
VAX-11 MACRO
User's Guide

Order No. AA-D033C-TE

March 1980

This document contains information required by an assembly language pro­
grammer to assemble VAX-11 MACRO programs and to use the VAX-11
MACRO assembly language efficiently.

VAX-11 MACRO
User's Guide

Order No. AA-D033C-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes
the VAX-11 MACRO User's Guide
(Order No. AA-D033B-TE)

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, August 1978
Revised, February 1979
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed . as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright <E) 1978, 1979, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
CO MT EX
DDT
DEC COMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-IO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
fOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI
PDT

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

l

1.1
1.2
l. 2 .1
l. 2. 2
l. 3

2

2.1
2.2
2.3
2.3.l

2.3.2
2.3.3
2.3.4
2.3.5
2.3.n
2.3.7
2.4

3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.8.l
3.8.2

4

4.1
4.1.l
4. l. 2
4. l. 3
4.2
4.2.l

4.2.2
4.2.3
4.2.4

CONTENTS

OVERVIEW OF ASSEMBLY

ASSEMBLING VAX-11 MACRO PROGRAMS
LINKING VAX-11 MACRO PROGRAMS

Resolving Symbolic and Library References
Program Relocation and Address Assignment

DEBUGGING VAX-11 MACRO PROGRAMS

THE MACRO COMMAND

Page

v

1-1

1-1
1-3
1-4
1-5
1-5

2-1

CONSTRUCTING THE COMMAND STRING 2-1
FILE SPECIFICATIONS 2-1
QUALIFIERS 2-3

The /CROSS REFERENCE and /NOCROSS_REFERENCE
Qualifiers- 2-4
The /ENABLE and /DISABLE Qualifiers 2-5
The /LIBRARY Qualifier 2-7
The /LIST and /NOLIST Qualifiers 2-7
The /OBJECT and /NOOBJECT Qualifiers 2-7
The /SHOW and /NOSHOW Qualifiers 2-8
The /UPDATE Qualifier 2-9

DIAGNOSTIC MESSAGES 2-9

THE VAX-11 MACRO LISTING FILE

TABLE OF CONTENTS AND PAGE HEADINGS
SOURCE STATEMENTS AND HEXADECIMAL CODE
AUDIT TRAIL
SYMBOL TABLE
PROGRAM SECTION SYNOPSIS
CROSS-REFERENCE LISTING
ASSEMBLY SUMMARY
ASSEMBLY LISTING EXAMPLE

Effect of the /UPDATE Qualifier
Complete Assembly Listing

ELEMENTS OF VAX-11 MACRO PROGRAMS

ESSENTIAL PARTS OF A PROGRAM
Entry Statement
End Statement
Setting Register 0

ESSENTIAL ELEMENTS OF BLOCKS AND MACROS
Essential Elements of Conditional
Assembly Blocks
Essential Elements of Macros
Essential Elements of Repeat Blocks
Essential Elements of Indefinite Repeat
Blocks

iii

3-1

3-1
3-2
3-3
3-3
3-4
3-4
3-4
3-5
3-5
3-8

4-1

4-1
4-1
4-2
4-2
4-3

4-3
4-3
4-4

4-4

CHAPTER

CHAPTER

APPENDIX

INDEX

FIGURE

TABLE

4.3
4.3.1
4.3.2

5

5.1
5.2
5.3
5.4

6

6.1
6.2

A

1-1
1-2
1-3
3-1
3-2
3-3

2-1
2-2
2-3
2-4
2-5
6-1

CONTENTS

ELEMENTS IN RESTRICTED CONTEXTS
Elements Restricted to Macros
Restrictions Concerning Program Sections

FEATURES OF VAX-11 MACRO

MODULES
PROGRAM SECTIONS
USER-DEFINED SYMBOLS
MACROS

WRITING CODE FOR SHAREABLE IMAGES

WRITING POSITION INDEPENDENT CODE
STORING ADDRESS DATA IN SHAREABLE IMAGES

DIAGNOSTIC MESSAGES

FIGURES

Developing a VAX-11 MACRO Program
Function of the VAX-11 MACRO Assembler
Link Functions

Page

4-4
4-4
4-5

5-1

5-1
5-1
5-3
5-4

6-1

6-1
6-3

A-1

Index-1

1-2
1-2
1-4

Source Program 3-6
Update Program 3-6
Excerpt from Listing of Updated Source Program 3-7

TABLES

File Specification Defaults
VAX-11 MACRO Command Qualifiers
/CROSS REFERENCE Qualifier Functions
/ENABLE and /DISABLE Qualifier Functions
isHOW and /NOSHOW Qualifier Functions
Relative and Absolute Addressing Modes

iv

2-3
2-4
2-5
2-6
2-8
6-2

PREFACE

MANUAL OBJECTIVES

The VAX-11 MACRO User's Guide describes how to use the VAX-11 MACRO
assembler. The manual is designed to enable users to assemble
programs coded in VAX-11 MACRO. The features of the VAX-11 MACRO
language are described in the VAX-11 MACRO Language Reference Manual.
The VAX-11 instruction set is described in the VAX-11 Architecture
Handbook.

INTENDED AUDIENCE

This manual is intended for all VAX-11 MACRO programmers. It assumes
that the reader has had some assembly language programming experience
and has read the VAX/VMS Primer. Chapter 6 of this guide is intended
for experienced VAX-11 MACRO programmers who want to create shareable
images.

STRUCTURE OF THIS DOCUMENT

This manual is organized into six chapters and one appendix, as
follows:

• Chapter 1 provides an introduction to VAX-11 MACRO assembler
for users who are not familiar with the operation of an
assembler.

• Chapter 2 describes the MACRO command, which invokes the
VAX-11 MACRO assembler.

• Chapter 3 describes the listing file produced by VAX-11 MACRO.

• Chapter 4 describes the essential elements of VAX-11 MACRO
programs.

• Chapter 5 provides an overview of features of VAX-11 MACRO
that allow programs to be modular and easy to understand.

• Chapter 6 describes how to write code for use in shareable
images.

• Appendix A lists and explains the VAX-11 MACRO diagnostic
messages.

v

ASSOCIATED DOCUMENTS

The following documents are relevant to VAX-11 MACRO programming:

• VAX-11 MACRO Langua9e Reference Manual

• VAX-11 Architecture Handbook

• VAX/VMS Primer

• VAX/VMS Command Language User's Guide

• VAX-11 Linker Reference Manual

• VAX-11 Symbolic Debugger Reference Manual
-·~·--··-·---·-,~-·~·--=- ~-·~-·-~--~' ,, ___ , __ .,, __ ,._,.,. ____ ,., ~

• VAX/VMS System Services Reference Manual

• VAX/VMS I/O User's Guide

For a complete list of all VAX-11 documents, including a brief
description of each, see the VAX-11 Information ~!rec~.9...!}:'_~r.:!.~_1!!9~~-·

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this guide, as in other
VAX-11 documents:

Convention

Uppercase words
and letters

Lowercase words
and letters

quotation marks
apostrophes

{ }

Meaning

Uppercase words and letters,
examples, indicate that you should
word or letter exactly as shown.

used
type

in
the

Lowercase words and letters, used in format
examples, indicate that you are to substitute
a word or value of your choice.

The term quotation marks is used to ref er to
double quotation marks ("). The term
apostrophe (') is used to ref er to a single
quotation mark.

Square brackets indicate that the enclosed
item is optional.

Braces are used to enclose lists from which
one element is to be chosen.

A horizontal ellipsis indicates that the
preceding item(s) can be repeated one or more
times.

A vertical ellipsis indicates that not all of
the statements in an example or figure are
shown.

vi

Convention

00') or <RET>

tTRL/Xl or < CTRL/x >

Meaning

A symbol with a 1- to 3-character
abbreviation indicates that you press a key
on the te rmi na 1, for example, OOJ •

The phrase <CTRL/x> indicates that you must
press the key labeled CTRL while you
simultaneously press another key, for example
<CTRL/C>, <CTRL/Y>, <CTRL/O>. In examples,
this control key sequence is shown as Ax, for
example Ac, AY, Ao, because that is how the
system echoes control key sequences.

Unless otherwise noked, all numeric values are represented in decimal
notation.

Unless otherwise specified, you terminate commands by pressing the
RETURN key.

vii

SUMMARY OF TECHNICAL CHANGES

This manual documents VAX-11 MACRO Version 2.0, as released with
Version 2.0 of VAX/VMS. This section summarizes the technical changes
in the use of the assembler from earlier versions.

The /UPDATE qualifier has been added to the MACRO command to control
the processing of update files and the audit trail listing.

The format of the listing file has been changed to accommodate the
audit trail and update lines.

Technical changes in the VAX-11 MACRO language are documented in the
VAX-11 MACRO Language Reference Manual.

viii

CHAPTER 1

OVERVIEW OF ASSEMBLY

A VAX-11 MACRO source program is a sequence of assembly language
statements. These statements may include instructions from the VAX-11
instruction set, which manipulate data (plus the data needed by these
instructions), or assembler directives, which guide the assembly
process. The VAX-11 instruction set is described in the VAX-11
Architecture Handbook; the VAX-11 MACRO assembler directives are
described in the VAX-11 MACRO Language Reference Manual.

Before you can run a VAX-11 MACRO program on your system, its assembly
language statements must be translated into a form that your machine
understands: object code. Translation is the function of the VAX-11
MACRO assembler. The object code may need to be clarified or
amplified by information or instructions from another program.
Putting together different programs is the function of the VAX-11
Linker. Linked programs form an executable image, which can be
executed using the DCL command RUN.

This chapter provides an overview of the functions of the assembler
and linker. Details of the assembly process are presented in Chapter
2 of this manual. Details of the linking process are presented in the •
VAX-11 Linker Reference Manual. The LINK and RUN commands are ·~
described in the VAX/VMS Command Language User's Guide.

Figure 1-1 summarizes the process by which a source program is
converted into an executable image.

1.1 ASSEMBLING VAX-11 MACRO PROGRAMS

Because you originally use an editor to create a VAX-11 MACRO source
program in ASCII format, your program must be translated into a
machine format that the computer can use. The VAX-11 MACRO assembler
performs this translation, producing as output a new version of the
program in object code, called an object module. The assembler
interprets and processes the assembly language statements, one at a
time, and generates one or more computer instructions or data items.
You can request the VAX-11 MACRO assembler to produce a listing of the
source program at the same time your program is assembled. Figure 1-2
illustrates the role of the assembler.

1-1

-
$EDIT NAME.MAR

Use the file type of MAR to
indicate the source file
contains a VAX-11 MACRO
program.

$MACRO NAME
The MACRO command
assumes the file type of an
input file is MAR (MLB for
macro Ii braries).

If you use the /LIST
qualifier, the assembler
creates a listing file.

$LINK NAME
The LINK command assumes
the file type of an input file
is OBJ (OLB for object
libraries).

If you use the IMAP qualifier,
the linker creates a map file.

$RUN NAME
The RUN command assumes
the file type of an image is
EXE.

Figure 1-1

UPDATE
FILES

(OPTIONAL)

SOURCE
PROGRAM

OVERVIEW OF ASSEMBLY

~-C-r-ea_t_e-th_e _ __. ----~ ~ _ source program ~
NAME.MAR

macro libraries

update files

Assemble the
source program

Link the
object module

Run the
executable

image

§
:::::: NAME.OBJ

(NAME. LIS)

object libraries
debugger

§ NAME.EXE
~ (NAME.MAP)

~

Developing a VAX-11 MACRO Program

MACRO
LIBRARIES

,
-- ... OBJECT

ASSEMBLE
MODULE

LISTING
(OPTIONAL)

Figure 1-2 Function of the VAX-11 MACRO Assembler

1-2

OVERVIEW OF ASSEMBLY

During assembly processing, the VAX-11 MACRO assembler:

• Accounts for all instructions used within the source program
and determines their relative positions within the program
unit

• Optionally updates files by adding, replacing, or deleting
lines

• Optionally keeps track of the status of updated lines by means
of an audit trail

• Keeps track of all user-defined symbols and their respective
values in a symbol table, described in Section 5.3.

• Converts assembly language mnemonics, user-defined symbols,
and data values into their respective machine language (object
code) equivalents

The assembler converts each program language statement into numerical
data (the object code) and assigns the data a. relative storage
location. As the assembler translates and assigns each statement, it
updates the value of the storage location counter accordingly. The
linker will convert these relative storage locations to virtual
storage locations in the computer's memory. Each location has an
associated number called its address.

A VAX-11 MACRO assembly listing shows the addresses of memory
locations and their contents as hexadecimal numbers. The hexadecimal
numbers represent the machine language code that makes up the object
module. See Chapter 3 for more information on the listing file.

1.2 LINKING VAX-11 MACRO PROGRAMS

The object module produced by the MACRO command may in itself be
incomplete. It may need to be joined, or linked, with other object
modules or library files to form a complete, functioning program. The
link operation:

• Joins the object modules that use symbols with the object
modules that define them (See Section 1.2.1)

• Relocates individual object modules as necessary and assigns
virtual memory addresses (See Section 1.2.2)

• Produces an executable image and an optional map, as shown in
Figure 1-3

The link operation, in addition to Joining object modules, assigns
virtual memory addresses to the relative addresses calculated by the
VAX-11 MACRO assembler. Because the memory addresses of one object
module must be relocated to accommodate the addresses used in another
object module, the link operation serves to resolve all address
changes. The result of the link operation is an image with all module
links resolved and all virtual memory addresses and storage
information assigned. The image, then, is a picture of what your
program looks like just before execution.

1-3

OVERVIEW OF ASSEMBLY

OBJECT
LIBRARIES

•
OBJECT _. EXECUTABLE

MODULE(S) LINK -- MODULE

MAP
(OPTIONAL)

Figure 1-3 Link Functions

An executable image is one that you can run on the system. Unless
your program contains logic errors that prevent it from running
properly {errors that the system cannot always detect}, running the
executable image of your program should produce the results you
intended. However, if logic errors exist within your program, running
the program will produce either erroneous results or none at all. If
this is the case, you must study the source program, debug it, edit
it, then perform the assembly and link operations again.

You can also link VAX-11 MACRO modules with subprograms written in
other native mode languages, such as VAX-11 FORTRAN and VAX-11 BASIC.
This capability gives you both the flexibility of assembly language
programming and the ease of programming in a high-level language. For
example, you can write one subprogram to perform data acquisition in
VAX-11 MACRO and other subprograms to perform data analysis or file
input/output in VAX-11 FORTRAN.

In addition, the linker allows you to use object library files. These
are files that contain already written, debugged, and linked
subprograms and subroutines. Because you gain access to object
library files at link time, their routines can be used by your program
as needed.

1.2.1 Resolving Symbolic and Library References

The linker reads through all the object modules that you indicate as
input to the LINK command. It gathers and evaluates information
provided by the assembler that is necessary for program linking. For
each input module, this information includes the object code,
information needed for relocation, the relative address of the first
instruction, the global symbols used, and the length of each program
section.

1-4

OVERVIEW OF ASSEMBLY

One of the linker's functions is to resolve all global symbol
references and library references in the joined routines.

During translation, the assembler notes which symbols in the object
module are global. During linking, the linker keeps track of the
global references and definitions found in all the object modules and,
as linking proceeds, makes the appropriate correlations and modifies
instructions or data as necessary. After linking, the linker outputs
a list of all symbolic references that were not resolved (undefined
global symbols) either because of a programming error or because some
necessary object modules were not included in the LINK command.

References to library files also involve the use of global symbols.
You gain access to the routines in a library by naming a routine as a
global symbol in the source code of your program. You then link your
program with the appropriate library file and the linker resolves the
library references just as it does for any global symbol.

1.2.2 Program Relocation and Address Assignment

A second important function of the linker is to "fix" relative
addresses in memory so that they are virtual. The object module
represents translated source instructions that have been assigned
memory addresses relative to a base address of O.

The linker assigns a base address to the image and fixes the base
address of each program section.

1.3 DEBUGGING VAX-11 MACRO PROGRAMS

Debugging is the process of finding and correcting errors in
executable programs, that is, in programs that have been assembled and
linked without diagnostic messages, but that have produced invalid
results. (For information about diagnostic messages produced by
VAX-11 MACRO, see Section 2.4 and Appendix A.)

The debugger provided with the VAX/VMS system is a symbolic debugger;
it can refer to instructions and data by symbolic names. However, it
can only gain access to the names that are included in the symbol
table in the object module. By default, the debugger can gain access
to global symbol and program section names. If you want to debug your
program using local symbol names, you must specify the /ENABLE=DEBUG
qualifier in the MACRO command or include .ENABLE DEBUG in the source
code.

See the VAX-11 Symbolic Debugger Reference Manual for more information
on debugging VAX-11 MACRO programs.

1-5

CHAPTER 2

THE MACRO COMMAND

The MACRO command, typed in response to the DIGITAL Command Language
(DCL) prompt, invokes the VAX-11 MACRO assembler. The assembler reads
your source program; checks it for syntax errors; produces an object
module; and, optionally, produces a listing file. This chapter
describes the format of the MACRO command and Chapter 3 describes the
listing file.

2.1 CONSTRUCTING THE COMMAND STRING

Format

$ MACRO[/qualifier(s)] file-spec[/qualifier(s)]

/qualifiers

Command or file qualifiers that indicate special actions to be
performed by the assembler (see Section 2.3).

file-spec

A file specification or list of file specifications that specify
the source program and macro library input files to be assembled
into object modules (see Section 2.2). If the file
specifications are separated by plus signs (+), the files are
concatenated and assembled into one object module. If the file
specifications are separated by commas (,), the files are
assembled separately into individual object modules. The default
file type is MAR for source files and MLB for macro library
files.

The assembler reads your source program files in the order in which
you specify them. You can request the assembler to perform several
assemblies with one command. The assembler, by default, produces an
object module with the same file name as your first input file. You
can use the /OBJECT qualifier to specify the file name of the object
module. You can suppress the production of the object module by using
the /NOOBJECT qualifier.

When you invoke the assembler from your terminal in interactive mode,
the assembler does not, by default, produce a listing file; you must
use the /LIST qualifier to specify a listing file. In batch mode, the
assembler, by default, produces a listing file with the same file name
as the first input file. You can use the /LIST qualifier to specify
the file name of the listing file.

/.-1

THE MACRO COMMAND

Examples

1. $ MACRO PARTl+PART2+PART3

The assembler concatenates the source files PARTl.MAR,
PART2.MAR, and PART3.MAR and assembles them into one object
module with a name of PARTl.OBJ. No listing file is created.

2. $ MACRO/LIST APROG,BPROG,CPROG

The assembler independently assembles the three source files
APROG.MAR, BPROG.MAR, and CPROG.MAR into object modules and
creates three listing files.

3. $ MACRO MYPROG/LIST+MLIB/LIBRARY

The assembler uses the macro library MLIB.MLB to assemble the
source file MYPROG.MAR and creates an output object module
and listing file with the file name MYPROG.

The following sections describe the file specifications, command and
file qualifiers, and how the assembler handles errors.

2.2 FILE SPECIFICATIONS

A file specification indicates the input file to be processed or the
output file to be produced.

Format

device: [directory]filename.type;version

device

The physical device on which a file is stored or is to be
written. The device name takes the form devcu, where:

dev = device code
c = controller designator
u = unit number

[directory]

The name of the directory under which the file is cataloged. The
square brackets ([]) are required.

filename

type

The name of the file; filename can be up to 9 characters long.

The type of the file, describing the kind of data in the file;
type can be up to 3 characters long.

version

The version number of the file. Versions are identified by a
decimal number, which is incremented each time a new version of
the file is created.

2-2

THE MACRO COMMAND

You need not explicitly state all elements of a file specification
each time you assemble a program. The only part of the file
specification that is always required is the file name. If you omit
any other part of the file specification, a default value is used.
Table 2-1 summarizes the default values.

Table 2-1
File Specification Defaults

Optional
Element Def a ult

- --·· -·-·-

device User's current default device,
controller, and unit

directory User's current default directory
--·--

type Depends on usage:

Source input file MAR
Macro library file MLB
Object module OBJ
Listing file LIS
Update file UPD

-- _,_,

version Input: highest existing version
Output: highest existing version plus 1

You can also specify a logical name rather than a complete file
specification. See the VAX/VMS Command Language User's Guide for more
information on logical names.

2.3 QUALIFIERS

Qualifiers specify that the assembler should perform certain actions.
Qualifiers can be used as either command qualifiers or file
qualifiers. A command qualifier affects all the files specified in
the MACRO command. A file qualifier affects only the file that it
qualifies.

All MACRO qualifiers except the /LIBRARY and /UPDATE qualifier can be
either command qualifiers or file qualifiers. The /LIBRARY and
/UPDATE qualifiers can only be file qualifiers.

A qualifier can have one of the following formats:

/qualifier

/qualifier=function

/qualifier={functionl, function2, ••• , functionn)

Table 2-2 lists the MACRO qualifiers, their possible functions, and
their default functions. Note that some values have a long form and a
short form. You can use either form; the effect is the same. Square
brackets around the equal sign in the table indicate that the
qualifier can appear with or without functions.

2-3

THE MACRO COMMAND

Table 2-2
VAX-11 MACRO Command Qualifiers

Functions
Negative

Qualifier Long Form Short Form Form Default

/CROSS_ REFERENCE[=] ALL /NOCROSS_REFERENCE /NOCROSS_REFERENCE
DIRECTIVES DIR
MACROS MAC
OPCODES OPC
REGISTERS REG
SYMBOLS SYM

/DISABLE= ABSOLUTE AMA /ENABLE= /DISABLE=
DEBUG DBG {AMA,DBG,LSB,SUP,FPT)
GLOBAL GBL
SUPPRESSION SUP
TRACEBACK TBK
TRUNCATION FPT

/ENABLE= ABSOLUTE AMA /DISABLE= /ENABLE=(GBL,TBK)

/LIBRARY

/LIST[=]

/OBJECT[=]

/SHOW[=]

/UPDATE

DEBUG DBG
GLOBAL GBL
SUPPRESSION SUP
TRACEBACK TBK
TRUNCATION FPT

file-spec

file-spec

BINARY
CALLS
CONDITIONALS
DEFINITIONS
EXPANSIONS

MEB
MC
CND
MD
ME

/NO LIST

/NOOBJECT

/NOSHOW[=]

Not a library

/NOLIST (interactive
mode)

/LIST (batch mode)

/OBJECT

/SHOW={MC,CND,MD)

No updates

The following sections describe the VAX-11 MACRO command qualifiers in
detail.

2.3.l The /CROSS_REFERENCE and /NOCROSS_REFERENCE Qualifiers

The /CROSS REFERENCE and /NOCROSS REFERENCE qualifiers control whether
a cross-reference listing is Tncluded in the listing file. If you
specify the /CROSS REFERENCE qualifier, the listing file includes a
cross-reference lTsting. Note that if you enter a MACRO command with
the /CROSS REFERENCE qualifier interactively, you must also specify
the /LIST qualifier. The /NOCROSS REFERENCE qualifier is the default;
you need not specify it to have the cross-reference listing excluded.

See Section 3.6 for a description of the format of the cross-reference
listing. See the VAX-11 MACRO Language Reference Manual for a
description of the .CROSS and .NOCROSS directives.

2-4

THE MACRO COMMAND

Format

/CROSS REFERENCE[=functions]
/NOCROSS_REFERENCE

Parameter

functions

Any of the functions listed in Table 2-3. You can specify either
the long form or the short form of the function. If you specify
multiple functions, you must separate them by commas and enclose
them in parentheses. If you specify the /CROSS REFERENCE
qualifier without any functions, it is equivalent to specifying
/CROSS_REFERENCE=(MAC,SYM).

Table 2-3
/CROSS_REFERENCE Qualifier Functions

Long Form Short Form Meaning

ALL

DIRECTIVES DIR

MACROS MAC

OPCODES OPC

REGISTERS REG

SYMBOLS SYM

Includes directives, macros, opcodes,
registers, and symbols in the
cross-reference listing

Includes directives in the
cross-reference listing

Includes macros in the cross-reference
listing

Includes opcodes in the
cross-reference listing

Includes register references in the
cross-reference listing

Includes user-defined symbols in the
cross-reference listing

.__ ______ _,__ _______ ._ __ ~--~-------·------·-~-----

2.3.2 The /ENABLE and /DISABLE Qualifiers

The /ENABLE and /DISABLE qualifiers have the same effect as the
.ENABLE and .DISABLE assembler directives, respectively. They control
the way that the assembler interprets your source program. The
/ENABLE and /DISABLE qualifiers override any .ENABLE or .DISABLE
directives in the source program. See the VAX-11 MACRO Language
Reference Manual for more information on the .ENABLE and .DISABLE
directives.

Format

/ENABLE=function(s)
/DISABLE=function(s)

function(s)

At least one of the functions listed in Table 2-4 must be
specified when you use /ENABLE or /DISABLE. You can specify
either the long form or the short form of the function. If you
specify multiple functions, you must separate them by commas and
enclose them in parentheses.

2-5

Long Form

ABSOLUTE

DEBUG

GLOBAL

SUPPRESSION

TRACEBACK

TRUNCATION

THE MACRO COMMAND

Table 2-4
/ENABLE and /DISABLE Qualifier Functions

Short Form

AMA

DBG

GBL

SUP

TBK

FPT

Default

/DISABLE

/DISABLE

/ENABLE

/DISABLE

/ENABLE

/DISABLE

Meaning

When ABSOLUTE is enabled,
all PC relative addressing
modes are assembled as
absolute addressing modes

When DEBUG is enabled, all
local symbols are included
in the symbol table in the
object module for use by
the debugger

When GLOBAL is enabled,
all undefined symbols are
considered to be external
symbols; when GLOBAL is
disabled, any undefined
symbol that is not listed
in a .EXTERNAL directive
causes an assembly error

When SUPPRESSION is
enabled, all symbols that
are defined but not
referred to are not listed
in the symbol table; when
SUPPRESSION is disabled,
all symbols that are
defined are listed in the
symbol table

When TRACEBACK is enabled,
MACRO includes the program
section names and lengths,
module names, and routine
names in the object module
for use by the debugger;
when TRACEBACK is
disabled, MACRO excludes
this information and, in
addition, does not make
any local symbol
information available to
the debugger

When TRUNCATION is
enabled, floating-point
numbers are truncated;
when TRUNCATION is
disabled, floatinq-point
numbers are rounded

1.--.-.. ~····--···-·--------L-.. __________ ..____ ____ ·----~-------------------

2-6

THE MACRO COMMAND

2.3.3 The /LIBRARY Qualifier

The /LIBRARY qualifier indicates that the associated input file
contains a macro library. The /LIBRARY qualifier affects only the
input file that it qualifies.

2.3.4 The /LIST and /NOLIST Qualifiers

The /LIST and /NOLIST qualifiers control whether an output listing
file is created. If you specify the /NOLIST qualifier, no listing
file is created. If you specify the /LIST qualifier, a listing file
is created. The /LIST qualifier determines the file specification of
the output listing file. If you enter the MACRO command
interactively, the assembler does not, by default, create a listing
file. If you execute the MACRO command in batch mode, however, the
assembler does create a listing file by default.

Format

/LIST[=file-spec]
/NO LIST

file-spec

The file specification to be used for the output listing file.
If you specify the /LIST qualifier without a file specification,
the default file name depends on whether /LIST is used as a
command qualifier or as a file qualifier. If /LIST is used as a
command qualifier, the default file name is the name of the first
input source file. If /LIST is used as a file qualifier, the
default file name is the name of the file that /LIST qualifies.

2.3.5 The /OBJECT and /NOOBJECT Qualifiers

The /OBJECT and /NOOBJECT qualifiers control whether an object module
is created. The /OBJECT qualifier is the default; you need not
specify it to have an object module created. If you specify the
/NOOBJECT qualifier, no object module is created.

If you do not specify either the /OBJECT or the /NOOBJECT qualifier,
the assembler creates an object module with the same file name as the
first input file.

Format

/OBJECT[=file-spec]
/NOOBJECT

file-spec

The file specification to be used for the object output file. If
you specify the /OBJECT qualifier without a file specification,
the default file name depends on whether /OBJECT is used as a
command qualifier or as a file qualifier. If /OBJECT is used as
a command qualifier, the default file name is the name of the
first input file. If /OBJECT is used as a file qualifier, the
default file name is the name of the file that /OBJECT qualifies.
The default file type is OBJ.

2-7

•

THE MACRO COMMAND

2.3.6 The /SHOW and /NOSHOW Qualifiers

The /SHOW and /NOSHOW qualifiers have the same effect as the .SHOW and
.NOSHOW assembler directives, respectively. They control what lines
appear in the listing. Note that if you enter a MACRO command with a
/SHOW or /NOSHOW qualifier interactively, you must also specify the
/LIST qualifier. The /SHOW and /NOSHOW qualifiers have different
effects depending on whether you specify them with or without
functions.

If you specify /SHOW or /NOSHOW with functions, the qualifier controls
the listing of source lines that are in conditional assembly blocks,
macros, or repeat blocks. The /SHOW and /NOSHOW qualifiers override
any .SHOW or .NOSHOW directives that are in the source program.

Specifying either the /SHOW or /NOSHOW qualifier with no function is
equivalent to starting your source file with an extra .SHOW or .NOSHOW
directive, respectively. The listing count is incremented by a /SHOW
qualifier and is decremented by a /NOSHOW qualifier. The listing
count controls whether all source lines are listed. If the listing
count is positive, all source lines are listed (including lines in
conditional assembly blocks, macros, and repeat blocks). If the
listing count is negative, no lines are listed. If the listing count
is O, all lines except lines in conditional blocks, macros, and repeat
blocks are listed: these lines are listed depending on the values
specified in .SHOW and .NOSHOW directives.

Format

/SHOW(=function(s}]
/NOSHOW[=function(s)J

function(s)

Any of the qualifier functions listed in Table 2-5. Either the
long form or the short form of the function can be used. If
multiple functions are specified, they must be separated by
commas and enclosed in parentheses.

Table 2-5
/SHOW and /NOSHOW Qualifier Functions

Long Form Short Form Default

BINARY MEB /NOSH OW

CALLS MC /SHOW

CONDITIONALS CND /SHOW

DEFINITIONS MD /SHOW

EXPANSIONS ME /NOS HOW

2-8

Function

Lists macro expansions and
repeat block expansions
that generate binary code;
BINARY is a subset of
EXPANSIONS

Lists macro calls and
repeat block specifiers

Lists unsatisfied
conditional code
associated with the
conditional assembly
directives

Lists macro and repeat
range definitions that
appear in an input source
file

Lists macro and repeat
-~ang~ expansions ___________ _

THE MACRO COMMAND

2.3.7 The /UPDATE Qualifier

The /UPDATE qualifier enables the assembler to apply updates to the
source file for which /UPDATE was specified. The updates are
described in SUMSLP format command files, and the assembler performs
the edit using a procedure similar to the batch-oriented text editor,
SUMSLP. The /UPDATE qualifier is used only as a file qualifier.

Format

/UPDATE=(file-spec(s))

file-spec(s)

Specification of the file or files that are to be used to update
the file qualified by the /UPDATE qualifier. The file type of
these update files defaults to UPD. Parentheses need not be used
if only one update file is specified.

When /UPDATE is specified and /LIST is also enabled, the output
listing file shows the updated object module, plus an audit trail
indicating the location of each deletion, addition, or change. The
audit trail is described in Section 3.3. The effect of /UPDATE on
line numbers is described in Section 3.2. The /UPDATE qualifier was
specified in the command string that produced the sample output
listings in Section 3.8.

For information on SUMSLP, see the VAX-11 Utilities Reference Manual.

When multiple update files are specified with the /UPDATE qualifier,
the assembler merges their contents into a single list of updates
before applying the updates to the source file. The rules for merging
update files are described in the VAX-11 Utilities Reference Manual.

The /UPDATE qualifier cannot be used with the /LIBRARY qualifier,
because a macro library is not a single source file.

2.4 DIAGNOSTIC MESSAGES

If the assembler encounters an error during assembly,
diagnostic message. The assembler displays the
terminal (for interactive jobs) or in the batch log
jobs) and in the listing file.

it displays a
message on the

file (for batch

Appendix A describes the VAX-11 MACRO diagnostic messages.

The assembler displays diagnostic messages in the following format:

1

code

%MACRO-l-code, text

A severity code indicator. It has a value of E for an error or a
value of W for a warning. There are two levels of severity:
error and warning. Object modules created with an error message
cannot be linked into an image file. Object modules created with
a warning message can be linked into an image file although the
linker will display a diagnostic message.

An abbreviation of the message text.

2-9

THE MACRO COMMAND

text
The explanation of the message.

For example:

%MACRO-E-ILLMASKBIT, Reserved bits set in ENTRY mask

The assembler displays on the terminal or batch log file the following
information:

• The line from the listing that would precede the error message
if there were a listing file. This line is often the source
line that contains the error, but sometimes it is only the
binary expansion of the source line.

• The error message itself.

If the assembler has detected any errors during the assembly process,
it displays a diagnostic summary when the assembly is completed. It
displays this summary on the terminal or batch log file and listing
file. The summary contains the total number of errors, warnings, and
information messages with the line number and page number {enclosed in
parentheses) of each. At the end of the error summary, the assembler
displays a list of the file specifications in the MACRO command {see
Section 2.1).

An example of a diagnostic summary follows.

$ MACRO/LIST PROG

There were ~ errors, 1 warnings, and O information messages on lines:

100 {l) 1100 { 1) 400 { 2) 200 { 3) 800 {3) 1200 { 3)
400 {5)
/LIST PROG

2-10

CHAPTER 3

THE VAX-11 MACRO LISTING FILE

The listing file produced by VAX-11 MACRO can have up to seven parts:

• Table of contents (optional) and page headings

• Source statements and hexadecimal code

• Audit trail of update operation (optional)

• Symbol table

• Program section synopsis

• Cross-reference listing (optional)

• Assembly summary

Sections 3.1 through 3.7 describe each of these parts. Section 3.8.2
contains an example of a listing.

3.1 TABLE OF CONTENTS AND PAGE HEADINGS

If the source module contains any optional .SUBTITLE directives,
VAX-11 MACRO will print a table of contents before the assembly
listing. The table of contents lists all the subtitles specified in
.SUBTITLE directives. The subtitle is listed with the source page
number and the line number of the .SUBTITLE directive.

VAX-11 MACRO prints a new page in the listing file when it encounters
a .PAGE directive in the source, when it encounters a new page in the
source file, or when the existing page of the listing is filled. On
the top of each page in the listing, VAX-11 MACRO prints two header
lines. The first line of the header contains the following
information:

• Title of the module specified in the .TITLE directive

• Comment after the title of the module in the .TITLE directive

• Date

• Time of day

• Assembler version identification

• Listing page number

3-1

THE VAX-11 MACRO LISTING FILE

The second line of the header contains the following information:

• The identifying information specified in the .!DENT directive
(often used to specify a version number)

• Subtitle of the section of the module specified in the
.SUBTITLE directive

• Source file creation date and time

• Source file specification

• Source page number

3.2 SOURCE STATEMENTS AND HEXADECIMAL CODE

This section is the main part of the listing: it contains the source
lines of the module and the binary code generated. Each line of code
contains the following information:

• The source line, including comments

• The line number from the editor or, if the file has no line
numbers, the sequence number of the line. If /UPDATE has been
specified, the listing numbers will be sequence numbers (even
if the original source file had editor-generated line
numbers). Inserted lines will be indicated by line numbers
containing decimal points.

• The location counter

• The hexadecimal code

The hexadecimal code is printed with the lowest address on the right.
The code listed for an instruction contains, from right to left:

• rrhe opcode

• The addressing mode for the first operand (if any)

• The addressing mode for the second operand (if any)

• The addressing mode for the third operand (if any)

The binary code for data storage is listed from right to left. The
number of data items that are listed on one line depends on the size
of the data type as follows:

Data Type Number of Items per Line

Byte 12

Word 7

Longword 4

Quadword 1

Octaword 1/2

ASCII 12 (characters)

Packed decimal 24 (digits)
string

3-2

THE VAX-11 MACRO LISTING FILE

If an expression contains an externally defined symbol, the assembler
lists the value of the expression followed by an apostrophe. The
assembler evaluates the expression by assigning a value of 0 to the
externally defined symbol. The apostrophe indicates that the linker
will complete the evaluation of the expression.

VAX-11 MACRO also prints the diagnostic messages
the listing. It prints each diagnostic message
line at which the error was detected. See
description of the diagnostic message format and
of the VAX-11 MACRO diagnostic messages.

in this section of
immediately after the
Section 2.4 for a

Appendix A for a list

3.3 AUDIT TRAIL

The audit trail, optionally produced when the /UPDATE qualifier is
specified for a file, occupies columns 1 through ln of the main part
of the listing, parallel to the listings of source line, line number,
and hexadecimal code. It follows the forms used by the SUMSLP editor.
Lines will be flagged as **NEW** if they have been added or changed,
unless another audit trail is specified in the update file. When
lines have been deleted, the next line after the deletion will contain
an audit trail entry of the form -n, where n is the number of lines
deleted.

The chapter on
contains more
use.

SUMSLP in
information

the VAX-11 Utilities Reference Manual
about audit trails and examples of their

3.4 SYMBOL TABLE

The symbol table lists all symbols, except permanent symbols, that are
defined or referred to in the module. The symbols are listed
alphabetically, in three columns. The symbol's value (when known) is
listed next to the symbol. If the symbol is assigned a value by a
direct assignment statement or a directive (such as the .NARG
directive), the symbol is separated from the value by an equal sign.
If the symbol is defined externally (the value is unknown), the value
is listed as a string of asterisks. The following letters are used in
the symbol table to describe special attributes of symbols.

Letter

D

G

R

w

x

u

Meaning

The symbol is a local symbol that will be
made available to the debugger.

The symbol is globally defined in a module.

The symbol is relocatable.

The symbol is a weak global symbol {specified
in a .WEAK directive).

The symbol is defined externally.

The symbol is not
.DISABLE GLOBAL
undefined symbol
.EXTERNAL).

3-3

defined
has been
is not

(produced when
specified and
specified in

THE VAX-11 MACRO LISTING FILE

If a symbol is defined externally or as a relocatable value, the
number of the program section in which it appears first is printed.
See Section 3.5 for information about program section numbers.

3.5 PROGRAM SECTION SYNOPSIS

The program section synopsis lists the program sections, their size,
their attributes, and their alignment. The program sections are
listed in the order in which they are defined in the program. Each
program section is assigned a number based on the order in which it is
defined in the program: this number is printed after the size of the
program section.

3.6 CROSS-REFERENCE LISTING

The assembler lists the cross references separately for the following
groups: symbols, macros, directives, opcodes, and registers. Within
each group each item is listed alphabetically. For each item, the
following information is listed:

• Symbol name

• Value

• Line number and page number of the symbol's definition

• Line number and page number of each reference to the symbol

You control which groups are cross referenced by specifying values in
the /CROSS REFERENCE qualifier. You can exclude certain symbols from
the cross-reference listing by using the .CROSS and .NOCROSS
directives.

3.7 ASSEMBLY SUMMARY

The assembly summary contains internal assembler performance
indicators, a diagnostic summary, and the qualifiers and file
specifications in the MACRO command.

The internal assembler performance indicators include the page faults,
CPU time, and elapsed time for the various stages of the assembly. In
addition, the indicators include (1) the working set limit and (2) the
number of symbols, source lines, object records, and macros, and the
memory required to process these.

If the assembler detected any errors in the module, it prints the same
diagnostic summary in the listing that it displays on the terminal.
If no errors occurred, the assembler prints the following message in
the assembly summary:

There were no errors or warnings.

The last line in the listing file shows the qualifiers and file
specifications entered in the MACRO command.

3-4

THE VAX-11 MACRO LISTING FILE

3.8 ASSEMBLY LISTING EXAMPLE

Section 3.8.1 gives a brief example of the effect of the /UPDATE
qualifier on the listing file. Section 3.8.2 shows the complete
listing file generated by assembling a source program; the /UPDATE
qualifier was specified in the command line that produced this
listing.

3.8.1 Effect of the /UPDATE Qualifier

Figures 3-1 and 3-2 show a source file and an update file containing
corrections. These programs are assembled by the VAX-11 MACRO
assembler using the file qualifier /UPDATE. The source program was
originally edited with the SOS editor, which produces line numbers.
Note that the line numbers are changed to sequence numbers by the
assembler; the update function recognizes sequence numbers only.

Figure 3-3 shows an excerpt from the listing of the updated source
file. This listing resulted from the following VAX-11 MACRO command
string:

3-5

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800

THE VAX-11 MACRO LISTING FILE

MACRO/LIST/SHOW=ME SOURCEFIL/UPDATE=NEWDATA

.TITLE QUOTAS

.PSECT STRING_SYMBOLS,NOEXE SYMBOL DEFINITIONS

VlMAX H==lO
VlMIN-H==6
V2MAX-H==ll
V2MIN-H==5

MACROS: .PSECT MACRODEF

MAX AND MIN FOR Vl AND V2
MAX AND MIN IN ALTERNATE LINES

.MACRO GETMORE NUM,CAT,?LABEL ;

.SAVE PSECT

.PSFCT STRING,NOEXE
LABEL: .ASCID /MORE CAT NEEDED, NUMBER IN NUM/ ; MESSAGE CONSTRUCTED

.RESTORE PSECT
PUSHAL LABEL MESSAGE ADDRESS PUT ON STACK
CALLS #l,LIB$PUT_OUTPUT CALL PROCEDURE FROM COMMON

RUN TIME LIBRARY TO OUTPUT
MESSAGE

.ENDM GETMORE

.PSECT COMPARE CALCULATIONS HERE

.ENTRY CALC,AM<R6,R7>
Vl CAL: .IF NOT DEFINED VlMAX T IF NO MAX ALREADY FOR Vl T

.WARN - NO VI'S IN LIST PROVIDED!
JMP V2 CAL NO Vl CALCULATION POSSIBLE
.ENDC
SUBL3 #VlMAX H,#VlMAX T,R2
.IF GREATER EQUAL <VlMAX T-VlMAX H> ; IF HERE IS LESS THAN THERE,
GETMORE - R2,Vl 7 CALL MACRO GETMORE

WITH REGISTER AND Vl AS ARGUMENTS
.ENDC

V2 CAL: .IF NOT DEFINED V2MAX T IF NO MAX ALREADY FOR V2 T
.WARN - NO V2'S IN LIST PROVIDED!
JMP END CAL NO MORE CALCULATIONS POSSIBLE
.ENDC
SUBL3 #V2MAX H,#V2MAX T,R3
.IF GREATER EQUAL <V2MAX T-V2MAX H> ; IF HERE IS LESS THAN THERE,
GETMORE - R3,V2 - 7 CALL MACRO GETMORE WITH

.ENDC
END CAL:

MOVL
RET
.END

; REGISTER AND V2 AS ARGUMENTS

#1,RO

CALC

Figure 3-1 Source Program

-4
-,,/16NOV1979/
VlMAX T==l2
VlMIN-T==S
V2MAX-T==l0
V2MIN-T==6
I
$EXIT

Figure 3-2 Update Program

3-6

w
I

'-.]

QUOTAS

16NOV1979
16NOV1979
16NOV1979
16NOV1979

52 oc

0000
00000000

oooooooc
00000005
OOOOOOOA
OOOOOOOfi
OOOOOOOA
00000006
OOOOOOOB
00000005

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

00000000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

00000000
OOCO' 0000

0002
0002
0002
0002

OA C3 0002
00000002 OOOfi

0006
OOOfi

00000000
00000008'010EOOOO' 0000
56 20 45 52 4F 4D 0008
44 45 45 4E 20 31 OOOE

15-NOV-1979 18:03:52 VAX-11 Macro V02.38 Page 1
15-NOV-1979 17:58:13 _DBl:[MARGERY]SOURCEFIL.MAR;28 (1)

l
2
3
4

.TITLE

.PSECT

.1 VlMAX T==l2
• 2 VlMIN-T==5
.3 V2MAX-T==l0
.4 V2MIN-T==fi

5 VlMAX-H==lO
fi VlMIN-H==fi
7 V2MAX-H==ll
8 V2MIN-H==5
9 -

QUOTAS
STRING_SYMBOLS,NOEXE

10
11

MACROS: .PSECT MACRODEF

12
13

.MACRO GETMORE NUM,CAT,?LABEL

.SAVE PSECT
• PSECT STRING,NOEXE

SYMBOL DEFINITIONS
MAX AND MIN FOR Vl AND V2
MAX AND MIN IN ALTERNATE LINES

14
15

LABEL: • ASCID /MORE CAT NEEDED, NUMBER IN NUM/
.RESTORE PSECT

MESSAGE CONSTRUCTED

lfi
17
18
19
20
21
22
23
24
25
2fi
27
28
29
30
31
32

Vl CAL:

30000$:

PUSHAL LABEL
CALLS #l,LIB$PUT_OUTPUT

.ENDM GETMORE

.PSECT COMPARE

.ENTRY CALC,AM<Rfi,R7>

.IF NOT DEFINED VlMAX T

.WARN -
JMP
.ENDC

V2 CAL

SUBL3 #VlMAX H,#VlMAX T,R2

MESSAGE ADDRESS PUT ON STACK
CALL PROCEDURE FROM COMMON
RUN TIME LIBRARY TO OUTPUT
MESSAGE

CALCULATIONS HERE

IF NO MAX ALREADY FOR Vl T
NO Vl'S IN LIST PROVIDED!
NO Vl CALCULATION POSSIBLE

.IF GREATER EQUAL <VlMAX T-VlMAX H> ; IF HERE IS LESS THAN THERE,
GETMORE - R2,Vl 7 CALL MACRO GETMORE
.SAVE PSECT
.PSECT STRING,NOEXE
.ASCID /MORE Vl NEEDED, NUMBER IN R2/ ; MESSAGE CONSTRUCTED I

Figure 3-3 Exerpt from Listing of Updated Source Program

i-3
:::c
t'll

< > :><
I

.....
3:
>
(")
::c
0

t""
H
CJ)

i-3
H z
Cl

"ZJ
H
t""
t'll

w
I

00

3.8.2 Complete Assembly Listing

The following is a complete assembly listing generated by the command:

MACRO/LIST/CROSS MATH/UPDATE=REPLINES

MATH
Table of contents

(1) 32
(1) 57 -..... --

- Routine to do simple arithmetic

Macro definitions
Procedure entry point

- - -=-

15-NOV-1979 18:48:11 VAX-11 Macro V02.38

- --:

Page

-
MATH
01

- Routine to do simple arithmetic 15-NOV-1979 18:48:11 VAX-11 Macro V02.38 Page

;**NEW**
-1

;**NEW**
-1

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

1
2
3
4 ;++

.TITLE
• ID ENT

MATH
/01/

15-NOV-1979 18:46:12 _DBl:[MARGERY.MACNEW]MATH.MAR;3

- Routine to do simple arithmetic

5 ; FUNCTIONAL DESCRIPTION:
6
7

.1
9

10
11
12
13
14
15
Hi
17
18
19
20
21
.1
23
24
25
26
27
28
29
30
31
32
33
34
35

INPUT:

This routine accepts two integers and an operator index as
inputs, executes the requested arithmetic operation, and
returns the result.

4(AP)
8(AP)
12(AP)

16 (AP)

First integer
Second integer
Operator index - 0-addition,
2-multiplication, 3-division
Address of result

1-subtraction,

OUTPUT:

++

The operation is executed and the result stored at the address
contained in ln<AP>.

• ENABLE DEBUG

.DEFAULT DISPLACEMENT WORD

.SUBTITLE Macro definitions

Make symbols available to the
debugger

Use word displacements on
PC-relative references

Define macro to use CASE instruction.

0

1
(1) ""3

::c:
tll

< > x
I

......

......

J:
> n
:xi
0

C""'
H
tll
""3
H
2!
G')

l'Zj
H
C""'
tll

--- -- -- -- ---- -0000 36 CASE SRC,DISPLIST,TYPE,LIMIT,NMODE
0000 37
0000 38 Where:
0000 39
0000 40 ; SRC Case selector
0000 41 ; DISPLIST List of displacements
0000 42 ' LIMIT Base value of the selector
0000 43 ; TYPE B-byte, W-word (default), L-long
0000 44
0000 45 ' 0000 46 .MACRO CASE,SRC,DISPLIST,TYPE=W,LIMIT=#O,NMODE=SA#,?BASE,?MAX
0000 47 CASE'TYPE SRC,LIMIT,NMODE'<<MAX-BASE>/2>-1
0000 48 ; Case instruction
0000 49 BASE: ; Local label used to count args
0000 50 .IRP EP,<DISPLIST> ; To set up offset list
0000 51 .SIGNED WORD EP-BASE ; Offset list ~

::c:
0000 52 .ENDR ; tZl
0000 53 MAX: ; Local label used to count args < 0000 54 .ENDM CASE > 0000 55 x
0000 56 I

0000 57 .SUBTITLE Procedure entry point
......
......

3:

'MATH - Routine to do simple arithmetic 15-NOV-1979 18:48:11 VAX-11 Macro V02.38 Page 2 > w n
I 01 Procedure entry point 15-NOV-1979 18:46:12 DBl:[MARGERY.MACNEW]MATH.MAR;3 (1) ::a

l.O - 0 00000000 58 .PSECT RO_CODE,EXE,NOWRT
0000 59

' r
0000 60 ; Get the arguments from the argument list, perform the calculation H

0000 61 ; and return the result in the fourth argument and the status in RO (fl

~ 0000 62 ; H
OOlC' 0000 63 .ENTRY MATH,AM<R2,R3,R4> ; Routine ENTRY point z

50 0000'8F 3C 0002 64 MOVZWL #SS$ NORMAL,RO ; For success, SS$ NORMAL G')

0007 65 - is defined in $SSDEF
' l"Zj

52 04 AC DO 0007 66 MOVL 4 (AP) ,R2 ; Get argument from argument list H

OOOB 67 ; R2 contains first argument r
tZl 53 08 AC DO OOOB 68 MOVL 8 (AP) ,R3 ; R3 contains second argument

54 OC AC DO OOOF 69 MOVL 12 (AP) ,R4 ; R4 contains operator index
0013 70 CASE R4,- ; Dispatch to evaluation routine
0013 71 <ADD,SUB,MUL,DIV> ;

44 11 OOlF 72 BRB ERR ; Calling routine specified an
0021 73 ; illegal operator index

53 52 Cl 0021 74 ADD: ADDL3 R2,R3,@10 (AP) ; (0) Calculate the sum
10 BC 0024

30 lD 0026 75 BVS ERR ; An overflow occurred
0028 7f, $EXIT_S ; Return to calling program

52 53 C3 0031 77 SUB: SUBL3 R3,R2,@16(AP) ; (1) Form the difference
10 BC 0034

20 10 0036 78 BVS ERR ; An overflow occurred
0038 79 $EXIT S ; Return to callinq program

~----~- ---- ----- - ----- ~-

w
I

f-1
0

;**NEW**
-1

MATH
Symbol table

ADD
DIV
ERR
MATH
MUL
SS$ NORMAL
SUB-
SYS$EXIT

PSECT name

ABS
• BLANK •
RO CODE

53 52
10 BC

lD

53
10

52 53
10 BC

09

10 BC

50

00000021 R D
00000051 R D
00000065 R D
00000000 RG D
00000041 R D
******** x
00000031 R D
******** GX

cs 0041 80 MUL: MULL3 R2 ,R3 ,@Hi (AP) ; (/.) Calculate the product
0044

lD 0046 81 BVS ERR ; An overflow occurred
0048 82 $EXIT S ; Return to calling program

DS 0051 83 DIV: TSTL R3 , (3) Check if divisor is 0
13 0053 84 BEQL ERR ; Avoid division by 0
C7 0055 85 DIVL3 R3,R2,@16(AP) ; (3) Calculate the quotient

0058
lD 005A 86 BVS ERR ; An overflow occurred

005C 87 $EXIT_S ; Return to calling program
D4 0065 88 ERR: CLRL @16(AP) ; Return 0 for overflow,

0068 89 ; division by o, or illegal
0068 90 ; operator index

D4 0068 .1 CLRL RO ; Indicate failure
04 006A 92 RET , Return to calling program

006B 93 ; ~o reference to symbolic name
0068 94 • END : since MATH is not a main program •

- Routine to do simple arithmetic 15-NOV-1979 18:48:11 VAX-11 Macro V02.38 Page 3

02
02
02
02
02
02
02
02

Allocation

00000000
00000000
0000006B

15-NOV-1979 18:46:12 _DBl:[MARGF.RY.MACNEW)MATH.MAR;3 (1)

+----------------+
! Psect synopsis !
+----------------+

PSECT No. Attributes

0.)
0.)

107.)

00
01
02

0.)
1.)
2.)

NOP IC
NOP IC
NOP IC

USR
USR
USR

CON
CON
CON

ABS
REL
REL

LCL NOSHR NOEXE NORD
LCL NOSHR EXE RD
LCL NOSHR EXE RD

NOWRT NOVEC BYTE
WRT NOVEC BYTE

NOWRT NOVEC BYTE

t-3
:c
t'll

< > x
I

I-'
I-'

3:
>
(') ,,
0

t"1
ti)

t-3
2:
Cl

~
t"1
t'll

w
I

I-'
I-'

MATH - Routine to do simple arithmetic
Cross reference

SYMBOL

ADD
DIV
ERR

MATH
MUL
SS$ NORMAL
SUB­
SYS$EXIT

VALUE DEFINITION

00000021-R
00000051-R
00000065-R

74
83
88

00000000-R 63
00000041-R 80
OOdOOOOO-XR
00000031-R 77
00000000-XR

(1)
(1)
(1)

(l}
(1)

(1)

+------------------------+
! Symbol Cross Reference !
+------------------------+
REFERENCES •••

71 (1)
71 (1)

t-72 (1) ft-75 (1)
f-86 (1)

71 (1)
t-64 (1)

71 (l}
76 (1) 79 (1)

MATH - Routine to do simple arithmetic
Cross reference

MACRO

$EXIT S
CASE -

Phase

Initialization
Command processing
Pass 1
Symbol table sort
Pass 2

SIZE

1
1

Symbol table output
Psect synopsis output
Cross-reference output
Assembler run totals

+------------------------+
! Macros Cross Reference !
+------------------------+

DEFINITION REFERENCES •••

76
46

Page faults

12
18

236
2

7fi
1
3

14
365

(1)
(1)

76
70

(1)
(1)

79

+------------------------+
! Performance indicators !
+------------------------+

CPU Time Elapsed Time
-------- ------------
00 00:00.04 00:00:00.18
00 00:00.22 00:00:00.70
00 00:00.88 00:00:02.08
00 00:00.01 00:00:00.00
00 00:00.41 00:00:01.lfi
00 00:00.02 00:00:00.02
00 00:00.02 00:00:00.02
00 00:00.06 00:00:00.06
00 00:01.fi7 00:00:04.29

15-NOV-1979 18:48:11 VAX-11 Macro V02.38 Page 4
15-NOV-1979 18:46:12 _DBl:[MARGERY.MACNEW]MATH.MAR;3 (1)

t-78 (1) t-81 (1) ft-84 (1)

82 (1) 87 (1)

15-NOV-1979 18:48:11 VAX-11 Macro V02.38 Page 5
15-NOV-1979 18:46:12 _DBl:[MARGERY.MACNEW]MATH.MAR;3 (1)

(1) 82 (1) 87 (1)

lo-3
::c
t'Zl

<)ii
x
I

......

......

3
)ii
n
::0
0

t-1
H
00
lo-3
H
z
Cl

"'ZJ
H
t-1
t'Zl

w
I

I-'
l'V

The working set limit was 150 pages.
1878 bytes (4 pages) of vi~tual memory were used to buffer the intermediate code.
There were 10 pages of symbol table space allocated to hold 8 non-local and 2 local symbols.
94 source lines were read in Pass 1, producing 15 object records in Pass 2.
2 pages of virtual memory were used to define 2 macros.

+--------------------------+
! Macro library statistics !
+--------------------------+

Macro library name Macros defined

_DBAO:[SYSLIB]STARLET.MLB;l 1

5 GETS were required to define 1 macros.

There were no errors, warnings or information messages.

/LIST/CROSS MATH/UPDATE=REPLINES

i-3
:c
CZJ

< > ><
I

3:
>
()
:xi
0

r
H
(/)

i-3
H
z
G')

t'I]
H
r
CZJ

CHAPTER 4

ELEMENTS OF VAX-11 MACRO PROGRAMS

For a VAX-11 MACRO program to be assembled, linked, and executed
successfully, it must be constructed according to certain rules, with
various required elements in particular relationship to one another.
This chapter outlines the essential elements of VAX-11 MACRO programs.

All of the VAX-11 MACRO directives used in this chapter are described
in detail in the VAX-11 MACRO Language Reference Manual.

The comments included in the sample statements in this chapter are not
required parts of the statements. See the VAX-11 MACRO Language
Reference Manual for information on comments and other parts of VAX-11
MACRO statements.

4.1 ESSENTIAL PARTS OF A PROGRAM

A VAX-11 macro program must include the following three elements:

• An entry statement marking the transfer address of the
procedure

• An end statement matching the entry statement

• An operation setting the contents of Register 0

These three elements are described in the following three sections.

4.1.1 Entry Statement

To run successfully, a VAX-11 MACRO program must contain an entry
statement indicating the transfer address of the program. It can also
include other entry statements. The program may assemble correctly
without an entry statement, but it will probably fail when you try to
execute {run) it.

The entry statement of a VAX-11 MACRO program has three elements -- a
directive, a symbolic name, and a mask specified as in the
following example:

.ENTRY PROGRAM,AM<R4,R5>

The .ENTRY directive notifies the assembler that this statement is an
entry point of a procedure. PROGRAM is the symbolic name for this
entry point. The symbolic name is a global relocatable symbol equal
to the value of the location counter for the entry statement. This
name must be repeated in the end statement (see Section 4.1.2) if your

4-1

ELEMENTS OF VAX-11 MACRO PROGRAMS

program is a main program. It can also be used with the .MASK and
.TRANSFER directives and in other situations when you want to refer to
the address of the entry point. It must not be the same as any other
symbol used in your program.

The entry mask in this example is AM<R4,RS>. AM is an operator that
sets a bit in the register mask for each register name or arithmetic
trap enable specifier that follows. The specified registers are saved
before the procedure is entered. If you specify multiple items after
the AM operator, you must enclose them in angle brackets and separate
them by commas. For more information on register masks, see the
description of procedure call instructions in the VAX-11 Architecture
Handbook.

4.1.2 End Statement

A VAX-11 MACRO program must include an end statement indicating the
transfer address of the program. The end statement has two elements:
a directive and a symbolic name, specified as in the following
example:

.END PROGRAM

The .END directive notifies the assembler that this statement
end of a procedure. PROGRAM is the same symbolic name of the
defined in the entry statement (see Section 4.1.1). If your
is a subprocedure, you should not include its symbolic name in
statement.

4.1.3 Setting Register O

is the
program
program
the end

For proper termination of the image after execution, you must include
an operation before the end of your program that sets the contents of
Register 0 (RO). In special cases, you may want to return a value in
RO that indicates an error condition. It most cases, however, you
should return a value of SS$ NORMAL in RO to indicate normal
termination. You can do this in one of two ways:

• By including the following sequence of instructions before the
end statement:

MOVL
RET

#SS$_NORMAL,RO

• By calling the $EXIT system service before the end statement,
using the following call:

$EXIT S

The $EXIT system service is described in the VAX/VMS System Services
Reference Manual.

You should set the value of RO explicitly, even if you have not used
RO in your program. Do not assume that RO contains a 1 when you enter
a procedure.

4-2

ELEMENTS OF VAX-11 MACRO PROGRAMS

4.2 ESSENTIAL ELEMENTS OF BLOCKS AND MACROS

VAX-11 MACRO programs typically include small structural units:
conditional assembly blocks, macros, and repeat blocks. These units
must contain certain elements to be assembled correctly. The
essential elements of conditional assembly blocks, macros, and repeat
blocks are described in the following three sections.

4.2.1 Essential Elements of Conditional Assembly Blocks

A conditional assembly block is a sequence of instructions that is
only assembled if certain conditions exist when it is encountered.
The basic conditional assembly block is delimited by two required
statements. The block must be preceded by a statement containing an
.IF directive. The block must be followed by a statement containing
an .ENDC directive. The following example shows a basic conditional
assembly block:

.IF DEFINED

.ENDC

MINIM
Assemble these
statements if
MINIM is defined

DEFINED is one of the condition tests that can be specified with the
.IF directive. Condition tests are listed with the description of .IF
in the VAX-11 MACRO Language Reference Manual. MINIM is the symbol
whose state of being defined or not defined will determine whether
(or, if there is a subconditional assembly block, how) the conditional
block is assembled.

There are two variations on the basic conditional assembly block: the
subconditional assembly block and the immediate conditional assembly
block. Neither requires an .ENDC statement. See the descriptions of
the .IF x and .IIF directives in the VAX-11 MAC~O Language Reference
Manual for information on these blocks.

4.2.2 Essential Elements of Macros

A macro is a block of code that is to be assembled whenever the name
of the macro is called in a program. For a macro to be assembled
correctly, it must first be defined. A macro definition must include
two statements -- a beginning statement containing the .MACRO
directive and a final statement containing the .ENDM directive -- as
shown in the following example:

.MACRO NAMEME

.ENDM NAMEME

Assemble these statements
when macro NAMEME
is called

NAMEME is the name of the macro. It can be the same combination of
characters as a user-defined symbol (see Section 5.3 and the VAX-11
MACRO Language Reference Manual) but such multiple use of names is not
recommended. You will use NAMEME to call this macro from later points
in your program, as follows:

NAME ME call macro NAMEME

4-3

ELEMENTS OF VAX-11 MACRO PROGRAMS

You do not need to include the macro name with the .ENDM directive,
but including it makes your program easier to read.

4.2.3 Essential Elements of Repeat Blocks

A repeat block is a sequence of MACRO statements that generally occurs
only within a macro. This sequence of statements includes a text that
will be repeated according to the conditions that exist when the
repeat block is encountered. The repeat block must be preceded by a
statement containing the .REPEAT directive. The repeat block must be
followed by a statement containing the .ENDR directive. These
elements are arranged within a macro as follows:

.MACRO NAMEME NUMB,TEX

.REPEAT NUMB

.ASCII /TEX/

.ENDR

.ENDM NAMEME

The number of repetitions is here represented by NUMB. When macro
NAMEME is called, expressions are provided to replace the arguments
NUMB and TEX. TEX is the text to be repeated.

4.2.4 Essential Elements of Indefinite Repeat Blocks

The .!RP and .IRPC directives are also used to cause repetitions;
like .REPEAT, they are most useful inside macros. Each statement
containing .IRP or .IRPC must be matched by a statement containing the
.ENDR directive. For information on these directives, see the VAX-11
MACRO Language Reference Manual.

4.3 ELEMENTS IN RESTRICTED CONTEXTS

Some elements of VAX-11 MACRO programs can be used only in restricted
contexts and will cause an error if encountered elsewhere. The
directives described earlier in this chapter have this characteristic.
Other elements that are only permitted under certain circumstances are
listed in the following sections.

In addition, many VAX-11 MACRO directives require particular types of
arguments and cannot be assembled correctly if an argument is
specified incorrectly. See the directive descriptions in the VAX-11
MACRO Language R._ef ere_nce_~_9Eual for the parameter specifications of
directives.

4.3.1 Elements Restricted to Macros

There are three string operators that can be used only within macros.
They are the only VAX-11 MACRO operators that begin with the percent
sign (%):

%EXTRACT
%LENGTH
%LOCATE

4-4

ELEMENTS OF VAX-11 MACRO PROGRAMS

The .MEXIT directive, used to terminate a macro expansion under
certain conditions, can only be used within macros and repeat blocks.

The .NARG directive, which determines the number of arguments in the
current macro call, can only be used within a macro.

4.3.2 Restrictions Concerning Program Sections

The directives used to construct and manipulate program sections have
certain requirements that must be met for successful assembly,
linking, and execution.

• Each statement containing the .RESTORE PSECT directive must
correspond to a stat~ment containing the .SAVE PSECT
directive. If you use, .RESTORE PSECT when no program section
context has been stored on the-program section context stack
using .SAVE_PSECT, an error results during assembly.

• If you have given a program section the attribute ABS
(absolute), you cannot include in it any statements that
generate binary code. Including such directives as .WORD and
.ASCII in an absolute program section will cause errors when
the program is linked. However, you can include statements
that establish data structures (using .BLKx, for example) or
define symbols.

• If you have given a program section the attribute NOEXE (Not
Executable), you cannot include in it the transfer address of
a procedure. The transfer address is defined using the .ENTRY
and .END directives.

4-5

CHAPTER 5

FEATURES OF VAX-11 MACRO

VAX-11 MACRO programs should be written so that they are easy to read,
easy to correct, and easy to combine with other programs. This
chapter describes features of VAX-11 MACRO that help you to write
better programs.

Details of the constructs introduced in this chapter are contai~ed in
the VAX-11 MACRO Language Reference Manual.

5.1 MODULES

VAX-11 MACRO allows you to use a mo9ular approach to constructing
programs. You can create an entire program as a series of smaller
independent subprograms or modules. Each module consists of a number
of routines. A routine is a sequence of code that performs one
procedure.

Modular programming facilitates program
maintenance, and enhancement as follows:

creation, debugging,

• You can write and test each routine independently of other
routines. Then you can test the module consisting of these
routines independently of other modules.

• Different programmers can develop and maintain different
modules.

• Changing a program requires changing and testing only the
module in which the change occurs.

VAX-11 MACRO assembles each module separately. Then the linker joins
them all into a complete program.

5.2 PROGRAM SECTIONS

You can segment your object module into a series of program sections.
Using program sections allows you to have increased error protection
and control the order in which your routines are stored in virtual
memory. The assembler writes program section information into the
object module, and the linker uses this information in creating an
executable program image.

You specify the start of a program section and describe its attributes
by using the .PSECT directive (see the VAX-11 MACRO Language Reference
Manual). Within each module, the assembler maintains one location
counter for each program section.

5-1

FEATURES OF VAX-11 MACRO

You can continue a previously defined program section by using a
second .PSECT directive that specifies the same name as the .PSECT
directive that defined the original program section.

Because the assembler does not know where each program section goes,
all references between sections are relative to the base of the
section. The linker resolves these references at link time.

You can use program sections to perform any of the following:

• Separate your object module into smaller sections of code •
Each program section should contain a complete routine. This
can increase the modularity of your program, making it easier
to debug, maintain, and enhance.

• Allow different modules to gain access to the same data
locations. If you specify the same program section name with
the overlay (OVR) attribute in different modules, each program
section will share the same virtual memory.

• Separate areas in which you intend to write information from
areas where you do not intend to write information. For
example, if your program erroneously writes to an area with
the no-write (NOWRT) attribute, a memory access violation will
occur. Separating such areas in your program into program
sections makes debugging your program easier because the
program sections act as additional protection from miscoded
instructions or logic errors.

• Identify sections of your object module to the debugger. The
debugger uses the program section name to identify a location
and to identify the section of the program being examined.
Consequently, you should always specify names for all program
sections. Avoid using the default program sections that the
assembler creates when you do not specify .PSECT or when you
specify .PSECT with no program section name.

• Produce shareable program sections to use in shareable images,
privileged or nonprivileged. One copy of a shareable image on
disk and in physical memory can be used by many processes at
the same time. Several processes can gain access to the data
in a shareable image. Large programs that are used in many
processes can be made into shareable images to improve system
performance. See the VAX-11 Linker Reference Manual for more
information on shareable images.

• Control the order in which program sections are stored in
virtual memory; this can improve the performance of programs
larger than your working set. Making frequently accessed
program sections contiguous with each other in virtual memory
increases the probability of having a frequently accessed
program section in your working set.

The linker separates all program sections
attributes. Within these groups the
sections alphabetically by name.

into groups
linker stores

with
the

similar
program

Program sections with the same name and the overlay attribute are
stored starting at the same address in virtual memory. Program
sections with the same name and the concatenate attribute are
concatenated in the order that they are specified to the linker.

5-2

FEATURES OF VAX-11 MACRO

The attributes that you specify in the .PSECT directive describe but
do not control the contents of the program section; you must ensure
that the program section actually has those attributes. For example,
you should not include instructions to be executed in a program
section with the NOEXE (not executable) attribute.

5.3 USER-DEFINED SYMBOLS

User-defined symbols are symbolic names that you can use to:

• Identify the location of a routine

• Identify the location of data

• Represent a value

A symbol that identifies a location in memory is called a label. You
can use labels to refer to locations without knowing where they will
be placed in virtual memory.

You also can use a symbol to replace a constant used in several places
in your program. This allows you to change a value ref erred to in
several places by simply redefining the symbol as a different value.

A symbol can be internal to one module; that is, the symbol is only
understood in the module in which it is defined. An internal symbol
is also called a local symbol.

A symbol that is referred to in modules other than the one in which it
is defined is called a global symbol. Global symbols are the key to
modular programming, since they provide communication between modules.
You use a double colon (::) to define a global symbol used as a label
and a double equal sign {==) to define a global symbol used to
represent a value.

The assembler replaces each reference to a local symbol with the
symbol's address or value. However, the assembler does not know the
address of a global symbol defined in a different module. It
indicates to the linker that the symbol is global. The linker
replaces each global symbol reference with the symbol's address or
value.

As the assembler processes your module, it builds a symbol table
containing all symbols used in the module, with each symbol's address
or value (when known). The symbol table is printed in the listing
file, as described in Section 3.4. The assembler does not usually
write the complete symbol table to the object module; it writes a
table that contains only global symbols. The linker uses the global
symbol tables to resolve global symbol references.

The VAX-11 Symbolic Debugger (see Section 1.3) also uses the object
module symbol table. Consequently, you may want to include local
symbols in the object module symbol table. To include a specific
local symbol, you must specify it using the .DEBUG directive. To
include all local symbols, you must specify the /ENABLE=DEBUG
qualifier in the MACRO command or the .ENABLE DEBUG directive in the
source file.

There are
universal.

two specialized kinds of global symbols: weak and
Weak symbols do not have to be resolved by the linker (see

5-3

FEATURES OF VAX-11 MACRO

the description of the .WEAK directive in the VAX-11 MACRO Language
Reference Manual). Universal symbols are used in shareable images
(see the description of universal symbols in the VAX-11 Linker
Referenc~ Ma_n'-:1.al).

Local labels are temporary labels (consisting of a number followed by
a dollar sign) that you can use to refer to locations between symbolic
labels (see the VAX-11 MACRO Language Reference Manual). Unlike
symbols, local labels can be reused within the same object module.
Consequently, local labels are not included in the symbol table and
are not available to the linker or debugger.

5.4 MACROS

Macros are a very useful feature of the VAX-11 MACRO assembly
language. The term "macro" is a short form of the word
"macroinstruction." A macro is essentially one instruction that
comprises a number of operations. You assign a name to each macro
when you define it. You can put any sequence of coding instructions
that you will need to use repeatedly into a macro; later, you can
recall those instructions by entering the macro name in the operator
field of a statement line.

A macro must be defined before you can refer to it. The assembler
directives that define macros are described in Chapter 4 of this
manual and in the VAX-11 MACRO L,anguage Ref~rence Mar.:i_~~.

Every time the assembler encounters the macro name, it inserts
code contained in the macro definition into the object moduel.
is called expanding a macro.

the
This

You can define macros that contain conditional assembly directives.
Each time the macro is expanded, the conditions are checked. Thus,
you can generate several different code sequences from one macro.

In addition to using macros that you define, you can use system macros
provided by the VAX/VMS operating system. These system macros perform
useful functions such as calling system services. The VAX/VMS System
Services Reference Manual describes how you can use system macros to
call system services to perform, for example, file and record
handling, process control, and memory management services.

Macros definitions can be collected into a macro library. The system
macros, for example, are defined in the system macro library. You can
refer to macros in libraries in the same way that you refer to macros
in your object modules. You must, however, specify the name of the
macro library in the MACRO command (with the /LIBRARY qualifier) for
the assembler to find the macros. You do not have to specify the name
of the default library, the system macro library.

5-4

CHAPTER 6

WRITING CODE FOR SHAREABLE IMAGES

If you are writing code for a shareable image, keep in mind the
restrictions involved in writing position independent code and the
consequences of storing address data in shareable images. These
topics are discussed in the following sections.

6.1 WRITING POSITION INDEPENDENT CODE

An object module produced by VAX-11 MACRO is relocatable; that is, it
can be linked anywhere in virtual memory. The linker IDodifies
relocatable addresses so that they reflect the virtual memory
locations in which the module will run. Once linked, the image can
only be moved in virtual memory if the source code follows certain
rules concerning addressing modes and the storage of addresses.
Source code that follows these rules, and thus can be moved in virtual
memory, is called "position-independent code." Source code that does
not follow these restrictions is called "position-dependent code."
Images linked from position-dependent code will run correctly only at
one virtual memory location.

Position independence is important if you are creating a shareable
image. To use a shareable image, you must relink it with object
modules. If the shareable image is position independent, the linker
can place it anywhere in virtual memory. If the shareable image is
position dependent, the linker must place it at a fixed virtual
address. You cannot link object modules with two position-dependent,
shareable images that share a virtual address.

The linker does not use the position-independent code (PIC) program
section attribute to determine whether a shareable image is position
independent. The linker· assumes that when it is linking a shareable
image, the shareable image is position independent unless a base
address was specified in the LINK command. Consequently, if you are
linking a shareable image that is position dependent, specify a base
address in the LINK command. Otherwise, the linker will assume that
the image is position independent and the shareable image will not
execute correctly. See the VAX-11 Linker Reference Manual for more
information on linking shareable images.

Position independence depends on the addressing modes used in the
source code and the way addresses are stored in the program.
Addressing modes are described in Chapter 4 of the VAX-11 MACRO
Language Reference Manual and in the VAX-11 Architecture Handbook.

6-1

WRITING CODE FOR SHAREABLE IMAGES

The following addressing modes involve only register references and
are always position independent if the register's value is set by an
instruction that is itself position independent.

Format Mode

Rn Register

(Rn) Register def erred

(Rn)+ Auto increment

@(Rn)+ Auto increment def erred

-(Rn) Autodecrement

The displacement addressing modes are position independent if the
expression specifying the displacement is absolute and if the
register's value is set by an instruction that is position independent
itself. The displacement addressing modes are listed below.

Format Mode

dis (Rn) Displacement

@dis(Rn) Displacement def erred

Relative and relative deferred addressing modes are position
independent if the address expression is relocatable. Absolute
addressing mode is position independent if the address expression is
absolute (for example, an address in the system space). Because the
linker converts general addressing mode to relative if the expression
is relocatable and converts it to absolute if the expression is
absolute, using general addressing mode ensures that the code is
position independent. Table n-1 summarizes the position independence
or dependence of relative and absolute modes.

Table o-1
Relative and Absolute Addressing Modes

~-------~---- """"""-'"""""""····-···-----·······-················ """···-·······-····-····-········----·········--··-----------------.

Mode

Relative

Relative
Def erred

Absolute

General

Position Independence/Dependence

Relocatable Absolute
Address Expression Address Expression

-··-·---·-•-••·u·~~-··-...--·--•-·--•---·••

Position independent Position dependent

Position independent Position dependent

Position dependent Position independent

Position independent Position independent

The index addressing modes are position independent if the base mode
is position independent and if the index register contains an absolute
number (not an address).

The following two examples illustrate the use of the different
addressing modes to write position-independent code.

6-2

Example 1

MOVL
MOVAB
MOVAB
MOVL

WRITING CODE FOR SHAREABLE IMAGES

#TABADDR,RO
TABADDR,RO
IOC$GL DEVLIST,RO
#IOC$GL_DEVLIST,RO

POSITION-DEPENDENT CODE
POSITION-INDEPENDENT CODE
POSITION-DEPENDENT CODE
POSITION-INDEPENDENT CODE

This example demonstrates the use of relative and absolute modes in
writing position-independent code. All of the instructions in this
example move an address to RO. The address TABADDR is a relocatable
address; the address IOC$GL DEVLIST is absolute. If the address is
relocatable, relative mode is position-independent and absolute mode
not. If, however, the address is absolute, absolute mode will be
position independent and relative mode will not.

Example 2

CHARS: .ASCII \ABCDEFGHIJKLMNOPQRSTUVWXYZ\

MOVL
MOVB
MOVAB
MOVB
MOVL
MOVB

#4,R3
CHARS{R3) ,RO
CHARS,R3
4 {R3) ,RO
#4,R3
CHARS[R3] ,RO

PUT OFFSET OF LETTER E IN R3.
POSITION-DEPENDENT CODE
PUT ADDRESS OF CHARS IN R3.
POSITION-INDEPENDENT CODE
PUT OFFSET OF LETTER E IN R3.
POSITION-INDEPENDENT CODE

This example demonstrates the use of displacement and index modes in
writing position-independent code. The address CHARS is a relocatable
address. Compare the first addressing mode, which is position
dependent, with the two following equivalent addressing modes, which
are position independent.

6.2 STORING ADDRESS DATA IN SHAREABLE IMAGES

If a shareable image contains an .ADDRESS directive specifying a
relocatable address, the linker makes the image position dependent by
means of deferred relocation. As described in the VAX-11 Linker
Reference Manual, the linker creates a private copy of the image
section containing the .ADDRESS directive.

To retain the benefits of a shareable image, you should
with a relocatable address only in image sections
nonshareable data. These are image sections made
sections that have the NOSHR and WRT attributes.

use .ADDRESS
that contain

from program

The following two examples show programming techniques used to avoid
storing address data in an image.

n-3

WRITING CODE FOR SHAREABLE IMAGES

Example 1

; SETTING UP A STRING DESCRIPTOR
.ALIGN LONG

DESCRIP:
.LONG EOSTR-STR
• ADDRESS STR

STR: .ASCII \AN ASCII STRING\
EOSTR:

TO ACCESS THIS DESCRIPTOR
MOVAB DESCRIP,R2

SETTING UP A STRING DESCRIPTOR IN
BY CREATING THE STRING DESCRIPTOR

PUSHAB STR

PUSHL
MOVL

#EOSTR-STR
SP,R2

LENGTH OF STRING •
CODE IS COPY ALWAYS
THE STRING
THE END OF STRING

GET ADDRESS OF DESCRIPTOR

A POSITION-INDEPENDENT WAY
ON THE STACK

POSITION-INDEPENDENT REFERENCE
TO GET ADDRESS OF STRING ON THE
STACK
PUSH LENGTH OF STRING ON STACK
GET ADDRESS OF DESCRIPTOR

SETTING UP A LIST HEAD IN A POSITION-DEPENDENT WAY
QHEADA: .ADDRESS QHEADA ; THIS IS POSITION DEPENDENT

.ADDRESS QHEADA

SETTING UP A LIST HEAD IN A POSITION-INDEPENDENT WAY BY USING
EXECUTABLE INSTRUCTIONS TO STORE ADDRESSES

QHEADB: .BLKA 2 RESERVE 2 LONGWORDS FOR ADDRESS
STORAGE

SOURCE CODE TO STORE ADDRESSES
MOVAB QHEADB,RO
MOVL RO,(RO)

MOVAL (RO)+, (RO)

GET THE ADDRESS OF THE LIST HEAD.
STORE THE FIRST ADDRESS (THE
FORWARD LINK) •
STORE THE SECOND ADDRESS (THE
BACKWARD LINK) •

This example demonstrates a way to avoid having absolute virtual
addresses stored as data. String descriptors used in the VAX-11
procedure calling standard and the list head for the INSQUE and REMQUE
instructions require absolute virtual addresses. The addresses must
be stored by executable instructions rather than as data in the source
code.

Example 2

; CREATING A DISPATCH TABLE
DISPATBL:

.ADDRESS

.ADDRESS

.ADDRESS

.ADDRESS

ROUTINO
ROUTINl
ROUTIN2
ROUTIN3

LIST OF
ABSOLUTE VIRTUAL
ADDRESSES
CAUSING CODE TO BE
POSITION INDEPENDENT
AND COPY ALWAYS

ROUTIN2 IS ENTERED BY THE FOLLOWING INSTRUCTIONS
MOVL #<2*4>,R3 GET OFFSET OF ADDRESS

OF ROUTIN2
JSB @DISPATBL [R3] ENTER ROUTIN2

CREATING AN
; SOURCE CODE
DISPAT: CASEB

EQUIVALENT OFFSET LIST USING THE
IS POSITION INDEPENDENT

CASE INSTRUCTION

10$: .SIGNED WORD
.SIGNED-WORD

R3,#0,#3
ROUTIN0-10$
ROUTINl-10$

fl-4

CASE INSTRUCTION
LIST OF OFFSETS
FROM PC.

WRITING CODE FOR SHAREABLE IMAGES

.SIGNED WORD
• SIGNED-WORD

ROUTIN2-10$
ROUTIN3-10$

ROUTIN2 IS ENTERED BY THE FOLLOWING
MOVL #2,R3

BSBB DISPAT

CODE IS
POSITION INDEPENDENT.

INSTRUCTIONS
GET OFFSET OF ROUTIN2 IN
LIST OF OFFSETS
ENTER ROUTIN2 USING CASE
INSTRUCTION.

This example demonstrates another way to avoid storing absolute
virtual addresses as data. The dispatch table is a list of entry
points to routines. This is a frequently used way to enter one of a
series of routines. You can also use the CASE instruction, which
transfers control to a routine based on an offset to the PC.

6-5

APPENDIX A

DIAGNOSTIC MESSAGES

If the assembler encounters an error during an assembly, it displays a
diagnostic message on the terminal or batch log file and in the
listing file (if there is one). The general format of VAX-11 MACRO
diagnostic messages is:

l

code

text

%MACRO-l-code, text

A severity level indicator. It has a value of E for an error or
a value of W for a warning.

An abbreviation of the message text; the message descriptions in
this appendix are alphabetized by this code.

The explanation of the message.

For example:

%MACRO-E-ILLMASKBIT, Reserved bits set in ENTRY mask

Some input and output diagnostic messages are followed by a VAX-11 RMS
error message.

Listed below are the diagnostic messages displayed by the VAX-11 MACRO
assembler. Each message is accompanied by an explanation of the cause
of the error and recommended user action to correct the error.

ADRLSTSYNX, Address list syntax error

Explanation: The address list in the .ADDRESS directive
contained a syntax error.

User Action: Correct the syntax.

Severity: Error

A-1

DIAGNOSTIC MESSAGES

ALIGNXCEED, Alignment exceeds PSECT alignment

Explanation: The .ALIGN directive specified an alignment larger
than the program section alignment. For example, the .PSECT
directive specified byte alignment (the default) and the .ALIGN
directive specified a longword alignment. This message can also
be caused by a .PSECT directive with an illegal alignment.

User Action: Correct conflicting alignments. The .PSECT
directive should specify the largest alignment required in the
program section.

Severity: Error

ARGTOOLONG, Argument too long

Explanation: An argument was more than 1000 characters long.

User Action: Reduce the length of the argument.

Severity: Error

ASCTOOLONG, ACSII string too long

Explanation: The string in an .ASCIC directive was longer than
255 characters or the string in an .ASCID directive was more than
n5535 characters.

User Action: Reduce the length of the string.

Severity: Error

ASGNMNTSYN, Assignment syntax error

Explanation: A direct assignment statement contained a syntax
error.

User Action: Correct the syntax.

Severity: Error

BADENTRY, Bad format for .ENTRY statement

Explanation: The .ENTRY directive did not specify an entry point
name and an entry mask.

User Action: Correct the .ENTRY directive syntax.

Severity: Error

A-2

DIAGNOSTIC MESSAGES

BADLEXARG, Illegal lexical function argument

Explanation: The argument to a macro string operator was
invalid. String arguments can be macro arguments or strings
delimited by angle brackets or the circumflex delimiters. Symbol
arguments can be absolute symbols or decimal integers.

User Action: Correct the argument syntax.

Severity: Error

BADLEXFORM, Illegal format for lexical function

Explanation: The macro string operator contained a syntax error.

User Action: Correct the macro string operator syntax.

Severity: Error

BADLOGICPC, Internal logic error detected at PC xxxxx

Explanation: There was an internal error in the VAX-11 MACRO
assembler; xxxxx indicates the value of the PC at the time the
error was detected. The assembler does not produce an object
module or listing file.

User Action: Retry the assembly. If the error is reproducible,
notify your system manager to submit a Software Problem Report
(SPR). The address displayed with the error message and the
source program should be included in the SPR.

Severity: Error

BADVALUE, xxxxx is an invalid keyword value

Explanation: A command qualifier had an illegal value; xxxxx
indicates the value specified in the command. The assembler does
not produce an object module or a listing file.

User Action: Reenter the command with the correct syntax.

Severity: Error

BLKDIRSYNX, Block directive syntax error

Explanation: A conditional block or a repeat block directive
contained a syntax error.

User Action: Correct the directive syntax.

Severity: Error

A-3

DIAGNOSTIC MESSAGES

BLKEXPNABS, Block expression not absolute

Explanation: The expression specifying the amount of storage to
be allocated in a .BLKA, .BLKB, .BLKD, .BLKF, .BLKG, .BLKH,
.BLKO, .BLKQ, or .BLKW directive contained an undefined symbol or
was a relative expression.

User Action: Replace the expression with an absolute expression
that does not contain any undefined symbols.

Severity: Error

BRDESTRANGE, Branch destination out of range

Explanation: The address specified in the branch instruction was
too far away from the current PC. Branch instructions with byte
displacements have a range of from -128 bytes to +127 bytes from
the current PC. Branch instruction with word displacements have
a range of from -32768 bytes to +327o7 bytes from the current PC.

User Action: Use a branch instruction with a word displacement
instead of one with a byte displacement; use a jump (JMP)
instruction instead of a branch instruction; or change the
program logic so that the branch destination is closer to the
branch instruction.

Severity: Error

CANTLOCMAC, Can't locate macro in macro libraries

Explanation: A macro name specified in a .MCALL directive was
not defined in the macro libraries searched.

User Action: Specify, in the MACRO command, the macro library
that defines the macro.

Severity: Error

CLOSEIN, Error closing file-spec as input

Explanation: The assembler encountered an I/O error when closing
an input source or macro library file; file-spec is the file
specification of the file being closed.

User Action: Retry the operation or make a new copy of the file
and retry the operation with the copy.

Severity: Error

CLOSEOUT, Error closing file-spec as output

Explanation: The assembler encountered an I/O error when closing
an output object or listing file; file-spec is the file
specification of the file being closed.

User Action: Retry the operation. If the error is reproducible,
notify your system manager.

Severity: Error

A-4

DIAGNOSTIC MESSAGES

CONFQUAL, Conflicting qualifiers

Explanation: The assembler encountered a combination of command
qualifiers or of file qualifiers which cannot be put into effect.

User Action: Rewrite the command string in accordance with the
limitations on the various qualifiers.

Severity: Error

DATALSTSYN, Data list syntax error

Explanation: The data list in the directive contained a syntax
error. For example, the directive .LONG 3,,5 contains a data
list syntax error because there is no data item between the two
commas.

User Action: Correct the syntax of the data list.

Severity: Error

DATATRUNC, Data truncation error

Explanation: The specified value did not fit in the given data
type. The assembler truncated the value so that it fit.

User Action: Reduce the value or the number of characters in an
ASCII string or change the data type.

Severity: Warning

DIRSYNX, Directive syntax error

Explanation: The directive contained a syntax error.

User Action: Correct the syntax of the directive.

Severity: Error

DIVBYZERO, Division by zero error

Explanation: An expression contained a division by O.

User Action: Change the values in the expression.

Severity: Warning

EMSKNOTABS, Entry mask not absolute

Explanation: The entry mask expression was not absolute or
contained undefined symbols.

User Action: Change the values in the expression.

Severity: Error

A-5

DIAGNOSTIC MESSAGES

ENDWRNGMAC, Statement ends wrong MACRO

Explanation: The .ENDM directive specified a different name than
its corresponding .MACRO directive.

User Action: Correct the name in the .ENDM directive to ensure
that the .ENDM directive and .MACRO directive correspond as
required.

Severity: Error

EXPOVR32, Expression overflowed 32-bits

Explanation:
a longword
bits.

The value of the expression could not be stored in
(32 bits). The assembler truncated the value to 32

User Action: Change the values in the expression.

Severity: Warning

FLTPNTSYNX, Floating point syntax error

Explanation: A floating-point constant contained a syntax error.

User Action: Correct the syntax of the constant.

Severity: Warning

GENERR, Generated ERROR: xxxxx message

Explanation: An .ERROR directive was assembled; xxxxx is the
value of the expression specified in the directive; and message
is the text specified in the directive.

User Action: Follow the instructions in the message.

Severity: Error

GENWRN, Generated WARNING: xxxxx message

Explanation: A .WARN directive was assembled; xxxxx is the
value of the expression specified in the directive; and message
is the text specified in the directive.

User Action: Follow the instructions in the message.

Severity: Warning

IFDIRSYNX, IF directive syntax error

Explanation: A conditional assembly directive contained a syntax
error.

User Action: Correct the syntax of the directive.

Severity: Error

A-6

DIAGNOSTIC MESSAGES

IFEXPRNABS, IF expression not absolute

Explanation: The expression in an .IF directive was not an
absolute expression or contained undefined symbols.

User Action: Change the values in the expression.

Severity: Error

IFLEVLXCED, IF nesting level exceeded

Explanation: The assembler encountered more than 31 levels of
nested conditional assembly blocks.

User Action: Restructure the program to decrease nesting of
conditional assembly blocks.

Severity: Error

ILLARGDESC, Illegal operand argument descriptor

Explanation: The operand descriptor in an .OPDEF directive was
invalid.

User Action: Use one of the valid operand descriptors.

Severity: Error

ILLASCARG, Illegal ASCII argument

Explanation: The argument to an .ASCix directive did not have
enclosing delimiters or an expression was not enclosed in angle
brackets.

User Action: Correct the syntax of the argument.

Severity: Error

ILLBRDEST, Illegal branch destination

Explanation: The destination of a branch instruction was not an
address, for example, BRB 10(R9).

User Action: Change the destination of the branch instruction or
use a jump (JMP) instruction.

Severity: Error

ILLCHR, Illegal character

Explanation: The source line contained a character that was
illegal in its context.

User Action: Delete the illegal character.

Severity: Error

A-7

DIAGNOSTIC MESSAGES

ILLDFLTARG, Illegal argument for .DEFAULT directive

Explanation: A .DEFAULT directive did not specify DISPLACEMENT
or the displacement specified was not BYTE, WORD, or LONGWORD.

User Action: Correct the .DEFAULT directive.

Severity: Error

ILLEXPR, Illegal expression

Explanation:
number, or
expression.

A radix
left and

unary
right

operator was not followed by a
angle brackets did not match in an

User Action: Correct the syntax of the expression.

Severity: Error

ILLIFCOND, Illegal IF condition

Explanation: The condition specified in a copditional assembly
was not a valid condition, or there were no symbols after a
DIFFERENT or IDENTICAL condition.

User Action: Correct the syntax of the conditional assembly
directive.

Severity: Error

ILLINDXREG, Invalid index register

Explanation: The base mode changed the value of the register and
the index register was the same as the register in the base mode;
the base mode was literal or immediate mode; or PC was used as
the index register.

User Action: Correct the addressing mode.

Severity: Error

ILLMACARGN, Illegal MACRO argument name

Explanation: The name in the .MACRO directive contained an
illegal character.

User Action: Delete the illegal character.

Severity: Error

ILLMACNAM, Illegal MACRO name

Explanation:
directive.

No macro name was specified in the

User Action: Specify a macro name in the .MACRO directive.

Severity: Error

A-8

.MACRO

DIAGNOSTIC MESSAGES

ILLMASKBIT, Reserved bits set in ENTRY mask

Explanation: The register save mask in an .ENTRY or .MASK
directive specified RO, Rl, AP, or PC registers (corresponding to
bits O, 1, 12, and 13).

User Action: Remove these registers from the register save mask.

Severity: Error

ILLMODE, Illegal mode

Explanation: An invalid addressing mode for the instruction was
specified.

User Action: Specify a legal addressing mode.

Severity: Error

ILLOPDEF, Illegal format for .OPDEF

Explanation: The .OPDEF directive had incorrect syntax.

User Action: Correct the .OPDEF directive syntax.

Severity: Error

ILLOPDEFVL, Illegal value for opcode definition

Explanation: The value specified in the .OPDEF directive did not
fit in two bytes.

User Action: Correct the value in the directive.

Severity: Error

ILLREGHERE, This register may not be used here

Explanation: This register cannot be used here, for example,
PUSHL (PC).

User Action: Use another register.

Severity: Error

ILLREGNUM, Illegal register number

Explanation: A register name was not in the range RO through Rl2
or was not the AP, FP, SP, or PC register name.

User Action: Correct the illegal register name.

Severity: Error

A-9

DIAGNOSTIC MESSAGES

ILLSYMLEN, Symbol exceeds 31 characters

Explanation: The symbol name was longer than 31 characters. The
assembler truncated the name to 31 characters.

User Action: Truncate the name to 31 characters.

Severity: Warning

INSVIRMEM, Insufficient virtual memory

Explanation: The module being assembled has too many symbols and
macro definitions for the virtual memory available or a macro
definition called itself (a recursive definition). The assembler
terminated the assembly.

User Action: Contact the system manager to have the available
virtual memory increased; reduce the level or macro nesting;
split the module into several smaller modules; or eliminate the
recursive macro definition.

Severity: Error

INVALIGN, Invalid alignment

Explanation:
directive.

No integer or keyword followed the

User Action: Correct the syntax of the .ALIGN directive.

Severity: Error

'LINTOOLONG, Line too long

.ALIGN

Explanation: A source line in a macro definition was longer than
1000 characters.

User Action: Restructure the source code so that the line is
shorter.

Severity: Error

MACLBFMTER, Macro library format error

Explanation: A format error occurred in the macro library.

User Action: Retry the assembly and, if the error still occurs,
use the LIBRARY command (see the VAX/VMS Command Language User's
Guide) to re-create the library from the source code.

Severity: Error

A-10

DIAGNOSTIC MESSAGES

MAYNOTINDX, This mode may not be indexed

Explanation: The base mode was register, immediate, or literal
mode.

User Action: Change the addressing mode.

Severity: Error

MCHINSTSYN, Machine instruction syntax error

Explanation: A syntax error occurred in an instruction, for
example, MOVL, A.

User Action: Correct the instruction syntax.

Severity: Error

MISSINGEND, Missing .END statement

Explanation: There was no .END directive at the end of the
module. The assembler inserted an .END directive after the last
line.

User Action: Insert an .END directive.

Severity: Warning

MSGCMAIIF, Missing comma in .IIF statement

Explanation: The condition was not separated from the statement
in an .IIF directive.

User Action: Insert a comma in the directive.

Severity: Error

MULDEFLBL, Multiple definition of label

Explanation: The same label was defined twice in the module.

User Action: Delete the second label definition or change one of
the labels to a different symbol name.

Severity: Error

NOFORMLARG, No formal argument for .IRP/.IRPC

Explanation: There were no formal arguments in an .IRP or .IRPC
directive.

User Action: Correct the syntax of the .IRP or .IRPC directive.

Severity: Error

A-11

DIAGNOSTIC MESSAGES

NOTDECSTRG, Illegal character in decimal string

Explanation: A decimal string contained a character other than
the digits 0 through 9·and a leading plus or minus sign.

User Action: Correct the syntax of the decimal string.

Severity: Error

NOTENABOPT, Not a legal ENABLE option

Explanation: An argument to an .ENABLE or .DISABLE directive was
not a legal option.

User Action: Delete the option or replace it with a legal
option.

Severity: Error

NOTENUFOPR, Not enough operands supplied

Explanation: The instruction requires more operands than were
specified in the statement.

User Action: Add the operands or change the instruction.

Severity: Error

NOTINANIF, Statement outside condition body

Explanation: An .IF FALSE, .IF TRUE, .IF TRUE FALSE, .IFF, .IFT,
or .IFTF subconditTonal directive was- not- in a conditional
assembly block.

User Action: Replace the subconditional directive with a
conditional directive ~r delete the subconditional directive.

Severity: Error

NOTINMACRO, Statement not in MACRO body

Explanation: The .NARG directive was not in a macro definition
or expansion.

User Action: Delete or move the line containing the .NARG
directive.

Severity: Error

NOTLGLISOP, Not a legal listing option

Explanation: The argument to a .SHOW, .NOSHOW, .LIST, or .NLIST
directive was not a legal option.

User Action: Delete the illegal option or replace it with a
legal option.

Severity: Error

A-12

DIAGNOSTIC MESSAGES

NOTPSECOPT, Not a valid PSECT option

Explanation: The attribute specified in the .PSECT directive was
invalid.

User Action: Delete the invalid attribute or replace it with a
valid one.

Severity: Error

OPENIN, Error opening file-spec as input

Explanation: The assembler encountered an I/O error when opening
an input source or macro library file; file-spec is the file
specification of the file being opened. This message is produced
when the file cannot be found.

User Action: Retry the assembly or make a new copy of the input
file and retry the assembly.

Severity: Error

OPENOUT, Error opening file-spec as output

Explanation: The assembler encountered an I/O error when opening
an output object module or listing file; file-spec is the file
specification of the file being opened. This message is produced
when the device is write locked or is not mounted.

User Action: Retry the assembly and, if
reproducible, notify your system manager.

Severity: Error

OPRNDSYNX, Operand syntax error

the

Explanation: An operand contained a syntax error.

User Action: Correct the operand syntax.

Severity: Error

PACTOOLONG, Packed decimal string too long

error is

Explanation: The numeric string in a .PACKED directive had more
than 31 digits.

User Action: Reduce the length of the decimal string.

Severity: Error

A-13

DIAGNOSTIC MESSAGES

PSECOPCNFL, Conflicting PSECT options

Explanation: The values specified in a .PSECT directive
conflicted with each other or were not the same as the values
specified in a preceding .PSECT directive that specified the same
program section name.

User Action: Correct the conflicting values in the .PSECT
directive(s).

Severity: Error

PSECBUFOVF, PSECT context buffer overflow

Explanation: The .SAVE PSECT directive attempted to save a
program section context when the program section context buffer
was filled. A maximum of 31 program section contexts can be
saved in the buffer.

User Action: Reduce the amount of program section nesting.

Severity: Error

PSECBUFUND, PSECT context buffer underflow

Explanation: The .RESTORE PSECT directive attempted to restore a
program section context ;hen the program section context buffer
was empty.

User Action: Ensure that each .RESTORE PSECT
corresponds to a .SAVE PSECT directive.

Severity: Error

READERR, error reading file-spec

directive

Explanation: The assembler encountered an I/O error when reading
an input source or macro library file; file-spec is the file
specification of the file being read.

User Action: Retry the assembly, or create a new copy of the
input file and then retry the assembly.

Severity: Error

REGOPSYNX, Register operand syntax error

Explanation: The addressing mode syntax contained an error.

User Action: Correct the addressing mode syntax.

Severity: Error

A-14

DIAGNOSTIC MESSAGES

RMSERROR, RMS service error

Explanation: The assembler encountered an error during a VAX-11
RMS operation.

User Action: Retry the operation; consult the VAX-11 Record
Management Services Reference Manual for more information.

Severity: Error

RPTCNTNABS, Repeat count not absolute

Explanation: The repeat count in a .BYTE, .WORD, .LONG,
.SIGNED BYTE, or .SIGNED WORD directive contained an undefined
symbol or was a relative expression.

User Action: Replace the expression with an absolute expression
that does not contain any undefined symbols.

Severity: Error

SYMDCLEXTR, Symbol declared external

Explanation: A label definition or direct assignment statement
specified a symbol that was previously declared external in a
.EXTERNAL directive.

User Action: Delete the external declaration or change the name
of the internal symbol.

Severity: Error

SYMDEFINMO, Symbol is defined in module

Explanation: A .EXTERNAL directive specified a label that was
previously defined in the module.

User Action: Delete the external declaration or rename the
internal symbol.

Severity: Error

SYMNOTABS, Symbol is not absolute

Explanation: The argument in a macro string operator was a
relative symbol or was undefined.

User Action: Ensure that symbol is defined as an absolute
symbol.

Severity: Error

A-15

DIAGNOSTIC MESSAGES

SYMOUTPHAS, Symbol out of phase

Explanation: A label definition specified a label that was
defined later in the module; or a local label definition
specified a local label that was defined later in the same local
label block.

User Action: Ensure that the label is defined only once in the
module or that the local label is defined only once in the local
label block.

Severity: Error

TEXT, No input file given

Explanation: The macro command did not contain any source files;
it contained only macro library files.

User Action: Specify a source file in the command line.

Severity: Error

TOOMNYARGS, Too many arguments in MACRO call

Explanation: The macro call contained more arguments than were
specified in the .MACRO directive in the macro definition.

User Action: Ensure that the macro call corresponds to the macro
definition.

Severity: Error

TOOMNYOPRND, Too many operands for instruction

Explanation:
instruction.

Too many operands were

User Action: Reduce the number of operands.

Severity: Error

TOOMNYPSEC, Too many PSECTs declared

specified for the

Explanation: More than 255 user-defined program sections were
declared.

User Action: Reduce the number of program sections.

Severity: Error

A-16

DIAGNOSTIC MESSAGES

UNDEFSYM, Undefined symbol

Explanation: A local label was referred to but not defined in a
local label block; or, if GLOBAL was disabled, a symbol was
referred to but not defined in the module or specified in an
.EXTERNAL directive.

User Action: Define the local label or symbol, or specify the
symbol in an .EXTERNAL directive.

Severity: Error

UNDEFXFRAD, Undefined transfer address

Explanation: The .END directive specified a transfer address
that was not defined in the module or specified in an .EXTERNAL
directive.

User Action: Define the transfer address or delete it from the
.END directive.

Severity: Error

UNPROQUAL, Unprocessed qualifiers

Explanation: Either the /SHOW or the /CROSS qualifier was
specified without the /LIST qualifier. The assembler does not
process the source file or produce an object module.

User Action: Reenter the command with the /LIST qualifier.

Severity: Error

UNRECSTMT, Unrecognized statement

Explanation:
user-defined
library.

The operator was
opcode, previously

not an opcode, directive,
defined macro, or macro in a

User Action: Change the operator to a valid opcode, directive,
or macro; or define the macro.

Severity: Error

UNTERMARG, Unterminated argument

Explanation: The string argument was missing a delimiter or the
macro argument was missing an angle bracket.

User Action: Add the delimiter or angle bracket.

Severity: Error

A-17

DIAGNOSTIC MESSAGES

UNTERMCOND, Unterminated conditional

Explanation: A conditional assembly block was not terminated by
an .ENDC directive. The assembler inserted an .ENDC directive
before the .END directive.

User Action: Add the .ENDC directive.

Severity: Error

WRITEERR, Error writing file-spec

Explanation: The assembler encountered an I/O error when writing
to the output object module or listing file; file-spec is the
file specification of the file being written.

User Action: Retry the assembly. If the error is reproducible,
notify your system manager.

Severity: Error

A-18

INDEX

A
Absolute addressing mode, 2-6,

6-2, 6-3
Absolute program sections, 4-5
Absolute virtual addresses, 6-4,

6-5
Address data in shareable images,

e:)-3 through 6-5
.ADDRESS directive, 6-3, ~-4
Addressing modes, 6-1 through n-3

controlling, 2-6
position-independent, 6-1

through 6-3
Assembler, role of, 1-1 through

1-3
Assembly summary, 3-4
Audit trail, 2-9, 3-3, 3-5 through

3-7

B
Binary code, 3-2

c
Code,

binary, 3-2
hexadecimal, 3-2
position-independent, 6-1

through 6-3
Command format, 2-1
Common data areas, 5-2
Concatenation of source files,

2-1, 2-2
Conditional assembly blocks,

controlling listing of, 2-8
essential elements of, 4-3

Controlling the listing file, 2-8
Cross-reference listing, 2-4, 2-5,

3-4
/CROSS REFERENCE qualifier, 2-4,

2-5

D
Data, sharing, 5-2
Debugging programs, 1-5, 2-6, 5-3
Default,

audit trail, 3-3
file specifications, 2-3

Developing a program, 4-1 through
4-5, 5-1 through 5-4

Diagnostic messages, A-1 through
A-18

Directives,
required for conditional assembly

blocks, 4-3
required for end statement, 4-2
required for entry statement,

4-1, 4-2
required for macros, 4-3, 4-4
required for repeat blocks, 4-4
restricted to macros, 4-5

/DISABLE qualifier, 2-5, 2-6
Displacement addressing modes,

6-2

E
/ENABLE qualifier, 2-5, 2-6
End statement, 4-2
Entry statement, 4-1, 4-2
Errors, 2-9, 2-10, 3-4, A-1
Executable image, 1-3, 1-4
External symbols, 2-n

F
File specifications, 2-1 through

2-3
Floating point numbers, 2-6
Format,

listing file, 3-1 through
3-4

statement, 1-2

G
Global symbols, 1-4, 1-5, 2-6,

3-3, 5-3

H

Hexadecimal code, 3-2

Image, shareable, 6-1 through n-5
Internal symbols, 5-3, 5-4

L
Labels, 5-3, 5-4
Library, macro, 1-5, 2-7
/LIBRARY qualifier, 2-7
Line numbers in listing, 3-2

Index-1

INDEX

Linking,
object modules, 1-3 through 1-5
programs, 1-3 through 1-5

/LIST qualifier, 2-7
Listing file, 3-1 through 3-16

controlling, 2-3 through 2-5
creating, 2-1, 2-7
sample, 3-7 through 3-16

Local symbols, 3-3, 5-3
Locations, identifying, 5-3

M
MACRO command, 2-1 through 2-9
Macro directives, 4-5
Macro libraries, 1-5, 2-7, 5-4
Macro operators, 4-4
Macros, 5-4

controlling listing of, 2-8
essential elements of, 4-3, 4-4

Messages,
diagnostic, 2-9, 2-10, A-1

through A-18
Modular programming, 5-1

N
/NOCROSS REFERENCE qualifier,

2-4,-2-5
/NOLIST qualifier, 2-7
/NOOBJECT qualifier, 2-7
/NOSHOW qualifier, 2-8
Not Executable program sections,

4-5

0
Object modules,

creating, 2-1, 2-7
linking, 1-3 through 1-5

/OBJECT qualifier, 2-7
Operators, macro, 4-4

p
Page headings, listing, 3-1, 3-2
PIC attribute, 6-1
Position-independent code, 6-1

through 6-3
Program,

debugging, 1-5, 2-n, 5-3
developing, 4-1 through 4-5,

5-1 through 5-4
linking, 1-3 through 1-5
modular, 5-1
sections, 3-4, 4-5, 5-1 through

5-3

Q
Qualifier functions, 2-4

/CROSS REFERENCE, 2-5
/ENABLE and /DISABLE, 2-6
/SHOW AND /NOSHOW, 2-8

Qualifiers, 2-3 through 2-9, 3-3,
3-5

default, 2-4
format, 2-3
short forms, 2-4

R
Register 0 setting, 4-2
Relative addressing modes, 6-2
Relocatable symbols, 3-3
Repeat blocks,

controlling listing of, 2-8
essential elements of, 4-4

Required statements,
end, 4-2 through 4-4
entry, 4-1, 4-2
in conditional assembly blocks,

4-3
in macros, 4-3, 4-4
in repeat blocks, 4-4

Restrictions
in program sections, 4-5
in use of operators, 4-4

Rounding floating point numbers,
2-6

s
Sections, programs, 3-4, 4-5, 5-1

through 5-3
Setting Register O, 4-2
Segmenting your program, 5-1, 5-2
Sequence numbers in listing, 3-2
Services, system, 5-4
Shareable images, ~-1 through 6-5
Sharing data, 5-2
/SHOW qualifier, 2-8
Source statements, 3-2
Specifications, file, 2-2, 2-3
Statement format, 1-1
Statements, required,

end, 4-2 through 4-4
entry, 4-1, 4-2
in conditional assembly blocks,

4-3
in mac~os, 4-3, 4-4
in repeat blocks, 4-4

Statements, source, 3-2
Storing addresses in shareable

images, ~-3 through ~-5
SUMSLP, 2-9, 3-3

Index-2

INDEX

Suppressing listing of
unreferenced symbols, 2-6

Symbol table, 1-3, 3-3, 3-4, 5-3,
5-4

Symbols, 1-3 through 1-5, 2-5,
2-6, 3-3, 3-4, 5-3, 5-4

System services, 5-4

T

Table, symbol, 1-3, 3-3, 3-4, 5-3,
5-4

Traceback, 2-6
Transfer address, 4-1, 4-2

Truncating floating points numbers,
2-6

u
Undefined symbols, 2-6
Universal symbols, 5-3, 5-4
/UPDATE qualifier, 2-9, 3-3, 3-5
User-defined symbols, 5-3, 5-4

w
Weak symbols, 3-3, 5-3, 5-4
Write protecting program sections,

5-2

Index-3

READER'S COMMENTS

VAX-11 MACRO
User's Guide

AA-D033C-TE

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report {SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify>~~~~~~~~~~-

_____ Date ____ _

Organization ___________ ------------------···-·-·-··--

Street _______________ --------------------·------···-

Ci tY---------------~ State------- Zip Code ______ _
or

Country

- - Do Not Tear - Fold Here and Tape - - - - - - - - - - - -

Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A 14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Posta
Necessar

if Mailed in
United Sta

