
VAX/VMS
Guide to Using

Command Procedures
Order No. AA-H782A-TE

March 1980

This manual presents key concepts and techniques for developing command
procedures using the VAX/VMS DIGIT AL Command Language (DCL).

VAX/VMS
Guide to Using

Command Procedures
Order No. AA-H782A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this· release.

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation . maynard, massachusetts

First Printing, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibili~y is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @ 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to. assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECOS
UNIBUS
COMPUTER LABS
CO MT EX
DDT
DECCOMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SB!
PDT

5/80-14

PREFACE

CHAPTER

CHAPTER

CHAPTER

1

1.1
1.2
1. 2 .1
1. 2. 2
1.2.2.1
1.2.2.2
1.2.2.3
1.3
1. 3 .1

1. 3. 2

1. 3. 3

1. 3. 4
1. 3. 5
1.3.5.1
1.3.5.2
1.4
1. 5

2

2.1
2.2
2.2.1
2.2.2
2.3
2.4

2.5
2.5.1
2.5.2
2.6

3

3.1
3.2
3.2.1
3.2.2

3.3

3.3.1
3.3.2
3.3.3

CONTENTS

DEVELOPING COMMAND PROCEDURES

CREATING COMMAND PROCEDURES
FORMATTING AND DOCUMENTING COMMAND PROCEDURES

Continuing Commands on More than One Line
Documenting Command Procedures
Use Comments
Spell Out Command and Qualifier Names
Use Indentation

EXECUTING COMMAND PROCEDURES
Executing Command Procedures in Interactive
Mode
Submitting Command Procedures for Batch
Execution
Submitting Batch Jobs Through the Card
Reader
Executing Nested Command Procedures
Using Login Command Files
The LOGIN.COM File
A System-Defined Login File

TESTING AND DEBUGGING COMMAND PROCEDURES
MAINTAINING COMMAND PROCEDURES

CONTROLLING COMMAND PROCEDURE I/O

SYSTEM-DEFINED LOGICAL NAME EQUIVALENCES
VERIFYING COMMAND PROCEDURE EXECUTION

Verification in Batch Jobs
Changing Verification Settings

CONTROLLING INTERACTIVE OUTPUT
INCLUDING COMMAND AND PROGRAM DATA IN COMMAND
PROCEDURES
REDEFINING SYS$INPUT AND SYS$0UTPUT

User Mode Assignments
Suppressing Output

DISPLAYING OUTPUT DATA

USING SYMBOLS IN COMMAND PROCEDURES

SYMBOL NAMES
EQUATING SYMBOLS TO CHARACTER STRINGS

Special Characters in Symbol Values
Replacing Substrings in Character String
Symbol Values

EQUATING SYMBOLS TO NUMERIC AND LOGICAL
EXPRESSIONS

Operators
Logical Operations
Arithmetic Comparisons

iii

Page

vii

1-1

1-5
1-n
1-6
1-6
1-7
1-7
1-7
1-8

1-9

1-10

1-11
1-13
1-14
1-14
1-14
1-15
1-16

2-1

2-1
2-2
2-4
2-4
2-5

2-fi
2-8
2-9
2-10
2-10

3-1

3-1
3-2
3-3

3-4

3-5
3-6
3-7
3-8

CHAPTER

CHAPTER

3.3.4
3.3.5
3.3.6
3.4
3.5
3.5.1
3.5.2
3.5.3
3.6
3.6.1

3.6.2
3.fi.3
3.6.4
3.7
3.8

4

4.1
4.2
4.2.1

4.2.2
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3

4.5.4
4.5.5
4.6
4.7

5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.3
5.3.1
5.3.2
5.3.3
5.4

CONTENTS

String Comparisons
Arithmetic Operations
Arithmetic Overlays

CHANGING THE CONTEXT OF A SYMBOL
SYMBOL TABLES

Local Symbols
Global Symbols
Order of Search of Symbol Tables

PASSING PARAMETERS TO COMMAND PROCEDURES
Specifying Parameters for the Execute
Procedure Command
Delimiting Parameters
Passing Parameters to Batch Jobs
Redefining Parameters

THE INQUIRE COMMAND
DELETING SYMBOLS

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

COMMAND SYNONYM SUBSTITUTION
USING APOSTROPHES AS SUBSTITUTION OPERATORS

Substitution Within Strings Enclosed in
Quotation Marks
Concatenating Symbol Values

AUTOMATIC SUBSTITUTION
USING AMPERSANDS AS SUBSTITUTION OPERATORS
REPETITIVE AND RECURSIVE SUBSTITUTION

Steps in Symbol Substitution
Recursive Substitution Using Apostrophes
Recursive Substitution Using Command
Synonyms
Recursive Substitution Using Ampersands
Recursive Substitution in Expressions

UNDEFINED SYMBOLS
VERIFICATION OF SYMBOL SUBSTITUTION

Page

3-8
3-9
3-10
3-11
3-11
3-12
3-12
3-13
3-13

3-14
3-14
3-15
3-16
3-16
3-18

4-1

4-1
4-2

4-2
4-3
4-3
4-4
4-5
4-fi
4-7

4-8
4-9
4-10
4-11
4-12

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES 5-1

THE FORMAT OF LEXICAL FUNCTIONS
INFORMATIONAL FUNCTIONS

The F$MODE Lexical Function
The F$VERIFY Lexical Function
The F$DIRECTORY Lexical Function
The F$PROCESS Lexical Function
The F$USER Lexical Function
The F$LOGICAL Lexical Function
The F$TIME Lexical Function
The F$MESSAGE Lexical Function

STRING MANIPULATION FUNCTIONS
The F$LENGTH Lexical Function
The F$LOCATE Lexical Function
The F$EXTRACT Lexical Function

FUNCTLONS THAT MANIPULATE BINARY DATA

iv

5-1
5-3
5-4
5-5
5-6
5-n
5-6
5-7
5-8
5-9
5-10
5-10
5-11
5-12
5-13

CHAPTER

CHAPTER

CHAPTER

CHAPTER

6

6.1
6 .1.1
6 .1. 2
6.2
6.2.1
6.2.2
6.3

6.4
6.4.1
6.4.2
6.4.3

7

7.1
7 .1.1
7 .1. 2
7.1.3
7.1.4
7 .1. 5
7 .1. 6

7.2
7.2.1
7.2.2
7.2.3

8

8.1
8 .1.1
8.1.2
8.2
8.2.1
8.3
8.4
8.5

9

9.1
9 .1.1
9 .1. 2
9 .1. 3
9.2
9.2.1

9.2.2
9.2.3
9.3

CONTENTS

CONTROLLING EXECUTION FLOW IN COMMAND
PROCEDURES

THE IF COMMAND
Using Logical Operators in IF Commands
Using Symbols in IF Commands

THE GOTO COMMAND
Using GOTO as a Target of IF
Using GOTO to Establish Loops

NESTING PROCEDURES: THE EXECUTE PROCEDURE
COMMAND
THE EXIT AND STOP COMMANDS

Using the EXIT Command
Passing Status Values with the EXIT Command
Using the STOP Command

CONTROLLING ERROR CONDITIONS AND CTRL/Y
INTERRUPTS

ERROR CONDITION HANDLING
Severity Levels
The ON Command
Disabling Error Checking
System Messages
Commands that Do Not Set $STATUS
Status Codes Returned by Compatibility Mode
Commands

CTRL/Y INTERRUPT HANDLING
Interrupting a Command Procedure
Setting a CTRL/Y Action Routine
Disabling CTRL/Y Interruptions

CREATING, READING, AND WRITING FILES

Page

6-1

6-1
6-3
6-4
6-5
6-7
6-7

6-8
6-8
6-9
6-9
6-10

7-1

7-1
7-1
7-2
7-4
7-4
7-5

7-5
7-Fi
7-6
7-7
7-10

8-1

READING FILES 8-2
Specifying Symbol Names for the READ Command 8-2
Handling End-of-File Conditions 8-3

WRITING FILES 8-3
Symbol Substitution in the WRITE Command 8-3

ERROR HANDLING 8-5
COMMUNICATING WITH PROCESS-PERMANENT FILES 8-7
FILE FORMATS 8-7

CONTROLLING BATCH JOBS

HOW THE SYSTEM EXECUTES BATCH JOBS
The Batch Job Queue
Controlling Jobs in the Batch Job Queue
Concatenating Procedures into a Single Job

BATCH JOB OUTPUT
Including All Command Output in the Batch
Job Log
Saving the Batch Job Log File
Terminating a Batch Job Abnormally

SYNCHRONIZING BATCH JOB EXECUTION

v

9-1

9-1
9-1
9-3
9-4
9-5

9-5
9-6
9-6
9-7

APPENDIX

INDEX

FIGURE

TABLE

A

A.l
A.2
A.3
A.4
A.5
A.6
A. 7
A.8
A.9

1-1

1-2

1-3
1-4

1-5
2-1

2-2
2-3
3-1

3-2
4-1

4-2
4-3
6-1
6-2
7-1
7-2
7-3
8-1
8-2
9-1
9-2

1-1
2-1
3-1
3-2
5-1
7-1

CONTENTS

ANNOTATED COMMAND PROCEDURES

CONVERT.COM
WAKEUP.COM
BWAKE.COM
ENDED.COM
GETPARMS.COM
EDITALL.COM
FORTUSER.COM
LISTER.COM
CALC.COM

FIGURES

Executing a Command Procedure in Interactive
Mode
Submitting a Command Procedure to a Batch Job
Queue
A Card Reader Batch Job
Submitting a Batch Job Through a System Card
Reader
Executing System and User Login Files
Logical Name Assignment at Different Command
Levels
An Input Data Stream with Dollar Signs
Displaying Data in the Output Stream
Replacing Character Strings in Assignment
Statements
Using a /PARAMETERS Qualifier Card
Example of the Three Phases of Symbol

Page

1\-1

1\-3
)\-6
)\-8
)\-10
A-11
l\-13
i\-15
i\-20
l\-22

Index-1

1-9

1-11
1-12

1-13
1-15

:2-3
:2-7
:2-11

3-5
.3-lfi

Substitution 4-6
Example of Recursive Substitution 4-7
Recursive Substitution Using a Command Synonym 4-9
The IF Command
The GOTO Command
ON Command Actions
Flow of Execution Following CTRL/Y Action
Default CTRL/Y Action for Nested Procedures
Steps in Reading and Writing Files
Symbol Substitution with the WRITE Command
How the System Executes a Batch Job
Synchronizing Batch Job Execution

TABLES

11-3
·1-fi
7-3
7-8
7-9
:3-2
.3-5
g-2
g-1

Commands Frequently Used in Command Procedures 1-2
Summary of Command Procedure Output 2-5
Summary of Operators in Expressions 3-7
ASCII Character Set and Hexadecimal Values 3-9
Summary of Lexical Functions 5-2
Severity Levels for ON Command Actions 7-2

vi

PREFACE

MANUAL OBJECTIVES

This manual presents key concepts and techniques for developing
command procedures using the VAX/VMS DIGITAL Command Language (DCL).
Many examples, including examples of complete command procedures, are
included to demonstrate applications of the concepts and techniques
discussed.

INTENDED AUDIENCE

All users of the VAX/VMS operating system can benefit from using
command procedures. Command procedures can be constructed both to
serve very simple purposes and to perform complex tasks that
approximate the capabilities of a high-level programming language.
For example, you can construct frequently used command sequences into
command procedures and thereby save keystrokes; you can also code
sophisticated command sequences that pass parameters, test status
values, process files, and perform similar program-like tasks.

STRUCTURE OF THIS DOCUMENT

Each chapter in this manual builds on material presented in earlier
chapters. Thus, if command procedure development is new to you, read
the associated documents then study this manual sequentially beginning
with Chapter 1. If, however, you are an experienced programmer with
some knowledge of command procedures, you may want to simply skim the
Table of Contents and Index for the specific topics you need.

This manual contains nine chapters and one appendix.

• Chapter 1, "Developing Command
procedures and describes the
development.

Procedures," defines command
steps in command procedure

• Chapter 2, "Controlling Command Procedure I/O," describes the
system-defined logical name equivalences and how to use them
to control input to and output from command procedures.

• Chapter 3, "Using Symbols in Command Procedures," describes
how you can define and manipulate command symbols in command
procedures.

vii

• Chapter 4, "Symbol Subs ti tut ion in Command Procedui~es,"
defines the mechanism of symbol substitution and descJ~ibes
ways you control symbol substitution in command procedure:;.

• Chapter 5, "Using Lexical Functions in Command Procedu~es,"
shows how to use the DCL lexical functions in command
procedures to obtain information about the status of a process
and to manipulate character strings.

• Chapter 6, "Controlling Execution Flow in Command Procedures,"
describes ways to use the DCL commands IF, GOTO, EXIT 1 and
STOP to control the sequence in which command procedure :lines
are executed.

• Chapter 7, "Controlling Error Conditions and C~rRL/Y
Interrupts," shows how you can establish error cond:ltion
routines based on the severity of errors encountered during
command procedure execution and handle CTRL/Y interrupts that
occur during command procedure execution.

• Chapter 8, "Creating, Reading, and Writing Files," describes
how to manipulate sequential files using command procedures.

• Chapter 9, "Controlling Batch Jobs," describes how the system
creates batch jobs and how you can control their execution
from within command procedures.

• Appendix A, "Annotated Command Procedures," contains several
complete command procedures that illustrate the techn:lques
described in Chapters 1 through 9.

ASSOCIATED DOCUMENTS

The VAX/VMS Guide to Using Command Procedures is
document. You should understand the material
following manuals before using this guide:

not a stand-alone
presented in the

• VAX/VMS Primer. This tutorial guide to the use of the VAX/VMS
operating system introduces new users to the DIGITAL Conmand
Language, the use of a text editor, interactive and batch mode
operations, files and file specifications, and logical nanes.

• VAX/VMS Summary Description and Glo~?~..!".Y· This manual :ls a
technical summary of VAX/VMS concepts and components,
including those process concepts of interest to the user of
command procedures. The manual also contains a glossary of
VAX-11 terms.

• VAX/VMS Command Langua~~seE's Guid~. This manual is the
primary reference document for information about DCL. The
manual contains complete descriptions of all DCL comnands
except those most commonly used by system operators, defines
the grammar for the DCL command language, defines file
specification and usage, and (of particular use to conmand
procedure developers) contains many examples of specific
commands. You should use the VAX/VMS Command Langu29e UBer's
Guide as a reference dictionary while studying the material in
this manual.

viii

CONVENTIONS USED IN THIS DOCUMENT

This manual uses the following graphic conventions.

$ show time
05-JUN-1979 11:55:22

$ FORTRAN MYFILE
$ LINK MYFILE
$ RUN MYFILE

$ LOOP:

$ GOTO LOOP

quotation marks

apostrophe

These symbols indicate that you
press the ESC, RETURN, DELETE, or TAB
key on the terminal.

These symbols indicate that you hold
down the <CTRL> key while you press a
terminal key, for example Y.

In examples of interactive dialog, all
the lines you type are shown in red
letters. Everything the system prints
or displays is shown in black letters.

When the contents of a command
procedure are shown, the lines in the
file are always shown in uppercase
letters.

A vertical ellipsis in an example
means that not all the lines in the
command procedure are shown; or that
not all the data the system would
display is shown.

The term quotation marks is used
to ref er to double quotation marks
("). The term apostrophe is used to
refer to a single quotation mark (').

ix

CHAPTER 1

DEVELOPING COMMAND PROCEDURES

A DCL command procedure is a file that contains a sequence of DCL
commands.

Common uses for command procedures include constructing sequences of
commands you frequently use during interactive terminal sessions and
defining a batch job stream to submit from a terminal session or a
system card reader. As you develop skill in applying command
procedures, you will discover many other applications for them. The
annotated examples in Appendix A of this manual illustrate only some
of the uses of more complex command procedures.

In its simplest form, a command procedure consists of one or more
command lines for the DCL command interpreter to execute. For
example, a procedure to compile, link, and execute the FORTRAN program
ALPHA could contain the lines:

$ FORTRAN/LIST ALPHA
$ LINK/MAP ALPHA
$ RUN ALPHA

In its most complex form, a command procedure can resemble a program
coded in a high-level programming language: it can establish loops
and error checking routines; perform arithmetic calculations and
input/output operations; manipulate character string data; call
other command procedures; pass parameters to other command
procedures; and test values set in other command procedures.

This chapter summarizes the steps in command procedure development:

• Creating command procedures

• Formatting and documenting command procedures

• Executing command procedures

• Testing and debugging command procedures

• Maintaining command procedures

The remaining chapters in this guide discuss some of the key
and techniques for developing and using command procedures.
is information on how to:

• Control command procedure input and output

• Pass parameters to and from command procedures

• Use symbols in command procedures

1-1

concepts
Included

DEVELOPING COMMAND PROCEDURES

• Control symbol substitution in command procedures

• Use the DCL lexical functions in command procedures

• Direct the flow of command procedure execution

• Handle status returns and CTRL/Y interrupts in command
pr.ocedures

• Create, read, and write sequential files using command
procedures

• Control batch jobs and batch job queues from command
procedures

The DCL commands that you use in command procedures are summarized in
Table 1-1. Note that many of these commands can be used in contexts
other than command procedures, but are particularly relevant to
command procedures. You should use the VAX/VMS Command Language
User's Guide as a reference for the grammar or use of any command,
including those illustrated in this manual.

Name

@filename

:=

:==

label:

ASSIGN

CLOSE

CONTINUE

Table 1-1
Commands Frequently Used in Command Procedures

Function

Executes a command procedure.

Arithmetic assignment; equates a local
symbol name to an arithmetic expression or
constant.

Arithmetic assignment; equates a global
symbol name to an arithmetic expression or
constant.

String assignment; equates a local symbol
name to a character string.

String assignment; equates a global
symbol name to a character string.

Defines a label statement.

Equates a logical name to a physical
device name, to a complete file
specification, or to another logical name,
and places the equivalence name strin9 in
the process, group, or system logical name
table.

Closes a file that was opened for input: or
output with the OPEN command and deassigns
the logical name specified when the file
was opened.

Resume execution of a
that was interrupted
Or (¢TRL/C) •

command procedure
by pressing ~

(continued on next page)

DEVELOPING COMMAND PROCEDURES

Taine 1-1 (Cont.)
Commands Frequently Used in Command Procedures

Name

DECK

DELETE/ENTRY

DELETE/SYMBOL

EOD

EOJ

EXIT

GOTO

IF ••• THEN

INQUIRE

JOB

Lexical Functions

ON ••• THEN

OPEN

PASSWORD

PRINT

READ

Function

Marks the beginning of an input stream for
a command procedure when the first
non-blank character in any data record in
the input stream is a dollar sign ($).

Deletes one or more entries from a printer
or batch job queue.

Deletes a symbol definition from a
symbol table or from a global
table.

local
symbol

Marks the end of an input stream for a
command procedure.

Marks the end of a batch job submitted
through a system card reader.

Terminates processing of
command procedure.

the current

Transfers control to a labeled statement
in a command procedure.

Tests the value of an expression and
executes a command if the test is true.

Requests interactive assignment of a value
for a local or global symbol during the
execution of a command procedure.

Marks the beginning of a batch job
submitted through a system card reader.

Return information about character strings
and attributes of the current process.

Defines the default courses of action when
a command or program executed within a
command procedure (1) encounters an error
condition or (2) is interrupted by CTRL/Y.

Opens a file for reading or writing.

Specifies the password associated with the
user name specified on a JOB card for a
batch job submitted through a card reader.

Queues one or more files for printing,
either on a default system printer or a
specified device.

Reads a single record from a specified
input file and assigns the contents of the
record to a specified logical name.

(continued on next page)

1-3

DEVELOPING COMMAND PROCEDURES

Table 1-1 (Cont.)
Commands Frequently Used in Command Procedures

Name Function
-------------~·--·-- .. ·- "'"·---··-···---- - -------·-------·--·- ... ·----·-·--"-"""""""" --·-------

SET CARD READER

SET CONTROL Y

SET NOCONTROL Y

SET NOON

SET NOVERIFY

SET ON

SET QUEUE/ENTRY

SET VERIFY

SHOW QUEUE

STOP/ABORT

STOP/ENTRY

STOP/REQUEUE

SUBMIT

SYNCHRONIZE

WAIT

WRITE

Defines the default ASCII translation mode
for a card reader.

Enables interrupts caused by CTRL/Y.

Disables interrupts caused by CTRL/Y.

Prevents the command interpreter from
parforming error checking following the
executi~n of commands.

Prevents command lines
procedure from being
terminal or printed in a
file.

in a command
displayed at a

batch job log

Causes the command interpreter to perform
error checking following the execution of
commands.

Changes the current status or attributes
of a file that is queued for printin~r or
for batch job execution but not yet
processed.

Causes command lines in a command
procedure to be displayed at a terminal or
printed in a batch job log file.

Displays the current status of entries in
the printer and/or batch job queues.

Aborts a job that is currently being
printed.

Deletes an entry from a batch queue while
it is running.

Stops the printing of the job currently
being printed and places that job at the
end of the output queue.

Enters one or more command procedures in
the batch job queue.

Places the process issuing this command
into a wait state until a specified batch
job completes execution.

Places the current process in a wait state
until a specified period of time has
elapsed.

Writes a record to a specified output
file.

'-------------.. ·---'-·----·-·--·--·-----·····"·"-""""""""-""" __ , --·-""""""-"--·--···· ·---- -·---"""""""" ___ _

1-4

DEVELOPING COMMAND PROCEDURES

1.1 CREATING COMMAND PROCEDURES

There are several ways to create command procedures. Interactive
users can create a command procedure by using a VAX/VMS-supported
editor such as SOS or EDT or by using the DCL command CREATE. Batch
job users can either (1) create a command procedure interactively and
submit the command procedure from a terminal or (2) punch a card deck
that includes the command procedure and submit the card deck to a
system card reader.

The following examples show the creation of a simple command procedure
by two different methods: the CREATE command and the SOS editor:

$ create fred.com~
$ RUN A(BTI)
$ RUN Bml
$ RUN Cml
~
$

sam. com ml $ edit
Input:
00100
00200
00300
00400

DBAl:[HIGGINS]SAM.COM;l
$ RUN Aml
$ RUN Bml
$ RUN Cml
l®

E
[DBAl: [HIGGINS]SAM.COM;l]
$

You can construct command procedures that contain only data to be read
by a command or program; or that contain only qualifiers or
parameters for a command; or that contain both. When you specify the
Execute Procedure (@) command in any position in a command string, the
command interpreter assumes that the at sign (@) character is followed
by the name of a file with a file type of COM, and begins reading
input from the specified command procedure.

For example, you could create a command procedure that contains a
number of qualifiers you frequently use together when you issue a LINK
command, as shown below:

DEBUG/SYMBOL_TABLE/MAP/FULL/CROSS_REFERENCE

If this command procedure is named DEFLINK.COM, you can request these
qualifiers on a LINK command line to link an object module. The
follo~ing example shows how to enter the LINK command to link an
object module named SYNAPSE.OBJ:

$ LINK SYNAPSE@DEFLINKml

Note that no space precedes the at sign (@) character in this example.
If you type a space before the at sign, the command interpreter
assumes that the command file contains a file specification for the
LINK command. Because the LINK command allows only one file
specification, an error would result when this command was parsed.

1-5

DEVELOPING COMMAND PROCEDURES

NOTE

Regardless of the method used to create
it, a command procedure is a sequential
file containing variable-length records.

1.2 FORM~TTING AND DOCUMENTING COMMAND PROCEDURES

Each line in a command procedure represents a line that you want the
DCL command interpreter to process. You enter the lines into the
command procedure in the order in which you want the system to process
them. For example, to create a command procedure file named
TESTALL.COM that contains RUN commands to execute the program images
named A.EXE, B.EXE, and C.EXE, you could create a file containinq the
following lines:

$ RUN A
$ RUN B
$ RUN C

To execute this command procedure from an
session, you would use the Execute Procedure (@)

$ @TESTALL~

interactive terminal
command, as follows:

When you create a command procedure, you must begin each line with a
dollar sign ($), whether the line starts a command string or is a
comment; you can precede or follow the dollar sign with no blank
spaces or tabs or with one or more blank spaces or tabs.

The format used for the command strings themselves is the same as the
format you would use to enter commands interactively, with the
exception that you must begin each command string with a dollar sign.

1.2.1 Continuing Commands on More than One Line

You can continue any command string on more than one line by usinq the
hyphen continuation character, just as you do for interactive command
continuation. You must not, however, begin any continuation line with
a dollar sign. For example:

$ PRINT TEST.OUT -
/AFTER=l8:00 -
/COPIES=lO -
/QUEUE=LPBO:

The qualifiers for this PRINT command are placed on separate lineB in
the command procedure for readability. The hyphen continuation
character is used to indicate that the command continues after the
first command line. The spaces preceding each qualifier an~ not
required. They are included to make the command string more readable.

1.2.2 Documenting Command Procedures

Although no rules govern the precise format of lines in a cor'.lmand
procedure, it is good programming practice to make your cor~mand
procedures self-documenting so that they are easy to read and to
maintain. The techniques described in the following sectionB are
useful for clear command procedure documentation.

1-n

DEVELOPING COMMAND PROCEDURES

1.2.2.1 Use Comments - Comments are as important in command
procedures as they are in source programs and should be used
frequently. Whether a comment is a separate line or part of a line in
a command procedure, always precede it with an exclamation point (!).
For example:

FRED.COM VAX/VMS V2.0 $
$
$
$
$
$
$

COMPILES, LINKS, RUNS ALPHA.FOR

FORTRAN/LIST ALPHA
LINK/MAP ALPHA
RUN ALPHA

COMPILE
LINK
GO

If you must use a literal exclamation point in a command line, enclose
it in quotation marks, so the command interpreter will not interpret
the exclamation point as a comment delimiter. Note that the
exclamation point character can be used in data lines because data
lines do not begin with a dollar sign and are not processed by the
command interpreter.

If you want to include symbol names or lexical functions in comments,
you can do so if you precede each symbol name with an apostrophe, the
command interpreter performs symbol substitution in comment lines
during its lexical processing. When the command is parsed and
executed, however, the command interpreter ignores the exclamation
point and all data following the exclamation point.

1.2.2.2 Spell Out Command and Qualifier Names - Do not truncate DCL
command and qualifier names used in command procedures. Although the
grammar rules of DCL allow truncation, it is wise to spell out full
command and qualifier names to ensure that ambiguous abbreviations do
not occur in the future.

Moreover, a procedure that spells out command names and qualifiers is
self-documenting, as the DCL commands and qualifiers are generally
named according to the functions they perform. For example, compare
the following two lines:

$ PRINT ALPHA.LIS/COPIES=2
$ PR ALPHA/C=2

The first command line expresses clearly the request to print two
copies of the file ALPHA.LIS. The second line is terse and may not be
easily interpreted by other users (or remembered by yourself).

1.2.2.3 Use Indentation - In longer command procedures, you can
improve readability by tabbing command lines to offset them from
labels you use. For example:

$ COUNT = 1
$LOOPER:

$ IF COUNT .GT. 10 THEN GOTO ENDLOOP
$ DEFINE SWITCH 'COUNT'
$ RUN ALPHA
$ COUNT = COUNT + 1
$ GOTO LOOPER

$ENDLOOP:

1-7

DEVELOPING COMMAND PROCEDURES

In the example above, the labels LOOPER and ENDLOOP clearly dHlimit
the portion of the command procedure that performs this particular
loop.

The commands IF and GOTO, and techniques for constructing loops in
command procedures are described in Chapter 6, "Controlling Exec:ution
Flow in Command Procedures."

1.3 EXECUTING COMMAND PROCEDURES

When you log in to the VAX/VMS operating system, the system creates a
detached process for you, and assigns to the process the~ user
privileges, execution priority, and resource quotas that determine the
process context the nature of the images that the process will be
allowed to execute.

When you issue the Execute Procedure (@) command from a detached
process, the command interpreter returns control to the interactive
DCL command level only after the command procedure either has been
successfully executed or has been terminated, for example as the
result of an error condition. Command procedure execution is s1Hial,
just as is the execution of any image within a detached prc>cess.
Thus, you cannot do any interactive work from the process while~ the
command procedure is being executed.

However, when you issue the SUBMIT command from a detached proce:~s, a
separate process is created for the batch job defined by the :3UBMIT
command. As soon as the batch job is queued, but before the jc>b is
executed, control is returned to the process that executed the :3UBMIT
command. The batch process created by the system ex1~cutes

independently from the submitting process, allowing you to do useful
work at the terminal. Upon completion, the operating system d1~letes
the batch process.

Thus, there are two operating modes for command procedures,
interactive mode and batch mode. You execute a command procedure in
interactive mode only when you issue the @ command during an
interactive terminal session or from a command procedure. Thi~ only
other method of initiating a command procedure (issuing the BUBMIT
command) results in the creation of a separate process used to run a
batch job.

You can execute DCL command procedures in five different ways.

• You can issue the Execute Procedure (@) command during an
interactive terminal session. This method is called executing
command procedures from interactive mode.

• You can issue the SUBMIT command during an inter.:ict i ve
terminal session. This method is called· submitting c~,mmand
procedures for batch execution.

• You can place a card deck that contains a command procedure in
a system card reader. This method is called submitting batch
jobs through the card reader.

1-8

DEVELOPING COMMAND PROCEDURES

• You can issue the Execute Procedure (@) command from a command
procedure. This method is called executing nested command
procedures.

• You can construct a special command procedure file, called a
login command file, that VAX/VMS automatically attempts to
locate and execute each time you log in to the operating
system.

The following sections illustrate these methods of command procedure
execution.

1.3.1 Executing Command Procedures in Interactive Mode

When you execute a command procedure in interactive mode, first enter
the Execute Procedure (@) command and then enter the file
specification of the command procedure. The command interpreter
assumes your current disk and directory defaults and a default file
type of COM. For example, to execute the command procedure
WEATHER.COM in your default disk and directory, issue this command:

$ @WEATHER ffi)

Figure 1-1 illustrates the execution of a command procedure in
interactive mode. When you enter the Execute Procedure (@) command,
the command interpreter finds, then executes the file TESTALL.COM in
your default disk and directory. Each command string in TESTALL.COM
is then executed sequentially. When the end-of-file for TESTALL.COM
is reached, the command interpreter returns control to the interactive
command level and issues the dollar sign prompt at your terminal. You
now can resume interactive work.

Userna111e: HIGGINS
Pass1,1ord:

$ @TESTA LL

,..-. $

Command interpreter
finds TESTALL.COM
on default device
and .directory ...

then executes the
TEST ALL.COM com-
mands sequentially ...

and returns control
to interactive com-
mand level after
TEST ALL.COM
completes

DBA 1 :[HIGGINS]TESTALL.COM

$ RUN A
$ RUN B
$ RUN C

Figure 1-1 Executing a Command Procedure in Interactive Mode

1-9

DEVELOPING COMMAND PROCEDURES

If a command procedure is not in your default disk and directory, or
does not have the file type COM, give the complete file specification,
as shown in the following example:

$ @DBB2:[COMMON]SETUP.FIL~

This command executes a command procedure that is located on the disk
DBB2 in the directory COMMON. The command procedure file name is
SETUP.FIL;

For command procedures that you execute frequently, you can define a
symbol name as a synonym for the entire command line. For example:

$ SETUP := @DBB2:[COMMON]SETUP.FIL.~

This is an assignment statement that defines the symbolic
to be equivalent to the string @DBB2: [COMMON] SETUP.FIL.
can be used, for example, as a command name during
terminal session. ·

name SETUP
This symbol

the current

If you wanted to be able to use this symbol every time you logged in
to VAX/VMS, you would include this symbol in a global assignment in
your login command file. Refer to Section 1.3.5, "Using Login Command
Files," for this method of executinq a command procedure.

1.3.2 Submitting Command Procedures for Batch Execution

If you use the Execute Procedure (@) command interactively, you cannot
enter other commands to do other work while the procedure is
executing. If you create and use procedures that require lengthy
processing time -- for example, the compilation or assembly of large
source programs -- you can submit the proc~dure for execution as a
batch job instead of using the Execute Procedure command. Once the
batch job is queued by the operating system, your terminal is free for
you to continue interactive work.

The SUBMIT command requests the operatipg system to enter a C•:>mmand
procedure into a batch job queue. The SUBMIT command assumes your
current disk and directory defaults ·and it assumes a default fil·e type
of COM for the command procedure. For example, to execute the C·:>mmand
procedure TESTALL.COM in your default disk directory, you could issue
the command:

$ SUBMIT TESTALL
Job 210 entered on queue SYS$BATCH

$

In this example, the system displays a message showing that th(~ job
has been queued; the message gives you the job number (210) and the
name of the system queue on which it entered the job (SYS$BATCH).
Batch queues are normally set up and started by the system manaqer or
the system operator; in most cases, one of these queues will be named
SYS$BATCH.

Figure 1-2 illustrates how the SUBMIT command is used to queue the
file TESTALL.COM as a batch job. Although control is returned ·:o you
as soon as the job is queued successfully, TESTALL .COM is not ex•~cuted
until the operating system creates a process for it. The execution of

1-10

DEVELOPING COMMAND PROCEDURES

the batch job begins with an automatic login to your account and an
execution of your login command file (if you have one). Note,
however, that the batch job is a separate process with its own unique
process context; for example, it cannot access symbols that you
define interactively.

Usernar11e: HIGGINS
Pass1,1ord:

$ SUBMIT TESTALL

r- Job 210 entered

$

on 9ueue SYS$BATCH
I

Command interpreter
finds TEST ALL.COM
on default device
and directory ...

~

then requests queue
for the batch job

TEST ALL.COM gets a
job number and is
placed in SYS$BATCH
queue

I

Command interpreter
returns job informa-
tion (and control)
to interactive
command level

~ - - _,..,

DBA 1 :[HIGGINS]TEST ALL.COM

$ RUN A
$ RUN B
$ RUN C

SYS$8ATCH QUEUE

.JOB NUMBER 208
JOB NUMBER 208
JOB NUMBER 210

T
I

j_
When Job 210
can be executed,
a process is
created to execute
the job. When
the job is completed,
the process is
deleted

Figure 1-2 Submitting a Command Procedure to a Batch Job Queue

1.3.3 Submitting Batch Jobs Through the Card Reader

When you submit a batch job through a system card reader, you must
precede the card deck containing the command procedure with cards
containing JOB and PASSWORD commands. These cards specify your user
name and password and, when executed, effect a log in for you. The
last card in the deck must contain the EOJ command. The EOJ card,
when executed, is equivalent to logging out. Figure 1-3 illustrates a
card reader batch job.

1-11

DEVELOPING COMMAND PROCEDURES

L_SEOJ

... command input stream ...

L_ $PASSWORD HENR.Y

$JOB HIGGINS

r

Figure 1-3 A Card Reader Batch Job

Note that you can prevent other users from seeing your passwoi~d by
suppressing printing when you keypunch the PASSWORD card.

When the system reads a job from the card reader, it validateB the
user name and password specified on the JOB and PASSWORD cards. Then,
it copies the entire card deck into a temporary disk file named
INPBATCH.COM in your default directory and queues the job for batch
execution. Thereafter, processing is the same as for jobs submitted
interactively with the SUBMIT command. When the batch job is
completed, the operating system deletes the INPBATCH.COM file.

When the system reads input from the card reader, it also recoqnizes
two special types of card:

• Translation mode cards

• EOF cards

Translation mode cards in the batch job's input stream changE! the
current translation mode. The translation mode is based on the device
type of the card punch on which the cards were punched. An 026 punch
is indicated by an 026 translation mode card (12-2-4-8 overpunch). An
029 card punch is indicated by an 029 translation mode card
(12-0-2-4-6-8 overpunch). The default card translation mode c:an be
set with the SET CARD READER command.

An EOF card (12-11-0-1-6-7-8-9) overpunch or card containing an EOJ
command signals the end of the job.

Figure 1-4 illustrates a batch job submitted through a system card
reader. The command interpreter reads the cards and creates a file,
INBATCH.COM, in the user's default disk and directory. The ~;ystem
queues the j-0b in the SYSSBATCH queue. After the job is executed, the
system deletes the file INBATCH.COM from the user's default disk and
directory.

1-12

DEVELOPING COMMAND PROCEDURES

$ JOB HIGGINS
/

Command interpreter
reads cards and
creates INPBATCH.COM
in default disk
and directory ...

then requests queue
for the batch job

INPBATCH.COM gets a
job number and is
placed in the
SYS$BATCH queue

When job 21 O can
be executed, the
INPBATCH.COM file
is executed. When
the job is completed,
INPBATCH.COM is
deleted from
D8A 1 :[HIGGINS]

DBA1 :[HIGGINS]INPBATCH.COM

$ RUN A

$ RUN B

$ RUN C

SYS$BATCH QUEUE

JOB NUMBER 208
- - --1 JOB NUMBER 208

JOB NUMBER 210

T

I
I
I
I

t-- - - - - - - - - -'

Figure 1-4 Submitting a Batch Job Through a System Card Reader

1.3.4 Executing Nested Command Procedures

Command procedures can be nested. That is, one command procedure can
contain an Execute Procedure (@) command to execute another command
procedure. In this case, the command interpreter reads input from the
second command procedure file until it reaches the end of the file or
until that procedure exits; then returns control to the first command
procedure.

The maximum number of command procedures you can nest is eight. For
more information on nesting command procedures, refer to Section 2.1,
"System-Defined Logical Name Equivalences," and Section 6.3, "Nesting
Procedures: The Execute Procedure Command."

1-13

DEVELOPING COMMAND PROCEDURES

1.3.5 Using Login Command Files

There is a special type of procedure, called a login command file~, or
simply login file, that the system automatically attempts to locate
and execute each time you log in to the operating system. This file
also is executed automatically, if present, at the beginning of every
batch job you submit.

1.3.5.1 The LOGIN.COM File - Use the LOGIN.COM file to execut1~ any
commands or sequences of commands that you typically execute at the
start of each terminal session. For example, if you define synonyms
for DCL commands, you can place the global assignment statements for
the command name synonyms in your LOGIN.COM file so they will be
available every time you log in. The LOGIN.COM file can also contain
commands to set up terminal characteristics, assign logical names, run
programs, execute command procedures, or display message files,, For
example, a LOGIN.COM file could contain the following statements::

$ QP :== SHOW QUEUE/DEVICE/FULL
$ QB :== SHOW QUEUE/BATCH/FULL
$ TIM :== SHOW TIME
$ SET PROTECTION = (GROUP:RE,WORLD)/DEFAULT
$ ASSIGN DBAl:[MALCOLM.PAYROLL] PAY
$ ASSIGN DBAl:[MALCOLM.DOCUMENTS] DOC
$ TYPE SYS$SYSTEM:NOTICE.TXT

You can use the Execute Procedure (@) command to test your LOGIN.COM
file. You can also set up your LOGIN.COM file so that it exE~cutes
different commands depending on whether the current process mode is
interactive or batch. For an example of how to do this, see Sc~ction
5.2.1, "The F$MODE Lexical Function."

When you create your LOGIN.COM file, you must locate it on your
default disk and directory and you must name it LOGIN.COM. After
that, you use and maintain it just like any other command procedure.

1.3.5.2 A System-Defined Login File - The system manager, who
authorizes use of the system, can optionally specify for each user a
login file to be executed at the start of a terminal session or batch
job. When a system manager has specified a system-defined login file,
the commands in that file take precedence over any user-defined login
file. However, the system-defined login file can, and usually.does,
contain the command:

$ @LOGIN

Then, the commands individual users want to execute can be executed in
addition to the commands in the system-defined login file" The
relationship between the two login files is illustrated in Figure 1-5.
The file specification for the system-defined login fi:e is
SYS$MANAGER:SYSLOGIN.COM, the file specification for the user-defined
login file is DBAl: [HIGGINS] LOGIN.COM. When user HIGGINS logs in, the
system-defined login file executes first. In this case, it contains
the command @LOGIN, so the command interpreter locates and exE~cutes
the user-defined login file on the default disk and directory for user
HIGGINS, then returns to the system-defined login file which completes
the login process.

1-14

DEVELOPING COMMAND PROCEDURES

User Authorization File

USER=HIGGINS

Userna1T1e: HIGGINS
Pass1A1ord:

WELCOME TO t,JA)< / l,JMS
30-0CT-1878 10:33:38

~$

SYSLOGIN.COM runs
until LOGIN command
is executed, when
control is passed
to LOGIN.COM

LOGIN.COM returns
control to the next
command in
SYSLOGIN.COM
when it exits.

-
~

When SYSLOGIN.COM
is completed,
it returns
control to user
at terminal

LOGIN FILE=
SYS$MANAGER:SYSLOGIN,COM

SYS$MANAG ER:SYSLOG IN. COM

$ TYPE SYSSSYSTEM:NOTICE.TXT
$ SHOW DAYTIME
$ @LOGIN

DBA 1 :[HIGGINS]LOGIN.COM

$ QP:==SHOW QUEUE-
/ DEl,J I CE I FULL

$ASSIGN DBA1:[HIGGINS-
.PAYROLL] PAY

$ D(IT

Figure 1-5 Executing System and User Login Files

NOTE

In some installations, a system-defined
login file can control an entire
terminal session. Such a procedure,
which can actually restrict the commands
a user is allowed to execute, is
illustrated in the sample command
procedure FORTUSER.COM in Appendix A.

1.4 TESTING AND DEBUGGING COMMAND PROCEDURES

Typically, command procedures need to be tested, then debugged, before
you can use them with complete confidence. You can debug command
procedures by controlling the input and output to them and by use of
the commands SET VERIFY and SET NOVERIFY. Methods for debugging
command procedures are discussed in Section 2.3, "Verifying Command
Procedure Execution."

1-15

DEVELOPING COMMAND PROCEDURES

1.5 MAINTAINING COMMAND PROCEDURES

If the command procedures you develop are correctly formatted,
carefully documented, and verified, their maintenance is relatively
easy. Because new versions of the VAX/VMS operating system may
include enhancements to the DCL command language, you should be aware
of new commands and any changes to current commands.

Generally, DIGITAL makes changes to the DCL commands (and to the
functions of the DCL command interpreter) only to add new features,
and to correct errors, but there may be occasions when a new release
changes the format or results of a particular command, command
parameter, or qualifier. For effective maintenance, study the release
notes issued with each VAX/VMS release for the effect, if any, of
changes to the DCL command language or the DCL command language
processor.

1-16

CHAPTER 2

CONTROLLING COMMAND PROCEDURE I/O

This chapter discusses the concepts and techniques you use to control
input to and output from command procedures. The topics covered are:

• How the system-defined equivalences for process logical names
function at different command levels

• How to use the SET VERIFY command as a debugging aid and as a
means of controlling responses and messages from DCL commands
and programs

• How to write command procedure output to a disk file

• How to include command or program data in a command procedure

• How to use the ASSIGN command to redefine equivalences for
SYS$INPUT and SYS$0UTPUT

• How to display data at your terminal or place data in a batch
job's output stream

2.1 SYSTEM-DEFINED LOGICAL NAME EQUIVALENCES

When you log in, the operating system creates a detached process for
you and establishes the initial equivalences to the following process
logical names:

• SYS$INPUT -- The default command and data input stream for
this process. The command interpreter uses SYS$INPUT to read
commands and data that are required by commands.

• SYS$0UTPUT -- The default output stream for commands and
program images that execute in this process. The command
interpreter uses SYS$OUTPUT when it issues prompting and
informational messages.

•

•

SYS$ERROR -- The default error message stream for thts
process. The command interpreter writes error and warning
messages to SYS$ERROR.

SYS$COMMAND -- The initial command input
process. The command interpreter uses
"remember" the original input device.

2-1

stream for this
SYSSCOMMAND to

CONTROLLING COMMAND PROCEDURE I/O

• SYS$DISK -- The default device for this process. The command
interpreter uses this equivalence to fill in the device name
portion of file specifications.

• SYS$LOGIN -- The device and directory that are the defaults
when you log in.

When you execute a command procedure, the command interpreter provides
a new equivalence name for SYS$INPUT, equating it to the command
procedure itself. This equivalence overrides the original assignment
for the duration of the command procedure.

When command procedures are nested, the command interpreter redefines
the equivalence name for SYS$INPUT, equating it to the file from which
the current command procedure is read. That is, the SYS$INPUT
equivalence is changed as the current command level changes.

The logical names SYS$ERROR, SYS$DISK, and SYS$COMMAND do not change.
SYS$COMMAND is always equated to the initial command level: if you
execute a command procedure interactively, SYS$COMMAND is always
equated to your terminal; if you submit a batch job, SYS$COMMAND is
always equated to the initial batch input file. The equivalence for
SYS$0UTPUT does not change unless the /OUTPUT qualifier is specified
when you enter the Execute Procedure (@) command.

In other words, the initial command input level, command level O, is
the level at which, by default, SYS$INPUT and SYS$COMMAND are the
same.

Figure 2-1 illustrates logical name assignments at various command
levels.

2.2 VERIFYING COMMAND PROCEDURE EXECUTION

By default, the output from a command procedure executed interactively
is displayed on the terminal. This output includes:

• Responses and messages from DCL commands

• All data messages displayed by programs that write to
SYS$0UTPUT and SYS$ERROR

If you also want to see the DCL commands and comment lines displayed
at the terminal, you can use the SET VERIFY command. Issue SET VERIFY
either within the command procedure or at the interactive command
level; the command affects all command procedures you subsequently
execute during the terminal session.

For example, to display lines in a particular command procedure, you
could place the SET VERIFY command at the beginning of the procedure
and place the SET NOVERIFY command at the end of the procedure, as
follows:

$ SET VERIFY
$ RUN TESTA
$ RUN TESTB
$ SET NOVERIFY

The SET NOVERIFY command at the end of this procedure restores the
default setting for interactive command procedure execution.

2-2

CONTROLLING COMMAND PROCEDURE I/O

Note that verifying a command procedure's execution is the principal
debugging tool for detecting errors in a command procedure. If SET
NOVERIFY is in effect and an error occurs, it may be difficult to
determine which command caused the error. With SET VERIFY in effect,
it is much easier· to determine the cause of the error.

User name: HIGGINS
Password:

input
A output
V error

command

TTB3:
TTB3:
TTB3:
TTB3:

$@PROC1 PROCl.COM ._______..,
input
output
error
command

OBA 1:PROC1.COM
TTB3:
TTB3:
TTB3:

$ @PROC2/0UTPUT=PROC2.0UT PROC2.COM __________.,..
input
output
error
command

OBA 1:PROC2.COM
OBA 1:PROC2.0UT
TTB3:

$SUBMIT BATCH1

$next-command

$EXIT

,---
BATCHl.COM

I input

I • output
V error

1

command

$@BATCH2

OBA 1:BATCH1.COM
OBA 1:BATCH1.LOG
OBA 1:BATCH1.LOG
OBA 1:BATCH1.COM

e
TTB3:

$@DBB2:PROC3 DBB2:PROC3.COM

------~~~~---....,,,,..,,..
input

$EXIT~ e ~~r:,ut
~ command

$EXIT

BATCH2.COM

OBB2:PROC3.COM
OBA 1:PROC2.0UT
TTB3:
TTB3:

I __________.,.
input
output
error
command

OBA 1:BATCH2.COM
OBA 1:BATCH1.LOG
OBA 1:BATCH1.LOG
OBA 1:BATCH1.COM

-,
I
I
I
I
I
I

Key:

input
output
error
command

I
I
I
I
I
L

Input stream (SYS$1NPUT)
Output stream (SYS$0UTPUT)
Error stream (SYS$ERROR)
Command stream (SYS$COMMAND)

Transfer of control

Command Level

Execution occurs in a separate process

0
$ @BATCH3/0UTPUT=BATCH3.0UT BATCH3.COM

input
output
error

$EXIT ~ command

$EXIT

OBA 1:BATCH3.COM
OBA 1:BA TCH3.0UT
OBA 1:BATCH1.LOG
OBA 1: BATCH 1. COM

I
I
I

_J

Figure 2-1 Logical Name Assignment at Different Command Levels

2-3

CONTROLLING COMMAND PROCEDURE I/O

2.2.1 Verification in Batch Jobs

In a batch job, the verification is set on by default; all DCL
commands and comment lines are written to the batch job log file with
the command responses and messages.

You can use the SET NOVERIFY command in a batch job to suppress
verification. For example, if a procedure loops around a command or
set of commands, you might want to suppress verification while the
loop executes and restore it afterward.

You can also use the SET NOVERIFY command at the beginning of your
LOGIN.COM file. Otherwise, the contents of this file will appear at
the beginning of every batch job log. However, you must include a SET
VERIFY command at the end of your LOGIN.COM file if you want the batch
job log file to exclude the login file while containing verification
inform~tion of the batch job.

2.2.2 Changing Verification Settings

The SET VERIFY and SET NOVERIFY commands are executed within the
command interpreter and therefore can be issued while a command
procedure is executing without affecting the command or program image
currently executing.

For example, if you
does not contain
execution begins,
displayed, you can
shown below:

$ @MASTEROO'J
~jRLNJ

"y

$ SET VERIFYOO'.)
$ CONTINUEOO'.)

interactively execute a
the SET VERIFY command
that you want to see

interrupt the procedure

command procedure that
and you decide, after

the DCL command lines
by pressing (CTRL/Y) as

$ The next step in this procedure is to concatenate all
$ related files into a single master file before print-

In the above example the Execute Procedure (@) command runs the
procedure MASTER.COM. Then, ~ is pressed to interrupt the
procedure's execution, causing the command interpreter to prompt for
command input. When the SET VERIFY command is entered, the default
verification setting is changed so that the lines in the procedure
will be displayed on the terminal. The CONTINUE command is issued to
resume execution of the command procedure. The next few lines
displayed, in this case, are comment lines in the procedure.

You can write a command procedure that tests the current verification
setting, changes it if necessary, and restores the original setting
before the command procedure completes execution. This technique
requires an understanding of the lexical function F$VERIFY (see
Section 5.2.2).

2-4

CONTROLLING COMMAND PROCEDURE I/O

2.3 CONTROLLING INTERACTIVE OUTPUT

When you use the Execute Procedure (@.) command
system equates the logical device SYS$INPUT
procedure, while SYS$0UTPUT and SYS$ERROR remain
terminal. In this way, output resulting from
execution and system messages are displayed on your

interactively, the
with the command
assigned to your
command or program
terminal.

If you want a permanent record of the output from the execution of a
command procedure, you can use the /OUTPUT qualifier of the Execute
Procedure (@) command. The /OUTPUT qualifier redefines the
equivalence name for SYS$0UTPUT from the default (the terminal) to a
disk file. For example:

$ @TESTALL/OUTPUT=TESTALL. LOG 00)

When you issue this command, all the data that is normally displayed
on your terminal as TESTALL.COM is executed is instead written to the
disk file named TESTALL.LOG. To determine the outcome of the command
procedure, you can use the TYPE command to display the file or the
PRINT command to print it. For example:

$ TYPE TESTALL. LOG 00)

Note that most DCL commands and VAX/VMS utilities write warning and
error messages to both SYS$0UTPUT and SYSSERROR. Therefore, when you
use the /OUTPUT qualifier to redefine SYS$0UTPUT, you will still see
all error and warning messages that occur during the execution of the
command procedure, even though all data will be written only to
SYS$0UTPUT.

Table 2-1 summarizes the output from a command procedure, based on the
output device and whether verification is on or off.

Table 2-1
Summary of Command Procedure Output

Output Device

SYS$0UTPUT
(terminal)

Log File
(/OUTPUT
qualifier
specified)

VERIFY

Terminal displays:
All DCL command
lines and com­
ment lines

Terminal displays:
All messages to
SYSSERROR

Log File contains:
All DCL command
lines and com­
ment lines

All messages to
SYS$0UTPUT

2-5

NOVERIFY

Terminal displays:
All messages to
SYS$0UTPUT and
SYSSERROR

Terminal displays:
All messages to
SYS$ERROR

Log File contains:
All messages to
SYSSOUTPUT

CONTROLLING COMMAND PROCEDURE I/O

2.4 INCLUDING COMMAND AND PROGRAM DATA IN COMMAND PROCEDURES

In a command procedure, you can issue a command that requires input
data· or run a program that requires input data. By default, the input
data will be read from SYS$INPUT, the command input stream. SYS$INPUT
is the command procedure.

For example, when you issue the CREATE command, the system reads input
lines for, a file from the command input stream. When you issue the
CREATE command interactively, the command input stream (SYS$INPUT) is
your terminal, and you indicate the end of the input data by pressing
~ro.

When you include the CREATE command in a command procedure, the input
stream is the command procedure itself. You include the input data
lines for the file in the command procedure, immediately following the
CREATE command line. The following example illustrates a command
procedure that creates a file named WEATHER.DAT, includes the data
lines that make up WEATHER.DAT, and issues the RUN command for a
program that reads the WEATHER.DAT file.

$ CREATE WEATHER.DAT
JAN 39 3
FEB 42 1
MAR 50 7

DEC 46 25
$ RUN WEATHER.FOR

In this example, the end of the input data for the file WEATHER.DAT is
indicated by the RUN command line. The end of input data for any
command or program that is reading input data from a command procedure
is indicated by a line that begins with the dollar sign ($) character,
or by the physical end-of-file of the command procedure.

To include data lines that begin with dollar signs in the input
stream, you must define the input data in a way that prevents the
command interpreter from attempting to execute the data as a command.
To delimit such an input stream, you use the DECK and EOD (End of
Deck) commands. These commands are particularly useful for batch
users who submit all work through the system card reader. For
example, if you use the CREATE command to write a command procedure
into a disk file, you would use the DECK and EOD commands as shown in
Figure 2-2, which illustrates a batch job that creates and executes
the command procedure WEATHER.COM.

2-n

CONTROLLING COMMAND PROCEDURE I/O

end of input stream

input stream for
CREATE command ----~

input stream with
dollar signs follows

$CREATE WEATHER.COM

$ EOJ

Figure 2-2 An Input Data Stream with Dollar Signs

You can also place input statements for a compiler into a command
procedure's input stream by specifying the name of the data file as
SYS$INPUT. The compiler will read its input from the command
procedure. The following example illustrates a command procedure that
contains a FORTRAN command followed by source statements:

$ FORTRAN/LIST SYS$INPUT:TESTER
C THIS IS A TEST PROGRAM

A = l
B = 2
STOP
END

$ PRINT TESTER.LIS

In this example, the file specification given to the FORTRAN command
includes the device specification SYS$INPUT. Thus, the compiler reads
the statements following the FORTRAN command (up to the next line that
begins with a dollar sign) instead of looking in your default device
and directory for a source program named TESTER.FOR. When the
compilation is completed, two output files are created: TESTER.OBJ
and TESTER.LIS. The PRINT command is then executed to print the
output listing file.

2-7

CONTROLLING COMMAND PROCEDURE I/O

2.5 REDEFINING SYS$INPUT AND SYS$0UTPUT

The techniques shown in the preceding section are particularly useful
in batch applications. In interactive applications, they can be used
for iterative testing of programs under development. For example,
consider the following command procedure:

$ FORTRAN AVERAGE
$ LINK AVERAGE
$ RUN AVERAGE
33
66
99
9999

In this example, the FORTRAN, LINK, and RUN commands compile, link,
and execute an interactive program that normally reads its input from
the terminal. In this case, the data is read from the command
procedure so the procedure can be used to test the source program each
time it is revised.

You can use this technique whenever you can provide a program with a
nonvarying set of input data. However, you may want to run a program
from a command procedure and supply the program with input from the
terminal. For example, if you want to run the program AVERAGE and
supply its input data from the terminal, you must redefine the input
stream. To do so, you include an ASSIGN command in the command
procedure before the RUN command:

$ ASSIGN SYS$COMMAND: SYS$INPUT:
$ RUN AVERAGE

This ASSIGN command redefines the input stream and equates it to the
initial command stream (SYS$COMMAND). When the program AVERAGE is
executed it reads input from the terminal rather than from the command
procedure.

When an ASSIGN command in a command procedure equates SYS$INPUT to
SYS$COMMAND, all subsequent programs (other than the command
interpreter itself) that read input from SYS$INPUT will actually read
the input from SYS$COMMAND (that is, from the terminal). For example:

$ ASSIGN SYS$COMMAND: SYS$INPUT:
$ EDIT AVERAGE.FOR
$ FORTRAN AVERAGE
$ LINK AVERAGE
$ RUN AVERAGE

In this example, both the EDIT and RUN commands invoke interactive
programs that normally read from SYS$INPUT. In this procedure,
however, both of the programs run by these commands will read input
from the current SYS$COMMAND device, the terminal. When the editing
session is completed, the next command in the procedure is executed.
At the end of the procedure, the command interpreter restores the
defaults associated with the initial command level in the terminal
session.

Note that changing the assignments for the logical names SYS$INPUT and
SYS$COMMAND does not affect the device from which the command
interpreter reads its input: such devices are known to the command
interpreter from the time you log in. In the case of a batch job, the
devices are known from the beginning of the job.

2-8

CONTROLLING COMMAND PROCEDURE I/O

2.5.1 User Mode Assignments

When you use
equivalence
SYS$INPUT),
equivalence.
interpreter,

an ASSIGN command in a command procedure to change the
of a logical name for a process-permanent file (such as
you cannot use the DEASSIGN command to cancel the

The logical name can be reassigned only by the command
and then only when a command level change occurs.

This command-interpreter restriction would prevent use of a command
procedure like the following:

$ ASSIGN SYS$COMMAND: SYS$INPUT:
$ EDIT AVERAGE.FOR
$ FORTRAN AVERAGE
$ LINK AVERAGE
$ RUN AVERAGE

~~ I this input data will be ignored

9999

In this example, the ASSIGN command changes SYS$INPUT so that the
editor can be run from the command procedure. Later, the input data
for the program AVERAGE follows the RUN command in the procedure. The
ASSIGN command, however, has redefined the input stream and this
assignment (the terminal) is still in effect. When the RUN command
executes the AVERAGE program, AVERAGE will attempt to read its data
from the terminal instead of reading from the command procedure: the
actual input data will be ignored.

To prevent this problem, use the /USER MODE qualifier in the ASSIGN
command. A user-mode logical name- assignment exists only for the
execution of one program image, in this example, for the duration of
the editing session:

$ ASSIGN/USER MODE SYS$COMMAND: SYS$INPUT:
$ EDIT AVERAGE.FOR
$ FORTRAN AVERAGE
$ LINK AVERAGE
$ RUN AVERAGE
33
66
99
9999

When the editing session is over, the command interpreter
automatically cancels the logical name assignment for SYS$INPUT and
restores the default for the current command level. Then, when the
AVERAGE program reads input data from SYS$INPUT, it reads the data
that is in the command input stream.

NOTE

For another example of running the
editor from a command procedure file,
see the sample procedure EDITALL.COM in
Appendix A.

2-9

CONTROLLING COMMAND PROCEDURE I/O

2.5.2 Suppressing Output

Many commands or programs that you execute produce output and display
this output (by default) on SYS$0UTPUT. When you execute a command
procedure, you may want to suppress this output or direct it to
another file. You can do this by redefining SYSSOUTPUT. For example:

$ ASSIGN/USER MODE STATISTIC.SRT SYS$0UTPUT:
$ SORT/KEY=(POSITION:l,SIZE:40) INFILE.DAT OUTFILE.DAT

In the above example, statistics that the SORT command normally
displays are redirected to the file STATISTIC.SRT. The ASSIGN command
specifies the /USER MODE qualifier so that when execution of the SORT
image is completea, the default equivalence will be reestablished.
You can use this technique to suppress the output from any DCL command
that displays output data on SYS$0UTPUT.

NOTE

This technique is used in the sample
command procedure LISTER.COM in Appendix
A.

2.6 DISPLAYING OUTPUT DATA

There are many different ways to display data on your terminal or in
the output stream for a batch job during the execution of a command
procedure. One method, discussed in Section 3.7, is to use the
INQUIRE command. Four other methods, using the TYPE, CREATE, COPY,
and WRITE commands are illustrated in Figure 2-3. The first part of
the figure shows a file, OUTPUT.COM, created by the CREATE command.
The second part of the figure shows the resulting display when the
Execute Procedure command (@OUTPUT) is executed from the terminal.

The primary difference between the commands that read data from the
input stream (such as TYPE, COPY, and CREATE) and the WRITE command is
that the command interpreter does not process input data lines. It
does, however, process data in a WRITE command string. Thus, a WRITE
command can contain symbol names for data (variable values or
character strings) and the symbol names will be replaced with their
current values before the line is written.

The next three chapters contain detailed information on creating and
using symbols in command procedures. The WRITE command is discussed
in Chapter 8.

2-10

CONTROLLING COMMAND PROCEDURE I/O

$ CREATE OUTPUT.COM
$!
$ TYPE SYS$INPUT:

THESE LINES ARE IN THE INPUT STREAM+
THE TYPE COMMAND DISPLAYS THEM IN THE OUTPUT STREAM.

$ CREATE SYSSOUTPUT:

THESE LINES <AS WELL AS ANY BLANK LINES PRECEDING AND
FOLLOWING> ARE IN THE INPUT STREAM+

THE CREATE COMMAND CREATES A FILE IN THE OUTPUT STREAM.

$ COPY SYSSINPUT: SYSSOUTPUT
THE COPY COMMAND COPIES DATA FROM THE INPUT STREAM
INTO THE OUTPUT STREAM.

NOTE THAT FOR EACH OF THESE COMMANDS <CREATE AND COPY>
A LINE BEGINNING WITH A DOLLAR SIGN INDICATES THE END
OF THE INPUT DATA.

$WRITE SYS$0UTPUT •THE WRITE COMMAND WRITES A SINGLE DATA LINE. 1

S WRITE SYS$0UTPUT •LINES WRITTEN BY THE WRITE COMMAND AREv"
S WRITE SYS$0UTPUT "HOWEVERY PROCESSED BY THE COMMAND INTERPRETER+"
$
~z

$ @OUTPUT

THESE LINES ARE IN THE INPUT STREAM.
THE TYPE COMMAND DISPLAYS THEM IN THE OUTPUT STREAM.

THESE LINES <AS WELL AS ANY BLANK LINES PRECEDING AND
FOLLOWING> ARE IN THE INPUT STREAM.

THE CREATE COMMAND CREATES A FILE IN THE OUTPUT STREAMt

•
THE COPY COMMAND COPIES DATA FROM THE INPUT STREAM
INTO THE OUTPUT STREAM+

NOTE THAT FOR EACH OF THESE COMMANDS <CREATE AND COPY>
A LINE BEGINNING WITH A DOLLAR SIGN INDICATES THE END
OF THE INPUT DATA.

THE WRITE COMMAND WRITES A SINGLE DATA LINE.
LINES WRITTEN BY THE WRITE COMMAND ARE,
HOWEVER, PROCESSED BY THE COMMAND INTERPRETER.
$

Figure 2-3 Displaying Data in the Output Stream

2-11

CHAPTER 3

USING SYMBOLS IN COMMAND PROCEDURES

A command symbol is a character string name that has a value. In
VAX/VMS command procedures, you can define symbols as constants or
variables and manipulate them in much the same way that you manipulate
variables in a programming language. In fact, the symbolic
capabilities of the command interpreter, together with commands such
as IF and GOTO, make the DCL command language very much like a
programming language.

For example, you can define a symbol to represent a character string
as shown below:

$ FILE := ALPHA

This command, called an assignment statement, gives the symbol name
specified on the left (FILE) the value ALPHA. Subsequently, the file
ALPHA can be referred to symbolically by referring to the symbol name
FILE. For example:

$ FORTRAN 'FILE'

The apostrophes surrounding the symbol name FILE are substitution
operators; they tell the command interpreter that the word they
surround is a symbol name. The command interpreter substitutes the
value ALPHA for symbol FILE before parsing the FORTRAN command.

This chapter describes the syntax of symbol names and gives examples
of defining symbol values. Chapter 4, "Symbol Substitution in Command
Procedures," provides detailed information on how the command
interpreter substitutes values for symbols during command processing;
and Chapter 5, "Using Lexical Functions in Command Procedures,"
introduces the command lan~uage's lexical functions.

3.1 SYMBOL NAMES

An assignment statement equates a symbol name with a character string
or arithmetic value. You can use assignment statements in command
procedures to perform string substitution and manipulation, arithmetic
operations, and logical comparisons.

3-1

USING SYMBOLS IN COMMAND PROCEDURES

The format of an assignment statement indicates the data type of the
value you are giving a symbol name. The valid data types are
character and numeric. The rules for forming a symbol name are:

• Begin a symbol name with an alphabetic letter (A
an underscore () , or a dollar sign ($).
letters you enter-are translated to uppercase by
interpreter.

through Z),
All lowercase

the command

• Use from 1 to 255 characters, including any of the characters
listed above.

You can define symbol names and use them as variable data in a command
procedure by:

• Equating symbol names to constant values or to other variable
symbol names with assignment statements (described in Sections
3.2 through 3.5)

• Passing parameters to a command procedure when you invoke it,
or to a batch job when you submit it to a queue (described in
Section 3.6)

• Using the INQUIRE command to
during the execution of a
Section 3.7)

prompt for a symbol's value
command procedure (described in

• Using the READ command to read a character string from an
input file or device and assigning the character string value
read to a symbol name (described in Chapter 8)

You can delete symbol names from local and global symbol tables. How
to do so is described in Section 3.8.

3.2 EQUATING SYMBOLS TO CHARACTER STRINGS

The format of an assignment statement that equates a character string
value to a symbol name is:

symbol-name := character-string-value

Some examples of assignment statements, as they would appear in a
command procedure, are:

$ NAME := MYFILE.DAT
$ TEMP := TEMPORARY FILE CREATED
$ EXCLAMATION := "Happy Day!"
$OUTPUT MESSAGE :="Beginning ••• "
$ $GLOBAL := GLOBALNAME

Note the use of two dollar sign characters in the last assignment
statement above. The first dollar sign is the required character that
begins command procedure lines; the second dollar sign is the first
character of the symbolic name. Issued interactively, the command
string would be:

$ $$GLOBAL := GLOBALNAME

The additional dollar sign is required in interactive mode because the
command interpreter always accepts an optional dollar sign preceding
any command string.

3-2

USING SYMBOLS IN COMMAND PROCEDURES

3.2.1 Special Characters in Symbol Values

A character string value can contain any alphanumeric or special
characters; however, you must enclose it in quotation marks if it
contains leading space or tab characters, multiple space or tab
characters, lowercase letters, or any characters that are not valid in
a symbol name.

When it scans a command string, the command interpreter deletes all
leading and trailing space and tab characters and compresses multiple
space or tab characters to a single character. You must place
quotation marks around a string containing required spaces or tabs to
ensure that these characters will not be removed.

To specify a string that contains literal quotation marks, enclose the
entire string in quotation marks and use a double set of quotation
marks where you want the literal quotation marks to appear. For
example:

$ HELLO := "PATTI SAYS ""HI"""

You can continue a symbol assignment on more than one line, for
example:

$ LONG NAME := THIS IS A VERY LONG SYMBOL­
NAME VALUE CONTINUED MORE THAN ONE-LINE - -

Another case is a long string:

$ ABC:= THIS THE -
STRING THAT MUST BE -
CONTINUED.

Note, however, if you are continuing a string that must be enclosed in
quotation marks, you must use quotation marks around each portion of
the string. For example:

$ ABC := "This is "­
"the string"

However, the resulting value will contain a literal quotation mark,
that is, the symbol ABC in this example will have the value:

This is "the string

You can specify a null string either by using a double set of
quotation marks with no intervening characters or by specifying no
string. For example, the following statements are equivalent:

$ NULLSTRING := ""
$ NULLSTRING :=

You can omit a trailing quotation mark on the end of a line. For
example, the following assignment statements are equivalent:

$ NAME := "Juniper"
$ NAME := "Juniper

For clarity, however, the trailing quotation mark is recommended.

3-3

USING SYMBOLS IN COMMAND PROCEDURES

3.2.2 Replacing Substrings in Character String Symbol Values

A special format of the character string assignment statement allows
you to replace data within a defined substring of a value. This
format is:

symbol-name[offset,size] := character-string-value

The offset is the position of the substring relative to the first
character in the string, and the size is the length of the substring.

The square brackets are required notation, and no spaces are permitted
between the right bracket and the colon. You can specify literal
numeric values for offset and size, or symbol names equated to numeric
values. Literal values are assumed to be decimal. These values can
be in the range of 0 through 254.

This type of assignment statement evaluates the current value of
symbol-name and then replaces a specified string of characters with
the specified character string value. For example:

$ A := ABCDEF
$ A[0,3] :=DEF

The first assignment statement above gives the symbol name A the value
ABCDEF. The second assignment statement specifies that the value DEF
replaces three characters in the value of A, beginning at an offset of
0 from the beginning of the string. The result is that the value of A
becomes DEFDEF.

The symbol name you specify can be undefined initially. The
assignment statement creates the symbol name and provides leading or
trailing spaces in the symbol value if necessary. For example:

$ 8[4,3] := GHI

If the symbol named B does not have a value when this assignment
statement is executed, the resulting value of B is " GHI," that is,
B has four leading spaces before the characters GHI. You can use this
format to create a blank line of any number of characters, for
example:

$ LINE (0 ,80] := II H

This assignment statement gives the symbol named LINE a value of 80
blank spaces. The following example shows how you can use this syntax
of an assignment statement to align data in columns for output:

$ RECORD[0,20] :="Programmer"
$ RECORD[25,15] :="File Name"

These two assignment statements construct a value for the symbol
RECORD. The first statement fills in the first 20 columns of the
value; the second statement fills in columns 26 through 40. Columns
20 through 24 contain blanks.

NOTE

The sample procedure LISTER.COM in
Appendix A illustrates further uses of
replacing character strings in
assignment statements.

3-4

USING SYMBOLS IN COMMAND PROCEDURES

Figure 3-1 illustrates some applications of string substitutions using
offsets. In the figure, substitutions change the current value of the
symbol FILENAME from its initial assignment, MYFILE.DAT, to
TRTEST.DAT;l. Then, the current value of the symbol COMMAND is
combined with the string TRTEST.DAT;l to produce a new assignment for
COMMAND.

Interactive Assignment

SFILENAME:=MYFILE.DAT

$ FILENAME[O 12J: =TR

SFILENAME[214J:=TESTING.LIS

$FILENAMEC1012J:=;1

$COMMAND: =TYPE

$COMMAND[5113J:='FILENAME'

Resulting Symbol Value Comments

MYFILE.DAT The result is the initial value of symbol
FILENAME

TR FILE • DAT Two characters starting at offset 0 are overlaid

TR TE s T • DAT When the string value is longer than the char­
acter i::ount the value is truncated to the count

T RTE s T • DAT ; 1 When the length of the string is equal to the
value of the offset, the string is appended to
the current value

TY PE This is the initial value of the symbol command

TYPE TRTEST. DAT; 1 Appends a space and the current value of
FILENAME to the TYPE command verb.

Figure 3-1 Replacing Character Strings in Assignment Statements

3.3 EQUATING SYMBOLS TO NUMERIC AND LOGICAL EXPRESSIONS

The format of an assignment statement that equates a symbol name to a
numeric value or expression is:

symbol-name expression

Some examples are:

$ COUNT 1
$ VALUE %XlC
$ SUM = 1 + 7 - 4/3 + 10

An expression can be any literal numeric value or an arithmetic or
logical expression. Literal numeric values are assumed to be decimal.
You can specify a value in another radix by using the radix operator
(%X for hexadecimal, %D for decimal, or %0 for octal) as shown in the
second example above. When you define a value in either hexadecimal
or octal, the command interpreter converts the value to a decimal
integer.

3-5

USING SYMBOLS IN COMMAND PROCEDURES

When the command interpreter evaluates an expression, it assigns the
expression a value based on the result of the operations specified in
the expression:

• If the expression contains logical operators, arithmetic
comparison operators, or string comparison operators, the
expression is considered true if it results in an odd numeric
value; the expression is considered false if it results in an
even numeric value.

• If the expression contains arithmetic operators, the result is
the value of the arithmetic operations.

The following sections show how to specify expressions using
assignment statements. Note that the rules for specifying and using
expressions in assignment statements also apply to specifying
expressions in the IF command, and in all contexts in which the
command interpreter automatically performs expression evaluation. The
IF command is described in Chaptsr 6, "Execution Flow in Command
Procedures."

For clarity, the examples in this chapter show literal numeric and
character string values in expressions. Additional examples of
expressions are shown throughout this manual; these examples will
show how to use symbols as variables or constants in expressions.

3.3.1 Operators

Table 3-1 lists the valid operators you can use in forming expressions
and defines the order of precedence of evaluation. Logical and
comparison operators must be preceded by a period (.) with no
intervening blanks. The operator must be terminated with a period.
You can type any number of blanks or tabs between operators and
operands. For example, the following expressions are equivalent:

A.EQS.B
A .EQS. B

Each operator (except .NOT. and the unary plus or minus signs) must
have operands on each side.

When you specify more than one operation in an expression, the
operations are performed in the order of precedence listed in Table
3-1, where 1 is the lowest precedence and 6 is the highest precedence.
For example, multiplication is performed before addition. Use
parentheses to override the order in which operators are evaluated:
expressions within parentheses are evaluated first.

Operations of the same precedence are performed from left to right, as
they appear in the command.

3-n

USING SYMBOLS IN COMMAND PROCEDURES

Table 3-1
Summary of Operators in Expressions

Type Operator Precedencel Operation
·- -~----··-- ·-···-····-

Logical .OR. 1 Logical OR
Operators .AND. 2 Logical AND

.NOT. 3 Logical complement

• EQ • 4 Arithmetic equal to
Arithmetic .GE. 4 Arithmetic greater than or equal to
Comparison .GT. 4 Arithmetic greater than
Operators .LE. 4 Arithmetic less than or equal to

.LT. 4 Arithmetic less than

.NE. 4 Arithmetic not equal to

.EQS. 4 String equal to
String .GES. 4 String greater than or equal to
Comparison .GTS. 4 String greater than
Operators .LES. 4 String less than or equal to

.LTS. 4 String less than

.NES. 4 String not equal to

+ 5 Arithmetic sum
Arithmetic - 5 Arithmetic difference
Operators * 6 Arithmetic product

I 6 Arithmetic division (integer quotient)
--·- --- ---·--·--

1. Lowest precedence is l; highest precedence is 6.

3.3.2 Logical Operations

Use logical operators to
values or to construct
listed below:

Expression

A
B
c
D

3 • OR. 5
3 .AND. 5
.NOT. 3
3 + 4 .AND. 2 + 4

perform logical functions on arithmetic
complicated expressions. Some examples are

Value of Symbol

A
B
c
D

7
1
-4
6

Operands for logical operations must be literal numeric values, symbol
names equated to numeric values, or expressions.

Note that logical operators can be used in an arithmetic sense as
well. For example:

$ A = %Xl000 .OR. %X0001

This expression performs a logical OR operation on two values. The
resulting value of the symbol A is %Xl001, or 4097. Note that one of
the two values in the OR expression (%X0001} is logically true; the
other value (%Xl000} is logically false. The resulting value of A
(%1001) is logically true. An arithmetic OR always yields a logical
as well as an arithmetic result.

3-7

USING SYMBOLS IN COMMAND PROCEDURES

3.l.3 Arithmetic Comparisons

Use arithmetic comparison operators to compare numeric values. If the
result of an arithmetic comparison is true, the expression has a value
of l; if the result of the comparison is false, the expression has a
value of o. Some examples are listed below:

Expression

1. LE. 2
l.GT. 2
1 + 3 • EQ. 2 + 5
"TRUE".EQ.l
"FALSE"

Value of Expression

1 (true)
0 (false)
0 (false)
1 (true)
0 (false)

Operands in arithmetic comparisons can be literal numeric values;
symbol names equated to numeric values; expressions that yield
numeric values; or character strings enclosed in quotation marks that
begin with the uppercase letters T, Y, F, or N. (A character string
beginning with the uppercase letters T or Y has a value of l; a
character string beginning with the uppercase letters F or N has a
value of 0.)

3.3.4 String Comparisons

Use string comparison operators to compare alphanumeric character
strings. Character string comparison is based on the binary values of
the ASCII characters in the string. The ASCII characters and their
hexadecimal values are listed in Table 3-2. The following rules apply
to character string comparisons:

• The comparison is on a character-by-character basis: the
comparison terminates as soon as two characters do not match.

• If one string is longer than the other, the shorter string is
padded on the right with spaces (an ASCII value of %X20)
before the comparison is made. Note that a space has a lower
numeric value than any of the alphabetic or numeric
characters.

• Lowercase letters have higher numeric values than uppercase
letters.

If the result of a comparison is true, the expression is given a value
of l; if the comparison is false, the expression is given a value of
o. Some examples are listed below:

Expression

"MAYBE".LTS."maybe"
"ABCD".LTS."EFG"
"YES".GTS."YESS"
"AAB".GTS. "AAA"

Value of Expression

1 (true)
1 (true)
0 (false)
1 (true)

Operands in string comparisons can be literal strings enclosed in
quotation marks, symbol names equated to character strings, or literal
numeric values. (Literal numeric values are compared using the binary
value of their ASCII character string representations.)

If you do not enclose a literal character string in quotation marks,
the command interpreter assumes the string is a symbol name and issues
an error message if the symbol is not defined.

3-8

USING SYMBOLS IN COMMAND PROCEDURES

Table 3-2
ASCII Character Set and Hexadecimal Values

HEX ASCII HEX ASCII HEX ASCII HEX ASCII
Code Char. Code Char. Code Char. Code Char.

00 NUL 20 SP 40 @ 60 \
01 SOH 21 ! 41 A 61 a
02 STX 22 II 42 B 62 b
03 ETX 23 # 43 c 63 c
04 EOT 24 $ 44 D 64 d
05 ENQ 25 % 45 E 65 e
06 ACK 26 & 46 F 66 f
07 BEL 27 I 47 G 67 g
08 BS 28 (48 H 68 h
09 HT 29) 49 I 69 i
OA LF 2A * 4A J 6A j
OB VT 2B + 4B K 6B k
oc FF 2C , 4C L 6C 1
OD CR 2D - 4D M 6D m
OE so 2E 4E N 6E n
OF SI 2F I 4F 0 6F 0

10 DLE 30 0 50 p 70 p
11 DCl 31 1 51 Q 71 q
12 DC2 32 2 52 R 72 r
13 DC3 33 3 53 s 73 s
14 DC4 34 4 54 T 74 t
15 NAK 35 5 55 u 75 u
16 SYN 36 6 56 v 76 v
17 ETB 37 7 57 w 77 w
18 CAN 38 8 58 x 78 x
19 EM 39 9 59 y 79 y
lA SUB 3A : 5A z 7A z
18 ESC 38 i 58 [78 {
lC FS 3C < 5C \ 7C I
lD GS 3D = 5D l 7D }
lE RS 3E > 5E I\ 7E "v

lF us 3F ? 5F - 7F DEL

3.3.5 Arithmetic Operations

Use arithmetic operators to perform calculations on numeric integer
values. In arithmetic operations, all nondecimal values (specified by
radix operators) are converted to binary values before the operation
is performed. After the operation, the result is converted to
decimal. All arithmetic is integer arithmetic; that is, all
fractional values are truncated. Some examples are listed below:

Expression

A = 5 + 10 I 2
B 5 * 3 - 4 * 6
c 5 * (6 - 4)
D %X50
E = %Xl0 + 5
F n I 4

Operands in arithmetic
symbol names equated
numeric values.

I
8

2
I (2 - 1)

operations
to numeric

Result

A
B
c
D
E
F

10
3
2
80
21
1

can be literal numeric values,
values, or expressions that yield

3-9

USING SYMBOLS IN COMMAND PROCEDURES

NOTE

The sample procedure CONVERT.COM in
Appendix A illustrates arithmetic
assignment statements that perform
calculations.

3.3.6 Arithmetic Overlays

One format of an
perform binary
format is:

arithmetic assignment statement can be used to
overlays in the current value of a symbol name. This

$ symbol-name[bit-position,size]= numeric-expression

The bit-position is the location relative to bit 0 at which the
overlay is to occur, and size is the number of bits to be overlaid.
The square brackets are required notation, and no spaces are allowed
between the right bracket and the equal sign. The bit-position and
size can be either literal numeric values or symbol names equated to
numeric values. Literal values are assumed to be decimal.

This type of assignment statement evaluates the current value of the
symbol name and then replaces the specified number of bits with the
value on the right-hand side of the assignment statement.

This form of an assignment statement can store a maximum of 32 bits at
a time. You can use this statement to equate a symbol name to a
binary value, for example:

$ BELL[0,32]=%X07

This statement gives the symbol named BELL a value equivalent to a
hexadecimal 7, the ASCII code for the bell character (CTRL/G) on a
terminal.

NOTE

The arithmetic overlay technique is used
in the sample procedure WAKEUP.COM in
Appendix A. The sample procedure
CALC.COM also shows the use of this
syntax to give a value to a symbol
before the F$CVUI (convert unsigned
integer) lexical function is used to
extract and convert bit fields within
the value.

3-10

USING SYMBOLS IN COMMAND PROCEDURES

3.4 CHANGING THE CONTEXT OF A SYMBOL

After a symbol is defined, it can be interpreted as character or
numeric data, depending on the context in which it is used:

• It can be used in an arithmetic context, for example, in
addition, subtraction, multiplication, or division.

• It can be used as a character string in an expression or it
c~n be concatenated with another string.

• It can be used as a logical value and tested for truth or
falsity.

For example, suppose a symbol, COUNT, is assigned the value 4 in an
arithmetic assignment statement:

$ COUNT = 4

Then the value of COUNT can be used in other assignment statements
such as the examples below:

$ TOTAL = COUNT + 1

$ SYMBOL := P'COUNT'

$ RESULT=TEMP.OR.COUNT

An arithmetic assignment statement
that adds the value of COUNT to the
value 1 and equates the result to the
symbol TOTAL, which now equals 5.

A string assignment statement that
appends the character string value of
COUNT to the character P. SYMBOL now
equals P4.

A logical OR operation on the symbols
TEMP and COUNT. If either value is
true the symbol RESULT will have a
true value assigned to it.

If you define a null character string value for a symbol, that symbol
has a value of O when it is used in an arithmetic context. For
example:

$ A :=
$ B 2
$ C = A + B

After these statements are executed, the symbol C has a value of 2.

3.5 SYMBOL TABLES

The command interpreter maintains symbol names and their associated
values in two types of symbol table:

• A local symbol table that contains symbols associated with
each active command level

• The global symbol table that contains symbols accessible at
all command levels

Symbol tables are of particular importance in the understanding of
symbol substitution. Symbol substitution is described in full in
Chapter 4.

The following sections describe how to define local and global
symbols.

3-11

USING SYMBOLS IN COMMAND PROCEDURES

3.5.l Local Symbols

The command interpreter maintains a symbol table for each active
command level. These tables are called local symbol tables, and the
symbols they contain can be accessed only from the current command
level or from a lower command level. For example symbols defined at
command level 0 can be accessed by command level 1, but command level
0 cannot access symbols defined at command level 1.

Use a single equal sign (=) in an assignment statement to define a
local symbol. For example:

$ COUNT = l
$ OUTDAT :="Beginning tests •••• "

A local symbol exists as long as the command level at which it was
defined remains active, unless the symbol is specifically deleted.
For example, if you define the symbol COUNT interactively (at command
level 0), any command procedure you subsequently execute (until you
log out) can refer to the symbol COUNT and obtain its current value.
As another example, the command procedure A.COM contains:

$ TOTAL = 1
$ @B

The procedure B.COM contains the line:

$ NEWTOTAL = TOTAL + 1

When B is executed, the symbol name TOTAL is accessible and can be
referenced or replaced, because the command level at which TOTAL was
defined is still active.

If B.COM defines a value for TOTAL, that definition establishes a new
value for TOTAL while B is executed. When execution of B is completed
and control returns to procedure A, the value of the symbol TOTAL in A
is unchanged. '

Local symbols are deleted as soon as the command procedure that
defined them exits. In the above example, the symbol NEWTOTAL defined
in the procedure B.COM is deleted when execution of B.COM is
completed.

In addition to the local symbols that you create, the local symbol
table for each command level contains eight special symbols named Pl,
P2, and so on to P8. These symbols represent values, or parameters,
that can be passed to a procedure. The techniques for passing
parameters to command procedures are described in Section 3.6.

3.5.2 Global Symbols

In addition to the local symbol tables, the command interpreter
maintains a global symbol table. A global symbol exists for the
duration of the process, unless specifically deleted, and is
recognized at any command level. To define a global symbol, use two
equal signs (==) in the assignment statement. For example:

$ RESULT == 50
$ FILENAME :== MYFILE.DAT

These assignment statements define the global symbols named RESULT and
FILENAME.

3-12

USING SYMBOLS IN COMMAND PROCEDURES

Global symbols are frequently used to define command synonyms.
Normally, you would place all the synonyms in your LOGIN.COM file, so
these definitions are available for every terminal session. These
synonyms must be defined as global symbols; otherwise, they would be
deleted as soon as the procedure LOGIN.COM was executed.

In addition to the global symbols that you create, the global symbol
table contains two special symbols whose values are set by the command
interpreter. These symbols, named $STATUS and $SEVERITY, contain
values indicating the success or failure of the most recently executed
image. For information on these symbols and how to use them in
command procedures, see Chapter 7, "Controlling Error conditions and
CTRL/Y Interrupts."

3.5.3 Order of Search of Symbol Tables

When the command interpreter performs symbol substitution, it searches
symbol tables in the following order:

1. The local symbol table for the current command level

2. Local symbol tables for each previous
searching backwards from the current level

3. The global symbol table

command level,

You can use the SHOW SYMBOL command to display the current value of
any symbol. The SHOW SYMBOL command uses the same order of search to
locate symbol definitions, that is, it searches the local symbol
tables and then the global symbol table to locate a specified symbol
name.

3.6 PASSING PARAMETERS TO COMMAND PROCEDURES

When you develop and write command procedures, a primary concern is
the ability to act on different data, or parameters, each time you
execute the procedure. The command interpreter provides a direct
method for specifying, at execution or submission time, values to
correspond to symbols within the procedure.

For example, the command procedure named RUNTEST contains the lines:

$ASSIGN 'Pl' INFILE
$ ASSIGN 'P2' OUTFILE
$ RUN SORTER

The program SORTER.EXE reads a file using the logical name INFILE and
writes an output file using the logical name OUTFILE. To assign
equivalences to these logical names~ values must be provided for Pl
and P2 when the procedure is executed.

Note, however, that Pl and P2 are special symbol names; the command
interpreter defines eight of these special symbols for use as
parameters within command procedures. These local symbols are named
Pl, P2, and so on to P8. The command interpreter gives them null
values by default if you do not specify values for them.

3-13

USING SYMBOLS IN COMMAND PROCEDURES

Unspecified parameters used in character string contexts are treated
as null strings; in arithmetic contexts, they are given a value of O.
For example, a procedure called ADD.COM can contain the lines:

$ TOTAL = Pl + P2 + P3 + P4 + PS + P6 + P7 + P8
$ SHOW SYMBOL TOTAL

When this procedure is invoked, it can be invoked with up to eight
numeric values specified for parameters. All unspecified parameters
default to O, which does not affect the result of the addition.

3.6.1 Specifying Parameters for the Execute Procedure Command

When you execute a procedure with the Execute Procedure (@) command,
you enter the values for Pl, P2, and so on, as command parameters, as
follows:

$ @RUNTEST INSORT.DAT OUTSORT.DAT

This command string gives the symbol named Pl a value of INSORT.DAT
and the symbol P2 a value of OUTSORT.DAT. The values for the
parameters are assigned according to the order in which you specify
them, that is, the first parameter you enter is Pl, the second is P2.
In this example, P3 through P8 are equated to null strings because no
values are specified for them.

You can equate any parameter to a null string by using a set of double
quotation marks as a place holder in the command string. For example:

$ @RUNTEST "" OUTSORT.DAT

This command string sets the parameter Pl to a null string and gives
P2 a value of OUTSORT.DAT.

3.6.2 Delimiting Parameters

When you specify parameters for a command procedure that you execute
with the Execute Procedure command, spaces in the command string
delimit parameters. For example, the following command passes the
three parameters, A, B, and C, to the procedure TESTFILE.COM:

$ @TESTFILE A B C

To pass a parameter that contains lowercase
characters, or embedded blanks, enclose the
quotation marks. For example:

$ @TESTFILE "lowercase parameter"

letters, special
entire parameter in

When the procedure TESTFILE.COM is executed, the parameter Pl is
equated to the string:

lowercase parameter

When you specify parameters, you can specify a string with embedded
quotation marks. In this case, the quotation marks are preserved in
the string. For example:

$ @TESTFILE abc"def"ghi

3-14

USING SYMBOLS IN COMMAND PROCEDURES

In this example, the parameter Pl is equated to the string:

ABC"def "GHI

The characters that are not within quotation marks are converted to
uppercase, but the string in quotation marks, including the quotation
marks, is left intact.

3.6.3 Passing Parameters to Batch Jobs

To pass parameters to a batch job with the SUBMIT command, use the
/PARAMETERS qualifiers, as follows:

$ SUBMIT TESTFILE/PARAMETERS=AVERAGE

This SUBMIT command passes the string AVERAGE as the parameter Pl for
the procedure TESTFILE.COM.

Commas delimit parameters within a list for the SUBMIT command. When
you specify more than one parameter, separate them with commas and
enclose them in parentheses as in the following example.

$ SUBMIT RUNTEST/PARAMETERS=(INSORT.DAT,OUTSORT.DAT)

Within the parameter list for the SUBMIT command, you can equate a
parameter to a null string by using a set of double quotation marks as
a place holder. For example:

$SUBMIT RUNTEST/PARAMETERS=("",OUTSORT.DAT)

This SUBMIT command equates the parameter Pl to a null string and
gives P2 a value of OUTSORT.DAT.

Note that you can submit more than one file for batch execution in a
single SUBMIT command. If you specify parameters with the /PARAMETERS
qualifier when you submit a list of command procedures, however, the
parameters you specify are equated to Pl, P2, and so on in each file
you specify. For example:

$ SUBMIT TESTA,TESTB/PARAMETER=lO

When the procedure TESTA is executed in the batch job, the symbol
named Pl has the value of 10. When execution of TESTA is completed
the job executes TESTB; in TESTB also, the symbol Pl has the value of
10, unless the procedure TESTA redefines the value of Pl.

You can also use the /PARAMETERS qualifier on a JOB command when you
submit batch jobs through the system card reader. The syntax for
specifying parameters on the JOB card is identical with the syntax of
specification on the SUBMIT command. For example, a batch job could
refer to symbols Pl and P2. When you place cards in the card reader,
the JOB card could be continued onto a card that specified different
values for these parameters for different runs of the procedure. The
JOB command might appear as shown on the two cards illustrated in
Figure 3-2.

3-15

USING SYMBOLS IN COMMAND PROCEDURES

Figure 3-2 Using a /PARAMETERS Qualifier Card

3.6.4 Redefining Parameters

The symbol names Pl through PB, although defined by default if not
specified, are not reserved to the command interpreter. You can, in
your command procedures, define values for these symbol names or
redefine them, as needed. For example:

$ Pl = Pl - 1

This assignment statement assumes that Pl has a numeric value and
decreases the current value by one.

Another example is:

$ IF Pl .EQS. "" THEN INQUIRE Pl "Input file name"

This command checks whether a value was specified for Pl; if not, the
INQUIRE command requests interactive assignment of a value for Pl.
The IF command is described in Chapter 6. The INQUIRE command is
described in the following section.

3.7 THE INQUIRE COMMAND

When you execute a command procedure interactively, you can use the
INQUIRE command to define a value for a symbol while the command
procedure is executed. When the INQUIRE command is executed from the
command procedure, the command interpreter issues a prompting message
to SYS$COMMAND, that is, the terminal; the text of the message is
taken from the INQUIRE command line, as shown in the example below.

The procedure RUNTEST contains the lines:

$ INQUIRE IN INPUT FILE
$ INQUIRE OUT OUTPUT FILE
$ ASSIGN 'IN' INFILE
$ ASSIGN 'OUT' OUTFILE
$ RUN SORTER

3-16

USING SYMBOLS IN COMMAND PROCEDURES

When you execute this procedure, the terminal interaction might appear
as follows (if SET NOVERIFY is in effect):

$ @RUNTEST(Bfil)

$

INPUT FILE: DBl:INSORT.DAT~
OUTPUT FILE: DB2:0UTSORT.DATi(Bfil)

When these INQUIRE commands are executed, the prompting messages INPUT
FILE: and OUTPUT FILE: are displayed, and you must enter values for
the symbols IN and OUT before the command procedure continues. The
prompt strings INPUT FILE and OUTPUT FILE are optional parameters for
the INQUIRE command; if you do not specify them, the command uses the
symbol names IN and OUT to prompt for values.

By default, INQUIRE command appends a colon (:) and a space to the
prompt string; you do not need to include them when you specify the
prompt string to the INQUIRE command. If you do not want the colon
and space to be appended to the prompt string, use the NOPUNCTUATION
qualifier, as described in the VAX/VMS Command Language User's Guide.
Note that you can request a lowercase prompting message or a prompting
message that contains special characters by enclosing the prompt
string in quotation marks, as shown below:

$ INQUIRE FILE "Enter name of file to edit"

When this INQUIRE command is executed, the following prompting message
is displayed on SYS$COMMAND (normally, the terminal):

Enter name of file to edit:

The symbol name FILE and the value you enter in response to this
prompt are placed in the local symbol table for the current command
level.

The INQOIRE command also accepts entries for the global symbol table.
To define a global symbol name with the INQUIRE command, use the
/GLOBAL qualifier. For example:

$ INQUIRE/GLOBAL FILE "Enter name of file to edit"

When you respond to this prompt, the symbol name FILE is entered in
the global symbol table with whatever value you enter.

When you do not enter any data in response to an INQUIRE command, the
specified symbol name is given a null value. For example:

$ INQUIRE FILE "File"
$ IF FILE .EQS. "" THEN EXIT

In the above example, the INQUIRE command is followed by a test to
determine whether a value was entered. If not, the procedure exits.

NOTE

The sample procedures
CALC.COM in Appendix
use of this technique.

3-17

EDITALL.COM and
A illustrate the

USING SYMBOLS IN COMMAND PROCEDURES

3.8 DELETING SYMBOLS

The DELETE/SYMBOL command deletes symbols. You can delete one or all
local symbols from the local symbol table for the current command
level or one or all global symbols from the global symbol table. For
example, the following command deletes the local symbol named TOTAL:

$ DELETE/SYMBOL TOTAL

The /GLOBAL qualifier indicates that a global symbol is to be deleted.
For example:

$ DELETE/SYMBOL/GLOBAL/ALL

This command deletes all global symbols.

Because the command interpreter automatically deletes local symbol
tables when a command procedure exits, you do not normally need to
delete symbols. However, if you have defined many global symbols for
command synonym definitions or if you execute a procedure that
requires many local symbols or many symbols with character string
values, you may run out of symbol table space.

The maximum number of symbols that can be defined at any one time
depends on:

• The amount of space available to the command interpreter to
contain local and global symbol tables and labels for the
current process. This space is approximately 12 pages (0144
bytes) for each process.

• The size of the symbol names and their values. The command
interpreter incurs 14 bytes of overhead for every symbol
definition and it allocates space for symbol definitions in
8-byte increments. For example, 24 bytes are required to
maintain the average symbol name and its value, which together
would consist of from 5 to 12 characters (bytes).

When the command interpreter runs out of space, it issues the
following warning message:

%DCL-W-SYMOVF, no room for symbol definitions

Then, it takes whatever action is currently defined for warning
conditions.

If a command procedure that you are developing exhausts symbol table
space, try to recreate the procedure using nesting (as described in
Section 6.3), so that inactive symbols will be deleted when the
procedure that defines them exits. Or, you can delete all global
symbol table definitions for command synonyms before you execute the
command procedure (as described above).

3-18

CHAPTER 4

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

While it processes a command string, the command interpreter performs
symbol substitution by replacing symbol names in the command string
with their current values. To use symbols in commands and command
procedures, you will need to understand the mechanics of symbol
substitution discussed in this chapter:

• How the command interpreter handles command synonyms (Section
4.1)

• How to use the substitution operators, the apostrophe (') and
ampersand (&) characters (Sections 4.2 and 4.4)

• When the command interpreter performs automatic substitution
(Section 4.3)

• How to use repetitive and recursive substitution (Section 4.5)

• What happens to symbols that remain undefined
command-interpreter processing (Section 4.6)

during

• How to verify that symbol substitution takes place (Section
4.7)

4.1 COMMAND SYNONYM SUBSTITUTION

When the command interpreter processes a command string, it examines
the first token in the command string to determine whether it is a
symbol name. A token is nonblank character string that is terminated
with a blank or a special character -- a special character, in this
context, is any character that is not valid in a symbol name.

If the token represents a defined symbol, the command interpreter
replaces the symbol name with its current value. Then, it executes
the command string.

For example, the following assignment statement defines the symbol
PDEL as a command synonym:

$ PDEL := DELETE SYS$PRINT/ENTRY=

Then PDEL is used as the first token in a command string:

$ PDEL 181

4-1

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

The command interpreter replaces PDEL with its current value and
executes the command string:

DELETE SYS$PRINT/ENTRY=l81

In this example, the command synonym PDEL is delimited with a blank
character. Note that depending on the command, other characters can
serve as delimiters. In the following example, the left parenthesis
properly delimits the symbol name PDEL because the parentheses are
valid delimiters:

$ PDEL(l81,182,183)

This command deletes three files in the queue SYS$PRINT.

4.2 USING APOSTROPHES AS SUBSTITUTION OPERATORS

You must use an apostrophe (') to request the command interpreter to
replace a symbol name with its current value when you use a symbol
name in place of a command parameter or qualifier. For example:

$ TYPE 'FILENAME'

In this example, the string FILENAME is a symbol name used as a
parameter for the TYPE command; the apostrophes surrounding the
string indicate to the command interpreter that FILENAME is a symbol
name and not a literal string.

When you want to assign the value of one symbol to another symbol, you
must also use an apostrophe on the right-hand side of a string
assignment statement:

$ OLDSTRING := 'FILENAME'

Otherwise, the command interpreter
OLDSTRING to the literal string
current value of FILENAME.

would equate the
FILENAME, rather

symbol named
than using the

4.2.1 Substitution Within Strings Enclosed in Quotation Marks

Within character strings enclosed in quotation marks, you can request
symbol substitution by preceding a symbol name with two apostrophes.
For example:

$PROMPT STRING :="Creating file ''FILENAME'.TST"

If the current value of the symbol named FILENAME is WIDGET, the
symbol name PROMPT STRING is given the value:

Creating file WIDGET.TST

Only a single apostrophe is required to delimit the end of the symbol
name, as the above example illustrates.

Note that you can use this construct to maintain a symbol's value in
lowercase characters when you equate the current value of the symbol
to another symbol, as shown below:

$ A := "this is the line"
$ B := 'A'

4-2

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

In this example, A is given a value containing lowercase letters; the
quotation marks are not part of the value. To give a value to the
symbol B, the command interpreter replaces the symbol name A with its
current value; however, as it scans this line, the command
interpreter also converts lowercase data to uppercase. Thus, B has
the value:

THIS IS THE LINE

To retain this character string as it was initially defined, define B
as follows:

$ B :="''A'"

In this case, the command interpreter replaces the symbol name A with
its current value; then, as .it continues scanning the line, the
quotation marks ensure that the character string is not converted to
uppercase.

4.2.2 Concatenating Symbol Values

You can concatenate two or more symbol names in a command string as
shown in the following example:

$ NAME := MYFILE
. $ TYPE := .TST
$PRINT 'NAME''TYPE'

If this example is executed, the PRINT command queues a copy of
MYFILE.TST.

Note that you must properly delimit symbol names by placing
apostrophes around each symbol name in the command string. Note also
that no blanks are included in the string 'NAME''TYPE'. When these
symbols are concatenated, the resulting value cannot have any embedded
blanks; thus, no blanks can occur between the symbol names.

4.3 AUTOMATIC SUBSTITUTION

The command interpreter assumes, in certain contexts, that a string of
characters beginning with an alphabetic character is a symbol name.
In these contexts, substitution is automatic and you need not delimit
symbol names with apostrophes. In fact, if you use apostrophes, the
results are quite different because recursive substitution will occur
(see Section 4.5, "Repetitive and Recursive Substitution").

Symbol substitution is automatically performed in:

• Arithmetic assignment statements

• Tokens enclosed in brackets on the left-hand
assignment statements

side of

• Lexical function processing (see Chapter 5, "Using Lexical
Functions in Command Procedures")

• IF commands (see Chapter 6, "Execution Flow in Command
Procedures")

4-3

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

• WRITE commands (see Chapter 8, "Creating, Reading, and Writing
Files")

• The DEPOSIT and EXAMINE commands (The DEPOSIT and EXAMINE
commands provide an interactive debugging capability at the
command level; for descriptions of these commands, see the
VAX/VMS Command Language User's Guide)

It is important to note that, in any of these contexts, the command
interpreter assumes that any string of characters beginning with an
alphabetic letter is a symbol name and that any string of characters
beginning with an arabic numeral or with the radix operator (%) is a
literal numeric value.

For example, when you use an arithmetic
expression on the right-hand side of
automatically. For example:

assignment statement, the
the statement is evaluated

$ TOTAL = COUNT + 1

No apostrophes are needed to request substitution for the symbol COUNT
in this arithmetic assignment statement because the command
interpreter automatically substitutes values for symbols as it
executes arithmetic assignments.

Similarly, in an IF command:

$ IF A .EQ. B THEN GOTO NEXT

In the above example, the IF command assumes that both A and B are
symbol names and uses their current values to test their equality. No
apostrophes are necessary.

4.4 USING AMPERSANDS AS SUBSTITUTION OPERATORS

In addition to the normal substitution operator, the apostrophe (')
described above, the command interpreter recognizes a special
operator, the ampersand (&). In many usages, the two operators are
functionally equivalent. For example, the following two commands
would have the same result if the string FILENAME is currently equated
to a character string value:

$ TYPE 'FILENAME'
$ TYPE &FILENAME

The difference between these two commands is that in the first
command, the command interpreter replaces the string FILENAME with its
current value while it is scanning the command input, and in the
second command, the command interpreter replaces the string FILENAME
with its current value while it is analyzing, or parsing, the command.

The following examples show how the results can vary depending
whether you use an apostrophe (') or an ampersand (&) as
substitution operator:

$ B := MYFILE.DAT
$ A := 'B'
$ B ~= NEWFILE.TMP
$ TYPE 'A'

4-4

on
the

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

In this example, the first assignment statement equates the value
MYFILE.DAT to the symbol name B. Then, as the second assignment
statement is scanned, the command interpreter substitutes the current
value of B (MYFILE.DAT) for the symbol name A. The third assignment
statement redefines the symbol name B, which takes the value
NEWFILE.TMP. The symbol name A, however, is still equated to the
value MYFILE.DAT, so the TYPE command, when executed, displays the
file MYFIL~.DAT.

In the next example, however, substitution occurs differently:

$ B := MYFILE.DAT
$ A := &B
$ B := NEWFILE.TMP
$ TYPE 'A'

In this example, the second assignment statement equates the symbol
name A to the current value of B (MYFILE.DAT) as the line is scanned,
but substitution is not made. Thus, when the current value of B is
redefined in the third assignment statement, the new current value of
B (NEWFILE.TMP) is equated to A. The TYPE command, when executed,
displays the file NEWFILE.TMP.

The use of an ampersand
syntactically similar to
following exceptions:

(&)
the

as
use

a
of

substitution operator is
an apostrophe ('), with the

• You cannot use an ampersand within a character string; that
is, an ampersand must follow a delimiter (any blank or special
character).

• You cannot use ampersands to request substitution within
character strings enclosed in quotation marks.

• You cannot use ampersands to concatenate two or more symbol
names.

• You cannot terminate a symbol name with an ampersand.

Ampersands are most effective as substitution operators when they are
used with apostrophes to provide recursive substitution, as described
in the next section.

4.5 REPETITIVE AND RECURSIVE SUBSTITUTION

Substitution is either repetitive or recursive when substitution for a
symbol or token in a command string occurs more than once during the
processing of a single command string. Specifically, repetitive
substitution results when more than one type of substitution occurs in
a single command string. RecurPlve substitution occurs when the
command interpreter examines the value substituted to see if the value
itself is a symbol. This happens automatically when you use an
apostrophe as a substitution operator.

By understanding the order in which the command
different types of symbol substitution,
substitution occurs in your command procedures.

4-5

interpreter performs
you can control how

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

4.5.1 Steps in Symbol Substitution

The command interpreter performs symbol substitution in three phases
of command processing. These phases are:

1. Command input scanning. During this phase, also called the
lexical input phase, the .command interpreter reads the
command input and replaces all tokens that are preceded with
apostrophes (or double apostrophes, for strings within
quotation marks).

2. Command parsing. During this phase, the command interpreter
analyzes the command string; it (1) de.termines whether the
first token is a command synonym and, if it is, replaces it
with its current value and (2) performs all substitution
requested with ampersands.

3. Expression evaluation. During this phase, symbols are
replaced by the command 'interpreter during the actual
execution of a command, for example, the IF command. This
substitution is not, by default, recursive.

Figure 4-1 illustrates a command procedure, DOIT.COM, that contains a
command string on which substitution is performed three times, each
time during a different phase of command processing.

$ COUNT = 1 0 DBA1:[HIGGINS] DOIT.COM
$ @DOIT ABC.DAT;1 @ ~~~~~~~~~~~~~.-.~~~~~~~~~~~~~~~-
$

0 The symbol name count is assigned the value 1. ·

$ IF p I COUNT I. NES. "II THEN -
DELETE B:P 'COUNT I

@ The command procedure DOIT.COM is invoked; and is passed a parameter, the file ABC.DAT;1.

C) The IF command is processed by the command interpreter in three phases.

First, command input scanning: all substitution requested by the use of apostrophes is performed; the result is:

IF Pl .NEB."" THEN DELETE B:Pl

Second, command parsing: all substitution requested by the use of ampersands is performed; the result is:

IF Pl .NEB. 1111 THEN DELETE ABC.DATi1

Third, command execution: all character strings used as expressions are evaluated and substitution is performed on
these strings. The command line executed is:

IF ABC.DATi1 .NEB. 1111 THEN DELETE ABC.DATi1

Figure 4-1 Example of the Three Phases of Symbol Substitution

4-6

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

Note that the command interpreter does not scan, and therefore does
not perform substitution on, any lines in a command procedure that are
read as input data by commands or programs executed within the
procedure. . For example:

$ RUN AVERAGE
55
55
9999

The program AVERAGE reads from SYS$INPUT, that is, the command input
stream. The literal data lines 55, 55, and 9999 are never read by the
command interpreter. Thus, in this context you cannot use symbol
names.

4.5.2 Recursive Substitution Using Apostrophes

When you use an apostrophe to request symbol substitution, the command
interpreter performs recursive substitution from left to right in the
command string. This means that for each token on the line, the
string resulting from the substitution is scanned again to determine
whether the string contains any apostrophes. If there are
apostrophes, the command interpreter performs substitution and again
examines the resulting string for .apostrophes.

Figure 4-2 illustrates a simple case of recursive substitution. Note
that the command interpreter repeats the substitution as many times as
necessary to complete the substitution of a value for the token;
there is no practical limit to the layers of symbol definition.

0
8

OBA 1 :[HIGGINS]TYPE.COM

$FILE:= "'A'"
$ A := MYFILE.DAT

$TYPE 'FILE'

$ DU T

0 The symbol name FILE is equated to the value ·A· while the quotation marks prevent the command interpreter from
substituting a value for ·A· - in fact, there is no value for A yet defined.

@A is equated to the file MYFILE.DAT

0 When the command interpreter scans this TYPE command, it substitutes the current value of ·FILE·, resulting in

TYPE .'A I

Since the current value contains apostrophes, the command interpreter scans the line again (substitution recurs) and
substitutes the value of A . The command string executed is:

TYPE MYFILE.DAT

Figure 4-2 Example of Recursive Substitution

4-7

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

Substitution using apostrophes is not, however, recursive when values
are substituted for symbols within strings that are enclosed in
quotation marks. For example:

$ SYMBOL := NAME
$ A := "'SYMBOL'"
$ B := 'A'

After the last assignment statement in this example is executed, the
resulting value of the symbol B is NAME. This result is achieved in
the following steps:

• The symbol name A is replaced with its current value:

'SYMBOL'

• Because this value has apostrophes in it, the command
interpreter replaces the value SYMBOL with its current value:

NAME

• Because this value has no apost~ophes, it is the final value
given to the symbol name B.

Note, however, what happens if you define B as follows:

$ B :="''A'"

In this case, B has the value 'SYMBOL'. The symbol name A is replaced
only once because substitution is never recursive within character
strings enclosed in quotation marks.

4.5.3 Recursive Substitution Using Command Synonyms

The command interpreter performs recursive substitution automatically
only when an apostrophe is in the command string. In some cases, you
may want to nest command synonym definitions, as the following lines
suggest:

$ COMMAND := "TYPE A.B"

$ EXEC := "'COMMAND'"

$ EXEC

In this example, when the command synonym EXEC is processed, the
command interpreter performs substitution only once. The resulting
string is 'COMMAND'; the command interpreter issues an error message
because it cannot detect a command on the line. To correctly use the
command synonym EXEC, you must precede it with an apostrophe, as shown
below:

$ 'EXEC

Figure 4-3 shows another example of using an apostrophe with a command
synonym to force recursive substitution. The example shows the
results of substitution first, without using an apostrophe and then,
the results of substitution when an apostrophe is specified.

4-8

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

NOTE

The procedure in Figure 4-3 is similar
to the GETPARMS.COM procedure in
Appendix A.

$ GETPARMS:=="@GETPARMS
$ @TESTPARM A B C D f)

Ip 1 I I P2 I I P3 I I Pl!' I P5 I I P5 I I PG I I P7 I I PB I II 0

PB 'PB'~

~~ :~r 0
Pl! 'Pl!'_/ P3 I P3 I

P2 I P2 I

p 1 Ip 1 I

PB
P7
PG
P5
Pl!
P3
P2
p 1

D
c
B
A

~
0

_/

DBA 1 :[HIGGINS]TESTPARM.COM

$ GETPARMS
$ 'GETPARMS
$ E)< IT

DBA 1 :[HIGGINS]GETPARMS.COM

$ SHOW SYMBOLS/ALL
$ E>~ IT

0 Global symbol GETPARMS is defined. Quotation marks prevent the command interpreter from substituting values for
P1-P8 when it assigns a value to GETPARMS.

f) TESTPARM.COM is invoked, and passed four parameters.

@) The command interpreter substitutes the current value of GETPARMS during command parsing because it is the first
token in a command string. The command synonym is executed; there is no recursion.

0 GETPARMS.COM is invoked. The parameters passed to it have not been replaced because these symbol names
contain apostrophes. The result of the SHOW SYMBOL command is displayed at 0.

0 TESTPARM.COM resumes execution here. Because an apostrophe precedes the command string, the command
interpreter is forced to perform recursive substitution before it executes the command.

f) GETPARMS.COM is invoked. The parameters are substituted and the results displayed at tf}.

Figure 4-3 Recursive Substitution Using a Command Synonym

4.5.4 Recursive Substitution Using Ampersands

An ampersand as a substitution operator is most effective when you
want substitution to occur from right to left on a token. A common
use was shown in Figure 4-1: to use the same command string to
process multiple parameters (or symbol names assigned incremental
values), you must use an ampersand so that recursive substitution
occurs in the correct order. For example, the command string in
Figure 4-1 uses the following syntax:

$ DELETE &P'COUNT'

4-9

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

This causes the command interpreter to first replace the symbol COUNT
with its value and then, during parsing, to replace the symbol Pl with
its value. Note what would happen if the token were specified as
follows:

$DELETE 'P''COUNT'

In this example, the command interpreter, during initial scanning of
the command, would perform normal left-to-right substitution. It
would attempt to replace the separate tokens P and COUNT. Because P
is not a defined symbol, only COUNT would be replaced. The DELETE
command string would be:

DELETE 1

The action the command interpreter takes when a symbol is undefined
depends on the context of the command. For additional details, see
Section 4.6, "Undefined Symbols."

For an example of using recursive substitution to process parameters
passed to a command procedure, see the procedure in Section 6.1.2,
"Using Symbols in IF Commands."

4.5.5 Recursive Substitution in Expressions

When the command interpreter analyzes an expression in a command, any
symbols specified in the expression are replaced only once; recursion
is not automatic. You can, however, force recursion by using an
apostrophe or an ampersand in the expression. When you design a
procedure to force recursion in this way, however, you must remember:

• The command interpreter performs all substitution requested by
apostrophes and ampersands before the command string is
executed.

• Commands that automatically perform symbol substitution do so
after the command string has been processed by the co~mand
interpreter.

The following example illustrates recursive substitution in an IF
command:

$ IF P'COUNT' .EQS. "" THEN GOTO END

When the command interpreter scans this input line, it replaces the
symbol name COUNT with its current value. If the current value of
COUNT is 1, the command string, after scanning, is:

IF Pl .EQS. "" THEN GOTO END

Because this string has no apostrophes, the command interpreter does
not perform any more substitution: however, when the IF command
executes, it automatically evaluates the symbol name Pl and replaces
it with its current value.

Note, however, that if the token resulting from substitution by the
command interpreter is not a valid symbol name, the command will fail
because a symbol is undefined. For example:

$ FILENAME :=A.B
$ IF 'FILENAME' .NES. "" THEN TYPE 'FILENAME'

4-10

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

When the command interpreter processes
replaces the symbol name FILENAME with
substitution, the command string is:

IF A.B .NES. "" THEN TYPE A.B

this command string, it
its current value. After

Because A.B is not a valid symbol~ an error occurs. For this IF
command to be correctly processed, you must omit the apostrophes, as
shown below:

$ IF FILENAME .NES. "" THEN TYPE 'FILENAME'

Apostrophes are required in the TYPE command string because the
command interpreter does not automatically replace symbols in TYPE
commands.

NOTE

For an example of using an apostrophe in
an arithmetic assignment statement to
force recursion, see the sample
procedure CALC.COM in Appendix A.

4.6 UNDEFINED SYMBOLS

If a symbol is not defined when it is used in a command string, the
command interpreter either issues an error message or replaces the
symbol with a null string or a O, depending on the context. The rules
are:

• During command input scanning and during command parsing, the
command interpreter replaces all undefined symbols that are
preceded with apostrophes or ampersands with null strings or
zeros.

• During expression evaluation, the command interpreter issues a
warning message and does not complete command processing.

These rules are most easily illustrated by comparing string assignment
statements with arithmetic assignments statements. In a string
assignment statement, the value on the right-hand side is assumed to
be literal character data. You must use an apostrophe to request
substitution to occur before a symbol name is assigned a value. For
example:

$ TYPE := .TST
$ FILE := MYFILE'TYPE'
$ PRINT 'FILE'

In this example, the symbol name is replaced with its current value
while the command input is read; the assignment statement gives the
symbol FILE a value of MYFILE.TST. If a symbol name does not have a
value, the command interpreter, by default, replaces the symbol name
in the command string with a null string. In the above example, if
TYPE is not defined, the command interpreter gives the symbol FILE a
value of MYFILE.

4-11

SYMBOL SUBSTITUTION IN COMMAND PROCEDURES

Note that, within the context of character strings, a null string can
be a meaningful construct. In the above example, the absence of a
file type in the file specification for the PRINT command causes the
PRINT command to use the default file type of LIS.

In an arithmetic assignment, however, the value of the right-hand side
is evaluated as an expression, which must have a value. For logical
and comparison operations, the resulting value is either a 0 or a l;
for arithmetic operations, the resulting value is always arithmetic.
For example:

$ A 1
$ B 2
$ C A + B

In this case, the symbols A and B must have values or the expression
that assigns a value to C is meaningless. If A or B is not defined,
the command interpreter issues a warning message and does not give a
value to c. Note that if either A or B is defined as a null string,
the command interpreter assumes it has a value of O; then, the
expression is valid.

4.7 VERIFICATION OF SYMBOL SUBSTITUTION

The SET VERIFY and SET NOVERIFY commands control whether the command
interpreter displays lines in a command procedure as it executes them.
When verification is in effect, the command interpreter displays each
command line after it has completed initial scanning and before the
command is parsed and executed. Thus, you see displayed the results
of symbol substitution performed during scanning, but not the results
of symbol substitution performed during command parsing and execution.
For example:

$ SET VERIFY
$ COUNT = 1
$ IF P'COUNT' .NES. "" THEN GOTO &P'COUNT'

When this procedure is executed interactively, the following lines are
displayed on the terminal:

$ COUNT = 1
$ IF Pl .NES. "" THEN GOTO &Pl

The SET VERIFY command is not displayed unless verification is already
in effect.

4-12

CHAPTER 5

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

The command language includes constructs, called lexical functions,
that return information about the current process and about character
strings. The functions are called lexical functions because the
command interpreter evaluates them during the command input scanning
(or lexical processing) phase.

You can use lexical functions in any context in which you normally use
symbols, expressions, or literal values. In command procedures, you
can use lexical functions to translate logical names, perform
character string manipulations, and determine the current processing
mode of the procedure.

5.1 THE FORMAT OF LEXICAL FUNCTIONS

The general format of a lexical function is:

'F$

'F$function-name([args, •••])'

Indicates that what follows is a lexical function. The
substitution operator (') is required so that the command
interpreter will evaluate the function during command input
scanning. Otherwise the command interpreter will assume that the
function name is a user-defined symbol name (and not a lexical
function). Note that the command interpreter evaluates lexical
functions in comment lines during input scanning; in forward
GOTO commands the command interpreter evaluates lexical functions
while it searches for the specific label.

function-name

()

Specifies the function to be evaluated. All function
keywords. You can truncate function names to
truncation.

names are
any unique

Enclose function arguments, if any. The parentheses are required
for all functions, including functions that do not accept any
arguments.

args, •••

Specify arguments for the function, if any.

5-1

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

When you use a lexical function in any context in which symbol
substitution automatically occurs, the substitution is recursive.

All arguments specified for lexical
alphabetic characters are assumed to
substitution is automatic.

functions
be symbol

that
names;

begin with
therefore,

You can specify arguments using literal numeric or character string
data or symbols. If a symbol is undefined, the command interpreter
replaces it with a null string.

You cannot specify one lexical function as an argument for another
lexical function, nor can you use double apostrophes to request
substitution of a symbol value within a quoted string that is an
argument for a lexical function.

Table 5-1 summarizes the lexical functions, their formats, and the
information returned by each. The remainder of this chapter describes
lexical functions in more detail and gives examples of their use.

Table 5-1
Summary of Lexical Functions

.----------------------.---·----···-··----------------
Function Value Returned

i---------------------~··-------·---1--------··-··-------------·----

F$CVSI(bit-position,width,integer)

F$CVUI(bit-position,width,integer)

F$ DIRECTORY ()

F$EXTRACT(offset,length,string)

F$LENGTH(string)

F$LOCATE(substring,string)

F$LOGICAL(logical-name)

5-2

Signed value extracted from
the specified integer,
converted to an ASCII literal

Unsigned value extracted from
the specified integer,
converted to an ASCII literal

Current default directory
name string, including
brackets

Substring beginning at
specified offset for
specified length of indicated
string

Length of specified string

Relative offset of specified
substring within string
indicated; or, the length of
the string if the substring
is not found

Equivalence name of specified
logical name {first match
found in ordered search of
process, group, and system
logical name tables); or, a
null string if no match is
found

{continued on next page)

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

Function

F$MESSAGE(code)

F$MODE()

F$PROCESS()

F$TIME()

F$USER()

F$VERIFY(value)

Table 5-1 (Cont.)
Summary of Lexical Functions

Value Returned

Message text associated with
the specified numeric status
code value

One of the character strings
INTERACTIVE or BATCH

Current process name string

Current date and time of day,
in the format
dd-mmm-yyyy hh:mm:ss.cc

Current user identification
code (UIC) , in the format
[g,m]

If no argument is used: a
numeric value of 1 if
verification is set on; a
numeric value of 0 if
verification is set off

If an argument is used: the
same value as F$VERIFY ();
in addition, the state of the
argument's low-order bit
turns verification on (if
state is 1) or off (if state
is 0)

5.2 INFORMATIONAL FUNCTIONS

The command language provides the following informational functions:

• F$MODE returns a character string that shows the mode in which
the process is currently executing. That is, F$MODE returns
the string "INTERACTIVE" or "BATCH".

• F$VERIFY returns a numeric value
verification setting is currently
verification on or off.

indicating whether the
on or off, and may turn

• F$DIRECTORY returns the current default directory name string

• F$PROCESS returns the character string name of the process

• F$USER returns the current user identification code (UIC) of
the process

• F$LOGICAL returns the equivalence name string of a specified
logical name.

5-3

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

• F$TIME returns the current date and time

• F$MESSAGE returns a character string representing the message
text associated with a specific system status value

Each of these functions is described in greater detail below.

5.2.l The ,$MODE Lexical Function

The F$MODE function is useful in command procedures that must act
differently when executed in batch mode than when executed in
interactive mode. The F$MODE function has no arguments.

For example, a line in a command procedure can use the F$MODE function
to test whether the procedure is being executed during an interactive
terminal session or within a batch job:

$ IF "' 'F$MODE() '" .EQS. "BATCH" THEN GOTO BATDEF
$ INTDEF:

$ EXIT
$ BATDEF:

The IF command in the above example compares the character string
returned by F$MODE with the character string BATCH; if they are
equal, control branches to the label BATDEF. Otherwise, the
statements following the label INTDEF are executed and the procedure
exits before the statements at BATDEF. In other words, this procedure
has two sets of initialization commands: one for interactive mode and
one for batch mode.

This example illustrates an important point about lexical functions
that return character string values: if you use a lexical function in
an expression, you must remember that substitution will be repetitive.
If you intend the result of the function to be used as a literal
character string value, as above, you must enclose the function in
quotation marks.

Note what would happen if you had entered the IF command as follows:

$ IF 'F$MODE()' .EQS. "BATCH" THEN GOTO BATDEF

The command interpreter would replace the function as it lexically
scans the command line. Assuming interactive mode, the result would
be:

$ IF INTERACTIVE .EQS. "BATCH" THEN GOTO BATDEF

The command interpreter would then attempt to replace INTERACTIVE with
its current value, as the string is interpreted to be a symbol name
(it begins with an alphabetic character and is not enclosed in
quotation marks). If there were no symbol defined for the name
INTERACTIVE, an error would occur. Thus, 'F$MODE()' needs quotation
marks and, because it is quoted, it needs two apostrophes (as shown
above and as described in Section 4.2.1).

5-4

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

5.2.2 The F$VERIFY Lexical Function

If you use the F$VERIFY function with no argument, it returns a value
of 0 or 1, based on whether verification of command procedures is off
(0) or on (1). You can use this function to test or to save the
current setting.

For example, a command procedure can save the current setting before
changing it and then later restore the setting:

$ SAVE VERIFY = 'F$VERIFY()'
$ SET NOVERIFY

$ IF SAVE VERIFY THEN SET VERIFY

The assignment statement saves the current verification setting before
the SET NOVERIFY command sets verification off. Later, the value of
SAVE VERIFY is tested; if it has a value of 1, verification was
prevTously on; if so, the SET VERIFY command is executed and
verification is restored. Otherwise, verification was initially off
and remains off.

In this arithmetic assignment statement, apostrophes surround the
lexical function even though you do not normally use apostrophes on
the right-hand side of an arithmetic assignment statement. This is
because apostrophes are required when you specify a lexical function;
the function is evaluated when the command input is processed and not
when the command itself is executed.

If you use the F$VERIFY function with an argument, the function still
returns the current verification setting. However, the command
interpreter then examines the state of the low-order bit in the
argument and turns verification off if the value is o, or on if the
value is 1.

For example, you could construct a procedure that will not display (or
print) commands, regardless of what the initial state of verification
is:

$ VERIFY 'F$VERIFY(O) I

$ IF VERIFY .EQ.l THEN SET VERIFY

This procedure uses the assignment statement to set verification off
when the assignment is scanned, then restores the previous setting at
the end of the procedure.

Note that the argument can be a character string enclosed in quotation
marks, if the string begins with uppercase T, Y, F, or N. In these
cases, the argument is resolved as an operand in an arithmetic
comparison; the resulting value is 1 for strings beginning with T or
Y, and 0 for strings beginning with F or N. Thus, the assignment
statement above could be expressed as:

$ VERIFY = 'F$VERIFY{"NO") I

5-5

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

5.2.3 The F$DIRECTORY Lexical Function

The F$DIRECTORY function returns the current default directory name
string, including square brackets ([]). If you use the SET DEFAULT
command and specify angle brackets (<>) in a directory specification,
the F$DIRECTORY function returns angle brackets in the directory
string.

The F$DIRECTORY function has no arguments.

The following example shows how to use the F$DIRECTORY /unction to
save the current default directory in a command procedure and later
restore it: ·

$ SAVE DIR :='F$DIRECTORY()'
$ SET DEFAULT [MALCOLM.TESTFILES]

$ SET DEFAULT 'SAVE DIR'

In this example, the assignment statement equates the current
directory to the symbol SAVE DIR. Then, the SET DEFAULT command
establishes a new default directory. Later, the symbol SAVE DIR is
used in the SET DEFAULT command that restores the original-default
directory.

5.2.4 The F$PROCESS Lexical Function

The F$PROCESS lexical function returns the current process name
string. The F$PROCESS function has no arguments.

By default, an interactive user has a process name string that is the
same as the login user name. A batch job is given a process name in
the format JOBxxx where xxx is the job number assigned to the job.

NOTE

For an example of the F$PROCESS lexical
function, see the sample procedure
ENDED.COM in Appendix A.

5.2.5 The F$USER Lexical Function

The F$USER lexical function returns the
code (UIC), including brackets ([]).
arguments.

current user identification
The F$USER function has no

The following example shows how a directory with a name in UIC format
is saved, then restored in a command procedure.

$ SAVE UIC := 'F$USER() I

$ SET UIC [1,1]

$ SET UIC 'SAVE UIC'

5-6

USING LEXICAL FUNCTinNs IN COMMAND PROCEDURES

Using F$USER ensures that the directory corresponds to the current UIC
when it is restored. Directories in UIC format ensure the
compatibility of Files-11 Structure Level 1 disks between VAX/VMS and
RSX-llM systems.

5.2.6 The F$LOGICAL Lexical Function

The F$LOGICAL function translates a logical name and returns the
equivalence name string. The translation is not recursive, that is,
the resulting string is not checked to determine whether it is a
logical name. The function uses the normal search order to locate the
logical name: it searches the process, group, and system logical name
tables, in that order, and returns the equivalence name for the first
match found.

The format of the F$LOGICAL function is:

'F$LOGICAL(logical-name)'

The logical-name is either the literal logical name to be translated
(enclosed in quotation marks) or a symbol name whose value is the
logical name to be translated.

You can use the F$LOGICAL function to save the current equivalence of
a logical name and later restore it. The following example shows the
use of the F$LOGICAL function to determine the name of the current
terminal device and the creation of a group logical name table entry
based on the equivalence string:

$ DEFINE/GROUP TERMINAL 'F$LOGICAL("TT")'

This example illustrates another important point about lexical
functions: all arguments specified for lexical functions are
automatically replaced. This means that arguments that begin with
alphabetic letters are assumed to be symbol names and the command
interpreter will attempt to replace them. If the symbol is undefined,
the command interpreter will replace it with a null string. Thus, if
the argument is not a symbol name, you must enclose it in quotation
marks.

The following example combines the F$DIRECTORY and F$LOGICAL lexical
functions:

$ SAVE DIR := 'F$LOGICAL("SYS$DISK") I 'F$DIRECTORY() I

This assignment statement concatenates the
functions. The symbol SAVE DIR consists
directory name string.

results
of a

of
full

two lexical
device and

If there is no current assignment for a specified logical name, the
function returns a null string. Thus, to test for an unassigned name,
you could use a command similar to the following:

$IF "''F$LOGICAL("INFILE") '" .EQS. ""THEN GOTO ASSIGN

The lexical function is enclosed in quotation marks to ensure that it
is evaluated as a literal and not a symbol.

5-7

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

The next example shows how you can test for an unassigned logical name
by anticipating a null string returned from the F$LOGICAL function:

$IF "''F$LOGICAL("OUTFILE")'" .NES. ""THEN
DEASSIGN OUTFILE

$ ASSIGN 'Pl' OUTFILE

The IF command in the above example tests whether the logical name
OUTFILE is currently assigned. If so, OUTFILE is deassigned. The
next command assigns an equivalence to the logical name OUTFILE.
Thus, the ASSIGN command will complete without issuing the normal
success message indicating that the name is already assigned.

NOTE

The sample procedures BWAKE.COM and
ENDED.COM in Appendix A contain examples
of the F$LOGICAL lexical function.

5.2.7 The F$TIME Lexical Function

The F$TIME lexical function returns the current date and time string.
The F$TIME function has no arguments.

The time string returned has the following fixed, 23-character format:

dd-mmm-yyyy hh:mm:ss.cc

When the current day of the month is any of the values 1 through 9,
the first character in the returned string is a blank character;
thus, the time portion of the string is always in character position
13, that is, at an offset of 12 characters from the beginning of the
string.

You can use this function to time-stamp files that you create with
command procedures. For example:

$ TIME STAMP := 'F$TIME()'
$ WRITE OUTFILE TIME STAMP

In this example OUTFILE is the name of a file that is opened for
writing. The WRITE command is described in detail in Chapter 8,
"Reading and Writing Files."

For another example of the F$TIME function, see Section 5.3.3, "The
F$EXTRACT Lexical Function."

NOTE

The sample procedure CONVERT.COM in
Appendix A shows how to use the time
string returned by F$TIME to calculate a
delta time value.

5-8

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

5.2.8 The F$MESSAGE Lexical Function

The F$MESSAGE lexical function returns the message text, if any,
associated with a specific numeric value.

The format of the F$MESSAGE function is:

'F$MESSAGE(status-code)'

The status-code is either a literal numeric value or a symbol name
equated to a numeric value.

For example, the status code %XlC is associated with the message
EXQUOTA. To obtain the text of this message, use the F$MESSAGE
function as shown below:

$ ERROR TEXT := 'F$MESSAGE(%XlC) 1

After this assignment statement is made, the symbol ERROR TEXT has the
value:

%SYSTEM-F-EXQUOTA, EXCEEDED QUOTA

Note that the value for the symbol consists of all uppercase letters.
Normally, system messages are displayed in lowercase letters; in
fact, the message text portion of a message is maintained by the
system in lowercase and returned by the function in lowercase.
However, the processing of lexical functions occurs at the same time
that the command interpreter translates lowercase letters to uppercase
and compresses multiple blanks and tab characters to single blank
characters.

To preserve the text of a message in lowercase characters, enclose the
function in quotation marks and use two apostrophes to request
substitution. For example:

$A:= "''F$MESSAGE(%XlC)'"

This assignment statement gives the symbol A the value:

%SYSTEM-F-EXQUOTA, exceeded quota

Note that although each message in the system message file has a
numeric value or range of values associated with it, there are many
possible numeric values that do not have corresponding messages. For
more information on completion status values and messages, see Chapter
7, "Controlling Error Conditions and CTRL/Y Interrupts."

NOTE

The sample procedure ENDED.COM in
Appendix A illustrates a batch job that
uses ·F$MESSAGE to display the message
associated with the completion status of
the job.

5-9

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

5.3 STRING MANIPULATION FUNCTIONS

A string can be either a literal character string (one enclosed in
quotation marks) or a symbol name that has been equated to a string
value. The terms associated with string manipulation are "substring"
and "offset":

• A substring is any contiguous set of characters within a
string.

• An offset is the relative position of a character or a
substring in a string with respect to the beginning of the
string. The first character in a string is always offset
position 0 from the beginning of the string (which always
begins at the left-most character in the string).

The following lexical functions allow you to manipulate character
strings:

• F$LENGTH returns the length of a specified string as a numeric
value

• F$LOCATE returns the offset within a string of a specified
character or character substring as a numeric value

• F$EXTRACT returns a substring from within
character string as a string value

5.3.1 The F$LENGTH Lexical Function

a specified

The F$LENGTH lexical function returns the length of a specified
string. The format of the F$LENGTH function is:

'F$LENGTH(string)'

The string is either a literal character string (enclosed in quotation
marks) or a symbol name equated to a string.

For example:

$MESSAGE:= "''F$MESSAGE(%XlC)'"
$ STRING_LENGTH = 'F$LENGTH(MESSAGE) I

After these assignment statements, the symbol MESSAGE has the value:

%SYSTEM-F-EXQUOTA, exceeded quota

The symbol STRING LENGTH has a value equal to the number of characters
in the value of the symbol named MESSAGE, that is, 33.

NOTE

For additional examples of F$LENGTH, see
the sample procedures CONVERT.COM and
FORTUSER.COM in Appendix A.

5-10

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

5.3.2 The F$LOCATE Lexical Function

The F$LOCATE lexical function locates a character or character
substring within a string and returns its offset within the string.
If the character or character substring is . not found, the function
returns the length of the string that was searched.

The format of the F$LOCATE function is:

'F$LOCATE(substring,string)'

The substring is the string of characters that you want to locate
within the string and string is the string in which the characters are
to be found. Specify substring and string using either literal
character strings (enclosed in quotation marks) or symbol names
equated to character strings.

For example:

$ FILE SPEC := MYFILE.DAT;l
$ NAME:LENGTH = 'F$LOCATE(".",FILE_SPEC)'

The F$LOCATE function in the above example returns the position of the
period in the string with respect to the beginning of the string.
Thus NAME LENGTH equals the length of the file name in the file
specification MYFILE.DAT, that is, 6.

Note in the above example that the character to be located, the
period, is specified literally and is therefore enclosed in quotation
marks. The symbol FILE SPEC is automatically replaced by its current
value during the processing of the function.

A common technique to determine whether a character or character
string is in a string is to compare the result of a locate function
with the length of the string, as shown in the following example:

$ INQUIRE TIME "Enter time"
$IF 'F$LOCATE(":",TIME)' .EQ. 'F$LENGTH(TIME) I THEN -

GOTO ERROR

In this example, the INQUIRE command prompts for a time value. The IF
command checks for the presence of a colon in the string entered in
response to the prompt. If the value returned by the F$LOCATE
function equals the value returned by the F$LENGTH function, the colon
is not present.

You can also use the F$LENGTH function with an overlay expression in
an assignment statement. The following example shows how to append a
character string at the end of an existing string:

$ NAME := MYFILE
$ NAME['F$LENGTH(NAME) I ,4] := .DAT

In the above example, the syntax of the assignment statement indicates
that a substring in the string is to be replaced (this syntax is
described in Section 3.2.2, "Replacing Substrings in Character String
Symbol Values"). In this example, the value returned by the F$LENGTH
function is used as a relative offset from the beginning of a string;
thus it results in the string .DAT being placed in the character
position beyond the last character in the string. The symbol NAME now
has the value MYFILE.DAT.

5-11

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

5.3.3 The F$EXTRACT Lexical Function

The F$EXTRACT function returns a substring from a character string
value. When you use this function, you specify the location within
the string that marks the beginning of the substring and the number of
characters you want to extract. The format is:

'F$EXTRACT(offset,length,string)'

The offset is the position, relative to the beginning of the string,
that marks the beginning of the substring you want to extract; the
length is the number of characters you want to extract; and the
string is the string from which the substring is to be extracted.

Specify offset and length using literal numeric values or symbol names
equated to numeric values. Specify string using either a literal
character string (enclosed in quotation marks) or a symbol name
equated to a character string.

The following example shows a procedure that displays a different
message depending on whether the current daytime is morning or
afternoon. It first obtains the current time of day by using the
F$TIME function. Then, it extracts the hours from the date and time
string returned by F$TIME:

$TIME := "''F$TIME() '"
$ IF 'F$EXTRACT(l2,2,TIME)' .GE. 12 THEN GOTO AFTERNOON
$ MORNING:
$ WRITE SYS$0UTPUT "Good morning!"
$ EXIT
$ AFTERNOON:
$ WRITE SYS$0UTPUT "Good afternoon!"
$ EXIT

The string returned by F$TIME always contains the hours field
beginning at an offset of 12 characters from the beginning of the
string. The function is enclosed in quotation marks to ensure that
when the string returned is assigned to the symbol named TIME, a
leading blank, if there is one, will not be truncated (the date field
contains a leading blank on the first day through the ninth day of
each month).

The F$EXTRACT
beginning at
value 12.

function extracts two characters from the string,
this offset and compares the value extracted with the

Note, in the above example, that although the function extracts a
character string, the value extracted is tested as a numeric value:
the context in which the symbol is used determines the type of data it
represents.

Frequently, manipulation of a character string value requires that you
locate a particular character within a string and then extract a
substring beginning or ending at that location. Because you cannot
use a lexical function as an argument for a lexical function, you must
use two assignment statements to achieve the desired results, as shown
below:

$ DOT= 'F$LOCATE(".",Pl) I

$FILENAME := 'F$EXTRACT(O,DOT,Pl}'

5-12

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

In this example, the symbol name DOT is given the numeric value
representing the position of a period in the character string value of
Pl. Then, this symbol name is used as an argument in the F$EXTRACT
function to specify the number of characters to extract from the
string. If a procedure is invoked with the parameter MYFILE.DAT,
these statements result in the symbol FILENAME being given the value
MYFILE.

Note that the F$LOCATE function in the above example assumes that the
file specification does not contain a node name or a directory
specification including a subdirectory name. Checking a file
specification for various fields would require a more sophisticated
sequence of functions.

5.4 FUNCTIONS THAT MANIPULATE BINARY DATA

There are two methods used to assign binary data to a symbol name.
The first method is to perform a binary overlay in the current value
of a symbol name by using the syntax:

$ symbol-name[bit-position,width]= numeric-expression

as described in Section 3.3.6, "Arithmetic Overlays."

The second method is to use the READ command to read data
symbol name from a file whose records contain binary data.
command is described in Section 8.1, "Reading Files."

into a
The READ

Two lexical functions are provided to manipulate binary data that has
been so assigned to a symbol name:

F$CVSI, for operations on signed quantities

F$CVUI, for operations on unsigned quantities

These integer conversion functions extract bit fields from binary data
and convert the result to either signed (F$CVSI) or unsigned (F$CVUI)
decimal values. The formats of these functions are:

'F$CVUI(bit-position,width,integer)'

'F$CVSI(bit-position,width,integer)'

The bit-position is the offset of the value to be converted from the
beginning of the integer; the width is the number of bits that are to
be extracted for conversion to a decimal value; and the integer is
the value of the 32-bit integer from which the bits are taken. Note
that the rightmost bit of an integer is the low-order bit. This bit
is position number 0 for determining the offset. You specify the
value of the integer by using either its literal numeric value or by
using a symbol equated to its numeric value.

For example, consider the following arithmetic overlay of the symbol
name A, where the hexadecimal value 28 is assigned to all 32 bits of
the symbol:

$ A[0,32]=%X2B

5-13

USING LEXICAL FUNCTIONS IN COMMAND PROCEDURES

Note that the ASCII representation of this symbol name is now the +
character; you could determine this by typing the command:

$ SHOW SYMBOL A

The F$CVSI and F$CVUI lexical functions now can be used to extract
fields from the symbol A and convert these fields to their decimal
values. For example, consider the extraction (and conversion) of the
low-order four bits from the ~ymbol A:

X = 'F$CVSI(0,4,A)'

y = 'F$CVUI(0,4,A) I

The results of these conversions are X = -5 and Y = 11, because the
F$CVSI function treats the low-order four bits of the value %X2B as a
signed integer while the F$CVUI function treats the low-order four
bits of the value %X2B as an unsigned integer.

Note that the arithmetic overlay and READ command are the only ways to
assign binary values to symbols: and other method used to assign
values to symbols does not produce binary values. For example,
assigning a numeric value of 1 to the symbol name A results in the
value of A being stored by the command interpreter as an ASCII
representation of the character 1.

NOTE

The sample procedure CALC.COM in
Appendix A shows how to use the F$CVUI
lexical function to convert a decimal
value to its hexadecimal equivalent.

5-14

CHAPTER 6

CONTROLLING EXECUTION FLOW IN COMMAND PROCEDURES

.
The normal flow of execution in a command procedure is sequential:
the commands in the procedure are executed, in order, until the
end-of-file is reached. However, in many cases you will want to
control (1) whether certain statements are executed or (2) the
conditions under which the procedure should not continue execution.

This chapter discusses the basic commands that you can use in a
command procedure to control or alter the flow of execution:

• The IF command tests the value of a symbol or expression and
executes a given command string based on the result of the
test.

• The GOTO command transfers control to a labeled line in the
procedure.

• The Execute Procedure (@) command invokes (or
command level and begins execution of
procedure.

calls)
another

another
command

• The EXIT and STOP commands terminate the current procedure and
restore control either to the calling command procedure or to
command level O, respectively.

6.1 THE IF COMMAND

The IF command tests a symbol value or an arithmetic expression and
executes a given command if the result of the expression is true. An
expression is true if:

• It has an odd numeric value.

• It has a character string value that begins with any of the
letters Y, y, T, or t.

An expression is false if:

• It has an even numeric value.

• It has a character string value that begins with any of the
letters N, n, F, or f.

6-1

CONTROLLING EXECUTION FLOW IN COMMAND PROCEDURES

The following examples show valid expressions used in IF commands.

Example

$ IF A + B .EQ. 10 THEN command

$ IF A THEN command

$ IF .NOT. A THEN command

$ IF COUNT.LE.100 THEN command

$ IF Pl.EQS."TYPE" THEN command

Explanation

Executes the given command if the
sum of the defined symbols A and B
is 10

Executes the given command if the
symbol A has an odd numeric value
or is equated to a character string
that begins with the letters Y,y
(yes) or T,t (true)

Executes the given command if the
symbol A has an even numeric value
or is equated to a character string
that begins with the letter N,n
(no) or F,f (false)

Executes the given command. if the
symbol COUNT has a current value
less than or equal to 100

Executes the given command if the
first parameter passed to the
command procedure was the word TYPE

The target command of an IF command can be any valid DCL command; you
can optionally precede the command with a dollar sign. The command is
executed only if the expression is true. Otherwise, execution
continues with the next command in the procedure, as illustrated in
Figure 6-1. After the THEN command string is executed, control
returns to the next command in the sequence unless the THEN
command-string results in a transfer of control.

The target command of an IF command can be another IF command. For
example:

$ IF A .EQ.
IF C • EQ.
IF E .EQ.
RESULT = 1

B THEN -
D THEN -
F THEN -

In this IF command, each expression is tested in turn. If the result
of the first expression is true, the second IF command is executed;
if that expression is true, the next IF command is executed. If all
of the IF command expressions are true, RESULT is given a value of l;
otherwise, RESULT is not given a value.

The only practical limit on the number of IF commands that can be
nested in a' single command string is the limit on the number of
characters that can be specified in a command string. This limit is
approximately 500 characters.

~-2

CONTROLLING EXECUTION FLOW IN COMMAND PROCEDURES

$ command-string

true
$ IF expression t------1~ THEN command-string

false

Yes

Yes

Yes

NO

$ next command-string

Figure 6-1 The IF Command

6.1.1 Using Logical Operators in IF Commands

GOTO label

Execute procedure

return to calling
procedure

The example in the preceding section can also be written using a
logical AND operation, as follows:

$ IF A • EQ • B • AND •
C • EQ • D • AND.
E .EQ. F THEN -
RESULT 1

This IF command expression consists of several operations; the THEN
command string is executed only if all tests performed within the
expression are true. Note that the .EQ. operator has a higher
precedence than the .AND. operator; the arithmetic comparisons in
this command will be performed before the logical comparisons.

6-3

CONTROLLING EXECUTION ?LOW IN COMMAND PROCEDURES

The other logical operators, OR and NOT, are also useful in IF
expressions. For example, the following command tests whether one or
the other of two expressions is true:

$ IF Pl.EQS."DISK" .OR. Pl.EQS."TAPE" THEN GOTO 'Pl'

The THEN command string in this example is executed if the parameter
Pl is currently equal to either of the character strings DISK or TAPE.

Note that when you use the AND or the OR logical operators, the
expressions on each side of the operator must be complete. The syntax
is:

$ IF expression .OR.
$ IF expression .AND.

expression THEN command
expression THEN command

The logical NOT operator tests whether an expression is not true, and
therefore reverses the sense of the test. For example:

$ IF .NOT. RESULT THEN command

The IF command above tests whether RESULT is false. This construct is
useful following INQUIRE commands. For example:

$ INQUIRE CONT "Do you want to continue"
$ IF .NOT. CONT THEN EXIT

If the response to the INQUIRE command is any even numeric value or
any character string that begins with an N or n (meaning no) or an f
or f (meaning false), the procedure does not continue execution. ·

Expressions can be simple or compound.
expression can consist of a single symbol:

RESULT

For example, a s iinple

A compound expression can consist of several operations:

(Pl .EQS. "DISK") .OR. (Pl .EQS. "TAPE") .AND. (P2 .LE. 5)

This expression is true if the symbol Pl is equated to either one of
the character strings DISK or TAPE and the symbol P2 has a numeric
value that is less than or equal to 5.

For complete details on the syntax of expressions and how to specify
each type of operation that is valid, see Section 3.3, "Equating
Symbols to Numeric and Logical Expressions."

6.1.2 Using Symbols in IF Commands

Expressions in IF commands are automatically evaluated during the
execution of the command. All character strings beginning with
alphabetic letters that are not enclosed in quotation marks are
assumed to be symbol names and the IF command replaces them with their
current values.

Symbol substitution in this context is not recursive; that is, each
symbol 1s replaced only once. However, if you want recursive
substitution, you can precede a symbol name with an apostrophe (') or
ampersand (&) operator so the command interpreter will perform
substitution during command input or parsing.

6-4

CONTROLLING EXECUTION FLOW IN COMMAND PROCEDURES

The command interpreter does not execute an IF command when it
contains an undefined symbol. Instead, the command interpreter issues
a warning message and executes the next command in the procedure.

Symbol substitution and recursive substitution are described in detail
in Chapter 4, "Symbol Substitution in Command Procedures." The
following paragraphs contain some specific examples of substitution
with the IF command.

$ A := B
$ IF A .EQS. "B" THEN •••

This IF command compares the value of the symbol A with the literal
value B. Note that if you do not enclose B in quotation marks, the IF
command assumes that B is a symbol name, attempts to replace it, and
issues a warning message if it fails to find the symbol name B.

The next example shows how to construct an IF command to recursively
check each parameter passed to a procedure:

$ COUNT 0
$ LOOP:
$
$
$
$
$
$
$

COUNT COUNT + 1
IF COUNT .EQ. 9 THEN
IF p I COUNT I • EQS. "II

APPEND/NEW &P'COUNT'
DELETE &P'COUNT';*
GOTO LOOP

EXIT

EXIT
THEN EXIT

SAVE.ALL

In this example, the IF command string is written so that each time
through the loop, the command interpreter replaces the symbol COUNT
with its current value. Each time the IF command executes, the
resulting symbol name (Pl, then P2, then P3, and so on) is replaced
within the expression. The APPEND and DELETE commands, however, must
use the ampersand (&) substitution operator on these parameters to
force recursive substitution. Recursive substitution with ampersands
is described in Section 4.5.4.

Note that Pl through P8 are never undefined when a procedure begins
execution. The command interpreter defines these symbols at each
command level above command level O; they are all initially given
null values. When you do specify parameters for procedures, your
specifications override the default values.

The above example also shows how to use the GOTO command to establish
a loop in a command procedure; the GOTO command is described next.

6.2 THE GOTO COMMAND

The GOTO command passes control to a labeled line in a command
procedure. You can precede any command string in a command procedure
with a label. The rules for entering labels are:

• A label must appear as the first item on a line.

• A label can have up to 255 characters.

• No blanks can be embedded within a label.

• A label must be terminated with a colon (:).

6-5

CONTROLLING EXECUTION FLOW IN COMMAND PROCEDURES

For example:

$ GOTO BYPASS

$ BYPASS:

As the command interpreter encounters labels, it enters them in a
table, space for which is allocated from space available in the local
symbol table. If a label is encountered that already exists in the
table, the new definition replaces the existing one. Note that the
amount of space availabYe for labels is limited. If a command
procedure uses many symbols and contains many labels, the command
interpreter may run out of table space and issue an error message.

Figure 6-2 illustrates how the GOTO command affects the flow of
execution in a command procedure.

The most common uses of GOTO commands are as targets of IF commands
and as a means of establishing loops, as described in Sections 6.2.1
and 6.2.2 below. You can also use labels to define segments of
command procedures; to define target statements for error conditions
in the CLOSE, READ, and WRITE commands; and to handle end-of-file
conditions in the READ command. (See Chapter 8 for more information
on the file-handling commands.)

$ LABELA: 0
$ co111111and-strins'

$ GOTO LABELA
$ co111111and-strins'

$ GOTO LABELB
$ co111111and-strins'

$ LABLEB
$ co111111and-strins'

$ GOTO LABELC

$ E)<I T

0 LABELA is put into the label table for this command level.

@ When a GOTO command is executed, the command interpreter checks the label table for this command level. If the
label is found, control transfers to the command immediately after the label.

f) If the label is not in the label table when a GOTO command is executed, the command interpreter scans forward
through the procedure to locate the label. If found, the label is placed in the label table and control transfers to the
command immediately following the label.

0 if the label is not in the label table when the GOTO command is executed, and the command interpreter cannot find
the label, the procedure exits immediately. The EXIT command is not executed.

Figure 6-2 The GOTO Command

6-6

CONTROLLING EXECUTION FLOW IN COMMAND PROCEDURES

6.2.1 Using GOTO as a Target of IF

The GOTO command is especially useful as the target command of an IF
command. used together, these commands can cause a procedure to
branch forward or backward according to variable conditions or
according to parameters that you pass to the procedure.

For example, when you use parameters in a
good practice to test the parameters
procedure. A procedure that you execute
with the lines:

$ IF Pl.NES."" THEN GOTO OKAY
$ INQUIRE Pl "Enter file spec"
$ OKAY:
$ PRINT/HOLD/COPIES=lO/FORMS=B 'Pl'

command procedure,
at the beginning
interactively could

it is
of the

begin

In this example, the IF command checks that Pl is not a null string.
If Pl is a null string, the GOTO command is not executed and the
INQUIRE command prompts for a parameter value. Otherwise, the GOTO
command causes a branch around the INQUIRE command. In either case,
the procedure executes the PRINT command following the line labeled
OKAY.

6.2.2 Using GOTO to Establish Loops

With the GOTO command, you can establish several kinds of loop. Three
examples follow.

You can use the GOTO command in loops that execute a defined number of
times. The procedure establishes a counter, increases or decreases
the counter, and tests the counter's value. When the counter reaches
a defined value, the procedure exits from the loop. For example:

$ COUNT=O
$ LOOP:
$ COUNT=COUNT+l

$ IF COUNT.LE.10.THEN GOTO LOOP
$ CONTINUE

Ii) this example, the command procedure exits from the loop when the
value of COUNT reaches 11.

You can use the GOTO command in loops that prompt for the user to
indicate whether execution should continue. For each iteration of the
loop, the procedure prompts for input data or a value for a variable.
For example:

$ LOOP:
$ INQUIRE FILE "FILE"
$ IF FILE .EQS. "" THEN GOTO SKIP

$ GOTO LOOP
$ SKIP: CONTINUE

n-7

CONTROLLING EXECUTION FLOW IN COMMAND PROCEDURES

In this example, the INQUIRE command requests a file name. If the
response from the interactive level is a null value (a ~ or a
~ } the loop is not executed. Otherwise, the loop executes,
iteratively, until a null value is entered.

You can use the GOTO command in loops that make a specific test during
each iteration. The procedure executes the loop until the test is
satisfied, then branches. The example loop in Section 6.1.2 is such a
test.

6.3 NESTING PROCEDURES: THE EXECUTE PROCEDURE COMMAND

The GOTO command described in the preceding section provides one way
to segment command procedures into more easily read and understood
sections. In a procedure that is more complex, you may find it useful
to separate procedures into several smaller procedures. or, you may
find it convenient to develop small, generalized procedures that
perform common functions and to invoke these procedures from other
procedures that you write.

Using the Execute Procedure (@) command to invoke new levels of
command execution is similar to a CALL statement in a high-level
programming language. Procedures can be nested to a maximum of eight
levels. At each command level, logical name assignments for process
permanent files can change; these changes are discussed in Section
2.1.

Some of the techniques you can use to pass information from one
command level to another involve:

• Passing parameters. You can pass up to eight variable
parameters to a procedure you invoke using the Execute
Procedure (@) command. Techniques for passing parameters to
command procedures are described in Section 3.6.

• Using global symbols. You can use global symbols to pass
variable data from one procedure to another; a global symbol
defined in a nested command procedure can be ref erred to in
all command procedures. Global symbols are described in
Section 3.5.2.

NOTE

The sample procedure CONVERT.COM in
Appendix A is a generalized procedure
that can be called by any other
procedure. It accepts a parameter
passed to it and sets a global symbol
value for the caller.

6.4 THE EXIT AND STOP COMMANDS

The EXIT and STOP commands both provide a ·way to terminate the
execution of a procedure. The EXIT command terminates execution of
the current command procedure and returns control to the calling
command level. The STOP command also terminates execution of a
procedure; however, when a STOP command is executed, the command
interpreter returns to command level O, regardless of the current
command level. If you execute the procedure in a batch job, the batch
job terminates.

6-8

CONTROLLING EXECUTION FLOW IN COMMAND PROCEDURES

6.4.1 Using the EXIT Command

You can use the EXIT command to ensure that a procedure does not
execute certain lines. For example, if you write an error handling
routine at the end of a procedure, you would place an EXIT command
preceding the routine, as follows:

$ EXIT 1 End of normal execution path
$ ERROR ROUTINE:

The EXIT command is also useful for writing procedures that have more
than one execution path. For example:

$ START:
$ IF Pl.EQS."TAPE".OR.Pl.EQS."DISK" THEN GOTO 'Pl'
$ INQUIRE Pl "Enter device (TAPE or DISK)"
$ GOTO START
$ TAPE: Process tape files

$ EXIT
$ DISK: Process disk files

$ EXIT

To execute this command procedure, you must enter either TAPE or DISK
as a parameter. The IF command uses a logical OR to test whether
either of these strings was entered. If so, the GOTO command branches
appropriately, using the parameter as the branch label. If Pl was
neither TAPE nor DISK, the INQUIRE command prompts for a correct
parameter; the GOTO START command establishes a loop.

The commands following each of the labels TAPE and DISK provide
different paths through the procedure. The EXIT command before the
label DISK ensures that the commands after the label DISK are not
executed unless the procedure explicitly branches to DISK.

Note that the EXIT command at the end of the procedure is not required
because the end-of-file of the procedure causes an implicit EXIT
command.

6.4.2 Passing Status Values with the EXIT Command

The EXIT command accepts an optional parameter, called a status code
value. When a command procedure has multiple levels of interaction,
you can use the EXIT command to pass status values from nested levels
back to their callers. The exit code defines a value for the global
symbol named $STATUS. $STATUS is a special, reserved symbol name
maintained by the command interpreter.

n-9

CONTROLLING EXECUTION FLOW IN COMMAND PROCEDURES

For example, suppose the procedure A.COM contains:

$ @B
$ IF $STATUS .EQ. 3 THEN GOTO CONTROL

The procedure B.COM contains the line:

$ EXIT 3

This EXIT command places the value 3 in the global symbol $STATUS,
which is tested by the calling procedure, A.COM.

Note that you can use any numeric value or expression with the EXIT
command: the EXIT command automatically performs symbol substitution
and expression evaluation. For example:

$ EXIT A+B

The above command is valid if the symbols named A and B are both
currently defined with arithmetic values.

If you do not set a value for an EXIT command when a procedure is
terminated, the command interpreter gives it a default value, based on
the status value returned from the most recently executed command or
program. For information on how this value is set and how you can
establish default courses of action for a command procedure based on
its value, see Chapter 7, "Controlling Error Conditions and CTRL/Y
Interrupts."

6.4.3 Using the STOP Command

You can use the STOP command in a command procedure or batch job to
ensure that all procedures are terminated if a severe error occurs.

You can also use the STOP command to halt the interactive execution of
a procedure after interrupting it. For example:

$ @TESTALL 00')
©!fillY)

,..y

$ STOP 00')

In the above example, the procedure TESTALL is interrupted by CTRL/Y.
The STOP command terminates processing of the procedure and restores
command level O.

NOTE

The sample procedure BWAKE.COM in
Appendix A uses the STOP command in a
batch job to halt the job.

6-10

CHAPTER 7

CONTROLLING ERROR CONDITIONS AND CTRL/Y INTERRUPTS

This chapter describes how to control command procedure execution when
an error condition or a CTRL/Y interrupt occurs.

Error conditions are detected by various VAX/VMS (or applications)
components and are stored in the reserved global symbol $STATUS. The
lowest three bits of this integer value provide the current value of
the reserved global symbol $SEVERITY.

A CTRL/Y interrupt is the result of pressing
procedure execution.

7.1 ERROR CONDITION HANDLING

during command

If an EXIT command does not explicitly set a value for $STATUS, the
command interpreter uses the current value of $STATUS. This value is
set implicitly by individual commands and programs that execute in a
procedure. The values that are set, called condition codes, provide
information about the termination of a program image, and you can
provide action routines and error handling statements in your
procedures based on values in $STATUS as described in the following
sections.

7.1.1 Severity Levels

The low-order three bits of the status value contained in $STATUS
represent the severity of the condition. The reserved global symbol
$SEVERITY always contains only this portion of the condition code.
These values, and the severity levels they represent are:

Value Severity

0 Warning
1 Success
2 Error
3 Information
4 Severe, or fatal, error

Note that the success and information codes have odd numeric values
and warning and error codes have even numeric values. You can test
for the successful completion of a command with IF commands that
perform logical tests on these values, as shown below:

$ IF $SEVERITY THEN
$ IF $STATUS THEN •••

7-1

CONTROLLING ERROR CONDITIONS AND CTRL/Y INTERRUP~S

When the current value in $SEVERITY or $STATUS is odd, the command or
program completed successfully (the IF expressions are true).
Otherwise, the IF expressions are false, indicating that the command
or program did not complete successfully~

The converse of this test is a logical NOT operation, for example:

$ IF .NOT. $STATUS THEN

The command interpreter also uses the severity level of a condition
code to determine whether to take specific action defined by the ON
command. If an ON command action exists for a specific severity
level, for example, for error conditions, that action will be taken.
If a command results in an error, the specified action is taken and
the next statement in the procedure will not be executed.

7.1.2 The ON Command

During the execution of a command procedure, the command interpreter
checks the condition code returned from each command or program that
executes. With the ON command, you can establish a course of action
for the command interpreter to take based on the result of the check.

By default, the command intBrpreter executes an EXIT command when an
error or severe error occurs, and continues when warnings occur. You
can override this default with the ON command. An ON comm~nd
establishes a default command action when condition code of a
specified severity level and above occur.

If an ON command action is established for a specific severity level,
when errors of lesser severities occur the command interpreter will
continue processing the file. Table 7-1 illustrates the ON command
keywords that define command actions and the action taken by the
command interpreter on condition code at other severity levels.

Table 7-1
Severity Levels for ON Command Actions

------·-----.----.----··-··-·--·-------·-·----·-.... -... --........... _______ , __ .. _________ _
Action Taken at Different Severity Levels

ON Command
Severity Level

WARNING ERROR SEVERE ERROR

-----------t-----~--.. --t--------··--.. -----+ ·-·-· .. ·----- '"·------·- ···--

WARNING Specified Specified Specified
action action action

ERROR Continµe Specified Specified
action action

SEVERE ERROR Continue Continue Specified
action

For example, if you want a procedure to exit when warnings, errors,
and severe errors occur, use the command:

$ ON WARNING THEN EXIT

7-2

CONTROLLING ERROR CONDITIONS AND CTRL/Y INTERRUPTS

If you want the procedure to continue if a warning or an error occurs,
but to exit if a severe error occurs, use the command:

$ ON SEVERE ERROR THEN EXIT

This ON command requests that the procedure exit only in the case of a
severe error. If any command in the procedure incurs a warning or
error condition, execution will continue with the next command in the
procedure. If a severe error occurs, however, the procedure exits.

An ON command action is executed only once; thus, if you have used
the above command, the command interpreter continues after an error
occurs, but resets the default condition. If a second error occurs,
and no other ON command has been encountered, the procedure exits.
Figure 7-1 illustrates ON command actions.

$ @FORT

NOTE

The sample procedures FORTUSER.COM and
CALC.COM in Appendix A illustrate the
use of the ON command to establish error
handling.

OBA 1 :[HIGGINS]FORT.COM

$ ON ERROR THEN CONTINUE
$ FORTRAN A

$ FORTRAN B

$ ON WARN I NG THEN E}(IT

$ FORTRAN C

$ EXIT

0
8

0 This ON command overrides the default command action (on warning, continue; on error or severe error, exit). If an
error or severe error occurs while A.FOR is being compiled, the command procedure continues with the next
command.

8 The default command action is reset if the previous ON command takes effect. Thus, if an error or severe error
occurs while B.FOR is being compiled, the command procedure exits.

8 If the command procedure does not exit before this command is executed, this command action takes effect.

8 If a warning, error, or severe error occurs while C.FOR :s being compiled, the command procedure exits.

Figure 7-1 ON Command Actions

7-3

CONTROLLING ERROR CONDITIONS AND CTRL/Y INTERRUPTS

The action specified by an ON command applies only within the command
procedure in which the command is executed. Therefore, if you execute
an ON command in a procedure that calls another procedure, the ON
command action does not apply to the nested procedure. In fact, an ON
command executed at any command procedure level does not affect the
error condition handling of procedures at any other level.

7.1.3 Disabling Error Checking

You can use the SET NOON command to request the command interpreter to
not check the status returned from any commands. When the SET NOON
command is in effect, the command interpreter does not perform any
checking of $STATUS. For example:

$ SET NOON
$ RUN TESTA
$ RUN TESTB
$ SET ON

The SET NOON command preceding these RUN commands ensures that if
either of the programs TESTA or TESTB return error conditions the
procedure will continue. The SET ON command restores error checking
by the command interpreter.

When a procedure disables error checking, it can explicitly check the
value of $STATUS following the execution of each command or program.
For example:

$ SET NOON
$ FORTRAN MYFILE
$ IF $STATUS THEN LINK MYFILE
$ IF $STATUS THEN RUN MYFILE
$ SET ON

In the above example, the first IF command checks whether $STATUS has
a true value, that is, an odd numeric value. If so, the FORTRAN
command was successful and the LINK command will be executed. After
the LINK command, $STATUS is tested again. If $STATUS is odd, the RUN
command will be executed; otherwise, the RUN command will not be
executed. The SET ON command restores the current ON condition
action; that is, whatever condition was in effect before the SET NOON
command was executed.

The SET ON or SET NOON command applies only at the current command
level, that is, the command level at which the command is executed.
If you use the SET NOON command in a command procedure that calls
another command procedure, the default error checking will be in
effect within the nested procedure. Note that SET NOON has no meaning
at command level O.

7.1.4 System Messages

When a DCL command, user program, or command procedure completes
execution, the command interpreter saves the condition code value in
the global symbol $STATUS. For example, if an error occurs during a
TYPE command, the value in $STATUS represents the specific error
returned by the TYPE command. When a command or program completes
successfully, $STATUS has an odd value.

7-4

CONTROLLING ERROR CONDITIONS AND CTRL/Y INTERRUPTS

Note that the command interpreter always maintains and displays the
current value of $STATUS in hexadecimal.

When any command procedure exits and returns control to another
command level, the command interpreter tests the current value of
$STATUS. If $STATUS contains an even numeric value, and if its
high-order digit is O, the command interpreter will display the system
warning or error message associated with that status code, if one
exists., (Otherwise, the message NOMSG will be displayed.)

However, when a command procedure exits following a warning or error
condition, the command interpreter sets the high-order digit of
$STATUS to 1, leaving the remainder of the value intact. Many system
programs that issue their own messages also set this field to 1 so
that the command interpreter does not redisplay the message associated
with the status value.

7.1.5 Commands that Do Not Set $STATUS

Most DCL commands invoke system utilities that generate unique status
values and error messages based on different results. However, there
are several commands that do not change the values of $STATUS and
$SEVERITY if they complete successfully. These commands are:

CONTINUE
DEPOSIT
EOD
EXAMINE
EXIT

GOTO
HELP
IF
SHOW
STOP
WAIT

If any of these commands results in a nonsuccessful status, however,
that condition code will be placed in $STATUS, and the severity level
will be placed in $SEVERITY.

7.1.6 Status Codes Returned by Compatibility Mode Commands

The DCL commands that invoke RSX-llM programs that execute in
compatibility mode do not use the standard error reporting mechanism
of VAX/VMS. These commands do not use $STATUS to return explicit
values based on different results. Thus, most compatibility mode
commands can test or change only $SEVERITY.

7-5

CONTROLLING ERROR CONDITIONS AND CTRL/Y INTERRUPTS

7.2 CTRL/Y INTERRUPT HANDLING

When g~M is pressed during command procedure execution, control
is given to a special command level, the CTRL/Y command level. When
you execute a command procedure, you can use the CTRL/Y command level
in either of the following ways:

• To interrupt the execution of the procedure and execute one or
more DCL commands. Then you can either stop the execution of
the procedure or, depending on the commands you entered,
resume execution of the procedure.

• To provide a default action for the command interpreter to
take when ~ is pressed during the execution of the
procedure.

These techniques are described below.

7.2.1 Interrupting a Command Procedure

You can interrupt a command procedure that is executing interactively
by pressing either ~ or PRLiYJ The effect is the same: the
command interpreter establishes a new command level, called the CTRL/Y
level, and prompts for command input. When the interruption actually
occurs depends on the command that is executing:

• If the command currently executing is a command that is
executed by the command interpreter itself (for example, IF,
GOTO, or an assignment statement) the command completes
execution before the command interpreter prompts for a command
at the CTRL/Y level.

• If the command or program currently executing is a
image (that is, an image not executed by the
interpreter), the command is interrupted and the
interpreter prompts for a command at the CTRL/Y level.

separate
command
command

At the CTRL/Y level, the command interpreter stores the status of all
previously established command levels, so that it can restore the
correct status after any CTRL/Y interrupt.

After you interrupt a procedure, you can:

• Issue a DCL command that does not replace the image that is
currently executing. Among these commands are the SET VERIFY,
SHOW TIME, SHOW TRANSLATION, ASSIGN, EXAMINE, and DEPOSIT
commands. After you issue one or more of these commands, you
can resume the execution of the procedure with the CONTINUE
command.

• Issue a DCL command that executes another
issue any command that invokes a new
interpreter returns to command level 0
command.

image. When you
image, the command
and executes the

• Issue the STOP command to terminate the procedure's execution.
This command restores control to command level O. Note that
because commands that execute new images have the same effect
as the STOP command, you do not normally need to use the STOP
command.

7-6

:
CONTROLLING ERROR CONDITIONS AND CTRL/Y INTERRUPTS

When you interrupt a command procedure during the execution of a
command or program that is not executed by the command interpreter,
then the CONTINUE command resumes the execution of the interrupted
command or program. If you issue a command that invokes a new image,
exit handlers declared by the previous image, if any, will be allowed
to execute first.l

The VAX/VMS Command Language User's Guide lists the DCL commands that
are executed by the command interpreter, that is, the commands you can
safely issue at the CTRL/Y level without causing the current image to
be stopped.

7.2.2 Setting a CTRL/Y Action Routine

The ON command, which defines an action to be taken in case of error
conditions, also provides a way to define an action routine for a
CTRL/Y interrupt that occurs during execution of a command procedure.
The action that you specify overrides the default action of the
command interpreter (that is, to prompt for command input at the
CTRL/Y command level).

For example:

$ ON CONTROL Y THEN EXIT

If a procedure executes the ON command shown above, a subsequent
CTRL/Y interrupt during the execution of the procedure causes the
procedure to exit. Control is passed to the previous command level.

When you press PRLNJ to interrupt a procedure that has established
a CTRL/Y action, the action is taken as follows:

• If the command currently executing is a
the command interpreter, the command
CTRL/Y action is taken.

command executed by
completes before the

• If the current command is to be executed by an image other
than the command interpreter, the image is forced to exit and
cannot be continued following the CTRL/Y action. If the image
has declared an exit handler, however, the exit handler is
executed before the CTRL/Y action is taken.

The execution of a CTRL/Y action does not reset the default action. A
CTRL/Y action remains in effect until:

• The procedure terminates (as a result of an EXIT or STOP
command, or a default error condition handling action)

• Another ON CONTROL Y command is executed

• The procedure executes the SET NOCONTROL_Y command

For example, a procedure can contain the line:

$ ON CONTROL Y THEN SHOW TIME

1. An exit handler is a routine that receives control to perform
image-specific cleanup operations when an image exits. Exit handlers
are described in detail in the VAX/VMS System Services Reference
Manual and in various language reference manuals.

7-7

CONTROLLING ERROR CONDITIONS AND CTRL/Y INTERRUPTS

When this procedure executes, each CTRL/Y interrupt results in the
execution of the SHOW TIME command. After each SHOW TIME command
executes, the procedure resumes execution at the command following the
command that was interrupted.

Figure 7-2 illustrates two ON CONTROL Y commands and describes the
flow of execution following CTRL/Y interruptions.

$ @FILES

t:fllL/Y) 0
$

$ @PRit,i

NOTE

The sample procedures EDITALL.COM and
FORTUSER.COM in Appendix A, illustrate
CTRL/Y action handling.

OBA 1 :[HIGGINS] FILES.COM

$ ON CONTROL_Y THEN GOTO CLEAN_UP

$ TYPE STATUS. OUT; 1 f)
$ IF $STATUS THEN DELETE STATUS.OUTi1

$ D(IT
$ CLEAN_UP:
$ DELETE STATUS.OUTi1
$ DELETE *+TMPi*
$ E><IT C)

InterruPtion not allo1,1ed ••• continuins

OBA 1 :[HIGGINS] PRIV.COM

$ ON CONTROL_Y THEN WRITE SYSSOUTPUT-
" Inter ruPt ion not allo1,1ed ••• continuins"

$TYPE STATUS.OUT ii 0
$ IF $STATUS THEN DELETE STATUS.OUTi1

The CTRL/Y interrupt at 0 occurs during execution of the TYPE command, at f). Control is transferred to the label
CLEAN_UP. After executing the routine, the command procedure exits, at C) and returns control to the interactive
command level.

The CTRL/Y interrupt at 0 occurs during execution of the TYPE command, at 0. The WRITE command specified in the
ON command is executed. Then, the command procedure continues execution at the command following the interrupted
command.

Figure 7-2 Flow of Execution Following CTRL/Y Action

7-8

CONTROLLING ERROR CONDITIONS AND CTRL/Y INTERRUPTS

A CTRL/Y action can be specified for each active command level; the
CTRL/Y action specified for the currently executing command level
overrides action(s) specified for previous levels, if any. Note,
however, that if a ~ action is established at a command level,
the default action for subsequent command levels is to exit. Figure
7-3 illustrates what happens when ~ is pressed during the
execution of a nested command procedure.

$ @SEARCH

tmUYJ 0
10-MAR-1980 17:41:30

DBA 1 :[HIGGINS]SEARCH.COM

$ ON CONTROL_Y THEN GOTO CLEAN_LJp

$ @SUBSEARCH
$ NE)<T _STEP:

$ D(lT
$ CLEAN_UP:

DBA 1 :[HIGGINS] SUBSEARCH.COM

$ @SUBSUB

DBA1 :[HIGGINS] SUBSUB.COM

$ ON CONTROL_Y THEN SHOWTIME

$ E)< IT

0 If a CTRL/Y interrupt occurs while SEARCH.COM is executing, control is transferred to the label CLEAN_UP.

8 If a CTRL/Y interrupt occurs while SUBSEARCH.COM is executing, control is transferred to the label NEXT _STEP in
SEARCH.COM. Because no CTRL/Y action is specified in SUBSEARCH.COM, the procedure exits to previous com­
mand level when a CTRL/Y interrupt occurs.

0 If a CTRL/Y interrupt occurs while SUBSUB.COM is executing, the SHOW TIME command is executed.

Figure 7-3 Default CTRL/Y Action for Nested Procedures

7-9

CONTROLLING ERROR CONDITIONS AND CTRL/Y INTERRUPTS

7.2.3 Disabling CTRL/Y Interruptions

CAUTION

The ON CONTROL Y and SET NOCONTROL Y
commands are intended for special
applications. It is not, in general,
recommended that you disable CTRL/Y
interrupts. For example, if a procedure
that disables CTRL/Y interrupts begins
to loop uncontrollably, you cannot gain
control to stop the procedure from your
terminal; you must use another terminal
to terminate the procedure or you must
request the system operator to terminate
it for you. Termination, in this case,
requires the deletion of your process.

The SET NOCONTROL Y command disables CTRL/Y handling completely: that
is, if a command procedure executes the SET NOCONTROL Y command,
pressing the ~ will have no effect.

The SET NOCONTROL Y command also cancels the current CTRL/Y action, if
any, and restores the default. Thus, the correct way to reestablish
the default command interpreter action for CTRL/Y handling is to issue
the two commands:

$ SET NOCONTROL Y
$ SET CONTROL Y-

The first command disables CTRL/Y handling and cancels a
CTRL/Y action; the second command enables CTRL/Y handling.
point, the default action is reinstated: if ~ 1s
during the execution of the procedure, the command interpreter
for a command at the CTRL/Y command level.

current
At this
pressed
prompts

You can issue the SET NOCONTROL Y command at any command level; it
affects all command levels, until the SET CONTROL Y command reenables
CTRL/Y handling.

NOTE

For an example of a system-defined
procedure that disables CTRL/Y
interrupts for logged-in users, see the
sample procedure FORTUSER.COM in
Appendix A.

7-10

CHAPTER 8

CREATING, READING, AND WRITING FILES

This chapter describes ways you combine DCL commands with the
programming and symbolic capabilities of command procedures to
manipulate sequential files. Included are techniques for using:

• The OPEN command to create sequential files within a command
procedure

• The READ command to read sequential files within a command
procedure

• The WRITE command to write sequential files from a command
procedure

• The CLOSE command to explicitly close files that have been
opened during command procedure execution

The basic steps in reading and writing files from a command procedure
are:

1. Use the OPEN command to open a file. The OPEN command
assigns a logical name to the file and specifies whether the
file is to be read or written. If you open a nonexistent
file for writing, a file will be created. Otherwise, the
file specified in the OPEN command must be an existing file.

2. Use the READ or WRITE command to read or write the file. The
READ and WRITE commands use command symbols to define buffers
for input and output records; the READ command reads a
record from a file into a symbol and the WRITE command writes
one or more symbols or literal character strings from a
symbol into a single record of an output file.

3. Use the CLOSE command to close the file. After you open a
file with the OPEN command, it remains open until you
explicitly close it or until you log out.

For example, Figure 8-1 shows a command procedure that reads a record
from an input file and copies the record into an output file. The
OPEN commands in the procedure specify whether the files are opened
for input or output, create logical names for the files (for use in
subsequent READ and write commands in this procedure), and identify
the files. The READ and WRITE commands use the logical names to refer
to the files and define a symbol that becomes the input/output buffer
for file reads and writes. The CLOSE commands are used to explicitly
close both files when the command procedure completes file processing.
The CLOSE commands also deassign the logical names specified for the
files in the OPEN commands.

8-1

CREATING, READING, AND WRITING FILES

DBA 1 :[HIGGINS]FILES.COM Q
$ OPEN/READ INFILE DATA.TST
$ OPEN/WRITE DUTFIL DATA.OUT

$ READLOOP:
$ READ INFILE RECORD
$ WRITE OUTFIL RECORD

$ FINISH:
$ CLOSE INFILE
$ CLOSE OUTFIL

0
I-MAXIMUM OF 255 BYTES ~-l

0 The command procedure, FILES.COM

f) The input file, DATA.TST

8 The output file, DAT A.OUT

DBA1 :[HIGGINS]DATA.TST

I

DBA1:[HIGGINS]DATA.OUT

I

J

J

0 The contents of this buffer is assigned to the READ and WRITE symbol name, RECORD

Figure 8-1 Steps in Reading and Writing Files

8.1 READING FILES

With the READ command, you can read only sequential files in which all
records are less than 255 characters in length. After a file is
opened, the command interpreter maintains a pointer to a current
record in the file. Each READ command reads the next record and uses
the contents of the record to assign a value to the symbol nnme
specified by the command. The following sections discuss two of the
factors you must consider when reading files: how to define symbol
names and how to handle end-of-file conditions.

8.1.1 Specifying Symbol Names for the READ Command

The rules for specifying symbol names are the same as for defining
symbols with assignment statements:

• A symbol name must start with an alphabetic letter, dollar
sign ($), or underscore ()

• A symbol name can have from 1 to 255 characters

When you specify a symbol name for the READ command, the command
interpreter places the symbol name in the local symbol table for the
current command level. If you use the same symbol name for more than
one READ command, each READ command redefines the value of the symbol
name. For example, you can use a loop in a command procedure to read
an entire file, as shown below:

$ READLOOP:
$ READ INFILE RECORD
$ GOTO READLOOP

8-2

CREATING, READING, AND WRITING FILES

Each time through this loop, the READ command reads a record from the
input file identified as INFILE and redefines the value of the symbol
RECORD.

8.1.2 Handling End-of-File Conditions

When the READ command attempts to read beyond the· last record in the
file, an error condition indicating the end of file is returned by the
VAX-11 Record Management Services (VAX-11 RMS). The completion status
value is %RMS-F-EOF. Note that because the command interpreter
performs normal error checking and message processing following a READ
command, this condition can result in the termination of the command
procedure, unless the procedure has established its own error
handling.

The READ command allows you to specify, with the /END OF FILE
qualifier, the label of a line in the command procedure to be given
control when this completion value is returned. For example:

$ LOOP:
$ READ/END OF FILE=DONE INFILE RECORD
$ GOTO LOOP
$ DONE:
$ CLOSE INFILE

In this example, the procedure executes the READ command repeatedly
until the end-of-file status is returned. Then, control is given to
the line labeled DONE. Note that labels you specify for /END OF FILE
qualifiers are subject to the same rules as labels specified for a
GOTO command and are located in the same way.

8.2 WRITING FILES

The WRITE command can write records only to sequential files that have
been opened for writing. If the output file specification on an
OPEN/WRITE command does not include a file version number and if there
already exists a file with the specified file name and file type, the
WRITE command creates a new file with a version number one greater
than the existing file. Thus, you cannot use the WRITE command to
append records to an existing file.

When the WRITE command writes a record, it always positions a record
pointer following the record just written.

8.2.1 Symbol Substitution in the WRITE Command

As shown in Figure 8-1, the WRITE command automatically performs
symbol substitution on tokens specified as parameters. This applies
to all tokens that begin with alphabetic letters and are not enclosed
in quotation marks.

To specify more than one symbol name, separate them with commas. You
can intersperse symbol names and literal character strings within a
WRITE command. For example:

$ WRITE OUTFILE "Count is ",COUNT,"."

8-3

CREATING, READING, AND WRITING FILES

This WRITE command writes one data· record into the output file
identified by the logical name OUTFILE. If the current value of the
symbol COUNT is 4, the data record that is written is:

Count is 4.

Another way to mix literal strings with symbol names is to place the
entire string within quotation marks and use double apostrophes to
request symbol substitution. For example:

$WRITE OUTFILE "Count is ''COUNT'."

This WRITE command is equivalent to the preceding WRITE command
example.

Note that symbol substitution performed by the WRITE command is
actually performed during command execution. The WRITE command does
not perform lexical processing on the result of substitution. For
example, a symbol could be defined with a lowercase value as follows:

$ LINE := "This is the line."

The WRITE command will not convert this line to uppercase when it
processes the symbol LINE.

The sample
Appendix A
command.

NOTE

procedure LISTER.COM in
illustrates the WRITE

If you use apostrophes or ampersands to request symbol substitution in
a parameter specified for the WRITE command, recursive substitution
occurs. For example, if you use a lexical function in a WRITE command
as shown below, an error occurs:

$ WRITE SYS$0UTPUT 'F$MODE() I

You must place the function in quotation marks:

$WRITE OUTFILE "''F$MODE() '"

Otherwise, the replacement of the function F$MODE would occur during
command input causing the WRITE command to attempt substitution on the
resulting symbol name.

Figure 8-2 illustrates different ways of specifying data for the WRITE
command.

8-4

CREATING, READING, AND WRITING FILES

$ @FIGURE

$ TYPE DATA.OUT
the character strins
ABC
COUNT IS ll
MODE IS INTERACTIVE
FOURTH PARAMETER
$

0
8
e e
0

OBA 1 :[HIGGINS]FIGURE.COM

$ ABC := "the character strins"
$ COUNT = ll
$ Pll := fourth Parameter
$ OPEN/WRITE OUTFILE DATA.OUT
$ WRITE OUTFILE ABC
$ WRITE OUTFILE "ABC"
$ WRITE OUTF I LE 11 COUNT IS " , COUNT
$ WR I TE OUTF I LE II MODE Is I I F$MODE () I II

$ WRITE OUTFILE P'COUNT'
$ CLOSE OUTFILE

0 The WRITE command automatically performs symbol substitution on characterstrings that are not enclosed in
quotation marks; substitution is not recursive.

8 If a character string is enclosed in quotation marks, the WRITE command does not perform symbol substitution.

0 When two or more symbol names or character strings are specified, the WRITE command concatenates the strings
before it writes the record to the output file.

G) Within character strings, the command interpreter performs substitution requested by apostrophes during command
input; the WRITE command executes the results.

0 If the data specified for a WRITE command contains an apostrophe, the command interpreter performs symbol
substitution during command input (as in G)); the WRITE command performs substitution on the resulting command
string.

Figure 8-2 Symbol Substitution with the WRITE Command

8.3 ERROR HANDLING

The ON command, described in Chapter 7, provides a default course of
action when errors occur during the execution of a command procedure.
You can use an ON condition action to control what happens overall in
a procedure. The OPEN, CLOSE, READ, and WRITE commands also allow you
to specify labels to receive control in case an error occurs during
the processing of the specific command.

For example:

$ OPEN/READ/ERROR=NOT_FOUND INFILE CONTINGEN.DOC

This OPEN command requests that the file named CONTINGEN.DOC be opened
for reading. If the file cannot be opened for any reason, for
example, if it does not exist, the OPEN command returns an error
condition. Control is transferred to the label NOT FOUND.

8-5

CREATING, READING, AND WRITING FILES

This example also illustrates a technique for determining whether a
file with a given file name and file type already exists. The label
NOT FOUND could be a successful path for a command procedure that
creates a file named CONTINGEN.DOC and wants to ensure that the file
name and type are unique. For example:

$
$
$
$
$ NOT
$

OPEN/READ/ERROR=NOT FOUND FILE 'Pl'
WRITE SYS$0UTPUT "File name ''Pl' in
CLOSE FILE
EXIT

FOUND:
OPEN/WRITE OUTFILE 'Pl'

use"

This procedure uses the OPEN command with the /ERROR qualifier to open
a file whose name is specified by a parameter passed to the procedure.
If the OPEN command completes execution successfully, the file already
exists; the procedure issues a message, closes the file, and exits.

If the OPEN command fails, the procedure assumes that the command
failed because the file does not exist; the procedure takes the error
path and control goes to the label NOT FOUND. At NOT FOUND, the file
is opened for writing. If the error-occurred for some other reason,
for example, an invalid file type, the OPEN/WRITE command to write the
file will fail and an appropriate error message will be issued.

Any error path specified with the file-handling commands (OPEN, READ,
WRITE, and CLOSE) overrides the current ON condition established for
the command level. Moreover, an error path, successfully taken,
changes the value of $STATUS to a success code. Thus, the procedure
cannot, in this case, determine the specific reason for the error.
The following examples illustrate this aspect of error handling.

$ ON ERROR THEN GOTO CHECK
$ OPEN/READ INFILE 'Pl'

$ CHECK:
$ WRITE SYS$0UTPUT "Error opening file: status is ",$STATUS

In the above example, if an error occurs during opening of the file
specified by Pl, control goes to the label CHECK. At CHECK, $STATUS
still contains the numeric status value associated with the specific
error that occurred.

$ OPEN/READ/ERROR=CHECK FILE 'Pl'

$ CHECK:
$ WRITE SYS$0UTPUT "Error opening file"

In this example, if an error occurs opening the file, control goes to
the label CHECK as a result of the /ERROR qualifier. However, at this
label, the value of $STATUS is always a success code; the procedure
cannot check for or display the specific status value that caused the
error.

8-fi

CREATING, READING, AND WRITING FILES

8.4 COMMUNICATING WITH PROCESS-PERMANENT FILES

You can also use the READ and WRITE commands to read data from the
current input device or to write messages on the current output
device. The process permanent files SYS$INPUT, SYS$OUTPUT,
SYS$COMMAND, and SYS$ERROR do not have to be explicitly opened before
you refer to them in READ or WRITE commands. For example:

$ READ SYS$COMMAND TESTID

This READ command results in a read to the current device SYS$COMMAND;
thus, when the procedure is executed interactively, the read is issued
to the terminal. When the READ command executes, the command
interpreter displays the following prompt at the terminal:

Data:

Whatever you type in response to this prompt is then equated to the
symbol named TESTID.

Similarly, you can write a line of data to the terminal, or whatever
the current output device is, with the WRITE command. For example:

$WRITE SYS$0UTPUT "Count is ''COUNT' ••• continuing ••• "

Before this line is displayed on the terminal, the symbol named COUNT
is replaced with its current value.

Note that the logical name TT the system equates
interactive terminal is not a process permanent file.
you must explicitly open it.

8.5 FILE FORMATS

to the current
To write to TT,

You can use the READ command to read any existing sequential file.
The maximum record length that the READ command accepts is 255
characters.

When you create a file with the WRITE command, you cannot specify any
attributes for the file: the command interpreter always creates a
file in print file format. The record format for the file is VFC,
with a 2-byte header for each record.

These files are therefore not compatible with files created by the
default system editor SOS or with RSX-llM utilities invoked by DCL
commands. If you create a file with the DCL command WRITE and you
want to use the file as input to another program or command, you can
perform an intermediate step to convert the file to a suitable format.
One simple way to do this is to invoke the SOS editor to edit the file
and then write the file back onto disk. sos removes the carriage
control bytes from each record as it writes the output file. For
example:

$ OPEN/WRITE OUTFILE DATA.OUT

$ CLOSE OUTFILE
$ EDIT/NOLINES DATA.OUT
EB

8-7

CREATING, READING, AND WRITING FILES

After a file is closed, you can specify it as an input file to the
editor; the /NOLINES qualifier in this example indicates to SOS that
the file does not have line numbers associated with the records in the
file. The SOS command EB follows the EDIT command in the input stream
for the procedure: the EB command writes the file onto disk without
incrementing the version number.

8-8

CHAPTER 9

CONTROLLING BATCH JOBS

This chapter describes techniques for controlling batch jobs. It
includes information useful both to batch users and to interactive
users who submit command procedures to a batch job queue.

The following topics are discussed in this chapter:

• How the system executes batch jobs

• Batch job output

• Synchronizing batch job execution

9.1 HOW THE SYSTEM EXECUTES BATCH JOBS

When the system executes a command procedure submitted to a batch job
queue, it creates a detached process to execute the commands. This
process receives your disk and directory defaults and the same
resource quotas and privileges that were given to your interactive
process when you logged in. This process is given a name of the form

JOBnnn where nnn is the job number assigned to the job. The process
executes under your UIC. Figure 9-1 illustrates how the system
executes a batch job.

9.1.1 The Batch Job Queue

Once a job has been entered in a batch job queue, you can monitor its
status with the SHOW QUEUE command. For example:

$ SHOW QUEUE SYS$BATCH

This command would show the current contents of the SYS$BATCH queue.
The following command would show the current contents of all batch
queues:

$ SHOW QUEUE /BATCH/ALL

All jobs in batch queues have job numbers, but no job in a queue has a
process created for its execution until the job becomes a current job.
Thus, jobs identified in batch queue displays as "current" jobs are
active processes; jobs identified as "pending" jobs or "holding" jobs
are in the queues, but processes have yet to be created for them.

9-1

rl'-

UsernaMe: HIGGINS
Pass1.1ord:

$ SUBMIT TESTALL

Job 210 entered

$

on

CONTROLLING BATCH JOBS

queue SYS$BATCH

Command interpreter
finds TEST ALL.COM
on default device
and directory ...

then requests queue
for the batch job

TEST ALL.COM gets a
job number and is I-
placed in SYS$BATCH
queue

Command interpreter
returns job informa-
tion (and control)
to interactive
command level

Input stream is
DBA 1 :[HIGGINS]TESTALL.COM

Output stream is
DBA 1 :[HIGGINS]TESTALL.LOG
a temporary file that is deleted
after it is printed.

DBA 1 :[HIGGINS]TEST ALL.COM

---~

--

$ RUN A
$ RUN B
$ RUN C

SYS$BATCH QUEUE

JOB NUMBER 208
JOB NUMBER 208
JOB NUMBER 210

1

I
I

l
When Job 210
can be executed,
a process is
created to execute
the job. When
the job is completed,
the process is
deleted

Figure 9-1 How the System Executes a Batch Job

9-2

CONTROLLING BATCH JOBS

9.1.2 Controlling Jobs in the Batch Job Queue

After a job has been submitted to the queue, there are actions you can
take to control whether the job is executed, when it is executed, and
so on. The following paragraphs summarize some of the actions you can
take and the commands you would use to perform particular actions.

To change the name of a job after it has been queued but before the
system begins processing it, use:

$ SET QUEUE/ENTRY=nnn/NAME=newname queue-name

To change the processing priority of a batch job, use one of the
following:l

$ SET QUEUE/ENTRY=nnn/PRIORITY=new-priority queue-name

$ SET PROCESS/PRIORITY=new-priority JOBnnn

To delay processing of a batch job until a specific date and/or a
specific time of day, use of one of the following:

$ SUBMIT/AFTER=date-time file-spec

$ JOB username /AFTER=date-time

$ SET QUEUE/ENTRY=nnn/AFTER=date-time queue-name

To delay processing of a batch job for an indefinite period of time,
use:

$ SUBMIT/HOLD file-spec

To delete an entry from a batch job queue, either before it is
processed or while it is being processed, use:

$ DELETE/ENTRY=nnn queue-name

To delete an entry from a batch job queue while it is being processed,
use:2

$ STOP/ENTRY=nnn queue-name

To give a batch job a specific processing priority with respect to
other processes in the system, use one of the following:3

$ JOB username /PRIORITY=priority

$ SUBMIT/PRIORITY=priority file-spec

To release for processing a batch job that is being held in a queue,
use:

$ SET QUEUE/ENTRY=nnn/RELEASE queue-name

1. ALTPRI privilege required to raise the priority for a job.

2. May require GROUP or WORLD privilege.

3. OPER privilege required to enter a job at a higher priority.

9-3

CONTROLLING BATCH JOBS

To specify a name for a batch job, overriding the default job name
assigned by the system, use:

$ SUBMIT/NAME=new-name file-spec

$ JOB username /NAME=new-name

To name a specific batch job queue in which the batch job Should be
entered, use one of the following:

$ SUBMIT /QUEUE=queue-name file-spec

$ JOB username /QUEUE=queue-name

To specify a lower CPU time limit than that established by the system
manager for jobs in the particular queue, use one of the following:

$ JOB username /CPUTIME=n

$ SUBMIT/CPUTIME=n file-spec

To specify a lower working set quota
system manager for jobs in the
following:

$ JOB username /WSQUOTA=n

$ SUBMIT/WSQUOTA=n file-spec

NOTE

than that
particular

established by the
queue, use one of the.

The procedures BWAKE.COM and ENDED.COM
in Appendix A illustrate techniques that
provide for communication between a
batch job and its submitter.

9.1.3 Concatenating Procedures into a Single Job

When you issue the SUBMIT command, you can specify that more than one
command procedure is to be executed in one job. For example:

$ SUBMIT ALPHA,BETA

This SUBMIT command concatenates the procedures ALPHA.COM and BETA.COM
and executes them as if they consisted of a single input stream.
ALPHA.COM is executed, and if it completes without an error or severe
error, BETA.COM is executed.

When two or more procedures are submitted this way, the operating
context of the first procedure is preserved for the second procedure;
that is, local symbols defined at command level 0 continue to exist,
the current ON condition action remains in effect, and so on.

9-4

CONTROLLING BATCH JOBS

9.2 BATCH JOB OUTPUT

When a batch job is executed, its output stream consists of messages
written to SYS$OUTPUT and SYS$ERROR. This output stream is equated to
a batch job log file. The system locates this file in your default
directory, giving it a file specification of name.LOG, where name is
the job name. By default, the job name is taken from the first eight
characters of the file name of the command procedure. However, you
can use the /NAME qualifier on the SUBMIT command to define an
alternate name for the· job. In either case, the system automatically
queues the log file for printing when the batch job is completed and
deletes the file from your directory after it is printed.

The batch job log file includes, by default, all command lines
executed in the command procedure, system and user-program output to
SYS$0UTPUT and SYS$ERROR, and job termination accounting information.
The job termination information is equivalent to the long form of the
system logout message.

9.2.1 Including All Command Output in the Batch Job Log

Typically, a batch job that compiles, links, and executes a program
creates additional printed output: a compiler listing, for example,
and often a linker map file. To produce printed copies of these
files, a batch job can contain the PRINT command(s) necessary to print
them, as in the following example:

$ FORTRAN BIGCOMP
$ PRINT BIGCOMP
$ LINK/MAP/FULL BIGCOMP
$ PRINT BIGCOMP.MAP

When this batch job completes processing, there are three separate
output listings: the batch job log, the compiler listing, and the
linker map.

If you want a batch job log to contain all output from the command
procedure, including printed listings of compiler or linker output
files, you can do either of the following:

• Use the TYPE command instead of the PRINT command in the
command procedure. The TYPE command writes to SYS$0UTPUT, in
this case, the batch job log.

• Use qualifiers on appropriate commands to direct the output to
the current output device.

The following example shows the latter technique:

$ FORTRAN/LIST=SYS$0UTPUT BIGCOMP
$ LINK/MAP=SYS$0UTPUT/FULL BIGCOMP

When these commands are executed in a batch job, the output files from
the compiler and the linker are written directly to the batch job log.
Note that if you use this technique, the output file(s) are not saved
on disk.

9-5

CONTROLLING BATCH JOBS

9.2.2 Saving the Batch Job Log File

Normally, a batch job log file is written as a job is executed. When
the job has been executed, the system closes the file and queues it
for printing with the delete option, so that the file will be deleted
from your directory after it has printed.

If you are
which you
disk file,
terminal.
output, you
SYS$PRINT.

an interactive user, however, situations will arise in
would like either to save the output from a batch job in a

or to not print the output but to examine it from your
To suppress the printing and deleting of the batch job
must assign a dummy equivalence name for the logical name
For example:

$ ASSIGN DUMMY SYS$PRINT

The name DUMMY is any name that is not a device or queue name. The
system always tries to queue the log file to the device queue named
SYS$PRINT. If SYS$PRINT is equated to an invalid name (or a name that
is not the name of a valid queue), the file cannot be printed.

Note that you can use the same technique to direct the batch job
output log to a specific line printer. For example, if you want to
ensure that the log file is printed on the printer named LPBO, you
could include the following logical name assignment in the batch job
log:

$ ASSIGN LPBO: SYS$PRINT

9.2.3 Terminating a Batch Job Abnormally

A batch job terminates normally as a result of:

• The end-of-file or an EXIT command at command level 0

• A STOP or LOGOUT command at any command level

When a job terminates, that is, when there are no more files in the
job to be processed, the system deletes the process that was created
to execute the job. During the termination procedure, the log file is
printed.

Note that the batch job log file is not printed, and is not deleted,
if the job terminates as a result of a DELETE/ENTRY or STOP command:
it remains in your default directory.

To use the DELETE/ENTRY command, specify the job number of the job to
be deleted. For example:

$ DELETE/ENTRY=312 SYS$BATCH

To use the STOP command, you must specify the full process name
assigned to the job. For example:

$ STOP JOB312

The STOP command requires the user privilege GROUP to control other
processes in the same group or the user privilege WORLD to control
other processes not in the same group.

9-6

CONTROLLING BATCH JOBS

CAUTION

Terminating jobs using either of these
commands is considered abnormal
termination because the operating
system's normal job termination activity
is preempted. The batch job log does
not, for example, contain the standard
logout message that summarizes job time
and accounting information. However,
termination that results from an
explicit EXIT or STOP command in the
procedure or the implicit execution of
either of these commands following an
error condition based on the current ON
condition is considered normal
termination, since the operating system
can perform proper run-down and
accounting procedures.

9.3 SYNCHRONIZING BATCH JOB EXECUTION

The SYNCHRONIZE and WAIT commands both place a job in a wait state:
the SYNCHRONIZE command waits for the completion of another job, while
the WAIT command waits for a specified period of time to elapse. For
example, if jobs are submitted concurrently to perform cooperative
functions, one job can contain the command:

$ SYNCHRONIZE BATCH25

After this command is executed, the command procedure cannot continue
execution until the job identified by the job name BATCH25 completes
execution. Figure 9-2 shows an example of command procedures that are
submitted for concurrent execution, but which must be synchronized for
proper execution. Each procedure compiles a large source program.

$ ~3UBMIT MAINCOMP
JOB 31LI entPred on 9ueue

$ ~3UBMIT MINCOMP
JOB 315 entered on 9 u e u e

SYS$BATCH 0
SYS$BATCH 0

DBA 1 :(HIGGINS]MAINCOMP.COM

$ FORTRAN ALPHA/LIST
f) $ SYNCHRONIZE MINCOMP

$ LINK/MAP/FULL ALPHA,BETA

DBA1:[HIGGINS] MINCOMP.COM

$ FORTRAN BETA/LIST
'~ E)< IT

0 Individual SUBMIT commands are required to submit two separate jobs. Two separate processes will be created.

f) After the FORTRAN command is executed, the SYNCHRONIZE command is executed. If job 315 has completed
execution, job 314 continues with the next command. However, job 314 will not execute the next command, if job 315
is either current or pending.

Figure 9-2 Synchronizing Batch Job Execution

9-7

CONTROLLING BATCH JOBS

Job names specified for the SYNCHRONIZE command must be for jobs that
are executing with the same group number in their user identification
codes (UICs). To synchronize with a job that has a different group
number (for example, that was submitted by a different user), you must
use the jobid. For example:

$ SYNCHRONIZE/ENTRY=454

This SYNCHRONIZE command places the current command procedure in a
wait state until job 454 completes.

The WAIT command is useful for command procedures that must have
access to a shared system resource, for example, a disk or tape drive.
The following example shows a procedure that requests the allocation
of a tape drive; if the command does not complete successfully, the
procedure will place itself in a wait state. After a 5-minute
interval, it retrys the request:

$ TRY:
$ ALLOCATE DM: RK:
$ IF $STATUS THEN GOTO OKAY
$ WAIT 00:05
$ GOTO TRY
$ OKAY:
$ REQUEST/REPLY/TO=DISKS -

"Please mount BACK UP GMB on ''F$LOGICAL{"RK")'"

The IF command following the ALLOCATE request checks the value of
$STATUS. If the value of $STATUS indicates successful completion, the
command procedure will continue. Otherwise, the procedure issues the
WAIT command; the WAIT command specifies a time interval of five
minutes. After waiting five minutes, the next command, GOTO, is
executed, and the request is repeated. This procedure continues
looping and attempting to allocate a device until it succeeds or until
the batch job is deleted or stopped.

9-8

APPENDIX A

ANNOTATED COMMAND PROCEDURES

This appendix contains complete command procedures that demonstrate
the concepts and techniques discussed in Chapters 1 through 9. Each
section in this Appendix discussea one command procedure and contains
the following:

• The name of the procedure

• A listing of the procedure

• Notes that explain concepts or techniques used by the
procedure.

• The results of a sample execution of the procedure

The command procedures are:

CONVERT.COM Section A.l

This procedure converts an absolute time value (for example, 10:45) to
a delta time value (for example 01:05). The procedure illustrates use
of the F$TIME and F$EXTRACT lexical functions and the use of
assignment statements to perform arithmetic calculations and to
concatenate symbol values.

WAKEUP.COM Section A.2

This procedure places the current interactive user process in a wait
state until a specific time of day. Then, it displays a message on
the terminal indicating the time. The procedure illustrates use of
the INQUIRE and WRITE commands and how command levels communicate
using a global symbol.

BWAKE.COM Section A.3

When submitted to the batch job queue, this procedure sends a message
to the submitter at a particular time of day. This procedure
illustrates use of the REPLY command (OPER privilege required) and the
group logical name table (GRPNAM privilege required) to provide
communication between a batch job and the submitter of a batch job.

ENDED.COM Section A.4

This procedure sends a message to a specified terminal indicating the
end of a batch job. ENDED.COM illustrates the F$MESSAGE and F$PROCESS
lexical functions. Like the BWAKE.COM procedure, ENDED.COM
demonstrates a technique for a batch job to communicate with its
submitter.

A-1

ANNOTATED COMMAND PROCEDURES

GETPARMS.COM Section A.5

This procedure returns the number of parameters that were passed to a
procedure. Note that this procedure must be defined as a command
synonym; it can be called from any procedure.

EDITALL.COM Section A.~

This procedure invokes the sos editor repeatedly to edit a group of
files with the same file type. This procedure illustrates how to use
lexical functions to extract file names from columnar output. It also
illustrates a way to redefine the input stream for a program invoked
within a command procedure.

FORTUSER.COM Section A.7

This example of a system-defined login file provides a controlled
terminal environment for an interactive user who creates, compiles,
and executes FORTRAN programs. This procedure illustrates using
lexical functions to step through an option table, comparing a
user-entered command with a list of valid commands.

LISTER.COM Section A.8

This is a procedure that prompts for input data, formats the data in
columns, and then sorts it into an output file. This procedure
illustrates the READ and WRITE commands, as well as the character
substring overlay format of an assignment statement.

CALC.COM

This procedure performs arithmetic calculations
resulting value to hexadecimal and decimal
illustrates the F$CVUI lexical function and the
syntax of the assignment statement.

A-2

Section A.9

and converts the
values. CALC.COM

arithmetic overlay

ANNOTATED COMMAND PROCEDURES

A.l CONVERT.COM

$
$

0$
$
$
$
$

@$

$
C)$

$
$
$
$

G) $
$
$
$
$
$
$

0$
$
$
$

0)$
$
$
$
$
$

es
$
$
$
$

C)$

$
$
$
$
$

Ci)$
$
$
$
$
$
$
$
$

~$
$
$
$

fl$
$

! Check for inquiry
1
IF Pl .EQS. "?".OR. Pl .EQS. ""THEN GOTO TELL

! Verify the parameter:
!

it must be 5 characters long
it must contain a colon {:}

IF 'F$LENGTH{Pl}' .NE. 5
'FSLOCATE{":",Pl} I

THEN GOTO BADTIME

TIME : = "I I F$TIME {} I II

.OR. -
• NE. 2 -

! Get the current time

Extract the hour and minute fields from both the current time
value and the specified absolute time value

MINUTES := 'F$EXTRACT{l5,2,TIME} I

HOURS := 'F$EXTRACT{l2,2,TIME} I

ABS HOURS := 'F$EXTRACT{0,2,Pl} I

ABS-MINUTES = 'F$EXTRACT{3,2,Pl} I

Current minutes
Current hours
Hours in absolute time
Minutes in absolute time

! Verify that the values are in correct range of 24-hour clock

IF ABS HOURS .GT. 23 .OR. ABS MINUTES .GT. 59 -
THEN GOTO BADTIME

Convert both time values to minutes

CURRENT TIME = HOURS*60 + MINUTES
ABS TIME = ABS HOURS*60 + ABS MINUTES
!
! Compute difference in hours and minutes
!

MINUTES TO WAIT = ABS TIME - CURRENT TIME

! If the result is <O the time is assumed to be a
! tomorrow time; more calculation is required.

IF MINUTES TO WAIT .LT. 0 THEN -
MINUTES-TO WAIT = 24*60 - CURRENT TIME + ABS TIME

Start looping to determine the value in hours and minutes from
the value expressed all in minutes

HOURS TO WAIT = 0
HOURS TO WAIT LOOP:

IF-MINUTES TO WAIT .LT. 60 THEN GOT0 FINISH COMPUTE
MINUTES TO-WAIT = MINUTES '.'O WAIT - nO
HOURS TO WAIT= HOURS TOW/IT+ 1
GOTO HOURS TO WAIT LOOP

FINISH COMPUTE:

! Construct the delta time string in the proper format

WAIT TIME :=='HOURS TO WAIT':'MINUTES TO WAIT':00.00

! Examine the second parameter

IF P2 .EQS. "SHOW" THEN SHOW SYMBOL WAIT TIME

A-3

ANNOTATED COMMAND PROCEDURES

$! Normal exit
$
$ EXIT
$
$! Exit taken if first parameter is not formatted correctly
$

f> $ BADTIME:
$WRITE SYS$0UTPUT "Invalid time value: ''Pl' format must be hh:mm"
$ EXIT
$
$! Output message and exit if user enters inquiry
$ m $ TELL: TYPE SYS$ INPUT

$ EXIT

Notes

Converts an absolute time value to a delta time value.
On return, the global symbol WAIT TIME contains the
converted time value. If you enter the keyword SHOW
as the second parameter, the procedure displays the
resulting value in the output stream.
The format is:

@CONVERT hh:mm [SHOW]

t) The procedure checks whether the value entered for a
parameter is the question mark character (?) or whether a
parameter was entered. If either condition exists, the
procedure will branch to the label TELL (Note 13).

8 The procedure checks the value of the parameter. It must be
a time value in the format:

hh:mm

The IF command checks (1) that the length of the entered
value is 5 characters and (2) that the third character
(offset of 2) is a colon. The IF command contains the
logical OR operator: if either expression is true (that is,
if the length is not 5 or if there is not a colon in the
third character position), the procedure will branch to the
label BADTIME (Note 12).

C) The F$TIME lexical function places the current time value in
the symbol TIME. The quotation marks around the lexical
function ensure that if there is a leading blank in the time
field the command interpreter will not suppress it.

t) The F$EXTRACT function extracts, from the saved current time
value and from the absolute time value entered as a
parameter, the minutes and hours fields of each. The string
functions return character strings representing decimal
values. These values can now be manipulated arithmetically.

CD The IF command verifies that the time value entered is a
valid 24-hour clock time. If the value of the hours field is
greater than 23 or if the value of the minutes field is
greater than 59, the procedure will branch to the label
BADTIME (Note 12).

~ Arithmetic assignment statements convert both the current
time value and the entered time value to minutes by
multiplying the hours by 60 and adding the minutes.

A-4

ANNOTATED COMMAND PROCEDURES

fj The procedure then subtracts the current time from the
specified time in minutes.

CD If the result is less than O, the time will be after 24:00,
that is, on the next day. In this case, the procedure
calculates the minutes to wait by subtracting the current
time from 24 hours to find the time remaining in the current
day and then adding the entered time.

CD The procedure enters a loop in which it calculates, from the
value of MINUTES TO WAIT, the
through the loop~ It checks
greater than 60. If so,
MINUTES TO WAIT and add 1 to the
of hours (HOURS_TO_WAIT).

number of hours. Each time
whether MINUTES TO WAIT is
it will subtract -60 from
accumulator for the number

(Ii) When the procedure exits from the loop, it concatenates the
hours and minutes values into a time string. The symbols
HOURS TO WAIT and MINUTES TO WAIT are replaced by their
current values and separated with an intervening colon. The
symbol WAIT TIME has. the delta time value. WAIT TIME is
defined as- a global symbol so that it will not be deleted
when the procedure WAIT_TIME exits.

fD If a second parameter, SHOW, was entered, the procedure will
display the resulting time value. Otherwise, it will exit.

~ At the label BADTIME, the procedure displays an error message
that shows the incorrect value entered as well as the format
it requires. After issuing the error message, CONVERT.COM
exits.

~ At the label TELL, the procedure displays information about
what the procedure does. The next command in the procedure
(EXIT) is also the end-of-file for the input data stream that
the TYPE command is reading.

Sample Execution

$ SHOW TIMEIBIT)
10-APR-1979 10:38:26
$ @CONVERT 12:00 SHOWIBIT)

WAIT TIME = 1:22:00.00

The SHOW TIME command displays the current date and time. CONVERT.COM
is executed with the parameters 12:00 and SHOW. The procedure
converts the absolute time 12:00 to a delta time value and displays it
on the terminal.

A-5

ANNOTATED COMMAND PROCEDURES

A.2 WAKEUP.COM

0 $ SAVE VERIFY =I F$VERIFY ("NO") I

$ 1
$ Places the current process in a wait state until a specified
$ absolute time. Then, it rings the bell on the terminal and
$ displays a message.
$
$ Prompt for absolute time
$

f.) $ INQUIRE WAKE_TIME "Enter time to wake"
$
$ Call the CONVERT.COM procedure to convert the absolute time
$ to a delta time
$

• $ @CONVERT 'WAKE TIME I

$
$ WAIT 'WAIT TIME' Wait the specified delta time
$

~ $ BELL[0,32]= %X07 ASCII code for terminal bell
$
$WRITE SYS$0UTPUT BELL,"Wake up: Time is ''F$TIME() '"
$

@) $ IF SAVE VERIFY THEN SET VERIFY ! Restore verification, if set
$ EXIT

Notes

0 The procedure saves the current verification setting in the
symbol name SAVE_VERIFY, then sets verification off.

f.) The procedure uses the INQUIRE command to prompt for the time
desired to wake up the process. The value entered in
response to INQUIRE is used as input to the CONVERT
procedure.

6) The CONVERT procedure returns the delta time value
corresponding to the interval from the current time until
wake up time in the global symbol WAIT TIME. The procedure
uses this symbol to specify the time-parameter for the WAIT
command.

~ After the specified period elapses, the process awakes and
the procedure constructs a message to display on the
terminal. It gives the symbol named BELL the binary value of
the bell character on an ASCII terminal. The WRITE command
automatically replaces this symbol with its value and
concatenates the result with a literal character string. The
terminal's bell rings as the message is displayed.

@) The IF command tests whether the symbol VERIFY has a true
value; if so, verification was in effect before the
procedure was invoked and will be restored. Otherwise
verificat1on will remain off. Note that the EXIT command
will be displayed on the terminal if verification was on
before the command procedure was executed.

A-6

ANNOTATED COMMAND PROCEDURES

Sample Execution

$ SHOW TIMEIBm
10-APR-1979 10:39:12

$ @WAKEUPIBm
Enter time to wake: 11:30(8fi)
Wake up -- Time is 10-APR-1979 11:30:00.00

The procedure prompts for a time value. Then, the terminal is in a
wait state until the time elapses. The terminal's bell (if there is
one) sounds when the message is displayed.

Note that if you execute this procedure, you can terminate the wait
state of the terminal at any time by pressing ~ and issuing any
DCL command.

A-7

ANNOTATED COMMAND PROCEDURES

A.3 BWAKE.COM

$
$

0$
$

-~ f)$
$
$
$
$ es
$

0$
$

0$
$

8$
$

$
$
$

0$
$

IF Pl .EQS. "?" THEN GOTO TELL

! This procedure will not execute interactively because it
! would cause a logout
!
IF "''F$MODE()'" .EQS. "INTERACTIVE" THEN GOTO TELL
IF Pl .EQS. 1111 THEN GOTO NO_WAKE

Use the CONVERT.COM procedure to convert the absolute time
to a delta time

@CONVERT 'Pl'

WAIT 'WAIT TIME'
REPLY/BELL7TERMINAL='F$LOGICAL("TERMINAL")' "Wake Up"
EXIT ! Terminate the procedure

NO WAKE:
RE~LY/BELL/TERMINAL='F$LOGICAL("TERMINAL")' -

"No wake up is queued; specify a parameter"

EXIT Terminate the procedure

TELL:
CREATE SYS$COMMAND:

Provides a wake up request at a specified absolute time.
procedure raust be submitted to a batch job queue
execution, using the command format:

SUBMIT BWAKE/PARAM=hh:mm

Th
f o

Requires the OPER AND GRPNAM privileges. There also must be
group logical name table entry for the logical name TERMINA
(the terminal to which the wake up message is to be sent).

0 $ EXIT

Notes

0 This procedure must be executed in a batch job. However, it
allows interactive execution if a question mark is passed as
a parameter. If so, it will branch to the label TELL (Note
8) •

8 Only the question mark parameter is valid in interactive
mode; this second IF command checks whether the procedure is
being executed interactively. If so, it will branch to the
label TELL (Note 8).

f) The next IF command checks that a parameter was entered. If
not, the procedure will branch to the label NO_WAKE (Note 7).

0 At this point in the procedure, all checks are complete: the
procedure is executing in a batch job, and a parameter other
than a question mark was entered. The procedure CONVERT.COM
is called to perform additional checking on the format of the
parameter. If the parameter is a valid time value,
CONVERT.COM will convert it to a delta time value and place
the delta time value in the global symbol WAIT TIME.

A-8

ANNOTATED COMMAND PROCEDURES

€) The batch job issues the WAIT command to wait until the delta
time value elapses. When the time is up, the procedure
issues the REPLY command.

The REPLY command displays a message on the terminal whose
logical name is TERMINAL.

This name must be in the group logical name table for the
group of the submitter of the batch job. Because the batch
job executes in the same group as the submitter, the logical
name is accessible to the batch job. The REPLY command
contains the lexical function F$LOGICAL; the function is
performed before the command is executed. Note that the
submitter of the batch job can place this name in the group
logical name table using the F$LOGICAL lexical function as
follows:

$DEFINE/GROUP TERMINAL 'F$LOGICAL("SYS$COMMAND") '~

Ci) The EXIT command terminates the batch job.

fJ At the label NO WAKE, the procedure uses the REPLY command to
issue an error message and terminates the job with the EXIT
command.

~ At the label TELL, the CREATE command reads input from the
input stream and creates a file on the device SYS$COMMAND.
If BWAKE.COM is executed interactively, the data following
the CREATE command is displayed on the terminal.

@) The EXIT command closes the command procedure file; the
dollar sign in the record indicates the end of the input data
for the CREATE command.

Sample Execution

$ SUBMIT BWAKE/PARAMETER=ll:30(BIT)
Job 435 entered on queue SYS$BATCH

GALAXY:: Batch, HIGGINS 11:30:11.74
"wake up"
$

The SUBMIT command submits the file to the batch queue. After the job
is submitted, the terminal remains free to continue interactive work.
After the specified time has elapsed, the job issues the REPLY command
to the terminal. The REPLY command itself creates the header message
giving the time of day.

A-9

ANNOTATED COMMAND PROCEDURES

A.4 ENDED.COM

0 $ PROCESS_ NAME : = 'F$PROCESS (} ' ! Get process name

A$$
~ IF Pl .NES. "" THEN STATUS := 'F$MESSAGE(Pl}'
8 $ REPLY/BELL/TERMINAL=' F$LOGICAL ("HIGGINS TT"}' -

"Job ''F$EXTRACT(0,8,PROCESS_NAMET' done ''STATUS'"
$ EXIT

Notes

0 The procedure obtains the name of the current process. The
F$PROCESS lexical function returns the process name string.
For a batch job, the default name is in the format JOBnnn,
where nnn is the job number of the job. -

@· If a parameter was specified, the procedure assumes that it
is a status value. It uses the F$MESSAGE lexical function to
obtain the message associated with the value from the system
message file.

8 The REPLY command specifies a terminal whose logical name is
TERMINAL. This logical name should be in the group logical
name table for the group of the submitter of the batch job.
The REPLY command text uses the F$EXTRACT lexical function to
extract the job number portion of the process name string.
The text also contains the value of the symbol STATUS. Note
that if no parameter is passed to the procedure, STATUS will
be null and the resulting text of the message will consist
only of the first part of the message. This job number is
displayed in the message.

Sample Execution

The procedure TEST.COM in the default directory contains the lines:

$ ON ERROR THEN GOTO END
$ FORTRAN BIGFILE
$ LINK BIGFILE,TESTLIB/LIBRARY/MAP/FULL
$ @ENDED
$ EXIT
$ END:
$ @ENDED '$STATUS'
$ EXIT

This procedure can be executed as follows:

$ SUBMIT TEST
Job 430 entered on queue SYS$BATCH

GALAXY::Batch, HIGGINS 13:46:50.32
"Job JOB43o done"

After the job is submitted, the terminal remains free for interactive
work. When the job is completed, the REPLY command message is
displayed on the terminal. This sample message indicates that the
procedure completed successfully.

A--10

ANNOTATED COMMAND PROCEDURES

A.5 GETPARMS.COM

0 $ SAVE VERIFY = I F$VERIFY ("NO") I

$
8 $ IF Pl .EQS. "?" THEN GOTO TELL

$
$! Loop to count the number of parameters passed. Null parameters
are

$ counted until the last non-null parameter is passed.
$
$
$

COUNT = 0
LASTNONNULL 0

0 $ LOOP:
$ IF COUNT .EQ. 8 THEN GOTO END COUNT

COUNT = COUNT + 1 $
$
$
$

IF P'COUNT' .NES. "" THEN LASTNONNULL
GOTO LOOP

'COUNT'

8 $ END COUNT:
$
$! Place the number of non-null parameters passed into PARMCOUNT.
$
$ PARMCOUNT== LASTNONNULL
$
$! Restore verification setting, if it was on, before exiting
$!

0 $ IF SAVE VERIFY THEN SET VERIFY
$ EXIT
$

(i) $ TELL:
$ TYPE SYS$INPUT

$

Procedure used to count the number of parameters passed to
another procedure. This procedure can be called by entering
the string:

'GETPARMS

in any procedure. On return, the global symbol PARMCOUNT
contains the number of parameters passed to the procedure.

$ EXIT

Notes

0 The procedure saves the current verification setting in the
symbol named SAVE_VERIFY before setting verification off.

8 If a question mark character was passed to the procedure as a
parameter, the procedure branches to the label TELL (Note n).

O A loop is established to count the number of parameters that
were passed to the procedure. The counters COUNT and
LASTNONNULL are initialized to 0 before entering the loop.
Within the loop, COUNT is incremented and tested against the
value 8. If COUNT is equal to 8, the maximum number of
parameters has been entered. Each time a non-null parameter
is passed, LASTNONNULL is equated to that parameter's number.

Each time the IF command executes, the symbol COUNT has a
different value. The first time, the value of COUNT is l and
the IF command checks Pl. The second time, it checks P2, and
so on.

A-11

ANNOTATED COMMAND PROCEDURES

Gt When the parameter count reaches 8, the procedure branches to
END COUNT. The symbol LASTNONNULL contains the count of the
last non-null parameter passed. This value is placed in the
global symbol PARMCOUNT. PARMCOUNT must be defined as a
global symbol so that its value can be tested at the calling
command level.

The value of SAVE VERIFY is tested;
verification will be-restored.

if it is true,

Cf) At the label TELL, the TYPE command parameter is the input
stream; the data in the command file provides information
about the use of the procedure GETPARMS.COM.

Sample Execution

The procedure SORTFILES.COM requires the user to pass three non-null
parameters. The SORTFILES.COM procedure can contain the lines:

$ GETPARMS:== "@GETPARMS 'Pl' 'P2' 'P3' 'P4' 'PS' 'P6' 'P7' 'PS'"
$ 'GETPARMS
$ IF PARMCOUNT .NE. 3 THEN GOTO NOT ENOUGH

.
$NOT ENOUGH:
$ WRITE SYS$0UTPUT -
"Three non-null parameters required. Type SORTFILES HELP for info."
$ EXIT

The procedure SORTFILES.COM can be invoked as follows:

$ @SORTFILES DEF 4~
Three non-null parameters required. Type SORTFILE HELP for info."

In the above example, the procedure SORTFILES.COM defines the symbol
GETPARMS as a synonym for @GETPARMS and its parameters. For this
procedure to be properly invoked, that is, for the parameters that are
passed to SORTFILES to be passed to GETPARMS intact for processing,
the synonym must be preceded with an apostrophe.

If the return value from GETPARMS is not 3, SORTFILES issues an error
message and exits.

A-12

ANNOTATED COMMAND PROCEDURES

A.6 EDITALL.COM

Os
$
$
$
$
$

@$
$
$
$
$
$
$

C)$

G)$
$

0$
$
$
$

(!)$
$
$
$
$

.~

Notes

$
$
$
$
$
$
$
$
$

ON CONTROL Y THEN GOTO DONE
ON ERROR THEN GOTO DONE

CTRL/Y action

! Check for file type parameter. If one was entered, continue;
! otherwise, prompt for a parameter.
!
IF Pl .NES. "" THEN GOTO OKAY
INQUIRE Pl "Enter file type of files to edit"
!
! List all files with the specified file type and write the DIRECTORY
! output to a file named DIRECT.OUT

OKAY:
DIRECTORY/VERSIONS=l/COLUMNS=l -

/NODATE/NOSIZE -
/NOHEADING/NOTRAILING -
/OUTPUT=DIRECT.OUT *.'Pl'

IF .NOT. $STATUS THEN GOTO D!RECTORY ERROR

OPEN/READ DIRFILE DIRECT.OUT

! Loop to read directory file

NEWLINE:

DONE:

READ/END=DONE DIRFILE NAME
ASSIGN/USER MODE SYS$COMMAND: SYSSINPUT:
EDIT 'NAME'- ! Edit the file
GOTO NEWLINE

Redefine SYS$INPUT

CLOSE DIRFILE/ERROR=NOTOPEN Close the file
NOTOPEN:

EXIT
!

DELETE DIRECT.OUT;* ! Delete temp file

DIRECTORY ERROR:

EXIT

WRITE SYS$0UTPUT "Error: '' FSMESSAGE () '"
DELETE DIRECT.OUT;*

0 ON commands establish condition handling for this procedure.
If any error occurs or if tcrRL/Yl is pressed at any time
during the execution of this procedure, the procedure will
branch to the label DONE. Similarly, if any error or severe
error occurs, the procedure will branch to the label DONE
(Note 7) •

8 The procedure checks whether a parameter was entered. If
not, it will prompt for a file type.

0 The DIRECTORY command lists all files with the file type
specified as Pl. The command output is written to the file
DIRECT.OUT. The /VERSIONS=l qualifier requests that only the
highest numbered version of each file be listed. The
/NOHEADING and /NOTRAILING qualifiers request that no heading
lines or directory summaries be included in the output. The
/COLUMNS=l qualifier ensures that one file name per record is
given.

A-13

ANNOTATED COMMAND PROCEDURES

Ct The IF command checks the return value from the DIRECTORY
command by testing the value of $STATUS. If $STATUS has an
even numeric value, the procedure exits.

@» The OPEN command opens the directory output file and gives it
a logical name of DIRFILE.

ti) The READ command reads a line from the DIRECTORY command
output into the symbol name NAME. After it reads each line,
it redefines the input stream for the edit session with the
ASSIGN command. Then, it invokes the editor specifying the
symbol NAME as the file specification. When the edit session
is completed, the command interpreter reads the next line in
the file.

f) The label DONE is the target label for the /END qualifier on
the READ command and the target label for the ON CONTROL Y
and ON ERROR conditions set at the beginning of the
procedure. At this label, the procedure performs the
necessary cleanup operations.

The CLOSE command closes the DIRECTORY command output file;
the /ERROR qualifier specifies the label on the next line in
the file. This use of /ERROR will suppress any error message
that would be displayed if the directory file is not open.
For example, this would occur if ~RLNl were pressed before
the directory file were opened.

The second step in cleanup is to delete the temporary
directory file.

Sample Execution

$ @EDITALL DAT IBn)
Edit: DBAl: [MALCOLM.DATAFILES]ALPHA.DAT;4
*

* E t!iTIJ
Edit: DBAl: [MALCOLM.DATAFILES]BETA.DAT;l4
*

The procedure EDITALL is invoked with Pl specified as DAT. The
procedure creates a directory listing of all files in the default
directory whose file types are DAT and invokes the editor to edit each
one.

A-14

ANNOTATED COMMAND PROCEDURES

A.7 FORTUSER.COM

Ct $ SET NOCONTROL Y
$ SET NOVERIFY -
$

~ $ OPTION TABLE := 4EDIT7COMPILE4LINK3RUN7EXECUTE5DEBUGSPRINT4HELP4FILE4DONE
$ TYPE SYS$INPUT

$
$

0 ~
$
$
$
$
$
$
$
$
$
$
$
$

0s
$
$
$
$
$
$ es
$
$ es
$
$
$
$
$

$
$
$
$

(D$
$
$

0s
$

VAX/VMS Fortran Command Interpreter

Enter file name with which you would like to work.

Set up for initial prompt

PROMPT : = IN ITO
GOTO HELPO ! Print the initial help message
!
! after the first prompting message, use the prompt: Next

IN ITO:
PROMPT := NEXT
GOTO FILEO Get initial file name

Main command parsing routine. The routine compares the current
command against the options in the option table. When it finds
a match, it branches to the appropriate label.

NEXT:
ON CONTROL Y THEN GOTO NEXT CTRL/Y resets prompt
SET CONTROL Y
ON WARNING THEN GOTO NEXT If any, reset prompt

INQUIRE COMMAND "Next"
IF COMMAND .EQS. "" THEN GOTO NEXT
COMMAND SIZE = 'F$LENGTH(COMMAND)' input length
INDEX =-0 initial index

CHECK NEXT:
-OPTION LENGTH = 'F$EXTRACT(INDEX,l,OPTION TABLE)'

IF OPTlON LENGTH .EQ. 0 THEN GOTO INVALID-COMMAND
INDEX = INDEX + 1 !-advance index
NEXT COMMAND := 'F$EXTRACT(INDEX,OPTION LENGTH,OPTION TABLE)'
IF "7 'F$EXTRACT(O,COMMAND SIZE,NEXT COMMAND) 111

- -

.EQS. COMMAND - - -
THEN GOTO 'NEXT COMMAND'O

INDEX = INDEX + OPTION LENGTH set to next command
GOTO CHECK NEXT

INVALID COMMAND:
WRITE SYS$0UTPUT " Invalid command"

HELPO:
TYPE SYS$ INPUT
The commands you can enter are:
FILE enter file name of FORTRAN program
EDIT edit the program with SOS
COMPILE compile the program with VAX-11 FORTRAN
LINK link the program to produce an executable image
RUN run the program's executable image
EXECUTE same function as COMPILE, LINK, and RUN
DEBUG run the program under control of the debugger
PRINT queue the most recent listing file for printing
DONE return to interactive command level

A-15

$
4li> $

CD ~
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

48 $
$
$
$
$
$
$

G) $
$
$
$
$
$
$
$
$
$
$
$
$
$
$

ANNOTATED COMMAND PROCEDURES

HELP print this help message

Enter CTRL/Y to restart this session
!
GOTO 'PROMPT'
1
EDITO:

ASSIGN/USER MODE
SET NOCONTROL Y
EDIT 'FILE'.FOR
GOTO NEXT

SYS$COMMAND: SYS$INPUT:
! Must disable CTRL/Y for SOS

1
COMPILEO:

LINKO:

1
RUNO:

FORTRAN 'FILE'/LIST/OBJECT/DEBUG
GOTO NEXT

LINK 'FILE'/DEBUG
PURGE 'FILE'.*/KEEP=2
GOTO NEXT

ASSIGN/USER MODE SYS$COMMAND: SYS$INPUT:
RUN/NODEBUG-'FILE'
GOTO NEXT

DEBUGO:
ASSIGN/USER MODE SYS$COMMAND: SYS$INPUT:
RUN 'FILE' -
GOTO NEXT

1
EXECUTEO:

FORTRAN 'FILE'/LIST/OBJECT
LINK/DEBUG 'FILE'
PURGE 'FILE'.*/KEEP=2
RUN/NODEBUG 'FILE'
GOTO NEXT

PR INTO:
PRINT 'FILE'
GOTO NEXT

BADFILE:
WRITE SYS$0UTPUT "Illegal file name, enter name portion only!"
WRITE SYS$0UTPUT ""

FILEO:

WRITE SYSSOUTPUT " For example: ALPHA"
WRITE SYS$0UTPUT ""
GOTO NEXT

INQUIRE FILE "File"
IF FILE .EQS. 1111 THEN GOTO FILEO

IF 'F$LOCATE(".",FILE) I .NE. 'F$LENGTH(FILE) I

IF 'F$LOCATE(11 [",FILE) I .NE. I F $LENG TH (FILE) I

IF 'F$LOCATE("]",FILE)' .NE. I F$LENGTH (FILE) I

IF 'F$LOCATE("< 11 ,FILE) I .NE. I F$LENGTH (FILE) I

IF 'F$LOCATE(">",FILE) I .NE. I F $LENG TH (FILE) I

IF 'F$LOCATE(";",FILE) I .NE. I FSLENGTH (FILE) I

A-16

THEN GOTO BAD FILE

THEN GOTO BADFILE

THEN GOTO BADFILE

THEN GOTO BAD FILE

THEN GOTO BADFILE

THEN GOTO BADFILE

Notes

ANNOTATED COMMAND PROCEDURES

$
$ IF 'F$LOCATE("$",FILE)' .NE. 'F$LENGTH(FILE)' THEN GOTO BADFILE
$
$ IF 'F$LOCATE(" ",FILE)' .NE. 'F$LENGTH(FILE)' THEN GOTO BADFILE
$
$ GOTO NEXT
$!
$ DONEO:
$ EXIT

0 The SET NOCONTROL Y command ensures that the user who logs in
under the control of this procedure cannot interrupt the
procedure or any command or program in it.

• e

The option table lists the commands that the user will be
allowed to execute. In the list, each command is preceded by
a decimal number indicating the length of the command name •

The procedure introduces itself.

The symbol name PROMPT is given the value of a label in the
procedure. When the procedure is initially invoked, this
symbol has the value INITO. The HELP command text terminates
with a GOTO command that specifies the label PROMPT (Note
10): when this text is displayed for the first time, the
GOTO command results in a branch to the label that (1)
changes the value of the symbol PROMPT and (2) branches to
the prompt for a file name. Thereafter, when the text is
displayed, the GOTO command results in a branch to the label
NEXT, where the prompt is the string "Next".

The CTRL/Y condition action is set to return to this prompt,
as is the warning condition action. The procedure prompts
for a command and continues to prompt, even if nothing is
entered. To terminate the session, the command DONE must be
used.

The procedure uses the F$LENGTH lexical function to determine
the length of the command that was entered. It sets an index
counter, the symbol INDEX, to O. This counter will be used
to step through the option table.

The label CHECK NEXT introduces a loop in which the procedure
finds a match in the option table for the command that was
entered. It takes the following steps:

a. It compares the length of the command that was entered
with the length of the first (next) option in the table.
A length of O indicates the end of the table; in this
case, the procedure branches to the error label
INVALID COMMAND.

b. If OPTION LENGTH is nonzero, the index will be increased
by 1 to point to the start of the option name. Using the
value of INDEX as an off set and the value of
OPTION LENGTH as the length, the procedure extracts the
name of the option from the option table.

A-17

ANNOTATED COMMAND PROCEDURES

c. The string value of NEXT_COMMAND is compared with the
command that the user entered. If they match, the
procedure will branch to the label corresponding to the
option name.

d. If the commands do not match, the value of INDEX will be
increased by the length of the option and will point to
the next length field. Then, the procedure will branch
to the start of the loop and the next option is checked.

At the label INVALID COMMAND, the procedure writes an error
message and displays the help text that lists the commands
that are valid.

The help text lists the commands that are valid. This text
is displayed initially. It is also displayed whenever the
user issues the HELP command or any invalid command.

At the conclusion of the HELP text, the GOTO command
specifies the symbol name PROMPT. When this procedure is
first invoked, the symbol has the value INITO. Thereafter,
it has the value NEXT.

Each valid command in the list has a corresponding entry in
the option table and a corresponding label in the command
procedure. For the commands that read input from the
terminal, for example, EDIT, the procedure contains an ASSIGN
command that defines the input stream as SYS$COMMAND.

At the label BADFILE, the procedure displays information
about how to enter file names. Only FORTRAN programs can be
edited, so the procedure itself defaults all file types to
FOR.

At the label FILEO, the initial prompt for a file name, the
procedure checks the syntax of the file name that was
entered.

Sample Execution

Username: CLASS30
Password:

VAX/VMS Version 2.0

VAX/VMS Fortran Command Interpreter

Enter file name with which you would like to work.

The commands you can enter are:

FILE
EDIT
COMPILE
LINK
RUN
EXECUTE
DEBUG
PRINT
DONE
HELP

enter file nam~ of FORTRAN program
edit the program with SOS
compile the program with VAX-11 FORTRAN
link the program to produce an executable image
run the program's executable image
same function as COMPILE, LINK and RUN
run the program under control of the debugger
queue the most recent listing file for printing
return to interactive command level
print this help message

A-18

File:
Next:
Next:
Next:
Next:
File:
Next:

ANNOTATED COMMAND PROCEDURES

Enter CTRL/Y to restart this session
AVERAGE~
COMPILE~
LINK~
RUN~
FILE~
READFILE~
EDIT~

This sample execution illustrates logging in, the message of the help
text being displayed, and some sample commands. First, the user
specifies the file AVERAGE, compiles, links, and runs it. Then the
user issues the FILE command to begin working on another file.

A-19

ANNOTATED COMMAND PROCEDURES

A.8 LISTER.COM

$
$
$
$

Procedure to accumulate programmer names and document
files. After all names and files are entered, they are
sorted in alphabetic order by programmer name.

0 $ SAVE MODE = 'F$VERIFY("NO")'
$

f) $ OPEN/WRITE OUTFILE DATA.TMP
$
$ LOOP:

INQUIRE NAME "Programmer"

1 Create output file

• $
$
$
$
$

IF NAME .EQS. "" THEN GOTO FINISHED
INQUIRE FILE "Document file name"
RECORD[0,20] :='NAME'

·o s
$
$

RECORD[21,20] :='FILE'
WRITE OUTFILE RECORD
GOTO LOOP

$ FINISHED:
$ CLOS$ OUTFILE
$

(D $ ASSIGN/USER MODE STATISTIC.SRT SYS$0UTPUT: ! Suppress sort output
$ SORT/KEY=(POSITION:l,SIZE=20) DATA.TMP DOC.SRT
$

0 $
$.
$
$
$
$
$
$

(

OPEN/WRITE OUTFILE DOCUMENT.DAT
WRITE OUTFILE "Programmer Files
WRITE OUTFILE ""
RECORD[0,20] :="Programmer Name"
RECORD[0,20] :="File Name"
WRITE OUTFILE RECORD
WRITE OUTFILE ""

f) $ CLOSE OUTFILE
$ APPEND DOC.SRT DOCUMENT.DAT
$ PRINT DOCUMENT.DA~
$

as of ''FSTIME() '"

CS) $ INQUIRE CLEAN UP "Delete temporary files?"

Notes

$ IF CLEAN UP THEN DELETE DATA.TMP;*,DOC.SRT;*,STATISTIC.SRT;*
$ IF SAVE MODE THEN SET VERIFY
$EXIT

0 LISTER.COM saves the current verification setting and sets
verification off.

f) The OPEN command opens a temporary file for writing.

0 INQUIRE commands prompt for a programmer name and for a file
name. If a null line, signaled by 00) , is entered in
response to the INQUIRE command prompt, the procedure will
assume that no more data is to be entered and will branch to
the label FINISHED.

A-20

ANNOTATED COMMAND PROCEDURES

G) After assigning values to the symbols NAME and FILE, the
procedure uses the character string overlay format of an
assignment statement to construct a value for the symbol
RECORD. In columns 1 through 21 of RECORD, the current value
of NAME is written. The command interpreter pads the value
of NAME with spaces to fill the 20-character length
specified.

Similarly, the next 20 columns of RECORD are filled with the
value of FILE. Then, the value of RECORD is written to the
output file.

CD After the file has been closed, the procedure sorts the
output file DATA.TMP. The ASSIGN command directs the SORT
command output to the file STATISTIC.SRT. Otherwise, these
statistics would be displayed on the terminal.

The sort is performed on the first 20 columns, that is, by
programmer name.

The sorted output file has the name DOC.SRT.

~ The procedure creates the final output file, DOCUMENT.DAT,
with the OPEN command. The first lines written to the file
are header lines, giving a title, the date and time of day,
and headings for the columns.

f) The procedure closes the file DOCUMENT.DAT and appends the
sorted output file, DOC.SRT, to it. Then, the output file is
queued to the system printer.

Ci) Last, the procedure prompts to determine whether to delete
the intermediate files. If a true response is entered to the
INQUIRE command prompt, the files DATA.TMP and DOC.SRT will
be deleted. Otherwise, they will be retained.

Sample Execution

$ @LISTER~
Programmer: WATERS~
Document file name: CRYSTAL.CAV~
Programmer: JENKINS~
Document file name: MARIGOLD.DAT~'
Programmer: MASON~
Document file name: SYSTEM.SRC~
Programmer: ANDERSON~
Document file name: JUNK.J~
Programmer:~
Delete temporary files:Y~

The output file resulting from this execution of the procedure is:

Programmer Files as of 10-APR-1979 16:18:58.79

Programmer Name

ANDERSON
JENKINS
MASON
WATERS

File Name

JUNK.J
MARIGOLD.DAT
SYSTEM.SRC
CRYSTAL.CAV

A-21

ANNOTATED COMMAND PROCEDURES

A.9 CALC.COM

$
$
$
$
$
$

0 $
f) $

$

• $
$

e $
$
$
$

0 $
$
$
$
$
$
$

0 $
$
$
$

0 $
$
$
$
$

0 $
$
$

0 $

«!>
$
$

4D $
$

~ $
$
$
$

SAVE VERIFY = 'F$VERIFY("NO")'
! Desk calculator program that resolves expressions and
! displays the resulting value in both decimal and hexadecimal.
!
START:

ON WARNING THEN GOTO START
INQUIRE EXPRESSION "Cale"
IF EXPRESSION .EQS. "" THEN EXIT

EXP LEN = 'F$LENGTH(EXPRESSION) I

EXP-POS = 'F$LOCATE("=",EXPRESSION)'
IF EXP POS .EQ. EXP LEN THEN GOTO NO EXP

EXP LEN EXP LEN - EXP POS
EXP-POS = EXP-POS + 1
DECIMAL= 'F$EXTRACT(EXP POS,EXP LEN,EXPRESSION)'
GOTO HEX CONV - -

NO EXP:
SHOW SYMBOL EXPRESSION

HEX CONV:

DECIMAL = 'EXPRESSION'

NUM[0,32]='DECIMAL'
DIGIT 0
LOOP:

x = 'F$CVUI(DIGIT,4,NUM) I

IF X .LE. 9 THEN GOTO A

A:

F : = "II
F[0,8]=65+(X-10)
x : = IF

DIGIT = DIGIT + 4
HEX : = Ix I I HEX I

IF DIGIT .LT. 32 THEN GOTO LOOP

WRITE SYS$0UTPUT "Decimal = ''DECIMAL' Hex= ''HEX'"
DELETE/SYMBOL HEX
DELETE/SYMBOL DECIMAL
GOTO START
EXIT:
IF SAVE VERIFY THEN SET VERIFY
EXIT

Notes

0 The procedure establishes an error handling condition that
restarts the procedure. If a warning or error of greater
severity occurs, the procedure will branch to the beginning
where it resets the ON condition.

This technique ensures that the procedure will not exit if
the user enters an expression incorrectly.

A-22

ANNOTATED COMMAND PROCEDURES

~ The INQUIRE command prompts for an arithmetic expression.
The procedure accepts expressions in either of the formats:

name = ~xpression
expression

If no expression is entered, the procedure will assume the
end of a CALC session and exit.

f) The F$LENGTH lexical function determines the length of the
expression entered.

G» The F$LOCATE lexical function locates the position of the
equal sign (=) in the expression entered. If the value
returned from F$LOCATE is equal to the length of the
expression, no equal sign was entered and the response was in
the second format shown in Note 2, above.

If the expression was in the first format, the procedure will
use arithmetic assignment statements to locate, specifically,
the expression on the right-hand side of the equal sign and
the F$EXTRACT function to extract the expression from the
data that was entered.

CD In either case, the symbol name DECIMAL is given the value of
the calculated expression. If an equal sign is present, the
assignment statement that extracts the value from the entered
expressions gives the value to DECIMAL. If no assignment
statement is present, the assignment stat~ment at the label
NO EXP will give this value to DECIMAL. Note that the
apostrophe preceding the symbol EXPRESSION is required to
force recursive substitution. Otherwise, the procedure would
replace EXPRESSION with its value, but would not perform the
calculations.

CD To convert the decimal value to hexadecimal, the procedure
first converts the decimal value to a binary number using the
arithmetic overlay syntax of an assignment statement. The
symbol NUM now has a binary value equivalent to the value of
DECIMAL.

f) Using the symbol DIGIT as a counter, the procedure loops,
extracting four bits at a time from the value of NUM. Each
four bits are converted to their hexadecimal equivalent to
construct a hexadecimal value for DECIMAL.

The procedure gives the symbol X the value of the current
four bits.

Ci) If the value of the 4-bit field is less than 9, the procedure
prefixes the current value of the symbol HEX with the value
of x. Otherwise, the procedure calculates a hexadecimal
value using an intermediate symbol, F. The resulting value
of F is given to the symbol X and X is prefixed to the
current value of HEX. Note that regardless of whether the
current four bits are greater than or less then 9, X is given
an ASCII value representing the hexadecimal value of the
bits.

C'i) When the value of DIGIT exceeds 32, the conversion is
complete.

A-23

ANNOTATED COMMAND PROCEDURES

41) The procedure displays the results with the WRITE command.

G) The DELETE/SYMBOL commands delete the symbols used in the
calculations.

~ The GOTO command returns to the label START.
loops to request another value.

Sample Execution

$ @CALcmrn
Cale: 5555*30~
Decimal = 166650 Hex = 00028AFA
Cale: 32+3~
Decimal = 35 Hex = 00000023
Cale: TOTAL = %X3A + %X4CtBrn
Decimal = 134 Hex = 00000086
Cale:~
$

The procedure

After each prompt from the procedure, the user enters an arithmetic
expression. The procedure displays the results in decimal and
hexadecimal. A null line, signaled by ~ on a line with no data,
concludes the CALC session.

A-24

INDEX

A
Ampersand (&) substitution

operator
rules for using, 4-5
when required, 4-4

Apostrophe (') substitution
operator

within character strings, 4-2
to maintain lowercase value

in a string, 4-2
when required, 4-2

Arithmetic overlays
rules for forming in

expressions, 3-10
ASCII character set and collating

sequence, 3-9
ASSIGN commmand

USER MODE qualifier, 2-9
Assignment statement

equates symbol to string or
arithmetic value, 3-1

replacing substrings in,
3-4, 3-5

substring offsets, 3-4
used to define null string, 3-3
uses of introduced, 3-2

Automatic symbol substitution,
4-3

B
Batch job log file

contains LOGIN.COM by default,
2-4

including command output in,
9-5

saving it, 9-n
use of SET NOVERIFY in, 2-4

Batch job queues
commands to control, 9-3
current jobs in, 9-1
holding jobs in, 9-1
pending jobs in, 9-1
submitting command procedures

tO I 1-11
Batch jobs

batch job log file, 9-5
begin with automatic login to

your account, 1-11
cannot access symbols you

define interactively, 1-11
caution on using STOP or DELETE

ENTRY command, 9-7
controlling, 9-1
example of card reader batch

job, 1-13

Batch jobs, (Cont.)
execute LOGIN.COM file (if

present), 1-11
how the system executes, 9-1
output from, 9-5
queues for, 9-1
submitting through system card

reader, 1-11
synchronizing, 9-7
SYS$BATCH queue, 9-1
terminating abnormally, 9-6

Binary data
manipulating with lexical

functions, 5-13
BWAKE.COM annotated

procedure, A-8
shows batch job communication,

9-4
shows use of F$LOGICAL function,

5-8
shows use of STOP command, n-10

c
CALC.COM annotated procedure,

A-23
apostrophe in assignment forces

recursion, 4-11
shows ON ERROR command use, 7-3
shows use of arithmetic

overlay, 3-10
shows use of F$CVUI function,

5-14
shows use of INQUIRE command,

3-17
Card reader batch jobs

EOJ or EOF card required, 1-12
example of, 1-13
how to submit, 1-11
JOB card required, 1-11
PASSWORD card required, 1-11
temporary file for command

procedure, 1-13
Cards, translation mode

026 punch mode, 1-13
029 punch mode, 1-13

Caution on using
CTRL/Y action routines, 7-10
ON CONTROL Y command, 7-10
SET CONTROL Y command, 7-10

Character strTngs, equating
symbols to, 3-2

CLOSE command
introduction to use, 8-1

Collating sequence for ASCII
character set, 3-9

Index-1

INDEX

Command files
login, 1-14
system-defined login, 1-14

Command level
change in level results in

$STATUS test, 7-4
CTRL/Y action routine can be

specifi~d for each, 7-9
effect on logical name

assignments, 2-3
special CTRL/Y level, 7-6

Command level O, 2-2. (See also
initial command level)

Command procedure file, 1-13.
(See also command procedures)

Command procedures
command continuation character

(-)' 1-6
controlling execution flow in,

6-1
controlling input/output, 2-1
creating, 1-5
DCL command compatibility

between releases, 1-16
DCL commands used in, 1-2
debugging, 1-15
default file type for, 1-5
default outputs in interactive

mode, 2-2
defined, 1-1
developing, 1-1
documenting, 1-6
effect on logical name

equivalences, 2~2

effect on process-permanent
files, 2-2

effects of adding new features,
1-16

executing, 1-8
formatting, 1-6
how to verify execution, 2-2
hyphen used to continue command

lines, 1-n
including command and program

data in, 2-6
interactive mode execution of,

1-9
line continuation in, 1-n
maintaining, 1-16
nesting, 1-13
nesting maximum is 8, 1-13
not using truncation for

commands, 1-7
output summary, 2-5
passing parameters to, 3-12
preventing ambiguity in, 1-7
reading sequential files from,

8-2
special symbols Pl to PS, 3-12
spelling out commands, 1-7

Command procedures, (Cont.)
submitting to a batch job

queue, 1-11
symbol substitution in, 4-1
testing, 1-15
using comments in, 1-7
using indentation, 1-7
using symbols in, 3-1
writing files from, 8-3

Command symbol, 3-1. (See also
symbol)

Command synonym
used in example of recursion,

4-9
Command synonyms, 4-1

delimiters for, 4-2
substitution of, 4-1

Compatibility-mode commands,
EXITSTATUS code, 7-5

Concatenating symbol values, 4-3
Condition codes, returned in

$SEVERITY, 7-1
Controlling interactive output,

2-5
CONVERT.COM annotated procedure,

A-3
shows how parameters are passed,

6-8
shows use of arithmetic

assignments, 3-10
shows use of F$LENGTH function,

5-10
shows use of F$TIME function,

5-8
shows use of global symbol, 6-8

CREATE command, 1-5
Creating files, 8-1
CTRL/C interrupt handling, 7-6.

(See also CTRL/Y interrupt
handling)

CTRL/Y action routine
can be specified for each

command level, 7-9
caution on using, 7-10
command execution rules, 7-7
and default actions, 7-7
defaults for nested procedures,

7-9
determines flow of execution,

7-8
establishing, 7-6
how long effect lasts, 7-7

CTRL/Y command level, 7-6
how used on interrupt, 7-6

CTRL/Y interrupt
commands to issue without

stopping image, 7-n
defined, 7-n
different effects when command

is external, 7-6

Index-2

INDEX

CTRL/Y interrupt, (Cont.)
status stored by CTRL/Y command

level, 7-6
what to do after, 7-6
when interrupt occurs, 7-6

CTRL/Y interrupt handling, 7-6

D
DCL commands

compatibility between releases,
1-16

effect of changes in format or
results, 1-16

DECK command
to signify dollar signs in

input stream, 2-6
use in batch job submitted

through card reader, 2-6
Default command and data input

stream, SYS$INPUT, 2-1
Default device and directory at

login, SYS$LOGIN, 2-2
Default device for process,

SYS$DISK, 2-2
Default error message stream,

SYS$ERROR, 2-1
Default output stream,

SYS$0UTPUT, 2-1
Disabling error checking, 7-4
Dollar sign ($} character

begins each command line, 1-6
begins each comment line, 1-6
in DECK and EOD commands, 2-6
including at beginning of

symbol name, 3-2
used in input data stream, 2-7
when data line begins with

dollar sign, 2-6
when required, 1-6

E
EDITALL.COM annotated procedure,

A-14
shows CTRL/Y action routine, 7-8
shows use of INQUIRE command,

3-17
shows USER_MODE assignment, 2-9

EDT text editor, 1-5
ENDED.COM annotated procedure,

A-10
shows batch job communication,

9-4
shows use of F$LOGICAL function,

5-8
shows use of F$MESSAGE function,

5-9

ENDED.COM annotated
procedure, (Cont.)

shows use of F$PROCESS function,
5-6

EOD command
to signify end of input deck,

2-6
use in batch job submitted

through card reader, 2-6
EOF card

use in card reader batch job,
1-12

EOJ card
use in card reader batch job,

1-12
Equating symbols to character

strings, 3-2
Equivalences, system-defined

logical name, 2-1
Error checking, disabling, 7-4
Error conditions

condition codes, 7-1
handling, 7-1

Error conditions and CTRL/Y
interrupts, controlling, 7-1

Error handling
when reading or writing files,

8-5
Exclamation point

as comment delimiter, 1-7
when used as literal, 1-7

Execute Procedure (@) command
effect of null parameters in,

3-13
introduced, 1-8
nesting procedures with, 6-8
rules for delimiting parameters

in, 3-13
specifying parameters in,

3-13
use of OUTPUT qualifier, 2-5

Execution flow in a command
procedure

Execute Procedure command
usage, ~-1

executuion is sequential, 6-1
EXIT command usage, 6-1
GOTO command usage, 6-1
IF command usage, 6-1
STOP command usage, 6-1

Execution of command procedures
in interactive mode, 1-9
introduced, 1-8
SUBMIT to batch queue, 1-10
summary of 5 ways, 1-8
using Execute Procedure command,

1-8
using SUBMIT command, 1-8
when not in default directory,

1-10

Index-3

INDEX

EXIT command
passing status values with, 6-9
use as target for ON command,

7-2
uses for, 6-9

Exit handlers, 7-6
EXITSTATUS, compatibility-mode

command message code, 7-5
Expressions

defined, 3-5
equating symbols to, 3-5
how command interpreter

evaluates, 3-6
operators used in forming, 3-6
rules for operator precedence,

3-6
using arithmetic comparisons,

3-8
using arithmetic operations, 3-9
using arithmetic overlays, 3-10
using logical operators, 3-7
using string comparisons, 3-8

F
F$CVSI lexical function

returns numeric value, 5-13
uses for, 5-13

F$CVUI lexical function
returns numeric value, 5-13
uses for, 5-13

F$DIRECTORY lexical function
returns character string, 5-4
uses for, 5-6

F$EXTRACT lexical function
returns character string, 5-12
uses for, 5-12

F$LENGTH lexical function
returns numeric value, 5-10
uses for, 5-10

F$LOCATE lexical function
returns numeric value, 5-11
uses for, 5-11

F$LOGICAL lexical function
can return null string, 5-7
returns character string, 5-7
testing for unassigned logical

name with, 5-7
use in IF command, 5-7
uses for, 5-7

F$MESSAGE lexical function
returns character string, 5-9
uses for, 5-9

FSMODE lexical function
returns character string, 5-4
uses for, 5-4

F$PROCESS lexical function
returns character string, 5-6
uses for, 5-6

F$TIME lexical function
returns character string, 5-8
uses for, 5-8

F$USER lexical function
returns character string, 5-6
uses for, 5-6

F$VERIFY lexical function
returns numeric value (1 or 0),

5-5
uses for, 5-5

Flow of execution
following CTRL/Y interrupts,

7-8
FORTUSER.COM annotaterl procedure,

A-16
controls a terminal session,

1-15
restricts user to certain

commands, 1-15
shows CTRL/Y action routine,

7-8
shows how to disable CTRL/Y

interrupts, 7-10
shows ON ERROR command use, 7-3
shows use of F$LENGTH function,

5-10
uses system-defined login file,

1-15

G
GETPARMS.COM annotated procedure,

A-11
shows forced recursion, 4-9

Global symbol table, 3-11
Global symbols

defined, 3-11
and LOGIN.COM file, 3-12
use as command synonyms, 3-12

GOTO command
as target of IF command, 6-6
passes control to label, 6-5
rules for using labels, 6-5
sample execution of, 6-6
uses in establishing loops, 6-7
uses with IF command, 6-7
when lexical functions are

evaluated in, 5-1

IF command
as target of another IF command,

6-2
execution paths, 6-2
flow of execution in, ~-2
forcing recursion in, 6-4
logical operators in, 6-3

Index-4

INDEX

IF command, (Cont.)
targets of, 6-2
use in loops, 6-5
use in performing recursive

substitution, 4-10
used to test for logical name

assignment, 5-8
using symbols in, 6-3
valid expressions in, 6-2

Informational lexical functions,
5-3

Initial command input stream,
SYS$COMMAND, 2-1

Initial command level, 2-2
·Input data stream, using dollar

signs in, 2-7
Input/output, controlling, 2-1
INQUIRE command

adds colon and space to prompt
by default, 3-17

used to prompt for a symbol, 3-2
used to prompt for symbol value,

3-16
Interactive output, controlling,

2-5
Interupt handling, 7-6

J
JOB card

use in card reader batch job,
1-12

JOB command
PARAMETERS qualifier used to

define parameters, 3-14

L
Labels, rules for using, ~-5
Lexical functions

apostrophe required, 5-1
defined, 5-1
effect in comment lines, 5-1
effect in forward GOTO commands,

5-1
formats of, 5-1
list of, 5-2
parentheses required, 5-1
rules for and effects of use,

5-2
when command interpreter

evaluates, 5-1
when used, 5-1

Lexical functions that manipulate
binary data, 5-13

LISTER.COM annotated procedure,
A-21

LISTER.COM annotated
procedure, (Cont.)

shows how to suppress output
to SYS$0UTPUT, 2-10

shows replacing character
strings, 3-4

shows use of WRITE command,
8-4

Local symbol tables, 3-11
Local symbols

defined, 3-11
effect of command level on, 3-11

Logical name equivalences, 2-2.
(See also process-permanent
files) ·

effect of command procedures
on, 2-2

SYS$COMMAND, 2-1
SYS$DISK I 2-1
SYS$ERROR, 2-1
SYS$ INPUT, 2-1
SYS$ LOG IN , 2-1
SYS$0UTPUT, 2-1

Logical name equivalences,
system-defined, 2-1

Logical names
assignments at different command

levels, 2-3
LOGIN .COM

changing and testing, 1-14
creating, 1-14
global symbols in, 1-14
introduced, 1-14
must be created on default disk

and directory, 1-14
relationship to system-defined

login file, 1-14
typical commands in, 1-14
using SET NOVERIFY command in,

2-4
LOGIN.COM and system-defined

login file, 1-15

M
Messages, system, 7-4
Mode cards, translation

026 punch mode, 1-13
029 punch mode, 1-13

N
Name equivalences, system-defined

logical, 2-1
Nested procedures

default CTRL/Y actions for, 7-9
Nesting command procedures, 1-13

(See also Section n.3)

Index-5

INDEX

Nesting procedures
with Execute Procedure (@)

command, 6-8
parameter passing techniques,

6-8
utilizing global symbols, 6-8

Null string
equating a parameter to, 3-13
how to define in an assignment

statement, 3-3

0
Offset, defined, 5-10
ON command

action taken at different
severity levels, 7-2

to establish condition code
routine, 7-2

used to establish CTRL/Y action
routine, 7-fi

ON command actions
example of, 7-3
list of, 7-2

OPEN command
introduction to use, 8-1

Operators used in expressions,
list of, 3-7

Operators used in forming
expressions, 3-6

Output, controlling interactive,
2-5

Output data
displaying in output stream,

2-10
ways to display, 2-10

OUTPUT qualifier of Execute
Procedure command

writes to disk file, 2-5
Output stream

displaying data in, 2-10
Output to SYS$0UTPUT

how to suppress or redirect,
2-10

p
Parameters Pl to P8

defining values for, 3-15
special symbols for command

procedures, 3-12
PARAMETERS qualifier card, use

in a card deck, 3-14
Passing parameters to batch jobs,

3-14
Passing parameters to command

procedures, 3-12

PASSWORD card
preventing users from reading

it, 1-13
use in card reader batch job,

1-12
Process-permanent files, 2-2

communicating with, 8-7

R
READ command

END OF FILE qualifier uses,
-8-3

file and record restrictions
for, 8-2

handling end-of-file conditions
with, 8-3

introduction to use, 8-1
reading data to a symbol name,

5-13
specifying symbol names for,

8-2
used to define symbol, 3-2

Reading and writing files
steps to perform, 8-1

Reading and writing files, steps
"in, 8-2

Reading files from a command
procedure, 8-2

Reading from process-permanent
files, 8-7

Recursive substitution
defined, 4-5
example of, 4-7
in expressions, 4-10
in IF command, 4-10
rules for forcing in

expressions, 4-10
on strings enclosed by quotation

marks, 4-8
using a command synonym, 4-9
using ampersands, 4-9
using apostrophes, 4-7
using command synonyms, 4-8
when it occurs, 4-6

Repetitive substitution, defined,
4-5

s
SET NOON command

disables error checking, 7-4
SET NOVERIFY command

introduced, 1-15
used in LOGIN.COM, 2-4
used to prevent command and

comment display, 2-2

Index-6

INDEX

SET VERIFY command
turns on verification after

CTRL/Y, 2-4
used to debug command

procedures, 1-15
used to·display commands and

comments, 2-2
to verify symbol substitution,

4-12
$SEVERITY condition codes, values

returned, 7-1
$SEVERITY global symbol, 3-12

low-order 3 bits of $STATUS, 7-1
Severity levels

ON command action, 7-2
SHOW SYMBOL command

to display current value of
symbol, 3-12

sos text editor, 1-5
Spaces and tabs

as formatting aids, 1-n
command interpreter handling of

in symbols, 3-3
defining as literals in symbols,

3-3
when allowed in command lines,

1-6
when prohibited, 1-6

$STATUS
commands that do not change

success value, 7-5
value tested on command level

change, 7-4
Status codes

returned by compatibility-mode
programs, 7-5

$STATUS global symbol, 3-12
stores error conditions, 7-1

STOP command
uses for, 6-10

String, defined, 5-10
String manipulation lexical

functions, 5-10
String replacement in assignment

statements, 3-5
String substitutions using

offsets, 3-5
Strings, equating symbols to

character, 3-2
SUBMIT command, 1-10

frees terminal for interactive
work, 1-10

introduced, 1-8
job is queued message, 1-10
job is run in detached process,

1-10
used to pass parameters to

batch jobs, 3-14
Substitution, automatic symbol,

4-3

Substitution operator, ampersand
used as, 4-4

Substitution operator, apostrophe
used as, 4-2

Substitution operators
differences between apostrophe

and ampersand, 4-4
introduced, 3-1

Substring, defined, 5-10
Symbol

defined, 3-1
rules for forming in an

assignment statement, 3-2
used to represent character

string, 3-1
Symbol name used as synonym for

command line, 1-10
Symbol names

assigning binary data to, 5-13
continuing on more than one

line, 3-3
defining spaces and tabs in, 3-3
effect of quotation marks in,

3-3
how to assign binary data to,

5-13
passed as parameters to command

procedure, 3-2
rules for forming in assignment

statements, 3-2
symbol values containing special

characters, 3-3
use in assignment statements

introduced, 3-2
use in the INQUIRE command, 3-2
use in the READ command, 3-2
used to represent character

strings, 3-1
using arithmetic overlays with,

5-13
using offsets in character

string assignments, 3-4
using offsets to perform

substring replacement, 3-4
using the READ command with,

5-13
ways to define in command

procedures, 3-2
when beginning with dollar sign

character, 3-2
when defined as null string, 3-3
when special characters occur in

symbol values, 3-3
Symbol substitution

during command input scanning,
4-6

during command parsing, 4-6
during expression evaluation,

4-6
example of three phases, 4-6

Index-7

INDEX

Symbol substitution, (Cont.)
how performed, 4-6
recursive, 4-6
repetitive, 4-6
three phases of, 4-6
verification of, 4-12
when automatic, 4-3
in the WRITE command, 8-4

Symbol substitution, automatic,
4-3

Symbol substitution in command
procedures, 4-1

Symbol tables
introduced, 3-11
order of search by command

interpreter, 3-12
search order during symbol

substitution, 3-12
Symbol values, concatenating, 4-3
Symbols

definitions when table space
exceeded, 3-18

how to delete them, 3-18
maximum number that can be

defined at one time, 3-18
usage in IF commands, 6-4
when automatically deleted by

command interpreter, 3-18
when interpreted as chracter or

numeric, 3-11
where stored, 3-11

Symbols, undefined, 4-11
Symbols to character strings,

equating, 3-2
SYNCHRONIZE command

used to synchronize batch jobs,
9-7

SYS$COMMAND, 2-1
reading from, 8-7

SYS$DISK, 2-1
SYS$ERROR, 2-1

writing to, 8-7
SYS$ INPUT, 2-1

ASSIGN command used to equate
to SYS$COMMAND, 2-8

how to redefine, 2-8
reading from, 8-7

SYS$ LOG IN, 2-1
SYS$0UTPUT, 2-1

how to redefine, 2-8
writing to, 8-7

System-defined and user login
files, 1-15

System-defined logical name
equivalences, 2-1

System-defined login file
defined by system manager,

1-14
relationship to LOGIN.COM, 1-14
used in FORTUSER.COM, 1-15

System-defined login file, (Cont.)
used to control terminal

session, 1-15
in user record in UAF, 1-14

System messages, 7-4

T
Token

defined, 4-1
Translation mode cards

026 punch mode, 1-13
029 punch mode, 1-13

u
UAF (User Authorization File)

contains system-defined login
file, 1-14

introduced, 1-14
Undefined symbols, 4-11

command interpreter action on,
4-12

when error message issued, 4-11
when symbol replaced by null

string, 4-12
when symbol replaced by zero,

4-12
USER MODE qualifier of ASSIGN

command
assignment effects one image

only, 2-9
rules for usage, 2-9
when assignment cancelled, 2-9

v
Values, concatenating symbol, 4-3
Verification of symbol

substitution 4-12
Verification setting

change interactively after
CTRLY/Y, 2-4

w
WAKEUP.COM annotated procedure,

A-6
shows use of arithmetic overlay,

3-10
WRITE command

can't specify file attributes
with, 8-7

can't use to append records to
existing file, 8-3

Index-8

INDEX

WRITE command, (Cont.)
command interpreter processes

command string, 2-11
differences from TYPE, COPY,

and CREATE commands, 2-11
effect on file format, 8-7
file and record restrictions

for, 8-3
file incompatibilities possible,

8-7

WRITE command, (Cont.)
introduction to use, 8-1
symbol substitution in the, 8-3
symbol substitution with, 8-5

Writing and reading files
steps to perform, 8-1

Writing files from a command
procedure, 8-3

Writing to process-permanent
files, 8-7

Index-9

.
(I,)
c

O>
c
0

0
......
::>
0

(I,)
en
0
(I,)

a..

READER'S COMMENTS

VAX/VMS Guide to Using
Command Procedures

AA-H782A-TE

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement .

Did you find errors in this manual? If so, specify the error and the
page number •

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify>~~~~~~~~~~~~~~~~~~~

City ______________ State------- Zip Code ______ _
or

- - DoNotTear-FoldHereandTape - - - - - - - - - - - -

Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A 14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage
Necessary

if Mailed in the
United States

