
VAX-11
Record Management Services

User's Guide
Order No. AA-D781C-TE

March 1980

This document contains detailed information on using the capabilities of
VAX-11 Record Management Services efficiently. Typical examples are pro
vided to illustrate programming concepts.

VAX-11
Record Management Services

User's Guide
Order No. AA-0781 C-TE

SUPERSESSION/UPDATE INFORMATION: This document supersedes

OPERATING SYSTEM AND VERSION:

SOFTWARE VERSION:

the document of the same name,
Order No. AA-D781 B-TE,
published February 1979.

VAX/VMS V2.0

VAX/VMS V2.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, August 1978
Revised, January 1979
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright@ 1978, 1979, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-lo
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
!AS
TRAX

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI
PDT

PREFACE

CHAPTER l

1.1

CHAPTER 2

2.1
2.2

CHAPTER 3

3.1
3. l. l
3. l. 2
3. l. 3
3.1.3.l
3.1.3.2
3.1.3.3
3.1.4

3. l. 5
3.2
3.3
3.3.l
3.3.2
3.3.3
3.3.4
3.3.5
3.4

CHAPTER 4

4.1
4.1.l
4.1.2
4.1.2.l
4.2
4.2.l
4.2.2
4.2.2.l
4.3
4.3.l
4.3.2

CHAPTER 5

5.1
5. l. l

CONTENTS

FILE GUIDELINES: DETERMINE YOUR NEEDS

THE RATIONALE FOR RECORD MANAGEMENT

VAX-11 RMS STRUCTURES AND INTERFACE

USER CONTROL BLOCKS
VAX-11 RMS ROUTINES

SPECIFYING THE FILE TO BE PROCESSED

FILE SPECIFICATIONS
Network Nodes
Devices
Directories
Alphanumeric Character String Format
UIC Format
Subdirectories
File Names, File Types, and Version
Numbers
Wild Card Characters

DEFAULT FILE SPECIFICATIONS
LOGICAL NAMES

Logical Name Tables
Logical Name Translation and Recursion
Defaults for File Names
Bypassing Logical Name Translations
Default Process Logical Names

PROCESS-PERMANENT FILES

PROCESSING FILES WITH SEQUENTIAL RECORD
ACCESS MODE

THE USE OF SEQUENTIAL FILE ORGANIZATION
Reading Records
Creating a Sequential File
Dynamically Creating a Sequential File

THE USE OF RELATIVE FILE ORGANIZATION
Reading a Relative File
Creating a Relative File
Dynamically Creating a Relative File

THE USE OF INDEXED FILE ORGANIZATION
Reading an Indexed File
Creating an Indexed File

PROCESSING FILES WITH "RANDOM RECORD ACCESS

RANDOM ACCESS TO SEQUENTIAL FILE ORGANIZATION
Random Read of a Record

iii

Page

v

1-1

1-1

2-1

2-1
2-2

3-1

3-1
3-2
3-3
3-4
3-4
3-4
3-4

3-5
3-8
3-8
3-10
3-11
3-11
3-12
3-13
3-13
3-14

4-1

4-1
4-1
4-4
4-5
4-7
4-7
4-8
4-9
4-10
4-11
4-14

5-1

5-1
5-1

APPENDIX

APPENDIX

INDEX

FIGURE

TABLE

5.2
5.2.1

5.3
5.3.1

A

A. l

A.2

A.3

A.4

B

B.l
B.2

4-1

4-2
4-3

4-4
4-5
4-6
4-7

5-1
5-2
5-3
B-1
B-2
B-3

1-1

2-1
2-2
3-1
3-2
3-3
3-4

CONTENTS

RELATIVE FILE ORGANIZATION
Random Read of a Record in the Relative
File Organization

INDEXED FILE ORGANIZATION
Random Read of a Record in the Indexed
File Organization

PROGRAM EXAMPLES

SEQUENTIAL RECORD ACCESS MODE -- SEQUENTIAL
FILE ORGANIZATION
RANDOM RECORD ACCESS -- RELATIVE FILE
ORGANIZATION
SEQUENTIAL RECORD ACCESS MODE -- INDEXED
ORGANIZATION
RANDOM RECORD ACCESS MODE -- INDEXED FILE
ORGANIZATION

US ING THE RMS FILE ANALYZER

USES OF RMSANLZ
OPERATING RMSANLZ

FIGURES

Program to Count Records in a Sequential
File
Program to Copy a Sequential File

FILE

Program to Copy a Sequential File, Setting
the Output Control Blocks Dynamically
Creating a Relative File
Creating a Relative File Dynamically
Program to Count Records in an Indexed File
Program to Create an Indexed File by Copying
an Existing File
Random Read of a Sequential File
Random Read of a Relative File
Random Read of an Indexed Fi le
Sample File Attribute Listing
Sample Key Information Listing
Sample Key Analysis Listing

TABLES

File Organizations: Advantages and
Disadvantages
Control Blocks
Macro Instructions for Run-Time Processing
Device Names
Default File Types
File Specification Defaults
Default Process Logical Names

iv

Page

5-6

5-h
5-9

5-9

A-1

A-2

A-6

A-10

A-14

B-1

B-1
B-2

Index-1

4-3
4-6

4-8
4-9
4-10
4-13

4-17
5-4
5-7
5-12
B-2
8-3
B-4

1-2
2-2
2-3
3-3
3-5
3-9
3-13

PREFACE

MANUAL OBJECTIVES

The intent of this manual is to present some of the different uses of
the VAX-11 Record Management Services (VAX-11 RMS), so you can tailor
the various components and routines to suit your record management and
record processing needs.

INTENDED AUDIENCE

This manual is intended for VAX/VMS users who want to develop a basic
understanding of how to use VAX-11 RMS I/O routines within their
programs. VAX-11 MACRO programmers generally use the VAX-11 RMS
routines directly within their programs. High-level language
programmers normally use the I/O facilities of their particular
language to utilize a subset of VAX-11 RMS facilities. However, they
may also use VAX-11 RMS directly through a call facility within their
language.

This manual is aimed at VAX-11 MACRO programmers. It is assumed that
you are familiar with and understand the VAX-11 MACRO conventions for
constructing symbols and the use of numbers, operators, and
expressions.

STRUCTURE OF THIS MANUAL

The information in this document is structured as follows:

Chapter 1 provides an overview of the salient features of the data
record file organizations that can be created, displayed, and
maintained by using VAX-11 RMS. This information will help you to
determine the type of file organization best suited to your data
record management requirements.

Chapter 2 describes the VAX-11 RMS routines and the user control
blocks defined within your program, which are used to communicate
between your program and the VAX-11 RMS routines.

Chapter 3 describes file specification
specification defaults.

syntax and the file

Chapter 4 describes how you create and process data record files by
sequential access mode with three file organizations.

Chapter 5 describes how you create and process .data record files by
using random access mode.

Appendix A provides additional programming examples.

Appendix B describes the RMS File Analyzer.

v

ASSOCIATED DOCUMENTS

A prerequisite to this manual is the Introduction to VAX-11 Record
Management Services M9J}_y_~_!, which describes in de ta i 1 the concepts of
file organization, record access modes, record formats, and other
concepts required for your understanding of VAX-11 RMS file
construction. You should have available a copy of the VAX-11 Record
Management Services Reference ~a!!!:IE._!. This document cont a ins the
complete description of the components of VAX-11 RMS, and therefore
constitutes a source reference for the materials presented in this
user's guide.

Other manuals allied to this document are:

• VAX/VMS Primer

• VAX-11 MACRO ~aEgl.!~9-~---~~~erence Manual

• VAX-11 BLISS Language --~-~~-~~_ence Manual

vi

SUMMARY OF TECHNICAL CHANGES

This manual has been revised to reflect VAX-11 RMS support for wild
card characters and uppercase translation of logical names.

vii

CHAPTER 1

FILE GUIDELINES: DETERMINE YOUR NEEDS

The VAX-11 Record Management Services (VAX-11 RMS) are system routines
that provide an efficient and flexible means of accessing files and
their records. The VAX-11 RMS routines speed up and simplify the task
of program development.

1.1 THE RATIONALE FOR RECORD MANAGEMENT

As a user writing application programs, you need to create programs
that will (1) accept new input, (2) read or modify data, and/or (3)
produce output in some meaningful form. These programs can be, at
times, somewhat difficult to produce, because the operations required
in handling the data can be complex. However, many of these
operations are basically the same, with only minor modifications
needed depending on the operation. Therefore, generalized routines
that encompass a wide variety of functions can be very useful to you
in dealing with your file and record management programming needs.
VAX-11 RMS provides such generalized routines.

VAX-11 RMS routines are an integral part of the operating system;
they are always there. You need not perform any special linking or
declaring of global entry points to access the routines since a simple
reference to a routine generates the appropriate call. Calls to
VAX-11 RMS routines are consistent with the VAX/VMS calling standard;
arguments are passed and results and errors are returned in the
standard VAX/VMS fashion.

Because the file organization is fixed for the life of the file, it is
very important that you decide, before you begin to write your
program, which file organization best meets your requirements. The
following questions should help you determine your file organization
requirements.

• How will the records be accessed? Will the whole file or only
selected records be processed? Will the records be accessed
randomly? Will the records be accessed by other nodes in a
network?

• What kind of record maintenance is needed?
updated, added, or deleted?

Must records be

• What is the record format? How large are the records; are
they all the same size? What is their maximum size?

• What is the total size of the file? Is this size fixed or can
it be extended?

1-1

FILE GUIDELINES: DETERMINE YOUR NEEDS

• Where will the file reside?
cards. Will the file be
terminal?

Will the medium be tape, disk, or
written to a line printer or

As these questions indicate, many issues affect your
organization. Often, the choice is not clear-cut.
some of the advantages and disadvantages of the three
organizations: sequential, relative, and indexed.

choice of file
Table 1-1 lists
types of file

Table 1-1
File Organizations: Advantages and Disadvantages

File Advantages
Organization

Sequential Uses disk and memory
efficiently:

Relative

minimum disk overhead,
block-boundary crossing

Provides optimal usage
if the application
accesses all records
sequentially on each run

Provides flexible record
format

Allows data to be stored
on many different types
of media, in a device
independent manner

Allows easy file
extension

Allows sequential and
random access by record
number for all
languages

Allows random record
deletion and insertion
Allows records to be
read- and write-shared

1-2

Disadvantages

All-0ws sequential
access only
for some high-level
languages

Allows records to be
added only to end of
file

Allows sharing by
multiple, concurrent
users, but only with
user's implemented
synchronization.
(The exception is
512-byte fixed-length
records; VAX-11/RMS
manages the
synchronization for
such files).

Allows data to be
stored on disk only

Requires that programs
contain a record cell
for each relative
record number
allocated; therefore,
files may be
sparsely populated

Requires that record
cells be the same size

Allows record
insertion only to
empty cells (or
at the end of
the file)

(continued on next page)

FILE GUIDELINES: DETERMINE YOUR NEEDS

Table 1-1 (Cont.)
File Organizations: Advantages and Disadvantages

..----------------------------......------,--
File

Organization

Indexed

Advantages

Allows sequential and
random access by key
value for all languages

Allows random record
deletion and insertion

Allows records to be
read- and write-shared
Allows variable-length
records to change length
on update

Allows easy file
extension

1-3

Disadvantages

Allows data to be
stored on disk only

Requires more disk
space

Uses more of the
central processing unit
to process records.
Generally requires
mulitple disk accesses
to prrocess a record.

CHAPTER 2

VAX-11 RMS STRUCTURES AND INTERFACE

The facilities of VAX-11 Record Management Services (VAX-11 RMS) are
available at run time through the calling of record management
procedures. Communication with the VAX-11 RMS routines is by means of
user control blocks defined within your program. This chapter
provides an introduction to these routines and control blocks, and the
macro instructions that facilitate their use.

2.1 USER CONTROL BLOCKS

VAX-11 RMS uses data structures called control blocks to communicate
between your program and the VAX-11 RMS routines.

The VAX-11 RMS routines also create their own internal data
structures, reflecting the information in your control blocks. These
internal data structures reside in the process control region, in what
is called the I/O segment.

You set up fields in the control blocks to reflect exactly what
operations you want to perform, and then call the routine. The
routine uses these fields as input to perform the requested action
and, as necessary, uses these fields again to return status and other
related information. The amount of information your program exchanges
with VAX-11 RMS (both as input and output) depends on the nature of
your request and the file attributes.

Table 2-1 lists the control blocks that are part of your program
interface with VAX-11 RMS.

You must allocate space for these control blocks within your program.
You can do this either at assembly time or run time. VAX-11 RMS
provides macro instructions for the assembly-time allocation and
initialization of the control blocks, shown in the Macro Name column
of Table 2-1. At run time, you can directly manipulate the control
blocks through either the defined symbolic offsets or the "store"
macro instructions. For efficiency, and to prevent a warning message
from the assembler, align each control block on a longword boundary.

In general, you must allocate one File Access Block (FAB) for every
open file in your program, and one Record Access Block (RAB) for each
individual record stream connected to a FAB. (More than one RAB can
be connected to each FAB simultaneously.) The Extended Attribute
Blocks (XABs) and the Name Block (NAM) are optional, depending on
whether you need the information they provide and the functions they
perform.

2-1

Structure

File Access
Block (FAB)

Record Access
Block (RAB)

Extended
Attribute
Blocks (XAB)

Name Block (NAM)

VAX-11 RMS STRUCTURES AND INTERFACE

Table 2-1
Control Blocks

Function

Describes a file and contains
file-related information

Describes a record and contains
record-related information

Contain file attribute information
beyond that in the File Access
Block

Contains file specification
information beyond that in the
File Access Block

Macro
Name

$FAB

$RAB

$XABxxx 1

$NAM

1. The variable xxx is a 3-character XAB-type specification.

2.2 VAX-11 RMS ROUTINES

The VAX-11 RMS routines execute in executive mode. VAX-11 RMS
protects its internal data structures and buffers from destruction by
user programs, and ensures that files will be left in an orderly
state. When your program exits, an I/O rundown routine closes all
files, writing buffers and file attributes as required, even when the
exit is the result of a severe error.

VAX-11 RMS routines are integrated in a straightforward manner.
Within your program, you place a call to the appropriate routines.
Generally you make these calls with run-time macro instructions. At
run time, the expanded code of these macro instructions causes calls
to be made to the appropriate routines, which refer to the appropriate
control blocks. These calls are consistent with the VAX-11 calling
standard. You can specify the parameters with keywords; you can list
them in any order or omit the keywords entirely.

When you call a routine, you set up an argument list to define the
associated control block (FAB or RAB) and any optional completion
routines to be called if an error occurs.

The operations performed by VAX-11 RMS routines are classified as
either file oriented or record oriented, requiring the address of a
FAB and RAB respectively as the control block argument in a call to
any of them.

Table 2-2 summarizes the essential macro instructions for run-time
processing.

2-2

VAX-11 RMS STRUCTURES AND INTERFACE

Table 2-2
Macro Instructions for Run-Time Processing

Category Macro Name Service

File $CREATE
Creates and opens a new file of any organization
(sequential, relative, or indexed)

Processing ·------
$OPEN Opens an existing file and initiates file processing

$DISPLAY Returns the attributes of a file to user program

$EXTEND Extends the allocated space of a file
-----t- -

$CLOSE Terminates file processing and closes the file
·-----· --·--·- --------

$ERASE Deletes a file and removes its directory entry
- -

Record $GET Retrieves a record from a file
Processing

$PUT Writes a new record to a file
r------------ ----------- - --·-·---------~

$UPDATE Rewrites an existing record in a file

$DELETE Deletes a record from a relative indexed file
-- - ··-----

$FIND Locates and positions to a record and returns its RFA
·--·~-.. ~-- ·-----

$CONNECT Connects record stream to a file
--------t- -~·- -- -

$DISCONNECT Disconnects a record stream from a file
----+· ---- -----·----- -------- ----

$RELEASE
Unlocks a record by its RF A

----· -~

SFREE Unlocks all previously locked records
------~·-----

$WAIT Determines the completion of an asynchronous record
operation

·---------

$REWIND Positions to the first record of a file
--- -- -------· - -·

$TRUNCATE Truncates a sequential file

$FLUSll Write modified 1/0 buffers and file attributes
.--- -- . -----t-·

SNXTVOL Causes processing of a magnetic tape file to continue to
the next volume of a volume set

F· --~-".

Block 1/0 $READ Retrieves a specified number of bytes from a file
-------.- ---- ---· --

$WRITE Writes a specified number of bytes to a file

$SPACE Spaces forward or backward in a file
---~:..t:=·· --- ----- ---------

File $ENTER Enters a file name into a directory
Naming --~ --- - "

$PARSE Parses a file specification
--·- ----------

$REMOVE Removes a file name from a directory
---- ----

$RENAME Assigns a new name to a file

$SEARCH Searches a directory for a file name
--- ----- ,_ -- --- -------------

2-3

CHAPTER 3

SPECIFYING THE FILE TO BE PROCESSED

A file is a logically related collection of records. All the
information that the operating system reads and writes on behalf of
users' requests is defined in terms of files and records.

File processing is influenced by the hardware device that performs the
actual data transfer (reading or writing). Devices are classified as:

• Mass storage devices

• Record-oriented devices

Mass storage devices provide a way to save the contents of files on a
magnetic medium, called a volume. Files that are thus saved can be
accessed at any time and updated, modified, or reused. Disks and
tapes are mass storage devices.

Record-oriented devices read and/or write only single physical units
of data at a time, and do not provide for permanent storage of the
data. Terminals, printers, and card readers are record-oriented
devices. Printers and card readers are also called unit record
devices. In certain cases, magnetic tapes are treated as record
oriented devices.

3.1 FILE SPECIFICATIONS

File specifications provide the system with all the information it
needs to identify a unique file or device.

File specifications have one of the following formats:

• node::device: [directory]filename.type;version

• node::"foreign-file-spec"

• node::"task-spec"

You must use the punctuation marks and brackets to separate the fields
of the file specifi6ation. Either matching square brackets or angle
brackets may delimit the directory specification. The type and
version specifications may be separated by either a period (.) or a
semi-colon (;). The fields and their contents are listed below.

3-1

Field

node
device
directory
filename
type
version
" "

SPECIFYING THE FILE TO BE PROCESSED

Contents

Node name and optional access control string
Device name
Directory name and optional subdirectory names
File name
File type
File version number
Designates a program to communicate with on a remote
node or designates a file specification that is not to
be parsed locally.

Directory names, file names, file types, and version numbers apply
only to files on disk or tape devices. For record-oriented devices
(terminals, printers, and card readers), only the device name field of
the file specification is required; fields following it are ignored.
Blanks, tabs, and null characters are accepted but ignored in file
specifications.

You may use wild card characters in file specifications. These are
more fully discussed in Section 3.1.5. The ellipsis [•••) and minus
sign [-] wild card characters can be used only in the directory name
field of a file specification. The asterisk (*) and percent sign (%)
wild card characters can be used in the following fields of a file
specification:

• Directory name

• File name

• File type

• File version number

Appendix C of the VAX-11 Record Management Services Reference Manual
contains a rigorous explanation of the entire syntax for file
specifications. The following sections, however, provide sufficient
information for you to have a basic understanding of how to supply
file specifications.

3.1.1 Network Nodes

Each computer system in a DECnet network is uniquely identified by a
1- through 6-alphanumeric character node name. Optionally, a node
name may be followed by an access control string encl9sed in quotes
(") and the entire node specification is identified by two colons
(::). An access control string consists of a username, password, and
optional account name separated from each other by one or more spaces
and/or tabs. Its total length is 3 through 42 characters. You
include an access control string in a node specification when you want
to login at the remote node as a specific user for the file access
operation. If you omit the access control string, the default DECnet
account (if established) is used. The following are examples of node
specifications.

BOSTON::
BOSTON"COWENS CELTICS"::
BOSTON"COWENS CELTICS NBA"::

In addition, you may define a logical name for a node specification
and then use it in file specifications. Logical names are described
in detail in Section 3.3.

3-2

SPECIFYING THE FILE TO BE PROCESSED

For complete details on the use of node name specifications, see the
DECnet-VAX User's Guide.

3 .1. 2 Devices

Each physical hardware device in
identification, in the format:

devcu:

the system has a unique

In this format, dev is a mnemonic for the device type, c is a
controller designation and u is a unit number.

Table 3-1 lists the valid device types and their mnemonics.

The controller and unit number identify the location of the actual
device within the hardware configuration of the system. Controllers
are designated with alphabetic letters A through z. Unit numbers are
decimal numbers from 0 through 65535.

The maximum length of the device name field, including controller and
unit number, is 15 characters. You must follow a device name with a
colon(:).

A complete device name specification is called a physical device name.
You can specify physical device names to indicate an input or output
device for a program. Or, you can equate a physical device name to a
logical name and use a logical name to refer to a device. Logical
na-mes are described in detail in Section 3.3-.

Table 3-1
Device Names

Mnemonic Device Type
1---------+-----------·------------~-------l

CR Card Reader
CS Console Storage Device
DB RP04, RP05, RP06 Disk
DD TU58, Cassette Tape
DL RL02, Cartridge Disk
DM RK06, RK07 Cartridge Disk
DR RM03, RM05 Disk
DY RX02 Floppy Diskette
LA LPAll-K Laboratory Peripheral Accelerator
LP Line Printer
MB Mailbox
MS TS-11 Magnetic Tape
MT TE16, TU45, TU77 Magnetic Tape
NET Network Communications Logical Device
OP Operator's Console
RT Remote Terminal
TT Interactive Terminal
XA DRll-W General Purpose DMA Interface
XF DR32 Interface Adapter
XJ DUPll Synchronous Communications Line
XM DMCll Synchronous Communications Line

3-3

SPECIFYING THE FILE TO BE PROCESSED

3.1.3 Directories

A user file directory (UFD) is a file that lists the identifications
and locations of files on a disk device that belong to a particular
user. The UFD is listed in the volume's master file directory (MFD).
The MFD is the root of the volume's directory structure, and also
lists the reserved files for the volume.

Directory names apply to files on magnetic tape and disk devices.
They are expressed in one of three formats where each format requires
that you enclose the directory name in either square brackets ([and
]) or angle brackets (< and >). The closing bracket must match the
opening bracket. The formats for specifying directory names are as
follows:

•

•

•

3.1.3.1
used to
name, or
manager
[OlOPAY]
type for

As a 1- through 9-alphanumeric character string representing a
UFD name.

As a two-part number separated by a comma (,) in the format of
a user identification code (UIC).

As a UFD name followed by one or more subdirectory names, each
preceded· by a period (.). Each subdirectory name represents a
unique subdirectory level of the UFD and has the same syntax
as a UFD name.

Alphanumeric Character String Format - The character string
specify a UFD can be the same as your user name or account

any valid character string that you request or the system
assigns you. For example, if you specify a directory as
the directory OlOPAY.DIR;l is searched. (DIR is the file
a directory, and 1 is the version number.)

3.1.3.2 UIC Format - You can refer to a UFD in a format similar to
that for a UIC: for example, [abc,xyz], where "abc" is a group number
and "xyz" is a member number. To specify a UFD in this format,
separate the group number from the member number with a comma. If you
specify less than three characters for either "abc" or "xyz", they are
left zero-filled. Therefore, if you specify a UFD in a urc format as
[26,1], the directory searched is 026001.DIR;l.

UIC directories have corresponding names in alphanumeric format. The
group and member numbers are each left zero-filled (if necessary).
For example:

[122001]

The directory name for the UFD specified in this command is equivalent
to the specification [122,1].

A directory in this format is usually owned by a user with a
corresponding urc. However, this may not always be the case, as UIC
and directory ownership are independent.

3.1.3.3 Subdirectories - When UFDs are referenced using the character
string format, further hierarchical levels of directories can be
expressed as subdirectories. A subdirectory level is expressed by
adding a period (.) to the character string for the UFD, followed by

3-4

SPECIFYING THE FILE TO BE PROCESSED

the specification for the subdirectory. For example, [OlOPAY.DED] is
the specification for the UFO named OlOPAY.DIR;l and a subdirectory of
DED. DIR; 1.

The maximum number of directory levels is eight: one UFD and seven
subdirectories. (Combined with the master file directory, this is, in
effect, a 9-level hierarchy.) In the directory specification
[OlOPAY.DED.YTD], OlOPAY is the UFO, DED is the first level
subdiiectory, and YTD is the second level subdirectory.

There is no maximum number of different hierarchies of directories you
can create or access.

The master file directory is created when the volume is initialized.
Subdirectories and UFOs are created with the CREATE command using the
DIRECTORY qualifier.l

3.1.4 File Names, File Types, and Version Numbers

File names, file types, and version numbers uniquely identify files
within directories.

A file name is a 1- through 9-alphanumeric character string that
identifies a file. When you create a file, you can assign it a file
name that is meaningful to you.

A file type is a 1- through 3-alphanumeric character string that
extends a file name. usually, a file type name is chosen to suggest
the contents of the file.

File types must be preceded with a period (.).

The system uses a set of standard file types, by convention, to
identify various classifications of files, and to provide default file
types in many commands. Table 3-2 is a list of file types.

Table 3-2
Default File Types

.-------------.----------------------- ------------··

File Type Contents
1-------------1------------·----·- -·· ···-·--· ·-·

ANL

BAS

B2S

B32 or BL!

CBL

Output file for the ANALYZE command

Input source file for the VAX-11 BASIC compiler

Input source file for the
BASIC-PLUS-2/VAX compiler

Input source file for the VAX-11
compiler

PDP-11

BLISS-32

Input file containing source statements for the
PDP-11 COBOL-74/VAX compiler

(continued on next page)

1. See the VAX/VMS Command Language User's Guide for an explanation of
this command and any others that appear throughout this manual.

3-5

File Type

CMD

COB

COR

COM

DAT

DIF

DIR

DIS

DMP

EDT

EXE

FOR

FTN

HLB

HLP

JNL

JOU

L32

LIB

LIS

LOG

LST

MAC

SPECIFYING THE FILE TO BE PROCESSED

Table 3-2 (Cont.)
Default File Types

Contents

Compatibility mode indirect command file

Input file containing source statements for the
VAX-11 COBOL-74 compiler

Input source file for the PDP-11 CORAL nn/VAX
compiler

Command procedure file to be executed with the @
(execute procedure) command, or to be submitted
for batch execution with the SUBMIT command

Input or Output data file

Output listing created by
command

Directory File

the DIFFERENCES

Distribution list for the MAIL command

Output form the DUMP command

Initialization command input file for EDT

Executable program image created by the linker

Input file containing source statements for the
VAX-11 FORTRAN compiler

Compatibility Mode FORTRAN IV PLUS source file

Help text library file

Help text source file

Journal file output form PATCH utility

Journal file/audit trail from EDT

Precompiled Librrary for VAX-11 Bliss-32

Input file containing VAX-11 COBOL-74 source
Statements to be copied into another file during
compilation

Listing file created by a language compiler or
assembler; default input file type for PRINT
and TYPE commands

Batch job output file

Compatibility mode listing file

MACR0-11 source file

{continued on next page)

3-n

File Type

MAI

MAP

MAR

MDL

MLB

NEW

OBJ

ODL

OLB

OLD

OPT

PAR

PAS

R32 or REQ

STB

SYS

TEC

TLB

TMP

TMx

TXT

UPD

SPECIFYING THE FILE TO BE PROCESSED

Table 3-2 (Cont.)
Default File Types

Contents

Mail message file

Memory allocation map created by the linker,
invoked by the LINK command

VAX-11 MACRO source file

Maynard Definition Language (Language-
independent structure definitions)

Macro library

Any new source file

Object file created by a language compiler or
assembler

Overlay descriptor file

Object module library

Any old source file

Options for input to the LINK command

A SYSGEN parameter file

Input file containing source statements for the
VAX-11 PASCAL compiler

VAX-11 BLISS-32 source
compilation

file required

Symbol table file created by the linker

System image

TECO indirect command input file

Text library

Temporary file

SOS temporary file ("x" is a digit)

for

Input file for text libraries or output file for
mail command

Update file of changes for a VAX-11 source
program; also input to the SUMSLP editor

Version numbers are decimal numbers from 1 through 327~7 that
differentiate between versions of a file. When you update or modify a
file, the system saves the original version for backup and increments
the version number of the modified file by 1.

Version numbers must be preceded with a semicolon (;) or a period (.)

3-7

SPECIFYING THE FILE TO BE PROCESSED

3.1.5 Wild Card Characters

As noted in the VAX/VMS Record Management Se~yices Reference Manual,
wild card characters can be used in the directory name, file name,
file type, and file version number fields of a file specification,
when given to a program designed to accept them. One purpose of wild
card characters is to refer to a group of files by a more general file
specification, rather than by each of the specific file
specifications. There are four characters (or strings of characters)
that can be used as wild card characters. These are the asterisk (*),
the percent sign (%), the ellipsis (•••), and the minus sign (-).

An asterisk is used to match the missing component of a file
specification with an alphanumeric character string of any length
(including the null string). A percent sign is used to match any
single alphanumeric character in that particular position (the null
string does not match). The asterisk and the percent sign can be
combined in many ways. For example, the sequence:

A*E%B*.B*;*

matches a group of file specifications in which the file name starts
with an "A" followed by a string of zero to "n" characters, followed
by an "E", followed by a single character, followed by a "B", followed
by a string of zero to "n" characters. The file type begins with a
"B" and is followed by a string of zero to two characters. Finally,
the version number in this group will be any and all versions of that
file, beginning with the highest version number.

The ellipsis and minus sign wild card characters are aids to
searching, or traversing, directory hierarchies. Both the ellipsis
and the minus sign allow you to refer to directori&s in a relative
positional sense, rather than by an absolute name for the first
directory or group of directories. The ellipsis enables you to select
files from all directory levels from a specified level downward. The
minus sign, on the other hand, enables you to search up the hierarchy,
rather than down. A single minus sign will send the search back up
one level from the current default directory level.

3.2 DEFAULT FILE SPECIFICATIONS

Defaults are valuable because they are easy to use, and they let you
enter as short a file specification as possible. The less you enter,
the less chance you have of making a syntax error, or an incorrect or
invalid specification. The default values were selected because they
conform to the most applicable and frequently used practices.

When you enter a file specification and omit fields in it, the system
supplies values for these fields.

The node name defaults to your local node. The device and directory
names, if omitted, default to your current default disk and directory
name. These are initially established when you log in to the system,
based on an entry under your user name in the system authorization
file.

You can find your default disk and directory name by using the SHOW
DEFAULT command. For example:

$ SHOW DEFAULT

DBAl: [PAYOl]

3-8

SPECIFYING THE FILE TO BE PROCESSED

The response to the command indicates that the current' default disk is
DBAl, and the directory name is PAYOl.

You can change the disk and directory name defaults with the SET
DEFAULT command.

System defaults also apply for fields other than the device and
directory name. Table 3-3 summarizes the defaults that apply to each
field in the file specification.

Field

node

device

directory

file name

file type

file version

Table 3-3
File Specification Defaults

Defaults

Local system

Default device established at login, or
SET DEFAULT command; almost always
device

by the
a disk

If a controller designation is omitted, it
defaults to A. If a unit number is omitted, it
defaults to O. (The ALLOCATE and SHOW DEVICES
commands, however, treat a device name that does
not contain controller and/or unit numbers as a
generic device name.)

Directory name established at login or by the
SET DEFAULT command, or next higher level in a
subdirectory

No defaults are applied to file names in input
file specifications, except for those commands
accepting multiple input file specifications,
where, for specifications other than the first,
the file name (as well as node, device,
directory, and file type) is often defaulted
from the previous input file specification.
Most commands default output file names based on
the file name of an input file

Various commands apply defaults for file types,
based on the standard file type conventions
summarized in Table 3-2

For input files, the
recent version (that

system assumes the most
is, the highest number)

For output files, the system increases the
version number by 1 for existing files, and
supplies a version number of 1 for new files

File specification defaults can be applied in other ways as well.
Chapter 8 of the VAX-11 Record Management Services Reference Manual
describes an advanced method for applying defaults to file
specifications. This method involves the use of defaults built into
your program, the default file specification string address and size
fields of the FAB, and the related file NAM block.

3-9

SPECIFYING THE FILE TO BE PROCESSED

3.3 LOGICAL NAMES

The use of logical names is an effective technique for achieving
device independence within a program. The logical names provide a
convenient shorthand method for specifying files that you refer to
frequently.

The ASSIGN command equates a file specification to a logical name.
For example, assume that, external to your program code, you specify
the following:

$ ASSIGN DBAO: [PAYROLL] MASTER.DAT OLD MASTER:
$ASSIGN DBAl:[PAYROLL]MASTER.DAT NEW-MASTER:

The ASSIGN command equates the logical name OLD MASTER to file
MASTER.DAT on disk device DBAO in th~ directory PAYROLL. The logical
name NEW MASTER equates to file MASTER.DAT on disk device DBAl in the
directory PAYROLL on that device. (This file specification is known
as the equivalence string for the logical name.) Subsequently, within
your program, you can specify these files as follows:

INFILE: $FAB FNM=<OLD MASTER:>
OUTFILE: $FAB FNM=<NEW-MASTER:>

Alternatively, you can make the following external assignments:

$ ASSIGN
$ ASSIGN
$ ASSIGN
$ ASSIGN

INDEVICE: [PAYROLL] OLD MASTER:
OUTDEVICE: [PAYROLL] NEW-MASTER:
DBAO: INDEVICE:
DBAl: OUTDEVICE:

Note in the example above that logical name equivalence strings are
not always full file specifications. Furthermore, note that the use
of logical names is recursive; that is, the equivalence string for a
given logical name may contain a further logica·1 name. This
assignment would require a slight modification to the program to
specify the same files. You would have to indicate the file name and
file type in the FAB file specification. For exampl~:

INFILE: $FAB FNM=<OLD MASTER:MASTER.DAT>
OUTFILE: $FAB FNM=<NEW MASTER:MASTER.DAT>

Depending on the degree of flexibility you need, numerous other
alternatives are possible in assigning logical names. The best
alternative is determined according to individual circumstance.

Logical names and their equivalence name strings can each have a
maximum of 63 characters, and can be used to form all or part of a
file specification. If only part of a file specification is a logical
name, specify the logical name in place of the devic~ name in
subsequent file specifications.

For example, a logical name can be assigned to a device name, as
follows:

$ ASSIGN DMAl: BACKUP

After this ASSIGN command, you can use the logical name BACKUP in
place of the device name field when referring to files on the disk.

3-10

SPECIFYING THE FILE TO BE PROCESSED

You may also create a logical name for a node name or node
specification. This is useful for reducing the length of a long node
specification and for protecting the password field of an access
control string. For example:

$DEFINE DAVE "BOSTON""COWENS CELTICS""::"
$TYPE DAVE::DBB2:[REPORT]JAN80.DOC

The logical node name DAVE, defined above, has an equivalence string
of BOSTON"COWENS CELTICS":: which is substituted for the node name
DAVE in the TYPE command.

RMS does not allow the use of lowercase logical names in file
specifications. If you try to use a lowercase logical name, RMS will
convert to uppercase the entire string prior to attempting translation
and will continue to do so on each successful translation thereafter.
RMS will accept and ignore the use of blanks, tabs, and null
characters in file specifications and logical name assignments. Such
characters will be ignored by RMS, unless they are enclosed in quotes.

3.3.1 Logical Name Tables

Logical names and their equivalence names are maintained in three
logical name tables:

• Process logical name table -- contains entries that are local
to a particular process. When you equate a file specification
to a logical name with the ASSIGN or DEFINE command, the
logical name, by default, is placed in this table.

• Group logical name table contains entries that are
qualified by a group number. These entries can be accessed
only by processes that execute within the same group number in
their UIC. To make an entry in the group logical name table,
you use the /GROUP qualifier with the ASSIGN or DEFINE
command.

• System logical name table -- contains entries that can be
accessed by any process in the system. To make any entry in
this table, use the /SYSTEM qualifier with the ASSIGN or
DEFINE command.

You must have user privileges to place entries in the group or system
logical name tables.

3.3.2 Logical Name Translation and Recursion

When the system reads a file specification, it examines the file
specification to see if the left-most component is a logical name. If
it is, the system substitutes the equivalence name in the file
specification. This is called logical name translation.

When the system translates logical names, it searches the process,
group, and system tables, in that order, and uses the first match that
it finds.

3-11

SPECIFYING THE FILE TO BE PROCESSED

When RMS translates logical names in file sp~cifications, the logical
name translation is recursive. This means that after RMS translates a
logical name in a file specification, it repeats the process of
translating the file specification. For VAX-11 RMS, the parse routine
will perform up to 10 logical name translations in an effort to
identify the actual file name. For example, consider logical name
table entries made with ASSIGN commands as follows:

$ ASSIGN DBAl: DISK
$ ASSIGN DISK:WEATHER.SUM REPORT

The first ASSIGN command equates the logical name DISK to device DBAl.
The second ASSIGN command equates the logical name REPORT to the file
specification DISK:WEATHER.SUM. In subsequent requests for this file,
you can refer to the logical name REPORT. In translating the logical
name REPORT, the system finds the equivalence name DISK:WEATHER.SUM.
It then checks to see if the portion on the left of the colon in this
file specification is a logical name; if it is (as DISK is in this
example) it translates that logical name also. When the logical name
translation is complete, the translated file specification is:

DBAl:WEATHER.SUM

Note that when you assign one logical name to another logical name,
you must terminate the equivalence name with a colon (:) if you are
going to use the logical name in a file specification in place of a
device name. For example:

$ ASSIGN DBAl:
$ ASSIGN TEST:

TEST
GO

Logical node name translation is also recursive to 10 levels. The
equivalence string produced from a logical node name must be another
node specification. That is, it cannot supply other missing elements
of a file specification.

3.3.3 Defaults for File Names

When the system completes the translation of a logical name, it must
use defaults to fill in the still-unspecified fields in the file
specification.

Many system commands create output files automatically and provide
default file types for the output files. When you use a logical name
to specify the input file for a command, the command uses the logical
name to assign a file specification to the output file as well. Thus,
if the equivalence name contains a file name and file type, the output
file is given the same file name and file type as the input file.

For example, the LINK command creates, by default, an executable image
file that has the same file name as the input file and a default file
type of EXE. However, if you make a logical name assignment and
invoke the LINK command as shown below, the results are not as you
would expect:

$ ASSIGN RANDOM.OBJ TESTIT
$ LINK TESTIT

The linker translates the logical name TESTIT and links the file
RANDOM.OBJ. When it creates the output file, it also uses the same
logical name for the output file. Because the equivalence name
includes a file type, the LINK command does not use the default file
type of EXE. The executable image is named RANDOM.OBJ and has a
version number one higher than the version number of the input file.

3-12

SPECIFYING THE FILE TO BE PROCESSED

3.3.4 Bypassing Logical Name Translations

The system always checks a file specification to see if it contains a
logical name. When you enter a device name or file specification, you·
can request that no translation is to take place. You do this by
preceding the device name or file specification with an underscore
character () • (If the file specification contains a node name, then
both the -node name and devic~ name may be prefixed with an
underscore.) For example, if you do not want the system to check
whether DMA2 is a logical name on an ALLOCATE command, you would enter
the following:

$ ALLOCATE DMA2:

3.3.5 Default Process Logical Names

When you log in to the system, the system creates logical name table
entries for your process. The logical names, which all have a prefix
of SYS, are listed in Table 3-4.

Logical Name

SYS$INPUT

SYS$0UTPUT

SYS$ERROR

SYS$COMMAND

SYS$DISK

SYS$SYSDISK

SYS$LOGIN

SYS$NET

SYS$NODE

Table 3-4
Default Process Logical Names

Equivalence Name

Default input stream for the process. For an
interactive user, SYS$INPUT is equated to the
terminal. In a batch job, SYS$INPUT is equated
to the batch input stream

Default output stream for the process. For an
interactive user, SYS$0UTPUT is equated to the
terminal. In a batch job, SYS$0UTPUT is equated
to the batch job log file

Default device to which the system writes
messages For an interactive user, SYS$ERROR is
equated to the terminal. In a batch job,
SYS$ERROR is equated to the batch job log file

Original SYS$INPUT device for an interactive
user or batch job

Default disk device most recently established by
the SET DEFAULT command

System disk used to boot VMS

Default disk and directory established at login

Is defined only for the target process in DECnet
task-to-task communication. The equivalence
string for SYS$NET identifies the source process
that invoked the target process. SYS$NET, when
opened, represents the logical link over which
the target process can exchange data with its
partner. (For additional information, see the
DECnet-VAX User's Guide)

Identifies the local node name on which your
system is running, if DECnet is installed

3-13

SPECIFYING THE FILE TO BE PROCESSED

3.4 PROCESS-PERMANENT FILES

Process-permanent files are an important feature of the VAX/VMS
operating system. They exist over the life of a process: hence the
term process permanent. In contrast, most files accessed from an
image are closed when the image exits, and any control blocks that
describe them are deallocated.

You can use VAX-11 RMS to open or create a process-permanent file of
your own definition only in supervisor or executive mode. You set the
PPF bit in the file processing options field (FOP) of the FAB. This
allocates internal data structures, maintained by VAX-11 RMS. These
structures reside in the process control region until the end of the
process.

You cannot directly access a process-permanent file in user mode.
However, you can gain indirect access to a subset of all the available
functions of process-permanent files by use of the logical name
mechanism. When you log in to the system, a process-permanent file
corresponding to the process's input, output, and error message
streams is opened. (This means that the most commonly accessed files
need not be reopened by each image that executes in the context of a
process.) These process-permanent files have a logical name created
for them in the process logical name table (see Table 3-4). The
specific format of the names in the process logical name table
indicates a correspondence between the logical name and the related
process-permanent file. VAX-11 RMS recognizes these names and thus
pr9vides easy access to the process-permanent files.

3-14

CHAPTER 4

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

The sequential record access mode is the way to retrieve or store
records by starting at a designated point in the file and continuing
to the end of the desired area. Records are accessed in the order in
which they logically appear in the file.

Section 4.1 deals with sequential access to the sequential file
organization. Section 4.2 deals with sequential access to the
relative file organization. Section 4.3 deals with sequential access
to the indexed file organization.

4.1 THE USE OF SEQUENTIAL FILE ORGANIZATION

This section explores various ways to use sequential file organization
with sequential record access mode. Some basic programming examples
will be used to illustrate this simple, flexible, and easy-to-use file
organization. Once you understand sequential file organization, you
can use it where it best suits your needs, and build on the techniques
described in this chapter to use this file organization to its fullest
capabilities.

4.1.1 Reading Records

This section describes a sample program that illustrates
are read from a sequentially organized file. Each
fixed-length, 50-byte record, as follows:

Byte

0-4
5

6-25
26-29
30-33
34-42
43-49

Contents

Part number
Discount type code
Part description
Quantity on hand
Reorder quantity
Last reorder date (dd mon yy)
List price

how records
record is a

The purpose of this program is to count the records that have the
character A as the fifth byte of the record (discount type code).

4-1

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

Assume that, external to the program, the following assignment will be
made:

$ ASSIGN 18SEP78.INV IN FILE:

First, you need a FAB to describe the file. You thus issue a $FAB
macro call, using parameters to set values in the FAB fields. In some
cases, the fields you use for a file can have the value applied by
default, so you need not specify these fields.

For example, the file access field indicates the type of operation you
want to perform on the file. In this example, you want to open the
file for read access (with a $GET macro instruction). Normally, you
do so by setting FAC=GET on the $FAB macro instruction. However,
FAC=GET is the default when you are opening a file, so you need not
specify it. If you were going to perform some other type of operation
when you opened the file, such as delete, you must specify that
operation explicitly. In addition, defaults can change depending on
the operation (see Section 4.1.2; the default is write access when
you create a file).

In this example, the file has no special characteristics, such as file
processing options. In any case, most FAB fields used for an open
operation are only returned as output. Therefore, the only field you
need specify as input is the file specification. In the external
assignment, the logical name INFILE: is equated to 18SEP78.INV.
Therefore, with the FNM parameter, you can indicate the file as
follows:

INFAB: $FAB FNM=<INFILE:>

Note that the label field contains INFAB. This lets you refer to this
FAB in the $RAB macro instruction, to connect the record stream, and
define the address of the FAB for the run-time macro instructions in
your program.

Next, you need a RAB to describe the records and how you intend to
access the file. You must associate the RAB with the FAB (using the
FAB parameter) and set up a buffer area (UBF and USZ parameters).
Access to this file will be sequential, which is the default record
access mode, and therefore need not be specified. The $RAB macro
instruction would be as follows:

INRAB: $RAB FAB=INFAB,-
UBF=REC BUFFER,
USZ=REC-BUFFER SIZE

The label field contains the value INRAB, g1v1ng you a means of
referring to this RAB in your run-time macro instructions. Note also
the use of the continuation hyphen (-) to continue the instruction on
the next line.

To process this file, you need certain VAX-11 RMS run-time processing
macro instructions to perform the operations. First, because this is
an existing file, you must open it for access with a $OPEN macro
instruction and specify the FAB that describes the file, as follows:

$OPEN FAB=INFAB

Next, you must establish the record stream for this file with a
$CONNECT macro instruction indicating the. RAB, as follows:

$CONNECT RAB=INRAB

4-2

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

Once you open the file and connect the record stream, you must
indicate what operations you are going to perform. In this
application, you want to retrieve records from a file. The $GET macro
instruction performs this function. This macro instruction uses the
RAB.

$GET RAB=INRAB

After you have read all the records, and processing is finished, you
must close the file with the $CLOSE macro instruction indicating the
FAB for the file, as follows:

$CLOSE FAB=INFAB

The $CLOSE macro instruction also disconnects the record stream for
all RABs. If you want to disconnect the record stream for a
particular RAB connected to a FAB (more than one RAB can be connected
to a single FAB), you can use the $DISCONNECT macro instruction,
specifying the RAB to disconnect.

Figure 4-1 lists the program code to count the discount type code A
records. The VAX-11 RMS m~cro instructions are shown in red. Note
that this program, in effect, produces no worthwhile result because
the program does not communicate the record count to you •

1 • TITLE COUNT • COUNTS TY~E A OISCOUNT ~ECORDS
2 ,
3
4

PROGRAM TO READ I~VENTORY FILE cou~TI~G
TYPf 'A' DISCOUNT RECORDS

5 ' b
7 INFABI
8 INRA~t
q

.PSECT DATA,LONG
$FAB FNM:<INFlLE:>
$RAB FAB:J~FAB,•

U~F:REC AUFFER,•
1~

11
US 7:Rf C...,P.IJF FE t~J...S I Z E

REC~BUFFER: .BLK8 5~
REC~BUFFER"'"SIZE=.• ~F.C.,.AUFFER 12

13
14
15
16 f
17

COUNT: .woRO ~

OPEN FILE, CO~NECT STREAM

18 l3EGIN1
1q
21?!
21
22

.PSECT COOE
• wQRD 1tJ

$OPEN FARsINFAB
BLBC R0,0JT
$CO~JNE'CT

BLRC R~,EXIT

23
24 READ RECORDS, COU~T!NG TYPE 'A' RECOROS
25 '
26 ~EAOI
27
28
2q
3121
31
32
33
34

!GET
BLBC

CMPB
BNEf.,;
INCi'!
BQB

RA~=INRAP,

Rtil, D(ltJE

REC 48UFFE~+5,4•A/A/
REAO
COUNT
RE.AO

35
36 ,

ALL DONE, CLOSE FILE ANO EXIT.

37 OONE I
38 EX tT:
3q
40

SCLOSE FAB:INFAB
~nIT.s RCll

.END BEGIN

USER RECORD HUFFER

COUNT OF TYPE '~' RECORDS

OPE~J I~~PUT FILE
ARAl\JCH ON ERROR
C nf,1 ~J EC T S rn EA "1
PQANCH ON ERROR

READ A RECORD
ElRANCH ON F.RROR
CERROP MAY BE EOF)
I~ D1SCOU~T TYPE : 'A'?
BRA~CH IF NOT
cnJNT TYPE 'A' QECORD
GO GET T~E NEXT RECORD

CLOSE Tl-iE FIL~
EXIT WITH STATUS

Figure 4-1 Program to Count Records in a Sequential File

4-3

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

4.1.2 Creating a Sequential File

This section describes a sample program that illustrates how you can
use the sequential file organization to create a new file by copying
an existing file. The format and contents of the records in the file
are the same as those described for the example in Section 4.1.1.

Assume that, external to the program, the following assignments will
be made:

$ ASSIGN
$ ASSIGN

18SEP78.INV
18SEP78.CPY

INFILE:
OUTFILE:

Because this program uses two files, one for input and one for output,
two separate FABs are required to describe the files. For the input
file, you need only define the file specification. In the external
assignment, it was equated to INFILE:. Therefore, with the FNM
parameter, you indicate the file as follows:

INFAB: $FAB FNM=<INFILE:>

For the output file, you must also define the file specification. In
the external assignment, it was equated to OUTFILE:. Because you are
creating this file, you use the $PUT macro instruction to write
records to the new file. The default is write access when creating a
file; therefore, you need not specify FAC=PUT. When you create a
file, you must indicate the record format. In this file, the records
are fixed length, so the specification is RFM=FIX. You also must
specify the maximum record size. For fixed-length records, the
maximum record size indicates the actual length of each record in the
file. The records for this file are each 50 bytes long. You can
specify this record size either by indicating MRS=SO, or by defining a
record size within your program and referring to this definition, for
example, REC_SIZE=50 and MRS=REC SIZE. Defining the record size in
your program also lets you make other references to this record size
within your program, for example, in defining the size of the buffer
areas for the RAB.

As an option, you can indicate that each record is to be preceded by a
line feed and followed by a carriage return whenever the record is
output to a line printer or terminal. Set the record attributes field
with RAT=CR. The FAB for the output file is then defined as follows:

OUTFAB: $FAB FNM=<OUTFILE:>,
RFM=FIX,
MRS=REC SIZE,
RAT=CR -

You must also define RABs for both files. The FAB parameter
associates a RAB with the appropriate FAB. Because the sequential
record access mode is the default, you can omit the RAC parameter.
Both files also need a buffer area. In fact, they both can use the
same buffer area, since you will read a record into a buffer, and then
write it from the buffer before you read another record into the
buffer. The output RAB, however, uses the RBF and RSZ parameters to
define the buffer, rather than the UBF and USZ parameters. The reason

4-4

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

is that the $PUT macro instruction does not use UBF and USZ as input;
it uses RBF and RSZ. The $RAB macro instructions would be as follows,
with the input RAB shown first.

INRAB: $RAB FAB=INFAB,
UBF=REC BUFFER,
USZ=REC-SIZE

OUTRAB: $RAB FAB=OUTFAB,
RBF=REC BUFFER,
RSZ=REC-SIZE

The run-time processing macro calls for the input file consist of a
$OPEN, a $CONNECT, a $GET, and a $CLOSE. For the output file, you
must specify a $CREATE macro instruction (rather than an $OPEN}, which
opens and constructs a new file. In this macro instruction, you
indicate the FAB that contains the attributes for the new file, as
follows:

$CREATE FAB=OUTFAB

As with the input file, you must also specify the $CONNECT macro
instruction to connect the record stream and the $CLOSE macro
instruction to close the file. However, before the file is closed, it
must be processed. In the case of a copy operation, records must be
written to the new file. Use the $PUT macro instruction, specifying
the RAB, as follows:

$PUT RAB=OUTRAB

Figure 4-2 lists the program code to copy a file.
macro instructions appear in red.

The VAX-11 RMS

4.1.2.1 Dynamically Creating a Sequential File - The example in this
section produces results identical to the results of the program
listed in Figure 4-2. The difference between the two, however, is
that the allocation and initialization of the control blocks for the
output file (FAB and RAB} is dynamic, performed at run time rather
than at assembly time. The "store" macro instructions let you
dynamically set fields.

The values you supply with the "store" macro instructions expand into
code that affects the contents of data fields during the execution of
your program.

Figure 4-3 lists the program code for this example. Note that only
minor changes have been made to the program listed in Figure 4-2.
Lines 11 through 19 in Figure 4-2 have been replaced in Figure 4-3
with lines 12, 13, and 14 to begin the definition of the output FAB
and RAB and to provide a .ASCIC directive to specify the character
string for the file specification.

OUTFAB: $FAB
OUTRAB: $RAB FAB=OUTFAB
OUT FILESPEC: .ASCIC /OUTFILE:/

4-5

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

1 , TITLE COPYFILE • MA~E COPY OF INPUT FILE
2 ' 3 r PROGRAM TO MAKE A COPY OF TH~ INPUT FILE
a ' '5 REC...,S IZE•S0
b ,PSECT
7 Il\lFAF31 SFAB
8 INRABI SRAB
q

p
11 OUTFABI 'fFAB
12
13
11.1
15 OUTRABI $RAB
1~
17
18
1q

DAT.Ar LONG
FNMe<INFILE1>
FABaPJFAB,•
UBF•REC..,BUFFER 1 •

USZ:aREC ... S IZE
Fl\jM=<OUTFILE1>,•
RFM:aFIXr•
""~S•REC..,S IZE, •
RATaCR
F.AB:OUTFABr•
RBF•REC..,BUFFER,•
~SZ•REC..,S IZE

2~ REC~BUFFERt ,8LK8 REC...,SIZE
21 ,PSECT CCDE,N~~RT

RECORD SIZE

OUTPUT FILE HAS FIXED
LENGTH RECORDS, S~ BYTES
IN LENGTH, ~ITH IMPLIED
NEw LINE CARRIAGE CONTROL

NOTE1 OUTPUT RAB USES
SA~E RECORD BUFFER AS Il\lPUT MA8

22 '
23 ' INITIALIZATION • OPE~ INPUT AND OUTPUT FILES AND CONNECT STREA~S

21.1 '
25 START: .~ORD ~

26 $JPEl\l FA8:TNF&B
27 BLBC Ri2',EltIT1
28 ~CREATE F~8:0UTFAA
?q BLBC R0,ElCIT1
3Vl sco~NECT RAB:aINRAB
31 8L8C R__,,EXIT1
32 iCONNECT RAB•OUTRAB
33 BL8C RQl,EXIT1
3LI I

35
36 I

COPY RECORDS

37 REA!11
38
H
LI~

SGET
RLBC
$PUT

ruezINRAB
R0,DONE
RAB:sOUTUB

41 BL~S Ret,REAO
EXIT 42 EXITt: BRB

Ll3 '
44 1 ALL SET • CLOSE FILES ANO EXlT
LIS t
I.lb DONES
47
48
L19 EXITI
5171

SC LOSE
SC LOSE

FAB•INFAB
FAB•OUTFAB

SEX IT ,.S R0
,END START

nPEN INPUT FILE
BRANCl1 ON ERROR
OPEN OUTPUT FILE
BRANCH ON E.HRO~
CONNECT INPUT RAB
BRANCH ON ERROR
CONNECT OUTPUT RAB
BRANCH ON ERROR

READ A RECORD
BRANCH ON ERROR
wRITE THE RECORD TO
THE OUTPUT FILE
BRANCH ON SUCCESS
GET OUT ON ERROR

CLOSE INPUT FILE
CLOSE OUTPUT FILE

EXIT ~ITH STATUS

Figure 4-2 Program to Copy a Sequential File

A $FAB STORE macro instruction has been inserted in lines 23 through
28 of- Figure 4-3 to initialize the output FAB and set the needed
values. (Note that the FNM parameter has been replaced by two
parameters: FNA and FNS. This is because you cannot use the FNM
parameter to provide the file specification dynamically; you must use
the FNA and FNS parameters.)

$FAB STORE FAB=OUTFAB,-
FNA=OUT FILESPEC+l,
FNS=OUT-FILESPEC,
RFM=Frx-;-
MRS=#REC SIZE,
RAT=CR -

4-6

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

The $CREATE macro instruction (line 28 in Figure 4-2) has been
replaced in Figure 4-3 with a new $CREATE macro instruction (now on
line 30). This opens and constructs the output file, indicating the
register containing the address of the FAB--RO. (Note that the
FAB STORE macro instruction loaded the FAB address into register 0 by
default.)

$CREATE FAB=RO

A $RAB STORE macro has been inserted in lines 34, 35, and 36 of.Figure
4-3 to-initialize the output RAB and set the needed values.

$RAB STORE RAB=OUTRAB,
RBF=REC BUFFER,
RSZ=#REC SIZE

The $CONNECT macro instruction (line 32 in Figure 4-2) has
replaced with a new $CONNECT macro instruction (now on line 38).
instruction establishes the record stream for the output
indicating the register of the RAB--RO.

been
This

file,

$CONNECT RAB=RO

4.2 THE USE OF RELATIVE FILE ORGANIZATION

Relative file organization is available for use on disk devices only.
This organization affords more capabilities than the sequential file
organization, but, in most cases, requires additional planning and
coding to implement (see Chapter 1).

Relative file organization uses a fixed-length cell for
the file (or as a space for a record to be inserted).
all the cells are fixed-length, the individual records
they can be variable length, fixed length, or
fixed-length control.

each record in
However, while
need not be;
variable with

The relative file organization allows random retrieval of records by
means of keys (a key in a relative file is the relative record number
assigned to each record). The fixed-length cell allows for a direct
calculation of the record's actual position.

4.2.1 Reading a Relative File

The program described in this section produces the same result as the
program listed in Figure 4-1. The program counts discount type code A
records in the file. The record contents are the same, and so are the
external assignments. The only difference is that the file is a
relative file.

You need not specify a file organization in the FAB for the file when
you open it because the file organization already is assigned. In
addition, you do not need to specify sequential file organization for
a create; since it is the default. Therefore, the program code would
be identical to the one for a sequential file (Figure 4-1).

4-7

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

1 .TITLE COPVFILE1 • MAKE COPY OF INPUT FILE
2 ' 3 t PROGRA~ TO MAKE A COPY OF TME INPUT FILE
" ,
Ci REC 4 SIZE•50
6 .PSECT
7 tNFAB: $FAA
.~ t".;QAR1 $RA~

q

\0

11 '
12 0UTFA81 t.FA8
13 l')UTRARs iRAR
111 OUT ~FILESPEC1

DA TA, LONG
FNM::a<lNFILEz>
FABzINFAB,•
USF:REC 4 BUFFER,•
USZ:REC.SIZE

FABzOUTFAR
.ASCIC /OUTFILf :/

15 REC 4 AUFFER: .BLK~ ~EC.SIZE
16 .?SFCl coo~.~O~PT

RECORD SIZE

OUTPUT FILE FA8
OUTPUT FILE RAA

RECORD BiJFFE~

17
1 ii,
\Q

l~ITIALIZAT!ON • 0PEN I~PUT ANO OUTPUT FILES ANO CONNECT STREA~S

2;?! START:
~1
22
23
2/J
2C)

2"'
27
2P.
?Q
H'
31
32
33
3a
35
36
37
38
3q

u~ '

.1110RD ~
$OPE~ FAB:I~FAB

8LBC R0,EkIT1
$FAR~STORE F~A:OUTFAB,•

FNAaOUT.FILESPEt+l1•
F~S:OUl.FILESPEC,•
PF~zFIX,•

Pol~~=*l(fC SIZE,•
iH T:CR

$CREATE FAf3:r:R0
~l8C RVl,EXITl
$CO~NECT RAP=IN~AA

eL8C R0,EXIT1
tRAB~STORE ~ABcOUT~A8,•

R8F=~EC.BUFFER 1 •
RSZUREC .. SIZE

$CO~NECT RA6•R0
8LBC R0,EXIT1

~1 t COPY RECORDS
42 '
43 REAOz
t.J4
45
4&
47
48 EXIT11
4q ,
50 ' ALL
51 ' 52 DONEi
53
54
55 EX IT I
56

SGET
BLBC
SPUT

Bl.BS
BRB

RAB•INRAB
R01DONE
RA8•0UTRAB

R01REAO
EXIT

SET • CLOSE FILES ANO EXIT

SCLOSE ,AB•IN,AB
ICLOS! ,A8•0UT,A8

1un ... 1 Ra
,!ND START

OPE.N INPUT FILE
BR A NC H 0 ~J ERR 0 P

INITIALIZE OUTPUT FA!i
SET OUT FILE SPEC 4~DRE55
SET OUT FILE SPEC LENGTH
SET RECO~D FORMAT
SET MAX!~UM RECORD SIZE
N~w LINE CARWIAGE CO~TPOL

OPEN OUTPUT FILE
BRANCH ON ERROR
CONNECT I~PUT RA8
BRANCH O~ ERROR
INITIALIZE OUTPUT FILE RAB
SET USER BUFFER ADDRESS
SET USER BUFFER SIZE

CONNECT OUTPUT RA6
BRANCH ON ERROR

READ A RECORD
BRANCH ON ERROR
WRITE THE RECORD TO
THE OUTPUT FILE
BRANCH ON SUCCESS
GET OUT ON ERROR

CLOSE INPUT FILE
CLOSE OUTPUT FILE

!XlT WITH STATUS

Figure 4-3 Program to Copy a Sequential File, Setting the
output Control Blocks Dynamically

4.2.2 Creating a Relative File

When you create a file, you must specify the type of file organization
you want, either by default for sequential or by an explicit
specification for relative.

4-8

PROCESSING FILES WITH .SEQUENTIAL RECORD ACCESS MODE

You indicate that you want the relative file organization assigned to
the file by specifying ORG=REL on the $FAB macro call that applies to
the file.

If you use the same example as in Section 4.1.2 (and Figure 4-2), but
create a relative file rather than a sequential file, only the output
file $FAB macro instruction changes, as indicated by an arrow in the
portion of code shown in Figure 4-4. Everything else in the program
remains the same.

5 REC ... SIZE:i:S0
b .PSECT
7 INFABI $FA8
e INRABI $QA~
q

10
11
12
13
14
15
lb
17
18
1q
20

,
OUTFABI $FA~

OUTRABI $RAb

DATA,LONG
F"'M:1<I"1FlLf1>
FAB:I"JFAB,•
UAF:REC.a.AUFFER,•
USZ:REC.SIZE:

F~M=<OUTF!LEs>,•

RFM:zFIX,•
MRS:REC.,,.SIZE,
RAT:CR,-

n~G:REL -·----F AA:OUTFAB, •
RE;F:REC""AUFFER,•
RSZ:REC.SIZE

21
22
23

REC ... BUFFER1 ,RLK~ REC.SIZE
,PSECT CODE,~O~RT

RECORD SIZE

OUTPUT FILE HAS FIXED
LE~GTH R~COROS, 50 BYTES
IN LENGT~, WITH IMPLIED
NE~ LINE CAP~IAGE CONTROL

hOTE: IJUTPUT RAB USES
SAME P.ECQRO BUFFER AS INPUT RAB

Figure 4-4 Creating a Relative File

4.2.2.1 Dynamically Creating a Relative File - Section 4.1.2.1
described how to dynamically specify the parameters to create a file
with the sequential file organization. Section 4.2.2 described how to
create a file with the relative file organization specified at
assembly time. By combining what was discussed about the output FAB
in both of these sections, you can specify dynamically, at run time,
the parameters to create a relative file.

At assembly time, the $FAB macro instruction included the
specification of ORG=REL (see Figure 4-4). By adding this same
specification to the $FAB STORE macro instruction (see Figure 4-3),
you specify the parameters dynamically, at run time.

Figure 4-5 lists a section of code, showing the inclusion of ORG=REL
to the $FAB STORE.macro instruction.

Appendix A contains an additional example of the use of sequential
record access mode.

4-9

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

6
1 INFABI
8 INRABI
q

.PSECT
SF.lB
SRAB

10
11
12
13
1Q

' OUTFABI Sl'AB
OUTRAB1 SRAB
OUT .._FI LESPEC 1

DATA,LO>.JG
FN"1:cI"'l~ILE1>
FAB:INF.\13,•
URF:REC.8UFFER,•
USZ:PEC SIZE

FAB:aOUTFAB
,ASCIC /OUTFILE:/

15 REC.._SUFFERt ,BLKB REC.._SIZE
16 1 PSECT COOE,~OwRT

'

OUTPUT FILE FAB
OUTPUT FILE RAH

Rf CORD RUFFER

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
l3
34
3'5
36
37
38
3q

S INITIALIZATIO~ • OPE~ INPUT AND OUTPUT FILES AND CO~N~CT STREAMS

' START I .11,10RD 0
SOPEN FA8:I~FA8

BLBC Rl2!,EXIT1
SFAB~STORE FAB=OllTFAB, •

FNA:OUT.FILESPEC+l1•
FNS=OUT6 FILESPEC,•
RFM:FIX,•
MRS:#REC.,.S I2E, •
RAT=CR,•
ORG:REL

$CREATE FAB:R"'
BLBC R0,EXIT1
!CONNECT RA6:INRAB
BLBC ?'11,EXITl
tRAB~STO~E RA8:0UTRAB,•

!CONNECT

RBF:PEC~BUFFER,•

RSZuREC SIZF

OPEN INPUT FILE
BRANCH ON ERROR
INITIALIZE OUTPUT FAB
SF.T OUT FILE SPEC ADDRESS
SET OUT FILE SPEC LENGTH
SET R~CORO FORMAT
SET MAXI~U~ RECORD SIZE
SET I~PLIEO CARRIAGE CONTROL
RELATIVE FILE ORGANIZATION

OPEN OUTPUT FILE
ARANC!-4 01'\ ERROR
CONNECT INPUT RAB
BRANCH OllJ ERROR
l~ITIALlZE OUTPUT FILE RAB
SET USEP BUFFER ADDRESS
SET USE~ BUFFER SIZE

CO~NECT OUTPUT RAB

Figure 4-5 Creating a Relative File Dynamically

4.3 THE USE OF INDEXED FILE ORGANIZATION

Indexed file organization is available for use on disk devices only.
This organization affords more capabilities than the sequential or
relative file organization.

The indexed file allows the use of truly variable-length records.
Their lengths are limited only by the size of the bucket or by a
maximum ~ecord size that you establish. Since variable-length records
may change size on an update, there is no need to pad records to their
maximum size. The record size may be increased or decreased later
with an update operation.

Indexed files allow random access to either fixed- or variable-length
data records by a key value. A key in an indexed file can be a
character string, a packed decimal number, a 2- or 4-byte signed
integer, or a 2- or a 4-byte unsigned binary number within the record.
This type of file organization stores the records by ascending key
value. These records can then be retrieved sequentially in ascending
order or randomly by supplying a specific key value to retrieve.

When an indexed file is created, a key is defined by its location and
length within each recard. At least one key, called a primary key,
must be defined for an indexed file. Optionally, additional keys
referred to as alternate keys, may be defined.

4-10

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

As your program puts records into an indexed file, VAX-11 RMS uses the
values of the primary and alternate keys to build indexes. An index
is the structure which allows the records to be retrieved randomly.
Each data record is placed in the file in sorted order by primary key.
In alternate indexes, the sort sequence is established by pointers to
the actual data record. These mechanisms enable the data records to
be read sequentially in sorted order by any key.

Because VAX-11 RMS completely controls the placement of records in an
indexed file, location of the records in the file is transparent to
your program.

4.3.1 Reading an Indexed File

The program described in this section produces the same result as the
program listed in Figure 4-1 and described in Section 4.1.1. The
program counts discount type code A records in the file. The record
contents are the same and so are the external. assignments. The
difference is that the file is an indexed file. In this example, the
discount type field within the record has been defined as the first
alternate key. This will allow random access to the first record
containing discount type code A and sequential access to all
succeeding type A records. This eliminates the need to read all of
the records in the file and, in fact, simplifies the program logic.
Though some of the program code is identical to that for sequential
files, some is unique to indexed files (see Figure 4-n).

Assume that, external to the program, the following assignment will be
made:

$ ASSIGN 18SEP78.INV INFILE:

First, you need a FAB to describe the file.
$FAB macro instruction, using arguments
fields.

You therefore issue a
to set values in the FAB

For example, the file access field indicates the type of operations
allowed when the file is opened. You want to open the file for read
access only. Normally, you do so by setting FAC=GET on the $FAB macro
instruction. However, FAC=GET is the default when you are opening a
file, so you need not specify it. If you were going to perform some
other type of operation when you opened the file, such as delete, you
would have to specify that operation explicitly.

The only field you need specify as input is the file specification.
In the external assignment, the logical name INFILE: is equated to
18SEP78.INV. Therefore, with the FNM parameter, you can indicate the
file as follows:

INFAB: $FAB FNM=<INFILE:>

Note that the label field contains INFAB. This lets you refer to this
FAB in the $RAB macro instruction, to connect the record stream, and
define the address of the FAB for the run-time macro instructions in
your program.

Next, you need a RAB to describe the access to the records and to the
file. You must associate the RAB with the FAB (using the FAB
parameter) and set up a buffer area (UBF and USZ parameters). You
must also specify the buffers for the key value, and the size of the
key value (KBF and KSZ parameters). Specifying KRF=l causes the first
alternate index to be used when retrieving records from the file.

4-11

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

Then you specify the record processing options ROP=LIM to compare the
key value described by the KBF and KSZ fields with the value in the
record accessed on sequential get operations. When the key value in
the record exceeds that value in the key buffer on a sequential get
operation, a success code of RMS$ OK LIM will be returned. Finally,
the initial record access mode-is-to be by key (RAC=KEY). The $RAB
macro instruction would be as follows.

INRAB: $RAB FAB=INFAB,-
UBF=REC BUFFER,
USZ=REC-BUFFER SIZE,-
KRF=l ,-- -
KBF=KEY BUFF,
KSZ=KEY-BUFF SIZE,
ROP=LIM~- -
RAC=KEY

The label field contains the value INRAB, giving you a means of
referring to this RAB in your run-time macro instructions.

Then you must set up the user buffer and the key buffer as follows:

REC BUFFER: .BLKB 50
REC-BUFFER SIZE=.-REC BUFFER
KEY BUFF: .BLKB l'
KEY-BUFF SIZE=.-KEY BUFF

To ,process this file, you need certain VAX-11 RMS run-time processing
macro instructions. First, because this is an existing file, you must
open it with a $OPEN macro instruction and specify the FAB that
describes the file, as follows:

$OPEN FAB=INFAB

Next, you must establish the record stream for this file with a
$CONNECT macro instruction indicating the RAB, as follows:

$CONNECT RAB=INRAB

Now you specify that the key you want is the first record containing
discount type code A. To position to the first record with discount
type code A, you issue a $FIND macro instruction (with RAC=KEY set by
the $RAB macro instruction); then you change the record access mode
to sequential with the record access mode parameter option (RAC=SEQ on
the $RAB_STORE macro instruction).

Now that you have established the logical starting point in the
(the first record with discount type A), you want to retrieve
record and all succeeding records with discount type A. The
macro instruction performs that function. This macro instruction
the RAB.

$GET RAB=INRAB

file
that
$GET
uses

When the success code RMS$ OK LIM is returned from a $GET macro
instruction, you will have retrieved all records in the file with a
discount type A. The current record and any succeeding records (if
not at the end of file) will have a higher key value, such as B.
After record processing is finished, you must close the file with a
$CLOSE macro instruction, indicating the FAB for the file, as follows:

$CLOSE FAB=INFAB

4-12

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

The $CLOSE macro instruction also disconnects the record stream for
all RABs. If you want to disconnect the record stream for a
particular RAB connected to a FAB (more than one RAB can be connected
to a single FAB), you can use the $DISCONNECT macro instruction,
specifying which RAB to disconnect.

Figure 4-6.lists the program code to count the discount type code A
records in an indexed file. The VAX-11 RMS macro instructions are
shown in red. Note that this program, in effect, produces no
worthwhile result, because the program does not communicate the record
count to you; the program serves only as an example.

t • TITL.! COUNT • COUNTS TYPE A DISCOUNT RECORDS
2
3
a

PROGRAM TO READ INVENTORY FILE COUNTING
TYPE 'A' DISCOUNT RECORDS

5
6
7 I~FABI
e Il'IJRA.81
q

1~

t1
12
13
1 a
1S

.PSECT
SFAB
UH8

OAH,1.0NG
FN"1uINFILE:1>
FAS•Il\lFAB,•
UBF•REC.BUFFER,•
USZ•REC.9UFFER.SIZE1•
l<RF•11•
KBF•l<EY.EIUFF 1 •

KSZ•l<EY.BUFF~SIZE1•
ROr:t•LIM1•
•UC•KEY

16
17
1 A.
lq

REC.BUFFER1 .ALK~ 5~
REC.RUFFER_._SIZ~•.•REC.BUFFER
KEV~AUFFt .eLK9
KEY.AUFF~SIZE•,•KEY.8UFF
COUNT1 .,,;ORD ?! 2P'

21
22
2l J
2a

OPEN FILE, CONNECT STREA~

25 ~EGI°'JI
26
n
eA
~q

,PSECT CODE
.~ORD 0
~Or:>EN FAB:I~FAB

8LBC R~1EXIT
$CONNECT
A1.8C RPl I EX IT

31?1
31
32 J
33

QEAD RECOPOS, COUNTING TYPE 'A' RECORDS

31J
35
36
37
38
3Q
tJ'11 READ I
at
42
43
LILI
as
Lib
47
a A
49
50 I

ALL

51 DONEi
52 ElC IT
53
54

#•A/A/,l<EY_._BUFF
RAB11l11JRA8

BLBC R0, EX IT
$RA8_._STORE RAB•INFUA 1 •

iGET
Bl.BC

RAC•SEQ
RA8•1NRA6
R0,DONE

CMPL R~, U"1S$.._OK..,LI~

BEQL DONE
INC(lj COUlllT
BRB READ

DONE, CLOSE FILE

SCLOSE FAB•INFAB
se:xn ... s Rei

.ENO BEGIN

ANO EldT,

t<EY TO SEARCH ON
BUFFER to HOLD KEY VALUE
SIZE OF KEY VAl.UE

BRANCH ON ERROR
CONNECT STREAM
BROICH ON ERROR

SPECIFY KEY wf'RE SEARCHING FOR
POSITION TO FIRST TYPE 'A' REC
NOTEa THIS IS THE RECORD THAT
WILL BE ACCESSED ON FIRST GET
BRANCH ON ERROR·
CHANGE RECORD ACCESS MOOE TO SEQ,

READ A RECORD
BRANCH ON ERR-OR
(ERROR MAY BE EOF)
IS RETREIVED RECORD'S KEV
> THAN KEY VALUE IN KEY BUFF
Al.L DONE
COUNT TYPE 'A' RECORD
GO GET THE NEXT RECORD

Cl.CSE THE FILE
EXIT WITH STATUS

Figure 4-6 Program to Count Records in an Indexed File

4-13

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

4.3.2 Creating an Indexed File

The sample program in this section illustrates how to create a new
indexed file by copying an existing file of any organization. The
format and contents of the records in the file are the same as those
described in Section 4.1.1.

Assume that, external to the program, the following assignments will
be made:

$ ASSIGN
$ ASSIGN

18SEP78.INV
18SEP78.CPY

INFILE:
OUTFILE:

Because this program uses two files, one for input and one for output,
two separate FABs are required to describe the files. For the input
file, you need only define the file specification. In the external
assignment, it was equated to INFILE:. Therefore, with the FNM
parameter, you indicate the file as follows:

INFAB: $FAB FNM=<INFILE:>

For the output file, you must also define the file specification. In
the external assignment, it was equated to OUTFILE:• Because you are
creating this file, you use the $PUT macro instruction to write
records to the new file. The default is write access when creating a
file; therefore, you need not specify FAC=PUT. When you create a
file, you must indicate the record format. In this file, the records
are variable length, so the specification is RFM=VAR.

You also must specify the maximum record size. For fixed-length
records, the maximum record size indicates the actual length of each
record in the file. For variable-length records, the maximum record
size specifjes the size limit for a record being written initially
into the file, or an existing record being updated. If you do not
specify the maximum record size, it is limited only by bucket size.
In this example, the maximum record size and record size are
identical. The records for this file are each 50 bytes long. You can
specify this limit either by indicating MRS=SO or by defining a record
size within your program, for example, REC SIZE=SO and MRS=REC SIZE,
and referring to this definition defining the record size in- your
program also lets you make other references to this record size within
your program, for example, in defining the size of the buffer areas
for the RAB.

You must specify that the file is an indexed file and you must specify
the initial extended attribute blocks of the chain, so the
specifications are ORG=IDX and XAB=KEYO.

As an option, you can indicate that each record is to be preceded by a
line feed and followed by a carriage return whenever the record is
output to a line printer or terminal. Set the record attributes field
with RAT=CR. The FAB for the output file is then defined as follows:

OUTFAB: $FAB FMN=<OUTFILE:>,
RFM=VAR,
MRS=REC SIZE,
ORG=IDX~
XAB=KEYO,
RAT=CR

You must also define RABs for both files. The FAB parameter
associates a RAB with the appropriate FAB. Because the sequential
record access mode is the default, you can omit the RAC parameter.

4-14

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

Both files also need a buffer area. In fact, they both can use the
same buffer area, since you're going to read a record into a buffer,
and then write it from the buffer before you read another record into
the buffer. The output RAB, however, uses the RBF and.RSZ parameter
to define the buffer, rather than the UBF and USZ parameters. The
reason is that the $PUT macro instruction does not use UBF and USZ as
input; it uses RBF and RSZ. The $RAB macro instructions would be as
follows, with the input RAB shown first.

INRAB: $RAB FAB=INFAB,-
UBF=REC BUFFER,
USZ=REC-SIZE

OUTRAB: $RAB FAB=OUTFAB,
RBF=REC BUFFER,
RSZ=REC-SIZE

Since you are creating an indexed file, you must specify the primary
key and the alternate keys, if any. In this example the primary key
(key 0) and two alternate keys (key 1 and key 2) are defined. They
are defined by the key definition extended attribute blocks $XABKEY
REF=O, $XABKEY REF=l, and $XABKEY REF=2 macro instructions
respectively. The position of the keys within each record and the
length of key must be specified with the POS and SIZ parameters.

In the sample program, the primary and alternate keys are simple keys
(that is, not segmented); hence, only one position parameter value
and one size parameter value is defined for each key. Simple keys
consist of a single string of contiguous bytes. You should note that
if segmented keys are specified, the key position and key size fields
must define an equal quantity of key position values and key size
values. The key position value is the starting (byte) position of the
key within each record (with the first byte being byte O, the second
being 1, etc.). The key size value is the length (in bytes) of the
key; in the sample program, the primary key is a simple key, starting
in the first byte of the record and is five bytes long; this is
defined as follows:

KEYO: $XABKEY REF=O,
POS=O,
SIZ=S,
NXT=KEYl

Note that the NXT parameter points to the next XAB in the chain, which
has a label of KEYl.

The alternate keys (key 1 and key 2) likewise are defined as being in
byte positions 6 and 7, respectively, and as being 1 and 20 bytes in
length, respectively. They are defined as follows:

and

KEYl: $XABKEY REF=l,
POS=S,
SIZ=l,
NXT=KEY2

KEY2: $XABKEY REF=2,
POS=6,
SIZ=20

Note that the NXT parameter is omitted from the XAB with a label of
KEY2; therefore the default is O, which indicates there are no more
XABs in the chain.

4-15

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

In the sample program, the alternate keys may change values (on an
update) and there may be duplicate alternate keys. Changes and
duplications can be defined by FLG=<DUP,CHG>; this is also the
default for alternate keys and, therefore it is not necessary to
actually define this parameter.

The default for the primary key is no duplicates allowed. The primary
key is never allowed to change key value on update.

The run-time processing macro instructions for the input file consist
of a $OPEN, a $CONNECT, a $GET, and a $CLOSE. For the output file,
you must specify a $CREATE macro instruction (rather than an $OPEN),
which opens and constructs a new file. In this macro instruction, you
indicate the FAB that contains the attributes for the new file, as
follows:

$CREATE FAB=OUTFAB

As with the input file, you must also specify the $CONNECT macro
instruction to connect the record stream and the $CLOSE macro
instruction to close the file. However, before the file is closed, it
must be processed. In the case of a copy operation, records must be
written to the new file. Use the $PUT macro instruction, specifying
the RAB, as follows:

$PUT RAB=OUTRAB

Figure 4-7 lists the program code to copy a file.
macro instructions appear in red.

4-ln

The VAX-11 RMS

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

1 •TITLE COPYl'ILE MAKE COPY OF INPUT l'ILf

2 ' 3 r ?ROGRAM TO MAK! A COPY OF THE INPUT FILE
I.I ' 5 REC.a.S IZE•50
b .PSECT
7 !Nfl'ABI SFAB
P. I NIUB I SIUB
q

H'l
11 OUTFAB 1 SF AB
12
13
11.i
15
lb
17 OUTRABI $RAB
18
1q

DATA1LONG
FNMacINFILEI>
FAB•INFAB,•
UBF•REC.BUFFER,•
US Z•REC.S IZE
FN~•cOUTl'ILE1>,•
RF"1•VAR 1 •

MRS•REC..,SIZE,•
ORG•IOX,•
00:sKEY0,•
IUhCR
FAB•OUTFAB,•
RdF•REC..,RUFF~R,•
RSZ:aREC..,S I ZE

RECORD SIZE

OUTPUT FILE HAS FIXED
LENGTH RECORDS, 50 BYTES
IN LENGTH, WITH IMPLIED
NEW LINE CARRIAGE CONTROL,
WITH INDEXED FILE ORG,,
AND A CHAIN OF ~EV XABS

NOTE1 OUTPUT RAB USES
SAME RECORD BUFFER AS INPUT RAB

cli'I
21 CREATE NEW FILE WITH PRIMARY KEY•PART#, AND T~O ALTERNATE KEYS
22 '
~3 KEYJI
24
25
2b
27 l<E\'11
28
2Q
3r,l

31 l(E, y 21
32
33

$XABKEY

$XABKEY

r
REC,,,.BUFFERI ,

,PSECT

REF•'1', •
P05•0,•
s1z115,.
t-JXT=l<EV 1
REF111,•
PQS:5, ..
SIZ•l,•
"'i)(T:11<EV2
REF:2,•
POS•6,
SIZ11212!

.BLKB

CODE, "IOwRT

31.i
35
36
37
38
3q INITIALIZATION OPE~ INPUT AND OUTPUT FILES AND CONNECT STREAMS
IH'I J
41 STARTt
42
43
/JI.I

45
4b
lJ7
4E\
I.IQ

5~ '
51 ' COPY
52 ' 53 REAOI
5lJ
55
Sb
57
58 UIT11
5• ' b0 , ALL
b1 ,
b2 DON[1
u
64
65 !XIT I
u

, WORD 12!

SOP01 FAB•INFAB OPEN INPUT FILE
Al.RC R0,EXIT1 BRANCH ON ERROR
'CREATE: FA6•0UTFAB OPEN OUTPUT FILE
BLBC R0,EXIT1 BRANCH ON ERROR
!CONNECT IH811INRAB CONNECT INPUT RAB
BLBC RP!,EXIT1 BRANCH ON ERROR
!CONNECT IUB•OUTRAB CONNECT OUTPUT RAB
BLBC IH'l,EXIT1 BRANCH ON ERROR

RECORDS

!GET RAB•INRA8 READ A RECORD
Bl.SC R0,DONE BRANCH ON ERROR
!PUT RAB•OUTRAB WRIT! THE R!CORD

THI: OUTPUT 'IL!
9LH Rl,RUD IRANCH ON SUCC!ll
IRS !XIT HT OUT ON EltltOR

S!T CLOSE l'IL.!S AND !X IT

ICLOS! 'AB•INl'AB Cl.OU: INPUT l"IL!
SCLOI! l'Al•OUTl'AB CL.OS! OUTPUT I'll..!

l!XIT ..,I Rt EXIT WITH SUTUI
.!ND ITART

Figure 4-7 Program to Create an Indexed File
by Copying an Existing File

4-17

TO

CHAPTER 5

PROCESSING FILES WITH RANDOM RECORD ACCESS

Two different modes provide random access to records:

• Random by key

• Random by record's file address

In the random by key access mode, you retrieve or store a record by
specifying a key value. In the random by record's file address access
mode, the retrieval or storage of the record is based on a unique
address returned to the user by VAX-11 RMS.

Section 5.1 deals with random access to the sequential file
organization. Section 5.2 deals with random access to the relative
file organization. Section 5.3 deals with random access to the
indexed file organization.

5.1 RANDOM ACCESS TO SEQUENTIAL FILE ORGANIZATION

The sequential file organization provides for random access to records
only if the file containing the records is on a disk device.

The sequential file organization allows random retrieval of
fixed-length records by means of keys only (a key in a sequential file
is the relative record number assigned to each record). To gain
random access to variable-length records in a sequential file, you
must use the random by record's file address mode.

5.1.l Random Read of a Record

This section describes a sample program that accepts the key (relative
record number) from the operator, finds the requested record in a
file, and then displays the contents of the record.

Assume that the following external assignment will be made:

$ ASSIGN 18SEP78.INV INFILE:

You must provide this program with definitions for three files: an
output file, a file to accept the request, and an input file (where
you define that the record access mode is random, since the input file
is the one you search for the records).

5-1

PROCESSING FILES WITH RANDOM RECORD ACCESS

OUTPUT FILE

The first file that must be defined is the output file, SYS$0UTPUT:,
which is a process logical name assigned for the output stream. For
an interactive user, SYS$0UTPUT is a terminal. The FAB for this file
only need provide this name, and also an optional record attribute
that induces a line feed before and a carriage return after printing
the record at the terminal.

TYPE FAB: $FAB FNM=<SYS$0UTPUT>,-
RAT=CR

At assembly time, the $RAB macro instruction only need associate ·the
RAB with the FAB.

TYPE RAB: $RAB FAB=TYPE FAB

The actual contents of the RAB are defined dynamically, at run time
rather than assembly time with a $RAB STORE macro instruction. The
reason for this is that the record to be-output varies. On the one
hand, records from the input file are displayed {see lines 83 through
86 of Figure 5-1), while on the other hand, a number of fixed strings
are output using the "TYPE" macro {see lines 82, 92, and 94; the
macro definition itself appears on lines 7 through 17). Each of the
different outputs requires that the RSZ and RBF parameters be set
dynamically to indicate the record to be written.

The $R~B STORE macro instruction indicates the symbolic address of the
RAB allocated at assembly time. It must also define the location and
size of the buffer that contains the record to be printed on
SYS$0UTPUT. When displaying records read from the input file, the
location and size are at the address of INRAB {the input RAB) plus the
offset to each field {RAB$L RBF for the address and RAB$W RSZ for the
size). - -

$RAB STORE

REQUEST FILE

RAB=TYPE RAB,
RBF=@INRAB+RAB$L RBF,
RSZ=INRAB+RAB$W RSZ

The second file that must be defined is the request file, which
prompts a message to solicit information from the operator and accepts
the requested record number from the terminal. This file is
SYS$INPUT:, which is a process logical name. Note that for an
interactive process, SYS$INPUT and SYS$0UTPUT both refer to a
terminal. In this example, it would be possible to use the same file
{either SYS$INPUT or SYS$0UTPUT) to accept requests and display
output. In so doing, however, you would lose the ability to run the
program within a batch stream. {As the program currently stands, you
could do this.)

PROMPT FAB: $FAB FNM=<SYS$INPUT:>

The RAB you connect to this FAB defines a buff er area and associates
the RAB with the FAB. The RAB also defines a record processing option
of ROP=PMT. This option indicates that the contents of the specified
prompt buffer {filled as part of the expansion of the "PROMPT" macro),
are to be output to the terminal operator in order to indicate what
data is being requested for output.

PROMPT RAB: $RAB FAB=PROMPT FAB,
UBF=PROMPT-BUFF ,
USZ=l32,- -
ROP=PMT

5-2

PROCESSING FILES WITH RANDOM RECORD ACCESS

INPUT FILE

The third file that must be defined is the input
provide the file specification. The external
18SEP78.INV to INFILE:.

file, which must
assignment equates

INFAB: $FAB FNM=<INFILE:>

The RAB associated with this file must name its FAB and define a
buffer area. The record stream of this RAB will deal with records by
their relative record number, so you must set a value in the key
buffer address field. This value points to a buffer you set up to
contain the relative record number of the record you want. In the
program listed in Figure 5-1, the address of the buffer is KEY;
therefore you set KBF=KEY. Access to the records in this file is
through the random by key mode (the relative record number is the key
for sequential files). You indicate this by setting RAC=KEY. (The
specification of KEY in this case should not be confused with KBF=KEY,
explained previously. The specification of KEY for the record access
mode is defined by VAX-11 RMS to indicate key value, which is the
relative record number. In KBF=KEY, the KEY specification is
user-defined.)

INRAB: $RAB FAB=INFAB,-
UBF=REC BUFFER,
USZ=REC-BUFFER SIZE,-
KBF=KEY~- -
RAC=KEY

When the three files are defined, you must use run-time macro
instructions to call the routines that act on these files.

You must open the input file (INFILE) and the request file (SYS$INPUT)
with $OPEN macro instructions. The output file for the terminal
(SYS$0UTPUT) uses a $CREATE macro instruction, since this is an output
file to be created. However, since SYS$0UTPUT is a logical name, the
file was created for you when you logged into the system. Therefore,
this $CREATE macro instruction acts as a $OPEN macro instruction, so
you could, in fact, use the $OPEN macro instruction for SYS$OUTPUT in
this program.

Each file you open in the program must have a RAB connected to the
appropriate FAB with a $CONNECT macro instruction.

For the input file, use a $GET macro instruction to retrieve the
record. For the output file, use a $PUT macro instruction to place
the record in SYS$0UTPUT so it can be printed at the terminal.

All open files must be closed when you finish processing.
you must use three $CLOSE macro instructions.

Therefore,

Figure 5-1 lists the program code that accepts the key (relative
record number) from the operator and displays the contents of that
record on the terminal. Note that in this program, two macro
definitions appear. The first builds the string that is displayed on
the terminal. The second macro definition accepts input from
SYS$INPUT and prompts with the string specified as its argument.
Notice that both of these macro definitions make use of run-time macro
instructions ($PUT and $GET) in their construction.

You will also note that this program is written in subroutines.
Therefore, for some files, the $CLOSE macro instruction appears before
the $OPEN or $CREATE macro instruction.

5-3

PROCESSING FILES WITH RANDOM RECORD ACCESS

1 ,TITLE DISPLAY • DISPLAY SPECIFIED RECOPO
2
3 PRDGRA~ TO ACCEPT RECORD NU~BER FROM OPERATOR ANO DISPLAY
4 CORPESPONnING PEC0RO
5 '

11'
t 1
12
1'3
1 Ll
l~
lh
1 7 • E r-.'n ~'.

pi
\Q 0 r-<4CC:1
211
21
22
2.3
2/J
?5
2h
n
2>1
29
7,0

31
)2
"3' '!.i • E: ~. D ~·

3'i '

TYPE. SHdNG
I SHE
1 PSECT TYCE STR!NGS, NOWRT
• I I f"tPA::.
,ASCII \STi:?PJG\
000 l~PL: 0 • •• 1 TMP~
.~ESTC1RE

~OVL ~ •• ,T~PA, TYP~ ... RAB+RABJL RRF
~ov~ ~ ••• T~PL, TVPE RAB+RAB~w R~Z
iPUT RAA:TYPE~QA~

,SAVE
.PSECT TYPE ST~I~GS, NOWRT
0 , 0 T'-'PA: 0

.~YTE \3, P
• A 5 C 1 I \ 5 T ;.: I •,, r, \
••• r~PL=. - ••• r~~~
,"1ESTOPE
..., 0 V L 1t 0 1 0 T 11 P ~ , P i1 0 ;-•PT RA f; +QA~ t L .• .P 8 F
t-1QV8 a,,,T"PL, PRIJMPT ... RAR+~A~$i; PSZ
JGET RA~ : P~O~PTLRAR

MOVZHL P~O~PT qAR+RA8$w RSZ,~l
~OVL P~n~Pf~QAH+~AB'L ... RBF,~2

3h
!17

,PSfCT
TYPE ... FAqJ

r)ATA1LOl\/G
iFAR FNM:<SYSJOUTPUT:>,-

~~ R4T:CR
_5Q l'f•OE.~qAR: r;- AF3: TYPE.JAB

FNl-':<SVSUNPUT :>
FAB:PR()~PT ... FA8,•
UHF:PR()MPT~AUFF,•

USZ:132,•

.:.!?' C~(lr.1PT~FAE:

I~\ PKQMPT.._~A~S

42
43
4U ROP:PMT
IJ5 PRl"!"1PT ... BUFF I • 8LKJ:I !32
4l-i '
i.J7 !NF~B:

t~B INIHB:
4q

5"'
51

FNM:1<Plif'ILF.1>
FA8:INFA8,•
UliF:REC 9UFFER,•
USZ•REC.BUFFER SIZE,•
1<8F•KEY,•
RACcKEY 52

53
51.1
55

REC.SUFFER I 1 BLKB 50
REC.BUFFER SIZE• 1 •REC.BUFFER

I ALIGN LONG
5& KEYi ,BLKL 1
57 '
5q
bV.
61
b2

OPE~ FILE,CONNECT STREAM

63 8EGP;:
r,IJ
65
~6

.,7
68 EXIT1:
60 C Q~IT 1 I
JV'
71
72

.PSECT COOE,NO~PT

.woRD 0
$OPE~ FA8:INFA8
BL8C R01E:XIT1
$CONNECT RAB: I NRA~
R L 8 S q 0 , C Ni T 1
~Rw EXJT
858~ I~JT.TYPf

73 GET.REC"'NO:
71.1
75
7b

DR(IMPT
RL~S

<ENTER QECORD NUMRER:>
q" I c 0~1T 2
CIONE

MAC~O TO TVPE "ST~P;G"
SAvE CUR~ENT PSECT
CHANGE TO TYPE STRINGS PSECT
~OTE ADD~ESS
STORE STRING
~OTE LENGTH
RACK TO ORIGINAL PSECT
SET STRJ\IG ADl)~ESS

SET STRI.~G LENGTH
~RITE THE RECORD

MACRO Tn ACCEPT INPUT
FRO~ SYS~!NPUT, PROMPTING
"'ITH "STRil'l:t;"
SAVE CURRENT PSECT
CHHJGf TO TYPF: SP~Jr.GS Pst.CT
'-'OTE ADD~F.SS
c A !'.< 1-(I A G E p E T lJ "' •J I L p, E F Ef-. D
STORE STRJ"Jr,
'-JJTE L.ENGTH
eAC~ TO ORIGI~AL PSECT
S€T PRO~PT BUFFER AOQRESS
SET PRO~PT BUFFER SIZE
Gf.T THE !NPIJT
GET I~PUT LENGTH
G~T ! ... PUT ADD~ESS

USER RECORD BUFFER

RECORD NUMBER TO RETRIEVE

OPE"l INPLJT FILE
tj~A1'1C~ 01\i ERRO~

CO~·"JECT STREA~

BRANCH "~ SUCCESS
~RANCH Q\j ERROR
l"JJTIALIZE TYPE AND PR~MPT FILES

GET RfCQkO NUMBER
BRANCH QN SLJCCFSS
8~ANCH (Jr• E.RROR

Figure 5-1 Random Read of a Sequential File

5-4

PROCESSING FILES WITH RANDOM RECORD ACCESS

77 C0"•T2:
7e,

858~ CONVE~T~KFY
AL~C RJ,RA~~KEY

C~~VERT KEY TO AINARY
BRA•JCH !F BAD

7'I
P.V1
~1

82
A3
All
RS
8b
87
~!:\
Rq
Q~

91
q2
93
94
qs
Q6
97
98
Qq

1~0

1~1
102
1J3
105
10b
107
108
10q
110
111
112
113
114
115
11b
117
116
llq
120

121
122
123
124
125
12b
127
128
12q
130
131
132
133
134
135
t3b
137
138
1H
1 '10
141
142
143

MOvL ~3,r<U

$GET RA8:!NRA~

BLH~ R0,8AD.PART

$RA8~STORF RAB:TYPE~~AA,•

RHF:•I~~AB+RAB$L~~~F,•

RSZ=I~~AB+PAA!w.RSZ
RA R:P ~)
Rrt1,0IT
C:ET ,,,.F<EC.NO

REPORT E~RORS

RAD.._KFY: TYPE <ijAD KEY VALUE1>
RRW

8A!),._PART t
13Rlli

GET .Rc:c.r-.o
TYPE <RECORD nOES NOT EXIST,>
GET~REC ... NO

' r ALL DONE • CLOSE FILES AND EXIT ,
DONEi

EX IT I
t++

'

!CLOSE FABzINFAB
'CLOSE FABaTYPE.FAB
SCLOSE FABmPROMPT.FAB
$EXIT.a.S R0

SET RECORD NUM~ER
GET RfCO~O FO~ PART
BRA>..JCH Or~ ERi:<OR

PRit<T ~ECORD

BR A t·JC H ON F.~Q OR
LOOP

, SUBROUTl~E TO CONVERT ASCII INPUT STRI~G TO ~!NARY , , INPUTS I Rt, R2 : LENGTH AND ADDRESS OF INPUT STRING

OUTPUTSI ~~ • STATUS CODE
~3 • BINARY VALUE

, ..
CONVERT.._KEYI

CLRQ
BRB

10$1 MULL2

t++

'

BVS
SUBB3

BLSS
CMPB
BGTRU
ADDL2
DECL
BGEQ
MOVL
RSl3
CLRL
RSB

Rt, P2 1 RI.I DESTROYED

R3
2~S
ilj 1 Q! I R 3
30f.
11j•A/0/, (R2)+, RLI

31i1S
F'i.11* .. A/9/••A/0/
3~$
Rll, R 3
Rt
1~$

ti 11 R~

INITIALIZE OUTPUT VALUE
GO CHECK IF ANY CHARACTERS
SHIFT PARTIAL ~ESULT
BRANCH ON OVERFLOW
GET BINARY VALUE FOR CHARACTER

BRMJCH IF BAD
CHARACTER > q ?
BRANCH IF BAD
ADD IN CHARACTER
ANY MORE INPUT?
BRANCH IF MORE
SHOW SUCCESS

SHO!'I FAILU~E

f SUBROUTINE TO INITIALIZE THE TYPE AND PROMPT FILES , , ..
INIT.._TYPE'I

JCREATE FAB:TYPE.FAA
SOPEN FAB:PROMPT.._FAB
SCONNECT RA8:TYPE.._RAB
SCO~NECT RAB : PROMPT.._RAB
RS8

,ENO 8EGIN

Figure 5-1 (Cont.) Random Read of a Sequential File

5-5

PROCESSING FILES WITH RANDOM RECORD ACCESS

5.2 RELATIVE FILE ORGANIZATION

Random access to the relative file organization, like any access to
the relative file organization, is available on disk devices only.

Relative file organization, unlike sequential file organization, does
not require that records be fixed-length in order to use random
access. Therefore, the relative file organization provides more
flexibility for random access than does the sequential file
organization. However, it does cost more in space requirements, since
all record cells are the same size, and some (or all) may not be
completely filled.

5.2.1 Random Read of a Record in the Relative File Organization

This section describes a sample program illustrated in Figure 5-2 that
builds on the program listed in Figure 5-1. The only difference
between the programs is that the input file in this program uses the
relative file organization. Since it is an input file, you do not
have to indicate the file organization when you open a file and you do
not have to change the FAB to indicate the relative file organization.
(Note, however, that you do have to change the input file FAB when you
specify the $DELETE macro instruction. See the following discussion.)

This program, besides accepting the key (relative record number) from
the operator and displaying the contents of the record on the
terminal, also queries the operator as to whether or not the record
should be deleted. Therefore, you must use a $DELETE macro
instruction within the code that handles record deletion (lines 93
through 101 of Figure 5-2).

$DELETE RAB=INRAB

This $DELETE macro instruction points to the RAB for the input file.
The relative file organization lets you delete a record from anywhere
in the file, thereby leaving the record cell free to accept another
record. You do not have to create a new file; the input file, in
effect, is also the output file. (You cannot use the $DELETE macro
instruction with the sequential file organization. To remove a record
from a sequential file, you must use the $TRUNCATE macro instruction,
but it is limited to removing a record, and any succeeding records,
from the end of a file. There cannot be empty space in the sequential
file organization, because it does not use the concept of record
cells.)

When you specify the $DELETE macro instruction, you also must make a
change to the input file FAB to indicate, in the file access field,
that a delete operation can occur. Do this by adding FAC= to the
$FAB macro instruction. You can omit the angle brackets from DEL;
you only need them if more than one operation applies. (In reality,
more than one operation does apply to this file. For example, since
you are also going to retrieve records, you could specify
FAC=<DEL,GET>, to indicate the get operation. However, GET is implied
by DEL, so you can omit it.)

INFAB: $FAB FNM=<INFILE>,
FAC=

Figure 5-2 lists the program code that accepts the key (relative
record number) from you and displays the contents of that record on
the terminal, with the option to delete the record.

Appendix A contains additional examples of random access to the
relative file organization.

5-6

PROCESSING FILES WITH RANDOM RECORD ACCESS

t • T ITl.E DISPLAY • OISPl.AY SPECIFIED RECORD
2
3
u

PROGRAM TO ACCEPT RECORD NUMBER FROM OPERATOR ANO DISPLAY
CORRESPONDING RECORD

5 t
b t
7 I t-!ACRO
8
q

rn
11
12
13
1 (j

15
16
17 ,E"'JD~,

18 '

TYPE
.s•ve:

STRING

1 PSECT TYPE STRINGS, NOwRT
111 TMPA•.
,ASCII \STRING\
111 TMPLm 1 • 111 TMPA
,RESTORE
MOVL # 111 TMPA, TYPE RAB+RABSL RBF
MQVw # 111 TMPL, TYPE RAB+RABSw RSZ
$PUT RABcTYPE.._RAB

1q ,MACRO PROMPT STRING
2~

21
22
23
21.1
2S
?.b
27
28
2q
3fi'
31
~2

33
3'1 • ENDl-1

35 '

,SAVE
,PSECT TYPE STRJNGS, NQWRT
111 TMPAm 1

.BYH 13, !l-1
,ASCII \STRING\
111 T~PLm 1 •, •• TMPA
,RESTORE
MOVL #. 1 ,TMPA, PROMPT RAB+RA8$L PBF
~OVB # 11 ,TMPL, PROMPT RAR+RA~$B PSZ
$GET RA~ : PROMPT RAB
~OvZ~L PROMPT RAB+RAA$w RSZ, Rl
MOVL PROMPT RAA+PAA$L R8F,R2

36 ,MACRQ ON.._ER~OR "F.:ST,?L
37 BL~S R~,L
38 B~W DEST
3q
(jp! L:
1.11 1 f:"ll)M

42 '
IJ3 ,PSECT
41.1 TYPE FABI
45
Lib TYPE RAB I
47 PROMPT.._FAAI
48 PROMPT..._RABI
4q
50
51
52 ,
53 INFABI SFAB
54
55 INRABI SUB
Sb
57
58
59

'

DA TA, LONG
!FAB FNM:<SYSJOUTPUT1>,•

~RAB

$FAS
$RAB

RAT:CR
F.AB•TYF'E 4 FAB
FNMm<SYSUNPUTI>
FAB•PROMPT FAB,•
UBF•PROMPT 4 BUFF,•
USZ-132,•
ROP•PMT

FNM•<INFILE1>,•
FACuDEt.>
FAB•INFAB,•
UBF•REC..,BUFFER,•
USZ•REC..,BUFFER.SIZE1•
KBF•KEY1•
RACmKEY

Ml
bl
&2
63
bl.I

PRO~PT BUFFI .BLKB 132
REC 4 BUFFERt ,BLKB 50
REC.BUFFER 4 SIZE= 1 •REC.BUFFER

.ALIGN LONG
&5 KEYi I BLl<L 1
bb '
&7 OPEN FILE,CONNECT STREAM
1)8
bq
11/' REGIN1
71
72
73
7/J

,PSECT CODE,NOwPT
I l'IORD ~
SOPEN FAB•I~FAB

ON ERROR EXIT
$CONNECT RAB=I~RA8

ON.ERROR EXIT

MAC~O TO TYPE "STRING"
SAVE CURRENT PSECT
CHANGE TO TYPE STRINGS
NOTE ADDRESS
STORE STRING
NOTE LENGTH
BACK TO· ORIGINAL PSF.CT
SET STRING ADDRESS
SET STRING LENGTH
WRITE THE RECORD

PSECT

MACRO TO ACCEPT INPUT
FROM SYS$INPUT, PRO~PTING

wITi.t "STRING"
SAVE CURRENT PSECT
CHANGE TO TVPESTRINGS PSECT
NOTE AOD~ESS
CARRIAGE RETURN, LINE FEED
s TORE s r~u NG
NOTE LENGTH
BACK TO ORIGINAL PSECT
SET PRO~PT BUFFER ADDRESS
SET PROMPT BUFF~R SIZE
GET T"1£ INPUT
GET I~PUT LENGTH
GET INPUT ADDRESS

MACRO TO BRANCH ON ERROR
BRANCH ON SUCCESS
LONG FORM OF BRANCH

USER RECnRD BUFFER

RECORD NUMBER TO RETRIEVE

OPEN INPUT FILE
BR•NCH Or.J ERROR
CONNECT STREAM
BRANCH ON ERROR

Figure 5-2 Random Read of a Relative File

5-7

PROCESSING FILES WITH RANDOM RECORD ACCESS

75
76 '

INIT.._TVPE INITIALIZE TYPE AND PRO~PT FILES

77 r ACCEPT ~U~BER OF RECORD TO BE DISPLAYED
7B r
7q GET .a.RE:C..,NO s
~~ PRO~PT <ENTER RECORD NUMBER1>
b1 ON.._ERROR DONE
82 BSBW CONVERT.KEY
~3 ON~ERROR 8AD 4 KEY
sa MOVL RJ,KEV
85 $GET RABcINR4B
Bb ON.ERROR BAD.a.PART
A7 TYPE <RECORO ISi>
88 $RAB.._STORE RAB•TYPE~RAB,•
8Q RBF••INRAB+RAB$L.._RBF,•
q~ ~SZ•I~RAB+RABSW..,RSZ

91 JPUT RA8•R0
q2 ON.._ERROR EXIT

GET qECORD NU~BER

BRANCH ON ERROR CE.G.,
CONVERT KEY TO eI~ARY
BRANCH IF RAD
SET RECO~D NU~~EH
GET RECORD FOR PART
e1UNCH o~ ERROR

PRINT RECORD
BRANCH ON ERROR

E OF)

q3 PROMPT <OELETE RECORD (YIN)?>
qa ON.._ERROR DONE

ASK IF RECORD SHOIJLD BE OfLETEC.
BRO!CH ON ERROR

q5 TSTW Rl
qb BEQL GETNXT
q1 CMPB CR2)r#.A/Y/
qa BNEQ GETNXT
qq SDELETE RAB•INRAB

100 ON.ERROR !XIT
101 TYPE <RECORD DELETEO.>
1~2 GETNXTt
103 RRW
uia
105
11116
107
108
uq
110
111

REPORT ERRORS

' '3AD.a.KEY I
BRW

8AD.PART1
BRW

112 ,

TYPE <SAO KEY VALUEI>
GET.REC..,NO
TYPE <RECORD DOES NOT EXIST,>
GET.REC..,NO

113 t ALL OONf • CLOSE FILES ANO EXIT
114 t
115 OO~EI
116
117
118 EXITI
11q r++

SCLrySE FA8sI~F49

!CLO~E FABsTYP~iFA~
SCLOSE F~B•P~O~PT~FAB

SEXIT.S R~

ZERO LENGTH INPUT?
BFUt>.ICH IF YES
ANSWER START WITH 'Y'?
BRANCH IF NOT
DF.LFTE RECORD
BRANCH ON FAILURE

LOOP

120 '
121 '
122 '
123

SU e R 0 U TI NE T 0 C 0 NV ER T AS C I I I ~PUT. S T R Pl G T Q t3 1 "J A R Y

124
125
126
127
128
12q
130
131

INPUT St

OUTPUTS I

, ..
CONVERT.KEYi

CLRQ
8~6

132 1051
133

"'ULL2
BVS
SUBB3 13U

Rl, ~2 : LENGTH AND ADDRESS OF I~PUT STRING

R~ - ST HUS conF.
R3 • BINARY VALUE
Rt, R2 1 Ra DESTROYED

R3
2~S

•1~, ~3
30$
t1•A1ei1, CR2)+, R4

I~ITIALIZf OUTPUT VALUE
GO CHECK IF ANY CHARACTERS
SHIFT PARTIAL RESULT
BRANCH ON OVERFLO~
GfT AINARY VALuE FOR CHARACTER

135 BLSS 30S BRA~CH IF BAD
136 CMPB R4 1 t1•1i1q1.•A101 CHARACTE~ > q 1
137 BGTRU 3~$ RRA~CH IF BAD
138 ADOL2 Ra, R3 ADD IN CHARACTER TO PARTIAL RESUL
13q 2~SI DECL Rl ANY MORE INPUT?
14~ BGEQ 1~$ BRANCH IF ~ORE
141 ~OVL *1, R~ SHO~ SUCCESS
142 RSB
143 30tt CLRL R~ SHO~ FAILuQE
14U RS8
11.15 '++
14b '
ta7 r SUBROUTI~E TO INITIALIZE THE TYPE AND PROMPT FILES

Figure 5-2 (Cont.) Random Read of a Relative File

5-8

PROCESSING FILES WITH RANDOM RECORD ACCESS

148 '
14q , ••
150 INIT 4 TVPE1
151 SCREATE FAB:TVPE4 FA8
152 SOPEN FAB:PRO~PT 4FAB
153 SCON~ECT RAB:TYPE~RAA
tsa SCONNECT RAB = PRG~PT~RA~
155 RSB
15b
157 .END BEGIN

Figure 5-2 (Cont.) Random Read of a Relative File

5.3 INDEXED FILE ORGANIZATION

Random access to the indexed file organization, like any access to the
indexed file organization, is available on disk devices only.

In an indexed file, random access by key is independent of the record
format (either fixed or variable). Therefore, the indexed file
provides more flexibility for random access than does the relative or
sequential file organizations.

5.3.1 Random Read of a Record in the Indexed File Organization

This section describes a sample program, illustrated in Figure 5-3,
that builds upon the program listed in Figure 5-1. The major
difference between the programs is that the input file in this program
uses the indexed file organization. Since it is an input file, you do
not have to indicate the file organization when you open a file.

This program, besides accepting the key (the part number) from the
operator and displaying the contents of the record on the terminal,
also modifies the discount type field of that record to contain an A.
Then this program sequentially accesses and displays any subsequent
records containing part numbers in which the first four characters
match those of the first record accessed. Therefore, you must use a
$UPDATE macro instruction within the code that handles record updating
(lines 94 through 103 of Figure 5-3).

$UPDATE RAB=INRAB

This $UPDATE macro instruction points to the RAB for the input file.

Assume that the following external assignment will be made:

$ ASSIGN 18SEP78.INV INFILE:

You must provide this program with definitions for three files: an
output file, a file to accept the request, and an input file (where
you define that the record access mode is random, since the input file
is the one you search for the records).

OUTPUT FILE

The first file that must be defined is the output file, SYS$0UTPUT:,
which is a process logical name assigned for the output stream. For
an interactive user, SYS$0UTPUT is a terminal. The FAB for this file

5-9

PROCESSING FILES WITH RANDOM RECORD ACCESS

only has to provide this name and an optional record attribute that
induces a line feed before and a carriage return after printing the
record at the terminal.

TYPE FAB: $FAB FNM=<SYS$0UTPUT:>,
RAT=CR

At assembly time, the $RAB macro instruction only has to associate the
RAB with the FAB.

TYPE RAB: $RAB FAB=TYPE FAB

The actual contents of the RAB are defined dynamically, at run time
rather than at assembly time, with a $RAB STORE macro instruction.
The reason for this is that the record to be output varies. On one
hand, records from the input file are displayed (see lines 111 through
114 of Figure 5-3), while on the other hand, a number of fixed strings
are output using the "TYPE" macro (see lines 124,128, and 134; the
macro definition itself appears on lines 11 through 22). Each of the
different outputs require that the RSZ and RBF parameters be set
dynamically to indicate the record to be written.

The $RAB STORE macro instruction (see line 111) indicates the symbolic
address -of the RAB allocated at assembly time. It must also define
the location and size of the buffer that contains the record to be
printed on SYS$0UTPUT. When displaying records read from the input
file, the location and size are at the address of INRAB (the input
RAB) plus the offset to each field (RAB$L RBF for the address and
RAB$W_RSZ for the size). -

$RAB STORE

REQUEST FILE

RAB=TYPE RAB,
RBF=@INRAB+RAB$L RBF,
RSZ=INRAB+RAB$W RSZ

The second file that must be defined is the request file, which
prompts a message to solicit information from the operator and accepts
the requested record number from the terminal. This file (see line
52) is SYS$INPUT:, which is a process logical name. Note that for an
interactive process, SYS$INPUT and SYS$0UTPUT both refer to a
terminal. In this case, it would be possible to use the same file
name (either SYS$INPUT or SYS$0UTPUT) to accept requests and display
output. In so doing, however, you would lose the ability to run the
program within a batch stream.

PROMPT FAB: $FAB FNM=<SYS$INPUT:>

The RAB you connect to this FAB defines a buffer area and associates
the RAB with the FAB. The RAB also defines a record processing option
of ROP=PMT. This option indicates that the contents of the specified
prompt buffer (filled as part of the expansion of the "PROMPT" macro)
are to be output to the terminal operator in order to indicate what
data is being requested for output.

PROMPT RAB:

INPUT FILE

$RAB FAB=PROMPT FAB,
UBF=PROMPT-BUFF,
USZ=l32,- -
ROP=PMT

The third file that must be defined is the input file (see line 60),
which must provide the file specification. The external assignment
equates 18SEP78.INV to INFILE:.

5-10

PROCESSING FILES WITH RANDOM RECORD ACCESS

When you specify the $UPDATE macro instruction, you also must make a
change to the input file FAB to indicate, in the file access field,
that an update operation can occur. Do this by adding FAC=<UPD> to
the $FAB macro instruction. You can omit the angle brackets from UPD;
you need them only if more than one operation applies. (In reality,
more than one operation does apply to this file. For example, since
you are also going to retrieve records, you could specify
FAC=<UPD,GET> to indicate the get operation. However, GET is implied
by UPD, so you can omit it.)

INFAB: $FAB FNM=<INFILE:>,
FAC=UPD

When the three files are defined, you must use run-time macro
instructions to call the routines that act on these files the same as
described in Section 5.1.1 for the program listed in Figure 5-1.

Each file you open in the program must have a RAB connected to the
appropriate FAB with a $CONNECT macro instruction.

For the input file, use a $GET macro instruction to retrieve the
record. For the output file, use a $PUT macro instruction to place
the record in SYS$0UTPUT so it can be printed at the terminal.

All open files must be closed when you finish processing.
you must use three $CLOSE macro instructions.

Therefore,

You switch from random to sequential access mode (see line lln, Figure
5-3) in order to access and display any subsequent records containing
part numbers (the primary key) in which the first four characters
match those of the first record accessed as follows:

$RAB_STORE RAB=INRAB,
RAC=SEQ

Since you are accessing an existing indexed file, you do not have to
specify the position or size of the key. However you must specify the
key to search on. In this example, the primary key (key 0) is
specified by default.

Figure 5-3 lists the code for this program.

Appendix A contains additional examples of random access to an indexed
file.

5-11

1
2
3
a
'S
b
7
~

9
l QJ

PROCESSING FILES WITH RANDOM RECORD ACCESS

• TITLE DISPLAY DISPLAY RELAT!D RECORDS

PROGRAM TO ACCEPT PART # ,RO~ OPERATOR ANO DISPLAY
CORRESPONDING RECORD AS WELL AS ALL SUBSEQUENT RECORDS THAT
MATCH THE FIRST FOUR CHAR•CTERS 0, THE PART NUMBER.
MODIFY THE DISCOUNT TVP! ,IELO OF THE ~IRST RECORD ACCESSED
TO CONTAIN AN 'A'.

11 .MACRO
12

TYPE STRING ~ACRO TO TVP! "STRING"

SAVE CURRENT PSECT
CHANGE TO TYPE STRING
NOTE ADDRESS

13
1 ti
15
lb
17
18
lq
2~

21
22
23
24
25
26
n
2~

29
3P
31
32
33
3l.I
35
36
37
3e
39
40
l.11
l.12
l.13

"'" l.15
46
l.17
l.18
lJQ
50
51
52
53
sa
55
5b
$7
58
59
60
61
b2
63
&4
bS
bb
b7
b8
bQ
70
71
72
73
1a

, ENrH1

' .MACRO

• E"J0"1

' .MACRO

LI
• E"'IOM
t

.SAVE

.PSECT TYPE4STRINGS,NO~RT
,,,TMPAa,
,ASCII \STRING\
,,,TMPL•,•,,,TMPA
,RESTORE
MOVL •,,,TMPA,TVPE.RAB+RAB,L.RB~
MOVw •,,.TMPL,TYPE~RAB+RABsw.RSZ
SPUT RAA•TYPEiRAB

P~O"IPT STRING

.SAVE
,PSECT TVPE4STRINGS,~OWRT
,,,TMPA:,
.BYTE 13110
,ASCII \STRING\
,,,T~PL•,•.,,T~PA
.RESTORE
MOVL #,,,TMPA,PRO~PT.RA~+RAB,L.P8F
MOVS #,,.TMPL,PROMPT.RAB+RABSB.PSZ
~GET RAB•P~OMPTLRAB
MOVZWL PRO~PTLRAB+RABl~..._RSZ,R1
MOVL PROMPTLRA8+RABSLiRBF,R2

13LBS
BRW

R01L
OEST

OEST, ?L

.PSECT
TYPE..._F AB I

DATA,LONG
SFAB FNMacSVSSOUTPUT1>1•

TVPE ... JUB I
PRO~PT4FAB1
PROMPT.A.RABI

t

SIUB
JFAB
tlUB

IUT~CR

FAB•TVPE.&.FAB
FNMuSYSSINPUT1>
FAB•PROMPT.._FAB 1•
UBF•PROMPT ... BUFF,•
USZ•1321•
ROP•PMT

r INPUT FILE FAB AND RAB AND XABS

' Il'JFABI Sfl'AB

t
INRABI

' '

SRAB

FNMuINFILE1>1•
FAC•UPD

FAB•INFAB1•
UBF•REC ... BUFFER,•
USZ•REC.BUFFER.A.SIZE1•
KBF•l<EV ... BUFF,•
KSZ•KEY.BUFF.&.SIZE

PROMPT.&.BUFF1 .Bl.KB 132
REC.BUFFER I ,9LK8 5~
REC.~UFFER ... SIZE•,•REC4 BUFFER
DISCOU~T 4TVPE•REC4BUFFER+5

STORE STRING
NOTE LENGTH
BACK TO ORIGINAL PSECT
SET STRING ADDRESS
SET STRING LENGTH
lllR ITE THE RE CORO

MACRO TO ACCEPT INPUT
FROM SYSSINPUT, PROMPTING
1111ITH "STRING"
SAVE CURRENT PSECT
CHANGE TO TYPE STRINGS PSECT
NOTE ADDRESS
CARRIAGE RETURN1LINE FEED
STORE STRING
NOTE LENGTH
BACK TO ORIGINAL PSECT
SET PROMPT BUFFER ADDRESS
SET PROMPT ~UFFER SIZE

MACRO TO BRANCH ON ERROR

CONTINUE ON SUCCESS
BRANCH LONG ON ERROR

Figure 5-3 Random Read of an Indexed File

5-12

PROCESSING FILES WITH RANDOM RECORD ACCESS

.HIGN LONG 75
76
77
78
7q

KEY .. BUFFt .BLK8 5
~EY.BUFF.._SIZE•.•KEY.BUFF
MATCH.PARTiNOa .~LKL 1
MATCH.,FLAGt ,8LKB 0 , 80

81
82
83

s OPEN FILE, CONNECT STREA~ ,
84 BE.GlNt
es
Bb
87
A8
eq
90 ,

.?SECT COOE,NOwRT
, wORD Cl!

!OPEN FA0•INFAB
ON~ERROR EXIT
iCONNECT RAB•INRAB
ON~ERROR EXIT
BSRw INIT~TvPE

Q1 1 ACCEPT PART NUMBER OF RECORD TO BE DISPLAYED
92 ,
q 3 GET .,P ART l\J 0 I
q4 PROMPT cF.NTER PART NUMBER1>
q5 ON ERROR DONE
96 MOVC5 R11CR2)1*-Al0/,•

97 *51KEYiBUFF
98 $RAB.._STORE RAA•INRAB,•
qq RAC•KEY

1~0 SGET RA0•INRAB
1~1 ON ERROR BA0 4 PART
102 MOVB #•A/A/,DISCOUNT.TYPE
103 SUPDATE RAB:INRA8
104
105 ON ERROR EXIT
106 TYPE <RECORD CHANGED T01>
107 CLRB MATCH.FLAG
108 MOVL •INRAB+RABSL~RBF,MATCH.PART.NO
10CI
110 OIS?LAYI
111 SRAB STORE RAB•TYPE+RAB,•
112 R8F•tINRAB+RABSL RBF,•
113 RSZ•INRAB+RABSW.RIZ
114 !PUT RAB•R0
115 ON ERROR EXiT
116 SRAB STOR! RAB•INRAB,•
117 RAC•SEQ
118 'GET RAB•R0
11CI BLBC R01CHECK.._RELATED
12~ CMPL fINRAB+RABSL~RBF,MATCH PART.NO
121 BNEQ CHECK.RELAT!O
122 BBSS #11MATCH.._FLAG10ISPLAY

123
121.1 TYPE cRELAT!O RECOROCS)1>
125 BRB DISPLAY
126 CHECK.RELATEDI
127 BBS #1,MATCH.._FLAG,GETNEXT

128 TYPE cNO RELATED RECORDS.>
129 GETllJEXTI
13~ BRW GET~PART.._NO
131 1 REPORT £RRORS
t32 ,
133 BAD.,PART1
1 31.1 TYPE
135 BRW

13b '
137 1 ALL DONE
138 J
13q DONEi
l4C/!
1£11
142

$CLOSE
$CLOSE
SCLOSE

<RECORD ODES llJOT EXIST.>
GET.PART.._NO

CLOSE FILES ANO EXIT

FA8•INFAB
FAB•TYPE.._FAB
FAB•PROMPT.._FAB

11.13 EXITS HXIT S R0

t 41.1 '
11.1s r++

?ART # OF RECORD TO RETRIEVE

FIRST I.I CHARACTERS OF THE PART #
SET TO 1· IF RELATED RECORD SEEN

OPEN I"'IPUT FIL.E
BRAl'IJCH ON ERROR
CONNECT STREAM
BRANCH ON ERROR
INITIALIZE TYPE AND ?ROMPT FILES

GET PART NUMBER
BRANCH IF DONE
MOVE PART NUMBER INTO THE

KEY BUFFER, ZERO FILL.ING
KEY ACCESS TO ACCESS RECORD
WITH SPECIFIED PART #
GET RECORD WITH ?ART#•KEY
BRANCH IF RECORD NOT FOUND
MODIFV DISCOUNT TYPE TO 'A'
UPDATE RECORD, WITH NEW
DISCOUNT TYPE
BRANCH ON ERROR

SAY NO RELATED RECORDS SE!N
SAV! FIRST 4 CHARACTERS OF
PART # TO MATCH

PRINT RECORD
BRANCH ON ERROR

SWITCH TO SEQUENTIAL. ACCESS
GET NEXT RECORD
ENO OF FILE1
IS THIS A MATCH?
ALL. DONE MATCHING
BRANCH IF HEADER HAS ALREADY

BE!:N PRINTED

LOOP TO GET NEXT MATCH

BRANCM IF RELATED RECORDS PRINTED

~OOP TO GET NEXT PART #

Figure 5-3 (Cont.) Random Read of an Indexed File

5-13

146
147
148
1aq
150
151
15l
153
151.1
155
156
157

PROCESSING FILES WITH RANDOM RECORD ACCESS

SUBROUTINE TO INITIALIZE T~E TYPE &ND PROMPT FI~ES

, ..
INIT 4 TYPE I

SC~EATE FAB•TYPE..L.~A8
SOPE~ 'ABaPROM'T..L.~AB
SCONNECT RAB•TYPELRAB
SCONNECT RA8•PROMPT.RA8
RSB

.ENO BEGIN

Figure 5-3 (Cont.) Random Read of an Indexed File

5-14

APPENDIX A

PROGRAM EXAMPLES

This appendix contains additional program examples that
examine to gain a better understanding of VAX-11 RMS.
somewhat more detailed than the examples in Chapters 4 and 5;
may find that a study of their construction, in conjunction
VAX-11 Record Management Services Reference Manual, is
beneficial.

A-1

you can
They are
but you

with the
quite

:i::ii
REORDER • INDICATE REORDERED ITEMS 21•JUL.•1'78 1413bl23 VAX•11 MACRO X0,3.q Page 1 .

(1) 1--'

V'l00l1' 1 ,TITLE REORDER • INDICATE REORDERED ITEMS en
000(21 2 t:r:J
~000

3 '
IO c 000r. I.I , PROGRAM TO READ THE OL.D INVENTORY MASTER FILE ANO CREATE A t:r:J

000'7! s , NEW MASTER FILE, RECOGNIZING THOSE ITEMS WITH AN QN•HA~D 21
001(10

b '
QUANTITY L.ESS THAN THE REORDER QUANTITY, AND SETTING THE REORDER ~

00V'V'I 7 , DATE IN THE NEW MASTER FIL.E TO TODAY'S DATE, ANO LISTING THE > 0000 8 , RECORD ON SYSSOUTPUT, t"1
'3000 q ' ~ 0121011' 10 • M.\CRO TYPE STRING , MACRO TO TYPE "STRING" t:r:J
liil00r2' 11 .SAVE ' SAVE CURRENT ?SECT (')
fll'11121l1' 12 .PSECT TYPE.STRINGS,NOWRT , CHANGE TO TYPE STRINGS PSECT 0

"'"'"'~ 13 ••• TMPA:r. ' NOTE ADDRESS ~
~HhlJ0 11.1 .ASCII \STRING\ , STORE STRING 0

0000 15 .,,TMPL•.•.,,TMPA ' NOTE LENGTH >
0"'0(21 lb .RESTORE ' BACK TO ORIGINAL PSECT (')

01i!w'.10 17 MOVL #,,,TMPA,TYPE.RA8+RABSL.R8F , SET STRING AQDRESS (')
t:r:J

QIQl()ll{I 1 El MOVW •.,,TMPL,TYPE.R~B+RABSW.RSZ , SET STRI~G LENGTH en ~
00Q'"" 1q SPLIT R•B•TYPE.,.RAB , l'iRITE THE RECORD en ~
'110~0 21l' .ENOM 0
~0~0 21 '

3 G'l
0 ~ N~:.IV'l~~32 1210~"' 22 REC.SIZE:r'50 J RECORD LENGTl'1 0

012113 1/H!t 0 IH~ 23 .PSECT OATA,LONG t:r:J 3
:i::ii 00~0 21.1 TYPE.._FA61 ~FAS FN~=<SYSSOUTPUTz>,• , FAB FOR USE ~ITH TYPE ~ACRO
I I t:r:J

N 1{10li'l0 25 RAT=CR I :>4
li'l0'50 26 TYPE.._RAB: SRAB FAB:TYPE.._FAB ' RAB FOR USE NITH TYPE ~ACRO > ;ii121q4 27 ' en 3
~0q4 28 INFABI !FAB FNM=<INFILEI> t:r:J ~

0 t"1 00E4 2q INRARI SRl.B FAB:INFAB,• c t:r:J
~eEa 3(i'I UBF•REC..,BUFFER~· t:r:J en
00E:4 31 USZ•~EC..,SIZE 21
li'l 128 32 OUTFABZ SFAB FNM1:<0UTFILE:> ~
0178 33 CUT RAB I !RAS FABi:OUTFAB >
018C 31.1 r t"1
li'l18C 35 ' DEFINE FIEL.DS OF RECORD l"ZJ
<"t ~c 3b '

0!i'l001l1005 Vil BC 37 PART.._NO.LEN:r5 t"1
000'11001tl 018C 38 PART.._DESC.._L.EN•20 t:r:J

li'lel!i'101210914 V'l BC 3q QTY.._LEN:rl.I 0
lil00121~1iH~q ~1BC 1.10 OUE.._LEN11q ~
(i'l(i'l000007 01ec 1.11 PRICE..,LEN=i7 G'l

01BC 1.12 ' >
21 01BC 1.13 REC.._BUFFERI

000001C1 01RC 1.1a PART.._NUMBERI ,BL.KB PART .._NO.._L.EN N

000001C2 01C1 45 DISCOUNT.._TYPE1 .BLKB 1 >
0000010& 01c2 4b PART.._DESCRIPT1 .BLKB PART.DESC.._LEN ~
00012101DA 0106 47 QTY .._ON.._HAND I ,BLKB QTY.._LEN 0
000001DE 010A 1.18 REOROER.GITYt .BL.KB QTY .._L.EN 2':
000012'1E7 01DE 4q REORDER.DATEt .BL.KB DATE.._L.EN
00000lEE 01E7 50 LIST.._PRICEI ,BL.KB PRICE.._L.EN

01EE 51 '

REORDER • INDICATE REORDERED ITEMS 21•JUL•1978 14136123 VAX•11 MACRO xe.3•9 Page 2
c 1)

01EE 53 '
01EE 54 , BUFFER TO FORMAT PRINT RECORD
01EE' 55 ' 20 ~1EE 56 TYPE.._BUFI .ASCII I I

~00001F4 01EF 57 TYPE.,,_PART I aBLKB PART ... NO ... LEN
20 01F4 58 •ASCII I I

00wH'l021t'19 lll1FS 59 TYPE.._DESC1 .BLK8 PART ... oEsC.LEN t'(j

20 20 20 20 20 0209 &0 •ASCII I I ~
0121000212 020E &1 ON.._HAlllD I .BLKB QTY ... LEN 0

Ci)
20 20 20 20 20 0212 &2 •ASCII I I

~ 00e0021B 0217 63 REORDERS .BLl<B QTY ... LEN

> 00000020 ra21e &4 TYPE.._LEN•.•TYPE ... BU, 3

I 00 0218 &S HEADINGS .BYTE 0 tlJ
w 021C b& .ALIGN LONG >4

021c &7 ' BUFFER TO GET CURRENT DATE >
~'11000008 021c c8 OATE.,,_BUFI .L.ONG 11 ' LENGTH OF BUFFER 3
~0000224" e220 &9 .L.ONG TODAYS.,,_DATE , ADDRESS OF BUFFER t'(j

t1
!0'!0000228 022a 70 TOOAYS~DUEI .BLKB 7 , OO•MON• tZl
00000220 ;J122B 71 VR~CENTURYI .BLKB 2 , VY en
~000~22F 0220 72 YEARS .BLi<8 2 ' YV

00000000 74 .PSECT COD!,NOWRT
0000 75 '
0000 76 ' INITIALIZATION • OPEN INPUT AND OUTPUT FILES, CONNECT STREAMS, AND
ld000 77 I GET TODAY'S DATE
0000 78
121000 79

REORDER • INDICATE REORDERED ITEMS 21•JUL•1'78 141311123 VAX•11 MACRO xe.3-~ Paa• 3
(1)

00CIJ0 0000 80 START I ,WORD
'1111102 81 SOP EN !"AB•INll'AB ' OPEN INPUT FILE

36 '50 Eq 000F 82 BL.BC R0,EXIT1 ' BRANCH ON ERROR
0~12 83 SF AB.A.STORE FAS.OUTFAB,• ' INITIAL.IZE OUTPUT FAB FROM INPUT
0012 Bll RFM•FABSB.RFM+INFAB,• ' SET RECORD FORMAT
0'-1112 85 ~RS•FABSW.MRS+INFA81• ' SET RECORD SIZE
0012 86 RAT•FABSB.RAT+INFAB , SET RECORD ATTRIBUTE
'11031 87 SCPEATE l'AB•R0 ' OPEN OUTPUT FILE

113 Sit Eq 003A 88 BL.BC R0,EXIT1 ' BRANCH ON ERROR
P'"13D 5q SCONNECT RAB•INRAB , CONNECT INPUT RAB

0!3 50 E~ ~04A cm BL.BS R'11 1 CONT1 ' BRANCH ON SUCCESS
01"F 31 0040 qt EXIT1: BRl'f EXIT ' BRANCH ON ERROR

0050 q2
~05111 q3 cor..iT11 $CONNECT RAB•OUTRAB ' CONNECT OUTPUT RAB

ED Sfil Eq ~'1150 q4 BL.BC R0,EXIT1 ' BRANCH ON ERROR
1110b0 q5 USCTIM.A.S TIMBUF•DATE.BUF ' GET CURRENT DATE

001'!'110228' EF ~~000220'EF 80 ia~73 q" MOVlli YEAR,YR,..CENTURY ' MAKE INTO •yy• FORMAT
007E q1 ' (RATHER THAN •yyyy•)

tO
~07E qe SOP EN FAS.TVPE.FAB ' OPEN REPORT FIL.E ~

8F 5.-a Eq <:11089 qq BL.BC R0,EXIT1 ' BRANCH ON ERROR 0
~08E U0 SCONNECT RAB•TVPE..,RAB ' CONNECT REPORT RAB Ci)

AF S;3 Eq 00q8 Hit BLBC R0,EXIT1 ' BRANCH ON ERROR ~
>

~eqE 1 t.12 31
I

00qE 103 TYPE <LIST OF INVENTORY ITEMS BEL.Ow REORDER POI~T>
.i::i. 0000 mu TYPE ti:!

"'00C 1~5
:>4
>'

000C 10b , 31
tl!QJDC 111!7 , COPY RECORDS FROM OL.D MASTER TO NEW MASTER CHECKING QUANTITY tO
000C 108 t ON HANO VS, REORDER QUANTITY t1

ti:!
00DC 10q J en
000C 110 ~E•D1 SGET IUB•INRAS ' READ A RECORD

~3 svi E13 0oiEq 111 BLBS R0, US ' BRANCH ON SUCCESS
0QIC2 31 ~0EC 112 8Rlrl DONE , FINISH BRANCH ON ERROR

000001Dti'EF (114 2q lt'l0EF 113 10s1 CMPC3 #QTY.A.LEN,QTY..,ON.HAND,REORDER.QTY
000001DA'EF 00Fb

~121FB 11" , ON•HAND LESS THAN REORDER QTY!
03 1q 00FB 115 BLSS 20s J BRANCH IF YES
00qc 31 00FD 116 BRW WRITE I OMIT REOROER PROCESSING 1F NOT

00000224'EF 0q 28 0100 117 2:21S I MOVC3 #DATE.L.EN,TODAYS..,DATE,REORDER.DATE
000001DE'EF 0107

01"1'C 118 ' SET REORDER DATE TO TODAY'S DATE
011!12100218'EF 01 E2 li'l10C 11q B8SS #11HEADING,REPORT.ITEM , BRANCH IF HEADING ALREADY PRINTED

3E 0113
0114 120 TYPE <PART # PART DESCRIPTION ON HAND REORDER PT.>
0133 121 TYPE
0152 122 REPORT.ITEMS ' BUILD REPORT RECORD

000011llBC'EF 05 28 0152 123 MOVC3 #PART.NO.LEN,PART.NUMBER,TYPE.PART
000"01EF'EF 0159

000001C2'EF 14 28 tll15E 121 MOVC3 #PART.DESC.L.!N1PART.DESCRIPT,TYP!.DESC
011J0H1F5'EF 0165

001H020E'EF 00000106'EF D0 0161 125 MOVL QTY.ON.HAND,ON.HAND

REORDER • INDICATE REORDERED ITE~S 21•J"UL• 1978 1413&123 VAX•11 MACRO xa.3•9 P~ge 4
(1)

00000217'EF 000C'!01DA'EF 00 121175 126 MOVL REORDER..,QTY,REORDER
0180 127 SRAB.&.STORE RAB•TYPE,.RAB,•
~180 128 RBF•TYPE,.BUF 1• tti
0160 129 RSZ•#TYPE..,LEN ~
0193 130 SPUT RAB•FUI ' PRINT REPORT RECORD 0
01qc 131 wRITE1 SPLIT RAB•OUTRAB , WRITE NE~ MASTER RECORD Gl

n 50 E8 01Aq 132 BLBS R01READ1 ' BRANCH TO READ !e
51 11 01AC 133 BRB EXIT ' BRANCH ON ERROR 31:

:;i:.i FF2B 31 tatAE 134 READ11 BRiii RUD ' BRANCH ON SUCCESS
I 0181 135 tSJ

lJ1 0181 13~ '
l>4
> 0181 137 ' ALL SET • CLOSE FILES AND EXIT 31:

tiHB1 138 ' t'CI
0181 13q DONEi SCLOSE FAB•INFAB I:"'

01BE 140 SC LOSE FAB•OUTFAB tSJ
Ol

0000021~"EF 01 E0 01CB 141 BBS #11~EADING1CLOSE..,TYPE ' BRANCH IF HEADING PRINTED
1F 0102

01D3 142 TYPE cNONE> ' INDICATE NO ITEMS REORDERED
01F2 143 CLOSE..,TYPEI , INDICAT! NO ITEMS REORDERED
01F2 144 SCLOSE FAB•TYPE,.FAB
01F' 145 EXITI SEXIT..,S FUJ
0208 146
0208 141 .END START

DISPLAY • DISPLAY RELATED RECORDS 14•JUL•ln8 12153113 VAX•11 MACRO Xlll,3•11 Page 1
> .

Cll ""
000111 1 ,TITLE DISPLAY • DISPLAY RELATED RECORDS
11!000 2 ' ~ 0000

3 '
PROGRAM TO ACCEPT RECORD NUMBER FROM OPERATOR AND DISPLAY z 01110(1!

4 '
CORRESPONDING RECORD AS WELL AS ALL SUBSEQUENT RECORDS THAT 0 0000 5 t MATCH THE FIRST FOUR CHARACTERS OF THE PART NUMBER. 0

0000
b '

MODIFY THE DISCOUNT TYPE FIELD OF THE FIRST RECORD ACCESSED 3
0000

7 '
TO CONTAIN AN 'A' 1

0Cll00 8 '
~

t'l000 q t:i:J
111000 10 0 MACRO TYPE STRING ' MACRO TO TYPE "STRING" (')

0 (10rt0 11 ,SAVE ' SAVE CURRENT PSECT ~
0000 12 .PSECT TYPE.STRINGS, NOWRT ' CHANGE TO TYPE STRINGS PSECT 0
0(1!i1!0 13 101 TMPA• 0 ' NOTE ADDRESS
000"' 14 •ASCII \STRING\ ' STORE STRING >
~0.00 15 100 TMPL• 0 • 001 TMPA ' NOTE LENGTH (')

IHH'IQI lb ,RESTORE ' BACK TO ORIGINAL PSECT (')
t:i:J :!1000 17 MOllL # 111 TMPA, TYPE.RAB+RABSL.R~F ' SET STRING ADDRESS m 00C'l0 l" '401/lll # 000 TMPL1 TYPE..,RAB+RA8SW.RSZ , SET STRING LENGTH m

i!l000 u SPUT RAl!l•TYPE..,RAR , ~RITE THE RECORD
tl0;'10 20 0 E'-iDM
'11000 21 ' I ttl
<'1000 22 0 MACRO ?ROMPT STRING ' MACRO TO ACCEPT IN?UT ~
~00!!11 23 ' FROM SYSSINPUT, PROMP~ING ~ 0

t:i:J Cl 0000 24 ' to1ITH "STRING" t"1 ~ 001210 25 0 SAVE ' SAVE CURRENT PSECT >
>

0000 26 .PSECT TYPE.STRINGS, NOWRT ' CHANGE TO TYPESTRINGS PSECT ~ 3
00'11111 27 100 TMPA• 0 ' NOTE ADDRESS H

I 12100lll 2e .SYTE 131 10 ' CARRIAGE RETURN, LINE FEED <: t:i:J
O'I t:i:J ~ 11lCll00 2q ,ASCII \STRING\ ' STORE STRING > ~0~0 30 001 TMPL• 1 • 111 TMPA , NOTE LENGTH "Ill 3

001.10 31 1 RESTORE , SAC~ TO ORIGINAL PSECT H .,,
000111 32 MOVL # 100 TMPA, PROMPT.&.RAB+RABSL.?BF ' SET ?ROMPT BUFFER ADDRESS t"1 t"1
01110G'I 33 MOVB # 01 .THPL1 PROMPT.&.RAB+RABSB.PSZ ' SET PROMPT BUFFER SIZE t:i:J t:i:J
lil0~0 34 SGET RAB • PROMPT.RAB ' GET THE INPUT m
0000 35 MOVZlllL PROM?T 6 RAB+RA8SW.RSZ, Rl , GET INPUT LENGTH 0

~ 0000 3& MOVL PROMPi.RAB+RABSL.RBF,R2 , GET INPUT ADDRESS Cl 1'100111 37 ,ENOM > 00"10 38 , z
0000 3q 0 MACRO ON..,ERROR DEST,?L ' MACRO TO BRANCH ON ERROR H
0000 40 BLBS R01L , BRANCH ON SUCCESS N

011100 41 BRiii OEST ' LONG FORM OF BRANCH >
0000 42 LI ~

H 001ii0 43 1 ENDM 0 001110 44 ' z
0000011100 45 0 PSECT DATA, LONG

0000 4& TYPE.&.FABI SFAB FNM•<SYSSOUTPUT1>1•
0000 47 RAhCR
t'l050 48 TYPE..,RABI SRAB F AB•T'l'PE..,F AB
00q4 49 PROMPT.&.FABI SFAB FNM•<SYSSINPUTI>
00E4 50 PROMPT.A.RABI SRAB FAB•PROMPT.FAB,•
0111E4 51 UBF•PROMPT.BUFF1•
00E4 52 USZ•1321•
00E4 53 ROP•PMT
0128 54 '
012& 55 ' 01&?8 5& INFABI SFAB FNM•<INFIL.E1>1•
0128 57 FACacUPD>

DISPLAY • DISPLAY RELATED RECORDS 14•JUL•U78 12153113 VAX~11 MACRO X0 8 l•11 P•ge 2
(1)

0178 58 INIUBI SRAB l'AB•INl'AB,•
0178 59 U811'9REC.BUFl'!R,•
0178 bl!! USZ•REC.BUFl'ER._SIZ!,•
0178 bl KBF•l<EY,•
01?'8 62 RAC•KEY
01ec 63 ,

00000240 01BC 64 PROMl'T.._BUFFt .BLKB 132
00000272 0240 65 REC.,.BUFFERI .BLKB 50 ' USER RECORD BUFFER
0H00032 02n &6 REC.,.BUFFER.._SIZE•.•REC._BUl'FER
00000245 0272 &7 DISCOUNT.._TYPE•REC,...BUFFER+5

0272 b8 .ALIGN LONG
00000278 0274 b9 KEYi .BLKL 1 ' RECORD NUMBER TO RETRIEVE
0000027C 0278 70 MATCH4 PART.._NOI .BLl<L 1 ' FIRST 4 CHARACTERS OF PART NUMBER
0000027C 027C 71 11ATCH,...FL.AGt .BLKB 0 ' SET TO 1 IF RELATED RECORD SEEN

027C 12 ' 027C 73 ' OPEN FIL.E,CONNECT STREAM
027C 74 '

00000000 75 .PSECT COOE,NOWRT
0000 0000 7& 8EGINt .WORD 0

0002 77 SOP EN FAB:aINFAB , OPEN INPUT FILE
000F 78 ON.._ERROR EXIT r 8RA"ICH ON ERROR tti
0015 n SCONNECT RAB•INRAB ' CONNECT STREA"I ~
ll022 8121 ON.._ERROR EXIT ' BRANCH ON ERROR 0

G) 020q 30 A028 81 BSBlri INIT.._TYPE , INITIALIZE TYPE ANO PROMPT FILES
~ A028 82 ,

0'1!28 83 ' ACCEPT NUMBER OF RECORD TO BE DISl'LAYED 3
:x::oi 0028 84 '
I 002B 85 GET ._REC ... t.101 tZJ

.......i 0028 8& PROMPT <ENTER RECORD NUMBERt> , GET RECORD NUMBER :><
11'058 87 ON.._ERROR DONE ' BRANCH ON ERROR CE 0 G0 , EOF) :>

3a 0181 30 a0SE 88 BSBlll CONVERT4 KEY ' CONVERT KEY TO BINARY "ti 00b1 89 ON.A.ERROR BAD._KEY ' BRANCH IF BAD ~
0000027il"EF 53 00 00e7 q0 MOVL IU,l<EY , SET RECORD NUMBER tZJ

~0bE qi SIUB.._STORE IUB•INRAB,• ' SPECIFY l<EYEO ACCESS m
00&E q2 RAC:al<EY
~079 93 SGH RAB•INRAB , GET RECORD ~OR PART
008b q4 ON.ERROR BAD.PART ' BRANCH ON ERROR

0000"1245"EF 41 8F q0 'l08C 95 "'OVB #•A/A/,DISCOUNT._TYPE , MODIFY DISCOUNT TYPE
00q4 q& $UPDATE RAB:aINRAB ' WRITE BACK MODIFIED RECORD
00At 97 O~.&.ERROR EXIT ' BRANCH ON ERROR
00A7 98 TYPE <RECORD CHANGED T01>

0A00'127C "EF q4 ill0Cb 99 CLR8 MATCH.,.FLAG , SAY NO RELATEn RECORD SEEN
0000111278"EF 0001!101A0"FF D0 ~0CC 100 MOVL fINRAB+RABSL._RBF,MATCH.&.PART.&.NO ' SAVE PART NU,.,8ER TO "IATCH

00D7 101 DISPLAYI
~0D7 102 SRAB ... STOR! RAB:aTYPE.RAB 1 •

0007 103 RBF•fINRAB+RABSL..,.RBF,•
0007 104 RSZ•INRAB+RABSW.RSZ
00EE 105 SPUT RU•R0 ' PRINT RECORD
00F7 106 ON4 ERROR EXIT ' BRANCH ON ERROR
00FD 107 SRAB,.STORE RAB•INRAB,RAC•S!Q ' SWITCH TO SEQUENTIAL. ACCESS
0108 108 GETSEQr
011!18 109 SG!T RAB•R0 ' READ NEXT RECORD

3e 50 E9 0111 110 BLBC R0,CHECK4 DELET!D ' BRANCH ON ERROR
00000278"EF 000001A0"FF 01 0114 111 CMPL flNRAB+RABIL.RBP,MATCH._PART,...NO ' DO FIRST 4 CHARACTERS

011F 112 ' OF PART NUMBER MATCH?
29 12 011F 113 BNEQ CH!CK.,.DELETED

0000027C"EF 01 E2 0121 114 BBSS #1,MATCH4PLAG,DISP~AY , BRANCH IF HEADER ALREADY PRINTED

DISPLAY • DISPLAY RELATED RECORDS 14•JUL•1919 12153113 VAX•ll MACRO X0 1 3•11 PeQe 3
(1)

AE 012l'
012q 115 TYPE cRELATED RECORDCSl1>

8D 11 0148 11" BRB DISPL•Y
010 117 CHECK.,DELETEDI

0000000"'•8F 50 D1 11110 11 l' Clo!PL RQl,#Rlo!Sl..,RNF ' WAS ERROR RECORD FOUND?
21 12 0151 11q BNEQ CHECK.RELATED ' BRANCH IF NOT

0153 12r/I TYPE cOELETED RECORD SKIPPED>
CHI 11 0172 121 9R8 GET SEQ ' GO GET NEXT RECORD

0174 122 CHECK.,RELATEDI
0000'1127C•tF "l E0 0174 123 BBS #1,M•TCH..,FLAG,GETNEXT ' BRANCH IF RELATED RECORDS PRI~TED

1F 0178
11!17C 124 TYPE cNO RELATED RECORDS,>
01qB 125 GETNEXTI

FE80 31 QllqS 12fl BRW GET .. REC .. NO ' LOOP
01qf 127 '
1111qE 128 ' REPORT ERRORS
'111 qf 12q '
01qE 130 FJAD...,t<EV I TVPE cBAD KEY VALUEl>

FE6B 31 "'lBO 131 SR;.j GET .. REC.,NO
'111C0 132 l3AD...,PART1 TYPE cRECORD DOES NOT EXIST 0 >

Ffl.lq 31 01DF 133 BRlti GET.,REC.,NO "' 01E2 134 ~
0 01E2 135 I Ci)

01E2 136 ' ALL DONE • CLOSE FILES ANO EXIT
~ 01E2 137 t

>
IZl1E2 138 DONEi SC LOSE FAB•INFAB 3:
01EF 11q SC LOSE FAB•TYPE..,FAl3

I "'lFC 140 SCLOSE FAB•PR0'4PT.._FAB tl:J
co

~2~q 141 EXITI SEXIT.,S R0 ~ 0212 142 t++ 3
0212 143 ' "' 0212 144 I SU8ROUTINE TO CONVERT ASCII INPUT STRING TO BINARY t"1
0212 145 t tl:J
1<1212 146 t INPUTS I Rl, R2 • LENGTH ANO ADDRESS OF INPUT STRING tll
0212 147 '
0212 148 ' OUTPUTS I R0 • STATUS CODE
0212 11.1q ' R3 • BINARY VAL4E
0212 150 ' Rt, R2, R4 DESTROYED
0212 151 ·-· 0212 152 CONVERT.._KEYI

53 7C 0212 153 CLRQ R3 t INITIALIZE OUTPUT VALUE
13 11 0214 154 BRB 2es , GO CHECK IF ANY CHARACTERS

53 0A C4 0216 155 10$1 MULL2 #101 R3 , SHIFT PARTIAL RESULT
16 10 021q 15fl BVS 301 , BRANCH O~ OVERFLOW

82 30 83 0218 157 SUBB3 ··•101, (A2)+, RI.I , GET BINARY VALUE FOR CH~RACTER
54 021E
10 1q 0211' 158 BLSS 31!11 ' BRANCH IF BAO

0q 54 q1 0221 15q CMPB R4,# 5 A/q/•5 A/0/ ' CHARACTER > q ?
08 1A 0224 161!1 8GTRU 301 ' BRANCH IF BAD

53 54 C0 0226 161 ADDL2 R4 1 R3 , ADO IN CHARACTER TO PARTIAL RESUL
51 07 022q 1&2 2011 DECL Rt ' ANY MORE INPUT?
Eq 18 0228 1 "3 BGfQ us ' BRANCH IF MORE

50 Ql1 00 0220 164 MOVL #tr AllJ , SHOlll SUCCESS
05 0230 165 ASB

50 04 0231 16fl 1011 CLRL RllJ ' SHOlol FAILURE
05 0233 16'7 RSB

0234 tf,8 J++

>
I

"°

DISPLAY • DISPLAY RELATED RECORDS

~234
0214
k'234
111234
0234
0234
~,241

024E
02'58

111'5 1112b8
C!!2b9
Ql269

14•JUL•l978 12153113 VAX•11 MACRO X0.3•11

1b9
170 r SUBROUTINE TO INITIALIZE THE TYPE AND PROMPT FILES
171 ,
172 , ••
173 INIT..,TVPEI
174 $CREATE FAB•TVPE..,FAB
175 SOPEN FAB•PROMPT..,FAB
176 $CONNECT RAB•TYPE..,RAB
177 SCONNECT RAB • PROMPT..,RAB
178 RSB
179
180 .END BEGIN

tU
4 l::o Page 0 c 1) (j)

= 31:

t'l:J

t=
3C
tU
I:"'
t'l:J
tn

>
I

......
0

REORDER INDICATE ITEMS TO REORDER

0lllli!l0
011H/J0
0000
011100
0000
0000
000111
000'1!
0000
000111
11J000
rl'H0
11'00CI!
0'300
r/!000
000'11
000G'I
000111
0000
0000
00!00!
11100111
~000

0000!
1!'000
000rll
001iHl

00000032 li'l00111
!lll0A0rl!0Pl0

000a
ft'l00CI!
0050
00q"
ei0qa
0111Ea
iil0El.I
1t:eE'I
111128
01211
111128
0178
0178
0178
01BC
01BC
01BC
01BC
!'HBC
01BC
01BC
01BC
01FC
01FC
01FC
01FC
01FC
023C

12•D!C•1~78 17,27117 VAX•11 Macro V02.23

1
2

.TITLE A!ORD!A INDICATE ITEMS TO REORDER

3
4 PROGRAM TO READ THE OLD INVENTORV MASTER FILE AND CREATE
5 '
6 '
7 '
e '
q '

NEW MASTER FIL!, RECOGNIZING THOSE ITEMS WITH AN ON•HANO
QUANTITV LESS THAN THE REORDER QUANTITV, AND SETTING THE REORDER
DATE IN THE N!W MASTER FILE TO TODAv•s DATE, AND LISTING THE
RECORD ON SVSIOUTPUT.

10 .MACRO
11
12
13
1 'I
15
16
17
18
1q
20 .ENOM
21 I

TVPE
.SAVE

STAI NG

-P~ECT TVPE~STRINGS,NOWAT
••• TMPA•,
-ASCII \S:TRlNG\
••• TMPL•.• ••• TMPA
.RESTORE
MOVL *••aTMPA1TVPE.._RAB+RABSL.RBF
MOVW *••aTMPLiTVPE.RAB+RABSW.RSZ
SPUT RAB•TVPEARA8

22 .MACRO ON~ERROR DEST I 1L
R0,L
DEST

23 BLBS
2'1 BRW
25 LI
26 .ENOM
27 I
28 REC.._SIZE•50
2q .PSECT DATA,LONG

MACRO TO TYPE •STRING•
SAVE CURRENT PSECT
CHANGE TO TVPE STRINGS
NOTE ADDRESS
STORE STRING
NOTE LENGTH
8ACK TO ORIGINAL PSECT
SET STRING ADDRESS
SET STRING LENGTH
WRITE THE RECORD

~ACRO TO BRANCH ON E~ROR
, BRANCH ON SUCCESS

LONG FORM OF BRA~CH

RECORD LENGTH

Peoe

PSECT

3111 TYPE~FABi SFAB FNM•cSVSSOUTPUT>,• FAB FnR USE WITH THE TYP~ MACRO
31 RAT•CR
32 TYPELRABi SRAB FAB•TVPE:FAB
33 ' 3'1 I"'IFAB1 S!l'AB
35 Il'llUft1 SRAB
36
37
38 OUTFABi SFAB
3q
a0
at OUTRABi SUB
a2
43

FN"lacINFILEI>
FAB•INFAB1•
UB~•R!C~BUFFER,•
USZ•REC.S IZE.
FNM•COUTFILE1>1•
ORi;•IDX1•
XAB•KEV0
FAB•OUTFA8,•
RBF•REC.!UFFER,•
RSZ.R!C.SIZE

RAB FOR USE WITH TYPE MACRO

4'1 I
45
4b

XAs•s TO ORDER THE KEYS, PART#•PRIMARV, DISCOUNT TVPE•ALT. KEY•1,
DESCRIPTION•ALT.KEY#2

47 '
48 l<EV01
49
50
51
52 KEY11
53
5'1
55
56
57 l<!V2i

SXABKEV

SXABl<EV

SXABK!Y

REF•IJ,•
POS•lr•
Sii•5,•
NXT•l<EYl
R!l'•11•
POS•51•
Uhl,•
l'Lll•cDUP,CHQ>,•
NXh~!Y2
REF•Zr•

>
w

rn
t'll
IO
c::J
t'll
!ZJ
~
t-4
)II
rot

~
t'll
n
0
~
0

)II
n
n
t'll
rn
rn
3
0
0
t'll

t-4
!ZJ
0
t'll
~
t'll
0

"ZJ
t-4
rot
t'll

0
~
Cl
)II
22
t-4
N
)II
~
t-4
0
22

l'tj
~
0
Cl

~
3

t'll
~

5;·
l'tj
rot
t'll
rn

REORDER . INDICATE IT!MS TO REOROER 12•DEC•1q79 t7J27117 VAX•tl Mec~o vaz.23 Pe;e 2

023C 58 POS•61•
023C 5q SIZ•21!11•
023C Ei0 FLG•cDUP,CHG> 1•
023C bl NXT•Cll
027C b2 '
027C bl I DEFINE FIELDS OF RECORD
027C b4 '

0111000005 027C b5 PART.._N0.&.LEN•5
1110000014 027C bb PART.._DESC.._LEN•20
00000004 lll27C b7 GITY.._LEN114
000000n 027C b8 DATE.&-LEN1:Q
00!000007 027C 6Q PRICE.._LEN•7

027C 7121 r
~27C 71 REC.._BUFFERr

0000111281 (1127C 72 PART.&-NU"'1~ERI .BLl<B PART>olO.._LEN t"O
00000282 0281 73 DISCOUNT.TYPES .BLl<B ~.i:n:oESC.LEN

!:G
000002qb 11282 74 PART.._O~SCRIPT1 ~BLl<B 0

Cil 0000ia2qA 02qb 75 QTY.._ON.._HANDI 0 BLKB QTY.._LEN
!:! 000~02qf 02QA 76 REOROPJ~_.QTYI ~BLKB CITY .._1,.EN

:t>' 00011l02A7 029E 77 REOROER.&.DATE1 .BLKB OATE ... LEN 31
I liHH'l002AE 02-A7 78 LIST.&-PRICEr .BLKB PRICE.LEN

...... 02AE HT t'ZJ

...... 02AE 80 ' BUFFER TO FOR"'1AT ANO PRINT RECORD >4
>' 1'.12AE 81 ' 3 20 11!2lE 132 TYPE.&-BUF r .ASCII I I t"O

000002811 e2AF 83 TYPE.&-PART1 .BLKB PART NO,,.LEN tot
2"" 0284 811 • .&SC II I I t'ZJ

11!C'H"'1J02C9 0285 85 TYPE ... OESC t .BLKB PART ... DESC,,.LEN en
20 20 20 2QI it2C9 8b .ASCII I I

000,,0201 02co 87 O~J.._iolAlllDt .BLKB QTY,,.LEN
20 20 20 2111 0201 as .ASCII I I

001l100209 0205 89 REORDERS .BLKB QTY.&.L!N
ti1000002B 111209 90 TYPE ... L!N•.•TYPE.&.BUF

00 02oq Q1 1-!EAOINGI .BYTE 0
rll20A q2 • ALIGN LONG
02DC ql 1 BU,FER TO GET CURRENT DATE

00000008 020C 94 OATE~BUFi .LONG 11 • ' LENGTH OF BUFFER
000002Ell• 11!2E0 q5 .LONG TODAYS..._DAT! ' ADDRESS OF BUFFE~
1'100002EB 02£4 9& T004YS DATE r .BLKB 7 , DO•l40N•
000002ED 02EB 91 YR LCE~TURY i .BLl<B 2 '

yy
01.'J0002EF 02EO q9 YEARI .BLl<B 2 I VY

>
I

......
N

REORDER

000012!2EB'EF

00001112qfl'EF

H0002E4'EF

0000020q"EF

HH027C "EF

H000282"EI'

HH'112CD"EF
BH002D5"EF

INDICATE IT!MS TO REORDER

000002EO"EF

04
000002qA'EF

03
eeqc
0q

li!ll'l0002qE"EF

01
3E

D.15
0H002Al'"EI'

14
0HC!l02B5"EI'
0HH2•6"EI'
00011102'4"!1'

HHHH
HH
llll!IH
HH
0000
000111

HH 11111l00
0002
000F
111015
0LH5
0015
0015
00!34
0U1
0047
0054
005•
011167
0060

80 0080
0088
0088
0M8
00qE
lll0AB
fi\081
0081
0000
00EF
00EF
00tEF
00EF
00EF
00EF
00FC

2q ll11112
010q

1 q 01 V'IE
31 0110
2@ 0113

01 lA
0111'

E2 011F
0126
0127
01116
IH65

28 0165
016C

28 0171
0178

OB 017D
DI 0188

01'3
010
01'3

1Z~D!C•l•7e S7S2Tll7 VAX•tl M1e~o va2.2J

U0 .ll'S!CT COD!,NOWRT
U1 t
11!12
i03

INITIALIZATION
G!T TODAY'S DUE

OP!N INPUT AND OUlll'UT l'ILES, CONNECT STREAMS, AND

1 li'IQ •

105
106 START1
107
108

.WORD 0
SOPEN l'ABaINl'AB
ON:ERROA !XIT

OPEN INPUT FILE
BRANCH ON ERROR

P101 3

10q
11P

SFAa:sTOA! l'AB•OUTl'AB1•
Rl'M•l'ABIB.RFM+INl'AB1•
MAS•l'ABlw.MRS+INl'AB,•
RAT•l'ABSB.AAT+INl'AB

INITIALIZE OUTPUT FAB FROM INPUT
SET RECORD FORMAT

111
112
113
114
115
116
117
118
11q
12e
121
122
123
12G
125
126
127
128
12q

SCREATE FAB•OUTl'AB
ON:EAROR EXIT
SCONN!CT RAB•INAAB
ON:!RAOR EXIT
SCONNECT RAB•OUTRAB
ON:EAAOA EXIT
SASCTIM.S TIMBUF•DATE.BUI'
MOVW VEAR,YA.C!NTUAY

SOPEN l'AB•TYPE:FAB
ON~EAAOR EXIT
SCONNECT AAB•TYPE:RAB
ON~ERROR !XIT

SET RECORD SIZE
SET RECORD ATTRIBUTE
CREATE OUTPUT l'IL!
BROICH ON !RROR
CONNECT INPUT RAB
BRANCH ON !RROR
CONNECT OUTPUT RAB
BRANCH ON ERROR
GET CURRENT DATE
MAKE INTO YY FORMAT
(RATHER THAN •vvvv•)
OPEN REPORT FILE
BRANCH ON ERROR
CONNECT REPORT RAB
BRANCH ON ERROR

TVPE
TVPE

CLIST OF INVENTORY ITEMS BELOW REORDER POINT>

130! •
131 t
132 ,
133 •

COPV RECORDS 'ROM OLD 14ASTER TO NEW MASTER CHECKING QUANTITY
ON MANO VERSUS REORDER QUANTITY

134 ~E4Di
135
136

137
138
13q 2011

140
11.11

SGET RAB•INqAB
ON: ERROR OONE I
CMPC3 #QTY:LEN,QTVLON.HANO,AEORDER.QTYt

READ A RECOAO
BRANCH TO DONE, IF FINISHED
ON•HANO LESS THAN REORDER QTY

BLSS
BRW
140VC3

20S I BRANCH IF YES
WRITE I OMIT REORDER PROCESSING IF NOT
#DATE.LEN,TODAYSADAT!1R!OADEA.DATE

SET REORDER DAT! TO TODAV"S DiTE
aess #1rH!ADING,REPORT.IT!M t BRANCH IF HEADING ALREADY PAINTED

142 TYllE cPART # PART D!SCRIPTION ON HAND REORDER PT 0 >
143 TYPE
144 REPORT:IT!M1
145 MOVC3

~OVC3

t BUILD REPORT RECORD
#PART.NO:L!N,PART4 NUMBER,TYP!4 PAAT

#PART.DEsc:LEN,PART.D!SCRill'T,TYP!.DESC 146

141
148
14•
tse
151

MOVL QTY.oN:HAND,oN;MANO
MOVL. R!ORD!R4 QTY1R!ORDIR
IRAB~STOR! ~Al•TY'!~~AB,•

RB~•TY'l~IU,, •
RSZ.#TYP!.L!N

"'d

~
Gl

~
3

t:rJ

~
31
"'d
t-t
t:rJ
tll

>
I

......
w

REORDER

0G'J00020q"EF

INDICATE ITEMS TO REORDER

01A6
0tAF
!ll1 BC

FF2• 31 r111c2
~1CS
'111C5
01cs
01CS
01C5
01D2

01 E0 · 01DF
1F 01E6

01E7
020&
l'l206
0213
ei21c
021c

12•DEC•1978 17•27117

152 SPUT RA8•R0
153 WRITE1 SPLIT RAB•OUTRAB
154 ON~ERROR EXIT
155 BRW READ
156
157 r
158 r ALL SET CLOSE FIL!S AND EXIT
1sq r
160 OONEI
161
162

SC LOSE
SC LOSE
BBS

FAB•INl'AB
FAB•OUTl'AB
#1.H!ADING,CLOSE:TYPE

TYPE CNONE> 163
164
165
166
167
1&8

CL.OSE.._TVPEt
SCLOSE FAB•TVPE~FAB

!XITI SEXIT.._S R0

.END START

VAX•11 ~•c~o v02.21

PRINT REPORT REtORD
WRITE NEW MASTER RECORD
BRANCH ON ERROR
BRANCH ON SUCCESS

P•ge 4

BRANCH IF HEAOI~G PRINTED

INDICATE NO ITEMS REORDERED

"" ~
Cil

= 31

ts.:!

= 31
t'd
t"'
ts.:!
{IJ

>
I

........

.1:1-

AODTOFILE ADD RECORDS TO FILE

00!00
1'1000
llJ\ll00
0000
0000
0000
000111
0000
IH'l00
0000
0000
0000

~""" V'llJ00
110t"llJ
IA01tl0
0000
'-'000
:.4'1100
ftl0~0

-"0:30
"C!.100
(llllJ0QI
0000
~"0~
~00111
fl(ililJllJ
~!~11111)

!110f/1111
i'011JQI
i<J000
f/1000
kl<il00
;;)ftl~Vl

ll000
;,l~illlil

"011J0
"111J0QI
t1000
•N"0
:3000
f/1000
1-1000
i-Hl!00
'.~00111

\jQl011!
0002'11J000

00~0

0011)0
IH'l00
"1000
1101210
til050
00q4
1110E4
ltl0E4
00E4

1
2
3
4
5

11•D!C•l971 11132135 VAX•11 Macro VB2,2l

.TITLE ADDTOFILE ADD RECORDS TO FILE

THIS PROGRAM ADDS NEW RECORDS TO AN INDEXED FILE, CREATING THE
FILE INITIALLY, IF IT DOES NOT ALREADY EXIST.

Page

6 IN ADDITION, THE UPDATE IF (UIF) OPTION IS USED ON THE $PUT MACRO.
7 IN THIS EXAMPLE, THE PRIMARY KEY IS THE PART NUMBER. WHEN A RECORD
8 WITH A NEW PART NUMBER IS INSERTED, IT WILL SIMPLY BE PUT INTO THE
9 FILE. WHEN A RECORD WITH AN OLD PART NUMBER IS INSERTED, HOWEVER,

10 IT WILL UPDATE THE EXISTING R&CORD.
11 ,MACRO TYPE..,STRING
12
13
11.1
15
16
17
18
1q
2111
21
22
23
24
25
26
27
28
2q

,ENOM

' ,MACRO

,ElllDM ,
,MACRO

LI
• END!il
J

,SAVE
,PSECT TYPE..,STRilllGS,NOWRT
,,,TMPA=,
I ASCII \STRING\
1 , 1 TMPL•,• 0 ,,TMPA
,RESTORE
MOVL •,,,TMPA,TYPE.RAB+RABSL.RBF
MOV~ M,,,TMPL,TYPE..,RAB+RABSW.RSZ
$PUT RAB•TYPE..,RAB

PR0"1PT STRING

,SAVE
,PSECT TYPE..,STRINGS,NOWRT
,,,TMPAa,
,BYTE 11110
,ASCII \STRING\
,,,TMPL:,~,,,TMPA
,RESTORE
MOVL •,,,TMPA 1 PROMPT4 RAB+RABSL..,PBF
MOVB # 1 ,,TMPL,PROMPT..,RAB+RABSB..,PSZ
SGET RAB•PROMPT.RAB
MOVZWL PROMPT.RAB+RABsw .. RSZ,Rl
MOVL PROMPT.RAB+RABSL4 RBF,R2

ON4 ERROR DEST,?L
BLBS R0,L.
BRW OEST

,PSECT DATA,LONG

MACRO TO TYPE "STRING"

SAVE CURRENT PSECT
CHANGE TO TYPE STRING
t.IOTE ADDRESS
STORE STRING
NOTE LENGTH
BAC~ TO ORIGINAL PSECT
SET STRING ADDRESS
SET STRING LENGTH
WRITE THE RECORD

MACRO TO ACCEPT INPUT
FROM SYSSINPUT, PROMPTING
WITH "STRING"
SAVE CURRENT PSECT
CHANGE TO TYPE STRINGS PSECT
NOTE ADDRESS
CARRIAGE RETURN,LINE FEED
STORE STRING
NOTE LENGTH
BACK TO ORIGINAL PSECT
SET PROMPT BUFFER ADDRESS
SET PROMPT BUFFER SIZE

MACRO TO BRANCH ON EHROR
BRANCH ON SUCCESS
LONG FORM Of BRANCH

30
31
32
33
34
35
36
37
38
Jq
40
I.I 1
42
1.13
1.14
I.IS
1.16
47
1.18
4q FABS AND RABS FOR USE WITH TYPE ANO PROMPT MACROS
50
51
52
53
54
55
56
57

J
TYPE..,FABI

TVPE..,RABI
PROMPT..,FAB1
PRO,..PT ..,RAB I

SFAB

SRAB
Sl'AB
SRAB

FNM•CSYSIOUTPUTa>,•
RAhCR
FABaTYPE_.FAB
FNM•cSYSIINPUTI>
FAB•PROMPT4 FABr•
UBF•PRO,..PT4 BUFF,•
usz-uz,.

>
.1:1-

!:
:ZS
0
0
3

~
t'il
(")
0
~
0

>
(")
(")
t'il
tll
tll

3
0
0
t'il

....
:ZS
0
t'il
>cl
t'il
0

"'Iii
tot
t'il

0
~
Cl
>
:ZS
~

>
t-i
0
z

ttj
~
0
Cl

!:
3

t'il
>cl
>
3
ttj
tot
t'il
tll

;:J::ii
I

.......
U'1

ADDTOFILE ADD RECORDS TO FILE

00000032

00<:!0!1!005
00<!00Ql14
0011100004
13000011109
0~000007

00000281
00000282
0000029&
0000029A
111000029E
000002A7
000002AE

00000334

l'l0f4
"'128
~128
!i'128
0128
0128
~128
0128
~128

"'12&
0128
0128
i'.'128
l'.'1 78
"'178
0178
01BC
01BC
lil1BC
L11BC
1"1BC
'~ 1 BC
~~18C
lil1FC
!t1FC
lil1FC
"'1FC
1:'.11 FC
11i23C
!1-23C
~23C
023C
023C
_,27C
027C
"27C
~~27C

kl27C
027C
027C
tll27C
027C
1t127C
1'127C
l(l281
0282
029&
0294
029E
02A7
02Af
02AE
0280

l1•0EC•1978 10132135

58 ROP•PMT
59 :
b0 :
bl :

INPUT F!LE FAB ANO RAB AND XABS

b2 REC..,SIZEs50
63 INFABI SFAB
b4
bS
bb
&7
&8
b9
70
71 '
72 !NIUBI SRAB
73

FNM•<INFILE1>1•
ORG•IOX 1•
RFM•VAR,•
MRSsREC..,SIZEr•
RAT•CR,•
FlCscPUT 1UPD>,•
XAB:KEY0r•
FOP•CIF

FAB•INFAB1•
RAC:aKEV

VAX•11 Mec~o V02e23 Pege

FILE ORGANIZATION SPECIFIED
POSSIBILITY IS PRESENT
THAT IT MAY NOT EXIST
ANO THEREFORE ~AV HAVE
TO BE CREATED

74 J
75
7b ,

DEFINE KEY XABS, ONE PRI~ARY KEY ANO TwO ALTERNATES

77 KEV01
78
79
80
81 KEYll
82
83
84
85
.13b l<E'l'21
87
88
89
90

HABl<EY

SXABKEY

SXABKEV

REF:z0,•
POS•0r•
SIZ•S1•
NXT•KEVl
REF•l1•
POS•5,•
SIZ•11•
FLG•cOUP,CHG>,•
NXT•KEY2
REF=21•
POS•b1•
SIZs201•
FLG•<OUP,CHG>,•
NXT•0

91
92
93
94
95
96
97
98
99

DEFINE FIELDS OF RECORD

1010
101
U2
103
104
105
106
107
108

PART..,NO..,LEN•S
PART DESC..,LEN•20
QTY..,LEN:14
DATE LEN•9
PRICE..,LEN•7 ,
REC..,BUFFERI
PART NUMBER I
DISCOUNT..,TYPE1
PART OESCRIPT1
QTY.ON..,HAN01
REOROER 4 QTY1
REORDER,,.DATEI
LIST PRICE1 ,

109 .ALIGN
110 PROMPT BUFF1

.BLKB

.BLKB
eBLl<B
.BLKB
eBLKB
.BLKB
.BLKB

LONG
eBLKB

PART NO..,LEN
1
PART DESC,,.LEN
QTY,,.LEN
QTY,,.LEN
DAT!:,.L!N
PRIC!,,.LEN

uz

2

"O
~
0
G')

~
3

t'IJ
:>4
>
3
"O
t1
t'IJ
{ll

ADDTOFILE ADO RECORDS TO FILE

0334
0334
0334

00111000111111
111000 "000

0002
1!100F
000F
~015
"'022

01EF 30 0028
0028
~026
~028
r.'l02B
e02B
011158

51 05 ~05E
03 12 0000
1u es 31 ~002

&2 51 2C ;;,0&'5
30 11}0&8

0000027c•EF 05 00oq
00oF

02 51 2C Hqc
> 2111 00qF
I 00000281 •EF 1111 ~0A0

....... :IJ0Ao
O'I ~0D3

02 51 2C 00oq
20 00DC

00000282'EF 14 000D
lll111E3
\11110

0000e2qo"EF .30202020 8F D0 0110
04 51 Cl ~121

53 0124
I.IA 1q 0125

02 51 28 0127
029o"C3 IH2A

•H2D
015A

0000029A'EF 30202020 SF D0 2110111
04 51 Cl tllloB

53 01oE
03 18 01&1"
009D 31 0171

0174
o2 51 28 0174

029A"C3 t11177
oE H 2C 011•

20 0170
&3 09 017E

IU80
0180
01AD

&2 51 2C 0193

1l•DEC•l971 11132135 VAX•11 Mecro \102 1 23 Pege 3

112
113 PERFORM INITIALIZATION
114 '
115 ,PSECT CODE 1NOWRT
116 BEGINI ,WORD 8
117 SCREATE FAB•INl"AB
118
11q ON.ERROR EXIT
120 SCONNECT RAB•INRAB
1i?1 ON.ERROR EXIT
122 BSBW INIT 4 TYPE
123 '
12G J SOLICIT DATA l"IELDS INPUT
125 '
120 GETNXTI
127
128
12q
130
131
132 us1

133
134
13'5

130
137
138
139

140
141
142
143
144

145
140

147
148
149
150

151
152 EXITU
153 CONTl I
1'54

155

156
157
158
15CJ
108

PROMPT <PART #I>
ON.ERROR DONE
TSTL Rt
BNEQ l0S
BRW DONE
MOVC5 R1rCR2),#.A/0/1•

#PART 4 NO.LENrPART.NUMBER
PROMPT <DISCOUNT TYPEa>
MOVC5 RlrCR2)1#•A1 Ir•

#lrDISCOUNT.TYPE
PROMPT <PART DESCRIPTION1>
ON.ERROR EXIT
MOVC5 R1 1 CR2),#.A/ 11•

#PART.DESC.LEN,PART4 DESCRIPT
PROMPT <QUANTITY ON HANDS>
ON.ERROR EXIT
MOVL #•A/ 0/1QTY.ON.HAND
SUBL3 R1,#QTY4 LEN,R3

BL.SS EXIT1
MO\IC3 R11CR2) 1 QTY.ON.HANDCR3)

PROMPT <MINIMUM REORDER QUANTITYa>
ON.ERROR EXIT
MOVL #•A/ 0/1REOROER 4 QTY
SUBL3 R1,#QTY.LEN1R3

BGEQ CONT1
BRW EXIT

MOVC3 R11CR2)1REORDER.QTY(Rl)

MOVCS #01CSPl1#•A1 11•

#DATE.LEN, CRl)

PROMPT <LIST 'RICEa•
ON.ERROR !XIT
MOVC5 ~11CR2)1#•A1 11•

OPEN FILE IF IT EXISTS
ELSE CREATE IT
BRANCH ON ERROR
CONNECT INPUT RAB
BRANCH ON ERROR
INITIALIZE TYPE ANO PROMPT FIL~S

GET NUMBER OF PART
BRANCH IF DO"-lE
ANY INPUT?
CONTINUE IF YES,
ELSE QUIT
MOVE PART NUMBER TO RECORD BUFFER

ZERO FILLING
GET DISCOUNT TYPE
MOVE DISCOUNT CODE TO RECORD BUFF

(BLANK IF NULL)
GET PART DESCRIPTION

MOVE PART DESCRIPTION TO RECORD

BUFF, BLANK FILLING
GET NU~SER ON HAND

INITIALIZE BUFFER AREA
DETERMINE OFFSET IN ~UFFER AREA

IF FIELD TOO SMALL1 EXIT
PUT IN VALUE ~IGHT ALIGNED

GET MINIMUM QUANTITY

INiTIALIZE BUFFER AREA
OETER~INE OFFSET

CONTINUE IF FIELD IS o.K,
BRANCH LONG TO EXIT

FILL IN BUFFER AREA RIGHT ALIGNED

BLANK REORDER DATE

CTAKE ADVANTAGE OF ITS
ADDRESS IN R3)
GET ~RICE

MOVE PRICE TO RECORD BUFFER

"" !:O
0
Ci)

~
3:

tZl
>4
>'
3

"" t"'
tZl
tll

>
I

.......

.....J

ADDTOFILE

000002A7'EF

ADO RECORDS TO FILE

20
07

FEl.11 31

05

'-"186
0187
~180
0160
0180
0180
0101.1
0101.1
~101.1
01E1
!ti 1E7
01EA
01EA
01EA
·01EA
01F7
0201.1
0211
:1121.l
021A
021A
021A
lil21A
021A
021A
021A
0227
!0234
0241
021.iE
024F

lU
162
163
1 f>4
165
lbb
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
181.1
UIS
186
187
188
19'
19"

11•DEC•1978 10132135

#PR ICE.LEN, LIST.PRICE
SRAB.STORE RA8•INRA81•

RBl'•REC.BUFFER,•
RSZ•#REC.8IZE1•
ROP•UIF

SPUT RA8•INRA8
ON~ERROR EXIT
BRW GETNXT

ALL SET • CLOSE l'ILE ANO EXIT

DONEa

EXITI

:++

SCLOSE FAB•INFAB
SCLOSE FAB•TYPE.FAB
SCLOSE FA8•PROMPT.FAB
SEX IT .s R0

VAX•11 M•cro V02.23 P•ge I.I

BLANK FILLING
SET UP RAB FOR NEW RECORD

11 IF PART # ALREADY fXISTS, UPDATE
J RECORD WITH NE~ INFOR~ATIO~

WRITE NEW RECORD

GET NEXT RECORD

SUBROUTINE TO INITIALIZE THE TYPE AND PROMPT FILES

, ..
INIT. TYPE1

SCREATE FAB•TYPE.FAB
SOPEN FAB•PROMPT.FAB
I CONNECT RAB•TYPE.RAB
SCONNECT RAB•PROM,T.RAB
RH
,END BEGIN

'tt
~
0
Cil

f:
31

P.I
~
>
31
'tt
tot
P.I
m

APPENDIX B

USING THE RMS FILE ANALYZER

The RMS File Analyzer (RMSANLZ), which is not a DIGITAL-supported
utility, enables you to inspect the file attributes and index
structure of files. With the information provided, you can analyze
characteristics of index files such as index tree depth and fill
percentages. You can also analyze file corruption problems caused by
user program errors and RMS system failures.

You can use RMSANLZ interactively or you can direct the output to a
listing file. The following list summarizes the operations you can
perform with RMSANLZ:

• Display file attributes, file header characteristics, and
prolog information

• Display key description information for any key of an indexed
file

• Display, for each index level of a key, the
number of buckets, number of records,
records, number of record reference vectors
number of deleted RRVs

fill percentage,
number of deleted

(RRVs) , and the

• Print, for each bucket on each index level of the key, the
virtual block number, the number of records and RRVs, and the
record IDs of each record

• Display, for any bucket, the bucket control information,
record control information, and key values

• Displ~y any bucket in hexadecimal dump format

• Print detailed bucket contents of all buckets

B.l USES OF RMSANLZ

RMSANLZ has two uses:

• To examine the characteristics of indexed files

• To provide information on file corruption errors caused either
by application program errors or by RMS or VMS system
failures.

When examining indexed files, RMSANLZ is useful for determining the
effects of file activity, file loading, and file definition options.
For example, if file size is used in loading an indexed file, RMSANLZ
will display the actual fill percentage for further tuning in future
file loads.

B-1

USING THE RMS FILE ANALYZER

RMSANLZ can also be useful in determining the need for file
reorganization by displaying the number of deleted records and deleted
RRVs in the file. If a large fraction of the records is deleted, then
file reorganization may be advisable.

Whenever file corruption errors occur and an RMS or VMS system failure
is suspected, the complete RMSANLZ analysis of the file should be
included with the Software Performance Report (SPR).

B.2 OPERATING RMSANLZ

The RMS File Analyzer (RMSANLZ) is executed by commands obtained from
SYS$INPUT (terminal or procedure data). The output, by default, is
sent to SYS$0UTPUT or directed to a listing file. You invoke RMSANLZ
by typing:

$ RUN SYS$SYSTEM:RMSANLZ

Control is then passed to RMSANLZ, and RMSANLZ, in turn, displays the
following prompt at your terminal:

Name of file to analyze:

You respond by typing the file specifications of the file to be
analyzed.

RMSANLZ then prompts for the file specification to be used for output:

Specify output file, default is SYS$0UTPUT:

You respond with the listing file specification, or with <RET> to
indicate SYS$0UTPUT.

RMSANLZ then displays the file attribute, file header, and file prolog
information for the file. This information is in a format similar to
a full directory listing, but is more extensive and includes
infotmation about file area allocations. An example is shown in
Figure B-1.

DBAO: [RMS.ANLZ]ISAM.IDX:l
5rganization: Indexed with 2 defined ·keys
Record Format: Variable Record Attributes: Carriage return
Maximum Record Size: 200 bytes
File Protection: System:RWED Owner:RWED Group:RWE
File Owner: [011,122] File ID: (7214~23,l)
Created: 24-JAN-1980 13:48:57.82
Revised: 24-JAN-1980 13:54:36.43 (3)
Expires: <none specified>
File Allocation: 72
End-of-file VBN: 52
Allocation Attributes:
Prolog version: 1

Extension: O
First free_byte: O

Number of areas: 2

World:R

Area ID: 0 Area bucketsize: 3 Area extendsize: 21
Alignment: CYL Options: Contiguous
Current extent: Start VBN: Size: 51 Used: 21

Area ID: 1 Area bucketsize: 2 Area extendsize: 10
Alignment: None Options:
Current extent: Start VBN: 52 Size: 21 Used: n

Figure B-1 Sample File Attribute Listing

B-2

USING THE RMS FILE ANALYZER

If the file is an indexed file, RMSANLZ then prompts for the key of
reference to be analyzed:

Specify key of reference, default is all keys:

You respond with a key-of-reference number, or w4th <RET> to ask
RMSANLZ to cycle through all the keys starting with the primary key.

RMSANLZ displays the key description as shown in Figure B-2 and then
prompts for the analysis operation to perform for the key:

Operation:

You respond with one of the following commands:

HELP or ? or help - Print this command summary

A(NALYZE)

S(HOW)

L(IST)

D(UMP)

E(XIT) or <RET>

- Print summary of each index level including
fill percentage, number of buckets, records
RRVs, deleted records, and deleted RRVs

- Print detailed bucket contents for specified
buckets. The question "Next VBN:" asks for a
VBN number until <RET> or EOF is entered

- Print detailed bucket contents for all buckets

- Print VBNs in hexadecimal dump format for
specified buckets. The question "Next VBN:"
asks for the VBN number until <RET> or EOF is
entered

- Exit from this key and go to command level

Key of Reference: 0
Total Key Size: 10

Key Name: PART NUM ID
Minimum record-length: 44
Key Data Type: String Number of Key Segments: 2

Key Attributes: Duplicates
Key Position: 16 42
Key Size: 8 2

No Changes

Area numbers: Data:O Index:l
Data Bucketsize: 1536
Index Bucketsize: 1024
Index Depth: 1

Lowest index level:l
Data fill size: 1200
Index fill size: ~00
Root VBN: 52

Figure B-2 Sample Key Information Listing

During the ANALYZE operation, if you answer yes to the question:

See VBN, #Records, #RRVs for each bucket? Y/N

the VBNs, number of records, and number of RRVs
printed in addition to the summary. If
question:

per
you

Want to see record IDs for each bucket? Y/N

bucket
answer

will be
yes to the

the record IDs for each bucket for level O will be printed. The
format of the ANALYZE operation output is shown in Figure B-3.

B-3

USING THE RMS FILE ANALYZER

Level Number: 1
Level 1 Fill Percentage: 6
Number of buckets on this level: 1
Number of records on this level: 4

Level Number: 0
Bucket

1

2

3

4

5

n

VBN Recs Del recs RRVs Del rrvs
4 10 0 3 3

10 11 0 0 2

16 2 1 0 0

7 5 1 7 1

13 5 0 4 0

19 9 0 0 0

Level O Fill Percentages: 56
Number of buckets on this level: 6
Number of records on this level: 42
Number of RRVs on this level: 2

Fill%
76

82

23

48

39

n7

Number of deleted RRVs on this level: 6

2 3
14 1'1

1 3
11 12

1 2

6 1
10 4

11 1
10

1 2
9

Rec IDs

4
7

4
13

3

2
7

2

3

6
8

5
2

12
8

3

4

9 10 12 13
1 5 11 15

6 8 9 10
7

15 14 9 11
5 13

14 9 12

5 6 7 8

Figure B-3 Sample Key Analysis Listing

The output format for the SHOW and LIST commands includes:

• Bucket control data including bucket type, index level, area
number, and free space.

• For each record in an index bucket, the record pointer and key
value.

• For each record in a primary data bucket, the record size and
each key value.

• For each record in a secondary data bucket, the key value and
all duplicate-record pointers.

If file corruption has occurred or an invalid value is entered to the
SHOW command, RMSANLZ will display:

***** Invalid Bucket VBN: n *****

Using the DUMP command will allow you to examine the corrupted bucket.

B-4

USING THE RMS FILE ANALYZER

If file corruption has occurred or an invalid value is entered to the
SHOW command, RMSANLZ will display:

***** Invalid Bucket VBN: n *****

Using the DUMP command will allow you to examine the corrupted bucket.

B-5

A
Assembly-time control block ini

tialization, 2-1
ASSIGN command, 3-10

B
Bypassing logical name transla

tion, 3-13

c
Calling standard of routines,

2-2
CREATE command, 3-5
Creating an indexed file, 4-10
Creating a relative file, 4-8

dynamically, 4-9
sequential record access mode,

4-8
Creating a sequential file, 4-3

dynamically, 4-5
sequential record access mode,

4-4

D
Default file types, 3-6
Default process logical names,

3-13
Defaults for logical names, 3-12
Determining file organization

requirements, 1-1
Directory,

master file directory, 3-4
subdirectory, 3-4
user file directory, 3-4

E
Equivalence strings,

logical names, 3-10

F
File names, 3-2, 3-5
File organization,

advantages and disavantages,
1-2

determining requirements, 1-1
indexed, 4-10, 5-9
relative, 4-7, 5-6
sequential, 4-1, 5-1

INDEX

File specifications, 3-1, 3-9
defaults, 3-8

File types, 3-2, 3-4
defaults, 3-5

File versions, 3-2, 3-4

G
Group logical names, 3-11

H
Hardware device,

mass storage, 3-1
record-oriented, 3-1
unique identification, 3-2

Identification of hardware de
vices, 3-2

Indexed file organization,
random access to, 5-9
sequential access to, 4-11

I/O segment, 2-1

L
Logical names,

defaults, 3-10
equivalence strings, 3-10
recursion, 3-9
tables, 3-11
translation, 3-11

M
Mass storage devices, 3-1
Master file directory,

MFD, 3-3
MFD,

master file directory, 3-3

N
Network node names, 3-2

p
Process control region, 2-1
Process logical names, 3-11

defaults, 3-10
Process-permanent files, 3-14

Index-1

R
Random record access mode,

indexed file organization,
5-9

relative file organization,
5-6

sequential file organization,
5-1

Reading an indexed file,
randomly, 5-9
sequentially, 4-11

Reading a relative file,
randomly, 5-6
sequential record access mode,

4-7
Reading a sequential file,

randomly, 5-1
sequential record access mode,

4-2
Record-oriented devices, 3-1
Recursion of logical names, 3-11
Relative file organization,

random access to, 5-6
sequential access to, 4-7

Run-time control block
initialization, 2-1

s
Sequential file organization,

random access to, 5-1
sequential access to, 4-1

Sequential record access mode,
indexed file organization,

4-10
relative file organization,

4-7
sequential file organization,

4-1
Subdirectory, 3-4

INDEX

System logical names, 3-11
SYS$COMMAND, 3-13
SYS$DISK, 3-13
SYS$ERROR, 3-13
SYS$ INPUT, 3-13
SYS$LOGIN, 3-13
SYS$NET, 3-13
SYS$NODE, 3-14
SYS$SYSDISK, 3-13

T
Translation of logical names,

3-11
bypassing, 3-14

u
UFD,

user file directory, 3-4
.User control block initializa

tion,
assembly time, 2-1
run time, 2-1

User control blocks, 2-1
User file directory,

UFD, 3-4

v
VAX-11 RMS routines

argument list, 2-2
calling standard, 2-2

w
Wild card characters,

in file specifications, 3-8

Index-2

m
c
0
0

VAX-11
Record Management Services

User's Guide
AA-D781C-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify>~~~~~~~~~~~~~~~~~~~

CitY--~~----~~~~----~~~State __ ~~--~~-Zip Code __ ~~~~---
nr

- - Do Not Tear - Fold Here and Tape

Do Not Tear - Fold Here

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS 1W/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage
Necessary

if Mailed in the
United States

