
VMS

Guide to Creating VMS Modular Procedures

Order Number AA-LA58A-TE

Guide to Creating VMS
Modular Procedures

Order Number: AA-LA58A-TE

April 1988

This document describes how to design and code procedures that
conform to the VMS Modular Programming Standard. It also describes
how to insert modules in an object module library, shareable image, or
shareable image library.

Revision/Update Information: This manual supersedes the Guide
to Creating Modular Procedures on
VAX/VMS, Version 4.2.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~U~UD~DTM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO Rico* CANADA INTERNATIONAL

ZK4518

Digital Equipment Corporation Digital Equipment
P.O. Box CS2008 of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire 100 Herzberg Road
03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

c/o Digital's local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark. of Adobe Systems, Inc.

Contents

PREFACE

CHAPTER 1 INTRODUCTION TO MODULAR PROCEDURES

1.1 FOLLOWING THE SOFTWARE LIFE CYCLE

1.2 DEFINING THE MODULAR PROCEDURE

1.3 EXISTING VMS SYSTEM PROCEDURES
1.3.1 Run-Time Library Procedures
1.3.2 System Services
1.3.3 Utility Routines
1.3.4 Record Management Services

1.4 TOOLS FOR DEVELOPING APPLICATIONS ON VMS

CHAPTER 2 DESIGN

2.1
2.1.1
2.1.2

2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.3
2.2.3.1
2.2.3.2
2.2.3.3
2.2.4
2.2.5

2.3

ORGANIZING NEW APPLICATIONS
Organizing Files and Modules
Organizing Procedures into Modules

DEFINING A MODULAR PROCEDURE INTERFACE
Explicit Arguments
Implicit Arguments

Implicit Arguments Allocated by the Calling Program • 2-5
Implicit Arguments Allocated by the Called Procedure • 2-5

How to Avoid Using Implicit Arguments
Combining Procedures • 2-6
User Action Routine • 2-7
Designating Responsibility to the Calling Program • 2-8

Order of Arguments
Using Optional Arguments

JSB ENTRY POINTS

xiii

1-1

1-1

1-1

1-4
1-6
1-8

1-10
1-11

1-12

2-1

2-1
2-1
2-1

2-3
2-3
2-3

2-5

2-11
2-11

2-12

v

Contents

2.4 USING SYSTEM RESOURCES
2.4.1 Choosing a Storage Type
2.4.1.1 Stack Storage• 2-12
2.4.1.2 Heap Storage• 2-12
2.4.1.3 Static Storage • 2-1 3
2.4.1.4 Avoiding Use of Static Storage • 2-14
2.4.1.5 Summary of Storage Use by Language • 2-1 5
2.4.2 Using Event Flags
2.4.3 Using Logical Unit Numbers

2.5 USING INPUT/OUTPUT
2.5.1 Terminal Input/Output
2.5.2 File Input/Output

2.6 BEGINNING THE INTERNAL DOCUMENTATION
2.6.1 How to Write a Module Description
2.6.2 How to Write a Procedure Description

2.7 PLANNING FOR SIGNALING AND CONDITION HANDLING
2.7.1 Guidelines for Signaling Error Conditions
2.7.2 Guidelines for Returning Condition Values
2.7.3 When to Signal or Return Condition Values

CHAPTER 3 CODING

vi

3.1
3.1.1
3.1.2
3.1.2.1
3.1.2.2
3.1.2.3
3.1.2.4
3.1.2.5
3.1.2.6
3.1.2.7
3.1.2.8

3.1.3
3.1.4
3.1.4.1
3.1.4.2

3.1.4.3

CODING GUIDELINES
Writing Position-Independent Code (Required)
Adhering to the Naming Conventions

Facility Naming Conventions (Recommended) • 3-2
Procedure Naming Conventions (Recommended) • 3-3
File Naming Conventions (Recommended) • 3-4
Module Naming Conventions (Required) • 3-4
PSECT Naming Conventions (Required) • 3-5
Lock Resource Naming Conventions (Recommended) • 3-5
Global Variable Naming Conventions (Recommended) • 3-5
Status Code and Condition Value Naming Conventions
(Required) • 3-6

Using Common Source Files (Recommended}
Maintaining Code Readability

Using Symbols in Place of Numbers (Recommended) • 3-8
Using Uppercase and Lowercase Characters
(Recommended) • 3-8
Adding Optional Spaces (Recommended) • 3-8

2-12
2-12

2-16
2-16

2-16
2-17
2-18

2-19
2-19
2-20

2-22
2-23
2-23
2-24

3-1

3-1
3-1
3-1

3-7
3-7

3. 1.4.4 Inserting Block Comments (Recommended) • 3-9
3.1.5 Using VMS System Services
3.1.6 Invoking Optional User Action Routines
3.1.6.1 Procedure Entry Mask • 3-11
3.1.6.2 Bound Procedure Value • 3-12

3.2 INITIALIZING MODULAR PROCEDURES
3.2.1 Initializing Storage
3.2.2 Testing and Setting a First-Time Flag
3.2.3 Using LIB$1NITIALIZE

3.3 WRITING AST-REENTRANT CODE
3.3.1 What is an AST?
3.3.2 AST-Reentrancy Versus Full-Reentrancy
3.3.3 Guidelines for Writing AST-Reentrant Modular Procedures
3.3.4 How to Eliminate Race Conditions During Concurrent

Access
3.3.4.1 Performing All Accesses in One Instruction • 3-22
3.3.4.2 Using "Test and Set" Instructions • 3-23
3.3.4.3 Keeping a Call-in-Progress Count • 3-24
3.3.4.4 Disabling AST Interrupts • 3-24
3.3.5 Performing Input/Output at AST-Level
3.3.6 Condition Handling at AST Level

CHAPTER 4 TESTING

4.1
4.1.1
4.1.2

4.2

4.3
4.3.1
4.3.2

4.4
4.4.1
4.4. 1.1
4.4.1.2
4.4.2

UNIT TESTING
Black Box Testing
White Box Testing

LANGUAGE-INDEPENDENCE TESTING

INTEGRATION TESTING
The "All at Once" Approach to Integration Testing
The Incremental Approach to Integration Testing

TESTING FOR REENTRANCY
Checking for AST Reentrancy

Checking for AST Reentrancy using the Debugger • 4-7
Checking for AST Reentrancy by Desk Checking • 4-7

Checking for Full Reentrancy

Contents

-

3-11
3-11

3-12
3-14
3-14
3-17

3-19
3-19
3-20
3-20

3-21

3-25
3-26

4-1

4-1
4-2
4-3

4-4

4-5
4-5
4-6

4-6
4-7

4-8

vii

Contents

4.5
4.5.1
4.5.2

4.6

CHAPTER 5

5.1
5.1.1
5.1.2

5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

5.3

CHAPTER 6

6.1
6.1.1
6.1.2
6.1.2.1

6.2
6.2.1
6.2.2

6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.3

viii

PERFORMANCE ANALYSIS
SHOW Entry Point
ST AT Entry Point

MONITORING PROCEDURES IN THE RUN-TIME LIBRARY

INTEGRATION

GROUPING PROCEDURES
Creating Facility Prefixes
Creating Object Module Libraries

SHAREABLE LIBRARY IMAGES
Creating Shareable Library Images
Creating the Transfer Vector
Creating the Linker Options File
Creating the Shareable Library Image
Combining Shareable Images into a Shareable Image
Library

LINKING TO LIBRARIES OF MODULAR PROCEDURES

MAINTENANCE

UPWARD COMPATIBILITY
Making Your Procedures Upwardly Compatible
Regression Testing

Updating the Transfer Vector• 6-3

ADDING ARGUMENTS TO EXISTING ROUTINES
Adding New Arguments to the Procedure
Using Argument Blocks

UPDATING LIBRARIES
Updating Object Libraries
Updating Shareable Images

Changing the Transfer Vector• 6-6
Updating the Linker Options File • 6-6

Updating Shareable Image Libraries

4-8
4-8
4-9

4-9

5-1

5-1
5-1
5-2

5-3
5-4
5-5
5-8

5-10

5-11

5-11

6-1

6-1
6-1
6-1

6-3
6-4
6-4

6-5
6-5
6-6

6-7

APPENDIX A VMS MODULAR PROGRAMMING STANDARD

A.1 PURPOSE OF THIS STANDARD

A.2 APPLICABILITY

A.3 CODING RULES
A.3.1 The Calling Interface
A.3.2 Initialization
A.3.3 Reporting Exception Conditions
A.3.4 AST Reentrancy
A.3.5 Resource Allocation
A.3.6 The Format and Content of Coded Modules
A.3.7 Shareable Images
A.3.8 Upward Compatibility

APPENDIX B ARGUMENT CHARACTERISTICS

B.1

B.2

B.3

B.4

INDEX

EXAMPLES
2-1

2-2

2-3

2-4

2-5

VMS USAGE

DATA TYPE

ACCESS MECHANISM

PASSING MECHANISMS

FORTRAN Program Showing the Improper Use of Implicit
Arguments

FORTRAN Program Combining Procedures to Avoid
Implicit Arguments

Static Storage and AST Reentrancy

A Sample Module Description

A Sample Procedure Description

Contents

A-1

A-1

A-1

A-2
A-2
A-4
A-4
A-5
A-5
A-6
A-6
A-7

B-1

B-1

B-6

B-8

B-8

2-6

2-7

2-14

2-20

2-22

ix

Contents

3-1 A Sample Cross-Reference Listing Showing the
References to the Symbol SPEED_OF _LIGHT 3-9

3-2 PASCAL Program Showing Use of Uppercase and
Lowercase Characters in Code 3-10

3-3 BASIC Program Showing Use of Optional Spaces in
Code 3-10

3-4 FORTRAN Program Showing Use of Block Comments in
Code 3-10

3-5 PASCAL Program Which Uses a First-Time Flag 3-16

3-6 BASIC Initialization Procedure for LIB$1NITIALIZE 3-18

3-7 Program to Add Address to PSECT LIB$1NITIALIZE 3-18

3-8 BASIC Main Program 3-18

3-9 MACRO Program Showing Use of Queue Instructions to
Perform All Accesses in a Single Instruction 3-22

3-10 MACRO Program Showing Use of Test and Set
Instructions 3-23

3-11 A FORTRAN Program Disabling and Restoring ASTs 3-24

5-1 Transfer Vector Template 5-6

5-2 Template for a Linker Options File 5-8

FIGURES
1-1 The Software Life Cycle 1-2

1-2 Developing a Program that Calls Library Procedures 1-5

1-3 Procedures Available in the Run-Time Library 1-7

2-1 Levels of Abstraction 2-2

2-2 Possible Procedure Groupings 2-4

2-3 Designating Storage Responsibility to the Caller 2-9

2-4 Use of Storage Types 2-13

3-1 Examples of Facility Prefixes as Used in Procedure
Names 3-2

3-2 Methods of Initializing 3-13

3-3 How to Initialize Static Storage 3-15

4-1 Black Box Testing Methods 4-3

4-2 White Box Testing Methods 4-4

4-3 A Sample Procedure for Integration Testing 4-5

5-1 Development of a User-Created Object Module Library 5-4

5-2 Creating a Shareable Image 5-5

6-1 Regression Testing 6-2

6-2 One Type of Argument Block, the Signal Argument
Vector 6-5

B-1 Procedure Argument Passing Mechanisms B-10

x

Contents

TABLES
2-1 Summary of Storage Use by Language 2-15

3-1 Common Library Facilities - Prefixes and Content 3-2

3-2 Naming Procedure Entry Points 3-4

3-3 Code for the Content and Usage of Global Variables 3-6

3-4 How to Declare Common Source Files 3-7

B-1 VMS Data Structures B-1

B-2 VAX Standard Data Types B-7

B-3 VAX Standard Passing Mechanisms B-9

xi

Preface

This manual is a tutorial guide to designing and coding modular procedures
written in any VMS language. You can use these procedures for general
programming. You can also include them in a procedure library, such as an
object module library, shareable image, or shareable image library.

This manual includes required and optional modular programming
techniques, recommended style, and a description of how to install modular
procedures in procedure libraries.

A procedure is modular if it follows rules and principles that permit it to
be successfully linked with other procedures that follow the same rules and
principles. The Guide to Creating VMS Modular Procedures tells you how to
follow the VMS Modular Programming Standard (which summarizes these
rules and principles). Following this standard improves program reliability
and reduces maintenance effort.

Intended Audience
This manual is intended for advanced system and applications programmers
who are already familiar with VMS system concepts. Readers should be
familiar with the VMS operating system and proficient in at least one
supported language.

Document Structure
The general structure of this manual is based on the DIGITAL version of the
software life cycle. All information is presented within this construct.

• Chapter 1 provides an overview of the software life cycle model used
in this book. It also defines what is meant by the term "procedure,"
and provides an overview of procedures that already exist on the VMS
operating system. The layered products that you might find useful in
procedure development are also discussed.

• Chapter 2 provides information on design. The topics covered
include organizing new applications, designing a modular procedure
interface, using system resources, using input/output, writing internal
documentation, and planning for signaling and condition handling.

• Chapter 3 presents general coding guidelines and information on
initializing modular procedures. It also discusses guidelines for invoking
optional user-supplied action routines, and writing AST-reentrant code.

• Chapter 4 describes methods used to test procedures for modularity,
language-independence, and reentrancy. This chapter also provides
general information on performance testing and monitoring procedures.

• Chapter 5 shows you how to create object module libraries, shareable
images, and shareable image libraries from your completed procedures.
Special attention is given to the transfer vector and the linker options file.

• Chapter 6 provides information about maintenance, such as upward
compatibility, regression testing, updating procedures and procedure
libraries, and changing the transfer vector or linker options file.

xiii

Preface

• Appendix A contains the VMS Modular Programming Standard.

• Appendix B presents the argument characteristics supported by the VAX
Procedure Calling and Condition Handling Standard.

Associated Documents

Conventions

xiv

The following documents are associated with this manual:

• VMS Run-Time Library Routines Volume

• VMS System Services Reference Manual

• VMS Linker Utility Manual

• All user's guides and reference manuals for all VMS languages

Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$ TYPE MYFILE.DAT

input-file, ...

Meaning

In examples, a key name.(usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Convention

[logical-name]

quotation marks
apostrophes

Preface

Meaning

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks (") . The term
apostrophe (·) is used to refer to a single
quotation mark.

xv

1 Introduction to Modular Procedures

1 .1 Following the Software Life Cycle
This manual discusses the development of modular procedures, procedure
libraries, shareable images, and shareable image libraries, in terms of the
software life cycle.

There are several different versions of the software life cycle that are currently
in use. The one used in this manual depicts the software life cycle as having
seven stages (see Figure 1-1). These stages are as follows:

1 The first stage is the concept stage. During the concept stage, the new
application is proposed and considered.

2 The requirements or specifications stage is the point at which the goals
of the new application are chosen and a requirements or specifications
document is written outlining what will be accomplished by the new
application.

3 At the design stage, detailed plans are made to ensure that the completed
code will be modular and accurate, as well as to completely meet the
goals decided upon at the requirements/specifications stage.

4 During the coding stage, the actual application is coded and internally
documented.

5 Once coding is completed, the code is tested to ensure that it is accurate,
efficient, and meets the requirements and specifications.

6 At the integration stage, the procedures and applications are grouped into
facilities and libraries.

7 The maintenance stage is the po~nt at which the completed applications
are updated, enhanced, and modified.

Modularity becomes an important consideration in the design phase of
the software life cycle. Because this manual is concerned primarily with
modularity, detailed discussion begins at the design stage, and continues
through the coding, testing, integration, and maintenance stages.

1 .2 Defining the Modular Procedure
A procedure is a set of related instructions that performs a task. Typically, a
procedure is invoked by executing a VAX CALLS or CALLG instruction. If
you are using a high-level language, the compiler generates the CALLS or
CALLG instruction on your behalf when you use the conventions required by
your language to implement a procedure.

1-1

Introduction to Modular Procedures
1 .2 Defining the Modular Procedure

1-2

Figure 1-1 The Software Life Cycle

CONCEPT

REQUIREMENTS/
SPECIFICATIONS

DESIGN

CODING

TESTING

INTEGRATION

MAINTENANCE

ZK-3081-84

Introduction to Modular Procedures
1 .2 Defining the Modular Procedure

VAX languages implement procedures as follows:

Ada

BASIC

BLISS

c

COBOL

DIBOL

FORTRAN

MACRO

PASCAL

PL/I

RPG II

SCAN

A procedure is declared as a PROCEDURE or FUNCTION.

A procedure is a main program, subprogram, or FUNCTION.

A procedure is declared as a ROUTINE.

A function is declared as an identifier followed by a balanced pair
of parentheses which contain parameter declarations. There is no
keyword PROCEDURE or FUNCTION in C. A procedure is declared
as a function with a return type of "void." The return type of the
function is specified before the identifier giving the name of the
function.

A procedure is a paragraph (or SECTION) or group of logically
successive paragraphs (or SECTIONs) in the Procedure Division.

A procedure is a main program, subrouting, or function.

A procedure is a main program, subroutine, or function.

A procedure begins with an .ENTRY directive and ends with a RET
instruction.

A procedure is declared as a PROCEDURE or FUNCTION.

A procedure is an external or internal PL/I PROCEDURE or entry
point.

A procedure is a main program.

A procedure is declared as a PROCEDURE or FUNCTION.

A procedure is modular if it follows rules and principles that permit it to
be successfully linked together with other procedures that follow the same
rules and principles. These rules and principles are summarized in the VMS
Modular Programming Standard, contained in Appendix A.

This manual describes how to perform a complex task by dividing it into
modules and coding each module as a separate procedure. This kind of
modular programming offers several advantages over writing a complex
program as a single source module.

• You can use any modular procedure in any program.

• You can add a modular procedure to a library at any time.

• You need not rewrite common algorithms every time they are needed for
a new program.

• You can divide a complex program into simpler procedures to reduce
development time and complexity, and increase reliability.

• You can modify or replace a procedure without modifying the calling
program provided that you adhere to the optional guidelines for
maintaining upward compatibility in the VMS Modular Programming
Standard.

• You can control process-wide resource allocation.

• You can use different programming languages to write different
procedures for a program.

1-3

Introduction to Modular Procedures
1 .2 Defining the Modular Procedure

The VMS Modular Programming Standard also contains guidelines that are
recommended rather than required. If you follow these recommendations,
you will gain the following advantages in addition to modularity:

• Shareable library procedures can save memory space, disk space, and link
time.

• AST-reentrant procedures can be called by AST-level procedures.

• Modular procedures that conform to all coding recommendations are
similar in format and therefore are easier to use and maintain.

You can use modular procedures for general programming or you can group
them in procedure libraries. Grouping procedures into libraries is simply a
way of collecting procedures so that calling programs can access them easily.
When you link your program to a library, the VMS linker automatically
searches that library to resolve any references that your program makes to
procedures in the library. Because the VMS Linker searches the specified
library automatically, your program can call many modular procedures
without having to include the name of each procedure explicitly in the LINK
command. The program's executable image and the procedures that it calls
are executed in the proper sequence at run time.

Figure 1-2 shows the development of a program that calls one or more
procedures in a library. Depending on the options you select when writing
modular procedures, you can control the way the linker accesses your
procedures and thus the way procedures are invoked at run time. For
example, if you place commonly used procedures within a shareable
procedure library or shareable image library, you can save memory and
disk space because all user processes may access a single copy of the shared
procedures.

1 .3 Existing VMS System Procedures

1-4

Many system routines that perform various advanced applications are
included in the VMS operating system. Before you write a new procedure,
you should check to make sure that the application does not already exist.

You may also find that the system procedures provide useful building blocks
for your own procedures. Procedures designed to accomplish many general
functions already exist in the system libraries; thus, your procedure can
simply call an existing procedure rather than duplicate the code.

The following is a list of the four types of callable system procedures along
with the titles of the manuals documenting those procedures:

Run-Time Library Procedures
VMS Run-Time Library Routines Volume

System Services
VMS System Services Reference Manual

Utility Routines
VMS Utility Routines Manual

Introduction to Modular Procedures
1.3 Existing VMS System Procedures

Figure 1-2 Developing a Program that Calls Library Procedures

SHAREABLE
IMAGE

INTERACTIVE INPUT

EDITOR

LINKER

SOURCE
MODULE(S)

OBJECT
MODULE(S)

FILENAM.EXE

RUN FILENAM.EXE

r---1
I SHAREABLE I

IMAGE L ___ J

CALLED
OBJECT

MODULES

EXECUTABLE
IMAGE(S)

OBJECT
MOD UL~
LIBRARY

PROGRAM
OUTPUT

Edit Time

You edit and enter
the program

Compile Time

Compiler translates
edited program into
an object file

Link Time

The linker searches
object module library and
shareable images

The appropriate library
entry points are made
known to the object
module to form an
executable image

Run Time

The executable image
is now aware of the
addresses of the relevant
library procedures in
its virtual address space.
The image can call library
procedures at run time

ZK-4068-85

1-5

1.3.1

Introduction to Modular Procedures
1 .3 Existing VMS System Procedures

Record Management Services
VMS Record Management Services Manual

The following sections describe the types of system routines available as part
of the VMS operating system.

Run-Time Library Procedures

1-6

The VMS Common Run-Time Procedure Library (or simply the Run-Time
Library) contains two types of procedures:

• General purpose procedures

• Language support procedures

The Run-Time Library provides a common run-time environment for user
programs because the Run-Time Library procedures follow the VMS Modular
Programming Standard. For an overview of the types of procedures available
through the Run-Time Library, see Figure 1-3.

Most general-purpose Run-Time Library procedures are fully reentrant and
position independent. (Reentrancy is discussed in Section 3.3; position
independence is discussed in Section 3.1.1.) Run-Time Library procedures
can be used in conjunction with VMS system services. The advantage of
a common run-time environment is that any program written in MACRO,
BLISS, or a supported high-level language can call any procedure in the
Run-Time Library.

Introduction to Modular Procedures
1.3 Existing VMS System Procedures

Figure 1-3 Procedures Available in the Run-Time Library

General Mathematics Screen Process-Wide Signaling Special
Utility Procedures Management Resource and Application
Procedures Procedures Allocation Condition Procedures

MTH$ Procedures Handling
LIB$ OTS$ SMG$ Procedures LIB$
STR$ LIB$ PPL$
OTS$ STR$ LIB$ DTK$

OTS$

General Purpose

Language-Independent Language-Specific Support
Support Procedures Procedures
(Common to more than one • Compiled code support
native-mode language) • File processing

• Format processing
OTS$ • Error processing

• 1/0 processing

ADA$ PAS$ DBL$
BAS$ PU$ SCN$
COB$ RPG$
FOR$ VAXC$

Language Support

ZK-3082-84

The following chart describes the Run-Time Library procedures:

RTL Procedures

®
DECtalk management

General utility

Function

DECtalk management procedures control
DIGIT Al's DECtalk device. Procedures are
available to set device characteristics, speak text,
read telephone keypad input, and other auxillary
functions.

This group includes procedures for getting
a record from a device, performing string
manipulation, converting data types for input
and output, and obtaining the system date or
time.

®oECtalk is a trademark of Digital Equipment Corporation.

1-7

1.3.2

Introduction to Modular Procedures
1 .3 Existing VMS System Procedures

System Services

1-8

RTL Procedures

Mathematics

Parallel! processing

Resource allocation

Screen management

Signaling and
condition handling

Language-independent
support

Special applications

Function

Mathematics procedures perform common
arithmetic, algebraic, and trigonometric functions,
such as calculating the sine of an angle.

This group of routines provides support for an
application that can run as several threads of
execution in parallel. Procedures are available
to create threads, schedule work, and share
memory, mutexes, and semaphores.

The parallel processing procedures perform
operations typically required in a parallel
application, such as subprocess creation,
interprocess communication, and resource
sharing. Although designed for parallel
processing applications, these procedures can
also be used on uniprocessor systems.

Resource allocation procedures allocate and
deallocate virtual memory, VMS local event flag
numbers, BASIC/FORTRAN logical unit numbers,
and dynamic strings.

Screen management procedures perform terminal
independent screen management functions.
These procedures assist you in designing,
composing, and keeping track of complex images
on a video screen.

These procedures perform operations involved
with handling exception conditions such as
signaling exceptions, establishing condition
handlers, and enabling the detection of hardware
exceptions.

Language-independent support procedures can be
called from any VAX language. Although most
of these routines are in the OTS$ facility, some
LIB$ routines also perform language-support
operations. Language-independent support
procedures are mostly data-type conversion
procedures.

Procedures for specialized applications, such as
syntax analysis and cross-reference tasks, are
also available in the Run-Time Library.

System services are procedures that the VMS operating system uses to
control resources available to processes. They are also used to provide for
communication among processes and to perform basic operating system
functions such as the coordination of input/ output operations.

Although most system services are used primarily by the operating system
itself on behalf of logged-in users, many are available for use in application
programs. For example, when you log in to the system, the Create Process
system service ($CREPRC) is called to create a process on your behalf. You
may, in turn, write a program that calls $CREPRC to create a subprocess.

Introduction to Modular Procedures
1 .3 Existing VMS System Procedures

System services can be divided into functional groups. The following list
describes the function of each group of system services:

Service Group

Security

Event flag

AST

Logical names

Input/output

Process control

Timer and
time conversion

Condition handling

Function

The security services provide various mechanisms
that you can use to enhance the security of VMS
systems.

Event flags can be used by a process to synchronize
sequences of operations in a program. Event flag
services clear, set, and read event flags, and place
a process in a wait state pending the setting of an
event flag or flags.

Process execution can be interrupted by events
(such as 1/0 completion) to allow for the execution
of designated subroutines. These software
interrupts are called asynchronous system traps
(AST s) because they occur asynchronously to
process execution. There are system services that
allow a process to control the handling of ASTs.

Logical name services are used to maintain and
access character-string logical name and equivalence
name pairs. Logical names can provide device
independence for system and application program
input and output operations.

1/0 services perform input and output operations
directly, rather than through the file handling services
of the VMS Record Management Services (RMS).
1/0 services do the following:

• Perform logical, physical, and virtual
input/ output operations

• Perform network operations

• Queue messages to system processes

Process control services allow you to create, delete,
and control the execution of processes.

Timer services schedule program events for a
particular time of the day, or after a specified
interval of time has elapsed. The time conversion
services provide a way to obtain and format binary
time values for use with the timer services.

Condition handlers are procedures that receive
control when a hardware or software exception
condition occurs during image execution. Condition
handling services designate condition handlers for
special purposes.

1-9

1.3.3

Introduction to Modular Procedures
1 .3 Existing VMS System Procedures

Utility Routines

1-10

Service Group

Memory management

Change mode

Lock management

Function

Memory management services provide ways to use
the virtual address space available to a program.
Included are services that do the following:

• Allow an image to increase or decrease the
amount of virtual memory available

• Control the paging and swapping of virtual
memory

• Create and access files in memory that contain
shareable code or data

Change mode services alter the access mode of a
process. These services are used primarily by the
operating system.

Lock management services allow cooperating
processes to synchronize their access to shared
resources.

Utility routines perform a particular task or set of tasks. For example, the
Print Symbiont Modification (PSM) routines can be used to modify the VMS
print symbiont, and the EDT routines can be used to invoke the EDT editor
from a program.

When using a set of utility routines that performs the same tasks as a VMS
utility, you should read the documentation for that utility. Doing so will
provide you with additional information on the tasks that each set of routines
can perform. The following list shows VMS utilities that have corresponding
utility routines:

Routine Group

Command Language
(CLI)

Convert and
Convert/Reclaim
(CONV)

File Definition
Language (FOL)

Function

CLI routines process command strings using
information from a command table. A command
table is a list of definitions that describe the allowable
formats for commands.

CONV routines copy records from one or more files
to an output file, changing the record format and file
organization to that of the output file. The Convert
/Reclaim routine reclaims empty buckets in Prolog 3
indexed files so that new records can be written into
them. These routines cannot be called from AST level.

FOL routines perform many of the functions of the RMS
File Definition Language. These routines cannot be
called from AST level.

1.3.4

Introduction to Modular Procedures
1 .3 Existing VMS System Procedures

Routine Group

Librarian (LBR)

National Character Set
(NCS)

Sort/Merge (SOR)

Terminal Fallback
Facility (TFF)

Function

LBR routines are used to create and maintain libraries
and library modules. Libraries are files that provide a
convenient way to organize frequently used modules of
code or text.

NCS routines provide a common facility for defining
collating sequences and conversion functions.

SOR routines are used to implement a sort or merge
operation within a program. These routines are
reentrant; that is, a number of sort or merge operations
can be active at the same time.

TFF routines provide table-driven character conversion
for terminals.

The following facilities are accessible only through the utility routines; there
are no corresponding VMS utilities:

Routine Group

Data
Compression /Expansion
(DCX)

Editor (EDT)

Print Symbiont (PSM)

Symbiont/ Job Controller
Interface (SMB)

Record Management Services

Function

DCX routines are used to analyze and
compress data records and then expand the
compressed records to their original state.
No information is lost in this compression
/expansion process.

The EDT routine invokes the EDT editor
from within a program. The program may be
written to handle the editing work, or EDT
may run interactively to allow a user at the
terminal to edit a file while the program is
running.

PSM routines modify the behavior of the
print symbiont that is supplied with the VMS
operating system.

SMB routines provide the interface between
the job controller and symbiont processes.

The VMS Record Management Services (RMS) assist user programs in
processing and managing files and their contents. RMS allows you to create
files that use a minimum amount of system resources while decreasing
input/output time.

1-11

Introduction to Modular Procedures
1 .3 Existing VMS System Procedures

The two types of Record Management Services are as follows:

RMS Service Group Function

File-related services File-related services create and access new files,
access existing files, extend the disk space allocated
to a file, close a file, obtain file characteristics, and
perform other functions related to the file as a whole.

Record-related services Record-related services get, locate, insert, delete,
and update records, as well as other record-related
operations.

For complete descriptions of these Record Management Services, see the VMS
Record Management Services Manual.

1 .4 Tools for Developing Applications on VMS

1-12

There are several tools specifically designed to aid you in developing
applications in the VMS environment.

• VAX DEC/CMS

The Code Management System (CMS) is a program library system
for software development and maintenance. CMS works as an online
librarian for a project. While project members perform the normal
functions of program development, modification and testing, CMS keeps
a record of changes made to their files.

• VAX DEC/MMS

The Module Management System (MMS) is a tool that automates and
simplifies the building of software systems. MMS is useful for building
both simple programs, which may have only one or two source files, and
complex programs, which may consist of several source files, message
files, and documentation. It can rebuild all the components in a system,
or rebuild only those that have changed since the system was last built.

• VAX DEC/Test Manager

The VAX DEC/Test Manager is a tool that organizes software tests and
automates the way you run tests and evaluate the results. It provides an
efficient way to organize, run, and store the results of exiting tests. The
VAX DEC/Test Manager is based on the concept of regression testing.

• VAX Language-Sensitive Editor

The VAX Language-Sensitive Editor is a source code editor that
allows you to quickly and accurately develop programs using the EDT
commands. The VAX Language-Sensitive Editor has useful development
features such as templates, placeholders, user-defined templates and
placeholders, and commands. Other features include a compiler interface
and online language help.

• VAX Performance and Coverage Analyzer

The VAX Performance and Coverage Analyzer is a tool that can be used
by software developers to gather performance or test coverage data
on user programs. This tool will then present that data in tables, bar
histograms, annotated source listings, and other formats.

Introduction to Modular Procedures
1 .4 Tools for Developing Applications on VMS

• VAX Source Code Analyzer (SCA)

The VAX Source Code Analyzer (SCA) is an interactive, multilanguage,
source code cross-reference and static analysis tool designed to aid
developers in understanding the complexities of large-scale software
systems. The VAX Language-Sensitive Editor and SCA together provide
an integrated method for creating, compiling, correcting, and inspecting
source code within a single session.

These tools are optional products. They are not included with VMS. For
further information on these products, see your DIGITAL sales representative.

1-13

2 Design

Well-designed procedures are more likely to be modular, well written, and
easy to maintain. Any time that is saved by skimping at the design stage is
lost several times over in patchwork attempts to remedy problems stemming
from a poor design.

This chapter discusses the following aspects of designing a new application:

• Organizing new applications

• Designing a modular procedure interface

• Using system resources

• Using IjO

• Beginning the internal documentation

• Planning for signaling and condition handling

2.1 Organizing New Applications

2.1.1

2.1.2

The first work to be done in designing a new application is to look at the
overall organization. An application should be made up of one or more files,
each containing one or more procedures. When linked, the procedures are
organized into program sections (PSECTs). Each procedure, as well as the
interface between the procedures, must be designed to conform to the VMS
Modular Programming Standard (see Appendix A).

Organizing Files and Modules
Each application contains one or more files. Each file contains exactly one
module. For information on naming files, refer to Section 3.1.2.3. For
information on naming modules, refer to Section 3.1.2.4.

Organizing Procedures into Modules
Each module should contain a single procedure or a group of related
procedures. The VMS Linker always brings the entire module containing
a called procedure into the image if any of its entry points are referenced.
Thus, placing each procedure in a separate module reduces image size. It
also allows more flexibility when using a procedure library because you can
supply your own version of one procedure while using other procedures from
the library. If many procedures have been grouped in a single module, the
linker must link all or none of them.

You should group procedures into a module if they share the same static
storage or if they have a similar calling sequence, perform similar functions,
and share a significant amount of code.

2-1

Design
2.1 Organizing New Applications

2-2

If you are writing a large number of related procedures that call one another
or access common data blocks, you should make the relationship among
those procedures as clear as possible. You can do this by organizing those
procedures to minimize the interaction between procedures, and between
procedures and data structures. There are several guidelines to help you
minimize such interaction:

• Organize procedures into levels of abstraction.

• Make sure each level calls only the next lower level.

• Restrict read/write access to data structures and system components to as
few procedures as possible.

Figure 2-1 shows the BASIC and FORTRAN record I/O processing
procedures. These are implemented in the following three levels of
abstraction:

1 User program interface (UPI)

2 User program data formatting (UDF)

3 Record processing and VMS RMS interface (REC)

Figure 2-1 Levels of Abstraction

ALL CALLS

PROCEDURE
TYPE C

PROCEDURE
TYPE C

PROCEDURE
TYPE C

PROCEDURE
TYPE B

PROCEDURE
TYPE B

LEVEL C: RMS INTERFACE

LEVEL B: USER PROGRAM
DATA FORMATTING

PROCEDURE
TYPE A

PROCEDURE
TYPE A

PROCEDURE LEVEL A: USER PROGRAM

MAIN PROGRAM

TYPE A INTERFACE

MODULAR
INTERFACE

ZK-4006-85

Design
2.1 Organizing New Applications

All calls are made in one direction, to the next innermost level. Procedures
at different levels should be in different modules. Figure 2-2 shows possible
groupings of procedures.

2.2 Defining a Modular Procedure Interface

2.2.1

2.2.2

Procedures communicate with one another by passing arguments. In order
to clarify the interactions between procedures and programs, each argument
must be defined in the design stage.

Explicit Arguments
Explicit arguments are a procedure's primary interface with other programs.
Therefore, rules for argument order, data types, and passing mechanisms
must be followed carefully to maintain a modular interface. The following
format is used to describe each argument:

argument-name

VMS usage:
type:
access:
mechanism:

a rg um ent-data-structu re
argument-data-type
argument-access
argument-passing-mechanism

(See Appendix B for descriptions of each of these four argument attributes.)

To make your procedures easier to call, the passing mechanism used for
particular data types should be consistent throughout all procedures in a
facility. Passing all atomic data by reference and all string data by descriptor
is recommended.

Implicit Arguments
An implicit argument is one that is not specified in the argument list. Implicit
arguments provide additional information to your procedure from static
storage locations. There are two types of implicit arguments:

• Those allocated by the calling program

• Those allocated by your procedure

The use of implicit arguments violates the VMS Modular Programming
Standard (Appendix A). Their use is discouraged because they make the
relationship across procedures less clear and tend to increase the interaction
between procedures in a way that might go undetected. If your procedure
must retain information from previous activations, read Section 2.2.3 for ways
to avoid using implicit arguments.

2-3

Design
2.2 Defining a Modular Procedure Interface

Figure 2-2 Possible Procedure Groupings

I

I

I
I
I

I J1 I
CALL ...1.

'_j I
CALL _l

I

INTERFACE

I
I

I
I
I

± fl
CALL --

I '_j
I

INTERFACE

CALL

CALL
j_

INTERFACE

2-4

MODULE

STATIC
STORAGE

(OPTIONAL)

~-
JREAD/WRITE

-.. READ /WRITE --...:::::..
r--1 MODULAR

MODULAR PROCEDURE
PROCEDURE (OPTIONAL)

RET RET

MODULE

I

STATIC
I

STATIC

STORAGE STORAGE

(OPTIONAL) I
(OPTIONAL)

I
RET

I READ/WRITE I }READ/WRITE

I JI CALL

MODULAR MODULAR
PROCEDURE

I ~
PROCEDURE

RET RET

I

INTERFACE

STATIC
STORAGE

(OPTIONAL)

RET

CALL

MODULAR
PROCEDURE

RET

MODULE

CALL
MODULAR

PROCEDURE
(OPTIONAL)

RET

PROCEDURE
(OPTIONAL)

RET

PROCEDURE
(OPTIONAL)

RET

Although these procedures may
not be modular, the module is
modular across the Interface.

ZK-4007-85

2.2.3

2.2.2.1

2.2.2.2

Design
2.2 Defining a Modular Procedure Interface

Implicit Arguments Allocated by the Calling Program
The calling program can allocate implicit arguments as statically allocated
variables in a named PSECT (for example, COMMON and MAP in BASIC,
COMMON in FORTRAN, or variables declared in the outer block of a
procedure or program in PASCAL). The calling program can also allocate
implicit arguments as statically allocated global variables (for example,
symbols defined with a double colon[::] in MACRO and GLOBAL variables
in BLISS).

Allocation of implicit arguments by the calling program violates the VMS
Modular Programming Standard for the following reasons:

• Two programs could use the same PSECT name or global variable for
different values. This error would be undetected.

• The calling program is no longer independent of the called procedure.
Consequently, a change in one could inadvertently affect the other.

• In FORTRAN, the calling program has to declare all variables as
COMMON regardless of the number of implicit inputs actually needed.
All COMMON variables should also be declared by all modules that use
the COMMON storage, further decreasing independence.

Implicit Arguments Allocated by the Called Procedure
Implicit arguments allocated by the called procedure are kept in local sta~ic
storage.

These implicit arguments are usually used to keep track of resources (using
resource allocating procedures) and shorten the explicit argument list.
However, the use of implicit inputs by non-resource-allocating procedures
can lead to unexpected results. For example, assume that procedure A is to
leave information for a companion procedure B. This would result in B having
both explicit inputs (from its caller) and implicit inputs (from A's storage).
Next, consider that a calling program calls A, then calls procedure X, and
finally calls B. For the calling program to get correct results from B, it must
know that X (and any procedure that X calls) did not make a call to A, since
such a call would change the implicit inputs A leaves for B.

Since one of the objectives of modular programming is to permit procedures
to be combined arbitrarily without needing to understand each other's
internal workings, the use of such implicit arguments violates the VMS
Modular Programming Standard. The same problems can occur with any
non-resource-allocating procedure that leaves results for itself as future
implicit arguments.

How to Avoid Using Implicit Arguments
Procedures that do not allocate resources can be written in the following three
ways to avoid the implicit argument problems described in Section 2.2.2:

• When one procedure obtains results from another, combine the two
procedures into a single call. (See Section 2.2.3.1.)

• Provide a single call to an action routine that is supplied by the
calling program part way through the procedure's execution. (See
Section 2.2.3.2.)

2-5

Design
2.2 Defining a Modular Procedure Interface

2.2.3.1

2-6

• Give the calling program responsibility for retaining information from
a procedure activation. This is done with an explicit argument. (See
Section 2.2.3.3.)

Combining Procedures
Often, non-resource-allocating procedures can be combined into a single
procedure that returns all information explicitly in a single call.

Compare Example 2-1 with Example 2-2. to see the effects of combining
procedures to avoid the use of implicit arguments.

Example 2-1 FORTRAN Program Showing the Improper Use of
Implicit Arguments

!+
! This program demonstrates a situation where
! the input of a procedure depends on the output
! of a previously called procedure.
!-

!+

REAL*4 X, Y, RESULT
x = 1
y = 1

! Call the procedure that writes into a common data area.
!-

CALL SUM_SQUARES ex. Y)
!+
! Call the procedure that reads from the common data area.
!-

CALL GET_SQRT (RESULT)
!+
! Print the result obtained.
!-

WRITE (6,10) X, Y, RESULT
10 FORMAT(1X, 'SQRT(', F6.2, '**2 + ' F6.2, '**2) =',F6.2)

STOP
END

!+
This procedure sums the squares of its two inputs and

! places the result in a common area, for use by some
! other procedure.
!-

!+

SUBROUTINE SUM_SQUARES (A, B)
COMMON /INTERNAL_STORAGE/ TEMP_RESULT
TEMP_RESULT = (A ** 2) + (B ** 2)
RETURN
END

! This procedure calculates the square root of whatever
! number is in the common area.
!-

SUBROUTINE GET_SQRT (C)
COMMON /INTERNAL_STORAGE/ TEMP_RESULT
C =SQRT (TEMP_RESULT)
RETURN
END

2.2.3.2

Design
2.2 Defining a Modular Procedure Interface

Example 2-2 FORTRAN Program Combining Procedures to Avoid
Implicit Arguments

!+
! This procedure shows the subroutines called in
! the previous example combined into a single subroutine
! that eliminates the use of COMMON.
!-

!+

REAL*4 X, Y, RESULT
x = 1
y = 1

! Call the new procedure.
!-

10

+

CALL DO_IT_ALL ex. Y, RESULT)
WRITE (6,10) X, Y, RESULT
FORMAT (1X, 'SQRT (', F6.2, '**2 + ' F6.2, '**2)

STOP
END

This procedure calculates the square root of the sum of
the squares of its first two arguments, and returns the
result in the third argument. It combines the functions
provided by the SUM_SQUARES and GET_SQRT
procedures and eliminates the use of COMMON.

SUBROUTINE DO_IT_ALL (A, B, C)
C = SQRT ((A ** 2) + (B ** 2))
RETURN
END

User Action Routine

',F6 .2)

Another way to combine several procedures into one call is to let the calling
program gain control at a critical point in your procedure's execution. For
this to happen, your procedure must specify an action routine argument that
is called during execution. Thus, your procedure can execute twice, before
and after the action routine, with no implicit inputs. The OPEN statements in
BASIC, FORTRAN, and PASCAL use this technique by permitting the user to
supply a user action routine.

To keep the calling program from having to provide implicit inputs for its
action routine, your procedure should also provide another argument that is
passed to the action routine. The calling program uses the following calling
sequence to invoke your procedure:

CALL my-proc (... ,action-routine ,user-arg)

Then your procedure invokes the action routine as follows:

CALL action-routine (... ,user-arg)

For information on writing user-action routines, see Section 3.1.6.

2-7

Design
2.2 Defining a Modular Procedure Interface

2.2.3.3

2-8

Designating Responsibility to the Calling Program
You can make the calling program responsible for retaining information from
one procedure activation to another. There are three ways to accomplish this:

• Require the calling program to allocate the storage your procedure needs.
Then have the calling program pass the address of the storage location
as an explicit argument on all calls to your procedure. The disadvantage
of this method is that you cannot increase the amount of storage needed
by your procedure without requiring all calling programs to be rewritten.
Thus, you should use this method only when you are confident that your
procedure will not be revised to use additional storage in the future.

• Require the calling program to allocate a longword pointer to the stored
data and pass its address to your procedure as an explicit argument. On
the first call, your called procedure will dynamically allocate storage (by
calling LIB$GET_ VM) and store its address in the caller's longword. On
subsequent calls, your procedure will use information left in the storage
area from previous calls.

• Require the calling program to pass a processwide identifying value to
your procedure on all calls. The processwide identifier indicates which
information from previous procedure activations is to be used as implicit
inputs.

Figure 2-3 shows a calling program that has responsibility for explicitly
indicating the storage to be used by the called procedure.

Design
2.2 Defining a Modular Procedure Interface

Figure 2-3 Designating Storage Responsibility to the Caller

STORAGE
FOR

CALLING
PROGRAM ___ R __ _

-1_-~- - - - - - - - - - -,
I I

CALLREAD(K) ~-+---+------+-

Argument K
is written to

calling program

CALL X

PROCEDURE
READ /~ - ~

--~~~~~~~~~~~~--

CALL GET (K) -----

CALLING PROGRAM

Argument K
is read from

calling program

storage. INTERFACE
RET

PROCEDURE
GET

INTERFACE

-- - ~ DATA

PATH
CONTROL
PATH

Calling Program Allocates Procedure Storage

STORAGE FOR
x

- - -L- - -

CALL READ (L)

RET

PROCEDURE X

By giving the caller responsibility for
storage, you can separate information
stored on each procedure activation
and prevent undetected conflicts.

ZK-4004-85

This method causes the calling program to allocate all storage needed and
pass the address of the storage as an explicit argument on each call.

For example, the library procedure MTH$RANDOM requires that the calling
program allocate storage for the longword seed and pass its address on each
call. MTH$RANDOM takes the seed as input and computes the next random
number sequence from the current seed value. MTH$RANDOM returns a
random number between 0 and 1 and updates the longword seed passed by
the calling program. This ensures that the procedure will generate a different
value on the next call.

The next two sections describe interface techniques that permit storage size to
change without affecting the interface with the calling program.

2-9

Design
2.2 Defining a Modular Procedure Interface

2-10

Calling Program Passes Pointer

In this method, the calling program allocates only a longword pointer to the
dynamic heap storage to be allocated by your procedure. It then passes the
address of the longword as an explicit argument. The following two interface
techniques can be used to indicate that storage is to be initialized:

• Provide a single entry point. If your called procedure finds the value zero
in the longword that the calling program has allocated, the procedure
allocates and initializes dynamic heap storage.

• Provide a second entry point. This entry point stores the address of the
allocated storage in the longword. On subsequent calls, your procedure
uses that value as the storage address of information from previous calls.

Regardless of the method used to indicate storage allocation and initialization,
you must also provide a way to indicate storage deallocation. You can do this
by using either a separate argument or separate entry point.

For example, the procedure LIB$INIT_TIMER, which gets times and counts
from the operating system, uses a single optional argument handle-adr to
determine where these values are to be stored. The handle-adr argument
is the address of a longword pointing to a block of storage that contains the
values of times and counts.

• If handle-adr is missing, the values are stored in static storage, making
this call non-AST-reentrant.

• If handle-adr is zero, LIB$INIT_ TIMER allocates a block of dynamic heap
storage by calling LIB$GET_ VM. The values are placed in that block, and
the address of the block is returned in handle-adr.

• If handle-adr is nonzero, it is considered to be the address of a storage
block previously allocated by a call to LIB$INIT_ TIMER. The block is
then used again and new times and counts are stored in it.

LIB$FREE_TIMER deallocates the block of dynamic heap storage allocated by
a previous call to LIB$INIT_ TIMER. The handle-adr argument to
LIB$FREE_TIMER is the address of a longword that points to a block of
dynamic heap storage where times and counts have been stored. That storage
is returned to free storage by calling LIB$FREE_ VM.

Calling Program Passes a Processwide Identifier

In this method, the calling program passes a processwide identifying value
to identify implicit results produced on previous calls, which will be implicit
inputs on this call. Any calling program can use the processwide identifier.
Examples include BASIC or FORTRAN logical unit numbers and VMS system
services I/O channel numbers.

Processwide identifiers are a resource. Modular programming techniques
require that all resources allocated by a procedure be allocated by calling
a resource-allocating procedure. This prevents conflicts because a single
procedure can keep track of multiple allocations to more than one procedure
or procedure activation. Therefore, if you use the method described in this
section, you will also have to write a resource-allocating procedure to control
the resource. If you write a resource-allocating procedure, it is recommended
that you place it in an object module library so that other programmers can
use it.

2.2.4

2.2.5

Design
2.2 Defining a Modular Procedure Interface

The library procedures LIB$GET_LUN and LIB$FREE_LUN allocate and
deallocate FORTRAN and BASIC logical unit numbers outside the range
normally specified in user programs, that is, outside the range 0 to 99.

Order of Arguments
Procedures in the Run-Time Library follow a consistent pattern for positioning
arguments. You should follow the same guidelines. Group procedure
arguments from left to right in the following order:

1 Required input arguments (read access)

2 Required input-output arguments (modify access)

3 Required output arguments (write access)

4 Optional input arguments (read access)

5 Optional input-output arguments (modify access)

6 Optional output arguments (write access)

Note that optional arguments follow required arguments. Therefore, when
the calling program omits the optional arguments, the actual argument list
passed to the procedure is shortened.

The called procedure accesses the required arguments from left to right,
beginning with the first argument. The only exceptions are procedures that
return a function value longer than 64 bits, such as strings or H_floating
values. Most function values are returned in the first two registers, RO /Rl.
(This is done automatically by high-level languages.) However, when the
function value exceeds 64 bits, it is too large to be returned in RO /Rl. In
this case, the calling program uses the first argument to specify where the
function value is to be stored, and the other arguments are shifted right one
position. (See the VAX Procedure Calling and Condition Handling Standard
in the Introduction to VMS System Routines.)

Using Optional Arguments
An optional argument is one that the calling program can omit. The calling
program indicates the omission by passing argument list entries containing
zero. For a trailing optional argument, the calling program can pass a
shortened list or a zero argument list entry.

A zero argument list entry is simply a zero passed to the procedure by value.
For example, if we call a procedure called GRA_CUBE and omit an optional
argument C, the calling sequence from BASIC would be as follows:

15 CALL GRA_CUBE(A, B, 0 BY VALUE)

In this call, "O BY VALUE" is the zero argument list entry.

Note: Most VMS system services, unlike the Run-Time Library procedures,
cannot accept a shortened argument list. Omitted arguments must always
be indicated with a zero argument list entry. For arguments passed by
value, there is no distinction between passing a zero value and passing a
zero argument list entry.

2-11

Design
2.3 JSB Entry Points

2.3 JSB Entry Points
DIGITAL recommends that you do not use JSB1 entry points in procedures
that will be contained in a procedure library. Procedures that can be invoked
only by JSB instructions are not callable by high-level languages and violate
the VAX Procedure Calling and Condition Handling Standard. If a procedure
does use a JSB entry point, it must also provide an equivalent call entry point
to maintain language independence. The call entry point must be provided
because JSB instructions are only available in MACRO and BLISS32.

If you provide a JSB entry point for your procedure, the name of the JSB entry
point is the same as the name of the procedure, except that it ends in _Rn.
The n indicates the highest register modified or used as an input argument.

For example, the JSB entry point of the Run-Time Library procedure
LIB$ANAL YZE_SDESC is LIB$ANAL YZE_SDESC_R2.

2.4 Using System Resources

2.4.1

The system res~urces available to you are limited by your account quotas and
by the amount of available resources on the system. Efficient use of system
resources makes more resources available for all processes.

Choosing a Storage Type

2.4.1.1

2.4.1.2

There are three types of storage: static, stack, and heap. The three forms of
storage differ in the method and duration of allocation, that is, how long that
storage is in use.

Stack Storage
A procedure dynamically allocates stack storage on the process stack at
run time, as needed. To allocate stack storage, the procedure moves the
stack pointer "up" by decreasing its value. Note that stack storage is not
initialized to zero because the stack is created once and reused many times
for subsequent stack frames.

The procedure deallocates stack storage by moving the stack pointer "down"
(increasing its value) when that procedure returns control to the calling
program. Stack storage exists only for the duration of the procedure activation
that creates it.

Heap Storage
Dynamic heap storage is allocated at run time from a processwide pool, as the
procedure activation needs it and as the account quotas and virtual address
space of your process permits.

To allocate heap storage, your procedure calls a system routine such as the
Run-Time Library procedure LIB$GET_ VM or the system service $EXPREG.
The call to the system routine may be within the procedure itself, or you
may use a general resource-allocating procedure to centralize your resource
allocations.

Heap storage is deallocated-that is, returned to the processwide pool-by
calling LIB$FREE_VM. The system service $CNTREG cannot be used to
deallocate heap storage.

1 JSB is a MACRO instruction that means jump to subroutine.

2-12

Design
2.4 Using System Resources

Figure 2-4 shows how the different types of storage are used.

Note: The type of storage to be used can be determined by the duration or
quantity of the storage. Any storage that is of long duration and unknown
quantity (at compile time) should be heap storage. Storage of short
duration (during the current invocation of the procedure) should be stack
storage. Storage of long duration that is needed in only one instance
should be static storage.

Figure 2-4 Use of Storage Types

STATIC
STORAGE

T
I READ/ WRITE

CALL

PROCEDURE

RET

Static storage is used
when a result must
be retained for
a future procedure
activation.

2.4.1.3

STACK
STORAGE

I READ WRITE

CALL

PROCEDURE

RET

Stack storage is used
when results are
needed only for
the current procedure
activation.

It is deallocated
when the procedure
returns to its caller.

Static Storage

CALL

HEAP
STORAGE

I READ WRITE

CALL

PROCEDURE

RET

Heap storage is
used when the
amount of storage
varies from call
to call.

Storage is deallocated
before control
returns to the
caller (by calling
LIB$FREE_VM).

CALL

POINTER HEAP
STORAGE

I
I
\

l
,,.<r- v

STATIC I
STORAGE

I
T
I READ WRITE

CALL

PROCEDURE

RET

Heap storage is
also used when the
amount of storage
needed varies and
when results must be
retained for a
future procedure
activation.

It is deallocated by
calling LIB$FREE_VM.

ZK-4005-85

At link time, the VMS Linker collects storage in similar PSECTs into a single
image section. The initial contents of this storage are specified in the source
program. The VMS operating system initializes any non-initialized static
storage to zero. On calls to a procedure after initialization, the static storage
has the same allocation and the contents left from the previous call.

2-13

Design
2.4 Using System Resources

2.4.1.4

2-14

Avoiding Use of Static Storage
There are several disadvantages to using static storage:

• It is an inefficient use of memory. When using static storage, you must
provide for the largest possible memory use.

• An image size is larger because of the inefficient use of memory.

• It can easily lead to problems with AST reentrancy, as seen in
Example 2-3. This example circumvents the problem of of an AST
corrupting data by setting a first-time flag. Another method of preventing
this problem is to use "test and set" instructions. For further information,
see Section 3.3.4.2.

Example 2-3 Static Storage and AST Reentrancy

10 !+
! Program to demonstrate corruption
! of static storage due to AST's.
!-
DECLARE LONG CURRENT_NUMBER

!+
! Enable CTRL/C AST handling.
!-
ON ERROR GOTO 19000
X% = CTRLC

!+
Increment the number and print the

! current value. When the number
! reaches 1000, exit.
!-
FOR CURRENT_NUMBER = 1% TO 1000%

100 PRINT CURRENT_NUMBER;
NEXT CURRENT_NUMBER
GOTO 32767

19000 !+
! Error-handling routine. If this routine is
! entered due to a CTRL/C
! AST, corrupt CURRENT_NUMBER by setting it to -1.
!-
IF ERR = 28 THEN CURRENT_NUMBER = -1%
RESUME 100

32767 END

Design
2.4 Using System Resources

2.4.1.5 Summary of Storage Use by Language

Table 2-1

Language

Ada

BASIC

BLISS

c

COBOL

DIBOL

FORTRAN

MACRO

PASCAL

PL/I

RPG II

SCAN

Table 2-1 summarizes storage available to the programmer in various
language procedures.

Summary of Storage Use by Language

Storage Type

Static Stack Heap

Constants and Local subprogram Dynamically sized objects in library packages and
fixed-size objects and task variables objects created by allocators
contained in
library packages

All COMMON and Local variables Dynamic strings
MAP data storage

Most arrays Executable
DIMENSION
statement

OWN and STACK LOCAL By calling LIB$GET_VM
GLOBAL

Objects declared Objects declared By calling malloc, calloc, or realloc
with external or inside a function
static internal with "automatic"
linkage linkage

AU data storage Not applicable By calling LIB$GET_VM

All RECORD, Not applicable Not applicable
COMMON, and
LITERAL data
storage

All data storage Not applicable By calling LIB$GET_VM

Block storage Decrementing By calling LIB$GET_VM
stack pointer

All program or PROCEDURE and By calling NEW 1

module level FUNCTION local
storage

STATIC AUTOMATIC ALLOCATE statement (BASED)2

All data storage Not applicable By calling LIB$GET _ VM

STATIC, When DYNAMIC STRING values, TREE pointers, and the
GLOBAL, AUTOMATIC ALLOCATE function
COMMON, is used in a
EXTERNAL procedure or

macro

1 Although this is true most of the time, there are other rules that can also determine ST A TIC versus ST ACK allocation.
For further information, see the VAX PASCAL User's Guide.

2 BASED is the storage class used to allocate heap storage in PL/I. The ALLOCATE statement does the actual allocation.

2-15

2.4.2

2.4.3

Design
2.4 Using System Resources

Using Event Flags
Event flags allow modular procedures to communicate with each other and to
synchronize their operations. Because they can be allocated at run time, event
flags allow one procedure to run independently of other procedures existing
in the same process.

Event flags are allocated and deallocated by the Run-Time Library procedures
LIB$GET_EF and LIB$FREE_EF. (For further information, see the VMS Run
Time Library Routines Volume and the descriptions of the LIB$GET_EF and
LIB$FREE_EF procedures which appear in Part II of that manual.)

Using Logical Unit Numbers
A logical unit number is used to define the device or file a program uses to
perform input and output. Modular procedures do not need to know the unit
numbers of other procedures running at the same time.

Logical unit numbers are used only in BASIC and FORTRAN.

Logical unit numbers should be allocated and deallocated using the
LIB$GET_LUN and LIB$FREE_LUN Run-Time Library procedures. (For
further information on using logical unit numbers, see the descriptions of
the LIB$GET_LUN and LIB$FREE_LUN procedures in Part II of the VMS
Run-Time Library Reference Manual.)

2.5 Using Input/Output

2-16

In general, your procedure's input/output (I/O) is directed to either the
terminal or a file. (In some cases, you may need to use mailbox I/O and
network operations. For information on these areas, see VMS Networking
Manual.) Regardless of whether you are directing input/output to the
terminal screen or to a file, there are two rules you must follow to maintain
modularity:

• A procedure must not print error or informational messages either directly
or by calling the $PUTMSG system service. It must either return a
condition value in RO as a function value, or call LIB$SIGNAL or
LIB$STOP to output all messages. (LIB$SIGNAL and LIB$STOP may
be called either directly or indirectly.)

• A procedure should use device-independent services and procedures for
input/ output.

2.5.1

Design
2.5 Using Input/Output

Terminal Input/Output
The methods available for performing input/ output to the terminal include
the following:

• Queue 1/0 Request system service ($QIO)

Using a $QIO to perform terminal 1/0 is very efficient; however, it is also
the most difficult method to use. $QIOs use device-dependent services
and are the most difficult to use from high-level languages of all methods
discussed here, because there are more steps involved and because the
calling interface requires more knowledge from the caller than RMS
services. Several steps may be required for your procedure to use a $QIO.
Thes~ may include constructing item lists, writing AST routines, assigning
an 1/0 channel, queueing an 1/0 request, testing to ensure that the
request was successfully queued and completed, and deassigning the 1/0
channel. (For further information on $QIOs, see Section 7 of the VMS
System Services Reference Manual.)

• VMS Record Management Services (RMS)

VMS RMS services are device-independent and provide general-purpose
services that are easier to call than $QIOs. However, it is often not
convenient to construct the access control blocks (FAB, RAB, and so forth)
required by VMS RMS services from a high-level language. (For further
information on RMS services, see the VMS Record Management Services
Manual.)

• Language 1/0 statements

Language 1/0 statements are provided for all high-level languages. These
statements are easy to use and provide simple 1/0 and data formatting
for the high-level language user. Native language 1/0 statements make
it unnecessary for the high-level language user to call $QIO or VMS
RMS services directly; these calls are made by the compiled code on your
behalf. However, low-level and medium-level languages (VAX MACRO
and BLISS32) have no built-in language 1/0 statements and must use
$QIO and VMS RMS services for terminal and file 1/0. (For further
information, see the appropriate language reference manual.)

• Screen Management Procedures in the Run-Time Library (SMG$)

SMG$ procedures provide an easy-to-call interface for high-level
languages. They are device-independent and aid in the composition
of complex screen images. The SMG$ facility in the Run-Time Library
provides "screen composition operations; that is, SMG$ makes it easy
for an application to divide its screen into multiple regions and provides
functions for manipulating those regions. Other features provided by
SMG$ procedures are as follows:

Output to virtual displays

Input from a virtual keyboard or locator device

The ability to perform asynchronous input

Built-in minimal screen updating

Optional buffering and batching to optimize performance

The ability to trap broadcast messages

2-17

2.5.2

Design
2.5 Using Input/Output

File Input/Output

2-18

The option of performing output to a file or a hardcopy device

Support for foreign (non-DIGITAL) terminals

Subprocess manipulation

For further information about SMG$ procedures, see Section 3 of the VMS
Run-Time Library Routines Volume.

During 1/0 to the terminal it is important that the procedure and the main
program cooperate in controlling the terminal screen. For example, an
IjO procedure may write something to the terminal screen that the calling
program wants to erase. The calling program must know both what and
where that information is, in order to erase it. The calling program and the
called procedure must communicate by passing arguments that define which
part of the screen will be accessed by each. The Run-Time Library contains
Screen Management (SMG$) procedures for this purpose.

It is essential that you do not combine different methods of 1/0 within
your application. Problems can arise if the calling program and the called
procedure use different methods of 1/0. Each method of performing
input/ output maintains some knowledge of what is on the terminal screen.
At the very least, the current cursor position is remembered. If another type
of 1/0 is performed, that information is not updated and, therefore, becomes
incorrect. The results of any subsequent 1/0 would be unpredictable. If you
must combine other methods with uses of SMG$ procedures, there are SMG$
procedures that can be utilized to aid such an integration.

File 1/0 can be performed by the following methods:

• Block 1/0

Uses system services to map a section of the file to the process virtual
address space. No notion of records.

• VMS Record Management Services (RMS)

VMS RMS provides a variety of file organizations and access modes
from which you can select the processing techniques best suited to your
application. VMS RMS supports the sequential, relative, and indexed
sequential file organizations. These modes allow you to access records
within these files sequentially, randomly by key value or relative record
number, or randomly by the record's file address (RFA). It is usually not
necessary to call VMS RMS services directly from high-level languages.
Consult your language reference manual for specific information on
performing record management operations in the language you are using.
(For further information on VMS RMS services, see the VMS Record
Management Services Manual.)

• Language I/ 0

The compiled code in most high-level languages calls a Run-Time Library
language support procedure for file operations. The Run-Time Library
procedures normally call VMS RMS services. Thus, most VMS RMS
features are available to the high-level languages user without calling
RMS directly. Language 1/0 statements are suitable for either data files
or output files. Low- and medium-level languages (VAX MACRO and
BLISS32) do not have any language 1/0 statements and must call RMS

Design
2.5 Using Input/Output

services directly. (For further information, see the appropriate language
reference manual.)

2.6 Beginning the Internal Documentation

2.6.1

You must document each procedure carefully so you and others know
what the procedure does. In most cases, a module should contain only one
procedure.

How to Write a Module Description
You should place a preface containing the following information at the front
of each module:

Title:

Version:

Facility:

Abstract:

Environment:

Author:

Modified by:

Gives the module name followed by a one-line functional
description.

Gives the version and a three-digit edit number. Generally
1-001 is the original version.

Gives a description of the library facility, such as general utility
library (LIB).

Gives a short (three to six lines) functional description of the
module.

Lists any special environmental assumptions that the module
can make. These include assumptions made at both
compilation and execution time that could affect either the
hardware or software environments.

Describes situations that the module assumes during
execution time and the optional elements of the VMS Modular
Programming Standard that your module does not follow.

Indicates the reentrancy characteristics of the procedures
in this module. Each procedure is either fully-reentrant,
AST-reentrant, or non-reentrant.

Includes your name and the date the module was created.

Includes the modification number, name of modifying
programmer, modification date, and a list of the modifications.

This concludes the preface. End the preface with a page delimiter. The actual
code for the module follows the preface.

Example 2-4 shows a sample module description.

2-19

2.6.2

Design
2.6 Beginning the Internal Documentation

Example 2-4 A Sample Module Description

PROGRAM GRA_CUBE ! Create representation of a cube

!+
! VERSION: 1-002
!

!-

FACILITY: User Graphics Computation Library

ABSTRACT: This module contains a procedure to create a mathematical
representation of a cube, GRA_CUBE.

ENVIRONMENT: User Mode, AST-reentrant

AUTHOR: Heather MacDonald CREATION DATE: 14-Sep-1988

MODIFIED BY:
1-001 - Original. DWS 14-Sep-1988
1-002 - Fix a minor bug in cube volume computation. MDL 15-Mar-1989

How to Write a Procedure Description

2-20

You should place a procedure description at the beginning of each procedure
in a module.

Always list each of the following topics regardless of whether or not they are
actually present. For example, if a procedure has no implicit inputs, write the
following:

Implicit Inputs:

NONE

Design
2.6 Beginning the Internal Documentation

The procedure description includes the following elements:

Functional
description:

Calling sequence:

Formal arguments:

Implicit inputs:

Implicit outputs:

Completion status or
routine value:

Side Effects:

Describes a procedure's purpose and completely
documents its interfaces.

Includes the basis for any critical algorithms used,
including literature references where applicable, and
explains why a particular algorithm was chosen.

Indicates the reentrancy characteristics of this
procedure if they differ from those given in the module
description.

Includes these elements in the following order:

1 A return status, value argument, or CALL
instruction

2 The procedure name

3 The argument list (typically a list of registers or
arguments)

In MACRO, each argument is symbolically defined as
the offset relative to the argument pointer (AP).

Lists the arguments in the order they will appear in
a high-level language. Each argument characteristic
should also be included, using the procedure argument
notation described in Appendix B.

Lists any explicit input, input-output, or output
arguments. Includes a qualifying description with
each argument. The arguments should be listed in the
order they are listed in the calling sequence.

Lists any inputs from storage, internal or external to
the module, that are not specified in the argument
list. Usually all that will appear here is "NONE". See
Section 2.2.2.

Lists any outputs to internal or external storage that
are not specified in the argument list.

Lists the success or failure condition value symbols
that could be returned as completion codes in RO. If
your procedure returns a function value other than a
condition value in RO, change the heading to "Routine
value".

Describes any functional side effects not evident from
a procedure's calling sequence. This includes changes
in storage allocation, process status, file operations,
and possible signaled conditions. In general, you
should document anything out of the ordinary that the
procedure does to the environment. If a side effect
modifies local or global storage locations, document it
in the implicit output description instead.

Example 2-5 shows a sample procedure description.

2-21

Design
2.6 Beginning the Internal Documentation

Example 2-5 A Sample Procedure Description

++

FUNCTIONAL DESCRIPTION:

Return the system date and time, using the caller's
semantics for his/her string.

Non-reentrant; uses static storage.

FORMAL ARGUMENT(S):

RESULT_ADDR
VMS USAGE
TYPE
ACCESS
MECHANISM

char_string
character string
write only
by descriptor

Address of the descriptor into which the
system date and time is written.

IMPLICIT INPUTS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

SS$_NORMAL
LIB$_STRTRU

SIDE EFFECTS:

Procedure successfully completed
Success, but source string truncated

Requests the current date and time from VMS.

!--

2. 7 Planning for Signaling and Condition Handling

2-22

There are two methods available to a procedure for indicating to its caller
whether it completed successfully. One method is to return a condtion value
in RO. The other method is to signal an error condition.

To provide a better user interface, all procedures in a facility should either
return condition values or signal error conditions. Regardless of which
method you choose, you should be consistent within the facility to make the
procedures easier for the user to call.

2.7.1

2.7.2

Design
2. 7 Planning for Signaling and Condition Handling

Guidelines for Signaling Error Conditions
The signaling of an error condition is, in some instances, mandatory.
Procedures that return a function value in RO cannot return a condition
value and therefore must signal any error conditions encountered.

However, to maintain efficiency, you might want other procedures to signal
error conditions also. Checking the return status of a called procedure for
repetitive calls can be time consuming and adversely affect the performance
of the calling program. For example, if you are going to call a procedure 100
times within a loop and the chances of that procedure's failure are relatively
small, you may not want to take the time to check the return status after
each call to make sure that the condition value returned was SS$_NORMAL.
Signaling error conditions is far more efficient in this type of application.

From the point of view of the calling program, handling a signaled condition
is slightly more difficult than checking a returned condition value because it
involves writing a condition handler to be invoked in the event that an error
condition is signaled. However, handling a signaled condition allows the
calling program to execute more efficiently.

To signal an error condition, your procedure uses either a condition handling
mechanism provided by the source language, or it calls the Run-Time
Library procedure LIB$SIGNAL. To use LIB$SIGNAL, your procedure calls
LIB$SIGNAL and specifies the condition code and zero or more arguments
specifying the environment of the condition. For further information about
using LIB$SIGNAL, see Part II of the VMS Run-Time Library Routines Volume.
The Run-Time Library also contains other procedures to help you with
signaling and condition handling. These are described in Section 7, Table 7-1
of the VMS Run-Time Library Routines Volume.

Guidelines for Returning Condition Values
From the point of view of the calling program, it is considerably easier to
check returned condition values than to handle signaled error conditions.
When the condition value is being returned, the calling program does not
need to include a condition handler. The calling program needs only to check
the status of the returned value.

However, if you return condition values rather than signal error conditions,
you return less information about the error condition to the calling program.
It is recommended that you return condition values when the explanation of
the error condition is simple and self-contained. For example,
LIB$GET_ VM returns a condition value, since the possible status conditions
are self-contained and simple (for example, insufficient virtual memory).

According to the VAX Procedure Calling and Condition Handling Standard,
the status returned must be a VAX condition value. (For further information,
see the Introduction to VMS System Routines.)

2-23

2.7.3

Design
2. 7 Planning for Signaling and Condition Handling

When to Signal or Return Condition Values

2-24

To some degree, whether you decide to signal an error condition or return a
condition value depends on the language you are using for your procedure.
In some high-level languages, it is very difficult to write a condition handler
to be invoked in the event that an error condition is signaled. (For further
information on condition handling in your language, consult the appropriate
language reference manual.)

Regardless of which language you are using, there are general guidelines for
when to return a condition value and when to signal an error condition.

You should signal an error condition in the following situations:

•
•

•

•

•

•

Your procedure returns a value in RO and cannot return a condition value .

Your procedure must execute quickly and checking the return status of a
condition value would be inefficient.

Your procedure will be executed repetitively and, therefore, checking
the condition value returned would adversely affect your procedure's
performance.

The amount of information you wish to return about the error condition
cannot be contained in a condition value.

A useful error message requires information that cannot be determined
until run time. For example, the FDL$P ARSE procedure must tell you
which line of the FDL file was the cause of an error. Since the line
number of the line containing the error cannot be determined until run
time, the signal mechanism is preferred.

You want to execute a specific condition handler in the event that an error
condition is signaled.

You should return a condition value in the following situations:

• You wish to keep the error-handling mechanism simple.

• The speed of the error checking mechanism is not of great concern.

• The total possible errors that may be returned is a small number and
sufficient information about those errors can be contained in the condition
value returned.

• The functions provided by the procedure are so general that the procedure
will be used in various levels and environments.

3 Coding

This chapter describes how to code modular procedures. It has the following
sections:

• Coding Guidelines

• Initializing Modular Procedures

• Using VMS System Services

• Invoking Optional User-Action Routines

• Writing AST-Reentrant Code

3.1 Coding Guidelines

3.1.1

3.1.2

The coding guidelines discussed in this section are drawn from the VMS
Modular Programming Standard (Appendix A). These coding guidelines
are of two types: required and recommended. You must follow the sections
marked required to ensure that your application is modular. DIGITAL highly
recommends that you adhere to the guidelines presented in the sections
marked recommended. Following these additional rules will help you produce
consistent, uniform applications.

Writing Position-Independent Code (Required)
A module is position independent when it can execute correctly anywhere
in virtual memory. When programming in a VAX high level language, it
is difficult not to write position-independent code because of the way the
languages are designed. However, when programming in VAX MACRO and
BLISS, certain combinations of addressing modes and the address of the
operand result in code that is not position independent.

For more information on writing position-independent code in VAX MACRO,
see Section 3.2.2 of the VMS Linker Utility Manual.

Adhering to the Naming Conventions
The following guidelines apply to the naming of facilities, procedures, files,
modules, and program sections. You are required to follow these conventions
when choosing names for modules, PSECTs, and status codes. DIGITAL
highly recommends that you also adhere to the other naming conventions.

3-1

Coding
3.1 Coding Guidelines

3.1.2.1

3-2

Facility Naming Conventions (Recommended)
To make it easy to locate a set of related procedures, DIGITAL recommends
that you group your procedures into facilities. Providing related procedures
with a common facility prefix is a convenient method for organizing
procedures. The facility prefix is the first part of any procedure name.

As shown in Figure 3-1, the first three characters of a procedure name are
used as to indicate the facility of a Run-Time Library procedure.

Figure 3-1 Examples of Facility Prefixes as Used in Procedure
Names

STR$APPEND BAS$STRING
-.;-- --.....-

facility prefix facility prefix
for String manipulation
procedures

for BASIC-specific support
procedures

ZK-3084-84

Facility names represent library facilities. A procedure is characterized as
belonging to a particular facility according to the types of operations it
performs. Facilities may differ in the conventions they use for handling errors
and receiving arguments, as well as in primary function. Table 3-1 lists some
common DIGITAL facility prefixes.

Table 3-1

Prefix

ADA

APL

BAS

B32

CDU

cu
COB

COR

C74

DBG

DBL

ERF

FDV

FOR

LBR

Common Library Facilities - Prefixes and Content

Content

Ada Run-Time Library procedures

APL Run-Time Library procedures

BASIC Run-Time Library procedures

BLISS-32 Run-Time Library procedures

Command Definition Utility

Command Language Interpreter

COBOL Run-Time Library procedures

CORAL Run-Time Library procedures

COBOL-74 Run-Time Library procedures

Debugger

DIBOL Run-Time Library procedures

Error Log Formatter

FMS Forms Driver Library procedures

FORTRAN Run-Time Library procedures

Librarian Utility procedures

3.1.2.2

Coding
3.1 Coding Guidelines

Table 3-1 (Cont.) Common Library Facilities - Prefixes and
Content

Prefix Content

LIB RTL General Purpose procedures

MTH RTL Mathematics procedures

OTS RTL Language-Independent procedures

PAS PASCAL Run-Time Library procedures

PLI PL/I Run-Time Library procedures

RMS Record Management Services

RPG RPG II Run-Time Library procedures

SMG RTL Screen Management procedures

SOR Sort Utility procedures

STR RTL String Manipulation procedures

VAX VAX Architecture Emulation

You can create your own facilities by defining a unique facility name and
facility number. The name for your facility should be a unique name between
1 and 27 characters in length. DIGITAL-supplied facility names all contain
a dollar sign ($) after the prefix. User-supplied facility names should use an
underscore (-) rather than a dollar sign ($) to avoid any name conflicts.

The facility number is used in defining VMS condition values for the facility.
Bit 27 (STS$V_CUST_DEF) of a condition value indicates whether the value
is supplied by DIGITAL or by the user. This bit must be 1 if the facility
number is created by the user. For additional information, see the VMS
System Messages and Recovery Procedures Reference Volume. The Message
Utility is used in creating VMS condition values and their associated text.

Procedure Naming Conventions (Recommended)
When you create a procedure and make its name global, you allow other
procedures in the same image to call that procedure. The common Run-Time
Library procedures are examples of procedures with global names. In such an
environment, a naming convention is required to prevent any name conflict
between global procedures in the same image.

The rules for naming entry points to procedures have the following general
form:

fac$symbol (DIGIT AL-supplied)
fac_symbol (user-supplied)

fac = a two- to four-character facility name.

symbol = a symbol from one to 2 7 characters long.
(The entire procedure name may not exceed
31 characters in length.)

The facility name and symbol name are separated by a dollar sign ($) if the
procedure is supplied by DIGITAL and by an underscore (-) if the procedure
is supplied by the user. This convention should be used to avoid conflict
between DIGITAL and user procedure names.

3-3

Coding
3.1 Coding Guidelines

3.1.2.3

3.1.2.4

3-4

The procedure name usually consists of a verb and an object that together
describe the action of the procedure. For example, the Run-Time Library
procedure intended to get virtual memory is called LIB$GET_ VM.

Some procedures, even though they have global names, are not intended
to be called from outside the facility in which they are located. These
procedures are only available internally, within a set of procedures, and
do not by themselves provide any functionality for the facility. The names
for these procedures contain a double dollar sign ($$) if they are supplied
by DIGITAL or a triple underscore (-__) if they are supplied by the user.
(Three underscores are necessary to avoid conflict with user-defined condition
value symbols, which use two underscores.)

The names in Table 3-2 are examples of procedure entry points names.

Table 3-2 Naming Procedure Entry Points

Procedure Name

LIB$GET_VM

LIB_PRINT_REPORT

OTS$$1NTERNAL

LIB ___ ADD_ TAX

Description

DIGIT AL-supplied global procedure

User-supplied global procedure

DIGIT AL-supplied internal procedure

User-supplied internal procedure

File Naming Conventions (Recommended)
You should derive your file name from the name(s) of the procedure(s)
contained in the module that comprises the file.

If a module contains a single procedure, the file name consists of the
procedure name. You may, if you wish, remove dollar signs and underscores,
but this is not required. File types are the standard default file types for the
source language. For example, the file containing the VMS Run-Time Library
procedure MTH$EXP is named MTHEXP.MAR. This name makes it obvious
that the file MTHEXP.MAR contains the procedure MTH$EXP and is written
in VAX MACRO.

Sometimes, the module comprising the file will contain more than one
procedure. For example, the VMS Run-Time Library procedures
LIB$GET_ VM and LIB$FREE_ VM are contained in the same module and
thus in the same file. In this case, a more general file name is used, composed
of the facility prefix (LIB) and the first nouns common to all procedure names
in the module (VM). Thus, the name for the file containing procedures
LIB$GET_ VM and LIB$FREE_ VM is LIBVM.B32. (The file type B32 indicates
that the module is written in VAX BLISS32.)

Module Naming Conventions (Required)
Module names are identical to file names except that module names do not
have extensions, and the dollar sign ($) or underscore (-), which separates
the facility prefix and symbol name, is not removed.

For example, the MTH$EXP procedure is contained in module MTH$EXP and
the file MTHEXP.MAR. The LIB$GET_VM and LIB$FREE_VM procedures
are contained in the module LIB$VM and the file LIBVM.B32.

3.1.2.5

3.1.2.6

3.1.2.7

Coding
3.1 Coding Guidelines

PSECT Naming Conventions (Required)
The code and data sections of a customer library procedure have two separate
program sections (PSECTs), named _fac_CODE and _fac_DATA, where fac
is the facility name. DIGITAL uses _fac$CODE and _fac$DATA as PSECT
names.

Position-independent constant data is in the PSECT named _fac_CODE
(_fac$CODE for DIGITAL) to shorten the references. For example,
_LJB$CODE and _LIB$DATA are the only two PSECT names used by LIB$
procedures.

The collating sequence for leading underscores causes the linker to place
all library procedures after the user program in the executable image. This
prevents a library procedure from being placed between two user modules
and adversely affecting any byte or word displacement addressing contained
in the user programs.

Not all VAX languages give you control over PSECT names. In VAX BASIC
and VAX PASCAL, it is not possible to control PSECT names except through
use of COMMON. However, use of COMMON violates the VMS Modular
Programming Standard.

For additional information about declaring PSECTs, see the appropriate
language reference manual.

Lock Resource Naming Conventions (Recommended)
When using the VMS Lock Manager, the resource names of root-level locks
(locks without a parent) should be derived from the facility name. The
naming convention used is:

fac$name = DIGIT AL-supplied resource name
fac_name = user-supplied resource name

Following this convention will prevent unintended resource conflicts.

Global Variable Naming Conventions (Recommended)
Global variables should be named using the following format:

fac$Gt_variablename = DIGIT AL-supplied global variable name
fac_Gt_variablename = user-supplied global variable name

The letter t indicates the contents and usage of the global variable. The
possible values of t are listed in Table 3-3.

Likewise, the format for addressable global arrays is as follows:

fac$ALvariablename = DIGIT AL-supplied global variable name
fac_At_variablename = user-supplied global variable name

Again, the letter t indicates the contents and usage of the addressable global
array. The possible values oft are listed in Table 3-3.

3-5

Coding
3.1 Coding Guidelines

3.1.2.8

3-6

Table 3-3 Code for the Content and Usage of Global Variables

t Content and Usage of Global Variable

A Address

B Byte integer

C Single character

D D_floating

E Reserved to DIGIT AL

F F _floating

G G_floating

H H_floating

I Reserved for integer extensions

J Reserved to customers for escape to other codes

K Constant

L Longword integer

M Field mask

N Numeric string (all byte forms)

0 Octaword

P Packed string

0 Quadword integer

R Records (structure)

S Field size

T Text (character) string

U Smallest unit of addressable storage

V Bit field

W Word integer

X Context dependent (generic)

Y Context dependent (generic)

Z Unspecified or non-standard

Status Code and Condition Value Naming Conventions (Required)
The format of status codes and condition values is as follows:

fac$_status = DIGIT AL-supplied status code or condition value
fac_status = user-supplied status code or condition value

3.1.3

3.1.4

Coding
3.1 Coding Guidelines

Using Common Source Files (Recommended)
For some applications, it may be necessary to make identical argument
declarations in several modules. VAX languages allow you to centralize
these declarations in one place by using common source files. Table 3-4
summarizes the common source file declarations for VAX languages.

Table 3-4 How to Declare Common Source Files

Language Common Source File Declaration

Ada To share common declarations among Ada programs, you include
the declarations in a package (as a separate compilation unit)
and provide visibility to the package by using a WITH clause in
programs you want to share the common declarations.

BASIC You can use the BASIC %INCLUDE directive in your program to
include the common source file, or a COD record.

BLISS Your source program can contain a REQUIRE or LIBRARY list option
that specifies a file to be included at the point of the declaration.

C Include a preprocessor directive to include a file or a dictionary.

COBOL The COPY statement specifies source text from a COBOL library
file, a VAX Librarian file, or a VAX Common Data Dictionary record
description that is to be included in the source program.

DIBOL The INCLUDE directive will include a common source from a
separate file, text library, or COD record.

FORTRAN The INCLUDE statement specifies a file or library module to be
included at the point of the statement. You may also use a COD
record.

MACRO An auxiliary source file or macro library can be specified in the
command line or by using a COD record.

PASCAL The %INCLUDE directive and INHERIT attribute specify files to be
included at the point of the declarations. You may also use a COD
record.

PL/I The %INCLUDE preprocessor statement specifies a file to be
inserted as source. You may also use a COD record.

RPG II An auxiliary source file can be specified in the command line.

SCAN The INCLUDE FILE statement can be used to include common
source from other SCAN source language modules. SCAN does not
have text library or COD support.

Maintaining Code Readability
While you are coding your new application, remember that at some future
time either you or someone else will probably have to update it. To make
these inevitable updates easier, concentrate on making your code easy to read
and understand.

The following guidelines can help you to produce code that is easily read and
understood:

• Use symbols in place of numbers.

• Use uppercase and lowercase characters.

3-7

Coding
3.1 Coding Guidelines

3.1.4.1

3.1.4.2

3.1.4.3

3-8

• Add optional spaces.

• Insert block comments.

Using Symbols in Place of Numbers (Recommended)
Use symbols, not numbers, as much as poss:ble. Because symbols are
mnemonic, they will make your programs clearer and provide more
information for cross-reference listings. It is always recommended that you
define a symbol for a constant that is used a number of times. If the value for
that symbol changes, you only have to change that value where it is defined,
not in every place that it is used in the program. Thus, using symbols instead
of numbers makes procedures easier to maintain. Furthermore, if you use a
symbol instead of a number, it is easy to see each place that the symbol is
referenced in the program. The cross-reference listing for a symbol lists each
place that the symbol is referenced in the program.

Example 3-1 shows the information that can be obtained about a symbol in
a cross-reference listing. The figure shows the contents of the LIGHT.LIS file
created by the following command:

$PASCAL/LIS/CROSS LIGHT.PAS

Note that the cross-reference listing shows where the symbols are declared
and where they are referenced.

Using Uppercase and Lowercase Characters (Recommended)
You should use uppercase characters for all source code except comments.
You should use both uppercase and lowercase characters for all comments.
Comments that are complete sentences should start with a capital letter and
end with a period.

All source code must be coded in uppercase characters if you want your
applications to be independent of the operating system. Although VMS and
its language implementations are insensitive to case, other operating systems
and language implementations are not. (Note that VAX C is an exception;
VAX C is case sensitive.) Applications coded in mixed or lowercase characters
may not be easily transportable to other systems.

The PASCAL program shown in Example 3-2 illustrates the proper use of
uppercase and lowercase characters.

Adding Optional Spaces (Recommended)
A single space should follow a comma (,) and precede and follow an equal
sign (=). A single space should precede a left parenthesis (() or a left square
bracket ([) (except in MACRO), but not a left angle bracket (<). A space
should also follow an exclamation mark (!) or semicolon (;) to separate a
comment from the source code. The arithmetic operators plus and minus
(+ and -) should be surrounded by spaces in expressions.

The BASIC program in Example 3-3 shows the proper use of optional
spaces.

Coding
3.1 Coding Guidelines

Example 3-1 A Sample Cross-Reference Listing Showing the References to the Symbol
SPEED_Qf _LIGHT

MAX_ SPEED
01

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022

MAX_ SPEED
01

LOLLIPOP_SPEED

INTEGER

VILLAIN_SPEED

MAX_ SPEED

SPEED_OF_LIGHT

Source Listing

PROGRAM MAX_SPEED;
{+}
{ This program shows the use of a symbol
{ instead of a number to improve clarity.
{ The program declares a symbol for the
{ speed of light, and then uses the symbol
{ to calculate the speed of the Starship
{ Lollipop and the Villain Vessel.
{-}

CONST

VAR

SPEED OF LIGHT= 3 * (10**8);

LOLLIPOP_SPEED
VILLAIN_SPEED

INTEGER;
: INTEGER;

BEGIN
LOLLIPOP_SPEED := SPEED_OF_LIGHT**8;
VILLAIN_SPEED := SPEED_OF_LIGHT**4;

END.

Cross Reference Listing

VAR INTEGER { IN PROGRAM MAX_SPEED }
15 19 =

TYPE
* 15 16

VAR INTEGER { IN PROGRAM MAX_SPEED }
16 20 =

PROG [PSECT($CODE)]
1

CONST 300000000 { IN PROGRAM MAX_SPEED }
12 19 20

3.1'.4.4 Inserting Block Comments (Recommended)
You can comment on blocks of statements by writing one or more lines
preceding the block. The first comment line contains a single plus sign (+);
the last comment line contains a single minus sign (-). Block comments do
not need to be set off by additional blank lines; the two flag lines starting
with a plus sign and minus sign serve that purpose. However, you may
still wish to set off block comments with blank lines to improve readability.
Comment delimiters are followed by one space, except when followed by the
first plus sign and the last minus sign, as shown in Example 3-4.

3-9

Coding
3.1 Coding Guidelines

3-10

Example 3-2 PASCAL Program Showing Use of Uppercase and
Lowercase Characters in Code

{+}
{ Program to call LIB$LP_LINES and determine the
{ number of lines per line printer page.
{-}

PROGRAM LINES(OUTPUT);
{+}
{ Declare the external procedure used by this
{ program.
{-}

FUNCTION LIB$LP_LINES : INTEGER; EXTERN;
{+}
{ Call LIB$LP_LINES and print the result.
{-}
BEGIN

WRITELN('Each page contains ',LIB$LP_LINES,' lines.');
END.

Example 3-3 BASIC Program Showing Use of Optional Spaces in
Code

10 +

The following BASIC program converts a character
string representing a hexadecimal value to a
longword, then adds one to the result.

Declare the external routine used.

EXTERNAL LONG FUNCTION OTS$CVT_TZ_L
!+
! Perform the conversion.
! -
HEXVAL$ = "80012BFA"
RET_STAT% = OTS$CVT_TZ_L (HEXVAL$, HEX%)
!+
! Add one to the result.
!-
HEX% = HEX% + 1
END

Example 3-4 FORTRAN Program Showing Use of Block Comments
in Code

!+

!-

!+

!-

This program demonstrates a call to the
Run-Time Library procedure STR$PREFIX.

Initialize the strings to be used.

A$ = "ABC"
B$ = "DEF"

Call STR$PREFIX

ISTAT = STR$PREFIX (A$, B$)
END

3.1.5

3.1.6

Coding
3.1 Coding Guidelines

Using VMS System Services
Not all VMS system services are modular, according to the definitions
in this manual. Procedures that call nonmodular system services are
nonmodular themselves. If your procedure uses a nonmodular system
service, you should list the system service in the "Side Effects" section of
the procedure description. (For information about the procedure description,
see Section 2.5.2.) For further information about particular system services
and modularity, see the VMS System Services Reference Manual.

Invoking Optional User Action Routines

3.1.6.1

An optional user action routine is a useful way to let the calling program gain
control at a critical point in your procedure's algorithm. Success routines and
error routines are the most common user action routines. Control is passed
from your procedure to the optional error routine if the specified error is
encountered within your procedure. To transfer control, the calling program
must pass the user action routine as an argument to the called procedure. To
make it easy for the calling program to pass information to its action routine,
your procedure should supply an optional user-arg argument that the calling
program can pass to its action routine. Your procedure merely copies the
argument list entry of the user argument, if present, to the argument list
it passes to the action routine. This achieves the same effect as up-level
addressing.

There are two VAX data types that can be used to pass a user action routine
as an argument: (1) the procedure entry mask and (2) the bound procedure
value. To provide an interface to a user action routine for your procedure,
you must first decide whether to use the procedure entry mask or the bound
procedure value data type. The contents of the argument list entry for
your action routine will differ, depending on whether you are specifying a
procedure entry mask or a bound procedure value.

Procedure Entry Mask
The procedure entry mask (DSC$K_DTYPE_ZEM) is the simplest to use. It
is used by FORTRAN and most other languages and is expected by the Run
Time Library procedures, Record Management Services, and system services.

For a procedure entry mask passed by reference, the argument list entry
contains the address of the procedure entry mask to be called. To provide a
user action routine using the procedure entry mask, your procedure should
have the following calling sequence:

CALL myproc [action-routine [,user-arg]]

In this example, action-routine is a function call of the procedure entry mask
type that is passed by reference, and user-arg is unspecified.

3-11

Coding
3.1 Coding Guidelines

3.1.6.2 Bound Procedure Value
The bound procedure value (DSC$K_DTYPE_BPV) is used by PASCAL
and other languages where context of the procedure must be known. The
procedure might do up-level addressing of a variable defined in a syntactically
outer block and, hence, allocated in another frame. (If you use a procedure
entry mask, this context is specified in the user-arg argument.)

For a bound procedure value passed by reference, the argument list entry
contains the address of two longwords. The first longword contains the
address of the procedure and the second contains the environment pointer to
be loaded into Rl before the procedure is called. This environment pointer
allows you to specify the context of your action routine enabling you to
do up-level addressing. To provide a user action routine using the bound
procedure value passed by reference, the calling sequence is as follows:

CALL myproc [action-routine [,user-arg]]

In this example, action-routine is a function call of the bound procedure
value type that is passed by reference, and user-arg is unspecified.

If you want to use the bound procedure value data type to pass access to
a user routine specified as a procedure entry mask, then you must pass the
first longword by value and omit the second longword. Then, the user action
routine would have this calling sequence:

status = action-routine (... [,user-arg])

In this example, status is a longword condition value that is passed by value,
and user-arg is unspecified. Your procedure copies the 32-bit argument
list entry passed by the calling program to the argument list provided to
the action routine. Thus, the calling program and its action routine can
communicate using any data type, access type, passing mechanism, or VMS
usage.

3.2 Initializing Modular Procedures

3-12

Some modular procedures must initialize themselves before they can execute
correctly. Following are examples of initialization:

• Storing in static storage a value that can only be determined at run time

• Declaring an exit handler using the $DCLEXH system service

• Allocating a process-wide resource once

• Opening a file the first time the procedure is called

You must perform initialization carefully to maintain modularity.

Initialization must not affect the calling program. Therefore, .avoid initializing
by providing an entry point that must be called before any other entry
point is called. Providing an entry point that must be called first forces the
calling program to provide an initialization entry point to its caller, and
so forth. Also, you would have to rewrite your calling programs if you
needed to substitute a procedure with an initialization call for one without an
initialization call.

Coding
3.2 Initializing Modular Procedures

If your procedure uses LIB$INITIALIZE, you must preserve a modular
environment that does not conflict with the environment set by any other
procedure using LIB$INITIALIZE. (See the VMS Run-Time Library Routines
Volume for more information.)

Following are several ways to initialize a procedure:

• Initialize at compile or link time.

• Use the mechanism provided by LIB$INITIALIZE to perform initialization
once for each image activation.

• Set a first-time flag at run time.

• Initialize storage each time it is allocated at run time.

• Initialize storage each time a procedure is called at run time.

The use of each method is explained in the following sections. Figure 3-2
summarizes these methods.

Figure 3-2 Methods of Initializing

Method

Call LIB$1NITIALIZE Initialize Each Initialize Each
Before Main Set a First Time It Is Time Procedure

Initialization Initialize at Program Time Flag Allocated Is Called
Needed Compile I Link Time (At Run Time) (At Run Time) (At Run Time) (At Run Time)

Of Static Storage: • • •
Of Stack Storage: •
Of Heap Storage: •
To Allocate
Resources: • •
To Set Up • • $EXIT Handler:

To Open a Process-
• • Permanent File:

To Set Up a Handler
Before the Main •
Program:

ZK-3085-84

3-13

3.2.1

3.2.2

Coding
3.2 Initializing Modular Procedures

Initializing Storage
For a procedure to produce predictable results, all statically and dynamically
allocated areas must be initialized to known values before they are read.
Initialization of dynamically allocated stack and heap data involves writing
the data after each allocation and before reading it.

If your procedure has static storage, it is usually initialized to zero. In some
languages (for example BLISS), you do not need to explicitly initialize static
store. These languages will automatically initialize static storage to zero. To
see if the language you are using initializes static storage implicitly, refer to
your reference manual for that language.

There are three ways to explicitly initialize storage: you can use an
initialization statement, test and set a first-time flag at run time, or use
LIB$INITIALIZE. The method of testing and setting a first-time flag is
explained in Section 3.3.4.2.

Figure 3-3 provides examples in the major VAX languages of how to initialize
a longword, DAT, in static storage using an initialization statement.

Testing and Setting a First-Time Flag

3-14

To do first-time initialization, your procedure can test and then set to one a
statically allocated first-time flag each time it is called. This flag is initialized
to zero at compile or link time. Setting and testing the flag with the VAX
instruction Branch on Bit Set and Set (BBSS) insures that initialization is
executed exactly once. (You can also use BBSSI or the Run-Time Library
procedure LIB$BBSSI.)

However, if your implementation language does not have access to VAX
instructions and the procedure is to be AST-reentrant, it must follow these
steps:

1 Test the first-time flag.

2 If the first-time flag is set, initialization is complete.

3 If the first-time flag is not set, disable ASTs. Remember the previous state
of AST enable, and retest the flag.

4 If the first-time flag is now set, then initialization was performed by an
AST that occurred between the first test and the AST disable; enable
ASTs if remembered state of ASTs was enable. Initialization is now
complete.

5 If the first-time flag is not set, perform the initialization.

6 Set the flag.

7 Enable ASTs if remembered state of ASTs was enable - initialization is
complete.

For additional information, see Section 3.3.

Note: ASTs should be enabled in step 4 or step 7 only if they were enabled
before step 3. The $SET AST system service, used to disable ASTs,
indicates whether ASTs were enabled when the procedure was called.

Coding
3.2 Initializing Modular Procedures

Figure 3-3 How to Initialize Static Storage

Language Statement Initialized Time of
Value Initialization

Ada x : INTEGER := 1 1 Elaboration time

BASIC BASIC does not permit static storage within a module, only common static storage.

BLISS OWN DAT; 0 Compile time
OWN DAT INITIAL(O); 0 Compile time
OWN DAT INITIAL(100); 100 Compile time

c ST A TIC INTEGER x; 0 Compile time
ST A TIC INTEGER x = 1 1 Compile time
EXTERNAL INTEGER x; Defined externally 1 Compile time
INTEGER x; 0 Compile time
INTEGER x = 1 1 Compile time
GLOBALDEF INTEGER x; 0 Compile time
GLOBALDEF INTEGER x = 1 1 Compile time

COBOL 01 NUM PIC 0 Compile time
01 NUM PIC 9 VALUE 0. 0 Compile time
01 NUM PIC 9(3) VALUE 100. 100 Compile time

DIBOL At compile time, fields within records, commons, and/or groups are initialized to
spaces or zeros (depending on data type).

FORTRAN INTEGER*4 DAT 0 Compile time
INTEGER*4 DAT /0/ 0 Compile time
DATA DAT /0/ 0 Compile time
DATA DAT /100/ 100 Compile time

MACRO DAT: .BLKL 1 0 Compile time
DAT: .LONG 0 0 Compile time
DAT: .LONG 100 100 Compile time

PASCAL VAR
DAT : [ST A TIC) INTEGER; 0 Compile time
DAT : [STATIC) INTEGER := 0; 0 Compile time
DAT : INTEGER : = 100; 100 Compile time

PL/I STATIC INIT(2) 2 Compile time
EXTERNAL INIT(3) 3 Compile time
GLOBALDEF INIT(4) 4 Compile time
GLOBALREF INIT(5) 5 Compile time

RPG RPG II has static storage at the module level only. Numeric variables are initialized
to zero and alphanumeric variables are initialized to spaces at compile time.

SCAN No initialization clauses-use assignment statement.

1 You cannot initialize a variable declared with an external attribute.

ZK-6507-HC

3-15

Coding
3.2 Initializing Modular Procedures

Example 3-5 illustrates the use of a first-time flag in a PASCAL program to
allocate a resource.

Example 3-5 PASCAL Program Which Uses a First-Time Flag

{+}
{ Program to demonstrate the use of a first-time flag when allocating
{ a resource. This technique is AST-reentrant, but is NOT multi-thread
{ reentrant.
{-}

PROGRAM ALLOCATE;

CONST
VM_SIZE = 512;

VAR
INITIALIZED :
VM_ADDRESS :
AST_STATUS :
VM_STATUS :
DISABLE :

BOOLEAN := FALSE;
INTEGER := O;
INTEGER := O;
INTEGER := O;
INTEGER := O;

FUNCTION LIB$GET_VM (SIZE : INTEGER; VAR ADDR : INTEGER) : INTEGER; EXTERNAL;
FUNCTION SYS$SETAST (VAR STATUS : INTEGER) : INTEGER; EXTERNAL;

BEGIN

{+}
{ Check the first-time flag. If set, initialization has been
{performed already.
{-}

IF NOT (INITIALIZED)
THEN

BEGIN

{+}
{ Disable AST's, and remember the previous state.
{-}

AST_STATUS := SYS$SETAST (DISABLE);

{+}
{ Now, recheck the flag. If it is now set, initialization was
{ performed by another invocation of this procedure between when
{ the flag was first tested and now. Otherwise, initialization
{ is performed here.
{-}

IF NOT (INITIALIZED)
THEN

BEGIN

{+}
{ Perform the initialization.
{-}

VM_STATUS := LIB$GET_VM (VM_SIZE, VM_ADDRESS);

{+}
{ Set the first-time flag, indicating initialization complete.
{-}

Example 3-5 Cont'd. on next page

3-16

3.2.3

Coding
3.2 Initializing Modular Procedures

Example 3-5 (Cont.) PASCAL Program Which Uses a First-Time Flag

END.

{+}

INITIALIZED := TRUE;
END;

{ Restore AST's to the previous state.
{-}

AST_STATUS := SYS$SETAST (AST_STATUS);
END;

Using LIB$1NITIALIZE
One of the ways that you can initialize a value at run time is by using
the Run-Time Library procedure LIB$INITIALIZE. An example of a value
that you may need to initialize at run time is a seed for a random number
generator.

The following six steps are needed to use LIB$INITIALIZE to initialize a value
at run time:

1 Write the main program.

2 Write an initialization procedure.

3 Write a MACRO or BLISS program to add the address of that initialization
procedure to PSECT LIB$1NITIALIZE.

4 Compile the initialization procedure, main program, and MACRO
program.

5 Link the initialization procedure, main program, and MACRO program.

6 Run the main program.

Assuming that you have completed the main program, the first thing that
you need to do is to write an initialization procedure. If, for example, you
were going to use LIB$INITIALIZE to initialize a value for a random number
generator, you might write an initialization procedure to set the seed equal to
the current time. This would generate a different seed for each initialization
because the time is constantly changing. One possible initialization procedure
is shown in Example 3-6.

Once you have defined the initialization procedure, you must write the
MACRO program to add the address of that initialization procedure to
PSECT LIB$INITIALIZE. The format for this MACRO program is very simple,
as seen in Example 3-7.

To modify this MACRO program for use in your own procedures, substitute
the name of your initialization procedure for MY-1NIT_ROUTINE.

3-17

Coding
3.2 Initializing Modular Procedures

Example 3-6 BASIC Initialization Procedure for LIB$1NITIALIZE

100 !+
! Initialization routine. A common piece of data, called SEED,
! is initialized based on the number of CPU seconds used by
! this process so far.
!-
SUB MY_INIT_ROUTINE(ONE,TWO,THREE,FOUR,FIVE,SIX)
COMMON (MY_DATA) LONG SEED
PRINT "Now in initialization routine."
CURRENT_TIME = TIME(1)
SEED = CURRENT_TIME
END SUB

Example 3-7 Program to Add Address to PSECT LIB$1NITIALIZE

;+
; Make references to external routines used .

;+

. EXTRN LIB$INITIALIZE

.EXTRN MY_INIT_ROUTINE

; Make a contribution to the PSECT LIB$INITIALIZE .

. PSECT LIB$INITIALIZE USR,GBL,NOEXE,NOWRT,LONG

.ADDRESS MY_INIT_ROUTINE

.END

Once you have written the initialization procedure and the MACRO program
to add the dispatch address to PSECT LIB$INITIALIZE, you can link and run
your program. The sample program in Example 3-8 can be initialized in this
manner.

Example 3-8 BASIC Main Program

10 !+
! Mainline. The value of SEED is printed.

The linker initializes this value to zero, but because LIB$INITIALIZE
is used, an initialization routine is run before control is transferred

! here, and the value of SEED is changed to a somewhat random value.
!-
COMMON (MY_DATA) LONG SEED
PRINT "Now in mainline. The seed is initialized to: ";SEED

32767 END

3-18

To run LIB$INITIALIZE on the program in Example 3-8 and thus initialize
the value of SEED at run-time, enter the following commands:

$ BASIC MAIN
$ BASIC INIT
$ MACRO LIBRARY
$ LINK MAIN,INIT,LIBRARY
$ RUN MAIN

The following is an example of the output generated by these steps:

Now in initialization routine.
Now in mainline. The seed is initialized to: 4099

Coding
3.2 Initializing Modular Procedures

If your procedure establishes a condition handler by calling LIB$INITIALIZE
before a main program, the action of this handler might conflict with other
condition handlers established by other procedures before the main program.

3.3 Writing AST-Reentrant Code

3.3.1 What is an AST?

This section describes coding techniques for modular procedures that use the
VMS asynchronous system trap (AST) interrupt mechanism or that permit
calling programs to use it.

All modular procedures should be AST-reentrant so they can be called from
any program. If your procedure is not AST-reentrant or calls any procedure
that is not, your program documentation should specify this to warn others
against using your procedure.

An asynchronous system trap (AST) is a VMS mechanism for providing a
software interrupt when an external event occurs. One example of this type
of interrupt occurs when the user presses CTRL/C. When the external event
occurs, the VMS operating system interrupts the execution of the current
process and calls a procedure that you supply. This procedure is what we
ref er to as the AST handler.

Some VMS system services let an external event interrupt a process. Because
the interrupt occurs out of sequence with respect to process execution, the
interrupt mechanism is called an "asynchronous" system trap. The AST
interrupt transfers control to the AST handler that services the event. This
AST handler can call other procedures, including library procedures.

The AST handler you provide and any procedures it calls are said to be
executing at AST level. While at AST level a process cannot be interrupted a
second time at the same access mode. The process runs to completion at the
AST level before the non-AST level procedure resumes.

A process is executing either at AST level or at non-AST level and thus
consists of two "threads of execution," one thread at each level. Keep in mind
that these levels are threads of the same process and not separate processes.

When your AST handler finishes servicing the event, it returns control to
its caller. The interrupted procedure continues execution from the point of
interruption.

For example, you could call the Set Timer system service ($SETIMR) to
specify the address of an AST-level procedure to be executed after a specified
amount of time has elapsed. At the specified time, the system generates
an AST interrupt by stopping the procedure that is currently executing and
calling the specified AST handler.

For information on the implementation of AST interrupts by system services,
see the VMS System Services Reference Manual.

3-19

3.3.2

3.3.3

Coding
3.3 Writing AST-Reentrant Code

AST-Reentrancy Versus Full-Reentrancy
A procedure is AST-reentrant if it meets the following conditions:

• It can be interrupted at any point, permitting itself or any related
procedure to be called (reentered).

• It executes correctly when it continues from the point of interruption.

Do not confuse the term AST-reentrant with the term fully-reentrant. Full
reentrancy refers to a more restrictive set of conditions.

In an AST-reentrant environment, the AST thread is expected to complete
regardless of whether it encounters a locked resource. When the AST thread
encounters a locked resource in an AST-reentrant environment, it expects to
be given a "new" resource, or else it is expected to return an error message. It
is never expected to wait for the resource that the non-AST level has locked.

In a fully-reentrant environment, all threads are treated equally when they
encounter a locked resource; they wait for the resource to be freed. In a fully
reentrant environment, AST threads are not given any special treatment. The
VAX Ada environment is an example of a fully-reentrant environment. In
such a situation, there can be more than two threads of concurrent execution,
and each thread can alternately progress toward an end.

Note: It is highly desirable that future code satisfy the more stringent
requirement of being fully-reentrant. Full reentrancy is important for
procedures that will be called from multi-thread environments, such as
Ada tasks. For further information, refer to the VAX Ada documentation.

Guidelines for Writing AST-Reentrant Modular Procedures

3-20

To use AST interrupts, you must write an AST handler to take control at
AST level. An AST handler can be written in any language. Because the
particulars of writing an AST handler differ from one language to the next,
see the reference manual for the language you are working in for more
details.

In general, an AST handler must follow these guidelines:

• It must be separate from the procedure that is currently executing.

• It must not modify data or instructions used by the interrupted procedure
or its callers.

• The AST handler must be callable with a CALLG or CALLS instruction
and must return with a RET instruction.

• If it modifies any registers other than RO and Rl, it must set bits in the
entry mask to save the contents of the registers.

• If it calls any other procedures, they must all be AST-reentrant.

• The AST handler cannot stall or use "busy wait" to avoid being called
before the non-AST level is out of a critical section of code. Once the
AST handler has begun executing, it cannot be interrupted by anything
at a non-AST level. In fact, the only thing that can interrupt the AST
handler is another procedure running at AST level in a different access
mode.

3.3.4

Coding
3.3 Writing AST-Reentrant Code

If you attempt to use a "busy wait" and expect to change the condition
from the non-AST level, the AST level circles the "busy wait" in an
infinite loop. The process continues to loop because the non-AST level
does not continue executing until the AST thread has finished and thus is
never able to change the value in the "busy wait" condition.

• You cannot use the lock manager to protect a resource being accessed
at non-AST level from being accessed at AST level. The lock manager
is designed to lock resources between separate processes, not different
threads (AST and non-AST) of the same process.

• Avoid using static storage. A procedure that does not use static storage,
calls only AST-reentrant procedures, and does no up-level addressing is
automatically AST-reentrant.

How to Eliminate Race Conditions During Concurrent Access
There are two problems that you might encounter in using AST interrupts:
race conditions and deadlocks. A race condition occurs when your
AST handler attempts to use a nonshareable resource already in use by the
non-AST thread of execution.

If you allow the AST handler to wait for the resource (for example, by
waiting for an event flag to be set by the non-AST level code of the same
access mode), you have caused a form of deadlock. The deadlock occurs
because the non-AST level code cannot execute to free the resource until the
AST-level code has finished executing. The AST level code cannot continue
either, because the non-AST level code has effectively locked the resource.

A race condition occurs when you attempt to access or modify the same
data in static storage by both the AST and non-AST level of a process. For
example, if an AST begins executing while the non-AST level is modifying
data in static storage, that data may be left in a non-stable state while the
AST handler executes. To prevent a race condition, you should allow only
one thread at a time to modify data.

If a procedure does not modify any static storage, then it is both
AST-reentrant and fully-reentrant. Your procedure can eliminate conflict
when accessing and modifying data in static storage in the following ways:

• Performing all accessing or modification in a single uninterruptable
instruction. (This technique also makes the procedure fully-reentrant.)

• Detecting concurrency of access to data using "test and set" instructions
at entry to and exit from data storage. The procedure may then report an
error, or retry the operation (when appropriate) if concurrency is detected.

• Keeping a call-in-progress count that is incremented when your procedure
is called and decremented when it returns. The count is used as an index
into separate allocated areas.

• Disabling AST interrupts upon entry and restore the enable state upon
exiting.

3-21

Coding
3.3 Writing AST-Reentrant Code

3.3.4.1 Performing All Accesses in One Instruction
All data modification in static storage can be performed in a single
uninterruptable instruction for some applications. However, this method
applies only to MACRO, and even there does not apply to emulated
instructions.

For example, you can use queue instructions to maintain a linked list in a
single instruction instead of modifying the forward and backward fields of
the list in several instructions. You can use a single queue instruction at the
beginning of your procedure to remove one section, and another can be used
at the end to insert the section back in the queue.

While a section is removed from the queue, your procedure can modify data
in it. If an AST interrupt occurs while the section is removed, a different
section of data is used instead, thus avoiding conflicts with the interrupted
procedure.

Example 3-9 illustrates an AST-reentrant procedure that uses queue
instructions to control allocation of quadword blocks.

Example 3-9 MACRO Program Showing Use of Queue Instructions to Perform All
Accesses in a Single Instruction

.PSECT

.LONG

.LONG

.PSECT

.ENTRY
BBC
REM QUE
BVS
RET

_LIB_DATA PIC,USR,CON,REL,LCL,NOSHR,NOEXE,RD,WRT
FLAG: 0 ; First-time flag1
Q_HED 0,0

_LIB_CODE PIC,USR,CON,REL,LCL,SHR,EXE,RD,NOWRT

TRY:

10$:

;+

BSBB
BRB

LIB_GET_X, -M<>
FLAG, FIRST
©Q_HED, RO
10$

FILL
TRY

; Here on first call only

FIRST: $SETAST #0
BBSS FLAG, 20$
MOVAL Q_HED, Q_HED
MOVAL Q_HED, Q_HED+4
BSBB FILL

20$: CMPL #SS$_WASSET, RO
BNEQ TRY
$SETAST 1
BRB TRY

Branch on 1st call only
RO = address of queue
Branch if empty and fill

Fill queues
Try again

Disable ASTs, RO=old setting
Branch if already set
Make queue empty
Back pointer too
Fill queues
were ASTs enabled before?
No, leave disabled, retry
Yes, enable ASTs
Try again

FILL: get space for 10 quadwords by calling LIB$GET_VM
and insert in queue using INSQUE
RSB

1 This example could be recoded using REMQHI and INSQHI and avoid the need for a first time flag.

3-22

3.3.4.2

Coding
3.3 Writing AST-Reentrant Code

Using "Test and Set" Instructions
One method of eliminating the possibility of a race condition or deadlock is
to use "test and set" instructions to detect concurrent access. You can detect
concurrent access of static storage at both AST and non-AST levels by adding
the following steps to your procedures:

• Place a branch on bit set and then set BBSS or BBSSI instruction
immediately before your procedure accesses static storage.

• Access or modify static storage, or both.

• Place a branch on bit clear and then clear BBCC or BBCCI instruction
immediately after your procedure has completed access to static storage.

The BBSS instruction detects that a concurrency conflict is about to take place
before static storage has been accessed. If the storage is being accessed by
multiple processors, you must use BBSSI and BBCCI.

There are two alternate techniques for resolving concurrency conflicts detected
by the BBSS and BBCC instructions:

• Use separate, statically allocated areas for storage at the AST and
non-AST levels. When the BBSS instruction detects concurrency at the
beginning, use the second allocated area. Note that this technique does
not work if an exception condition occurs between execution of the
BBSS instruction and the BBCC instruction or if your procedure has not
established a condition handler. This is because a condition handler
established by the calling program might also simultaneously call your
procedure.

• Reexecute your procedure if concurrency is detected. When the BBCC
instruction detects this concurrency, branch back to the beginning of your
procedure and try again.

Example 3-10 illustrates the latter technique. This MACRO procedure,
LIB_GET_INUM, allocates and deallocates identifying numbers.

Example 3-10 MACRO Program Showing Use of Test and Set Instructions

.TITLE LIB_GET_INUM -- Allocate and deallocate id. nos. 1 - 10
TAB: .WORD 0 Bitmap for flags

.ENTRY LIB_GET_INUM, -M<>
10$: FFC #1, #10,TAB, RO Find first free id, no.

20$:

BEQ 20$ Branch if none free
BBSS RO, TAB, 10$ Indicate id. no. in use
MOVL RO, ©4(AP) Return id. no. found
MOVL #1, RO Indicate success
RET

CLRL
CLRL
RET
.END

©4(AP)
RO

Return 0
Indicate failure

3-23

Coding
3.3 Writing AST-Reentrant Code

3.3.4.3

3.3.4.4

3-24

Keeping a Call-in-Progress Count
If the database is to be kept separate between calls, you can keep track of
when your procedure is called by using a call-in-progress count. Before
database access, the count is incremented and used as an index for an address
table of the separate databases. You should check for a count that exceeds the
table length. After the database has been accessed, the count is decremented.

This technique has an advantage over the BBxx technique because it can
handle more than two levels of reentrance. However, it is less reliable
because an exception can cause the count never to be decremented, leading
to an eventual procedure malfunction. You can avoid this by establishing a
condition handler in your procedure.

Disabling AST Interrupts
A procedure is also considered AST-reentrant if AST interrupts are disabled
while critical sections of code execute. However, this method of maintaining
AST reentrancy is not recommended.

Sometimes the only way to avoid race conditions is to disable AST interrupts
during the access to static storage and restore the state of the AST enable
once the critical section of code has finished executing. However, this
technique could adversely affect performance of real-time programs using
AST interrupts. The $SETAST system service, which is used to enable and
disable AST interrupts, is time consuming. Therefore, you should avoid
disabling AST interrupts whenever you can by using the techniques described
in Section 3.3.4.1 to Section 3.3.4.3.

Try to minimize the number of instructions during which the AST interrupts
are disabled. Before disabling AST interrupts, establish a condition handler to
restore the AST level in case an exception or stack unwind occurs.

Example 3-11 demonstrates how $SETAST can be used to disable ASTs and
then restore the previous state of the enable.

Example 3-11 A FORTRAN Program Disabling and Restoring ASTs

!+
! This program demonstrates using the System
! Service SYS$SETAST to disable and then
! re-enable AST-interrupts.
!-

!+

INCLUDE '($SSDEF)'
INTEGER*4 SYS$SETAST

! Turn off ASTs and remember the previous setting.
!-

!+

!-

ISTAT = SYS$SETAST (%VAL(O))

The statements in the program during whose
execution you want ASTs disabled.

If ASTs were previously enabled,
re-enable them.

IF (ISTAT .EQ. SS$_WASSET) CALL SYS$SETAST(%VAL(1))
END

3.3.5 Performing Input/Output at AST-Level

Coding
3.3 Writing AST-Reentrant Code

If your procedure performs IfO using VMS RMS system services, there
are several coding techniques you must follow for your procedure to be
AST-reentrant:

• When opening process-permanent files - such as SYS$INPUT,
SYS$0UTPUT, SYS$COMMAND, or SYS$ERROR - check for the VMS
RMS error status RMS$_ACT (active) after each $CREATE or $OPEN
service. This error indicates that a record operation has already started
for the process-permanent file. The error does not occur for files that are
not process permanent, and the $OPEN service follows the constraints
of shared access to the file that may have been imposed by a previous
$OPEN service. If the error occurs, perform a $WAIT using the same
file access block (FAB). When control returns to your procedure, try the
$CREATE or $OPEN service again. Repeat this sequence until it succeeds.

• When performing record 1/0 to any type of file, check for the RMS error
status RMS$_RSA (record stream active) or RMS$_BUSY (structure in
use) after each $GET and $PUT service. This error indicates that a record
operation has already been started for the file. If the error occurs, perform
a $WAIT using the same record access block (RAB). When control returns
to your protedure, try the $GET or $PUT service again. Repeat this
procedure until it succeeds.

• Avoid storing data in a record access block (RAB) that VMS RMS could
still be accessing. You can avoid this situation by doing either of the
following:

Allocate the RAB on the stack so the AST and non-AST level have
separate RABs.

Allocate RAB in heap or static storage along with a busy bit. The
busy bit is tested and set using a BBSS instruction before the RAB
is accessed. If the RAB is already busy, your procedure executes a
$WAIT using that RAB.

For synchronous input/output (1/0 that is always completed before
returning control to your procedure), you can allocate the RAB in either
of these ways. However, the first method is more reliable, since it doesn't
use static storage and therefore does not become corrupted if an exception
is signaled.

For asynchronous IfO (when control is returned to your procedure before
1/0 is completed), you must use the second technique.

3-25

3.3.6

Coding
3.3 Writing AST-Reentrant Code

Condition Handling at AST Level

3-26

You should not allow an exception to propagate out of an AST handler since
the exception might be caught by any procedure that is active at the time of
the AST. Condition handlers for other active procedures might react as if the
exception was caused by a procedure that they had called.

Another reason for not allowing exceptions to propagate out of an AST
handler is that, for run-time environments that use multiple threads in a
process such as VAX Ada, it cannot be determined which stack of the threads
of execution is used to deliver the AST. (The AST is delivered on the stack of
whichever thread is active at the time of the AST interrupt.)

It is best to catch all exceptions in the AST handler and not allow them to
propagate.

4 Testing

4.1 Unit Testing

A successful test system is one that uncovers errors. To facilitate successful
testing you should begin planning for the testing phase during the design
phase. Preliminary testing should start while you are coding the procedure.
In this respect, some parts of the testing stage are concurrent with the coding
stage in the software life cycle.

The two primary things that you should be testing for are as follows:

1 To make sure that the procedure you developed fulfills your requirements
or specifications.

You must carefully test each aspect of functionality to ensure that your
procedure does everything that it was intended to do and nothing that it
was not intended to do. The methods you use to test this aspect of your
procedure depend upon the functions your procedure performs.

2 To make sure that the procedure is modular and executes without error.

This chapter focuses on testing for modularity.

Modularity is especially important to procedures that are to be included
in a library facility. If your procedure is in any way non-modular, it can
adversely affect the results and performance of other procedures that call it.
It is essential that your procedure completely adheres to the required sections
of the VMS Modular Programming Standard contained in Appendix A.

To ensure modularity within your procedures, you should perform at least
three types of tests:

1 Unit testing

2 Language-independence testing

3 Integration testing

Methods for designing and administering these types of tests are discussed
in the following sections. Reentrancy and performance analysis are also
discussed.

Before you begin combining units of code (such as subprograms, subroutines,
and internal procedures) to form your new procedure, it is essential to ensure
that each of these units works separately. Thorough unit testing is important
for the following reasons:

• Testing small units separately decreases the level of complexity within the
tests.

• It is easier and faster to debug a small unit of code than it is to find an
error within several units and their interfaces.

• It makes the integration stage that follows much easier if each of the
separate units has been thoroughly tested and the problems corrected.

4-1

Testing
4.1 Unit Testing

4.1.1 Black Box Testing

4-2

• The earlier an error is found in development, the less expensive it is to
fix.

There are three steps involved in unit testing:

1 Review the goals of your procedure.

2 Choose test cases.

3 Run the tests.

The goals of your procedure are chosen at the requirements or specifications
stage. As we mentioned earlier, that stage is not discussed within this manual
because it does not have a significant effect on modularity. However, it does
have a significant effect upon whether your final product can be considered
successful. If your product does not perform the functions or meet the
requirements decided upon at the requirements or specifications stage, it is
not a successful project. You should have at least one test for each of the
requirements that your procedure was designed to fulfill.

You use the following two types of tests:

• Black box tests

• White box tests

Black box tests assume that you know nothing about the internal workings of
the procedure that you are testing. All that you are interested in is the output
that you receive for given sets of input.

White box tests (also· called clear box tests) are more complicated because they
are designed to step through particular sections of code or algorithms internal
to the procedure. They assume that you know, in great detail, the internal
workings of the procedure being tested.

When you are performing black box testing, you are interested only in
the output you receive for particular input values. You simply execute the
procedure repetitively using input from different classes. The best way to
do this is to write a command procedure to execute the procedure a given
number of times using test data that you supply. (For information on writing
command procedures, see the Guide to Using VMS Command Procedures.)

You should execute your procedure with test cases from each of the following
categories:

• Expected inputs

These are the values that you expect your procedure to receive most of
the time.

• Boundary values

If your procedure expects an input value from 1 to 999, use 1 and 999 as
test cases to make sure that your procedure returns the expected results
for the boundary cases.

• Illegal values

4.1.2

Testing
4.1 Unit Testing

Using the example above, what happens if your procedure receives as
input a value that is less than 1 or greater than 999? Does the user
receive a useful error message? Does the procedure simply stop, or does
it attempt to use values outside of its limitations and simply return an
incorrect answer? It is essential that you run the procedure using illegal
input values to determine the answers to these questions.

Figure 4-1 summarizes the methods of black box testing.

Figure 4-1 Black Box Testing Methods

White Box Testing

Boundary
Values

ZK-4071-85

When performing white box testing, unlike black box testing, you must
understand fully the internal workings of the procedure. Those internal
workings, those specific lines of code, are in fact what you are testing.

The following steps are involved in white box testing:

1 Test each statement.

For this step, you need to provide sets of test values that ensure that
every statement in the procedure is executed at least once. This includes
all statements - even those executed only when optional arguments,
user-supplied arguments, subroutines, user-action routines, or specific
error codes are present.

2 Test each decision.

At this step, your goal is to provide test cases that ensure that each
branch of a decision is executed at least once. In the case of a standard
boolean decision, this generally requires providing two values; however,
this number may be much greater in the case of compound or nested
decisions.

3 Test each condition.

4-3

Testing
4.1 Unit Testing

Condition testing requires writing test cases that ensure each condition
in a decision takes all possible outcomes at least once and each point
of entry to the program or subroutine is invoked at least once. Multiple
test values must be supplied in cases of compound and nested loops. In
testing the entry points, remember to invoke any optional routines (either
internal or external), as well as error handlers. If your procedure contains
a JSB entry point, that entry point should also be tested.

Note that each type of white box testing finds a specific type of error. For
example, statement testing does not find an error on a negative value for a
condition if the statement is given a positive input the only time it is executed.
Therefore, you must perform all three types of white box testing.

Figure 4-2 summarizes white box testing methods.

Figure 4-2 White Box Testing Methods

White
box
testing

Statement
testing

Decision
testing

Condition
testing

ZK-4069-85

4.2 Language-Independence Testing

4-4

For your procedures to be as useful as possible, they must be able to be
called by programs in any language. Providing for language independence is
essential to producing a useful procedure.

Testing for language independence is a very specific type of unit testing. It
ensures that your program executes correctly regardless of the language from
which it is called.

To test your procedures for language independence, write several driver
programs in languages you have chosen randomly. The driver program need
only contain a call to the procedure being tested.

If you do find that your procedures are not language independent, make sure
that they conform to the following rules:

• All atomic data must be passed by reference and all strings must be
passed by descriptor.

Testing
4.2 Language-Independence Testing

Adherence to this single guideline is the most important factor in
achieving language independence.

• Statements that assume a particular language environment are NOT
allowed.

For example, the statement ON ERROR GO BACK in a BASIC procedure
assumes that the calling program is also written in BASIC.

4.3 Integration Testing

4.3.1

Integration testing is the next logical step following unit testing. Unit testing
is designed to test each separate component. Depending on your procedure,
that component might be a module, a subprogram, a subroutine, an internal
procedure (fac ___ name), or a particularly intrinsic piece of code. Once you
have determined that each unit works separately, you need to determine that
the units also work together to form the complete procedure.

Integration testing can be completed by either of two methods.

The" All at Once" Approach to Integration Testing
One method of integration testing is the "all at once" approach. In this
method, you simply finish all of the units, link them together and test the
completed structure all at once. Use of this method is strongly discouraged,
because it makes it very difficult to find the location of errors. For example,
look at the organization of the units in the sample procedure shown in
Figure 4-3. Assume that we tested this procedure using the "all at once"
approach and found an error; the procedure simply did not work. We would
have no way of knowing whether the error was in unit A, unit B, unit C, or
unit D.

Figure 4-3 A Sample Procedure for Integration Testing

Level 2

Level 3

ZK-4070-85

4-5

4.3.2

Testing
4.3 Integration Testing

The Incremental Approach to Integration Testing
The recommended approach to integration testing is called incremental testing.
Incremental testing involves testing the procedure by starting with one unit
and building on to it one unit at a time. Each unit should always be subjected
to thorough unit testing before it is included in the integration tests.

Incremental integration testing is especially useful for finding the following
types of error:

• Problems with the calling interface between units (for example,
inconsistent ordering of arguments between the calling and called unit)

• Incorrect assumptions about what values are returned and the units to
which they are returned

• Unexpected transfer of control between units

Using the sample procedure in Figure 4-3, complete the test of unit A on
level 1 before proceeding to level 2 where you test units A and B in
combination. At each level you correct any errors before proceeding to
the next level. When you have completed the last step, you know that the
entire procedure works correctly.

Because you started at the top of the sample procedure and added units
incrementally from lower levels, you were using the top-down approach to
integration testing. You could just as easily have started at Level 3 and used
the bottom-up approach.

As you can see from the example, there are several distinct advantages to
incremental integration testing:

• It is not necessary to wait until the procedure is complete to begin
integration testing.

• Debugging is simplified by incremental testing because the modules and
interfaces can be tested as the system grows.

• Programming errors in the interfaces and incorrect assumptions between
units are discovered at an early stage.

• Because previously tested units are retested as new units are added, the
probability of discovering less obvious errors is increased substantially.

4.4 Testing for Reentrancy

4-6

It is important to test your procedures for reentrancy before placing them into
a library facility. Because ASTs can occur at any time, procedures that are
not AST-reentrant may exhibit unexpected behavior. In particular, an AST
occurring during storage modification in a procedure that is not AST-reentrant
can corru:Pt the contents of the procedure's storage. (For further information
about AST reentrancy, see Section 3.3.)

Full reentrancy is important to multi-thread tasking environments such as the
environment used by Ada.

To avoid problems with reentrancy, carefully read and follow the coding
guidelines described in Section 3.3.

4.4.1

Testing
4.4 Testing for Reentrancy

Checking for AST Reentrancy

4.4.1.1

4.4.1.2

There are two methods of checking a procedure for AST reentrancy. You can
use the Symbolic Debugger or perform a manual desk check.

Checking for AST Reentrancy using the Debugger
The following five steps are necessary when using the Debugger to check for
AST reentrancy:

1 Create an activation of the procedure.

2 Set watchpoints on all storage used by the procedure.

3 Create a second activation of the procedure using the CALL command.
Allow this second activation to run to completion. (The second activation
represents the AST-level thread.)

Check to be sure that the AST-level thread of execution does not modify
the storage accessed by the non-AST level thread of execution. If the
AST-level thread of execution does modify any of that storage, check to
ensure that it does not cause any unwanted side effects for the non-AST
level thread of execution.

4 Step one instruction in the first activation.

5 Repeat steps 3 and 4 until the end of the procedure for the first activation.

For further information about the Debugger, refer to the VMS Debugger
Manual.

Checking for AST Reentrancy by Desk Checking
Desk checking is the term for tracing through a procedure's execution
manually. Performing a desk check for AST reentrancy consists of the
following four steps:

1 Create an activation of the procedure being tested and its data using the
method you normally use for manually tracing through a procedure.

This activation represents the non-AST level of your procedure's
execution.

2 Create a second activation of the procedure using the process you used
above. This second activation represents the AST-level thread of your
procedure's activation.

Trace through the AST-level thread's execution to completion, one
statement at a time.

Remember to update the contents of all storage locations and variables
for each instruction of the procedure.

Check to be sure that the AST-level thread of execution does not modify
the storage accessed by the non-AST level thread of execution. If the
AST-level thread of execution does modify any of that storage, check to
ensure that it does not cause any unwanted side effects for the non-AST
level thread of execution.

3 Step through a single statement of the non-AST level thread of execution,
remembering to update the contents of all storage locations.

4-7

4.4.2

Testing
4.4 Testing for Reentrancy

4 Repeat steps 2 and 3 until you have stepped through every statement in
the non-AST level thread of execution. (Note that every statement of the
AST-level thread is stepped through in each pass through step 2.)

As you can see, what you are actually doing in the process is testing between
the execution of every two statements in the procedure. The most rigorous
method of applying this type of desk checking for AST reentrancy is to step
through the procedure at the assembly language level and test between each
assembly language instruction.

Checking for Full Reentrancy
Full reentrancy differs from AST reentrancy in the number of threads of
execution. An AST-reentrant environment can support only two threads
of execution, the AST-level thread and the non-AST level thread. Full
reentrancy is important in environments that can support many threads of
execution, such as VAX Ada.

A procedure is fully-reentrant if any number of threads of execution can
execute to completion without affecting any of the other threads of execution.

Generally, a procedure that is AST-reentrant is also fully reentrant. For
further information on full reentrancy and environments supporting multiple
threads of execution, refer to the documentation for VAX Ada.

4.5 Performance Analysis

4.5.1

All timer and resource allocation procedures should make statistics available
for performance evaluation and debugging. You should code timer and
resource allocation procedures with the following two entry points:

LIB_SHOW_name
LIB_ST AT _name

SHOW Entry Point

4-8

A SHOW entry point provides formatted strings containing the information
you need. The calling sequence for a SHOW entry point is as follows:

LIB_SHOW_name [code [,action-routine [,user-arg]]]

code
An optional code (of the form LIB_K_code) designating the statistic you
need. Define a separate code for each statistic available; the codes should be
the same for the SHOW and STAT entry points. The values associated with
the codes start at one for each procedure. The functional specification in the
procedure's documentation should list the codes used. If the code is omitted,
or zero, the procedure provides all statistics.

action-routine
The address of an action routine. This is an optional argument. If omitted,
statistics are written to SYS$0UTPUT.

4.5.2 ST AT Entry Point

user-arg

Testing
4.5 Performance Analysis

An optional user argument to be passed to the action routine. If omitted,
a shortened list is passed to the action routine. The user-arg argument, if
present, is copied to the argument list passed to the action routine. That is,
the 32-bit argument list entry passed by the calling program is copied to the
argument list entry passed to the action routine. Thus, the access type, data
type, argument form, and passing mechanism can be arbitrary, as agreed
between the calling program and the action routine.

The optional action routine should have the form:

ACTION-ROUTINE (string [,user-arg])

See Section 3.1.6 for an example of the code to invoke a user action routine.

A STAT procedure returns the information you want as binary results. The
calling sequence is as follows:

LIB_STAT_name (code ,value)

code
A code designating the statistic you want. A separate code is defined for
each statistic available; the codes are the same for the SHOW and STAT entry
points. Codes start at one.

value
Is the value of the returned statistic.

4.6 Monitoring Procedures in the Run-Time Library
There are several procedures available in the Run-Time Library for time and
resource monitoring. These Run-Time Library procedures and their functions
are as follows:

• LIB$SHOW_ VM

LIB$SHQW_ VM is a resource monitoring procedure that returns the
statistics accumulated from calls to LIB$GET_ VM and LIB$FREE_ VM.

The following three statistics are returned by default:

Number of successful calls to LIB$GET_ VM

Number of successful calls to LIB$FREE_ VM

Number of bytes allocated by LIB$GET_ VM but not yet deallocated
by LIB$FREE _ VM

LIB$SHOW_ VM returns these statistics in the formatted form, nnnn.

• LIB$STAT_VM

LIB$STAT_ VM is a resource monitoring procedure that returns to its
caller one of the three statistics available from calls to LIB$GET_ VM
and LIB$FREE_ VM. These are the same statistics that are returned by
LIB$SHOW_ VM. Unlike LIB$SHQW_ VM, which returns the statistics in
formatted form to SYS$0UTPUT, LIB$STAT_ VM returns the specified
statistic in a signed longword integer.

4-9

Testing
4.6 Monitoring Procedures in the Run-Time Library

4-10

• LIB$SHOW_ TIMER

LIB$SHOW_ TIMER is a time monitoring procedure that returns the
times and counts accumulated since the last call to LIB$INIT_ TIMER and
displays them on SYS$0UTPUT. A user-supplied action routine may alter
this default behavior.

The following five statistics are provided by default:

Elapsed real time

Elapsed CPU time

Count of buffered 1/0 operations

Count of direct 1/0 operations

Count of page faults

• LIB$STAT_TIMER

LIB$STAT_TIMER is a time monitoring procedure that returns the same
information as LIB$SHOW_TIMER. The difference is that
LIB$STAT_TIMER returns the information as an unsigned longword
or quadword, whereas LIB$SHOW_ TIMER returns the information in
the format hhhh:mm:ss:cc for times and the format nnnn for counts. In
addition, LIB$STAT_TIMER returns only one of the five available statistics
per call.

For further information about these time and resource monitoring procedures,
see the VMS RTL Library (LIB$) Manual.

5 Integration

5.1 Grouping Procedures

5.1.1

Modular procedure libraries consist of compiled and assembled object code
intended to be associated with a calling program at link time. References
to procedures in these libraries are resolved when the linker searches the
user libraries specified in the LINK command or when it searches the default
system libraries. The program can then call library procedures at run time.

DIGITAL supplies several procedure libraries, such as the VAX Common
Run-Time Procedure Library (also called the Run-Time Library), that support
components of the VMS operating system. You can explicitly access the
procedures in the Run-Time Library to perform frequently used operations.
To do this, simply include calls to Run-Time Library procedures in your
program. The linker automatically searches the default libraries to resolve
references to Run-Time Library procedures. (For information on what
procedures are available in the Run-Time Library, see Section 1.3.1.)

You can create your own procedure libraries and shareable images by
following the guidelines in Section 5.1.2 and Section 5.2.1. Section 5.2.2
shows how to use transfer vectors to make your shareable images easier to
maintain. Before you begin grouping modular procedures, make sure they
conform to the rules listed in Appendix A.

There are three ways to group modular procedures:

• Combine object modules into an object module library.

• Link object modules together into a shareable image.

• Combine shareable images into a shareable image library.

The following sections show how to create and install these three types
of procedure libraries and how to access them when you link and run a
program.

Creating Facility Prefixes
The facility prefix is the group identifier for a set of related procedures
contained in a library facility. The facility prefix appears in the procedure
name of every procedure in that library facility. An example of a library
facility is the Screen Management Facility in the Run-Time Library. The
names of all procedures appearing in the Screen Management Facility begin
SMG; for example, SMG$ERASE_CHARS.

To create your own facility prefix, follow these steps:

1 Choose a facility prefix. This prefix can be from 1 to 27 characters in
length. However, it is recommended that you choose facility prefixes
between 2 and 4 characters.

5-1

5.1.2

Integration
5.1 Grouping Procedures

2 If your facility will be generating messages, you must specify a unique
facility number in the message source file. This number can range from 0
to 4095. Any number within this range and not being used by someone
else on your system is acceptable. This facility number will be used by
the message utility in generating the condition value for the message.

Bit 27 (STS$V_CUST_DEF) of a condition value indicates whether that
value is supplied by the user or by DIGITAL. This bit must be 1 if the
facility number is user created. For further information, see the VMS
System Messages and Recovery Procedures Reference Volume.

3 Use the facility prefix when naming all procedures within the new facility.
Remember to follow the naming conventions described in Section 3.1.2.

Creating Object Module Libraries

5-2

In addition to using the system default object module libraries, you can also
create your own object module libraries. An object module library created by
you can contain object files produced by any VAX language compiler.

The following three steps are required to create an object module library:

1 Write or collect the procedures you want to group together in the
object module library. Make sure the names chosen for the modules,
procedures, and facility prefixes conform to the guidelines given in
Section 3.1.2.

2 Compile the source code to create the object files for the procedures to be
contained in the library.

3 Create the object module library using the LIBRARY command.

The format of the library command is as follows:

$LIBRARY /CREATE library-name.OLB filespec1.0BJ -
_$ [, f ilespec2. OBJ [, ...]]

The parameter library-name is the name that you have given the library.
The default file extension for library-name is OLB.

The filespec parameters are the object files for the procedures you
want the object module library to contain. The default file extension for
filespec is OBJ.

To clarify this process, create a sample object module library.

The first step is to choose the procedures to be contained in the sample
library. Call the sample library GRAPHICS.OLB. This library will contain
modular procedures for creating mathematical representations of circles,
cylinders, squares, and other geometric shapes.

The files to be used are GRASPHERE. BAS and GRACUBE.FOR.
GRACUBE.FOR contains a single procedure, GRA_CUBE, to generate
cube shapes. (Note that GRA is the facility prefix, and the underscore
in the procedure name indicates that this is a user-defined procedure.)
GRASPHERE.BAS contains several procedures that are grouped together
because they share similar code. The procedures contained in GRASPHERE
create spheres (GRA_SPHERE), oblate spheriods (GRA_OBL_SPH), and
spherical sections (GRA_SPH_SEC).

Integration
5.1 Grouping Procedures

Now that you have chosen the procedures and named them correctly,
advance to step 2 and create the object files necessary to build the object
module library. The commands used to create the object files are as follows:

$ BASIC GRASPHERE.BAS
$ FORTRAN GRACUBE.FOR

This produces the object files GRASHPERE.OBJ and GRACUBE.OBJ.

The final step is to create the object module library itself from those object
files. Create the object module library by entering the following command:

$ LIBRARY /CREATE GRAPHICS GRASPHERE,GRACUBE

Note that you did not specify the file extensions because you used only the
default values.

Once the LIBRARY command has been entered, the object module library
GRAPHICS.OLB is ready to be linked with an application program.

Figure 5-1 shows the overall development of the user-created library of
graphics procedures, GRAPHICS.OLB.

5.2 Shareable Library Images
If you have a collection of procedures you expect a number of users to use,
you may want to group these procedures into a shareable library image. A
shareable library image, usually referred to as a shareable image, is similar
to an object library except that it has been pre-linked so that all references
between procedures in the library have already been resolved.

A shareable library image has the following advantages:

• Conserves memory space

Several processes can "share" a single copy of a shareable image rather
than each process retrieving its own copy from the disk.

• Conserves disk storage space

Programs linked to a shareable library image share a single disk copy of
the library code rather than each program including the code in its own
executable image.

• Shortens link time

Since the internal references in the library have already been resolved,
there is less work for the linker.

• Allows for updates without relinking

You can supply a new version of a shareable library image that can
automatically be used by all programs linked to it without the need for
the users to relink their programs.

5-3

5.2.1

Integration
5.2 Shareable Library Images

Figure 5-1 Development of a User-Created Object Module Library

GRAPHICS
LIBRARY

PROCEDURE

GRAPHICS
LIBRARY

PROCEDURE

GRAPHICS
LIBRARY ,

PROCEDURE

GRA-SPHERE GRA-OBLSPH GRA-SPH_SEC

GRAPHICS LIBRARY
MODULE

LIBRARIAN

GRAPHICS.OLB

GRAPHICS
LIBRARY

PROCEDURE

GRA-CUBE

GRAPHICS LIBRARY
MODULE

ZK-4028-85

The greatest benefit of using a shareable library image is the ability to
conserve physical memory by sharing a single memory copy of the library
code among all users. This feature is enabled by having a privileged user,
usually the system manager, use the VMS Install Utility to install the
shareable library image with the /SHAREABLE attribute. This benefit is
not limited to shareable library images, however. Any executable image
can be installed as shareable. See the VMS Install Utility Manual for more
information.

Creating Shareable Library Images

5-4

It is quite simple to take a collection of procedures and link them together
as a shareable library image. In addition to your procedures, you need to
provide a transfer vector and a linker options file. The following sections
show how to create both of these items in a step-by-step fashion. If you
follow the "recipe", you will be rewarded with a shareable image library that
is easy to use and maintain.

5.2.2

Integration
5.2 Shareable Library Images

Figure 5-2 Creating a Shareable Image

Library of l
Concatenated

Objec. t Modules
Intended For
Sharing

USER-CREATED
OBJECT MODULE

LIBRARY
GRA_OBJLIB.OLB

LINKER

USER-CREATED
SHAREABLE IMAGE

ZK-4029-85

Figure 5-2 provides an overview of the process of creating a shareable
image.

Creating the Transfer Vector
When a program links to a shareable library image, the linker stores the
following items of information in the program about each reference to a
routine in that image:

• The name of the shareable image

• The location of the routine entry point relative to the beginning of the
shareable image

Since a relative location is used, the routine cannot change its location
without making all images using this routine invalid. Using a transfer vector
allows you to modify code and rearrange routines without invalidating
previously linked programs.

A transfer vector, which is placed at the beginning of the image, is a module
containing a list of "forwarding addresses" for routines in the shareable
image. When a transfer vector is used, programs linking to the shareable
image reference the entry points in the transfer vector rather than the actual
routines. The entry in the transfer vector then transfers control to the actual
routine. Because each entry in the transfer vector is the same size, it is easy
to keep the relative location of an entry the same across updates.

5-5

Integration
5.2 Shareable Library Images

5-6

A transfer vector must be created using the VAX MACRO assembler language,
but it is not necessary to know VAX MACRO to create a transfer vector.
A template for a transfer vector is provided in Example 5-1. To use this
template in creating a transfer vector, follow these steps:

1 Create a file with the file type MAR containing the template. A suggested
name for the file would be the module name. Therefore, if you were to
use the example module name GRA_ VECTOR, as shown in the transfer
vector template, the file name would be GRA_ VECTOR.MAR.

2 Follow the instructions in the template and edit the file to produce the
correct vector for your facility.

3 Compile the vector module by entering the following DCL command:

$ MACRO GRA_VECTOR

Example 5-1 Transfer Vector Template

;+

;+

;+

VAX MACRO template for a transfer vector.

In VAX MACRO, comments begin with a semicolon.
Blanks and tabs may appear interchangeably wherever
a blank is shown.

The following two lines define the name of the module,
which in this example is GRA_VECTOR (the vector for
the GRA_ facility), and the identification (version) of
this module, which is 1-001. Replace GRA_VECTOR by
whatever module name you choose, and replace 1-001
by whatever version number you choose .

. TITLE GRA_VECTOR

. IDENT /1-001/

The following lines define a MACRO called ROUTINE which,
; when invoked, generates one transfer vector entry. Enter
; these lines exactly as shown; no customization is necessary .

;+

. MACRO ROUTINE NAME

.EXTRN NAME

.ALIGN QUAD

.TRANSFER NAME

.MASK NAME
JMP
.ENDM

NAME+2

The following lines define a MACRO called FUTURE which,
when invoked, generates one transfer vector entry that does
not have a universal symbol in the shareable library image.
It's used to "reserve" transfer vector entries for routines
that haven't been written yet, so the length of the transfer
vector doesn't have to change when they're written.

Example 5-1 Cont'd. on next page

Integration
5.2 Shareable Library Images

Example 5-1 (Cont.) Transfer Vector Template

;+

;+

.MACRO

.EXTRN

.ALIGN

.MASK
JMP
.ENDM

FUTURE NAME
NAME

QUAD
NAME
NAME+2

The next two lines define the program section (PSECT)
in which the transfer vector resides. Change the name
of the PSECT, GRA_VECTOR, to whatever program section
name you choose. The remainder of the two lines define
PSECT attributes which you should not change.

When linking the shareable image that uses this transfer
vector, it's important to place the transfer vector at
the beginning of the shareable image (for example, by
means of the CLUSTER or COLLECT options in a linker options
file. See example 5-4 .

. PSECT GRA_VECTOR PIC, USR, CON, REL, LCL, SHR, -
EXE, RD, NOWRT, QUAD

Following this point are the transfer vector entries.
Each entry is of the form:

ROUTINE routine-name

where routine-name is the name of the routine for which you
wish to make an entry. The order in which you list the routines
is not important, but it is important that you not change the
order once you have created the shareable library image.

Note that there are 'not implemented' entries at the end of
the vector. These are placeholders in the vector for routines
to be added in the future. As long as the routines do not exist,
these placeholders should transfer to a routine that signals, or
returns an error. When you add routines, simply replace a FUTURE
entry with a ROUTINE entry with the name of a new routine.

If you run out of 'not implemented' entries, then extend the
vector with a new set, and increment the minor ID in the GSMATCH
option in the linker options file (see example 5-4) .

For compatibility, you should never delete a routine. If the
routine must be eliminated, replace its name with the name of
the 'not implemented' routine, so that an error will be signalled
if a program (mistakenly) tries to use it.

As examples, entry declarations for the routines GRA_SPHERE,
GRA_OBL_SPH, GRA_SPH_SEC and GRA_NOT_IMPLEMENTED are shown.
Replace these by your own entries.

Example 5-1 Cont'd. on next page

5-7

5.2.3

Integration
5.2 Shareable Library Images

Example 5-1 (Cont.) Transfer Vector Template

;+

ROUTINE
ROUTINE
ROUTINE
FUTURE
FUTURE

GRA_SPHERE
GRA_OBL_SPH
GRA_SPH_SEC
GRA_NOT_IMPLEMENTED
GRA_NOT_IMPLEMENTED

; The last line denotes the end of the module .

. END

Creating the Linker Options File

5-8

A linker options file contains instructions to the linker about how it should
build the executable or shareable image. The use of a linker options file
is rarely necessary for executable images because the linker's defaults are
usually adequate. However, shareable images need additional information,
which can only be supplied by an options file.

A linker options file can specify many different image attributes, but only a
few of these are usually needed for shareable library images. Example 5-2
shows a linker options file template and briefly describes each option that is
used. To customize this linker options file for your own needs, follow the
instructions in the options file comments. A suggestion for the name of the
file would be the facility prefix followed by _OPTIONS, with a file type of
OPT. Thus, for the example GRA facility, the options file name would be
GRA_OPTIONS.OPT.

Example 5-2 provides a template for a linker options file.

Example 5-2 Template for a Linker Options File

!+
! In a linker options file, comments begin with an exclamation
! point. Blanks and tabs may appear interchangeably wherever
! a blank is shown.
!-

!+
! The first line defines the name of your shareable library image.

!-

In this example the name is GRA_SHR. Replace GRA_SHR with the
name of your shareable library image.

If you don't specify the image name, the Linker will use the
name of the first input file.

NAME = GRA_SHR

Example 5-2 Cont'd. on next page

Integration
5.2 Shareable Library Images

Example 5-2 (Cont.) Template for a Linker Options File

!+
! The next line specifies the identification string. The
! identification string is the version number of the shareable

library image. Replace "Vi. 0" with the identification string of
your shareable image.

!-

(You can display this identification string later by using
the ANALYZE/IMAGE command.)

IDENTIFICATION= "Vl.0"

+

!-

The following line specifies the global section match control.
Match control can be used to control whether programs previously
linked with this shareable library image need to be relinked.
The control consists of three parts; match criteria, a major ID
and a minor ID.

The major ID can be changed to force a program to be relinked.
In this example, the major ID is 1. Unless you need to force
programs linked with this shareable library image to be
relinked, do not change the major ID.

The minor ID is used in combination with the match criteria to
determine whether a new link operation is necessary as well.
In this example, the match criteria is "LEQUAL" (less than or
equal). This means that any program linked with a version of
this shareable library image that has a minor ID less than, or
equal to this minor ID, may run. Programs linked with a version
of this shareable library image with a minor ID greater than
this minor ID may not run. The minor ID should be changed when
the size of the transfer vector is changed (increased). You
may wish to change the minor ID value with each version of the
shareable library image (whether the size of the transfer vector
has changed or not), but that is not necessary.

See the VMS Linker Utility Manual for more information.

GSMATCH LEQUAL,1,1

!+
! If you have blocks of data defined with COMMON (FORTRAN, BASIC,

PASCAL), MAP (BASIC), GLOBALDEF (PL/I), PSECT_OBJECT (Ada), or
similar declarations in other languages, you may wish to change
certain attributes of the PSECTs (Program Sections) defined by
these language features.

In this example, we assume that there is a COMMON named GRA_COMMON,
and that we wish to change it's SHR attribute to NOSHR. We also
want to modify the PSECT attributes of read-only data generated by
FORTRAN so that it can be collected into the same image cluster
with the code (read-only data may be shared).

PSECT_ATTR = GRA_COMMON,NOSHR
PSECT_ATTR = $PDATA,PIC,EXE

Example 5-2 Cont'd. on next page

5-9

5.2.4

Integration
5.2 Shareable Library Images

Example 5-2 (Cont.) Template for a Linker Options File

+
The next three lines group the PSECTs contributing to the
shareable library image into clusters. PSECTs with similar
attributes may be collected into the same cluster. Note that
the transfer vector is always placed so that it comes at the
beginning of the shareable library image.

In this example, the transfer vector resides in its own cluster.
Code and read-only data occupy a second one, and the remaining
PSECTs make up the third cluster.

Replace GRA_VECTOR by the PSECT name you specified for your
transfer vector. The other PSECT names shown here are typical
of those generated by high-level languages. You should check
your compilation listings to determine PSECTs used, their

! attributes, and group them accordingly.
!-

COLLECT = CLUSTER1,GRA_VECTOR
COLLECT = CLUSTER2,$CODE,$PDATA
COLLECT = CLUSTER3,$LOCAL,$BLANK,GRA_COMMON

!+
The following lines list the modules that are to be
included in the shareable library image. This
example assumes that all of the necessary object
modules are in an object module library called
GRA_OBJLIB.OLB.

If you need to reference more modules or libraries, add new
lines containing the names of the appropriate files.

GRA_OBJLIB.OLB/LIBRARY

!+
! End of linker options file.
!-

For more information about linker options files and the linking process, see
the VMS Linker Utility Manual.

Creating the Shareable Library Image

5-10

Once you have created the transfer vector and the linker options file, you are
ready to link the shareable library image. Using the example of a shareable
library image for the GRA facility, GRA_SHR, enter the following command
to link the image:

$ LINK/SHAREABLE=GRA_SHR.EXE/MAP=GRA_SHR.MAP/FULL GRA_OPTIONS/OPTIONS

Substitute your own image name and linker options file name for the names
GRA_SHR and GRA_OPTIONS above. The linker creates the shareable
library image as GRA_SHR.EXE and also creates a link map file, containing
useful information about the linked image in a file named GRA_SHR.MAP.
If you also want a cross-reference of symbols used in your shareable library
image, add the command qualifier /CROSS_REFERENCE to the command
line.

5.2.5

Integration
5.2 Shareable Library Images

The link should complete without any error or other messages being
displayed. There is one warning that may occur if any of the modules in
your library are written in either VAX MACRO or VAX BLISS-32. (Programs
written in high-level languages do not exhibit this problem.) The text of
the message is "basing image due to errors in relocatable references." While
the link operation completes successfully and the resulting shareable library
image can be used, you lose the desirable attribute of upwards compatibility
when you link a new image or when an image referenced by your shareable
library image is relinked. The cause of this error is references to external
symbols without using general mode addressing. In VAX MACRO, prefix all
external references with G". In VAX BLISS, either declare the external name
with the attribute ADDRESSING _MODE (general) or use the SWITCHES
statement to force general-mode addressing for externals. See the VAX
MACRO and Instruction Set Reference Manual and the BLISS Language Guide
for more information.

Once you have linked your image, examine the linker map to make sure that
your transfer vector (in this example PSECT $$$$VECTOR) has been allocated
at a base address of zero. If it has not, you will probably need to change the
attributes of some PSECTs to PIC and EXE, as shown in the template linker
options file. See Section 5.3.4.1, Generation of Image Sections, in the VMS
Linker Utility Manual for additional information.

Combining Shareable Images into a Shareable Image Library
Given a collection of shareable images, you can create a shareable image
library using the library command. The format of the library command used
to create a shareable image library is as follows:

$ LIBRARY /CREATE /SHARE library-name -
_$ shareable-image1 [,shareable-image2 [, ...]]

The parameter library-name is the name that you have given the shareable
image library. The shareable-image parameters are the shareable images
you want the shareable image library to contain.

5. 3 Linking to Libraries of Modular Procedures
To use a library of modular procedures, whether in an object module library
or in a shareable image library, specify the name of the library along with the
/LIBRARY file qualifier as one of the input files on the LINK command. For
example:

$ LINK MYPROG,OURLIB/LIBRARY

In this example, MYPROG.OBJ is the main program of what will be an
executable image, and OURLIB.OLB is either an object module library or a
shareable image library. However, if OURLIB is a shareable image library
and if the shareable library image does not reside in the system directory
SYS$LIBRARY, then you must define a logical name for the shareable image
name to point to the file's actual location, as in the following example:

$ DEFINE GRA_SHR OURDISK: [OURLIB]GRA_SHR

This logical name must be defined before the program is run.

5-11

6 Maintenance

6.1 Upward Compatibility

6.1.1

6.1.2

Upward compatibility is a very important concept in the maintenance stage.
If a procedure is upwardly compatible, then changes and updates to the
procedure do not affect the execution and use of the previous versions of that
procedure.

For example, imagine a user-written procedure named LIB_ TOTAL _BILL.
The calling sequence for this procedure is as follows:

CALL LIB_ TOTAL_BILL (sale, tax)

Assume that the user who wrote this procedure decided to update the
procedure so that it could be used to calculate the total bill for credit card
customers. To do this, a third argument, interest, must be added. To be
upwardly compatible, adding the argument interest must not conflict with
the way the procedure was previously run. The new calling sequence would
be as follows:

CALL LIB_ TOT AL_BILL (sale, tax [,interest])

The procedure should be written so that the user can still call the procedure
as it was called before, simply omitting the interest argument.

If, in the updated version of this procedure, the user can still follow the
calling sequence of the previous versions, the procedure is said to be
upwardly compatible.

Making Your Procedures Upwardly Compatible
To be compatible with all future versions of the shareable image, shareable
image procedures must adhere to the following rules (in addition to following
the VMS Modular Programming Standard):

• . A procedure's entry point is referenced through a transfer vector. (For
further information, see Section 5.2.2.)

• A procedure's code and data are position independent.

Regression Testing
Regression testing is a method of ensuring that new features added to a
procedure do not affect the correct execution of previously tested features.
In regression testing, you run established software tests and compare test
results with expected results. If the actual results do not agree with what you
expected, the software being tested may have errors. If errors do exist, the
software being tested is said to have "regressed."

6-1

Maintenance
6.1 Upward Compatibility

6-2

The following steps, as illustrated in Figure 6-1, are involved in regression
testing:

Figure 6-1 Regression Testing

ORGANIZE
TESTS

CREATE
TESTS

1 Create tests

RUN
TESTS

CALCULATE
TEST

RESULTS

COMPARE
RESULTS

ZK-4061-85

Create tests by writing command files to test your software.

2 Organize tests

Organize test files to allow easy access to tests as they are needed.

3 Run tests

To run a single test, submit its command file to the batch queue.

To run multiple tests, create a command file that submits each test to the
batch queue.

4 Calculate test results

Calculate the expected test results either by hand or by using previously
tested software.

5 Compare results

Compare the actual test results to the results you expected. If there are
inconsistencies, repeat your calculation in step 4. If the inconsistency still
exists, examine the changes you have made to the software to discover
the error.

It is important to write new tests and repeat the regression testing steps every
time you add new functionality to the procedure. If you do not do so, the
procedure may regress while the errors go undetected.

6.1.2.1 Updating the Transfer Vector

Maintenance
6.1 Upward Compatibility

The following three steps are required to update the transfer vector:

1 Add the new entry or entries.

To maintain upward compatibility when updating a procedure library,
it is important not to disturb the order of existing entries in the transfer
vector. Always add new entries to the end of the transfer vector and
do not delete or rearrange existing entries. If you carefully follow these
guidlines (which are also given in Section 5.2.2), you should have no
problems updating the transfer vector, and your shareable image will be
upwardly compatible.

2 Check the transfer vector if you suspect that there is a compatibility
problem.

To check the transfer vector, compare the entry addresses found in the
listing file generated by compiling the transfer vector with the entry
addresses in a listing file from the previous version of the transfer vector.
Therefore, always keep a copy of previous listing files. In comparing files,
make sure that the addresses of the symbols have not changed.

If all symbols in the previous version are contained in the current version
and the relative addresses of those symbols have not changed, then the
transfer vector has been changed in an upwardly compatible fashion and
existing programs using symbols within the transfer vector continue to be
valid.

3 Update the minor global section match identification in the linker options
file.

See the linker options file template in Section 5.2.3.

Note that if you pre-extend the transfer vector with dummy entries, then
GSMATCH does not have to be incremented.

6.2 Adding Arguments to Existing Routines
During the normal course of maintenance, it sometimes becomes necessary to
pass new or additional information to an existing procedure rather than create
a new procedure. This new information may be passed to the procedure in
one of the following two ways:

• Directly, by adding new arguments to the procedure

• Using an argument block

6-3

6.2.1

6.2.2

Maintenance
6.2 Adding Arguments to Existing Routines

Adding New Arguments to the Procedure
There are two rules you must follow when directly adding new arguments to
a procedure:

• New arguments must be added at the end of the existing argument list.

• New arguments must be optional.

It is important that new arguments be added at the end of the existing
argument list to maintain upward compatibility. If you change the order
of the existing arguments by placing the new argument at the beginning or
middle of the list, all applications written with the previous version of the
procedure will no longer work.

Your procedure should also treat the new argument as an optional argument.
If the new argument is required, applications that used the previous version
of the procedure are invalidated.

Because you cannot assume that all previously written applications will be
rewritten to include the procedure's new argument, the procedure must test
for the argument's presence before attempting to access it. If the procedure
does not verify the presence of the new argument and attempts to access that
argument when it is not present, the results will be unpredictable.

The passing mechanism of the new argument must conform to the guidelines
established in Section 2.2.1.

Using Argument Blocks

6-4

By using an argument block, you can avoid adding multiple arguments to
your procedure. When an argument block is used, the calling program passes
a single argument to the called procedure. This argument is the address of an
argument block. The argument block is a block of information containing any
information agreed on by the calling and called procedures. This information
is required by the called procedure in order to perform its task.

The argument block itself is simply a contiguous piece of virtual memory.
The information contained in the argument block can be numeric or scalar
data, descriptors, bit vectors, and so on. The format is simply agreed on by
the users of the procedure and its writer.

The first longword in the argument block contains the length of the block.
The length can be in bytes, longwords, or whatever, but it must be agreed on
by both the calling program and the called process and be implemented and
documented as such.

One example of an argument block is the signal argument vector used in
condition handling. A condition handler is called with a signal argument
vector and a mechanism argument vector. Each vector is an example of an
argument block. The signal argument vector in Figure 6-2 is an example of
an argument block.

Maintenance
6.2 Adding Arguments to Existing Routines

Figure 6-2 One Type of Argument Block, the Signal Argument
Vector

Number of longwords of information following

Condition Value

• • • • • • •

Optional arguments providing
additional information about
the exception

Program Counter (PC) at exception

Program Status Longword (PSL) at exception

ZK-4030-85

As you can see, the signal argument vector contains the number of longwords
of actual information in its first longword. What information actually follows
depends on the condition value of the signal.

Note that, if you lengthen an argument block to provide new information to
a called procedure, your procedure should check the length of the argument
block for validity before attempting to access the information. As with adding
new arguments directly to a procedure, the calling program may have been
written to pass the previous, shorter argument block. If your procedure
does not check and attempts to access information past the end of the actual
argument block, the results will be unpredictable.

6. 3 Updating Libraries

6.3.1

Any time modifications or enhancements are made to modular procedures
that are a part of some library, the library containing the procedures must be
updated to reflect the new or changed procedures.

Updating Object Libraries
If the updated procedures are in an object library, the library needs to be
updated so that subsequent access to that library by LINK or other commands
will access the object modules for the new or changed procedures.

To update an object library, use the LIBRARY command with the REPLACE
and OBJECT qualifiers, as follows:

$ LIBRARY /REPLACE library-name filespec[, ...]

In this example library-name is the name you have given the library. The
default file type for library-name is OLB. The name of an object module is
filespec. The default file type for filespec is OBJ.

6-5

6.3.2

Maintenance
6.3 Updating Libraries

Updating Shareable Images

6.3.2.1

6.3.2.2

6-6

If the updated procedures are part of a shareable image, the shareable image
needs to be relinked so that it contains the new or changed versions of any
updated object modules. If new procedures are added, the transfer vector
needs to be updated and recompiled prior to relinking the shareable image. If
new modules are added, the linker options file needs to be updated prior to
relinking. If new procedures and new modules are added, then the transfer
vector and the linker options file will need to be updated. If the transfer
vector is changed, the minor identification value of the GS MATCH must be
incremented by one. When this has been done, the shareable image may be
relinked.

The following sections describe changing the transfer vector and updating the
linker options file.

Changing the Transfer Vector
It is very important that you change the transfer vector in an upwardly
compatible fashion in order to preserve the validity of existing programs that
use symbols contained in it.

To avoid invalidating the transfer vector, adhere to the following rules:

• Do not change the order of existing symbols in the transfer vector.

• Do not remove any existing symbols from the transfer vector.

• Add all new symbols to the end of the existing transfer vector.

Recompile the vector module when the changes have been completed, and
examine the names and relative addresses assigned to the symbols in the
module to ensure that all symbols previously there are still there and that all
relative addresses of those symbols have not changed. If existing symbols are
removed or relocated, then existing programs using the shareable image will
be invalidated.

Updating the Linker Options File
Several items in the linker options file should be changed each time the
transfer vector is updated.

• Increment the minor identification portion of the global section match
identification string.

Changing the minor identification value prevents programs linked
against the new version of the shareable image from activating an older
version (which may not contain new procedures). Global section match
identification values are set with the GSMATCH option.

• If necessary, add any new object modules to be included in the shareable
image to the linker options file.

• Change the identification string to a new version number.

6.3.3 Updating Shareable Image Libraries

Maintenance
6.3 Updating Libraries

If the updated procedures are in a shareable image that is part of a shareable
image library, the shareable image library needs to be updated so that
subsequent access to that library by the LINK command will be to the
updated version of the shareable image.

To update a shareable image library, use the LIBRARY command with the
REPLACE and SHARE qualifiers, as follows:

$LIBRARY /REPLACE /SHARE library-name filespec[, ...]

In this example, library-name is the name you have given the library. The
default file type for library-name is OLB. The name of a shareable image is
filespec. The default file type for filespec is EXE.

6-7

A VMS Modular Programming Standard

This appendix presents the VMS standard for writing modular procedures in
any VAX language. The elements of this standard are the minimum necessary
to interface your software at the callable procedure level with software written
by others, and vice versa.

Nonconformance to any elements in this standard must be indicated in your
procedure's documentation.

Each element of the standard is described in greater detail in other sections of
this manual. References to the appropriate sections appear after each element.
The word "Optional" appears before the section reference if adherence to the
element is not required to maintain modularity.

A.1 Purpose of this Standard

A.2 Applicability

Procedures can be combined to form programs in the following ways:

• Your procedure calls other procedures

• Other procedures call your procedure

• A calling program calls either your procedure or other procedures

In order for procedures to execute as expected when combined to form a
program, general agreements among programmers are necessary. Modular
procedures that do not follow these general agreements could cause other
procedures in the program image to execute incorrectly.

This VMS Modular Programming Standard is designed to give programmers a
common environment in which to write their code. If all programmers follow
this standard, then any modular procedure can be added to a procedure
library without conflicting with any procedures already in the library or with
any that might be added later.

The elements of this standard apply to library procedures and are
recommended for other types of software, including utilities and application
programs. Each DIGITAL-supplied programming language implemented
on the VMS operating system lets you write your procedures to follow this
standard.

This standard applies to procedures that have a public entry point. A public
entry point is one that the linker is able to locate by searching the default
system libraries. This standard does not apply to calls to routines internal to
a module that do not have public entry points, as long as the entire set of
procedures follows the standard.

A-1

VMS Modular Programming Standard
A.3 Coding Rules

A.3 Coding Rules

A.3.1

The coding rules pertain to all procedures. These rules are grouped in the
following categories:

• The Calling Interface

• Initialization

• Reporting Exception Conditions

• AST Reentrancy

• Resource Allocation

• The Format and Content of Coded Modules

• Shareable Images

• Upward Compatibility

Detailed descriptions of the rules for each of these catagories are presented in
the sections that follow.

The Calling Interface

A-2

• Calls to procedures must follow the VAX Procedure Calling and Condition
Handling Standard. Some elements of this standard restrict procedures to
a subset of the VAX Procedure Calling and Condition Handling Standard
to increase the ability of procedures to call each other. (See Introduction
to VMS System Routines.)

• A procedure makes no assumptions about its environment other than
those of this standard. In particular, to operate as specified, a procedure
neither makes assumptions about, nor places requirements on, the calling
program.

• A procedure should not call other procedures or system services if the
resulting combination violates this standard from the calling program's
viewpoint. A procedure can call other procedures or system services
that do not follow optional elements of this standard. However, if
the resulting combination (as seen from the calling program) does not
follow the optional elements, the calling procedure must indicate such
nonconformance in its documentation. (See Section 3.1.5.)

• A modular procedure must provide an interface to its callers that allows
the callers to follow all required elements of this standard.

• Each module should contain only a single public entry point. (Optional.)

• When a procedure uses a JSB entry point, it should also provide an
equivalent call entry point to maintain language-independence. This
is because, although JSB calling sequences may execute faster than
procedure calls, an explicit JSB linkage to an external routine may not be
provided in some high level languages. (Optional. See Section 2.3.)

• The order of required arguments should be the same as that of the
VAX hardware instructions, namely, read, modify, and write. Optional
arguments follow in the same order. However, (according to the VAX
Procedure Calling and Condition Handling Standard) if a function value
cannot be represented in 64 bits or is of type string, the first argument

VMS Modular Programming Standard
A.3 Coding Rules

specifies where to store the function value, and all other arguments are
shifted one position to the right. (See Section 2.2.4.)

• A procedure's caller should indicate omitted trailing optional arguments
either by passing argument list entries that contain zero or by passing
a shortened argument list. However, system services require trailing
arguments and do not adhere to this guideline. (Optional. See
Section 2.2.5.)

• String arguments should always be passed by descriptor. (See
Section 4.2.)

• Procedures must not accept data from, nor return data to, their calling
programs by using implicit overlaid PSECTs or implicit global data areas.
All arguments accepted from or returned to the calling program must
use the argument list and function value registers (RO and RO/Rl). (See
Section 2.2.2.)

• A procedure cannot assume that the implicit outputs of procedures it calls
will remain unchanged if subsequently used as implicit inputs to those
procedures or to companion procedures. (See Section 2.2.2.)

• All user code must be position independent. The data need not be
position independent. However, for improved performance, data
should be initialized to zero at compile or link time to avoid either
position-independent constants or position-dependent addresses. (See
Section 3 .1.1.)

• Position-independent references (in a module) to another PSECT must
use longword relative addressing so the VAX Linker can correctly allocate
the data PSECT anywhere with respect to the code PSECT no matter how
many code modules are included.

• External references must use general-mode addressing to allow the
referenced procedures to be put in a shareable image without requiring
changes to the calling program. (See Section 5.2.4.)

• Procedures cannot require their callers to pass dynamic string descriptors.
(See Section 4.2.)

• Some procedure interface specifications retain state information from one
call to the next, even though the procedures are not resource allocating.
The interface specification uses one of the following techniques (in order
of decreasing preference) to permit sequences of calls from independent
parts of a program by either eliminating the use of static storage or
overcoming its limitations:

1 The interface specification consists of a sequence of calls to a set of
one or more procedures - the first procedure allocates and returns
(as an output argument to the calling program) one of the following:

• The address of heap storage

• Some other processwide identifying value

This argument is passed to the other procedures explicitly by the
calling program, and the last procedure deallocates any heap storage
or processwide identifying value.

2 The procedure's caller allocates all storage and passes the address on
each call.

A-3

A.3.2

A.3.3

VMS Modular Programming Standard
A.3 Coding Rules

Initialization

3 The interface specification consists of a single call, where the calling
program passes the address of one or more action routines and
arguments to be passed to them. The procedure calls the action
routines during its execution. Results are retained by the procedure
across calls to the action routines. (No static storage used.)

4 The interface specification consists of a sequence of calls to a set of
one or more procedures. The first procedure, among other things,
saves the contents of any still active static storage on a push down
stack in heap storage, and the last procedure, among other things,
restores the old contents of static storage. Thus, static storage is made
available for implicit arguments to be passed from one procedure to
the next in the sequence of calls (unknown to the calling program).
However, if an exception can occur anywhere in the sequence, the
calling program must establish a condition handler that calls the last
procedure in the event of a stack unwind (to restore the old contents
of static storage).

• If a procedure requires initialization once for each image activation, it is
done without the caller's knowledge by one of the following:

1 Initializing at compile time

2 Initializing at link time

3 Adding a dispatch address to PSECT LIB$INITIALIZE

4 Testing and setting a statically allocated first-time flag on each call

• A procedure must not use LIB$INITIALIZE to establish a condition
handler before the main program is called if its action might conflict with
that of other condition handlers established before the main program. For
more information about initializing modular procedures, see Section 3.2.

Reporting Exception Conditions

A-4

• A procedure must not print error or informational messages either
directly or by calling the $PUTMSG system service. It must either
return a condition value in RO as a function value or call LIB$SIGNAL or
LIB$STOP to output all messages. (LIB$SIGNAL and LIB$STOP may be
called either directly or indirectly.) (See Section 2.4.)

A.3.4

A.3.5

AST Reentrancy

VMS Modular Programming Standard
A.3 Coding Rules

• To be AST-reentrant, a procedure must execute correctly while allowing
any procedure (including itself) to be called between any two instructions.
The other procedure can be an AST-level procedure, a condition handler,
or another AST-reentrant procedure. (See Section 3.3.)

• A procedure that uses no static storage and calls only AST-reentrant
procedures is automatically AST-reentrant. (See Section 3.3.3.)

• If a procedure uses static storage, it must use one of the following
methods to be called from AST and non-AST levels:

Perform access and modification of the data base in a single
uninterruptable instruction. This can be done only from
VAX MACRO, and emulated instructions are not allowed. (See
Section 3.3.4.1.)

Detect concurrency of data base access with "test and set" instructions
at each access of the data base. (See Section 3.3.4.2.)

Keep a call-in-progress count incremented upon entry to the
procedure and decremented upon return. (See Section 3.3.4.3.)

Disable AST interrupts on entry to the procedure and restore the state
of the AST enables on return. (See Section 3.3.4.4.)

• If a procedure performs IjO from the AST level by calling VMS RMS
$GET and $PUT system services, it must check for the record stream
active error status (RMS$_RSA). If this error is encountered, the
procedure issues the $WAIT system service and then retries the $GET
or $PUT system service. (See Section 3.3.5.)

• A procedure should not depend on AST interrupts being disabled
to execute correctly if there are other coding methods available. For
example, RMS completion routines are implemented via ASTs and will
not work if ASTs are disabled. (See Section 3.3.)

Resource Allocation

• A procedure should not allocate static storage unless it is a processwide,
resource-allocating procedure or unless it must retain results for implicit
inputs on subsequent invocations.

• Timing procedures and resource allocation procedures should make
statistics available for performance evaluation and debugging by
providing the entry points fac_SHOW_name and fac_STAT_name.
(Optional. See Section 4.3.)

• If a procedure uses a processwide resource, it calls the appropriate
resource allocating library procedure or system service to allocate the
resource to avoid conflict with allocations made to other procedures. To
conserve resources, a procedure that requests resource allocation does one
of the following:

Calls the deallocation procedure before returning to the calling
program

A-5

A.3.6

A.3.7

VMS Modular Programming Standard
A.3 Coding Rules

Remembers the allocation in static storage and calls the deallocation
procedure later

Passes the responsibility for deallocation back to the calling program

Allocates a fixed number of the resources independent of the number
of times it is called

(See Section 2.4 and Section 3.1.5.)

The Format and Content of Coded Modules

• .Each module must be documented with a module description. (See
Section 2.5.1.)

• Each procedure must be documented with a procedure description. (See
Section 2.5.2.)

• When symbol definitions are to be coordinated between more than
one module, (such as control blocks, procedure argument values, and
completion status codes), the definitions should be centralized in a
common source file. Note, however, that the modules must be written in
the same language. (See Section 3.1.3.)

• Instructions and statements should be uppercase, while comments are in
upper and lowercase. (Optional. See Section 3.1.4.2.)

• Spaces should be added to improve readability. (Optional. See
Section 3.1.4.3.)

• Block comments should be used. (Optional. See Section 3.1.4.4.)

• Use symbols rather than numbers in the body of the procedure.
(Optional. See Section 3.1.4.1.)

• Procedure entry point names, module names, and PSECT names must
conform to the naming conventions. (See Section 3.1.2.2, Section 3.1.2.4,
and Section 3.1.2.5.)

• DIGITAL recommends that you also adhere to the naming conventions in
chosing names for facilities and files. (Optional. See Section 3.1.2.1 and
Section 3.1.2.3.)

Shareable Images

A-6

• A procedure's code is position independent. All references to external
locations such as VMS System Service entry points, use general
addressing mode. (Optional. See Section 5.2.4.)

A.3.8 Upward Compatibility

VMS Modular Programming Standard
A.3 Coding Rules

• When a new version of a procedure replaces an existing library procedure,
all new arguments should be added at the end of the call sequence
and made optional to maintain upward compatibility. (Optional. See
Section 2.2.5 and Section 6.1.)

• A procedure's entry points are vectored using a separate MACRO module
containing TRANSFER declarations. (Optional. See Section 5.2.2.)

• A procedure's code and data is position independent. (See Section 3.1.1.)

A-7

B Argument Characteristics

8.1 VMS Usage

Each explicit argument is defined in terms of VMS usage, data type, access
mechanism and passing mechanism. These four argument attributes are
described in the sections below.

The VMS usage entry indicates the abstract data structure of the argument.
Table B-1 contains a list of the VMS data structures.

Table B-1 VMS Data Structures

Data Structure

access_bit _names

access_mode

address

address_range

arg_list

ast_procedure

boolean

byte_signed

Definition

Homogeneous array of 32 quadword
descriptors; each descriptor points to the
name of one of the 32 bits in an access mask.

Unsigned byte denoting a hardware access
mode. This unsigned byte can take four
values: 0 specifies kernel mode; 1, executive
mode; 2, supervisor mode; and 3, user mode.

Unsigned longword denoting the virtual
memory address of either data or code,
but not of a procedure entry mask (which is of
type "procedure").

Unsigned quadword denoting a range of virtual
addresses, which identify an area of memory.
The first longword specifies the beginning
address in the range; the second longword
specifies the ending address in the range.

Procedure argument list consisting of one
or more longwords. The first longword
contains an unsigned integer count of the
number of successive, contiguous longwords,
each of which is an argument to be passed
to a procedure by means of a VAX CALL
instruction.

Unsigned longword integer denoting the entry
mask to a procedure to be called at AST level.
(Procedures that are not to be called at AST
level are of type "procedure".)

Unsigned longword denoting a boolean truth
value flag. This longword may have only two
values: 1 (true) and 0 (false).

This VMS data type is the same as the data
type "byte (signed)"in Table B-2.

B-1

Argument Characteristics
B.1 VMS Usage

Table B-1 (Cont.) VMS Data Structures

Data Structure

byte_unsigned

channel

char_string

complex_number

cond_value

context

date_ time

device_name

ef_cluster_name

ef_number

exit_handler _block

fab

B-2

Definition

This VMS data type is the same as the data
type "byte integer (unsigned)" in Table 8-2.

Unsigned word integer that is an index to an
1/0 channel.

String of from 0 to 65,535 8-bit characters.
This VMS data type is the same as the data
type "character string" in Table 8-2.

One of the VAX standard complex floating
point data types.

Unsigned longword integer denoting a
condition value (that is, a return status or
system condition code), which is typically
returned by a procedure in RO.

Unsigned longword that is used by a called
procedure to maintain position over an iterative
sequence of calls. It is usually initialized by the
caller, but thereafter manipulated by the called
procedure.

64-bit unsigned, binary integer denoting a
date and time as the number of elapsed
100-nanosecond units since 00:00 o'clock,
November 17, 1858. This VMS data type is
the same as the data type "absolute date and
time" in Table B-2.

Character string denoting the name of a
device. It can be a logical name, but if it is, it
must translate to a valid device name.

Character string denoting the name of an event
flag cluster. It can be a logical name, but if it
is, it must translate to a valid event flag cluster
name.

Unsigned longword integer denoting the
number of an event flag.

Variable-length structure denoting an exit
handler control block.

Structure denoting an RMS file access block.

Argument Characteristics
B.1 VMS Usage

Table B-1 (Cont.) VMS Data Structures

Data Structure

file_protection

floating_point

function _code

io_status_block

item_list_2

item_list_3

item _quota_list

lock_id

Definition

Unsigned word that is a 16-bit mask that
specifies file protection. The mask contains
four 4-bit fields, each of which specifies the
protection to be applied to file access attempts
by one of the four categories of user: from
the rightmost field to the leftmost field, (1)
system users, (2) the file owner, (3) users in
the same UIC group as the owner, and (4) all
other users (the world). Each field specifies,
from the rightmost bit to the leftmost bit: (1)
delete access, (2) execute access, (3) write
access, (4) read access. Set bits indicate that
access is denied.

One of the VAX standard floating-point data
types.

Unsigned longword specifying the exact
operations a procedure is to perform. This
longword has two word-length fields: the
first field is a number specifying the major
operation; the second field is a mask or
bitvector specifying various suboperations
within the major operation.

Quadword structure containing information
returned by a procedure that completes
asychronously. The information returned
varies depending on the procedure.

Structure that consists of one or more
item descriptors and that is terminated by
a longword containing 0. Each item descriptor
is a 2-longword structure that contains three
fields.

Structure that consists of one or more
item descriptors and that is terminated by
a longword containing 0. Each item descriptor
is a 3-longword structure that contains four
fields.

Structure that consists of one or more quota
descriptors and that is terminated by a byte
containing a value defined by the symbolic
name PQL$_LISTEND. Each quota descriptor
consists of a 1-byte quota name followed by
an unsigned longword containing the value for
that quota.

Unsigned longword integer denoting a lock
identifier. This lock identifier is assigned by
the lock manager facility to a lock when the
lock is granted.

B-3

Argument Characteristics
B.1 VMS Usage

Table 8-1 (Cont.) VMS Data Structures

Data Structure

lock_status_block

lock_value_block

logical_name

longword_signed

longword_unsigned

mask_byte

mask_longword

mask_quadword

mask_word

null_arg

octaword_signed

octaword_unsigned

8-4

Definition

Structure into which the lock manager facility
writes status information about a lock. A
lock status block always contains at least two
longwords: the first word of the first longword
contains a status code; the second word of
the first longword is reserved to DIGIT AL;
and the second longword contains the lock
identifier (VMS type "lock_id" .)

16-byte block that the lock manager facility
includes in a lock status block if the user
requests it. The contents of the lock value
block are user-defined and are not interpreted
by the lock manager facility.

Character string of from 1 to 255 characters
that identifies a logical name or equivalence
name to be manipulated by VMS logical name
system services. Logical names that denote
specific VMS objects have their own VMS
types: for example, a logical name identifying
a device has the VMS type "device_name".

This VMS data type is the same as the data
type "longword integer (signed)" in Table 8-2.

This VMS data type is the same as the data
type "longword (unsigned)" in Table 8-2.

Unsigned byte wherein each bit is interpreted
by the called procedure. A mask is also
referred to as a set of "flags" or as a
"bitmask".

Unsigned longword wherein each bit is
interpreted by the called procedure. A mask
is also referred to as a set of "flags" or as a
"bitmask".

Unsigned quadword wherein each bit is
interpreted by the called procedure. A mask
is also referred to as a set of "flags" or as a
"bitmask".

Unsigned word wherein each bit is interpreted
by the called procedure. A mask is also
referred to as a set of "flags" or as a
"bitmask".

Unsigned longword denoting a "null argument."
A "null argument" is an argument whose only
purpose is to "hold a place" in the argument
list.

This VMS data type is the same as the data
type "octaword integer (signed)" in Table 8-2.

This VMS data type is the same as the data
type "octaword (unsigned)" in Table 8-2.

Argument Characteristics
B.1 VMS Usage

Table B-1 (Cont.) VMS Data Structures

Data Structure

page_protection

procedure

process_id

process_name

quadword_signed

quadword_unsigned

rights_holder

rights_id

rab

section_id

section_name

system _access_id

time_name

uic

Definition

Unsigned longword specifying page protection
to be applied by the VAX hardware.
Protection values are specified using bits 0
to 3; bits 4 to 31 are ignored.

Unsigned longword denoting the entry mask
to a procedure that is not to be called at AST
level. (Arguments specifying procedures to
be called at AST level have the VMS type
"ast_procedure" .)

Unsigned longword integer denoting a process
identifier (PIO). This process identifier is
assigned by VMS to a process when the
process is created.

Character string that specifies the name of a
process.

This VMS data type is the same as the data
type "quadword integer (signed)" Table B-2.

This VMS data type is the same as the data
type "quadword (unsigned)" in Table B-2.

Unsigned quadword specifying a user's access
rights to a system object. This quadword
consists of two fields: the first is an unsigned
longword identifier (VMS type "rights_id") and
the second is a longword bitmask wherein
each bit specifies an access right.

Unsigned longword denoting a rights identifier,
which identifies an interest group in the
context of the VMS security environment.
This rights environment may consist of all or
part of a user's User Identification Code (UIC).

Structure denoting an RMS record access
block.

Unsigned quadword denoting a global section
identifier. This identifier specifies the version
of a global section and the criteria to be used
in matching that global section.

Character string denoting a global section
name. This character string can be a logical
name, but it must translate to a valid global
section name.

Unsigned quadword that denotes a system
identification value that is to be associated
with a rights database.

Character string specifying a time value in VMS
format.

Unsigned longword denoting a User
Identification Code (UIC).

B-5

Argument Characteristics
8.1 VMS Usage

B.2 Data Type

B-6

Table B-1 (Cont.) VMS Data Structures

Data Structure

user_arg

varying_arg

vector _byte_signed

vector _byte_u nsigned

vector _longword_signed

vector _longword_unsigned

vector _quadword_signed

vector _quadword_unsigned

vector _word_signed

vector _word_unsigned

word_signed

word_unsigned

Definition

Unsigned longword denoting a user-defined
argument. This longword is passed to a
procedure as an argument, but the contents of
the longword are defined and interpreted by
the user.

Unsigned longword denoting a variable
argument. A variable argument can have
variable types, depending on specifications
made for other arguments in the call.

A homogeneous array whose elements are all
signed bytes.

A homogeneous array whose elements are all
unsigned bytes.

A homogeneous array whose elements are all
signed longwords.

A homogeneous array whose elements are all
unsigned longwords.

A homogeneous array whose elements are all
signed quadwords.

A homogeneous array whose elements are all
unsigned quadwords.

A homogeneous array whose elements are all
signed words.

A homogeneous array whose elements are all
unsigned words.

This VMS data type is the same as the data
type "word integer (signed)" in Table B-2.

This VMS data type is the same as the data
type "word (unsigned)" in Table B-2.

An argument's data type indicates the VAX data type that must be used for
the argument.

Table B-2 contains the data types allowed by the VAX Procedure Calling and
Condition Handling Standard.

Argument Characteristics
B.2 Data Type

Table B-2 VAX Standard Data Types

Data Type

Absolute date and time

Byte integer (signed)

Bound label value

Bound procedure value

Byte (unsigned)

COBOL intermediate temporary

O_floating

O_floating complex

Descriptor

F_floating

F _floating complex

G_floating

G_floating complex

H_floating

H _floating complex

Longword integer (signed)

Longword (unsigned)

Numeric string, left separate sign

Numeric string, left overpunched sign

Numeric string, right separate sign

Numeric string, right overpunched sign

Numeric string, unsigned

Numeric string, zoned sign

Octaword integer (signed)

Octaword (unsigned)

Packed decimal string

Quadword integer (signed)

Quadword (unsigned)

Character string

Aligned bit string

Varying character string

Unaligned bit string

Word integer (signed)

Word (unsigned)

Unspecified

Procedure entry mask

Sequence of instruction

Symbolic Code

DSC$K_DTYPE_ADT

DSC$K_DTYPE_B

DSC$K_DTYPE_BL V

DSC$K_DTYPE_BPV

DSC$K_DTYPE_BU

DSC$K_DTYPE_CIT

DSC$K_DTYPE_D

DSC$K_QTYPE_oc

DSC$K_DTYPE_osc

DSC$K_DTYPE_F

DSC$K_DTYPE_FC

DSC$K_DTYPE_G

DSC$K_DTYPE_GC

DSC$K_DTYPE_H

DSC$K_OTYPE_HC

DSC$K_DTYPE_L

DSC$K_DTYPE_LU

DSC$K_DTYPE_NL

DSC$K_DTYPE_NLO

DSC$K_DTYPE_NR

DSC$K_DTYPE_NRO

DSC$K_DTYPE_NU

DSC$K_DTYPE_NZ

DSC$K_DTYPE_Q

DSC$K_DTYPE_QU

DSC$K_DTYPE_P

DSC$K_DTYPE_Q

DSC$K_DTYPE_QU

DSC$K_DTYPE_T

DSC$K_DTYPE_V

DSC$K_DTYPE_VT

DSC$K_DTYPE_vu

DSC$K_DTYPE_W

DSC$K_DTYPE_ WU

DSC$K_DTYPE_Z

DSC$K_DTYPE_ZEM

DSC$K_DTYPE_ZI

B-7

Argument Characteristics
B.3 Access Mechanism

B.3 Access Mechanism
The argument access entry describes the way in which the called routine
accesses the data specified by the argument. The following three methods of
access are the most common (the formal argument is the procedure argument
from the point of view of the called procedure, and the actual argument is the
procedure argument from the point of view of the procedure's caller):

• Read only. The formal argument is a constant. The associated actual
argument may only be read; it may not be written to or modified.

• Write only. The formal argument is a variable. The value of the
associated actual argument is written into the variable by the called
procedure.

• Modify. The formal argument is a variable. The value of this variable
is written by the procedure's caller and may be read or modified by the
called procedure.

The following is a complete list of the access types allowed by the VAX
Procedure Calling and Condition Handling Standard:

• Read only

• Write only

• Modify

• Function call (before return)

• JMP after unwind

• Call after stack unwind

• Call without stack unwind

B.4 Passing Mechanisms

B-8

The argument passing mechanism is the way in which an argument specifies
the actual data to be used by the called routine. There are three types of
passing mechanisms:

• By value. When the longword argument in the argument list contains
the actual data to be used by the routine, the actual data is said to be
passed to the routine by value. Note that, since an argument is only one
longword in length, only data that can be represented in one longword
can be passed by value.

• By reference. When the longword argument in the argument list contains
the address of the data to be used by the routine, the data is said to be
passed by reference.

• By descriptor. When the longword argument in the argument list contains
the address of a descriptor, the data is said to be passed by descriptor. A
descriptor consists of two or more longwords (depending on the class of
descriptor used), which describe the location, length, and data type of the
data to be used by the called routine.

Argument Characteristics
B.4 Passing Mechanisms

Figure B-1 illustrates the three passing mechanisms.

Table B-3 contains the passing mechanisms allowed by the VAX Procedure
Calling and Condition Handling Standard.

Table B-3 VAX Standard Passing Mechanisms

Passing Mechanism

By value

By reference

By reference, array reference

By descriptor

By descriptor, fixed-length

By descriptor, dynamic string

By descriptor, array

By descriptor, procedure

By descriptor, decimal string

By descriptor, noncontiguous array

By descriptor, varying string

By descriptor, varying string array

By descriptor, unaligned bit string

By descriptor, unaligned bit array

By descriptor, string with bounds

By descriptor, unaligned bit string with
bounds

Descriptor Code

DSC$K_CLASS_S
DSC$K_CLASS_D
DSC$K_CLASS_A
DSC$K_CLASS_P
DSC$K_CLASS_SD
DSC$K_CLASS_NCA
DSC$K_CLASS_VS
DSC$K_CLASS_VSA
DSC$K_CLASS_UBS
DSC$K_CLASS_UBA
DSC$K_CLASS_SB
DSC$K_CLASS_UBSB

B-9

Argument Characteristics
B.4 Passing Mechanisms

Figure B-1 Procedure Argument Passing Mechanisms

B-10

ARGUMENT LIST

l N
(AP)

ARG 1

ARG 2

ACTUAL VALUE

ARG N

N (AP)

ARG 1

ARG 2

POINTER TO
ACTUAL VALUE

ARG N

N

ARG 1

ARG 2

POINTER TO
DESCRIPTOR

ARG N

(AP)

(a) ARGUMENT PASSED BY VALUE

(b) ARGUMENT PASSED BY REFERENCE

DATA

ACTUAL VALUE

(c) ARGUMENT PASSED BY DESCRIPTOR

DESCRIPTOR

CLASS D TYPE

POINTER

Note: ARG 1, ARG 2, and ARG N
can be passed by value, by
reference, or by descriptor
in any of these examples.

:(AP) = argument pointer

N =number of arguments

DATA

H

T
I

ZK-1962-84

Index

A
Argument

access mechanism • B-8
adding new• 6-3
characteristics• B-1
explicit• 2-3
implicit• 2-3
optional• 2-11, A-3
order• 2-11, A-2
passing mechanism• B-8
VMS data types• B-6
VMS usage • B-1

Argument blocks• 6-4
AST (asynchronous system trap)

condition handling at AST level• 3-26
definition • 3-19
disabling interrupts• 3-24
handler• 3-19, 3-21
1/0 at AST-level• 3-25, A-5
interrupt• 3-19
reentrancy•3-19, 3-20, A-5
routine• 3-19
thread• 3-19
writing AST-reentrant procedures• 3-20

Asynchronous system trap

See AST

B
Black box testing• 4-2
Bound procedure value• 3-1 2
Busy wait• 3-21

c
Call-in~progress count• 3-24
Case

using upper and lower• A-6
CMS (Code Management System)• 1-12
Code

AST-reentrant• 3-19

Code (cont'd.)

fully-reentrant• 3-19
maintaining readability• 3-7
position-independent• 3-1
writing AST-reentrant procedures• 3-20

Coding guidelines• 3-1
Comment

block• 3-9, A-6
delimiters• 3-9

Common source files• 3-7, A-6
declarations• 3-7

Condition handling
at AST level• 3-26

Condition values• 3-3

D
Data types • B-6
Deadlock• 3-21
Design stage• 2-1
Documentation

module description• 2-19, A-6
procedure description• 2-20, A-6

DSC$K_DTYPE_BPV•3-12

See also User-action routine
DSC$K_DTYPE_ZEM • 3-11

See also User-action routine

E
Entry points

See JSB entry points
Event flag• 2-16

F
Facility

creation • 5-1
library• 3-2
naming• 5-1 .
naming conventions• 3-2
number•3-3

lndex-1

Index

Facility (cont'd.)

prefix• 3-2, 5-1
First-time flag

testing and setting• 3-14
Full-reentrancy • 3-19

I
1/0 • 2-16, A-4

asynchronous• 3-25
at AST-level• 3-25
file• 2-18
synchronous• 3-25

Initialization• 3-12, A-4
at run time• 3-1 7
of modular procedures• 3-12
of storage• 3-14
using LIB$1NITIALIZE • 3-17, A-4

Integration stage• 5-1
Integration testing• 4-1, 4-5

J
JSB entry points• 2-12, A-2

L
Language independence

testing for• 4-1, 4-4
Language-Sensitive Editor• 1-12
Levels of abstraction• 2-2
LIB$1NITIALIZE • 3-17

See also Initialization
Library

updating • 6-5
Library facility• 3-2
Linker options file

creating• 5-8
updating• 6-6

Lock manager• 3-21
Logical unit numbers• 2-16

lndex-2

M
MMS (Module Management System)• 1-12
Monitoring procedures• 4-8, A-5

in the Run-Time Library• 4-9
timer•4-8

N
Naming conventions• 3-1 , A-6

for facilities• 3-2
for files• 3-4
for modules• 3-4
for procedures• 3-3
for PSECT s • 3-5

0
Object module library

creating• 5-2
updating • 6-5

Organizing
files and modules• 2-1
procedures• 2-1

p
PCA (Performance and Test Coverage

Analyzer) • 1-12
Performance analysis• 4-8
Position-independence• 3-1, A-3
Procedures

entry mask • 3-11
entry point names• 3-3
grouping • 5-1
interface• 2-3, A-2
libraries• 5-1

Program section

See PSECT
PSECT•2-13, 3-5, A-3

DIGITAL-written• 3-5
LIB$1NITIALIZE • 3-17
user-written• 3-5

R
Race condition

avoiding at AST-level• 3-21
elimination of• 3-21

Reentrancy
AST•3-19
full •3-19

Regression testing• 6-1
Returning condition values• 2-23
RMS (Record Management Services) • 1-11
Run-Time Library procedures• 1-6

s
SCA (Source Code Analyzer)• 1-13
Screen management resources• 2-17
Shareable image• A-6

creating• 5-4
updating• 6-6

Shareable image library
creating• 5-10
updating• 6-7

SHOW entry point• 4-8
Signaling and condition handling• 2-22
Signaling error conditions• 2-23
Single instruction access• 3-22
Software life cycle• 1-1
ST AT entry point• 4-9
Storage• 2-12

heap•2-12
initializing • 3-14
stack• 2-12
static•2-13, A-5
summary• 2-15

Symbol
cross-reference listing• 3-8
definitions• A-6
in place of numbers• 3-8, A-6

System resources• 2-12
System service• 3-11, A-2

what is available• 1-8

T
Terminal l/0•2-17
Test and set instructions• 3-23
Testing new procedures• 4-1

black box• 4-2
integration• 4-1 , 4-5
language independence• 4-1, 4-4
modularity• 4-1
reentrancy • 4-6
regression• 6-1
unit•4-1
white box• 4-3

Threads of execution • 3-19

Index

Tools to aid in application development• 1-12
Transfer vector

changing• 6-6
creating• 5-5
updating• 6-3

u
Unit testing• 4-1

black box• 4-2
white box• 4-3

Upward compatibility• 6-1 , A-7
User-action routine• 2-7

interface• 3-11
optional• 3-11
passing • 3-11

Using procedure libraries• 5-11
Utility routines• 1-10

v
VAX DEC/CMS (Code Management

System)• 1-12
VAX DEC/MMS (Module Management

System) • 1-12
VAX DEC/Test Manager• 1-12
VMS usage • B-1

w
White box testing• 4-3

lndex-3

Reader's Comments Guide to Creating VMS
Modular Procedures

AA-LA58A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find ~nformation) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

·-;;~t;;~:d Here ~d Ta~ ------------------~llll-------;~£~~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 •• 1

-- Do Not Tear - Fold Here --

I

I
I
I
I
I
I

