
DECnet-VAX
User's Guide
Order No. AA-H802B-TE

May 1982

This manual describes user-level functions including remote file access and
task-to-task communication using DECnet-VAX software running on a
VAX/VMS operating system.

REVISION/UPDATE INFORMATION: This revised document supersedes
the DECnet- VAX User's Guide
(Order No. AA-H802A-TE).

SOFTWARE VERSION: VAX/VMS V3.0

digital equipment corporation . maynard, massachusetts

First Printing, March 1981
Revised, May 1982

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright © 1981, 1982 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation :

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DECnet IAS VAX
DECsystem-10 MASSBUS VMS
DECSYSTEM-20 PDP VT
DEC US PDT mnmnoma DECwriter RSTS

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corporation
P.O. Box CS2008
Nashua. New Hampshire 03061

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa. Ontario K1 G 4C2
Attn: A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
A&SG Business Manager
clo Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SOC). Digital Equipment
Corporation. Northboro. Massachusetts 01532

ZK2183

PREFACE

CHAPTER 1

1.1
1.1.1
1.1. 2

CHAPTER 2

2.1
2.2
2.3
2.3.1
2.3.2
2.4

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.2
3.6
3.6.1
3.6.2

CONTENTS

DECNET-VAX OVERVIEW

VAX/VMS USER INTERFACE TO THE NETWORK
DECnet-VAX Network Operations
A Network Topology • • • • • • • • • •

ACCESSING THE NETWORK

FILE AND TASK SPECIFICATIONS • • • • •
ACCESS CONTROL • • • • • • • • • • • •
USING LOGICAL NAMES • • • • •

Iterative Translation
Names Prefixed by an Underscore Character

NETWORK COMMAND TERMINALS • • • • • • • • •

REMOTE FILE ACCESS USING DCL

ACCESSING THE NETWORK USING DCL COMMANDS •
LOGICAL NAME COMMANDS • • • • • • •

ASSIGN, DEASSIGN, and DEFINE • • • • •
SHOW LOGICAL and SHOW TRANSLATION • • • •

COMMANDS FOR FILE HANDLING • • • • • •
ANALYZE/RMS FILE • • •••••
APPEND and COPY • • • • • • • • •
BACKUP • • • • • • • • • • • • • • • •
CONVERT • • • • • • • •
CREATE • • • • • •
DELETE and PURGE • • • • • •
DIFFERENCES • • • • • • • • • • • •
DIRECTORY • • • • • • • •
DUMP/RECORDS •
PRINT/REMOTE •
SEARCH • • • • • • • • •
SORT and MERGE •
SUBMIT/REMOTE • • • • •
TYPE • • • • •

LEXICAL FUNCTIONS
F$FILE ATTRIBUTES
F$PARSE • • • • •
F$SEARCH • • • • •

COMMANDS FOR ACCESSING RECORDS •
OPEN and CLOSE • • • • • • •
READ and WRITE • • • • • • •

COMMAND PROCEDURE EXAMPLES • • •
Command Procedure Using Lexical
Command Procedure Using SYS$NET

iii

Functions

Page

ix

• 1-1
• 1-1
• 1-4

• 2-1
• • • 2-5

• 2-9
2-10
2-11
2-11

• 3-2
• 3-4
• 3-4
• 3-5
• 3-5
• 3-7
• 3-8
• 3-8
• 3-9
3-10
3-10
3-11
3-11
3-12
3-12
3-13
3-13
3-14
3-15
3-15
3-15
3-16
3-16
3-16
3-17
3-17
3-18
3-18
3-18

CONTENTS
Page

3.7 DISPLAY OF ERROR MESSAGES IN NETWORK ENVIRONMENT 3-19

CHAPTER 4

CHAPTER

CHAPTER

4.1
4.2
4.3
4.4
4.5
4.5.1
4.5.1.1

4.5.1.2
4.5.1.3
4.5.2
4.5.3
4.5.3.1
4.5.3.2
4.5.3.3
4.5.3.4

4.5.3.5
4.5.3.6

4.5.3.7
4.5.4
4.5.4.1
4.5.4.2

4.5.4.3

4.5.4.4

5

5.1
5.2
5.2.1
5.3
5.3.1
5.4
5.4.1
5.4.2
5.4.3

5.5
5.5.1
5.5.2
5.6

6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.7.1

REMOTE FILE ACCESS USING RMS

ACCESSING THE NETWORK AT THE RMS LEVEL • • • • • • 4-1
VAX-11 NETWORK FILE ACCESS RESTRICTIONS • • 4-2
VAX-11 RMS NETWORK ERROR REPORTING • • • • • 4-3
HIGHER-LEVEL LANGUAGE REMOTE FILE ACCESS • • 4-7
MACRO REMOTE FILE ACCESS • • • • • • • • 4-8

Using VAX-11 RMS Service Calls • • • • • • • 4-9
File Access Blocks (FABs) and Record Access
Blocks (RABs) • • • • • • • • 4-9
$OPEN and $CONNECT • • • • • • • • • • • 4-9
$DISCONNECT and $CLOSE • • • • • • • • • 4-9

VAX-11 RMS Service Call Summary • • • • • 4-9
4-11
4-11
4-12
4-12

VAX-11 RMS Programming Notes and Restrictions
Name Block • • • • • • • • • • • • • • •
File Specification Processing •••••
FOP File Disposition Options on Close
FOP Option for Increasing File Transfer
Throughput • • • • • • • • • • • •
File Sharing ••••••••••••••••
Restriction on Access to Files on Magnetic

4-12
4-13

Tape • • • • • • • • • • •
Task-to-Task Communication ••••••

MACRO Programming Examples • • • • • • •
MACRO Remote File Transfer Example ••
VAX-11 MACRO Remote File Spooling
Example • • • • • • • • • • • • • •
VAX-11 MACRO Remote File Random Access
Example ••••••••••
VAX-11 MACRO Remote File Indexed Access
Example • • • • • • • • • • • • • •

TASK-TO-TASK COMMUNICATION

TRANSPARENT COMMUNICATION • • • • •
NONTRANSPARENT COMMUNICATION • • • • • •

Mailboxes and Mailbox Messages •••••••
INITIATING A LOGICAL LINK CONNECTION •

The Handshaking Sequence • • • • •
COMPLETING THE LOGICAL LINK CONNECTION •

Completing the Connection Transparently
Completing the Connection Nontransparently •
Command Procedures Used in Task-to-Task
Communication

EXCHANGING MESSAGES • • • • • • • • •
Data Messages • • • • • • • • • •
Mailbox Messages • • ••••••••••

TERMINATING THE COMMUNICATION PROCESS

4-14
4-14
4-14
4-14

4-17

4-18

4-20

• • 5-1
• • 5-4
• • 5-5
• • 5-7
• • 5-7
• • 5-8
• • 5-8
• • 5-9

• • 5-9
5-10
5-10
5-10
5-11

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM
SERVICES

SYSTEM SERVICE CALLS FOR TRANSPARENT COMMUNICATION 6-1
REQUESTING A LOGICAL LINK • • • • • • • • 6-2
COMPLETING THE LOGICAL LINK CONNECTION • 6-2
EXCHANGING MESSAGES • • • • • • 6-3
TERMINATING THE LOGICAL LINK • • • • • • 6-3
STATUS AND ERROR REPORTING • • • • • • 6-3
SYSTEM SERVICE CALL SUMMARY • 6-3

$ASSIGN (I/O Channel Assignment) • • • • • • 6-4

iv

6.7.2
6.7.3
6.7.4
6.8

CHAPTER 7

7.1

7.2

7.2.1
7.3
7.3.1
7.4
7.4.1
7.4.1.1
7.4.1.2

7.4.2
7.5
7.5.1
7.6
7.6.1
7.6.2
7.6.3
7.7
7.8
7.8.1
7.8.2
7.8.3

7.8.4

7.8.5
7.8.6
7.8.7

7.8.8

7.8.9
7.8.10

7.8.11
7.9

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

GLOSSARY

CONTENTS
Page

$QIO (Sending a Message to a Target Task) • 6-5
$QIO (Receiving a Message from a Target Task) • 6-6
$DASSGN (Terminating a Logical Link) •••••• 6-7

PROGRAMMING EXAMPLE OF TRANSPARENT COMMUNICATION • 6-8

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM
SERVICES

SYSTEM SERVICE CALLS FOR NONTRANSPARENT
COMMUNICATION • • • •
ASSIGNING A CHANNEL TO
MAILBOX •••••••

NET: AND CREATING A
7-1

• 7-2
Mailbox Message Format •••••••

REQUESTING A LOGICAL LINK CONNECTION •
• • • • • • 7-3

• • 7-4
Network Connect Block • • • • • ••• • 7-4

COMPLETING THE LOGICAL LINK • • • 7-5
• 7-6 Rec~iving a Connection Request • • •

Receiving Single Connection Requests
Receiving Multiple Connection Requests

• • • 7-6

(Ne t WO r k Ta s ks) • . • • • • • • • • • 7 - 7
Accepting or Rejecting a Connection Request •• 7-7

EXCHANGING MESSAGES • • • • • • • • • • • • • • • 7-7
Interrupt Messages • • • • • • • • • • • • • • • 7-7

DISCONNECTING OR ABORTING THE LOGICAL LINK • • 7-8
Synchronously Disconnecting a Logical Link •.• 7-8
Aborting the Logical Link ($QIO Function) ••• 7-8
Terminating the Logical Link ($DASSGN Function) 7-9

STATUS AND ERROR REPORTING • • • • • • • • • • • • 7-9
SYSTEM SERVICES CALL SUMMARY • • • • • • • • • • • 7-9

$ASSIGN (I/O Channel Assignment) •••••••• 7-9
$QIO (Requesting a Logical Link Connection) 7-10
$QIO (Accepting a Logical Link Connection
Request) • • • • • • • • • • • • • • • • •
$QIO (Rejecting a Logical Link Connection
Request) • • • • • • • • • • • • • • • • •
$QIO (Sending a Message to a Target Task)
$QIO (Receiving a Message from a Target Task)
$QIO (Sending an Interrupt Message to a Target
Task) •
$QIO (Synchronously Disconnecting a Logical
Link) • • • • • • • • • • • • • • • • • •
$QIO (Aborting a Logical Link) ••••••
$QIO (Declaring a Network Name or Object
Number) • • • • • • • • • • • • • • • • • • •
$DASSGN (Terminating a Logical Link) •••••

PROGRAMMING EXAMPLE FOR NONTRANSPARENT
COMMUNICATION • • • • • • • • • • • •

OBJECT TYPE CODE VALUES

VAX-11 RMS CONTROL BLOCK USE

SUMMARY OF NETWORK SYSTEM SERVICE ERROR MESSAGES

MAILBOX MESSAGE TYPES

v

7-12

7-13
7-14
7-14

7-14

7-15
7-16

7-17
7-18

7-18

INDEX

EXAMPLE 4-1
4-2
4-3
4-4
4-5
5-1
6-1

7-1

FIGURE 1-1

TABLE

1-2
1-3
2-1

2-2

2-3
4-1
5-1
7-1
7-2

1-1
3-1
4-1

4-2
4-3
4-4

6-1

7-1

A-1
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10

CONTENTS

EXAMPLES

FORTRAN Remote File Access Program •
RMS File Transfer Program ••••
RMS Spool File Program ••••••••••
RMS Random Access Program •••••
RMS Indexed File Program •••••
FORTRAN Task-to-Task Communication • • •
Transparent Task-to-Task Communication Using

Page

• • • 4-8
4-15
4-17
4-18
4-20

• • 5-2

System Services • • • • • • • • • • • • • • 6-8
Nontransparent Task-to-Task Communication Using
System Services • • • • • • • • • • • • • • • • 7-19

FIGURES

Network Access Levels and DECnet-VAX User
Interface • • • • • • • • • • • • • • • • • • 1-3
Network Topology and Related Functions • • • • 1-4
Operational Capabilities of DECnet-VAX •••••• 1-5
Remote File Access Using Access Control String
Information • • • • • • • • • • • • • 2-6
Remote File Access Using Default Access Control
Information • • • • • • • •
Outbound and Inbound Connect Flowcharts
Remote File Access (DCL and RMS)
Mailbox Messages •••••••••••••
Mailbox Message Format •••
Network Control Block Format •

TABLES

2-7
• • 2-8
• • 4-2

5-6
7-3

• • 7-5

Network Access Levels • • • • • • • • • • 1-2
DCL Command Summary • • • • • • • • • • 3-2
VAX-11 RMS File and Record Characteristics for
Network Operations • • • • • • • • • • • • • • 4-3
VAX-11 RMS Access Modes for Network Operations • • 4-3
Network-Specific RMS Completion Codes •••••• 4-4
VAX-11 RMS Service Calls for Run-time Remote File
Access • 4-10
Transparent Task-to-Task Communication System
Service Summary • • • • • • • • • • • • • • • • • 6-1
Summary of System Service Calls for Nontransparent
Task-to-Task Communication • • 7-2
Object Type Codes • • • • • • • • • • A-1
FAB (File Access Block) • • • • • B-2
RAB (Record Access Block) • • B-5
NAM (Name Block) • • • • • • • B-7
XABALL (Allocation Control XAB) • • • • B-9
XABDAT (Date and Time XAB) • • • • • • • • B-10
XABFHC (File Header Characteristics XAB) • • • • B-10
XABKEY (Key Definition XAB) • • • • • B-11
XABPRO (File Protection XAB) • • • • • B-12
XABRDT (Revision Date and Time XAB) • • • • B-13
XABSUM (Summary XAB) • • • • • B-13

vi

C-1
D-1

CONTENTS

System Services Error Messages Summary •
Mailbox Message Summary •••••

vii

Page

C-1
• D-1

PREFACE

MANUAL OBJECTIVES

The DECnet-VAX User's Guide describes VAX/VMS network operations such
as remote file access and task-to-task communication. The manual is
divided according to the types of operations you can perform and the
level at which you access the network. In particular, this manual
describes the DIGITAL Command Language (DCL) commands you can use to
manipulate remote files and for network command terminal use. It also
describes all the information necessary to program remote file access
and task-to-task communication applications.

INTENDED AUDIENCE

This manual provides information needed by VAX/VMS users who want to
perform network operations. Interactive and batch users should be
familiar with DCL, which the VAX/VMS Command Language User's Guide
describes in detail. Programmers should use the infarmat1on in this
manual as a supplement to the reference manuals and user guides
provided for higher-level languages, and to the manuals that explain
VAX-11 Record Management Services (RMS) and VAX/VMS System Services.

STRUCTURE OF THIS DOCUMENT

The DECnet-VAX User's Guide consists of seven chapters,
appendixes, and a glossary, which are described below:

four

• Chapter 1 briefly describes the ways you can access the
network and the types of network operations you can perform.
A general network topology, which serves as a common reference
for all examples, is also included.

• Chapter 2 describes general concepts that pertain to accessing
the network at the command level and through user programs.

• Chapter 3 presents the DCL commands that you can use for
network operations.

• Chapter 4 presents the VAX-11 RMS calls and procedures' - that
you can use to access files on remote nodes.

• Chapter 5 describes the concepts
task-to-task communication and
languages for such communication.

central
the use

to
of

DECnet-VAX
higher-level

• Chapter 6 summarizes the procedures for transparent
task-to-task communication using system services.

ix

PREFACE

• Chapter 7 summarizes the procedures for nontransparent
task-to-task communication using system services.

• Appendix A provides a table of object type code values and
their descriptions.

• Appendix B provides a complete table of RMS control block
fields and any related qualifications governing their use for
network operations.

• Appendix C summarizes system service error messages associated
with network-related functions.

• Appendix D summarizes mailbox messages and their meanings for
nontransparent communication.

• The Glossary defines terms used in this manual.

ASSOCIATED DOCUMENTS

For information concerning DECnet-VAX system management, refer to the
DECnet-VAX System Manager's Guide and the DECnet-VAX Network
Installation manual. The DECnet-VAX Cross-System Notes describe the
use of DECnet-VAX in a heterogeneous network environment. The VAX/VMS
Release Notes describe any constraints on using DECnet-VAX with the
current version of VAX/VMS. The VAX-11 Information Directory and
Index provides information on the entire VAX/VMS document set. The
directory briefly describes all the documents in the set and explains
the intended audience for each one. For general background
information about the VAX/VMS system, refer to the VAX/VMS Primer and
the VAX/VMS Summary Description and Glossary. Finally, the
Introduction to DECnet manual serves--a8 a companion to the DECnet-VAX
documentation set. This manual provides a general overview of DECnet
software from a perspective independent of individual DECnet
implementations.

Because the user guides for the higher-level languages available under
VAX/VMS contain information relating to remote file access and
task-to-task communication, you should refer to them for applications
in these areas.

The following functional specifications define DIGITAL Network
Architecture (DNA) protocols to which all implementations of DECnet
adhere:

DECnet DIGITAL Network Architecture General Description

DIGITAL Data
Specificat~

Communications Message Protocol

Network Services Protocol Functional Specification

Maintenance Operation Protocol Functional Specification

Data Access Protocol Functional Specification

Transport Functional Specification

DNA Session Control Functional Specification

Network Management Functional Specification

x

Functional

Graphic Conventions

character
(or chars)

$ COPY
$ FROM: * • *
$-TO: TRNTO::*.*

$DASSGN S chan

$ASSIGNS devnam,chan[,acmode]

"foreign-file-spec-string"

"task-spec-string"

$TYPE BOSTON::TEXT.COM

(or)

DELETE file-spec, •••

PREFACE

The term characters refers to the
set of alphanumerics that includes A
through Z, 0 through 9, , and $.

Command examples show all output
lines or prompting characters that
the system prints or displays in
black letters.

This document uses red lettering to
indicate all user-entered information
and to show user-supplied call
instruction parameters.

All calls and command example verbs
are shown in a call or command line
in capital letters, and they must be
entered as shown. Arguments are
shown in a call as lowercase letters.
You substitute the argument shown in
the call format with the precise
information requested.

Square brackets enclose
keywords and arguments.
include the brackets when
the command.

optional
Do not

entering

Keywords or arguments within braces
indicate that you must choose only
one of the keywords or arguments.
(Do not include the braces when
entering the command.)

The use of ellipses means that not
all of the information that the
system would display in response to
the particular command is shown, or,
that not all the information a user
would enter is shown.

xi

CHAPTER 1

DECNET-VAX OVERVIEW

DECnet is the collective name for a set of software and hardware
products that allow DIGITAL operating systems to participate in a
cooperative environment known as a network. DECnet-VAX is the
software package that extends the basic capabilities of the VAX/VMS
operating system on a VAX-11 computer. Beyond the normal VAX/VMS
capabilities, DECnet-VAX provides a layered structure of protocols for
network operations. These protocols allow you to use the resources on
remote DIGITAL computers, even though these systems may run under an
operating system other than VAX/VMS. This manual describes the
DECnet-VAX facilities for accessing and using these resources.

This chapter describes the DECnet-VAX user interface to the network in
terms of a hypothetical network topology. Of course, each network
will be tailored to the individual needs of its users and the
resources available. The network topology presented in this chapter
serves as a common reference for the user examples presented in this
manual and highlights the operational capability of DECnet-VAX within
a heterogeneous network environment. In this manual, however, only
the DECnet-VAX perspective on network operations is presented. For an
overview of DECnet, refer to the Introduction to DECnet manual.

1.1 VAX/VMS USER INTERFACE TO THE NETWORK

The VAX/VMS operating system and DECnet-VAX communications software
are integrated to provide a high degree of transparency for user
operations. When developing network applications, you can use
standard DCL commands, higher-level language I/O statements, VAX-11
RMS service calls, and system service calls to perform network
operations. For some applications, however, it is desirable (and
sometimes necessary) to have more direct access to network-specific
information and operations. For this purpose, DECnet-VAX provides
nontransparent communication. The following sections describe general
transparent and nontransparent features of DECnet-VAX in terms of the
user interface to the network.

1.1.1 DECnet-VAX Network Operations

DECnet-VAX supports a variety of network operations that employ
VAX/VMS programming languages. In addition to VAX-11 MACRO, you can
use most of the higher-level languages such as VAX-11 FORTRAN, VAX-11
BASIC, VAX-11 BLISS, VAX-11 PASCAL, VAX-11 PL/I, and VAX-11 COBOL to
develop networking applications. With any of these languages, you can
access remote files and create tasks that exchange information across
the network. You can also use DIGITAL Command Language (DCL) commands
to create and access remote files and to perform many file management
functions on other nodes.

1-1

Note that throughout the manual, the term task refers to an image
running in the context of a process, the term local refers to the node
at which you are located physically, and the term remote refers to any
node on the network other than the one at which you are located.

Table 1-1 summarizes the normal use of the programming languages for
specific network operations that you can perform with DECnet-VAX.

User Language

DCL

Higher-level
languages

MACRO or
higher-level
languages

MACRO or
higher-level
languages

Table 1-1: Network Access Levels

Network Operation

Network command
terminals

Remote file
manipulation

Task-to-task
communication

Remote file access
(files and records)

Task-to-task
communication

Remote file access
(files and records)

Task-to-task
communication

Task-to-task
communication

Language Calls

DCL commands

Higher-level
language
I/O statements

RMS service
calls

System service
calls

Access Level

Transparent
network access
via DCL

Transparent
network access
via RMS

Transparent and
nontransparent
network access
via QIO

The way you access the network is directly related to the language you
use and the network operation you perform. For example, you may want
to use standard VAX-11 RMS calls in a VAX-11 MACRO program to access
remote files, then use system service calls to communicate between
MACRO programs in a task-to-task communication application. Figure
1-1 shows three access levels and the corresponding network
operations. The various levels of network access provide a convenient
context in which to discuss typical user operations over the network.

1-2

Network User Interface Network Access Level

I L
VAX/VMS

L.
71 _I l DCL Interpreter

i.... -- & RMS-using
DCL Commands - I -

1-lil Images II
II

L 0
- - - - - - - - - - - - -
Lf- l

Remote ~: .

File Access I "" _]
,__Pr_o_gr_a_m_s __ __,11~11 l ~L VAX-11 (.-=--)

RMS ~ File

I : __j >- - 0-;_;;- - V '-System./

~I ~~ -
L

Transparent
Task-to-Task
Programs i/" l -------

/1

__,

DCL
Acces
Level

-

RMS
Acces
Level

- r - - - j.- - - - - - - -
£,,:-.:_-_-_-_-_ -_-_ -----_-.,.-. ,..L ___ _,~,, I

L I
Transparent 010

Task-to-Task ~ ~ System

__ P_ro_g_ra_m_s ___ ,v"" J ~ Services V

L.---7~ L I
L

Nontransparent DECnet-VAX
Task-to-Task
Programs

I

I
I
l
I

Software

-+-

L ./

Communications
Device

v
System
Service
Acces
Level

ZK-833-82

Figure 1-1: Network Access Levels and DECnet-VAX User Interface

The first two levels of access, DCL and RMS, are entirely transparent
to the network user. Because you use standard DCL commands and RMS
service calls to access remote files, no DECnet-specific calls are
required at these levels of access. You need only specify the remote
node on which the file resides in your file specification. Likewise,
higher-level language tasks can use a variation of the standard
VAX/VMS file specification in conjunction with standard I/O statements
to access remote tasks and exchange information; thus, this form of
task-to-task communication is also transparent. As with
device-independent input/output (I/O) operations, transparent network
access allows you to move data across the network with little concern
for the way this operation is performed.

The third level of access, system services, provides both a
transparent and a nontransparent user interface to the network.
Transparent communication at the system service level provides all the

1-3

basic functions necessary for two tasks to exchange messages over the
network. As with the higher-level language I/O interface, these
operations are transparent because they do not require DECnet-specific
calls. Rather, you use standard system service calls to implement
them. Nontransparent communication extends this basic functionality
to allow a nontransparent task to receive multiple inbound connections
and to use additional network protocol features such as optional user
data and interrupt messages. As with device-dependent I/O,
nontransparent communication allows you to exploit certain
network-specific characteristics to coordinate a more controlled
communication environment for exchanging information.

1.1.2 A Network Topology

To highlight the operational capabilities of DECnet-VAX, this section
presents a hypothetical network example comprised of various DIGITAL
operating systems. Figure 1-2 illustrates a network topology {or
geometry) which includes several VAX/VMS systems. No two networks are
likely to have the same distribution of resources or the same
topology; therefore, this example serves only to illustrate the use
of DECnet-VAX functions in a heterogeneous network environment. The
examples throughout this manual refer back to the network topology
presented here.

Nodes DENVER and TRNTO

• Corporate Computing Facilities
• I nventory Control &

Cost Accounting Procedures
• Production Schedules
• Central Data Base

DENVER
(VAX/VMS)

Node KANSAS

• Order Entry
• Local Data Base
• Marketing & Sales

TRNTO
(VAX/VMS)

DALLAS
(RSX-11M)

Node DALLAS

Node BOSTON

•
•
•
•
•
•
•

Division Host Computer
Central Data Base
Program Development
Data Analysis
Inventory Control
Network Management
Central Processing

BANGOR
(RSX-11S)

NYC
(RSX-11S)

Nodes NYC and BANGOR

• Satellite Control Systems
• Instrumentation &

Process Control
• Data Acquisition

• Research & Development
• Local Program Development
• Local Data Base
• Data Acquisition

ZK-834-82

Figure 1-2: Network Topology and Related Functions

1-4

The computer network in Figure 1-2 has a centralized VAX/VMS host
processor (BOSTON) and remote distributed systems dedicated to
particular functions. For the purpose of discussion, this network
represents a corporate division that oversees such functions as
research and development, process control, and order entry. In this
example, the size and functions of the network are simplified.

The VAX/VMS host processor at node BOSTON performs major computation,
controls the central data base, and supervises the general operation
of the network for the division. The remote computers (nodes) perform
various network-related functions in concert with the host processor.
The VAX/VMS computers at nodes TRNTO and DENVER represent corporate
computing facilities, where the corporation generates reports,
production schedules, and inventory and cost accounting procedures.
The host computer provides information to these facilities to account
for divisional productivity.

Figure 1-3 indicates the type of typical DECnet-VAX operations that
enable the host to serve this role. Nodes NYC and BANGOR are
satellite computers involved with instrumentation and process control.
The host coordinates the manufacturing process via down-line system
and task loading and transparent task-to-task communication for data
acquisition and retrieval. (Refer to the DECnet-VAX System Manager's
Guide for more information on down-line loading.)

Node DALLAS provides computing power sufficient for conducting
experiments and collecting data; research and development involving
development of local programs replaces the need to use the resources
of the host. The host, however, has access to this remote data base,
and controls simple procedures that tasks at both NYC and DALLAS must
carry out in concert. A nontransparent task running on the host
processor controls the exchange of information between the two tasks.

Finally, marketing has direct input to the host in the form of order
entry at node KANSAS. Typically, such input might involve direct
access to files or programs that update the central data base. The
host, in turn, updates the remote data base with inventory information
and other sales-related data.

TRNTO and DENVER

• File Access
(updating Local Data Base)

DALLAS

• Command File Submission
• File Access (updating files)
• Device Access

• Nontransparent Task-to-Task Communication
(process control)

• Remote Command Terminals

NYC and BANGOR

• Downline Task Loading
• Task-to-Task Communication

(data acquisition & retrieval)
(printing data at remote node)

ZK-835-82

Figure 1-3: Operational Capabilities of DECnet-VAX

1-5

Such a network takes advantage of the host's resources efficiently and
effectively. The centralized location of the host computer enables it
to communicate with all remote nodes performing their individual
functions. To control and monitor the various functions of the
division, the local VAX/VMS user in interactive or batch mode can use
DCL commands to access remote files and devices; the network
programmer can develop programs for controlling the manufacturing
process and for accessing files on the remote data bases. Remote
command terminals allow network users to log in at remote VAX/VMS
nodes and perform operations just as they would at the local node.
Thus DECnet-VAX provides all the facilities for operating within a
network environment while distributing the processing load efficiently
among the available network resources.

1-6

CHAPTER 2

ACCESSING THE NETWORK

This chapter presents general information that you need to access the
network via DECnet-VAX software. This information includes the
general format for network file and task specifications, access
control parameters, the use of logical names, and the use of network
command terminals. The format for file specifications is applicable
to file handling operations for both the DCL and the RMS interfaces to
the network. The task specification format pertains to task-to-task
communication. The information on access control is significant
because it defines the way that both local and remote nodes grant
access to their system resources. Finally, this chapter discusses the
use of logical names, focusing on the flexibility that they provide.

2.1 FILE AND TASK SPECIFICATIONS

DECnet-VAX uses the standard VAX/VMS file specification format for
remote file handling and task-to-task communication applications. A
node specification string that includes a node name with an optional
access control string must be present. You use the optional access
control string to explicitly specify access information for both files
and tasks at the remote node {see Section 2.2). Task-to-task
communication requires the use of a task specification string enclosed
in quotation marks. This string identifies the target task to which
you want to connect on a remote node.

Network file specification strings are composed of eight major fields
{or elements), which are arranged in the following formats:

node-spec:: I device:[directory]filename.type;version

"task-spec-string" l "foreign-file-spec-string"

The punctuation marks and brackets included in these formats are
required to separate the fields of the file specification. The double
colon {::) after node is treated as a single delimiter. Angle
brackets {<>) may be substituted for square brackets {[]) to enclose
directory, and a period (.) may be used in place of the semicolon {;)
to separate type and version. The total length of a full file
specification string may not exceed 252 characters.

VAX-11 RMS converts lowercase characters to uppercase and removes
space, tab, and null characters from a file specification, except for
characters within quoted strings {such as "access-control-strings",
"foreign-file-spec-strings", and "task-spec-strings").

The fields of the full file specification defined below emphasize the
fields unique to network processing.

2-1

node-spec

ACCESSING THE NETWORK

identifies the target node and specifies which
account on that node to use. If you specify the
name (or number) of the local node, the connection
is made to the local node by DECnet as if it were
a remote node.

The length of a node-spec is 3 to 61 characters,
including the required double colon delimite~.

The format of a node-spec is:

j nodename

(logical-nodename
} "access-control-string"::

Each component of the node-spec is defined below:

node name
(1-6 char)

logical
nodename
(1-15 char)

access
contro 1-
string
(0-42 char)

2-2

specifies a node in the network.
The node name consists of
uppercase alphanumeric characters.
If the node name is all numeric,
it will be interpreted as the node
number (where O represents the
local node). (For compatibility
with future versions of DECnet,
you should avoid the use of node
numbers.) You may prefix the node
name with an underscore character
() to designate that it is not a
candidate for logical node name
translation.

specifies a logical name for a
node in the network. Refer to
Section 2.3 for rules governing
the use of logical node names.

is an optional quoted character
string containing login
information that is sent to the
remote node. This string
designates the remote account
under which programs (or tasks)
will execute on your behalf or
remote files will be accessed to
perform the functions that you
request. If you omit the access
control string, the login
information sent to the remote
node is the default access control
string for that node as specified
by the local System Manager (see
Sec t i on 2 • 2) •

An access control string is
expressed in either of the
following formats:

"username password"

"username password account"

device,
directory,
filename,
type, and
version

foreign-file
spec-string
(1-127 char)

ACCESSING THE NETWORK

For a VAX/VMS node, either format
is acceptable, but the shorter
form is generally used because
VAX/VMS ignores the account name
subfield when you log in. You
should refer to the appropriate
DECnet documentation for the
access control string format for
nodes other than VAX/VMS.

Space and tab characters (or
multiples thereof) delimit
username, password, and account.
Therefore, each substring within
the access-control-string may
contain any characters except the
quote, space, and tab characters.

are five optional fields that collectively
identify the file to be accessed on a remote node.
The definitions and syntax rules for these fields
are the same for network use as for local file
access, including the specification of seven
levels of subdirectories and the use of wild card
characters where valid. If the syntax of the file
specification differs from that of VAX/VMS, use
the foreign-file-spec-string format.

If a device or directory is not specified in the
file specification string, default values are
supplied by the target node, which uses the
conventions of its operating system. If the
target node is VAX/VMS, all defaults apply as
though the user had logged in at the remote node
using the access control information implicitly or
explicitly supplied.

The VAX-11 Record Management Services Reference
Manual contains a detailed explanation of the
syntax for VAX/VMS file specifications.

is a quoted character string that identifies the
file to be accessed on a remote node. The syntax
of the file specification must be in the format
recognized by the operating system of the remote
node.

When you put a file specification between
quotation marks, the VAX-11 RMS facility at the
local node performs no syntax checking or logical
name translation. Rather, the local node passes
the file specification intact to the remote node
where it is interpreted. Use the quoted string
format when the file specification syntax of the
remote node differs from that of VAX/VMS. For
example, a RSTS file specification may contain a
dollar sign ($):

$TYPE KANSAS::"$START.CTL"

2-3

task-spec
str i ng
(2-32 char)

ACCESSING THE NETWORK

is a quoted string that identifies the remote task
to which you attempt the logical link connection.
You identify the task by object type. An object
type is a discrete identifier for either a user
task or a known object on a remote node. Object
types have two forms:

• Zero (0) plus a name or TASK plus a name (for
example, "O=TEST2" or "TASK=TEST2")

• Nonzero without a name (for example, "17=" or
"FAL=", where FAL in this case is the name
specified for object 17 by the NCP command
DEFINE OBJECT)

Nonzero network objects (known objects) are
intended for generic process addressing over the
network. For example, a program written to
establish a logical link with the FAL object may
send a request by addressing object type 17.
User-written tasks are usually addressed as object
type O plus a name, but they may also be addressed
with a nonzero object type alone. (Refer to the
Introduction to DECnet manual for a complete
discussion o-r- object types and their use.)
Appendix A lists the object type numbers reserved
for standard DECnet services and those available
for user-written programs.

To establish a logical link connection with a
remote task addressed as object type 0, use either
of the following forms of task specification
string, where taskname is one to nine characters
in length:

{ "TASK=taskname" }

"O=taskname"

If the remote node is a VAX/VMS system, the
taskname string represents the file name of a DCL
command procedure to be executed at the remote
node. (If the remote node is not a VAX/VMS
system, the maximum length of the task name that
it accepts may be different.) The command
procedure can complete the logical link itself or
it can include a DCL RUN command to execute a
program that completes the logical link.

To address the remote task by a nonzero object
type, use the following form as the task
specification string, where n is an object type
number (in the range of 1 to 255) and xyz is an
object name equated to a number via the NCP
command DEFINE OBJECT:

{ "n-" }

"xyz="

2-4

ACCESSING THE NETWORK

Examples of network file specifications

1. DALLAS::TEST.DAT

Use this file specification to access the file TEST.DAT on
node DALLAS.

2. TRNTO::DMA2:[INVENTORY]TEST.DAT;3
TRNTO"KC JONES"::DBAl:TEST.DAT;3

The first of these two file specifications provides no
explicit access control information but the second one does.

3. KANSAS::"$START.CTL"
TOPS20"KC JONES APOLLO"::"A-VERY-LONG-FILE-NAME.TEST.5"

These examples illustrate the use of quotation marks when the
remote node's file specification syntax differs from that of
VAX/VMS.

Examples of network task specifications

1. BOSTON::"TASK=TEST2"

This specification identifies the task TEST2 by using the
TASK= form for specifying remote tasks.

2. BOSTON"JOHN SMITH"::"O=TEST2"

This example is the same as the one above, except that access
control information is provided and the alternative O= form
for specifying a task is used.

3 • DAL LA s : : " 1 5 0 =II

This specification identifies the user-defined network object
by object type (150).

2.2 ACCESS CONTROL

Access control is the control that a node exercises over inbound
logical link connections. The terms inbound and outbound refer to the
direction of the logical link connection request. A node receives and
processes inbound requests; it processes and sends outbound requests.
This distinction is useful for discussing access control as it relates
to VAX/VMS nodes in a network. Refer to appropriate DECnet
documentation if the node to which you want to connect is other than
VAX/VMS.

When DECnet-VAX software sends an outbound connection request in
response to either a remote file access or a task-to-task
communication operation, certain access control information may be
necessary to connect successfully to the remote node and log in. As
in logging in at your local VAX/VMS node, you can supply specific
access control information in the form of a user n~me and password
that the remote node recognizes. The remote node processes inbound
connection requests containing this information to verify that you are
a valid user of the system.

Upon receiving an inbound connection request, DECnet-VAX software at
the remote node creates a process and starts the LOGINOUT image, which
verifies your access rights by checking the User Authorization File

2-5

ACCESSING THE NETWORK

(UAF). A user account record is set up for you beforehand within this
file by the System Manager. Generally, every time you access a
network node, your status as a valid user of that node will be
verified against the information contained in the UAF. In this
instance, access control provides one form of network security. One
exception to this form of access control checking is in nontransparent
task-to-task communication wherein a task can receive multiple inbound
connection requests (see Chapter 7).

There are two ways to supply access control information for network
access:

• You can explicitly specify an access control string as part of
a file or task specification in the node field.

• You can have the local node forward default or null access
control information to the remote node.

In either case, DECnet software sends this information to the remote
node which in turn processes the inbound connection request and, if
this information is valid, grants access. If you include an access
control string as part of a node specification, this information is
always sent directly to the remote node. The privileges associated
with either the local account under which your process is running or
the specified remote account are of no concern to the local DECnet-VAX
implementation. Figure 2-1 illustrates the access control processing
that takes place for a simple DCL command.

$COPY TEXT.NEW TRNTO "WHITE XYZ"::DBA1:TEXT.TXT

RMS
Processing

Remote

Local Node Node TRNTO::
BOSTON:: __ _,...._ __

DECnet-VAX
Software

DECnet-VAX
Software

File

Key:
".WHITE XYZ"

Access
Validity
Checking

TEXT.TXT

LOGINOUT.EXE
Runs

r

I
I

(If Access
Information
Checks Out)

Command Procedure
SYS$SYSTEM: FAL.COM

is executed

FAL.EXE
Runs

FAL.LOG
is produced

L __
- -- _J

ZK-836-82

Figure 2-1: Remote File Access Using Access
Control String Information

2-6

ACCESSING THE NETWORK

When explicit access control information is not provided in the
connection request, DECnet-VAX software uses the remote node name
specified in the connection request as a key to locate the appropriate
record in the local Configuration Data Base. This record contains
default access control information applicable to the remote node.
Your System Manager creates this entry when establishing the
Configuration Data Base. (Refer to the DECnet-VAX System Manager's
Guide for additional information on the Configuration Data Base.)
Depending on the privileges required by the object with which you want
to connect and those of the user process (see Figure 2-3), one of
three possible sets of default access control information is sent to
the remote node: default privileged, default nonprivileged, or null.
Because these defaults are node parameters, all privileged operations
requested with default access control for a given node run under the
same default account. The same is true for nonprivileged operations
requested with default access control. Figure 2-2 illustrates the
access control processing that takes place for the same DCL command as
in the example in Figure 2-1, except that the DCL command does not
specify an access control string.

$ COPY TEXT.NEW TRNTO::DBA1:TEXT.TXT

Local Node

RMS
Processing

BOSTON:: __ _,...__ __

Key: TRNTO:: DECnet-VAX

Default
Access

Control
Info.

Software

Entry:
"DECNET NONPRIV"

Remote
Node TRNTO::

DECnet-VAX
Software

LOGINOUT.EXE
Runs

(if Access
Information
Checks Out)

File
Access r - FALPro;;;ing- 1
Validity
Checking

Key:
"DECNET NONPRIV"

TEXT.TXT I

Command Procedure
SYS$SYSTEM: FAL.COM

is executed

FAL.EXE
Runs

FAL.LOG
is produced

I
L---J

ZK-837-82

Figure 2-2: Remote File Access Using Default
Access Control Information

Note that, in DECnet-VAX usage, nonprivileged means no privileges
other than TMPMBX and NETMBX. Privileged means any privileges in
addition to TMPMBX and NETMBX. The context for network-related
privileges is the NCP command DEFINE OBJECT. Normally, task-to-task
communication and remote file access are nonprivileged operations.

2-7

ACCESSING THE NETWORK

The Configuration Data Base may also define privileges associated with
network operations such as task-to-task communication. The System
Manager may create object entries with associated privileges. There
must be a separate entry for every numbered object that might be
requested ("n=").

If, on an outbound connect to an object, you attempt a privileged
connection and you do not have sufficient privilege, then you get null
access control. On an inbound connection to a nonzero object, any
access control information you specify is used. If you do not specify
access control information, then one of the following will occur:

• If access control information is associated with the object in
the Configuration Data Base, then it is used.

• If no access control information is associated with the
object, then the access control for the local nonprivileged
network account (if any) is used; otherwise, no information
is used.

Access control is not checked for connections to running tasks that
have declared names or object numbers (see Section 7.4.1). Figure 2-3
illustrates the process used to determine what access control
information (if any) is used for outbound and inbound connections to
objects. (Note that in order to use default access control for a
privileged account, the process that makes the request must have at
least the same local privileges.) Local privileges are completely
independent of remote privileges. The DECnet-VAX System Manager's
Guide provides a more detailed discussion of access control, network
prrvileges, and the Configuration Data Base.

Outbound Connection
(from local node)

Yes

No

Yes

DECnet-VAX
Sends it

DECnet-VAX
Sends
Default
Nonprivileged

Information

DECnet-VAX
Sends
Default
Privileged

Information
from node
data base

DECnet- Vax Sends Null Information

to remote
node

Inbound Connection
(to local node)

Yes

Yes

Yes

LOGINOUT
Uses it

LOGINOUT
Uses it

LOG/NOUT
Uses it

LOGINOUT Uses No Access Control

Figure 2-3: Outbouhd and Inbound Connect Flowcharts ZK-838-82

2-8

ACCESSING THE NETWORK

2.3 USING LOGICAL NAMES

The use of logical names for network operations allows you to refer to
network file and task specifications without using actual names that
you give these elements. Logical names serve as a kind of shorthand
for specifying all or a portion of a full file specification. The
inherent flexibility in using logical names allows you to pass file
specifications defined at the DCL level to an executing image at run
time. For example, logical names allow a program to access local or
remote files without changing the program. You can also use logical
names to conceal access control information from other users by
embedding it in a logical name defined in the process logical name
table. Logical names provide convenient and powerful multilevel
access control specification.

The rules that govern the use of logical names for network operations
are as follows:

• Both the device name and node name elements of a full file
specification string can be logical names. However, once a
node specification is encountered during file parsing, the
device name that follows will be treated as a logical name
only if it translates to an equivalence string that was
entered in user mode in the process logical name table.
Otherwise, the device name is passed unaltered to the remote
node, where it is subject to logical name translation.

• A logical name appearing in the device name position can
supply any file specification string elements when translated.

• A logical name appearing in the node name position can supply
only a node-spec when translated. Therefore, its equivalence
string must end with a double colon.

• An access control string associated with a logical node name
becomes the new access control string for the node-spec of the
equivalence string, even if the node-spec contained an access
control string. Thus, you can easily specify a default (or
override any) access control string defined for the node-spec
resulting from logical name translation.

• After a logical node name is translated, the new node name
becomes a candidate for logical node name translation.

• A maximum of ten logical device name translations and ten
logical node name translations is permitted. If you exceed
these limits, an RMS error (RMS$_LNE) is returned.

Examples of Logical Names

1. $ DEFINE NEW YORK NYC::

$DEFINE TORONTO TRNTO::

$DEFINE FILE TORONTO::DBAl: [INVENTORY.COM]COPYTEST.COM
$ TYPE FILE

This command displays (at the local node) file COPYTEST.COM
in directory [INVENTORY.COM] on remote node TRNTO.

2. $DEFINE A TRNTO::DBAl:[INVENTORY.COM]
$ TYPE A:COPYTEST.COM

This command displays file COPYTEST.COM in an alternate
manner.

2-9

ACCESSING THE NETWORK

3. $DEFINE B TRNTO::
$TYPE B::DBAl: [INVENTORY.COM]COPYTEST.COM

This command displays file COPYTEST.COM in still another
manner.

4. $DEFINE TORONTO TRNTO::
$DEFINE NODE "TORONTO""TEST RESULTS""::"
$DEFINE DEVICE NODE::DBAl:
$ DEFINE REMOTE DEVICE: [FINAL.RESULTS]
$ TYPE REMOTE:TEST.DAT

This command displays
[FINAL.RESULTS] on node
expanded as follows:

file
TRNTO.

TEST.DAT in directory
The file specification was

$ TYPE REMOTE:TEST.DAT
f '

DEVICE: [FINAL. RESULTS] TEST. DAT • ~::DBAl: [FINAL.RESULTS]TEST.DAT

TORONTO"TEST RESULTS"::DBAl: [FINAL.RESULTS] TEST.DAT

t
TRNTO"TEST RESULTS"::DBAl: [FINAL.RESULTS]TEST.DAT

2.3.1 Iterative Translation

The node name portion of a node specification
recursively. For example:

$DEFINE ALPHA BOSTON::
$DEFINE BETA ALPHA::
$DEFINE C "BETA""FRED XJ5""::DM1: [TEMP]"
$ TYPE C:FILE.DAT

is translated

This command displays file FILE.DAT in directory [TEMP] on node
BOSTON. The file specification was expanded as follows:

$ TYPE C:FILE.DAT

~
BETA" FRED XJ 5": : DMl: [TEMP] FILE. DAT
r
ALPHA"FRED XJ5"::DM1: [TEMP]FILE.DAT r
BOSTON" FRED XJ 5":: DMl: [TEMP] FI LE. DAT

When logical node names.are translated iteratively, the access control
information first translated overrides subsequent access control
information. For example,

$DEFINE TORONTO "TRNTO""TEST RESULTS""::"
$DEFINE TESTl "TORONTO""TEST lOOl""::DBAl:"
$DEFINE TEST2 TORONTO::DBA2:

$ TYPE TESTl:PROC.001,TEST2:PROC.002

In the above example, TESTl translates to TRNTO"TEST lOOl"::DBAl: and
TEST2 translates to TRNTO"TEST RESULTS"::DBA2:. Note that TORONTO
would be an invalid node name were it not a logical name that
translated to a node specification containing a node name of one to
six characters.

2-10

ACCESSING THE NETWORK

2.3.2 Names Prefixed by an Underscore Character

Device names and node names that are prefixed by an underscore
character {) are not candidates for logical name translation.
However, if you prefix the underscore character to a name, it is not
considered part of the name {for example, BOSTON is a valid node name
in this respec~). For example:

$DEFINE BOSTON TRNTO::
$TYPE BOSTON::A.DAT, BOSTON::B.DAT
$ DEFINE/USER DBAO DBA2:
$TYPE BOSTON::DBAO:C.DAT,_BOSTON:: DBAO:D.DAT

In the example above, A.DAT comes from node TRNTO, B.DAT comes from
node BOSTON, C.DAT comes from DBA2 on node TRNTO, and D.DAT comes from
DBAO on node BOSTON. Note that if the logical name DBAO were not
placed in the process table in user mode, it would not have been
translated at the local node for the file specification containing
C. DAT.

2.4 NETWORK COMMAND TERMINALS

DECnet-VAX network command terminals are implemented via the VAX/VMS
remote command terminal facility. This facility permits a single user
to establish communication with a remote VAX/VMS node and to use the
facilities of that system while physically connected to the local
node. By means of this link, you can temporarily become a local user
of the remote node and thereby perform functions that the remote node
allows its local users to perform.

To establish communication with a remote VAX/VMS node, use the DCL
command SET HOST. The format for this command is as follows:

SET HOST nodename

In this command, nodename is defined as follows:

nodename is a 1- to 6-character name (or number) specifying
the remote node at which you want to log in.

The remote system will prompt for a user name and password, and, if
this information is valid, it will cause you to be logged in at the
remote node. There is no special control character handling (other
than CTRL/Y) for remote command terminal operations. To return
control to your local node, type LOGOUT; the following message will
appear, indicating that control has been transferred to your local
node:

%REM-S-END, control returned to node nodename::

NOTE

Repeated pressing of CTRL/Y rapidly will
generate a prompt asking if the remote
connection should be broken. If you
answer "Yes" to the prompt, control will
return to the local node. This is
useful if for some reason you cannot
return to the local node properly.

2-11

ACCESSING THE NETWORK

The following command sequence illustrates the operation of remote
command terminals for our network example (the name of the local node
is BOSTON):

$ SET HOST TRNTO
Username: SMITH
Password:

Welcome to VAX/VMS Version V3.0 on node _TRNTOt:

$ LOGOUT
SMITH lossed out at 8-MAY-82 12:31:55.49

%REM-S-END, control returned to node _BOSTON::

$

Once logged in at a remote node, you can use the SET HOST command to
establish communication with another node. In the above example,
after logging in at node TRNTO, you could type SET HOST DENVER, which
would cause you to be logged in at node DENVER. Note that when you
are logged out at node DENVER, control returns to node TRNTO. Refer
to the VAX/VMS Command Language User's Guide for a complete discussion
of the SET HOST command.

2-12

CHAPTER 3

REMOTE FILE ACCESS USING DCL

Most VAX/VMS DCL commands allow you to perform file operations at a
remote node. These commands enable you to obtain directory listings,
manipulate files, and execute command procedures over the network.
The DCL commands described in this chapter use VAX-11 RMS to perform
the following network file operations:

• List directories located on a remote node

• Copy files to and from remote nodes and between remote nodes

• Append files to a file

• Delete and purge files from a remote node

• Open, read, write, and close files at a remote node from a
command procedure

• Submit command procedure files for execution at the remote
nodes where they reside

• Print files at the remote nodes where they reside

• Type files located on a remote node

• Sort and merge remote files

• Search remote files

• Obtain file specification or attribute information about
remote files

• Compare two files for differences

• Analyze the structure of remote VAX-11 RMS files

• Convert files from one format to another while copying the
result to or from a remote node

• Dump the contents of remote files for inspection

• Perform backup operations on remote VAX/VMS disk files

Many VAX/VMS DCL commands permit access to remote files. These
commands fall into the following categories: logical name operations,
file operations, lexical functions, and record access operations.
This chapter defines the commands (and relevant command and file
qualifiers) that you can use over the network. The descriptions of
the commands include restrictions on the use of certain commands in a

3-1

REMOTE FILE ACCESS USING DCL

heterogeneous network environment {because of features not available
on remote systems). For complete descriptions of these commands,
consult the VAX/VMS Command Language User's Guide.

3.1 ACCESSING THE NETWORK USING DCL COMMANDS

A VAX/VMS interactive or batch user is able to perform a variety of
network file operations through DCL commands. Conceptually, accessing
the network at this level is the same as using DCL directly for local
operations. For most DCL commands, you need only include a node name
as part of the standard VAX/VMS file specification to denote a remote
file. In addition, NETMBX and TMPMBX privileges are required to
execute most of the commands described in this chapter.

Table 3-1 summarizes the functions of DCL commands that are commonly
used to access remote files in a network environment.

Table 3-1: DCL Command Summary

Type of Operation and Function
Command Statement

Logical Name Operations

ASSIGN

DEASSIGN

DEFINE

SHOW LOGICAL

SHOW TRANSLATION

File Operations

ANALYZE/RMS_FILE

3-2

Associates a file specification,
node name, or device name with a
logical name for subsequent use
in commands and programs at the
local node

Cancels a logical name
assignment made with the ASSIGN
or DEFINE command

Creates a logical name for use
at the local node with an
equivalence name string that is
a partial or full file
specification {similar to the
ASSIGN command)

Displays the current assignments
for logical names and
equivalence names made by the
ASSIGN or DEFINE command

Searches logical name tables for
a specific logical name and
displays the equivalence name of
the first match found

Analyzes the internal structure
of a VAX-11 RMS file, optionally
generating an FDL {File
Definition Language) file

(continued on next page)

REMOTE FILE ACCESS USING DCL

Table 3-1 (Cont.): DCL Command Summary

Type of Operation and Function
Command Statement

APPEND Adds the contents of one or more
files to the end of another file

BACKUP Performs save and restore
operations on local files using
a saveset residing on a remote
VAX/VMS node.

CONVERT Copies records from one file to
another file, changing the
organization and record format
to that of the second file (if
it exists) or creating a new
file using the file attributes
specified in an FDL file

COPY Copies one or more files to or
from a remote node into one or
more additional files

CREATE

DELETE

DIFFERENCES

DIRECTORY

DUMP/RECORDS

MERGE

PRINT/REMOTE

PURGE

SEARCH

3-3

Creates a sequential disk
from records that follow
command in the input stream

file
the

Deletes one or more remote files

Compares the contents of two
files and produces an output
file that lists any differences
found

Displays the file name and
optional file attribute
information about a remote file
or group of remote files

Displays the
remote file
swecified

contents of a
in the data format

Combines two or more similarly
sorted remote files into one new
file

Queues for printing one or more
files at the nodes where they
reside

Purges one or more remote files

Searches one or more files and
lists all occurrences of one or
more specified strings

(continued on next page)

REMOTE FILE ACCESS USING DCL

Table 3-1 (Cont.): DCL Command Summary

Type of Operation and Function
Command Statement

SORT Reorders records in a remote
file and creates a new output
file (or an address file to
access the records)

SUBMIT/REMOTE Queues for execution one or more
command procedures at the nodes
where they reside

TYPE

Lexical Functions

F$FILE ATTRIBUTES

F$PARSE

F$SEARCH

Record Access Operations

CLOSE

OPEN

READ

WRITE

3.2 LOGICAL NAME COMMANPS

Displays the contents
remote file or files

of a

Returns attribute information
about a remote file

Returns a partial or full file
specification for a remote file

Returns the full
specification for the
remote file that matches
given wild card
specification

file
next
the

file

Closes a remote file previously
opened by the OPEN command

Opens a remote file for reading
or writing at the command level

Reads a single record from a
remote input file

Writes a single record to a
remote output file

Several DCL commands permit you to create, delete, and display logical
names. Although logical name manipulation is performed locally by the
commands described in this chapter, use of logical names in file
specifications in other DCL commands does affect the network.
Consequently, the logical name support commands are described below.

3.2.1 ASSIGN, DEASSIGN, and DEFINE

The ASSIGN, DEASSIGN, and DEFINE commands allow you to generate
logical names for nodes and devices for use in file specifications.

3-4

REMOTE FILE ACCESS USING DCL

These commands provide a convenient way to use logical file
specifications without having to define physical device
specifications. When used for network operations, these commands
support all command and file qualifiers that you would normally use
locally.

Examples

1. $DEFINE TORONTO TRNTO::DBAO: [DECNET.DEMO.COM]

This DEFINE command places the logical name TORONTO in the
process logical name table with an equivalence name of
TRNTO::DBAO: [DECNET.DEMO.COM].

2. $DEFINE LOCAL "BOSTON""JOHN SMITH JKS""::"

This DEFINE command places the logical name LOCAL in the
process logical name table with a remote node equivalence
name of BOSTON"JOHN SMITH JKS"::. To satisfy conventions for
local DCL command string processing, you must use three sets
of quotation marks, so that access control information will
be enclosed in one set of quotation marks in the equivalence
name.

3. $ASSIGN DALLAS::DBO: DATA

This ASSIGN command associates the logical name DATA with the
device specification DBO on remote node DALLAS. Subsequent
references to the logical name DATA result in references to
the disk on the remote node.

4. $ DEASSIGN DATA

This DEASSIGN command cancels the logical name assignment
made in the above example.

3.2.2 SHOW LOGICAL and SHOW TRANSLATION

The SHOW LOGICAL command displays current logical name assignments and
the SHOW TRANSLATION command displays the result of translating a
logical name. For a discussion of the use of logical names for
network operations, see Chapter 2.

Examples

1. $ SHOW LOGICAL

This SHOW LOGICAL command displays the current contents of
the process, group, and system logical name tables.

2. $ SHOW TRANSLATION MASTER

This command causes the logical name tables to be searched
for the logical name MASTER, and displays its current
equivalence name.

3.3 COMMANDS FOR FILE HANDLING

Many DCL commands that contain file specifications can be used to
access files stored on remote nodes. The following is a list of DCL
commands that are useful in a network context and are supported in
part or in full in that environment. This list notes restrictions on

3-5

REMOTE FILE ACCESS USING DCL

using certain command qualifiers and file qualifiers when entering
particular commands in a network context. Complete descriptions of
the file-handling commands appear in the VAX/VMS Command Language
User's Guide.

ANALYZE/RMS_FILE file-spec[, •••]

This command is supported only for the examination of files
generated by VAX-11 RMS or RMS-11.

APPEND input-file-spec[, •••] output-file-spec

BACKUP input-specifier output-specifier

This command is supported only to access savesets located on
remote VAX/VMS nodes. An input or output specifier that
includes a remote node name must also include the file
qualifier /SAVE_SET.

The copy, compare, and journal operations are not supported.

CONVERT input-file-spec[, •••] output-file-spec

COPY input-file-spec[, •••] output-file-spec

The following file qualifiers are not supported if the
output file is on a remote node:

/[NO]OVERLAY
/[NO]REPLACE

CREATE file-spec

The /DIRECTORY qualifier is not supported.

DELETE file-spec[, •••]

DIFFERENCES master-file-spec [revision-file-spec]

DIRECTORY [file-spec[, •••]]

The command qualifier /FULL is supported except for the
file identification number which is displayed as <unknown>.

MERGE input-file-specl,input-file-spec2[, •••] output-file-spec

DUMP/RECORDS[=(option[, •••]}] file-spec

The following command qualifiers are not supported:
/ALLOCATED
/BLOCKS

PRINT/REMOTE file-spec[, •••]

No other qualifiers may be used with /REMOTE.

3-6

REMOTE FILE ACCESS USING DCL

PURGE file-spec[, •••]

SEARCH file-spec[, •••] search-string[, •••]

SORT input-file-spec[, •••] output-file-spec

The /RSXll qualifier is not supported.

SUBMIT/REMOTE file-spec[, •••]

No other qualifiers may be used with /REMOTE.

TYPE file-spec[, •••]

The DCL commands listed below are not supported for access to files on
remote nodes:

@
RENAME
RUN
SET DEFAULT
UNLOCK

The following subsections describe in more detail the use of DCL
commands for handling files over the network. Note that if you do not
specify an access control string in the file specification in a DCL
command, the default DECnet account at that node is accessed if it
exists.

3.3.1 ANALYZE/RMS_FILE

Use the ANALYZE/RMS FILE command to analyze the internal structure of
a remote VAX-11 RMS or RMS-11 file. You can specify the command
qualifier /FDL to generate an FDL (File Definition Language) file from
the data file. Using other command qualifiers, you can check the file
structure for errors, generate a statistical report on the file's
structure and use, or enter interactive mode to explore the structure
of the file. You can specify only one of these command qualifiers in
each command.

Examples

1. $ ANALYZE/RMS_FILE DENVER::DBl: [PROD] RUN.DAT

This ANALYZE/RMS FILE command analyzes the structure of the
file RUN.DAT resTding at remote node DENVER.

2. $ ANALYZE/RMS FILE/FDL/OUTPUT=TEST.FDL
$_File(s): DENVER::DBl: [PROD] RUN.DAT

This ANALYZE/RMS FILE command analyzes the structure of the
file RUN.DAT at remote node DENVER and generates the FDL file
TEST.FDL at the local node.

3-7

REMOTE FILE ACCESS USING DCL

3.3.2 APPEND and COPY

Use the APPEND command to add the contents of one or more specified
input files to the end of a specified output file. Use the COPY
command to create a new file from one or more existing files.

Examples

1. $COPY BOSTON::DMA2:TEST.DAT;5
$To: TRNTO::DBAl: [MODEL.TEST]TEST.DAT/ALLOCATION=50

This COPY command copies the file TEST.DAT;5 on device DMA2
at node BOSTON to a new file named TEST.DAT at remote node
TRNTO. The /ALLOCATE qualifier initially allocates 50 blocks
for the new file TEST.DAT at node TRNTO.

2. $APPEND/LOG BOSTON"JOHN SMITH JKS"::DEM01.DAT,DEM02.DAT
$_To: TRNTO::DBAl: [MODEL.TEST] TEST.DAT

This APPEND command adds the contents of the files DEMOl.DAT
and DEM02.DAT at remote node BOSTON to the end of file
TEST.DAT at remote node TRNTO. The /LOG qualifier displays
the fully expanded names of the files used.

3. $COPY SAMPLE.EXE DALLAS::DBO: [117,lO]SAMPLE.EXE/CONTIGUOUS

This COPY command copies the file SAMPLE.EXE on the local
node to a file with the same name at remote node DALLAS. The
/CONTIGUOUS qualifier indicates that the output file is to
occupy consecutive physical disk blocks.

4. $COPY DALLAS::Tl.DAT,T2.DAT,T3.DAT *·*
$COPY*·* TRNTO::*.*

The first COPY command copies the three files Tl.DAT, T2.DAT,
and T3.DAT on remote node DALLAS to the local node while
preserving the names of the files. The second example is a
more generalized form of the COPY command. All files within
the user directory at the local node are copied to the remote
node TRNTO. The new files will have the same names as the
input files.

3.3.3 BACKUP

You can use the BACKUP command to save local files in a BACKUP saveset
residing on a remote VAX/VMS node. You can also use this command to
restore at the local node files that were previously saved in a
saveset on a remote VAX/VMS node. Use BACKUP/LIST to display the
names and attributes of files cataloged in a remote saveset. The
remote BACKUP saveset cannot be on magnetic tape; it must reside on
disk.

Examples

1. $ BACKUP
$From: DBl: [SCHED]*.*
$-To: DENVER::DBA2: [SAVE]SCH.BCK/SAVE SET

This BACKUP command saves the files in the directory SCHED on
disk DBl at the local node in the BACKUP saveset SCH.BCK at
remote node DENVER. The /SAVE SET qualifier is required to
identify the output specifier as a saveset on a Files-11
medium.

3-8

REMOTE FILE ACCESS USING DCL

2. $BACKUP/LIST DENVER::DBA2:[SAVE]SCH.BCK/SAVE_SET

This BACKUP command lists the BACKUP summary information, the
original BACKUP command used, and the file name, size and
creation date for each file in the saveset created in example
1. The /SAVE SET qualifier is required to identify the input
specifier as a saveset on a Files-11 medium.

3.3.4 CONVERT

Use the CONVERT command to transfer records from a source data file to
a second data file, which can differ in file organization and format
from the first. You can use this command to transfer files to or from
a remote node while altering file attributes. If the output file
exists, the Convert Utility (CONVERT) changes the organization and
format of the data from the input file to that of the output file. If
the output file does not exist, the Convert Utility creates it from
the file attributes specified in an FDL (File Definition Language}
file. You can also use the CONVERT command to copy files to a remote
node or to retrieve them without modifying file attributes. However,
CONVERT transfers the file record by record and thus does not use
block I/O.

The Convert Utility is described in the VAX-11 Record Management
Services Utilities Reference Manual.

Examples

1. $ CONVERT/FDL=TEST.FDL TRNTO::DBAl: [EXP] SUB.DAT CUM.DAT

This CONVERT command creates a new sequential file CUM.DAT
with stream record format at the local node, according to the
specification in the previously created FOL file, TEST.FOL.
The input file SUB.DAT at remote node TRNTO is sequential
with variable-length record format. The Convert Utility
copies records from SUB.DAT to CUM.DAT, changing the format
of the records.

The contents of the FOL file TEST.FOL are as follows:

SYSTEM

FILE

RECORD

SOURCE

ORGANIZATION

BLOCK SPAN
CARRIAGE CONTROL
FORMAT
SIZE

vax/vms

sequential

yes
carriage_return
stream
0

2. $CONVERT MASTER.DAT DENVER::DBl: [PROD]MASTER.SAV

This CONVERT command creates a new file called MASTER.SAV at
remote node DENVER from the file MASTER.DAT at the local
node. Because the /FOL qualifier is not used, the new file
has the same file organization and record format as the
original file. The action of this CONVERT command is similar
to the function performed by the COPY command. However,
CONVERT transfers the file record by record and thus does not
use block I/O.

3-9

REMOTE FILE ACCESS USING DCL

3. $CONVERT/APPEND SALES.TMP KANSAS:: [200,2]SALES.CMD

This CONVERT command causes records from the file SALES.TMP
at the local node to be added sequentially to the end of the
output file SALES.CMD at remote node KANSAS. The file
SALES.TMP is sequential with variable-length record format,
and the file SALES.CMD is sequential with stream record
format. When the Convert Utility loads records from the
input file to the output file, it changes the record format.

3.3.5 CREATE

Use the CREATE command to create sequential disk files on a remote
node.

Example

$CREATE TRNTO::DBAl: [MODEL.TEST]TEST.DAT
1
22
333
4444
"'z
$

The CREATE command creates a sequential file named TEST.DAT
that consists of the characters entered on the lines
following the CREATE command. The CTRL/Z entry indicates the
end of the file.

3.3.6 DELETE and PURGE

Use the DELETE command to delete one or more files from a mass storage
volume on a remote node. The DELETE command requires that an explicit
version number be included in a file specification unless the file
specification is delimited by quotation marks. A null version number
(;) or a version number of zero (;0) implies the highest version of
the file. Use the PURGE command to delete all but the
highest-numbered version or versions of one or more files residing at
remote nodes.

Examples

1. $ DELETE/LOG
$_File: TORONTO::DBAO: [100,5]WORKORDER.DAT;3,0UTPUT.FIL;2

This DELETE command deletes the files WORKORDER.DAT;3
OUTPUT.FIL;2 from device DBAO at remote node TORONTO.
/LOG qualifier displays the file specification of each
deleted. Note that TORONTO is a logical name.

2. $DELETE DALLAS"FRED R2D2"::DKO: [305,32l]DECODE.LIS;l

and
The

file

This DELETE command deletes the file DECODE.LIS;l in
directory [305,321] on device DKO at remote node DALLAS.

3. $ DELETE/CONFIRM
$_File: TRNTO::[SAM.OBJ]A.OBJ;,A.EXE;,[SAM.LIS]A.LIS;

This DELETE com~and queries the user whether or not each of
the successive files on remote node TRNTO should be deleted.

3-10

REMOTE FILE ACCESS USING DCL

4. $DELETE QUEBEC::"DXl:DEAL.BIG"
$DELETE QUEBEC::DXl:DEAL.BIG;

Both of these DELETE commands delete the file DEAL.BIG on
device DXl at remote node QUEBEC. Note that the DELETE
command requires an explicit version number in a file
specification. The file to be deleted is on a remote node
whose file syntax does not recognize version numbers.
(QUEBEC is an RT-11 node.) Therefore, the file specification
should be enclosed in quotation marks or entered with a null
version number (that is, a trailing semicolon).

5. $PURGE TRNTO::DBAl: [EXAMPLE]*.LIS/KEEP=2

This PURGE command deletes all but the
versions of each file of the type
EXAMPLE on remote node TRNTO.

two highest-numbered
LIS in the directory

3.3.7 DIFFERENCES

Use the DIFFERENCE command to compare the contents of two files
(either of which can be local or remote) on a record-by-record basis.
The command produces an output file listing any differences.

Examples

1. $DIFFERENCES BOSTON::DBA2:TEST.DAT TRNTO::DBAl: [PGM]TEST.DAT

This command compares two remote files and displays any
differences found. The first file is TEST.DAT on remote node
BOSTON and the second file is TEST.DAT on remote node TRNTO.

2. $DIFFERENCES BOSTON::TEST.DAT

This command compares the two highest versions of the file
TEST.DAT in the nonprivileged default DECnet account on
remote node BOSTON.

3.3.8 DIRECTORY

Use the DIRECTORY command to list files and their attributes in a
directory on a remote node.

Examples

1. $DIRECTORY TRNTO::DBAl: [DOE] LOGIN.COM

This DIRECTORY command lists all versions of the file
LOGIN.COM under directory DOE at remote node TRNTO.

2. $ DIRECTORY/DATE/SIZE=ALL TRNTO::DBAl: [DOE •••]*.COM

This DIRECTORY command lists all versions of all files with a
file type of COM in all subdirectories of [DOE] on remote
node TRNTO. The listing includes the creation date with each
file, and the file size both in blocks used and in blocks
allocated for each file.

3-11

REMOTE FILE ACCESS USING DCL

3. $DIRECTORY/FULL BOSTON::*VAX*.*

This DIRECTORY command displays full directory information
for each file whose file name contains the string "VAX" in
the nonprivileged default DECnet account on node BOSTON.

4. $ DIRECTORY/SINCE=TODAY BOSTON"JOHN_SMITH JKS"::[.MEMO]W%%

This DIRECTORY command lists each file created today in the
user's subdirectory MEMO whose file name begins with "W" and
contains three characters (for example, W03.DOC, WWW.TMP).

5. $DIRECTORY TORONTO::

This DIRECTORY command lists all the files cataloged in the
directory associated with the default account being accessed
at remote node TORONTO. Note that TORONTO is a logical name.

3.3.9 DUMP/RECORDS

Use the DUMP/RECORDS command to display the contents of remote files
in ASCII, hexadecimal, decimal, or octal representation. The DUMP
command qualifiers /ALLOCATED and /BLOCKS are not supported in the
network context.

Example

$ DUMP/RECORDS/OCTAL/WORD
$_File: DALLAS::DBO: [117,lO]CALC.DAT/PRINTER

This DUMP/RECORDS command dumps the contents of the file
CALC.DAT, which resides at remote node DALLAS; formats the
output both in octal words and in character strings; and
queues the output to the system printer at the local node.

3.3.10 PRINT/REMOTE

Use the PRINT/REMOTE command to queue files for printing at the remote
nodes on which they exist. One copy of each file specified is
printed. You can specify on the same command line files that exist at
different nodes. If you specify in a PRINT/REMOTE command two or more
files that reside on the same remote VAX/VMS node, each file is
entered in the SYS$PRINT queue as a separate print job. (Note that
the PRINT/REMOTE command does not copy the files to the remote node;
a separate COPY command must be issued if the file does not reside at
the remote node on which it is to be printed.)

The /REMOTE qualifier is required in the PRINT command whenever a file
specification contains a node name. When you specify /REMOTE, you
cannot specify any other qualifiers for the command. The /REMOTE
qualifier can appear with the command or after a file specification.
The PRINT command supplies a default file type of LIS if you omit the
file type from the file specification.

3-12

REMOTE FILE ACCESS USING DCL

Examples

1. $PRINT/REMOTE BOSTON::WORK$: [DECNET.V3]USRGUIDE.MEM,EXP1.FOR
$PRINT BOSTON::WORK$: [DECNET.V3]USRGUIDE.MEM,EXP1.FOR/REMOTE

Either of the two commands shown above can be entered at node
TRNTO to queue for printing at node BOSTON the files
USRGUIDE.MEM and EXPl.FOR which reside at node BOSTON. The
files are entered in the SYS$PRINT queue as separate print
jobs.

2. $COPY REPORT.MEM BOSTON::*.*
$PRINT/REMOTE BOSTON::REPORT.MEM

The two commands shown above are entered at node TRNTO to
cause the file REPORT.MEM located at node TRNTO to be printed
at remote node BOSTON. The file is copied into the default
DECnet directory at the remote node and is not deleted after
printing.

3. $COPY REPORT.MEM BOSTON::LPAO:

An alternative way of performing the same operation as in
example 2 above is to copy the file REPORT.MEM at node TRNTO
to the printing device on the remote system. If the printing
device is spooled (as is usually the case for line printers
on a VAX/VMS system), then the file will not be sent directly
to the device, but rather will be temporarily stored on disk,
entered into the print queue for the device, and deleted
after it is printed.

3.3.11 SEARCH

Use the SEARCH command to search one or more remote files for a
specified string or strings.

Example

$SEARCH TRNTO::DBAl: [EXP]SUB.DAT,DATA.LIS
$_String(s): NAME

The SEARCH command causes the files SUB.DAT and DATA.LIS at
remote node TRNTO to be searched for all occurrences of the
character string NAME. The list of all occurrences of NAME
is printed at the local terminal.

3.3.12 SORT and MERGE

Use the SORT command to invoke the VAX-11 Sort Utility. This program
reorders records in the input file as directed and creates a new
output file or, optionally, an address file that you can use to access
the reordered records.

Use the MERGE command to invoke the VAX-11 Merge Utility, which
combines two or more sorted files into a single output file that the
utility program creates. The files to be combined must be similarly
sorted, but can reside at different VMS nodes.

3-13

REMOTE FILE ACCESS USING DCL

Examples

1. $ SORT/KEY=(POSITION:l,SIZE:7) -
$_DENVER::DB1: [RECS]RNDM.FIL ALPHANM.SRT/KEY=(l,7)

This SORT command requests a default alphanumeric sort of the
records in the file RNDM.FIL at remote node DENVER. The SORT
program sorts the records on the basis of the contents of the
first seven characters in each record and writes the sorted
list into the output file ALPHANM.SRT created in the default
directory at the local node.

2. $ MERGE/KEY=(POSITION:l,SIZE:30) -
$ TRNTO:[PGM]FILE1.SRT,FILE2.SRT/CHECK SEQUENCE -
$-MERGEFILE.DAT -

This MERGE command causes two identically sorted files,
FILEl.SRT and FILE2.SRT, on the directory PGM at remote node
TRNTO to be merged into another file, MERGEFILE.DAT, created
in the current default directory at the local node. The
input file qualifier /CHECK SEQUENCE is specified to ensure
that the input files are sorted in the correct order.

3.3.13 SUBMIT/REMOTE

Use the SUBMIT/REMOTE command to enter command procedure files
residing on a remote node into the batch job queue for-execution at
the remote node. You can specify on the same command line command
procedure files located at different remote nodes. If you specify in
a SUBMIT/REMOTE command two or more files located at the same remote
VAX/VMS node, each file is entered in the SYS$BATCH queue as a
separate batch job. (Note that the SUBMIT/REMOTE command does not
copy the files to the remote node: a separate COPY command must be
issued if the file does not reside at the remote node where it is to
be executed.)

The /REMOTE qualifier is required in the SUBMIT command whenever a
file specification contains a node name. When you specify /REMOTE,
you cannot specify any other qualifiers for the command. The /REMOTE
qualifier can appear with the command or after a file specification.
If you omit the file type from the .file specification, the SUBMIT
command supplies a default file type of COM.

Examples

1. $SUBMIT/REMOTE BOSTON::DMA3: [BROWN]JOBS.COM,LISTALL.COM
$ SUBMIT BOSTON: :DMA3: [BROWN]JOBS.COM,LISTALL.COM/REMOTE

This SUBMIT/REMOTE command entered at node TRNTO submits the
files JOBS.COM and LISTALL.COM on device DMA3 at remote node
BOSTON for execution as separate batch jobs.

2. $COPY ANALYSIS.COM BOSTON::*.*
$SUBMIT/REMOTE BOSTON::ANALYSIS.COM

The two commands shown above are entered at node TRNTO to
cause the file ANALYSIS.COM residing at node TRNTO to be
executed at remote node BOSTON. The file is copied into the
default DECnet directory at the remote node, and is not
deleted after execution.

3-14

REMOTE FILE ACCESS USING DCL

3.3.14 TYPE

Use the TYPE command to display the contents of one or more remote
files on the current output device. If you omit the file type in the
file specification, the TYPE command supplies a default of LIS.

Examples

1. $TYPE TRNTO::DBAl: [DOE]LOGIN.COM

The TYPE
directory
terminal.

command requests that the file LOGIN.COM in
DOE at remote node TRNTO be displayed at the local

2. $ TYPE KANSAS: :"$TEXT.CMD"

The TYPE command requests that the file TEXT.CMD on remote
RSTS/E node KANSAS be displayed at the local terminal. Note
that you use quotation marks when the file specification
syntax of the remote node differs from that of VAX/VMS.

3. $TYPE TORONTO::NOTICE.TXT/OUTPUT=TEMP.TXT

The TYPE command requests that the file NOTICE.TXT at the
remote node designated by the logical name TORONTO be written
to the specified output file, TEMP.TXT, on the local node
rather than to SYS$0UTPUT.

3.4 LEXICAL FUNCTIONS

DCL command procedure files can include lexical functions that return
information about remote files. The lexical functions that can be
used in a network environment are:

F$FILE_ATTRIBUTES{file-spec,item)

F$PARSE {file-spec[,default-spec] [,related-spec] [,field])

F$SEARCH{file-spec[,stream-id])

Descriptions of the use of these lexical functions in returning
information on remote files is given below. Complete descriptions of
these lexical functions appear in the VAX/VMS Guide to Using Command
Procedures.

An example of a command procedure that includes all three lexical
functions appears in Section 3.6.1.

3.4.1 F$FILE ATTRIBUTES

Use the F$FILE ATTRIBUTES lexical function in a command procedure to
return a particular item of attribute information about a specified
local or remote file. Listed under the description of
F$FILE_ATTRIBUTES in the VAX/VMS Guide to Using Command Procedures are
the items you can specify in the function {for example, ORG for file
organization). The file-spec is specified as a string expression, or
a symbol equated to a string expression; no wild card characters are
allowed.

3-15

Example

REMOTE FILE ACCESS USING DCL

$ RFM = F$FILE("KANSAS::SY: [200,2]SALES.CMD","RFM")
$ SHOW SYMBOL RFM

RFM = "STM"

This example returns the record format string of STM (stream)
for the file SALES.CMD at remote RSTS/E node KANSAS.

3.4.2 F$PARSE

Use the F$PARSE lexical function to return a full file specification,
or a particular field of that specification, for a local or remote
file. To identify the file in the lexical function, specify a
file-spec and, optionally, a default-spec and related-spec. These
arguments are string expressions or symbols equated to string
expressions.

To obtain a portion of a file specification, specify a field name in
the lexical function. The field names can be any of the following:
DEVICE, DIRECTORY, NAME, NODE, QUOTED, TYPE, or VERSION.

Example

$ SPEC = F $PARSE ("DENVER:: DBl: [PROD] RUN. DAT" I I I" TYPE")
$ SHOW SYMBOL SPEC

SPEC = ".DAT"

In this example, the F$PARSE lexical function returns the
file type DAT for the file RUN.DAT at remote node DENVER.

3.4.3 F$SEARCH

Use the F$SEARCH lexical function to obtain full file specifications
for local or remote files that match the file-spec given in the
lexical function. The file-spec, a string expression or symbol
equated to a string expression, can be any valid VAX/VMS file
specification, and can include null or wild card fields. Each
consecutive search function returns the next matching file
specification in sequence. When there are no more resultant strings,
the null string is returned.

Example

$LOOP:
$ FILESPEC = F$SEARCH("TRNTO: :DBAl: [PROD] *.DAT")
$ IF FILESPEC .EQS. "" THEN EXIT

$ GOTO LOOP

This example causes the directory [PROD] at remote node TRNTO
to be searched for all files of the type DAT.

3.5 COMMANDS FOR ACCESSING RECORDS

You can use DCL commands within command procedures to open and close
files that reside on remote nodes and to read and write records in
these files. In command procedure files to be executed during network

3-16

REMOTE FILE ACCESS USING DCL

operations, you can specify all command and file qualifiers for OPEN,
CLOSE, READ, and WRITE that you would normally use in command
procedures to access local files.

3.5.1 OPEN and CLOSE

Use the OPEN command to open a file for reading or writing at the
command level. The CLOSE command closes a file that was opened for
input or output with the OPEN command and deassigns the logical name
specified when the file was opened.

The DCL statement OPEN/WRITE creates a file in
fixed control) format. If the remote node
format, an RMS$_SUPPORT error will be returned.

VFC (variable with
does not support VFC

Example

$OPEN/READ INPUT FILE TRNTO::DBAO: [COST] INVENTORY. DAT
$READ LOOP:
$ READ/END OF FILE=ENDIT INPUT FILE NUM
$ FIRST CHAR=F$EXTRACT(O,l,NUM)
$ WRITE-SYS$0UTPUT FIRST CHAR
$ GOTO READ LOOP
$ENDIT:
$ CLOSE INPUT FILE

This command procedure opens the file INVENTORY.DAT located
at remote node TRNTO as an input file and assigns it the
logical name INPUT FILE. The READ command reads a record
from the logical-file INPUT FILE into the symbol named NUM.
The next two commands extract-the first character from the
record and write the record to the SYS$0UTPUT device. These
two steps occur for all records of the file until the
procedure reaches the end-of-file. At this point, the CLOSE
command closes the file and deassigns the logical name
INPUT FILE.

3.5.2 READ and WRITE

Use the READ command to read a single record from a specified remote
input file. Use the WRITE command to write a record to a specified
output file.

Example

1. $OPEN/WRITE OUTPUT FILE TRNTO::DBAl: [PGM]PLAN.DAT
$ WRITE OUTPUT FILE "~EGINNING PHASE 3"

This WRITE command writes a single line of text to the file
PLAN.DAT at remote node TRNTO.

2. $ OPEN/READ
$ OPEN/WRITE

INPUT FILE
OUTPUT FILE

$ READ
$ WRITE

INPUT FILE DATA LINE
OUTPUT FILE DATA LINE

TRNTO::INVENTORY.DAT
RECEIVE.DAT

The READ command requests data from the file INVENTORY.DAT at
remote node TRNTO. The WRITE command writes the value of the
symbol DATA LINE to the local file RECEIVE.DAT.

3-17

REMOTE FILE ACCESS USING DCL

3.6 COMMAND PROCEDURE EXAMPLES

The following examples illustrate DCL command procedure files you can
use in a network environment.

3.6.1 Command Procedure Using Lexical Functions

The command procedure shown below, called LISTIDX.COM, employs the
lexical functions F$PARSE, F$SEARCH, and F$FILE ATTRIBUTES to locate
indexed files in a directory at a local or remote-node.

LISTI DX. COM
$

S This command Procedure disPla~s the names of all indexed
S files found in the specified directors' excludins files
$ with a file t~Pe of TMP+ Pl is a file-sPec that can
$ oPtionallw be used to indicate the director~ to be
$ searched+
$

$FILE= FSPARSE<P1,•*·*•>
$WRITE SYSSOUTPUT 'A list of indexed files follows ••.
S WRITE SYSSOUTPUT ••
$LOOP:
$ NEXT = FSSEARCH<FILE>
$ IF NEXT .EQS. I I THEN GOTO DONE
$IF FH'ARSE(NEXr,,,•rtPE") .ms. '+TMP' THEN GOTO LOOP
$IF FSFILE_ATTRIBUTES<NEXTr'ORG'> .NES. 'IDX• THEN GOTO LOOP
$ WRITE SYSSOUTPUT NEXT
$ GOTO LOOP
$DONE:
!~ EX l l

3.6.2 Command Procedure Using SYS$NET

The example below illustrates a command procedure, called SHOWBQ.COM,
that returns batch job status information to its requester. Note that
you can use SHOWBQ.COM for task-to-task communication by entering a
task-spec-string in a TYPE command. For example:

$ TYPE TRNTO"BROWN JUNE":: II TASK=SHOWBQ"

In this command procedure, SYS$0UTPUT is equated to SYS$NET in user
mode to allow the SHOW QUEUE image to communicate over the logical
link by opening SYS$0UTPUT. When the SHOW QUEUE image exits, the
temporary definition of SYS$0UTPUT is deleted. In other words, only
one DCL image can use the logical link as the communication path to
the requester at the other node.

3-18

$
$
$
$
$
$
$
$
$
$
$
$

s

REMOTE FILE ACCESS USING DCL

SHOWBQ.COM

This command Procedure returns status information about
Jobs entered in batch aueues on the swstem where it
executes. It may be run interactively as a command
procedure' submitted as a local or remote batch Job, or
invoked as a •remote task' to disPlas information about
another system. For examPle:

$ @SHOWBQ
$ SUBMIT SHOWBQ
$SUBMIT/REMOTE node!:SHOWBQ
S TYPE node:: 1 TASK=SHOWBQ 1

$ IF F$MODE<> .EGS. 'NETWORK' THEN GOTO NET
$ SHOW QUEUE/BATCH/BRIEF/ALL
S EXIT
$NET:
$ DEFINE/USER SYS$0UTPUT SYS$NET
$ SHOW QUEUE/BATCH/BRIEF/All
$ PURGE/KEEP=l SYSSLOGINtSHOWBQ.LOG
$ EXIT

3.7 DISPLAY OF ERROR MESSAGES IN NETWORK ENVIRONMENT

When you enter a DCL command to perform a network file operation that
does not complete successfully, one or more error messages are written
to SYS$ERROR. The following sequence of error messages is typical:

1. An error message generated by the DCL command interpreter

2. A primary error message generated by the VAX-11 Record
Management Facility (RMS)

3. An optional secondary error message associated with the
primary RMS error (from a facility involved in the network
file operation)

Network-specific RMS completion codes and their corresponding message
text are described in Section 4.3.

Examples

1. $COPY BOSTON::DBB2: [TEST]RSLT.DAT *·*
%COPY-E-CLOSEIN, error closing BOSTON::DBB2: [TEST]RSLT.DAT;l
as input -
-RMS-E-CRC, network DAP level CRC check failed

A file-level CRC checksum error was detected when the input
file RSLT.DAT was closed. Error messages generated by the
DCL command interpreter and the RMS facility are displayed on
the terminal.

2. $COPY INDEX.DAT BANGOR::TEMP.DAT
%COPY-E-OPENOUT, error opening BANGOR::TEMP.DAT; as output
-RMS-F-SUPPORT, network operation not supported
-FAL-F-ORG, file organization field rejected

An attempt to copy the file INDEX.DAT to TEMP.DAT at remote
node BANGOR failed because the latter does not support
indexed files. The following generated error messages: the
DCL command interpreter, the RMS facility, and the remote
File Access Listener (FAL) file server utility.

3-19

CHAPTER 4

REMOTE FILE ACCESS USING RMS

VAX/VMS provides an efficient and flexible means for accessing remote
files in a network environment. Using VAX-11 RMS facilities, you can
perform file-handling operations on entire files or individual records
via programmed calls in VAX-11 MACRO or in one of the higher-level
languages supported over the network. The programming procedures
described in this chapter use standard VAX-11 RMS and higher-level
language I/O calls to:

• Create and delete remote files

• Process existing remote files

• Read, write, update, or delete individual records within
remote files

• Perform miscellaneous operations on a file such as rewinding a
record stream, displaying or modifying file attributes, or
extending the size of a file

This chapter describes the general procedures for accessing remote
files using VAX-11 MACRO. Specifically, it discusses network access
at the RMS level, network restrictions on file access, network error
reporting, and the use of higher-level and MACRO languages in
accessing remote files. The information and examples presented herein
also provide the necessary framework for the discussion of remote file
access found in each higher-level language user guide. You should
also be familiar with the VAX-11 Record Management Services Reference
Manual.

4.1 ACCESSING THE NETWORK AT THE RMS LEVEL

Conceptually, accessing the network at the RMS level is the same as
accessing RMS directly for local file-handling operations. To access
remote files on a VAX/VMS node, use either DCL commands or VAX-11 RMS
service calls along with a standard VAX/VMS file specification that
includes a node name.

Because higher-level language I/O calls are translated into VAX-11 RMS
calls, the term "RMS service calls" in this chapter includes these
language-specific calls.

For remote file processing, VAX-11 RMS integrates the network software
necessary to translate standard RMS service calls into the appropriate
system service calls, thereby providing a transparent user interface
to the network.

When you issue an RMS service call with a file specification that
specifies a remote node, VAX-11 RMS communicates the access request
via the Data Access Protocol (DAP) to the File Access Listener (FAL)

4-1

REMOTE FILE ACCESS USING RMS

task at the remote node. Each DECnet node that supports remote file
access has a FAL task that receives and processes remote file access
requests. FAL translates the calls of the accessing process into
system-specific file-handling calls to perform the desired operations
on files at that node. Figure 4-1 illustrates this entire process as
it relates to file access processing in both DCL and VAX-11 RMS.

The way you access individual files on a remote system depends on the
source language of the accessing program and on the file system that
resides on the remote node. The next section of this chapter
discusses these considerations as they pertain to programming remote
file-handling applications.

Local Node TRNTO::

Process
Using

Remote
File Access

File
System

COPY*.* BOSTON::*.*
(DCL Command)

VAX/VMS

DCL Interpreter

Copy Utility

RMS

DECnet-VAX
Software

l _____ _J

OAP

Remote Node
BOSTON::

1- - -
VAX/VMS

I - - -
I DECnet-VAX

Software

FAL

I_

I

_J

l

I
I
I

l ______ J

Figure 4-1: Remote File Access (DCL and RMS)

4.2 VAX-11 NETWORK FILE ACCESS RESTRICTIONS

File
System

ZK-839-82

VAX/VMS supports transparent remote file and record access at the
programming level, including the use of most VAX-11 RMS file and
record operations normally available to the VAX/VMS programmer.
Within the context of these operations, however, certain restrictions
apply to the method of file and record access you can use.
Specifically, each programming language specifies the way you can
access individual files. In addition, the way you access a file may
be restricted further by the type of file operations supported by the
remote file system. The user guide for each higher-level language
describes those restrictions that apply for file access operations
performed in that language. VAX-11 RMS restrictions are listed below
and in Section 4.5.3.

Table 4-1 summarizes the file organizations and record formats that
VAX-11 RMS defines for network operations on remote files from a local
VAX/VMS node. Table 4-2 shows the RMS record access methods and block
I/O modes for such network operations.

4-2

REMOTE FILE ACCESS USING RMS

Table 4-1: VAX-11 RMS File and Record Characteristics
for Network Operations

File Record Format
Organization

FIXl VAR2 VFC3 STM4 STMCR5 STMLF6

Sequential Yes Yes Yes Yes No No

Relative Yes Yes Yes NA7 NA NA

Indexed Yes Yes NA NA NA NA

1 - FIX: Fixed-length record format
2 - VAR: Variable-length record format
3 - VFC: Variable-length with fixed-length control record format
4 - STM: Stream format with record terminator set of

LF, FF, VT, and CRLF
5 - STMCR: Stream format with record terminator set of CR
6 - STMLF: Stream format with record terminator set of LF
7 - NA: Not applicable

Table 4-2: VAX-11 RMS Access Modes for Network Operations

File Record Access Mode Block I/O Mode
Organization

Sequen- Random by: Sequen- Random by
ti al ReTat1ve Key Record ti al Virtual

Record Value File Block
Number Address Number

Sequential Yes Yesl NA Yes Yes Yes

Relative Yes Yes NA Yes Yes Yes

Indexed Yes NA Yes Yes Yes Yes

1. For fixed-length records only

4.3 VAX-11 RMS NETWORK ERROR REPORTING

For both local and remote file operations, VAX-11 RMS reports the
success or failure of an operation by returning an RMS completion
code. This primary status code is returned in both Register 0 {RO)
and the completion status code field {STS) of the file access block
{FAB) or record access block {RAB) specified in the original RMS
service call. In addition, some RMS completion codes have secondary
status information associated with them. This information is returned
in the status value field {STV) of the FAB or RAB in the form of
either another status code {usually from a different facility) or a
value that qualifies the primary status code {such as a count). The
RMS completion codes are listed in the VAX-11 Record Management
Services Reference Manual.

When an RMS service call is issued for a network file operation, RMS
enters into a dialog with the FAL server at the destination node, in
order to perform the desired operation through the file system in use
at that node. These cooperating processes communicate using the Data
Access Protocol {DAP) to transfer data and to pass control and status

4-3

REMOTE FILE ACCESS USING RMS

information to each other. (The DECnet DIGITAL Network Architecture
Data Access Protocol Functional Specification describes the DAP status
codes.)

To promote network transparency, VAX-11 RMS attempts to map the status
information returned by FAL into the RMS completion code that would be
returned if the file had been accessed locally. It is not possible,
however, to map every DAP status code directly into an RMS code
applicable to local file access, particularly if the remote system
does not use VAX-11 RMS to manage its files. Moreover, certain error
conditions occur only in a network context. To handle these cases,
several network-specific completion codes have been defined. These
codes are summarized in Table 4-3.

Table 4-3: Network-Specific RMS Completion Codes

Status Code Description

RMS$_ACS error in access control string

RMS$_BUG_DAP

RMS$_CRC

Indicates that the format of the access control
string used in the file specification is
invalid.

Data Access Protocol error detected; DAP code =
'xxxxxxxx'

Indicates that the operation failed because of a
protocol error detected by either RMS or FAL.
VAX-11 RMS returns this code in the STS field
and a companion DAP code in the STV field. Note
that a reproducible RMS$ BUG DAP error indicates
a DECnet software error condTtion that should be
reported to DIGITAL in a Software Performance
Report. However, a nonreproducible RMS$ BUG DAP
error, especially one that occurs - on- a
communications line that has had RMS$ CRC errors
reported, normally indicates a - hardware
malfunction.

network DAP level CRC check failed

Signals that file-level cyclic redundancy check
(CRC) checksums computed by RMS and FAL did not
match when compared at file close, thus
indicating that the file is corrupted in some
manner. This condition is caused usually by a
hardware problem; if it occurs repeatedly,
check the communications hardware. You should
retry the file access. If DECnet event logging
is enabled, you can set the Event Logger (EVL)
to count CRC errors and display CRC error
messages. For a connection between two VAX/VMS
nodes, both RMS and FAL will independently log
the event on their systems. (Event logging is
described in the DECnet-VAX System Manager's
Guide.)

(continued on next page)

4-4

REMOTE FILE ACCESS USING RMS

Table 4-3 (Cont.): Network-Specific RMS Completion Codes

Status Code Description

RMS$_CRE_STM

RMS$_FTM

RMS$_NETFAIL

RMS$_NET

RMS$_NOD

RMS$_QUO

file was created in stream format

Indicates that RMS has created the file in
stream format with embedded carriage control
because the format and carriage control
specified in the RMS $CREATE call is not
supported by the remote node.

network file transfer mode precludes operation
(SQO set)

Indicates that RMS could not perform the
requested operation because DAP file transfer
mode was in effect. For network file access,
setting the SQO bit in the FOP field of the FAB
selects DAP file transfer mode. In this mode,
the software blocks data records together for
transmission over the network. This blocking
increases data throughput and reduces CPU
overhead. However, selection of this mode
limits data transfers to one direction: either
transmits using $PUT or $WRITE or receives using
$GET or $READ. It also disallows other
VAX-11 RMS record operations for the logical
link until the record stream is terminated, via
either $DISCONNECT or $CLOSE. Refer to Section
4.5.3 for additional information.

network operation failed at remote node

Indicates that the requested operation could not
be performed by the file system at the remote
node. The STV field contains a FAL status code
that describes the failure in the context of the
remote system.

network operation failed at remote node;
code = 'xxxxxxxx'

DAP

Indicates the same condition as the RMS$ NETFAIL
code (see above) except that the accompanying
DAP status code cannot be translated into a FAL
status code. RMS$ NET is returned in the STS
field and the DAP code in the STV field.

error in node name

Indicates that the node name portion of the file
specification string has incorrect syntax.

error in quoted string

Indicates that the quoted string portion of the
file specification (either the foreign-file-spec
or task-spec string) has incorrect syntax.

(continued on next page)

4-5

REMOTE FILE ACCESS USING RMS

Table 4-3 (Cont.): Network-Specific RMS Completion Codes

Status Code Description

RMS$_SUPPORT

RMS$ SUP

network operation not supported

Indicates that VAX-11 RMS rejected the request
because the operation requested is not supported
over the network. The STV field contains either
another RMS completion code or a FAL status
code, depending on whether VAX-11 RMS at the
local node or FAL at the remote node could not
support the request.

network operation not supported;
'xxxxxxxx'

DAP code =

Indicates the same condition as the RMS$ SUPPORT
code except that the accompanying DAP status
code cannot be translated into a FAL status
code. RMS$ SUP is returned in the STS field and
the DAP code in the STV field.

In general, RMS completion codes returned in response to network
operations fall into one of the following categories:

1. The operation was successful.

2. The operation was not supported by the network.

3. The operation was attempted but failed.

4. An end-to-end file-level cyclic redundancy check
failed.

5. A DAP error was detected.

(CRC)

VAX-11 RMS reports status for each of these categories as follows:

1. Successful completion of a network operation is reported
using the same RMS completion codes as those used to report
the status of a local file operation. The RMS success
completion code RMS$ NORMAL or an alternate success
completion code (for example, RMS$ CRE STM) is returned in
the STS field. Depending on whicn RMS code is used, the STV
field may or may not contain auxiliary information.

2. If an operation is not supported in a network context, the
failure of the request is reported as either an RMS$ SUPPORT
or an RMS$ SUP error. Most frequently returned -is the
RMS$ SUPPORT error, which has an associated secondary status
code-in the STV field. This secondary code is either another
RMS completion code or a FAL status code, depending on
whether RMS at the local node or FAL at the remote node could
not support the request. The RMS$ SUP completion code is
used only when RMS cann.ot map the DAP status code returned by
FAL into a meaningful FAL status code. For RMS$ SUP, the
uninterpreted DAP status code is returned in the STV-f ield.

3. An operation supported over the network may fail while being
processed by either the local or the remote file system. If
the failure occurs at the local node, an appropriate RMS
completion code is returned. (Examples of codes returned

4-6

REMOTE FILE ACCESS USING RMS

when errors are detected locally by RMS are RMS$ ACS,
RMS$ FTM, RMS$ NOD, and RMS$ QUO.) On the other hand, when a
file-operation fails while being processed by the file system
at the remote node, RMS attempts to map the DAP status code
generated by FAL into a corresponding RMS completion code.
This mapping normally succeeds, but if an appropriate match
cannot be found (because the error is specific to the remote
file system), one of the following is returned to the user:
RMS$ NETFAIL or RMS$ NET. Both of these codes indicate that
the -failure occurrea at the remote system, but differ in the
format of the contents of the STV field. If the DAP status
code can be transformed into a FAL status code, RMS$ NETFAIL
is returned with the FAL status code that describes the
failure in terms of the remote file system. Otherwise,
RMS$ NET is returned with the uninterpreted DAP status code
in tne STV field.

4. If a file-level CRC check failure occurs, the failure is
signaled by means of the RMS$ CRC completion code for the
$CLOSE service call. There is no secondary status
information associated with this error condition. When a
remote file is opened (or created) through VAX-11 RMS on a
VAX/VMS node, RMS determines whether the remote FAL supports
the DAP option of performing an end-to-end CRC check on the
data accessed in the file. If FAL supports this option, then
RMS and FAL agree to compute independently a cumulative CRC
checksum based on the records (or blocks) each sends and/or
receives. As part of the close operation, FAL compares the
two checksums and reports status back to RMS. Thus an
RMS$ CRC error alerts the user that the file has been
corrupted during transfer. Repeated reports of this error
for the same line indicate the possibility of a hardware
failure.

5. During the exchange of DAP messages, should either node
detect a protocol violation, RMS aborts the operation and
returns the RMS$ BUG DAP error code with a corresponding DAP
status code in- the STV field. A protocol violation is
detected, for example, when a syntax check of a DAP message
fails or RMS and FAL get out of synchronization (that is, a
DAP message is received that is inappropriate for the current
state) •

4.4 HIGHER-LEVEL LANGUAGE REMOTE FILE ACCESS

Regardless of the programming language used, you access remote files
in exactly the same way that you would access local files. To
illustrate the way you access remote files, Example 4-1 provides a
simple FORTRAN program to transfer a remote file on node TRNTO to the
line printer on node BOSTON.

4-7

REMOTE FILE ACCESS USING RMS

Example 4-1: FORTRAN Remote File Access Program

PROGRAM TRANSFER.FOR
c
C This Program creates a seGuential file with variable lensth
C records froffi a seauential inPut file. The input and outPut
C files are identified b~ the losical names SRC and DST,
C respectivelw. For examPle' to Print a file on a remote s~stem
C that resides on another sYstem:
c
C $ DEFINE SRC TRNTO::USER:CSTOCKROOM.PAPERJINVENTORY+DAT
C $DEFINE DST BOSTON::LPAO:
C $ RUN TRANSFER
c

CHARACTER BUFFER*132
c
100 FORMAT (Q,A)
200 FORMAT <A)
c
C 0Pen the inPut and output files.
c

OPEN <UNIT=l,NAME='SRC',TYPE='OLD',ACCESS='SEQUENTIAL',
1 FORM='FORMATTED')

OPEN <UNIT=2,NAME='DST',TYPE='NEW' ?ACCESS='SEQUENTIAL',
1 FORM='FORMATTED'1CARRIAGECONTROL='LIST',
2 RECORDTYPE='VARIABLE'>

c
C Transfer records until end-of-file or other error condition.
c
10 READ (1,1QO,END=201ERR=20> NCHAR,BUFFER<tNCHAR>

WRITE (2,200> BUFFER<:NCHAR>
GOTO 10

c
C Close the inPut and output files.
c
20 CLOSE CUNIT=2>

CLOSE CUNIT=l>
END

The program in Example 4-1 uses standard I/O calls to transfer the
file from one device to another. Initially, two DCL commands are used
to define logical names for the files involved in the transfer. Note
that you use the standard VAX/VMS file specification with a remote
node name to specify the source and destination files. (If the remote
node is other than VAX/VMS, the format of the file specification may
differ.) The FORTRAN program must open the files. When opening a
file, you must specify a unit over which the operation is to be
performed. In this example, the access mode is sequential. Standard
read and write calls serve to move the data from the source to the
destination file. After all the records have been transferred, the
program closes the channels, thereby terminating network operations.
These operations are similar for applications in the other
higher-level languages supported under VAX/VMS.

4.5 MACRO REMOTE FILE ACCESS

VAX/VMS provides a transparent programming interface for remote file
access using VAX-11 MACRO. The following sections describe the use of
VAX-11 RMS calls for VAX-11 MACRO remote file access, discuss network
error mapping considerations, and present several examples of programs
written in VAX-11 MACRO that illustrate the use of these calls.

'

4-8

REMOTE FILE ACCESS USING RMS

4.5.1 Using VAX-11 RMS Service Calls

In general, you follow four steps when developing a MACRO remote file
access application:

1. Initialize a set of data structures that VAX-11 RMS uses for
processing RMS service requests (in the same way as for local
MACRO program development)

2. Open the files for processing and establish a record stream
for each file

3. Issue the appropriate RMS service calls to perform the actual
file-handling operations

4. Disconnect the record streams and close the files after file
processing has been completed

4.5.1.1 File Access Blocks (FABs) and Record Access Blocks (RABs) -
These serve as the discrete data structures that VAX-11 RMS uses to
process service requests. In general, you should allocate one FAB for
every file your program will open and one RAB per file to establish a
record stream. The parameters associated with these control blocks
define the exact characteristics of the files designated for
processing. One of these parameters is the network file
specification. Through the use of either a logical name or a complete
file specification string, you designate the file that you want to
access.

4.5.1.2 $OPEN and $CONNECT - Once you have defined the user control
blocks, you can then open the files and establish a record stream to
each one. Use the RMS service calls $OPEN and $CONNECT in conjunction
with the FAB and RAB to prepare for file processing. When you issue
the $OPEN call, you effectively establish a logical link connection
with the remote FAL.

When the file is open, you can perform file and record operations
through the use of standard RMS service calls such as $GET, $PUT, and
$UPDATE. For added flexibility, VAX/VMS supports block I/0 RMS calls
for writing and reading blocks of data to and from remote files.

4.5.1.3 $DISCONNECT and $CLOSE - Finally, after processing completes,
you should disconnect all record streams and close all files. First,
use the $DISCONNECT call to disconnect the RAB, and then use the
$CLOSE call to close the FAB, thereby signaling the completion of
network operations. This procedure terminates the logical link in an
orderly fashion. Note that the $CLOSE macroinstruction will
automatically disconnect the record stream for the RAB associated with
the specified FAB.

4.5.2 VAX-11 RMS Service Call Summary

Table 4-4 summarizes the VAX-11 RMS service calls you can use for
MACRO remote access operations: file processing, record processing,
block I/O processing, and file specification processing. This table
lists calls supported for file operations between two VAX/VMS nodes

4-9

REMOTE FILE ACCESS USING RMS

over the network. The following operations are not supported in this
environment: $ENTER, $NXTVOL, $REMOVE, and $RENAME. (If one of these
operations is requested by a VAX/VMS node communicating via DECnet
with another VAX/VMS node, the RMS$ SUPPORT (network operation not
supported) error message is returned.) -

Appendix B describes network considerations relating to the use of
VAX-11 RMS control blocks associated with the calls listed in Table
4-4. For a complete explanation of the syntax and parameters for each
call, refer to the VAX-11 Record Management Services Reference Manual.

Table 4-4: VAX-11 RMS Service Calls for Run-time
Remote File Access

Name of MACRO Description of Service

File Processing

$CLOSE

$CREATE

$DISPLAY

$ERASE

$EXTEND

$OPEN

Record Processing

$CONNECT

$DELETE

$DISCONNECT

$FIND

$FLUSH

Closes an open file, optionally
providing for file disposition,
and terminates file processing

Creates a new file with the
attributes specified, opens it,
and initiates file processing

Returns the attributes of a file
to the user program

Deletes a closed file and
removes its directory entry

Increases space allocated to an
open disk file

Opens an existing
optionally returns its
attributes, and initiates
processing

file,
file
file

Establishes a record stream by
associating a RAB with an open
file

Deletes a record from a relative
or indexed file

Terminates a record stream by
disconnecting a RAB from an open
file

Locates and positions to the
specified record in the file

Forces buffered records and
modified file attributes to be
written to a file

(continued on next page)

4-10

REMOTE FILE ACCESS USING RMS

Table 4-4 (Cont.): VAX-11 RMS Service Calls for Run-time
Remote File Access

Name of MACRO Description of Service

$FREE Unlocks all records previously
locked by the record stream

$GET Retrieves a record from a file

$PUT Writes a record to a file

$RELEASE

$REWIND

$TRUNCATE

$UPDATE

$WAIT

Block I/O Processing

$READ

$SPACE

$WRITE

File Specification Processing

$PARSE

$SEARCH

Unlocks a record specified by
its record file address

Positions to the first record or
block of a file

Truncates a sequential file

Modifies a record in a file

Awaits the completion of an
asynchronous record operation

Reads data in block I/O mode

Positions forward or backward in
a file to a block boundary

Writes data in block I/O mode

Parses a file specification

Searches a directory for the
next file name that matches the
file specification template
provided

4.5.3 VAX-11 RMS Programming Notes and Restrictions

This section discusses programming topics related to the network of
interest primarily to the MACRO programmer. Restrictions on the use
of the VAX-11 RMS interface in a network environment are also
presented. Refer to Appendix B for additional information on the use
of RMS control blocks.

4.5.3.1 Name Block - The DID, DVI, and FID fields of the Name Block
($NAM) are not supported for remote file access; these fields are not
used as input and are zeroed on output. If you set the NAM bit in the
file-processing options (FOP) field of the FAB to request "open by NAM
block," this option will be ignored and the open will proceed based on
the other fields of the $FAB and $NAM blocks.

4-11

REMOTE FILE ACCESS USING RMS

4.5.3.2 File Specification Processing - Using the RMS $PARSE service
call to parse a file specification that contains a node name does not
incur any additional overhead in a network context. VAX-11 RMS
parses/merges the primary, default, and related file specification
strings into an expanded name string without invoking a remote FAL
server. Because the file parse is performed locally, the following
control block fields are affected on output:

• In the expanded name string (ESA/ESL) of the Name Block, a
logical device name is returned without being translated if it
was encountered after a node name was found during the file
parse operation, and process default device and directory name
strings are not applied.

• In the file name status field (FNB) of the Name Block, status
bits are not valid if the quoted string format of a file
specification is used.

• The device characteristics fields {DEV and SOC) of the FAB are
not updated to reflect the actual characteristics of the
remote device.

In contrast to $PARSE, execution of the RMS service call $SEARCH will
cause a logical link to be created to communicate with a remote FAL
server to perform the directory search function. Repeated calls to
$SEARCH using the same FAB, however, will cause RMS to use the same
logical link to FAL until the search sequence is complete.
Furthermore, execution of an $OPEN, $CREATE, or $ERASE call following
a $SEARCH call will cause VAX-11 RMS to establish a new logical link
with FAL to perform the file access operation.

4.5.3.3 FOP File Disposition Options on Close - Three options of the
FOP field of the FAB that affect the disposition of the remote file on
close require that you supply a resultant name string via the Name
Block ($NAM) as input to the $CLOSE service. The options are:

• DLT to delete the file at the remote node.

• SCF to submit the command file for execution at the remote
node. You may also specify that the file be deleted after
execution by setting both the SCF and DLT bits.

• SPL to print one copy of the file at the remote node. You may
also specify that the file be deleted after it is printed by
setting both the SPL and DLT bits.

These options may be requested at either open or close time, but they
are performed as part of the close operation. The resultant string
must be the same one received by specifying the Name Block as input to
the $CREATE or $OPEN calls. If you specified one or more of the FOP
options previously discussed and you receive a VAX-11 RMS completion
code of RMS$ SUPPORT (network operation not supported) on $CLOSE, it
means that the-file was closed at the (non-VAX/VMS) target node, but
none of the options were performed.

4.5.3.4 FOP Option for Increasing File Transfer Throughput - The Data
Access Protocol used by VAX-11 RMS and its partner FAL defines two
major file access modes: OAP file transfer mode (FTM) and OAP record
access mode (RAM). VAX-11 RMS must translate each user-specified
access method (for example, sequential, random, block I/O) into one of
these OAP access modes in order to perform remote file access

4-12

REMOTE FILE ACCESS USING RMS

operations. VAX/VMS supports both DAP file access modes, whereas most
DECnet implementations other than VAX/VMS support only FTM.

FTM is designed to speed up the most common network operation:
copying files. FTM allows VAX-11 RMS to exchange fewer DAP messages
with the remote FAL than does RAM when transferring a file. FTM also
permits data records to be blocked together for transmission, thereby
potentially reducing the number of QIO system service calls required
to move the data. The combined effect is that data throughput
increases as the average record size of the file decreases. A side
benefit is that this lessens operating system overhead as compared
with RAM.

Although FTM offers efficiency, it is restrictive. It requires that
the file be accessed sequentially (by records or blocks) and that the
data be moved in one direction (either sent to or retrieved from the
file). Thus once the record stream is established via a $CONNECT
call, only $GET/$READ or $PUT/$WRITE requests are permitted until the
record stream is terminated via a $DISCONNECT or a $CLOSE call. If
you attempt to mix $GET/$PUT or $READ/$WRITE requests or to issue
other RMS service calls (such as $DISPLAY, $EXTEND, $FIND, or
$UPDATE), VAX-11 RMS will return an RMS$_FTM error.

In contrast, RAM is designed to provide a wide range of functions.
RAM supports both sequential and random access (by records or blocks) ,
numerous record operations such as $FREE and $UPDATE, and dynamic
switching of access modes. RAM is also useful for performing
intermixed $GET/$PUT operations to a bidirectional unit record device
such as a remote terminal or a remote task. However, RAM offers
flexibility at the expense of efficiency. Each VAX-11 RMS service
call results in an exchange of DAP messages with the remote FAL. Data
messages cannot be blocked with each other (even when the file is
accessed sequentially) because RAM requires that FAL acknowledge the
completion of each file operation before the next one can be
requested.

When you open or create a remote file, VAX-11 RMS examines the SQO
(sequential-only) bit in the FOP field of the FAB to determine whether
to enter FTM or RAM. If the SQO bit is set, VAX-11 RMS selects FTM,
and you are limited to reading or writing data in a sequential manner.
If the SQO bit is not set, RMS selects RAM unless the remote FAL
supports only FTM. If this is the case, then RMS overrides your SQO
request and enters FTM. Consequently, if you write a program in
VAX-11 MACRO either to open a remote file and sequentially read data
or to create a remote file and sequentially write data, it is
recommended that you select the sequential-only FOP option. This
option will improve data throughput for transfers between VAX/VMS
nodes. Where the remote partner is other than VAX/VMS, the SQO option
will have an effect only if the remote node supports both FTM and RAM.

4.5.3.5 File Sharing - File sharing between VAX/VMS nodes is
supported over the network. Different programs can open the same
remote file for shared access through use of the file sharing
(FAB$B SHR) field of the FAB. Within a single program, however, only
one record stream can be active for each open remote file. You cannot
set the FAB$V MSE (multistream access enabled) bit of the FAB$B SHR
field and then Tssue multiple $CONNECT calls for the same file. -You
may, however, reestablish a record stream by issuing a $CONNECT after
a disconnect operation has been performed without closing and
reopening the file.

4-13

REMOTE FILE ACCESS USING RMS

4.5.3.6 Restriction on Access to Files on Magnetic Tape - DECnet-VAX
does not support access to magnetic tape files located on a remote
VAX/VMS system. This restriction exists because FAL is not able to
mount a magnetic tape volume in order to gain access to it.

4.5.3.7 Task-to-Task Communication - When writing a program to
communicate with a remote task, you may treat that remote task as
though it were a unit record device, having characteristics similar to
those of a VAX/VMS mailbox. The information returned in the device
characteristics field {DEV) of the FAB block reflects this
orientation. As a result, sequential $GET/$PUT requests are
appropriate for exchanging data with a remote task, whereas random
access requests are not.

The Data Access Protocol is not used for task-to-task communication.
Consequently, the sequential-only (SQO) option in the FOP field of the
~AB has no effect on dat~ throughput. Each $GET/$PUT request results
in a QIO system service request to receive or transmit data.
Furthermore, if one task breaks the logical link, its partner task
will receive an RMS$ EOF {end-of-file) error in response to an
outstanding $GET request. Breaking the link is analogous to pressing
CTRL/Z on a terminal to indicate an end-of-file condition. In
response to an outstanding $PUT request, the partner task will receive
an RMS$ SYS {system QIO directive) error.

4.5.4 MACRO Programming Examples

The following examples illustrate the use of VAX-11 RMS service calls
in MACRO programs that process files on remote nodes. For a general
discussion of the use of VAX-11 RMS at the local node, refer to the
VAX-11 Record Management Services Reference Manual.

4.5.4.1 MACRO Remote File Transfer Example - Example 4-2 illustrates
the VAX-11 MACRO counterpart to the VAX-11 FORTRAN remote file
transfer program in Example 4-1.

4-14

REMOTE FILE ACCESS USING RMS

Example 4-2: RMS File Transfer Program

.TITLE CREATESEQ - CREATE SEQUENTIAL FILE
• !DENT /V001/

This Program creates a seGuential file with variable lensth records from
a seauential in?ut file. The inPut and output files are identified bw the
lo~ical names SRC and DST, resPectivel~. For example' to create a file on
one node from a file residing on another node:

$DEFINE SRC TRNTO::USERtCSTOCKROOM.PAPERJINVENTORY.DAT
$DEFINE DST BOSTON::TEMP!CARCHIVEJINVENTORY.DAT
$ RUN CREATESEQ

;**
.SBTTL Control block and buffer storase
.PSECT DATA NOEXE,LONG

Define the source file FAB and RAB control blocks. ,
SRC_FAB:

$FAB

SRC_RABt
$r~AB

FAC=<GET>,
FOF'==<SQO>, -
FNM=::<sr~c>

FAB=SRC_FAB,
RAC=SEQ,
UBF==BUFFER,
USZ=BUFFER_SIZE

File access for GET only
Reauest DAP file transfer mode
Name of in?ut file

Address of associated FAB
Seauential record access
Buffer address
Buffer size

Define the destination file FAB and RAB control blocks.

DST_FABt
$FAB

DST_RABt
$RAB

FAC=<PUT>,
FOP=<SOO>,
FNM=<DST>,
ORG=SEQ ,
RFM=VAR,
RAT=<CR>

FAB=DST_FAB,
l~AC==SEQ' -
RBF=BUFFER

File access for PUT onlw
Reauest DAP file transfer mode
Name of outPut file
Seauential file orsanizaticn
Variable record format
ImPlied carriase control

Address of associated FAB
Seauential record access
Buffer address

Allocate buffer to be the size of the larsest record that will be read.

BUFFER: • BLKB 132
BUFFER_SIZE=.-BUFFER

Buffer for input and output
Buffer size

;**
.SBTTL Mainline
.F'SECT CODE NOWRT,BYTE

Start of Program; Put FAB and RAB addresses in resisters for efficiencw.

• ENTRY CREATESEQ,'"'M<> Entrw Point
MOVAB W'"'SRC-FABtR6 Get add 1·ess of inP•Jt FAB
MOVAB W'"'SRC-RABtR7 Get address of inP•Jt RAB
MOVAB W"'DST_FAB,R8 Get address of outP•Jt FAB
MOVAB W"'DST_RABtR9 Get address of OIJtP•Jt RAB

4-15

REMOTE FILE ACCESS USING RMS

Qpen the source and destination files.

$OPEN FAB=R6
BLBC ROrEXIT
$CONNECT RAB=R7
BLBC RO,EXIT
$CREATE FAB=R8
BLBC ROrEXIT
$CONNECT ~AB=R9
BLBC ROrEXIT

0Pen inPut file
Branch on failure
Connect input record stream
Branch on failure
Create output file
Branch on failure
Connect output record stream
Branch on failure

Transfer records until end-of-file is encountered.

LOOP: $GET RAB=R7 Read next record f rorn input
BLBC ROrERROR Branch on failure
MOVW RAB$W_RSZ<R7),- COPY lensth of record Just

RAB$W_RSZ<R9) read to output RAB
$PUT RAB=R9 Write record to output file
BLBC ROrERROR Branch en failure
BRB LOOP Process next record

ERROR: CMPL RO,tRMS$_EOF Was it an end-of-file?
BNEQ EXIT Branch if not

Close the source and destination files.

Note that a $DISCONNECT call is not reauired Prior to closins a file

file

because the $CLOSE call Performs an imPlied disconnect of the record stream.

$CLOSE
BLBC
$CLOSE

FAB=R8
RO,EXIT
FAB=R6

Close -0utPut file
Branch on failure
Close inPut file

Exit to ~MS with RMS completion code in RO to sisnal success or
failure of Prosram execution.

;
EXIT: $EXIT_S RO

.END CREATESEQ

4-16

Exit with RMS comPletion code in RO
SPecifw startins address of Prosram

REMOTE FILE ACCESS USING RMS

4.5.4.2 VAX-11 MACRO Remote File Spooling Example - Example 4-3
spools a sequential file to the printer on the remote node.

Example 4-3: RMS Spool File Program

.TITLE SPOOL - PRINT AND DELETE FILE

.TITLE /V001/

This Prosram spools one COPY of a file specified bw the losical name
DST to the Printer at the remote node where it resides. After beins
Printed' the file is deleted. For example:

$DEFINE DST 1 BOSTON 11 DEMO NETWORK 11 ::C.TESTJPRINTME.DAT 1

$ RUN SPOOL

;***
.SBTTL Control block and buffer storase
.PSECT DATA NOEXE,LONG

Define the destination file FAB and NAM control blocks.

DST_FABt
$FAB

DST_NAMBLK:
SNAM

FOP=<SPL,DLT>,
FNM=<DST>,
NAM=DST_NAMBLK •

RSA=DST_Rs,
RSS=NAM$C_MAXRSS

Print and delete file
Name of file
Name block address

Resultant name strins buffer address
Resultant name strins buffer size

Allocate buffer for resultant name strins.

DST_RS: .BLKB NAM$C_MAXRSS ; Larsest resultant name strins

;***
.SBTTL Mainline
,PSECT CODE

Start of Prosram

.ENTRY SPOOL,~M<>

NOWRT,BYTE

; Entry Point

0Pen and close the file with the FOP Print and delete oPtions sPecified.

$OPEN
BLBC
$CLOSE

FAB=DST_FAB
RO,EXIT
FAB=DST-FAB

0Pen the file
Branch on failure
Close the file which will cause it
to be Printed and deleted

Exit to VMS with RMS completion code in RO to sisnal success or
failure of Prosram execution.

EXIT: $EXIT_S RO
.END SPOOL

4-17

Exit with RMS completion code in RO
Specify startin~ address of Pro~ram

REMOTE FILE ACCESS USING RMS

4.5.4.3 VAX-11 MACRO Remote File Random Access Example - Example 4-4
accesses a relative file randomly and transfers selected records from
one device to another.

Example 4-4: RMS Random Access Program

.TITLE RANDOM - RANDOM ACCESS EXAMPLE
• !DENT /VOOl/

This Pro~ram accesses a relative file randoml'::I b'::I relative record
number. It creates a seauential output file from selected records
from the input file. The inPut and output files are specified b'::I
the losical names SRC and DST, resPectivel'::I. Far example!

$DEFINE SRC TRNTO!!USER!CP3602.DATJEVENTLOG.DAT
$DEFINE DST BOSTON!!TEMP.LIS
$ RUN RANDOM

;***
.SBTTL Control block and buffer stora~e
.PSECT DATA NOEXE,LONG

Define the source file FAB and RAB control blacks.
;
sRc_FAB !

$FAB

SRC_RAB!
$RAB

FAC=<GET>,
FNM=<SRC>

FAB=SF~C-FAB, -
RAC=KEYr
KBF=KEY_BUFFER,
KSZ=4r
UBF=:BIJFFE~:, -
USZ=BUFFER_SIZE

File access for GET onl'::I
Name of :ir1P1.Jt fil(;)

Address of associated FAB
Access by rPlative record number
Ke'::I buffer dddress
Ke'::I size
BrJffer address
B rJ ff e r s i z •?

Define the destination file FAB and RAB control blocks.

DST_FAB!
SFAB

DST_RAB!
SF~AB

FAC=-~<PUT>, -
FOP=<SQO>, -
FNM=<DST>, -
DRG=SEt), -
RAT=<CR>

FAB=DST_FAB,
RAC:::SEQ,
RBF:::BUFFER

File access for PUT onl'::I
Reauest DAP file transfer mode
Name of output file
Secwential file orsanizatiorr
ImPlied carria~e control

Address of associated FAB
Seauential record access
B•Jffer add1·es<.:;

Allocate brJffer to be the size of the larsest record that will be read.

BUFFER! • BLKB 512
BUFFER-SIZE=.-BUFFER

Buffer for inPut and outPut
B•Jffer· size

SPecif'::I record number list and allocate ke'::I buffer.

RECORD-LI ST!
.LONG

KEY-BUFFER!
.LONG

4,i,io,o

0

Record selection list terminated b'::I 0

Buffer to store relative record numbe

;***

4-18

• SBTTL
.PSECT

REMOTE "FILE AC'CESS USING RMS

Mainline
CODE NOWRT,BYTE

Start of Pro~ra~; Put FAB and RAB addresses in re~isters for efficienc~.

.ENTRY
HOVAB
HOVAB
HOVAB
MOVAB

RANDOM,"'M<>
W"'SRC-FAB,R6
W'"'SRC-RAB,R7
W'"'DST-FAB,R8
lJ'"'DST-RAB,R9

OF-en the source and destination files.

$OPEN
BLBC
MOVB

MOVlJ

FAB=R6
RO,EXIT
FAB$B_RFMCR6),
FAB$B-RFM<R8>
FAB$W_MRSCR6),-
FAB$lLMRS <RS>

$CONNECT RAB=R7
BLBC ROrEXIT
$CREATE FAB=R8
BLBC RO, EX IT
$CONNECT RAB=R9
BLBC ROrEXIT

Er1trY Poir1t
Get address of inPtJt
Get address of i nf'•Jt
Get address of 01Jtp1Jt
Get address of OtJtPtJt

OF-en inF-ut file
Branch on failure

FAB
RAB

FAB
RAB

CoPY record format attribute
to o•Jtf'•Jt FAB

Cof'Y maximum record size
attribute to output FAB

Connect inPut record stream
Branch on failure
Create outPut file
Branch on failure
Connect output record stream
Branch on failure

Read each record specified in list and write it to the destination file.

MOVAB W'"'RECORD_LIST,R5
LOOP! MOVL <R5>+,W'"'KEY_BUFFER

BEQL CLOSE
$GET RAB=R7
BLBC RO,EXIT
MOVW RAB$lLRSZ (R7 >, -

RAB$W_RSZ<R9>
$PUT RAB=R9
BLBC RO,EXIT
BRB LOOP

Close the source and destination files.

CLOSE! $CLOSE
BLBC
$CLOS£

FAB=RB
ROrEXIT
FAB=R6

Get record nuir1be r vector
Get ne>:t record number
All done if list terminator
Read specified record
Branch on failure
Cof'Y lensith of record

read to OtJtf'IJt RAB
Write record to O•JtPut
Branch on failure
Process ne>:t record

Close outF-ut file
Branch on failure
Close inPut file

from

Just

file

Exit to VMS with RMS completion code in RO to si~nal success or
failure of Prosiram execution.

found
inP•Jt file

;
EXIT! $EXILS RO

.END RANDOM
Exit with RMS completion code in RO
Specify starting address of Prosiram

4-19

REMOTE FILE ACCESS USING RMS

4.5.4.4 VAX-11 MACRO Remote File Indexed Access Example - Example 4-5
creates an indexed file with three keys from a sequential file on the
local node.

Example 4-5: RMS Indexed File Program

.TITLE CREATEIDX - CREATE INDEXED FILE
• ID ENT /VOO 1 I

This Prosram creates an indexed file with three keys from a
seauential file containin~ a name and address list. The record
format of the inPut file is shown below:

First Name Col •Jmn 01-10
Middle Ir1itial Column 11-11
Last Name Col •Jmn 12-26
Street Column 27--46
Ci t1:1 Column 47-58
State Column 59-60
Zj_p Code Column 61-65

The inPut and output files are sPecified bY the lo~ical names SRC
and DST, resPectivelw. For example:

$DEFINE SRC BOSTON::DBB1:CTESTJINPUT.DAT
$DEFINE DST TRNTO::DRA4:CRMS.FILESJOUTPUT.DAT
$ RUN CREATE IDX

;***
.SBTTL Control block and buffer stora!e
.PSECT DATA NOEXE,LONG

Define the source file FAB and RAB control blocks.

SRC_FAB:
$FAB

SRC_RAB:
$RAB

FAC=<GET>,
FOF'=<SQO> ,
FNM=<SRC>

FAB=SRC_FAB,
RAC=SEQ,
UBF=BUFFER,
USZ=BUFFER_SIZE

File access for GET onlY
Reauest DAP file transfer mode
Name of inPut file

Address of associated FAB
Seauential record access
B•Jffe1' addre•ss
B•Jffer size

Define the destination file FAB and RAB control blocks.

IIST_FAB:
$FAB

DST_RAB:
$RAB

FAC=<PUT>,
FNM=<DST>r
ORG=IDX,
RFM=FIXr
RAT=<CR>,
MRS=BUFFER_SIZE,
BKS=ir
XAB=DST_KEYO

FAB=DST_FAB,
RAC=SEQ,
RBF=BUFFER,
RSZ=BUFFER_SIZE

File access for PUT onl~
Name of outPut file
Indexed file organization
Fixed len~th records
ImPlied carria~e control
Record size
B•Jcket size
Address of start of XAB chain

Address of associated FAB
Seauential record access
B•Jffe r address
B•Jffer size

Define Ke1:1 Def~nition XABs to describe the three ke1:1s.

4-20

REMOTE FILE ACCESS USING RMS

DST_KEYO:
$XABKEY REF=O,

POS=58 ,
SIZ=2,
FLG=<DUP>,
NXT=DST_KEY1

DST_KEYl:
$XABKEY REF=1,

POS=461-
SIZ=12,
FLG=<DUP>,
NXT=DST_KEY2

DST_KEY2:
$XABKEY REF=2,

POS=<11, 01l0>1-
SIZ=<15,111>1-
NXT=O

Primary key is State
Kew reference number
Startins kew Position
Key size
DuPlicate keys are allowed
Address of next XAB in chain
1st alternate kew is Citw
KeY reference number
Startins key Position
Kew size
DuPlicate kews are allowed
Address of next XAB in chain
2nd alternate key is Name
Kew reference number
Sesmented kew consistins of Last Name,
First Initial, and Middle Initial
Desisnate end of XAB chain

Allocate buffer to be the size of the larsest record that will be read+

BUFFER: .BLKB 65
BUFFER_SIZE=.-BUFFER

Buffer for input and outPut
Buffer size

;***
+SBTTL Mainline
.PSECT CODE

Start of Prosram

+ENTRY CREATEIDX,~M<>

0Pen the source and destination files.

$OPEN FAB=SRC_FAB
BLBC ROrEXIT
$CONNECT RAB=SRC_RAB
BLBC ROrEXIT
$CREATE FAB=DST_FAB
BLBC R01EXIT
$CONNECT RAB=DST_RAB
BLBC ROrEXIT

Entry Point

0Pen inPut file
Branch on failure
Connect input record stream
Branch on failure
Create output file
Branch on failure
Connect output record stream
Branch on failure

Transfer records until end-of-file is reached.
;
LOOP: $GET RAB=SRC_RAB

ROrERROR
RAB= DST_ RAB
ROrERROR
LOOP
ROrtRMS$_EOF
EXIT

BLBC
$PUT
BLBC
BRB

ERROR: CMPL
BNEQ

Close the source and destination files.

$CLOSE FAB=DST_FAB
BLBC R01EXIT
$CLOSE FAB=SRC_FAB

Read next record from input file
Branch on failure
Write record to output file
Branch on failure
Process next record
Was it an end-of-file?
Branch if not

Close output file
Branch on failure
Close inPut file

Exit to VMS with RMS completion code in RO to si~nal success or
failure of Prosram execution.

;
EXIT: $EXIT_S RO

.END CREATE I DX

4-21

Exit with RMS completion code in RO
Specify startins address of Prosram

CHAPTER 5

TASK-TO-TASK COMMUNICATION

Task-to-task communication is a feature common to all DECnet
implementations that allows two programs, running under the same or
different operating systems, to communicate with each other regardless
of the programming languages used. For example, a FORTRAN program
running on the VAX/VMS system at node BOSTON of our network example
could exchange messages with a MACRO program running on the RSX-llM
system at node DALLAS. The fact that these programs use different
programming languages and run under different operating systems is of
no concern to the DECnet software, which translates system-dependent
language calls into a common set of network protocol messages. (Note
that in the context of task-to-task communication, the terms "task"
and "program" are used synonymously.)

DECnet-VAX supports two forms of task-to-task communication:
transparent and nontransparent. Transparent communication provides
all the basic functions necessary for a program in VAX-11 MACRO or a
higher-level language to communicate with other programs over the
network. Nontransparent communication allows the programmer to use
more network specific functions.

A simple analogy differentiates these two forms of communication.
Transparent communication is analogous to device-independent I/O under
VAX/VMS. This form of I/O lets you move data with little concern for
the way this is accomplished. Likewise, transparent communication
allows you to simply move data across the network without necessarily
knowing that you are using DECnet software. Nontransparent
communication, on the other hand, is analogous to device-dependent I/O
wherein you are interested in specific characteristics of the device
that you want to access. A nontransparent task, in turn, can use
network-specific features to monitor the communication process.

This chapter defines the forms of DECnet-VAX intertask communication
and the general procedures necessary to implement them. Particular
attention is paid to the DECnet interface with higher-level languages.
The information and examples presented herein provide the necessary
framework for the discussion of task-to-task communication in each
higher-level language user guide. The programmer should also be
familiar with this material before reading Chapters 6 and 7, which
provide examples of transparent and nontransparent communication using
system services.

5.1 TRANSPARENT COMMUNICATION

Transparent communication provides the basic functions necessary for a
task to communicate with another task over the network. These
functions include the initiation and completion of a logical link
connection, the orderly exchange of messages between both tasks, and
the controlled termination of the communication process. To implement
these functions, you can program your transparent task in any of the

5-1

TASK-TO-TASK COMMUNICATION

higher-level languages supported over the network or in VAX-11 MACRO,
using RMS service calls or system service calls.

One way to view transparent communication is to look at the
programming required to develop such an application. Transparent
access provides the minimum functions necessary to communicate over
the network using standard I/O operations. When accessing the network
transparently, you use no DECnet-specific calls to perform these
functions; rather, you use standard RMS I/O service calls or the
normal I/O statements provided by the applicable higher-level language
to access a sequential record-oriented device. {The remote task is
modeled as a VAX/VMS mailbox to which you can perform read and write
operations.) You can also use $QIO system service calls to perform
transparent communication, as described in Chapter 6.

Example 5-1 illustrates a simple example of VAX-11 FORTRAN transparent
communication. In the source FORTRAN task that initiates the logical
link request, you use a standard open call to specify the remote task
to which you want to connect. In turn, the remote task issues an open
call to complete the logical link connection. A coordinated set of
read and write operations enable the exchange of information over the
link. To terminate the connection, the source task executes a close
call to break the logical link. When the remote task receives this
close call, it issues a close call which completes the link
termination process. The remaining sections of this chapter discuss
the calls that you would use to develop such an application.

c
c
c
c
c
c
c
c
c
c
c
c

c

Example 5-1: FORTRAN Task-to-Task Communication

PROGRAM TEST3.FOR

This Prosram Prompts the user for the part number of an item
in inventorw and responds with the number of units in stock.
The information is obtained by communicating with a Program
<TEST4> on another node that has access to the inventorw data.

Before running this prosram, the losical name TASK must be
defined to refer to the tarset Prosram. For example:

$DEFINE TASK •TRNTO::••TASK=TEST4• 1
•

$ RUN TEST3

CHARACTER PARTN0*5
INTEGER PARTCOUNT

100 FORMAT (/,'$Enter Part number: ')
200 FORMAT (A)
300 FORMAT (14)
400 FORMAT C'Oinventor~ for Part number ',A,' is: ',14)
c
C Establish a losical link with the tarset task.
c

c
c
c
r
c
c

0 OPEN (UN IT= 1 'NAME= I TASK I' ACCESS=·' SEQUENT! AL I'
1 FORM='FORMATTED'rCARRIAGECONTROL='NONE',TYPE='NEW'>

Prompt the user for a Part number, send it to the target taskr ·
read rePlY of auantitw on handr and finallw d1splaw the answer
for the user. RePeat the cycle until the user enters 'EXIT' for
a Part n•Jmber.

5-2

TASK-TO-TASK COMMUNICATION

10 TYPE 100

c
c
c
20

$

$

$
$
$
$

fj$
$
$

$
$
$

c

ACCEPT 200, PARTNO
IF <PARTNO .EQ. 'EXIT') GOTO 20

0 WRITE < 1 '200) PART NO
READ (1,JOO> PARTCOUNT
TYPE 400, PARTNQ, PARTCOUNT
GOTO 10

Disconnect the losical link.

0 CLOSE <UNIT=1)
END

TEST4.COM

This command Procedure executes the Prosram TEST4 after
beins started b~ a task-to-task connection reauest issued
b~ TEST3.

RUN SYS$LOGIN:TEST4.EXE

! Purse old los files senerated b~ this command Procedure.
!
PURGE/KEEP=2 SYS$LOGIN:TEST4.LOG
EXIT

PROGRAM TEST4.FOR

C This is the tarset Prosram that communicates with TEST3.
C For each Part number received from the source task1 the
C number of units in stock is determined' and this value is
C returned.
c
C To complete the losical link with its initiator' this Prosram
C uses the losical name SYSSNET as the file specification in an
C oPen statement.
c

c

CHARACTER PARTN0*5
INTEGER PARTCOUNT

100 FORMAT <A>
200 FORMAT <14)
c
C Complete the losical link connection.
c

c
c
c
c
c
10
c
c
c
c

e oPEN < uN 1T=1, NAME=, svstNET, , AccEss=, sEouENT 1 AL, ,
1 FORM='FORMATTED',CARRIAGECONTROL='NONE',TYPE='OLD'>

Process reauests until end-of-file is reached. <This is the
error condition returned when the source task breaks the
losical link connection.>

0 READ (1,100,END=20> PARTNO

Perform aPProPriate Processins to obtain the part count value
and transmit this back to the source task.

CALL INSTOCK <PARTNO,PARTCOUNT>
0 WRITE C 1'200 > PARTCOUN T

GOTO 10

5-3

c
c
c
20

TASK-TO-TASK COMMUNICATION

Disconnect the losical link.

0 CLOSE
END

<UNIT=~l)

Notes on Example 5-1:

«) The source task, TEST3, requests a logical link connection to
the target task, TEST4.

f) When the remote node receives a connection request, the
command procedure TEST4.COM is executed. This command
procedure must reside under the default directory associated
with the account being accessed. TEST4.COM contains a RUN
statement that causes the program TEST4.EXE to be executed.

@) TEST4 completes the logical link connection via SYS$NET.
Note that the unit numbers in the source and target programs
need not be the same.

(» TEST3 and TEST4 send and receive data messages.

0 TEST3 disconnects the logical link and thereby terminates the
communication process.

Because DECnet-VAX translates system-dependent language calls into the
same set of messages that permit task-to-task communication, any task
programmed in VAX-11 MACRO or one of the higher-level languages can
communicate with a remote task programmed in the same or a different
language. More specifically, for communication between tasks that run
on VAX/VMS nodes, the language in which you access the network has no
effect on the communication process. The VAX-11 FORTRAN source task
in Example 5-1 could just as easily communicate with a MACRO task on
node TRNTO.

5.2 NONTRANSPARENT COMMUNICATION

Nontransparent communication provides the same basic functions as
transparent communication plus additional system service and I/O
functions supported by DECnet-VAX {as described in Chapter 7.) In
particular, a nontransparent task can create and use a VAX/VMS mailbox
to receive information that would otherwise remain inaccessible to a
transparent task. Thus you can use optional network protocol features
such as optional user data on connects and disconnects, and interrupt
messages. Also, certain nontransparent tasks that have a mailbox can
receive and process multiple inbound connection requests. The
discussion that follows highlights the distinctions between the two
types of access to emphasize the additional capabilities that
nontransparent access provides.

Transparent communication offers the m1n1mum functions necessary for
initiating and completing a logical link connection, exchanging
messages, and terminating the logical link. In fact, these functions
are actually a subset of a larger group of functions defined for
nontransparent communication. The entire set of functions are as
follows:

5-4

TASK-TO-TASK COMMUNICATION

• Initiating a logical link connection

Requesting a logical link to a remote taskl

Declaring a network name and processing multiple connection
requests

• Completing a logical link connection

Rejecting a logical link connection request

Accepting a logical link connection requestl

• Exchanging messages

Sending and receiving data messagesl

Sending and receiving interrupt messages

• Terminating a logical link

Synchronously disconnecting the logical link

Aborting the logical linkl

Nontransparent tasks can use any or all of these functions to extend
the basic capabilities offered under transparent communication.

5.2.1 Mailboxes and Mailbox Messages

In general, nontransparent tasks can use a
information about particular network operations.
of three types:

mailbox to receive
Mailbox messages are

• Messages that result from the use of certain system service
calls (including optional user data)

• Interrupt messages

• Network status messages

Nontransparent functions that indirectly cause mailbox messages to be
placed in the receiver's mailbox include calls for initiating and
completing logical links, and calls for terminating links. Figure 5-1
illustrates the use of mailboxes by nontransparent tasks.

1. Minimum subset for transparent task-to-task communication.

5-5

I
I

Nontransparent
Task

Mailbox
I
I

TASK-TO-TASK COMMUNICATION

Transparent
Task

Connect
Initiate

(Network Task)

Nontransparent

MSG$_CON N ECT _____ T_a_sk ___ ~
I
I Mailbox

'- _J
Connect Initiate (opt. user data) I - -

I
I

_J

MSG$_CONFIRM
MSG$....REJECT

Connect Reject (opt. user data)

MSGLCONN ECT

~ .• Interrupt Messages ~
MSG$....INTMSG-~~~~~~~~~~~~~~~~~~ MSG~INTMSG

Synchronous Disconnect (opt. user data)i. MSG$_DISCON
~---------------------------------" MSG$_ABORT

Disconnect Abort (opt. user data)

~-----_____ }
y

I DECnet-VAX Software I
Network Status Notifications:

MSG$_EXIT
MSG$_PATH LOST
MSG$....PROTOCOL
MSG$_TIMEOUT
MSG$_THI RDPARTY
MSG$_NETSHUT

Figure 5-1: Mailbox Messages

ZK-840-82

A nontransparent task can also receive network status notifications
via the mailbox. These notifications apply to physical and logical
link conditions over the network. For example, DECnet-VAX software
can notify a nontransparent task of the following conditions:

• Third-party disconnections
Manager's Guide)

(see the DECnet-VAX

• Network software- and hardware-related problems

• Processes exiting before I/O completion

• Connection request timeouts

5-6

System

TASK-TO-TASK COMMUNICATION

5.3 INITIATING A LOGICAL LINK CONNECTION

Regardless of whether you access the network transparently or
nontransparently, you must establish a communication link to the
remote node on which the target task runs before any message exchange
can take place. You establish the link by issuing a source task call
that requests a logical link connection. (To clarify, the term source
task refers to the task that initiates a logical link connection
request. The term target task refers to the task with which you want
to communicate. The interaction that takes place prior to
establishing a logical link is termed a handshaking sequence.}

5.3.1 The Handshaking Sequence

Upon receiving a call that requests a logical link connection, the
local DECnet-VAX initiates a handshaking sequence with the target
task. The following information is supplied in a connection request:

• An I/O channel: The I/O channel serves as the path over which
messages are sent and received by the source program.

• The identification of the target node: Every node in a network
has an identifier that distinguishes it from all other nodes
in the network. Transparent communication uses a task
specification string to indicate the name of the target node
(see Chapter 2). Nontransparent communication requires a
user-generated data structure called the Network Connect
Block (NCB} which includes a task specification string (see
Chapter 7}.

• An object type descriptor (see Chapter 2}.

• Access control information (optional; see Chapter 2}.

• Optional user data: Nontransparent tasks have the option of
sending up to 16 bytes of data to the target program. (See
the information on NCBs in Chapter 7.}

Higher-level language tasks can use standard file opening statements
to request a logical link connection to a remote task. The following
examples in VAX-11 FORTRAN, VAX-11 BASIC, VAX-11 PL/I, VAX-11 PASCAL,
and VAX-11 COBOL show how to specify a target task, TEST4, running on
node TRNTO:

FORTRAN

BASIC

PL/I

PASCAL

COBOL

OPEN (UNIT=7,NAME='TRNTO::"TASK=TEST4"' ,TYPE='NEW'}

OPEN 'TRNTO::"TASK=TEST4"' AS FILE #7

OPEN FILE(OUTPUT} TITLE ('TRNTO::"TASK=TEST4"'};

OPEN (PARTNER,'TRNTO::"TASK=TEST4"' ,NEW};

SELECT PARTNER ASSIGN TO "TRNTO::" "TEST=TASK4'"'".
OPEN OUTPUT PARTNER.

The RMS service call equivalent to these higher-level language
statements is the $OPEN call. System service calls used to request
logical link connection are described in Chapters 6 and 7.

It is important to note that once you issue a call that uses either a
task specification string or an NCB, you access the network and, by
definition, DECnet-VAX software.

5-7

TASK-TO-TASK COMMUNICATION

5.4 COMPLETING THE LOGICAL LINK CONNECTION

As part of the handshaking sequence that takes place between the
source and target tasks, the target task completes the logical link
connection in two steps. First, the DECnet software at the remote
node processes the inbound logical link connection request and then
the target task either accepts or rejects the link. These steps are
performed differently, depending on whether the target task uses
transparent or nontransparent I/O. In the following discussion, it is
assumed that the remote node is VAX/VMS. If the remote node on which
your target task runs is not a VAX/VMS system, you should refer to the
DECnet documentation for that system.

5.4.1 Completing the Connection Transparently

If the target task is transparent, the software at the remote node
checks the access control information supplied in the connection
request call. DECnet-VAX software creates a process in which the
LOGINOUT image runs. The name of this process is a concatenation of
the name of the object connected to and the logical link number (for
example, MAIL 65218). The LOGINOUT image verifies the access control
information against the user name and password contained in the User
Authorization File (UAF) at the remote node.

If the access control information is valid, LOGINOUT creates the
logical name SYS$NET in the process logical name table for subsequent
use by the target task. The equivalence string for SYS$NET is a
special form of file specification string that contains information
identifying the source task which initiated the logical link
connection. The LOGIN.COM file associated with the access control
string is then run. Finally, the command procedure file
(taskname.COM) for starting the remote task is executed.

Prior to your accessing the remote node, the System Manager must have
created the appropriate account in the UAF (refer to the information
on access control in Chapter 2.) In addition, the command procedure
file (taskname.COM) for starting the remote task must exist in the
directory associated with the account identified by the access control
information. For a description of the command procedure taskname.COM,
see Section 5.4.3. Command procedures for objects existing in the
OBJECT data base (which is created using NCP commands) are located in
the SYS$SYSTEM directory.

To complete the logical link, the target task performs a file opening
operation using the logical name SYS$NET to establish a communications
path back to the source task. The following examples in VAX-11
FORTRAN, VAX-11 BASIC, VAX-11 PL/I, VAX-11 PASCAL, and VAX-11 COBOL
show how to specify SYS$NET:

FORTRAN

BASIC

PL/I

PASCAL

COBOL

OPEN (UNIT=2,NAME='SYS$NET' ,TYPE='OLD'))

OPEN "SYS$NET" AS FILE #2

OPEN FILE{INPUT) TITLE {'SYS$NET');

OPEN (PARTNER,'SYS$NET' ,OLD);

SELECT PARTNER ASSIGN TO "SYS$NET".
OPEN INPUT PARTNER.

The RMS service call equivalent to these higher-level language
statements is the $OPEN call. System service calls for accepting the
logical link are described in Chapters 6 and 7.

5-8

TASK-TO-TASK COMMUNICATION

5.4.2 Completing the Connection Nontransparently

If the target task is nontransparent, then one of several things may
occur. If the task has not declared itself a network task (and is
therefore eligible to accept only one connection request at a time),
then the DECnet software at the remote node performs the access
checking procedure described in Section 5.4.1. After it starts, the
target task retrieves the connection information by translating the
logical name SYS$NET using the $TRNLOG system service call (see
Chapter 7).

If the target task declares itself as an active network task, then
DECnet-VAX software places all connection requests addressed to the
task in the mailbox associated with the channel being used. The first
message in the mailbox is the Network Connect Block (NCB) from the
original connection request that started the task. This message
appears in the mailbox after channel assignment and name declaration
occur. Once the task declares a network name, subsequent inbound
connection requests are not checked by the remote node to verify
access control. (Note that if the task is started without being part
of a DECnet operation, access control is never checked.) Chapter 7
describes in more detail the nontransparent process of completing the
logical link connection.

After examining the incoming connection request, the target task
either accepts or rejects the request, and optionally it can send 1 to
16 bytes of data back to the source task at the same time that it
responds to the logical link connection ~equest. Furthermore, a
library routine, LIB$ASN WTH MBX, that assigns a channel and
associates a unique mailbox, can be used when accepting the connection
if no optional data is returned (see Section 7.2).

5.4.3 Command Procedures Used in Task-to-Task Communication

As described above, once the access control information is verified,
both the LOGIN.COM command procedure for the accessed account and the
taskname.COM command procedure in the default directory under that
account are executed.

On a VAX/VMS system, jobs are classified as interactive, batch, or
network. Inclusion of the following command in the LOGIN.COM file
avoids the execution of DCL commands applicable to the interactive
mode that are not required for task-to-task communication.

$ IF F$MODE() .NES. "INTERACTIVE" THEN EXIT.

The command procedure file taskname.COM must contain at minimum a RUN
command to cause the target task image to be executed. It may also
contain terminal assignments for debugging purposes (for example,
DBG$INPUT and DBG$0UTPUT). There are no restrictions on the type of
commands that you can have in this file. A sample command procedure
DEMO.COM to run the target task TASK20.EXE might contain the following
commands:

$RUN USER:[DEMO.TEMP]TASK20.EXE
$ PURGE/KEEP=2 SYS$LOGIN:DEMO.LOG
$ LOGOUT/BRIEF

5-9

TASK-TO-TASK COMMUNICATION

A sample command procedure TEST.COM used to debug the target task
TEXT.EXE might contain the following commands:

$ ASSIGN TTA7: DBG$INPUT
$ ASSIGN -TTA7: DBG$0UTPUT
$ RUN/DEBUG SYS$LOGIN:TEST.EXE
$ PURGE/KEEP=2 SYS$LOGIN:TEST.LOG

The debug terminal must not currently be assigned to any process.
Otherwise, the command procedure will exit with an error that causes
the logical link connection to the object to be rejected.

5.5 EXCHANGING MESSAGES

After DECnet-VAX creates a logical link, the two tasks are ready to
exchange messages. The exchange of messages can take place only if
the two tasks cooperate with each other. In other words, for each
message sent by a task, the receiving task must issue a corresponding
call to receive the message. Also, you must decide which task will
disconnect the link. In addition, if the tasks are nontransparent,
they must agree on the optional data to be passed. Because either
task can now send and receive messages, the distinction between source
and target must be redefined. In the context of an established
logical link, the task sending a message is the source and the task
receiving it is the target.

DECnet-VAX distinguishes between two types of messages: data messages
and mailbox messages. For both transparent and nontransparent
communication, data messages are the normal mode of information
exchange. Nontransparent communication gives you the additional
capability of receiving mailbox messages, such as interrupt messages,
messages resulting from some DECnet operation (including optional user
data), and network status notifications.

5.5.1 Data Messages

Whether you access the network transparently or nontransparently,
DECnet-VAX sends data messages over a logical link in response to a
set of send and receive calls issued by the source and target tasks.
For higher-level language tasks, use standard read and write calls to
send and receive data messages. In Example 5-1, the two FORTRAN tasks
use read and write calls to exchange information. The equivalent RMS
service calls are $GET and $PUT. System service calls to send and
receive data messages are described in Chapters 6 and 7.

5.5.2 Mailbox Messages

Nontransparent communication frequently involves using a mailbox to
obtain network-specific information. A task may receive the following
types of messages in its mailbox:

• Messages that DECnet generates when a task initiates any of
the network operations listed below (a VAX/VMS task issues
system service calls to initiate these operations; these
calls also permit it to place optional user data in the
mailbox of the other task) :

5-10

TASK-TO-TASK COMMUNICATION

When one task requests a logical link connection, a
notification message (and optional user data) may be placed
in the mailbox of the target task.

When a target task accepts or rejects the logical link
connection request, a notification message (and optional
user data) is placed in the mailbox of the source task.

When one task synchronously disconnects or aborts a logical
link, a notification message (and optional user data) is
placed in the mailbox of the task from which it is
disconnecting.

• Network status notification messages that inform
some unusual network occurrence (such as a
disconnect).

a task of
third-party

• Interrupt messages sent by the other task.

5.6 TERMINATING THE COMMUNICATION PROCESS

The termination of a logical link signals the end of the communication
process between two tasks. In transparent task-to-task communication
using higher-level language statements or RMS service calls, either
task can issue a file closing statement to break the link. To
terminate the link properly, it is recommended that the receiver, and
not the transmitter, of the final message issue the close call to
disconnect the link. The link termination process is complete when
the other task issues a file closing call. In transparent
communication using system service calls, the $DASSGN system service
call causes the link to be terminated (see Chapter 6).

If you are using system service calls in nontransparent task-to-task
communication, you can terminate I/O operations over a channel in one
of three ways (as described in detail in Chapter 7):

• Synchronous Disconnect ($QIO) - This form of disconnection
indicates to the remote receiver that all messages sent by the
local transmitter have been acknowledged at the Network
Services Protocol (NSP) level. This does not guarantee that
the user of NSP received the data.

• Disconnect Abort ($QIO) - This form of disconnection
indicates to the remote receiver that all messages sent have
not necessarily been received. To ensure that all messages
are received before the link is disconnected, the sender must
cancel I/O on the channel before issuing the abort call.

• Deassign Channel and Terminate Link ($DASSGN) -
disconnection deassigns the channel and
disconnects the link.

This form of
immediately

Note that after either a synchronous disconnect or a disconnect abort,
you can issue a new connection request since you did not deassign the
I/O channel but merely deaccessed the link.

When a nontransparent task terminates the communication process, a
notification message indicating that the link is disconnected is
placed in mailbox of the task affected. In addition, a nontransparent
task can send up to 16 bytes of optional user data which is also
placed in the mailbox.

5-11

TASK-TO-TASK COMMUNICATION

Note that by their nature, disconnect,operations are of little value
in guaranteeing to both partners that communication is complete.
Therefore, it is recommended that the communicating tasks agree on a
protocol for terminating communication. In general, the receiver and
not the transmitter of the final message should disconnect the logical
link.

5-12

CHAPTER 6

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

This chapter describes the system service calls and functions that you
can use to perform transparent task-to-task communication over the
network. In general, transparent communication allows you. to:

• Create a logical link between tasks

• Send and receive data messages

• Terminate the logical link at the end of the message dialog

This chapter defines the system service calls for these functions and
develops an example to iliustrate their use.

The general concepts implicit in DECnet-VAX task-to-task communication
are covered in Chapter 5. You should also be familiar with the
QIO-related material in the VAX/VMS System Services Reference Manual.
The use of higher-level language statements and RMS service calls in
transparent task-to-task communication is described in Chapter 5.

6.1 SYSTEM SERVICE CALLS FOR TRANSPARENT COMMUNICATION

Transparent task-to-task communication uses a set of system service
calls available with the VAX/VMS operating system. Table 6-1
summarizes these calls and their specific network-related functions.
The $QIO calls are distinguished by function code. Section 6.7
presents the format of these calls in more detail.

Table 6-1: Transparent Task-to-Task Communication System
Service Summary

Call Function

$ASSIGN Request a logical link connection

$DASSGN Terminate a logical link

$QIO (IO$_READVBLK) Receive a message

$QIO (IO$_WRITEVBLK) Send a message

The system service calls summarized in Table 6-1 allow you to perform
task-to-task communication in much the same way as you would perform
normal I/O operations. Use the $ASSIGN call to assign a logical link
I/O channel to a "device," which in this case is a task that behaves
like a full-duplex record-oriented device. You can perform read and

6-1

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

write operations with this task in either a synchronous or
asynchronous manner. To exchange messages, use the Queue I/O (QIO)
Requests supported by DECnet-VAX. When all communication completes,
use the $DASSGN system service call to deassign the channel and
thereby disconnect the logical link.

6.2 REQUESTING A LOGICAL LINK

To request a logical link and assign an I/O channel, use the $ASSIGN
system service. When you issue this call, you must include a task
specifier for the remote node on which the cooperating task runs. The
task specifier identifies the remote node and the target task to which
you want to establish a logical link. (Refer to Chapter 2 for the
format of the task specification string.)

For example, for the network m.odel described in Chapter 1, you could
establish a logical link to target task TEST2 on node TRNTO to perform
task-to-task communication. To create this link, code the following
VAX-11 MACRO statements in your source program:

TARGET: .ASCID /TRNTO::"TASK=TEST2"/
NETCHAN: .BLKW 1 ; channel number returned here

$ASSIGN S DEVNAM=TARGET,CHAN=NETCHAN

For debugging or for symmetry, you can develop and run the target task
on the local node. Use the local node name plus two colons (::) to
connect to the local node. Alternatively, you can use node number 0
plus double colons (::) to connect to the local node.

Once you establish a logical link, you refer to the assigned channel
in any succeeding call in the MACRO program, either to send or receive
messages, or to deassign the channel and terminate the logical link.

Until the connection operation completes, the process is in Local
Event Flag Wait (LEF) state in KERNEL mode. Therefore, pressing
CTRL/Y will not return the process to DCL status. The maximum amount
of time that the process will wait in this state is specified by the
NCP command SET EXECUTOR with the INCOMING TIMER parameter. If this
timer cannot be set to an acceptable value, tasks that accept commands
from the terminal should use $QIO {IO$ ACCESS) instead of the
transparent $ASSIGN call to initiate logical links {see Section
7.8.2).

6.3 COMPLETING THE LOGICAL LINK CONNECTION

The target task completes the logical link by specifying the logical
name SYS$NET as the devnam argument for the $ASSIGN system service.
For example:

LOGNAM:
NETCHAN:

$ASSIGN S

.ASCID

.BLKW
/SYS$NET/
1 channel number returned here

DEVNAM=LOGNAM,CHAN=NETCHAN

Issue these calls in the target task to complete the logical link
connection. The target task also specifies a channel to be used in
subsequent system service calls.

6-2

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

In this chapter, it is assumed that the remote node is a VAX/VMS
system. If the remote node on which the target task runs is other
than VAX/VMS, you should refer to the related DECnet documentation.

6.4 EXCHANGING MESSAGES

After DECnet-VAX software establishes a logical link with the target
task, either task can then send or receive messages. However, they
must cooperate with each other: for each message sent with the
$QIO (IO$ WRITEVBLK), the other task must issue a corresponding $QIO
(IO$_READVBLK) to receive the message.

You must ensure that the tasks allocate enough buffer space for
receiving the messages; if they do not, a DATAOVERUN error will
occur. You must also ensure that the end of the dialog can be
determined. Finally, one of the two tasks must disconnect the logical
link. To terminate a logical link properly, the receiver, and not the
transmitter, of the final message should break the link.

6.5 TERMINATING THE LOGICAL LINK

For transparent task-to-task communication, use the $DASSGN system
service call to deassign the channel and break off the logical link
with the cooperating task. This call terminates all pending calls for
sending and receiving messages, aborts the link immediately, and frees
the channel associated with that logical link.

6.6 STATUS AND ERROR REPORTING

When a system service completes execution, a status value is always
returned. The $ASSIGN, $DASSGN, and $QIO system services place the
return status information in register 0 (RO). For the $QIO system
service, a successful status ~eturn indicates only that the request
was successfully queued. All I/O completion status information is
placed in the I/O status block (IOSB). For example, a $QIO system
service read request to a task might be successful (status return is
SS$ NORMAL) yet fail because the link was disconnected (I/O status
ret~rn is SS$ LINKABORT). The return status codes shown in the
following sections may be returned both in RO and in the IOSB.

The VAX/VMS System Services Reference
User's Guide both describe the
traps (ASTs), IOSBs, and event flags.

6.7 SYSTEM SERVICE CALL SUMMARY

Manual and the VAX/VMS I/O
use of asynchronous system

The following subsections describe the VAX/VMS system services you can
use for transparent intertask communication. Each subsection
describes the use of the call, its format, the arguments associated
with the call, and the return status information. Appendix C lists
the entire set of network system service error messages.

6-3

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

6.7.1 $ASSIGN {I/O Channel Assignment)

The $ASSIGN system service assigns a channel to refer to the logical
link. You can then use the channel returned in the chan argument in
any succeeding call to send or receive a message, or to deassign the
channel and thereby terminate the logical link.

Format

$ASSIGN devnam ,chan ,[acmode]

Arguments

devnam

ch an

a cm ode

Return Status

SS$ REMOTE

address of a quadword descriptor of a character string
that identifies the remote task. The string will
contain either:

• A task specification string if the call is by the
source task. (Refer to Chapter 2 for the task
specification string format.) Both the string and
its descriptor must be in read/write storage.

• SYS$NET if the call is by the target task.
is a logical name.)

(SYS$NET

address of a word that will receive the assigned
channel number. You use this channel number to send a
message to a remote task, receive a message from a
remote task, or to abort the logical link.

access mode to be associated with this channel. The
most privileged access mode used is the access mode of
the caller. You can perform I/O operations on the
channel only from equal or more privileged access
modes.

The service completed successfully. (A logical
link was established with the target task.)

SS$ CONNECFAIL The connection to a network object timed out or
failed.

SS$ DEVOFFLINE The physical link is shutting down.

SS$ FILALRACC A logical link already exists on the channel.

SS$ INSFMEM

SS$_INVLOGIN

SS$ IVDEVNAM

SS$ LINKEXIT

SS$ NOLINKS

There is not enough system dynamic memory to
complete the request.

The access control information was found to be
invalid at the remote node.

The task specifier has an invalid format or
content.

The network partner task was started, but exited
before confirming the logical link {that is,
$ASSIGN to SYS$NET).

No logical links are available. The maximum
number of logical links as set for the NCP
executor MAXIMUM LINKS parameter was exceeded.

6-4

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

SS$ NOPRIV The issuing task does not have the required
privilege to perform network operations or to
confirm the specified logical link.

SS$ NOSUCHNODE The specified node is unknown.

SS$ NOSUCHOBJ The network object number is unknown at the
remote node; or for a TASK= connect, the named
DCL command procedure file cannot be found at the
remote node.

SS$ NOSUCHUSER The remote node could not recognize the login
information supplied with the connection request.

SS$ PROTOCOL A network protocol error occurred, most likely
because of a network software error.

SS$ REJECT The network object rejected the connection.

SS$ REMRSRC The link could not be established because system
resources at the remote node were insufficient.

SS$ SHUT The local or remote node is no longer accepting
connections.

SS$ THIRDPARTY The logical link connection was terminated by
third party (for example, the System Manager).

a

SS$ TOOMUCHDATA The task specified too much optional or interrupt
data.

SS$_UNREACHABLE The remote node is currently unreachable.

6.7.2 $QIO {Sending a Message to a Target Task)

The $QIO system service with a function code of IO$ WRITEVBLK sends a
message to a target task. The $QIO call initiates an output operation
by queuing a request to the channel associated with the logical link.
{Alternatively, you could use the $QIOW system service to perform the
same operation.)

Format

{
$QIO l[efn] ,chan ,func , [iosb] , [astadr] , [astprm] ,pl ,p2
$QIOW j

Arguments

efn

ch an

f unc

iosb

number of the event flag to be set at
completion.

request

a word containing the channel number associated with
the logical link. Use the same channel number returned
previously in the $ASSIGN call.

IO$ WRITEVB LK

address of a quadword I/O status block that is to
receive the completion status.

6-5

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

astadr

astprm

pl

p2

Return Status

entry point address of an AST routine that executes
when the I/O operation completes. If specified, the
AST routine executes at the access mode from which the
$QIO service was requested.

AST parameter to be passed to the AST completion
routine.

buffer address.

buffer length in bytes.

SS$_NORMAL

SS$ ABORT

The service completed successfully.

The I/O request has been aborted by a $DASSGN or
$CANCEL.

SS$ CANCEL

SS$_FILNOTACC

SS$ INSFMEM

SS$ LINKABORT

The I/O on this channel has been cancelled.

No logical link is associated with the channel.

Enough memory to buff er the message could not be
allocated.

The network partner task aborted the logical
link.

SS$ LINKDISCON The network partner task disconnected the logical
link.

SS$ LINKEXIT The network partner task exited.

SS$ PATHLOST The path to the network partner task node was
lost.

SS$_PROTOCOL A network protocol error occurred. This is most
likely due to a network software error.

SS$ THIRDPARTY The logical link connection was terminated by
third party {for example, the System Manager).

a

6.7.3 $QIO {Receiving a Message from a Target Task)

The $QIO system service with a function code of IO$ READVBLK receives
a message from a target task. The $QIO call-initiates an input
operation by queuing a request to the channel associated with the
logical link. {Alternatively, you could use the $QIOW system service
to perform the same operation.)

Format

{ $QIO }[efn] ,chan ,func , [iosb] , [astadr] , [astprrn] ,pl ,p2
$QIOW

Arguments

efn

ch an

number of the event flag to be set at
completion.

request

a word containing the channel number associated with
the logical link. Use the same channel number returned
previously in the $ASSIGN call.

6-6

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

f unc

iosb

astadr

astprm

pl

p2

Return Status

SS$ NORMAL

SS$_ABORT

SS$ CANCEL

IO$ READVBLK

address of a quadword I/O status block that is to
receive the completion status.

entry point address of an AST routine that executes
when the I/O operation completes. If specified, the
AST routine executes at the access mode from which the
$QIO service was requested.

AST parameter to be passed to the AST completion
routine.

buffer address.

buffer length in bytes.

The service completed successfully.

The I/O request has been aborted by a $DASSGN or
$CANCEL.

The I/O on this channel has been cancelled.

SS$_DATAOVERUN More bytes were sent than could be received in
the supplied buffer.

SS$ FILNOTACC

SS$ INSFMEM

SS$ LINKABORT

SS$ LINKDISCON

SS$ LINKEXIT

SS$ PATHLOST

SS$ PROTOCOL

No logical link is associated with the channel.

Enough memory to buff er the message could not be
allocated.

The network partner task aborted the logical
link.

The network partner task disconnected the logical
link.

The network partner task exited.

The path to the network partner task node was
lost.

A network protocol error occurred. This is most
likely due to a network software error.

SS$ THIRDPARTY The logical link connection was terminated by a
third party (for example, the System Manager).

6.7.4 $DASSGN (Terminating a Logical Link)

The $DASSGN system service terminates all pending operations to send
and receive data, disconnects the logical link immediately, and frees
the channel associated with that link. Either task can terminate the
logical link by calling $DASSGN.

6-7

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

Format

$DASSGN chan

Arguments

chan

Return Status

SS$ NORMAL

SS$ IVCHAN

SS$ NOPRIV

a word containing the channel number to the logical
link you want disconnected. Use the same channel
number returned previously in the $ASSIGN call.

The service completed successfully.

An invalid channel number was specified.

The specified channel is not assigned; or it was
assigned from a more privileged access mode.

6.8 PROGRAMMING EXAMPLE OF TRANSPARENT COMMUNICATION

Example 6-1 illustrates the use of these system service calls for
transparent task-to-task communication. TRANA is a MACRO source task
on the local node that communicates with a target task, TRANB, on node
TRNTO. The source task sends a connection request to the remote node
whereupon the target task is started by the command file TRANB.COM.
Once the logical link connection is made, the source task sends a
message to the target task, which in turn responds with a message and
then waits for additional message traffic. The source task drives the
communication process. Once the source task receives a response from
the target task, it disconnects the link and exits, which causes the
target task to exit also, thereby terminating the communication
process.

Example 6-1: Transparent Task-to-Task Communication
Using System Services

TRANA

.TITLE TRANA - SOURCE TASK USING TRANSPARENT I/O

.IDENT

.SBTTL

.PSECT

/V1.0/
WRITABLE-DATA
TRANA$DATA

NETCHAN:.BLKW 1
IOSBUFt .BLKQ 1
TARGET: .ASCID /TRNTO'MALIK KARL 1

::
1 TASK=TRANB 1

/

SENDMSG:.ASCII /SEND THIS STRING TO TRANB/
SENDMSG_SIZ=.-SENDMSG
RECVMSG:.BLKB 512
RECVMSG_SIZ=.-RECVMSG

Network channel
I/O status block
Task sPec <& descriPtor)

Output buffer
Output buffer size
InPut buffer
InPut buffer size

.SBTTL

.PSECT

.ENTRY

MAIN
TRANA$CODE
START,~M<>

NOSHR1EXE,RD,NOWRT,BYTE
;Entry Point from exec

6-8

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

Reauest a losical link to the tarset task and assisn an I/O channel.

$ASSIGN_S -
DEVNAM=W'"'TARGETr
CHAN=lrNETCHAN

BLBC RO, EX IT

Send a messase to the tarset task.

$QIQW_S

BLBC
MOVZWL
BLBC

EFN=t1,
CHAN=W'"'NETCHAN,
FUNC=s:tIO$_WRITEVBLK,
I OSB=W'"' I OSBUF, --
F' 1 =W'"'SENDHSG, -
P2=S'"'tSENDMSG_SIZ
RO,EXIT
W'"'IOSBUF,RO
ROrEXIT

Assisn a channel to tarset task
Address of device name descriPtor
Adr to receive channel t
Branch on failure

Issue transmit reauest
Use local event flas tl
Use assisned channel
Write virtual block
Address of 1/0 status block

; Address of output buffer
; -Size of output buffer

Branch on failure
Get completion status
Branch on failure

Receive a messase from the tarset task+

$QIOW_S

BLBC
MOVZWL
BLBC

EFN=t1,
CHAN=W'"'NETCHAN,
FUNC=S'"'tl0$_READVBLK,
IOSB=W'"'IOSBUF,-
F'1=W RECVHSG,
P2=tRECVMSG_SIZ
RO,EXIT
W"' IOSBUF, RO
RO,EXIT

Abort the losical link.

$DASSGN_S -
CHAN=W'"'NETCHAN

Exit with status <in RO>.

EXIT: $EXIT _S RO

• END START

TRANB

Issue receive reauest
Use local event flas tl
Use assisned channel
Read virtual block
Address of I/O status block
Address of inPut buffer
Size of inPut buffer
Branch on failure
Get comPletion status
Branch on failure

Deassisn the channel
Adr of word containins channel t

Exit with status to be disPla~ed
on error condition

Irnase transfer address

• TITLE
.I DENT
• SBTTL
.f'SECT

TRANB - TARGET TASK USING TRANSPARENT I/O
/V1+0/
WRITABLE-DATA
TRANB$DATA SHR,NOEXE,RD,WRT,BYTE

NETCHAN:.BLKW 1
IOSBUF: • BLKQ 1
RECVMSG:.BLKB 512
RECVMSG_SIZ=.-RECVMSG
LOGNAM: +ASCID /SYSSNET/
SENDMSG:.ASCII /REPLY TO TRANA/
SENDMSG-SIZ=.-SENDMSG

• SB TTL MA I NLI NE
.PSECT TRANB$CODE
.ENTRY START,'"'M<>

Network channel
I/O status block
Input buffer
InPut buffer size
Losical name & descriptor
OIJtP•Jt b•Jffer
Output buffer size

NOSHR,EXE,RDrNOWRT,BYTE
;Entrw Point from exec

6-9

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

Complete the loSical link connection <that TRANA reauested>.

LOOPt

$ASSIGN_S -
DEVNAM=W-LOGNAM,
CHAN=W-NETCHAN

BLBC RO,EXIT

Receive messase from source task.

$QIOW_S

BLBC
MOVZWL
CMPW
BEQL
BLBC

EFN=t!,
CHAN=WMNETCHAN,
FUNC=S-tIO$_READVBLK,
IOSB=W-IOSBUF,
P1=W-RECVMSG,
P2=tRECVMSG_SIZ
RO,EXIT
w-10SBUF,RO
s-tSS$_ABORT,RO
DONE
RO,EXIT

Send messase to source task.

$QIQW_S

BLBC
MOVZWL
BLBC
BRB

EFN=tt,
CHAN=W-NETCHAN,
FUNC=S~tl0$_WRITEVBLK,

IOSB=W-IOSBUF,
P1=W-SENDMSG,
P2=S-+SENDMSG_SIZ
RO,EXIT
w~IOSBUF,RO

R01EXIT
LOOP

Losical link was aborted.

DONE: $DASSGN_S -
CHAN=W-NETCHAN

Exit with status (in RO>.

EXIT: $EXIT_S RO

.END START

Assisn channel to SYS$NET
DescriPtor of SYS$NET
Store channel t
Branch on fail~re

Issue receive reauest
Use local event flas t1
Use assisned channel
Read virtual block
Address of 1/0 status block
Address of inPut buffer
Size of inPut buffer
Branch on failure
Get completion status
Was losical link aborted?
Branch if ~es
Branch on failure

Issue transmit reauest
Use local event flas tt
Use assiSned channel
Write virtual block
Address of 1/0 status block
Address of output buffer
Size of outPut buffer
Branch on failure
Get completion status
Branch on failure
Reissue the read

Deassisn the channel
Address of channel t

Exit with status to be disPla~ed
on error condition

Imase transfer address

6-10

CHAPTER 7

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

This chapter describes the system service calls and functions that you
use to perform nontransparent task-to-task communication. In general,
the underlying principles of nontransparent task-to-task communication
are similar to those of transparent communication. However, several
extensions to the system services described in Chapter 6 allow you to
use network-specific features for network operations. These
extensions allow you to do the following:

• Create and use mailboxes for receiving messages, including
network status notifications

• Decla.re a task as a network task, thus enabling it to process
multiple inbound logical link connection requests

• Send connection requests, optionally with user data

• Accept or reject a connection request, optionally with user
data

• Communicate between a transparent and a nontransparent task

• Send or receive an interrupt message

• Synchronously disconnect or disconnect abort a logical link,
optionally with user data

This chapter defines the system service calls for these functions and
presents an example to illustrate their use.

The general concepts implicit in DECnet-VAX task-to-task communication
are covered in Chapter 5. You should also be familiar with the
material contained in the VAX/VMS System Services Reference Manual and
the VAX/VMS I/O User's Guide.

7.1 SYSTEM SERVICE CALLS FOR NONTRANSPARENT COMMUNICATION

Nontransparent task-to-task communication over the network uses a set
of system service calls available under the VAX/VMS operating system.
Table 7-1 summarizes these calls and their network-related functions.
The $QIO calls are distinguished by function code. (Section 7.8
presents the format of these calls in more detail.)

7-1

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

Table 7-1: Summary of System Service Calls for Nontransparent
Task-to-Task Communication

$ASSIGN

$CANCEL

$CREMBX

$DASSGN

$GETDVI

Call

$QIO (IO$_ACCESS)

$QIO (IO$_ACCESS)

$QIO (IO$_ACCESS!IO$M_ABORT)

$QIO (IO$_ACPCONTROL)

$QIO (IO$_DEACCESS!I0$M_ABORT)

$QIO (IO$_DEACCESS!IO$M_SYNCH)

$QIO (IO$_READVBLK)

$QIO (IO$_WRITEVBLK)

$QIO (IO$_WRITEVBLK!IO$M_INTERRUPT)

$TRNLOG

Function

Assign an I/O channel

Cancel I/O on a channel

Create a mailbox

Abort the logical link
connection (deassigning an
I/O channel)

Get information on device
or volume

Request a logical link
connection

Accept a logical link
connection request

Reject a logical link
connection request

Assign a network name to a
task eligible to accept
multiple inbound connection
requests

Abort the
connection

logical link

Synchronously disconnect a
logical link

Receive a message

Send a message

Send an interrupt message

Translate logical names

7.2 ASSIGNING A CHANNEL TO NET: AND CREATING A MAILBOX

To prepare for 'nontransparent task-to-task communication, you need to
assign a channel just as you would for transparent communication. In
addition, to take advantage of optional network protocol features, you
can create a mailbox.

For task-to-task communication, you must assign a channel to a
pseudo-device called NET:. Use the $ASSIGN system service call for
this purpose. This calT normally contains a reference to a mailbox,
thereby associating it with the channel assigned to NET:. If you use
a mailbox, you must create the mailbox before assigning a channel to
NET:. It is important to note that this use of the $ASSIGN system

service differs from its use for transparent communication. Assigning
a channel to NET: does not transmit a logical link connection
request to the remote node. Instead, the channel to NET: provides a

7-2

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

communication path to DECnet software. A separate $QIO call
(IO$ ACCESS function using the same channel) must be used to request a
logical link to the remote task.

To take advantage of optional network protocol features, you can
create a mailbox to receive messages on behalf of logical link
operations. For example, the mailbox receives a message indicating
whether the cooperating task accepted or rejected a connection request
is.sued by the source task. Use the $CREMBX system service to create a
mailbox for these purposes. In the event that your application does
not use mailbox messages, you need not create a mailbox.

For convenience, the run-time library routine LIB$ASN WTH MBX can be
used to create a temporary mailbox, assign a channel to it, and assign
a channel to NET:. This routine creates a unique mailbox such that

-;-
multiple copies of the task using it will in effect use different
mailboxes. If you were to create a mailbox with a logical name, all
tasks would use the same mailbox and thereby interfere with each
other's mailbox messages. The program example in Section 7.9
illustrates a use of this routine. Refer to the VAX-11 Run-Time
Library Reference Manual for a complete description of this routine.

7.2.1 Mailbox Message Format

The mailbox receives information specific to nontransparent
communication with a remote task. Figure 7-1 illustrates the general
format of the mailbox message.

31 16 15 i 87 IL 0

UNIT l MSGTYPE

NAME
l COUNT

INFO
l COUNT

ZK-841-82

Figure 7-1: Mailbox Message Format

Notes to Figure 7-1:

MSGTYPE

UNIT

COUNT
NAME

COUNT
INFO

Contains a code that identifies the message type.

Contains the binary unit number of the device for which
the message applies.

Contain a counted ASCII string that gives the name of
the device for which the message applies. The $ASSIGN
system service creates devices having names of "NET".

Contain a counted ASCII string of information which
depends on the message type.

Appendix D summarizes the mailbox messages
nontransparent task-to-task communication.

that pertain to

7-3

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

7.3 REQUESTING A LOGICAL LINK CONNECTION

Once you assign the I/O channel, you can then request a logical link
connection. To request a logical link connection to the target task,
use the $QIO system service with a function code of IO$ ACCESS. You
must identify the target task in the $QIO call. Use a Network Connect
Block (NCB) to specify the target task identification string. In
addition, you can optionally send 1 to 16 bytes of data in the NCB.
The NCB must be in read/write storage. The format of the NCB is
discussed in Section 7.3.1.

Once the source task issues the connection request, it can then issue
a $QIO call with a function code of IO$ READVBLK to read its mailbox.
Checking the contents of the mailbox is one way to determine whether
the target task accepted or rejected the connection request. The
mailbox will contain either MSG$ CONFIRM or MSG$ REJECT, possibly with
optional data in the mailbox buffer. -

~~.

If specified, the IOSB argument of the $QIO (IO$ ACCESS) call will
also contain the result of the connection request-operation. Section
7.8.2 provides a complete list of I/O status messages for this call.

Note that you must read the mailbox to inspect any optional data sent
from the target task upon accepting or rejecting the connection
request.

7.3.1 Network Connect Block

The Network Connect Block (NCB) is a user-generated data structure
that contains the information necessary to request a logical link
connection, or to accept or reject a logical link connection request.

Figure 7-2 is an example of an NCB you could use when issuing a
connection request call.

The significance of the information contained in the NCB block varies,
depending on the type of call in which it is used. If the call is an
outbound connection request with no optional data, items 2, 3, 4, and
5 of the block are not required. If the call is a connect accept
operation and no optional data is sent, then items 4 and 5 are not
required. Item 5 is meaningful only to the receiver of a connection
request.

The example in Figure 7-2 illustrates an NCB that you could use when
issuing a connection request call.

7-4

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

1. With optional data (outbound connect):
0 8

NCB: .ASCII ?TRNTO::"TASK=TEST2/?
.WORD 0$

OPTDATA:
.ASCIC /USERINFO/ ~
.BLKB 17-<.-0PTDATA> ~
.ASCII /"I

0
2. Without optional data (outbound connect):

0
NCB: • ASCII ?TRNTO: : "TASK=TEST2"?

Item Function

0 A valid task specification string. (Refer to Chapter 2 for
the task specification format.) For an inbound call with an
NCB, the task name portion of the task specification string is
a process ID if the remote node is a VAX/VMS system; if not,
then the task name portion is a system-specific string that
identifies an executable unit (for example, job or task). The
task specification string must be a quoted string. Note that
the final quotation mark of the task specification string
follows the last item within the NCB.

8 The slash character (/) •

8 One word. This word must be 0 for a connection request
operation. For a connect accept or reject operation, this
word contains an internal DECnet link identifier.

8 Up to 16 bytes of optional data sent as a counted string.
This string is stored in a fixed length field that is 17 bytes
long. DECnet-VAX software ignores unused bytes.

CD A destination descriptor. (This indicates how the connection
was issued and is meaningful only to the task or object to
which the connection is made. This information is useful
where one program serves many functions and needs to know how
it was invoked.) The maximum length for the destination
descriptor is 19 bytes. The format is as follows:

a. If byte 0 contains O, then byte 1 is the binary value of
the object number.

b. If byte 0 contains 1, then byte 1 is the binary object
number, and bytes 2 through 18 contain a counted task
name.

c. If byte 0 contains 2, then byte 1 is the binary object
number, bytes 2 through 5 contain a UIC, the first two
bytes of which contain a binary group code and the second
two bytes contain a binary user code, and bytes 6 through
18 contain a counted task name.

Figure 7-2: Network Control Block Format

7.4 COMPLETING THE LOGICAL LINK

A nontransparent target task completes the logical link connection
in one of several ways, depending upon whether the task can process
multiple inbound connection requests or just a single request.

7-5

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

Furthermore, a nontransparent target task has the option of either
accepting or explicitly rejecting a logical link request.

In the discussion that follows, it is assumed that the remote node
is VAX/VMS. If the remote node on which your target task runs is
other than VAX/VMS, you should refer to the related DECnet
documentation.

7.4.1 Receiving a Connection Request

When a remote node receives a call requesting a logical link, the
DECnet-VAX software constructs an NCB from the information contained
in the call. At this point, one of two things occurs. If a process
already running on the remote node has declared a network name or
object number the same as the one identified in the NCB, then the
software puts the NCB into its mailbox. If not, DECnet-VAX software
creates a process that runs the LOGINOUT image. The LOGINOUT image
verifies the access control information and, if it checks out,
LOGINOUT equates SYS$NET to the NCB, invokes LOGIN.COM (if it
exists), and starts the taskname.COM command file. The name of this
command file is determined as follows:

• If the connection request identifies a numbered (nonzero)
object, then the appropriate record is located in the
Configuration Data Base and the name of the file is found in
this record. (The file is assumed to be found in
SYS$SYSTEM.)

• If the connection request identifies a named object with
type 0 (TASK), then the file name is assumed to be the name
of the task connected to (with a file type of .COM) and is
assumed to be found in the default directory associated with
the access control information.

Once executing, the target task can then determine whether to accept
or explicitly reject the connection request. You can program the
target task to base this assessment on the information contained in
the NCB.

7.4.1.1 Receiving Single Connection Requests - A nontransparent
target task can accept only one connection request at a time, unless
it declares itself as a network task. The target task may retrieve
the connection information by translating the logical name SYS$NET
using the $TRNLOG system service call. Once the task retrieves the
logical name, it may then decide whether to accept or explicitly
reject the connection request.

Note that you need not translate SYS$NET if
information is not required:

the

• The optional data in the Network Connect Block

• The identity of the connector

• The descriptor by which the connection was made

7-6

following

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

7.4.1.2 Receiving Multiple Connection Requests (Network Tasks) - A
target task can accept multiple inbound connection requests only if
it declares itself a known network task. To make this declaration,
you must first use the $ASSIGN call to assign an I/O channel to

NET:. Then, use the $QIO system service with a function code of
IO$ ACPCONTROL to assign a network name or object number to the
task, making it eligible to process multiple inbound connection
requests. This system service requires SYSNAM privilege. You must
associate a mailbox with the channel if a name or number is to be
declared.

Programs that have declared names or object numbers should be
programmed to terminate when their mailboxes receive a MSG$ NETSHUT
message. Such programs must be restarted when the network comes
back up.

Once you declare the target task as an active network task, DECnet
places all connection requests addressed to the task in the mailbox
associated with the channel over which the ACP control function was
issued. The target task retrieves connection requests from the
mailbox by issuing the $QIO system service call with a function code
of IO$ READVBLK. Note that the first message in the mailbox is the
NCB from the original connection request that put the task into a
state of execution. Once the task declares a network name or object
number, subsequent inbound connection requests are not checked for
their access control information. (However, if the network task is
started separately from a DECnet operation, access control is never
checked.)

Note that you can start programs that declare names or object
numbers apart from the first inbound connection (that is, by a RUN
command) •

7.4.2 Accepting or Rejecting a Connection Request

As mentioned previously, the target task can either accept or
explicitly reject a connection request. To accept a connection
request, thus completing the logical link connection, use the $QIO
system service with a function code of IO$ ACCESS. To reject the
connection request, use the $QIO system service-with the function code
IO$ ACCESS!IO$M ABORT. When it either accepts or rejects the
connection request, the target task can also send 1 to 16 bytes of
optional data within a modified NCB back to the source task.

7.5 EXCHANGING MESSAGES

Exchange of data messages between the two cooperating tasks is
performed in the same way for both nontransparent and transparent
communication. (Refer to Section 6.4 for information on using the
system service calls $QIO (IO$ WRITEVBLK) and $QIO (IO$ READVBLK) to
send and receive messages.) In addition, the following information on
interrupt messages is particular to nontransparent communication.

7.5.1 Interrupt Messages

Either task can send a 1- to 16-byte interrupt message. You can use
this method to send a message to a target task outside the normal flow
of data messages. DECnet-VAX places the received interrupt message in
the target task's mailbox. Use the $QIO system service with a
function code of IO$_WRITEVBLK!IO$M_INTERRUPT to send the interrupt

7-7

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

message. In order for the target task to be notified that an
interrupt message has been placed in its mailbox, the task should
issue a $QIO system service call with a function code of IO$ READVBLK
to the mailbox. Specifying an AST routine in the $QIO system service
call will cause the routine to be executed on receiving the interrupt
message. (AST routines are described in the VAX/VMS System Services
Reference Manual.)

7.6 DISCONNECTING OR ABORTING THE LOGICAL LINK

~ nontransparent task can terminate communication with a remote task
in one of two ways: either by disconnecting the link (synchronous
disconnect or disconnect abort) or by deassigning the channel. In the
first instance, you can issue a new connection request on the same
channel since you do not deassign it. Regardless of the method you
choose, you can send an optional message of 1 to 16 bytes of data with
the $QIO call.

7.6.1 Synchronously Disconnecting a Logical Link

To synchronously disconnect a logical link, issue the
service with a function code of IO$ DEACCESS!IO$M SYNCH.
is then free for subsequent communication with eitner the
different remote task.

$QIO system
The channel
same or a

A synchronous disconnection is useful for master/slave communication
in which one task always sends data and its partner task always
receives that data. If the receiver sees a synchronous disconnection
notification, it knows that it received all the data that was sent.
(The sender on the other hand is not guaranteed that its partner
received the data.) Because this is the only guarantee provided by
this operation, using this operation is discouraged in favor of a
user-defined protocol to ensure completion of communication. In
general, the receiver of the final message should break the logical
link.

7.6.2 Aborting the Logical Link ($QIO Function)

To abort the logical link, issue the $QIO system service with a
function code of IO$ DEACCESS!IO$M ABORT. This form of disconnection
indicates to the receiver that not all messages sent have necessarily
been received. To ensure that all transmitted messages have been
received, the task itself must terminate I/O operations on the link
before instituting the DEACCESS function because this function never
completes before all pending I/O operations complete. To do so, first
issue the $CANCEL system service to terminate I/O operations over the
link; then, issue the $QIO system service to terminate the link.

Note that after either a synchronous disconnect or a disconnect abort,
you can issue a new connection request if you did not deassign the I/O
channel.

If you issue the $CANCEL system service to a channel o~er which a
network name or object has been declared, the declaration will be
removed from the network data base.

7-8

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

7.6.3 Terminating the Logical Link ($DASSGN Function)

You can issue the $DASSGN system service call to deassign the channel
and terminate the logical link immediately. You issue the $DASSGN
call only after all communication between the tasks is complete. The
call releases the I/O channel, disassociates the mailbox from the
channel, and terminates the logical link immediately. This operation
is equivalent to using $CANCEL followed by $QIO
IO$_DEACCESS!IO$M_ABORT.

7.7 STATUS AND ERROR REPORTING

The same status and error reporting considerations apply to
nontransparent as to transparent task-to-task communication. Refer to
Section 6.6 for information on status and error reporting.

7.8 SYSTEM SERVICES CALL SUMMARY

The following subsections describe .the VAX/VMS system services you can
use for nontransparent intertask communication over the network. Each
subsection describes the use of the call, its format, the arguments
associated with the call, and the return status information. Appendix
C lists the entire set of network system service error messages.

The following system services are not described in detail below,
because their usage is the same whether or not they are used in a
networking context. For a description of these system services, see
the VAX/VMS System Services Reference Manual.

$CANCEL
$CREMBX
$GETDVI

Cancel I/O on Channel
Create Mailbox and Assign Channel
Get Device/Volume Information

Note that $GETDVI performs the same function as the Get I/O Channel
Information ($GETCHN) system service. However, DIGITAL recommends
that you use the $GETDVI system service.

7.8.1 $ASSIGN (I/O Channel Assignment)

The $ASSIGN system service assigns a channel to refer to a logical
link. You use this channel in all $QIO calls that communicate with a
remote task. In addition, you can use the $ASSIGN system service call
to associate a mailbox with the channel.

Format

$ASSIGN devnam ,chan ,[acmode] ,[mbxnam]

Arguments

devnam

ch an

acmode

address of a quadword descriptor of a character string
containing the string NET: or a logical name for

NET:.

address of a word that will receive the assigned
channel number.

access mode to be associated with this channel. The
most privileged access mode used is the access mode of
the caller. You can perform I/O operations on the

7-9

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

mbxnam

Return Status.

channel only from equal or more privileged access
modes.

address of a character string descriptor for the
physical name of the mailbox to be associated with the
channel. This mailbox remains associated with the
channel until the channel is deassigned ($DASSGN).

SS$_NORMAL

SS$ INSFMEM

The service completed successfully.

There is not enough system dynamic memory to
complete the request.

SS$ NOPRIV The issuing task does not have the required
privileges to create a logical link to the
designated target.

SS$ NOSUCHDEV The network device driver is not loaded (for
example, the DECnet-VAX software is not
running currently on the local node) •

7.8.2 $QIO (Requesting a Logical Link Connection)

The $QIO system service with a function code of IO$ ACCESS requests a
logical link connection to a target task. You can-send 1 to 16 bytes
of optional data to the target task at the same time that you issue
the $QIO system service.

Format

$QIO [efn] ,chan ,func , [iosb] , [astadr] , [astprm] , [pl] ,p2

Arguments

efn

ch an

f unc

iosb

astadr

astprm

pl

p2

number of the event flag to be set at
completion.

request

address of a word containing the channel number
associated with the logical link. Use the same channel
number returned previously in the $ASSIGN call.

IO$ ACCESS

address of a quadword I/O status block that is to
receive the completion status.

entry point address of an AST routine that executes
when the I/O operation completes. If specified, the
AST routine executes at the access mode from which the
$QIO service was requested.

AST parameter to be passed to the AST completion
routine.

not used (omit the argument).

address of a quadword descriptor of the NCB (see
Section 7.3.1). Both the descriptor and the NCB must
be in read/write storage.

7-10

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

Return Status

SS$ NORMAL

SS$_CONNECFAIL

SS$ DEVOFFLINE

SS$ FILALRACC

SS$ INSFMEM

SS$ INVLOGIN

SS$ IVDEVNAM

SS$ LINKEXIT

SS$_NOLINKS

SS$ NOPRIV

SS$_ NOSUCHNODE

SS$_NOSUCHOBJ

SS$ NOSUCHUSER

SS$_PROTOCOL

SS$ REJECT

SS$ REMRSRC

SS$ SHUT

SS$_THIRDPARTY

SS$ TOOMUCHDATA

SS$ UNREACHABLE

The service completed successfully.

The connection to a network object timed out
or failed.

The physical link is shutting down.

A logical link is already accessed on the
channel {that is, a previous connect on the
channel) •

There is not enough system dynamic memory to
complete the request.

The access control information was found to
be invalid at the remote node.

The NCB has an invalid format or content.

The network partner task was
exited before confirming the
(that is, $ASSIG~ to SYS$NET}.

started, but
logical link

No logical links are available. The maximum
number of logical links as set for the
executor MAXIMUM LINKS parameter was
exceeded.

The issuing task does not have the required
privileges to create a logical link to the
designated target.

The specified node is unknown.

The network object number is unknown at the
remote node; or for a TASK= connect, the
named DCL command procedure file cannot be
found at the remote node.

The remote node could not recognize the login
information supplied with the connection
request.

A network protocol error occurred. This
error is most likely due to a network
software error.

The network object rejected the connection.

The link could not
system resources at
insufficient.

be established
the remote

The local or remote node is no
accepting connections.

because
node were

longer

The logical link was terminated by a third
party (for example, the System Manager).

The task specified too much optional or
interrupt data.

The remote node is currently unreachable.

7-11

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

7.8.3 $QIO (Accepting a Logical Link Connection Request)

The $QIO system service with a function code of IO$ ACCESS accepts a
logical link connection request from a source task.- You can· send 1 to
16 bytes of optional data to the source task at the same time that you
issue the $QIO system service.

Format

$QIO [efn] ,chan ,func , [iosb] , [astadr] , [astprm] , [pl] ,p2

Arguments

efn

ch an

f unc

iosb

astadr

astprm

pl

p2

Return Status

SS$ NORMAL

number of the event flag to be set at
completion.

request

address of a word containing the channel number
associated with the logical link. Use the same channel
number returned previously in the $ASSIGN call.

IO$ ACCESS

address of a quadword I/O status block that is to
receive the completion status.

entry point address of an AST routine that executes
when the I/O operation completes. If specified, the
AST routine executes at the access mode from which the
$QIO service was requested.

AST parameter to be passed to the AST completion
routine.

not used (omit the argument).

address of a quadword descriptor of the NCB (see
Section 7.3.1). Both the descriptor and the NCB must
be in read/write storage.

The service completed successfully.

SS$_DEVALLOC The process cannot access the logical link
specified in the NCB because that link is
intended for another process.

SS$_EXQUOTA

SS$ INSFMEM

SS$ IVDEVNAM

SS$_LINKABORT

SS$ LINKDISCON

SS$_LINKEXIT

SS$ NOSUCHNODE

The process does not have sufficient quota to
complete the request.

There is not enough system dynamic memory to
complete the request.

The NCB has an invalid format or content.

The network partner task aborted the logical
link.

The network partner task disconnected the
logical link.

The network partner task exited.

The specified node is unknown.

7-12

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

SS$ PATHLOST The path to the network partner task node was
lost.

SS$ PROTOCOL A network protocol error occurred. This
error is most likely due to a network
software error.

SS$ THIRDPARTY The logical link connection was terminated by
a third party (for example, the System
Manager) •

SS$ TIMEOUT The connection request did not
within the required time.

complete

SS$ UNREACHABLE The remote node is currently unreachable.

7.8.4 $QIO (Rejecting a Logical Link Connection Request)

The $QIO system service with a function code of IO$ ACCESS!IO$M ABORT
rejects a logical link connection request. You can send 1 to 16-bytes
of optional data to the target task at the same time that you issue
the $QIO system service.

Format

$QIO [efn] ,chan ,func , [iosb] , [astadr] , [astprm] , [pl] ,p2

Arguments

efn

ch an

f unc

iosb

astadr

astprm

pl

p2

Return Status

SS$ NORMAL

number of the event flag /to be set at
completion.

request

address of a word containing the channel number
associated with the logical link. Use the same channel
number returned previously in the $ASSIGN call.

IO$ ACCESS!IO$M ABORT - -

address of a quadword I/O status block that is to
receive the completion status.

entry point address of an AST routine that executes
when the I/O operation completes. If specified, the
AST routine executes at the access mode from which the
$QIO service was requested.

AST parameter to be passed to the AST completion
routine.

not used (omit the argument).

address of a quadword descriptor of the NCB (see
Section 7.3.1). Both the descriptor and the NCB must
be in read/write storage.

The service completed successfully.

SS$ DEVALLOC The process cannot access the logical link
specified in the NCB because that link is
intended for another process.

7-13

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

SS$_EXQUOTA

SS$ IVDEVNAM

SS$_LINKABORT

SS$_LINKDISCON

SS$ LINKEXIT

SS$ NOSUCHNODE

SS$_TIMEOUT

SS$_PATHLOST

SS$_PROTOCOL

SS$ THIRDPARTY

SS$ UNREACHABLE

The process does not have sufficient quota to
complete the request.

The NCB has an invalid format or content.

The network partner task aborted the logical
link.

The network partner task disconnected the
logical link.

The network partner task exited.

The specified node is unknown.

The connection request did not
within the required time.

complete

The path to the network partner task node was
lost.

A network protocol error
error is most likely due
software error.

occurred. This
to a network

The logical link connection was terminated by
a third party (for example, the System
Manager) •

The remote node is currently unreachable.

7.8.5 $QIO (Sending a Message to a Target Task)

The $QIO system service with a function code of IO$ WRITEVBLK sends a
message to a target task. Refer to Section 6.7.2 for the format of
this call, its arguments, and possible return status codes.

7.8.6 $QIO (Receiving a Message from a Target Task)

The $QIO system service with a function code of IO$ READVBLK receives
a message from a target task. Refer to Section 6~7.3 for the format
of this call, its arguments, and possible return status codes.

7.8.7 $QIO (Sending an Interrupt Message to a Target Task)

The $QIO system service with a function code of
IO$ WRITEVBLK!IO$M INTERRUPT sends a 1- to 16-byte interrupt message
to a target task. -If the remote node is a VAX/VMS system, the message
is placed in the mailbox associated with the target task.

Format

$QIO [efn] ,chan ,func , [iosb] , [astadr] , [astprm] ,pl ,p2

Arguments

efn number of the event flag to be set at event completion.

7-14

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

ch an

f unc

iosb

astadr

astprm

pl

p2

Return Status

SS$ NORMAL

SS$ ABORT

address of a word containing the channel number
associated with the logical link. Use the same channel
number returned previously in the $ASSIGN call.

IO$_WRITEVBLK!IO$M_INTERRUPT

address of a quadword I/O status block that will
receive the completion status.

entry point address of the AST routine that executes
when the I/O operation completes. If specified, the
AST routine executes at the access mode from which the
$QIO service was requested.

the AST parameter to be passed to the AST completion
routine.

buffer address.

buffer length (1 to 16 bytes).

The service completed successfully.

The I/O request has been aborted by a $DASSGN
or $CANCEL.

SS$ FILNOTACC No logical link is associated with
channel.

the

SS$ INSFMEM

SS$ LINKABORT

SS$ LINKDISCON

SS$ LINKEXIT

SS$ NOSOLICIT

SS$ TOOMUCHDATA

SS$ PATHLOST

SS$ PROTOCOL

SS$ THIRDPARTY

Enough memory to buffer the message could not
be allocated.

The network partner task aborted the logical
link.

The network partner task disconnected the
logical link.

The network partner task exited.

DECnet could not accept an interrupt message
at this time.

The task specified too much interrupt data.

The path to the network partner task node was
lost.

A network protocol error occurred. This
error is most likely due to a network
software error.

The logical link connection was terminated by
a third .party (for example, the System
Manager) •

7.8.8 $QIO {Synchronously Disconnecting a Logical Link)

The $QIO system service with a function code of IO$ DEACCESS!IO$ SYNCH
synchronously disconnects the logical link. All pending messages are
transmitted to the remote node before the link is disconnected.

7-15

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

You can send 1 to 16 bytes of optional data to the task from which you
are disconnecting at the same time you issue this $QIO system service.

Format

$QIO [efn] ,chan ,func , [iosb] , [astadr] , [astprm] , [pl] , [p2]

Arguments

efn

ch an

f unc

iosb

astadr

astprm

pl

p2

Return Status

SS$ NORMAL

number of the event flag to be set at event completion.

address of a word containing the channel number
associated with the logical link. Use the same channel
number returned previously in the $ASSIGN call.

IO$ DEACCESS!IO$M SYNCH - -

address of a quadword I/O status block that will
receive the completion status.

entry point address of the AST routine that executes
when the I/O operation completes. If specified, the
AST routine executes at the access mode from which the
$QIO service was requested.

the AST parameter to be passed to the AST completion
routine.

not used {omit the argument).

address of a descriptor of a counted ASCII string of
optional user data. Both the string and its descriptor
must be in read/write storage.

The service completed successfully.

SS$ FILNOTACC No logical link is associated with
channel.

the

7.8.9 $QIO {Aborting a Logical Link)

The $QIO system service with a function code of IO$ DEACCESS!IO$ ABORT
terminates the logical link. Note, however, that the DEACCESS
function completes only after all pending I/O operations complete,
even though you specify IO$ ABORT. First, issue the $CANCEL system
service call to cancel I/O operations on the logical link and then
issue this call to terminate the logical link.

You can send 1 to 16 bytes of optional data to the task from which you
are disconnecting at the same time that you issue this $QIO system
service call.

Format

$QIO [efn] ,chan ,func , [iosb] , [astadr] , [astprm] , [pl] , [p2]

Arguments

efn number of the event flag to be set at event completion.

7-16

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

ch an

f unc

iosb

astadr

astprm

pl

p2

Return Status

address of a word containing the channel number
associated with the logical link. Use the same channel
number returned previously in the $ASSIGN call.

IO$_DEACCESS!IO$M_ABORT

address of a quadword I/O status block that will
receive the completion status.

entry point address of the AST routine that executes
when the I/O operation completes. If specified, the
AST routine executes at the access mode from which the
$QIO service was requested.

the AST parameter to be passed to the AST completion
routine.

not used (omit the argument).

address of a quadword descriptor of a counted string of
optional user data. Both the string and its descriptor
must be in read/write storage.

SS$_NORMAL

SS$_FILNOTACC

The service completed successfully.

No logical link is associated with
channel.

the

7.8.10 $QIO (Declaring a Network Name or Object Number)

The $QIO system service with a function code of IO$ ACPCONTROL assigns
a network name or object number to the task~ thereby making it
eligible to process multiple inbound connection requests. You must
associate a mailbox with the I/O channel. All inbound connection
requests are placed in the mailbox associated with the channel over
which this I/O function is issued. The SYSNAM privilege is required
to declare a name or object number.

MACRO programmers should be aware that whenever a logical link is
established, its device unit number (for example, 18 from NET18:)
should be obtained by using the $GETDVI system service, because unit
numbers and not channel numbers appear in m~ilbox messages. Use this
system service call where a single mailbox is being used for many
logical links. The unit number could be used as a key into a data
base which keeps track of multiple links.

Format

$QIO [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,pl ,p2

Arguments

efn

ch an

f unc

iosb

number of the event flag to be set at event completion.

a word containing the channel number associated with
the logical link. Use the same channel number assigned
previously in the $ASSIGN call.

IO$ ACPCONTROL

address of a quadword I/O status block that will
receive the completion status.

7-17

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

astadr

astprm

pl

p2

Return Status

SS$ NORMAL

entry point address of the AST routine that executes
when the I/O operation completes. If specified, the
AST routine executes at the access mode from which the
$QIO se~vice was requested.

the AST parameter to be passed to the AST completion
routine.

address of a quadword descriptor of a 5-byte block
consisting of a function type (one byte) and a longword
parameter. The function type is a symbol defined by
the $NFBDEF macro in SYS$LIBRARY:LIB.MLB. The format
of the 5-byte block for declaring a name is:

.BYTE NFB$C DECLNAME

.LONG 0

The format of the 5-byte block for declaring an object
number is:

.BYTE NFB$C DECLOBJ

.LONG objecI-number

where the object number is a number reserved for
customer use in the range of 128 to 255. This 5-byte
buffer and its descriptor should be in read/write
storage.

address of a quadword descriptor of the network name
(maximum of 12 characters). This is ignored for the
DECLOBJ function. Both the name and its descriptor
must be in read/write storage.

The service completed successfully.

SS$ BADPARAM One of the QIO parameters has an invalid
value.

SS$_ILLCNTRFUNC

SS$_NOMBX

SS$ NOPRIV

The control function is invalid.

A name or object number is
using a channel without
mailbox.

being declared
an associated

The issuing process does not have the SYSNAM
privilege.

7.8.11 $DASSGN (Terminating a Logical Link)

The $DASSGN system service terminates all pending operations to send
and receive data, aborts the logical link immediately, and frees the
channel associated with that link. Refer to Section 6.7.6 for the
format of this call, it arguments, and possible return status codes.

7.9 PROGRAMMING EXAMPLE FOR NONTRANSPARENT COMMUNICATION

Example 7-1 illustrates t~e use of several of these system service
calls for nontransparent task-to-task communication. CONNECT is a
nontransparent MACRO source task on the local node that communicates
with a nontransparent target task, DECLARNAM, on node DENVER. This

7-18

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

example is similar to Example 6-1, except that here the source task
uses an NCB and performs a nontransparent assign operation to
establish communication with the target task. DECLARNAM is a
nontransparent target task that has declared a name (that is, it is
eligible to receive multiple inbound connection requests). In
addition, it also uses a mailbox to receive network status
notifications. Neither task performs useful functions. They are
presented here only to illustrate various nontransparent functions.

Example 7-1: Nontransparent Task-to-Task Communication
Using System Services

DECLARNAM

• TITLE
.I DENT
• SBTTL
.PSECT

DECLARNAM- NONTRANSPARENT EXAMPLE <WITH DECLARED NAME>
/V1.0/
READONLY_DATA
DECLARNAMSRDDATA SHR,NOEXE,RD,NOWRT,BYTE

$NFBDEF
<J>DIBDEF

DEVDESC: • ASC!II
MAX MSG: • LONG
BUFQUO: • LONG
MBXDESC:. ASC ID
MAX LINKS= 128
BUFFER_SIZE=64

/_NET :I
128
128
/DECLARMBX/

+SBTTL READWRITE_DATA
.PSECT DECLARNAMSRWDATA

Pseudo-device & descriptor
Maximum message size
Buffer cwota
Mailbox losnam & descriPtor
Maximum t of lo~ical links allowed
Size of inPut buffer to accept

mes~;a!:!es

NAMEDESC: ; Declared name & descriPtor
• ASCID /DECLAFU

DCL_CHAN:
.BLKW Word to receive declared name chan t

DEV_CHAN:
.BLKW

MBLCHAN:
.BLKIJ

MBXMSG ! • BLKB
IOSB: • BLKQ
AST_IOSB!

.BLKQ
NCBDESC:.LONG

+LONG
NCB: .BLKB
NFBDESC:.LONG

.LONG
NFB! • BYTE

.LONG
PRILEN: .WORD
F'RIBUF: .LONG

.LONG
PBUF: • BLKB
COUNT: .BLKL
CHAN_LI ST!

.BLKIJ
UNIT _LIST:

.BLKW
IOSB_LIST:

.BLKO
BUFFERS: • BLKB

128
1

1
100
NCB
100
5
NFB
NFBSC_DECLNAME
0
0
128
PBUF
128
1

MAXLINKS

MAXLINt-::s

MAX LINKS
MAXLINKS * BUFFER_SIZE

7-19

Word to receive device channel t

Word to receive mailbox channel t
Mailbo:-: buffer-
I/O status block
I/O status block for AST

Network control block descriptor

Network control block
Network function block descriPtor

Network function block

Len!:!th of buffer for SGETCHAN info
Descriptor of SGETCHAN buffer

Buffer to receive SGETCHAN info
Count of t of table entries
Chanr1el t list

Unit t list

Read messa!:!e I/O status block list

InPut buffers to Put messases

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

BUF _ADR_LIST: List of Pointers to input buffers

; ..

OFFSET :::: 0
• REF'T MAX LINKS
.ADDRESS BUFFERS + OFFSET
OFFSET = OFFSET + BUFFER_SIZE
, ENDf\

.·3BTTL HAIN

ThJs 2rosra~ demonstrates the use of a declared name to allow multiPle
inbound connection reauests. It is included for illustrative Purposes
3nd is not intended to perform any useful work. In Particularr nonnetwork
code is kePt to a minimum (note for examPler that all errors result in
Prosram termination - an inaPProPriate procedure for most aPPlications).

.PSECT DECLARNAMSCODE

.ENTRY STARTr-M<> ; Main entrw Point

Create a temPorarY mailbox with the lo~ical name DECLARMBX.

·:t>CREMBX_S -
CHAN=W-MBX_CHANr
MAXMSG=W-MAXMSGr
BUFQUO=W-BUFQUOr
LOGNAM=lrMBXDESC

BLBC

Adr of word to Put mailbox channel
Adr of lon~word with max message size
Adr of lon~word with buffer auota
Adr of descriptor of mbx lo~nam

E1·ror if LBC

Assisn a channel to a NET device and associate the mailbox with it.

lASSIGtLS -
DEVNAM=W-DEVDESC,
CHAN=W-DCL_CHANr
t1 BX NAM= Ir MBXDESC

BLBC F:O, EXITS

Declare a network name.

$QIOW_S -·
CHAN=w-ncL_CHANr
FUNC=tl0$_ACPCONTROL,
I OSB==W-I OSB, -
F' 1 =trNFBDESC, -
F'2=tNAMEDESC

BL BC f\O, EX ITS
HOVZWL w-IOSBrRO
BLBC ROrEXITS

Issue $ASSIGN sYstem service reauest
Adr of descriptor of NET device
Adr of word to Put channel t
Adr of descriptor of mbx losnam

Error if LBC

Issue declare name reauest
Use assisned channel
ACF' QIO
Adr of I/O status block
Adr of NFB descriptor
Adr of declared name descriptor

Error if LBC
Get the I/O status
Error if LBC

Issue an asynchronous read to the mailbox.

BSBIJ REALMBX ; Set UP mailbox read AST

Nowr ~o to sleep until someone writes to our mailbox.

$HlBER_S zzzzzz:z •••••••

EXITS: $EXIT-S RO Exit with status

• SBTTL
.ENTRY

MAILBOX-AST
MAILBOX-ASTr"M<> Entr~ Point for AST routine

7-20

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

;+
; AST routine to examine the mailbox message code
; and determine the aPProPriate action.

MOVZWL w~AST_IOSB,RO

BLBC RO, EX ITS
get asYnc I/O comPletion status
Branch on failure

CASEB w~MBXMSG,tMSG$_ABORT1tMSGS_NETSHUT-MSG$_ABORT

DISP_TAB:

CONNEC~:

• worm
.WORD
• WOf\II
• wor.:ri
• lJ()f(D
,WiJJHr
,WOF:D
.WORD
, l&JOFW
• WORD
"WOFUI
, UIJfW

BRB

AP.ORT-DISP_TAB
CONFIRM-DISP_TAB
CONNECT-DISP_TAB
DISCON-DISP_TAB
EXIT-DISF'_TAB
INTMSG--DISP_TAB
PATHLOST-DISP_TAB
PROTOCOL-DISP_TAB
f.:E.JECT-DISP_TAB
lHIRDPARTf-DISP_TAB
l I ME 0 LJ T -- [I I SP_ TAB
i~ E T ~3 H U T ·- [I I S F' _ T A B

EXITS
Fall throush on mbxmsg out of ranse
Unknown mailbox messase encountered

BSBW
CMPW
BEQL

CONNECT-ACCEPT ; Go accept the connect reauest
tIO$_ACCESS!IOIM_ABORT1R4; Was the connect reauest reJected?
10$ If reJected then do not issue the

1oi:

DISCON:
ABORT:
EXIT:

BSBW

BSBB
HET

PATHLOST !
PROTOCOL:
lHIRDPARTY:
TIMEOUT:

BSBW
BSB.E:
1:-.:ET

NETSHUT:
$WAKE_S
RET

INTMSG:

REJECT:
CONFIRM:

READ-CHAN

READ_MBX

DISCONNECT
READ_MBX

BSBB READ-MBX
RET

.SP.TTL READ-AST

.ENTRY READ_Asr,-M<>

read
Issue a read on the channel we
Just confirmed

Reaueue the mailbox read AST
Return control to main Prosram

Go disconnect the link
Reaueue the mailbox read AST
Return control to main

; The network is shutting down
; Wake the main Prosram so that

it will e:dt

!snore interruPt messases for
this e>:amPle

Reaueue the mailbox read AST
Return control to main

; Entr~ Point for AST routine

AST routine to check the completion status of the read and to Process
the messa•e received.

MOVL 4<AF') ,RS Get the index to the lists
MOVQ w-rosB_LIST[RSJ,RO Get the I/O completion status
CMPW tSS$_LINKABORT1RO Did the link go awaY1
BEQL 10$ If Eal then isnore
BLBC RO,EXITS If LBC then error

7-21

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

OK, we have received a messase and written it into the buffer Pointed
to by BUF_ADR-LIST[R1J. Useful code could be inserted here to Process
the messase. When comPlete, we reissue the read on the channel and
then so back to where we were interrupted.

J.0$!

MOVW
BSBB
F!ET

w~CHAN_LIST[R8J,R3

REA[l_CHAN
Get the channel number
Reiss•Je the read
Return from AST routine

.SBTTL SUBROUTINES

; +
; Subroutine to issue an aswnchronous read to the mailbox with an AST.
;
f~EAD_MBX:

$QIO_S

10$;

H

BLBS
Bf~W

RSB

CHAN=W~MBX-CHAN,
FUNC=tIO$_READVBLK,
IOSB=W~AST_IOSBr

ASTADR=WftMAILBOX_AST,
F' 1 =-w·~MBXMSG, ·
F''.2=W-MAXMSG
R0'10$
EXITS

Issue read with AST
Use assisned mailbox channel
Read virtual block
Address of I/O status block
Address of AST routine
Address of inPut buffer
Len~th of inPut buffer
Error if LBC
Branch (failure)
Return from subroutine

; Subroutine to issue an asynchronous read to the channel with an AST.
;·-·
F·:EAD_CHAN:

10$!

;+

$CHO_S

BLBS
BRW
F:SB

.PAGE

CHAN::::R3, ·
FUNC=tl0$_READVBLK, -
IOSB=w-rosB_LISTCRSJ,
ASTADR=W~REA[l_AST,-

1~STPRM=R8, ·-
P 1 =WftBUF_ADR_L I ST C RBJ, -
P2==:tBUFFER_S I ZE
RO '10$
EXITS

Issue read with AST
Use channel we Just confirmed
Read virtual block
Address of I/O status block
Address of AST routine
Store index as AST Parameter
Address of inPut buffer
Lensth of inPut buff er
Error if LBC
Branch (fail•.Jre)
Return from subroutine

; Subroutine to accept the connect re8uest and add the channel and unit
; numbers to the lists
;
CONNECT_ACCEF'Tt

MOVAB
MOVZBL
ADDL2
MOVZBL
MDVC3
MOVL

w~MBXMSG+4, F"~9

CR9)tJR8
R8,R9
<R9HrR8
R8, < R9) rlrNCB
R8, w·~NCBDESC

Get adr of device name count
Get bwte count of device name string
SkiP over the string
Get bwte count of info string
Put the NCB in adr NCB
UPdate the NCB descriPtor

Make sure we haven't reached maximum links.

CMPL
BGTR
MOUW
MOVZWL
BRB

tMAXLINKs,w-coUNT Have we reached max t of links?
5$ No? then so assisn a channel to NET
w-DcL_CHANrR3 Use the orisinal channel
tl0$_ACCESS!IO$M_ABORT,R4;SetuP with connect reJect func code
25$; Go make the reJect

7-22

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

5$! $ASS IGN_S -
DEVNAM=W-DEVDEsc,
CHAN=W-DEV_CHANr
MBXNAM=l.r'MBXDESC

BLBS R0,10$
lH"\W EX ITS

Assisn a channel to the task
Adr of NET descriPtor
Channel t
Associate the mailbox with new net dev
If LBC then error
Branch (failure)

Now' •et the channel and unit numbers and Put them in their respective lists.

lOS:

:1.9$:
20$!

$-GETCHN_S -
CHAN=W-DEV_CHAN,
PRILEN=W-PRILEN,
PR I BUF==lrPR IBUF

BL Bf:
Bl:;:W

CLRL
TSTW
HEQL
AOBLEQ
BRl.J

ROd9$
EXITS

R8
w·~cHAN_LI SH R8]
22*
w·~coUNT, R:?, 20$
EXITS

Issue set chan sYstem service
Adr of word containins channel t
Adr of word to Put lensth returned
Adr of descriPtor of buffer
If LBC then error
Branch (fail•Jre)

Initialize the index
Is it e1r1f-·ty?
Branch if we found an emPtY slot
Inc the index and trw asain
No empt·~ s 1 ots?

22$: MOl,,1\i.I
MOVW
INCL

w-DEV_CHAN,w-cHAN_LIST[R8J;put the chan t in the chan list
w-PBUF+DIBSW_UNIT,w-uNIT_LIST[R8J; Put unit t in unit list
w-coUNT ; Increment the t of entries

; Issue the connect confirm OIO.

~30$:

;+

MOVW
MOVZWL
!l:QIOl.LS

BLBS

w·~DEV_CHAN, R3
s·~t I O'LACCESS, R4

CHAN=R3, ·
FUNC0=R4, -
IOSB=lr IOSB, -
P2=tNCBDESC

R0,30$
f.:t<W EXITS
MOVZWL w-1osB,RO
i:::L.:tis rm, 40$
BRW EX ITS
RBB

Set UP with adr of assisned chan
Set UP with connect accept func code
Issue connect confirm/reJect reauest
Use assisned channel
Reauest a losical link
Address of I/O status block
Address of NCB descriptor

If LBC then error
Branch (fail•Jre)
Get I/O comPletion status
If LBC then e~ror
Branch (fail1Jre}
Return from subro1Jtine

; Subroutine to disconnect a channel and remove its entr~ from the lists.
,--
l!ISCONNECT:

MOVZWL
CLRL

~5$: CMPW
BEQL
1~0BLEQ

10$! MOVZWL

w-MBXMSG+2,RO
F:B
w-uNIT_LIST[R8J,RO
10$
wr·cOUNT, R8' 5$
w~CHAN_LIST[R8J,R9

H1ASSGN_S -
CHAN=R9

BLBS
BJ:;:W

R0,20$
EXITS

Get the unit t
Initialize the index
Locate the unit t in the list
If EGL then success
Inc the index and trY asain
OK, we've sot the channel t
Deassisn the channel
Channel :f:
If LBC then error
Branch <fail•Jre>

7-23

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

OK, the channel has been deassigned. Remove the entries from the unit and
channel lists.

DECL
Clli:W
CLRW

RSB

, END

CONNECT

W'"'COUN/T
W'"'CHANl_L I ST [RSJ
W'"'UNIT _LISTEF:BJ

START

Decrement the t of entries
Clear the chan list entr~
Clear the unit list entry

Return from subroutine

Image transfer address

, TITLE
• SB TTL
.F'SECT

CONNECT - ISSUE A CONNECT REQUEST TO DECLAR <DECLARED NAME>
READONLY_DATA
CONNECTSRDDATA SHRrNOEXErRD,NOWRT,BYTE

DEVDESC!.ASCID /_NET!/
MAXMSG! .LONG 64
BUFQUO: • LONG 64

.SBTTL READWRITE_DATA

Pseudo-device & descriptor
Largest size mailbox message allowed
Mailbo~·: a•Jota

.PSECT CONNECT$RWDATA SHR,NOEXE,RDrWRT,BYTE

:OEV._CHAN:
.BL.KW

tiBX_CHf'iN:
,f.ILKW

t1BXMSG ! , BLKB
IIJSB! .BLKQ

NCBDESC!.LONG
,LONG

NCB! .ASCII
• ASCII
.WORD
• ASCII

NCB_SIZE=,-NCB

1
64
1

NCLSIZE
NCB
?DENVER!!?
?"TASK=DECLAR/?
0
/"/

.SBTTL MAIN

;+

Word to receive device channel t

Word to receive mailbox channel t
Mailbox buffer
I/O stat•Js block

Network connect block & descriptor

Node-spec strins
Task-sPec strins (declared name>
M•Jst be zero
End of NCB
Size of NCB

; This program demonstrates how to make a connection reauest to a task
; which has declared a network name. It does not Perform any useful work
; but does serve to illustrate DECnet nontransparent I/O,
; ·-

;+

;-

.F'SECT CONNECTSCODE

.ENTRY START,~M<>

NOSHR,EXE,RD1NOWRT,BYTE

Use the run-time library routine, LIBSASN_WTH_MBX to establish
a communication Path to DECnet software in Preparation for
nontransparent I/O operations.

This routine will!

1. Create a temPorarw mailbox and assisn a channel to it.

2. Assi~n a channel to _NET! and associate the temPorarw
ma i 1 bo:.: with it.

The mailbox can be used to obtain suPPlementarw information from
DECnet software about lo~ical link operations.

7-24

H·

; •...

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

PUSHAW
PUSHAW
PUSHAL
PUSHAL
PUSHAQ
CAL.LS
BLBS
BF~lJ

lrMBx._CHAN
lrDEV_CHAN
w~BUFQUO

lJr'MAXMSG
w~DEVDESC

t5,LIB$ASN_IJTH_MBX
R0,10$
EXITS

Adr to receive mailbox channel t
Adr to receive device channel t
Mai 1 bo:·: auota
Larsest size mailbox messase allowed
Adr of device name descriPtor
Assisn channel & associate mailbox
If LBC then error
Branch (failure)

Reauest a losical link to the remote task.

$CH ow_s

BLBC
MO!)ZUL
BLBC

CHAN=lJ~DEV_CHANr

FUNC=tIO$_ACCESS,
IOSB=lr IOSB, -
P~>::tNCBDESC

ROrEXITS
wr·IOSB, RO
F:OrEXITS

Issue connect initiate reauest
Use assisned channel
Reouest a loSical link
Address of I/O status block
Address of NCB descriptor

If LBC then error
Get I/O completion status
If LBC then error

We now have a losical link with DECLARNAM. Useful code could be inserted
here before continuing with the disconnect.

OK, now disconnect the losical link b~ deassisnins the channel.

$DASSG~LS -
CHAN=lrDEV_CHAN

BLBC F:O,EXITS

Issue the deassisn reauest
Adr of word containins channel t
If LBC then error

EXITS: $EXIT_S RO Exit with status to be disPlawed
on error condition

.END START

7-25

APPENDIX A

OBJECT TYPE CODE VALUES

Table A-1 defines valid object type code values and
use for task-to-task communication. All values
decimal.

describes their
are expressed in

Code

0

1-16

17

18

19

20-22

23

24

25

26

27

28

29

30-62

63

64-127

128-255

Table A-1: Object Type Codes

Object Type
Mnemonic

TASK

FAL

HLD

NML

REMACP

MIRROR

EVL

MAIL

PHONE

DTR

Description

User program

Reserved for DIGITAL use

File Access Listener for remote file
and record access

Host loader for RSX-llS down-line
task loading requests

Network Management Listener object

Reserved for DIGITAL use

Network terminal handler (host side)

Reserved for DIGITAL use

Loopback mirror

Event receiver

VAX/VMS mail facility

Reserved for DIGITAL use

VAX/VMS phone facility

Reserved for DIGITAL use

DECnet Test Receiver object

Reserved for DIGITAL use

Reserved for customer use.

A-1

APPENDIX B

VAX-11 RMS CONTROL BLOCK USE

This appendix identifies which RMS control block fields are used by
the network routines embedded in VAX-11 RMS when performing network
file access and task-to-task operations. When both the source and
target nodes are running VAX/VMS Version 3.0, most of the RMS control
block fields are supported. The fields that are not used fall into
two general categories: those that are ignored and those that are
treated as an error condition if an unsupported value or bit option is
specified. When the source node is running VAX/VMS in a heterogeneous
network, certain fields of the FAB and RAB control blocks, and even
entire XAB control blocks, may be ignored if they are not supported by
the target node.

The general level of support provided by VAX-11 RMS and FAL for a
given pair of nodes is determined dynamically by an exchange of
information between them during a DAP setup sequence. The exact level
of support, however, sometimes cannot be determined until the function
is requested, as the remote FAL may return an error in response to a
value or option it does not recognize or cannot process.

Tables B-1 through B-10 describe the support status of the fields in
the FAB, RAB, NAM, and XAB blocks. The following key explains the
support categories indicated in the tables:

KEY

Yes

Support Category For Field Value Or Bit Option

Supported; RMS at the source node
FAL at the target node perform
specified.

will
the

request that
operation as

RMS Supported if the target node .uses VAX-11 RMS or RMS-11
to perform its file operations; if not, the field is
ignored (not used as an input or output) •

VAX Supported if the target node uses VAX-11 RMS to perform
its file operations; if not, the field is ignored (not
used as an input or output) •

No Not supported; the field is ignored (not used as an
input or output} •

Err Not supported; ·an RMS$ SUPPORT error is returned.

NA Not applicable;- the field is. not a user input or
output.

Note that the comment "used locally" means that the bit option is
input to VAX-11 RMS processing at the source node, but is not sent to
FAL at the target node.

B-1

Field

FAB$L_ALQ

FAB$B BID

FAB$B BKS

FAB$B BLN

FAB$B_BLS

FAB$L CTX

FAB$W_DEQ

FAB$L_DEV

FAB$L_DNA

FAB$B DNS

FAB$B FAC

FAB$V BIO

FAB$V BRO

FAB$V DEL

FAB$V GET

FAB$V PUT

FAB$V TRN

FAB$V UPD

FAB$L FNA

FAB$B FNS

FAB$L_FOP

FAB$V CBT

FAB$V CIF

FAB$V CTG

I

VAX-11 RMS CONTROL BLOCK USE

Table B-1: FAB (File Access Block)

Name

Allocation quantity

Block identifier

Bucket size

Block length

Block size

User context

Default file extension
quantity

Device characteristics

Default file specification
string address

Default file specification
string size

File access options

Block I/O operations

Record I/O operations

$DELETE operations

$GET and $FIND operations

$PUT operations

$TRUNCATE operations

$UPDATE operations

File specification string
address

File specification string
size

File processing options

Contiguous best try

Create if nonexistent

Contiguous allocation

Comments

Yes

NA Static field

Yes

NA Static field

Yes

Yes For user

Yes

Yes Output only field*

Yes

Yes

Listed by subfield

Yes

VAX Used with RAB$V_BIO

RMS

Yes

Yes

RMS

RMS

Yes

Yes

Listed by subfield

VAX

Yes

Yes

*This reflects the actual characteristics of the target device, if the
remote node uses VAX/VMS and the RMS operation is $CREATE or $OPEN. It is
not valid for a $PARSE call.

(continued on next page)

B-2

FAB$V_DFW

FAB$V DLT

FAB$V_MXV

FAB$V_NAM

FAB$V NEF

FAB$V_NFS

FAB$V_OFP

FAB$V_POS

FAB$V_RCK

FAB$V RWC

FAB$V_RWO

FAB$V SCF

FAB$V_SPL

FAB$V_SQO

FAB$V_SUP

FAB$V TEF

FAB$V_TMD

FAB$V_TMP

FAB$V_UFO

FAB$V WCK

FAB$B_FSZ

FAB$W_GBC

FAB$W_IFI

FAB$L_MRN

FAB$L_MRS

FAB$L_NAM

VAX-11 RMS CONTROL BLOCK USE

Table B-1 (Cont.): FAB (File Access Block)

Deferred write

Delete file on close

Maximize version number

Use name block

Do not position at
end-of-file

Non file structured

Output file parse

Current position

Read check

Rewind file on close

Rewind file on open

Submit command file

Spool file to printer

Sequential only (enter
DAP file transfer mode)

Supersede existing file

Truncate at end-of-file

Temporary marked for
delete

Temporary file

User file open

Write check

Fixed control area size

Global Buff er Count

Internal file identifier

Maximum record number

Maximum record size

Name block address

B-3

No

Yes

RMS

Yes

VAX

Err

Yes

VAX

Yes

VAX

VAX

Yes

Yes

Yes

Yes

VAX

Yes

Yes

Err

Yes

Yes

No

NA

Yes

Yes

Yes

Used locally

See Section 4.5.3

For internal use

Most fields of NAM
block are used

(continued on next page)

VAX-11 RMS CONTROL BLOCK USE

Table B-1 (Cont.): FAB (File Access Block)

Field

FAB$B ORG

FAB$C_IDX

FAB$C_REL

FAB$C_SEQ

FAB$B RAT

FAB$V_BLK

FAB$V_CR

FAB$V FTN

FAB$V_PRN

FAB$B RFM

FAB$C_FIX

FAB$C_STM

l

FAB$C_STMCR

FAB$C_STMLF

FAB$C_VAR

FAB$C_VFC

FAB$C_UDF

FAB$B_RTV

FAB$L_SDC

FAB$B SHR

FAB$V_DEL

FAB$V_GET

FAB$V_MSE

FAB$V_NIL

FAB$V_PUT

Name

File organization

Indexed

Relative

Sequential

Record attributes

Records do not cross
block boundaries

Implied carriage control
(LF <record> CR)

FORTRAN carriage control

Print file format

Record format

Fixed length

Stream with LF, FF, VT
and CRLF terminator set

Stream with CR record
terminator

Stream with LF record
terminator

Variable length

Variable length with
fixed control

Undefined

Retrieval window size

Spooling device
characteristics

File sharing options

Allow other DELETES

Allow other GETs

Multistream access
enabled

Prohibit file sharing

Allow other PUTs

B-4

I Support I Comments

Listed by value

Yes

Yes

Yes

Listed by stibfield

Yes

Yes

Yes

Yes

Listed by value

Yes

Yes

Err

Err

Yes

Yes

Yes

No

Yes Same as DEV field

Listed by subfield

VAX

Yes

No

VAX

Yes

(continued on next page)

Field

FAB$V_UPD

FAB$V UPI

FAB$L_STS

FAB$L STV

FAB$L_XAB

VAX-11 RMS CONTROL BLOCK USE

Table 8-1 (Cont.): FAB (File Access Block)

l Name

Allow other UPDATES

User-provided
interlocking

Completion status code

Status value

Extended attribute block
address

l Support I
VAX

VAX

Yes

Yes

Yes

Comments

For block I/O

Also returned in RO

Has DAP code when
STS=RMS$ SUP,
STS=RMS$-NET, or
STS=RMS$=BUG_DAP

**

**In general, if the remote FAL do~s not support an extended attribute
block, the XAB is not used as input or output for the operation.

Field

RAB$B BID

RAB$L_BKT

RAB$B_BLN

RAB$L CTX

RAB$L_FAB

RAB$W_ISI

RAB$L KBF

RAB$B KRF

RAB$B KSZ

RAB$B MBC

RAB$B_MBF

RAB$L PBF

RAB$B_PSZ

RAB$B_RAC

RAB$C_KEY

J

Table 8-2: RAB (Record Access Block)

Name

Block identifier

Bucket code

Block length

User context

File access block address

Internal stream identifier

Key buffer address

Key of reference

Key size

Multiblock count

Multibuffer count

Prompt buffer address

Prompt buffer size

Record access mode

Random access by key
value

B-5

1 Support J Comments

NA Static field

Yes

NA Static field

Yes For user

Yes

NA For internal use

Yes

Yes

Yes

No

No

No

No

Listed by value

Yes

(continued on next page)

Field

RAB$C RFA

RAB$C_SEQ

RAB$L RBF

RAB$W RFA

RAB$L_RHB

RAB$L ROP

RAB$V ASY

RAB$V BIO

RAB$V CCO

RAB$V CVT

RAB$V EOF

RAB$V FDL

RAB$V LOC

RAB$V KGE

RAB$V KGT

RAB$V LIM

RAB$V LOA

RAB$V NLK

RAB$V NXR

RAB$V PMT

RAB$V PTA

RAB$V RAH

RAB$V REA

RAB$V_RLK

RAB$V RNE

RAB$V_RNF

VAX-11 RMS CONTROL BLOCK USE

Table B-2 (Cont.): RAB (Record Access Block)

1 Name

Random access by file
address of record

Sequential access

Record buffer address

Record's file address

Record header buffer

Record processing options

Asynchronous I/O

Change to block I/O

Cancel control O

Convert to uppercase

Position at end-of-file

Fast record delete

Locate mode

Key is greater than or
equal to

Key is greater than

Test for key limit

Load buckets via fill
size

Do not lock record

Nonexistent record
processing

Prompt on read

Purge type-ahead buffer

Read ahead

Lock record for read,
allowing other readers

Lock record for write,
allowing other readers

Read no echo

Read no filter

B-6

J Support 1 Comments

Yes

Yes

Yes

Yes

Yes

Listed by subfield

Yes Used locally

VAX Used with FAB$V BRO

No

No

Yes

Yes

No

Yes

Yes

Yes

Yes

VAX

VAX

No

No

No

VAX

VAX

No

No

(continued on next page)

Field

RAB$V_RRL

RAB$V_TMO

RAB$V_TPT

RAB$V_UIF

RAB$V_ULK

RAB$V_WAT

RAB$V_WBH

RAB$W_RSZ

RAB$L_STS

RAB$L STV

RAB$B TMO

RAB$L_UBF

RAB$W_USZ

Field

NAM$B_BID

NAM$B BLN

NAM$B DEV

NAM$L_DEV

NAM$W_DID

NAM$B_DIR

NAM$L_DIR

NAM$T_DVI

VAX-11 RMS CONTROL BLOCK USE

Table B-2 (Cont.): RAB (Record Access Block)

l

I

Name

Read regardless of lock

Enable timeout

Truncate put

Update if

Enable manual record
unlocking

Wait until record
unloc-ked

Write behind

Record size

Completion status code

Status value

Timeout period

User record area address

User record area size

VAX

No

VAX

RMS

VAX

VAX

No

Yes

Yes

Yes

No

Yes

Yes

Table B-3: NAM (Name Block)

Name l Support I
Block identifier NA

Block length NA

Device string length Yes

Device string address Yes

Directory identification No

Directory string length Yes

Directory string address Yes

Device identification No

B-7

Comments

Also returned in RO

Has DAP code when
STS=RMS$ SUP,
STS=RMS$-NET, or
STS=RMS$=BUG_DAP

Comments

Static field

Static field

Zeroed on output

Zeroed on output

(continued on next page)

Field

NAM$L ESA

NAM$B ESL

NAM$B_ESS

NAM$W FID

NAM$L FNB

NAM$B NAME

NAM$L NAME

NAM$B NODE

NAM$L NODE

NAM$L RLF

NAM$L RSA

NAM$B RSL

NAM$B RSS

NAM$B TYPE

NAM$L TYPE

NAM$B VER

NAM$L VER

NAM$L_WCC

1

VAX-11 RMS CONTROL BLOCK USE

Table B-3 (Cont.): NAM (Name Block)

Name

Expanded string area
address

Expanded string length

Expanded string area size

File identification

File name status bits

File name string length

File name string address

Node name string length

Node name string address

Related file NAM block
address

Resultant string area
address

Resultant string length

Resultant string area size

File type string length

File type string address

File version string length

File version string
address

Wild card context

1Support1
Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

NA

Comments

Output only field

Zeroed on output

Except for
NAM$V HIGHVER and
NAM$V-LOWVER

*

Output only field*

For internal use

*If the remote FAL does not support the 'return of a resultant name string,
then a copy of the expanded name string is returned in this field.

B-8

Field

XAB$B AID

XAB$B ALN

XAB$C CYL

XAB$C LBN

XAB$C RFI

XAB$C VBN

XAB$L_ALQ

XAB$B_AOP

XAB$V CBT

XAB$V CTG

XAB$V HRD

XAB$V ONC

XAB$B_BKZ

XAB$B_BLN

XAB$B COD

XAB$W_DEQ

XAB$L_LOC

XAB$L_NXT

XAB$W_VOL

1

VAX-11 RMS CONTROL BLOCK USE

Table B-4: XABALL (Allocation Control XAB)

Name

Area identification number

Alignment boundary type

Cylinder

Logical block number

Related file

Virtual block number

Allocation quantity

Allocation options

Contiguous best try

Contiguous allocation

Hard error

On cylinder boundary

Bucket size

Block length

Type code

Default extension quantity

Location

Next XAB address

Relative volume number

B-9

1Support1
Yes

VAX

VAX

No

VAX

Yes

VAX

Yes

VAX

VAX

Yes

NA

NA

Yes

VAX

Yes

Yes

Comments

Listed by value

Listed by subfield

Static field

Static field

VAX-11 RMS CONTROL BLOCK USE

Table B-5: XABDAT (Date and Time XAB)

Field J Name l Support l Comments

XAB$B BLN Block length NA Static field

XAB$Q_BDT Backup date and time Yes

XAB$Q_CDT Creation date and time Yes

XAB$B COD Type code NA Static field

XAB$Q_EDT Expiration date and time Yes

XAB$L NXT Next XAB address Yes

XAB$Q_RDT Revision date and time Yes

XAB$W RVN Revision number Yes

Table B-6: XABFBC (File Header Characteristics XAB)

Field l Name l Support l Comments

XAB$B ATR Record attributes Yes Output only field

XAB$B BKZ Bucket size Yes Output only field

XAB$B BLN Block length NA Static field

XAB$B COD Type code NA Static field

XAB$W_DXQ Default file extension Yes Output only field
quantity

XAB$L EBK End-of-file block Yes Output only field

XAB$W FFB First free byte in Yes Output only field
end-of-file block

XAB$W GBC Global buffer count No Output only field

XAB$L HBK Highest virtual block Yes Output only field
in file

XAB$B HSZ Fixed length control Yes Output only field
header size

XAB$W LRL Longest record length Yes Input for $CREATE

XAB$W MRZ Maximum record size Yes Output only field

XAB$L_NXT Next XAB address Yes

XAB$B RFO File organization and Yes Output only field
record format

XAB$L SBN Starting logical block Yes
number (if contiguous)

XAB$W VERLIMIT Version limit for file No Output only field

B-10

VAX-11 RMS CONTROL BLOCK USE

Table B-7: XABKEY (Key Definition XAB)

Field

XAB$B_BLN

XAB$B _COD

XAB$B DAN

XABSB DBS

XAB$W_DFL

XAB$B DTP

XAB$C BN2

XAB$C BN4

XAB$C IN2

XAB$C_IN4

XAB$C PAC

XAB$C STG

XAB$L DVB

XAB$B FLG

XAB$V CHG

XAB$V DAT NCMPR

XAB$V DUP

XAB$V IDX NCMPR

XAB$V KEY NCMPR

XAB$V NUL

XAB$B IAN

XAB$B IBS

XAB$W_IFL

XAB$L KNM

XAB$B_LAN

XAB$B LVL

XAB$W MRL

XAB$B NSG

Name

Block length

Type code

Data bucket area number

Data bucket size

Data bucket fill size

Data type of the key

Unsigned 2-byte binary

Unsigned 4-byte binary

Signed 2-byte integer

Signed 4-byte integer

Packed decimal

String

First data bucket start
virtual block number

Key options flag

Can be changed

Do not compress data

Can be duplicate

Do not compress index

Do not compress key

Null key value

Index bucket area number

Index bucket size

Index bucket file size

Key name address

Lowest level of index area
number

Level of root buckets

Minimum record length

Number of key segments

B-11

I Support 1
NA

NA

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Comments

Static field

Static field

Output only field

Listed by value

Output only field

Listed by subfield

Alternate key only

Alternate key only

Output only field

Output only field

Output only field

Output only field

{continued on next page)

VAX-11 RMS CONTROL BLOCK USE

Table B-7 (Cont.): XABKEY (Key Definition XAB)

Field

XAB$B_NUL

XAB$L_NXT

XAB$W POSO
through

XAB$W_POS7

XAB$B_PROLOG

XAB$B_REF

XAB$L_RVB

XAB$B SIZO
through

XAB$B_SIZ7

XAB$B_TKS

Field

XAB$B_BLN

XAB$B_COD

XAB$W_GRP

XAB$W_MBM

. -XAB $B MTACC

XAB$L_NXT

XAB$W_PRO

XAB$L_UIC

l

J Name] Support l Comments

Null key value Yes

Next XAB address Yes

Key position Yes

Pro log level No Primary key only

Key of reference Yes

Root index bucket start Yes Output only field
virtual block number

Key size Yes

Total key size Yes Output only field

Table B-8: XABPRO (File Protection XAB)

Name I Support l
Block length NA

Type code NA

Group number of file owner Yes

Member number of file Yes
owner

Magnetic tape accessibility No

Next XAB address

File protection

User identification code
(contains group and member
number subfields)

Yes

Yes

Yes

Comments

Static field

Static field

See XAB$L_UIC*

See XAB$L_UIC*

*

*Zero is returned if the target node uses a non-VAX/VMS syntax to express
the group and member UIC fields.

B-12

Field

XAB$B BLN

XAB$B_COD

XAB$L NXT

XAB$Q:._RDT

XAB$W RVN

Field

XAB$B BLN

XAB$B COD

XAB$B NOA

XAB$B NOK

XAB$L NXT

XAB$W PVN

VAX-11 RMS CONTROL BLOCK USE

Table B-9: XABRDT (Revision Date and Time XAB)

l

l

Name l Support l Comments

Block length NA Static field

Type code NA Static field

Next XAB address Yes

Revision date and time Yes

Revision number Yes

Table B-10: XABSUM (Summary XAB)

Name

Block length

Type code

Number of allocation areas
defined for file

Number of k~ys defined
for file

Next XAB address

Prologue version number

B-13

] Support] Comments

NA Static field

NA Static field

Yes Output only field

Yes Output only field

Yes

Yes Output only field

APPENDIX C

SUMMARY OF NETWORK SYSTEM SERVICE ERROR MESSAGES

Table C-1 describes the system service error messages for task-to-task
communications.

Table C-1:

Message

SS$ ABORT

SS$ BADPARAM

SS$_CANCEL

SS$ CONNECFAIL

SS$ DATAOVERUN

SS$_DEVALLOC

SS$ DEVOFFLINE

SS$_EXQUOTA

SS$ FILALRACC

SS$ FILNOTACC

SS$ ILLCNTRFUNC

SS$ INSFMEM

SS$ IVCHAN

System Services Error Message Summary

Meaning

The I/O request has been aborted by a $DASSGN
or $CANCEL.

One of the QIO parameters has an invalid
value.

The I/O on this channel has been cancelled.

The connection to a network object timed out
or failed.

More bytes were sent than could be received
in the supplied buffer.

The process cannot access the logical link
specified in the NCB because that link is
intended for another process.

The physical link is shutting down.

The process does not have sufficient quota to
complete the request. Sufficient FILLM and
BYTLM quotas are required to request or
confirm a logical link.

A logical link
channel {that
channel).

is already accessed on the
is, a previous connect on the

No logical link is associated with
channel.

The control function is invalid.

the

There is not enough system dynamic memory to
complete the request.

An invalid channel number was specified.

(continued on next page)

C-1

SUMMARY OF NETWORK SYSTEM SERVICE ERROR MESSAGES

Table C-1 (Cont.): System Services Error Message Summary

Message Meaning

SS$ INVLOGIN

SS$ IVDEVNAM

SS$ LINKABORT

SS$ LINKDISCON

SS$ LINKEXIT

SS$_ NOLIN KS

SS$_NOMBX

SS$ NOPRIV

SS$_NORMAL

SS$_NOSOLICIT

SS$ NOSUCHDEV

SS$_NOSUCHNODE

SS$_NOSUCHOBJ

SS$_ NOSUCHUSER

SS$_PATHLOST

SS$_PROTOCOL

The access control information was found to
be invalid at the remote node.

The NCB or task specifier has an invalid
format or content.

The network partner task aborted the logical
link.

The network partner task disconnected the
logical link.

The network partner task exited
confirming the logical link.

before

No logical links are available. The maximum
number of logical links as set for the
executor MAXIMUM LINKS parameter was
exceeded.

A name or object number is
using a channel without
mailbox.

being declared
an associated

The issuing task does not have the required
privileges to create a logical link to the
designated target; or it does not have
NETMBX and is assigning NET:; or it does
not have SYSNAM and is decl~ring a name or
object number.

The service completed successfully.

DECnet could not accept an interrupt message
at this time.

The network device is not loaded
example, the DECnet-VAX software is
running currently on the local node) •

The specified node is unknown.

{for
not

The network object number is unknown at the
remote node; or for a TASK= connect, the
named DCL command procedure file cannot be
found at the remote node.

The remote node could not recognize the login
information supplied with the connection
request.

The path to the network partner task node was
lost.

A network protocol error
error is most likely due
software error.

occurred. This
to a network

{continued on next page)

C-2

SUMMARY OF NETWORK SYSTEM SERVICE ERROR MESSAGES

Table C-1 (Cont.): System Services Error Message Summary

Message Meaning

SS$ REJECT

SS$ REMOTE

SS$_REMRSRC

SS$ SHUT

SS$ THIRDPARTY

SS$ TIMEOUT

SS$ TOOMUCHDATA

SS$ UNREACHABLE

The network object rejected the connection.

The service successfully completed. (A
logical link was established with the target
task.) This status applies only to an $ASSIGN
call for a transparent link.

The link could not
insufficient system
node.

be established due to
resources at the remote

The local or remote node is no
accepting connections.

longer

The logical link connection was terminated by
a third party (for example, the System
Manager) •

The task did not respond to the connection
request within the required time.

The task specified too much optional or
interrupt data.

The remote node is currently unreachable.

C-3

APPENDIX D

MAILBOX MESSAGE TYPES

The $MSGDEF macro defines the mailbox messages described in Table D-1.
This table defines the message type, its meaning, and any information
that may accompany the message.

Type

MSG$_ABORT

MSG$ CONFIRM

MSG$ CONNECT

MSG$_DISCON

MSG$ EXIT

MSG$ INTMSG

MSG$_NETSHUT

MSG$_PATHLOST

MSG$_PROTOCOL

MSG$ REJECT

MSG$_ THIRDPARTY

MSG$_TIMEOUT

Table D-1: Mailbox Message Summary

Meaning

The logical link was aborted.

The logical link was confirmed.

The task received an initial
connection request.

The logical link was
disconnected.

The partner task exited
without completing
outstanding I/O operations.

Interrupt message

The network node is going into
the "Shut" or "Off" state.

The partner is no longer
accessible. ·

There is a general NSP problem.

The logical link was rejected.

A third party disconnected
the logical link.

The connection request
timed out.

D-1

Information

Optional data

Optional data

NCB

Optional data

None

Message

None

None

None

Optional data

None

None

GLOSSARY

access control

The login control that a node exercises over inbound logical link
connection requests to determine whether or not the link can be
accepted.

cooperating tasks

Two tasks that communicate with each other in a task-to-task
communication environment. In particular, cooperating tasks must
agree on optional user data to be passed, how they will send and
receive messages to ensure that there is one transmit for each
receive, and which task will disconnect the link.

disconnect abort

Nontransparent tasks can deaccess a logical link via a disconnect
abort operation without deassigning the channel. This form of
disconnection indicates to the receiver that not all messages
sent have necessarily been received.

handshaking sequence

The exchange of logical link connection information between two
tasks. This exchange takes place to enable the successful
completion of a logical link connection.

inbound connection

The term refers to the fact that a task receives logical link
connection requests.

interrupt message

A user-generated message sent "outside" the normal exchange of
data messages during nontransparent task-to-task communication.
This usage of the term "interrupt" is contrary to the normal
usage, which means to designate a software or hardware interrupt
mechanism.

local node

The node at which you are located physically.

network connect block

A user-generated data structure used in a nontransparent task to
identify a remote task and optionally send user data in calls to
request, accept, or reject a logical link connection.

network object

The term refers to any task with a nonzero object type (for
example, those programs such as FAL and NML that provide generic
services across a network).

Gloss-1

GLOSSARY

network status notifications

Notifications that provide information about the state of both
logical and physical links over which two tasks communicate. A
nontransparent task can use this information to take appropriate
action under conditions such as third party disconnections and a
partner's exiting before I/O completion.

network task

A nontransparent task that is able to process multiple inbound
connection requests: that is, it has declared a network name or
object number.

nonprivileged

In DECnet-VAX terminology, this term means no privileges other
than NETMBX and TMPMBX, which are the minimum requirements for
any network activity.

object type

A discrete identifier for either a task or DECnet service on a
remote node. Object type identifiers can either be 0 plus a name
(alternatively, TASK=name), or nonzero without a name (for
example, 17= or FAL=).

outbound connection

The term refers to the fact that a task sends logical link
connection requests.

privileged

In DECnet-VAX terminology, this term means any user privileges in
addition to NETMBX and TMPMBX.

remote node

Any node other than the one at which you are located in the
network. (When debugging programs or for operational symmetry,
however, you can treat the local node like a remote node.)

source task

The task that initiates a logical link connection request in a
task-to-task communication environment.

synchronous disconnect

The disconnect that occurs when a nontransparent task can issue a
call to terminate I/O operations over a logical link without
deassigning the channel. Thus, the task can use the channel for
subsequent I/O operations with the same or a different remote
task.

target task

task

The task that receives and processes a logical link connection
request in a task-to-task communication environment.

In this manual, the term refers to an image running in the
context of a process.

Gloss-2

GLOSSARY

task specifier

Information provided to DECnet-VAX software so that it
complete a logical link connection to a remote task.
information includes the name of the remote node on which
target task runs and the name of the task itself.

Gloss-3

can
This
the

INDEX

Access control, 2-1, 2-5,
5-7 to 5-8

Configuration Data Base, 2-7
defaulting to, 2-2, 2-6
delimiters, 2-3
explicit definition of, 2-2,

2-6
for inbound connection

requests, 2-5, 2-8
for outbound connection

requests, 2-5, 2-8
implicit definition of, 2-2,

2-7
logical-nodename, 2-2
LOGINOUT image, 2-5, 5-8
node name, 2-2
null information, 2-6
privileges, 2-6
string format, 2-2
User Authorization File

(UAF) , 2-5, 5-8
Account,

nonprivileged, 2-7
privileged, 2-7

ANALYZE/RMS FILE command, 3-7
APPEND command, 3-8
ASSIGN command, 3-4 to 3-5
$ASSIGN system service, 6-2,

6-4
format, 6-4, 7-9
NET:, 7-9

nontransparent use of, 7-2
transparent use of, 6-2

BACKUP command, 3-8

$CANCEL system service, 7-8
Channel, 5-7

assigning for logical link,
5-7, 6-4, 7-9

deassigning, 5-11, 6-3
NET:, 7-2

$CLOSE call, 4-9, 4-12
CLOSE command, 3-17
Code,

object type, A-1
system service status

return, 6-3, 7-9
VAX-11 RMS completion, 4-3

Command procedure file,
See DCL command procedure

Configuration Data Base, 2-7

Index'-1

$CONNECT call, 4-9
CONVERT command, 3-9
COPY command, 3-8, 3-13 to

3-14
$CREATE call, 4-12
CREATE command, 3-10
$CREMBX system service, 7-3

DAP (Data Access Protocol) ,
4-1

$DASSGN system service, 5-11,
6-3, 6-7, 7-18

format, 6-8
DCL command procedure, 2-4,

3-14, 3-18, 5-9
example using SYS$NET, 3-18
examples using lexical

functions, 3-18
for starting object, 2-4,

5-9
lexical functions in, 3-15
submitting remote, 3-14

DCL {DIGITAL Command Language)
command, 1-1, 3-1

command and file qualifiers,
3-1

for accessing records, 3-16
for command procedure

submission, 3-14
for file handling, 3-5
for file operations, 3-2
for lexical functions, 3-4
for logical name operations,

3-2, 3-4
for record access

operations, 3-4
summary, 3-2, 3-6

DEASSIGN command, 3-4 to 3-5
Declared name,

See Task
Declared number,

See Task
DEFINE command, 3-4 tp 3-5
DELETE command, 3-10
Destination descriptor,

See NCB {Network Connect
Block)

DIFFERENCES command, 3-11
DIRECTORY command, 3-11
Disconnect, 5-11

abort, 5-11, 7-8
synchronous, 5-11

$DISCONNECT call, 4-9
Double colon delimiter, 2-1

DTR object code, A-1
DUMP/RECORDS command, 3-12

$ERASE call, 4-12
Error message,

See Message

INDEX

Error reporting, 4-3, 6-3, 7-9
RMS completion codes, 4-3
system service status, 6-3,

7-9
EVL object code, A-1

F$FILE ATTRIBUTES lexical
function, 3-15 to 3-16

F$PARSE lexical function, 3-16
F$SEARCH lexical function,

3-16
FAB (File Access Block), 4-9,

B-2
FAL (File Access Listener) ,

4-1
object code, A-1

File sharing over network,
4-13

File specification, 2-1
angle brackets, 2-1
examples, 2-5
foreign-file-spec, 2-1, 2-3
full file specification,

2-1, 2-3
node name, 2-1
node-spec, 2-1
null character, 2-1
quoted string, 2-1, 2-3
restrictions on processing,

4-12
space character, 2-1
square brackets, 2-1
subdirectories, 2-3
tab character, 2-1
task-spec-string, 2-1, 2-4
wild card character, 2-3

File transfer throughput, 4-12
DAP file transfer mode

(FTM), 4-12
DAP record access mode

(RAM), 4-12
FOP option, 4-12

FOP disposition options, 4-12
Foreign-file-spec,

See File specification
Full file specification,

See File specification

Index-2

$GETDVI system service, 7-9

Handshaking sequence,
See Logical link

HLD object code, A-1

Interrupt message,
See Message

LEF (Local Event Flag Wait)
state, 6-2

Lexical functions, 3-15
use in command procedure

files, 3-15
LIB$ASN WTH MBX library

routine~ 5-9, 7-3
Logical link, 2-4, 5-4 to 5-5,

5-7, 5-11, 6-2
aborting, 5-5, 7-8
assigning channel for, 6-2,

7-9
completing connection of,

5-8, 6-2, 7-5, 7-12
disconnecting, 5-5, 5-11,

7-8, 7-15
handshaking sequence, 5-7
rejecting a request, 7-13
requests, 2-5, 5-4, 5-7 to

5-8, 6-2, 7-4 to 7-5,
7-10

SYS$NET, 5-8
terminating, 5-5, 5-11, 6-3,

6-7, 7-9
Logical name, 2-1, 2-3, 2-9

as device name, 2-9
as node name, 2-9
DCL commands for, 3-4
equivalence string, 2-9
examples, 2-9 to 2-10
in process logical name

table, 2-9
iterative translation, 2-10
translation, 2-3, 2-9
use of, 2-9
use of underscore () , 2-2,

2-11
Logical node name,

See File specification
LOGINOUT image, 2-5, 5-8, 7-6

Magnetic tape file
restriction, 4-14

MAIL object code, A-1
Mailbox, 5-5, 7-2 to 7-3, D-1

creating ($CREMBX), 7-3
message format, 7-3
message types, D-1

MERGE command, 3-13
Message, 5-4 to 5-5, 5-10,

6-5 to 6-6
data, 5-10
error, 3-19, C-1
exchanging, 5-10, 6-3, 7-7
interrupt, 5-4 to 5-5, 7-7
mailbox, 5-5, 5-10, D-1
network status, 5-5
optional user data, 5-4 to

5-5, 5-7, 7-1
MIRROR object code, A-1
$MSGDEF macro, D-1
Multiple inbound connects,

5-4, 7-7, 7-17

NAM (Name Block) , B-7
restrictions, 4-11

NCB (Network Connect Block) ,
5-7, 7-4

destination descriptor, 7-5
NET:, 7-2, 7-9

INDEX

Network command terminal, 1-6,
2-11

SET HOST command, 2-11
Network example, 1-4
Network name, 2-4

declaring, 2-4, 7-6, 7-17
Network task,

declaring, 5-4, 5-9, 7-6
Node name,

See File specification
Node-spec,

See File specification
Nonprivileged account, 2-7
Nonprivileged network

operations, 2-7
Nonzero object,

See Object
Numbered object,

See Nonzero object

Object, 2-4, A-1
examples, 2-5
known, 2-4
nonzero object, 2-4
number, 7-6, 7-17
task, 2-4

Index-3

Object (Cont.)
type, 2-4, 5-7, A-1
zero object, 2-4

$OPEN call, 4-9, 4-12
OPEN command, 3-17
Optional user data,

See Message

$PARSE call, 4-12
PHONE object code, A-1
PRINT/REMOTE command, 3-12 to

3-13
Privilege,

associated with objects, 2-8
Privileged,

account, 2-7
network operations, 2-7

PURGE command, 3-10

$QIO(IO$ ACCESS!IO$M ABORT)
system service, 7-7

format, 7-13
$QIO(IO$ ACCESS) system

servTce, 7-4, 7-7
format, 7-10, 7-12

$QIO(IO$ ACPCONTROL) system
servTce, 7-7

format, 7-17
$QIO(IO$ DEACCESS!IO$M ABORT)

system service, 7-8 to 7-9
format, 7-16

$QIO(IO$ DEACCESS!IO$M SYNCH)
system service, -

format, 7-15
$QIO(IO$ READVBLK) system

servTce, 6-6, 7-14
format, 6-6

$QIO(IO$ WRITEVBLK!
IO$M-INTERRUPT) system
service, 7-7

format, 7-14
$QIO(IO$ WRITEVBLK) system

service, 6-5, 7-14
format, 6-5

Quotation marks, 3-5
triple set of, 3-5

Quoted string,
See File specification

RAB {Record Access Block) ,
4-9, B-5

READ command, 3-17
REMACP object code, A-1

Remote command terminal,
See SET HOST and Network

command terminal

INDEX

Remote file access, 1-1
FORTRAN program example, 4-8
MACRO programming interface,

4-1, 4-8
using DCL, 3-1
using VAX-11 RMS, 4-1

RMS control block field, B-1
FAB, B-2
NAM, B-7
RAB, B-5
XABALL, B·'-9
XABDAT, B-10
XABFHC, B-10
XABKEY, B-11
XABPRO, B-12
XABRDT, B-13
XABSUM, B-13

RMS (Record Management
Services), 1-2, 4-1

calls for block I/O
processing, 4-11

calls for file processing,
4-10

calls for file specification
processing, 4-11

calls for record processing,
4-10

completion codes, 4-3
control blocks, B-1
file system characteristics,

4-3
MACRO programming examples,

4-14
programming notes, 4-8, 4-11
restrictions on use of, 4-2,

4-11
service call summary, 4-9
service calls, 4-1, 4-8

$SEARCH call, 4-12
SEARCH command, 3-13
SET HOST command, 2-11
SHOW LOGICAL command, 3-5
SHOW TRANSLATION command, 3-5
SORT command, 3-13
Source task, 5-7
SUBMIT/REMOTE command, 3-14
Synchronous disconnect, 5-5,

5-11, 7-8, 7-15
SYS$NET, 5-8, 6-2, 7-6

use in command procedures,
3-18

SYSNAM privilege, 7-7

Index-4

System service call, 1-2,
5-11, 6-1, 7-1

error messages, C-1
summary for nontransparent

use, 7-1, 7-9
summary for transparent use,

6-1, 6-3

Target task, 5-7
Task, 1-2

declaring. for network, 5-4
object, 2-4
source, 5-10
specification examples, 2-5
specification string~ 2-1,

2-4
target, 5-10, 6-5
taskname, 2-4

Task-to-task communication,
1-1, 2-1, 4-14, 5-1, 6-1,
7-1

nontransparent, 1-1, 5-1,
5-4, 7-1

nontransparent MACRO
example, 7-18

transparent, 1-1, 5-1, 6-1
transparent FORTRAN example,

5-2
transparent MACRO example,

6-8
$TRNLOG system service call,

5-9
TYPE command, 3-15

UAF (User Authorization File},
2-5, 5-8

Underscore character () , 2-2
user Authorization File,

See UAF

VAX-11 RMS,
see RMS (Record Management

Services) ,

Wild card character (*) , 2-3
WRITE command, 3-17

XABALL {Allocation Control
XAB) , B-9

XABDAT {Date and Time XAB) ,
B-1.Q

INDEX

XABFHC {File Header
Characteristics XAB), B-10

XABKEY {Key Definition XAB),
B-11

XABPRO {File Protection XAB),
B-12

Index-5

XABRDT {Revision Date and Time
XAB), B-13

XABSUM {Summary XAB) , B-13

Zero object,
See Object

