

• 10$_WRITEPBLK-Write physical block (the data is not formatted, but
output directly, as in PASSALL mode on terminals)

The write function codes can take the following device- or function
dependent arguments:

• Pl-The starting virtual address of the buffer that is to be written

• P2-The number of bytes that are to be written

• P4-Carriage control specifier except for write physical block operations
(Write function carriage control is described in Section 5.4.1.1.)

P3, PS, and P6 are not meaningful for line printer write operations.

In write virtual block and write logical block operations, the buffer specified
by Pl and P2 is formatted for the selected line printer and includes the
carriage control information specified by P4. The default buffer size is 132
bytes.

If the printer is not set spooled, write virtual block and write logical block
operations perform the same function. If the printer is set spooled, a write
logical block function queues the 1/0 to the printer, and a write virtual block
function queues the 1/0 to the intermediate device, usually a disk.

All lowercase characters are converted to uppercase if the characteristics of
the selected printer do not include LP$M_LOWER. (This does not apply to
write physical block operations.)

Multiple line feeds are generated for form feeds only if the printer does
not have a mechanical form feed (LP$M_MECHFORM) characteristic. The
number of line feeds generated depends on the current page position and the
page length.

Section 5.2.1 describes character formatting in greater detail.

5-5

Line Printer Driver
5.4 Line Printer Function Codes

5.4.1.1

5-6

Write Function Carriage Control
The P4 argument is a longword that specifies carriage control. Carriage
control determines the next printing position on the line printer. (P4 is
ignored in a write physical block operation.) Figure 5-1 shows the P4
longword format.

Figure 5-1 P4 Carriage Control Specifier

3 2 0

P4: POSTFIX PREFIX (not used) FORTRAN

ZK-664-82

Only bytes 0, 2, and 3 in the longword are used. Byte 1 is ignored. If the
low-order byte (byte 0) is not 0, the contents of the longword are interpreted
as a FORTRAN carriage control specifier. Table 5-3 lists the possible byte 0
values (in hexadecimal) and their meanings.

If the low-order byte (byte 0) is 0, bytes 2 and 3 of the P4 longword are
interpreted as the prefix and postfix carriage control specifiers. The prefix
(byte 2) specifies the carriage control before the buffer contents are printed.
The postfix (byte 3) specifies the carriage control after the buffer contents are
printed. The sequence is as follows:

1 Prefix carriage control

2 Print

3 Postfix carriage control

The prefix and postfix bytes, although interpreted separately, use the same
encoding scheme. Table 5-4 shows this encoding scheme in hexadecimal
format.

Table 5-3 Write Function Carriage Control (FORTRAN: byte 0 not
equal to 0)

Byte 0 Value
(hexadecimal)

20

30

31

ASCII
Character

(space)

0

Meaning

Single-space carriage control (Sequence:
carriage-return/line-feed combination 1 , print
buffer contents, return)

Double-space carriage control (Sequence:
carriage-return/line-feed combination,
carriage-return/line-feed combination, print
buffer contents, return)

Page eject carriage control (Sequence: form
feed, print buffer contents, return)

1 A carriage-return/line-feed combination is a carriage return followed by a line feed.

Line Printer Driver
5.4 Line Printer Function Codes

Table 5-3 (Cont.) Write Function Carriage Control (FORTRAN: byte
0 not equal to 0)

Byte 0 Value
(hexadecimal)

28

24

All other
values

ASCII
Character

+

$

Meaning

Overprint carriage control; allows double
printing for emphasis or for special effects
(Sequence: print buffer contents, return)

Prompt carriage control (Sequence: carriage
return/line-feed combination, print buffer
contents)

Same as ASCII space character: single-space
carriage control

Table 5-4 Write Function Carriage Control (P4 byte 0 equal to 0)

Prefix/Postfix Bytes (Hexadecimal)

Bit 7

0

0

Bit 7 Bit 6

0

Bits
0-6

0

1-7F

Bit 5

0

0

Bits 0-4

1-1F

1-1F

Meaning

No carriage control is specified, that
is, NULL.

Bits 0 through 6 are a count of
carriage-return/line-feed combinations.

Meaning

Output the single ASCII control
character specified by the
configuration of bits 0 through 4
(seven-bit character set).

Output the single ASCII control
character specified by the
configuration of bits 0 through
4, which are translated as ASCII
characters 128 through 159 (eight-bit
character set; see Appendix B).

Figure 5-2 shows the prefix and postfix hexadecimal coding that produces
the carriage control functions listed in Table 5-3. Prefix and postfix coding
provides an alternative way to achieve these controls.

In the first example, the prefix/postfix hexadecimal coding for a single-space
carriage control (carriage-return/line-feed combination, print buffer contents,
carriage-return) is obtained by placing the value (1) in the second (prefix)
byte and the sum of the bit 7 value (80) and the return value (D) in the third
(postfix) byte:

80 (bit 7 = 1)
+ D (return)

8D (postfix = return)

5-7

5.4.2

Line Printer Driver
5.4 Line Printer Function Codes

Figure 5-2 Write Function Carriage Control (Prefix and Postfix
Coding)

0

2 0

BC 0

0 0

0

Example: Skip 24 lines before printing

P4:
SD 18 0

Sequence:

Prefix= NL
Print
Postfix= CR

Sequence:

Prefix = NL, NL
Print
Postfix= CR

Sequence:

Prefix= FF
Print
Postfix= CR

Sequence:

Prefix = NULL
Print
Postfix= CR

Sequence:

Prefix= NL
Print
Postfix= NULL

Sequence:

Prefix= 24NL
Print
Postfix:= CR

ZK-665-82

Sense Printer Mode

5-8

The sense printer mode function senses the current device-dependent printer
characteristics and returns them in the second longword of the 1/0 status
block. No device- or function-dependent arguments are used with
10$_SENSEMODE.

5.4.3 Set Mode

Line Printer Driver
5.4 Line Printer Function Codes

Set mode operations affect the operation and characteristics of the associated
line printer. The VMS operating system provides two types of set mode
functions: set mode and set characteristics. Set mode requires logical 1/0
privilege. Set characteristics requires physical 1/0 privilege. The following
function codes are provided:

• 10$_SETMODE

• 10$_SETCHAR

These functions take the following device- or function-dependent argument
(other arguments are not valid):

Pl-The address of a characteristics buffer

Figure 5-3 shows the quadword Pl characteristics buffer for 10$_SETMODE.
Figure 5-4 shows the same buffer for 10$_SETCHAR.

Figure 5-3 Set Mode Buffer

31 24 23 16 15 0

I not used page width

pago longth I printer characteristics

ZK-666-82

Figure 5-4 Set Characteristics Buffer

31 24 23 16 15 8 7 0

page width l type

J
class

page length printer characteristics

ZK-667-82

In the buffer, the device class is DC$_LP. The printer type is a value that
corresponds to the printer: DT$_LP27 or DT$_LA11. The type can be
changed by the 10$_SETCHAR function. The page width is a value in the
range of 0 through 255 on a DMF32 controller and 0 through 65535 on an
LPl 1 or DMB32 controller.

The printer characteristics part of the buffer can contain any of the values
listed in Table 5-2.

5-9

Line Printer Driver
5.4 Line Printer Function Codes

5.5 1/0 Status Block

Application programs that change specific line printer characteristics should
perform the following steps:

1 Use the 10$_SENSEMODE function to read the current characteristics.

2 Modify the characteristics.

3 Use the set mode function to write back the results.

Failure to follow this sequence will result in clearing any previously set
characteristic.

The 1/0 status blocks (IOSB) for the write and set mode IjO functions are
shown in Figures 5-5 and 5-6. Appendix A lists the status returns for these
functions. (The VMS System Messages and Recovery Procedures Reference
Volume provides explanations and suggested user actions for these returns.)

Figure 5-5 IOSB Contents - Write Function

31 16 15 0

byte count 1 status

number of lines the paper moved*

*O if 10$_WRITEPBLK ZK-668-82

Figure 5-6 IOSB Contents - Set Mode Function

31 16 15 0

I

0

I
status

I
0

ZK-669-82

5.6 Programming Example

5-10

The following sample program (Example 5-1) is an example of 1/0 to the
line printer that shows how to use the different carriage control formats. This
program prints out the contents of the output buffer (OUT_BUFFER) 10 times
using 10 different carriage control formats. The formats are held in location
OUTPUT_FORMAT.

Line Printer Driver
5.6 Programming Example

Example 5-1 Line Printer Program Example

**

.TITLE LINE PRINTER PROGRAMMING EXAMPLE

. IDENT /01/

Define necessary symbols.

$IODEF ;Define I/0 function codes

Allocate storage for the necessary data structures.

Allocate output buffer and fill with required output text.

OUT_BUFFER:
.ASCII "VAX_PRINTER_EXAMPLE"

OUT_BUFFER_SIZE=.-OUT_BUFFER ;Define size of output string

Allocate device name string and descriptor.

DEVICE_DESCR:
.LONG
.LONG

20-10 ;Length of name string
;Address of name string

10$: .ASCII
20$:

10$
/LINE_PRINTER/ ;Name string of output device

;Reference label to calculate
;length

Allocate space to store assigned channel number.

DEVICE_CHANNEL:
.BLKW 1 ;Channel number

Now set up the carriage control formats.

OUTPUT_FORMAT:
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

0,0,0,0
32,0,0,0
48,0,0,0
49,0,0,0
43,0,0,0
36,0,0,0

;No carriage control
;Blank=LF+ ... TEXT ... +CR
;Zero=LF+LF+ ... TEXT ... +CR
;One=FF+ ... TEXT ... +CR
;Plus=Overprint ... +CR
;Dollar=LF+TEXT(Prompt)

Now set up the prefix-postfix carriage control formats.

.BYTE

.BYTE

.BYTE

.BYTE

0,0,1,141
0,0,24, 141
0,0,2,141
0,0,140,141

Example 5-1 Cont'd. on next page

;LF+ ... TEXT ... +CR
;24LF+ ... TEXT ... +CR
;LF+LF+ ... TEXT ... +CR
; FF+ ... TEXT ... +CR

5-11

Line Printer Driver
5.6 Programming Example

5-12

Example 5-1 (Cont.) Line Printer Program Example

**

Start Program

**

The program assigns a channel to the output device, sets up a loop
count for the number of times it wishes to print, and performs ten
QIO and wait ($QIOW) system service requests. The channel is then
deassigned .

. ENTRY PRINTER_EXAMPLE,AM<R2,R3> ;Program starting address

First, assign a channel to the output device.

$ASSIGN_S DEVNAM=DEVICE_DESCR,-
CHAN=DEVICE_CHANNEL

BLBC R0,50$
MOVL #11,R3
MOVAL OUTPUT_FORMAT,R2

Start the printing loop.

30$:

40$:
50$:

$QIOW_S CHAN=DEVICE_CHANNEL,
FUNC=#IO$_WRITEVBLK,
P1=0UT_BUFFER,
P2=#0UT_BUFFER_SIZE,
P4=(R2)+

BLBC R0,40$
SOBGTR R3,30$
$DASSGN_S CHAN=DEVICE_CHANNEL
RET

.END PRINTER_EXAMPLE

;Assign a channel to printer

;If low bit = 0, assign failure
;Set up loop count
;Set up o/p format address
;in R2

;Print on device channel
;I/O function is write virtual
;Address of output buffer
;Size of buffer to print
;Format control in R2
;will autoincrement
;If low bit = 0, I/O failure
;Branch if not finished
;Deassign channel
;Return

6 Magnetic Tape Drivers

This chapter describes the use of the VMS magnetic tape drivers. These
drivers support the devices listed in Table 6-1.

Table 6-1 Supported Magnetic Tape Devices

Tape Max. Data Transfer
No. of Recording Speed Rate (bytes

Controller Drive 1 Code Tracks Density (bpi) (ips) per second) Recording Method2

TS11 TS04 MS 9 1600 45 72.000 PE

TM03 TE16 MT 9 800 or 1600 45 36,000 (for 800 NRZI or PE
bpi); 72,000 (for
1600 bpi)

TU45 MT 9 800 or 1600 75 60,000 (for 800 NRZI or PE
bpi); 120,000 (for
1600 bpi)

TU77 MT 9 800 or 1600 125 100,000 (for 800 NRZI or PE
bpi); 200,000 (for
1600 bpi)

TM78 TU78 MF 9 1600 or 6250 125 200,000 (for 1600 PE or GCR
bpi): 781,250 (for
6250 bpi)

3 TU80 MS 9 1600 25 or 160,000 PE
100

3 TU81 MU 9 1600 or 6250 25 or 120,000 (for 1600 PE or GCR
TU81 75 bpi); 468,750 (for
-Plus 6250 bpi)
TQ81

HSC50 TA81 MU 9 1600 or 6250 25 or 120,000 (for 1600 PE or GCR
75 bpi); 468,750 (for

6250 bpi)

TA78 MF 9 1600 or 6250 125 200,000 (for 1600 PE or GCR
bpi); 781,250 (for
6250 bpi)

TA79 MU 9 1600 or 6250 125 769,000 PE or GCR

TUK50 TK505 MU 224 6666 75 45,000 MFM
TQK50
TZK50

LESI RV20 MU 9 6250 N/A 1.33 Megabytes Write once
Adapter optical disk

1 The TU81, TU81-Plus, TA 78, TU78, T A81, and TF30 are tape mass storage control protocol (TMSCP) drives. The
TZ30 is an SCSI drive.
2 NRZI = non-return-to-zero-inverted; PE = phase encoded; GCR = group-coded recording; MFM = modified frequency
modulation; HDMFM = high density modified frequency modulation

3Has a self-contained controller
4Each track written separately-not in parallel

5The TK50 is a tape mass storage control protocol (TMSCP) device when configured on (... BA23 BA 123 w /s)
systems. The TK50 has a self-contained controller when configured on V AXstation 2000 and MicroVAX 2000
systems.

6-1

Magnetic Tape Drivers

Table 6-1 (Cont.) Supported Magnetic Tape Devices

Tape Max. Data Transfer
No. of Recording Speed Rate (bytes

Controller Drive 1 Code Tracks Density (bpi) (ips) per second) Recording Method2

3 TF30 MU 224 6666 75 45,000 MFM
TZ30

TQK70 TK70 MU 48 10000 100 90,000 HDMFM

TM79 TU79 MF 9 1600 or 6250 125 769,000 PE or GCR

1 The TU81, TU81-Plus, TA 78, TU78, T A81 , and TF30 are tape mass storage control protocol (TMSCP) drives. The
TZ30 is an SCSI drive.
2 NRZI = non-return-to-zero-inverted; PE = phase encoded; GCR = group-coded recording; MFM = modified frequency
modulation; HDMFM = high density modified frequency modulation

3 Has a self-contained controller
4 Each track written separately-not in parallel

6.1 Supported Magnetic Tape Controllers

6.1.1

6.1.2

6.1.3

The following sections describe the VMS magnetic tape controllers.

TM03 Magnetic Tape Controller
The TM03 magnetic tape controller supports up to eight TE16, TU45, or TU77
tape drives. These dual-density (800 or 1600 bpi) drives differ in speed: the
TE16, TU45, and TU77 read and write data at 45, 75, and 125 inches per
second, respectively. Each drive can hold one 2400-foot, 9-track reel with
a capacity of approximately 40 million characters. The TM03 controller is
connected to the MASSBUS through a MASSBUS adapter.

TS11 Magnetic Tape Controller
The TS 11 magnetic tape controller connects to the UNIBUS through a
UNIBUS adapter and supports one TS04 tape drive. The TS11/TS04 is a
single-density tape system that supports 1600-bpi, phase-encoded recording.

TM78 Magnetic Tape Controller

6-2

The TM78 magnetic tape controller supports up to four TU78 tape drives.
These high-performance, dual-density drives (1600 or 6250 bpi) operate at
125 inches per second (ips) using a 2400-foot reel of tape with,a capacity
of approximately 146 million characters when recorded in the GCR (6250
bpi) mode. The TM78 controller is connected to the MASSBUS through a
MASSBUS adapter.

6.1.4

6.1.5

6.1.6

Magnetic Tape Drivers
6.1 Supported Magnetic Tape Controllers

TUSO Magnetic Tape Subsystem
The TU80 is a single-density, dual-speed (25 or 100 ips) magnetic tape
subsystem that uses streaming tape technology (see Section 6.2.4). It supports
one drive per subsystem. The TU80 connects to the UNIBUS through a
UNIBUS adapter and completely emulates the TS11 magnetic tape controller.

TU81 and TA81 Magnetic Tape Subsystems
The TU81 and the TA81 are high-performanace, dual-density (1600 or 6250
bpi), dual-speed (25 or 75 ips) magnetic tape subsystems that use streaming
tape technology (see Section 6.2.4). The TU81 connects to the UNIBUS
through a UNIBUS adapter. The TA81 attaches to an HSC50 controller. Both
drives are managed with the tape mass storage control protocol (TMSCP).

TKSO Cartridge Tape System
The TK50 is a 5.24-inch, 95-megabyte cartridge tape that uses streaming
tape technology (see Section 6.2.4). The TK50 records data serially on 22
tracks using serpentine recording, rather than on separate (parallel) tracks.
Data written to tape is automatically read as it is written. A CRC check is
performed and the controller is notified immediately if an error occurs on
the tape. The TQK50 is a dual-height Q-BUS controller for the TK50 tape
drive. The TUK50 is a UNIBUS controller for the same drive. Both the
TQK50 and the TUK50 are TMSCP devices. The TZK50 is not a TMSCP
device; it contains its own internal controller. Only one drive is supported per
controller.

6.2 Driver Features
The VMS magnetic tape drivers provide the following features:

• Multiple master adapters and slave formatters

• Different types of devices on a single MASSBUS adapter; for example, an
RP05 disk and a TM03 tape formatter

• Reverse read function (except for the TK50 on TUK50 and TQK50
controllers)

• Reverse data check function (except for TS11, and TK50 on TUK50 and
TQK50 controllers)

• Data checks on a per-request, per-file, or per-volume basis (except for
TSll)

• Full recovery from power failure for online drives with volumes mounted,
including repositioning by the driver (except on VAXstation 2000 and
Micro VAX 2000 systems)

• Extensive error recovery algorithms; for example, non-return-to-zero
inverted (NRZI) error correction

• Logging of device errors in a file that may be displayed by field service or
customer personnel

• Online diagnostic support for drive level diagnostics

6-3

6.2.1

6.2.2

Magnetic Tape Drivers
6.2 Driver Features

The following sections describe master and slave controllers, and data check
and error recovery capabilities in greater detail.

Master Adapters and Slave Formatters

Data Check

6-4

The VMS operating system supports the use of many master adapters of the
same type on a system. For example, more than one MASSBUS adapter
(MBA) can be used on the same system. A master adapter is a device
controller capable of performing and synchronizing data transfers between
memory and one or more slave formatters.

The VMS operating system also supports the use of multiple slave formatters
per master adapter on a system. For example, more than one TM03 or TM78
magnetic' tape formatter per MBA can be used on a system. A slave formatter
accepts data and commands from a master adapter and directs the operation
of one or more slave drives. The TM03 and the TM78 are slave formatters.
The TE16, TU45, TU77, and TU78 magnetic tape drives are slave drives.

After successful completion of an I/O operation, a data check is made to
compare the data in memory with that on the tape. After a write or read
(forward) operation, the tape drive spaces backward, and then performs a
write check data operation. After a read operation in the reverse direction,
the tape drive spaces forward, and then performs a write check data reverse
operation. With the exception of TS04 and TU80 drives, magnetic tape
drivers support data checks at the following three levels:

• Per request-You can specify the data check function modifier
(10$M_DATACHECK) on a read logical block, write logical block, read
virtual block, write virtual block, read physical block, or write physical
block 1/0 function.

• Per volume-You can specify the characteristics "data check all reads"
and /1 data check all writes" when the volume is mounted. The VMS DCL
Dictionary describes volume mounting and dismounting. The VMS System
Services Reference Manual describes the Mount Volume ($MOUNT) and
Dismount Volume ($DISMOU) system services.

• Per file-You can specify the file attributes /1 data check on read" or
"data check on write." File access attributes are specified when the file
is accessed. Chapter 1 of this manual and the VMS Record Management
Services Manual both describe file access.

Data check is distinguished from a BACKUP /VERIFY operation, which writes
an entire save set, rewinds, and then compares the tape to the original tape.

See Section 6.1.6 for information on TKSO data check.

Note: Read and write operations with data check can result in very slow
performance on streaming tape drives.

6.2.3

6.2.4

Error Recovery

Magnetic Tape Drivers
6.2 Driver Features

Error recovery in the VMS operating system is aimed at performing all
possible operations that enable an 1/0 operation to complete successfully.
Magnetic tape error recovery operations fall into the following two categories:

• Handling special conditions, such as power failure and interrupt timeout

• Retrying nonfatal controller or drive errors

The error recovery algorithm uses a combination of these types of error
recovery operations to complete an 1/0 operation.

Power failure recovery consists of repositioning the reel to the position held at
the start of the IJO operation in progress at the time of the power failure, and
then reexecuting this operation. This repositioning might or might not require
operator intervention to reload the drives. When such operator intervention
is required, "device not ready" messages are sent to the operator console to
solicit reloading of mounted drives. Power failure recovery is not supported
on VAXstation 2000 and Micro VAX 2000 systems.

Device timeout is treated as a fatal error, with a loss of tape position. A tape
on which a timeout has occurred must be dismounted and rewound before
the drive position can be established.

If a nonfatal controller/ drive error occurs, the driver (or the controller,
depending on the type of drive) attempts to reexecute the 1/0 operation up
to 16 times before returning a fatal error. The driver repositions the tape
before each retry.

The inhibit retry function modifier (10$M-1NHRETRY) inhibits all normal
(nonspecial conditions) error recovery. If an error occurs, and the request
includes that modifier, the operation is immediately terminated and the driver
returns a failure status. 10$M-1NHRETRY has no effect on power failure and
timeout recovery.

The driver can write up to 16 extended interrecord gaps during the error
recovery for a write operation. For the TE16, TU45, and TU77, writing these
gaps can be suppressed by specifying the inhibit extended interrecord gap
function modifier (10$M-1NHEXTGAP). This modifier is ignored for the
other magnetic tape drives.

Streaming Tape Systems
Streaming tape systems (TU80, TU81, TU81-Plus, TA81, TKSO, TK70, TF30,
and TZ30) use the supply and takeup reel mechanisms to control tape speed
and tension directly, thereby eliminating the need for more complex and
costly tension and drive components. Streaming tapes have a very simple
tape path, much like a home audio reel-to-reel recorder.

Note: Read and write operations with data check can result in very slow
performance on streaming tape drives.

Because the motors driving the reels are low-powered, and because there is no
tape buffering, streaming tape drives are not capable of starting and stopping
in the interrecord gaps like conventional tape drives. When a streaming tape
does have to stop, the following events occur:

1 The tape slowly coasts forward to a stop.

6-5

Magnetic Tape Drivers
6.2 Driver Features

2 It backs up over a section previously processed.

3 It halts to await the next command.

4 It accelerates so that, when the original interrecord gap is encountered,
the tape is moving at full speed.

These steps, allowing the tape to reposition, require approximately one-
half second to complete on TU8x tapes and about three seconds on TKSO
tapes. If the operating system is not capable of writing to, or reading from,
a streaming tape drive at a rate that will keep the drive in constant motion
(streaming) the drive repositions itself when it runs out of commands to
execute. That produces a situation known as thrashing, in which the relatively
long reposition times exceed the time spent processing data and the result is
lower-than-expected data throughput.

Thrashing is entirely dependent on how fast the system can process data
relative to the tape drive speed while streaming. Consequently, the greatest
efficiency is obtained when you provide sufficient buffering to ensure
continuous tape motion. Some streaming tape drives supported by the
VMS operating system (TU80, TU81, TU81-Plus, and TA81) are dual-speed
devices that automatically adjust the tape speed to maximize data throughput
and minimize thrashing.

The TKSO writes up to seven filler records to keep the tape in motion. These
records are ignored when the data is read.

6.3 Device Information

6-6

You can obtain information on all magnetic tape device characteristics by
using the Get Device/Volume Information ($GETDVI) system service. (See
the VMS System Services Reference Manual.)

$GETDVI returns magnetic tape characteristics when you specify the item
codes DVJ$_DEVCHAR, DVl$_DEVCHAR2, DVl$_DEVDEPEND, and
DVl$_DEVDEPEND2. Tables 6-2, 6-3, and 6-4 list these characteristics. The
$DEVDEF macro defines the device-independent characteristics, the $MTDEF
macro defines the device-dependent characteristics, and the $MT2DEF
macro defines the extended device characteristics. The extended device
characteristics apply only to the TU81-Plus.

Table 6-2 Magnetic Tape Device-Independent Characteristics

Characteristic 1 Meaning

Dynamic Bits (Conditionally Set)

DEV$M_AVL

DEV$M_FQR

DEV$M_MNT

DEV$M_RCK

DEV$M_WCK

1 Defined by the $DEVDEF macro.

Device is online and available.

Volume is foreign.

Volume is mounted.

Perform data check on all read operations.

Perform data check on all write operations.

Magnetic Tape Drivers
6.3 Device Information

Table 6-2 (Cont.) Magnetic Tape Device-Independent
Characteristics

Characteristic 1 Meaning

DEV$M_FQD

DEV$M_IDV

DEV$M_QDV

DEV$M_SQD

DEV$M_WBC2

Static Bits (Always Set)

Device is file-oriented.

Device is capable of input.

Device is capable of output.

Device is capable of sequential access.

Device is capable of write-back caching.

1 Defined by the $DEVDEF macro.

2 This bit is located in DVl$_DEVCHAR2

Table 6-3 Device-Dependent Information for Tape Devices

Characteristic 1

MT$M_LOST

MT$M_HWL

MT$M_EOT

MT$M_EOF

MT$M_BOT

MT$M_PARITY

MT$V_DENSITY
MT$S_DENSITY

MT$V_FQRMA T
MT$S_FORMA T

Meaning

If set, the current tape position is unknown.

If set, the selected drive is hardware write-locked.

If set, an end-of-tape (EQT) condition was encountered
by the last operation to move the tape in the forward
direction.

If set, a tape mark was encountered by the last operation
to move tape.

If set, a beginning-of-tape (BOT) marker was encountered
by the last operation to move tape in the reverse
direction.

If set, all data transfers are performed with even parity. If
clear (normal case), all data transfers are performed with
odd parity. Only non-return-to-zero-inverted recording at
800 bpi can have even parity.

Specifies the density at which all data transfer operations
are performed. Possible density values are as follows:
MT$K_GCR_6250 Group-coded recording, 6250 bpi

MT$K_PE_ 1600

MT$K_NRZl_800

MT$K_BLK_833

Phase-encoded recording, 1600 bpi

Non-return-to-zero-inverted
recording, 800 bpi

Cartridge block mode recording2

Specifies the format in which all data transfers are
performed. A possible format value is as follows:
MT$K_NORMAL 11 Normal PDP-11 format. Data bytes

are recorded sequentially on tape
with each byte occupying exactly
one frame.

1 Defined by the $MTDEF macro.

20nly for the TK50, TF30, and TZ30

6-7

Magnetic Tape Drivers
6.3 Device Information

Table 6-4 Extended Device Characteristics for Tape Devices

Characteristic 1

MT2$V_ WBC_ENABLE

MT2$V_RDC_DISABLE

Meaning

If set, write-back caching is enabled for this unit.

If set, read caching is disabled for this unit.

1 Defined by the $MT2DEF macro. Only for the TUS 1-Plus. Initial device status will
show both of these bits cleared; write-back caching will be disabled, read caching will be
enabled.

DVl$_DEVTYPE and DVl$_DEVCLASS return the device type and class
names, which are defined by the $DCDEF macro. DVl$_DEVBUFSIZ returns
the buffer size. The buffer size is the default to be used for tape transfers
(normally 2048 bytes). The device class for magnetic tapes is $DCTAPE, and
the device type is determined by the magnetic tape model. For example, the
device type for the TA78 is DT$_TA78, for the TA81 it is DT$_TA81.

6.4 Magnetic Tape Function Codes

6-8

The VMS magnetic tape driver can perform logical, virtual, and physical
1/0 functions. Foreign-mounted devices do not require privilege to perform
logical and virtual 1/0 requests.

Logical and physical 1/0 functions to magnetic tape devices allow sequential
access to volume storage and require only that the requesting process have
direct access to the device. The results of logical and physical ljO operations
are unpredictable if an ACP is present.

Virtual 1/0 functions require intervention by an ACP and must be executed
in a prescribed order. The normal order is to create and access a file, write
information to that file, and deaccess the file. Subsequently, when you access
the file, you read the information and then deaccess the file. You can write
over the file when the information it contains is no longer useful and the file
has expired.

Any number of bytes (from a minimum of 14 to a maximum of 65 ,535) can
be read from or written into a single block by a single request. The number
of bytes itself has no effect on the applicable quotas (direct 1/0, buffered ljO,
and AST). Reading or writing any number of bytes subtracts the same amount
from a quota.

The volume to which a logical or virtual function is directed must be mounted
for the function actually to be executed. If it is not, either a "device not
mounted" or "invalid volume" status is returned in the 1/0 status block.

Table 6-5 lists the logical, virtual, and physical magnetic tape ljO functions
and their function codes. These functions are described in more detail in
the following paragraphs. Chapter 1 describes the QIO level interface to the
magnetic tape device ACP.

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Table 6-5 Magnetic Tape 1/0 Functions

Function Code and
Arguments Type1

IQ$_CREA TE P 1,- v
[P2[,[P3],[P4],-
[P5]

10$_ACCESS P1 ,- v
P2],[P3],[P4],-
[P5]

10$_DEACCESS P 1,- v
[P2],[P3],[P4],-
[P5]

10$_DSE2 p

10$_MODIFY P1 ,- v
[P2],[P3],[P4],-
[P5]

10$_READVBLK P 1,P2 v

10$_READLBLK P 1,P2 L

10$_READPBLK P 1 ,P2 p

10$_ WRITEVBLK P 1,P2 v

10$_WRITELBLK P1 ,P2 L

10$_ WRITEPBLK P 1 ,P2 p

1 V = virtual; L = logical; P = physical

2 0nly for TMSCP drives, TZK50, and TZ30

3Not for TS04 and TU80
4 Not for TUK50 and TQK50
50nly for TU81-Plus drives

Function Modifiers

10$M_CREA TE
10$M_ACCESS

10$M_CREATE
10$M_ACCESS

10$M_NOW AIT

10$M_DA T ACHECK3

10$M_INHRETRY
10$M_REVERSE4

10$M_DAT ACHECK3

10$M_INHRETRY
10$M _REVERSE4

10$M_DAT ACHECK3

10$M_INHRETRY
10$M_REVERSE4

10$M_DATACHECK3

10$M_INHRETRY
10$M_INHEXTGAP7

10$M_NOWAIT5

10$M_ERASE6

10$M_DAT ACHECK3

10$M_INHRETRY
10$M_INHEXTGAP7

10$M_NOWAIT5

10$M_ERASE6

10$M_DATACHECK3

10$M_INHRETRY
10$M_INHEXTGAP7

10$M_NOWAIT5

6Takes no arguments; valid only for TMSCP drives, TZK50, and TZ30

70nly for TE16, TU45, and TU77

Function

Create a file.

Search a tape for a specified file and
access the file if found and
10$M_ACCESS is set. If the file is not
found and 10$M_CREATE is set, create a
file at end-of-tape (EQT) marker.

Deaccess a file and, if the file has been
written, write out trailer records.

Erase a prescribed section of the tape.

Write user labels.

Read virtual block.

Read logical block.

Read physical block.

Write virtual block.

Write logical block.

Write physical block.

6-9

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Table 6-5 (Cont.) Magnetic Tape 1/0 Functions

Function Code and
Arguments Type1

IQ$_REWIND L

10$_REWINDOFF L

IQ$_UNLOAD L

IQ$_SKIPFILE P 1 L

IQ$_SKIPRECORD P 1 L

10$_ WRITEOF L

10$_PACKACK p

10$_A V AILABLE p

10$_SENSEMODE [P 1]- L
[P2]8

10$_SENSECHAR [P 1]- p
[P2]8

IQ$_SETMODE P1 ,- L
[P2]8

IQ$_SETCHAR P 1,- p

[P2]8

10$_ACPCONTROL P 1,- v
[P2],[P3],[P4],-
[P5]

Function Modifiers

10$M_INHRETRY
10$M_NOWAIT

10$M_INHRETRY
10$M_NOWAIT

10$M_INHRETRY
10$M_NOWAIT

10$M_INHRETRY
10$M_NOWAIT5

10$M_INHRETRY
10$M_NOWAIT5

10$M_INHRETRY
10$M_INHEXTGAP7

10$M_NOWAIT5

10$M_INHRETRY

10$M_INHRETRY

10$M_DMOUNT

Function

Reposition tape to the beginning-of-tape
(BOT) marker.

Rewind and unload the tape on the
selected drive.

Rewind and unload the tape on the
selected drive.

Skip past a specified number of tape
marks in either a forward or reverse
direction.

Skip past a specified number of blocks in
either a forward or reverse direction.

Write an extended interrecord gap
followed by a tape mark.

Initialize volume valid bit.

Clear volume valid bit.

Sense the tape characteristics and return
them in the 1/0 status block.

Sense the tape characteristics and return
them in the 1/0 status block.

Set tape characteristics for subsequent
operations.

Set tape characteristics for subsequent
operations.

Perform miscellaneous control functions. 9

1 V = virtual; L = logical; P = physical

50nly for TU81-Plus drives

70nly for TE16, TU45, and TU77

8The P 1 and P2 arguments for 10$_SENSEMODE and 10$_SENSECHAR and the P2 argument for 10$_SETMODE and
IQ$_SETCHAR are for TMSCP drives only

9See Section 1.6. 7 for additional information.

6-10

The function-dependent arguments for 10$_CREATE, 10$-ACCESS,
10$_DEACCESS, 10$_MODIFY, 10$-ACPCONTROL are as follows:

• Pl-The address of the file information block (FIB) descriptor.

• P2-0ptional. The address of the file name string descriptor. If specified
with 10$-ACCESS, the name identifies the file being sought. If specified
with 10$_CREATE, the name is the name of the created file.

• P3-0ptional. The address of the word that is to receive the length of
the resultant file name string.

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

• P4-0ptional. The address of a descriptor for a buffer that is to receive
the resultant file name string.

• PS-Optional. The address of a list of attribute descriptors. If specified
with 10$_ACCESS, the attributes of the file are returned to the user. If
specified with 10$_CREATE, PS is the address of the attribute descriptor
list for the new file. All file attributes for 10$_MODIFY are ignored.

See Chapter 1 for more information on these functions.

The function-dependent arguments for 10$_READVBLK, 10$_READLBLK,
10$_READPBLK, 10$_WRITEVBLK, 10$_WRITELBLK, and 10$_
WRITEPBLK are as follows:

• Pl-The starting virtual address of the buffer that is to receive the data
in the case of a read operation; or, in the case of a write operation, the
virtual address of the buffer that is to be written on the tape.

• P2-The length of the buffer specified by Pl

The function-dependent argument for 10$_SKIPFILE and 10$_SKIPRECORD
is:

• Pl-The number of tape marks to skip over in the case of a skip file
operation; or, in the case of a skip record operation, the number of blocks
to skip over. If a positive number is specified, the tape moves forward; if
a negative number is specified, the tape moves in reverse. (The maximum
number of tape marks or records that Pl can specify is 32,767.)

The following example shows the correct method of defining the Pl
parameter in a 10$_SKIPRECORD QIO.

TAPE_CHAN:
.WORD

IOSB: . WORD
.WORD
.LONG

DEVICE: . ASCID
RECORD : . LONG

.PSECT

.ENTRY

0
0
0
0
/127MUAO:/
2000

CODE,EXE,NOWRT

MT_IO, -M<>

$ASSIGN_S CHAN=TAPE_CHAN,-
DEVNAM=DEVICE

BLBC RO,EXIT_ERROR

$QIOW_S CHAN=TAPE_CHAN,
FUNC=#IO$_SKIPRECORD,
IOSB= IOSB , -
P1=RECORD

BLBC RO,EXIT_ERROR
$EXIT_S RO

EXIT_ERROR:
$EXIT_S RO
.END MT_IO

6-11

6.4.1

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Read

6-12

The read function reads data into a specified buffer in the forward or reverse
direction starting at the next block position.

The VMS operating system provides the following read function codes:

• IO$_READVBLK-Read virtual block

• IO$_READLBLK-Read logical block

• IO$_READPBLK-Read physical block

If a read virtual block function is directed to a volume that is mounted
foreign, it is converted to a read logical block function. If a read virtual block
function is directed to a volume that is mounted structured, the volume is
handled the same way as a file-structured device.

Two function-dependent arguments are used with these codes: Pl and P2.
These arguments are described in Section 6.4.

If the read function code includes the reverse function modifier
(10$M_REVERSE), the drive reads the tape in the reverse direction instead
of the forward direction. IO$M_REVERSE cannot be specified for the TUKSO
and TQKSO devices.

The data check function modifier (10$M_DATACHECK) can be used with
all read functions. If this modifier is specified, a data check operation is
performed after the read operation completes. (The drive performs a space
reverse or space forward between the read and data check operations.) A data
check operation is also performed if the volume that was read, or the volume
on which the file resides (virtual read), has the characteristic "data check all
reads." Furthermore, a data check is performed after a virtual read if the file
has the attribute "data check on read." The TS04 and TU80 tape drives do not
support the data check function.

For read physical block and read logical block functions, the drive returns
the status SS$_NORMAL (not end-of-tape status) if either of the following
conditions occurs and no other error condition exists:

• The tape is positioned past the end-of-tape (EOT) position at the start of
the read (forward or reverse) operation.

• The tape enters the EOT region as a result of the read (forward) operation.

The transferred byte count reflects the actual number of bytes read.

If the drive reads a tape mark during a logical or physical read operation in
either the forward or reverse direction, any of the following conditions can
return an end-of-file status:

• The tape is positioned past the EOT position at the start of the read
operation.

• The tape enters the EOT region as a result of the read operation.

• The drive reads a tape mark as a result of a read operation but the tape
does not enter the EOT region.

6.4.2 Write

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

An end-of-file status is also returned if the drive attempts a read operation
in the reverse direction when the tape is positioned at the beginning-of-tape
(BOT) marker. All conditions that cause an end-of-file status result in a
transferred byte count of zero.

If the drive attempts to read a block that is larger than the specified memory
buffer during a logical or physical read operation, a data overrun status is
returned. The buffer receives only the first part of the block. On a read in the
reverse direction (on drives other than the TKSO and TZ30) the buffer receives
only the latter part of the block. The transferred byte count is equal to the
actual size of the block. Read reverse starts at the top of the buffer. Thus,
the start of the block is at Pl plus P2 minus the length read. The TUKSO and
TZ30 cannot actually perform read reverse operations; they must be simulated
by the driver. Therefore, the data returned are those that would have been
returned had the block been read in the forward direction.

It is not possible to read a block that is less than 14 bytes in length. Records
that contain less than 14 bytes are termed "noise blocks" and are completely
ignored by the driver.

The write function writes data from a specified buffer to tape in the forward
direction starting at the next block position.

The VMS operating system provides the following write function codes:

• 10$_WRITEVBLK-Write virtual block

• 10$_WRITELBLK-Write logical block

• 10$_WRITEPBLK-Write physical block

If a write virtual block function is directed to a volume that is mounted
foreign, the function is converted to a write logical block. If a write virtual
block function is directed to a volume that is mounted structured, the volume
is handled the same way as a file-structured device.

Two function-dependent arguments are used with these codes: Pl and P2.
These arguments are described in Section 6.4.

The 10$M_ERASE function modifier can be used with the 10$_WRITELBLK
and 10$_WRITEPBLK function codes to erase a user-selected part of a tape.
This modifier propagates an erase pattern of all zeros from the current tape
position to 10 feet past the EOT position and then rewinds to the BOT
marker.

The data check function modifier (10$M_DATACHECK) can be used with
all write functions. If this modifier is specified, a data check operation is
performed after the write operation completes. (The drive performs a space
reverse between the write and the data check operations.) The driver forces
a data check operation when an error occurs during a write operation. This
ensures that the data can be reread. A data check operation is also performed
if the volume written, or the volume on which the file resides (virtual write),
has the characteristic "data check all writes." Furthermore, a data check
is performed after a virtual write if the file has the attribute "data check
on write." The TS04 and TU80 tape drives do not support the data check
function.

6-13

6.4.3

6.4.4

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Rewind

Skip File

If the 10$M_NOWAIT function modifier is specified, write-back caching is
enabled on a per command basis. 10$M_NOWAIT is applicable only to
TU81-Plus drives.

If the drive performs a write physical block or a write logical block operation,
an EOT status is returned if either of the following conditions occurs and no
other error condition exists:

• The tape is positioned past the EOT position at the start of the write
operation.

• The tape enters the EOT region as a result of the write operation.

The transferred byte count reflects the size of the block written. It is not
possible to write a block less than 14 bytes in length. An attempt to do so
results in the return of a bad parameter status for the QIO request.

The rewind function repositions the tape to the beginning-of-tape (BOT)
marker. If the 10$M_NOWAIT function modifier is specified, the 1/0
operation is completed when the rewind is initiated. Otherwise, 1/0
completion does not occur until the tape is positioned at the BOT marker.
10$-REWIND has no function-dependent arguments.

The skip file function skips past a specified number of tape marks in either a
forward or reverse direction. A function-dependent argument (Pl) is provided
to specify the number of tape marks to be skipped, as shown in Figure 6-1.
If a positive file count is specified, the tape moves forward; if a negative file
count is specified, the tape moves in reverse. (The actual number of files
skipped is returned as a signed number in the 1/0 status block.)

Figure 6-1 10$_SKIPFILE Argument

31 16 15 0

P1:

I
not used

I
file count

I
ZK-671-82

6-14

Only tape marks (when the tape moves in either direction) and the BOT
marker (when the tape moves in reverse) are counted during a skip file
operation. The BOT marker terminates a skip file function in the reverse
direction. The end-of-tape (EOT) marker does not terminate a skip file
function in either the forward or reverse direction. A negative skip file
function leaves the tape positioned just before a tape mark (at the end of
a file) unless the BOT marker is encountered, whereas a positive skip file
function leaves the tape positioned just past the tape mark.

A skip file function in the forward direction can also be terminated if two
consecutive tape marks are encountered. Section 6.4.5.1 describes this feature.

6.4.5 Skip Record

6.4.5.1

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

The skip record function skips past a specified number of physical tape blocks
in either a forward or reverse direction. A device- or function-dependent
argument (Pl) specifies the number of blocks to skip, as shown in Figure 6-2.
If a positive block count is specified, the tape moves forward; if a negative
block count is specified, the tape moves in reverse. The actual number of
blocks skipped is returned as a signed number in the IjO status block. If
a tape mark is detected, the count is the number of blocks skipped, plus 1
(forward tape motion) or minus 1 (reverse tape motion).

Figure 6-2 IQ$_SKIPRECORD Argument

31 16 15

P1:

I
not used

I
block count

0

I
ZK-672-82

A skip record operation is terminated by the end-of-file marker when the
tape moves in either direction, by the BOT marker when the tape moves in
reverse, and by the EOT marker when the tape moves forward.

A skip record function in the forward direction can also be terminated if
the tape was originally positioned between two tape marks. Section 6.4.5.1
describes this feature.

Logical End-of-Volume Detection
A skip file or skip record operation is terminated when both of the following
conditions exist:

• The tape is mounted foreign.

• Two consecutive tape marks are encountered when the tape moves in the
forward direction.

After the operation terminates, the tape remains positioned between the two
tape marks that were detected. The 1/0 status block (IOSB) returns the status
SS$_ENDOFVOLUME and the actual number of files (or records) skipped
during the operation prior to the detection of the second tape mark. The skip
count is returned in the high-order word of the first longword of the IOSB.

Subsequent skip record (or skip file) requests terminate immediately when
the tape is positioned between the two tape marks, producing no net tape
movement and returning the SS$_ENDOFVOLUME status with a skip count
of zero.

To move the tape beyond the second tape mark, you must employ another
1/0 function. For example, the 10$_READLBLK function, if issued after
receipt of the SS$_ENDOFVOLUME status return, terminates with an
SS$_ENDOFFILE status and with the tape positioned just past the second
tape mark. From this new position, other skip functions could be issued to
produce forward tape motion (assuming there is additional data on the tape).

6-15

6.4.6

6.4.7

6.4.8

6.4.9

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Write End-of-File

Rewind Offline

Unload

Sense Tape Mode

6-16

If three consecutive tape marks are encountered during a skip file function,
you must issue two 10$_READLBLK functions, the first to get the
SS$_ENDOFFILE return, the second to position the tape past the third tape
mark.

The write-end-of-file function writes an extended interrecord gap (of
approximately 3 inches for non-return-to-zero-inverted (NRZI) recording
and 1.5 inches for phase-encoded (PE) recording) followed by a tape mark.
No device- or function-dependent arguments are used with 10$_WRITEOF.

An end-of-tape (EOT) status is returned in the 1/0 status block if either of
the following conditions is present and no other error conditions occur:

• A write end-of-file function is executed while the tape is positioned past
the EOT marker.

• A write end-of-file function causes the tape position to enter the EOT
region.

The rewind offline function rewinds and unloads the tape on the selected
drive. If the 10$M_NOWAIT function modifier is specified, the 1/0 operation
is completed as soon as the rewind operation is initiated. No device- or
function-dependent arguments are used with 10$__REWINDOFF.

The unload function rewinds and unloads the tape on the selected drive.
The unload function is functionally the same as the rewind offline function.
If the 10$M_NQWAIT function modifier is specified, the 1/0 operation
is completed as soon as the rewind operation is initiated. No device- or
function-dependent arguments are used with 10$_UNLOAD.

The sense tape mode function senses the current device-dependent and
extended device characteristics (see Tables 6-3 and 6-4).

The VMS operating system provides the following function codes:

• 10$_SENSEMODE-Sense mode

• 10$_SENSECHAR-Sense characteristics

Sense mode requires logical 1/0 privilege. Sense characteristics requires
physical 1/0 privilege. For TMSCP drives the sense mode function returns
magnetic tape information in a user-supplied buffer, which is specified by the
following function-dependent arguments:

• Pl-Optional. Address of a user-supplied buffer.

• P2-0ptional. Length of user-supplied buffer.

6.4.10 Set Mode

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

If Pl is not zero, the sense mode buffer returns the tape characteristics. (If
P2=8, the second longword of the buffer contains the device-dependent
characteristics. If P2=12, the second longword contains the device
dependent characteristics and the third longword contains the tape
densities that the drive supports and the extended tape characteristics.)
The extended characteristics are identical to the information returned by
DVl$_DEVDEPEND2 (see Table 6-4). Figure 6-3 shows the contents of the
Pl buffer.

Regardless of whether the Pl buffer is specified, the 1/0 status block returns
the device-dependent characteristics in the second longword (see Figure 6-6).
These characteristics are identical to the information returned by
DVl$_DEVDEPEND (see Table 6-3 in Section 6.3).

Figure 6-3 Sense Mode P1 Buffer

P2=8:

31

buffer size

*from UCB$L_DEVDEPEND

P2=12:

31

buffer size

extended tape characteristics**

*from UCB$L _DEVDEPEND
**from UCB$L _DEVDEPND2

15 16

I
tape characteristics•

15 16

I
tape characteristics•

I

8 7 0

type l class

8 7 0

type l class

supported densities••

ZK-4854-85

Set mode operations affect the operation and characteristics of the associated
magnetic tape device. The VMS operating system defines two types of set
mode functions: set mode and set characteristics.

Set mode requires logical 1/0 privilege. Set characteristics requires physical
1/0 privilege. The following function codes are provided:

• 10$_SETMODE-Set mode

• 10$_SETCHAR-Set charactersitics

These functions take the following device- or function-dependent arguments
(other arguments are ignored):

• Pl-The address of a characteristics buffer

6-17

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

6-18

• P2-0ptional. The length of the characteristics buffer. Default is eight
bytes. If a length of 12 bytes is specified, the third longword (which is for
TMSCP drives only) specifies the extended tape characteristics.

Figure 6-4 shows the Pl characteristics buffer for 10$_SETMODE. Figure 6-5
shows the same buffer for 10$_SETCHAR.

Figure 6-4 Set Mode Characteristics Buffer

P2=8:
31

P2=12:
31

buffer size

buffer size

16 15

tape characteristics

16 15

l
tape characteristics

extended tape characteristics l

0

not used

0

not used

reserved

ZK-4856-85

Figure 6-5

P2=8:
31

P2=12:

31

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

Set Characteristics Buffer

16 15 8 7 0

buffer size type class

tape characteristics

16 15 8 7 0

buffer size type 1 class

tape characteristics

extended tape characteristics reserved

ZK-4855-85

The first longword of the Pl buffer for the set characteristics function contains
information on device class and type, and the buffer size. The device class for
tapes is DC$_ TAPE.

The $DCDEF macro defines the device type and class names. The buffer
size is the default to be used for tape transfers (this default is normally 2048
bytes).

The second longword of the Pl buffer for both the set mode and set
characteristics functions contains the tape characteristics. Table 6-6 lists
the tape characteristics and their meanings. The $MTDEF macro defines
the symbols listed. If P2=12, the third longword contains the extended tape
characteristics for TMSCP drives, which are listed in Table 6-7. Thegextended
tape characteristics are defined by the $MT2DEF macro and are identical to
the information returned by DVl$_DEVDEPEND2.

Table 6-6 Set Mode and Set Characteristics Magnetic Tape
Characteristics

Characteristic 1

MT$M_PARITY

Meaning

If set, all data transfers are performed with even parity.
If clear (normal case), all data transfers are performed
with odd parity. Even parity can be selected only for non
return-to-zero-inverted recording at 800 bpi. Even parity
cannot be selected for phase-encoded recording (tape
density is MT$K_PE_ 1600) or group-coded recording
(tape density is MT$K_GCR_6250) and is ignored.

1 Defined bv the $MTDEF macro

6-19

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

6-20

Table 6-6 (Cont.) Set Mode and Set Characteristics Magnetic Tape
Characteristics

Characteristic 1

MT$V_DENSITY
MT$S_DENSITY

MT$V_FORMA T
MT$S_FORMA T

Meaning

Specifies the density at which all data transfers are
performed. Tape density can be set only when the
selected drive's tape position is at the BOT marker.
Possible density values are as follows:
MT$K_DEFAUL T Default system density.

MT$K_GCR_6250 Group-coded recording, 6250 bpi.

MT$K_PE_ 1600

MT$K_NRZL800

MT$K_BLK_833

Phase-encoded recording, 1600
bpi.

Non-return-to-zero-inverted
recording, 800 bpi.

Cartridge block mode recording2
.

Specifies the format in which all data transfers are
performed. Possible format values are as follows:
MT$K_DEFAUL T Default system format.

MT$K_NORMAL 11 Normal PDP-11 format. Data bytes
are recorded sequentially on tape
with each byte occupying exactly
one frame.

1 Defined by the $MTDEF macro

20nly for the TK50, TZ30, and TF30

Table 6-7 Extended Device Characteristics for Tape Devices

Characteristic 1

MT2$V_ WBC_ENABLE

MT2$V_RDC_DISABLE

Meaning

Enable write-back caching on a per unit basis.

Disable read caching on a per unit basis.

1 Defined by the $MT2DEF macro. Only for TU81-Plus drives.

Application programs that change specific magnetic tape characteristics should
perform the following steps, as shown in Example 6-2 in Section 6.6:

1 Use the 10$_SENSEMODE function to read the current characteristics.

2 Modify the characteristics.

3 Use the set mode function to write back the results.

Failure to follow this sequence will result in clearing any previously set
characteristic.

Magnetic Tape Drivers
6.4 Magnetic Tape Function Codes

6.4.11 Data Security Erase
The data security erase function erases all data from the current position of
the volume to 10 feet beyond the EOT reflective strip and then rewinds the
tape to the BOT marker. It is a physical I/O function and requires the access
privilege necessary to perform physical 1/0 functions. It is applicable only
for the TA78, TU78, TA81, TKSO, TU81, TU81-Plus, TZ30, and TF30 drives.
The following function code is provided:

• I0$_DSE

If the function is issued when a tape is positioned at the BOT marker, all data
on the tape will be erased.

IO$_DSE takes no device- or function-dependent arguments.

6.4.12 Pack Acknowledge

6.4.13 Available

6.5 1/0 Status Block

The pack acknowledge function sets the volume valid bit for all magnetic
tape devices. It is a physical I/O function and requires the access privilege to
perform physical I/O. The following function code is provided:

• I0$_p ACKACK

This function code takes no function-dependent arguments.

I0$_p ACKACK must be the first function issued when a volume is placed in
a magnetic tape drive. IQ$_p ACKACK is issued automatically when the DCL
commands INITIALIZE or MOUNT are issued.

The available function clears the volume valid bit for all magnetic tape drives,
that is, it reverses the function performed by the pack acknowledge function
(see Section 6.4.12). A rewind of the tape is performed (applicable to all tape
drives). No unload function is issued to the drive. The following function
code is provided:

• 10$_A VAILABLE

This function takes no function-dependent arguments.

The I/O status block (IOSB) for QIO functions on magnetic tape devices is
shown in Figure 6-6. Appendix A lists the status returns for these functions.
(The VMS System Messages and Recovery Procedures Reference Volume provides
explanations and suggested user actions for these returns.) Table 6-3 (in
Section 6.3) lists the device-dependent data returned in the second longword.
The 10$_SENSEMODE function can be used to return that data.

6-21

Magnetic Tape Drivers
6.5 1/0 Status Block

Figure 6-6 IOSB Contents

31 16 15 a

byte count l status

device-dependent data

ZK-675-82

The byte count is the actual number of bytes transferred to or from the
process buffer or the number of files or blocks skipped. (If a
10$_SKIPRECORD function is terminated by the detection of a tape mark,
the count returned in the IOSB is a signed number reflecting the number
of blocks skipped, plus 1 (forward tape motion) or minus 1 (reverse tape
motion).

6.6 Programming Examples

6-22

The following program (Example 6-1) is an example of how data is written to
and read from magnetic tape. In the example, QIO operations are performed
through the magnetic tape ACP. These operations could have been performed
directly on the device using a magnetic tape driver. However, this would
have involved additional programming such as writing header labels and
trailer labels.

Magnetic Tape Drivers
6.6 Programming Examples

Example 6-1 Magnetic Tape Program Example

.TITLE MAGTAPE PROGRAMMING EXAMPLE

.IDENT /01/

Define necessary symbols.

$FIBDEF ;Define file information block
;symbols

$IODEF ;Define I/O function codes

Allocate storage for the necessary data structures.

Allocate magtape device name string and descriptor.

TAPENAME:
.LONG
.LONG

10$: .ASCII
20$:

20-10
10$
/TAPE/

;Length of name string
;Address of name string
;Name string
;Reference label

; Allocate space to store assigned channel number.

TAPECHAN:
.BLKW 1 ;Tape channel number

Allocate space for the I/0 status quadword.

IOSTATUS:
.BLKQ 1 ;I/0 status quadword

Allocate storage for the input/output buffer.

BUFFER:
.REPT 256
.ASCII /A/
.ENDR

;Initialize buffer to
;contain 'A'

Now define the file information block (FIB), which the ACP uses
in accessing and deaccessing the file. Both the user and the ACP
supply the information required in the FIB to perform these
functions.

Example 6-1 Cont'd. on next page

6-23

Magnetic Tape Drivers
6.6 Programming Examples

6-24

Example 6-1 (Cont.) Magnetic Tape Program Example

FIB_DESCR:
.LONG
.LONG

FIB: .LONG

ENDFIB:

.WORD

.WORD

.LONG

.WORD

.WORD

; Start of FIB
ENDFIB-FIB ;Length of FIB
FIB ;Address of FIB
FIB$M_WRITE!FIB$M_NOWRITE ;Read/write access allowed
0,0,0 ;File ID
0,0,0 ;Directory ID
O ;Context
0 ;Name flags
0 ;Extend control

;Reference label

; Now define the file name string and descriptor.

NAME_DESCR:
.LONG
.LONG

NAME: .ASCII
END_NAME:

END_NAME-NAME
NAME
"MYDATA.DAT;1"

;File name descriptor
;Address of name string
;File name string
;Reference label

Start Program

The program first assigns a channel to the magnetic tape unit and
then performs an access function to create and access a file called
MYDATA.DAT. Next, the program writes 26 blocks of data (the letters
of the alphabet) to the tape. The first block contains all A's, the
next, all B's, and so forth. The program starts by writing a block of
256 bytes, that is, the block of A's. Each subsequent block is reduced
in size by two bytes so that by the time the block of Z's is written,
the size is only 206 bytes. The magtape ACP does not allow the reading
of a file that has been written until one of three events occurs:

1. The file is deaccessed.
2. The file is rewound.
3. The file is backspaced.

In this example the file is backspaced zero blocks and then read in
reverse (incrementing the block size every block); the data is
checked against the data that is supposed to be there. If no data
errors are detected, the file is deaccessed and the program exits .

. ENTRY MAGTAPE_EXAMPLE, -M<R3,R4,R5,R6,R7,R8>

First, assign a channel to the tape unit.

$ASSIGN_S TAPENAME,TAPECHAN
CMPW #SS$_NORMAL,RO
BSBW ERRCHECK

;Assign tape unit
;Success?
;Find out

Now create and access the file MYDATA.DAT.

Example 6-1 Cont'd. on next page

Magnetic Tape Drivers
6.6 Programming Examples

Example 6-1 (Cont.) Magnetic Tape Program Example

$QIOW_S CHAN=TAPECHAN,- ;Channel is magtape

CMPW
BSBW

FUNC=#IO$_CREATE!IO$M_ACCESS!IO$M_CREATE,-;Function

IOSB=IOSTATUS,-

P1=FIB_DESCR,
P2=#NAME_DESCR
#SS$_NORMAL,RO
ERR CHECK

;is create
;Address of I/O status
;word
; FIB descriptor
;Name descriptor
;Success?
;Find out

LOOP1 consists of writing the alphabet to the tape (see previous
description) .

MOVL #26,R5
MOVL #256,R3

LOOP1:

;Set up loop count
;Set up initial byte count
;in R3
;Start of loop

$QIOW_S CHAN=TAPECHAN,
FUNC=#IO$_WRITEVBLK,-

;Perform QIOW to tape channel
;Function is write virtual
;block

P1=BUFFER,
P2=R3

CMPW #SS$_NORMAL,RO
BSBW ERRCHECK

;Buffer address
;Byte count
;Success?
;Find out

Now decrement the byte count in preparation for the next write
operation and set up a loop count for updating the character
written; LOOP2 performs the update.

SUBL2 #2,R3 ;Decrement byte count for
;next write

MOVL R3,R8 ;Copy byte count to R8 for
;LOOP2 count

MOVAL BUFFER,R7 ;Get buffer address in R7
LOOP2: INCB (R7)+ ;Increment character

SOBGTR R8,LOOP2 ;Until finished
SOBGTR R5,LOOP1 ;Repeat LOOP1 until alphabet

; complete

The alphabet is now complete. Fall through LOOP1 and update the
byte count so that it reflects the actual size of the last block
written to tape.

ADDL2 #2,R3 ;Update byte count

The tape is now read, but first the program must perform one of
the three functions described previously before the ACP allows
read access. The program performs an ACP control function,
specifying skip zero blocks. This is a special case of skip reverse
and causes the ACP to allow read access.

Example 6-1 Cont'd. on next page

6-25

Magnetic Tape Drivers
6.6 Programming Examples

6-26

Example 6-1 (Cont.) Magnetic Tape Program Example

CLRL
MOVW

FIB+FIB$L_CNTRLVAL ;Set up to space zero blocks
#FIB$C_SPACE,FIB+FIB$W_CNTRLFUNC ;Set up for space

;function
$QIOW_S CHAN=TAPECHAN,- ;Perform QIOW to tape channel

CMPW
BSBW

FUNC=#IO$_ACPCONTROL,- ;Perform an ACP control

P1=FIB_DESCR
#SS$_NORMAL,RO
ERRCHECK

;function
;Define the FIB
;Success?
;Find out

Read the file in reverse.

LOOP3:

MOVL
MOVB

#26,R5
#-A/Z/,R6

;Set up loop count
;Get first character in R6

MOVAL BUFFER,R7 ;And buffer address to R7
$QIOW_S CHAN=TAPECHAN,- ;Channel is magtape

FUNC=#IO$_READVBLK!IO$M_REVERSE,- ;Function is read

CMPW
BSBW

IOSB=IOSTATUS, -
P1=BUFFER,
P2=R3
#SS$_NORMAL,RO
ERRCHECK

;reverse
;Define I/0 status quadword
;And buffer address
;R3 bytes
;Success?
;Find out

Check the data read to verify that it matches the data written.

MOVL R3,R4
CHECKDATA:

CMPB
BNEQ
SOBGTR
DECB
ADDL2

(R7)+,R6
MISMATCH
R4,CHECKDATA
R6
#2,R3

SOBGTR R5,LOOP3

Now deaccess the file.

$QIOW_S CHAN=TAPECHAN,
FUNC=#IO$_DEACCESS,
IOSB=IOSTATUS

Deassign the channel and exit.

EXIT: $DASSGN_S CHAN=TAPECHAN
RET

;Copy R3 to R4 for loop count

;Check each character
;If error, print message
;Continue until finished
;Go through alphabet in reverse
;Update byte count by 2 for
;next block
;Read next block

;Channel is magtape
;Deaccess function
;I/0 status

;Deassign channel
;Exit

If an error had been detected, a program would normally
generate an error message here. But for this example the
program simply exits.

Example 6-1 Cont'd. on next page

Magnetic Tape Drivers
6.6 Programming Examples

Example 6-1 (Cont.) Magnetic Tape Program Example

MISMATCH:
BRB

ERRCHECK:
BNEQ
RSB

EXIT

EXIT

.END MAGTAPE_EXAMPLE

;Exit

;If not success, exit
;Otherwise, return

The following example (Example 6-2) illustrates the recommended sequence
for changing a device characteristic. Retrieve the current characteristics using
a 10$_SENSEMODE request, set the new characteristics bits, and then use
10$_SETMODE to set the new characteristics.

Example 6-2 Device Characteristic Program Example

$QIOW_S -
FUNC
CHAN
IOSB
P1
P2

(Check for errors)

= #IO$_SENSEMODE,
= CHANNEL,-
= IO_STATUS,
= BUFFER,-
= #12

(Set desired characteristics bits)

$QIOW_S -
FUNC
CHAN
IOSB
Pi
P2

(Check for errors)

= #IO$_SETMODE,
= CHANNEL,-
= IO_STATUS,
= BUFFER,-
= #12

Get current characteristics.
- Sensemode
- Channel
- IOSB
- User buff er supplied
- Buff er length = 12

Set new characteristics.
- Set Mode
- Channel
- IOSB
- User buff er address
- Buff er length = 12

The following example (Example 6-3) shows ways of specifying sense mode
and set mode, both with and without a user buffer specified, and with user
buffers of different lengths.

6-27

Magnetic Tape Drivers
6.6 Programming Examples

Example 6-3 Set Mode and Sense Mode Program Example

.PSECT IMPURE, NOEXE, NOSHR

$IODEF

Name of device DEVICE_NAME:
.ASCID /MUAO/

CHANNEL:
.WORD

BUFFER: . BLKL

IO_STATUS:
.QUAD

0

3

0

VMS channel to device

Set/Sense characteristics
buff er

Final I/0 status

.PSECT

.ENTRY

CODE, RD, NOWRT, EXE

MAIN, -M<>

$ASSIGN_S -
DEVNAM
CHAN

BSBW ERR_CHECK2

$QIOW_S -
FUNC
CHAN
IOSB

BSBW ERR_ CHECK

$QIOW_S -
FUNC
CHAN
IOSB
P1

BSBW ERR_ CHECK

$QIOW_S -
FUNC
CHAN
IOSB
P1
P2

BSBW ERR_ CHECK

$QIOW_S -
FUNC
CHAN
IOSB
P1
P2

BSBW ERR_ CHECK

= DEVICE_NAME,
= CHANNEL

Assign a channel to device

Check for errors

Get current characteristics
= #I0$_SENSEMODE,-; No user buffer supplied
= CHANNEL,-
= IO_STATUS

Check for errors

Get current characteristics
= #IO$_SENSEMODE,-; User buffer supplied, length
= CHANNEL,- defaulted
= IO_STATUS,-
= BUFFER

' = #IO$_SENSEMODE,-;
= CHANNEL,-
= IO_STATUS,
= BUFFER,-
= #8

= #IO$_SENSEMODE,-;
= CHANNEL,-
= IO_STATUS,

= BUFFER,-
= #12

Check for errors

Get current characteristics
User buffer supplied, length
= 8

Check for errors

Get extended characteristics
User buff er supplied, length
= 12

Check for errors

Example 6-3 Cont'd. on next page

6-28

Magnetic Tape Drivers
6.6 Programming Examples

Example 6-3 (Cont.) Set Mode and Sense Mode Program Example

$QIOW_S -
FUNC
CHAN
IOSB
Pl

BSBW ERR_ CHECK

$QIOW_S -
FUNC
CHAN
IOSB
Pl
P2

BSBW ERR_ CHECK

$QIOW_S -
FUNC
CHAN
IOSB
Pl
P2

BSBW ERR_ CHECK

RET

.ENABLE LSB

ERR_CHECK:

= #IO$_SETMODE,
= CHANNEL,-
= IO_STATUS, -
= BUFFER

= #IO$_SETMODE,
= CHANNEL,-
= IO_STATUS,-
= BUFFER,-
= #8

= #IO$_SETMODE,
= CHANNEL,-
= IO_STATUS,

= BUFFER,-
= #12

BLBS IO_STATUS,ERR_CHECK2
MOVZWL IO_STATUS,-(SP)
BRB 10$

ERR_CHECK2:
BLBS R0,20$
PUSHL RO

10$: CALLS #1,GALIB$STOP

20$: RSB

.DISABLE LSB

.END MAIN

Set new characteristics
Length defaulted

Check for errors

Set new characteristics
Length = 8

Check for errors

Set extended characteristics
Length = 12

Check for errors

Continue if good IOSB
Otherwise, set up for stop
Branch to common code

Continue if good status
Otherwise, set up for stop
Stop execution

6-29

7 Mailbox Driver

The VMS operating system supports a virtual device, called a mailbox,
that is used for communication between processes. Mailboxes provide
a controlled and synchronized method for processes to exchange data.
Although mailboxes transfer information much like other 1/0 devices, they
are not hardware devices. Rather, mailboxes are a software-implemented
ways to perform read and write operations.

Multiport memory mailboxes function in the same way as regular mailboxes.
They can also be used by processes on different processors connected to an
MA780 multiport memory option.

The Guide to VMS Programming Resources and the VMS System Services
Reference Manual contain additional information on the use of mailboxes.

7. 1 Mailbox Operations

7.1.1

Table 7-1 lists the different operations that software mailboxes perform.

Table 7-1 Mailbox Read and Write Operations

Operation Description

Receive mail A process initiates a read request to a mailbox to
obtain data sent by another process. The process
reads the data if a message was previously
transmitted to the mailbox.

Receive notification
of mail

Send mail (without
notification of
receipt)

Send mail (with
notification of
receipt)

Reject mail

Creating Mailboxes

A process specifies that it be notified through an
AST when a message is sent to the mailbox.

A process initiates a write request to another
mailbox to transmit data to second process. The
sending process does not wait until the data is
read by the receiving process before completing
the 1/0 operation.

A process initiates a write request to another
mailbox to transmit data to second process. The
sending process waits until the receiving process
reads the data before completing the 1/0 operation.

The receiving process reads messages from the
mailbox, sorts out unwanted messages, and
responds only to useful messages.

To create a mailbox and assign a channel and logical name to it, a process
uses the Create Mailbox and Assign Channel ($CREMBX) system service. The
system enters the logical name in the job logical name table and gives it an
equivalence name of MBAn, where n is a unique unit number.

7-1

7.1.2

Mailbox Driver
7 .1 Mailbox Operations

$CREMBX also establishes the characteristics of the mailbox. These
characteristics include a protection mask, permanence indicator, maximum
message size, and buffer quota. A mailbox is created as either a temporary
mailbox or a permanent mailbox; both types of mailboxes require privilege
to create. Applications and restrictions on use of temporary and permanent
mailboxes are described in the sections that follow. (See the VMS System
Services Reference Manual for additional information on creating mailboxes.)

Other processes can assign additional channels to the mailbox using either
$CREMBX or the Assign I/O Channel ($ASSIGN) system service. The
mailbox is identified by its logical name both when it is created and when it
is assigned channels by cooperating processes.

Figure 7-1 illustrates the use of $CREMBX and $ASSIGN.

If sufficient dynamic memory for the mailbox data structure is not available
when a mailbox is created, a resource wait occurs if resource wait mode is
enabled.

When a mailbox is created, a certain amount of space is specified for buffering
messages that have been written to the mailbox, but they have not yet been
read. The bufquo argument to the $CREMBX system service specifies this
amount or quota. If that argument is omitted, its value defaults to the system
generation parameter DEFMBXBUFQUO.

A message written to a mailbox, in the absence of an outstanding read
request, is queued to the mailbox, and the size of the message (the QIO P2
argument) is subtracted from the available buffering space. After the message
is read, it is added back to the available buffering space.

If a process attempts to write to a mailbox that is full or has insufficient
buffering space, and if the process has resource wait enabled (which is the
default case), the process is placed in miscellaneous resource wait mode until
sufficient space is available in the mailbox. If resource wait is not enabled,
the If O completes with the status return SS$-MBFULL in the If O status
block (IOSB).

The programming example at the end of this section (Section 7.5) illustrates
mailbox creation and interprocess communication.

Deleting Mailboxes

7-2

As each process finishes using a mailbox, it deassigns the channel using
the Deassign 1/0 Channel ($DASSGN) system service. The channel count
is decremented by 1. The system maintains a count of all channels and
automatically deletes the mailbox when no more channels are assigned to it
(that is, when the channel count reaches 0).

If a mailbox channel is deassigned, all messages sent through that channel
are deleted unless the 10$M_NOW function modifier was specified with the
write request.

Permanent mailboxes must be explicitly deleted using the Delete Mailbox
($DELMBX) system service. An explicit deletion can occur at any time.
However, the mailbox is actually deleted when no processes have channels
assigned to it.

7.1.3

7.1.4

Figure 7-1

USER OR
SYSTEM
PROCESS
CREATES
MAILBOX

EJ

Multiple Mailbox Channels

Mailbox Driver
7 .1 Mailbox Operations

EJ
MAILBOX

ZK-676-82

When a temporary mailbox is deleted, its message buffer quota is returned
to the process that created it. (No quota charge is made for permanent
mailboxes.)

Mailbox Message Format
There is no standardized format for mailbox messages and none is imposed
on users. Figure 7-2 shows a typical mailbox message format. Other types
of messages can take different formats; for an example, see Figure 8-2 in
Section 8.2.4.

Mailbox Protection
Mailboxes (both temporary and permanent) are protected by a code, or mask,
that is similar to the code used in protecting volumes. As with volumes,
four types of users (defined by UIC) can gain access to a mailbox: SYSTEM,
OWNER, GROUP, and WORLD. However, only three types of access
logical 1/0, read, and write-are meaningful to users of a mailbox. Thus,
when creating a mailbox, you can specify logical 1/0, read, and write access
to the mailbox separately for each type of user. Logical 1/0 access is required
for any mailbox operation. The set protection function modifier provides
additional control of mailbox access (see Section 7.3.5).

7-3

Mailbox Driver
7 .1 Mailbox Operations

Figure 7-2 Typical Mailbox Message Format

31 16 15 0

not used l message type

data

ZK-677-82

Because temporary mailboxes are customarily used for interprocess
communication between cooperating processes with the same group number,
they are used more frequently than permanent mailboxes. The logical names
of these mailboxes are entered in the group logical name table. Temporary
mailboxes thus have two layers of protection. First, easy access to the logical
names of temporary mailboxes is granted only to users who have the same
group number as the creator of the mailbox; other users have no such easy
access. Second, through the protection mask, the creator of the temporary
mailbox grants additional security to the mailbox. As a rule, users who are
not in the same group as the creator are excluded from using the mailbox.

Furthermore, the creator of a temporary mailbox can distinguish owners
from other group members by granting read access and write access to a
temporary mailbox-in addition to logical 1/0 access. For example, owners
can be allowed only read access or only write access to the mailbox, but other
members of the group can be allowed both read access and write access to
the mailbox.

7 .2 Device Information

7-4

You can obtain information on mailbox characteristics by using the Get
Device/Volume Information ($GETDVI) system service. (See the VMS System
Services Reference Manual.)

$GETDVI returns mailbox characteristics when you specify the item code
DVI$_ DEVCHAR. Table 7-2 lists these characteristics, which are defined by
the $DEVDEF macro.

Mailbox Driver
7. 2 Device Information

Table 7-2 Mailbox Characteristics

Characteristic 1

DEV$M_SHR

DEV$M_AVL

DEV$M_REC

DEV$M_IDV

DEV$M_QDV

DEV$M_MBX

Meaning

Dynamic Bits (Conditionally Set)

Device is shareable.

Device is available.

Static Bits (Always Set)

Device is record-oriented.

Device is capable of input.

Device is capable of output.

Device is a mailbox.

1 Defined by the $DEVDEF macro.

DVl$_DEVCLASS and DVl$_DEVTYPE return the device class and device
type names, which are defined by the $DCDEF macro. The device class
for mailboxes is DC$_MAILBOX. The device type is DT$_MBX (or DT$_
SHRMBX if the mailbox is a shared memory mailbox). DVl$_DEVBUFSIZ
returns the buffer size, which is the maximum message size in bytes.
DVl$_DEVDEPEND returns a longword field in which the two low-order
bytes contain the number of messages in the mailbox. (The two high-order
bytes are not used and should be ignored.)

DVl$_UNIT returns the mailbox unit number. Use of a mailbox to hold a
termination message for a subprocess or a detached process requires that the
parent process obtain this number to pass to the mbxunt argument of the
$CREPRC system service.

7 .3 Mailbox Function Codes
The VMS mailbox 1/0 functions are read, write, write end-of-file, and set
attention AST.

No buffered 1/0 byte count quota checking is performed on mailbox 1/0
messages. Instead, the byte count or buffer quota of the mailbox is checked
for sufficient space to buffer the message being sent. The buffered 1/0 quota
and AST quota are also checked.

7-5

7.3.1

Mailbox Driver
7.3 Mailbox Function Codes

Read

7-6

Read mailbox functions are used to obtain messages written by other
processes. The VMS operating system provides the following mailbox
function codes:

• IO$_READVBLK-Read virtual block

• IO$_READLBLK-Read logical block

• IO$_READPBLK-Read physical block

The following device- or function-dependent arguments are used with these
codes:

• Pl-The starting virtual address of the buffer that is to receive the
message read. If P2 specifies a zero-length buffer, Pl is ignored.

• P2-The size of the buffer in bytes (limited by the maximum message
size for the mailbox). A zero-length buffer may be specified. If a
message longer than the buffer is read, the alternate success status
SS$_BUFFEROVF is returned in the I/O status block. In such cases,
the message is truncated to fit the buffer. The driver does not provide a
means for recovering the deleted portion of the message.

The following function modifier can be specified with a read request:

• IO$M__NOW-Complete the 1/0 operation immediately with no wait for
a write request from another process

Figure 7-3 illustrates the read mailbox functions. In this figure, process A
reads a mailbox message written by process B. As the figure indicates, a
mailbox read request requires a corresponding mailbox write request (except
in the case of an error). The requests can be made in any sequence; the read
request can either precede or follow the write request.

If process A issues a read request before process B issues a write request, one
of two events can occur. If process A did not specify the function modifier
IO$M__NOW, process A's request is queued before process B issues the write
request. When this request occurs, the data is transferred from process B,
through the system buffers, to process A to complete the I/O operation.

However, if process A did specify the IO$M__NOW function modifier, the
read operation is completed immediately. That is, process A's request is not
queued until process B issues the write request, and no data is transferred
from process B to process A. In this case, the I/O status returned to process A
is SS$_ENDOFFILE.

If process B sends a message (with no function modifier; see Section 7.3.2)
before process A issues a read request (with or without a function modifier),
process A finds a message in the mailbox. The data is transferred and the I/O
operation is completed immediately.

To issue the read request, process A can specify any of the read function
codes; all perform the same operation.

7.3.2 Write

Mailbox Driver
7 .3 Mailbox Function Codes

Figure 7-3 Read Mailbox

PROCESS
A

G)or0

DATA

NOTE: Numbers indicate order of events.

8ar0
WRITE OIO

MAILBOX
PROCESS

B

ZK-679-82

Write mailbox functions are used to transfer data from a process to a mailbox.
The VMS operating system provides the following mailbox function codes:

• 10$_WRITEVBLK-Write virtual block

• 10$_WRITELBLK-Write logical block

• 10$_WRITEPBLK-Write physical block

These function codes take the following device- or function-dependent
arguments:

• Pl-The starting virtual address of the buffer that contains the message
being written. If P2 specifies a zero-length buffer, Pl is ignored.

• P2-The size of the buffer in bytes (limited by the maximum message size
for the mailbox). A zero-length buffer produces a zero-length message to
be read by the mailbox reader.

The following function modifiers can be specified with a write request:

• 10$M_NOW-Complete the 1/0 operation immediately with no wait for
another process to read the mailbox message

• 10$M_NORSWAIT-If the mailbox is full, the 1/0 operation fails with a
status return of SS$_MBFULL rather than placing the process in resource
wait mode

Figure 7-4 illustrates the write mailbox function. In this figure, process A
writes a message to be read by process B. As in the read request example, a
mailbox write request requires a corresponding mailbox read request (unless
an error occurs), and the requests can be made in any sequence.

If process A issues a write request before process B issues a read request, one
of two events can occur. If process A did not specify the function modifier
10$M_NOW, process A's write request is queued before process B issues a
read request. When this request occurs, the data is transferred from process A
to process B to complete the 1/0 operation.

7-7

7.3.3

Mailbox Driver
7 .3 Mailbox Function Codes

However, if process A did specify the 10$M_NOW function modifier, the
write operation is completed immediately. The data is available to process B
and is transferred when process B issues a read request.

If process B issues a read request (with no function modifier) before process
A issues a write request (with or without the function modifier), process A
finds a request in the mailbox. The data is transferred and the 1/0 operation
is completed immediately.

To issue the write request, process A can specify any of the write function
codes; all perform the same operation.

Figure 7-4 Write Mailbox

PROCESS
A

G)or0

0
NOTE: Numbers indicate order of events.

G)or0

MAILBOX

DATA

PROCESS
B

ZK-680-82

Write End-of-File Message

7-8

Write end-of-file message functions are used to insert a special message in
the mailbox. The process that reads the end-of-file message is returned the
status code SS$__ENDOFFILE in the IjO status block. No data is transferred.
This function takes no arguments. The VMS operating system provides the
following function code:

• 10$_WRITEOF-Write end-of-file message

The following function modifier can be specified with a write end-of-file
request:

• 10$M_NOW-Complete the 1/0 operation immediately

7.3.4

Mailbox Driver
7 .3 Mailbox Function Codes

Set Attention AST
Set attention AST functions are used to specify that an AST be delivered to
the requesting process when a cooperating process places an unsolicited read
or write request in a designated mailbox. If a message exists in the mailbox
when a request to enable a write attention AST is issued, the AST routine is
activated immediately. If no message exists, the AST is delivered when a read
or write message arrives. Thus the requesting process need not repeatedly
check the mailbox status. You must have both logical 1/0 and read access to
the mailbox prior to performing a set attention AST function.

The VMS operating system provides the following function codes:

• IO$_SETMODE!IO$M_READATTN-Read attention AST

• IO$_SETMODE!IO$M_WRTATTN-Write attention AST

These function codes take the following device- or function-dependent
arguments:

• Pl-AST address (request notification is disabled if the address is 0)

• P2-AST parameter returned in the argument list when the AST service
routine is called

• P3-Access mode to deliver AST; maximized with requester's mode

These functions are enabled only once; they must be explicitly reenabled after
the AST has been delivered if you desire notification of the next unsolicited
request. Both types of enable functions, and more than one of each type, can
be set at the same time. The number of enable functions is limited only by
the AST quota for the process.

Figure 7-5 illustrates the write attention AST function. In this figure, an AST
is set to notify process A when process B sends an unsolicited message.

Process A uses the 10$_SETMODE!IO$M_WRTATTN function to request an
AST. When process B sends a message to the mailbox, the AST is delivered
to process A. Process A responds to the AST by issuing a read request to the
mailbox. The function modifier 10$M_NOW is included in the read request.
The data is then transferred to complete the 1/0 operation.

If several requesting processes have set ASTs for unsolicited messages at the
same mailbox, all ASTs are delivered when the first unsolicited message is
placed in the mailbox. However, only the first process to respond to the AST
with a read request receives the data. Thus, when the next process to respond
to an AST issues a read request to the mailbox, it might find the mailbox
empty. If this request does not include the function modifier 10$M_NOW, it
is queued before the next message arrives in the mailbox.

Figure 7-6 illustrates the read attention AST function. In this figure, an AST
is set to notify process A when process B issues a read request for which no
message is available.

Process A uses the IO$_SETMODE!IO$M_READATTN function to specify
an AST. When process B issues a read request to the mailbox, the AST is
delivered to process A. Process A responds to the AST by sending a message
to the mailbox. The data is then transferred to complete the 1/0 operation.

7-9

Mailbox Driver
7 .3 Mailbox Function Codes

7-10

Figure 7-5 Write Attention AST (Read Unsolicited Data)

8
AST SPECI Fl ED BY

10$_SETMODE
! I 0$M_WRT ATTN

AST

PROCESS
A

DATA

NOTE: Numbers indicate order of events.

Figure 7-6 Read Attention AST

8
AST SPECIFIED BY

10$_SETMODE
!10$M_READATTN

AST

PROCESS
A

NOTE: Numbers indicate order of events.

UNSOLICITED

MAILBOX

MAILBOX

DATA

PROCESS
B

ZK-681-8~

PROCESS
B

ZK-682-82

If several requesting processes set ASTs for read requests for the same
mailbox, all ASTs are delivered when the first read request is placed in the
mailbox. Only the first process to respond with a write request is able to
transfer data to process B.

7.3.5 Set Protection

Mailbox Driver
7 .3 Mailbox Function Codes

Set protection functions allow the user to set volume protection on a mailbox
(see Section 7.1.4). The requester must either be the owner of the mailbox or
have BYPASS privilege. The VMS operating system provides the following
function code:

• IO$_SETMODE!IO$M_SETPROT-Set protection

This function code takes the following device- or function-dependent
argument:

• P2-A volume protection mask

The protection mask specified by P2 is a 16-bit mask with four bits for each
class of owner: SYSTEM, OWNER, GROUP, and WORLD, as shown in
Figure 7-7.

Figure 7-7 Protection Mask

15 11 7 3 0

world I group [owner system

I
I ' ' I

' I ' I ' I ' ' I ' I ' I 11 10 9 8 '
Log 1/0 write read l

*not used
ZK-683-82

Only logical 1/0, read, and write functions have meaning for mailboxes. A
clear (0) bit implies that access is allowed. If P2 is 0 or unspecified, the mask
is set to allow all read, write, and logical operations.

The 1/0 status block for the set protection function (see Figure 7-10) returns
SS$_NORMAL in the first word if the request was successful. If the request
was not successful, the $QIO system service returns SS$_NOPRIV and both
longwords of the 1/0 status block are returned as zeros.

7-11

Mailbox Driver
7 .3 Mailbox Function Codes

7 .4 1/0 Status Block

7-12

The set protection function is typically used when you want to inhibit write
access and thus close off input to the mailbox. The mailbox can then be
emptied without concern that a write operation might coincide with the read
operation.

The 1/0 status blocks (1058) for mailbox read, write, and set protection QIO
functions are shown in Figures 7-8, 7-9, and 7-10.

Appendix A lists the 1/0 status returns for these functions. In addition to
these returns, the system services status returns 55$--ACCVIO,
SS$-1NSFMEM, SS$_MBFULL, SS$_MBTOOSML, and 55$--NOPRIV can be
returned in RO. (The VMS System Messages and Recovery Procedures Reference
Volume provides explanations and suggested user actions for both types of
returns.)

Figure 7-8 IOSB Contents - Read Function

+2 IOSB

byte count status

sender process identification (Pl D) *

+4
*O if the sender was a system process

ZK-684-82

Figure 7-9 IOSB Contents - Write Function

+2

byte count* status

receiver process identification (PIO)**

*equals P2 buffer size if successful request
**O if 10$M_NOW was specified

IOSB

ZK-685-82

+4

Mailbox Driver
7 .5 Programming Example

Figure 7-10 IOSB Contents - Set Protection Function

+2 IOSB

0 status

+4

protection mask (P2) value

ZK-1201-82

7 .5 Programming Example
The following program (Example 7-1) creates a mailbox and puts mail into
it; no matching read is pending on the mailbox. First, the program illustrates
that if the function modifier 10$M_NOW is not used when mail is deposited,
the write function waits until a read operation is performed. In this case,
10$M_NOW is specified and the program continues after the mail is left in
the mailbox.

Next, the mailbox is read. If there is no mail in the mailbox, the program
waits because 10$M_NOW is not specified. 10$M_NOW should be specified
if there is any doubt about the availability of data in the mailbox, and it is
important for the program not to wait.

It is up to the user to coordinate the data that goes into and out of mailboxes.
In this example the process reads its own message. Normally, two mailboxes
are used for interprocess communication: one for sending data from process
A to process B, and one for sending data from process B to process A. If
a program is arranged in this manner, there is no possibility of a process
reading its own message.

7-13

Mailbox Driver
7 .5 Programming Example

7-14

Example 7-1 Mailbox Driver Program Example

.TITLE MAILBOX DRIVER PROGRAM EXAMPLE

. !DENT /01/

Define necessary symbols.

$IODEF ;Define I/0 function codes

Allocate storage for necessary data structures.

Allocate output device name string and descriptor.

DEVICE_DESCR:
.LONG 20-10
.LONG 10$

10$: .ASCII /SYS$0UTPUT/
20$:

;Length of name string
;Address of name string
;Name string of output device
;Reference label

; Allocate space to store assigned channel number.

DEVICE_CHANNEL:
.BLKW 1 ;Channel number

Allocate mailbox name string and descriptor.

MAILBOX_NAME:
.LONG ENDBOX-NAMEBOX
.LONG NAMEBOX

NAMEBOX: .ASCII /146_MAIN_ST/
ENDBOX:

;Length of name string
;Address of name string
;Name string
;Reference label

; Allocate space to store assigned channel number.

MAILBOX_CHANNEL:
.BLKW 1 ;Channel number

Allocate space to store the outgoing and incoming messages.

IN_BOX_BUFFER:
.BLKB 40

IN_LENGTH=.-IN_BOX_BUFFER

OUT_BOX_BUFFER:
.ASCII /SHEEP ARE VERY DIM/
OUT_LENGTH=.-OUT_BOX_BUFFER

Example 7-1 Cont'd. on next page

;Allocate 40 bytes for
;received message
;Define input buffer length

;Message to send
;Define length of message to
;send

Mailbox Driver
7 .5 Programming Example

Example 7-1 (Cont.) Mailbox Driver Program Example

Finally, allocate space for the I/O status quadword.

STATUS:
.QUAD 1 ;I/0 status quadword

Start Program

The program first creates a mailbox and assigns a channel to the
process output device. Then a message is placed in the mailbox and
a message is received from the mailbox (the same message). Finally,
the program prints the contents of the mailbox on the process output
device.

START: .WORD 0 ;Entry mask
$CREMBX_S CHAN=MAILBOX_CHANNEL,- ;Channel is the mailbox

PROMSK=#-XOOOO,- ;No protection
BUFQUO=#-X0060,- ;Buffer quota is hex 60
LOGNAM=MAILBOX_NAME,- ;Logical name descriptor
MAXMSG=#-X0060 ;Maximum message is hex 60

CMPW #SS$_NORMAL,RO ;Successful mailbox creation?
BSBW ERROR_CHECK ;Find out
$ASSIGN_S - ;Assign channel

DEVNAM=DEVICE_DESCR,- ;Device descriptor
CHAN=DEVICE_CHANNEL ;Channel

CMPW #SS$_NORMAL,RO ;Successful channel assign?
BSBW ERROR_CHECK ;Find out

The program now writes to the mailbox using a write request that
includes the function modifier I0$M_NOW so that it need not wait for
a read request to the mailbox before continuing to the next step in
the program.

$QIOW_S FUNC=#IO$_WRITEVBLK!IO$M_NOW,- ;Write message NOW
CHAN=MAILBOX_CHANNEL,- ;to the mailbox channel

CMPW
BSBW

P1=0UT_BOX_BUFFER,- ;Write buffer
P2=#0UT_LENGTH ;Buffer length
#SS$_NORMAL,RO ;Successful write request?
ERROR_CHECK ;Find out

Read the mailbox.

Example 7-1 Cont'd. on next page

7-15

Mailbox Driver
7. 5 Programming Example

7-16

Example 7-1 (Cont.) Mailbox Driver Program Example

$QIOW_S FUNC=#IO$_READVBLK,
CHAN=MAILBOX_CHANNEL,
IOSB=STATUS,-

P1=IN_BOX_BUFFER,
P2=#IN_LENGTH

CMPW #SS$_NORMAL,RO
BSBW ERROR_ CHECK

;Read the message
;in the mailbox channel
;Define status block to
;receive message length
;Read buff er
;Buffer length
;Successful read request?
;Find out

The program now determines how much mail is in the mailbox (this
information is in STATUS+2) and then prints the mailbox message on
the process output device.

MOVZWL STATUS+2,R2
$QIOW_S FUNC=#IO$_WRITEVBLK,

CHAN=DEVICE_CHANNEL,
P1=IN_BOX_BUFFER,
P2=R2,-
P4=#32

;Byte count into R2
;Write function to the
;output device channel
;Address of buffer to write
;How much to write
;Carriage control

Finally, deassign the channel and exit.

EXIT: $DASSGN_S CHAN=DEVICE_CHANNEL
RET

;Deassign channel
;Return

This is the error checking part of the program. Normally, some kind
of error recovery would be attempted at this point if an error was
detected. However, this example program simply exits.

ERROR_CHECK:
BNEQ
RSB

EXIT

.END START

;System service failure, exit
;Otherwise, return

8 Terminal Driver

This chapter describes the use of the VMS terminal driver (TTDRIVER)
and the LAT port driver (LTDRIVER). The terminal driver supports the
asynchronous, serial line multiplexers listed in Table 8-1. The terminal driver
also supports the console terminal. The LAT port driver accommodates I/O
requests from application programs, for example to make connections to
remote devices, such as a printer, on a server (see Section 8.4.4).

8.1 Supported Terminal Devices

Table 8-1

Terminal
Interface

CXY08

CXA16

CXB16

DZQ11

DZQ11-CR

uVAX2000

DZV11

DHQ11

DHU11

DHV11

DMB32

DMF32

DMZ32

DZ11

In addition to the multiplexers listed in Table 8-1, the terminal driver
supports serial line interfaces that are included as part of all VAX processors.
At least one such interface is always provided and is used to attach the
system console terminal. This interface does not allow the setting of multiple
terminal speeds, parity, or any maintenance functions, with the exception of
the interface included with the VAX 8200 processor. The terminal devices
supported by the VMS operating system for this interface are included in
Table 8-1.

The remote command terminal, used by the DCL command SET HOST, also
makes use of the features listed in Section 8.2.

Supported Terminal Devices

No. of Output Split International
Lines Silo/OMA Speed Bus Modem Control

8 Yes 1/Yes Yes Q-BUS Full

16 Yes 1 /Yes Yes Q-BUS No

16 Yes 1/Yes Yes Q-BUS No

4 No/No Yes Q-BUS No

4 No/No Yes Q-BUS No

4 No/No Yes None No

4 No/No No Q-BUS No

8 Yes 1 /Yes Yes Q-BUS Full

16 Yes/Yes Yes UNIBUS Full

8 No/Yes Yes Q-BUS Full

8 No/Yes Yes VAXBI Full

8 Yes/Yes Yes UNIBUS Yes
(lines (lines
0 and 1) 0 and 1)

24 Yes/Yes Yes UNIBUS Full

8/16 No/No No UNIBUS No

1 Depends on whether the DHV or DHU mode is selected when the board is installed

8-1

Terminal Driver
8.1 Supported Terminal Devices

Table 8-1 (Cont.) Supported Terminal Devices

Terminal No. of
Interface Lines

DZ32 8

LAT 2

VAX 8200 4
serial lines

2 Server dependent

Output Split
Silo/OMA Speed

No/No Limited

No/Yes 2

No/No No3

Bus

UNIBUS

N/A
None

International
Modem Control

No
2

No

3The VMS operating system always supports the first serial line as a console interface. The first serial line, and
the remaining three serial lines, are also supported as user terminal interfaces at a maximum speed of 1200 baud in
configurations that may include a LAT terminal interface but do not include other terminal interfaces.

8.2 Terminal Driver Features

8-2

The VMS terminal driver provides the following features:

• Input processing

Command line editing and command recall

Control characters and special keys

Input character validation (read verify)

American National Standard (ANSI) escape sequence detection

Type-ahead feature

Specifiable or default input terminators

Special operating modes, such as NOECHO and P ASTHRU

• Output processing

Efficiency

Limited full-duplex operation

Formatted or unformatted output

• Dial-up support

Modem control

Hangup on logging out

Preservation of process across hangups

• Miscellaneous

Terminal/mailbox interaction

Autobaud detection

Out-of-band control character handling

8.2.1 Input Processing

8.2.1.1

Terminal Driver
8.2 Terminal Driver Features

The VMS terminal driver defines many terminal characteristics and read
function modifiers, which provide a wide range of options to an application
program. These options allow multiple levels of control over the terminal
driver's input process, ranging from the default of command line editing
that provides a highly flexible user interface, to the P ASTHRU mode, which
inhibits input process interpretation of data.

Command Line Editing and Command Recall
The terminal driver input process defines a bounded set of line editing
functions. These functions are available through control keys on all
keyboards, and through some special keys on certain keyboards as well.
Cursor movement is provided in single-character increments (left arrow
or CTRL/D, right arrow or CTRL/F), or in multicharacter increments, to
beginning of the line (CTRL/H), or end of the line (CTRL/E). The terminal
driver supports both insert character and overstrike character modes.
The insert/overstrike mode is the terminal's default characteristic1 at the
beginning of a read operation, but it can be changed dynamically with the
toggle insert/ overstrike key (CTRL/ A). Deletion of characters is supported in
both word (CTRL/J or line feed), and to the beginning of the line (CTRL/U)
increments.

When you use the terminal driver's editing functions, the following
restrictions result:

• The cursor cannot be moved to a previous line after a line wrap.

• A character cannot be inserted if the insertion would force a line wrap or
if a tab follows the current cursor position.

• A word cannot be deleted at the beginning of a line after a line wrap.

• The line editing function cannot be assigned to other keys.

Command recall, initiated by CTRL/B or the up arrow, returns the last line
entered to the command line buffer. At this point, the line can be edited or
reentered by pressing the RETURN key. DCL extends command recall to
the last 20 commands by using the TRM$M_TM_NORECALL modifier to
disable the terminal driver's recall mechanism.

Any control key that is not defined by line editing is ignored. For application
programs that require control key input but do not perform QIO functions
with special read modifiers, the SET TERMINAL/NOLINE_EDIT DCL
command restores most of the terminal driver behavior described under VMS
Versions 3.0 through 3.7

1 It is suggested that new users specify overstrike mode.

8-3

Terminal Driver
8.2 Terminal Driver Features

8.2.1.2

8-4

Control Characters and Special Keys
A control character is a character that controls action at the terminal rather
than passing data to a process. An ASCII control character has a code
between 0 and 31, and 127 (hexadecimal 0 through lF, and 7F); that is, all
normal control characters plus DELETE. (Table 1 in Appendix B lists the
numeric values for all control characters.)

Some control characters are entered at the terminal by simultaneously
pressing the CTRL key and a character key, such as CTRL/x. Table 8-2
lists the VMS terminal control characters. Control character echo strings
(CTRL/C, CTRL/Y, CTRL/O, and CTRL/Z) can be changed on a systemwide
basis (see the VMS System Generation Utility Manual). Special keys, such as
RETURN, LINE FEED, and ESCAPE, are entered by pressing a single key.

Several of the control characters do not function as described if the SET
TERMINAL/LINE_EDIT DCL command is not specified. See the VMS
DCL Dictionary for information on line editing function keys and the SET
TERMINAL command.

Table 8-2 Terminal Control Characters

Control Character

Cancel
(CTRL/C - F6 1

)

Delete character
(DELETE)

Meaning

Gains the attention of the enabling process if the user
program has enabled a CTRL/C AST. If a CTRL/C AST
is not enabled, CTRL/C is converted to CTRL/Y (see
Section 8.4.3.2).

The terminal performs a carriage-return/line-feed
combination (carriage return followed by a line feed),
echoes CANCEL, and performs another carriage-return
/line-feed combination. If the terminal has the ReGIS
characteristic or if CTRL/Y is pressed, the cancel ReGIS
escape sequence is sent.

Additional consequences of CTRL/C are as follows:

• The type-ahead buffer is emptied.

• CTRL/S and CTRL/0 are reset.

• All queued and in-progress write operations and
all in-progress read operations are successfully
completed. The status return is SS$_CONTROLC,
or SS$_CQNTROL Y if CTRL/C is converted to
CTRL/Y.

Removes the last character entered from the input
stream.

1 F6 on the LK201 is Interrupt/Cancel.

Terminal Driver
8.2 Terminal Driver Features

Table 8-2 (Cont.) Terminal Control Characters

Control Character

Delete line
(CTRL/U)

Delete word
(CTRL/ J or F 13)
(Line feed)

Discard output
(CTRL/0)

End of line
(CTRL/E)

Exit
(CTRL/Z or F10)

Meaning

DELETE (decimal 127 or hexadecimal 7F) is ignored
if there are currently no input characters. Hardcopy
terminals echo the deleted character enclosed in
backslashes. For example, if the character z is deleted,
\z\ is echoed (the second backslash is echoed after the
next non-DELETE character is entered). Terminals that
have the TT$M _SCOPE characteristic echo DELETE by
removing the character.

Purges current input data. When CTRL/U is entered
before the end of a read operation, the current input
line is deleted. (In the case of a line-wrap, CTRL/U
deletes only a line at a time.) If line editing is enabled
(SET TERMINAL/LINE_EDIT is specified), the data from
the beginning of the line to the current cursor position
is deleted.

Delete word before cursor. Word terminators are all
control characters, space, comma, dash, period, and
! /1 # $ & / () + @ [\] A { 1 ,..., / : ; < > = ? (see
Appendix B).

Discards output. Action is immediate. All output
is discarded until the next read operation, the next
write operation with a 10$M_CANCTRLO modifier, or
the receipt of the next CTRL/O. The terminal echoes
OUTPUT OFF. The current write operation (if any) and
write operations performed while CTRL/O is in effect
are completed with a status return of SS$_CONTROLO.

A second CTRL/O, which reenables output, echoes
OUTPUT ON. CTRL/C, CTRL/Y, and CTRL/T cancel
CTRL/0.

Moves the cursor to the end of the line.

Echoes EXIT when CTRL/Z is entered as a read
terminator. By convention, CTRL/Z constitutes end-of
file.

8-5

Terminal Driver
8.2 Terminal Driver Features

Table 8-2 (Cont.) Terminal Control Characters

8-6

Control Character

Interrupt
(CTRL/Y)

Move cursor left
(CTRL/D +-)

Move cursor right
(CTRL/F --t)

Move cursor to
beginning of line
(CTRL/H or F 12)
(Back space)

Purge type ahead
(CTRL/X)

Recall
(CTRL/8 or
up arrow)

Meaning

CTRL/Y is a special interrupt or attention character
that is used to invoke the command interpreter for a
logged-in process. CTRL/Y can be enabled with an
10$M_CTRL Y AST function modifier to a
10$_SETCHAR or 10$_SETMODE function code. The
command interpreter's CTRL/Y AST handler always
takes precedence over a user program's CTRL/Y AST
handler.

Entering CTRL/Y results in an AST to an enabled
process to signify that the user entered CTRL/Y
from the terminal. The terminal performs a carriage
return/line-feed combination, echoes INTERRUPT, and
performs another carriage-return/line-feed combination
if the AST and echo are enabled. CTRL/Y is ignored
(and not echoed) if the process is not enabled for the
AST.

Additional consequences of CTRL/Y are as follows:

• The type-ahead buffer is flushed.

• CTRL/S and CTRL/O are reset.

• All queued and in-progress write operations and
all in-progress read operations are successfully
completed with a 0 transfer count. The status
return is SS$_CONTROL Y.

• The cancel ReGIS escape sequence is sent.

Moves the cursor one position to the left.

Moves the cursor one position to the right.

Moves the cursor to the beginning of the line.

Purges the type-ahead buffer and performs a CTRL/U
operation. Action is immediate. If a read operation is
in progress, the operation is equivalent to CTRL/U.

Recalls last command entered. DCL extends recall to
several commands.

8.2.1.3

Terminal Driver
8.2 Terminal Driver Features

Table 8-2 (Cont.) Terminal Control Characters

Control Character

Redisplay input
(CTRL/R)

Restart output
(CTRL/0)

RET
(RETURN)

Stop output
(CTRL/S)

TAB
(CTRL/I)

Status
(CTRL/T)

Toggle
insert/ overstrike
(CTRL/ A or F 14)

Read Verify

Meaning

Redisplays current input. When CTRL/R is entered
during a read operation, a carriage-return/line-feed
combination is echoed on the terminal, and the current
contents of the input buffer are displayed. If the current
operation is a read with prompt (10$_READPROMPT)
operation, the current prompt string is also displayed.
CTRL/R has no effect if the characteristic
TT$M_NOECHO is set.

Controls data flow; used by terminals and the driver.
Restarts data flow to and from a terminal if previously
stopped by CTRL/S. The action occurs immediately
with no echo. CTRL/O is also used to solicit read
operations.

CTRL/O is meaningless if the line does not have
the characteristic TT$M_ TTSYNC, the characteristic
TT$M_READSYNC, or is not currently stopped by
CTRL/S.

If used during a read (input) operation, RET echoes
a carriage-return/line-feed combination. All carriage
returns are filled on terminals with TT$M_CRFILL
specified.

Controls data flow; used by both terminals and the
terminal driver. CTRL/S stops all data flow; the action
occurs immediately with no echo. CTRL/S is also
used to stop read operations. CTRL/S is meaningful
only if the terminal has either the TT$M_ TTSYNC
characteristic or the TT$M_READSYNC characteristic.

Tabs horizontally. Advances to the next tab stop on
terminals with the characteristic TT$M_MECHT AB, but
the terminal driver assumes tab stops on MODULO 8
(multiples of 8) cursor positions. On terminals without
this characteristic, enough spaces are output to move
the cursor to the next MODULO 8 position.

Displays the current time. CTRL/T also displays
the current node and user name, the name of the
image that is running, and information about system
resources that have been used during the current
terminal session.

Changes current edit mode from insert to overstrike,
or from overstrike to insert. The default mode (as
set with SET TERMINAL/LINE_EDIT) is reset at the
beginning of each line.

The read verify instructions provided by the terminal driver allow validation
of data as each character is entered. Invalid characters are not echoed
and terminate the operation. The terminal driver does not support full
function field processing. Large data entry applications should use the VAX
FMS or VAX TOMS layered products, which support the entire data entry
environment. Section 8.4.1.4 describes the supported primitives.

8-7

Terminal Driver
8.2 Terminal Driver Features

8.2.1.4

8-8

Escape and Control Sequences
Escape and control sequences provide additional terminal control not
furnished by the control characters and special keys (see Section 8.2.1.2).
Escape sequences are strings of two or more characters, beginning with
the escape character (decimal 27 or hexadecimal lB), which indicate that
control information follows. Many terminals send and respond to such escape
sequences to request special character sets or to indicate the position of a
cursor.

The set mode characteristic TT$M-ESCAPE (see Table 8-5) is used to
specify that VMS terminal lines can generate valid escape sequences. Also,
the read function modifier IO$M_ESCAPE allows any read operation to
terminate on an escape sequence regardless of whether TT$M_ESCAPE
is set. If either TT$M_ESCAPE or 10$M_ESCAPE is set, the terminal
driver verifies the syntax of the escape sequences. The sequence is always
considered a read function terminator and is returned in the read buffer;
a read buffer can contain other characters that are not part of an escape
sequence, but a complete escape sequence always terminates a read operation.
The return information in the read buffer and the 1/0 status block includes
the position and size of the terminating escape sequence in the data record
(see Section 8.5).

Any escape sequence received from a terminal is checked for correct syntax.
If the syntax is not correct, SS$_BADESCAPE is returned as the status of the
1/0. If the escape sequence does not fit in the user buffer, SS$_p ARTESCAPE
is returned. If SS$_p ARTESCAPE is returned, the application program must
issue enough single-character read requests, without timeout, to read the
remaining characters in the escape sequence, while parsing the syntax of
the rest of the escape sequence. Use of the TRM$_ESCTRMOVR item code
prevents SS$_p ARTESCAPE errors. No syntax integrity is guaranteed across
read operations. Escape sequences are never echoed. Valid escape sequences
take any of the following forms (hexadecimal notation):

ESC <int> ... <int> <fin>

CS! <int> ... <int> <fin>

(7-bit environment)

(8-bit environment)

The keywords in the escape sequences indicate the following:

ESC The ESC key, a byte (character) of 1 B. This character introduces the
escape sequence in a 7-bit environment.

CSI The Control Sequence Introducer, a byte (character) of 98. This
character introduces the escape sequence in a 8-bit environment.

<int> An "intermediate character" in the range of 20 to 2F. This range
includes the space character and 15 punctuation marks. An escape
sequence can contain any number of intermediate characters, or none.

<fin> A "final character" in the range of 30 to 7E. This range includes
uppercase and lowercase letters, numbers, and 13 punctuation marks.

Three additional escape sequence forms are as follows:

ESC <;> <20-2F> ... <30-7E>
ESC <?> <20-2F> ... <30-7E>
ESC <O> <20-2F> ... <40-7E>

8.2.1.5

Terminal Driver
8.2 Terminal Driver Features

Control sequences, as defined by the ANSI standard, are escape sequences
that include control parameters. Control sequences have the following format:

ESC [<par> ... <par> <int> ... <int> <fin> (7-bit environment)

CS! <par> ... <par> <int> ... <int> <fin> (8-bit environment)

The keywords in the escape sequences indicate the following:

ESC The ESC key, a byte (character) of 1 B.

CSI

<par>

<int>

<fin>

A control sequence, a byte (character) of SB.

The Control Sequence Introducer, a byte (character) of 9B.

A parameter specifier in the range of 30 to 3F.

An "intermediate character" in the range of 20 to 2F.

A "final character" in the range of 40 to 7E.

For example, the position cursor control sequence is ESC [Pl ; Pc H. Pl is the
desired line position and Pc is the desired column position.

The user guides for the various terminals list valid escape and control
sequences. For example, the VT100 User Guide lists the escape and control
sequences for VTl 00 terminals.

Section 8.2.1.2 describes control character functions during escape sequences.

Table 2 in Appendix B lists the valid ANSI and DIGITAL-private escape
sequences for terminals that have the TT2$M_ANSICRT, TT2$M_DECCRT,
TT2$M_DECCRT2, TT2$M_AVO, TT2$M_EDIT, and TT2$M_BLOCK
characteristics (see Table 8-6). Table 2 in Appendix B also lists assumed and
selectable ANSI modes and selectable DIGITAL-private modes. Only the
names of the escape sequences and modes are listed (for more information
see the specific user guide for any of the various terminals). Unless otherwise
noted, the operation of escape sequences and modes is identical to the
particular terminals that implement these features.

Type-Ahead Feature
Input (data received) from a VMS terminal is always independent of
concurrent output (data sent) to a terminal. This feature is called type-ahead.
Type-ahead is allowed on all terminals, unless explicitly disabled by the set
mode characteristic, inhibit type· ahead (TT$M_NOTYPEAHD; see Table 8-5
and Section 8.4.3).

Data entered at the terminal is retained in the type-ahead buffer until the user
program issues an 1/0 request for a read operation. At that time, the data
is transferred to the program buffer and echoed at the terminal where it was
typed.

Deferring the echo until the read operation is active allows the user process
to specify function code modifiers that modify the read operation. These
modifiers can include, for example, noecho (IO$M_NOECHO) and convert
lowercase characters to uppercase (IO$M_CVTLOW) (see Table 8-7).

If a read operation is already in progress when the data is typed at the
terminal, the data transfer and echo are immediate.

The action of the driver when the type-ahead buffer fills depends on the set
mode characteristic TT$M_HOSTSYNC (see Table 8-5 and Section 8.4.3).
If TT$M_HOSTSYNC is not set, CTRL/G (BELL) is returned to inform
you that the type-ahead buffer is full. If characters are entered when the

8-9

Terminal Driver
8.2 Terminal Driver Features

8.2.1.6

8.2.1.7

8-10

type-ahead buffer is full, the next read operation completes with a status
return of SS$_DATAOVERUN. If TT$M-80STSYNC is set, the driver stops
input by sending a CTRL/S and the terminal responds by sending no more
characters. These warning operations begin eight characters before the type
ahead buffer fills unless the TT2$M_AL TYPEAHD characteristic is set. In
that case, the system generation parameter TTY-ALTALARM is used. The
driver sends a CTRL/Q to restart transmission when the type-ahead buffer
empties completely.

The type-ahead buffer length is variable, with possible values in the range
from 0 through 32,767. The length can be set on a systemwide basis through
use of the system generation parameter TTY_TYPAHDSZ. Terminal lines that
do a large amount of bulk input should use the characteristic
TT2$M-ALTYPEAHD, which allows the use of a larger type-ahead buffer
specified by the system generation parameters TTY-AL TYP AHD and 1

TTY-AL TALARM. (TTY-AL TYP AHO specifies the total size of the alternate
type-ahead buffer; TTY-ALTALARM specifies the threshold at which a
CTRL/S is sent.)

Certain input-intensive applications, such as block mode input terminals,
can take advantage of an optimization in the driver. If a terminal has the
characteristic TT2$M_p ASTHRU and the read function modifier
IO$M_NOECHO is specified, data is placed directly into the read buffer and
thereby eliminates the overhead for moving the data from the type-ahead
buffer.

Line Terminators
A line terminator is the control sequence that you type at the terminal to
indicate the end of an input line. Optionally, the application can specify a
particular line terminator or class of terminators for read operations.

Terminators are specified by an argument to the QIO request for a read
operation. By default, they can be any ASCII control character except FF,
VT, LF, TAB, or BS (see Appendix B). If line editing is enabled, the only
terminators are CR, CTRL/Z, or an escape sequence. Control keys that do not
have an editing function are nonfunctioning keys. If included in the request,
the argument is a user-selected group of characters (see Section 8.4.1.2).

All characters are 7-bit ASCII characters unless data is input on an 8-bit
terminal (see Section 8.4.1). The characteristic TT$M_EIGHTBIT determines
whether a terminal uses the 7-bit or 8-bit character set; see Table 8-5. All
input characters (except some special keys; see Section 8.2.1.2) are tested
against the selected terminators. The input is terminated when a match
occurs or your input buffer fills.

The terminal driver notifies the job controller to initiate login when it detects
a carriage return terminator on a line with no current process (provided
the line is not a secure server or the type-ahead feature has not been
disabled). A bell character is sent when the notification occurs. A notification
character other than the bell character may be specified by setting the system
generation parameter TTY-AUTOCHAR.

Special Operating Modes
The VMS terminal driver supports many special operating modes for terminal
lines. (Tables 8-5 and 8-6 in Section 8.3 list these modes.) All special modes
are enabled or disabled by the set mode and set characteristics functions (see
Section 8.4.3).

8.2.2

Terminal Driver
8.2 Terminal Driver Features

Output Processing

8.2.2.1

Output handling is designed to be very efficient in the terminal driver. For
example, on multiplexers that support both silo and direct memory access
(DMA) ouput, the driver considers record size to decide dynamically which
mode will result in the least overhead. The block size specified by the system
generation parameter TTY_DMASIZE is the minimum size block that can be
used in a DMA operation.

Duplex Modes
The VMS terminal driver can execute in either half- or full-duplex mode.
These modes describe the terminal driver software, specifically the ordering
algorithms used to service read and write requests, not the terminal
communication lines.

In half-duplex mode, all read and write requests are inserted onto one queue.
The terminal driver removes requests from the head of this queue and
executes them one at a time; all requests are executed sequentially in the
order in which they were issued.

In full-duplex mode, read requests (and all other requests except write
requests) are inserted onto one queue and write requests onto another.
The existence of two queues allows the driver to recognize the presence of
two requests, such as a read request and a write request at the same time.
However, the driver does not execute the read request and the write request
simultaneously. When it is ready to service a request, the driver decides
which request-the read request or the write request-to process next.

In the VMS terminal driver, write requests usually have priority. A write
request can interrupt a current, but inactive, read request. A read request is
current when the terminal driver removes that request from the head of the
read queue. In a read operation, the read request becomes active when the
first input character is received and echoed. Once a read request becomes
active, all write requests are queued until the read completes. However,
during a read operation many write requests can be executed before the
first input character is entered at the terminal. Terminal lines that have the
TT$M_NOECHO characteristic, or read functions that include the
I0$M_NOECHO function modifier, do not inhibit write operations in full
duplex mode.

If a write function specifies the IO$M_BREAKTHRU modifier, the write
operation is not blocked, even by an active read operation.
10$M_BREAKTHRU does not change the order in which write operations are
queued.

When all 1/0 requests are entered using the Queue 1/0 Request and Wait
($QIOW) system service, there can be only one current 1/0 request at a time.
In this case, the order in which requests are serviced is the same for both
half- and full-duplex modes.

The type-ahead buffer always buffers input data for which there is no current
read request, in both half- and full-duplex modes.

8-11

8.2.3

Terminal Driver
8.2 Terminal Driver Features

8.2.2.2

Dial-Up Support

8.2.3.1

8-12

Formatting of Output
By default, output data is subject to formatting by the terminal driver. This
formatting includes actions such as wrapping, tab expansion, uppercase, and
fallback conversions. Applications that do not require formatting of data can
write with the IO$M_NOFORMAT modifier and thereby reduce overhead.
I0$M_NOFORMAT overrides all formatting except fallback translation.
Setting the P ASTHRU mode (TT2$MJ ASTHRU) is equivalent to writing
with the noformat modifier.

Fallback conversions occur regardless of formatting mode.

The VMS operating system supports modem control (for example, Bell 103A,
Bell 113, or equivalent) for all supported multiplexers in autoanswer, full
duplex mode. The terminal driver does not support half-duplex operations
on modems such as the Bell 202. Also not supported are modems that use
circuit 108/1 (connect data set to line signal) in place of the data terminal
ready (DTR) signal. Most U.S. and European modems use the data terminal
ready signal, which is the signal supported by the VMS operating system.

Modem Signal Control
Dial-up lines with the characteristic TT$M_MODEM are monitored
periodically to detect a change in the modem carrier signals data set ready
(DSR), calling indicator (RING), or request to send (RTS). The system
generation parameter TTY_SCANDELTA establishes the dial-up monitoring
period for multiplexers that do not support modem signal transition interrupts
(see Table 8-1).

If a line's carrier signal is lost, the driver waits two seconds for the carrier
signal to return. If bit 0 of the system generation parameter TTY_DJAL TYPE
is set to 1, the driver does not wait. Bit 0 is 0 by default for countries with
Bell System standards, but that bit should be set to 1 for countries with
Comite Consultatif Internationale (CCITT) standards. If the carrier signal is
not detected during this time, the line is hung up. The hangup action can
signal the owner of the line, through a mailbox message, that the line is no
longer in use. (No dial-in message is sent; the unsolicited character message
is sufficient when the first available data is received.) The line is not available
for a minimum of two seconds after the hangup sequence begins. The hangup
sequence is not reversible. If the line hangs up, all enabled CTRL/Y and out
of-band ASTs are delivered; the CTRL/Y AST P2 argument is overwritten
with SS$_HANGUP. The IjO operation in progress is canceled, and the
status value SS$_HANGUP is returned in the I/O status block. DCL is
responsible for process deletion after CTRL/Y is delivered. If the process is
suspended, DCL cannot run, and therefore deletion cannot occur, until the
process is resumed.

For terminals with the TT$M__MODEM characteristic, TT$M_REMOTE
reflects the state of the carrier signal. TT$M_REMOTE is set when the carrier
signal changes from off to on, and cleared when the carrier signal is lost.

A line that does not have TT$M_MODEM set does not respond to modem
signals or set the DTR signal. Modem signals can be set and sensed manually
through use of the IO$M_MAINT function modifier (see Section 8.4.3.3).

Terminal Driver
8.2 Terminal Driver Features

The VMS terminal driver default modem protocol meets the requirements
of the United States and of European countries. This protocol is capable of
working in automatic answer mode and can also perform manually dialed
outgoing calls. The protocol supports the requirements of most known
international telephone networks. Enhanced modem features are used on
multiplexers that support them; processor polling is not necessary. The
protocol also functions in a subset mode for the multiplexers that do not
support full modem signals (see Table 8-1).

Table 8-3 lists the control and data signals used in a full modem control
mode configuration (in a two-way simultaneous, symmetrical transmit mode).
Figure 8-1 is a flowchart that shows a typical signal sequence for a terminal
operation in this mode. The flowchart shows the states that the modem
transition code goes through to detect different types of transitions in modem
state. These transitions allow the driver to detect loss of lines that have been
idle for several minutes. Modem states do not affect the ability of the system
to transmit characters.

Set mode function modifiers are provided to allow a process to activate or
deactivate modem control signals (see Section 8.4.3.3).

Bit 1 of the system generation parameter TTY_DIAL TYPE enables alternate
modem protocol on a systemwide basis. If bit 1 is 0 (the default), the RING
signal is not used. If bit 1 is l, the modem protocol delays setting the DTR
signal until the RING signal is detected.

Remote terminal connections have a timeout feature for the security of dial
up lines. If no channel is assigned to the port within 30 seconds, or a port
with an assigned channel is not allocated, the DTR signal is dropped. Such
action prevents an unused terminal from tying up a line. However, there are
configurations (such as a printer connected to a remote line) in which the
line should not be dropped even though it is not being used interactively. To
bypass the 30-second timeout, set the system generation parameter
TTY_DIALTYPE to 4. (Note that if TTY_DIALTYPE is equal to 4, all dial-up
lines will skip the timeout waiting for a channel to be assigned.)

8-13

Terminal Driver
8.2 Terminal Driver Features

Figure 8-1 Modem Control - Two-Way Simultaneous Operation

8-14

[

l
.._ timeout

DTR-. OFF
ATS-. OFF
TX -... MARK

delay 2 sec
l TIY .DIAL TYPE=1

J

DTR ...,.ON

ATS -...oN

DSR-... ON

delay 1 sec J

DTR _.ON

ATS _.ON
start 30 sec timer

DZ-11

CARRIER + CTS -. ON

reference
count..0

DZ-11 Wait

- start 30 sec timer TIY .DIAL TYPE=4

reference count=<> ""''*.,__ _____ __.

.._ DSR -.OFF
transmit and receive data

--
CARRIER_. OFF

Transmit1 CARRIER -.oN

start 2 sec timer

TIY .DIAL TYPE=1 I I timeout I DSR OFF

------,--- Shutdown DTR ...,.OFF

l delay 1 sec]
timeout

DSR _..OFF start 2 sec timer

RING -...oN

CARRIER -.oN

ZK-687-82

Terminal Driver
8.2 Terminal Driver Features

Table 8-3 Control and Data Signals (Full Modem Mode
Configuration)

Signal Source MUX1 Meaning

Transmitted Computer All The data originated by the
data (TxD) computer and transmitted

through the modem to one or
more remote terminals.

Received data Modem All The data generated by the
(RxD) modem in response to telephone

line signals received from a
remote terminal and transferred
to the computer.

Request to Computer Full If present (ON condition), RTS
send (RTS) directs the modem to assume

the transmit mode. If not
present (OFF condition), RTS
directs the modem to assume
the nontransmit mode after
all transmit data has been
transmitted.

Clear to send Modem Full Indicates whether the modem
(CTS) is ready (ON condition) or not

ready (OFF condition) to transmit
data on the telephone line.

Data set ready Modem Full If present (ON condition), DSR
(DSR) indicates that the modem is

ready to transmit and receive;
that is, the modem is connected
to the line and is ready to
exchange further control signals
with the computer to initiate the
exchange of data.

If DSR is not present (OFF
condition), the modem is not
ready to transmit and receive.
If DSR is detected, the VMS
operating system initiates a
30-second timer. This ensures
that the phone line will be
disconnected if CARRIER is not
detected.

Data channel Modem All If present (ON condition),
received line CARRIER indicates that the
signal detector received data channel line signal
(CARRIER) is within appropriate limits, as

specified by the modem. If not
present (OFF condition), the
received signal is not within
appropriate limits.

1 Multiplexers (All = any supported controller; Full = DZ32, DMF32, DMB32, DMZ32,
DHU 11, DHV 11, and CXY08)

8-15

Terminal Driver
8.2 Terminal Driver Features

8.2.3.2

8.2.3.3

8-16

Table 8-3 (Cont.) Control and Data Signals (Full Modem Mode
Configuration)

Signal

Data terminal
ready (DTR)

Calling
indicator
(RING)

Source

Computer

Modem

MUX1

All

All

Meaning

If present (ON condition), DTR
indicates that the computer
is ready to operate, prepares
the modem to connect to the
telephone line, and maintains
the connection after it has been
made by other means. DTR
can be present whenever the
computer is ready to transmit
or receive data. If DTR is not
present (OFF condition), the
modem disconnects the modem
from the line.

Indicates whether a calling signal
is being received by the modem.
Bit 1 of the system generation
parameter TTY _DIAL TYPE must
be set (=1). If RING is detected,
the VMS operating system
initiates a 30-second timer. This
ensures that the phone line will
be disconnected if CARRIER is
not detected.

1 Multiplexers (All = any supported controller; Full = DZ32, DMF32, DMB32, DMZ32,
DHU 11, DHV 11, and CXY08)

Hangup on Logging Out
By default, logging out on a line with modem signals will not break the
connection. If TT2$M-8ANGUP is set, modem signals are dropped
when the process logs out. If TT2$M_MODHANGUP is set, no privilege
is required to change the state of TT2$M_HANGUP. By setting
TT2M-8ANGUP, system managers can prevent nonprivileged users who are
not logged in from tying up a dial-in line.

Preservation of a Process Across Hangups
Disconnectable terminals allow a connection to a physical terminal line to
be broken without losing the job. The following SYSGEN command allows
terminals to be disconnectable terminals:

SYSGEN> CONNECT VTAO/NOADAPTER/DRIVER=TTDRIVER

After this command is entered, a terminal with the TT2$M_DISCONNECT
characteristic logs in as VTAn:, rather than with the physical terminal name.
When a terminal is set up in this manner, no input or output operations
are allowed to the physical device; 1/0 is automatically redirected to the
appropriate virtual terminal.

Following are four ways in which a terminal can become disconnected:

• Modem signals between the host and the terminal are lost.

8.2.4

Terminal Driver
8.2 Terminal Driver Features

• A user presses the BREAK key on a terminal that has the
TT2$M_SECURE characteristic.

• A user issues the DCL command DISCONNECT.

• A user issues the DCL command CONNECT /CONTINUE.

After validated as a user, you can connect to a disconnected process in either
of the following ways:

• Allow the login process to make the connection.

• Issue the DCL command CONNECT.

Terminal/Mailbox Interaction
Mailboxes are virtual 1/0 devices used to communicate between processes.
The terminal 1/0 driver can use a mailbox to communicate with a user
process. Chapter 7 describes the mailbox driver.

A user program can use the Assign 1/0 Channel ($ASSIGN) system service
to associate a mailbox with one or more terminals. The terminal driver
sends messages to this mailbox when terminal-related events that require the
attention of the user image occur.

Mailboxes used in this way carry status messages, not terminal data, from
the driver to the user program. For example, when data is received from
a terminal for which no read request is outstanding (unsolicited data), a
message is sent to the associated mailbox to indicate data availability. On
receiving this message, the user program reads the channel assigned to
the terminal to obtain the data. Messages are sent to mailboxes under the
following conditions:

• Unsolicited data in the type-ahead buffer. The use of the associated
mailbox can be enabled and disabled as a subfunction of the read and
write requests (see Sections 8.4.1 and 8.4.2). (Initially, mailbox messages
are enabled on all terminals. This is the default state.) Thus, the user
process can enter into a dialogue with the terminal after an unsolicited
data message arrives. Then, after the dialogue is over, the user process
can reenable the unsolicited data message function on the last 1/0
exchange. Only one message is sent between read operations.

• Terminal hangup. When a remote line loses the carrier signal, it hangs
up; a message is sent to the mailbox. When hangup occurs on lines that
have the characteristic TT$M_REMOTE set, the line returns to local
mode.

• Broadcast messages. If the characteristic TT2$M_BRDCSTMBX is
set, broadcasts sent to a terminal are placed in the mailbox (this is
independent of the state of TT$M_NOBRDCST).

Messages placed in the mailbox have the following content and format (see
Figure 8-2):

• Message type. The codes MSG$_TRMUNSOLIC (unsolicited data),
MSG$_TRMHANGUP (hangup), and MSG$_TRMBRDCST (terminal
broadcast) identify the type of message. Message types are identified by
the $MSGDEF macro.

• Device unit number to identify the terminal that sent the message.

8-17

8.2.5

Terminal Driver
8.2 Terminal Driver Features

• Counted string to specify the device name.

• Controller name.

• Message (for broadcasts).

Figure 8-2 Terminal Mailbox Message Format

31 16 15 8 7

unit number I message type

controller name* I

1 broadcast
message length

~

1

0

counted
string

l"'4.J

T

0

4

8

12

16

20

Broadcast

Message

*does not include the colon (:) character
ZK-686-82

Interaction with a mailbox associated with a terminal occurs through
standard QIO functions and ASTs. Therefore, the process need not have
outstanding read requests to an interactive terminal to respond to the arrival
of unsolicited data. The process need only respond when the mailbox signals
the availability of unsolicited data. Chapter 7 contains an example of mailbox
programming.

The ratio of terminals to mailboxes is not always one to one. One user
process can have many terminals associated with a single mailbox.

Autobaud Detection

8-18

If you specify the / AUTOBAUD qualifier with the SET TERMINAL
command, automatic baud rate detection is enabled, allowing the terminal
baud rate to be set when you log in. The baud rate is set at login by pressing
the RETURN key two or more times separated by an interval of at least one
second. (Pressing a key other than RETURN might detect the wrong baud
rate; if this occurs, wait for the login procedure to time out before continuing.)
The supported baud rates are 110, 150, 300, 600, 1200, 1800, 2400, 3600,
4800, 9600, and 19200. Parity is allowed on these lines.

