
VMS

VMS Access Control List Editor Manual

Order Number AA-LA41A-TE

VMS Access Control List
Editor Manual

Order Number: AA-LA41 A-TE

April 1988

This document describes the VMS Access Control List Editor.

Revision/Update Information: This document supersedes the
VAX/VMS Access Control List Editor
Reference Manual, Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~U~Dll~DTM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO Rico* CANADA INTERNATIONAL

ZK4531

Digital Equipment Corporation Digital Equipment
P.O. Box CS2008 of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire 100 Herzberg Road
03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital's local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®'
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

®' Postscript is a trademark of Adobe Systems, Inc.

Contents

PREFACE

NEW AND CHANGED FEATURES

ACL Editor Description

1

2

3
3.1
3.2
3.2.1
3.3
3.4

4

5
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.2
5.3

6
6.1
6.2

AN OVERVIEW OF ACLS

INVOKING THE ACL EDITOR

KEYPAD EDITING
ACL Editing Commands
VT200-0nly ACL Editing Commands

Using the PASTE Buffer• ACL-11
Control Key ACL Editing Commands
Terminating the ACL Editing Session

RECOVERING AN ACL EDITING SESSION

ACCESS CONTROL LISTS
Identifier ACEs

Specifying Identifiers ·in Identifier ACEs • ACL-1 3
Specifying Options in Identifier ACEs • ACL-14
Specifying Access in Identifier ACEs • ACL-15
Sample Identifier ACEs • ACL-16

Default Protection ACE
Security Alarm ACE

CUSTOMIZING THE ACL EDITOR
Modifying Variables in the ACL Section File
Using the ACL Editor CALL_USER Routine

vii

ix

ACL-1

ACL-1

ACL-2

ACL-3
ACL-3

ACL-10

ACL-11
ACL-12

ACL-12

ACL-13
ACL-13

ACL-17
ACL-18

ACL-19
ACL-19
ACL-21

v

Contents

ACL Editor Usage Summary

ACL Editor Qualifiers

INDEX

FIGURES
ACL-1

vi

/JOURNAL
/MODE
/OBJECT
/RECOVER

VT200 Keypad

ACL-25
ACL-26
ACL-27
ACL-28

ACL-23

ACL-24

ACL-4

Preface

Intended Audience
This manual is intended for all system users.

Document Structure
This document consists of the following three sections:

• Description-Provides an overview and detailed usage information for
the Access Control List (ACL) Editor; describes the keypad commands
used to create and modify ACLs.

• Usage Summary-Outlines the following ACL editor information:

-Invoking the editor
-Exiting from the editor
-Directing output
-Restrictions or privileges required

• Qualifiers-Describes ACL editor qualifiers, including format, parameters,
and examples.

Associated Documents
To learn more about access control lists, refer to the Guide to VMS System
Security.

If you are a system programmer and plan on modifying the VAXTPU
ACL section file from which the ACL editor was built, you should be
familiar with the VAX Text Processing Utility Manual. It describes the
VAXTPU programming language and the concepts involved in modifying
and processing a V AXT PU section file.

vii

Preface

Conventions

viii

The following conventions are observed in this manual:

Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$TYPE MYFILE.DAT

input-file, ...

[logical-name]

quotation marks
apostrophes

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks (") . The term
apostrophe (') is used to refer to a single
quotation mark.

New and Changed Features

The following technical features have been added to the VMS Access Control
List Editor Manual for VMS Version 5.0:

• Support for access control lists (ACLs) on batch and device (printer,
server, and terminal) queues. Specify the keyword QUEUE to the
/OBJECT qualifier to edit ACLs on queues.

• Addition of a new CALL _USER routine function code
ACLEDIT$C_MESSAGE. ACLEDIT$C_MESSAGE assumes the input
string is a VMS error code and returns in the ACL editor message window
the message text associated with the error code.

ix

1

ACL Editor Description
An access control list (ACL) is a collection of entries that grant or deny access
for specific users or groups of users of a system object. By carefully defining
the individual access control list entries (ACEs) that make up an ACL, you can
control user access to a particular object more closely than through the use of
the default UIC-based protection scheme.

The Access Control List (ACL) editor is a screen-oriented editor used to create
and maintain ACLs. You can use ACLs to define types of access for users of a
system object, such as a file.

The description section of the ACL editor is divided into the following six
parts:

• Section 1 provides an overview of access control lists (ACLs).

• Section 2 describes how to invoke the ACL editor.

• Section 3 displays the keypad commands available for use during an ACL
editing session.

• Section 4 explains how to recover from an editing session that was
interrupted abnormally.

• Section 5 describes the different types of ACEs available in an access
control list.

• Section 6 describes how to customize the ACL editor.

An Overview of ACLs
An access control list consists of access control list entries (ACEs) that grant
or deny access to a particular system object. You can place ACLs on the
following types of objects:

• Devices

• Files (including directory files)

• Group global sections

• System global sections

• Logical name tables

• Queues

Typically, ACLs are used when you want to provide access to a system object
for some, but not all users. When the VMS operating system receives a
request for access to an object having an ACL, it searches each access control
list entry in the ACL, stopping at the first match. If another match occurs
in the ACL, it has no effect. Therefore, ACEs granting or denying access
to a system object for specific users should appear in the ACL before ACEs
identifying broader classes of users.

ACL-1

ACL Editor Description

For example, if you want to grant user SMITH read access to a system object
and deny all other interactive users all types of access to the object, place the
ACE for user SMITH before the ACE identifying all interactive users on the
system.

The use of ACLs is optional. Using ACLs permits more detail in the defining
of user access and can enhance the security of system objects. However,
creating and maintaining ACLs requires both user and processor time.

Each ACL consists of one or more ACEs. There is no limit to the number of
ACEs that an ACL can contain, or to the number of characters in an ACE.
However, long ACLs increase the amount of time necessary to gain access to
an object.

The following types of ACEs are available in an ACL:

• Identifier

• Default protection

• Security alarm

Refer to Section 5 for a description of these ACEs.

2 Invoking the ACL Editor

ACL-2

Use the ACL editor to define an ACL for a system object or to edit an existing
ACL. Invoke the ACL editor using the DCL command EDIT/ ACL followed
by the name of the object whose ACL you want to create or modify. For
example, the following command invokes the ACL editor to create an ACL
for the file INVENTORY.DAT:

$ EDIT/ACL INVENTORY.DAT

You can also invoke the ACL editor using the DCL command SET ACL/EDIT.
In addition to invoking the ACL editor, the SET ACL command can be used
to manipulate entire ACLs or individual ACEs without invoking the ACL
editor.

If the object whose ACL you want to create or modify is not a file, you must
specify the type of object with the /OBJECT=type qualifier. For example, the
following command invokes the ACL editor to create an ACL for the disk
DOCD$:

$ EDIT/ACL/OBJECT=DEVICE DOCD$

You can invoke the ACL editor to modify an existing ACL or to create a
new ACL on the system object. If a system object has an ACL, the ACL will
appear on the screen when the ACL editor is invoked.

The ACL editor can be invoked from within a program written in any VAX
language that generates calls using the VAX Calling Standard. Refer to the
VMS Utility Routines Manual for more information on using the callable
interface to the ACL editor.

3 Keypad Editing

ACL Editor Description

The ACL editor provides several features that simplify its use, including the
following:

• Automatic text insertion (prompt mode)

• Dynamic ACE syntax checking

• Keypad editing that includes online help

By default, the ACL editor prompts for each ACE and provides values
in the various fields within an ACE whenever possible. The /MODE
qualifier controls the choice of mode. To disable prompting, specify
/MODE=NOPROMPT with the SET ACL or EDIT/ ACL command.

The FIELD, ITEM, and ENTER commands on the keypad enable you to take
full advantage of prompt mode in the ACL editor.

• FIELD-Completes the current ACE field and moves the cursor to the
next ACE field or subfield, inserting text as needed. If the ACL editor
is not in prompt mode, the ACL editor advances to the next field in the
current existing ACE.

• ITEM-Selects the next item for the current ACE field. If the ACL editor
is not in prompt mode, this key is ignored.

• ENTER-Indicates that the current ACE is complete. The ACL editor
terminates the insertion and verifies that the syntax of the ACE is
complete. You can press ENTER while the cursor is located at any
position within the ACE. (Performs the same function as the RETURN
key.)

Access the online help facility of the ACL editor by using the HELP and
HELP FMT commands on the keypad. The HELP command provides help on
the editing keypad; the HELP FMT command provides help on ACE.

The following section contains a diagram of the default keypad functions
for VTlOO and VT200 series terminals. Also included in the section is
a functional description of each of the ACL editing commands. You can
supplement or change these key definitions by modifying and recompiling the
ACL editor section file SYS$LIBRARY:ACLEDIT.TPU. Refer to Section 6 for
more information if you intend to modify the default ACL section file.

3.1 ACL Editing Commands
Figure ACL-1 depicts the default ACL editor keypad functions for VT200
series terminals. The numeric keypad on VTlOO series terminals is
identical to that of the VT200 terminal shown in Figure ACL-1; VTlOO
terminals, however, do not have the supplemental editing keypad
(keys [I] through ~).

ACL-3

ACL Editor Description

Figure ACL-1 VT200 Keypad

VT200

r=-i 1 ~:SERT I ~~MOVE D COPY

Ll ESPREV E~EXT D SCREEN SCREEN

[]
EJEJEJ

HELP FNDNXT
D HELP FMT FIND

PF4

DEL ACE
UNO ACE a

PF2 PF3

....______.--------...______.

7

FIELD
ADVFIELD

8

MOVE
SCREEN

DEL W
UNO W D ::::=====~~======~ _____________ _

D ' 4
ADVANCE
BOTTOM

5
BACKUP

TOP
DEL C
UNO C

---- ~----' ~------'

EJ .-------.2 D -----
EOL

DEL EOL

._o __ O_V_E_R_A_C_E ___ a __ E_N_T_E_R_ - INSERT D
ZK-1758-84

On the VTl 00 and VT200 series terminals, you can use the following keypad
commands during an ACL editing session:

ACL-4

ADVANCE

DODD
DODD
llDDD
~BO
Sets the current direction forward for the FIND, FNDNXT, MOVE SCREEN,
OVER ACE, and WORD keys. ADVANCE means that movement is toward
the end of the ACL.

ADV FIELD

llDDD
llDDD
DODD
~BO

ACL Editor Description

Completes the current ACE field and moves the cursor to the next ACE field.

BACKUP

DODD
DODD
DllDD
~BO
Reverses the current direction for the FIND, FNDNXT, MOVE SCREEN,
OVER ACE, and WORD keys. BACKUP means that movement is toward the
beginning of the ACL.

BOTTOM

llDDD
DODD
llDDD
~BO
Sets the cursor position after the last line of the last ACE. Any entries you
add are placed at the end of the ACL.

DEL ACE

DDDll
DODD
DODD
~BO
Deletes the entire ACE in which the cursor is positioned and stores it in the
delete-ACE buffer.

DELC

DODD
DODD
DDDll
~BO
Deletes the character on which the cursor is positioned and stores it in the
delete-character buffer.

ACL-5

ACL Editor Description

ACL-6

DEL EOL

llDDD
DODD
DODD
~BO
Deletes text from the current cursor position to the end of the line and stores
it in the delete-line buffer.

DELW

DODD
DDDll
DODD
egao
Deletes the text from the current cursor position to the beginning of the next
word and stores it in the delete-word buffer.

ENTER

DODD
DODD
DODD
ega1
Indicates that the current ACE is complete. The ACL editor terminates the
insertion and verifies the syntax of the ACE. You can press ENTER while the
cursor is located at any position within the ACE. (Pressing RETURN produces
the same results.)

EOL

DODD
DODD
DODD
DllDD DD
Moves the cursor to the end of the current line.

FIELD

DODD
llDDD
DODD
~BO

ACL Editor Description

Completes the current ACE field and moves the cursor to the next ACE field
or subfield.

FIND

110110
DODD
DODD
0000 DD
Searches for an occurrence of a string. Press the FIND key and then type the
string. Press the ENTER key to search for the string in the current direction,
or the ADVANCE or BACKUP key to change the search direction.

FNDNXT

DDllD
DODD
DODD
~BO
Searches in the current direction for the next occurrence of the string
previously entered with the FIND key.

GOLD

llDDD
DODD
DODD
~BO
When pressed before another keypad key, specifies the second key's alternate
function (the bottom function on the keypad diagram).

HELP

DllDD
DODD
DODD
0000 DD
Use the HELP key to get information about using the editing keypad.

ACL-7

ACL Editor Description

ACL-8

HELP FMT

111100
DODD
DODD
E5BO
Press the GOLD key followed by the HELP key to get information about ACE
formats.

INSERT

llDDD
DODD
DODD
0000
•D
Moves all text from the current line down one line, leaving a blank line where
an ACE is to be inserted.

ITEM

DODD
DODD
DODD
E5~0
Selects the next item for the current ACE field.

MOVE SCREEN

DODD
DllDD
DODD
0000 DD
Moves the cursor one screen in the current direction (see ADVANCE or
BACKUP). A screen is defined as two-thirds the number of lines in the
display.

OVER ACE

DODD
DODD
DODD
iii BO
Depending on the current direction, moves the cursor to the beginning of the
next ACE or the beginning of the previous ACE.

TOP

llDDD
DODD
DllDD
~80

ACL Editor Description

Moves the cursor position to the first character of the first ACE in the access
control list.

UNO ACE

110011
DODD
DODD
~80
Inserts the contents of the delete-ACE buffer in front of the ACE in which the
cursor is currently positioned.

UNDC

llDDD
DODD
DDDll
0000 DD
Inserts the contents of the delete-character buffer directly in front of the
cursor.

UNDW

llDDD
DDDll
DODD
~80
Inserts the contents of the delete-word buffer directly in front of the cursor.

WORD

DODD
DODD
DODD
~80
Moves the cursor one word forward or backward, depending on the current
direction.

ACL-9

ACL Editor Description

The following keys and key sequences can be used to move the cursor or to
shift the display window:

• ITJ-Moves the cursor to the character directly in line below it. If the ACE
in which the cursor is positioned is new, the ACL editor processes the
ACE before moving the cursor. If the entry is incomplete or improperly
formatted, an error occurs and the cursor does not move.

• El-Moves the cursor one character to the left. If the cursor is at the left
margin, moves it to the rightmost character in the line above.

• E]--Moves the cursor one character to the right. If the cursor is at the
right margin, moves it to the leftmost character in the line below.

• IIJ.-Moves the cursor to the character directly in line above it. If the ACE
in which the cursor is positioned is new, the ACL editor processes the
ACE before moving the cursor. If the entry is incomplete or improperly
formatted, an error occurs and the cursor does not move.

• !GOLDI El-Shifts the text in the display window 8 characters to the left.

• !GOLDI EJ--Shifts the text in the display window 8 characters to the right.

You can use the following keyboard keys to .supplement the keypad keys.
Keys in parentheses indicate the equivalent key for a VT200 series terminal.

• I BACKSPACE I {IF121)-Moves the cursor to the beginning of the current
line.

• IDELETEI (<XI)-Deletes the character to the left of the cursor.

• I LINE FEED I (IF 13 I)-Deletes the text from the cursor back to the beginning
of the word. If the cursor is positioned at the first character of the word,
deletes to the beginning of the previous word.

• ITABI (ITABl)-Moves the text located to the right of the cursor to the next
tab stop.

3.2 VT200-0nly ACL Editing Commands

ACL-10

On a VT200 series terminal, you can also use the supplemental editing
keypad commands during an ACL editing session:

• FIND-Elicits the Search for: prompt as the first step in the FIND
operation. Type the search string after the prompt; then press either the
DO or the ENTER key to process the search. Performs the same function
as the FIND keypad command.

• INSERT HERE-Indicates where an ACE is to be inserted, or, if support
for the PASTE buffer is enabled, indicates the line where the selected text
in the PASTE buffer is to be inserted. By default, support for the PASTE
buffer is disabled; Section 3.2.1 explains how to enable the PASTE buffer.

• REMOVE-Removes the selected text to the PASTE buffer. Each time
REMOVE is used, the previous contents of the PASTE buffer are deleted.
By default, support for the PASTE buffer is disabled; Section 3.2.1
explains how to enable the PASTE buffer.

3.2.1

ACL Editor Description

• COPY (!GOLDI REMOVE)-Copies the selected text to the PASTE buffer.
Each time COPY is used, the previous contents of the PASTE buffer
are deleted. By default, support for the PASTE buffer is disabled;
Section 3.2.1 explains how to enable the PASTE buffer.

• SELECT-Marks the beginning of a range of text to be removed or copied
to the PASTE buffer. Press SELECT; move the cursor to include the
desired amount of text to be removed or copied; press either REMOVE or
COPY (I GOLD I REMOVE) to complete the operation. By default, support
for the PASTE buffer is disabled; Section 3.2.1 explains how to enable the
PASTE buffer.

• PREV SCREEN-Moves the cursor to the previous screen. By default, a
screen is defined as two-thirds the number of lines in the display.

• NEXT SCREEN-Moves the cursor one screen forward. By default, a
screen is defined as two-thirds the number of lines in the display.

Using the PASTE Buffer
For VT200 series terminals, the ACL editor provides a PASTE buffer that
allows you to move sections of text from one part of the ACL to another. The
commands used to move sections of the ACL in and out of the PASTE buffer
are INSERT HERE, REMOVE, COPY, and SELECT.

By default, support for the PASTE buffer is disabled. To enable the PASTE
buffer, do either of the following:

• To enable the PASTE buffer for the current editing session only, press
I CTRL/D I. At the TPU command: prompt, type the following:

TPU command: ACLEDIT$X_PASTE_BUFFER:=1

• To permanently enable the PASTE buffer, you must change the value of
the variable ACLEDIT$X_p ASTE_BUFFER in the ACL editor section file
from 0 to 1 and recompile the ACL section file. Section 6 describes how
to modify and recompile this file.

If you enable the PASTE buffer, you should also switch the value of the
variable ACLEDIT$X_CHECK_MODIFY from 1 (check whether the ACE can
be modified) to 0 (do not check whether the ACE can be modified). The two
features (PASTE buffer support and the check for a modifiable ACE) are not
usually compatible. To change the value of ACLEDIT$X_CHECK_MODIFY,
use the same method you used previously to enable the PASTE buffer: edit
and recompile the ACL section file to make the change permanent, or press
CTRL/D to make the change for the current editing session only.

3.3 Control Key ACL Editing Commands
The following control keys also perform editing functions:

• lcTRL/A~Determines whether characters are entered in insert mode or
overstrike mode. Insert mode (the default) inserts a character to the left
of the current character. Overstrike mode replaces the current character.

• lcTRL/D~Allows you to execute one TPU command.

• lcTRL/H~Moves the cursor to the beginning of the line. (Performs the
same function as the I BACKSPACE I key.)

ACL-11

ACL Editor Description

• I CTRL/ JI-Deletes the text from the cursor back to the beginning of the
word. (Performs the same function as the !LINE FEED! key.)

• ICTRL/Rl-Refreshes the screen display. Clears and redraws the screen,
deleting any extraneous characters or messages that might have appeared
on the screen but are not part of the ACL you are editing. (Performs the
same function as the I CTRL/W I key.)

• !GOLDI ICTRL/Rl-Returns the ACL to its original state before the ACL editor
was invoked. (Performs the same function as !GOLDI lcTRL/WL)

• lcTRL/Ul-Deletes the text from the cursor to the beginning of the line.

• ICTRL/Wl-Refreshes the screen display. Clears and redraws the screen,
deleting any extraneous characters or messages that might have appeared
on the screen but are not part of the ACL you are editing. (Performs the
same function as the I CTRL/R I key.)

• !GOLDI lcTRL/Wl-Returns the ACL to its original state before the ACL
editor was invoked. (Performs the same function as !GOLDI lcTRL/RL)

• lcTRL/Zl-Ends the editing session and updates the ACL. (Unless
otherwise specified, any recover and journal files are deleted.)

• !GOLDI lcTRL/Zl-Ends (quits) the editing session without saving any of
the changes made to the object's ACL. (Unless otherwise specified, any
recover and journal files are deleted.)

3.4 Terminating the ACL Editing Session
During an editing session, you can return to the original ACL (before any
changes were made) and start over by pressing !GOLDI lcTRL/RL

Press I CTRL/Z I to exit from a completed editing session. Your changes are not
made until you exit. Because it is necessary to obtain exclusive access to a file
to update an ACL, other users of a shared file may get a file-locked (or access
conflict for directory files) error message when the ACL is updated at the end
of the editing session.

If you do not want to incorporate the edits into the ACL, quit the file by
pressing !GOLDI lcTRL/ZL All edits made during the session are ignored.

4 Recovering an ACL Editing Session

ACL-12

By default, if an editing session ends abnormally, a journal file is created. A
journal file contains the data from the editing session that was interrupted.
The journal file name defaults to the file name of the edited file with a JOU
extension. You can use the /JOURNAL qualifier to specify an alternate
journal file name. You can also use the /NOJOURNAL qualifier to override
the behavior and prevent the creation of a journal file.

To recover an interrupted editing session, use the /RECOVER qualifier. If the
journal file name is different from the default, specify it with /RECOVER.

For more information on any of these EDIT/ ACL qualifiers, see the Qualifier
section of this manual.

ACL Editor Description

5 Access Control Lists

5 .1 Identifier AC Es

5.1.1

This section describes the different types of access control list entries (ACEs)
that make up an access control list (ACL). The type of access protection
needed determines the type of ACE used in a given situation. Following are
the three types of ACEs:

• Identifier-Controls the type of access allowed to a particular user or
group of users.

• Default protection-Defines the default protection placed on all files and
subdirectories in a directory. Applicable only to directory files.

• Security alarm-Provides a security alarm that indicates when an object
is accessed in a specified way.

The exact format of an ACE depends on its type, but all ACEs are enclosed in
parentheses. Following is the standard ACE format:

(type[,options][,access_to_grant])

An identifier ACE controls the types of access allowed to specific users based
on user identification. Following is the format for an identifier ACE:

(IDENTIFIER=identifier[,options][,access])

Specifying Identifiers in Identifier ACEs
The first field in the identifier ACE is the keyword IDENTIFIER followed by
one or more identifiers. An identifier can be one of the following:

• User identification code (UIC)

• General, established by the system manager in the system rights database

• System-defined

A UIC can be in either numeric or named UIC format, as described in the
VMS DCL Concepts Manual.

A general identifier, defined in the system rights database, is an alphanumeric
string of 1 to 31 characters that must contain at least one alphabetic character.
It can include the characters A through Z, dollar signs ($), underscores (-),
and the numbers 0 through 9.

The system manager creates and assigns general identifiers and UICs to
system users using the Authorize Utility (AUTHORIZE).

System-defined identifiers are automatically defined by the system when
the system manager creates a rights database. The following identifiers are
system-defined identifiers:

BATCH

NETWORK

INTERACTIVE

All attempts at access made by batch jobs

All attempts at access made over the DECnet-VAX network

All attempts at access made by interactive processes

ACL-13

ACL Editor Description

5.1.2

ACL-14

LOCAL

DIALUP

REMOTE

All attempts at access made by users logged in at local
terminals

All attempts at access made by users logged in at dial-up
terminals

All attempts at access made by users logged in via a network

Generally, use only one of the six system-defined identifiers at a time. You
can use them with other identifiers (UICs and general identifiers). When you
specify multiple identifiers, connect them with plus signs (+).

The system takes the access action included in the ACE only for the user who
matches all the identifiers. For example, if you wanted to grant read access to
user [301,25] running a batch job, you would specify the identifier ACE as the
following:

(IDENTIFIER=[301,25]+BATCH,ACCESS=READ)

Although it is unusual for a number of users to share the same UIC, it is
likely that a number of users will share the same general identifier. Users
with the same general identifier do not need to be in the same VIC-based
group. Furthermore, a single user can be associated with a number of
different general identifiers as defined in the rights database. The creator
of an ACL has considerable flexibility in selecting sets of users and defining
access capabilities for them.

For example, the user identified by the UIC [301,25] is a member of the UIC­
based group 301. That user may be the only member of group 301 who is
also associated with the general identifier PERSONNEL. An ACE defining a
particular type of access for the users associated with the general identifier
PERSONNEL grants that type of access to that user, but not to the other
members of group 301.

Specifying Options in Identifier ACEs
The options field in an identifier ACE controls whether an ACE is propagated,
can be displayed, or can be deleted. This field in an identifier ACE begins
with the keyword OPTIONS and takes one or more of the following
keywords:

DEFAULT

HIDDEN

PROTECTED

Indicates that an ACE is to be included in the ACL of
any files created within a directory. When the ACE is
propagated, the DEFAULT indicator is removed from the
ACL of the created file. This option is valid only for directory
files. A default ACE does not grant or deny access; it just
affects the ACL of new files.

Indicates that this ACE should only be changed by the
application that added it. The ACL editor does not permit
modification or deletion. Thus, the ACL editor displays the
ACE only to show its relative position within the ACL, not
to facilitate editing of the ACE. The DCL DIRECTORY and
SHOW ACL commands do not display hidden ACEs.

Indicates that an ACE will be preserved even when an
attempt is made to delete the entire ACL. A protected
ACE must be deleted specifically with the ACL editor or
by specifying the ACE on the command line of the DCL
command SET ACL.

5.1.3

NOPROPAGA TE

:JONE

ACL Editor Description

Indicates that, when copying an ACL from one version of a
file to a later version of the same file, the ACE is not copied
to the newer version.

Indicates that no options apply to an ACE. Although you
can enter OPTIONS=NONE when you create the ACE,
OPTIONS=NONE is not displayed when the ACE is displayed.

Connect multiple options with plus signs (+). If you specify any other
options with the NONE option, the other options take precedence.

Identifier ACE for a Directory

The OPTIONS=DEFAULT option of an identifier ACE allows users to define
one or more default ACEs for inclusion in the ACLs for files created in a
particular directory. A default ACE is supplied for all new files created in
that directory; any existing files are not supplied with the default ACE. Thus,
if you wanted all files in the directory [MALCOLM] to have an ACE that
permitted read and write access to users with the PERSONNEL identifier, you
could include the following ACE in the ACL for the file MALCOLM.DIR:

(IDENTIFIER=PERSONNEL,OPTIONS=DEFAUL T ,ACCESS=READ+WRITE)

As a result of this ACE, any file created in the [MALCOLM] directory has the
following ACE:

(IDENTIFIER=PERSONNEL,ACCESS=READ+WRITE)

Notice that the DEFAULT option does not appear in the file's ACE. However,
any subdirectory created in the MALCOLM directory has the DEFAULT
option as part of its ACE so that the default ACE can be propagated
throughout the entire directory tree.

Specifying Access in Identifier ACEs
The third field in an identifier ACE specifies what type of access you are
allowing the users identified in the first field of the ACE. This field begins
with the keyword ACCESS followed by a string of access actions connected
by plus signs. The following types of access are allowed in an identifier ACE:

READ

WRITE

EXECUTE

DELETE

CONTROL

NONE

Accessor can read a file, read from a disk, or allocate a device.

Accessor can read or write a file.

Accessor can execute an image file or look up entries in a
directory by explicitly specifying file names.

Accessor can delete a file.

Accessor has all the privileges of the object's owner.

Accessor has no access to the object.

ACL-15

ACL Editor Description

5.1.4 Sample Identifier ACEs
The most common type of ACL is one that defines the access to a file for a
group of users. In the following ACL example, access to a file is based on the
identity of a user. PERSONNEL, SECURITY, and SECRETARIES are general
identifiers assigned to appropriate sets of users by the system manager using
AUTHORIZE. NETWORK is a system-defined identifier, while [20,*] and
[SALES,JONES] are examples of UIC identifiers.

(IDENTIFIER=SECURITY,OPTIONS=PROTECTED,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=PERSONNEL,ACCESS=READ+WRITE+EXECUTE+DELETE)
(IDENTIFIER=SECRETARIES,ACCESS=READ+WRITE)
(IDENTIFIER=[20,*] ,ACCESS=READ)
(IDENTIFIER=NETWORK,ACCESS=NONE)
(IDENTIFIER=[SALES,JONES] ,ACCESS=NONE)

ACL-16

In the preceding example, the ACE providing the greatest amount of file
access is listed at the top of the ACL. Any users holding both the SECURITY
and PERSONNEL identifiers obtain maximum access rights through the first
match, which is the SECURITY identifier. In this example, the user with UIC
[SALES,JONES] is prohibited from any access to the file, unless that user also
happens to have one of the general identifiers (which is an oversight on the
part of the creator of the ACL). If the ACL creator wants to be absolutely
certain that the user with UIC [SALES,JONES] could not possibly gain access
to the file, the ACE at the bottom of the ACL should be moved to the top.

The order of the ACEs in the example permits a number of users to gain types
of file access over the DECnet-VAX network. The users with the identifiers of
SECURITY, PERSONNEL, SECRETARIES, and UIC [20,*] can all gain some
access over the network, although only those with the identifier SECURITY
can gain full access. The fifth ACE prevents all other users from network
access. While this might be the intent of the ACL creator, it would be an
unfortunate oversight if it were not. Remember that the system searches the
ACL sequentially and grants the user only the access specified in the first
matching ACE. All subsequent ACEs are ignored.

The first ACE is the only ACE containing an option field (the PROTECTED
option). Using this option prevents the first ACE from being deleted unless
you have explicitly deleted the ACE with the ACL editor, or you have
specified the ACE with the SET ACL/EDIT /DELETE command.

Identifier ACEs for Other Objects

Create identifier ACEs for other system objects, such as devices, as you create
ACEs for files or directories. For example, suppose your company has a
special letter-quality printer (TTA8) that is used only for printing checks.
As a result, the check forms are always loaded in the printer. This device
is never to be used for logins, and no queues are directed to it. Only one
user, MGREY, is allowed read and write access to it. The system manager
can establish this restriction by setting the protection on the printer with the
following command:

$ SET PROTECTION=(S,O,G,W)/DEVICE TTA8:

The following identifier ACE, applied to the object TTA8, restricts access to
the device:

(IDENTIFIER=MGREY,ACCESS=READ+WRITE)

ACL Editor Description

5.2 Default Protection ACE
The default protection ACE is used to ensure that one type of VIC-based
protection is propagated throughout a directory tree. This type of ACE allows
you to specify protection for one directory structure that is different from the
default protection applied to other directories. Default protection ACEs can
be applied only to directory files.

Following is the format for a default protection ACE:

(DEFAULT _PROTECTION[,options],protection _mask)

This type of ACE is specified by the keyword DEFAULT_PROTECTION. The
second field (the options field) in a default protection ACE controls whether
an ACE is propagated, can be displayed, or can be deleted. This field in a
default protection ACE begins with the keyword OPTIONS and takes one or
more of the following keywords:

HIDDEN

PROTECTED

NOPROPAGATE

NONE

Indicates that this ACE can only be changed by the
application that added it. The ACL editor does not permit
modification or deletion. Thus, the ACL editor displays the
ACE only to show its relative position within the ACL, not
to facilitate editing of the ACE. The DCL DIRECTORY and
SHOW ACL commands will not display hidden ACEs.

Indicates that an ACE is preserved even when an attempt is
made to delete the entire ACL. A protected ACE must be
specifically deleted with the ACL editor or by specifying the
ACE on the command line of the DCL command SET ACL.

Indicates that, when copying an ACL from one version of
a file to a later version of the same file, the ACE is not
propagated.

Indicates that no options apply to an ACE. Although you
might enter OPTIONS=NONE when you create the ACE,
OPTIONS=NONE is not displayed when the ACE is displayed.

Connect multiple options with plus signs (+). If you specify any other
options with the NONE option, the other options will take precedence.

The protection mask is specified the same as for VIC-based protection,
with the user categories-SYSTEM, WORLD, GROUP, and OWNER-and
the access categories-READ, WRITE, EXECUTE, and DELETE. See the
discussion of VIC-based protection in the VMS DCL Dictionary for more
information.

The following sample ACE, included in an ACL for the directory MALCOLM,
sets up default protection so that any files created in the directory allow
system and owner groups read, write, execute, and delete access. Group and
world groups are denied access.

(DEF AUL T_PROTECTION,S:RWED ,O:RWED)

When you add or change the default protection for a directory, there is no
effect on the files already created in the directory. All new files will receive
the default protection.

If you want to have the default protection ACE PROTECTED, which saves
its ACE if an attempt is made to delete the entire ACL, create the following
ACL:

(DEFAUL T_PROTECTION,OPTIONS=PROTECTED,S:RWEDC,O:RWEDC,G,W)

ACL-17

ACL Editor Description

5.3 Security Alarm ACE

ACL-18

The security alarm ACE allows you to specify that an alarm message be sent
to the security operator's terminal if a certain type of access takes place. (The
DCL command SET AUDIT enables the security operator's terminal to receive
security alarms.)

The security alarm ACE specifies the type of access that you want to protect.
When the specified access is violated, an alarm message is sent to security
operators.

Although you can create alarm ACEs in an ACL that cause the system to
observe the event and take the required action, you should also coordinate
protection with your system's security manager (the person who possesses the
SECURITY privilege). The security manager is responsible for enabling the
alarm feature. Since this feature uses system resources, the security manager
might be reluctant to leave it enabled at all times.

Following is the format of a security alarm ACE:

(ALARM _JOURNAL =SECURITY[,options][,access])

This type of ACE is specified by the keywords
ALARM_JOURNAL=SECURITY. The second field in a security alarm ACE
begins with the keyword OPTIONS, which takes one or more of the following
keywords:

DEFAULT

HIDDEN

PROTECTED

NOPROPAGATE

NONE

This option is valid only for directory files. Indicates that an
ACE is to be included in the ACL of any files created within
a directory. When the ACE is propagated, the DEFAULT
indicator is removed from the ACL of the created file.

Indicates that this ACE can only be changed by the
application that added it. The ACL editor does not permit
modification or deletion. Thus, the ACL editor displays the
ACE only to show its relative position within the ACL, not
to facilitate editing of the ACE. The DCL DIRECTORY and
SHOW ACL commands will not display hidden ACEs.

Indicates that this ACE is preserved even when an attempt
is made to delete the entire ACL. A protected ACE must be
explicitly deleted with the ACL editor or by specifying the
ACE on the command line of the DCL command SET ACL.

Indicates that, when copying an ACL from one version of
a file to a later version of the same file, the ACE is not
propagated.

Indicates that no options apply to this ACE. Although
you enter OPTIONS=NONE when you create the ACE,
OPTIONS=NONE is not displayed when the ACE is displayed.

Connect multiple options with plus signs (+). If you specify any other
options when specifying NONE, the other options take precedence.

The third field in an alarm ACE controls the type of access that causes the
alarm to be sent.

ACL Editor Description

Specify any of the following access actions with the ACCESS keyword:

READ

WRITE

EXECUTE

DELETE

CONTROL

SUCCESS

FAILURE

Generates an alarm if an accessor attempts to read the
object.

Generates an alarm if an accessor attempts to read or write
the object.

Generates an alarm if an accessor attempts to execute the
object.

Generates an alarm if an accessor attempts to delete the
object.

Generates an alarm if an accessor attempts to perform
control operations on the object, such as changing the
protection on the object.

Generates an alarm for each successful attempt by an
accessor to access the object with the access specified from
the preceding set.

Generates an alarm for each unsuccessful attempt by an
accessor to access the object with the access specified from
the preceding set.

Note: For an alarm to have any effect, you must include SUCCESS or FAILURE
or both.

6 Customizing the ACL Editor
Because the current version of the ACL editor was written using the VAX
Text Processing Utility (VAXTPU), you can modify the ACL editor to meet
your own needs. You can modify and recompile the ACL section file
SYS$LIBRARY:ACLEDIT.TPU (the source file used to create the compiled
ACL section file SYS$LIBRARY:ACLEDT$SECTION.TPU$SECTION) or create
your own ACL section file.

See the VAX Text Processing Utility Manual for more information on writing
and processing section files.

6.1 Modifying Variables in the ACL Section File
Following is a list of the variables and their defaults available through the
ACL section file:

Variable

ACLEDIT$X _CHECK_DUPLICA TES

Meaning

Controls whether or not a check for
duplicate ACEs is made. This variable can
take the following values:

0 No duplicate ACE check is made.

A duplicate ACE check is made. If
the ACE to be entered matches an
existing ACE, an error message is
returned. This is the default.

ACL-19

ACL Editor Description

ACL-20

Variable

ACLEDIT$X_CHECK_MODIFY

ACLEDIT$X _DIRECTORY _FILE

ACLEDIT$X _PASTE_BUFFER

ACLEDIT$X_PROMPT

ACLEDIT$X_USE_DEFAUL T_OPT

ACLEDIT$C_ WINDOW _SHIFT

Meaning

Allows or disallows modification of ACEs.
This variable can take the following values:
0 The ACE can be modified.

The ACE cannot be modified. If an
attempt is made to modify the ACE, it
is replaced with the original ACE. This
is the default.

Indicates whether or not the object is a
directory file. This variable can take the
following values:
0 The object is not a directory file.

The object is a directory file.

Controls whether or not PASTE buffer
support is enabled for VT200 series
terminals. This variable can take the
following values:
0 PASTE buffer support is disabled.

This is the default.

PASTE buffer support is enabled.

Controls whether or not automatic text
insertion (prompt mode) is enabled. This
variable can take the following values:
0 Prompt mode is disabled.

Prompt mode is enabled. This is the
default.

Controls whether or not the DEFAULT
option can be used with nondirectory
ACEs. This variable can take the following
values:
0 The DEFAULT option can only be

used with ACEs of directory (.DIR)
files. This is the default.

The DEFAULT option is available for
use with ACEs of all object types.

Specifies the number of columns to shift
the edit window in the desired direction,
I GOLD I El for a left shift and I GOLD I EJ for
a right shift. The default is 8 columns.

If you modify any of the preceding variables listed or change any other part
of the ACL section file, you must recompile the section file with the following
command:

$ EDIT/TPU/NOSECTION/COMMAND=SYS$LIBRARY:ACLEDIT

Use the previous command if you make changes directly to the source code
file (SYS$LIBRARY:ACLEDIT) that creates the compiled ACL section file
SYS$LIBRARY:ACLEDT$SECTION. If you are adding a private command file
to the existing ACL section file, recompile the section file using the following
command:

$ EDIT/TPU/SECTION=SYS$LIBRARY:ACLEDT$SECTION/COMMAND=your_section.TPU

ACL Editor Description

The resulting compiled VAXTPU ACL section file is placed in your current
directory. To use the new section file, you must do one of the following:

• Move the resulting compiled section file,
ACLEDT$SECTION.TPU$SECTION, to the SYS$LIBRARY directory.
This changes the default ACL editor section file for all users.

• Keep the compiled section file in your directory and define the logical
name ACLEDT$SECTION in your LOGIN.COM file to point to the file
using the following command:

$ DEFINE ACLEDT$SECTION yourdisk: [yourdir]ACLEDT$SECTION

Note that the default file type for the section file before compiling (the
source file) is TPU and the default file type for the compiled section file
is TPU$SECTION. See the VAX Text Processing Utility Manual for more
information on writing and processing a VAXTPU section file.

6.2 Using the ACL Editor CALL_USER Routine

Function
Code Mnemonic

The ACL editor CALL _USER routine is part of the shareable image
SYS$LIBRARY:ACLEDTSHR.EXE. You can incorporate the ACL editor
CALL _USER routine with its existing function codes into your own ACL
section file, or you can write your own CALL_USER routine that recognizes
a different set of function codes.

The ACL editor CALL _USER routine recognizes only those functions used
by the ACL editor VAXTPU section file. All other function codes are passed
to a user-supplied CALL_USER routine; if the high-order word of the
CALL _USER function code (bits < 16:31 >) contains the ACL editor facility
code, it is handled by the ACL editor CALL _USER routine. Otherwise, an
attempt is made to locate a user-supplied CALL _USER routine. Refer to the
description of the CALL _USER routine in the VAX Text Processing Utility
Manual for more information on creating your own CALL_USER routine.

Following is a description of the CALL _USER routine function codes
supported by the ACL editor:

Description

181534 73 ACLEDIT$C_PARSE_ACE Parses the input string (ACE) and returns the parsed
(binary) ACE if no errors are found. Otherwise, the returned
string contains a zero as the first two characters, and the
unparsed portion of the input ACE as the remainder of the
string.

181534 7 4 ACLEDIT$C_CHECK_MODIFY

18153475 ACLEDIT$C_PROMPT_MODE

Returns the string "READ_ WRITE" if the ACE can be
modified by the user. Otherwise, returns the string,
"READ_ONL Y."

Returns the string "PROMPT_MODE" if the prompt mode
option was specified. Otherwise, returns the string
"NOPROMPT_MODE."

ACL-21

ACL Editor Description

Function
Code Mnemonic

181534 76 ACLEDIT$C_CHECK_ACE

181534 77 ACLEDIT$C_CHECK_DIR

181534 78 ACLEDIT$C_SET _CANDIDA TE

181534 79 ACLEDIT$C_CHECK_DUP

18153482 ACLEDIT$C_MESSAGE

ACL-22

Description

Parses the input string (ACE) and returns the parsed
(binary) ACE if no errors are found. Otherwise, the ACE
text is highlighted in reverse video and a V AXTPU variable
of the form ACLEDIT$X_RANGE_x is created to identify
the ACE in error. (The "x" is a sequential number starting
with 1.)

Returns the string "DIRECTORY_FILE" if the object being
edited is a directory file. Otherwise, returns the string
"NODIRECTORY _FILE."

Parses the input string (ACE) and returns the string
"PARSE_OK" if no error was encountered. Otherwise,
returns the string "PARSE_ERROR." If the parse was
successful, a check is made for duplicate ACEs using the
CALL_USER function ACLEDIT$C_CHECK_DUP.

Parses the input string (ACE) and returns the string
"PARSE_ERROR" if an error was encountered. Otherwise,
the parsed (binary) ACE is compared with the candidate
ACE set by the CALL _USER function
ACLEDIT$C_SELCANDIDATE. Returns the string
"DUPLICATE_ACE" if the ACE is a duplicate or
"UNIQUE_ACE" if it is not a duplicate.

Assumes the input string is a VMS error code and returns
in the ACL editor message window the message text
associated with the error code.

ACL Editor Usage Summary

FORMAT

COMMAND
PARAMETER

usage summary

The VMS Access Control List (ACL) Editor creates or modifies an access
control list for a specified object.

EDIT/ ACL object-spec

object-spec
Specifies the object whose access control list is to be created or edited using
the ACL editor. If an access control list does not exist, it is created. The object
specified can be a file, directory, device, global section, logical name table, or
batch or print queue.

If the object is a file, the ACL editor does not provide a default file type. If
you omit the file type, it is presumed to be null. The specified file must be
a disk file on a Files-11 On-Disk Structure Level 2 formatted volume. If the
object is a directory, specify a file specification with the file type of DIR. If
the object type is anything other than a file or a directory, you must specify
/OBJECT=type as the qualifer.

No wildcard characters are allowed in the object specification.

Invoke the ACL editor with the DCL command EDIT/ ACL. The / ACL
qualifier is required. Exit from the editing session by pressing CTRL/Z. If the
session ends abnormally and journaling has been in effect, you can recover
the ACL with the /RECOVER qualifier. Quit the editing session without
saving the edits by pressing GOLD CTRL/Z.

By default, the editing session occurs at the SYS$0UTPUT device. As the
result of a successful editing session, an access control list is created for an
object.

You can invoke the ACL editor to create or modify the ACL only for an
object that you own, have control access to, or can gain access to by a
privilege such as BYPASS, GRPPRV, READALL, or SYSPRV.

You can create an access control list only for a file or directory that
currently exists and is on a Files-11 On-Disk Structure Level 2 disk.

ACL-23

ACL EDITOR
ACL Editor Qualifiers

ACL EDITOR
QUALIFIERS

ACL-24

The EDIT/ ACL command qualifiers provide you with control over journaling
and recovering the editing session.

/JOURNAL

FORMAT

DESCRIPTION

EXAMPLE

ACL EDITOR
/JOURNAL

Controls whether a journal file is created for the editing session.

/JOURNAL [=file-spec]
/NOJOURNAL

By default, the ACL editor keeps a journal file containing a copy of
modifications made during an editing session. If you specify /NOJOURNAL,
no journal file is generated. If you omit the qualifier or specify /JOURNAL,
a journal file is created. If you omit the journal file specification, by default
the journal file is given the name of the input file specification with a JOU
extension.

No wildcard characters are allowed in the journal file specification.

If your editing session ends abnormally, you can invoke the ACL editor again
and recover the changes made during the aborted session by specifying the
/RECOVER qualifier and the name of the journal file if it differs from the
default name.

$ EDIT/ACL/JOURNAL=COMMONACL.SAV MECH1117.DAT

With this command, you create a journal file named COMMONACL.SAV that
contains a copy of the ACL and the editing commands used when creating
the ACL for the file MECHll 17.DAT. The file COMMONACL.SAV can then
be used for recovery of an interrupted editing session for MECH1117.DAT's
ACL. A journal file is created by default, but the qualifier is specified to
include the name COMMONACL.SAV, a more descriptive name than the
default journal file, MECH1117.JOU.

ACL-25

ACL EDITOR
/MODE

/MODE

FORMAT

DESCRIPTION

EXAMPLE

Specifies the use of prompting during the editing session.

/MODE=option

By default, the ACL editor selects prompt mode. Use the /MODE qualifier to
specify one of the following prompt options:

PROMPT

NO PROMPT

Specifies that, where possible, the selected field within the
ACE is initially filled with the first of a list of items that might
apply to the field.

Specifies that no prompting is used by the ACL editor.

$ EDIT/ACL/MODE=NOPROMPT WEATHERTBL.DAT

ACL-26

With this command, you initiate an ACL editing session to create an ACL for
the file WEATHERTBL.DAT. The /MODE=NOPROMPT qualifier specifies
that no assistance is required in entering the ACL entries.

/OBJECT

FORMAT

DESCRIPTION

EXAMPLES

ACL EDITOR
/OBJECT

Specifies the type of object whose ACL is being edited. The /OBJECT
qualifier is required unless the object whose ACL is being edited is a file or
a directory file.

/OBJECT=type

The /OBJECT qualifier is required unless the object whose ACL is being
edited is a file. The following keywords may be specified with /OBJECT:

FILE Specifies that the object type is a file or a
directory file.

DEVICE Specifies that the object type is a device.

SYSTEM_GLOBAL_SECTION Specifies that the object type is a system global
section.

GROUP _GLOBAL _SECTION

QUEUE

LOGICAL_NAME_ TABLE

Specifies that the object type is a group global
section.

Specifies that the object type is a batch or
device (printer, server, or terminal) queue.

Specifies that the object type is a logical name
table.

i] $ EDIT/ACL/OBJECT=DEVICE WORK1

The /OBJECT qualifier is used in this command because it is a device ACL
being edited.

~ $ EDIT/ACL/OBJECT=QUEUE FAST_BATCH

The command in this example creates an ACL for the FAST_BATCH queue.
Note that if you create an ACL for a generic queue, you should create
identical ACLs for all execution queues to which jobs can be directed.

ACL-27

ACL EDITOR
/RECOVER

/RECOVER

FORMAT

DESCRIPTION

EXAMPLE

Determines whether or not the ACL editor restores the object's ACL from
a journal file at the start of an editing session.

/RECOVER [=file-spec}
/NORECOVER

The /RECOVER qualifier specifies that the ACL editor should restore the
ACL from the journal file specified by input-file-spec.JOU. This operation
restores the ACL to the state it was in when the last ACL editing session
ended abnormally.

If the journal file has a file name other than input-file-spec.JOU, specify it
with the /RECOVER qualifier.

$ EDIT/ACL/JOURNAL=SAVEACL MYFILE.DAT

User creates ACL until system crashes

$ EDIT/ACL/JOURNAL=SAVEACL/RECOVER=SAVEACL MYFILE.DAT

ACL is restored and user proceeds with editing until done

$

ACL-28

Initiate the ACL editing session using the /JOURNAL qualifier, which
specifies that the journal file SAVEACL will be saved if the session ends
abnormally. The session proceeds until aborted by a system crash. To
recover from the aborted editing session and continue with additional edits,
enter the second EDIT/ ACL command. This session begins by restoring the
session with the journal file SAVEACL. When you exit the editing session by
pressing CTRL/Z, the journal file SAVEACL.JOU is deleted.

Index

A
Access control list

See ACL
Access control list entry

See ACE
ACE (access control list entry)

default protection• ACL-17
format• ACL-13
identifier• ACL-13
security alarm• ACL-18

ACL (access control list) editor• ACL-23
customizing• ACL-19
ACL qualifiers• ACL-24 to ACL-28
exiting• ACL-12
invoking• ACL-2
keypad editing• ACL-3
quitting• ACL-12
recovering• ACL-12

ACL section file• ACL-19

E
EDIT/ ACL command• ACL-23
Editing session

keypad editing• ACL-3

H
Help facility• ACL-3

I
Identifier ACE• ACL-13

example• ACL-15, ACL-16
specifying• ACL-13
specifying access• ACL-15
specifying options• ACL-14

J
/JOURNAL qualifier• ACL-25

K
Keypad editing• ACL-3

control key editing commands• ACL-11
editing commands• ACL-3
VT200-specific editing commands• ACL-1 O

M
/MODE qualifier• ACL-26

0
/OBJECT qualifier• ACL-27

p
PASTE buffer• ACL-11

R
/RECOVER qualifier• ACL-28

s
Security alarm ACE• ACL-18

specifying access• ACL-19
specifying options• ACL-18

lndex-1

Index

v
VT200-specific editing commands• ACL-10

lndex-2

Reader's Comments VMS Access Control List
Editor Manual

AA-LA41 A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

--;;~t;;;:d Here and Tape ------------------~1nr-------;~~~;----
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 •• 1.1 .. 1 .. 1.1 ••• 1.11 .. 1

- Do Not Tear - Fold Here --

I
I
I
I
I
I

Reader's Comments VMS Access Control List
Editor Manual

AA-LA41 A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

-- Do Not Tear - Fold Here and Tape -------------------[lllr--------------­
No Postage

~nmnoma™ ~;::~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

in the
United States

·- Do Not Tear - Fold Here --

I
I
I
I
I
I
I

