
VAX-11
Record Management Services

Reference Manual
Order No. AA-0031 C-TE

March 1980

This document describes the VAX-11 Record Management Services (RMS). It
provides detailed information on the use of VAX-11 RMS facilities with the
VAX/VMS operating system.

VAX-11
Record Management Services

Reference Manual
Order No. AA-0031 C-TE

SUPERSESSION/UPDATE INFORMATION: This document supersedes the

OPERATING SYSTEM AND VERSION:

SOFTWARE VERSION:

VAX-11 Record Management Services
Reference Manual (Order No. AA-D031B-TE).

VAX/VMS V02

VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation . maynard, massachusetts

First Printing, August 1978
Revised, February 1979
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @ 1978, 1979, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASS BUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

1.1
1.1.1
1.1.2
1.1.3
1.2
1.3

2

3

3.1
3.2

4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.2.14
4.2.15
4.2.16
4.2.17
4.2.18
4.2.19
4.2.20
4.2.21
4.2.22
4.2.23
4.2.24
4.3

CONTENTS

Page

WHAT IS VAX-11 RMS? 1-1

VAX-11 RMS FUNCTIONS 1-1
Allocating and Initializing Control Blocks 1-1
Accessing Fields in Control Blocks 1-2
Requesting File and Record Operations 1-2

WHO USES VAX-11 RMS 1-2
DEFINITION OF TERMS 1-2

STATEMENT CONVENTIONS

THE PROGRAM INTERFACE WITH VAX-11 RMS

USER CONTROL BLOCKS
VAX-11 RMS RUN-TIME OPERATIONS

THE FILE ACCESS BLOCK

THE PURPOSE OF THE FILE ACCESS BLOCK
FAB ALLOCATION

Label
Allocation Quantity
Bucket Size
Block Size
User Context
Default File Extension Quantity
Default File Specification String Address
Default File Specification String Size
Default File Specification
File Access
File Specification String Address
File Specification String Size
File Specification
File Process Options
Fixed Control Area Size
Maximum Record Number
Maximum Record Size
Name Block Address
File Organization
Record Attributes
Record Format
Retrieval Window Size
File Sharing
Extended Attribute Block Pointer

NONINITIALIZABLE FAB FIELDS

iii

2-1

3-1

3-1
3-2

4-1

4-1
4-3
4~4

4-4
4-5
4-8
4-8
4-9
4-10
4-10
4-11
4-11
4-13
4-14
4-14
4-14
4-18
4-19
4-19
4-20
4-21
4-21
4-23
4-24
4-24
4-2n
4-27

CONTENTS

Page

CHAPTER 5 THE RECORD ACCESS BLOCK 5-1

5.1 THE PURPOSE OF THE RECORD ACCESS BLOCK 5-1
5.2 RAB ALLOCATION 5-3
5.2.l Label 5-4
5.2.2 Bucket Code 5-4
5.2.3 Context 5-5
5.2.4 File Access Block Address 5-5
5.2.5 Key Buffer Address 5-5
5.2.n Key of Reference 5-6
5.2.7 Key Size 5-7
5.2.7.l Relative Files 5-7
5.2.7.2 Indexed Files 5-7
5.2.8 Multi block Count 5-8
5.2.9 Multibuffer Count 5-9
5.2.10 Prompt Buffer Address 5-10
5.2.11 Prompt Buffer Size 5-11
5.2.12 Record Access Mode 5-11
5.2.13 Record Address 5-12
5.2.14 Record Header Buffer 5-11
5.2.15 Record-Processing Options 5-13
5.2.10 Record Size 5-18
5.2.17 Time-Out Period 5-19
5.2.18 User Record Area Address 5-20
5.2.19 User Record Area Size 5-20
5.3 NONINITIALIZABLE RAB FIELDS 5-21
5.3.l The Record's File Address 5-?.l

CHAPTER 6 THE EXTENDED ATTRIBUTE BLOCKS fi-1

() • l THE PURPOSE OF EXTENDED ATTRIBUTE BLOCKS is-1
6.2 CHAINING EXTENDED ATTRIBUTE BLOCKS fi-3
n.3 DATE AND TIME XAB h-4
fi.3.1 Expiration Date and Time r..-5
fi.3.2 Creation/Revision Date and Time, and

Revision Number fi-6
6.4 FILE PROTECTION XAB Fi-7
6.4.l File Protection 'i-8
6.4.2 Group and Member Number fi-10
6.5 ALLOCATION CONTROL XAB n-11
6.5.l Area Identification Number fi-12
n.5.2 Alignment Boundary Type fi-13
n.5.3 Allocation Quantity ()-14
n.5.4 Allocation Option 11-14
6.5.5 Bucket Size 'i-15
'1.5.6 Default Extension Quantity 'i-l'i
11.5.7 Location 'i-ln
11.5.8 Relative File Identifier fi-17
fi.5.9 Relative Volume Number 11-18
n. 6 KEY DEFINITION XAB 'i-18
6.6.l Data Bucket Area Number 6-20
n.6.2 Data Bucket Fill Size n-21
fi.6.3 Key Data Type 'i-22
n.n.4 Key Options Flag n-24
6.6.5 Index Bucket Area Number Fi-2Fi
6.n.n Index Bucket Fill Size h-27
n.6.7 Key Name Address fi-28

iv

CHAPTER

CHAPTER

CHAPTER

CHAPTER

6.6.8
6.6.9
n.6.10
6.6.11
6.6.12
n.n.13
n.7
n.8
6.9
6.9.1

7

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.3

8

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3
8.4
8.5

9

9.1
9.2
9.3
9.4
9.5
9.n

10

10.1
10.1.l
10.1.2
10.2
10.2.l
10.2.2
10.3
10.4
10.4.1
10.4.2

CONTENTS

Lowest Level of Index Area Number
Null Key Value
Key Position
Key of Reference
Key Size
Noninitializable Key Fields

SUMMARY XAB
FILE HEADER CHARACTERISTICS XAB
REVISION DATE AND TIME XAB

Revision Date and Time

THE NAME BLOCK

THE PURPOSE OF THE NAME BLOCK
NAM BLOCK ALLOCATION

Label
Expanded String Area Address
Expanded String Area Size
Related File Nam Block Address
Resultant String Area Address
Resultant String Area Size

NONINITIALIZABLE NAM BLOCK FIELDS

RUN-TIME PROCESSING INTERFACE

Page

6-28
~-29

n-30
6-31
f,-32
n-33
'1-34
n-3S
fi-37
n-38

7-1

7-1
7-2
7-3
7-3
7-4
7-4
7-5
7-5
7-f,

8-1

THE VAX-11 RMS CALLING SEQUENCE 8-1
THE PATH TO A FILE 8-3

Interpretation of the File Specification 8-4
Wild Card Characters in File Specifications 8-5
File Specification Default Application 8-fi
Opening and Creating a File by Name Block 8-7

CONTROL BLOCK USAGE 8-7
COMPLETION STATUS CODES 8-8
PROCESS PERMANENT FILES 8-9

FILE-PROCESSING MACRO INSTRUCTIONS

TERMINATING FILE PROCESSING
CREATING A FI LE
OBTAINING ATTRIBUTES OF A FILE
DELETING A FILE
EXTENDING A FILE'S ALLOCATED SPACE
OPENING AN EXISTING FILE

RECORD OPERATION PERFORMANCE

RECORD ACCESS
Specifying the Record Access Mode
Specifying the Record Transfer Mode

CURRENT RECORD CONTEXT
Current Record
Next Record

RECORD STREAMS
SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS

Synchronous Operations
Asynchronous Operations

v

9-1

9-1
9-4
9-8
9-10
9-13
9-14

10-1

10-1
10-1
10-2
10-3
10-3
10-4
10-5
10-7
10-7
10-8

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

APPENDIX A

APPENDIX B

10 .5
10 .11
10.11.1
10.fi.2
10.11.3

11

11.1
11. 2
11. 3
11.4
11. 5
11. ()
11. 7
11.8
11.9
11.10
11.11
11.12
11.13
11.14

12

12.1
12.2
12.3
12.4

13

13 .1
13.2
13. 3
13.4
13. 5

14

14.1

15

15.1
15.2
15.3

B.l
B.2
B.3
B.4
B.4.1

CONTENTS

FILE SHARING
RECORD LOCKING

Automatic Record Locking
Manual Record Locking
Controlling Record Locking

RECORD-PROCESSING MACRO INSTRUCTIONS

ESTABLISHING A RECORD STREAM
DELETING A RECORD
TERMINATING A RECORD STREAM
LOCATING A RECORD
WRITING OUT MODIFIED I/O BUFFERS
UNLOCKING ALL RECORDS
RETRIEVING A RECORD
CONTINUE PROCESSING ON NEXT VOLUME
WRITING A RECORD TO A FILE
UNLOCKING A RECORD
POSITIONING TO THE FIRST RECORD
TRUNCATING A SEQUENTIAL FILE
UPDATING AN EXISTING RECORD
STALL FOR I/O COMPLETION

PERFORMING BLOCK I/O

TRANSFER TO MEMORY
POSITIONING TO A BLOCK
WRITE TO A FILE
NON-FILE-STRUCTURED OPERATIONS

FILE SPECIFICATION PROCESSING MACRO
INSTRUCTIONS

ENTER A FILE NAME
PARSE A FILE SPECIFICATION STRING
REMOVE A FILE NAME
RENAME A FILE
SEARCH FOR FILE NAME

RUN-TIME CONTROL BLOCK INITIALIZATION

THE STORE MACRO INSTRUCTIONS

CONTROL ROUTINES

HALT I/O AND CLOSE FILES
SET DEFAULT DIRECTORY
SET DEFAULT FILE PROTECTION

COMPLETION STATUS CODES

FILE/RECORD CONCEPTS AND FORMATS

FILE ORGANIZATIONS
RECORD ACCESS MODES
RECORD FORMATS
FILES-11 DISK STRUCTURE

Files-11 Directories

vi

Page

10-8
10-9
10-10
10-11
10-12

11-1

11-2
11-3
11-5
11-7
11-9
11-11
11-12
11-17
11-19
11-22
11-24
11-2n
11-27
11-30

12-1

12-3
l?-5
12-7
12-9

13-1

13-1
13-4
13-fi
13-8
13-11

14-1

14-1

15-1

15-1
15-2
15-2

A-1

B-1

B-1
B-2
B-4
B-4
B-9

APPENDIX C

APPENDIX D

INDEX

FIGURE

TABLE

B.5
B.5.1
B.5.2
B.5.3
B.5.4

C.l
C.2
C.3

0-1
8-1
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8

3-1
3-2
4-1
4-2
5-1
6-1
0-2
f)-3

f)-4

f)-5

6-6

o-7

6-8
6-9
6-10

CONTENTS

MAGNETIC TAPE HANDLING
Volume Label
File Header Label
End-of-file And End-of-volume Labels
Arrangement of Labels And Data

FILE SPECIFICATION PARSING

LOGICAL-NAME-OR-FILE-NAME SYNTAX
QUOTED-STRING-SPECIFICATION SYNTAX
FULL-FILE-SPECIFICATION SYNTAX

DIGITAL-ONLY COMPONENT OPTIONS

Page

B-10
B-11
B-14
B-19
B-20

C-1

C-2
C-3
C-4

D-1

Index-1

FIGURES

File Protection Field
Argument List Format
Logical and Virtual Block Numbers
Volume Label Format
HDRl Label Format
HDR2 Label Format
Single File, Single Volume
Single File, Multivolume
Multifile, Single Volume
Multifile, Multivolume

TABLES

User Control Blocks
Run-Time Processing Macro Instructions
File Access Block Fields
Device Characteristics
Record Access Block Fields
XAB Types Processed by Service
Date and Time Extended Attribute Block Fields
File Protection Extended Attribute Block
Fields
Allocation Control Extended Attribute Block
Fields
Key Definition Extended Attribute Block
Fields
Key Field Data Types, Data Type Codes and
Global Symbols
Packed Decimal Digits and Signs
Representation
Key Options Flag Combinations
Summary Extended Attribute Block Fields
File Header Characteristics Extended
Attribute Block Fields

vii

f)-8

8-2
B-fi
B-11
B-14
B-17
B-20
B-20
B-21
B-21

3-2
3-3
4-2
4-29
5-2
f)-3
f1-5

f:,-7

fi-11

o-19

fi-22

~-23
{)-25
n-34

TABLE n-11

7-1
7-2
9-1
9-2
9-3
9-4
9-5
9-n
9-7
9-8
9-9
10-1
11-1
11-2
11-3
11-4
11-5
11-n
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
12-1
12-2
12-3
13-1
13-2
13-3
13-4
13-5
B-1

B-2
B-3
B-4
B-5
B-n

CONTENTS

TABLES (Cont.}

Revision Date and Time Extended Attribute
Block Fields
Name Block Fields
File Name Status Bits
Close FAB Fields
Create FAB Fields
Create NAM Block Fields
Display FAB Fields
Erase FAB Fields
Erase NAM Block Fields
Extend FAB Fields
Open FAB Fields
Open NAM Block Fields
Record Access Stream Context
Connect RAB Fields
Delete RAB Fields
Disconnect RAB Fields
Find RAB Fields
Flush RAB Fields
Free RAB Fields
Get RAB Fields
Next Volume RAB Fields
Put RAB Fields
Release RAB Fields
Rewind RAB Fields
Truncate RAB Fields
Update RAB Fields
Wait RAB Fields
Read RAB Fields
Space RAB Fields
Write RAB Fields
Enter Fields
Parse Fields
Remove Fields
Rename Fields
Search Fields
File Organization Relationships with Record
Access Modes and Record Formats
Search Delta Geometry
Volume Label Contents
HDRl Label Contents
HDR2 Label Contents
HDR3 Label Contents

viii

Page

n-37
7-2
7-8
9-3
9-11
9-7
9-9
9-11
9-12
9-14
9-1/!)
9-17
10-'1
11-3
11-5
11-n
11-8
11-10
11-12
11-15
11-18
11-21
11-23
11-25
11-27
11-29
11-31
12-4
12-n
12-8
13-3
13-5
13-7
13-10
13-13

B-5
B-7
B-12
B-15
B-18
R-19

PREFACE

MANUAL OBJECTIVES

The intent of this manual is to enable VAX-11 MACRO programmers to use
the VAX-11 Record Management Services (RMS) facilities provided by the
VAX/VMS operating system.

Many data operations can be performed by using VAX-11 RMS and
associated control routines. You can perform these operations by
simply calling a VAX-11 RMS routine with the appropriate parameters,
rather than writing your own routines.

INTENDED AUDIENCE

VAX/VMS provides record management services for all the supported
languages. Except for VAX-11 MACRO, each particular language manual
provides the necessary information about performing record management.
However, for the VAX-11 MACRO programmers, and for those high-level
language programmers who wish to call VAX-11 RMS directly, this manual
contains a description of the user interface to record management.

STRUCTURE OF THIS DOCUMENT

This manual consists of three parts, as follows:

Part I: Introduction to VAX-11 RMS

Part I, consisting of Chapters 1 and 2, discusses VAX-11 RMS in
terms of who uses it and why.

Part II: VAX-11 RMS Program Interface

Part II can be subdivided in the following way. Chapters 3
through 7 describe the fields for VAX-11 RMS structures, such as
file declaration and the macro instructions used to initialize
these fields. Chapters 8 through 15 describe the interfaces to
VAX-11 RMS file and record operations and control routines.

Appendixes

The appendixes summarize the concepts of files and records,
provide formulas for determining file and record size, and list
completion status codes.

ix

ASSOCIATED DOCUMENTS

The following manuals are related to this document:

• Introduction t? VAX-11 Record Management Services

• VAX-11 Record Management Services User's Guide

• RMS-11 User's Guide

• VAX-11 MACRO User's Guide

• VAX-11 MACRO Lan9uage Reference-~~~~~_!

• VAX/VMS System Services Reference Manual
·---·"--·-· .. ··--

The Introduction to VAX-11 Record Management Services manual contains
introductory information about file services and structures in
general, and about VAX-11 RMS in particular. The VAX-11 RMS User's
Guide contains detailed information on usinq the capabilities of
VAX-11 RMS efficiently. Much of this informatio~ is illustrated in
programming examples. The RMS-11 User's Guide also contains useful
information concerning file processing, much of which is compatible
with VAX-11 RMS.

For a complete list of all VAX-11 documents, including brief
descriptions of each, see the VAX-11 Information Directory and Index.

x

SUMMARY OF TECHNICAL CHANGES

This manual has been revised to reflect VAX-11 RMS support
card characters and for file sharing for sequential
512-byte fixed-length records.

xi

for wild
files with

CHAPTER l

WHAT IS VAX-11 RMS?

The VAX-11 Record Management Services (VAX-11 RMS) are generalized
routines that assist user programs in processing and managing files
and their contents. VAX-11 RMS also includes a set of macro
instructions that you can use to initialize control blocks and call
VAX-11 RMS service routines.

1.1 VAX-11 RMS FUNCTIONS

VAX-11 RMS provides a variety of file organizations and record access
modes that let you choose the processing techniques best suited to
your application. VAX-11 RMS organizes files sequentially,
relatively, or in indexed form. You can access records in these files
in a number of ways:

• Sequentially

• Randomly by key

• Randomly by the record's file address (RFA)

• Dynamically, which is a mixture of sequential and random
access

You transmit file and record operation requests to VAX-11 RMS through
control blocks. Through these same control blocks, such as the File
Access Block or Record Access Block, VAX-11 RMS returns to you the
data contents of files, attribute information about the files, ann
status codes.

To use VAX-11 RMS, you must:

• Allocate and initialize control blocks

• Access fields in these control blocks at run time

• Request a particular file or record operation through the use
of macro instructions

1.1.l Allocating and Initializing Control Blocks

You communicate with VAX-11 RMS through control blocks. You must
allocate space in your program for the control blocks; usually, this
is done at assembly time. In addition, you can establish initial
values for the fields in these blocks through assembly-time
initialization macros.

1-1

WHAT IS VAX-11 RMS?

1.1.2 Accessing Fields in Control Blocks

At run time, you can store values in the control block data fields
through the use of macro instructions, or you can access data in the
control block fields directly by using the defined offsets for the
fields.

1.1.3 Requesting File and Record Operations

Control blocks combined with a set of VAX-11 RMS file and record
operation macro instructions form the complete run-time program
interface with VAX-11 RMS. Each macro instruction represents a
request for a particular VAX-11 RMS file or record service. The
fields of the control blocks further describe the request. Using
VAX-11 RMS macro instructions, you can:

• Create new files

• Process existing files

• Extend and delete files

• Read, write, update, and delete records within files

1.2 WHO USES VAX-11 RMS

VAX-11 MACRO programmers make direct use of the VAX-11 RMS routines.
Programmers writing in a high-level language, such as VAX-11 FORTRAN,
can write their programs to interface with VAX-11 RMS facilities
either 1) directly through the use of a call facility in the language,
or 2) indirectly through the input/output (I/O) instructions of the
language. The latter interface is much more commonly used. Programs
that interface directly with VAX-11 RMS can use all its capabilities,
whereas programs that use an I/O statement of a high-level language
are generally restricted to the subset of VAX-11 RMS capabilities used
by that language. This manual, describing the full VAX-11 RMS
interface, is therefore directed primarily to the VAX-11 MACRO user.
High-level language users should see the VAX-11 manuals specific to
their language.

1.3 DEFINITION OF TERMS

The following glossary defines terms that appear throughout this
manual.

alternate key

area

An optional key within the data records in an indexed file; used
by VAX-11 RMS to build an alternate index. See key (indexed
files) and primary key.

VAX-11 RMS-maintained region of an indexed file which are used
for allocating buckets. An area consists of any number of
buckets, and there may be from l through 255 areas in a file.

1-2

block

WHAT IS VAX-11 RMS?

A unit of I/O transfer. A block on a Files-11 disk structure is
fixed at 512 bytes and contains one or more complete or partial
records. A block on tape contains one or more complete records;
its size is user determined.

block I/O
An I/O technique using a set of VAX-11 RMS procedures that allow
direct access to the blocks in a file, regardless of the file
organization or record format.

bucket
A structure used to store and transfer blocks of data for a
relative or indexed file. A bucket consists of from 1 through 32
blocks.

buffer
An area in memory used to store data temporarily during input or
output operations.

cluster
The basic unit of space allocation on a Files-11 disk. A cluster
consists of one or more blocks, as defined by the initializer of
the disk.

directory name
The field in a file specification that identifies the directory
in which the file is listed. It begins with a left bracket
([or <) and ends with a right bracket (l or >) • The
brackets enclose either a group number and a user number
separated by a comma, or an alphanumeric directory list.

dynamic access
The process of switching from one record access mode to another
while processing a file.

extent

file

One or more adjacent clusters allocated to a file or a portion of
a file.

A collection of data; generally used to ref er to data stored on
a magnetic medium, such as a disk.

file header
A block in the index file that describes a file on a Files-11
disk. Every file residing on the disk has at least one file
header, which provides the location of the file's extents.

file organization
The physical arrangement of data in a .f'i;t~. VAX-11 RMS supports
three file organizations sequential,'t~lative, and indexed.

file specification
The alphanumeric character string that specifies a file within
the system.

Files-11
The standard VAX-11 RMS physical disk structure.

1-3

WHAT IS VAX-11 RMS?

fixed control area
An area, prefixed to a variable-length record, containing
additional information about the record that may have no bearing
on the other contents of the record. For example, the fixed
control area may contain line numbering or carriage control
information.

fixed-length record format
The property of a file specifying that all records must be the
same length. This format allows for simplicity in determining
the exact location of a record in the file and eliminates the
need to prefix a record size field to each record.

home block

index

A block in the volume's index file that contains information
pertaining to the volume as a whole, such as volume label and
protection.

The structure which allows retrieval by key value of records in
an indexed file. See key (indexed files).

index file
The file on a Files-11 volume that provides the means for
identification and initial access to the volume. The index file
contains the access data for all files on the volume (including
itself).

indexed file organization

key

key

A file organization which allows random retrieval of records by
key value and sequential retrieval of records within the key of
reference. See key (indexed files).

indexed files: A character string, a packed decimal number, a 2-
or 4-byte unsigned binary number, or a 2- or 4-byte signed
integer within each data record in an indexed file; it is user
defined as to length and location within the records; VAX-11 RMS
uses the key to build an index. See primary key, alternate key,
and random access by key (indexed files only).

relative files: The relative recoid number of each data record
in a data file; VAX-11 RMS uses the relative.record numbers to
identify and access data records in a relative file in random
access mode. See relative rec6rd number.

locate mode
Record transfer technique in which records stay in place while
operations are performed. The records are not copied from the
I/O buffer to a user buffer; the address of the record in the
I/O buffer is returned to the user.

logical block number
The number assigned to a block on a disk volume, sequentially
beginning with 0 through the number of blocks that will fit on
the volume. See also virtual block number.

move mode
Record transfer technique in which a record is copied between an
I/O buffer and a user buffer.

1-4

WHAT IS VAX-11-RMS?

primary key
The mandatory key within the data records of
used by VAX-11 RMS to build a primary index;
files) and alternate key.

an indexed file;
see key {indexed

process permanent file
A file opened or created through VAX-11 RMS in
executive mode. The internal data structures
permanent file are allocated such that the file
across image activations; a restricted subset
operations is available to "indirect" accessors.

random access by key

supervisor or
of a process
may be open

of allowable

for indexed files: Retrieval of a data record in an indexed file
by the primary (or optionally, alternate) key within the data
record. See key (indexed files).

for relative files or sequential files with 512-byte fixed-length
records: Retrieval of a data record in a relative file by the
relative record number of the record. See key {relative files).

random access by record's file address
The retrieval of a record by the
VAX-11 RMS returns to the user.
only means of ~andomly accessing
variable-length records.

random access by relative record number

record's unique address that
This record access mode is the

a sequential file containing

The retrieval of a record by specifying the record's number
relative to the beginning of the file. For relative files,
random access by relative record number is synonymous with random
access by key. See random access by key {relative files only).

record
A collection of related data within a file treated as a unit of
information.

record access mode
The manner in which VAX-11 RMS selects the next record to be
accessed, that is, sequentially or randomly.

record cell
A fixed-length area in
containing a record.
lets VAX-11 RMS make a
position in the file.

record's file address

a relative file that is capable of
The concept of a fixed-length record cell

direct.calculation of the record's actual

The unique address of a record in a file. This address allows
records to be accessed randomly regardless of file organization.
It is valid only for a particular instance of a file.

record format
The way a record physically appears on the recording surface of
the storage medium. The record format defines the method for
determining record length.

record locking
A facility that prevents concurrent access to a record by more
than one record stream or process until the initiating record
stream or process releases the record.

record length
The size of a record, expressed as a number of bytes.

1-5

WHAT IS VAX-11 RMS?

relative file organization
The arrangement of records in a file where each record occupies a
cell of equal length within a bucket. Each cell is assigned a
successive number, which represents its position relative to the
beginning of the file.

relative record number

RFA

An identification number that specifies the position of a record
cell relative to the beginning of the file; used as the key
during random access by key mode to relative files.

See Record's File Address

sequential file organization
The arrangement of records in a file in a sequential fashion.
Records appear in the order in which they were written.

sequential record access mode
The retrieval or storage of records starting at a designated
point in the file and continuing to access additional records in
the order in which they logically appear.

spooling
The technique of using a high-speed mass storage device (such as
a disk) to buffer data passing between high-speed main memory and
low-speed I/O devices (such as line printers). The high-speed
mass storage device (the intermediate device) temporarily stores
the data passing to and from the low-speed device (the spooled
device). The data is queued on the intermediate device to await
transmission to the printer for printing (output spooling) or to
the processor for processing (input spooling).

storage allocation
The aspignment of space to a file on the recording medium.

user identification code
The number assigned to a user identifying the user and,
consequently, determining the files to which the user has access.
It consists of a group number and a user number, separated by a
comma, and enclosed in brackets, i.e., [100,5].

variable-length record format
The property of a file specifying that records need not be the
same length.

variable with fixed-length control record format
The property of a file specifying that records of variable-length
contain an additional fixed control area capable of storing data
that may have no bearing on the other contents of the record.
Variable with fixed-length control record format is not
applicable to indexed files.

VAX-11 Record Management Services (VAX-11 RMS)
The file and record access system for
system. VAX-11 RMS allows programs
record and block level.

virtual block number

the VAX/VMS operating
to issue requests at the

The number assigned to a block of a file. This number refers to
the position of the block relative to other blocks in the same
file, instead of to its position relative to other blocks on the
volume. Virtual block numbers are assigned to the blocks of a
file beginning with 1. The file header provides relocation
information for mapping the file's virtual block numbers to the
volume's logical block numbers. See also logical block number.

1-fi

CHAPTER 2

STATEMENT CONVENTIONS

Throughout this manual, certain conventions apply to the syntax of the
VAX-11 RMS macro instructions and control routines.

In examples, parameters other than the parameter under discussion are
shown. The purpose of showing these additional parameters is to
illustrate and reconfirm throughout the manual some of the conventions
that apply in coding macro instructions, such as statement
continuation and parameter separation. The parameter under discussion
will be shown in red print.

For example:

$FAB FNA=FLNAM ALQ=l32 BKS=4

In coding VAX-11 RMS macro instructions, you follow the same coding
rules used by the VAX-11 MACRO assembler. These rules are repeated
below for ease of reference.

• Comments must be separated from the rest of the code line by a
semi colon (;) • For example:

$FAB BKS=4 ;bucket size

• All the parameters necessary for a macro instruction must be
coded on a single macro instruction. If the parameters needed
do not all fit on one line (or if you do not want them on one
line), you can type the continuation character -- hyphen (-)
-- as the last character on the line, and then continue typing
parameters on the next line. Comments can follow the hyphen,
separated by the comment-delimiting semicolon -- they are not
interpreted as code. For example:

$FAB FNA=FLNAM - ;
ALQ=l32 - ;
BKS=4

filename address
allocation quantity
bucket size

• Parameters and subparameters can be separated from each other
by:

A single comma, with or without spaces or tabs;
preferred usage is the comma without a space or tab.
is how coding examples appear in this manual.

FNA=FLNAM,ALQ=l32

2-1

the
That

STATEMENT CONVENTIONS

A blank space

FNA=FLNAM ALQ=l32

Multiple blank spaces or tabs

FNA=FLNAM ALQ=l32

• Lowercase letters and words represent information that you
must supply. Such lowercase information may contain hyphens
for readability. The accompanying text defines the
information to be supplied. For example:

window-size
address

• Uppercase letters and words, equal signs (=), angle brackets
(<>), and dollar signs ($), must be coded as shown. For
example:

RAT=<BLK,CR>
$OPEN

• Information enclosed within braces indicates that you may
choose any one of the enclosed values. For example:

FIX
VAR
VFC
UDF

• Each option has its own symbolic bit offset and mask value.
The bit offset is formed by prefixing the control block name
and $V to the option value. For example:

FAB$V PUT
RAB$V-ASY

The mask value is formed by prefixing the control block name
and $M to the option value. For example:

FAB$M PUT
RAB$M-ASY

2-2

CHAPTER 3

THE P~OGRAM INTERFACE WITH VAX-11 RMS

You gain access to the VAX-11 RMS facilities at run time by calling
record management services. Your program and VAX-11 RMS exchange
information by means of user control blocks defined within your
program. This chapter provides an introduction to these services and
user control blocks, and the macro instructions that facilitate their
use.

With each request for a VAX-11 RMS service, you must place the
information detailing thi? request in a user control block. For
example, a request to open a file must be accompanied by the name of
the file, informat.ion on sharing the file, and details on accessinq
the file. Or, as another example, a program request to read a record
from a file must specify a record access mode, or perhaps a buffer
size.

Once a request for a service is satisfied, VAX-11 RMS uses the same
user control block to return information to your program. For
example, when the file is successfully opened, VAX-11 RMS returns
attribute information, such as file organization and record format.
Or, when a record is retrieved from a file, VAX-11 RMS provides your
program with the record's length and location in memory.

The amount of information exchanged between VAX-11 RMS and your
program varies with the nature of the request and the file attributes.

The following sections provide a broad overview of the interface that
a program uses when requesting VAX-11 RMS services. The remaining
chapters of Part II present detailed information on using the VAX-11
RMS declarative and imperative macro instructions. The declarative
macro instructions allocate and initialize file access blocks (FABs),
record access blocks (RABs), name blocks (NAMs), and extended
attribute blocks (XABs). The imperative macro instructions invoke
VAX-11 RMS operations to manipulate files and records.

3.1 USER CONTROL BLOCKS

You must allocate user control blocks as formatted areas in your
program. Your program and VAX-11 RMS use the data fields in these
blocks to exchange information.

Usually, you allocate space for user control blocks at assembly time.
Optionally, you can also set values for the fields in these blocks
either initially or at run time. The VAX-11 RMS declarative macro
instructions perform the functions that support assembly-time
allocation and initialization. For efficiency, align the control
blocks on a longword boundary; if you do not, you will receive a
warning message from the assembler. Since VAX-11 RMS returns

3-1

THE PROGRAM INTERFACE WITH VAX-11 RMS

information in the fields of these user control blocks, you cannot
allocate user control blocks in read-only storage.

Table 3-1 lists the user control blocks that are part of your program
interface with VAX-11 RMS. The Macro Name column shows the VAX-11 RMS
macro instruction you use to allocate space for the control block.
Chapters 4 through 7 describe these macro instructions.

Table 3-1
User Control Blocks

Macro
Block Name Function Name

-.. -.. - -----·--+-
File Access

FAB
Describes a file and contains $FAB

Block file-related information
·- -~----------·~ '"""

Record Access RAB Describes a record and contains $RAB
Block record-related information

- ---·~ --
Extended Contains file attribute information $XABxxx1

Attribute XAB beyond that in the File Access
Blocks Block

-- - ~···~

Contains file specification $NAM
Name Block NAM information beyond that in the

File Access Block

--
1 xxx is a 3-character XAB type specification.

3.2 VAX-11 RMS RUN-TIME OPERATIONS

To create and process VAX-11 RMS files, your program must contain
calls to appropriate VAX-11 RMS routines. Generally, you make these
calls by using the VAX-11 RMS imperative macro instructions for
run-time processing. The expanded code of these macro instructions,
when encountered at run time, causes calls to be made to the
corresponding VAX-11 RMS routine. Each macro instruction, and the
resultant call, represents a program request for either a file or
record related service, or block I/O transfer operation.

Table 3-2 summarizes the run-time processing macro instructions.
Chapters 8 through 15 describe these macro instructions.

3-2

THE PROGRAM INTERFACE WITH VAX-11 RMS

Table 3-2
Run-Time Processing Macro Instructions

Category Macro Name Service

File $CREATE Creates and opens a new file of any organization
Processing

$OPEN Opens an existing file and initiates file processing

$DISPLAY Returns the attributes of a file to user program

$EXTEND Extends the allocated space of a file

$CLOSE Terminates file processing and closes the file

$ERASE Deletes a file and removes its directory entry

Record $GET Retrieves a record from a file
Processing

$PUT Writes a new record to a file

$UPDATE Rewrites an existing record in a file

$DELETE Deletes a record from a relative or indexed file

$FIND Locates and positions to a record and returns its RFA

$CONNECT Associates and connects a RAB to a file
--

$DISCONNECT Disconnects a RAB from a file

$RELEASE Unlocks a record pointed to by the contents of the RFA
field of the RAB

$FREE Unlocks all previously locked records

$WAIT Determines the completion of an asynchronous record
operation

$REWIND Positions to the first record of a file

$TRUNCATE Truncates a sequential file

$FLUSH Write modified 1/0 buffers and file attributes

$NXTVOL Causes processing of a magnetic tape file to continue to
the next volume of a volume set

Block 1/0 $READ Retrieves a specified number of bytes from a file

$WRITE Writes a specified number of bytes to a file

$SPACE Spaces forward or backward in a file

File $ENTER Enters a file name into a directory
Naming ··-·-· --·-····-------~- .. -

$PARSE Parses a file specification

$REMOVE Removes a file name from a directory

$RENAME Assigns a new name to a file
t- ----- . .,

$SEARCH Searches a directory for a file name

3-3

CHAPTER 4

THE FILE ACCESS BLOCK

This chapter describes the File Access Block (FAB), the fields in the
FAB, and the parameters of the $FAB macro instruction. The FAB is
used by the file processing services (Chapter 9) and the file
specification processing services (Chapter 13).

4.1 THE PURPOSE OF THE FILE ACCESS BLOCK

The FAB is a user control block that describes a particular fil~. The
fields of the FAB contain file-related information, such as:

• The name of the file

• The file organization

• The record format

• Disk storage space allocation information

You allocate a FAB with a $FAB macro instruction, and initialize the
fields of the FAB either at assembly time (through keyword parameters)
or by direct manipulation at run time. You initialize the FAB at run
time through either keyword parameters 'with the $FAB STORE macro
instruction (see Chapter 14) or the defined symbolic offsets. You
need one FAB for each open file in your program.

Each field in the FAB has a 3-character mnemonic name. All access to
these fields is through this name (by keyword or offset). However,
some of the fields are static or output-only; therefore, you need not
initialize them. Table 4-1 summQrizes the fields of the FAB,
including the static and output-only fields.

4-1

THE FILE ACCESS BLOCK

Table 4-1
File Access Block Fields

--
Field &

Keyword Field Size
Name (units of 1) Description Offset

ALQ longword Allocation quantity FAB$L_ALQ

BID1 byte Block identifier FAB$B_BID

BKS byte Bucket size FAB$B_BKS

BLN1 byte Block length FAB$B_BLN

BLS word Block size FAB$W_BLS

CTX longword Context FAB$L_CTX

DEQ word Default file extension quantity FAB$W_DEQ
·-

DEV2 longword Device characteristics FAB$L_DEV

DNA longword Default file specification string address FAB$L_DNA

DNS byte Default file specification string size FAB$B_DNS
"

FAC byte File access FAB$B_FAC
·- ···--·-----·- r----

FNA longword File specification string address FAB$L_FNA

FNS byte File specification string size FAB$B_FNS

FOP longword File-processing options FAB$L_FOP
_ ___J --------

FSZ byte Fixed control area size FAB$B_FSZ
-·-·---

IFI2 word Internal file identifier FAB$\Y_IFI

MRN longword Maximum record number FAB$L_MRN

MRS word Maximum record size FAB$W_MRS

NAM longword Name block address FAB$l NAM
-

ORG byte File organization FAB$B_ORG
-.-····-·-,····-------., -

RAT byte Record attributes FAB$B_RAT

RFM byte Record format FAB$B RFM
·~-~---·-

RTV byte Retrieval window size FAB$B RTV

soc2 longword Spooling device characteristics FAB$L SOC
--I----

SHR byte File sharing FAB$B_SHR
--·--· --

STS2 longword Completion status code FAB$L_STS

STV2 longword Status values FAB$L_STV
------- ··--·-· ··--·· ~----

XAB longword Extended attribute block address FAB$L_XAB

--·-·---------·--·----·~-~-·"-

1 Indicates statically initialized field (by $FAB macro instruction) to identify this control block as a FAB.
2 Indicates nonuser-initialized field.

4-2

THE FILE ACCESS BLOCK

$FAB

4.2 FAB ALLOCATION

The format of the $FAB macro instruction is shown below. Every
parameter is optional, depending on the function to be performed with
the FAB an~ the combination of parameters in the macro instruction as
a whole.

Format:

OPERATION

label: $FAB

PARAMETERS

ALQ=allocation-qty

BKS=bucket-size

BLS=block-sizc

CTX==value

DEQ=extension-qty

DNA=address

DNM=<filespec>

DNS=value

FAC=<PUT GET DEL UPD TRN BIO BRO>

FNA=address

FNM=<filespec>

FNS=value

FOP=<CBT CIF CTG DFW DLT MXV NAM NEF NFS OFP POS RCK RWC RWO
SCF SPL SQO SUP TEF TMD TMP UM UFO WCK>

FSZ=header-size

MRN=max-rec-number

MRS=max-rec-size

N AM=nam-address

ORG={~~~}
IDX

RAT=<BLK{~~N}>
PRN

!FIX l VAR
RFM= VFC

UDF

RTV=window-size

SHR=<PUT GET DEL UPD NIL MSE UPI>

XAB=xab-addrcss

4-3

THE FILE ACCESS BLOCK

The $FAB macro instruction allocates and initializes storage for a
FAB. You cannot use this macro instruction within a sequence of
executable instructions. In some cases, specific default values are
assigned automatically, when you omit a parameter. These specific
defaults are noted in the text that explains each parameter. If there
is no specific default, VAX-11 RMS uses a default value of O.

label: $FAB

4.2.1 Label

You can use the label field of the $FAB macro instruction to name a
FAB and thereby to refer to a particular FAB within your program. The
label field is optional but when used, must precede the symbol $FAB
and be separated from $FAB by a colon (:). For example:

INFAB: $FAB

$FAB ALQ

4.2.2 Allocation Quantity

You can
field.
blocks,
or to
$EXTEND

use the ALQ parameter to initialize the allocation quantity
With this field you can specify the amount of space, in

to be initially allocated to a disk file when it is created,
be added to the file when it is explicitly extended (through a
macro instruction).

Format

ALQ=allocation-quantity

allocation-quantity

A numeric value representing a number of blocks, in the range of
0 through 4,294,967,295. A value of 0 indicates no allocation.

For example, to set an allocation quantity of 132 blocks, the coding
is:

$FAB ALQ=l32

User Considerations

1. When you create a new file with a $CREATE macro instruction,
VAX-11 RMS interprets the value in the allocation quantity
field as the number of blocks for the initial extent of the
file. If the value is O, the minimum number of blocks for
the specific file organization is the allocation quantity
used for the initial extent. For example, in indexed files,
the number of blocks necessary to contain key and area
definitions is used as the initial extent quantity when
ALQ=O.

2. When an existing file is opened with a $OPEN macro
instruction, VAX-11 RMS sets the allocation quantity field to
indicate the highest virtual block number currently allocated
to the file.

4-4

THE FILE ACCESS BLOCK

3. Before extending a file with a $EXTEND macro instruction, you
must set the allocation quantity field equal to the number of
blocks to be added to the file. You cannot use an extension
size of O.

4. When you use the $CREATE and $EXTEND macro instructions, the
allocation quantity value is rounded up to the next cluster
boundary; the number of blocks actually allocated is
returned in the allocation quantity field.

NOTE

The function of the allocation quantity
field with the $CREATE and $EXTEND macro
instructions is different from the
preceding description if allocation XABs
are present during the operation.
Chapter 6 describes allocation XABs and
their effect on the allocation quantity
field during file creation or extension.

4.2.3 Bucket Size

$FAB BKS

The BKS parameter initializes the bucket size field. This field is
used only for relative or indexed files. When you open an existing
relative or indexed file, VAX-11 RMS sets the bucket size field to the
defined size of the buckets in the file. However, when you create a
new relative or indexed file, you must set the bucket size field
before you issue the $CREATE macro instruction.

Format

NOTE

If allocation control XABs are
specified, the value specified in the
XAB BKZ field will supersede the value
specified in the FAB BKS field. Refer
to Section 6.5.6 for a description of
the XAB BKZ parameters.

BKS=bucket-size

bucket-size

A numeric value, in the range of 0 through 32, representing the
number of blocks in each bucket of the file. If you omit this
parameter or use a value of O, you receive a default size equal
to the minimum number of blocks required to contain a single
record.

For example, to set the bucket size to 4, the syntax is:

$FAB BKS=4,ALQ=l32

4-5

THE FILE ACCESS BLOCK

User Considerations

In specifying a bucket size, you must be aware of the relationship
between bucket size and record size. Since VAX-11 RMS does not allow
records to cross bucket boundaries, you must ensure that the number of
blocks per bucket conforms to one of the following formulas:

• Relative files with fixed-length records:

where

Bsiz = ((Rlen+l)*Rnum)/512

Bsiz

Rlen

Rn um

is the number of blocks per bucket rounded up
to the next higher integer. The result must
be in the range from 1 through 32.

is the fixed record length.

is the number of records that you want in
each bucket.

• Relative files with variable-length records:

where

Bsiz = ((Rmax+3)*Rnum)/512

Bsiz

Rmax

Rn um

is the same as described above.

is the maximum size of any record in the
file.

is the number of records that you want in
each bucket. Variable-length records in a
relative file bucket always occupy Rmax+3
bytes.

• Relative files with variable with
records:

fixed-length control

Bsiz

where

Bsiz

Rmax

Fsiz

Rn um

((Rmax+Fsiz+3)*Rnum)/512

is the same as described above.

is the maximum size of the data portion of
any record in the file.

is the size of the fixed control area portion
of the records.

is the number of records that
each bucket. Variable with
control records in a relative
always occupy Rmax+Fsiz+3 bytes.

4-n

you want in
fixed-length
file bucket

THE FILE ACCESS BLOCK

• Indexed files with fixed-length records:

where

Bsiz = ((Rlent+7)*Rnum)+l5/512

Bsiz

Rlen

Rn um

is the number of blocks per bucket rounded up
to the next higher integer. The result must
be in the range of from 1 through 32.

is the fixed-record length.

is the number of records that you want in
each bucket. Fixed-length records in an
indexed file bucket always occupy Rlen plus
seven bytes of record control information.
Fifteen bytes are required for bucket control
information.

• Indexed files with variable-length ·records:

where

Bsiz = ((Rmax+9)*Rnum)+l5/512

Bsiz

Rmax

Rn um

is the same as described above.

is the maximum size of any record in the
file.

is the number of records that you want in
each bucket. Variable-length records in an
indexed file bucket always occupy Rmax plus
nine bytes of record control information.
Fifteen bytes are required for bucket control
information.

SPECIAL NOTE FOR INDEXED FILES

If the BKS field is not specified and a
maximum record size (MRS) is specified,
then VAX-11 RMS will use a bucket size
to ensure that at least one maximum size
record will fit. Generally, performance
on record insertion and sequential
retrieval on primary key is improved if
at least 3 or 4 data records will fit
into a primary data bucket. If either
the bucket size or the disk cluster size
is other than 1 block, then it is
advisable to use a default extend
quantity (DEQ) which is the least common
multiple of the bucket size and cluster
size, to avoid u·nused, but allocated
blocks within the file.

4-7

THE FILE ACCESS BLOCK

$FAB BLS

4.2.4 Block Size

The BLS parameter is used as input only for magnetic tape files. When
you create a magnetic tape file, you can set the block size field
before you issue the $CREATE macro instruction. In all other cases,
VAX-11 RMS ignores it. When you open an existing file with a $OPEN
macro instruction, VAX-11 RMS returns the device buffer size if the
file is organized sequentially. For terminals, this is the value of
the WIDTH setting. For mailboxes, this is the value of the maximum
message size.

Format

BLS=block-size

block-size

The size, in bytes, of the blocks on the tape, in the range of 20
through 65532. If this parameter is 0, the default selected when
the volume was mounted is used.

For compatibility with RMS-11, block size is always rounded off
to be a multiple of 4. For example, if you set the block length
to 38, you would get 40.

For example, to set the block length to 4096, the syntax is:

$FAB

$FAB CTX

BLS=4096,MRS=l32

NOTE

To create a magnetic tape for
interchange with other DIGITAL operating
systems (non-VAX/VMS), you should
consult the documentation for the target
system regarding possible limitations on
block size. To ensure compatibility
with non-DIGITAL systems, ANSI standards
require that the block size be less than
or equal to 2048 bytes.

4.2.5 User Context

The CTX parameter conveys user information to a completion routine in
your program. The user context field set by this parameter is
intended solely for your use; VAX-11 RMS never uses it for record
management activities.

4-8

THE FILE ACCESS BLOCK

Format

CTX=value

value

represents any user-specified value, up to four bytes long.

For example, to pass along the symbolic value TlDONE, the syntax is:

$FAB CTX=TlDONE,BKS=4

$FAB DEQ

4.2.6 Default File Extension Quantity

The DEQ parameter sets the default file extension quantity field,
which specifies the number of blocks to add when a disk file is
extended automatically. This automatic extension occurs whenever your
program performs an operation with a $PUT or $WRITE macro instruction
and the currently allocated space is exhausted.

Format

DEQ = extension-quantity

extension-quantity

The number of blocks to be added when automatic extension is
required. This number must be in the range of 0 through ~5,535
and is rounded up to the next cluster boundary. If you specify
O, the file will be extended using a VAX-11 RMS determined
default extension value.

For example, to specify a default extension quantity of 80 blocks, the
syntax is:

$FAB DEQ=80

User Considerations

1. When creating a new file, you can specif~ the extension
quantity for the file by setting the desired value in the
default extension quantity field before issuing a $CREATE
macro instruction. This value becomes a permanent attribute
for the file.

2. When processing an existing file, you can temporarily
override the default extension quantity specified when the
file was created. To do this, set the desired value before
issuing the $OPEN macro instruction. Once the file is
closed, the default extension quantity reverts to the value
set when the file was created.

3. See notes under BKS for indexed files.

NOTE

The use of an allocation XAB will
override the value in this field. See
chapter n for a detailed description of
allocation XAB's.

4-9

THE FILE ACCESS BLOCK

$FAB DNA

4.2.7 Default File Specification String Address

You can use the DNA p~rameter to set program defaults in the default
file specification string address field for the missing components (if
any) of the file specification string pointed to by the file
specification string address field. This parameter works with the DNS
parameter, which initializes the default file specification string
size (see Section 4.2.·8).

The default file specification string is used primarily when accepting
file specifications interactively; file specifications known to a
user program are normally completely specified in the file
specification string address and size fields (the FNA and FNS
parameters). You can specify defaults for one or more of the
following file specification components:

• Node • File name

• Device • File type

• Directory • File version number

Format

DNA address

address

The symbolic address of an ASCII string containing one or more
components of a file specification. The components in the string
must be in the order in which they would occur in a complete file
specification.

For example, assume an ASCII string is stored at a memory location
whose symbolic address is DFNAM. To store the address of this string
in the default file specification string address field, so that DFNAM
will be used during execution of a $OPEN or $CREATE macro instruction,
the syntax is:

$FAB DNA=DFNAM,DNS=4

This default file specification string address is only effective if
the components are missing from the string whose address is stored in
the file specification address field.

Secti-0n 4.2.9 describes a simpler technique using the DNM parameter
for setting the default file specification string address at

assembly time.

$FAB DNS

4.2.8 Default File Specification String Size

The DNS parameter sets a value in the default file specification
string size field. This value indicates the size, in bytes, of the
string whose address is contained in the default file specification
string address field.

4-10

THE FILE ACCESS BLOCK

Format

DNS=value

value

A symbolic or numeric value representing the size of the default
file specification string. The numeric value is in the range of
1 through 255.

For example, assume that your program contains the directive:

DFNAM: .ASCII /.DAT/

The following DNS parameter would set the default file specification
string size field:

$FAB DN S = 4, DNA= DFN AM

Section 4.2.9 describes another technique -- using the DNM parameter
-- for setting the default file specification string size.

$FAB DNM

4.2.9 Default File Specification

The DNM parameter sets two fields in the FAB: the default file
specification string address (DNA) and the default file specification
string size (DNS). The specified default file specification string is
stored in the special program section $RMSNAM.

Format

DNM=<FILESPEC>

<FILESPEC>

The ASCII default file specification string. The angle brackets
(<>) are required syntax.

For example:

$FAB DNM=<.DAT>

$FAB FAC

4.2.10 File Access

The FAC parameter initializes the file access field. You must
indicate to VAX-11 RMS what types of operations you intend to perform
on the file. After you open a file, VAX-11 RMS rejects any operation
your program attempts if that operation was not specified in the file
access field when you issued a $OPEN or $CREATE macro instruction for
the file.

4-11

THE FILE ACCESS BLOCK

If your program will issue any of the
you must specify them by setting
appropriate operation:

following macro instructions,
the file access field for the

• $DELETE

• $FIND

• $GET

• $PUT

• $READ

• $SPACE

• $TRUNCATE

• $UPDATE

• $WRITE

Format

BIO

BRO

DEL

GET

PUT

TRN

FAC=<BIO,BRO,DEL,GET,PUT,TRN,UPD>

Used for block I/O operations involving a $READ or $WRITE
instruction, with Get and Put access, respectively, and also
a $SPACE macro instruction. Furthermore, specifying block
prohibits the use of any record I/O operations (GET, PUT,
UPD, TRN).

macro
with

I/O
DEL,

Similar to BIO, except that record I/O operations are also
allowed.

Allows operations with a $DELETE macro instruction.

Allows operations with a $GET or $FIND macro instruction. This
is the default when you are opening this file and either the FAC
parameter is not specified or the DEL, UPD, or TRN operations are
specified on the FAC parameter. If you specify GET with either
BIO or BRO, you can perform operations with a $READ macro
instructi9n.

Allows operations with a $PUT macro instruction. This will be
the default if you are creating this file. If you specify PUT
with either BIO or BRO, you can perform operations with a $WRITE
macro instruction.

Allows op~rations with a $TRUNCATE macro instruction. Also
allows use of the truncate put (TPT) record option on a $PUT and
$WRITE macro instruction (see Section 5.2.14).

4-12

THE FILE ACCESS BLOCK

UPD

Allows operations with a $UPDATE macro instruction. This is also
required for Put operations with the update if (UIF) option on
indexed files.

You may specify more than one operation with the FAC parameter.
However, if you do, the group of operations must be enclosed in angle
brackets; when only one operation is specified, no angle brackets are
needed. Multiple operations can be specified in any order. For
example, <GET,PUT,UPD> or <UPD GET PUT>.

The following example indicates that operations with a $PUT macro
instruction are going to be performed.

$FAB FAC=PUT,ALQ=l32,DEQ=l6

A request for operations with $GET, $PUT, and
instructions would be specified as follows:

$FAB FAC=<GET,UPD,PUT>

$UPDATE macro

Each operation has its own symbolic bit offset and mask value.

$FAB FNA

4.2.11 File Specification String Address

The FNA parameter initializes the file specification string address
field. This parameter works with the FNS parameter, which initializes
the file specification string size field (see Section 4.2.12). The
file specification string address contains the address of an ASCII
string that specifies the path to a file to be processed. If this
string does not contain all the components of a full file
specification, VAX-11 RMS will use the defaults supplied in the
default file specification string (see Sections 4.2.7, 4.2.8, and
4.2.9). If no default string is present, or if the file specification
is still incomplete, VAX-11 RMS provides further defaulting (see
Section 8.2).

Format

FNA=address

address

The symbolic address of an ASCII string containing the file
specification.

For example, assume that the following directive is in your program:

FLNAM: .ASCII /MASTER.OLD/

The syntax for the FNA parameter is:

$FAB FNA=FLNAM,FNS=lO

See 4.2.13 for an alternate method of setting the file specification
at assembly time with the FNM macro.

4-13

THE FILE ACCESS BLOCK

$FAB FNS

4.2.12 File Specification String Size

The FNS parameter initializes the file specification string size
field. This field describes the length, in bytes, of the ASCII string
pointed to by the file specification string address field (FNA).

Format

FNS=value

value

A numeric or symbolic value representing the size, in bytes, of
the file specification string, in the range of 0 through 255.

For example, assume that the following directive is in your program:

FLNAM: .ASCII /INPUTFILE:/

The syntax for the FNS parameter is:

$FAB FNS=lO,FNA=FLNAM

Section 4.2.13 describes another technique -- using the FNM parameter
-- for setting the file specification string size field.

$FAB FNM

4.2.13 File Specification

The FNM parameter sets two fields in the FAB: the file
string address and the_file specification string size.
specified string to be stored in the special program
$RMSNAM.

Format

FNM <FILESPEC>

<FILESPEC>

specification
It causes the

section named

The ASCII file specification str~ng; the angle brackets (<>) are
required syntax.

For example:

$FAB FNM=DISK: [DATA]<FILE.DAT>,ALQ=l32

$FAB FOP

4.2.14 File Process Options

The FOP parameter sets indicators in the file-processing options field
that represent requests for optional file-handling operations.

4-14

THE FILE ACCESS BLOCK

Format

FOP=<CBT,CIF,CTG,DFW,DLT,MXV,NAM,NEF,NFS,OFP,POS,
RCK,RWC,RWO,SCF,SPL,SQO,SUP,TEF,TMD,TMP,UFO,WCK>

With the exception of the CBT, CTG, RCK, and WCK bits, the contents of
this field are not modified by VAX-11 RMS operations.

Each option is interpreted as follows:

Allocation and Extension Options:

CBT

CTG

TEF

Contiguous best try: indicates that the file is to be allocated
contiguously on a "best effort" basis. It is input to the create
service, and is output from the open service to indicate the file
status. Note that the file will take on the contiguous best try
attribute only if a space allocation is actually performed. The
CBT option takes precedence over the CTG option (below).

Contiguous; indicates that the space for the file is to be
allocated contiguously. If this cannot be done, the operation
fails. It is input to the create service, and is output by the
open service to indicate the status of the file. The CBT option
(above) takes precedence over the CTG option.

Truncate at end of file; indicates that unused space allocated
to a file is to be deallocated on a close service. This applies
to sequential files only.

Performance Options:

SQO

DFW

Sequential only; indicates that this file can be processed
sequentially only, thus allowing certain processing
optimizations. Any attempt to perform random access will result
in an error. This option is input to the create and open
services and applies to the Find, Get, and Put services for
sequential files. At present, this performance enhancement
applies only to network operations.

Deferred write; indicates that writing back to the file of
modified I/O buffers is to be deferred until the buffer must be
used for other purposes. This option applies to relative files
and indexed files.

Reliability Options:

RCK

Read-check; specifies that transfers from disk volumes are to be
checked by a follow-up read-compare operation. This is an input
to the open and create services. If RCK is set, then checking is
performed for the duration of the access. The RCK is also an
output of the open service, which indicates the default for the
file.

4-15

WCK

THE FILE ACCESS BLOCK

Write-check; indicates that transfers to disk are to he checked
by a follow-up read-compare. Similar to the RCK option.

Filename Parsing Modifiers:

CIF

MXV

NAM

OFP

SUP

Create if; causes the file to be opened if it already exists.
If the file does not exist, it is created and the alternate
success RMS$ CREATED is returned. It is input only on a create
service. The CIF option takes precedence over the SUP option.

Maximize version; indicates that the version number of the file
should be the maximum of the explicit version number given in the
file specification or one greater than the highest version number
for an existing file in the same directory with the same file
name and file type.

NAM block inputs; indicates that the NAM block specified in the
name block address field is to be used to provide:

• The device identification, file identification, and/or
the directory identification when the file is being
opened, closed, or deleted

• The device identificafion and the directory
identification when the file is being created

For further detail, see Section 8.2.

Output file parse; specifies that the related file resultant
file specification string, if used, is to provide file name and
file type defaults only (see Section 8.2).

Supersede; allows an existing file to be superseded on a create
service by a new file of the same name, type, and version. The
CIF option (above) takes precedence over the SUP option.

File Disposition Options:

DLT

SCF

Delete; indicates that the file is to be deleted when it is
closed; this option may be specified on a close, create, or open
service. You can specify the DLT option with the SCF or SPL
option. However, if you do not have a NAM block in conjuction
with this, the file's directory entry will not be removed.

Submit command file; indicates that the file is to be submitted
as a batch-command file to the process-default batch queue when
the file is closed. This option can be specified for the close,
create, or open services. It is currently implemented for
sequential files only.

4-16

SPL

TMD

TMP

THE FILE ACCESS BLOCK

Spool; indicates that the file is to be spooled to the process
default print queue when the file is closed. When using this
option, you should normally use a NAM block and specify the NAM
option (of this file-processing options field) so that the
resultant file specification string is available. This option
can be specified for the Close, Create, or Open services. It is
currently implemented for sequential files only.

Temporary marked for delete; indicates that a temporary file is
to be created, and then deleted when the file is closed. This
option is input only to the create service. The TMD option takes
precedence over the TMP option (below).

Temporary; indicates that a temporary file is to be created and
retained, but that no directory entry will be made for this file.
This option is input only to the create service. The TMD option
(above) takes precedence over the TMP option.

Magnetic Tape Processing Options:

NEF

POS

RWC

RWO

Not end of file; inhibits the positioning to the end of file
when a tape file is opened and the file access field of this FAB
indicates a Put operation.

Current position; indicates that the magnetic tape volume set
should be positioned immediately after the most recently closed
file when the next file is created. However, if the RWO option
of this field is also set, it overrides the POS option and
positions to the beginning of the volume set.

Rewind on close; specifies that the magnetic tape volume is to
be rewound when the file is closed. This option can be specified
for the Close, Create, or Open services.

Rewind on open; specifies that the magnetic tape volume is to be
rewound before the file is opened or created. The RWO option
takes precedence over the POS option (above).

Non-Standard Processing Options:

NFS

Non-file-structured; indicates on Open or Create that the volume
is to be processed in a non-file-structured manner. This allows
the use of volumes created on non-DIGITAL systems. For further
explanation, see Section 12.4.

4-17

UFO

THE FILE ACCESS BLOCK

User file open; indicates that VAX-11 RMS will open or create
the file only. No further VAX-11 RMS operations can be done with
this file. To perform any further processing on the file, you
must use the QIO system service with the channel number that is
returned in the status value field (STV). This channel will be
assigned in the mode of the caller. For the create service, the
end of file mark will be set to the end of the block specified in
the allocation options field on input (see Section 4.2.2). For
either the open or create services, the !FI field is set to 0 on
return to indicate that VAX-11 RMS cannot perform any more
operations on the file. If you use the UFO on $OPEN or $CREATE,
the channel needs only to be deassigned when you are finished
with the file. A Close operation is not required.

You can specify more than one option with the FOP parameter. However,
if you do, you must enclose the group of options in angle brackets.
When you specify only one option, no angle brackets are needed. The
options can be specified in any order.

For example, to rewind a tape file as part of the close operation, the
syntax is:

$FAB BLS=4096,FOP=RWC

Each option has its own symbolic bit offset and mask value.

$FAB FSZ

4.2.15 Fixed Control Area Size

The FSZ parameter initializes the fixed control area size field, which
is used when dealing with variable with fixed-length control records.
When you create a file with this type of record, you must set the
value for the fixed-control area before you issue the $CREATE macro
instruction. When you open an existing file that contains variable
with fixed control records, VAX-11 RMS sets this field equal to the
value specified when the file was created. The FSZ parameter is not
applicable to indexed files.

Format

FSZ=header-size

header-size

The numeric value, in bytes, of the size of the fixed control
area, in the range of 1 to 255. The default size is 2 bytes. If
you specify O, then the default size is used.

For example, if each variable with fixed-length contr~l record is to
have an 8-byte fixed control area, the syntax is:

$FAB FOP=WCK,FSZ=8

4-18

THE FILE ACCESS BLOCK

$FAB MRN

4.2.16 Maximum Record Number

The MRN parameter sets the maximum record number field, which
indicates the highest record number that can be written into this
file. You can use this parameter only for relative files. If you
attempt to put or get a record with a higher relative record number
than the specified limit, an error will occur and VAX-11 RMS will
return a message indicating an invalid record number. If, however,
you specify 0, checking is suppressed.

Format

MRN=max-rec-number

max-rec-number

Numeric value of the highest numbered record allowed in the file,
in the range of 0 to 2,147,483,647. The default for this
parameter is O.

For example, to set the highest relative record number to 10000, the
syntax is:

$FAB MRN=lOOOO,FOP=WCK

NOTE

VAX-11 RMS does not maintain the
relative record number of the highest
existing record in the file.

4.2.17 Maximum Record Size

$FAB MRS

The MRS parameter sets the maximum record size field, which indicates,
in bytes, the size of the records in the file.

For fixed-length records, the value represents the actual size of each
record in the file. You must specify a size when you create a file
with fixed-length records.

For variable-length records, the value represents the size of the
largest record that can be written into the file. If the file is not
a relative file, a value of 0 is used to suppress record size
checking, thus indicating that there is no user limit on record size.
However, the record size must conform to physical limitations. In the
case of indexed and relative files, for example, records may not cross
bucket boundaries.

For variable with fixed-length control records, the value includes
only the data portion; it does not include the size of the fixed
control area.

For all relative files, the size is used to determine the size of the
record cell, and is used in conjunction with the bucket size field
(see Section 4.2.3).

4-19

THE FILE ACCESS BLOCK

You specify a value
VAX-11 RMS returns
macro instruction.

when
the

you issue a $CREATE macro instruction.
maximum record size when you issue a $OPEN

Format

MRS=max-rec-size

max-rec-size

The following table summarizes the maximum record size allowed
for the various file and record formats:

FILE ORGANIZATION

Sequential
Sequent i a 1 (Disk)
Sequential (ANSI Tape)
Relative
Relative
Indexed Sequential
Indexed Sequential

RECORD FORMAT

Fixed-length
Variable-length
Variable-length
Fixed-length
Variable-length
Fixed-length
Varialbe-length

MAXIMUM ALLOWED

32,7n7
32, 767-FSZ 1

9,995-FSZ
10, 383
10,381-FSZ
16,362
16,360

For example, to set a maximum record size of 512 bytes, the syntax is:

$FAB MRS=512,MRN=l0000

$FAB NAM

NOTE

The length of the largest record
actually existing in a sequential file
with variable or VFC record format is
also maintained by VAX-11 RMS and is
available through the file header
characteristics XAB (LRL field of
$XABFHC) (see Section n.9).

4.2.18 Name Block Address

The NAM parameter lets you set a symbolic address in the name block
address field of the FAB. This address points to the NAM block you
want to use when performing an operation, such as an open or create,
on a file. The NAM block, described in Chapter 7, is required only in
conjunction with the file specification processing macro instructions
(see Chapter 13).

Format

NAM=nam-address

nam-address

The symbolic address of the NAM block.

1. The FSZ represents the size of the fixed control area of a record.
The FSZ=O for varialbe-length records. The FSZ is equal to the size,
in bytes, for the fixed control area of the VFC (variable with
fixed-length control) records.

4-20

THE FILE ACCESS BLOCK

For example, if a $NAM macro instruction for a NAM block has a label
of NMBLK, the syntax is:

$FAB MRS=512,MRN=l000,NAM=NMBLK

$FAB ORG

4.2.19 File Organization

The ORG parameter sets the file organization field, indicating the
arrangement of the data in the file. You must set this field before
you issue a $CREATE macro instruction. VAX-11 RMS returns the
contents of this field when you issue a $OPEN macro instruction.

Format

{
REL} ORG= !DX

.SEQ

REL

Relative file organization.

IDX

Indexed file organization.

SEQ

Sequential file organization. This is the default.

For example, to set the file organization field to relative, the
syntax is:

$FAB MRN=l000,0RG=REL,MRS=512

Each organization has its own symbolic value.

e REL

e IDX

• SEQ

FAB$C REL

FAB$C !DX

FAB$C_SEQ

4.2.20 Record Attributes

$FAB RAT

The RAT parameter initializes the record attributes field with special
control information pertaining to the records in the file. If you
need this information, set this field before you issue a $CREATE macro
instruction. VAX-11 RMS sets the field when you issue a $OPEN macro
instruction.

Format

RAT=<BLK {~~N} >
PRN

4-21

BLK

CR

FTN

THE FILE ACCESS BLOCK

Indicates that records do not cross block boundaries.
information applies to sequential files only.

This

Indicates that each record is to be preceded by a line feed and
followed by a carriage return when the record is written to a
carriage control device such as a line printer or terminal.

Indicates that the first byte of each record contains a FORTRAN
(ASA) carriage control character, defined as follows:

Byte 0
Value
(hexadecimal)

ASCII
Character Meaning

0 (null)

20 (space)

30 0

31 1

28 +

24 $

Null carriage control.
buffer contents.)

(Sequence: print

Single-space carriage control. (Sequence:
newline, print buffer contents, RETURN.)

Double-space carriage control. (Sequence:
newline, newline, print buffer contents,
RETURN.)

Page eject carriage control. (Sequence:
form feed, print buffer contents, RETURN.)

Overprint carriage control. (Sequence:
print buffer contents, RETURN.) Allows
double printing for emphasis.

Prompt carriage control. ~Sequence:
newline, print buffer contents.)

All other
values

Same as ASCII space character: single-space
carriage control.

PRN

Bit 7

0

0

Indicates the print file format for variable with fixed-length
control records, where the fixed control area contains the print
file information, including carriage control. The first byte of
the fixed control area constitutes a "prefix" area, and the
second byte constitutes a "postfix" area, specifying carriage
control to be performed before and after printing the record
respectively. The encoding scheme of both bytes is as follows
(even though they are interpreted separately):

Bits 0-6

0

l-7F

Meaning

No carriage control is specified,
that is, NULL.

Bits 0 through o are
newlines (line feeds
carriage return).

4-22

a count of
followed by

THE FILE ACCESS BLOCK

Bit 7 Bit 6 Bit 5 Bits 0-4 Meaning

1 0 0 0-lF Output the single ASCII control
character specified by the
configuration of bits 0 through 4
(7-bit character set).

1 1 0 0-lF Output the single ASCII control
character specified by the
configuration of bits 0 through 4
which are translated as ASCII
characters 128 through 159 (8-bit
character set).

1 1 1 0-lF Reserved

Only the BLK attribute can be paired with another attribute. You
cannot use CR, FTN, and PRN together in any combination. When BLK is
used with another attribute, you can specify them in any order; the
angle brackets are part of the required syntax when BLK is used with
another attribute.

The following example indicates that records do not cross block
boundaries.

FAB$ ORG=SEQ,RAT=BLK

Each option has its own symbolic bit offset and mask value.

$FAB RFM

4.2.21 Record Format

The RFM parameter initializes the record format field to indicate the
type of records in the file. When you create the file, you must set
this field before you issue the $CREATE macro instruction. VAX-11 RMS
returns the record format when you issue a $OPEN macro instruction.

Format

FIX

VFC

VAR

RFM= l FIX l VAR

VFC
UDF

Indicates fixed-length record format.

Indicates variable-length with fixed-length control
format. This format is not valid for indexed files.

record

Indicates variable-length record format.
default value (assembly time default).

This is also the

4-23

THE FILE ACCESS BLOCK

UDF

Indicates undefined record format. The undefined record format
is valid for sequential file organization only, and can be
processed only through the use of block I/O. This is the default
value if the FAB is not initialized with a SFAB macro
instruction.

For example, to indicate that records are fixed-length, the syntax is:

$FAB RFM=FIX,FAC=GET

Each record format has its own symbolic value.

e FIX FAB$C FIX

e VAR FAB$C VAR

e VFC FAB$C VFC

e UDF FAB$C UDF

$FAB RTV

4.2.22 Retrieval Window Size

The RTV parameter initializes the retrieval window size field. This
field identifies the number of retrieval pointers you want VAX-11 RMS
to maintain in memory for the file.

Format

RTV=window-size

window-size

The number of retrieval pointers, in the ranqe of 0 through 127,
or 255. A value of 0 indicates that VAX-11 RMS is to use the
system default number of retrieval pointers. A value of 255
means to map the entire file, if possible. Values between 128
and 254 inclusive are reserved for future use.

For example, to reserve ten retrieval pointers, the syntax is:

$FAB FAC=GET,RTV=lO,RFM=FIX

$FAB SHR

4.2.23 File Sharing

The SHR parameter sets a value in the file-sharing field, indicating
the operations other users can perform when they are sharing access to
the file with you. VAX-11 RMS supports file sharing for all relative
and indexed file operations, as well as for sequential files with
512-byte fixed-length records. For additional information concerning
file sharing, see Chapter 10.

4-24

THE FILE ACCESS BLOCK

Format

PUT

GET

DEL

UPD

NIL

UPI

MSE

SHR=<PUT,GET,DEL,UPD,NIL,UPI,MSE>

Allows other users to write records to the file.

Allows other users to read the file.

Allows other users to delete records from the file.

Allows other users to update records that currently exist in the
file.

Prohibits any type of file sharing by other users. (If specified
along with other operations, NIL takes precedence.)

Allows one or more writers for a sequential file or a shared file
which is open for block I/O. The user assumes the responsibility
for any required interlocking. This operation is set in
combination with PUT, GET, UPD, and/or DEL, but does not apply to
relative and indexed files.

Allows multistream access. You must specify MSE whenever you are
going to issue $CONNECT macro instructions for multiple RABs for
this FAB. This option is not available for sequential files with
other than 512-byte fixed-length records.

You can specify one or more file-sharing operations in any order.

For example, to allow read, write, and delete operations by other
users, the syntax is:

$FAB RTV=lO,RFM=FIX,SHR=<DEL,PUT,GET>

Each file-sharing operation has its own symbolic bit offset and mask
value.

4-25

$FAB XAB

THE FILE ACCESS BLOCK

NOTE

If you do not specify the SHR, VAX-11
RMS enters a value of O in the
file-sharing field. Defaults apply as
follows:

• If the file access
parameter) is set or
GET, the file-sharing
defaulted to GET.

field (FAC
defaulted to

field is

• If the file access field is set or
defaulted to either PUT, DEL, UPD, or
TRN, the file-sharing field is
defaulted to NIL.

4.2.24 Extended Attribute Block Pointer

For some operations, you must associate Extended Attribute Blocks
(XABs) with a FAB to convey additional attributes about a file (see
Chapter 6 for a description of an XAB). The XAB parameter sets the
extended attribute block pointer field with the address of the first
associated block (of a potential chained list of such blocks) for the
file.

Format

XAB=xab-address

xab-address

The symbolic address of the first XAB.
default) indicates no XABs for the file.

A value of 0 (the

For example, if the $XAB macro instruction has a label of HDRXAB, the
syntax is:

$FAB XAB=HDRXAB

NOTES

1. If you specify an XAB for either a
$OPEN or $DISPLAY macro instruction,
VAX-11 RMS returns the attributes for
the file to the XAB.

2. If you specify an XAB for a $CLOSE,
$CREATE, or $EXTEND macro
instruction, VAX-11 RMS uses the XAB
as input to those functions.

4-26

THE FILE ACCESS BLOCK

4.3 NONINITIALIZABLE FAB FIELDS

The following list
initialize. Either
sets them for you.

describes
they are

the FAB fields that you cannot
statically initialized, or VAX-11 RMS

Output Only Fields:

DEV

soc

STS

STV

The device characteristics field is set by VAX-11 RMS when you
issue an $OPEN, $CREATE or $PARSE macro instruction. This field
allows VAX-11 RMS to communicate to your program the generic
characteristics of the device containing the file. Although you
cannot initialize this field at assembly time, you can
interrogate the contents of the fields through the symbolic
offsets. Table 4-2 lists the bits in the device characteristics
field. Each bit described in this table has its own symbolic bit
offset and mask value. These definitions can be made available
to your program by issuing the $DEVDEF macro instruction. The
bit offset is formed by prefixing the characteristic name with
DEV$V_. For example:

REC -- DEV$V REC

The mask value is formed by prefixing the characteristic name
with DEV$M • For example:

REC -- DEV$M REC

Spooling device characteristics field; equivalent to the device
characteristics field (DEV), except that spooling device
characteristics refer to the intermediate device used for
spooling. The bit definitions for the SDC field are the same as
those defined for the DEV field.

Completion status code field; VAX-11 RMS sets this field with
success or failure codes before control is returned to your
program. Register 0 will contain the same status. Potential
error codes for specific operations are listed under their
descriptions in the chapters on file and file specification
processing (9 and 13). A complete list of all RMS error codes is
in Appendix A. Status codes are further discussed in Section
8.4.

Status value field; communicates additional completion
information to your program, based on the type of operation
performed and the contents of the completion status code field.
See Appendix A for the instances when VAX-11 RMS uses the status
value field. For more information on completion codes, see
Section 8.4.

4-27

THE FILE ACCESS BLOCK

Internal File Identifier:

IFI

Internal file identifier field; associates the FAB with the
corresponding internal file access block. It is set by VAX-11
RMS on successful Create or Open services. It is then an input
for subsequent Close, Display, and Extend operations. The Close
service deallocates the internal control structures and clears
the IFI. When the user file open (UFO) option in the file
options (FOP) field is specified, no internal structures are
allocated on the Create or Open service. Therefore, the IFI will
remain cleared.

Static Fields:

BID

BLN

Block identifier field; identifies the block as a FAB to VAX-11
RMS. This field is set by the $FAB macro instruction to the
symbolic value FAB$C_BID, and must not be altered.

Block length field; defines the length of the FAB to VAX-11 RMS.
This field is set by the $FAB macro instruction to the symbolic
value FAB$C_BLN, and must not be altered.

4-28

THE FILE ACCESS BLOCK

Table 4-2
Device Characteristics

~··-·--

Bit Name Description

ALL Device is allocated

AVL Device is available for use

CCL Carriage control device

DIR Directory structured device
---·· ---

DMT Device is marked for dismount
- --

ELG Device is error log enabled
-

FOO File-oriented device (disk and magnetic tape)

FOR Device is mounted foreign (i.e., non-file structured)

GEN Device is a generic device
--

IDV Device can provide input

MBX Device is mailbox

MNT Device is currently mounted
-·- --

NET Network device
-

ODY Device can accept output
-----·- --

RCK Device has read check enabled

REC Record-oriented device (terminal, line printer, etc.). If field is 0, device is assumed
to be block-oriented (disk, magnetic tape). All record-oriented devices are
considered sequential in nature.

RND Device is random access in nature

RTM Device is realtime in nature; not suitable for VAX-11 RMS usage

SDI Single directory device (master file directory only)

SHR Shareable device

SPL Device is being spooled

SQD Sequential block-oriented device (magnetic tape)

SWL Device is currently software write-locked

TRM Terminal device

WCK Device has write check enabled

4-29

CHAPTER 5

THE RECORD ACCESS BLOCK

This chapter describes the Record Access Block (RAB), the
the RAB, and the parameters of the $RAB macro instruction.
operations (described in Chapter 11) and Block I/O
(described in Chapter 12) require the RAB as a parameter.

5.1 THE PURPOSE OF THE RECORD ACCESS BLOCK

fields in
All record
operations

The RAB is the second type of user control block that you allocate,
either at assembly time or run time, to communicate with VAX-11 RMS.
During program execution, you associate a RAB with a File Access Block
(FAB) to establish a record stream using a $CONNECT macro instruction.
Once you have established a record stream, you use the fields of the
RAB to define to VAX-11 RMS the next record you want to access in the
file.

Each RAB is linked to
the file associated
can use the fields of
logical record you
that record.

a FAB, and represents a record request stream on
with the FAB. Once you establish this link, you
the RAB to define for VAX-11 RMS the next
want to access and various characteristics about

You allocate a RAB with a $RAB macro instruction, and initialize the
fields either at assembly time (through keyword parameters) or by
direct manipulation at run time. You initialize the RAB at run time
through either keyword parameters with the $RAB STORE macro
instruction (see Chapter 14) or the defined symbolic otfsets. You
need one RAB for each record stream in your program.

Each field in the RAB has a 3-character mnemonic name. All access to
these fields is through this name (by keyword or offset). However,
some of the fields, as in the FAB, are static or output only;
therefore, you need not initialize them. Table 5-1 summarizes the
fields of the RAB, including the static and output-only fields.

5-1

THE RECORD ACCESS BLOCK

Table 5-1
Record Access Block Fields

·- -

Field&
Keyword

Name Field Size Description Offset

-· -· ~~-- -·--- -··~~ -·
BID2 byte Block identifier RAB$B BID -

BKT longword Bucket code RAB$L_ BKT

BLN2 byte Block length RAB$B - BLN

CTX longword Context RAB$L - CTX

FAB longword File access block address RAB$L - FAB

ls1 1 word Internal stream identifier RAB$W ISi -
---···---1 --·- -

KBF longword Key buffer address RAB$L_ KBF
·-- ··-·--· •u•-=~~ -·

KRF byte Key of reference RAB$B KRF -

KSZ byte Key size RAB$B KSZ -
-

MBC byte Multiblock count RAB$B MBC -

MBF byte Multibuffer count RAB$B_MBF
--

PBF longword Prompt buffer address RAB$L_ PBF
- -

PSZ byte Prompt buffer size RAB$B_PSZ

RAC byte Record access mode RAB$B RAC -
·-+-----·

RBF longword Record address RAB$L RBF -
··-·-----1---

RFA 1 3 words Record's file address RAB$W RFA -

RHB longword Record header buffer RAB$L_RHB
,-.,-----·~~·-----

ROP longword Record-processing options RAB$L_ ROP

RSZ word Record size RAB$W_ RSZ
- --~·-~·~•- •m·------·-·---~-·~--• -~""~

STS 1 longword Completion status code RAB$L_ STS

STV 1 longword Status value RAB$L_STV
·--------- -- ---

STV03 word low-order word status value RAB$W_STVO
----------------·-

STV23 word high-order word status value RAB$W_STV2
-··-+---------·-·-·- ---~-~--- --------~-·-----~· . ~-~-

TMO byte Timeout period RAB$B TMO -
~--~-~---~---·-·------ ·---------

UBF longword User record area address RAB$L UBF -
--.. -~---

usz word User record area size RAB$W_USZ
·-----L------- ·---'-----

1 Indicates nonuser-initialized field.
2 lndicates statically initialized field (by the $RAB macro instruction) to identify this control block as a RAB.
3 Alternate definition of STV field.

5-2

THE RECORD ACCESS BLOCK

$RAB

5.2 RAB ALLOCATION

The format of the $RAB macro instruction is shown below. Every
parameter is optional, depending on the function to be performed and
the combination of parameters in the macro instruction as a whole.

Format:

OPERATION

label: $RAB

PARAMETERS

BKT=number

CTX=value

F AB=fab-address

KBF=buffer-address

KRF=key-number

KSZ=size

MBC=blocks

MBF=buffers

PBF=prompt-address

PSZ=prom pt-size

{
SEQ}

RAC= KEY
RFA

RBF=buffer-address

RHB=header-address

ROP=<ASY BIO CCO CVT EOF KGE KGT LIM LOA LOC NLK NXR PMT PTA
RAH RLK RNE RNF TMO TPT UIF ULK WBH>

RSZ=record-size

TMO=seconds

UBF=buffer-address

USZ=buffer-size

The $RAB macro instruction allocates and initializes storage for a
RAB. You cannot use this macro instruction within a sequence of
executable instructions. In some cases, specific default values are
assigned automatically when you omit a parameter. These specific
defaults are noted in the text that explains each parameter. If there
is no specific default, VAX-11 RMS uses a default value of o.

5-3

THE RECORD ACCESS BLOCK

label: $RAB

5.2.1 Label

The label for the $RAB macro instruction lets you name a RAB, and
thereby provides symbolic access to a particular RAB within your
program. The label is optional but, when used, must precede the
symbol $RAB and be separated from $RAB by a colon (:). For example:

INPUT: $RAB

$RAB BKT

5.2.2 Bucket Code

The BKT parameter initializes the bucket code field of the RAB.
field is used as follows:

1. With records in a relative file

2. When performing block I/O

This

For relative files, the relative record number of the record acted
upon (or which produced an error) is returned to the bucket code field
only after the completion of a sequential operation. That is, VAX-11
RMS returns the relative record number when you set the record access
mode for sequential access (RAC=SEQ) on the execution of a $GET, $PUT,
or $FIND macro instruction.

When performing block I/O on disk devices, you must store (in the
bucket code field) the virtual block number (VBN) of the first block
you want to read or write. For all other devices, this field is not
used. If you specify a VBN of O, VAX-11 RMS will begin the block
transfer at the block pointed to by the Next Block Pointer (NBP). The
NBP is an internal pointer maintained by VAX-11 RMS, and is described
in.Chapter 12.

Format

BKT=number

number

A relative record number or a numeric value representing the
virtual block number to be accessed.

For example, to indicate access to the tenth block of the file when
the program performs its first block I/O operation, the syntax is:

$RAB BKT=lO,CTX=RECOK

5-4

THE RECORD ACCESS BLOCK

$RAB CTX

5.2.3 Context

The CTX parameter initializes the context field, which is a field
devoted exclusively to your use. VAX-11 RMS makes no use of the
contents of this field; therefore, you can set any value you want in
this field. For example, you could use this field to communicate with
a completion routine in your program.

Format

CTX=value

value

Any user-selected value, up to one longword in lenqth.

For example, to initialize the context field to the value of the
symbol RECOK, the syntax is:

$RAB CTX=RECOK,BKT=lO

$RAB FAB

5.2.4 File Access Block Address

The FAB parameter initializes the file access block address field of
the RAB. When you issue a $CONNECT macro instruction, you must set
this field to indicate the address of the FAB associated with the open
file.

Format

FAB=f ab-address

£ab-address

The symbolic address of the FAB for the file.

For example, if you define the label of the FAB for the file as
MASTER, the syntax is:

$RAB FAB=MASTER,CTX=RECOK

$RAB KBF

5.2.5 Key Buffer Address

The KBF parameter initializes the key buffer address field. You use
this' field when the record access mode (RAC) field specifies random
access by key value (see Section 5.2.12), and you set it to the
address of the buffer that contains the key of the desired record.
For a relative file (or for a sequential disk file with fixed-length
records), the key is the relative record number. For an indexed file,
the key is the key value within the record for the key of reference
(KRF) (see Section 5.2.6).

5-5

THE RECORD ACCESS BLOCK

Format

KBF=buffer-address

buffer-address

The symbolic address of the buffer containing the key.

For example, if the label of the buffer that provides the relative
record number is RELKEY, you initialize the KBF parameter as follows:

$RAB KBF=RELKEY,CTX=RECOK

$RAB KRF

NOTE

Before issuing a $GET or $FIND macro
instruction in random mode to an indexed
file, you place in KBF the address of a
location containing a key value. The
size of this key value must be specified
in the KSZ field. During execution of
the Get or Find operation, VAX-11 RMS
uses the key value described by the KBF
and KSZ fields to search an index (which
you specify through the contents of the
KRF field of the RAB) and locate the
desired record in the file. The type of
match (that is, exact, generic,
approximate, or approximate and generic)
that VAX-11 RMS attempts between the key
value you specify and key values in
records of the file is determined by the
KSZ field and the ROP field.

NOTE

The key buffer address field uses the
same location in the RAB as the prompt
buffer address field. There is no
conflict between these two fields,
however, because the prompt buffer
address field is used only for
terminals, while the key buffer address
field is used only for randomly accessed
disk files.

5.2.6 Key of Reference

The KRF parameter initializes the key of reference field, which
specifies the key or index (primary, first alternate, and so on) to
which the operation applies. The KRF field is applicable to indexed
files only.

When your program issues a $GET or $FIND macro instruction in random
access mode, the key of reference specifies the index to search for a
match on the key value which is described by the key buffer address
(KBF) and key size (KSZ) field. When your program issues a $CONNECT

5-6

THE RECORD ACCESS BLOCK

or $REWIND macro instruction, the key of reference identifies the
index in the file of the next record in the stream. The next record
is important in sequential retrieval of records; the Next Record is
described in Section 10.2.2.

Format

KRF=key-number

key number

The numeric value representing a key in the records of a file.
The value O indicates the primary key. The values 1 through 254
indicate alternate keys. The default value is O (primary key).

As an example, if the first alternate key is the index to search for a
match (approximate, generic, or generic-approximate) on the key value
described by the KBF and KSZ fields, the KRF parameter would be
initialized as follows:

$RAB KRF=l,KBF=KEYBUF,KSZ=KEYSIZE

$RAB KSZ

5.2.7 Key Size

The KSZ parameter initializes the key size field, which contains the
size, in bytes, of the key pointed to by the key buffer address field.

Format

size

KSZ=size

The numeric value of the size of the record key. For relative
record numbers, the default value of 0 causes a key size of 4 to
be used. For string keys a value from 1 through the size of the
key field and for the numeric key data types a value of 0 cause
the defined size to be assumed; a nonzero value is checked
against the defined size and an error (RMS$ RSZ) is returned if
they are not equal. -

5.2.7.1 Relative Files - The size of the relative record number of a
record in a relative file is a longword, positive, integer value;
therefore, the key size is 4.

For example, for relative files the KSZ parameter must be coded as:

$RAB KSZ=4,KBF=RELKEY

5.2.7.2 Indexed Files. - The size of key values in bytes of an
indexed file can be from 1 to 255 bytes.

When you access an indexed file in random mode, the contents of the
KSZ and the contents of the ROP field determine the type of match to
make on the key value specified in the key buffer address. For string

5-7

THE RECORD ACCESS BLOCK

key data type, the contents of the KSZ field can be less than the
defined key size. For the other (numeric) key types, the contents of
KSZ must be the defined length or O, which defaults to the .defined
length. The following chart shows the relationships of the KSZ/ROP
field contents and the type of match. Since KSZ for numeric key types
must be the defined length, only exact and approximate matches are
made on these types.

KGE or KGT
Specl fled in ROP

Specified KSZ/Def ined Key Size Type of Match
Relationship

NO EQUAL EXACT

NO LESS THAN GENERIC

YES EQUAL APPROXIMATE

YES LESS THAN GENERIC-APPROXIMATE

For example, the KSZ parameter for indexed files might be coded as
follows to provide an approximate match on the first three characters:

$RAB KSZ=3,ROP=KGE

$RAB MBC

NOTE

The key size field uses the same
location in the RAB as the prompt buffer
size field. There is no conflict
between these fields, however, because
one field (PBF) is used only for
terminal I/O, while the other field
(KSZ) is used only for randomly accessed
disk files.

5.2.8 Multiblock Count

The MBC parameter initializes the multiblock count field, and applies
only when the RAB accesses a sequential disk file.

VAX-11 RMS examines the multiblock count field during the execution of
a $CONNECT macro instruction. The value in this field is used as the
number of blocks to be transferred as a single entity during an I/O
operation for the record stream represented by this RAB. A buffer is
allocated that can contain the specified number of blocks. In
addition, more than one buffer (of this size) can be allocated for the
record stream, as determined by the value of the multibuffer count
field (see Section 5.2.9).

The use of the multiblock count field optimizes data throughput
especially for sequential operations and in no way affects the
structure of the file. It reduces the number of disk accesses you
would normally require for your record operations and can thereby
greatly increase execution speed. On the other hand, the extra
buffering increases memory requirements.

5-8

THE RECORD ACCESS BLOCK

Format

MBC=blocks

blocks

The number of blocks, in the range of 1 through 127, to be
allocated to each I/O buffer. If you omit this parameter, the
multiblock count field is initialized to O, which specifies that
the process default for the multiblock count is to be used. If
the process default is also O, VAX-11 RMS uses the system
default. If the system default is also O, then the default size
for each I/O buffer is one block. The DCL command SET
RMS DEFAULT is used to set process or system defaults.

For example, to allocate 16 blocks to each I/O buffer, the syntax is:

$RAB MBC=l6,CTX=RECOK

NOTE

The MBC parameter is not used with block I/O.

$RAB MBF

5.2.9 Multibuffer Count

The MBF parameter sets the multibuffer count field to indicate the
number of I/O buffers you want VAX-11 RMS to allocate when you issue a
$CONNECT macro instruction for this RAB.

VAX-11 RMS requires that at least one buffer be allocated for
sequential and relative files and at least two buffers be allocated
for indexed files, unless the file is to be processed with block I/O
operations only. Multiple buffers can be used efficiently to overlap
I/O time with program compute time, particularly in read-ahead or
write-behind processing (see Section 5.2.15).

Format

MBF=buf f ers

buffers

A numeric value, in the range of -128 to +127, represents the
number of buffers to be allocated. The absolute value of the
field is used.

If the MBF parameter is omitted, the field is initialized to 0 at
assembly time. A O value indicates the use of the process
default for the particular file organization and device type.

If the process default is also O, the system default for the
particular file organization and device type applies.

If the system default is likewise 0, one buffer is allocated.
However, if read-ahead or write-behind is specified at
connect-time, a minimum of two buffers will be allocated. A
minimum of two buffers will also be allocated for an indexed
sequential file.

5-9

THE RECORD ACCESS BLOCK

For example, to allocate four buffers, the syntax is:

$RAB MBF=4,CTX=RECOK

$RAB PBF

NOTE

The MBF parameter is not used with block
I/O. No buffers are allocated either if
block I/O access is specified in the
file access (FAC) field of the FAB on
open or create, or if mixed block I/O
and record I/O is specified in the file
access field, but the block I/O record
option is set in the record processing
options (ROP) field for the connect
service.

5.2.10 Prompt Buffer Address

The PBF parameter initializes the prompt buffer address field. This
field points to a character string to be used as a prompt for terminal
input. If you select the PMT option of the ROP parameter (see Section
5.2.14) when you issue a $GET macro instruction, this character string
is output to the terminal before the read operation is performed.

To perform any carriage control on the terminal, you must insert the
appropriate carriage control characters into this character string.

Format

PBF=prompt-address

prompt-address

The symbolic address of the buffer containing the
character string.

prompt

For example, if the buffer containing the prompt character string has
a symbolic label of PROMPT, the PBF parameter is:

$RAB PBF=PROMPT,ROP=PMT,PSZ=2

NOTE

The prompt buff er address field uses the
same location in the RAB as the key
buffer address field. There is no
conflict between these two fields,
however, because the prompt buffer
address field is used only for
terminals, while the key buffer address
field is used only for randomly accessed
disk files.

5-10

THE RECORD ACCESS BLOCK

$RAB PSZ

5.2.11 Prompt Buffer Size

The PSZ parameter initializes the prompt buffer
field contains the size, in bytes, of the
terminal I/O prompting.

size field. This
character string for

Format

PSZ=prompt-size

prompt-size

The size, in bytes, of the prompt character string, in the range
of 0 through 255.

If, for example, the character string is only two bytes long, the
syntax is:

$RAB PBF=PROMPT,PSZ=2,ROP=PMT

NOTE

The prompt buffer size field uses the
same location in the RAB as the key size
field. There is no conflict between
these fields, however, because the
prompt buffer size (PSZ) field is used
only for terminal I/O, while the key
size (KSZ) is used only for ramdomly
accessed disk files.

$RAB RAC

5.2.12 Record Access Mode

The RAC parameter initializes the record access mode field to indicate
the method of retrieving or storing records in the file.

Format

SEQ

KEY

RAC=
{

SEQ} KEY
RFA

Indicates sequential record access mode (the default);
specified with any type of file organization.

can be

Indicates random access by key; used with relative files (and
with sequential files on disk with fixed-length records) to
indicate access by relative record number; used with indexed
files to indicate access by key value.

5-11

RFA

THE RECORD ACCESS BLOCK

Indicates random access by record's file address; used for disk
files only.

For example, to set the record access mode field to indicate the
sequential record access mode, the syntax is:

$RAB RAC=SEQ,CTX=RECOK

The offset for this field is:

RABSB RAC

Each record access mode has its own symbolic value.

• SEQ - RAB$C_SEQ

• KEY - RAB$C KEY

• RFA - RAB$C RFA

NOTES

1. You can specify the record access
mode on a per-operation basis.

2. For block I/O, you do not use the
record access mode field.

$RAB RBF

5.2.13 Record Address

The RBF parameter initializes the record address field. When you
issue a $PUT or $WRITE macro instruction, this field must specify the
address of the record to be written to the file.

When you issue a $GET or $READ macro instruction, VAX-11 RMS sets this
field to the address of the record just read from the file; you need
not initialize this field.

Format

RBF=buf fer-address

buffer-address

The symbolic address of the buffer in your program that contains
the record to be written.

For example, to initialize the record address field with the address
of a buffer having the label of RECBUF, the syntax is:

$RAB RBF=RECBUF,CTX=RECOK

5-12

THE RECORD ACCESS BLOCK

$RAB RHB

5.2.14 Record Header Buffer

The RHB parameter initializes the fixed-length record header field.
This buffer is used only when processing records of variable with
fixed-length control. For a $GET macro instruction, VAX-11 RMS strips
the fixed control area portion of the record and places it in the
buffer whose address is specified in this field. For the $PUT or
$UPDATE macro instructions, VAX-11 RMS writes the contents of the
specified buffer to the file as the fixed control area portion of the
record.

The size of this fixed control area is defined in the FAB, through the
FSZ parameter. You must ensure that the size of the buffer described
in the record header buffer field is equal to the value specified by
the FSZ parameter.

Format

RHB=header-address

header-address

The symbolic address of the record header buffer. If omitted, an
address of 0 is assumed, which indicates the absence of a buffer;
the fixed control area is discarded for a $GET macro instruction,
zeroed for a $PUT macro instruction, and left unchanged for a
$UPDATE macro instruction.

For example, if the buffer is defined with a label of FCABUF, the
syntax is:

$RAB RHB=FCABUF,CTX=RECOK

$RAB ROP

5.2.15 Record-Processing Options

The ROP parameter sets indicators in the record-processing options
field that let you request opti·onal functions during execution of a
record operation. VAX-11 RMS operations never modify the contents of
this field.

Format

ROP= <ASY,BIO,CCO,CVT,EOF,LOC,KGE,KGT,LOA,LIM,NLK,NXR,PMT,PTA,
RAH,RLK,RNE,RNF,TMO,TPT,UIF,ULK,WBH>

Options that are input to $CONNECT:

ASY

Asynchronous: See detailed explanation below. Please note that
for indexed files, I/O may take place during the $CONNECT.

5-13

BIO

EOF

THE RECORD ACCESS BLOCK

Block I/O: This option is meaningful only if the BRO (FOP field
in the FAB) was set on $OPEN or $CREATE. Setting BIO on $CONNECT
declares that only block I/O operations will be permitted. If
BIO is clear on $CONNECT, only record operations will be allowed
for relative and indexed files, or mixed operations will be
allowed on sequential files. See Chapter 12 for further
discussion.

End-of-file; indicates that VAX-11 RMS is to position to the end
of the file when a $CONNECT macro instruction executes. This
applies only to sequential disk files.

RAH and WBH

Read ahead and Write behind: If either the RAH or WBH is set,
and the multibuffer count (see MBF in the RAB) is O, two buffers
will be allocated to allow multibuffering. If two or more
buffers are specified, multibuffering will be allowed regardless
of the setting at $CONNECT. Conversely, if a buffer count of 1
is specified, multibuffering is disabled regardless of the
setting at $CONNECT.

Options applicable to indexed sequential files only:

These options are selectable on a per-operation basis, i.e., they may
be enabled or disenabled on any operation.

KGE

KGT

LOA

Key is greater than or equal to; requests VAX-11 RMS to access
the first record in an indexed file, which contains a value for
the specified key of reference (KRF) (see Section 5.2.n) that is
greater than or equal to the value described by the dey buffer
address (KBF) and key size (KSZ) fields (see Section 5.2.5 and
5.2.7.2, respectively). If neither KGE nor KGT is specified, a
key equal match is made.

Key is greater than; requests VAX-11 RMS to access the first
record in an indexed file, which contains a value for the
specified key of reference (KRF) (see Section 5.2.) that is
greater than the value described by the key buffer address (KBF)
and key size {KSZ) fields (see Sections 5.2.5 and 5.2.7.2,
respectively). If neither KGE nor KGT is specified, a key equal
match is made.

Load; specifies that VAX-11 RMS is to load buckets according to
the fill size established at file creation time. The bucket fill
size is established at file creation time by the data bucket fill
size (DFL) and index bucket fill size (IFL) fields of the key
extended attribute blocks (XABs). The XABs are described in
Chapter 6. If LOA is not specified, VAX-11 RMS ignores the
established bucket fill size (that is, buckets will be completely
filled).

5-14

LIM

THE RECORD ACCESS BLOCK

Limit; the key value described by the key buffer address (KBF)
and key size (KSZ) fields (see Sections 5.2.5 and 5.2.7.2,
respectively) is to be compared to the value in the record
accessed in sequential mode. If the record's key value is
greater than the limit key value, and RMS$ OK LIM status code is
returned.

Options affecting record operation performance:

These options are selectable on a per-operation basis, i.e., they may
be enabled or disenabled on any operation.

ASY

FDL

LOC

RAH

WBH

Asynchronous; indicates that this I/O operation is to be
performed asynchronously. When you specify ASY, VAX-11 RMS will
return control to your program as soon as an I/O operation is
initiated, even though that operation may not yet be completed.
This is normally used in conjunction with the $WAIT macro to
synchronize with operation completion. See Chapter 10 for
further discussion.

Fast delete: This applies only to $DELETE operation on indexed
sequential files. When specified, the pointers from alternative
indices which allow duplicates are not removed. This saves an
index search on those indices when deleting records.

Locate mode; indicates that record operations involving the $GET
macro instruction will use locate mode (see Section 10.1.2).

Read-ahead; used with multiple buffers (see Section 5.2.8) to
indicate read-ahead operations. When a buffer is filled, the
next record will be read into the next buffer. This permits an
overlapping of input and computing. Read-ahead is ignored for
unit record device I/O. This option is implemented only for the
sequential file organization.

Write-behind; used with multiple buffers (see Section 5.2.8).
When a buffer is filled, the next record written will be placed
in the next buffer while the previous buffer is output. This
allows for an overlapping of computing and output. Write-behind
is ignored for unit record devices. This option is implemented
only for the sequential file organization.

Options controlling record locking:

These options apply only to relative, indexed, and sequential files
with 512-byte fixed-length records. These options are selectable on a
per-operation basis, i.e., they may be enabled or disenabled on any
operation.

5-15

NLK

NXR

RLK

ULK

THE RECORD ACCESS BLOCK

No lock; specifies that the record accessed through a $GET or
$FIND macro instruction is not to be locked. The NLK option
takes precedence over the ULK option (below).

Nonexistent record processing; specifies that if the record
randomly accessed through a $GET or $FIND macro instruction does
not exist (was never inserted into the file or was deleted), the
service is to be performed anyway, locking the record cell if
required. For the $GET macro instruction, the previous contents
of a deleted record are returned. The processing of a deleted
record returns a completion status code of RMS$ OK DEL, and the
processing of a record that never existed returns RMS$ OK RNF.
This option does not apply to indexed sequential files.

Read of locked record allowed; specifies that a user who locks a
record is allowing the locked record to be read by other
accessors.

Manual unlocking; specifies that VAX-11 RMS cannot automatically
unlock records. Instead, one~ locked (through a $GET, $FIND or
$PUT macro instruction), a record must be specifically unlocked
by a $FREE or $RELEASE macro instruction. The NLK option (above)
takes precedence over the ULK option.

Options relevant to Put operations only:

These optipns are selectable on a per-operation basis, i.e., they may
be enabled or disenabled on any operation.

TPT

UTF

Truncate put; specifies that a put service with a record access
mode of sequential can occur at any point in the file, truncating
the file at that point. On a write service, this causes the end
of file mark to immediately follow the last byte written. This
applies only to sequential files.

Update if; indicates that if a $PUT macro instruction is issued
for a record that already·exists in the file, the operation is
converted to an update. This option is necessary to overwrite
(as opposed to update) an existing record in relative and indexed
sequential files. Indexed files using this option, must not
allow duplicates on the primary key.

Miscellaneous options:

These options are selectable on a per-operation basis, i.e., they may
be enabled or disenabled on any operation.

BIO

Block I/O; this option may also be used to mix block and record
operations to sequential files. See Chapter 12.

s-10

TMO

THE RECORD ACCESS BLOCK

Timeout; in addition to its use for terminals, the TMO option
serves a special purpose for mailbox devices. If specified along
with a time-out value of zero (TMO field in the RAB), $GET and
$PUT operations to mailboxes will use the IO$M NOW modifier.
This will cause the operation to complete immediately, instead of
synchronizing with another cooperating writer or reader of the
mailbox. See the VAX-11 I/O User's Guide for a further
discussion of mailboxes.

Options specific to terminal devices.

These options map directly into equivalent modifiers in the QIO
function code. For a further discussion of their effects, see the
VAX/VMS I/O User's Guide. These options are selectable on a
per-operation basis, i.e., they may be enabled or disenabled on any
operation.

cco

CVT

PMT

PTA

RNE

RNF

TMO

Cancel control O; guarantees that terminal output will not be
discard~d

Convert;
terminal.

Prompt;
be used
5.2.10).

if the operator has entered CTRL/O.

changes characters to uppercase on a read from a

indicates that the contents of the prompt buffer are to
as a prompt on a read from a terminal (see Section

Purge type-ahead; eliminates any information that may be in the
type-ahead buffer on a read from a terminal.

Read no echo; indicates that input data is not echoed
(displayed) on the terminal as it is entered on the keyboard.

Read no filter; indicates that CTRL/U, CTRL/R, and DELETE are
not to be considered control commands on terminal input, but are
to be passed to the user program.

Time-out; indicates that the content of the time-out period
field of the RAB is to be used to determine the number of seconds
that a VAX-11 RMS operation has to complete its operation. If
the time-out period expires, VAX-11 RMS returns an error status
(see Section 5.2.17).

5-17

THE RECORD ACCESS BLOCK

You can use one or more options with the ROP parameter.
to indicate that a terminal read should convert
uppercase, and use locate mode, the prompt buffer, and
time-out period, the ROP parameter would be:

For example,
from lower- to
the specified

$RAB ROP=<CVT,LOC,PMT,TMO>,PBF=PROMPT;PSZ=PROMPT_SIZE,TM0=30

Each option has its own symbolic bit offset and mask value.

$RAB RSZ

5.2.16 Record Size

The RSZ parameter sets the record size field. This field controls the
size of a record or the number of bytes that, respectively, a $PUT or
$WRITE (block I/O) macro instruction can write.

On input from a file, VAX-11 RMS sets this field
length, in bytes, of the record that a $GET
transfers or that a $READ macro instruction reads.

to indicate the
macro instruction

Format

RSZ=record-size

record-size

The size, in bytes, of the record. For operations with a $WRITE
macro instruction, the range is 1 through 65535. $PUT operations
may specify a size from 0 to the maximum shown in the following
table:

FILE ORGANIZATION

Sequential
Sequential (Disk)
Sequential (ANSI Tape)
Relative
Relative
Indexed Sequential
Indexed Sequential

RECORD FORMAT

Fixed-length
Variable-length
Variable-length
Fixed-length
Variable-length
Fixed-length
Variable-length

MAXIMUM ALLOWED

32,767
32, 767--FSZ 1

9,995-FSZ
16,383
16,381-FSZ
16,362
10,360

For example, to indicate a record size of 150 bytes, the syntax is:

$RAB RBF=RECBUF,RSZ=l50

1. The FSZ represents the size of the fixed control area of a record.
The FSZ is equal to 0 for variable-length records. The FSZ is equal
to the size in bytes, for the fixed control area of the VFC (variable
with fixed-length control) records.

5-18

THE RECORD ACCESS BLOCK

NOTES

1. After a get operation, VAX-11 RMS
places the size of the record
retrieved into the record size
field. On a read operation, VAX-11
RMS sets the record size field to
the number of bytes actually
transferred.

2. For variable with fixed-length
control records, VAX-11 RMS does not
include the size of the fixed
control area in the record size
field.

5.2.17 Time-Out Period

$RAB TMO

The TMO parameter initializes the time-out period field, which
indicates the maximum number of seconds that VAX-11 RMS can use to
complete an operation. If the time-out period expires before the
operation completes, VAX-11 RMS returns an error status code.

To use this field, you must also specify the TMO option when you set
the record-processing option field (ROP parameter).

Format

TMO=seconds

seconds

The maximum number of seconds, in the range of 0 through 255,
that a $GET from the terminal operation can use. If you specify
O, the current contents of the type ahead buffer is returned.

For example, to indicate that a $GET for a terminal must complete in
20 seconds or less, the syntax is:

$RAB TM0=20,ROP=TMO

Note that the TMO option must also be specified on the ROP parameter.

NOTE

A TMO of 0 for either a $GET or $PUT to
a mailbox will cause the operation to
complete immediately, rather than
waiting for another process. For
example, a $PUT with a TMO field of o,
to a mailbox device will not wait for
another process to read the record.

5-19

THE RECORD ACCESS BLOCK

$RAB UBF

5.2.18 User Record Area Address

The UBF parameter initializes the user record area address field,
which indicates the location of a record or block buffer.

When you issue a $GET macro instruction, this field must contain the
buffer address regardless of the record transfer mode (locate or
move). This option also applies when you issue a $READ macro
instruction for block I/O. However, operations with a $PUT macro
instruction never need a us~r buffer.

Format

UBF=buf fer-address

buffer-address

The symbolic address of a work area (buffer) within your program.
(The size of this buffer must be defined in the user record area
size fiBld; the USZ parameter.)

For example, if the buffer area has a label of USRBUF, the syntax is:

$RAB UBF=USRBUF,USZ=2048

$RAB USZ

5.2.19 User Record Area Size

The USZ parameter initializes the user record area size field, which
indicates the length, in bytes, of the user record or block buffer.
This buffer area should be large enough to contain the largest record
in the file. If the buffer is not large enough on an operation with a
$GET macro instruction, VAX-11 RMS will move as much of the record as
possible into the buffer, and reiurn a warning status code.

The value in this field specifies the transfer length, in bytes, for
block I/O operations with a $READ macro instruction.

Format

USZ=buff er-size

buffer-size

A numeric value representing the size, in bytes, of the buffer.
This value must be in the range of l through 05535.

For example, for a user buffer area with a label of USRBUF and a size
of 2048 bytes, the syntax is:

$RAB UBF=USRBUF,USZ=2048

5-20

THE RECORD ACCESS BLOCK

5.3 NONINITIALIZABLE RAB FIELDS

The following list describes the RAB fields that you cannot initialize
at assembly time. Either they are static, or VAX-11 RMS sets them for
you.

Operation Completion Status Fields:

STS

STV

Completion status code field; VAX-11 RMS sets this field with
the success or failure status codes for a record operation before
returning control to your program. In the case of an
asynchronous operation that has been initiated but not yet
completed, this field is O. When the operation is complete, the
field will be updated with the completion status. See Section
8.4 for additional details about RMS status codes. Potential
error codes for specific operations are listed with their
description in Chapters 11 and 12. Appendix A lists the symbolic
completion status codes that your program can use to test the
contents of this field.

Status value field; communicates additional completion
information to your program, based on the type of operation and
the contents of the completion status code field. For additional
information on the STS and STV fields, see Section 8.4. See
Appendix A for the instances when VAX-11 RMS uses the status
value field.

Internal Stream Identifier Field:

ISI

Internal stream identifier field; associates the RAB with a
corresponditig FAB. VAX-11 RMS sets this field after the
execution of a $CONNECT macro instruction. A $DISCONNECT macro
instruction clears this field. This field should not be altered.

Static Fields:

BID

BLN

Block identifier field; identifies the block as a RAB. The $RAB
macro instru~tion sets this field to the symbolic value
RAB$C_BID; this field must not be altered.

Block length field; defines the length, in bytes, of the RAB to
VAX-11 RMS. The $RAB macro instruction sets this field to the
symbolic value RAB$C_BLN; this field must not be altered.

5.3.l The Record's File Address

After the successful execution of a $GET, $PUT, or $FIND macro
instruction, VAX-11 RMS sets the record's file address (RFA) field to
the address of the record acted on by the operation. This address is
meaningful only for disk files; it provides an unambiguous means of
randomly locating this same record at some later time.

5-21

THE RECORD ACCESS BLOCK

You can store the contents of the record's file address field for
future use. When you want to retrieve the record again, merely
restore the saved contents of the field, set the record access mode to
random by RFA, and issue a $GET or $FIND macro instruction.

NOTES

1. This field is six bytes long. There
are two ways to refer to this field:

(1) RAB$W RFA is the offset for
this field.
RAB$S RFA is the size of
this Iield

The field may be copied:

MOVAL
MOVC3

RABBLK,RO
#RAB$S RFA,
RAB$W RFA(RO),
SAVE RFA

(2) There are two additional names
for portions of this field:

RAB$L RFAO is the offset of
the fTrst longword
RAB$W RFA4 is the offset of
the last word

The field may be copied:

MOVAL
MOVL

MOVW

RABBLK,RO
RAB$L RFAO (RO),
SAVE RFA
RAB$W RFA4 (RO),
SAVE RFA+4

2. RFA values remain valid for a record
in a sequential file as long as the
record is within the space defined
by the logical file, that is, until
the file is truncated to a point
before the record.

3. RFA values remain valid for a record
in a relative or indexed file for
the life of the file, that is, until
the file is deleted.

5-22

CHAPTER 6

THE EXTENDED ATTRIBUTE BLOCKS

This chapter describes the various Extended Attribute Blocks (XABs),
their fields, and the macro instructions and parameters you use to
initialize the fields at assembly time.

6.1 THE PURPOSE OF EXTENDED ATTRIBUTE BLOCKS

The XABs are optional additional control blocks, which you can use to
communicate to VAX-11 RMS any file attributes beyond those expressed
in the FAB. You use these control blocks only when you want to
specify exactly, or retrieve information on, the attributes handled by
a particular XAB.

You can use XABs to set file attributes by specifying them as inputs
to the $CREATE, $CLOSE, or $EXTEND macro instructions. Retrieve the
attributes by specifying the XAB as input to the $OPEN or $DISPLAY
macro instructions. If the Create-if (CIF) bit is set in the file
processing options field of the FAB on a create service, VAX-11 RMS
uses the XAB fields as input or output depending on whether the file
is opened or created, respectively.

When you need more than one XAB, you can chain them together. Each
XAB has a next XAB address field, which can be set at assembly time
through the NXT parameter, or at run time. You can set this field at
run time by storing the appropriate address into the next XAB address
field. The extended attribute block pointer field of the FAB (see
Section 4.2.24) points to the first block in the chain. Section 6.2
below describes chaining in detail.

Currently, VAX-11 RMS supports seven types of XABs, each with its own
macro instructions for allocation and initialization. These blocks
and their macro instructions are as follows:

• Allocation control -- $XABALL

e Date and time -- $XABDAT

• File header characteristics -- $XABFHC

• File protection -- $XABPRO

• Key definition -- $XABKEY

• Revision date and time $XABRDT

• Summary -- $XABSUM

6-1

THE EXTENDED ATTRIBUTE BLOCKS

The last three characters of each macro instruction (ALL, DAT, FHC,
KEY, PRO, ROT, SUM) define the specific type of the XAB to VAX-11 RMS,
and cause the value for this specific type to be stored in the type
code field of each block. The symbolic offset for this field is:

XAB$B COD

The symbolic values stored in the type code field are:

Allocation control
Date and time
File header characteristics
File protection
Key definition
Revision date and time
Summary

XAB$C ALL
XAB$C-DAT
XAB$C-FHC
XAB$C-PRO
XAB$C-KEY
XAB$C-RDT
XAB$C-SUM

In addition, a length value is stored in the block length field of
each block. The symbolic offset for this field is:

XAB$B BLN

The symbolic values stored in the block length field are:

Allocation control XAB$C ALLEN
Date and time XAB$C-DATLEN
File header characteristics XAB$C-FHCLEN
File protection -- XAB$C PROLEN
Key definition XAB$C KEYLEN
Revision date and time XAB$C-RDTLEN
Summary XAB$C-SUMLEN

Because each block has its own initialization macro instruction, each
is discussed separately in Sections 6.3 through n.9 below. Each XAB
macro instruction may be prefixed by an optional label. This label
lets you assign a name to an XAB, thereby allowing symbolic access to
the XAB.

For example, suppose a $XABDAT macro instuction is used and has the
foUowing label:

DATE XAB: $XABDAT

Then, your $FAB macro instruction would have an XAB parameter as
follows:

$FAB XAB=DATE XAB

Note that the label must be separated from the XAB macro instruction
by a colon (:) •

Table n-1 indicates which XAB types are processed by which service.

o-2

THE EXTENDED ATTRIBUTE BLOCKS

Table n-1
XAB Types Processed by Service

~ Close Create Display Extend Open
e

Allocation Input Output Input Output
Control Output Output

Key Input Output Output
Definition Output

Summary Output Output Output

Date and Input Output Output

Time Output 1

File Header Input Output Output
Characteristics Output 1

File lnput2 Input Output Output
Protection Output1

Revision Input2 Input Output Output
Date and Time Output 1

1 Fields of the XAB are output only if the create if (CIF) bit is set and the file is opened,
not created.

2 Processed only if file is write-accessed.

At assembly time, you can initialize the fields of the particular XAB
through keyword parameters. At run time, you can use the keyword
parameters with the appropriate $XABxxx STORE macro (see Chapter 14)
or the defined symbolic offsets.

6.2 CHAINING EXTENDED ATTRIBUTE BLOCKS

Every XAB has a next XAB address field, regardless of the type of
information that the XAB contains, such as date/time or file
protection information. When you need one or more XABs for a
particular operation, place the symbolic address of the first XAB of
the chain into the extended attribute block pointer field of the FAB.
Then, place the address of the second XAB in the chain, if there is
one, in the next XAB address field of the first XAB (NXT parameter).
Continue this process until you have chained all the XABs you need.
You must set the next XAB address field of the last XAB to 0 to
indicate the end of the chain. You can either set this field
explicitly or allow the system to default to the 0 value.

Within the XAB chain, the different types of XABs need not be in any
specific order. For example, at assembly time you could allocate a
date and time XAB, a file protection XAB, and an allocation control
XAB. You can chain these different types of XABs in any order by
appropriately setting the contents of the next XAB address field in
each block.

n-3

THE EXTENDED ATTRIBUTE BLOCKS

For indexed files, however, VAX-11 RMS permits multiple instances of
the same type of XAB in an allocation control or key definition XAB
chain. For $CREATE macro instructions, the multiple instances must
appear in a specific order and allocation control XABs must be linked
together in ascending order based on the contents of the area
identification number (AID) field (see Section 6.5.2); key definition
XABs must be linked together in ascending order based on the contents
of the key of reference (REF) field (see Section 6.6.12). Also, for
$CREATE macro instruction, there cannot be any intervening XABs of
another type in the subchain of XABs of one type.

Further, the operation for which the allocation control or key
definition XABs is present determines whether the ascending order must
be dense. For create operations, allocation control and key
definition XABs, if present, must appear in densely ascending order by
area identification (AID) number or key of reference (REF} value,
respectively. For extend operations, allocation control and key
definition XABs, if present, must be in ascending order but need not
be dense. For open and display operations, RMS-32 verifies that the
number of XABs specified does not exceed the number specified for the
file. If the number of XABs specified does exceed the number defined
for the file, a RMS$ AID error is returned for allocation XABs and a
RMS$_REF error is returned for key definition XABs.

The NXT parameter appears in the format of each of the XAB macro
instructions. This parameter is explained below, rather than repeated
throughout Sections 6.3 through 6.10.

Format

NXT=address

address

The symbolic address of the next XAB in the chain. A value of 0
(the default) indicates the last (or only} XAB in the chain.

$XABDAT

6.3 DATE AND TIME XAB

The $XABDAT macro instruction allocates and initializes an XAB for
date and time. This block allows for extended control of the date and
time of the file's creation, revision (update}, and expiration. Table
6-2 summarizes the fields comprising the date and time XAB.

n-4

THE EXTENDED ATTRIBUTE BLOCKS

Table 6-2
Date and Time Extended Attribute Block Fields

Field
Name Field Size Description Offset

_ __,

BLN2 byte Block length XAB$B_BLN

CDT1 quadword Creation date and time XAB$<l_CDT

coD2 byte Type code XAB$B COD
-----· ~·----·-

EDT quadword Expiration date and time XAB$<l_EDT

NXT longword Next XAB address XAB$L NXT

RDT 1 quadword Revision date and time XAB$Q RDT

RVN 1 word Revision number XAB$W RVN

- "---··--··- -·-·-

1 Indicates no assembly time initialization.
2 Indicates that this field is set automatically by the type of macro instruction.

Format

OPERATION PARAMETERS

label: $XABDA T EDT=datc-timc

NXT=addrcss

$XABDAT EDT

6.3.1 Expiration Date and Time

The EDT parameter sets the expiration date and time field. This field
indicates the date and time after which a magnetic tape file can be
deleted. It is not currently used for disk files, and its future use
is reserved to DIGITAL.

Format

EDT=date-time

date-time

A 64-bit binary value in either absolute (positive) or delta
(negative) format. (See the VAX/VMS System Services Reference
Manual.)

n-5

THE EXTENDED ATTRIBUTE BLOCKS

6.3.2 Creation/Revision Date and Time, and Revision Number

VAX-11 RMS s~ts certain values for date and time, and returns them in
date and time XAB fields for your inspection. You can override these
system-supplied values through the use of a date and time XAB as input
to a $CREATE macro instruction. However, the $XABDAT macro
instruction does not contain parameters for the assembly-time
initialization of these fields. As outlined in Table 6-2, these
fields are:

• Creation date and time (CDT) this is a 64-bit binary value
expressing the date and time at which the file was created.

• Revision date and time (RDT) this is a 64-bit binary value
expressing the date and time at which the file was last
updated.

• Revision Number (RVN) -- this field provides the number of
times this file was opened for write operations.

The following table describes how the fields of the XABDAT block are
used by the RMS file-processing macro instructions.

- ~·•·-··-·-~•U·•~>•-

OPERATION CDT EDT RDT
~ ... ~-~·~ -·~ ... t-······ ___ , ---·--

CLOSE not used not u sed
CREATE INPUT INPUT
DISPLAY OUTPUT OUTPU T

sed
sed
T

not used
INPUT 1
OUTPUT
not used
not used
OUTPUT

ERASE not used not u
EXTEND not used not u
OPEN OUTPUT OUTPU

NOTE

If the user specifies the CDT or RDT field in the XABDAT
as zero (either explicitly or by default) and, if the
specified field is used by the file-processing macro, it
will be replaced with the current date and time.

NOTE

If the CREATE macro is invoked with a
FAB that has the CIF (create if) bit set
and the file to be created already
exists, the CREATE is processed like an
OPEN and the fields listed above are
outputs.

1. The RDT field in CREATE is superseded by the current date and time
on CLOSE. In order to specify this field, the user should employ the
XABORT block.

n-6

THE EXTENDED ATTRIBUTE BLOCKS

$XABPRO

6.4 FILE PROTECTION XAB

The $XABPRO macro instruction allocates and initializes an XAB that
you can use to explicitly specify file ownership and file protection.
Table 6-3 summarizes the fields comprising the file protection XAB.

Table 6-3
File Protection Extended Attribute Block Fields

Field
Name Field Size Description Offset

BLN 1 byte Block length XAB$B_J3LN

coo1 byte Type code XAB$B_COD

GRP word Group number of file owner XAB$W_GRP

MBM word Member number of file owner XAB$W_MBM

NXT longword Next XAB address XAB$L NXT -

PRO word File protection; contains four XAB$W PRO
separate fields denoting the
protection for system, owner,
group, and world

1 Indicates that this field is set automatically by the type of macro instruction.

Format

OPERATION PARAMETERS

label: $XABPRO PRO=<system,owner ,group ,world>

UIC=<group,member>

NXT=address

o-7

THE EXTENDED ATTRIBUTE BLOCKS

$XABPRO PRO

6.4.1 File Protection

The PRO parameter initializes the four subfields of the file
protection field and it specifies the file access privileges of the
four classes of users. The subfields for the four classes are:

1. System -- specifies access rights for users executing under a
system UIC, that is, having a group number less than 8.

2. Owner -- specifies access rights for the owner of the file.
A user is considered the owner of the file only if both the
group and member number fields (see Section 6.4.2) of the
accessing process match the group and member number fields of
the file owner's UIC stored with the file.

3. Group -- specifies the access rights for users whose group
number matches the group number field of the file owner.

4. World -- specifies the access rights for any user. It is
normally allowed for users not within the system, owner, or
group classifications (items 1, 2, and 3, above).

A user is granted the maximum number of types of access rights for
each of the classes to which he belongs.

The entire file protection field is one word, and each classification
subfield occupies four bits of this word. The field is organized as
shown in Figure n-1.

Figure 6-1 File Protection Field

Format

PRO=<SYSTEM,OWNER,GROUP,WORLD>

<SYSTEM,OWNER,GROUP,WORLD>

The access code for the four classifications of users. An access
code consists of four bits, each of which represents the type of
access granted to a user in the class. These access rights and
the characters that signify them are:

R - read access
W - write access
E - execute access
D - delete access

You can specify any number of access characters, in any order, for
each classification. For example, you could specify RWD, RWED, DREW,
or any combination, up to four characters per classification. The

n-8

THE EXTENDED ATTRIBUTE BLOCKS

access rights for one classification are not separated by a comma.
However, the classifications must be separated from each other by a
comma or other valid separator to delimit the end of one
classification and the start of the next. For example, the access
rights for one classification may have a syntax of:

RWD

However, the syntax for three separate classifications might be:

RWD,DWRE,R

Note that when you use less than all four access rights characters,
you need not supply a delimiter or code to indicate the omission.

The four different classifications of users, however, must be coded in
the following order:

<SYSTEM,OWNER,GROUP,WORLD>

The angle brackets are required syntax, and each classification must
be separated from the others by a comma. In addition, when you omit a
classification, the comma must be retained to indicate the omission,
unless no other classification follows. For example, to specify all
access rights for system, owner, and world, you would write:

$XABPRO PRO=<RWED,RWED,,RWED>

However, to specify all access rights to only system and owner, you
would write:

$XABPRO PRO=<RWED,RWED>

The absence of a code specifies that the access associated with the
code is denied to the user.

Each 4-bit subfield also has its own symbolic offset, as follows:

• System

• Owner

• Group

• World

XAB$V SYS

XAB$V OWN

XAB$V GRP

XAB$V WLD

Additionally, each separate access specification has the following
mask values:

• No read access -- XAB$M NOREAD

e No write access -- XAB$M NOWRITE

• No execute access -- XAB$M NOEXE

• No delete access -- XAB$M NODEL

n-9

THE EXTENDED ATTRIBUTE BLOCKS

User Consideration

The bit values in the protection world are set to 1 to deny access.
Thus, specifying a particular access right code clears the bit to O.

NOTE

If you do not provide a file protection
XAB for a $CREATE macro instruction, or
if the PRO parameter is not specified or
is specified as no access to all classes
(all 1 bits), the default file
protection for the process will be used
for the newly created file.

$XABPRO UIC

6.4.2 Group and Member Number

The UIC parameter initializes both the group and member number fields,
thus supplying both portions of the user identification code (UIC) of
the file's owner.

Format

UIC=<GROUP,MEMBER>

<GROUP,MEMBER>

The group number and member number, respectively, of the owner of
the file. Both numbers are octal numbers in the range of 0
through 177777. The group number and member number must be
enclosed within angle brackets, placed in the order shown in the
format, and separated by a comma.

For example, if your group number is 126 and your member number is 1,
the syntax is:

$XABPRO UIC=<l26,l>

The symbolic offsets for these fields are:

• Group number -- XAB$W GRP

• Member number -- XAB$W MBM

The total user identification field, including both the group and
member number fields, has a symbolic offset of:

XAB$L UIC

NOTE

If no file protection XAB is provided,
or the user identification field is null
for a $CREATE macro instruction, the UIC
of the process will be used as the
owner's UIC for the newly created file.

fl-10

THE EXTENDED ATTRIBUTE BLOCKS

$XABALL

6.5 ALLOCATION CONTROL XAB

The $XABALL macro instruction allocates and initializes an XAB that
allows extended control of file disk space allocation, both for
initial allocation and later extension. When you use an allocation
control XAB as input to a create or extend service, certain fields
override corresponding fields of the FAB. Overriding occurs in the
allocation quantity (ALQ}, bucket size (BKZ}, which is the BKS in the
FAB}, and default extension quantity (DEQ} fields, and in the CBT and
CTG bits of the allocation options (AOP, which are the CBT and CTG
bits of the FOP field in the FAB} field. On an open or display
service, VAX-11 RMS fills in these fields with the values that pertain
to the file. Table n-4 summarizes the fields comprising the
allocation control XAB.

Table n-4
Allocation Control Extended Attribute Block Fields

Field
Name Field Size Description Offset

AID byte Area identification number XAB$B_AID

ALN byte Alignment boundary type XAB$B_ALN
--

ALQ longword Allocation quantity XAB$L_ALQ

AOP byte Allocation options XAB$B_AOP

BKZ byte Bucket size XAB$B_BKZ

BLN 1 byte Block length XAB$B_BLN

COD 1 byte Type code XAB$B_COD
t--- __ ,_

DEQ word Default extension quantity XAB$W_DEQ

LOC longword Location XAB$L_LOC

NXT longword Next XAB address XAB$L_NXT

VOL word Relative volume number XAB$W_VOL

1 Indicates that this field is set automatically by the type of macro instruction.

n-11

Format

OPERATION

label: $XABALL

THE EXTENDED ATTRIBUTE BLOCKS

PARAMETERS

AID=area-number

(CYL}
ALN= J LBN.

) VBN
l RFI

ALQ=allocation-qty

AOP=<CBT, CGT, HRD, ONC>

BKZ=bucket-size

DEQ=extension-qty

LOC=number

NXT==address

VOL=volume-number

$XABALL AID

6.5.l Area Identification Number

The AID parameter initializes the area identification number field,
which identifies the area of the file described by the current XAB.
You are always responsible for the contents of this field; it is
never set by VAX-11 RMS. VAX-11 RMS uses the contents of this field
for the following:

• Checks the sequencing of allocation control XABs in an XAB
chain. The allocation XABs in an XAB chain must appear in
ascending order, based on the contents of the AID field in
$CREATE and $EXTEND macro instructions; the order is
irrelevant in the $OPEN and $DISPLAY macro instructions.

• Identifies the target area for a specific operation (for
example, create, extend, and so on).

Format

AID=area-number

area-number

A numeric value indicating which area, in a range of 0 through
254, of the file is described by the current XAB. If the file is
a sequential or relative file, only a single allocation XAB can
be used for any operation and its AID field must contain O. The
default for this field is O.

For example, to establish an allocation XAB for area 3 of an indexed
file, you would write:

$XABALL AID=3

6-12

THE EXTENDED ATTRIBUTE BLOCKS

$XABALL ALN

6.5.2 Alignment Boundary Type

The ALN parameter initializes the boundary type field, which specifies
the type of alignment for the area to be allocated. This gives you
control over the placement of your file. If you need this placement
control on either a create or extend operation, you use the alignment
boundary type field to specify whether the location field (LOC
parameter) contains a starting cylinder number, logical block number,
or virtual block number.

Format

CYL

LBN

RFI

VBN

I
CYL) ALN= LBN
RFI
VBN

Indicates that the alignment starts at the cylinder number
specified in the location field.

Indicates that the alignment starts at the logical block number
specified in the location field.

Indicates that the alignment starts as near as possible to the
file specified by the related file identification field, at the
virtual block number specified in the location field.

Indicates that the alignment starts as near as possible to the
virtual block number specified in the location field.

For example, if you want the file you are going to create or extend to
be aligned at the tenth cylinder on the volume, you would write:

Each

$XABALL ALN=CYL,LOC=lO

alignment type has its own symbolic value.

• CYL

• LBN

• RFI

• VBN

- XAB$C CYL

- XAB$C LBN

- XAB$C RFI

- XAB$C VBN

NOTE

If you do not set a value in this field,
VAX-11 RMS assumes that you do not want
to exercise control over the placement
of your file.

6-13

THE EXTENDED ATTRIBUTE BLOCKS

$XABALL ALQ

6.5.3 Allocation Quantity

The ALQ parameter sets the allocation quantity field. This field
indicates the number of blocks to be allocated initially, when using
the $CREATE macro instruction. It is also used to specify the number
of blocks to add to the file, when using the $EXTEND macro
instruction. This parameter may be specified for each area in an
indexed sequential file having multiple areas.

In either case (Create or Extend operation), the value in this field
overrides the contents of the allocation quantity field of the FAB
(see Section 4.2.2).

The Open, Create, and Display services fill in this field with the
actual allocation size of the file or area for indexed files. The
extend service fills in the field with the actual size of the extended
space.

Format

ALQ=allocation-quantity

allocation-quantity

A numeric value in the range of 0 through 4,294,967,295. K value
of 0 (the default) indicates that no allocation is to be
performed.

For example, to indicate that the allocation amount is 30 blocks, the
syntax is:

$XABALL ALQ=30

$XABALL AOP

6.5.4 Allocation Option

The AOP parameter sets the allocation option field, which lets you
specify a particular type of allocation.

Format

AOP=<CBT·,CTG ,HRD ,ONC>

The AOP parameter can indicate any number of options. When only one
option is chosen, angle brackets (< and >) are not required;
otherwise, they are required syntax. The allocation options may be
specified in any order.

CBT

Contiguous best try; indicates that VAX-11 RMS is to perform the
initial allocation (or a later extension) using contiguous
blocks, on a "best effort" basis. This overrides the CBT bit in
the file processing options (FOP) field of the FAB.

15-14

CTG

HRD

ONC

THE EXTENDED ATTRIBUTE BLOCKS

Contiguous; indicates that the initial allocation (or later
extension) must use contiguous blocks only; the allocation fails
if the requested number of contiguous blocks is not available.
If this is the initial allocation, the file is marked contiguous.
Overrides the CTG bit in the file-processing options field of the
FAB.

Hard; indicates that
performed, an error
allocation is to be
requested alignment.

if the
wi 11 be
performed

NOTE

requested
returned.
as near

alignment cannot be
The default is that

as possible to the

The HRD option is applicable only to CYL
and LBN alignment boundary types,
specified by the ALN parameter of the
allocation XAB.

On cylinder boundary; indicates that VAX-11 RMS is to start the
allocation on any available cylinder boundary.

For example, suppose you want 30 blocks allocated contiguously
starting at logical block number 1024 with an error returned if not
possible. You would write:

$XABALL ALQ=30,
ALN=LBN
LOC=l024
AOP=<CTG,HRD>

-; allocation amt
-; start at logical blk. no.
-; 1024

contig. or rtn. error

Each allocation request option has its own symbolic bit offset and
mask value.

$XABALL BKZ

6.5.5 Bucket Size

The BKZ parameter initializes the bucket size field, which is usea
only with the relative and indexed file organizations. When you
create a relative or indexed file, you specify the bucket size field
before issuing the $CREATE macro instruction. For a relative file,
the BKZ parameter specifies the bucket size because a relative file
may have only one area. However, for an indexed file, the BKZ
parameter specifies the bucket size for the area described by the
allocation XAB; this allows you to vary the size of buckets among the
multiple areas of your indexed file. When you open an existing file,
VAX-11 RMS sets this field to the defined size of the buckets in the
file for a relative file or the defined size of the buckets in this
area (defined by the AID parameter) for an indexed file.

The value in this field overrides the contents of the bucket size
field (BKS) of the FAB on a Create service (see Section 4.2.3).

n-15

THE EXTENDED ATTRIBUTE BLOCKS

Format

BKZ=bucket-size

bucket-size

A numeric value, in the range of 0 through 32, representing the
number of blocks in a bucket. If this parameter is omitted or if
a value of 0 is used, then a default size will be used equal to
the minimum number of blocks required to contain a single record.

For example, to specify a bucket size of two blocks, you would write:

$XABALL BKZ=2

$XABALL DEQ

6.5.6 Default Extension Quantity

The DEQ parameter initializes the default extension quantity field,
which specifies the number of blocks to add to the file whenever it is
extended automatically.

The value in this field overrides the contents of the default
extension quantity field (DEQ) of the FAB (see Section 4.2.6).

Format

DEQ=extension-quantity

extension-quantity

The number of blocks to be added when automatic extension is
required. This number must be in the range of 0 through 65,535.
If you specify O, the file will be extended using a VAX-11
RMS-determined default extension value.

For example, to specify a default extension quantity of 50 blocks, you
would write:

$XABALL DEQ=SO

$XABALL LOC

6.5.7 Location

The LOC parameter initializes the location field, indicating the
starting point for file allocation. The exact interpretation of this
field depends on the contents of the alignment boundary type field
(ALN) (see Section n.5.3). VAX-11 RMS uses the contents of the
location field on a $CREATE or $EXTEND macro instruction, but only if
the alignment boundary type field (ALN) is also initializeci.

THE EXTENDED ATTRIBUTE BLOCKS

Format

LOC=number

number

The starting point for the allocation is determined from the
contents of the alignment boundary type field as follows:

• If CYL is specified for the ALN parameter, the LOC number
specified is the starting cylinder number where the
allocation is to start, in the range of O through the
maximum cylinder number on the volume.

• If LBN is specified for the ALN parameter, the LOC number
specified is the logical block number where the
allocation is to start, in the range of 0 through the
maximum number of blocks on the volume.

• If VBN or RF! is specified for the ALN parameter, the LOC
number specified is the virtual block number where the
allocation is to start, in a range from 1 through the
maximum number of blocks in the file. This is used only
in conjunction with a $EXTEND macro instruction. If the
number O is specified, or if the number is omitted during
an extend operation, VAX-11 RMS extends as near to the
end of the file as possible.

For example, to indicate that you want to allocate 30 contiguous
blocks starting at or near logical block 1024, you would write:

$XABALL ALQ=30
ALN=LBN
LOC=l024
AOP=CTG

-; allocate 30 blocks
-; start at logical block
-; n~mber 1024

contiguously

6.5.8 Relative File Identifier

The RFI parameter sets the related file identification field, which
lets you allocate files close to other files.

Format

RF! <Fl, F2, F3>

Fl,F2,F3

The three-word file identification value of the related file.
For a discussion of file identification value, see Section 7.3.
A value af O,O,O (the default} indicates that the current file is
to be used. Specifying RFI in the ALN field and specifying
RFI=<O,O,O> is equivalent to specifying ALN=VBN.

The angle brackets are related syntax. This file is created or
extended as near to the specified related file as possible at the
virtual block number specified by the LOC parameter.

The RF! is ignored if the ALN parameter is not set to RFI.

6-17

THE EXTENDED ATTRIBUTE BLOCKS

$XABALL VOL

6.5.9 Relative Volume Number

The VOL parameter initializes the relative volume number field. It
indicates the specific member of a volume set upon which the file is
to be allocated.

Format

VOL=volume-number

volume-number

An integer in the range 0 through fi5535. Assembly-time default
is O, specifying the "current" member of the volume set.

For example, to indicate that the file is to reside on relative volume
number 3 of the volume set, you would write:

$XABALL VOL=3,ALQ=30,ALN=CYL,LOC=l

$XABKEV

NOTE

Volume placement will be performed only
if an alignment type (in the ALN field)
is also specified. If the ALN field is
zero, placement of the file within the
volume set is at the discretion of the
system, regardless of the contents of
the VOL field.

6.6 KEY DEFINITION XAB

The $XABKEY macro instruction allocates and initializes an XAB that
defines the key fields of an indexed file at file creation; it also
allows retrieval of the key definition at file open and display. Each
key definition XAB describes one key of an indexed file.

When you create an indexed file, you must set the contents of the
fields of this XAB before you issue the $CREATE macro instruction.
Further, you must provide one key definition for each key that you
want the file to have. Since every indexed file must have at least
one key, the primary key, you will always require at least one key
definition XAB.

When you open an existing indexed file or issue a Display operation
for such a file, you use key definition XABs only if you want VAX-11
RMS to provide your program with one or more of the key definitions
specified when the file was created.

Table 6-5 summarizes the fields that comprise the key definition XAB.

o-18

THE EXTENDED ATTRIBUTE BLOCKS

Table 6-5
Key Definition Extended Attribute Block Fields

Field Field
Name Size Description Offset

DAN byte Data bucket area number XAB$B_DAN

DBS 1 byte Data bucket size XAB$B_DBS

DFL word Data bucket fill size XAB$W=DFL

DTP byte Data type of the key XAB$B_DTP

DVB1 longword First data bucket start virtual XAB$L_DVB
block number

FLG byte Key options flag XAB$B_FLG

IAN byte Index buckets area number XAB$B_IAN

ms1 byte Index bucket size XA8$B_IBS

IFL word Index bucket file size XAB$W_IFL

KNM longword Key name buffer address XAB$L_KNM

LAN byte Lowest level of index area XAB$B_LAN
number

LVL1 byte Level of root buckets XAB$B_LVL

MRL1 word Minimum record length XAB$W_MRL

NSG 1 byte Number of key segments XAB$B_,.NSG

NUL byte Null key value XAB$B_NUL

POS word Key position XAB$W_POSO

through

XAB$W_POS7

REF byte Key of reference XAB$B_REF

RVB 1 longword Root bucket start virtual block XAB$L_RVB
number

SIZ byte Key size XAB$B_SIZO

through

XAB$B_SIZ7

TKS1 byte Total key field size XAB$B_TKS

1 Indicates nonuser-initialized field

n-19

THE EXTENDED ATTRIBUTE BLOCKS

Format

OPERATION PARAMETERS

label: $XABKEY DAN=area-number

DFL=bytes

DTP=da ta- type-code

FLG=<CHG,DUP,NUL>

IAN=area-number

I FL-bytes

KNM=address

LAN=area-number

NUL=value

POS=<position, ... >

REF=value

SIZ=<size, ... >

$XABKEY DAN

6.6.1 Data Bucket Area Number

The DAN parameter initializes the data bucket area number field of the
key definition XAB. You use this parameter to specify the area of the
file that the data buckets are to reside in only when both of the
following are true:

• You are creating a new indexed file

• You are using allocation XABs (described in Section 6.5) to
define areas

When the key definition XAB describes the primary key, the data level
of the index consists of buckets that contain the actual data records
of the file. However, when the key definition describes an alternate
key, the data level of the index consists of buckets in which VAX-11
RMS maintains pointers to the actual data records.

Format

DAN=area-number

area-number

A numeric value in the range 0 through 254, representing an
identification number contained in the AID field of an allocation
XAB present in the same chain (see Section 6.5.2). The default
is O, that is, area O.

11-20

THE EXTENDED ATTRIBUTE BLOCKS

For example, to indicate that these data buckets are to reside in area
3 of an indexed file, you would write:

$XABKEY DAN=3

$XABKEY DFL

6.6.2 Data Bucket Fill Size

The DFL parameter initializes the data bucket fill size field of the
key definition XAB. When you create an indexed file, you use this
parameter to specify the number of bytes (of data) you want in each
data level bucket. If you specify less than the total possible bucket
size, you thereby indicate that the data buckets are to contain some
amount of free space. At run time, VAX-11 RMS follows the fill size
specified at Create time only if the RAB$V LOA bit is set in the
record processing options (ROP) field of-the RAB. The ROP field is
described in Section 5.

When the key definition XAB describes the primary key, the DFL field
describes the space in the buckets containing, actual user data
records. When the key definition XAB describes an alternate key, the
DFL field describes the space in the buckets containing pointers to
the user data records.

It is advantageous to use the DFL tield in the following situation:

If you expect to perform numerous Put and Update operations on the
file after it has been initially populated, you can minimize the
resultant movement of records (known as bucket splitting) by
specifying less than the maximum bucket fill size at Create time. To
utilize the free space thereby reserved in the buckets, programs that
perform Put or Update operations on the file should not place the
value RAB$V LOA in the ROP field of the RAB.

Format

bytes

DFL=bytes

A numeric value representing the maximum number of bytes (of
data) in a data bucket. The maximum possible fill size is the
bucket size, in blocks, Multiplied by 512. The assembly-time
default value is O, which is interpreted by VAX-11 RMS as meaning
the maximum available space (i.e., no unused space). If the
specified size is not zero, but is less than one half of the
bucket size (in bytes), then the fill size used will be one half
of the bucket size.

For example, to specify that each bucket at the data level is to be
filled to a maximum of 400 bytes, you would write:

$XABKEY DFL=400

6-21

THE EXTENDED ATTRIBUTE BLOCKS

$XABKEY DTP

6.6.3 Key Data Type

The DTP parameter initializes the data type of the key field of the
XAB. When you create an indexed file, you use this parameter to
specify the type of data in the record key field.

Key field data types and the data type codes are summarized and the
associated global symbols are listed in Table 6-6.

Table n-6
Key Field Data Types, Data Type Codes and Global Symbols

--
Key Field Data Type Data Type Code Global Symbol

String STG XAB$C_STG

Signed 2-byte integer IN2 XAB$C_IN2

Signed 4-byte integer IN4 XAB$C_IN4

Unsigned 2-byte binary BN2 XAB$C_BN2

Unsigned 4-byte binary BN4 XAB$C_BN4

Packed decimal PAC XAB$C_PAC
.. ., .. ._,. _____

String data type (STG) is defined as a left-justified string of
unsigned 8-bit bytes.

The string key field consists of from one through eight disjoined key
field segments (see Sections 6.6.11 and 6.6.13).

Integer, binary, and packed decimal key fields must be a contiguous
set of bytes.

The null value (that is, NUL option in FLG paramet~r is set) for
integer, binary, and packed decimal is zero and the NUL parameter
(field) is ignored (see Sections 6.6.5 and 6.6.10).

A packed decimal is a contiguous sequence of bytes and is specified by
two attributes: the address, A, of the first byte of the string and a
length, L, that is the number of digits in the packed decimal. The
bytes of a packed decimal are divided into two 4-bit fields that must
contain decimal digits, except for the first four bits (0 through 3)
of the last (highest addressed) byte, which must contain a sign. The
representation for the digits and signs is shown in Table 6-7.

6-22

THE EXTENDED ATTRIBUTE BLOCKS

Table 6-7
Packed Decimal Digits and Signs Representation

Digit or Sign Decimal Hex

0 0 0

I 1 1

2 2 2

3 3 3

4 4 4
' 5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

+ 10, 12, 14 or 15 A, C, E or F

- 11 or 13 B or D

The preferred sign representation is 12 for plus (+) and 13 for minus
(-). The length L is the number of digits in the packed decimal
string (not counting the sign) and must be in the range 0 through 31.
When the number of digits is even, it is required that an extra O
digit appear in the last four bits (4 through 7) of the first byte.
Again the length in bytes of the packed decimal is L/2 + 1. The value
of a 0-lengthpacked decimal is O; it contains only the sign byte,
which also includes the extra 0 digit.

The address, A, of the packed decimal specifies the byte containing
the most significant digit in its high nibble. Digits of decreasing
significance are assigned to increasing byte addresses and from high
to low within a byte. Thus +123 has length 3 and is represented as
follows:

7 4 3 0

2

I:+] 3 12

and -12 has length 2 and is represented as follows:

7 4 3 0

0

l:+I 2 13

Integer and binary key field data have the following formats:

. IN2: LSB at A
MSB and sign at A+l

IN4: LSB at A
MSB and sign at A+3

BN2: LSB at A
MSB at A+l

BN4: LSB at A
MSB at A+3

n-23

THE EXTENDED ATTRIBUTE BLOCKS

Format

DTP=data-type-code

data-type-code

One of the following, as appropriate:

STG, string (left-justified, unsigned 8-bit bytes), this is the
default
IN2, signed 2-byte integer key data
IN4, signed 4-byte integer key data
BN2, unsigned 2-byte binary key data
BN4, unsigned 4-byte binary key data
PAC, packed decimal key data

For example, to specify that the key data type is a signed 4-byte
integer, you would write:

$XABKEY DTP=IN4

$XABKEY FLG

6.6.4 Key Options Flag

The FLG parameter initializes the key options flag field of the key
definition XAB. When you create an indexed file, you specify the
following optional characteristics of the key represented by this XAB:

• Key values can change

• Duplicate key values are permitted

• Null key value

Format

FLG CHG, DUP, NUL

Option

One of the following as appropriate:

CHG

DUP

The key value within the record in the file can be changed by a
program during a $UPDATE operation. This option can be specified
only for alternate keys.

The key value within the record in the file may have the same key
value as another record (or other records) within the file.

6-24

NUL

THE EXTENDED ATTRIBUTE BLOCKS

The NUL field of the XAB contains a null key value if the key
data type is string. If the key data type is other than string
(i.e., integer, binary, or packed decimal), then the null key
value is o. This option can be specified only for alternate
keys. Refer to Section 6.6.10 for a description of the XAB NUL
field.

The allowed combinations of the changeable key values and duplicate
key values options depend on the type of key (that is, primary or
alternate) represented by this XAB; Table 6-8 summarizes these
combinations.

Table 6-8
Key Options Flag Combinations

Combinations
Key Type

CHG+DUP CHG+NODUP NOCHG+DUP NO CHG +NO DUP
···-···· -----·---!

Primary Error Error Allowed Default

Alternate Default Allowed Allowed Allowed

The assembly-time defaults for the FLG field depend on the key of
reference specified by the REF field.

The defaults for a primary key are as follows:

• Duplicate key values are not allowed

• Key values cannot change

The defaults for an alternate key are as follows:

• Duplicate key values are allowed

• Key values can change

• No null key values

The defaults are applied only if the entire FLG field is defaulted.
Consider the following:

KEY 1: $XABKEY REF=l POS=O SIZ=lO

This specifies the key for alternate index 1, and therefore the macro
will default the FLG field to allow duplicates and changes. However,
if a FLG option is explicitly referenced, the results are different:

KEY 1: $XABKEY REF=l POS=O SIZ=lO FLG=CHG

In this case, only the CHG option
leaving the DUP option cleared.
be allowed on this key.

will be set in the FLG field,
This means that duplicates will not

When you specify more than one option with the FLG parameter, you must
enclose the options in angle brackets. The options can be specified

6-25

THE EXTENDED ATTRIBUTE BLOCKS

in any order. When you specify only one option, no angle brackets are
required.

For example, to specify that duplicate key values are allowed, that a
null key value is allowed, and that key values cannot change (through
absence of CHG), you would write the following:

$XABKEY FLG=<DUP,NUL>

Each key option flag operation has its own symbolic bit offset and
mask value.

Special Note

VAX-11 RMS will allow alternate indicies
which do not permit duplicate key values
in that index, but do permit key values
to change on $UPDATE operations. RMS-11
(as opposed to VAX-11 RMS) does not
allow this particular combination of
attributes for alternate indices. This
factor should be considered when
creating files with VAX-11 RMS which may
also be processed by RMS-11.

$XABKEYIAN

6.6.5 Index Bucket Area Number

The IAN parameter initializes the index bucket area number field of
the key definition XAB. When you create an inde~ed file, you use this
parameter to specify the area of the file that the index buckets are
to reside in only when both of the following are true:

• You are creating a new indexed file.

• You are using allocation XABs (described in Section n.5) to
define areas.

When the key definition XAB describes the primary key, the index level
of the index consists of all levels of the tree- (pyramid-)structured
primary index down to and including the level containing pointers to
the user data records themselves. However, when the key definition
describes an alternate key, the index level of the index comprises all
levels of the pyramid-structured alternate index down to, but not
including, the level containing buckets in which VAX-11 RMS maintain
pointer arrays describing the user data records. Refer to the LAN
parameter for a description of how to place the lowest level of the
index in a lo.cation separate from the higher levels.

Format

IAN=area-number

area-number

A numeric value in the range 0 through 254, representing an
identification number contained in the AID field of an allocation
XAB present in the same chain (see Section 6.5.2). The default
is O, that is, area O.

6-26

THE EXTENDED ATTRIBUTE BLOCKS

For example, to indicate that these index buckets are to reside in
area 3 of an indexed file, you would write:

$XABKEY IAN=3

$XABKEYIFL

6.6.6 Index Bucket Fill Size

The IFL parameter initializes the index bucket fill size field of the
key definition XAB. When you create an indexed file, you use this
parameter to specify the number of bytes you want in each index
bucket. If you specify less than the total possible bucket size, you
indicate that the index buckets are to contain some amount of free
space. At run time, VAX-11 RMS adheres to the fill size specified at
$CREATE time only if the RAB$V LOA bit is set in the record-processing
options (ROP) field of the RAB: The ROP field is described in Chapter
5.

When the key definition XAB describes the primary key, the !FL field
describes the space in the buckets in all levels of the primary index
down to and including the level containing pointers to the user data
records. When the key definition XAB describes an alternate key, the
!FL field describes the space in the buckets in all levels of the
alternate index down to, but not including, the level containing
buckets in which VAX-11 RMS maintains pointer arrays describing the
user data records.

It is advantageous to use the IFL field in the following situation:

If you expect to perform numerous $PUT and $UPDATE operations on the
file after it has been initially populated, you can minimize the
resultant movement of records (known as bucket splitting) by
specifying less than the maximum bucket fill size at $CREATE time. To
utilize the free space thereby reserved in the buckets, programs that
perform $PUT or $UPDATE operations on the file should not place the
value RAB$V LOA in the ROP field of the RAB.

Format

bytes

IFL=bytes

A numeric value representing the maximum number of bytes in an
index bucket. The maximum possible fill size is the bucket size,
in blocks, multiplied by 512. The default value is O, which is
interpreted by VAX-11 RMS as meaning the maximum available space
(that is, no unused space). If the specified size is not zero,
but is less than one half of the bucket size (in bytes), then the
fill size used will be one half of the bucket size.

For example, to specify that each index bucket is to be filled to a
maximum of 256 bytes, you would write:

$XABKEY IFL=256

6-27

THE EXTENDED ATTRIBUTE BLOCKS

$XABKEY KNM

6.6.7 Key Name Address

The KNM parameter initializes the key name buffer address field of the
key definition XAB. When you define a key during creation of an
indexed file, you can associate any 32-character strinq you choose
with the key field represented by the XAB. VAX-11 RMS never examines
this character string, but it retains it in the file as part of the
key definition information.

Format

KNM=address

address

The symbolic address of a buffer, which must always be at least
32 bytes long. A value of 0 in this field indicates that no key
name is defined during a $CREATE operation or is to be displayed
during a $OPEN or $DISPLAY operation.

For example, if the key buffer area has a label of KEYBUF, you would
write:

$XABKEY KNM=KEYBUF

$XABKEY LAN

6.6.8 Lowest Level of Index Area Number

The LAN parameter initializes the lowest level of index area number
field of the key definition XAB. It permits you to separate the
lowest level (level 1) of the index from all higher levels (levels 2
+) of the index in an indexed file; that is, you can use the LAN
parameter to specify an area of the index wherein the lowest level of
the index will reside, separate from the area (or areas) specified by
the IAN parameter (wherein higher levels of the index will reside).
The IAN parameter is described in Section n.6.6.

You can utilize the LAN parameter only when both of the following are
true:

• You are creating a new indexed file.

• You are using allocation XABs (described in Section n.5) to
define areas.

NOTE

The bucket size of the area specified by
the LAN parameter must be the same as
the bucket size specified by the IAN
parameter.

n-28

THE EXTENDED ATTRIBUTE BLOCKS

Format

LAN=area-number

area-number

A numeric value in the range O through 254, representing an
identification number contained in the AID field of an allocation
XAB present in the same chain (see Section 6.5.2). The
assembly-time default is O; that is, the lowest level of the
index will occupy the same area of the file as the remainder of
the index.

For example, to indicate that the lowest level of the index is to
reside in area 3 of an indexed file, you would write:

$XABALL
$XABKEY

AID=3
IAN=5
LAN=3

;area identification
-;index area number

;lowest level of index area number

$XABKEY NUL

6.6.9 Null Key Value

The NUL parameter initializes the null field of the key definition
XAB. Normally, VAX-11 RMS updates all indexes to reflect the 'values
in the corresponding key fields of the records written to an indexed
file. The NUL parameter, however, allows you to instruct VAX-11 RMS
not to make an entry in an alternate index if a record being entered
in an indexed file contains the specific (null) alternate key value.
The following prerequisites must be satisfied for you to use the NUL
parameter:

• The XAB must define an alternate key.

• The NUL option of the FLG parameter must have been set at file
creation (refer to Section 6.6.5 for a description of the FLG
parameters).

• The key data type must be string.

If the above conditions are met, alternate index entries will not be
made for those alternate key values in which ever~ byte of the key
matches the null key value for that index. Non-string key data types
use 0 for the null key value.

Format

NUL=value

value

Any user-selected character value

For example, to indicate that a record with an alternate key value of
32 (ASCII blank) is not to have an entry made for it in the associated
alternate index (in this case the second alternate index), you would
write:

$XABKEY FLG=NUL
NUL=32
REF=2

- ; set null flag
-;null key value

;second alternate key

6-29

THE EXTENDED ATTRIBUTE BLOCKS

$XABKEY POS

6.6.10 Key Position

The POS parameter initializes the key position field of the key
definition XAB. The key position field defines the location of the
key within each record of an indexed file, and is eight words long.
Two types of keys can be defined: simple keys and segmented keys.

A simple key is a single string of contiguous bytes in the records.
The first word of the position field specifies the starting position
of the string and the remaining words contain Os. You can use simple
keys with any data type (see Section 6.6.4).

Segmented keys can be used only with key fields that contain string
data. A segmented key consists of two through eight strings of bytes
in the record. Each individual string (segment) is a set of
contiguous bytes, but the strings do not need to be contiguous;
additionally, the strings can be in any order and may overlap. Each
successive word of the position field specifies a starting position of
one of the segments. When processing records that contain segmented
keys, VAX-11 RMS regards the key field as a single, logically
contiguous string beginning with the first segment and ending with the
last.

You should note that the key position and the key size field (see
Section 6.6.13) must define an equal quantity of key position values
and key size values.

Format

POS=position

or

POS=<POSITIONO,POSITION1, ••• ,POSITION7>

position

Is a numeric value representing the starting (byte) position of
the key within each record. The first byte of a record is
represented by the value O, the second by the value 1, etc. A
simple key has only one starting position, while a segmented key
may have up to eight starting positions.

For example, to indicate that a record contains a simple key which
starts in the first byte of each record, you would write:

$XABKEY POS=O, -;
SIZ=8

key starts in first byte
key length 8 bytes

To indicate that a record contains a segmented key consisting of 4
segments with the first segment starting in the 20th byte, the second
segment starting in the 14th byte, the third segment starting in the
first byte, and the fourth segment starting in the 29th byte, you
would write:

$XABKEY POS=<l9,13,0,28>, -;
SIZ=<B,2,5,32>

segmented key
length in bytes

You must include the angle brackets for multiple argument key
positions.

n-30

THE EXTENDED ATTRIBUTE BLOCKS

The offsets for these fields are:

XAB$W_POSO, ••• ,XAB$W_POS7

$XABKEY REF

6.6.11 Key of Reference

The REF parameter initializes the key of reference field in the key
definition XAB. The key of reference field identifies which key (that
is, primary, first alternate, second alternate, and so on) in an
indexed file is defined by the XAB. Since REF is a reserved key word
in the BLISS language, the BLISS XABKEY macro uses the mnemonic KREF
to reference this field.

NOTE

VAX-11 RMS can process an indexed file
with 255 defined keys; however, you
should be aware that each key field
defined has associated with it a cost in
processing and I/O time. The time to
build and maintain the index for the key
field and the disk storage required to
contain the index for each key field
should be considered when you decide
whether the field should be an alternate
key field. A file with six to eight
defined keys (the primary and five to
seven alternate keys) should be
considered as a maximum; a file with
two or three defined keys is normal.

Format

value

REF=value

A numeric value in the range 0 through 254 indicating which key
is represented by the XAB. A value of 0 indicates the primary
key, 1 indicates the first alternate key, 2 indicates the second
atlternate key, and so on. For the $CREATE and $EXTEND macro
instructions, the key references must be listed consecutively in
ascending order. The order is irrelevant for the $OPEN and
$DISPLAY macro instructions.

For example, to indicate the primary key, you would write:

$XABKEY REF=O

6-31

THE EXTENDED ATTRIBUTE BLOCKS

$XABKEY SIZ

6.6.12 Key Size

The SIZ parameter initializes the key size field of the key definition
XAB. The key size field defines the length (in bytes) of the key
(whose starting position is defined in the key position field of the
same XAB) within each record of an indexed file. Two types of keys
can be defined: simple keys and segmented keys (see Section n.6.11).
The key size field defining a simple key will contain only one key
size value. The key size field defining a segmented key must contain
a key size value for each segment of the key. You should note that
the key size field and the key position field (see Section 6.6.11)
must contain an equal quantity of key size values and key position
values. VAX-11 RMS associates the first key position value specified
with the first key size value specified which together define the
location and length of the first segment of a segmented key, and so
forth.

Format

or

size

SIZ=sizeO

SIZ=<SIZEO,SIZE1, •• ,SIZE7>

A numeric value representing the length, in bytes, of the key
within the record. Up to eight values can be assigned.

When the data type of the key (see Section 6.6.4) is string, the
total size (sum of SIZE,SIZE, ••• >) of the key must be less than
256 bytes.

When the data type of the key (see Section 6.6.4) is 2-byte
integer or 2-byte binary, sizeO must equal 2 and sizel through
size7 must be Os. If sizeO is O, it is defaulted to 2.

When the data type of the key (see Section 6.6.4) is 4-byte
integer or 4-byte binary, sizeO must equal 4 and sizel through
size7 must be Os. If sizeO is O, it is defaulted to 4.

When the data type of the key (see Section 6.6.4) is packed
decimal, the size specified by sizeO must be from 1 through 16
and sizel through size 7 must be Os.

For example, to indicate that a record contains a simple key eight
bytes long, you would write:

$XABKEY POS=O, -; key starts in first byte
SIZ=8 key length 8 bytes

,To indicate that a record contains a segmented key consisting of
4 segments with the first segment 8 bytes long, the second
segment 2 bytes long, the third segment 5 bytes long, and the
fourth segment 32 bytes long, you would write:

$XABKEY POS=<l9,13,0,28>,
SIZ=<l8,2,5,32>

6-32

-; KEY SEGMENT START LOCATIONS
; KEY LENGTH IN BYTES

THE EXTENDED ATTRIBUTE BLOCKS

The offsets for these fields are:

XAB$B_SIZO, ••• ,XAB$B_SIZ7

6.6.13 Noninitializable Key Fields

The following list describes the fields that are output fields only.
VAX-11 RMS sets them for you, when you perform a DISPLAY or an OPEN
operation.

DBS

DVB

IBS

LVL

MRL

NSG

Data bucket size field. When a key definition XAB is present
during an open or display operation, VAX-11 RMS sets this field
to the size of the data level (level 0) buckets, in virtual
blocks, for the key described by the XAB.

First data bucket start virtual block number. When a key
definition XAB is present during an open or display operation,
VAX-11 RMS sets this field to the start virtual block number for
the first data level bucket for the key described by the XAB.

Index bucket size. When a key definition XAB is present ~uring
an open or display operation, VAX-11 RMS sets this field to the
size of the index level (level 1 to n) buckets, in virtual
blocks, for the key described by the XAB.

Level of root bucket. Whc· a key definition XAB is present
during an open or display operation, VAX-11 RMS sets this field
to the level of the root bucket for the key described by the XAB.

Minimum record length. When a key definition XAB is present
during an open or display operation, VAX-11 RMS sets this field
to the minimum record length in bytes, which will totally contain
the key field for the key described by the XAB.

If the key described by the XAB_is the primary key (REF=O), then
a record must be equal to or greater than the minimum record
length returned in MRL to be inserted/updated in the file.

If the key described by the XAB is an alternate key (REF=l ton),
then a record must be equal to or greater than the minimum record
length returned in MRL to be recorded in the associated index for
that alternate key.

Number of key segments. When a key definition XAB is present
during an open or display operation, VAX-11 RMS sets this field
to the number of key segments that make up the key field for the
key described by the XAB (see Section n.n.11). This field must
not be altered.

6-33

RVB

TKS

THE EXTENDED ATTRIBUTE BLOCKS

Root index bucket start virtual block number. When a key
definition XAB is present during an open or display operation,
VAX-11 RMS sets this field to the start virtual block number for
the root bucket of the index for the key described by the XAB.

Total key size. When a key definition XAB is present during an
open or display operation, VAX-11 RMS sets this field to the
total key size, in bytes (the sum of SIZO through SIZ7), for the
key described by the XAB (see Section 6.6.13).

$XABSUM

6.7 SUMMARY XAB

The $XABSUM macro instruction allows you to determine the number of
keys and/or the number of allocation areas defined and the prologue
version number for an existing file.

The summary XAB is ignored with a $CREATE macro call. However, one
summary XAB can be associated with a FAB at the time a $OPEN or
$DISPLAY macro call is issued. The presence of this XAB during these
calls allows VAX-11 RMS to return to your program the total number of
keys and allocation areas defined and the prologue version number when
the file was created.

Format

OPERATION PARAMETERS

label:$XABSUM NXT=address

Table 6-9 summarizes the fields in the summary XAB.

NOTE

The summary XAB is used only
indexed files.

with

Table 6-9
Summary Extended Attribute Block Fields

Field Field
Name Size

BLN byte
COD byte
NOA byte

NOK byte

NXT longword
PVN word

-·

Description

Block length
Type code
Number of allocation areas

defined for the file
Numbers of keys defined

for the file
Next XAB address
Prologue version number

6-34

Offse

XAB$B_ BLN
COD

_,NOA
XAB$B_
XAB$B

XAB$B_ NOK

XAB$L_ NXT
_PVN XAB$W

--'--------··

THE EXTENDED ATTRIBUTE BLOCKS

$XABFHC

6.8 FILE HEADER CHARACTERISTICS XAB

The $XA6FHC macro instruction allocates and initializes a file header
characteristics XAB. You can use this block to display information
about the file as stored in the file header.

VAX-11 RMS copies the file characteristics into this XAB whenever an
operation is performed with a $OPEN or $DISPLAY macro instruction.
The field is then available for you to examine during processing.
Note that for shared sequential files, the values in the end-of-file
block, first free byte in the end-of-file block, and longest record
length fields correspond to the values at the time of the last close
or flush service.

On a Create service, only the longest record length field of this XAB
is used as an input attribute, and then only if the record format is
not fixed length.

Format

OPERATION PARAMETERS

label: $XABFHC NXT=address

Table 6-10 summarizes the fields in the file header characteristics
XAB. Note that many of these fields are also available in the FAB.

6-35

THE EXTENDED ATTRIBUTE BLOCKS

Table 6-10
File Header Characteristics

Extended Attribute Block Fields

Field
Natne Field Size

~------------------------· -----··--i

Description Offset

l========t== .. -=_::::.:.::..=---·-=;;;:;+-==;:::__ ------:= ___ _c:=;}-:···:~-===-------~~

ATR byte

BKZ byte

1-------------- !----···----- --·-··--····· .. ·--·

BLN2 byte
i--------------···--

coo2 byte

DXQ word

Record attributes; equivalent to
the RAT field of the F AB

XAB$B_ATR

-----·-·· ----·-·---------· --···--·----------+--------------!
Bucket size; equivalent to the XAB$B BKZ
BKS field of the F AB

----·-----··----.. -------1------------
Block length XAB$B BLN

-----.. -----·-··-·····---·---·------------+----------
Type code XAB$B_COD

---·-····-··---··-·""•·-·-------------···-·--+-. ··--
Default file extension quantity; XAB$W_DXQ
equivalent to the DEQ field of
the FAB

1---------+---------·--·-··--·---o--- _, _____ .. _______ __ .. _______
EBK longword End-of-file block XAB$L EBK

1----------+-----·-.. -· --·-·--··-··--- ______ .. ___ ... ---------.. ···--···-····-"·----·-·····--·····-····-----: .. ----------1
FFB word First free byte in the end-of- XAB$W FFB

file block
1---------.. ·---- ___ - - -·-·----·------

HBK longword

i------------1 ----·-····--·--·--·"• __________ .. ., ____ _

HSZ byte

1---------·--t---------
LRL word

MRZ word

NXT 1 longword
------------i-----·-------·-""-· ______ .. _

RFO byte

SBN longword

_______________ .,,_ __

1 This field can be initialized at assembly time.

Highest virtual block in the
file; the execution of a $OPEN
macro instruction sets the
allocation quantity field of
the F AB to this value

XAB$L HBK

------------+ -----------
Fixed length control header
size; equivalent tQ the FSZ
field of the F AB

XAB$B HSZ

-----·-------------- --------------1
Longest record length

Maximum record size; equiva
lent to the MRS field of the
FAB

XAB$W_LRL

XAB$W MRZ

--·---------.. ----- ------------1
Next XAB address

File organization and record
format; combines the RFM and
ORG fields of the FAB

XAB$L NXT

XAB$B RFO

................................. ____________ , _______ _________ _
Starting logical block number
for the file if it is contiguous,
otherwise this field is 0

XAB$L SBN

··---·-----··------------· --~~-~~----------

2 Indfcates that this field is set automatically by the type of macro instruction.

n-3n

THE EXTENDED ATTRIBUTE BLOCKS

$XABRDT

6.9 REVISION DATE AND TIME XAB

The $XABRDT macro instruction allocates and initializes an XAB for
revision date and time. This XAB operates much like the date and time
XAB (see Section 6.3) when input to the $OPEN, $DISPLAY, or $CREATE
macro instructions. However, when you gain access to a file for
writing, issuing a $CLOSE macro instruction for that file causes the
revision date and time to be set from the current.date and time and
the revision number to be incremented. Thus, any revision date and
time you specify through the XAB on a $CREATE macro instruction is
lost.

For this reason, you can input the revision date and time XAB to the
$CLOSE macro instruction and cause the file's revision date and time
and revision number to take on the specified values.

Table 6-11 summarizes the fields in the revision date and time XAB.

Table 6-11
Revision Date and Time Extended Attribute Block Fields

Field

Name Field Size Description Offset

-

BLN2 byte Block length XAB$B_BLN

COD2 byte Type code XAB$B_COD
--

NXT longword Next XAB address XAB$L_NXT

RDT 1 quadword Revision date and time XAB$Q ROT
-

--~

RVN 1 word Revision number XAB$W_RVN

1 Indicates no assembly time initialization.
2 Indicates that this field is set automatically by the type of macro instruction.

Format

OPERATION PARAMETERS

label: $XABRDT NXT=address

6-37

THE EXTENDED ATTRIBUTE BLOCKS

6.9.1 Revision Date and Time

VAX-11 RMS sets certain values for the revision date and time, and
returns them in the rev1s1on date and time XAB fields for your
inspection. You can override these system-supplied values through the
use of a revision date and time XAB as input to a $CLOSE or $CREATE
macro instruction. However, the $XABRDT macro instruction does not
contain parameters for the assembly-time initialization of XABDRT
fields. As outlined in Table 6-8, these fields are:

• Revision date and time (RDT) -- this is a 64-bit binary field,
indicating the date and time at which the file was last
updated.

• Revision Number (RVN) -- this field provides the number of
times this file was opened for write operations.

The following tables describe how the fields of the XABRDT are used by
the RMS file processing macro instructions.

OPERATION

CLOSE
CREATE
DISPLAY
ERASE
EXTEND
OPEN

RDT
··-------··-·-.. --... - ..

INPUT
INPUT
OUTPUT
not used
not used
OUTPUT

RVN

INPUT
INPUT
OUTPUT
not used
not used
OUTPUT

If you specify a revision date and time of zero, VAX-11 RMS will
substitute the current date and time on the close operation. If,
however, the XABRDT existed on an open (or a display) operation, the
RDT field will have been filled with the existing file 's RDT value.
Since the ROT has been filled (and is no longer zer~), VAX-11 RMS will
not substitute the current date and time.

The XABRDT should be used only in those cases in which you want to
specify a new, (and non-default) RDT and RVN. These fields may be set
anytime after the open operation, but must be set before the close
operation. If the fields are set before the open operation, the
files' existing ROT and RVN will override the values you specified.
If you only want to examine the contents of the ROT and RVN fields,
you can do ·so by simply consulting the information already contained
in the appropriate fields of the XABDAT block.

6-38

CHAPTER 7

THE NAME BLOCK

This chapter describes the Name (NAM) Block, its fields, and the macro
instruction and parameters that initialize the fields at assembly
time.

7.1 THE PURPOSE OF THE NAME BLOCK

The NAM block contains supplementary information for use with the file
specification, and is useful as a means to facilitate file opening.
The fields of the NAM block include the following information:

• Device identification

• Directory identification

• File identification

• Expanded and resultant file name strings

• Address of a related file's NAM block

• Wild card character context

To use a NAM block, you must specify its symbolic address as the value
in the name block address field (NAM parameter) of the associated FAB.

The $NAM macro instruction allocates a NAM block. At assembly time,
you can initialize the fields in the NAM block through keyword
parameters. For run-time access to these fields, you can use the
keyword parameters with the $NAM STORE macro instruction (see Chapter
14), or the symbolic offsets. -

Table 7-1 summarizes the fields in the NAM block. Some of these
fields, however, are set by VAX-11 RMS or are static; therefore, you
cannot initialize them at assembly time by keyword parameters.

7-1

THE NAME BLOCK

Table 7-1
Name Block Fields

··--·-----··-----·----·-----
Field
Name

BID1

BLN1

!-------------. I-·-
DID1

DVl 1

Field Size Description

byte Block identifier

byte Block length

3 words Directory identification

16 bytes Device identification
1---------- !-------·-·---·· ---·- ----.. ------f.--·-·- '"'"""

ESA longword Expanded string area address

ESL1 byte Expanded string length

Offset

NAM$B BID

NAM$B BLN

NAM$W_DID

NAM$T DVI

NAM$L ESA

NAM$B ESL
.. -+·--- ---------··--·--------- __ ,,.,._ .. _______ ------

ESS byte Expanded string area size NAM$B ESS

FID1 3 words File identification NAM$W FID
1---------t----------~---+··

FNB 1 longword File name status bits NAM$L FNB

RLF longword Related file NAM block address NAM$L RLF
i---------t-------·--------1i-----.. . ---·-----···---t----~-------.i

RSA longword Resultant string area address NAM$L RSA
1-------------1---------------e---

RSL1 byte Resultant string length NAM$B RSL

RSS byte Resultant string area size NAM$B RSS
________ ------------------

wee 1 longword Wildcard context NAM$ L wee

1 Indicates nonuser-initialized field

$NAM

7.2 NAM BLOCK ALLOCATION

The $NAM macro instruction allocates and initializes storage for a NAM
block. You cannot use this macro instruction within a sequence of
executable instructions.

7-2

THE NAME BLOCK

Format

OPERATION PARAMETERS

label: $NAM ESA=address

ESS=size

RLF=nam-address

RSA=address

RSS=size

label: $NAM

7.2.1 Label

The label for the $NAM macro instruction assigns a name for a
particular NAM block and thus provides a symbolic address to be stored
in the name block address field of the FAB.

For example, if a label of NMBLK is used for a NAM block, the syntax
is:

$FAB MRS=512,MRN=l000,NAM=NMBLK,ORG=REL

A label must be separated from the $NAM macro name by a colon (:).

$NAM ESA

7.2.2 Expanded String Area Address

The ESA parameter initializes the expanded string area address field
of the NAM block, which contains the symbolic address of a
user-allocated buffer. This buffer receives the file specification
string resulting from the translation of logical names and the
application of default file specification information to the original
file string (file specification string of the FAB). The default file
specification information consists of the default file specification
string of the FAB, the related file resultant specification string,
and the process defaults.

You must specify this field for wild card character processing.

Format

ESA=address

address

The symbolic address of a buffer in your program to receive the
expanded file specification string.

7-3

THE NAME BLOCK

For example, if the buffer in your program has a symbolic address of
NAMBUF, the syntax is:

$NAM ESA=NAMBUF,ESS=32

$NAM ESS

7.2.3 Expanded String Area Size

The ESS parameter initializes the expanded
This field contains the size of the
address is stored in the expanded string
Section 7.2.2).

Format

ESS=size

size

string area size field.
user-allocated buffer whose
area address field (see

A numeric value representing the size, in bytes, of the user
buffer that contains the file specification string, in the range
of 0 through 255.

For example, if the user buffer is 32 bytes long, the syntax is:

$NAM ESS=32,ESA=NAMBUF

The symbolic value NAM$C MAXRSS defines the maximum possible length of
an expanded file specification string.

$NAM RLF

7.2.4 Related File Nam Block Address

The RLF parameter sets the related file NAM block address field to
indicate t~e address of the NAM block for the related file. This
field supports the secondary file concept of the command language
(DCL), giving an extra default level in processing file
specifications. See Chapter 8 for a description of file specification
string parsing.

Format

RLF=nam-address

nam-address

The symbolic address of the NAM block for the related file.

For example, if the $NAM macro instruction for the related file NAM
block has the label INNAM, the syntax is:

$NAM RLF=INNAM

7-4

THE NAME BLOCK

$NAM RSA

7.2.5 Resultant String Area Address

The RSA parameter sets the resultant string area address field. This
field contains the address of a user-allocated buffer that will
receive a copy of the resultant file specification string. This
string results from the resolution of all system defaults, including
version numbers and wild card character substitutions. You must
specify this field for wild card processing or when you select the SPL
(spool} or SCF (submit} or the DEL (delete on close} options in the
FAB.

Format

RSA=address

address

The symbolic address of a buffer in your program that will
receive the resultant file specification string.

For example, if the buffer has a label of STRING defining its starting
address, the syntax is:

$NAM RSA=STRING,RSS=48

$NAM RSS

7.2.6 Resultant String Area Size

The RSS parameter sets the resultant string area size field. This
field defines the length of the user-allocated buffer whose address is
contained in the resultant string area address field (see Section
7.2.5}.

Format

size

RSS=size

A numeric value representing the size, in bytes, of the buffer
that will receive the copy of the file specification string, in
the range of 0 through 255.

For example, if the label STRING defines the starting address of a
buffer 48 bytes long, the syntax is:

$NAM RSA=STRING,RSS=48

The symbolic value NAM$C MAXRSS defines the maximum possible length of
a resultant file specification string.

7-5

THE NAME BLOCK

7.3 NONINITIALIZABLE NAM BLOCK FIELDS

The following list describes the NAM block fields that you cannot
initialize at assembly time. Either they are static or VAX-11 RMS
sets them for you.

BID

BLN

DID

DVI

ESL

FID

FNB

Block identifier field; identifies the block as a NAM block to
VAX-11 RMS. The $NAM macro instruction sets this field to the
symbolic value NAM$C_BID; you cannot alter this field.

Block length field; defines the length of the NAM block, in
bytes. The $NAM macro instruction sets this field to the
symbolic value NAM$C_BLN; you cannot alter this field.

Directory identification field; identifies the directory for the
file. VAX-11 RMS outputs this three-word field as part of the
$OPEN, $CREATE, and $PARSE macro instructions. If, once you open
the file, you want to refer to this directory again, you can do
so more quickly by specifying that the NAM block has a valid
directory identifier (see Chapter 8).

Device identification field; defines the device for the file.
VAX-11 RMS outputs this field as part of the $OPEN, $CREATE, and
$PARSE macro instructions. You can use this field with the file
identification field to reopen the file by referring to the NAM
block (see Chapter 8). The symbolic value NAM$C DVI gives the
length of this field, in bytes.

Expanded string length field; VAX-11 RMS sets this field as part
of the $OPEN, $CREATE, and $PARSE macro instructions. This field
is set to the length, in bytes, of the file specification string
returned in the buffer whose address is in the expanded string
area address field (see Section 7.2.2).

File identification field; provides the identifier of the file.
VAX-11 RMS sets this three-word field on a normal open or create
operation. You can also set this field before opening the file
if you are going to open by file identifier (see Chapter 8).

File name status bits field; set by VAX-11 RMS to indicate
status information about the file as determined by the file
specification parsing routine. Each bit within this field
denotes a specific status relative to the various components of
the file specification. The bits, and the conditions they
express, are described in Table 7-2.

Each status bit has its own offset and mask value.

7-6

RSL

wee

THE NAME BLOCK

Resultant string length field; VAX-11 RMS sets this field as
part of the $OPEN, $SEARCH, and $CREATE macro instructions. This
field is set to the length, in bytes, of the file specification
string returned in the buffer whose address is in the resultant
string area address field {see Section 7.2.5).

Wild card context field; contains information required for using
wild card characters in place of the various file specification
components. In particular, this field restarts a directory
search to find the next matching file name, type, and/or version
number.

7-7

THE NAME BLOCK

Table 7-2
File Name Status Bits

Bit Names Description

--

DIR LVLS - Number of sub-directory levels (value is 0 if there is a user file directory only);
3-bit field

---... -¥ ~·~ --~-~

EXP - DEV Device type was explicit
---~=-·- - -----------··--·--·--·-·-... --- ·-------------------""

EXP DIR - Directory specification was ex plicit
--·--·-------· --------·-------""

EXP NAME File name was explicit -
-······-f----.····-----.--·C"•··-~·--·------·-··----""°'"'""--

EXP - TYPE File type was explicit
U>m~-·-......... _______ ., . .,H_,_,

EXP - VER Version number was explicit
-----·'""'''~·~--···-·-------

GRP MBR - Directory specification is of th e group/member number format
- ___ _,,_~.

HIGINER A higher-numbered version (or versions) of the file exists (output from create and enter)
__.,_.==--~-..,,··a

LOWVER A lower-numbered version (or versions) of the file exists (output from create and enter)
··-·---·--

NODE File specification includes a no de name
•a-·----------

PPF File is indirectly accessed proc ess permanent file
,.,....,.,_

QUOTED File specification includes a qu oted string
............... ~-·---------··"" __ ... _, _________

WILDCARD File specification string include d a wildcard; (this value is returned whenever any of
the other wildcard bits are set)

...... _ ,__ •. ~-····-,·--·----

WILD - DIR Directory specification include s a wildcard
·-"''"'"''''"'"' ..,_......_..,.,_.._, .. _,, __ . _____

WILD - GRP Group number contains a wild card
·-

WILD MBR Member number contains a wil dcard -

WILD NAME File name contained a wildcard - -----
WILD - SFDI Sub-file directory 1 through 7 specification includes a wildcard

through
WILD SFD7 -

-· ~· .. ~·- "~~ ... ·--···-----~ ... «-·•····......---.. -- -·· ---

WILD TYPE File type contained a wildcard
-

__ ,,,,,~,, .. _,_"'_ " ""'""'"'~···-------~~--

WILD - UFO User file directory speci fica ti on includes a wildcard
-----------~~ ... -~ ~- .. ,.,..,_ ... --·----·~·-··--·--'-

WILD VER Version number contained a wi ldcard -
- --·----------------------· -------~

7-8

CHAPTER 8

RUN-TIME PROCESSING INTERFACE

This chapter describes the interface that VAX-11 RMS uses to access
and manipulate files and records within files.

As outlined in Chapter 3, the run-time macro instructions work with
the various control blocks to form the record management environment.
The file-processing macro instructions deal with the file access block
(FAB), and the record-processing macro instructions deal with the
record access block (RAB).

The sections that follow discuss the run-time processing interface:

• VAX-11 RMS calling sequence and macro instruction general
format

• The path to a file

• Control block usage

• Completion status codes

8.1 THE VAX-11 RMS CALLING SEQUENCE

VAX-11 RMS uses the standard VAX-11 calling sequence and conventions,
and preserves all general registers across a call, with the exception
of RegisterO and Register!. When the routine completes execution, it
returns control to the calling program, passing a return status code
in RegisterO. You should analyze the return code to determine the
success or failure of the routine and to alter the flow of execution,
if necessary.

When you call a VAX-11 RMS routine, you must provide an argument list
to define the associated control block (FAB or RAB) and, optionally,
any completion routines. The argument list is from two through four
longwords in length, as shown in Figure 8-1. (The rename service,
however, uses a 5-longword argument list; see Section 13.4.)

8-1

RUN-TIME PROCESSING INTERFACE

31 8 7 0

control block address

!- ----------- -- ---·=~::~•~i:~o~~n~~~·~'--=--=-- - - -- - - -i} optional

1 success completion routine address I
I I
~---~

Figure 8-1 Argument List Format

VAX-11 RMS interprets the fields in the argument list as follows:

• Argument count -- contains a binary value, from 1 through 3,
representing the number of arguments in the argument list

• Control block address -- contains the address of either the
FAB (for file operations) or the RAB (for record operations)

• Error completion routine address contains the address of a
user-written completion routine to be called if the requested
operation fails

• Success completion routine address -- contains the address of
a user-written completion routine to be called if the
requested operation completes successfully

The run-time macro instructions use two generalized formats, as
follows:

1 label: macro-name

FAB=f ab-address
2 label: macro-name ERR=entry SUC=entry

RAB=rab-address

Chapters 9 through 13, which deal with the specific macro
instructions, provide the exact format for each individual run-time
processing macro instruction, with a capsule explanation of the
parameters.

The remainder of this section provides an overview of the parameters,
and lists the conventions that are followed during calls on success or
error completion routines.

The first format above takes no parameters. You supply the argument
list within your program, and the argument pointer register (AP) is
assumed to contain the address of the argument list.

In the second format, you supply parameters that automatically
generate an argument list on the stack according to the values you
supplied. You specify these parameters through keywords, which can be
in any order. You must separate each keyword by a comma, a blank
space, or tabs. The only parameter required when using the second
format is the control block address (FAB=fab-address or
RAB=rab-address). This parameter must be either a general register
(RO through Rll) containing the control block address, or a suitable

8-2

RUN-TIME PROCESSING INTERFACE

address for a PUSHAL instruction. If you omit this parameter, no
other parameters are allowed; that is, you must use the first format.

The ERR=entry and SUC=entry parameters are optional and,
provide the addresses of completion routine entry points.
places the values you supply into the argument list on
during execution of the expanded macro instruction. These
be addresses that can be used by a PUSHAL instruction.

if used,
VAX-11 RMS
the stack

values must

When the argument list contains a completion routine argument, the
following conventions are used:

• An asynchronous system trap (AST) is queued for the routine
when the specified condition (error or success) occurs.

• General registers RO through Rll are undefined. The argument
pointer register (AP) contains the address of the AST argument
list (see the VAX/VMS System Services Reference Manual); the
AST parameter value in the AST argument list specifies the
address of the associated control block (FAB or RAB). The
status must be retrieved from the completion status code field
(STS) of the associated control block.

• You can modify any general registers saved by an entry mask,
in addition to RO and Rl.

• You can issue additional macro instructions for VAX-11 RMS
routines within the completion routines.

• To exit from a completion routine, you must perform any
necessary clean-up operations and execute a RET instruction.

Note that if the FAB or RAB is invalid, then the error completion
routine will not store the error code in the STS field of an invalid
structure. The following errors can be detected only by testing
Register O, following the completion of an RMS operation (even if an
error completion AST has been specified):

RMS$ FAB - FAB not writeable or invalid block ID field

RMS$ RAB - RAB not writeable or invalid block ID field

RMS$ BLN - invalid block length field (either FAB or RAB)

8.2 THE PATH TO A FILE

Before you can perform operations on a file, you must provide input to
the $OPEN, $CREATE, $RENAME, $PARSE, and $ERASE macro instructions to
establish a path to the file. You do this by setting the file
specification string address and size fields (and possibly the default
file specification string address and size fields) of the FAB to
describe an ASCII string within the program. In this ASCII string,
you can have a concatenation of the network node name; a logical or
device name; the directory name; and the file name, type, and
version number. The following sections describe the processes that
resolve all logical names to provide the required file specification
·components. Appendix C describes the complete file specification
syntax and processing algorithms.

8-3

RUN-TIME PROCESSING INTERFACE

8.2.l Interpretation of the File Specification

To establish a path to a file, VAX-11 RMS first calls an internal file
specification parse routine. The parse routine forms a fully
qualified file specification. If the NAM block specifies an expanded
string buffer (see Section 7.2.2), this specification is returned to
the user program as the expanded file specification string.

In forming a fully qualified· file specification, VAX-11 RMS goes
through the following steps:

If

1. If you specify an open by NAM block (see Section 8.2.3),
VAX-11 RMS checks the NAM block fields for a fully qualified
file specification.

2. If you do not specify an open by NAM block or if the NAM
block fails to provide all the components of a fully
qualified file specification, VAX-11 RMS processes the string
specified by the file specification string address and string
size fields (FNA and FNS) of the FAB. This string may have
one of three different forms, which are treated as follows:

the

a. If the file specification string has the form

node::"quoted-string"

VAX-11 RMS copies the file specification string without
modification to the expanded file specification string.

b. If the file specification contains only a file name,
VAX-11 RMS attempts to translate the string as a logical
name. If this attempt succeeds, the equivalence string
replaces the original file specification string, and the
parse routine restarts. If the attempt fails, the file
specification string is taken as the file name and
default processing begins (see Section 8.2.2).

c. If the file specification string has the form
node::device: [directory] file type; version.

file name string is neither of the two forms (a and b)
discussed above, processing proceeds as follows:

• VAX-11 RMS isolates the various components of the file
specification, checks them for correct syntax, and copies
them to the expanded file specification string. If the file
specification does not include a device name component,
default processing begins. If there is a device name
component, the VAX-11 RMS parse routine attempts to translate
it as a logical name. If a node name has been seen, only
user-entered logical names are considered for translation.
If the translation attempt fails, the component is treated as
a device name.

However, if the translation attempt succeeds, the equivalence
string is checked to determine whether it refers to a process
permanent file (see the VAX/VMS Command Language User's
Guide). If the equivalence string does not refer to a
process perma·nent file, the parse routine restarts, using the
equivalence string as its input. If, however, the
equivalence string indicates that this is an indirect
reference to a process permanent file, the indicated file is
therefore the target file resulting from the parse routine,
and the logical name is copied to the expanded file
specification string.

8-4

RUN-TIME PROCESSING INTERFACE

8.2.2 Wild Card Characters in File Specifications

As noted in the VAX/VMS Command Language User's Guide, wild card
characters can be used in the last four fields of a file
specification. One purpose of wild card characters is to refer to a
group of files by a more general file specification, rather than by
each of the specific file specifications. There are four characters
(or strings of characters) that can be used as wild card characters.
These are the asterisk (*), the percent sign (%), the ellipsis (•••),
and the minus sign (-).

An asterisk is used to match the missing component of a file
specification with an alphanumeric character string of any length
(including the null string). A percent sign is used to match any
single alphanumeric character in that particular position (the null
string does not match). The asterisk and the percent sign can be
combined in many ways. For example, the sequence:

A*E%B*.B*;*

matches a file specification or a group of file specifications in
which the file name starts with an "A" followed by a string of zero to
"n" characters; followed by an "E"; followed by a single character;
followed by a "B"; followed by a string of zero to "n" characters.
The file type begins with a "B" and is followed by a string of zero to
two characters. The version number or numbers in this group will be
any and all versions of that file, beginning with the highest version
number.

The example file specification matches the following sequence:

AEXB.801
AZZEYBXXX.B

The example file specification does not match the following sequence:

AEB.BOl
XAEYB.XBY

An asterisk can be used in the following fields of
specification:

• Directory name

• File name

• File type

• File version number

a file

The percent sign can be used in each of the above fields, with the
exception of the file version number field. In this field, only a
single asterisk wild card character can be used.

The ellipsis and minus sign wild card characters are aids to
searching, or traversing, directory hierarchies. Both the ellipsis
and the minus sign allow you to refer to directories in a relative
positional sense, rather than by an absolute name for the first
directory or group of directories. The ellipsis enables you to select
files from all directory levels from a specified level downward to
lower levels of the hierarchy. The minus sign, on the other hand,
enables you to search up the hierarchy, rather than down. A single
minus sign will send the search back up one level from the current
default directory level.

8-5

RUN-TIME PROCESSING INTERFACE

Wild card characters can be successfully used only in those programs
designed to accept them. Most VAX/VMS utilities are designed that
way. Prior to using the Open service, it is necessary to use the NAM
block and the Parse and Search services to successfully utilize wild
card characters as an aid to process groups of files.

8.2.3 File Specification Default Application

If the file specification contains any missing components after VAX-11
RMS completely parses. the primary file specification string (specified
by the file specification string address and string size fields of the
FAB), defaults are applied until either:

• No more components are missing in the specification, or

• No more defaults can be applied.

When VAX-11 RMS applies defaults, program defaults are applied first,
in the following order:

1. The default file specification string specified by the
contents of the default file specification string address and
string size fields (DNA and DNS) of the FAB can supply any of
the components necessary to form a full file specification.
VAX-11 RMS parses and copies the default file specification
string components in the same manner that it does for the
primary file specification string (see Section 8.2.1).
However, a duplicate field will not cause an error, because
VAX-11 RMS ignores any attempt to fill a field that is
already occupied.

2. If a NAM block is specified in the FAB, and if a related file
NAM block has been specified in the related file field of the
NAM block, defaulting can occur as follows. If the related
file NAM block has a resultant file specification string,
components of the related resultant file specification can be
used depending on the state of the OFP (Output File Parse)
bit in the file options field (FOP) of the FAB. If the OFP
bit is set, VAX-11 RMS parses the output file specification,
and only the file name and file type components can be
defaulted from the related file (also the file version if the
output file version is an explicit wild card character). If
the OFP bit is clear (indicating an input file parse), all
file specification components, except the file version, are
defaulted from the related resultant file specification
string.

After program defaults, unless a node specification has been seen,
system defaults apply in the following order:

1. If the device name component of the expanded file
specification is missing, VAX-11 RMS translates the logical
name SYS$DISK and parses the equivalence string; any
expanding components are merged into the expanded file
specification string. If the translation yields duplicate
components, an error occurs. If the equivalence string
includes a logical name, recursion may occur. This step must
generate a device name; otherwise, an error occurs.

2. If the directory specification is missing from the expanded
file specification, VAX-11 RMS uses the current default
directory string from the process I/O control page.

8-6

RUN-TIME PROCESSING INTERFACE

After VAX-11 RMS applies the program and system defaults, the expanded
name string is complete.

Chapter 13 describes the VAX-11 RMS file specification processing
macro instructions. Among the services provided by these macro
instructions, the parse service lets you explicitly parse a file
specification string independent of the services of the $OPEN,
$CREATE, $RENAME, or $ERASE macro instructions.

8.2.4 Opening and Creating a File by Name Block

When VAX-11 RMS successfully opens a file, the device identification,
file identification, and directory identification fields of the NAM
block (if present) are filled with the values pertaining to that file.

If you want to reopen the file after it is closed, you can specify the
filled-in NAM block by setting the name block address field of the FAB
to indicate the address of the NAM block, and setting the NAM option
of the file-processing options field (FOP) of the FAB.

If the device identification and file identification fields are
nonzero, the file is a fully qualified file specification. However,
if the device identification field is nonzero, but the file
identification field is O, VAX-11 RMS uses the normal file
specification string parsing routine to supply any missing portions of
the full file specification. In this case, the directory
specification may come from a nonzero directory identification field
of the NAM block. If either the file identification or directory
identification field is used, the directory and/or file name, type,
and version number of the expanded and resultant file specification
strings may be null.

You can create a file the same way that you open a file (above),
except that VAX-11 RMS does not use the file identification field as
input.

8.3 CONTROL BLOCK USAGE

The control block fields accessed by any run-time macro instruction
provide VAX-11 RMS with the means to define or qualify the file and
record operations. Depending on the operation, VAX-11 RMS uses one or
more of these control blocks with one or more fields being used as
input or output to or from the operation. In the chapters that
follow, a list of each field being used is provided in the explanation
of each macro instruction. Although not individually listed, the
block identification (BID) and block length (BLN) fields of every
control block used are always inputs to every VAX-11 RMS service.

Before your program calls for the execution of the macro instruction,
you must ensure that all the appropriate control block fields used as
input contain the necessary values. There are three methods of
setting the values in the control block fields:

1. Explicit assembly-time initialization

2. Implicit assembly-time initialization

3. Run-time initialization

8-7

RUN-TIME PROCESSING INTERFACE

At assembly time, you explicitly initialize the fields by the use of
parameters in the macro instruction for the particular control block
(Chapters 4 through 7). You can initialize a field implicitly if
VAX-11 RMS has defined a default value for the field. In this case,
no action is required on your part. You simply allow the assembly
time expansion of the control block allocation macro instruction to
set the default value in the field.

At run time, you can initialize or alter the contents of a control
block through the use of the various control block $xxx STORE macro
instructions or directly through instructions that use the defined
symbolic offsets associated with the fields (these methods do not
provide defaults at run time). If you do not appropriately set a
field that is defined as an input field to a particular operation, the
operation may fail. VAX-11 RMS assumes that every value found in an
input field was placed there for use by the current operation.

8.4 COMPLETION STATUS CODES

Before returning to your program from a
VAX-11 RMS indicates the success or
setting a value in the completion status
associated control block (FAB or RAB).

file or record operation,
failure of the operation by
code field (STS) of the

When first returning to your program after a call to an operation,
VAX-11 RMS also sets general register 0 to the value in the status
code field. In the case of asynchronous operations, register O may
simply indicate that the operation is under way.

In the chapters that follow, the discussion of each run-time macro
instruction includes a list of the possible nonsevere error and
success status codes that you can receive. See Appendix A for a
complete list of all VAX-11 RMS status codes.

In general, you may receive one of many error or success codes from an
operation. You should thus test for success by checking only the
low-order bit of the status code for a true condition (bit is set).
The low-order three bits returned in the status code, when taken
together, indicate the severity of the code. The severity codes are:

001 (1)

Oll (3)

000 (0)

Success (low-order bit set)

Information

Warning; indicates a nonstandard condition. The
operation may have performed some, but not all, of
the requested function.

010 (2) -- Error; you must recognize that a problem exists and
provide a contingency plan in your program for such a
condition.

100 (4) -- Severe error; normally caused by program logic or
other unrecoverable condition.

Certain error status codes result in a value's being set in the status
value field (STV) of the control block. The description of the codes
in Appendix A indicates the instances when the status value field
contains such information.

8-8

RUN-TIME PROCESSING INTERFACE

When signalling RMS errors, both the STS and the STV fields of the
appropriate structure (FAB/RAB) should be supplied. This will cause
all relevant information to be displayed in the error message text,
including additional information regarding the error status in the STV
field. The STV value will be ignored for those errors that do not
require it. For example, a GET operation may use an error completion
routine to report errors as follows:

$GET RAB=MYRAB ERR=REPORT ERR

.ENTRY REPORT ERR,O
MOVL 4(AP),RO
PUSHL RAB$L STV (RO)
PUSHL RAB$L-STS(RO)
CALLS #2,LIB$SIGNAL
RET

get structure address into RO
push associated status
push error code
signal the error

For a more detailed explanation of condition signalling, see the
VAX-11 Run-Time Library Reference Manual.

Note that VAX-11 RMS services are considered system services for the
purpose of generating system service exceptions on errors (see the
VAX/VMS System Services Reference Manual). If you test for error
conditions in your program, you should be sure to disable any unwanted
system service exception generation.

8.5 PROCESS PERMANENT FILES

A process permanent file is one that is opened (or created) through
VAX-11 RMS by supervisor or executive mode code having the PPF bit set
in the file processing options (FOP) field of the FAB. This causes
the VAX-11 RMS-maintained internal data structures to be allocated in
an area of memory in the process control region that remains allocated
for the life of the process. Thus, process permanent files can remain
open across image activations. You cannot directly access process
permanent files by user mode code; you can, however, indirectly
access them. VAX-11 RMS provides a subset of the total available
operations to the indirect accessor.

Indirect accessors gain access to process permanent files through the
logical name mechanism, as follows:

1. The LOGIN command image, or at a later point the command
interpreter, opens or creates a file corresponding to the
process's input, output, and error message streams. A
logical name is created in the process logical name table for
SYS$INPUT, SYS$0UTPUT, and SYS$ERROR, respectively. The
equivalence string for the logical name has a special format
that indicates the correspondence between the logical name
and the related process permanent file. For more detail
concerning the equivalence-string format for logical names,
see the discussion of logical name services in the
VAX/VMS System Services Reference Manual. For example, for
an interactive user, a single process permanent file is
opened for the terminal and all three logical names ref er to
the one file.

8-9

RUN-TIME PROCESSING INTERFACE

2. When an indirect accessor opens or creates a file specifying
a logical name that has one of these special equivalence
strings, VAX-11 RMS recognizes this and therefore does not
open or create a new file; instead, the returned value for
the internal file identifier (and later the value for the
internal stream identifier from a connect service) is set to
indicate that access to the associated process permanent file
is with the indirect subset of allowable functions.

Some of the implications for the indirect accessor are:

• A create service for a process permanent file becomes an open
service; the fields of the FAB are output according to the
description of the open, not the create.

• The open or create service requires no I/O operations.

• Any number of indirect opens and creates are allowed.

• There is only one position context for the file; that is each
sequence of the open/create service accesses the same record
stream, not an independent stream.

• If the process permanent file was initially opened with the
SQO bit set in the file-processing options field, neither
random access nor the rewind service is permitted. This is
the case for SYS$INPUT, SYS$0UTPUT, and SYS$ERROR.

• Certain options to various services produce errors. For
example, you cannot set the NFS, PPF, and UFO bits of the
file-processing options field for the open and create
services. Other options are ignored, such as the SPL, SCF,
and DLT bits of the file processing options field for the
close service, the ASY bit of the record-processing options
field, and both the multiblock count and multibuffer count
fields.

• If a NAM block is used and either an expanded or resultant
file specification string is returned, it consists solely of
the process logical name followed by a colon, such as
SYS$INPUT:

• The file access field is ignored on an open service; instead,
operations are checked against the file access field specified
for the original open or create service.

• Information from the record attributes field is saved on each
open service tand subsequent connect service) in the value
returned in the internal file identifier (and· internal stream
identifier) field. If the output file is a print file
(variable with fixed-control record format and the PRN bit is
set in the record attributes field), mapping is performed for
each put service from the user-specified carriage control to
the print file carriage control format. Thus, different
carriage control types from different indirect open services
all work correctly.

• You cannot use the erase service.

• Checking is performed for $DECK, $EOD, and other dollar sign
($) records on the SYS$INPUT stream (see the VAX/VMS Command
Language User's Guide).

8-10

RUN-TIME PROCESSING INTERFACE

• At image exit time the VAX-11 RMS Rundown control routine
insures that the indirect I/O on process permanent files
terminates; the process permanent files are not closed.

• You can use only sequential files in this manner.

8-11

CHAPTER 9

FILE-PROCESSING MACRO INSTRUCTIONS

VAX-11 RMS provides file-processing macro instructions that you use to
perform operations related to the file as a whole. These macro
instructions, therefore, deal with fields in the file access block
{FAB). See Chapter 4 for a description of-the effect of these fields.
At run time, the expanded code of these macro instructions causes
calls to be made to corresponding VAX-11 RMS services.

In most cases, you use a file-processing macro instruction with
parameters to indicate the symbolic address of the FAB and the address
of any optional error or success completion routine you may have
provided. You can also use the macro instruction without parameters,
but you must then create an argument list in your program to define
the values for these addresses (see Section 8.1).

Table 3-2 summarizes all the run-time processing macro instructions.
This chapter deals only with the following macro instructions, which
pertain to file processing:

e $CLOSE

• $CREATE

• $DISPLAY

• $ERASE

• $EXTEND

• $OPEN

For ease of reference, the macro instructions are presented in
alphabetical order.

$CLOSE

9.1 TERMINATING FILE PROCESSING

The $CLOSE macro instruction invokes the close service,
terminates file processing and closes the file.

which

You can issue a $CLOSE macro instruction only when no operation is
under way for the file, that is, when all record access blocks (RABs)
associated with the file are inactive. Otherwise, the file will not
be closed nor will the internal fileidentifier field be set to O.
When the. close service operates normally, VAX-11 RMS disconnects a~l
RABs for you, performs the various clean-up procedures (including file

9-1

FILE-PROCESSING MACRO INSTRUCTIONS

option and XAB processing), and closes the file. The only types of
XABs that the close service processes are the file protection and
revision date and time, and then only if the file is write-accessed.

Format

OPERATION PARAMETERS

label: $CLOSE F AB=fab-address

ERR=entry

SUL=cnt1y

label

Symbolic address for the $CLOSE macro instruction.

FAB=f ab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 9-1 lists the FAB fields that VAX-11 RMS uses as input and
output for the Close service.

9-2

FILE-PROCESSING MACRO INSTRUCTIONS

Field
Usage Name

Input FOP

IFI

NAM

XAB

Output IFI

STS

STY

Table 9-1
Close FAB Fields

Description

File-processing options
(DLT, NAM, RWC, SCF, SPL, and TEF only)

Internal file identifier

Name block address
(used only if NAM is set in file-processing options)

--

Extended attribute block address

Internal file identifier (zeroed)

('ompletion status code
(also returned in Register 0)

-··--

Status value
---------- __,

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the close service are listed below. Note
that even though a failure may be indicated by the completion status
code value, the file was nontheless closed, if the internal file
identifier value was cleared by VAX-11 RMS.

Success:

RMS$ NORMAL

Failure:

RMS$ ACT

RMS$ DAC

RMS$ DNR

RMS$ EXP

RMS$ MKD

RMS$ PRV

RMS$ WLK

Operation successful

ACP file activity precludes operation

File deaccess error

Device not ready

Expiration date not yet reached

File protection violation ACP could not mark file
for deletion

File protection violation

Device write-locked

9-3

FILE-PROCESSING MACRO INSTRUCTIONS

$CREATE

9.2 CREATING A FILE

The $CREATE macro instruction invokes the Create service, which
constructs a new file according to the attributes you specify in the
FAB. If any extended attribute blocks (XABs) are chained to the FAB,
then the characteristics described in the XABs are applied to the
file. If an allocation control XAB is present, its allocation
quantity (ALQ), allocation options (AOP -- only for the CTG and CBT
bits), bucket size (BKZ), and default extension quantity (DEQ) fields
are used instead of the corresponding fields of the FAB. When either
key definition or allocation XABs are present, they must be densely
grouped in ascending order (by REF or AID, respectively).No other
types of XABs may intervene. If a name block (NAM) is also connected
to the FAB, VAX-11 RMS fills in its fields with information about the
created file. The $CREATE macro instruction leaves the file opened.

The Create service implies PUT access; that is, you need not specify
PUT in the file access field of the FAB.

The user should note that the Create-if (CIF) file option (FOP field)
specifies simply that: if a file (to be processed) has the sa~e file
specification as a file that already exists, then the existing file
will be opened and no new file will be created. Some fields in the
FAB, such as the file organization (ORG) and record format ' (RFM)
fields, are input to a Create operation, but output from an open
operation. For example, the indexed file organization could be
specified in the ORG field on a Create-if operation. However, if a
sequential file with the same file specification as the indexed file
(attempting to be created) already exists, then the existing file will
be opened and the ORG field will be set to sequential.

Format

OPERATION PARAMETERS

label: $CREA TE F AB=fab-address

ERR=entry

SUC=entry

9-4

FILE-PROCESSING MACRO INSTRUCTIONS

label

A symbolic address·for the $CREATE macro instruction.

FAB=f ab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 9-2 lists the FAB fields that VAX-11 RMS uses as input and
output for the create service.

9-5

Usage

Input

Output

FILE-PROCESSING MACRO INSTRUCTIONS

Field
Name

ALQ

Table 9-2
Create FAB Fields

Description

::f===---:-:=-=-=-=--.~--===-=======-=-=-:=-=-===============-=-===========I

Allocation quantity. This field is ignored if an allocation XAB
is present.

--------- -------------··-·- ----------
BKS Bucket size. This field is ignored if an allocation XAB is present.

·--·---- ------·
BLS Block size. (magnetic tape only)

~-------+------ -·--·----·--··--·--·-.
DEQ Default file extension quantity. This field is ignored if an allo

cation XAB is present.

DNA Default file specification string address
~--·

DNS Default file specification string size
_____ .. ____ -----.. ·------------ --------------t

F AC File access

FNA File specification string address
---.------ ----------t

FNS File specification string size
·----·--------"- -·------- ------------t

FOP File-processing options (DLT, NAM, RWC, SCF, SPL, and TEF only)

FSZ Fixed control area size

IFI Internal file identifier (must be 0)

MRN Maximum record number (relative organization only)
·--- -----·-----·-

MRS Maximum record size

NAM Name block address
~---------·-+-- ------·-----·--·-----·-··------ -----------1

ORG

RAT

RFM

RTV

SHR

XAB

ALQ

File organization

Record attributes

Record format

Retrieval window size

File sharing
---·------------· ---- ---

Extended attribute block address

Allocation quantity (contains actual number of blocks allocated)
<-------------- ·- .. -- ·---·---·-·-- -----·--· .. --·----- - ---- - ----- .. ·-·----------

BLS Block size (sequential organization only)

DEV Device characteristics
- .. -.--·--·· - --- ,,_____ -----·--·- --------------1

IFI Internal me identifier
!---------+-·-· -------

SIX

STS

STV

Spooling device characteristics

Completion status code (also returned in Register 0)
- . -·--···- .. ·----------

Status value (contains the 1/0 channel number if the operation
is successful)

9-6

FILE-PROCESSING MACRO INSTRUCTIONS

Table 9-3 lists the NAM block fields that VAX-11 RMS uses as input
and output for the create service if the name block address field is
specified in the FAB.

Table 9-3
Create NAM Block Fields

·- . ---------,

Field
Usage Name! Description

- .

Input DID Directory identification (input only if NAM bit is set in the file
processing options (FOP) field of F AB)

DVI Device identification (input only if NAM bit is set in the FOP
field of the F AB)

ESA Expanded string area address
-~~- -·------

ESS Expanded string area size
- -·---- ··--

RLF Related file NAM block address (if nonzero, RSA and RSL are
input from related file NAM block)

RSA Resultant string area address
---------------·- - - ··-··--------· __ _,

RSS Resultant string area size
-· --- - ---- --- --------·--!

Output DID Directory identification
------·-

DVI Dc~ceidcntification

---·--

ESL Expanded string length (if, on input, both the ESA and ESS are
nonzero, and if the NAM bit of the FOP field of the FAB is
clear or DID is 0, the expanded file specification string is
copied to the buffer specified by the input ESA field)

FID File identification

FNB File name status bits (FNB is output only if NAM bit in FOP field
of F AB is clear, or if DID field was 0 on input)

RSL Resultant string length (if RSA and RSS are both nonzero on
input, the resultant file specification is copied to the buffer
specified by RSA)

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Create service are listed below. If
a failure is indicated, the file may indeed have been created, but
will not be opened for processing, depending on the nature of the
failure.

9-7

Success:

RMS$ CREATED

RMS$ NORMAL

FILE-PROCESSING MACRO INSTRUCTIONS

File was created, not opened. This status is
returned when the CIF option is used and the file
must be created. If the file is opened,
RMS$ NORMAL is returned.

Operation successful

RMS$ SUPERSEDE Created file supersedes an existing file

Failure:

RMS$ ACT

RMS$ CRE

RMS$ DNF

RMS$ DNR

RMS$ EXP

RMS$ FEX

RMS$ FLK

RMS$ PRV

RMS$ WLK

$DISPLAY

File activity precludes operation

ACP file create error

Directory not found

Device not ready

Expiration date not yet reached

File already exists

File locked; not available

File protection violation

Device write-locked

9.3 OBTAINING ATTRIBUTES OF A FILE

The $DISPLAY macro instruction invokes the Display service, which
retrieves file attribute information about a file and places this
information in fields in the XABs chained to the FAB. VAX-11 RMS
determines the type of file attribute information needed by the type
of XABs present. Prior to invoking the Display service, the file must
already have been opened for access by a Create or Op~n operation.

Format

OPERATION PARAMETERS

label: $DISPLAY F AB=fab-address

ERR=entry

SUC=entry

9-8

FILE-PROCESSING MACRO INSTRUCTIONS

label

A symbolic address for the $DISPLAY macro instruction; optional.

FAB=fab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 9-4 lists the FAB fields that VAX-11 RMS uses as input and
output for the Display service.

Field
Usage Name

Input IFI

XAB

Output STS

STY

Table 9-4
Display FAB Fields

Description

- --- - ·-·- -··

Internal file identifier

Extended attribute block address

--

Completion status code (also returned in Register 0)
. ·---------1

Status value; contains the address of the XAB that caused error.

VAX-11 RMS places the attribute values in the corresponding fields of
the appropriate XAB.

Note that the Open service performs an implicit Display service (see
Section 9.6).

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the display service are listed below.

Success:

RMS$ NORMAL Operation successful

RMS$ OK NOP XAB not filled in when file opened for block I/O.

9-9

FILE-PROCESSING MACRO INSTRUCTIONS

Failure:

RMS$ ACT File activity precludes operation

RMS$ DNR Device not ready

RMS$ PRV File protection violation

$ERASE

9.4 DELETING A FILE

The $ERASE macro instruction invokes the Erase service, which deletes
a VAX-11 RMS disk file and removes the file's directory entry as
specified in the path to the file {see Section 8.2). You must use the
$REMOVE macro instruction to delete additional directory entries, if
any {see Chapter 13).

Deleting a file releases the file's allocated space for use by another
file; the deletion does not physically remove the data (as does
overwriting or zeroing). Only files that are closed can be deleted;
an open file cannot be deleted with the erase service, but may be
deleted by the $CLOSE macro instruction by setting the DLT bit in the
file-processing options field of the FAB. Furthermore, you cannot
delete files from magnetic tape volumes.

Format

OPERATION PARAMETERS

label: $ERASE F AB=fab-address

ERR=entry

SUC=entry

label

A symbolic address for the $ERASE macro instruction; optional.

FAB=f ab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

9-10

FILE-PROCESSING MACRO INSTRUCTIONS

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 9-5 lists the FAB fields that VAX-11 RMS uses as input and
output for the Erase service.

Field
Usage Name

Input DNA

DNS

FNA

FNS

FOP

IFI

NAM

Output STS

STV

Table 9-5
Erase FAB Fields

Description

··le=··~

Default file specification string address

Default file specification string size

File specification string address

File specification string size

File-processing options (NAM bit only)

Internal file identifier (must be 0)

Name block address
0

Completion status code (also returned in Register 0)

Status value

·-

··--

Table 9-6 lists the NAM block fields that VAX-11 RMS uses as input
and output for the erase service if the name block address field is
specified in the FAB.

9-11

FILE-PROCESSING MACRO INSTRUCTIONS

Table 9-6
Erase NAM Block Fields

Field
Usage Name Description

- -

Input DID Directo1y identification (input only if NAM bit is set in the file
processing options (FOP) field of FAB)

~------ 1---

DVI Device identification (input only if NAM bit is set in the FOP
field of the FAB)

ESA Expanded string area address

ESS Expanded string area size

FID File identification (input only if NAM bit is set in the FOP
field of the F AB)

- f--·

RLF Related file NAM block address (if nonzero, RSA and RSL are
from related file NAM block)

--

RSA Resultant string area address

RSS Resultant string area size

~:===::::·-.::::=:::-i --+----

Output DID Directory identification

DVI Device identification

ESL Expanded string length (if, on input, both the ESA and ESS are
nonzero, and if the NAM bit of the FOP field of the F AB is
clear or DID is 0, the expanded file specification string is
copied to the buffer specified by the input ESA field)

FNB File name status bits
-··---·-------

RSL Resultant string length (if RSA and RSS are both nonzero on
input, the resultant file specification is copied to the buffer
specified by RSA)

, ___

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completipn status codes for conditions
that can cause a failure for the Erase service are listed below.

Success:

RMS$ NORMAL Operation successful

Failure:

RMS$ DNF Directory not found

RMS$ DNR Device not ready

RMS$ MKD ACP could not mark file for deletion

RMS$ PRV File protection violation

RMS$ WLK Device write-locked

9-12

FILE-PROCESSING MACRO INSTRUCTIONS

$EXTEND

9.5 EXTENDING A FILE'S ALLOCATED SPACE

The $EXTEND macro instruction invokes the Extend service, which
increases the amount of space allocated to a VAX-11 RMS disk file.
You can only extend open files; otherwise, an error occurs.

The allocation quantity field of the FAB (or the allocation XAB, if
used) must contain the number of blocks that VAX-11 RMS is to add to
the file. Furthermore, you can indicate other attributes regarding
the manner and location for allocation. For example, you can indicate
that the additional blocks must be allocated contiguously. If you do,
however, and not enough contiguous space is available, the operation
will fail. (This extension does not have to occur contiguous to the
initial file space.)

If an allocation control XAB is present, its allocation quantity (ALQ}
and allocation options (AOP -- the CBT and CTG bits only) fields are
used instead of the corresponding fields in the FAB. The allocation
quantity field of the XAB is set to the actual extension size.

Format

label

OPERATION PARAMETERS

label: $EXTEND FAB=fab-address

ERR=entry

SUC=cntry

A user-defined symbolic
instruction; optional.

address for the $EXTEND macro

Fab=f ab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 9-7 lists the FAB fields that VAX-11 RMS uses as input and
output for the Extend service.

9-13

Usage

Input

FILE-PROCESSING MACRO INSTRUCTIONS

Field
Name

-·- -

ALQ

FOP

IFI

XAB

Table 9-7
Extend FAB Fields

-

Description

Allocation quantity. This field is ignored if an allocation XAB
is present.

1----------· ·······------------
File-processing options. Checked to see if the CTG or CBT bit
is set to indicate contiguous allocation; ignored if allocation XAB
is present.

---·-----------~----

Internal file identifier

Extended attribute block address. Only the allocation type of
XAB will be processed.

- .• - "''"'= !====---= :'==· ~. ..

Output ALQ Allocation quantity (contains the actual extension allocation
value if no allocation XAB is present)

STS Completion status code (also returned in Register 0)
-~--- ----~-----------------------

STY Status value (contains the total of blocks allocated, totaled
across all allocation XABs)

-------~----- ···-- L.... ~----"-~

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the extend service are listed below.

Success:

RMS$ NORMAL

Failure:

RMS$ ACT

RMS$ DNR

RMS$ EXT

RMS$ WLK

$OPEN

Operation successful

File activity precludes operation

Device not ready

ACP file extend error

Device write-locked

9.6 OPENING AN EXISTING FILE

The $OPEN macro instruction invokes the open service, which makes an
existing file available for processing by your program. This macro
instruction implements the type of access desired, and sets the degree
to which the file can be shared. You must open a file before you
perform any record operations. If any XABs are chained to the FAB,
VAX-11 RMS places the attribute values in the fields of the
appropriate XAB. If you specify a NAM block in the FAB, the contents
of the device, directory, and file identification fields can be used

9-14

FILE-PROCESSING MACRO INSTRUCTIONS

to perform an open by NAM block (see Section 8.2.3). In addition, the
various fields of this NAM block are filled in with auxiliary file
specification information.

Format

OPERATION PARAMETERS

label: $OPEN F AB=fab-address

ERR=entry

SUC=cntry

label

A symbolic address for the $OPEN macro instruction; optional.

FAB=f ab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 9-8 lists the FAB fields used as input and output for the open
service.

9-15

Usage

Input

Output

FILE-PROCESSING MACRO INSTRUCTIONS

Field
Name

DEQ

Table 9-8
Open FAB Fields

. ---

Description

Default file extension quantity. If a nonzero value is present in
this field, it applies to this open of the file only.

--

t-------- -·--·--··-·-·- -----··----- -·-------------------1
DNA Default file specification string address

!------·-··--··---·--- ··------- ------··----·------------·---------·----- -------·-·-··-··- ---·------
DNS Default file specification string size

i---------t-------------·---·--··------------------------1
FAC File access

-···---------------------!
FNA File specification string address

L-----------4-·-·-···-«--•···· --·-·-----------------·-·-······------

FNS File specification string size
I-----~·--·-·· .. --·-·1--- ----- -- ··----------- . ·------------·-------------- -

FOP File-processing options (see Section 4.2.14)
I------·-------+---~--··--------·---··------------~

FSZ Fixed control area size; unit record devices only.
!------····--·------------ --- ---------------- -------······--··----·----------· --·---·----------- -------------------!

IFI Internal file identifier (must be 0)
1-------------- ------·--------·-----···-----------·---···-·---·--··--··

NAM Name block address
1-----------,..·--- ·--------·---··-------------------------------- -------···---------------·--- -· --·----·------

RAT Record attributes; unit record devices only

RFM Record format; unit record devices only
.__ _______ .. ------- - -------------- -·-----·--------- --------------· ------ --------·-·--------·- ------------

RTV Retrieval window size
L------- ---+------------------------- ------- -------·----------------!

SHR File sharing
1---------+---------------- ··-·--~ ---·----------- -··---~-~-------1

XAB Extended attribute block address

ALQ Allocation quantity; contains the highest numbered block
allocated to the file.

BKS Bucket size; not used for sequential files
1---------------------+------------- ---------------------------------1

BLS Block size; for sequential files only

DEQ Default file extension quantity
1----------+---- ------·---------~

DEV Device characteristics
!--------------·------ --------····---···-·---. ------------------- -------- --------------~------!

FOP File-processing options; the bits CTG, CBT, RCK, and WCK are
set or cleared individually according to the file attributes

1--------·- ____ __, --------- ---------··------------

FSZ Fixed control area size; only applies to variable with fixed length
control records

------ ------· ------------·-·--·------------------------
IFI Internal file identifier

MRN Maximum record number; for relative files only

MRS Maximum record size
1---------+----·--------- ---------------------------------------1

ORG File organization
1----------+------ ---------·---- ------------------------!

RAT Record attributes
1------------···- ------------ -------·------------------·------- -----------------------!

RFM Record format

soc Spooling device characteristics
~--------1--------------------- ---- ----·---·----------------<

STS Completion status code (also returned in Register 0)
t----·--·---·------ --· -------------------------- ------------·- ---------

STV Status value (contains the 1/0 channel number if the operation
is successful)

-· --·---- ---·-- ·--·--- ------ ------' ------·---------- ------------·

9-16

FILE-PROCESSING MACRO INSTRUCTIONS

Table 9-9 lists the NAM block fields (see Chapter 7) that VAX-11 RMS
uses as input and output for the Open service, if the name block
address field is specified in the FAB.

Table 9-9
Open NAM Block Fields

Field
Usage Name Description

Input DID Directory identification (input only if NAM bit is set in the file
processing options (FOP) field of FAB)

DVI Device identification (input only if NAM bit is set in the FOP
field of the F AB)

ESA Expanded string area address
~

ESS Expanded string area size

FID File identification (input only if NAM bit set in FOP field of
FAB)

RLF Related file NAM block address (if non-zero, RSA and RSL are
from related file NAM block)

RSA Resultant string area address

RSS Resultant string area size
·~·-·-

Output DID Directory identification __ " ___ -------·--·--

DVI Device identification

ESL Expanded string length (if, on input, both the ESA and ESS are
nonzero, and if NAM bit of the FOP field of the F AB is
clear or DID and FID are 0, the expanded file specification
string is copied to the buffer specified by ESA)

-~------

FID File identification

FNB File name status bi ts

RSL Resultant string length (if RSA and RSS are both nonzero
and if NAM bit is clear or FID is 0, the resultant file speci-
fication is copied to the buffer specified by RSA)

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the open service are listed below.

Success:

RMS$ KFF Known file found

RMS$ NORMAL Operation successful

RMS$ OK NOP XAB not filled in when file opened for block I/O

9-17

Failure:

RMS$ ACC

RMS$ ACT

RMS$ DNF

RMS$ DNR

RMS$ FLK

RMS$ FNF

RMS$ PRV

RMS$ WLK

FILE-PROCESSING MACRO INSTRUCTIONS

ACP file access error

File activity precludes operation

Directory not found

Device not ready

File locked; not available

No such file exists

File protection violation

Device write-locked

9-18

CHAPTER 10

RECORD OPERATION PERFORMANCE

Some of the key concepts that you must understand in relation to
record operations are:

• Record access

• Current record context

• Record streams

• Synchronous and asynchronous operations

• Record locking

Sections 10.1 through 10.5 discuss these concepts; Chapter 11
describes each record-processing macro instruction in detail.

10.1 RECORD ACCESS

To process a record, you must identify the record and specify the
record access mode you are going to use. Once the record is
identified, you have two different record transfer modes available to
manipulate it. The following sections describe how you specify the
record access mode and the transfer mode.

10.1.1 Specifying the Record Access Mode

The value that you set in the record access mode field of the RAB
tells VAX-11 RMS what type of record access to use for the particular
record operation. During program execution, you can switch the record
access mode by changing the contents of this field. This is known as
dynamic access.

VAX-11 RMS lets you set any one of the following three values:

1. SEQ -~ this value indicates the sequential record access
mode. When you use this record access mode, the access will
be a function of the Next Record (see Section 10.2), and no
additional record specification is necessary. This record
access mode is valid for any file organization.

10-1

RECORD OPERATION PERFORMANCE

2. KEY -- this value indicates random access by key. This
record access mode is used with relative files and sequential
files on disk with fixed-length records to denote random
access by relative record number and with indexed files to
denote random access by key value. The key value for the
record to be found or retrieved is placed in the key buffer,
which is described by the values set in the key buffer
address and key size fields of the RAB. When accessing an
indexed file, the particular key of reference (index to
search on) must be specified in the KRF field of the RAB.

3. RFA -- this value indicates that access is random by the
record's file address (RFA). This record access mode is
limited to retrieval operations for disk files.

To use this access mode, you must save the
RMS returned from a previous operation.
initiate a new operation, you specify access
the record access mode field of the RAB, and
The RFA does not change when you close a
reopen it.

RFA that VAX-11
Then, before you
by RFA mode in
restore the RFA.
file and later

The format of the RFA is known internally to VAX-11 RMS.

VAX-11 RMS examines the contents of the record access mode field of
the RAB during the execution of a $GET, $FIND, or $PUT macro
instruction. You need not specify a record access mode for operations
with a $UPDATE, $DELETE, or $TRUNCATE macro instruction. However, you
cannot request these operations until you have first accessed the
target record with a $GET or $FIND macro instruction.

10.1.2 Specifying the Record Transfer Mode

The record-processing option field of the RAB lets you specify the
record transfer mode. There are two record transfer modes -- locate
and move -- which tell VAX-11 RMS how to access the target record for
the get service ($GET macro instruction) once the record is in memory.
You can switch the record transfer mode while your program is
executing by changing the contents of the record-processing option
field.

In the record-processing option field you indicate locate mode by
setting the LOC bit. If you do not set this bit, VAX-11 RMS uses move
mode, by default.

In locate mode, your program accesses records directly in an I/O
buffer. Therefore, VAX-11 RMS normally does not need to move records
between I/O buffers and a user program buffer. VAX-11 RMS does not
support locate mode for operations involving the $PUT or $UPDATE macro
instructions. However, the $GET macro instruction supports locate
mode operations on files of all organizations. Note that locate mode,
even if specified, may not actually be used due to the occurrence of
any of the following:

1. Records crossing block boundaries

2. The file access field of the FAB being set to UPD

3. Multiple record streams

4. Indirect accessor of process - permanent files (see Section
8.5)

10-2

RECORD OPERATION PERFORMANCE

In move mode, VAX-11 RMS transfers individual records between I/O
buffers and your program buffer. For the $GET macro instruction,
VAX-11 RMS reads a block (for sequential files) or a bucket (for
relative and indexed files) into an I/O buffer. VAX-11 RMS then
selects the desired record from the buffer and moves it to a
program-specified location.

When writing records to the file ($PUT and $UPDATE), your program
first builds a record in any desired program location, stores its
address ahd size in the RAB, and calls the appropriate VAX-11 RMS
routine as specified by the particular macro instruction. VAX-11 RMS
moves the record from its specified location into an I/O buffer.
Depending upon the file organization and options, the buffer may be
written immediately or only when it is filled.

10.2 CURRENT RECORD CONTEXT

For each RAB connected to a file access block (FAB), VAX-11 RMS
maintains current context information, identifying where each RAB is
positioned at any point in time. VAX-11 RMS modifies the current
context as your program performs record operations.

At any point in time, the current context is represented by, at most,
two records:

1. The Current Record

2. The Next Record

The context of these two records is internal to VAX-11 RMS; you have
no direct contact with them. However, an explanation of their purpose
and importance can aid in your understanding of how ~AX-11 RMS works.

10.2.1 Current Record

The Current Record represents the target record for $UPDATE, $DELETE,
or $TRUNCATE macro instructions. The Current Record also facilitates
sequential processing on disk devices for a stream. VAX-11 RMS
rejects any update, delete, or truncate request, if there is no
current record defined. In addition, an operation with a $GET macro
instruction using sequential record access mode and immediately
preceded by a $FIND macro instruction operates on the record specified
by the Current Record. If the find service did not lock the record
(for relative and indexed file organizations) and the current record
has been deleted, the get service will access the next existing
record.

When a RAB is first connected to a FAB, the Current Record is
undefined. Furthermore, any unsuccessful record operation, or
successful execution of a macro instruction other than $GET or $FIND,
causes the Current Record to be undefined.

10-3

RECORD OPERATION PERFORMANCE

The Current Record is set to the RFA of the record upon which an
operation is performed with a $GET or $FIND macro instruction. VAX-11
RMS also places this address in the record's file address field of the
RAB. This means that:

1. After initialization, the Current Record always refers to the
record's file address of the most recent successful operation
with a SGET or $FIND macro instruction (unless failure occurs
or a macro instruction other than $GET or $FIND executes).

2. The record's file address field of the RAB, unless you modify
it, always contains the address of the target record (if the
operation fails, the record's file address is undefined).

Table 10-1 summarizes the effect that each successful record operation
has on the context of the Current Record.

10.2.2 Next Record

VAX-11 RMS uses the Next Record for operations involving sequential
record access mode. When the record access mode field of the RAB
indicates sequential processing, the Next Record represents the target
record for the next operation involving:

• The $FIND macro instruction

• The $PUT macro instruction

• The $GET macro instruction (if the immediately preceding
operation was not a $FIND macro instruction); if the next
record cell in a relative file organization does not contain a
record, the target record is the next existing record.

This "look-ahead" ability significantly decreases access time for
sequential processing. VAX-11 RMS uses its internal knowledge of file
organization and structures to determine the Next Record as follows:

• Operations with the $CONNECT macro instruction initialize the
Next Record to:

The first record or cell in a file of sequential or
relative organization, respectively

The first record in the collating sequence of the
specified key of reference in an indexed file.

The end of a sequential file on disk if the record
processing options field of the RAB has the EOF option
bit set.

The end of a write-accessed magnetic tape file unless the
file processing options field of the FAB has the NEF bit
set.

• Operations with the $GET macro instruction in any record
access mode and the $FIND macro instruction in sequential
record access mode cause the Next Record to indicate the next
record or cell in the file.

10-4

RECORD OPERATION PERFORMANCE

• Operations with a $TRUNCATE macro instruction cause the Next
Record to indicate the end of file. Therefore, you need only
use $PUT macro instructions after truncation to extend the
file. You can truncate only sequential files.

• Operations with the $FIND or $PUT macro instructions in random
access mode have no effect on the Next Record.

• Operations with the $PUT macro instruction in sequential
access mode initialize the Next Record to:

The end of file in a sequential file.

The next record or cell in a relative file.

• Operations with the
access mode in an
undefined.

$PUT macro instruction in sequential
indexed file cause the Next Record to be

• Operations with the $DELETE, $UPDATE, $FREE, or $RELEASE macro
instructions in any record access mode have no effect on the
Next Record.

• Operations with the $REWIND macro instruction in any record
access mode cause the Next Record to indicate the first record
or cell in the file.

• Any unsuccessful record operation has no effect on the Next
Record.

Table 10-1 summarizes the effect that each successful record operation
has on the Next Record.

10.3 RECORD STREAMS

Before you can process the records in a file, you must first establish
a record stream to that file. A record stream is the logical
association of a RAB with a FAB. Once you have established this
association, you can issue requests for operations on the records in
the file that the FAB represents.

For all but the sequential file organization, there can be any number
of RABs associated with a single FAB, and each RAB represents an
independent record stream. Sequential files with 512-byte
fixed-length records can also have multiple streams. If you establish
a single record stream, your program uses the stream to issue a
sequence of record operations, which are executed serially.
Therefore, you can process only one record at a time. However, when
you establish multiple record streams for a file, you can process a
record from each stream in parallel. Therefore, multiple record
streams provide concurrently active sequences of record operations to
the same file.

After you open a file by issuing a $OPEN (or $CREATE) macro
instruction, you establish the record stream by placing the address of
the FAB in the file access block field of the appropriate RAB or RABs.
Then, you issue a $CONNECT macro instruction. Once you have completed
the desired sequence of operations, you terminate the association by
issuing a $DISCONNECT macro instruction.

Chapter 11 describes the $CONNECT and $DISCONNECT macro instructions.

10-5

Record Operation

RECORD OPERATION PERFORMANCE

Table 10-1
Record Access Stream Context

·-.--·------~-----.----·----·---..-------------

Record Access
Mode

Current
Record

Next
Record

!===================-=·-±I--:=::======:::=:::: .. -==:::t::======== ====!===== ==========::::;;:;j
Connect does not apply none first record

t------------~------------.. ----1-·------· ···---+---------------!
Connect
with EOF bit
set in record
processing options
field

Get
last operation
not a find

does not apply none end of file

sequential new

(Does not apply
to indexed files)

new Current
Record+l

1-------------·------·-··I--·-------~ ~--+-------··- ______________ ___,

Get
last operation
was a find

Get

sequential

random

unchanged Current Record+ l

•"+-·---·--··-- ----· --·-·· ·-·-··---+-----·-·- --··----.. -·----·--
new new Current

Record+l
1--------------+--·--.. -----·--···-------- _,, _ ___, .. _._ .. _,, _______ , _____ -+---·---- -----1

Put sequen tial none 1. sequential file-
end of file

2. relative file

nex t record
position

3. indexed file-

undefined
1------------------1------···-····-··· - .. --~----------- -----+--------------

Put random none unchanged
-----·---·--··-"-··- ~--· --------··" -----+------------------------1

Find sequen ti al new

Find random new

new Current
Record+l

unchanged
--------···--"-""''"""'"""' -···+--· ... ------·---··--·. ----·-·- '"""""--t----------·---~-------------1

Update does not apply none unchanged

Delete unchanged

Truncate end of file
·----!------· ----------1

Rewind first record

Free unchanged

Release unchanged

NOTES:

1. Except for the truncate operation, VAX- I I RMS establishes the Current Record before

establishing the identity of the Next Record.

2. The notation"+!" indicates the next sequential record as determined by the file organization.
For indexed files, the current key of reference is part of this determination.

3. The connect operation on an indexed file establishes the Next Record to be the first record in
the index represented by the RAB key of reference (KRF) field.

4. The connect operation leaves the Next Record as the end of file for a magnetic tape file
opened for put operations (unless the NEF bit is set).

10-6

RECORD OPERATION PERFORMANCE

10.4 SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS

Within each record stream, VAX-11 RMS lets you perform operations
either synchronously or asynchronously. In synchronous operations,
VAX-11 RMS returns control to your program only after the record
operation request is satisfied.

In asynchronous operations, VAX-11 RMS may return control to your
program before the operation is satisfied. In this way, your program
can use the time required to transfer data between the file and memory
to perform other computations. Note that in asynchronous operations,
the operation may complete before control is returned to your program.
This is due to several factors. For example, the required record may
already reside in an I/O buffer, or the operating system may schedule
another program, thus possibly allowing a necessary operation to
complete before the original program is rescheduled.

Generally, VAX-11 RMS executes in either executive mode or executive
AST mode. When a VAX-11 RMS operation is initiated, processing begins
in executive mode. If device I/O is necessary to process the request,
the QIO system service is called. VAX-11 RMS specifies an AST to
signal completion. At this point, VAX-11 RMS will exit from executive
mode. If the operation is being performed asynchronously, control is
returned to the caller. If the operation is synchronous, VAX-11 RMS
waits for an event flag in the access mode of the caller. When the
I/O is complete, VAX-11 RMS will continue processing in executive AST
mode. Thus user-mode ASTs can be serviced while a synchronous VAX-11
RMS operation called from user mode is awaiting I/O completion.
However, processing in user mode during an asynchronous VAX-11 RMS
operation will be interrupted by VAX-11 RMS processing in executive
AST mode when I/O completes.

VAX-11 RMS should not be called from kernel mode. Nor should it be
called from executive mode when executive-mode ASTs are disabled.

The following sections describe how to declare synchronous and
asynchronous operations.

10.4.1 Synchronous Operations

To declare a synchronous operation, you must clear the ASY bit in the
record-proc~ssing options field of the RAB. Since by default this bit
is off at assembly time, you normally do not have to set it off unless
you had set it on previously.

Normally, you would not use success and error routines with
synchronous operations. Instead, you would test the completion status
code for an error and change the program's flow accordingly. However,
if you use these routines, they will be executed as asynchronous
system traps (ASTs) before the inline return to your program (unless
ASTs are disabled).

As explained in Section 10.4, user-mode AST routines may be executed
before the completion of a synchronous record operation. If an AST
routine attempts to perform operations on a file which is being called
from a non-AST level, it must be prepared to handle stream-activity
errors (RMS$_RSA) as discussed in the next section.

10-7

RECORD OPERATION PERFORMANCE

10.4.2 Asynch~onous Operations

To declare an asynchronous record operation, you must set the ASY bit
in the record-processing options field of the RAB. You can switch
between synchronous and asynchronous operations during processing of a
record stream by setting or clearing the ASY bit on a per-operation
basis.

You can specify completion routines to be executed as ASTs if success
or error conditions occur. Within such routines, you can issue
additional operations, but they too should be asynchronous.
Otherwise, all other currently active asynchronous requests in your
program cannot have their completion routines executed until the
synchronous operation completes.

If an asynchronous operation is not yet complete at the time of return
from a call to a VAX-11 RMS service, the completion status field of
the RAB will be O, and a success status code of RMS$ PENDING will be
returned in Register o. This status code indicates that the operation
was initiated but is not yet complete. You must never modify the
contents of a RAB when an operation is in progress.

If you issue a second record operation request for the same stream
before a prior request is complete, you will receive an error status
code of RMS$ RSA, indicating that the record stream is still active.
This can aTso occur when an AST level routine attempts to use an
active record stream; the original I/O request may be synchronous or
asynchronous. In either case it is the caller's responsibility to
recognize the possibility and prevent the problem by issuing a $WAIT
macro instruction (see Chapter 11).

Note that the connect operation may be performed asynchronously. If
the ASY option is set at assembly time, a $WAIT macro instruction
should follow the $CONNECT in order to synchronize with the completion
of the operation. Another technique would be to perform the connect
operation synchronously and set the ASY option only at run time, after
the connect operation.

Upon completion of the operation, your program receives control at the
point following the $WAIT macro instruction.

10.5 FILE SHARING

VAX-11 RMS file sharing allows multiple access streams to a single
file which enables the user to concurrently read, write and modify
records within the file, in a controlled manner. Independent record
access streams are associated with a single file in one or both of the
following ways:

1. Multiple record access blocks (RABs) are associated with a
single file access block (FAB), using the connect operation.
This is known as multi-streaming.

2. Multiple file access blocks (FABs) specify that the same file
will be associated with that file when opened. One or more
record access blocks (RAB's) may then be connected.

The sharing field (SHR) in the FAB is used to declare whether multiple
streams and/or multiple openers of the same file will be allowed.
Enabling the multi-stream option (MSE) in the SHR field will allow
more than one RAB to be connected to the FAB.

10-8

RECORD OPERATION PERFORMANCE

When multiple streams are connected, the buffers allocated for each
stream become part of a buffer cache for the entire file. A record
operation on one stream may use cached buffers from a previous record
operation that referenced the same buckets.

In either form of sharing, VAX-11 RMS controls the reading and writing
of I/O buffers to ensure file and record structure integrity. All
relative and indexed files, and sequential files with 512-byte
fixed-length records, can be shared in this manner. The RMSSHARE
utility is used to initialize this shared file database. This utility
is run as part of the system start-up procedure. If the size of the
shared file database is inadequate for your system, sharing-pagecount
exceeded (RMS$ SPE) or dynamic memory errors (RMS$ DME) may be
encountered while processing shared files. See the VAX/VMS Systems
Manager's Guide for documentation on using RMSSHARE to monitor and
modify the size of the shared file database.

All sequential files may be write-shared with user provided
interlocks. To use this feature, you must set the UPI bit in the SHR
field of the FAB. When the UPI option is used, VAX-11 RMS does not
attempt to control the reading and writing of I/O buffers across
processes; nor does it maintain end-of-file information. The $FLUSH
macro instruction is used to force the writing of modified I/O buffers
and is also used to rewrite the record attributes (including end of
file) in the file headers. Processes that open the file after that
point will obtain the new end-of-file information. Note also that
record attributes are rewritten whenever a file is closed. The last
write accessor to close the file must also be the last accessor to
have extended the file. If not, end-of-file information will be
written by another write accessor. Read accessors of a shared
sequential file can update their internal end-of-file context by
closing and reopening the file.

The UPI form of sharing is applicable only to sequential files. In
all other cases, VAX-11 RMS transparently controls the reading and
writing of buffers to the file, and always maintains current
end-of-file information. The user need not be concerned with all of
the issues mentioned above. The record locking facility, described in
the following sections, controls access to individual records within
the file. Automatic record locking is enabled whenever the file is
shared (except for UPI sharing on sequential files) and requires only
that the user be prepared to handle record-lock errors (RMS$ RLK) on
Find or Get operations. -

10.6 RECORD LOCKING

VAX-11 RMS provides a record-locking capability for relative files,
indexed files, and sequential files with 512-byte fixed-length
records. This capability affords control over operations when more
than one stream or process is simultaneously accessing the file.
Record locking makes certain that when a program is adding, deleting,
or modifying a record on a given stream, another stream or process
cannot access the same record.

Record locking occurs on a file accessed for some form of writing (FAC
is set to either PUT, UPD, or DEL) only if the file-sharing field
(SHR) of the FAB is set to some form of writing or the MSE fit is set.

There are two types of record locking: automatic and manual. VAX-11
RMS handles automatic record locking transparently. You use it when
you are dealing with a lock on a single record at a time. Manual
record locking requires additional effort on your part. You use it
when dealing with locks on multiple records at one time.

10-9

RECORD OPERATION PERFORMANCE

A record can be in any of three states: unlocked, automatically
locked, or manually locked. When a record is initially locked, it is
in either the manually or automatically locked state. It will remain
in that state until the lock is released. That is, it cannot move
directly from the automatically to manually locked state, or vice
versa. Therefore, you make an initial decision based on your needs to
use automatic or manual locking for a given record, and continue to
use the same type of locking with that record until the lock is
released.

The following sections describe the two types of record locking.

10.6.1 Automatic Record Locking

For automatic record locking, the lock occurs on every execution of a
$FIND or $GET macro instruction (unless the NLK bit is set in the
record-processing options field). The lock is held until the next
operation on the stream; that is, the lock is released when the Next
Record is accessed, the Current Record is updated or deleted, the
record stream is disconnected, the file is closed, or an operation
causing an error occurs. Therefore, the record is freed when you
issue any of the following macro instructions:

• $FIND

• $GET

• $PUT

• $UPDATE

• $DELETE

• $REWIND

• $DISCONNECT

• $CLOSE

• $FREE

• $RELEASE

The $FREE and $RELEASE macro instructi-0ns let you explicitly unlock
the record.

If you place a record in an empty cell in a relative file with a $PUT
macro instruction, the cell is, in effect, locked by the put service.
It is unlocked when the service completes.

One exception to the automatic unlocking exists: a record remains
automatically locked on a sequential GET service following a find
service that caused the record to be locked. The automatic
record-locking scheme normally does exactly what is required without
any interruption. For example, to update an existing record, the
following sequence could be used:

$GET RAB=A RAB

(code to modify the record buffer)

$UPDATE RAB=A RAB

10-10

RECORD OPERATION .PERFORMANCE

The $GET macro instruction reads the record into a buffer in order to
examine and modify the record. It also establishes the current record
and locks it in preparation for the $UPDATE macro instruction. The
program then operates on the record as required. When the record is
finally updated, the record lock is released. During the time that
elapses between the Get and Update operations, other streams
attempting to access that same record will receive a record-lock error
(RMS$ RLK). This will prevent the original record from being accessed
and potentially modified, before the stream has finished operating on
it. When the record lock is released by the update operation, the
modified record will be accessible by other streams.

10.6.2 Manual Record Locking

For manual record locking, you have explicit control over the
unlocking of records. Thus, manual record locking lets you control
operations that must be done together.

Manual record locking occurs when the ULK bit is set in the
record-processing options field on the execution of a $GET, $FIND, or
$PUT macro instruction. (These three macro instructions will also
unlock any record that was locked with automatic record locking.) Once
the record is manually locked, it will remain in that state until
explicitly unlocked by either the free or release service, or until
the stream terminates (by a disconnect or close service). Other
operations on the record or stream, including operations that result
in errors, do not cause the record to be unlocked.

Manual control over the unlocking of records is useful when multiple
records must be modified as a single transaction. An example of this
would be a case in which two separate records are randomly accessed
and updated. The first record must not be accessed .by another stream
until modifications to the second record are complete. The program
attempts to update the first record, but at the same time retains the
lock on it. Thus, in the event of a failure to update the second
record, the original contents of the first record could be restored.
Manual unlocking is specified when accessing the first record. This
will prevent the record from being automatically unlocked after the
update operation. The lock is released by using the $FREE macro
instruction after successively updating the second record (the normal
case), or after restoring the original contents of the first record
(the error condition). The $FREE macro instruction releases all locks
for that stream, simultaneously. At this time, the updated records
will become accessible to other streams.

The $RELEASE macro instruction is used to selectively release manually
locked records. It unlocks the record, using its record file address
{RFA).

10-11

RECORD OPERATION PERFORMANCE

10.6.3 Controlling Record Locking

Three of the bits in the record-processing options field (ROP) of the
RAB control manual record locking and unlocking. As in the case of
the ULK bit, the following are input to $FIND, $GET, or $PUT (with the
ULK) macro instructions. They are:

1. NLK - do not lock record

2. RLK - lock record, but allow readers

3. NXR - lock non-existent record (not applicable to indexed
sequential files)

The NLK bit specifies that the record accessed with either a $GET or
$FIND macro instruction is not to be locked. Specifying only get
access (FAC field) for the file also implies that records are not to
be locked. In either case, if the target record is locked by another
stream, a record-locked error (RMS$ RLK) will be returned. The only
exception to this will be if the stream locking the record has allowed
readers (see RLK below). Records accessed for purposes other than
modifying (i.e., deleting or updating) should not be locked. This
will reduce the probability of other streams rece1v1ng record-lock
errors. Attempting to delete or update a record that was not locked
will fail. The NLK bit takes precedence over the ULK bit described
above.

Streams that are locking records for modification may allow
non-locking streams (as described above) to read locked records. The
RLK bit specifies that the record will be locked for possible
modifications. However, readers will be able to access it. When a
non-locking stream reads a record locked in this manner, an alternate
success code indicates that the target record was indeed locked, but
that readers are allowed by the locker (RMS$ OK RLK). Another stream
attempting to lock the record,' however~ will still receive a
record-locked error (RMS$_RLK).

The non-existent record lock (NXR) option applies only to relative
files, or to sequential files with 512-byte fixed-length records. It
is used to lock randomly accessed records that do not already exist in
the file at the time of access. This will prevent other streams from
putting a new record into that cell until the stream that locked it
either: puts a record there itself, or releases the record lock. For
example, suppose that a file contains records one through ten. A
program attempting to randomly access record fifteen would normally
receive either a record-not-found (RMS$ RNF) error if the file was a
relative file, or an end-of-file (RMS$ EOF) error if the file
containing the record was a sequential file~ If, however, the NXR bit
is specified, an alternative success code indicating successful access
of a non-existent record (RMS$ OK RNF) will be returned. Any other
stream also attempting to access or put a new record to record fifteen
will receive a record-locked error (RMS$ RLK). If the same stream
that locked the non-existent record then attempts to put a new record
there, an alternate success indicating that the record was already
locked (RMS$_OK_ALK) will be returned.

10-12

CHAPTER 11

RECORD-PROCESSING MACRO INSTRUCTIONS

VAX-11 RMS provides record-processing macro instructions that you can
use to perform operations on individual records within a file, as
opposed to operations performed on an entire file. These macro
instructions, therefore, deal with fields in the record access block
(RAB). At run time, the code of these macro instructions becomes
expanded. At this time, calls are made to corresponding VAX-11 RMS
services. See Chapter 5 for a description of the effect these fields
have on the record operation.

After you open a file for processing with a $OPEN or $CREATE macro
instruction, you can perform operations on the records in the file.

In most cases, you use a record-processinq macro instruction with
parameters indicating the symbolic address of the associated RAB and
the address of any optional error or success completion routine you
may have provided. You can also use the macro in~truction without
parameters, but you must then create an argument list in your program
to define the values for these addresses (see Section 8.1).

Table 3-2 summarizes all the run-time processing macro instructions.
This chapter deals only with the following macro instructions for
record processing:

• Record access and current record context

- $GET - $DELETE

- $PUT - $FIND

- $UPDATE

• Record streams

- $CONNECT - $DISCONNECT

• Synchronization with asynchronous operations

- $WAIT

• Miscellaneous operations

- $FLUSH - $RELEASE

- $FREE - $REWIND

- $NXTVOL - $TRUNCATE

11-1

RECORD-PROCESSING MACRO INSTRUCTIONS

Chapter 10 discusses some of the general concepts involved in
performing record operations. This chapter presents the details of
the particular macro instructions that perform record operations, in
alphabetical order.

$CONNECT

11.1 ESTABLISHING A RECORD STREAM

The $CONNECT macro instruction invokes the Connect service, which
establishes a record stream by associating and connecting a RAB with a
FAB. For sequential files, only one RAB can be connected to a FAB.
For relative or indexed files, any number of RABs can be connected to
a FAB, if the MSE bit was set in the file-sharing field (SHR) of the
FAB when the file was opened or created. Each RAB represents an
independent record stream.

When you issue a $CONNECT macro instruction, VAX-11 RMS allocates an
internal counterpart for the RAB. This counterpart consists of the
necessary internal controls needed to support the stream, such as
record pointers and request status information. All required I/O
buffers are also allocated at this time. $CONNECT also initializes
the next record pointer to the first record. In indexed files, the
key of reference establishes the index of the next record pointer.

You can issue a $CONNECT macro instruction only to files that are
already open.

Format

label

OPERATION

label: $CONNECT

PARAMETERS

RAB=rab-address
ERR=entry
SUC=entry

A symbolic address for the $CONNECT macro instruction; optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

11-2

completion

RECORD-PROCESSING MACRO INSTRUCTIONS

Table 11-1 lists the RAB fields that the connect service uses for
input and output.

Field
Usage Name

Input FAB

KRF

MBC

MBF

ROP

Output ISi

STS

STY

Table 11-1
Connect RAB Fields

Description

File access block address (used to access only the internal file
identifier field of the F AB)

Key of reference (used only with indexed files)

Multiblock count (sequential disk files only)

Multibuffer count

Record-processing options (ASY, BIO, EOF, RAH, and WBH only)

Internal stream identifier

Completion status code (also returned in Register 0)

Status value

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Connect service are listed below.

Success:

RMS$ NORMAL Operation successful

RMS$ PENDING Asynchronous operation not yet complete

Failure:

RMS$ ACT File activity precludes operation

$DELETE

11.2 DELETING A RECORD

invokes the Delete service, which
a relative or indexed file (you cannot
sequential files). A record delete

to the current record. Therefore,
the $DELETE macro instruction, you must
$FIND or $GET macro instruction.

The $DELETE macro instruction
removes an existing record from
use this macro instruction with
operation always applies
immediately before you issue
lock the record by issuing a

11-3

RECORD-PROCESSING MACRO INSTRUCTIONS

Format

OPERATION PARAMETERS

label: $DELETE RAB=rab-address
ERR=entry
SUC=entry

label

A symbolic address for the $DELETE macro instruction; optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 11-2 lists the RAB fields that the delete service uses for input
and output. The VAX-11 RMS completion status codes are listed in
Appendix A. However, to help anticipate any nonsevere conditions that
can arise, the error or warning completion status codes for conditions
that can cause a failure for the $DELETE macro instruction are listed
below.

Success:

RMS$ NORMAL

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ DNR

RMS$ RNL

RMS$ RSA

RMS$ WLK

Operation successful

Asynchronous operation not yet complete

File activity precludes operation

Device not ready

Warning; record not locked

Record stream still active
operations}

Device write-locked

11-4

(asynchronous

RECORD-PROCESSING MACRO INSTRUCTIONS

Table 11-2
Delete RAB Fields

,-------.....-------~---------------·----- - -·----·--

Usage Description

t============t===========+========-~--=- --··-- -----·-···-- --
Input Internal stream identifier

Record-processing options (ASY and FDL bits only)

Output Completion status code (also returned in Register 0)
!--------+-------------- ---- --··---·------

Status value

------------- -·- ---·-·--·--

$DISCONNECT

11.3 TERMINATING A RECORD STREAM

The $DISCONNECT macro instruction invokes the Disconnect
which breaks the connection between a RAB and a FAB,
terminating a record stream. All system resources, such
buffers and data structure space, are deallocated.

service,
thereby
as I/O

The close service (see Section 9.1) performs an implied disconnect for
all record streams connected to the FAB.

Format

label

OPERATION

label: $DISCONNECT

PARAMETERS

RAB=rab-address
ERR=cntry
SUC=cntry

A symbolic address for the $DISCONNECT macro
optional.

instruction;

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

11-5

RECORD-PROCESSING MACRO INSTRUCTIONS

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
·routine; optional.

completion

Table 11-3 lists the RAB fields that the Disconnect service uses
for input and output.

Usage

Input

Output

Field
Name

ISi

ROP

ISi

STS

Table 11-3
Disconnect RAB Fields

Description

Internal stream identifier

Record-processing options (ASY bit only)

Internal stream identifier (zeroed)

Completion status code (also returned in Register 0)
o--------+--·---·---- --·------·-·-....... - , .. ________ ___ . __ , __ ,, _____ ·-····---"-·--·--!

STV Status value

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Disconnect service are listed below.

Success:

RMS$ NORMAL

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ DNR

RMS$ RSA

RMS$ WLK

Operation successful

Asynchronous operation not yet complete

File activity precludes operation

Device not ready

Record stream still active
operations)

Device write-locked

11-6

(asynchronous

RECORD-PROCESSING MACRO INSTRUCTIONS

$FIND

11.4 LOCATING A RECORD

The $FIND macro instruction invokes the find service, which locates a
specified record in a file and returns its record's file address in
the RFA field of the RAB. This applies to all file organizations.

The main uses of the find service are:

• Skipping records when you are using the
access mode (by issuing successive
operations)

sequential record
requests fo~ find

• Locking, but not retrieving, a record, thereby establishing a
current record for an operation with a $UPDATE, $DELETE, or
$TRUNCATE macro instruction

• Establishing a random accessed starting point in a file for
subsequent sequential access

• Randomly accessing records for Delete
without modifying the next record
operations on the same stream. For
record contexts, see Chapter 10.

or Update operations,
context of sequential
a discussion of next

Format

label

OPERATION

label: $FIND

PARAMETERS

RAB=rab-address
ERR=entry
SUC=entry

A symbolic address for the $FIND macro instruction; optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 11-4 lists the RAB fields that the Find service uses for input
and output.

11-7

Usage

Input

RECORD-PROCESSING MACRO INSTRUCTIONS

Field
Name

ISi

KBF

KRF

Table 11-4
Find RAB Fields

Internal stream identifier

Description

Key buffer address (used only if RAC=KEY or if RAC=SEQ and
the LIM option is selected in the ROP)

Key of reference (used only with indexed files and if RAC=KEY)
1--------+------------··-----·----·· ·-----·--·---.. -

KSZ Key size (used only if RAC= KEY or if RAC=SEQ and the LIM
option is selected in the ROP)

1--------_._.-.. _-·----.. -·--·-·------·---------·---·------'
Prompt buffer address; applies to tenninals only

Prompt buffer size? applies to terminals only
------4------------ --·-------·---·------

Record access

Record's file address (used only if RAC= RF A)

Record-processing options (see sec.5.2.15)

Time-out period

Bucket code; set to the relative record number for relative files
accessed sequentially

Record's file address

Completion status code (also returned in Register 0)

Status value

The record address (RBF) and record size (RSZ)
after a find service.

fields are undefined

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Find service are listed below.

Success:

RMS$ CONTROLC Operation completed under Control c
(terminals only)

RMS$ CONTROLY Operation completed unoer Control y
(terminals only)

RMS$ NORMAL Operation successful

RMS$ OK ALK Record already locked

RMS$ OK DEL Deleted record accessed correctly

RMS$ OK LIM Record retrieved exceeds specified key value.

11-8

RMS$ OK RLK

RMS$ OK RNF

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ BES

RMS$ DEL

RMS$ DNR

RMS$ EOF

RMS PES

RMS$ RLK

RMS$ RNF

RMS$ RSA

RMS$ TMO

RMS$ WLK

RECORD-PROCESSING MACRO INSTRUCTIONS

Record locked but read anyway

Nonexistent record accessed correctly

Asynchronous operation not yet complete

File activity precludes operation

Warning;
only)

bad escape sequence (terminals

Record accessed by the RFA record access mode
has been deleted

Device not ready

End of file

Warning; partial escape sequence
only)

Record locked by another stream

Record not found

(terminals

Record stream still active
operations)

(asynchronous

Warning; time-out period expired
only)

Device write-locked

(terminals

$FLUSH

11.5 WRITING OUT MODIFIED I/O BUFFERS

The $FLUSH macro instruction invokes the Flush service, which writes
out all modified I/O buffers and file attributes associated with 'the
file. This ensures that all record activity up to the point at which
this macro instruction executes is actually reflected in the file.

The Flush service is not required at any time. Even in the case of a
$CLOSE macro instruction, the Flush service is not needed, because the
Close service implicitly performs the flush functions.

During asynchronous operations, you must wait for the completion of
any I/O activity before issuing a $FLUSH macro instruction. You may
also issue a $FLUSH macro instruction after having received
notification of completion through an asynchronous system trap (AST).

11-9

RECORD-PROCESSING MACRO INSTRUCTIONS

Format

OPERATION PARAMETERS

label: $FLUSH RAB=rab-address
ERR=entry
SUC=entry

label

A symbolic address for the $FLUSH macro instruction; optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 11-5 lists the RAB fields that the Flush service uses for input
and output.

.---------.----·--···-··-··--

Usage

Input

Output

Field
Name

ISi

ROP

STS

STV

'fable 11-5
Flush RAB Fields

Desc1iption

Internal stream identifier

Record-processing options (ASY bit only)

Completion status code (also returned in Register 0)

Status value
....___ ______ .___. _________ ~~--·----- ~-·--··"""""""""""""""""

The VAX-11 RMS completion status codes categorized as severe errors
are listed in Appendix A. However, to help you anticipate any
nonsevere conditions that can arise, the error or warning completion
status codes for conditions that can cause a failure for the Flush
service are listed below.

11-10

RECORD-PROCESSING MACRO INSTRUCTIONS

Success:

RMS$ NORMAL

RMS$ PENDING

Operation successful

Asynchronous operation not yet completed

Failure:

RMS$ ACT

RMS$ DNR

RMS$ RSA

File activity precludes operation

Device not ready

Record stream still active
operations)

(asynchronous

$FREE

11.6 UNLOCKING ALL RECORDS

The $FREE macro instruction invokes the free service, which unlocks
all records that were previously locked for the record stream (see
also the $RELEASE macro instruction, Section 11.10). If no records
are locked for the record stream, VAX-11 RMS returns a status code of
RMS$ RNL.

Section 10.5 describes the record-locking action.

Format

label

OPERATION PARAMETERS

label: $FREE RAB=rab-address

ERR=entry

SUC=entry

A user-defined symbolic address for the $FREE macro instruction;
optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

11-11

RECORD-PROCESSING MACRO INSTRUCTIONS

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 11-6 lists the RAB fields that the Free service uses for input
and output.

Usage

Input

Output

Field
Name

ISI

STS

Table 11-n
Free RAB Fields

Description

-·-- -- --·····-·--.. ·---c;:cc-===c::::=:=.·o:=====-===· = =--·= .. --=· =-=--·=--=="""

Internal stream identifier

Completion status code (also returned in Register 0)
!-------~-------- ... ________ . ___ , _____ .. ___ ... ----- -------------1

STY Status value
.___ ________ -·~- _ .. ____ . __ ___ - __ ···----.-.---------------- ----------------'

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, any error or warning completion status codes that can cause a
failure for the Free service are listed below.

Success:

RMS$ NORMAL

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ RNL

RMS$ RSA

$GET

11.7 RETRIEVING A RECORD

Operation successful

Asynchronous operation not yet complete

File activity precludes operation

Record not locked

Record stream still active
operations)

(asynchronous

The $GET macro instruction invokes the Get service, which causes a
record to be retrieved from a file. The Get service is performed by
using one of three possible record access modes, as specified by the
record access field (RAC). The three modes are sequential (default),
random by·key, and random by record's file address (RFA access).

The sequential access mode is relevant for all file organizations as
well as all devices. It is the only access mode allowed for non-disk
devices, such as terminals, mailboxes, and magnetic tape devices. In
this mode, records are retrieved from a given file in the same order
that they were written to that file. This is not the case, however,

11-12

RECORD-PROCESSING MACRO INSTRUCTIONS

for records retrieved from indexed sequential files. Sequential Get
operations on an indexed sequential file will return records by
ascending key value. The next record's key of reference for
sequential operations on indexed sequential files is established by
one of the following operations:

1. $ CONNECT

2. $ REWIND

3. $ FIND or $GET using random by key access

4. $ FIND or $GET using random by RFA access.

In the case of the $CONNECT, $REWIND, and $FIND or $GET (using random
by key access) operations, the key of reference is established by the
key of reference field (KRF). The $FIND or $GET (using random by RFA
access) operation, on the other hand, always sets the key of reference
to the primary key.

Random by key record access mode is used to retrieve records by key
value. For all relative files, and for sequential files with
fixed-length records, the key value is the relative record number.
For indexed sequential files, the key value is dependent on the data
type of the specified key of reference. The key value is used to
search the index of the specified key of reference by value in order
to locate the desired record. A random access by key also establishes
the next record for subsequent sequential retrieval. It may be used
in this way to establish a starting point for sequential retrieval of
records at other than the beginning of the file.

Random by record's file address (RFA) access is used to randomly
retrieve records from disk files. In order to determine a record's
RFA, the record must have been previously accessed. The RFA is output
from Find, Get, and Put operations.

If when opening the file, only sequential operations (the SQO option
in the FOP field of the FAB) are specified, then the random access of
records in that file is not permitted. A further discussion of the
different record access modes, as well other record-processing
concepts, is contained in Chapter 10 and in Appendix B.

VAX-11 RMS uses the standard terminator set when performing input
operations from terminal devices. The terminating character is
returned in the low order word of the status value field (STVO). See
the chapter on the terminal driver contained in the VAX/VMS I/O User's
Guide. In addition to terminating the read request, the <CTRL/Z>
character is treated as an end-of-file marker by VAX-11 RMS. If you
enter a response to a read request, VAX-11 RMS will return the
completion status end-of-file (RMS$ EOF). Data entered prior to the
<CTRL/Z> will be returned successfully. The next get request will
return a single end-of-file error (RMS$ EOF) without accepting any
further input from the device. A subsequent get request, however,
will resume the acceptance of input from the device.

VAX-11 RMS also supports the use of escape sequences from terminal
devices that are accessed locally and have escape sequence enabled.
Escape sequences for a terminal are enabled by the SET TERMINAL
command described in the VAX/VMS Command Language User's Guide.
Escape sequences are returned in the record buffer. The record size
(RSZ) is the offset (within the buffer (RBF)) to the beqinning of the
escape sequence. The high order word of the status value field (STV2)
will contain the length of the escape sequence. When a partial escape
sequence error (RMS$_PES) is returned, the remaining characters in the

11-13

RECORD-PROCESSING MACRO INSTRUCTIONS

escape sequence will be returned by the next read request from the
terminal.

Mailboxes may be used to synchronize activity across cooperating
processes. Normally, a Get service from a mailbox device will not be
completed until a record is present in the mailbox. When the Get
service is completed, the status value field (STV) will contain the
process identification (PID) of the process that put the record into
the· mailbox. However, if the time out (TMO) record option (ROP) is
specified with a value of zero in the time-out field, and if no
messages are present in the mailbox, then the Get operation will
return an end-of-file error (RMS$ EOF). This technique assures your
process of an immediate return, whether or not messages are present in
the mailbox.

The STV field contains additional status information for a number of
situations. When the completion status is a record-too-big warning
(RMS$ RTB), the STV contains the total record size. When the device
is record oriented (e.g., terminals and mailboxes), the second
longword of the I/O status block is returned in the STV field,
whenever the completion status (STS) is a success code. The alternate
field definitions of RAB$W STVO and RAB$W STV2 are provided to
reference the respective low-and high order words of the status value
field. The record size field (RSZ) always reports the amount of data
returned, regardless of the completion status (STS). The presence of
valid data on error conditions may then be detected by checking the
record size field.

The Get service always requires the presence of a user record area, as
specified by the user record area address (UBF) and user record area
size (USZ) fields in the RAB.

Format

label

OPERATION

label: $GET

PARAMETERS

RAB=rab-address
ERR=cntry
SUC=entry

A symbolic address for the $GET macro instruction; optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

11-14

RECORD-PROCESSING MACRO INSTRUCTIONS

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 11-7 lists the RAB fields that the Get service uses for input
and output.

Field
Usage Name

Input ISi

KBF

KRF

KSZ

PBF

PSZ

RAC

RFA

RHB

ROP

TMO

UBF

usz

Output BKT

RBF

RFA

RSZ

STS

STY

Table 11-7
Get RAB Fields

Internal stream identifier

Description

Key buffer address (used only if RAC= KEY or if RAC=SEQ and
the LIM option is selected in the ROP)

Key of reference (used only with indexed files and if RAC= KEY)

Key buffer size (used only if RAC=KEY or if RAC=SEQ and
the LIM option is selected in the ROP)

Prompt buffer address; applies to terminals only

Prompt buffer size; applies to terminals only

Record access mode

Record's address (used only if RAC= RF A)

Record header buffer; used for variable with fixed control records

Record-processing options (see Section 5.2.15}
.,.,

Time-out period; applies to terminals and mailboxes only

User record area address

User record area size

Bucket code; set to the relative record number for relative files
when the record access mode is sequential

Record address

Record's file address

Record size

Completion status code (also returned in Register 0)

Status value (contains a terminator character for terminal input or
the record length if the requested record is too large for the user
buffer area)

11-15

RECORD-PROCESSING MACRO INSTRUCTIONS

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Get servtce are listed below.

Success:

RMS$ CONTROLC

RMS$ CONTROLY

RMS$ NORMAL

RMS$ OK ALK

RMS$ OK DEL

RMS$ OK LIM

RMS$ OK RLK

RMS$ OK RNF

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ BES

RMS$ DEL

RMS$ DNR

RMS$ EOF

RMS$ PES

RMS$ RLK

RMS$ RNF

RMS$ RSA

RMS$ RTB

RMS$ TMO

RMS$ TNS

RMS$ WLK

Operation completed under Control C
(terminals only)

Operation completed under Control Y
(t e rm i n a 1 s only)

Operation successful

Record already locked

Deleted record accessed correctly

Retrieved record exceeds specified key value

Record locked but read anyway

Nonexistent record accessed correctly

Asynchronous operation not yet complete

File activity precludes operation

Warning; bad escape sequence (terminals
only)

Record accessed by the RFA record access mode
has been deleted

Device not ready

End of file

Warning; partial escape sequence (terminals
only)

Record locked by another stream

Record not found

Record stream still active
operations)

(asynchronous

Warning; record too large for user buffer

warning; time-out period expired

Warning;
only)

terminator not seen

Device write-locked

11-10

(terminals

RECORD-PROCESSING MACRO INSTRUCTIONS

$NXTVOL

11.8 CONTINUE PROCESSING ON NEXT VOLUME

The $NXTVOL macro instruction invokes the Next volume service. This
service applies only to files on magnetic tape volumes. Use this
macro instruction when you want to proceed to the next volume in the
set before the end of the current volume (EOV label) is reached on
input, or before the end of tape (EOT mark) is reached on output.
VAX-11 RMS will then position to the first file section on the next
volume. File sections occur when a file is written on more than one
volume, the portion of the file on each of the volumes constituting a
file section.

For input files, the following occurs:

• If the current volume is the last volume of the set, VAX-11
RMS reports end-of-file.

• If another file section exists, the next volume is mounted.

•

When necessary, the current volume is rewound and a request
to mount the next volume is issued to the operator.

The header label (HDRl) of the file
mounted volume is read. If it
sought, the operator is requested
volume.

section on the newly
is not the volume beinq
to mount the correct

For output files, the following occurs:

• The file section on the current volume is closed with the
appropriate end-of-volume labels, and the volume is rewound.

• The next volume is mounted.

• A file with the same file name
section number is opened
continues.

and
for

the next higher file
output, and processing

If operating asynchronously, you must wait for the completion of any
I/O activity on this volume before issuing a $NXTVOL macro
instruction.

The Next volume service performs a flush operation for write-accessed
volumes (see Section 11.5), thus writing the I/O buffers on the
current volume before creating the next file section. If this is an
input-only file, all records currently contained in the I/O buffers
are lost, and the next qet call will return the first record on the
next volume.

11-17

RECORD-PROCESSING MACRO INSTRUCTIONS

Format

label

OPERATION

label: $NXTVOL

PARAMETERS

RAB=rab-address
ERR=entry
SUC=entry

A symbolic address for the $NXTVOL instruction; optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 11-8 lists the RAB fields that the Next volume service uses for
input and output.

Table 11-8
Next Volume RAB Fields

r------~-.--------- - --- ··-···-·--·-··---

Usage
Field
Name Description

1--------1-----=~:::::::::~=:=:=::+----::-------------------

Input ISi Internal stream identifier

ROP Record-processing options (ASY bit only)

I============--=-··:+:+-=--=-=-·=-===-===·=---==t=t-===-=-===:==:j
Output STS Completion status code (also returned in Register 0)

STY Status value

------~--------------·----------------------...J

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Next volume service are listed below.

11-18

Success:

RMS$ NORMAL

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ DNR

RMS$ DPE

RMS$ RSA

RECORD-PROCESSING MACRO INSTRUCTIONS

Operation successful

Asynchronous operation not yet complete

File activity precludes operation

Device not ready

Device positioning error

Record stream still active
operations)

(asynchronous

$PUT

11.9 WRITING A RECORD TO A FILE

The $PUT macro instruction invokes the Put service, which inserts a
record into a file. The new records can be placed either at the end
of the file (sequential and relative file organizations) or in empty
record cells in place of deleted records (relative file organization).
Location of new records in an indexed file is controlled by VAX-11
RMS, which examines the contents of the primary key field of the
record to determine where to write the record into the file.

When using sequential files with the sequential record access mode,
you normally write records only at the end of the file. These records
cannot have a length greater than the maximum you specified when you
created the file. You can use random by key reecord access mode to
write fixed-length records in a sequentially organized disk file. The
Truncate on put (TPT) record option '(ROP) may be specified for
sequential files. This option allows new records to be inserted in
existing files, in positions of the file other than at the end of
file. When the file is closed, it will automatically be truncated to
the new end of file. Truncate access is required to use this option.
When the file is closed, it will automatically be truncated to a new
end of file, immediately after the last record is inserted (whether or
not data had existed after that point).

In a relative file, you can use either sequential or random by key
record access mode. Records cannot be larger than the size specified
at file creation, and the record's relative record number must not
exceed the maximum record number established for the file. Normally,
if the target record cell for a Put operation contains a record, a
record-already-exists error (RMS$ REX) will be returned as the
completion status (STS). If you specify the Update-if (UIF) record
option (ROP), however, VAX-11 RMS will if overwrite the existing
record, instead of returning an error message.

In an indexed file, you can use either sequential or random by key
record access mode. When sequential access is used to put (insert)
records, the primary key value of the record to be put must be equal
to or greater than the primary key value of the preceding record. The
records cannot be larger than the size established (if a maximum
length was specified) when the file was created. Each record written
must contain a complete primary key, but the records do not have to
contain all alternate keys. If alternate keys are partially or

11-19

RECORD-PROCESSING MACRO INSTRUCTIONS

completely missing because of record length, VAX-11 RMS will not make
an entry for that new record in the associated alternate index(es).
Put operations to an indexed file do not require a key value or key of
reference. VAX-11 RMS determines where to write the record by
examining the contents of the primary key in the record.

When inserting records into an indexed sequential file, VAX-11 RMS
compares the key values (primary and alternate) in the record with the
key values of records already existing in the file. This comparison
determines if the writing of the record would result in the presence
of duplicate key values among records of the file. If duplicates
would occur, VAX-11 RMS verifies that duplicates are allowed. If
duplicates are not allowed for a particular key, VAX-11 RMS rejects
the operation with an RMS$ DUP error code. However, if duplicates are
allowed, VAX-11 RMS performs the operation. Subsequent sequential
operations on a given index will always retrieve records with
identical key values in the order in which the records were inserted.

If you specify the Update-if (UIF) record option (ROP) when duplicates
are not allowed on the primary key, VAX-11 RMS will simply overwrite
an existing record with the same primary key value, rather than
returning a duplicate record error (RMS$ DUP). Alternate key values
will be modified to reflect the newly-inserted record. It will appear
as if an Update operation is being performed on the existing record.
When the Update-if option is used, update access to the file is
required. If update access is not permitted for the file, then a Put
operation (that becomes an Update operation when this option is
selected) will fail, and a file-access error (RMS$ FAC) will be
returned. -

Mailboxes may be used to synchronize activity across cooperating
processes. Normally, a Put service to a mailbox will not be completed
until another accessor to the mailbox reads the record. When the Put
service is completed, the status-value field (STV) will contain the
Process identification (PIO) of the process that read the record. If
the Time-out (TMO) record option (ROP) is specified with a time-out
period of zero, the Put service will not wait for another accessor to
read the record.

The record address (RBF) and record size (RSZ) are required for all
Put operations. Some options for the Put operations, however, require
additional fields. Following the completion of a successful Put
service, the record's file address (RFA) is always returned. A
description of the concepts relevant to understanding the
interrelationship between the Put operation and other record
operations is contained in Chapter 10.

Format

OPERATION

label: $PUT

label

PARAMETERS

RAB=rab-address
ERR=entry
SUC=cntry

A symbolic address for the $PUT macro instruction; optional.

11-20

RECORD-PROCESSING MACRO INSTRUCTIONS

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

Suc=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 11-9 lists the RAB fields that the Put service uses for input
and output.

Field
Usage Name

Input ISi

KBF

KSZ

RAC

RBF

RIIB

RSZ

Table 11-9
Put RAB Fields

Internal stream identifier

Description

Key buffer address (used only if RAC=KEY and the file is a
relative file)

Key size (used only if RAC=KEY and the file is a relative file)

Record access mode

Record address

Record header buff er; only applies to variable with fixed control
records

Record size

···-

ROP Record-processing options (ASY, CCO, RLK, TPT, TMO, UIF, ULK
and WBll only

TMO Time-out mailboxes only. 1

·-·-
Output BKT Bucket code; set to the relative record number for sequential

access to relative files

RFA Record's file address

STS Completion status code (also returned in Register 0)

STY Status value
·-·-

1 On the successful comp le ti on of a pu I sc rvice to a record-oriented device, the STY field will contain the second
longword of the 1/0 status block. See the VAX/VMS 1/0 User's Guide for details on specific devices.

11-21

.•

·--

RECORD-PROCESSING MACRO INSTRUCTIONS

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Put service are listed below.

Success:

RMS$ CONTROLC

RMS$ CONTROLO

RMS$ CONTROLY

RMS$ NORMAL

RMS$ OK ALK

RMS$ OK DUP

RMS$ OK IDX

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ DNR

RMS$ DUP

RMS$ EXT

RMS$ PRV

RMS$ REX

RMS$ RLK

RMS$ RSA

RMS$ RVU

RMS$ WLK

Operation completed
(terminals only)

Operation completed
(terminals only)

Operation completed
(terminals only)

Operation successful

Record already locked

under Control

under Control

under Control

Record inserted has duplicate key value

c

0

y

Record successfully
occurred on index
slow access

inserted, but error
update which could cause

Asynchronous operation not yet complete

File activity precludes operation

Device not ready

Duplicate key detected (see above text)

File extend error

Privilege violation; access denied

Record already exists in target record cell

Record locked by another task

Record stream still active
operations)

Error updating RRVs

Device write-locked

(asynchronous

$RELEASE

11.10 UNLOCKING A RECORD

The $RELEASE macro instruction invokes the Release service, which
unlocks the record pointed to by the contents of the record's file
address RFA field of the RAB (see also the SFREE macro instruction,
Section 11.6). If the named record is not locked, VAX-11 RMS returns
a status code of RMS$ RNL.

11-22

RECORD-PROCESSING MACRO INSTRUCTIONS

Section 10.5 describes record locking.

Format

OPERATION PARAMETERS

label: $RELEASE RAB=rab-address

ERR=entry

SUC=entry

label

A symbolic address for the $RELEASE macro instruction; optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 11-10 lists the RAB fields that the Release service uses for
input and output.

Field
Usage Name

Input ISi

RFA

Output STS

STY

Table 11-10
Release RAB Fields

Description

Internal stream identifier

Record's file address

Completion status code (also returned in Register 0)

Status value
-·-· -"--·-·-

11-23

--

RECORD-PROCESSING MACRO INSTRUCTIONS

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Release service are listed below.

Success:

RMS$ NORMAL Operation successful

RMS$ PENDING Asynchronous operation not yet complete

Failure:

RMS$ ACT

RMS$ RNL

RMS$ RSA

File activity precludes operation

Warning; record not locked

Record stream
operations)

sti 11 active (asynchronous

$REWIND

11.11 POSITIONING TO THE FIRST RECORD

The $REWIND macro instruction invokes the Rewind service, which sets
the current context of a stream to the first record in the file.
VAX-11 RMS alters the context of the next record to indicate the first
record as being the next record. The Rewind service implicitly
performs the Flush and Free services, writinq out all I/O buffers and
releasing all locked records. This service is valid for all file
organizations on disk volumes and for sequential files on tape
volumes. For indexed files, the KRF field establishes the index to be
used for subsequent sequential accesses. You cannot rewind a unit
record device (card reader or printer) or a terminal.

Format

label

OPERATION

label: $REWIND

PARAMETERS

RAB=rab-address
ERR=entry
SUC=entry

A symbolic address for the $REWIND macro instruction; optional.

RAB= rah-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

11-24

RECORD-PROCESSING MACRO INSTRUCTIONS

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 11-11 lists the RAB fields that the Rewind service uses for
input and output.

Field
Usage Name

Input ISi

KRF

ROP

Output STS

STY

Table 11-11
Rewind RAB Fields

Internal stream identifier

Description
_,

Key of reference (used only with indexed files)

Record-processing options (ASY bit only)

--

Completion status code (also returned in Register 0)

Status value

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure are listed below.

Success:

RMS$ NORMAL

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ BOF

RMS$ DNR

RMS$ DPE

RMS$ EOF

RMS$ RSA

RMS$ WLK

Operation successful

Asynchronous operation not yet complete

File activity precludes operation

Warning; file is already at beginninq of
file

Device not ready

Device positioning error

End of file

Record' stream still active
operations)

Device write-locked

11-25

(asynchronous

RECORD-PROCESSING MACRO INSTRUCTIONS

$TRUNCATE

11.12 TRUNCATING A SEQUENTIAL FILE

The $TRUNCATE macro instruction invokes the Trunc~te service, which
truncates records from the end of a sequential file. Note that you
can only truncate a sequential file· (you cannot use this service for a
relative or indexed file) and the file must be open for exclusive
access (the file-sharing field of the FAB must be set or defaulted to
NIL). The file access field (FAC) must specify truncate access (TRN).
The Truncate service deletes the record indicated as the Current
Record, and all following records. You can only use this service
immediately after successful execution of a $GET, $FIND, or $UPDATE
macro instruction (thereby setting the context of the Current Record).

VAX-11 RMS declares an end-of-file at the starting record position for
the truncation, and then causes the context of the Next record to be
set to this end of file. You can then add records to the file by
issuing successive $PUT macro instructions.

Format

label

OPERATION

label: $TRUNCATE

PARAMETERS

RAB=rab-address
ERR=entry
SUC=entry

A symbolic address for the
optional.

$TRUNCATE macro instruction;

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 11-12 lists the RAB fields that the truncate service uses for
input and output.

11-2'1

Usage

Input

Output

RECORD-PROCESSING MACRO INSTRUCTIONS

Field
Name

ISi

ROP

STS

STY

Table 11-12
Truncate RAB Fields

Description

-· -- - -- --- --- -

Internal stream identifier

Record-processing options (ASY only)

Completion status code (also returned in Register 0)
---- --

Status value

--

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Truncate service are listed below.

Success:

RMS$ NORMAL

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ DNR

RMS$ DPE

RMS$ RSA

RMS$ WL·K

Operation successful

Asynchronous operation not yet complete

File activity precludes operation

Device not ready

Device positioning error

Record stream still active
operations)

Device write-locked

(asynchronous

$UPDATE

11.13 UPDATING AN EXISTING RECORD

The $UPDATE macro instruction invokes the Update service, which
modifies (updates) the contents of an existing record in a disk file
only. The record to be updated must first be locked by this stream,
either by a $FIND or $GET macro instruction. You cannot use locate
mode; you must supply a buffer.

For sequential files, the record length cannot change. For relative
files with variable-length or variable with fixed-length control
records, the length of the replacement record can differ from the
length of the original record, but cannot be larger than the maximum
size you set when you created the file.

11-27

RECORD-PROCESSING MACRO INSTRUCTIONS

For indexed files, the length of the replacement {updated) record
written by the $UPDATE macro instruction may be different from the
original record; restrictions, however, apply to the replacement
record in an indexed file:

• The length of the replacement record cannot exceed the maximum
size defined at file creation.

• Each replacement record must be large enough to contain a
complete primary key, but the replacement record does not have
to contain all alternate keys. If an alternate key is
partially or completely missing in the replacement record, the
key must have the characteristic that the values can change;
this is true also if the replacement record contains a key
that was not present in the original record.

Update operations to an indexed file do not require a key value or key
of reference. Before writing the record, VAX-11 RMS compares the key
values {primary and alternate) in the replacement record with the key
values of original record already existing in the file. This
comparison takes into account the defined characteristics of each key.
For example, if a particular key is not allowed to change, VAX-11 RMS
rejects the operation with an RMS$ CHG error code if the replacement
record contains an altered value in the associated key. Similarly,
this comparison determines if the replacement record would result in
the presence of duplicate key values among records of the file. If
duplicates would occur, VAX-11 RMS verifies the defined
characteristics for the keys being duplicated. If duplicates are not
allowed for a particular key, VAX-11 RMS rejects the operation with an
RMS$ DUP error code. However, if duplicates are allowed, VAX-11 RMS
performs the operation.

Subsequent sequential operations on a given index will always retrieve
records with identical key values in the order in which the records
were written.

Format

label

OPERATION

label: $UPDATE

PARAMETERS

RAB=rab-address
ERR=cntry
SUC=entry

A symbolic address for the $UPDATE macro instruction; optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8. 1) •

11-28

RECORD-PROCESSING MACRO INSTRUCTIONS

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 11-13 lists the RAB fields that the update service uses for
input and output.

Field
Usage Name

Input ISi

RBF

RHB

ROP

RSZ

Output RFA

STS

STV

-----t--·

Table 11-13
Update RAB Fields

-

Description

-- ------- ---·----~-- ·--

In tern al st ream identifier
------- - -

Record address

Record header buffer; applies only to variable with fixed control
records

Record-processing options (ASY and WBH only)

Record size

-+-_~----~---_ . ===:=:=::::-:::::::.· -

Record's file address

Completion status code (also returned in Register 0)
-------· -· ·--

Status value

--·-~

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Update service are listed below.

Success:

RMS$ NORMAL

RMS$ PENDING

RMS$ OK DUP

RMS$ OK !DX

Operation successful

Asynchronous operation not yet complete

Duplicate key detected

Record was inserted, but error occurred on
index update which could cause slow access

11-29

Failure:

RMS$ ACT

RMS$ DNR

RMS$ RNL

RMS$ RSA

RMS$ WLK

$WAIT

RECORD-PROCESSING MACRO INSTRUCTIONS

File activity precludes operation

Device not ready

Warning; record not locken

Record stream still active
operations)

Device write-locked

(asynchronous

11.14 STALL FOR I/O COMPLETION

The $WAIT macro instruction invokes the wait service, which determines
when an asynchronous record operation completes. Upon completion of
the operation, VAX-11 RMS returns control to your program at the point
following the $WAIT macro instruction. Any completion routines
specified on the operation being awaited are also . executed before
VAX-11 RMS returns control (unless ASTs are disabled).

The $WAIT macro instruction takes no parameters to define entry points
for user-written completion routines; the completion routines are
specified by the operation being awaited.

Format

OPERATION PARAMETERS

label: $WAIT RAB=rab-address

label

A symbolic address for the $WAIT macro instruction; optional.

RAB=rab-address

This parameter defines the symbolic address of the RAB; either
the RAB whose I/O request is in progress, or some other RAB.

Table 11-14 lists the RAB fields that the Wait service uses for input
and output.

11-30

Usage

Input

Output

RECORD-PROCESSING MACRO INSTRUCTIONS

Field
Name

ISi

STS

STS

Table 11-14
Wait RAB Fields

··-

Internal stream identifier

Completion status code

Description

···="·= =·' ==- :-=

--·-- -----

Completion status code (also returned in Register 0)

The VAX-11 RMS completion status codes for the wait service are
determined by the operation being awaited, unless the address of the
RAB specified for the wait is not the same as that specified for the
awaited operation. In this case, RMS$ NORMAL is returned.

11-31

CHAPTER 12

PERFORMING BLOCK I/O

Besides the record access provided by the sequential, random by key,
and random by record's file address record access modes, VAX-11 RMS
also provides another means to access data in a file: block I/O.

Block I/O operations let you directly read or write the blocks of a
file. These operations are provided for users who must keep system
overhead to a minimum and need no interpretation of file data as
logical records, yet still want to take advantage of the easy file
access of VAX-11 RMS. Block I/O is an intermediate step between the
VAX-11 RMS record operations and direct use of VAX/VMS input/output
system services.

You specify Block I/O for a record stream by setting the BIO bit in
the file access field of the file access block (FAB; see Section
4.2.10) as input to the $OPEN or $CREATE macro instructions. If you
intend to write to the file, you must set the PUT bit in the file
access field. If you want to read from the file, you must set the GET
bit in the file access field.

You cannot perform Block I/O operations on files on which record
operations are already being performed. Conversely, you cannot
perform record operations on files on which Block I/O operations are
being performed. However, VAX-11 RMS allows you to set the BRO bit in
the file access field of the FAB, indicating that operations can
switch from Block I/O to record operation and vice versa when an
operation is completed (but not using both at the same time). Only
the sequential file organization allows this switching. For other
file organizations, setting of the BRO bit of the file access field
merely allows the decision about performing block or record operations
to be delayed until the first RAB is connected. If the BIO bit is set
in the record options field of the RAB, only Block I/O operations will
be permitted; if the BIO bit is clear, only record operations will be
permitted. All connected record streams must be connected in the same
manner; that is, there can be no mixing of Block and Record I/O.

If you do mix modes of operation for sequential files, you must
exercise caution, as the context of the current record, next record,
and the next block pointer (see NOTES below) are all undefined when
you switch operations on disk devices. Therefore, the operation that
initiates the switch must not use sequential record access mode. For
magnetic tape devices, the context of the next record or next block
indicates the start of the following Block on the tape for the
operation initiating the switch.

12-1

PERFORMING BLOCK I/O

NOTES

1. If you set the BRO bit in the file
access field of the FAB for the
sequential file organization, you
indicate that you want to mix block I/O
and record operations. If, once the
file is open, you want only to perform
block I/O, you can set the BIO bit in
the record-processing options field of
the RAB. This operation overrides the
setting of the BRO bit for this record
stream, and acts as a flag to the
$CONNECT macro instruction, indicating
that no VAX-11 RMS I/O buffers need be
allocated (but you must still allocate
buffers in the user program for block
I/O operations).

2. If you set the BRO bit when creating an
indexed file, the key definition XABs
for that file must be present. For a
create service to the relative or
indexed file organization, specifying
the BIO bit in the file access field of
the FAB causes VAX-11 RMS to omit
prologue processing and initial space
pre-zeroing in relative files.
Allocated space pre-zeroing is also
omitted for the extend service when
connected for block I/O.

3. For files of unknown organization or
undefined record format, block I/O is
the only form of processing allowed.
Processing proceeds identically to that
for block I/O to the relative file
organization.

Three macro instructions are provided for performing block I/O.

• $READ -- transfers a specified number of bytes into memory

• $SPACE -- positions a file forward or backward a specified
number of blocks

• $WRITE -- writes a specified number of bytes to a file

In addition, you can use the following macro instructions on a record
stream connected for Block I/O operations:

• $DISCONNECT • $NXTVOL

• $FLUSH • $REWIND

These instructions, which are described in Chapter 11, perform
miscellaneous operations or disconnect the record stream, and do not
work on the contents of the records themselves.

12-2

PERFORMING BLOCK I/O

For sequential Block I/O operations to disk files, VAX-11 RMS
maintains an internal next block pointer (NBP) that:

• Points to the beginning of the file after execution of a
$CONNECT macro instruction if the EOF bit is cleared in the
record-processing options field of the record access block
(RAB), or if the EOF bit is set, NBP points to the block
following the end of file. For indexed files, setting EOF is
not permitted.

• Points to the block following the highest numbered block
transferred by a read or write service ($READ or $WRITE macro
instructions).

• Points to the next block after an operation with the $SPACE
macro instruction.

The $BLOCK I/O macro instructions deal with fields in the RAB;
Chapter 5 describes the effect of these fields on the operations.

You indicate the symbolic address of the associated RAB through a
parameter on each Block I/O macro instruction you are using, and the
address of any optional error or success completion routine you may
have provided. However, you can also use the macro instruction
without parameters, but you must then create an argument list in your
program to define the values for these addresses (see Section 8.1).

$READ

12.1 TRANSFER TO MEMORY

The $READ macro instruction invokes the Read s~rvice, which retrieves
a specified number of bytes from a file (on a block boundary) and
transfers them to memory. A Read operation using block I/O can be
performed on any file organization.

To use this macro instruction, you must:

1. Supply a buffer area into which VAX-11 RMS is to transfer
data (user record area address field).

2. Indicate the number of bytes to be transferred (user record
area size field).

3. Indicate the first virtual block number (VBN) for the
transfer (bucket number field). If the value for the VBN is
zero, the transfer will start with the block indicated by the
NBP.

Format

OPERATION

label: $READ

PARAMETERS

RAB=rab-address
ERR=entry
SUC=entry

12-3

PERFORMING BLOCK I/O

label

A symbolic address for the $READ macro instruction; optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

comp let ion

Table 12-1 lists the RAB fields that the Read service uses for block
I/O.

Usage
Field
Name

Table 12-1
Read RAB Fields

Description

l=============l===========~==+==========================:==:===----=--~---~---=--~----------~====::::::====:::1

Input

Output

BKT

ISi

ROP

UBF

Bucket number; must contain the virtual block number of the first
block to be read

Internal stream identifier

Record-processing options; (ASY bit only)

User record area address
t---------+---·--·--------- ---·--------------------· ---·-·-----------<

usz

RBF

RFA

RSZ

STS

User record area size; indicates the length of transfer, in bytes

Record address
-----·---- -·------

Record's file address; contains the virtual block number of the first
block transferred

Record size; indicates the actual number of bytes transferred
-·-· ---·---- --·····-·-----··----·· ---------··-- ---·------------i

Completion status code (also returned in Register 0)
t--------·-·------ - --- +------------------··----····--- --·-·--····--·-··-·------·······. ·-·--· --- ---·---···-----·--- -----·- --·-------

STV Status value

··---·---·--·--'--·- ____________________ ...__·-···-·-·-········---··· ·······--·---····-

12-4

PERFORMING BLOCK I/O

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the $READ macro instruction are listed
below.

Success:

RMS$ CONTROLC

RMS$ CONTROLY

RMS$ NORMAL

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ DNR

RMS$ EOF

RMS$ RSA

RMS$ TMO

RMS$ WLK

Operation completed under Control C

Operation completed under Control Y

Operation successful

Asynchronous operation not yet complete

File activity precludes operation

Device not ready

End of file; checking for the logical end of
file is performed for the sequential file
organization only. If an end-of-file error
occurs, it implies that the first virtual
block number specified was at or past the end
of the file. If the end-of-file pointer
occurs during a transfer, the record size
field is set to the number of bytes before
the logical end of file. For the relative
file organization, this status code indicates
an attempt to read past the end of the
currently allocated space.

Record stream still active
operations)

(asynchronous

Warning; time-out period expired

Device write-locked

$SPACE

12.2 POSITIONING TO A BLOCK

The $SPACE macro instruction invokes the Space service, which lets you
position a file forward or backward a specified number of blocks.

This macro instruction is intended primarily for use with magnetic
tape files; the tape is spaced the number of blocks specified in the
bucket number field. If the value in this field is positive, the tape
spaces forward; if the value is negative, the tape spaces backward.
For disk files, the NBP is updated to reflect the new sequential
operation position.

17.-5

PERFORMING BLOCK I/O

Format

label

OPERATION

label: $SPACE

PARAMETERS

RAB=rab-address
ERR=entry
SUC=entry

A symbolic address for the SSPACE macro instruction; optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written success
routine; optional.

completion

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 12-2 lists the RAB fields that the Space service uses as input
and output.

Usage
Field
Name

Table 12-2
Space RAB Fields

-----------------,

Description

I=======::+=:=·:::_:_·_::--::::::-··:.:::.:···--·- -··-··-t--··---···· ··-----····---·--···---------- ---------- ------------!

Input BKT

ISi

ROP

Bucket number; indicates the number of blocks to space forward
(positive value) or backward (negative value)

Internal stream identifier

Record-processing options; ASY bit only

t=============+========--=··::-- :.=--· +---------------··------- -------- .. -----------

Output STS

STY

Completion status code (also returned in Register 0)

Status value (set to number of blocks actually spaced; positive
value always)

'-----------'------··------------- '----·-------------·· .. ------ - ------------------- _____________ __,

12-6

PERFORMING BLOCK I/O

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Space service are listed below.

Success:

RMS$ NORMAL

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ BOF

RMS$ DNR

RMS$ DPE

RMS$ EOF

RMS$ RSA

RMS$ WLK

12.3 WRITE TO A FILE

Operation successful

Asynchronous operation not yet complete

File activity precludes operation

File is at
operations}

beginning-of-file (backspace

Device not ready

Device positioning error

File is at
operations}

end-of-file

Record stream still active
operations}

Device write-locked

(forward space

(asynchronous

$WRITE

The $WRITE macro instruction invokes the Write service, which
transfers a user-specified number of bytes, beginning on a block
boundary, to a VAX-11 RMS file of any file organization.

You indicate the number of bytes to be written in the record size
field of the RAB, and indicate the address of the buffer for the
transfer in the record address field. In the bucket number field, you
indicate the virtual block number of the first block to be written;
if this number is O, the transfer starts with the block indicated by
the NBP.

For sequential files, the file is automatically extended if you write
a block past the end of the currently allocated space. For relative
and indexed sequential files, you must use the $EXTEND macro
instruction.

For sequential files, VAX-11 RMS maintains a logical end of file to
correspond to the last block and highest byte written within the
block.

12-7

PERFORMING BLOCK I/O

Format

label

OPERATION

label: $WRITE

PARAMETERS

RAB=rab-address
ERR=entry
SUC=entry

A symbolic address for the $WRITE macro instruction; optional.

RAB=rab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 12-3 lists the RAB fields that the Write service uses as input
and output.

Usage

Input

Output

Field
Name

BKT

ISi

RBF

ROP

Table 12-3
Write RAB Fields

Description

Bucket number; must contain the virtual block number of the first
block to be written

Internal stream identifier

Record address

Record-processing options (ASY and TPT bits only)
t--------+- ----------------

RSZ

RFA

STS

STY

Record size; indicates the transfer length, in bytes.

Record's file address; contains the virtual block number of the first
block transferred.

Completion status code (also returned in Register 0)

Status value; contains the actual number of bytes transferred if an
end-of-file error occurs.

12-8

PERFORMING BLOCK I/O

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Write service are listed below.

Success:

RMS$ CONTROLC

RMS$ CONTROLO

RMS$ CONTROLY

RMS$ NORMAL

RMS$ PENDING

Failure:

RMS$ ACT

RMS$ DNR

RMS$ EOF

RMS$ EXT

RMS$ PRV

RMS$ RSA

RMS$ WLK

Operation completed under Control c

Operation completed under Control 0

Operation completed under Control y

Operation successful

Asynchronous operation not yet complete.

File activity precludes operation

Device not ready

End of file; for the
organization, this error
file could not be extended

ACP file extend error

File protection violation

sequential file
implies that the

Record stream still active
operations)

(asynchronous

Device write-locked

12.4 NON-FILE-STRUCTURED OPERATIONS

VAX-11 RMS lets you perform non-file-structured operations, that is,
operations that deal with magnetic tape or disk volumes directly
rather than through the Files-11 structure.

Non-file-structured operations also are known as Logical I/O
operations. Logical I/O is the reading and writing of data in blocks.
For magnetic tape, each block of the tape is read or written with no
interpretation of labels. For disk, the starting block for a transfer
is identified by a logical block number (LBN). Since LBNs are
volume-relative (see Appendix B), no file-relative translation is
required to determine the blocks to transfer.

You can perform non-file-structured operations under the following
conditions.

1. For file devices that have been mounted as Files-11 volumes,
you must set the NFS bit in the file-processing options field
(FOP) of the FAB as input to the create or open service.

2. For file devices mounted as foreign (i.e.,
non-file-structured), VAX-11 RMS performs non-file-structured
operations regardless of the state of the NFS bit.

12-9

PERFORMING BLOCK I/O

3. For nonfile devices, non-file-structured operations occur
always.

4. If the NFS bit is set, the I/O channel is assigned in the
mode of the caller, thus allowing I/O calls to be performed
directly, if desired.

5. You must have the appropriate privileges to perform
non-file-structured operations (logical I/O privilege) if the
device is mounted as a Files-11 device.

6. Either block I/O or the get and put services are allowed.
For magnetic tape, blocking information must be specified on
the MOUNT command (see the VAX/VMS Command Language User's
Guide), using the /RECORD qualifier; this allows the
blocking and unblocking of fixed-length records, with records
not crossing block boundaries. For disk, each block is read
as a fixed-length record of 512 bytes.

7. The file specification needs only the device and unit number.

If the above conditions have been met, VAX-11 RMS will change its
operations to include the following:

1. The Block I/O services including space are permitted, even if
not in block I/O mode.

2. The Rewind service rewinds the entire magnetic tape.

3. If the Close service is performed to a write-accessed
magnetic tape, and if the last operation performed was a
Write operation, then two tape marks followed by a backspace
will be output. This operation allows the creation of
multiple files. On input, end-of-file errors cause the tape
mark to be skipped.

4. For disk, the normal input of the bucket code field (BKT) of
the RAB for Read and Write services specifies the logical
block number (LBN) rather than the virtual block number
(VBN). Since logical block numbers start at O and virtual
block numbers start at 1, a problem may arise when you want
to access LBN 0 (a 0 in the bucket code field indicatinq
sequential operations). However, you can access LBN 0 by
setting the · bucket code field to 0 immediately after a
Connect or Rewind service (or by issuing an appropriate Space
service to backspace to the beginning of the volume).

5. For the Get and Put service, random access by key (RAC=KEY),
set the key buff er pointed to by the key buff er address field
to the starting LBN.

12-10

CHAPTER 13

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

VAX-11 RMS provides macro instructions that perform actions related to
the file specification. These macro instructions are used only for
relatively complex operations, such as wild card character processing,
as their functions are normally performed by the Open and Create
services.

These macro instructions, therefore, deal with fields in the file
access block {FAB), and the name {NAM) block. Chapters 4 and 7
describe the effects of these fields for the FAB and NAM block,
respectively. The file specification processing macro instructions
are:

• $ENTER

e $PARSE

e $REMOVE

• $RENAME

• $SEARCH

You indicate the symbolic address of the associated FAB through a
parameter on the file specification processing macro instructions.
You do not indicate the NAM block on the macro instructions; rather,
you associate this NAM block with the FAB through the name block
address field of the FAB.

On the file specification processing macro instructions, you can also
use a parameter to indicate the address of any optional error or
success completion routine you may have provided. You can use the
macro instruction without parameters, but you must then create an
argument list in your program to define the values for these addresses
{see Section 8.1).

$ENTER

13.l ENTER A FILE NAME

The Enter service, which you invoke with the $ENTER macro instruction,
inserts a file name into a directory. This is performed automatically
by the Create service {u:.less either the TMP or TMD bit is set in the
file-processing options field of the FAB). The enter service,
however, allows you to perform this step separately.

13-1

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

When you enter a file name into a directory, no file can already be
open with the FAB, and no wild card character specifications are
allowed.

The Enter service requires many NAM block fields as input. You
normally precede the Enter service with an Open, Create, or Parse
service (see Section 13.2), and a Search service (see Section 13.5),
specifying the same FAB and NAM block for each service.

Format

label

OPERATION

label: $ENTER

PARAMETERS

F AB=fab-address
ERR=entry
SUC=entry

A symbolic address for the $ENTER macro instruction; optional.

FAB=f ab-address

Required if you use parameters in the macro instruction. This
p~rameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routin~; optional.

completion

Table 13-1 lists the fields in both the FAB and NAM block that the
enter service uses as input and output.

The optional resultant string is moved to the buffer described by the
resultant string area address (RSA) and size (RSS) fields of the NAM
block (only if both these fields are nonzero).

If the file version number of the name string described by the
expanded string length and area address fields of the NAM block is
either not present or 0, the Enter service scans the entire directory.
It assigns a version number one higher than the highest found (or l if
none is found).

13-2

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Control
Usage Block

Input FAB

NAM

Output FAB

NAM

Table 13-1
Enter Fields

Field
Name

IFI

NAM

DID

DVI

ESA

ESL

FID

RSA

RSS

STS

STY

RSL

Description

=
Internal file identifier (must be zero)

Name block address

Directory identification; file name and
identifier arc entered into this directory

Device identification of the device containing
directory where file name is to be entered

Expanded string area address: contains file
name. type. and version to be entered

Expanded string length

File identification of file to be entered
into directory

--

Resultant string area address

Resultant string size

=
Completion status code (also returned in
Register 0)

Status value

Resultant string length
---~~

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Enter service are listed below.

Success:

RMS$ NORMAL

Failure:

RMS$ DNF

RMS$ DNR

RMS$ ENT

RMS$ FNF

RMS$ PRV

RMS$ WLK

Operation successful

Directory not found

Device not ready

ACP enter function failed

File not found

File protection violation

Device write-locked

13-3

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

$PARSE

13.2 PARSE A FILE SPECIFICATION STRING

The $PARSE macro instruction invokes the parse service, which analyzes
the file specification string (as described in Section 8.2) and fills
in various NAM block fields. The functions of the Parse service are
performed automatically as part of the Open, Create, and Erase
services.

When you parse a file name string, there must be no file already open
in conjunction with the FAB. Section 8.2 describes the process of
parsing a file specification. Appendix C describes the complete file
specification syntax.

One function of the Parse service is to prepare the FAB and NAM blocks
for wild card character processing to be used in the Search service.
If wild card characters are present in the file specification, RMS
allocates internal data structures to store the wild card character
context for subsequent searches. This space is released when
"$SEARCH" encounters a No-More-Files condition (in which case an
RMS$ NMF ERROR is returned) or when another parse is performed using
the same FAB and NAM blocks.

Format

label

OPERATION

label: $PARSE

PARAMETERS

F AB=fab-addrcss
ERR=cntry
SUC=entry

A symbolic address for the $PARSE macro instruction; optional.

FAB=f ab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table .13-2 lists the fields in both the FAB and NAM block that the
Parse ~ervice uses as input and output.

13-4

Usage

Input

Output

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Control
Block

FAB

NAM

Related file
NAM block

(if any)

FAB

NAM

Table 13-2
Parse Fields

Field
Name

DNA

DNS

FNA

FNS

FOP

IFI

NAM

ESA

ESS

RLF

RSA

RSL

DEV
.------~

soc

STS

STY

DID

DVI

ESL

FID

FNB

wee

Description

Default file specification string address

Default file specification string size

File specification string address

File specification string size
-

File-processing options (OFP bit only)

Internal file identifier (must be zero)
-·- ··- --· ·----------!

Name block address
-·-------- ---·-· -·--1

Expanded string area address
---- --1

Expanded string area size

Related file NAM block address

Resultant string area address

Resultant string length

Device characteristics
---~-- -~----- ----

Spooling device characteristics

Completion status code (also returned in
Register 0)

Status value
~- ~-- . ·--------·- -··-1

Directory identification
- ____,

Device identification

Expanded string length

File identification (zeroed)

File name status bits; contains information
about the parse results

~--·- --- __________ ____,

Wildcard context (zeroed to initialize the
wild card context for subsequent directory
searches)

- ---·····- L-----·-·--·--- -~- . - -· ·--

The expanded file specification string is moved to the buffer
described by the expanded string area address (ESA) and size (ESS)
fields of the NAM block (only if both fields are nonzero). The ESA
and ESS NAM block parameters must be specified (nonzero) for wild card
character processing (see Sections 7.2.2 and 7.2.3).

13-5

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

The VAX-11 completion status codes are listed in Appendix A. However,
to help you anticipate any nonsevere conditions that can arise, the
error or warning completion status codes for conditions that can cause
a failure for the Parse service are listed below:

Success:

RMS$ NORMAL Operation successful

Failure:

RMS$ DNF

RMS$ DNR

RMS$ wee

Directory not found

Device not ready

Invalid wild card character in NAM block

$REMOVE

13.3 REMOVE A FILE NAME

The $REMOVE macro instruction invokes the Remove service, which
deletes a file name from a directory. (This service does not delete
the file itself. The deletion is performed by the Erase service; see
Section 9.4). The functions of the Remove service are performed
automatically as part of an Erase service that specifies a directory.

When you remove a file name from a directory, no file can already be
open for the FAB. In addition, you normally call the Parse service to
set the NAM block contents before you call the Remove service.

Each removal deletes the next directory entry whose file name, type,
and version number matches those specified in the expanded string
length and expanded string area address fields of the NAM block.

Format

label

OPERATION

label: $REMOVE

PARAMETERS

F AB=fab-address
ERR=entry
SUC=entry

A symbolic address for the $REMOVE macro instruction; optional.

FAB=f ab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

13-6

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

ERR=entry

The symbolic address of a user-written error completion
optional.

routine;

SUC=entry

The symbolic address
routine; optional.

of a user-written success completion

Table 13-3 lists the fields in both the FAB and NAM
remove service uses as input and output.

blocks that

Control
Usage Block

Input FAB

NAM

Output FAB

NAM

Table 13-3
Remove Fields

Field
Name Description

FOP File-processing options (NAM bit only)
- - ··-·--·-----1

IFI Internal file identifier (must be zero)
-

NAM Name block address

DID Directory identification of directory
cataloging file to be removed

DYi Device identification of device containing
directory from which file is to be removed

ESA Expanded string area address specifying
the name, type, and version of file to
be removed

ESL Expanded string length
------- ----

FID File identification; if nonzero and NAM
bit is set in file-processing options field of
input F AB, the first file in the directory
with this file identification is removed

FNB File name status bits (wildcard bits only)

RSA Resultant string area address specifying the
name, type, and version number of
last file removed (required for wildcard
processing)

RSL Resultant string length

RSS Resultant string area size

wee Wildcard context
.. ··- ·=-"== . .- =-1

STS Completion status code (also returned in
Register 0)

--- --------

STY Status value

RSL Resultant string length

==I wee Wil dcarc\ context

- - --·

13-7

the

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

The resultant string is moved to the buffer described by the resultant
string area address (RSA) and size (RSS) fields of the NAM block (only
if both fields are nonzero).

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Remove service are listed below.

Success:

RMS$ NORMAL

Failure:

RMS$ DNF

RMS$ DNR

RMS$ FNF

RMS$ NMF

RMS$ PRV

RMS$ WLK

$RENAME

13.4 RENAME A FILE

Operation successful

Directory not found

Device not ready

File not found

No more files found

File protection violation

Device write-locked

The $RENAME macro instruction invokes the Rename service, which
changes the name of a file in a directory. This service performs the
equivalent of two Parse services (old and new name), a Search service
for the old directory, an Enter service to insert the new file name
into the new directory, and a Remove service to delete the old file
name from the old directory.

When you change the name of the file in a directory, no file can
already be open for the FAB, and no wild card character specifications
are allowed. You can rename a file from one directory to another, but
both directories must be on the same disk device.

If the Rename service is successful, the new directory entry is
created and the old entry is deleted. If the service fails, the old
entry remains, and the new entry, depending on when the error occurs,
may or may not be created.

Format

OPERATION

label: $RENAME

PARAMETERS

OLDF AB=fab-address
ERR=entry
SUC'=cntry
NEWFAB=ncw-fah-addrcss

13-8

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

label

A symbolic address for the $RENAME macro instruction; optional.

OLDFAB=f ab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB that specifies
the old file name. If you omit this parameter, no other
parameters are permitted; you must supply the argument list
within your program (see Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

NEWFAB=new-f ab-address

completion

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB that specifies
the new file name. If you omit this parameter, no other
parameters are permitted; you must supply the argument list
within your program (see Secion 8.1).

NOTE

If you issue this macro instruction
without parameters, you must construct
an additional field within your argument
list to contain the address of the FAB
that specifies the new file name. This
additional field is placed in the
argument list following the field for
the success completion routine (see
Section 8.1), and the argument count is
set to 4.

Table 13-4 lists the fields in two FABs and two NAM blocks that the
Rename service uses as input and output. In the table these blocks
are called FAB#l and NAM#l for the old entry, and FAB#2 and NAM#2 for
the new entry. For output, FAB#2 is not used, although it must be in
writeable memory.

The resultant file specification string for each of the names (old and
new) is placed in the buffer described by the resultant string area
address (RSA) and size (RSS) fields of the separate NAM blocks (only
if both fields are nonzero).

13-9

Usage

Input

Output

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Control
Block

FAB#I
and

FAB#:2

NAM#!
and

NAM#2

Related
file NAM
blocks

FAB#I

NAM#l
and

NAM#2

--··-

Table 13-4
Rename Fields

Field
Name

DNA

DNS

FNA

FNS

IFI

NAM

ESA

ESS

RLF

RSA

RSS

RSA

RSL

STS

STY
!----·---------

DID

DYi

ESL

FID

FNB

RSL

wee
--- L. -----~-- -··· ·-··-···-··- --'--·--·-·-·-

13-10

Description

Default file specification string address

Default file specification string size

File specification string address

File specification string size

Internal file identifier (must be zero)

Name block address

Expanded string area address (must be
nonzero)

Expanded string area size (must be non-
zero)

Related file NAM block address

Resultant string area address

Resultant string area size

Resultant string area address

Resultant string length

Completion status code (also returned in
Register 0)

Status value

Directory identification

Device identification

Expanded string length

File identification

File name status bits

Resultant string length

Wildcard context

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help anticipate any nonsevere conditions that can arise,
the error or warning completion status codes for conditions that can
cause a failure for the Rename service are listed below.

Success:

RMS$ NORMAL

Failure:

RMS$ DNF

RMS$ DNR

RMS$ ENT

RMS$ FEX

RMS$ FNF

RMS$!DR

RMS$ PRV

RMS$ NMF

Operation successful

Directory not found

Device not ready

ACP enter function failed

File already exists; not superseded

File not found

Invalid directory rename operation

File protection violation

No more files to be renamed

$SEARCH

13.5 SEARCH FOR FILE NAME

The $SEARCH macro instruction invokes the Search service, which scans
a directory file and fills in various NAM block fields. Normally, you
precede the Search service with the parse service to initialize the
NAM block appropriately. The basic functions of the Search service
are performed automatically as part of the Open, Create, and Erase
service.

When you scan a directory file, no file can already be open for the
FAB.

When called, the Search service scans the directory file specified by
the directory identification field of the NAM block. It looks for an
entry that matches the file name, type, and version number specified
by the expanded string area address and expanded string length fields.
Upon finding a match, VAX-11 RMS returns the file name, type, and
version number in the buffer described by the resultant string area
address and size fields, and the file identification field is filled
in, thereby allowing a subsequent open by NAM block (see Section
8.2.3).

VAX-11 RMS can use wild card characters to parse through the search
routine until RMS$ NMF (No-More-Files) is reached. When the RMS$ NMF
condition is encountered, internal data structures are released.

13-11

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Format

OPERATION

label: $SEARCH

label

PARAMETERS

F AB=fab-address
ERR=entry
SUC=cntry

A symbolic address for the $SEARCH macro instruction; optional.

FAB=f ab-address

Requiretj if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success
routine; optional.

completion

Table 13-5 lists the fields in both the FAB and NAM block that the
search service uses as input and output.

The resultant file specification string is placed in the buffer
described by· the resultant string area address (RSA) and size (RSS)
fields of the NAM block (only if both fields are nonzero). The RSA
and RSS NAM block parameters must be specified (nonzero) for wild card
character processing (see Sections 7.2.4 and 7.2.5).

The VAX-11 RMS completion status codes are listed in Appendix A.
However, to help you anticipate any nonsevere conditions that can
arise, the error or warning completion status codes for conditions
that can cause a failure for the Search service are listed below.

Success:

RMS$ NORMAL Operation successful

Failure:

RMS$ DNF Directory not found

RMS$ DNR Device not ready

RMS$ FND AeP find function failed

RMS$ FNF File not found

RMS$ NMF No more files found

RMS$ PRV File protection violation

RMS$ wee Invalid wild card context value in NAM block

13-12

Usage

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Control
Block

Table 13-5
Search Fields

Field
Name Description

'========*==========J:===cc=====f:======~== =·.- --,=.=·--==-=----1----1

Input

Output

FAB IFI

NAM

NAM DID

DVI

ESA

ESL

FNB

RSA

RSL

RSS

wee

FAB STS

STY

Internal file identifier (must be zero)

Name block address

Directory identification of directory to
be searched

Device identification of device containing
directory to be searched

Expanded string area address, specifying
file name, type, and version of file

Expanded string length

File name status bits (wildcard bits only)

Resultant string area address, specifying
name, type and version of last file
found (required for wildcard processing)

Resultant string length

Resultant string area size

Wildcard context

Completion status code (also returned in
Register 0)

Status value

- ==

~---------+---- -----+----------------·----- -··--
NAM FID File identification

RSL Resultant string length

wee Wildcard context

13-13

CHAPTER 14

RUN-TIME CONTROL BLOCK INITIALIZATION

VAX-11 RMS provides run-time equivalents of the assembly-time macro
instructions that allocate and initialize control blocks. These
run-time instructions are the "store" macro instructions.

The store macro instructions copy either the contents of a location or
a value into data fields in the designated control block. Regardless
of field size, you can access a data field with these macro
instructions.

14.1 THE STORE MACRO INSTRUCTIONS

You form the name for each store macro instruction by adding STORE to
each assembly-time macro instruction.

For example, the run-time equivalent of the $FAB macro instruction is:

$FAB STORE

A run-time equivalent exists for each of the following
instructions:

• $FAB

• $RAB

• $NAM

• $XABDAT

• $XABALL

• $XABKEY

• $XABPRO

• $XABFHC

• $XABRDT

• $XABSUM

14-1

macro

RUN-TIME CONTROL BLOCK INITIALIZATION

Format

label

OPERATION PARAMETERS

~~~i } NAM =address 

{ XAB 

label: macro-name 

keyword-I =value- I ....• kcyword-n=value-n 

A user-specified symbolic address referring to the store macro 
instruction; optional. 

macro-name 

The name of the control block (FAB, RAB, NAM, XABDAT, XABALL, 
XABKEY, XABPRO, XABFHC, or XABRDT). The control block name is 
prefixed with a dollar sign ($) and followed by STORE. 

address 

An optional pointer to the control block; the keyword to the 
left of the equal sign (FAB, RAB, NAM or XAB) indicates the type 
of control block that you are using. The keyword XAB is used for 
all the different XABs. 

If you specify a register name, the register must contain the 
address of the control block. If you specify any other type of 
value, the address that value represents is moved to Register o, 
and that register is then used as the address of the control 
block. Register 0 is not preserved. 

If you omit this parameter, VAX-11 RMS assumes that you have 
already stored the address of the control block in Register O. 

keyword-l=value-1, ••• , keyword-n=value-n 

A variable number of keywords that correspond to the data fields 
of the control block, and the values to be placed in these data 
fields. These values can be either keywords for options, as in 
the assembly-time macro instructions; or can be run-time 
addressing expressions. If the value is an addressing 
expression, the following restrictions apply: 

1. For any address field -- such as the extended attribute block 
f i e 1 d ( X AB ) of the FA B , the f i 1 e access b 1 o ck f i e 1 d ( FA B ) of 
the RAB, or the expanded string area address (ESA) and 
resultant string area address (RSA) fields of the NAM block 
-- a MOVAL instruction is generated rather than a MOVL 
instruction. 

2. For a quadword field whose source is a register two 
successive registers are accessed. Therefore, the source 
register should not be greater than Register 11. 

14-2 



RUN-TIME CONTROL BLOCK INITIALIZATION 

3. For any of the following fields whose source is a register, 
two successive registers are accessed: 

• Directory identification (DID) 

• File identification (FID) 

• Record's file address (RFA) 

Therefore, the source register should not be greater than 
Register 11. In addition, you cannot use the byte, word, or 
longword displacements for an offset, or any indexed or 
deferred addressing. 

4. If you specify the device identification field (DVI), the 
source cannot be a register, since four registers would have 
to be accessed. In addition, you cannot use the byte, word, 
or longword displacements for an offset, or any indexed or 
deferred addressing. 

5. The file protection (PRO) and group/member number (UIC) 
fields can be expressed in either of two ways: 

a. Individually -- in a manner similar to the assembly-time 
macro instructions. For the file protection field (PRO), 
the values must still be the keywords R, W, E, D. For 
the group/member number (UIC) fields, the values must be 
either run-time values or constants. The radix for 
constants is octal. 

b. Together -- filled in as one entity, by specifying one 
run-time address. 

An example of a store macro instruction follows: 

$FAB STORE FAB=Rl,ORG=SEQ,RFM=VFC,MRS=l0(R2) ,FSZ=#30,FOP=#O,NAM=NBLK 

In this example, Register 1 contains the address of the FAB; the file 
organization is sequential; the record format is variable with fixed 
control; and the maximum record size is to be taken from the contents 
of the location specified by 10(R2). In addition, the fixed size of 
the record is 30 bytes, the file-processing options (FOP) field is to 
be cleared, and the address of NBLK is to be moved into the NAM block 
address field of the FAB. 

14-3 





CHAPTER 15 

CONTROL ROUTINES 

VAX-11 RMS provides three control routines, as follows: 

• Rundown control routine 

• Default directory control routine 

• Default file protection control routine 

These control routines all operate synchronously; therefore, no $WAIT 
macro instruction is needed. 

You do not call a control routine with a macro instruction. Rather, 
you provide an argument list and call VAX-11 RMS at the entry point 
for the routine. These routines do not reference fields in the user 
control blocks. 

15.1 HALT I/O AND CLOSE FILES 

The rundown control routine closes all files opened by VAX-11 RMS for 
the image or process and halts I/O activity. This is not the same as 
closing the files with a Close service, which guarantees that all I/O 
will be completed (see Section 9.1). Each call made to a rundown 
control routine closes at least one file. Therefore, you should 
continue to call rundown control routines until you receive the 
success completion status code of RMS$_NORMAL. 

The entry point for this control routine is: 

SYS$RMSRUNDWN 

There are two arguments for this control routine. The first is the 
address of a descriptor pointing to a 22-byte buffer to receive the 
device identification (16 bytes) and file identification (6 bytes) of 
an improperly closed output file. 

The second argument is a single byte code specifying the type of 
rundown to be performed. This type code has the following values and 
meanings: 

O - rundown of image and indirect I/O for process permanent files 

1 - rundown of image and process permanent files; 
mode must be other than user 

the caller's 

2 - abort VAX-11 RMS I/O; 
executive or kernel 

the caller's mode must be either 

15-1 



CONTROL ROUTINES 

The completion status codes are listed below. 

Success: 

RMS$ NORMAL All files closed 

Failure: 

RMS$ CCF An output 
successfully; 
file 

file 
user 

could not be closed 
buffer identifies the 

RMS$ IAL An output 
successfully, 
written 

file 
and 

could not be closed 
the user buff er cannot be 

15.2 SET DEFAULT DIRECTORY 

The default directory control routine informs you of changes in the 
default directory for the process. The entry point for this control 
routine is: 

SYS$SETDDIR 

The argument list consists of three parameters, all optional. The 
first is the address of the descriptor for the new default directory 
(or 0 if it is not to be changed). The second parameter is the 
address of a word to receive the length of the current default 
directory (or 0 if not wanted). The third is the address of the 
descriptor of a buffer to receive the current default directory string 
(or O if it is not wanted). 

The new directory name string is check~d for correct syntax. 

You should restore the old default directory string to its original 
status unless you want the changed default directory string to last 
beyond the exit of your image. 

The completion status codes are listed below. 

Success: 

RMS$ NORMAL Operation successful 

Failure: 

RMS$ DIR Directory string invalid 

RMS$ IAL Invalid argument list 

15.3 SET DEFAULT FILE PROTECTION 

The default file protection control routine informs 
changes the default file protection for the process. 
for this control routine is: 

SYS$SETDFPROT 

15-2 

you of and/or 
The entry point 



CONTROL ROUTINES 

The argument list consists of two parameters, both optional. The 
first is the address of a word giving the new default file protection 
specification (Section 6.4 describes the file protection 
specification), or 0 if it is not to be changed. The second parameter 
is the address of a word to receive the current default file 
protection specification, or 0 if it is not wanted. 

You should restore 
unless you want 
image. 

the old default file protection specification 
the changed default to last beyond the exit of your 

The completion status codes are described below. 

Success: 

RMS$ NORMAL Operation successful 

Failure: 

RMS$ !AL Invalid argument list 

15-3 





APPENDIX A 

COMPLETION STATUS CODES 

This appendix lists, in alphabetical order, the completion status 
codes that VAX-11 RMS can return, cross-referenced to any applicable 
service in which they can occur. The error codes are listed in the 
first part of this appendix and the success codes are listed at the 
end. 

NOTE 

1. The errors that apply to the close 
service do not include errors that 
can arise due to setting of the SCF 
and SPL bits in the file-processing 
options field of the FAB. 

2. The wait service has unique errors. 
This service can also return any 
status code of the awaited 
operation. 

3. Errors associated with output 
operations may not necessarily be 
reported as the status of that 
particular operation because 
modified I/O buffers are not always 
written out immediately. Such 
errors are reported as the status of 
a subsequent operation, which may be 
an input, output or control 
operation. 

A-1 



)>I 
I 

r-..> 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_ACC 
0001C002 
Error 

RMS$_ACS 
00018764 
Severe error 

RMS$_ACT 
0001825A 
Error 

RMS$_AID 
000183F4 
Severe error 

RMS$_ALN 
000183FC 
Severe error 

RMS$_ALQ 
00018404 
Severe error 

RMS$_ANI 
0001840C 
Severe error 

RMS$_AOP 
00018414 
Severe error 

Description 

File access error; the status value field 

l 
(STV) contains an ACP error code 

I Error in access control string output on 
CREATE, ERASE, OPEN and PARSE 

l 
I 

I File activity precludes operation 

• • 

Bad area identification number field in 
allocation XAB. The status value field 
(STV) contains the XAB address 

Invalid alignment boundary type in 
allocation XAB. The status value field 
(STV) contains the XAB address 

Incorrect allocation quantity in alloca-
ti on XAB; the value either exceeds 
the maximum allowed, or is equal to 
zero for the extend service 

Records in a magnetic tape file are not 
ANSI D format 

Invalid allocation option in allocation 
XAB. The status value field (STV) 
contains the XAB address 

• 

• 
: 

• 

• 

• 

• 

L Applicable VAX-11 RMS Sentice 

~ 
• 

I • • • 

• • • • • • • .1. • • • • • • • • • 

• • • 

• 

• 

• • 

• 

() 

0 
3 
"'O 
I:""' 
tZl 
"i ..... 
0 
2: 

m 
~ 
"i 
c 
m 
() 
0 
0 
tZl 
m 



> 
I 

w 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_ATR 
0 

0001COCC 
Severe error 

RMS$_ATW G 
0001COD4 
Severe error 

RMS$_BES 
000181CO 
Warning 

RMS$_BKS 
0001841C 
Severe error 

RMS$_BKZ 
00018424 
Severe error 

RMS$ BLN -
0001842C 
Severe error 

RMS$_BOF 
00018198 
Warning 

RMS$_BUG 
00018434 
Severe error 

Description 

Read error on file header; the status 
value field (STV) contains an ACP 
error code 

Write error on file header; the status 
value field (STV) contains an ACP error 
code 

Invalid escape sequence entered from 
terminal 

Invalid bucket size (greater than 32) 
in FAB 

Invalid bucket size (greater than 32) 
in the allocation XAB. The status 
value field (STV) contains the XAB 
address 

Invalid value in block length field 

File is already at beginning of the file 
(backspace operation) 

Internal VAX-11 RMS error detected-
submit an SPR 

L Applicable VAX-11 RMS Sentice 

W~A/I~ 
• • • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • 

• 
I 

·I I 
I 

I 

• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • 

I ! I 
I I 

I I 

•' ie 

• • • • • • 
I 

I 

i l 

(') 
0 
3 
"O 
L' 
CZl 
!o-3 
H 
0 z 
(/) 

!o-3 
> 
!o-3 
c 
(/) 

(') 
0 
0 
CZl 
(/) 



>' 
I 
~ 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_BUG_DAP 
00018444 
Severe error 

RMS$_BUG_DDI 
0001843C 
Severe error 

RMS$_CCF 
0001CODC 
Severe error 

RMS$_CCR 
00018494 
Severe error 

RMS$_CDA 
0001COE4 
Severe error 

RMS$ CHG 
0001849C 
Severe error 

RMS$_CHK 
000184A4 
Severe error 

RMS$_CHN 
0001COEC 
Severe error 

Description 

OAP protocol violation - submit an SPR 

Invalid default directory. Internal 
VAX-11 RMS error; no recovery pos
sible - submit an SPR 

Cannot close file; the status value field 
(STV) contains an error code 

Cannot connect RAB (only one record 
stream permitted for sequential files or 
MSE not set for indexed file) 

Cannot deliver AST; the status value 
field (STV) contains an error code 

Attempt to change a key value when 
that attribute not set by the key defi
nition XAB key option flag 

Index file bucket check byte mismatch. 
The bucket has been corrupted. STV 
contains VBN of bucket. Submit an 
SPR 

Channel assignment failure; the status 
value field (STV) contains an error code 

7 

•j•lelele • • 

• • 

• 

• 

• e1e • • • ele el e 

• • 

• e1e 

Applicable VAX-11 RMS Service 

• • e1e 

• • • 

e1e • • • • • • • • • • 

• • 

ele ele 

• • 

• • • • 

• 

• 

• 

• 

• • 

() 
0 
3: .,, 
r 
CSl 
~ 
H 
0 z 
Cl) 

~ 
> 
~ 
c 
Cl) 

() 
0 
0 
CSl 
Cl) 



):>I 
I 

U"1 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_COD 
000184AC 
Severe error 

RMS$_CRC 
000182E2 
Error 

RMS$_CRE 
0001COOA 
Error 

RMSS_CUR 
00018484 
Severe error 

RMSS DAC 
0001C012 
Error 

RMS$ DAN 
000184BC 
Severe error 

I RMSS_DEL 
I 00018262 
1 

Error 

RMSS_DEV 
000184C4 
Severe error 

RMS$ DFL 
0001876C 
Severe error 

Description 

Invalid type code in XAB. The status 
value field (STV) contains the XAB 
address 

Network DAP level CRC check failed 
on CLOSE 

File create error; the status value field 
(STV) contains an ACP error code 

No current record; operation not imme-
1 diately preceded by a successful get or 
' find service 

File deaccess error during a close service; 
the status value field (STV) contains an 
ACP error code 

Invalid data area number in key defini
tion XAB. The status value field (STV) 
contains the XAB address 

i 
I 

Record accessed by RF A record access 1 
mode has been deleted 

Bad device or inappropriate device type 
for operation 

..l 

Data bucket fill size larger than bucket 
size specified in key definition XAB. ! 
The status value field (STV) contains the 

1
1 

XAB address 

• 

• 

• 

I 

L Appl;cable V AX-11 RMS Seni;ce 

• 

• 

• 

• 

• 
+-+ 
I I 

1. 

I I 

'• 

_J_ 

I 

I 

1 

....1.. 

• 

ere 

I 

l -L 

• 

l 

! 
~ 

•I I 
I I I 

-
I 

I 

.1 

I 

l 
l 

l 

• 

• • 

I 

l 

.,.1 
! 

...J.. 

l 

• 

• 

l 

• 

iJ 
I 

I 

n 
0 
3 .,, 
r 
tZl 
i-3 
H 
0 z 
C/l 
i-3 
> 
i-3 
c 
C/l 

n 
0 
CJ 
tZl 
C/l 



:i:=-
1 

O'\ 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_DIR 
000184CC 
Severe error 

RMS$-DME 
00018404 
Severe error 

RMS$_DNA 
000184DC 
Severe error 

RMS$_DNF 
0001C04A 
Error 

RMS$_DNR 
00018272 
Error 

RMS$_DPE 
0001C03A 
Error 

RMS$_DTP 
000184E4 
Severe error 

RMS$_DUP 
000184EC 
Severe error 

Description 

Error in directory name 

Dynamic memory exhausted; occurs 
only if the related 1/0 segment in the 
control region is full and the file is 
either a direct access process permanent 
file or the user has disallowed the use of 
the program region for 1/0 buffers to 
VAX-11 RMS 

Invalid default file specification string 
address 

Directory not found; the status value 
field (STV) contains an ACP error code 

Device not ready 

Device positioning error (applies only 
to magnetic tape); the status value field 
(STV) contains an ACP error code 

Invalid data type in key definition XAB. 
The status value field (STV) contains 
the XAB address 

Duplicate key detected, key definition 
XAB key option flag not set to allow 
duplicate key values 

7 
~ 

• 

I 
I 
i 

l l • • • 

i I I 

• 

• • 

• • • • • • 

I 

I 
I • I 

Applicable VAX-11 RMS Service 

• • • • 

I· • • • • • • • • • • • • • T • • 

! 1 
I T 
• • • • I 

• • • • • • 
_t 

T 
• • • • • • • • • • • • • • • • • • 

• ie • • 
I I 
1 l 
I i 

• • 



> 
I 
-i 

i.. 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_DVI 
000184F4 
Severe error 

RMSS_ENT 
0001C01A 
Error 

RMS$ ENV 
00018724 
Severe error 

I 
RMS$ EOF 
0001827A 
Error 

RMS$_ESA 
000184FC 
Severe error 

RMS$ ESL 
00018714 
Severe error 

RMS$_ESS 
00018504 
Severe error 

RMS$_EXP 

l
. 000182C2 

Error 

Description 

Invalid device identification in NAM 
block 

Error entering file name in directory; 
the status value field (STV) contains an 
ACP error code 

Environment error; the code necessary 
to support the file organization of facil
ity was not selected at system qeneration 

End of file 

Invalid expanded string area address in 
NAM block 

Invalid expanded string length in NAM 
block 

I Expanded string area too short 

l 

File expiration date not yet reached 

7 Applicable VAX-11 RMS Se.vice 

• 

• 

• 

I 1-1 I 

tt--t 
• ! • I 

-'-

ele 

• 

1. • 

• 
l____l 

I I· I 
H 

I 

I I 
_L__j_ 

• 

I 
l 

I 
i 

..L 

11 
I 
I ' 
i I u 

• 

I 
l 

1 
l 

• 

·1 

ele 

I· I· I 

• 

_l 

1 
I 

I 
J_ 

ele • 

• 

• 

ele • 

• • 

• i I 

I 

l 

• • 

(") 

0 
3: .,, 
t"'1 
CZl 
t-3 ..... 
0 z 
(J) 

t-3 
> 
t-3 
c: 
(J) 

(") 
0 
0 
CZl 
(J) 



;:i:. 
I 

(X) 

Status Code 
Hexadecimal Value 

Severity level 

RMS$ EXT 
0001C022 
Error 

RMS$_FAB 
0001850C 
Severe error 

RMS$_FAC 
00018514 
Severe error 

RMS$ FEX 
00018282 
Error 

RMSS_FLG 
0001851C 
Severe error 

RMS$_FLK 
0001828A 
Error 

RMS$ FNA 
00018524 
Severe error 

RMS$_FND 
0001C02A 
Error 

...L 

Description 

File extend error; the status value field 
(STV) contains an ACP error code 

Invalid FAB; block identifier field 
incorrect 

Operation not allowed by the value set 
in the file access field of the FAB 

File already exists 

Invalid combination of values in key 
XAB FLG field; example: CHG or 
NU L for primary key. The status value 
field, (STV) contains the XAB address. 

1 

File is locked and therefore not 
available 

Invalid file specification string address 
in FAB 

Files-11 find function failed; the status 
value field (STV) contains an ACP error 
code 

z Applicable V AX-11 RMS Service 

•1•1• 

I 1 
H 

j• 

·1 
I 
1· 

-H 
I l . 

I 

_LJ 

• 

I 

I • 

··fn I 

I 

• 

ele 

T 

I 

I 

I T 

11 

Li 

• 

• 
1 .,. 

ele 

"'T 

_l_ 

.1 
ele 

1·1·1 I . 

1 
l 

I 

• 

l 

I 
1· 

I 

I 

• I 

I I 
I I 

• 

l 

• • 
l 

I 

J 

• 

• 

n 
0 
3 .,, 
r 
CZl 
~ 
H 
0 z 
00 
~ 
> 
~ 
c: 
00 

n 
0 
0 
CZl 
00 



> 
I 

\.0 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$ FNF 
00018292 
Error 

RMS$ FNM 
0001852C 
Severe error 

RMS$ FOP 
0001853C 
Severe error 

RMS$ FSZ 
00018534 
Severe error 

RMS$_FTM 
000187C4 
Severe error 

RMS$ FUL 
00018544 
Severe error 

RMS$ IAL 
0001854C 
Severe error 

RMS$ IAN 
I 00018554 l Severe error 

RMS$_1BF 
00018754 
Severe error 

l 

r 
I 

J 

Description 

File not found 

Syntax error in file name 

Invalid file processing options 

Invalid fixed control area size in FAB 
(equal to 1 for print files) 

Network OAP file transfer mode does 
not permit operation 

Device full; cannot create or extend file 

Invalid argument list 

Invalid index area number in key defi
nition XAB. The status value field 
(STV) contains the XAB address 

Invalid bucket format, STV contains 
bucket VBN - submit an SPR 

-+ 

1 

I• 

I 
: 

z Applicable VAX-11 RMS Sen/;ce 

• 

• 

• 

1 
1· 

• 

ele 

• 

1 
"'T 

I I I 

I I 

• 

ele 

• 

e I I e 

• 

I i I 
• •1•1•1•,•1•1• 

I I 
•

1 •1•1•1• 
i 

•:• 
~~I 
~T 
i ! 

l 
• 

~ 
I • 

l i I 
.l..___J_ 

l 

I 
1 I 

I I 
I• 1 ; i 1-i I 

~ 

-, - I 

• i 

I I 

ele 

• 

·1·1· 
l 

ele 

• 

• •1• 

• 

I 

I I 
I 

•1• 
I 

I 

Li 

e I I e 

•

1 ·1·1· 

• 

(') 
0 
3 
"'O 
t'"1 
CZl 
i-3 
H 
0 
z 
(/) 

i-3 
> 
i-3 
c 
(/) 

(') 
0 
0 
CZl 
(/) 



;i::.. 
I 

I-' 
0 

r 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_1BK 
0001877C 
Severe error 

RMSS_IDR 
I 000182F2 l Warning 

RMS$_1DX 
0001855C 
Severe error 

RMS$_ I FA 
0001C124 
Severe error 

RMSS_IFI 
00018564 
Severe error 

RMS$_1FL 
00018764 
Severe error 

RMS$_1MX 
0001856C 
Severe error 

z ApplicableVAX-11 RMSSen1;ce 

Description 

Bucket size of lowest level of index area 
number (LAN) not equal to that of spe
cified index area number (IAN field) in 
key definition XAB. The status value 
field (STV) contains the XAB address 

Invalid directory rename operation 

Index not initialized; internal VAX-11 
RMS error. Submit an SPR 

• 

J 

Invalid file attributes, file header cor- I I 
rupted; check the status value field I • I • 
(STV) for additional information I 

L_l 

Invalid internal file identifier in FAB I 
, •• i.[ 

I I 
_l___ r---- I 

Index bucket fill size larger than bucket I 
size specified in key definition XAB. 
The status value field (STV) contains the 
XAB address 

More than one XAB of the same type or 
non-dense XAB is present for the file. 
The status value field (STV) contains 
the XAB address 

• 

• • 

l 

_i_ 

I 
1 

I 

l I 
I 

I 

• e:e:e: l I I I I 

11 
l 

• 

I 
l I I .m 
111 

Lil 

I 
_l 

·1 
J. 

I• I• I 

! 

• 

I 

• 

I 

J 

I 

• 

I 
l 
I 

I I 

•!•i 

1 
I 
I 

1-1 I 
r I 

I I i 
_LJ_ I 

I 
Tl 
I . 

I 1 

l I 

n 
0 
3 
too 
t-t 
tZl 
~ 
1-4 

0 z 
(/) 

~ 
> 
~ 
c 
(/) 

n 
0 
0 
tZl 
(/) 



:J>i 
I 

1--' 
1--' 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_10P 
00018574 
Severe error 

RMS$_1RC 
0001857C 
Severe error 

RMS$_1SI 
00018584 
Severe error 

RMS$_KBF 
0001858C 
Severe error 

RMS$_KEY 

I 00018594 
l Severe error 

I 
RMS$_KNM 
00018774 

i Severe error 
L 

RMS$_KRF 
0001859C 
Severe error 

Description 

Invalid operation attempted: 
1. block 1/0 when not block 1/0 access 
2. record 1/0 when block 1/0 access 
3. rewind of process permanent file 
4. inappropriate device type or file 

organization 

Invalid record encountered in file; 
invalid count or control byte field. The 
status value field (STV) contains the vir
tual block number for sequential and 
indexed files, or the relative record 
number for relative files. Submit an SPR 

Invalid internal stream identifier in RAB 

Invalid key buffer address; not in access 
limits 

Invalid record key for random operation 
to a relative file. Invalid packed decimal 
key for an indexed file 

Invalid key name buffer address in key 
definition XAB. The status value field 
(STV) contains the XAB address 

Invalid key of reference in KR F field 

/ Applicable VAX-11 RMS Seovice 

I 
j 

.i 
I 

TTl 
I. I I 

_L___l_ 

• 

• 

ele 

J 

• 

...I. l 

e1e1e 

• 

elele 

• 

• 

• 

e1e 

e I I e 

ele 

• 

• 

.1 

I 
_J_ 

• 

l 

ele 

• 

elele 

• 

• I 
l 

Tl 
i I 

...l 

• 

• 

J 

I : 
I 
I -

ID 
! ! I 

i I u 

•l•I• 

• 

!. 
I 

~ 

·1· 
I 

T 

I I 
I ! 

1 I 
i I 
I I 

LJ 

I 

1 
j 

• 

ele 

1 

() 
0 
3 .,, 
r 
tZl 
1-i 
H 
0 z 
CJ) 

1-i 
> 
1-i 
c 
CJ) 

() 
0 
0 
tZl 
CJ) 



:J:>' 
I 

....... 
[\.) 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_KSI 
00018784 
Severe error 

RMS$ KSZ 
000185A4 
Severe error . 

RMS$_LAN 
000185AC 
Severe error 

RMS$_LEX 
0001878C 

1 Severe error 
L 

RMS$_LNE 
000185BC 
Severe error 

RMS$_MBC 
00018734 
Severe error 

RMS$ MKD 
0001C032 
Error 

RMS$ MRN 
000185CC 
Severe error 

I 
..l. 

Description 

Key size too large to permit two keys in 
index bucket, STV value is key of 
reference for index 

Key size not equal to 4 (relative file) 
or key size too large (indexed file) 

Invalid index lowest-level-bucket area 
number in key definition XAB. The 
status value field (STV) contains the 
XAB address 

Attempt to extend area containing an 
unused extent 

Logical name error; resulted in recursion 
or invalid process permanent file equiv
alence string 

Invalid multi-block count; must not be 
greater than 127 

Files-11 could not mark file for deletion; 
the status value field (STV) contains an 
ACP error code 

Invalid value for maximum record 
number (negative) or relative key greater 
than maximum record number 

• 

• I 

I· 
• 

• 

• 

7 Applicable V AX-11 RMS Service 

I 
I ; 
i i 

• 

I 
l 

• 
1 

• I I 

I I l__i 
T IT 
I 

I 
• I I 

J_ 

! 

• 

• 

• 
_j_ 

• • 

1 

• 

• I I 

• 

l 

I I 
Li 

I 
1 

• 

1 

I 
..!. 

I 

n 
0 
3: .,, 
t""' 
CZl 
i-3 
H 
0 z 
ti) 

i-3 
> 
i-3 
c 
ti) 

n 
0 
0 
CZl 
ti) 



:i::oi 
I 

....... 
w 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_MRS 
00018504 
Severe error 

RMS$_NAM 
000185DC 
Severe error 

RMS$_NEF 
000185E4 
Severe error 

RMS$ NET 
0001874C 
Severe error 

RMS$_NMF 
000182CA 
Error 

RMS$_NOD 
000185F4 
Severe error 

RMS$_NPK 
000185FC 
Severe error 

RMS$_ ORD 
00018604 
Severe error 

I 

J 
I 
I 

I 

Description 

Invalid value for maximum record size 

Invalid NAM block 

• 

Attempt to use the put service to a 
sequential file when not positioned 
to end of file 

Network operation failed; the status 
value field contains OAP code •1• 

No more files for a search or remove 

1 I operation 

Node name error I 

No primary key defined in key defi- I 
nit ion XAB when creating an 

I 

indexed file 

Chained XABs not in correct (ascending) 
order, not dense (sequential) when 
required, or different types of XABs are 
interleaved in the same XAB sub-chain. 
The status value field (STV) contains 

I 
the XAB address 

z Applicable VAX-11 RMS Seniice 

• 

•I I I• I• I I I I• I• I I. I. I I• 
(') 
0 
3 
~ 
C""' • t.rl 
~ 
1-4 

i. \. 
0 

I. z 
• • • • • • • • • m 

~ 
> 
~ 

I I I I I I I I I I l I I I I I I /. / I /. / l I I I I 
c: 
C/) 

(') 
0 -n 0 

I ·I I I i 1-1 I I I I I 1+1 I I I I. I I I 
t.rl 
C/) 

I 
J. 

I• i I I I 
I 

I I 

I I 

f J I 

l l 1 
I 

I I ' I i• I 
I I I I 
' 

I i 

I 
I I I 

I I j 
I ..1. j j 



::i:-
1 

I-' 
~ 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_0RG 
0001860C 
Severe error 

RMS$_pBF 
00018614 
Severe error 

RMS$_PES 
000181C8 
Warning 

RMS$_PLG 
0001861C 
Severe error 

RMS$_PLV 
0001872C 
Severe error 

RMS$ POS 
00018624 
Severe error 

RMS$_PRV 
0001829A 
Error 

RMS$_0UO 
00018634 
Severe error 

I 
I 

7 
Description 

Unknown file organization 

I 
Invalid prompt buffer address I I I I I 

Partial escape sequence entered from 
terminal; buffer overflowed before 
completion 

i 

Effo' ;n Me pmlogue; file ;, COffupted I 

Prologue version unsupported 

Invalid key position (greater than MRS) 
in key definition XAB. The status value 
field (STV) contains the XAB address. 

Insufficient privilege or file protection 
violation; access denied 

Error in quoted string 

l 

I 

I 
j_ 

• 

·I i 

• 

el 
i 

• 

I 
.l__L 

• 

• ele 

•l•i• 

• 

l 

T 

I 
I 

• 

• 

• 

Applicable V AX-11 RMS Service 

• 

• 

r 

I 

l I 
I 

• • 

• 

• • I l+i 
..L I 

l 
• 

l 
I 

•!• • 

l l 

i 

• 

_I 

r 

l 

J 
l 
I 

•I 

~ 

n 
0 
3 .,, 
r 
tZl 
~ 
1-1 
0 z 
ti) 

~ 
> 
~ 
c 
ti) 

n 
0 
0 
tZl 
ti) 



):>I 
I 

I-' 
Ul 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_RAB 
0001863C 
Severe error 

RMS$_RAC 
00018644 
Severe error 

RMS$_RAT 
0001864C 
Severe error 

RMS$_RBF 
00018654 
Severe error 

RMS$_REF 
0001875C 
Severe error 

RMS$_RER 
0001COF4 
Severe error 

RMS$_REX 
000182A2 
Error 

RMS$_RFA 
0001865C 
Severe error 

Description 

Not a valid RAB; block identifier field 
incorrect 

Invalid value in record access mode field 
of RAB 

Record attributes invalid in FAB 

Invalid record address 

Invalid key of reference in XAB, greater 
than number in file, equal to 255 

File read error; the status value field 
(STV) contains an ACP error code 

Record already exists; in a random 
record access mode operation to a 
relative file a record was found in the 
target record cell 

Invalid record's file address contained in 
RAB 

• 

z Applicable VAX-11 RMS ServiC< 

1· 

• 

I u 

.,. 

i 

I 
I 

..l 

• 

_l 

..l 

l 

e1e1e1e1e 

• • 

• • 

• • 

I 

I 
_L 

• .I 
i 

i 

l 

elele • 

• 

·I 
.i 

I 
l 
I 

-

• 

• • 
I 

_J_ _j_ _i 

' T I 

I 
• 

l 

I I 

I : u 

e1e1e1e1e 

.I • 

• • 
J 
r 
! 

(') 
0 
3: .,, 
r 
t1l 
~ 
H 
0 z 
(/) 

~ 
> 
~ 
c: 
(/) 

(') 
0 
0 
t1l 
(/) 



~ 
I 

....... 
O"I 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_RFM 
00018664 
Severe error 

RMS$_RHB 
0001866C 
Severe error 

RMS$ RLF 
00018674 
Severe error 

RMS$ RLK 
000182AA 
Error 

RMS$_RMV 
0001COFC 
Severe error 

RMS$_RNF 
00018282 
Error 

RMS$_RNL 
000181AO 
Warning 

RMS$_ROP 
0001867C 
Severe error 

+ 

r 

Description 

Invalid record format 

Invalid record header buffer 

Invalid related file 

Record locked by another process, or 
another stream within your process 

Files-11 remove function failed; the 
status value field (STV) contains an 
ACP error code 

Record not found 

Record not locked 

Invalid record option 

z Applicable VAX-11 RMS Sentice 

ele 

., 
fl 

I I 
I 

_l j 

• • 

I I 

I 
I : 
I 

I I I 
fl 
I : 
I i 

I I 

I I I I I 
I I I· 1 · I 

I I I 

I 
• 

n. 
I I 

I J 
• 

n 
I I 
I I u 

! • ! 
I I 
I I 

I : l 

I 

I t .I ! I I I I I I 
I '·I I 

l I l 

I 

·I 
W
1:; 

. I 
I 

I 

l 

T 

n 
I 
Li 

• 

• 

1 

I i 
I J 

I 
I j 

() 
0 
3: 
l'tJ 
C""' 
tzl 
~ 
1-t 
0 
z 
tll 

~ 
~ 
c: 
tll 

() 
0 
0 
tzl 
tll 



>-' 
I 

I-' 
-..J 

l 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$ RPL 
0001C104 
Severe error 

RMS$_RRV 
00018684 
Severe error 

RMS$_RSA 
000182DA 
Error 

RMS$_RSL 
0001873C 
Severe error 

RMS$_RSS 
00018694 

l l Severe error 

RMS$ RST 
0001869C 
Severe error 

RMS$_RSZ 
000186A4 
Severe error 

RMS$_RTB 
I 000181A8 

Warning 

I 
L 

Description 

Error while reading prologue; the status 
value field (STV) contains an ACP error 
code 

Invalid R RV record encountered in 
indexed file, file may be corrupted 

Record stream active; an attempt was 
made to issue a record operation request 
in an asynchronous environment to a 
record stream that has a request out
standing 

Resultant string length field of NAM 
block invalid 

Resultant string area size is too small 

Invalid resultant string area address in 
NAM block 

Invalid record size 

Record too large for user buffer 

z Applicable VAX-11 RMS Sen<ice 

e1e1e 

Li 

• 

•I 
I 

l 

• 

.,.1 

I 
l 

• 

• 

• • 
: 

!•j• 

' 

l_l 

ele • 

• • 

elele ele 

I I I 

I 

I I 

-+ 

• 

• 

i 

I• 
I 

• 

• 

elele 

i I 

1.1 

h 

l 

• 

• • 

• • 
1 

1•1• 

I 

I 

i 

L 

I 

• 

• 

j•l•I• • 

• 

• 

I I I 
• I I I 

I I I 

I I I i 

l • 1 i. 
_]_ LJ_j 

I 1- r 
I I I 

l WI 

(') 
0 
3: .,, 
r 
C%l 
8 
H 
0 z 
(/) 

8 
> 
8 
c: 
(/) 

(') 
0 
0 
C%l 
(/) 



:;i:.i 
I 

....... 
co 

L 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$ RVU 
0001868C 
Severe error 

RMS$_SEG 
00018794 
Severe error 

RMS$_SEO 
000186AC 
Severe error 

RMS$_SHR 
00018684 
Severe error 

RMS$_SIZ 
000186BC 
Severe error 

RMS$_SNE 
0001879C 
Severe error 

RMS$_SPE 
000187A4 
Severe error 

Description 

Error while updating R RVs, some paths 
to date may be lost 

Segmented key for key data type other 
I than string 

I 
1 Primary key of record to be written is 

i 

' 

not equal to or greater than key of 
previous record and RAC field set to 
SEO 

Invalid value in the file sharing field of 
FAB 

Invalid key size specified in key 
definition XAB SIZ field; i.e., specified 
size exceeds maximum record size, not 
equal to defined length on binary and 
integer key data types, greater than 16 
for packed decimal key data type, or 
equal to 0 for string or packed decimal. 
The status value field (STV) contains 
the XAB address. 

File sharing not enabled. RMSSHARE 
utility was not run (see VAX/VMS 
System Manager's Guide) 

File sharing data base page count 
exceeded. Shared file database too 
small. Use RMSSHARE to increase size. 

I 
I 

I 
I 

z Applicable VAX-11 RMS Seniice 

• I 

• nlTfTTilll!lll l!lll,lll 1 

• I I I I 1 
J_ 

! 

• 

• 

t 
• 

r 
•!• ! 

l 

1 
I 

I 

l l 

T 

I 

I 
H 

i 

r u 

• 

I 

""T 
I 

• 

• 

l 

I I I I I I I 

+ 

i 
J_ 

I 
T 
I 

l 

I I 
11 
I I 
I 

l 

l 

(') 
0 
3 
"tJ 
C"" 
tZl 
....; 
1-1 
0 z 
(/) 
....; 
> ....; 
c: 
(/) 

(') 
0 
0 
tZl 
(/) 



> 
I 

I-' 
l..O 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_SPL 
0001C042 
Error 

RMS$_SOO 
000186C4 
Severe error 

RMS$_STR 
000187BC 
Severe error 

RMS$_SUP 
00018202 
Error 

RMS$_SYN 
00018604 
Severe error 

RMS$_SYS 
0001C10C 
Severe error 

RMS$ TMO 
I 000181BO 

Warning 

RMSS_TNS 
000181B8 
Warning 

RMS$_TRE 
000186DC 
Severe error 

Description 

Spool or submit command file option to 
a close service failed; the status value 
field (STV) contains an error code 

Operation not sequential 

User structure (FAB/RAB) became 

? ApplicableVAX-11 RMSSentice 

• 

• I I. I I I I. I I I 

invalid during the execution of a file or I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • 
record operation 

Operation not supported; status value 
field contains OAP code I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I I • 

Syntax error in file specification 
el I lel I I I I I l•lel I I I le 

Error in system 010 directive; the status 
value field (STV) contains the directive I • I I • I • I • I I • I I • I • I • I I • I • I • I I • I • I I • I • I • I • I • I • I • I I • 
or 010 status code 

Time-out period expired 

Terminal character not seen; 
Applies to terminal input only 

Index tree error: file is corrupted 

I 

~ 

• 

• • • 

• 

• • • • 

(') 
0 
3 
"'ti 
t"1 
Cz:J 
i-3 
H 
0 z 
(J) 

i-3 
> 
i-3 
c: 
(J) 

(') 
0 
0 
Cz:J 
(J) 



>" 
I 

N 
0 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_TYP 
000186E4 
Severe error 

RMS$_UBF 
000186EC 
Severe error 

RMS$ UPI 
000187AC 
Severe error 

RMS$_USZ 
000186F4 
Severe error 

RMS$_ VER 
000186FC 
Severe error 

Description 

Error in file type 

T 
I Invalid user record area address 

I 
I 

SHR bit UPI not set when file sharing 
with FOP= BIO or FOP= BRO 

Invalid user record area size 

Error in version number 

7 Applicable V AX-11 RMS Service 

• I • • • • 

1 
I • • 

• • 

• • 

' ' '•I I I I lol I I I I I lill I I lo 

RMS$_WBE 
0001C12C 
Severe error 

I I ' I I I I I I I I I I I ' I I Error writing behind; the status value 
field (STV) contains an ACP error code I • I I • • • • • I • I • I I I I • I I • I • I • I I • 

RMS$_WCC 
000182EA 
Error 

RMS$_WER 
0001C114 
Severe error 

RMS$_WLD 
00018744 
Severe error 

Invalid wild card context value in I I ! I I I i I I I I I I I I I. I I I I I I I. NAM block 

GI F;le wdte woe; the status value field 

1"1111.11.11.lll I.I I I.Ill l.IJIJl·I·' ,. 
(STV) contains an ACP error code 

Invalid wild card operation 

n 
0 
3: .,, 
l:"1 
tZl 
1-i 
H 
0 z 
Cf) 

~ 
1-i 
c 
00 

n 
0 
0 
tZl 
00 



>' 
I 

[\.) 

1--' 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_WLK 
000182BA 
Error 

RMS$_WPL 
0001C11C 
Severe error 

RMS$_XAB 
0001870C 
Severe error 

RMS$_CONTROLC 
00010651 
Success 

RMS$_CONTROLO 
00010609 
Success 

RMS$_ CONTROL Y 
00010611 
Success 

RMS$_CREATED 
00010619 
Success 

Description 

Device is write-locked 

• 

Error while writing prologue; the status 
value field (STV) contains an ACP error 
code 

Not a valid XAB, not readable or 
writable, invalid code or length. The • status value field (STV) contains the 
XAB address. 

Operation completed under Control C; 
terminal 1/0 may have been truncated 

Operation completed under Control 0; 
terminal output may have been 
truncated 

Operation completed under Control Y; 
terminal 1/0 may have been truncated 

File was created, not opened; used in 
conjunction with the Cl F option 

7 Applicable VAX-11 RMS Sen1ice 

• • • • • • • • • • • • • • 

• • • 
l 

• • • I • I 

• • • • 

• 

I 
I •1 • • • I 

I 
•' 

I I 

• • • 

• 

I 

l 
I 
I 

I 

I 

• 

• 

• 

I 
I 

1· 
J 
l 
I 
I 

I 
I 

() 
0 
3: 
"'O 
C""' 
Cz:I 
t-3 
1-t 
0 z 
ti) 

t-3 
> 
t-3 
c: 
ti) 

() 
0 
a 
Cz:I 
ti) 



:i::oo 
I 

N 
N 

Status Code 
Hexadecimal Value 

Severity Level 

RMS$_KFF 
00018031 
Success 

RMS$_NORMAL 
00010001 
Success 

RMS$_0K_ALK 
00018039 
Success 

RMS$_0K_DEL 
00018041 
Success 

RMS$_0K DUP 
00018011 
Success 

RMS$_0K IDX 
00018019 
Success 

RMS$_0K_LIM 
00018051 
Success 

RMS$_0K_NOP 
00018059 
Success 

Description 

Known file found 

Operation successful (synonym for 
RMS$ SUC) 

Record already locked 

Deleted record accessed successfully 
(NXR bit set in ROP field) 

Record inserted has duplicate already 
on file 

Record inserted, but error occurred on 
index update which could cause slow 
access 

Retrieved record exceeds specified key 
value 

XAB not filled in because file opened 
for block 1/0 

ele 

l 

z Applicable VAX-11 RMS Ser1ice 

• • 

I 
[ 

I •I• • 

"T 

• 

I 
! 

1 
I 

l 

.,. •I• e 

• 

• 

_I 

[ 

• 

• 

ele eie 

l 
• 

• I 

.1 
I 

• 

l 
• • 

I 
I • 

• 

i 
•I 

I 
_I 

el•lele 

1 

I I i 

I 

e •le 

1 

I 

r 

., .. 
I n 
l I 

• 

1 

() 
0 
3 
"O 
C""' 
ts:! 
1-i 
1-1 
0 z 
(/) 

1-i 
)ii 
1-i 
c: 
(/) 

(} 
0 
0 
ts:! 
(/) 



::t:>' 
I 

[\,) 

w 

Status Code 

Hexadecimal Value 

Severity Level 

RMS$_0K RLK 
00018021 
Success 

RMS$_0K RNF 
00018049 
Success 

RMSS_PENDING 
00018009 
Success 

RMSS_SUC 
00010001 
Success 

RMSS_SUPERSEDE I 
00010631 
Success 

Description 

Record locked but ready anyway; locker 
set R LK bit in ROP field 

Non-existent record accessed successfully 
(NXR bit set in ROP field) 

Asynchronous operation not yet 
completed 

Operation successful (synonym for 
RMSS_NORMAL) 

Created file superseded an existing 
version I 

i 

z AppHcable VAX-11 RMS Sen1;ce 

• • 

e I I e 

I 
l 

• ele elelelele 
I ·1· • • •1•1• • 

l 
•·•1•1•1•1•1•1•1•1•1•1•1•1•1•1•1•1•1•1• •lelelelel•lele 

I ! 

I 

! 

I I·, I 
I I I 

• 

I I 

I 
I 

I 

I 

I I 
I I I I 
I I I 

(') 
0 
3: 
"'C 
t"1 
t1:] 
~ 
1-4 
0 z 
(J) 

~ 
> 
~ 
c 
(J) 

(') 
0 
0 
t1:] 
(J) 





APPENDIX B 

FILE/RECORD CONCEPTS AND FORMATS 

VAX-11 RMS supports a variety of file organizations, record access 
modes, and record formats. The specific use of the file determines 
which file organization is best. The sections that follow outline the 
capabilities of each of the above items. Moreover, the Introduction 
to VAX-11 Record Management Services manual provides a complete 
description of these concepts. 

B.l FILE ORGANIZATIONS 

File organization is the physical arrangement of the data in the file. 
You select the type of file organization you want when you create the 
file. Once a particular file organization is chosen, it remains fixed 
for the life of the file; you cannot change it. However, you can 
copy the file to another area, and in the process convert it to a 
different file organization (using the CONVERT utility). 

VAX-11 RMS currently supports three file organizations: 

• Sequential 

In the sequential file organization, records are in physical 
sequence. Each record, except the first, has another record 
preceding it, and each record, except the last, has another 
record following it. The physical order in which records 
appear is identical to the order in which they are written. A 
file of sequential organization can contain records of either 
fixed or variable length. 

• Relative 

In the relative file organization, fixed-length positions, or 
cells, are created in the file beginning at the first record 
position and continue to the end of the file. There is no 
requirement, however, that every cell contain a record. Empty 
cells can be interspersed among cells that contain records. 
The relative file organization supports records that are 
either fixed or variable length. 

• Indexed 

In the indexed file organization, the location of records is 
transparent to your program; VAX-11 RMS completely controls 
the placement of records in an indexed file. Presence of keys 
in each of the records governs this placement. Records may be 
fixed-length or variable-length; if the records are 
variable-length, the maximum record length may be specified 
and no record can exceed the maximum length when the record is 

B-1 



FILE/RECORD CONCEPTS AND FORMATS 

put in the file or updated. However, if a maximum length is 
not specified, records may be as large as the bucket size will 
allow. For additional information concerning the relation 
between bucket size and record length, see Chapter 5. 

B.2 RECORD ACCESS MODES 

The record access mode is the method of retrieving and storing records 
in a file. In contrast to file organization, which you cannot change 
once a file is created, you can use a different record access mode 
each time you process a record. 

VAX-11 RMS provides three record access modes: 

• Sequential 

VAX-11 RMS supports sequential record access mode for all 
device types and file organizations. 

When using the sequential record access mode, your program 
issues a series of requests for the next record. VAX-11 RMS 
interprets these requests in the context of the file 
organization. Thus, the organization of the file governs the 
order in which records are read or written; and the read or 
write continues, in a serial fashion, until processing of the 
file is completed. For sequential organization, VAX-11 RMS 
knows that every record after the first record is followed by 
another record until the end of the file (last record). For 
relative organization, VAX-11 RMS recognizes that empty cells 
can be interspersed among filled record cells and acts 
accordingly. On a read request, VAX-11 RMS ignores empty 
cells. For the indexed file, the presence of one or more 
indexes permits VAX-11 RMS to determine the order in which to 
process records in sequential access mode. Initially, your 
program must specify a key of reference (e.g., primary key, 
first alternate key, second alternate key, etc.) to VAX-11 
RMS. Thereafter, VAX-11 RMS uses the index associated with 
that specified key to access records in the sequence 
represented by the entries in the index. Each successive 
record that VAX-11 RMS returns in response to a program react 
request contains a value in the specified key field that is 
equal to (when duplicate key values are allowed) or greater 
than that of the previous record returned. 

• Record's File Address (RFA) 

You can use 
organization, 
operations. 

the 
but 

RFA 
only 

record access mode with any file 
for disk files and only for read 

The term "record's file address" means that every record in 
the file has a unique address. The type of file organization 
assigned to the file .determines the format of this address. 

The most important feature of RFA record access mode is that 
the RFA of any record remains constant while the record 
remains in the file. VAX-11 RMS returns the RFA to you in the 
RAB when the record is read or written. (The record must be 
written using some record access mode other than RFA, since 
RFA access is available for read operations only. The RFA, 
however, is returned in the RAB as an output from a write 
operation.) Your program can then save this RFA for use later 

B-2 



FILE/RECORD CONCEPTS AND FORMATS 

during the current execution of the program, or for use at any 
subsequent time. 

• Random by Key 

VAX-11 RMS always supports random access by key for relative 
and indexed files. VAX-11 RMS also permits random access by 
relative record number for sequential disk files, but only if 
the records in the file are of fixed-length. 

In random access by key, your program, not the file 
organization, determines the order in which record access 
occurs. Each program request for a record must include the 
key value (relative record number for relative files and key 
of reference for indexed files) of the particular record to be 
accessed. This program randomly identifies by means of the 
key value any record in the file, and VAX-11 RMS accesses that 
record. Your program can make successive requests for 
accessing records anywhere within the file. 

Each of your program read requests in random access mode to an 
indexed file must specify a key value and the index (e.g., 
primary index, first alternate key index, second alternate key 
index, etc.) that VAX-11 RMS must search. When the VAX-11 RMS 
finds the key value in the specified index, it reads the 
record that the index entry points to and passes the record to 
your program. Random access can be accomplished on any key by 
any of the following methods: 

1. Exact match of key values. 

2. Approximate match of key values (e.g., record key 
value greater than the program-supplied key value, or 
record key value greater than or equal to the 
program-supplied key value). 

3. Generic match of key values. Generic match is 
applicable to string data type keys only. A generic 
match is defined as a match on some number of leadinq 
characters in the key field. You determine th~ 
number specifying a search key which is smaller than 
the entire field. 

4. Combination of approximate and generic match. 

In contrast to read requests, which require a 
program-specified key value, program requests to write records 
randomly in an indexed file do not require the separate 
specification of a key value. All keys (primary and, if any, 
alternate key values) are in the record itself. When an 
indexed file is opened, VAX-11 RMS retrieves all key 
definitions stored in the file. Thus, VAX-11 RMS knows the 

·location and length of each key field in a record. Before 
writing a record into the file, VAX-11 RMS examines the key 
values in the records, places the record in the file, and 
creates new entries in the alternate indexes. In this way, 
VAX-11 RMS ensures that the record can be retrieved by any of 
its key values. 

The access mode may be switched while the file is being processed. A 
typical use of this feature is to perform a random by key access to 
locate a record. The access mode is then switched to sequential. 
Subsequent Get operations will return successive records by ascending 
key value. 

B-3 



FILE/RECORD CONCEPTS AND FORMATS 

B.3 RECORD FORMATS 

The record format is the way a record physically appears on the 
recording surface of the storage medium. VAX-11 RMS provides three 
different record formats. 

• Fixed-length 

The term fixed-length record f~rmat refers to file records 
that are all equal in size; each record occupies an equal 
amount of space. 

• Variable-length 

The term variable-length record format refers to file records 
that are not all the same size. VAX-11 RMS prefixes a count 
field to each record when it is written; this indicates to 
VAX-11 RMS how many bytes are in each individual record, and 
therefore the actual size of the record. 

VAX-11 RMS uses two types of variable-length records: 

Disk files - V format 

Contain a 2-byte binary count field prefixed to each record 

Tape files - D format 

Contain a 4-byte decimal ASCII count field prefixed to each 
record 

• Variable with fixed-length control (not supported for indexed 
files) 

This type of record format is similar to V or D format 
variable-length records, except that it also contains a 
control area of fixed length. A fixed control area lets you 
construct variable-length records that contain an additional 
fixed-length piece of data that will always be present and 
will have a "loose" association with the other contents of the 
record. The VAX-11 Text Editor (see the VAX-11 Text Editor 
Reference f\1antrnl) uses this type of record, in which a line 
sequence riumbe~r-·Ts associated with each line of text. This 
association is considered "loose" because each of the contents 
can be considered as separate for the purpose of processing, 
even though they are stored together. 

Table B-1 summarizes the relationship between the VAX-11 RMS file 
organizations and their permitted record access modes and record 
formats. 

B.4 FILES-11 DISK STRUCTURE 

Files-11 is the term applied to the logical structure imposed on disk 
volumes. This structure provides the file access and allocation 
control mechanism for the volume. A disk volume is defined as an 
ordered set of blocks, with each block being an array of 512 eight-bit 
bytes. 

B-4 



FILE/RECORD CONCEPTS AND FORMATS 

Table B-1 
File Organization Relationships 

with Record Access Modes and Record Formats 

Record Access Mode Record Fonnat 
Permitted Pennitted 

File 
Variable with Organization Random by 

Random by Record's File Fixed-Length 
Sequential Key Address Fixed Variable Control 

Sequential Yes No 1 Yes2 Yes Yes Yes 

Relative Yes Yes4 Yes Yes Yes3 Yes3 

Indexed Yes Yes Yes Yes Yes 5 No 

1 Random access by key (relative record number) for the sequential file organization is permitted only for the fixed
length record format on disk devices. 

2 Random access by RF A is permitted only on disk devices. 
3 Variable-length records in the relative file organization are stored in fixed-length cells; the size of each cell is the 

size needed to store the largest record permitted in the file. 
4 The key in relative file records is the relative record number. 
5 A record in an indexed file may not cross bucket boundaries. 

In terms of the volume as a whole, the blocks are numbered 
consecutively in the range of 0 through n-1, where n is the highest 
number of blocks available on the volume (this depends on the type of 
disk volume in use). The number assigned to each volume-relative 
block is the logical block number (LBN). In terms of the individual 
file on the volume, the blocks are numbered consecutively from 1 
through the total number of blocks assigned to the file. The number 
assigned to each file-relative block is the virtual block number 
(VBN) • 

Figure B-1 shows the difference between the scheme of blocks 
considered at the LBN and VBN levels. Two files, A and B, occupy ten 
blocks. File A, in relation to the volume, occupies LBNs 10 through 
19; but, in relation to a file, this file occupies VBNs 1 through 10. 
Assume that when file B was created, it was allocated in two different 
areas, or clusters, with each cluster five blocks in length. The 
first cluster occupies LBNs 300 through 304, and the second cluster is 
at LBNs 29 through 33. But when viewed as an individual file, file B 
occupies consecutive VBNs 1 through 10, just as does file A. Further 
assume that file B was allocated in two separate extents (this can be 
done either explicitly at the request of the user, or implicitly by 
VAX-11 RMS due to the lack of enough contiguous disk space or a 
default by extent size). Even though files A and B both have the same 
VBNs, the corresponding blocks are different since the VBNs relate to 
the bloc·k's placement within the individual file, not to the volume as 
a whole. 

B-5 



Second 
Cluster 

First 
Cluster 

FILE/RECORD CONCEPTS AND FORMATS 

Logical Block 
Number Level 

(Volume Relative) 

LBN 10 

LBN 11 

LBN 12 

LBN 13 

LBN 14 .. 
LBN 15 

LBN 16 

LBN 17 

LBN 18 

LBN 19 

···.·.·.······.··.·.·.·.· 

LBN 302 

LBN 303 

LBN 304 

Virtual Block 
Number Level 
(File Relative) 

VBN 1 

VBN 2 

VBN 3 

VBN 4 

VBN 5 

VBN 6 

VBN 7 

VBN 8 

VBN 9 

VBN10 

VBN 1 

VBN 2 

VBN 3 

VBN 4 

VBN 5 

joined as 
one file 

VBN 6 

VBN 7 

VBN 8 

VBN 9 

VBN10 

First 
Extent 

Extent 

File 
A 

File 
B 

Figure B-1 Logical and Virtual Block Numbers 

B-n 



FILE/RECORD CONCEPTS AND FORMATS 

Every Files-11 volume has an index file, which is created when 
volume is initialized. This index file provides the means 
identifying to VAX/VMS that the volume is a Files-11 structure, 
contains the access data for all files on the volume. The index 
is listed in the master file directory (MFD) as INDEXF.SYS;l 
contains the following information: 

• Bootstrap block 

the 
of 

and 
file 

and 

The volume's bootstrap block is VBN 1 of the index file. 
Volume relative, it is LBN O. If the volume is a system 
device, this block contains a program that loads the operating 
system into memory. If the volume is not a system device, 
this block contains a program that displays a message that the 
volume is not the system device, but rather a device that 
contains only user files. 

• Home block 

The home block identifies the volume as a Files-11 volume, 
establishes the specific identity of the volume, and serves as 
the entry point into the volume's file structure. When the 
volume is part of a volume set, the home block also contains 
the volume set name and the relative column number. The home 
block is VBN 2 of the index file. The LBN for the home block 
is the first good block (physically readable and writeable) on 
the volume found in the home block search sequence. The 
search sequence is as follows: 

l+n * delta 

n is in the range of 0,1,2, •••• 

The delta is computed from the geometry of the volume such 
that if the volume is viewed as a three-dimensional space, the 
search sequence will travel down the body diagonal of the 
space. The dimensions included in the search delta are 
sectors (s), tracks (t), and cylinders (c), according to the 
rules in Table B-2, to handle the cases in which either one or 
two dimensions of the volume have a size of 1. 

s 

-

I 

I 

-

-
I 

-

Table B-2 
Search Delta Geometry 

Geometry 
Delta 

t c 

I I I 

- I I 

l - I 

- I s+ I 

I - s+ I 

- - t+I 

- - (t+l)*s+I 

In most cases, LBN 1 will be a good block, and therefore LBN 1 
will be the home block. 

B-7 



FILE/RECORD CONCEPTS AND FORMATS 

• Back-up home block 

The back-up home block is a second copy of the home block. It 
permits the volume to be used even if the primary home block 
is destroyed. 

The cluster that contains the back-up home block maps into the 
index file at VBN x*2+1 through x*3, where x is the volume 
cluster factor. 

• Index file bit map 

The index file bit map controls (with the information 
contained in the home block) the allocation of file headers, 
and thus the number of files on the volume. The bit map 
contains a bit for each file header that is allowed on the 
volume. If the value of a bit for a given file header is O, 
then a file can be created with this file header. If the 
value is 1, then the file header is already in use. The index 
file bit map starts at VBN x*4+1 of the index file and 
continues through VBN x*4+m, where m is the number of blocks 
necessary to contain the bit map, and x is the storage map 
cluster factor. The starting LBN for the index file bit map 
is recorded in the home block. 

• File headers 

The major portion of the index file is made up of file 
headers. A file header exists for each file on the volume and 
describes the properties of the file, such as file ownership, 
creation date and time, and file protection. The file header 
contains all the information necessary for access to the file, 
including the location of the file's extents. 

Besides the index file, Files-11 maintains nine other files to control 
the volume structure. Just as with the index file, these files are 
created when a new volume is initialized. 

The storage bit map file controls the available space on a volume, and 
is listed in the MFD as BITMAP.SYS;!. It contains a storage control 
block, which consists of summary information intended to optimize 
Files-11 allocation, and the bit map itself, which lists the 
availability of individual blocks. 

The bad.block file is listed in the MFD and BADBLK.SYS;l, and is 
simply a file containing a list of all the bad blocks on the volume. 

The master file directory itself (the MFD) is listed in the MFD as 
000000.DIR;l. The MFD is the root of the volume's directory 
structure, and lists the ten files that control the volume structure 
(these ten files are called the known files) plus any user files on 
the volume. 

The core image file is listed in the MFD as CORIMG.SYS;l, and its use 
is operating system dependent. In general, it provides a list of the 
files for the operating system to use as swap areas, for example, or 
overlay areas. 

The free space file is listed in the MFD as FREFIL.SYS;l. This file 
allows individual Files-11 implementations to use an alternative 
scheme of space allocation that is more complex than using the storage 
bit map file alone. 

B-8 



FILE/RECORD CONCEPTS AND FORMATS 

The set list file is listed in the MFD as VOLSET.SYS;l. It is used 
only on relative volume 1 of a tightly coupled volume set. This file 
contains a list of the volume labels of the volumes in the volume set. 

The back-up log file is listed in the MFD as BACKUP.SYS;l. It 
contains a history log of volume and incremental back-ups performed on 
this volume. 

The continuation file is listed in the MFD as CONTIN.SYS;l. It is 
used as the extension for the file identifier when a file crosses from 
one volume of a loosely coupled volume set to another volume. It 
allows a multivolume file to be written sequentially with only one 
volume mounted at a time. 

The pending bad block file is listed in the MFD as BADLOG.SYS;l. This 
file contains a list identifying suspected bad blocks on the volume 
that are not currently contained in the bad block file (BADBLK.SYS;l). 

Each file on the volume, including the ten known files, is uniquely 
named by a file identifier, which is a 48-bit binary value (three 
words). The first word provides the file number, which locates the 
file on the volume. The file number is in the range of 1 through 
2A24-l. Once a file is deleted, its number can be reused for another 
file. The file number identifies the file header within the index 
file associated with the file. The second word is the file sequence 
number, which identifies the current use of a file number. This 
prevents any attempt to use a file identifier for a file that has 
already been deleted and replaced by a file with the same file number. 
The high byte of the third word is the relative volume number. It 
identifies which volume of a multivolume file contains the portion of 
the file that is of interest. 

B.4.1 Files-11 Directories 

Files-11 provides directory files to allow for accurate access to 
files on disk devices. A directory is a file that lists the 
identification and location of files owned by a particular user. Each 
user allowed access to a VAX/VMS system has an entry in the system 
authorization file defining the user identification code (UIC) and 
default user file directory (UFD). 

Directory names can take any of three formats. Each format requires 
that the directory name be enclosed in either square brackets ([and 
]) or angle brackets (< and >). The closing bracket must match the 
opening bracket. The formats are as follows: 

1. VIC-similar format 

A UFD can be referred to in a format similar to that for a 
UIC: for example, [abc,xyz], where abc is a group number and 
xyz is the member number. This refers to a UFD of the name 
abcxyz.DIR;l in the MFD. If you specify less than three 
characters for either abc or xyz, they are left zero-filled. 
Therefore, if a UFD is specified in a UIC fashion as [2n,l], 
the directory that is searched is 026001.DIR;l (DIR is the 
file type for the directory). 

A UFD of this format is usually owned by a user with a 
corresponding UIC. This, however, is not required, since UIC 
and UFD ownerships are independent. 

B-9 



FILE/RECORD CONCEPTS AND FORMATS 

2. Alphanumeric character string 

A UFD can also be a 1- through 9-alphanumeric character 
string. This character string can be the same as your user 
name or account name, or any valid character strinq that you 
request or the system manager assigns you. For example, if a 
directory is specified as [OlOPAY], the directory 
OlOPAY.DIR;l is searched. 

3. Subdirectories in addition to the character string UFD 

When UFDs are referred to using the character string format, 
further hierarchical levels of directories can be expressed 
as subdirectories. A subdirectory level is expressed by 
adding a period (.) to the character string for the UFD, 
followed by the specification for the subdirectory. For 
example, [OlOPAY.DED] is the specification for the UFD named 
OlOPAY.DIR;l and a subdirectory of DED.DIR;l. 

The maximum number of directory levels is eight: one UFD and 
seven subdirectories. (Combined with the master file 
directory, this is in effect a 9-level hierarchy.) In the 
directory specification [OlOPAY.DED.YTD], OlOPAY is the UFD, 
DED is the first level subdirectory, and YTD is the second 
level subdirectory. 

No maximum is placed on the number of different hierarchies 
of directories you can create or access. 

The master file directory is created when the volume is 
initialized. Subdirectories and UFOs are created with the 
CREATE command using the DIRECTORY qualifier (see the VAX/VMS 
Command Language User's Guide). 

The maximum number of entries that a single directory can hold ranges 
from 15000 to approximately 40000, depending on the length of the file 
specifications. In general, using several subdirectories to list a 
large number of files results in more efficient access than listinq 
all files in one large directory. 

The directory file itself is structured as a contiguous file with 
sequential organization. The records are variable-length, do not 
cross block boundaries, and contain no carriage control attributes. 

B.5 MAGNETIC TAPE HANDLING 

VAX-11 RMS support for labeled magnetic tape structure is based on the 
format defined by American National Standards Institute standard ANSI 
X3.27-1978, entitled Magnetic Tape Labels and File Structure for 
Information Interchange. This section describes the processing of 
magnetic tape files and magnetic tape labeling and file structuring 
format. 

Magnetic tapes containing ANSI labels are coded in ASCII format, and 
on 9-track tape drives only. 

ANSI standard X3.27-1978 allows any of the following combinations: 

1. Single file on a single volume 

2. Single file on more than one volume 

B-10 



FILE/RECORD CONCEPTS AND FORMATS 

3. Multiple files on a single volume 

4. Multiple files on more than one volume 

Items 2 and 4 above constitute a volume set. 

Magnetic tape affords sequential access only. Therefore, only one 
user can have access to a given volume set at any one time, and only 
one file in the volume set can be open for processing at a time. 
Access protection is performed on a volume-set basis. For volumes 
produced by DIGITAL systems, the owner identifier field of the volume 
label determines access rights (see Section B.5.1). 

B.5.1 Volume Label 

The volume label is always the first label on every tape volume, and 
serves to uniquely identify the volume and its owner. Figure B-2 
presents the form of the volume label, and Table B-3 defines the 
contents of the fields in this label. 

character 
position 

5 

volume 
VOL1 

ident. 

1112 

I+ 

T 
access 

38 5152 80 

reserved 
owner 

identifier 1 reserved 3 

--- -~-

Figure B-2 Volume Label Format 

B-11 



FILE/RECORD CONCEPTS AND FORMATS 

Table B-3 
Volume Label Contents 

·-·-·-··-·--·--- ,.-----··· 

Character Length 
Position Field Name (in bytes) Contents 

·--

1-3 Label identifier 3 Alphabetic characters VOL 

4 Label number I Numeric character 1 

5-10 Volume identifier 6 Volume label; can be any 
alphanumeric or special 
character. This field must 
not be all spaces . 

., ___________ 
- -------·--·-- ····-------

11 Accessib iii t y 1 Volume protection; for the 
purpose of compatibility 
with the standards of some 
non-DIGIT AL systems. A space 
(as used by DIGITAL systems) 
indicates no restrictions. 
Protects volume from being 
initialized. 

-~· ---·-----

12-37 Reserved 26 Spaces 

38-50 Owner identifier 13 Volume ownership; the contents 
of this field are system 
dependent and arc used for 
volume protection. See details 
following table for further 
amplification. 

51 DIGIT AL standard I Numeric character I 
version --- ·-------

52-79 Reserved 28 Spaces 
·-----

80 Label standard I Numeric character 3 
version 

----·------- ------------------···--

Owner identifier field 

All magnetic tape volumes produced on DIGITAL systems contain the 
following in the first three character positions (CP 38-40) of the 
owner identifier field: 

D%m 

In the above, D% are both constant, and m represents a machine code, 
interpreted as follows: 

8 - PDP-8 
A - PDP-10 
B - PDP-11 
C - VAX-11 
F - PDP-15 
K - DECSYS'fEM-20 

B-12 



FILE/RECORD CONCEPTS AND FORMATS 

If the machine code in character position (CP) 40 is the character C, 
the meaning of the remainder of the owner identifier field translates 
as follows: 

1. Owner has read and write privileges: 

CP 41-45 Group number (ASCII characters) 

CP 46-50 Member number (ASCII characters) 

2. Owner has read and write privileges; 
privileges: 

CP 41-45 Group number (ASCII characters) 

group has read 

CP 46 Member number high-order digit, zone encoded; 
therefore, a 0 in the high-order position is the 
character A, while a 9 is the character J 

CP 47-50 Remaining four characters of member number (ASCII) 

3. Owner has read and write privileges, world and group have 
read privileges: 

CP 41 Group number high-order digit, zone encoded 

CP 42-45 Remaining four characters of group number 

CP 46 Member number high-order digit, zone encoded 

CP 47-50 Remaining four characters of member number 

4. Owner and group have read and write privileges: 

CP 41-45 Group number (ASCII characters) 

CP 46-50 Blank 

5. Owner and group have read and write privileges, world has 
read privileges: 

CP 41 Group number high-order digit, zone encoded; 
therefore, a 0 in the high-order position is the 
character A, while a 9 is the character J 

CP 42-45 Remaining four characters of group number (ASCII) 

CP 46-50 Blank 

6. All categories have full privileges: 

CP 41-50 Blank 

These categories are determined when the tape is initialized using the 
/PROTECTION switch. Independent of what is specified in the 
protection code, system and owner are always granted both read and 
write privileges. To override this protection, either the /OWNER UIC 
or /PROTECTION switch must be used at MOUNT time. -

If the machine code is other than the character C, full privileges are 
granted unless CPll is nonblank, in which case you must use the MOUNT 
command with a qualifier of /OVERRIDE=ACCESSIBILITY, to be able to 
initialize the tape. 

B-13 



FILE/RECORD CONCEPTS AND FORMATS 

B.5.2 File Header Label 

A file header label precedes every individual file on the tape, and 
serves to uniquely identify the file and describe its contents. 
Actually, three different file header labels precede each file; a 
HDRl label, for identification, a HDR2 label, which acts as an 
extension to the HDRl label and describes the characteristics of the 
records in the file, and a HDR3 label which contains the RMS record 
attributes. 

Optionally, the last file header can be eliminated from files created 
on tape by using the /NOHDR3 switch when mounting the tape. This 
switch should be used when the magtape to be produced is for 
interchange to a system which does not tolerate HDR3 labels. The 
systems do not conform to the ANSI standard which requires that all 
labels after HDR2 be ignored on interchange tapes. Therefore, the 
files created on these tapes will include only HDRl and HDR2 labels. 

Figure B-3 and Table B-4 present the format and define the contents of 
the HDRl label, Figure B-4 and Table B-5 present the format and define 
the contents of the HDR2 label, and Table B-n describes the contents 
of the HDR3 label. 

character 
position 

5 

HDRl 

file 
identifier 

22 

file-set 
ident. 

28 32 36 40 42 

file file 
sect seq 

# # 

create 
date 

48 

expire 
date 

5455 61 

000000 DECxxxxxxxxxx 

generation generation access 
number version 

Figure B-3 HDRl Label Format 

B-14 

74 80 

reserved 



FILE/RECORD CONCEPTS AND FORMATS 

Table B-4 
HDRl Label Contents 

Character Length 
Position Field Name (in bytes) Contents 

~. ~ ··-

1-3 Label identifier 3 Alphabetic characters HDR 
to indicate a file header 

--
4 Label number 1 Numeric character 1 

5-21 File identifier 17 Any alphanumeric or 
special characters; see 
details following table 
for further amplification 

22-27 File-set 6 Same as the volume identi-
identifier fier of the VOLl label of 

the first volume of a multi-
volume set 

28-31 File section 4 Numeric characters; starts 
number at 0001 and increments by l 

for each additional volume 
used by the file. This field 
indicates the positional 
order of this volume with 
respect to the first volume 
on which the file begins. 

32-35 File sequence 4 File number within the 
number volume set for this file; 

consists of numeric characters, 
and starts at 0001. This field 
indicates the position of this 
file with respect to the first 
file of the set. 

-----I 

36-39 Generation number 4 Numeric characters; indicate 
the unique edition of a file. 
See discussion following table. 

40-41 Generation version 2 Numeric characters; indicate 
the version number of a par-
ticular version of a file. See 
discussion following table. 

(Continued next page) 

B-15 



Character 
Position 

FILE/RECORD CONCEPTS AND FORMATS 

Table B-4 (Cont.) 
HDRl Label Contents 

Field Name 
Length 

(in bytes) Contents 
-~= ·;:--==---o-==-----~===-·--c·-=====I=== --·--============ 

42-47 Creation date 

1----------------1------···--·· -- -------· 

48-53 Expiration date 

54 Accessibility 

~------···-

55-60 Block count 

!--------·. 

61-73 System code 

1-----------·-· -----+--------·-

74-80 Reserved 

6 Julian date, in the form 
of yyddd (right-justified 
with leading space). The 
creation date is set to 
the date on which the file 
is created. If a creation 
date does not apply to this 
file, 00000 is used (right
justified with a leading 
space). 

-----i----------------· ---------1 
6 Julian date, in the form 

of yyddd (right-justified 
with a leading space). If 
no expiration date is speci
fied, the value is set to 
the value of the creation 
date; therefore, the file 
immediately is expired . 

. ----------- ---------------· 

1 File security; for the 
purpose of compatibility 
with the standards of some 
non-DIGIT AL systems. A space 
(as used by DIGIT AL systems) 
indicates no restrictions. 
A non-space character in this 
field indicates that the over
ride switch must be used at 
mount time in order for the 
user to gain access to the 
file. 

···---······-·-··--·--···---1f---~~-··-----------------! 

6 

13 

7 

Always 000000 for the HDRl 
label 

Identification code of the 
system that produced the 
file. The 3-character constant 
DEC appears in positions 61 
through 63, followed by the 
name of the system. For example, 
DECFILEl 12 indicates VAX/VMS, 
and DECFILEI 1 indicates a PDP-11. 
The name is padded with spaces. 

Spaces 
.___ __________ ___._ -~---· ·-------- ---·----'---------- -----------' 

B-l(i 



FILE/RECORD CONCEPTS AND FORMATS 

File identifier field 

The file identifier field consists of the alphabetic characters A 
through Z, and the numeric characters 0 through 9. ANSI standard 
X3.27-1978 allows special characters in this field; however, VAX/RMS 
translates these characters to z. 

The character preceding a period (.),or a maximum of nine characters 
if no period is present, constitutes the file name. The three 
characters following immediately after the period (or characters 10 
through 12 if no period is present) constitute the file type. On 
output, the file name and file type are automatically separated by a 
period, and written to the file identifier field left-justified. The 
version number is generated through the generation number and 
generation version fields. 

Generation number and generation version fields 

These two fields are mapped to create the file version number, 
according to the following formula: 

version number=(generation number -1) * 100 + generation version +l 

For example, suppose the generation number is 11 and the generation 
ve rs i on i s 9 : 

(11 -1) * 100 + 9 + 1 

The formula produces a version number of 1010. 

At output, the reverse is true. The present version number creates 
the generation number and generation version, according to the 
following formula and a remainder produced during the calculation. 

version number -1 
generation number= + 1 

100 

In the calculation, any remainder in version number -1 is ignored for 
the generation number. For example, suppose the version number is 
100: 

100 - 1 
+ 1 

100 

The formula produces a generation number of 1. The remainder of 99 is 
ignored in the calculation of this generation number, but becomes the 
generation version. 

character 

position 

5 6 11 

HDR2 record block 

format length 

16 

record 

length 

system dependent 

information 

3738 

form 

control 

system 

dependent 

information 

51 53 

buffer 

offset 

Figure B-4 HDR2 Label Format 

B-17 

80 

reserved 



Character 
Position 

!======-=-=-· - =: 

1-3 

4 

5 

6-10 

11-15 

16-36 

I-----·----· +-
37 

FILE/RECORD CONCEPTS AND FORMATS 

Table B-5 
HDR2 Label Contents 

----- ........ 

Length 
Field Name (in bytes) 

---- - ·- ---r-··· ·-

Lab el identifier 3 

--~ __ .,_ .. ___ 
Lab el number 1 

··-····--···-·--·-t---·· 

Rec ord format 

Bio ck length 

Rec ord length 

--·-

tern dependent Sys 
info rmation 

For m control 

1 

5 

5 

21 

1 

·--···· ··-··········-------'------··-···-

B-18 

- ·-· ---··--·· -

Contents 
--; - - -···-·--- ~ .. ····----··· --··-·- . -

Alphabetic characters HDR 
to indicate a file header 

.. ...., .. 

Numeric character 2 

Character Definition 

F fixed-length 
D variable-length 
u undefined 
s segmented 

Undefined record format 
cannot be used on tapes 
created for interchange 
with non-DIGIT AL systems. 

The S for segmented record 
formats returns as a U (un-
defined record format). 

Five numeric characters 
that specify the maximum 
number of characters per 
block. 

Numeric characters indicating 
the record length for fixed-
length records. 

If this file was created on a 
VAX/VMS system, then CP' s 16 
through 35 contain 20 bytes of 
Files-11 attributes that over-
ride information in other fields 
of the HDR2 label; CP 36 
contains a space. 

Defines the carriage control 
applied to the records in this 
file, as follows: 
Character Definition 

A First byte of 
record contains 
FORTRAN control 
characters 

(Continued next page) 



Character 
Position 

38-50 

51-52 

53-80 

Character 
Position 

1-3 

4 

5-68 

69-80 

FILE/RECORD CONCEPTS AND FORMATS 

Table B-5 (Cont.) 
HDR2 Label Contents 

Length 
Field Name (in bytes) Contents 

---- --

Character Definition 

M The record 
contains all 
form control 
information. 

space line feed/ 
carriage return 
is to be inserted 
between records. 

System dependent 13 If this file was created on a 
information VAX/VMS system, then CP's 38 

through 49 contain 12 bytes of 
Files-11 attributes that over-
ride information in 0th.er fields 
of the HDR2 label; CP 50 
contains a space. 

Buff er offset 2 The Numeric characters 00 

--
Reserved 28 Spaces 

Table B-n 
HDR3 Label Contents 

Length 
Field Name (in bytes) Contents 

Label Identifier 3 Alphabetic characters HDR to indicate 
a file header 

Label Number 1 Numeric character 3 

System-dependent 64 If this file was created in a VAX/VMS system, 
information then the 64 bytes contain files-11 attributes 

that override information in other fields of 
the HDR 2 label 

System-dependent 12 Spaces 
information 

B.5.3 End-of-file And End-of-volume Labels 

Magnetic tape volumes contain trailer labels, which can be either of 
two pairs of labels, depending on whether the tape has an 
end-of-volume or end-of-file condition. 

• End of volume 

The end-of-volume label pair consists of an EOVl label and an 
EOV2 label. These labels occur only when a file is continued 

B-19 



FILE/RECORD CONCEPTS AND FORMATS 

onto another volume. This applies to both of the following 
categories of magnetic tape volumes: 

- Single file, multivolume 

- Multifile, multivolume 

The formats of the EOVl and EOV2 labels are identical to their 
respective HDRl and HDR2 labels, except that the label 
identifier field (CP 1-3) contains EOV and the block count 
field (CP 55-nO) contains the number of data blocks since the 
last tape mark (a delimiter between labels and file data). 
This file data recorded since the last tape mark is known as a 
file section and may, in fact, be only a portion of the entire 
file (this occurs on a multivolume file). A file section 
cannot have sections of other files interspersed. 

• End of file 

The end-of-file label pair occurs at the end of every file 
recorded on a magnetic tape volume. The formats of the 
end-of-file labels (EOFl and EOF2) are identical to the 
formats of the EOVl and EOV2 labels, except that the label 
identifier field contains EOF. 

B.5.4 Arrangement Of Labels And Data 

Figures B-5 through B-8 describe the organization of the 
volume sets and indicate where the different labels appear. 
figures, the following legends apply: 

bot = beginning of tape 

* 
* 
* 

tape mark 

different 
In these 

VOL1 HDR1 HDR2 HDR3 * -t t-~OF1 EOF2 * 

~-bo-t~--la-be_l~--'a-be-1~-labe_I __._ __ 'a-be_1--i.._:_,_ __ ~''~____[L_ab_e_1~~-la-be_1_~:~~~ ...... 
Figure B-5 Single File, Single Volume 

first volume 
of file 

El.....~ V.OL~-J. -~~~-1 HDR2 HDR3 i! oo~:; 0:Jod -;- ~OF! EOF2 * :J la<t acd/ococy 

- -

la_b_el _ _ label label label ~ data * label label ! ! :}}~: intermediate 
_ }}" volumes of file ___ _._ ___ ___,_ __ ___._ -~ ~ 

If this is not the last 
volume, EOF 1 and 
EOF2 are EOV1 and 
EOV2 

Figure B-6 Sinqle File, Multivolume 

B-20 



bot 
VOL1 
label 

HDR1 
label 

HDR2 
label 

HDR3 
label 

* * * 

b VOL 1 I HDR1 HDR2 HDR3 I* 
OJ ..-:·=~ ot I label label label label ! 
I 

N 
~ 

~ b I VOL1 I HDR1 I HDR2 I HDR3 I* 
\ ot label label label label ! 

NOTE: 
The continuation of a data file between volumes may not 
actually occur in data file 2; it occurs in any file which 
happens to be the last file on the particular volume. Data 
file 2 is an arbitrary choice for this figure. 

dat 
file 

a 
1 

* EOF1 
* label * 

Figure B-7 

dat 
file 

__) 

a 

1 

:a 
2 

iued 

d 
file 

con ti 
....) L 

* EOF1 
* * label 

* EOF1 
* * label 

Figure B-8 

EOF2 * HDR1 HDR2 HDR3 
label * * label label label 

Multifile, Single Volume 

EOF2 * HDR1 HDR2 HDR3 
* label * label label label 

EOF2 * HDR1 HDR2 HDR3 
* label * label label label 

Multifile, Multivolume 

* * * 

* * * 

* * * 

d ata 
fi 

thrc 

d 
fi 

d 

fi 
thrc 

e 2 
ugh n 

ata 
e 2 

ata 
e3 
ugh n 

* * * 

El 

:1 

EOF1 
label 

EOV1 
label 

EOF1 
label 

I 

I 

EOF2 
label 

EOV2 
label 

EOF2 
label 

*I* * * * * 

I E I : ~~~f :~~~me 

* . . last or any 

I * I ! ~~~\ intermediate 
* * ··· volumes 

~ 
If this is not the last 
volume, EOF1 and 
EOF2 are EOV1 and 
EOV2 

"'IJ 
1--4 
t""' 
tZJ 

' ::a 
tZJ 
(') 
0 
::a 
0 
(') 
0 z 
(') 
tZJ 
"'a 
~ 
tn 

> z 
0 

"'IJ 
0 
::a 
3 
> 
~ 
tn 





APPENDIX C 

FILE SPECIFICATION PARSING 

To obtain a fully qualified file specification, VAX-11 RMS parses the 
primary file name string and optionally parses the default file name 
and related file string (if these are provided as input) as described 
in Section 8.2. Each of these three file name strings must have one 
of the following syntaxes: 

• Logical-name-or-file-name 

• Quoted-string-specification 

• Full-file-specification 

Prior to parsing a file specification, VAX-11 RMS 
spaces, horizontal tabs, and null characters. 
characters are placed within double-quoted strings, 
not remove them. 

C-1 

will remove blank 
If, however, such 
VAX-11 RMS will 



FILE SPECIFICATION PARSING 

C.l LOGICAL-NAME-OR-FILE-NAME SYNTAX 

logical-name-or-file-name 
= jlogical-name} 

lfile-name 

NOTE: The logical-name takes precedence. 

'logical-name 
{

alpha-char } 
digit 

= dollar-sign 
underscore 

NOTES: 1. 

2. 

The logical-name is 1 
characters, including the 
sign ($) and underscore (_). 

through 
special 

n3 alphanumeric 
characters dollar 

For this to be a 
corresponding entry 
logical name table. 

logical name, there must be a 
in the process, group, or system 

3. If the first character of a potential logical name is 
an underscore, it will simply be removed by the 
translation process that replaces a logical name with 
its equivalence string. The input string, minus the 
leading underscore, is thus guaranteed not to be a 
logical name. 

lalpha-char } 
file-name = digit ••• 

wild-card-char 

NOTE: The file-name is 0 through 9 alphanumeric characters, after 
wild card characters have been resolved. Lowercase 
alphabetic characters are converted to their uppercase 
equivalents. 

wild-card-char 

THE FOLLOWING SYNTAX APPLIES TO THE 
logical-name-or-file-name 
TYPE OF FILE SPECIFICATION 

-1: (asterisk) l 
(percent sign)~ 

NOTE: The asterisk (*) wild card character may represent 0 to 9 
alphanumeric ~haracters. The percent sign (%) wild card 
character represents a single alphanumeric character. 

C-2 



FILE SPECIFICATION PARSING 

C.2 QUOTED-STRING-SPECIFICATION SYNTAX 

quoted-string-specification = node-specification quoted-string 

{access-control-strlnq} 
node-specification = node-name node-delimiter 

nothing 

node-name = {upp~r-case-alpha}··· 
d1g1t 

NOTE: The node-name is 1 to 6 alphanumeric characters. 

access-control-string = string-delimiter ASCII-char string-delimiter 

NOTE: The maximum length of the access-control-string is 32 
characters. See the DECnet-VAX User Guide for format. 

node-delimiter = .. (double colon) 

quoted-string = string-delimiter ASCII-char string-delimiter 

NOTE: The maximum length of the quoted-string is 127 characters. 
See the DECnet-VAX User Guide for format. 

·-
string-delimiter = II (quotation mark) 

ASCII-char = any character from the ASCII 
character set; to include a 
single quotation mark character in 
a quoted-string, you must use two 
quotation marks. 

C-3 



FILE SPECIFICATION PARSING 

C.3 FULL-FILE-SPECIFICATION SYNTAX 

full-file-specification 

node-specification 

logical-name-or-device-name 

= {node:specification} 
nothing 

{ logi~al-name-or-device-name} nothing 

{
directory-specification} 
nothing 

{
file:name-specification} 
nothing 

{
file-type-specification} 
nothing 

{
file:version-specification} 
nothing 

= see previous explanation 

{
logical-name device-delimiter} 
device-name 

NOTE: The logical-name takes precedence. 

logical-name 

device-name 

= see previous explanation 

{

controller-namel {unit-numberl = device-mnemonic 
nothing nothing 

NOTE: For this to be a valid device name, there must be a 
corresponding entry in the system device data base. 

'-----..-----------·-·-- ----------------------------------! 
device-mnemonic = uppercase-alpha uppercase-alpha 

NOTE: The device-mnemonic is currently limited to two 
characters. 

controller-name = uppercase-alpha 

NOTE: If you omit the controller-name, the default is the 
character A. 

unit-number 
{

digit } 
digit 

nothing 

NOTES: 1. The unit-number is 1 through 5 digits, in the 
range of O to 65535. 

2. If you omit the unit-number, the default is o • 
.---------·---------...... ---- .. ------------·---------------------------t 
device-delimiter = : (single colon) 

··- --- --···-·-·-·----·····--·-·-···-----------------·-·-------------·-----! 

directory-specification = open-bracket directory-string close-bracket 
'-----..-------------··----- --···--·---------------------------~ 

open-bracket 

~----·---- --·-······-·-·----~- --·-----------· 

= J [ l (le ft square bracket) 

(< (left angle bracket) _________________________ __, 

C-4 



FILE SPECIFICATION PARSING 

{ g roup-membe r-fo rm l 
directory-string = 

directory-list 

1 group-member-form = group-number group-delimiter member-number 

{°ctal-number l 
group-number = 

wild-card-char 

NOTE: The octal-number is 1 to 3 digits, in the range of 
0 to 377 (octal). 

wild-card = * (asterisk) 

group-delimiter = ' (comma) 

{octal-number l 
member-number = 

wild-card-char 

NOTE: The octal-number is 1 to 3 digits, in the range of 
0 to 377 (octal). r I rec to ry-name l rubd I rectory l 

directory-list = 
wild-card-chars wild-card-chars 

NOTE: You can specify a maximum of seven subdirectories 

directory-name = file-name 

NOTES: 1. See previous explanation of file-name. 

2. If the directory-name is omitted, the current 
process default is used. 

sub-directory = directory-delimiter di rectory·-name 

directory-delimiter = (period) 

{ -(minus sign)l 
wild-card-chars = 

••• (ellipsis) 

NOTE: The minus sign wild card character (-) 
represents the next highest directory level. 
The ellipsis wild card character ( ... ) 
represents all lower directory levels. 

{:} (right square bracket) 
close-bracket = 

(right angle bracket) 

NOTE: The close-bracket must match the open-bracket. You cannot 
mix square and angle brackets in the same 
directory-specification. 

file-name-specification = file-name 

See previous explanation of file-name. 

file-type-specification = type-delimiter file-type 

See previous explanation of wild card character. 

C-5 



FILE SPECIFICATION PARSING 

type-delimiter = (period) 

l"lpha-char I file-type = digit ••• 
wild-card-char 

NOTE: The file-type is 0 to 3 alphanumeric characters. 
Lowercase alphabetic characters are converted to their 
uppercase equivalents. 

--

{: 
(asterisk) } 

wild-card-char = 
(percent sign) 

NOTE: The asterisk (*) wild card character may represent 0 to 9 
alphanumeric characters. The percent sign (%) wild card 
character represents a single alphanumeric character. 

{version-number} 
file-version-specification = version-delimiter 

wild~card-char 

{'. 
(semi-colon)} 

version-delimiter = 
(period) 

NOTE: If the version-delimiter is a period, you must include a 
file-type-specification. 

rinus-slgn digit l version-number = 
nothing nothing 

NOTE: The version-number is 0 to 5 digits, representing a 
16-bi t signed value, in the range of -1 to 327fi7. 

wild card character = * asterisk 
--~-

C-6 



APPENDIX D 

DIGITAL-ONLY COMPONENT OPTIONS 

There are additional file options (FOP field) which are not documented 
in Section 4.2.14. These options are contained in this appendix for 
documentation purposes only. Use of these file options by other than 
DIGITAL-supplied components is not supported. 

DIGITAL - Only Component Options: 

ESC 

!NP 

KFO 

PPF 

UFM 

Escape: indicates nonstandard VAX-11 RMS 
DIGITAL-supplied component usage only 

processing; for 

Input: indicates that this process permanent file is the system 
command file named SYS$INPUT; for DIGITAL-supplied component 
usage only. 

Known file open: indicates a search of the known file list; for 
DIGITAL-supplied component usage only. 

Process-permanent file: specifies that the file's internal 
VAX-11 RMS structures are to be allocated in the process I/O 
segment. The file can then be left open across images. This 
option applies only to DIGITAL-supplied component usage. 

User file mode: indicates that the channel for the file is to be 
assigned in user mode. This applies only if the ESC and either 
the NFS or UFD options are also set. This option is provided for 
DIGITAL-supplied component usage only. 

D-1 





$CLOSE macro instruction, 9-1 
$CONNECT macro instruction, 11-2 
$CREATE macro instruction, 9-4 
$DELETE macro instruction, 4-12 

11-4 
$DISCONNECT macro instruction, 

11-5 
$DISPLAY macro instruction, 9-8 
$ENTER macro instruction, 13-1 
$ERASE macro instruction, 9-10 
$EXTEND macro instruction, 9-13 
$FAB macro instruction, 4-1 
$FAB_STORE macro instruction, 

4-1 
$FIND macro instruction, 4-12, 

11-8 
$FLUSH macro instruction, 11-9 
$FREE macro instruction, 11-11 
$GET macro instruction, 4-12, 

11-12 
$NAM macro instruction, 7-2 
$NXTVOL macro instruction, 

11-17 
$OPEN macro instruction, 9-14 
$PARSE macro instruction, 13-4 
$PUT macro instruction, 4-12, 

11-19 
$RAB macro instruction, 5-1 
$RAB STORE macro instruction, 

5-1 
$READ macro instruction, 4-12, 

12-3 
$RELEASE macro instruction, 

11-22 
$REMOVE macro instruction, 13-7 
$RENAME macro instruction, 13-8 
$REWIND macro instruction, 11-24 
$SEARCH macro instruction, 13-12 
$SPACE macro instruction, 4-12, 

12-5 
$TRUNCATE macro instruction, 

4-12, 11-26 
$UPDATE macro instruction, 4-12, 

11-27 
$WAIT macro instruction, 10-8, 

11-13, 11-30 
$WR I 'l' E · ma c r o i n st r u ct i on , 4 -1 2 , 

12-7 
$XABALL macro instruction, 6-11 
$XABDAT macro instruction, 6-4 
$XABFHC macro instruction, 6-35 
$XABKEY macro instruction, 6-18 
$XABPRO macro instruction, 6-7 
$XABRDT macro instruction, 6-37 
$XABSUM macro instruction, 6-34 
$XABxxx STORE macro instruction, 

6-2 

INDEX 

A 
Access rights, 

delete, 6-8 
execute, 6-8 
read, 6-8 
write, 6-8 

Access to process permanent files, 
8-9 

AID parameter, 
area identification number 

field, 6-12 
Alignment boundary type field, 

ALN parameter, 6-13 
Allocation control XAB, 9-13 

$XABALL macro instruction, 6-11 
Allocation option field, 

AOP parameter, 6-14 
Allocation quantity field, 

ALQ parameter, 4-4, 6-14 
ALN parameter, 

alignment boundary type field, 
6-13 

Angle brackets, 4-11 
AOP parameter, 

allocation option field, 6-14 
Area identification number field, 

AID parameter, 6-12 
Argument list format, 

count, 8-2 
control block address, 8-2 
error completion routine, 8-2 
success completion routine, 8-2 

Arrangement of magnetic tape 
labels, B-20 

ASY record-processing option bit, 
5-13 

Asynchronous operations, 8-8, 
10-1, 10-7r 10-8, 11-9, 
11-17, 11-30 

Asynchronous record-processing 
option, 5-13 

Automatic disk file extension, 
4-7 

Automatic record locking, 10-10 

B 
Backup home block, B-7 
Backup log file, B-9 
Bad block file, B-8 
BIO, 

file access option bit, 4-12 
record-processing option bit, 

5-13 
BKS parameter, 

bucket size field, 4-5 

Index-1 



INDEX 

BKT parameter, 
bucket code field, 5-4 

BKZ parameter, 
bucket size field, n-15 

BLK bit, 4-22 
Block, B-5 
Block boundaries, 11-12 
Block I/O, 4-23, 5-4, 5-8, 5-20, 

12-1 
Block I/O record-processing 

option, 5-14 
Block identifier field, 4-27, 5-21 
Block length field, 4-27, 5-20 
Block size field, 

BLS parameter, 4-7 
BLS parameter, 

block size field, 4-7 
Bootstrap block, 8-7 
BRO file access option bit, 4-12 
Bucket code field, 

BKT parameter, 5-4 
Bucket size field, 

BKS parameter, 4-5 
BKZ parameter, n-ln 

Bucket size formulas, 4-n 

c 
Cancel control O record-processing 

option, 5-17 
CBT, 

allocation option hit, 6-14 
file-processing option bit, 

4-15 
CCO record-processing option bit, 

5-17 
Chained XABs, n-3 
CIF file-processing option hit, 

4-16 
Close service, 

$CLOSE macro instruction, 9-1 
Close all files, 15-1 
Cluster, B-5 
Completion routine conventions, 8-3 
Completion status code field, 

4-27' 5-21' 8-8 
Completion status codes, 8-1, 

8-8, A-1 
Connect service, 

$CONNECT macro instruction, 
11-2 

Contiguous file-processing 
option, 4-15 

Contiguous best try file-pro
cessing option, 4-15 

Continuation file, B-9 
Control block, 

access, 1-2 
alignment, 3-1 

Control block, (Cont.) 
allocation, 1-1 
initialization, 1-1 
use, 8-1, 8-7 

Control routines, 15-1 
Convert record-processing option, 

5-17 
Core image file, B-8 
CR bit, 4-22 
Create by NAM block, 8-7 
Create if file-processing option, 

4-H 
Create service, 

$CREATE macro instruction, 9-4 
Creation data and time, n-6 
CTG, 

allocation option bit, 6-15 
file-processing option bit, 4-15 

CTX parameter, 
user context field, 4-8, 5-5 

Current context of a stream, 
11-24 

Current position file-processing 
option, 4-17 

Current Record, 
contents, 10-3 
context, 10-1, 10-3 

CVT record-processing option bit, 
5-17 

D 
D format variable-length records, 

B-4 
DAN parameter, 

data buckets area number field, 
6-20 

Data buckets area number field, 
DAN parameter, n-20 

Data buckets fill size field, 
DFL parameter, ~-21 

Date and time extended attribute 
block fields, n-4 

Data and time XAB, 
$XABDAT macro instruction, 6-4 

Declaring manual record locking, 
10-9, 10-11 

Default directory control routine, 
15-1 

Default extension quantity field, 
DEQ parameter, 4-9, n-16 

Default file protection control 
routine, 15-1, 15-3 

Default file specification 
string address field, 

DNA parameter, 4-10 
Default file specification 

string size field, 
DNS parameter, 4-11 

Index-2 



INDEX 

Deferred write file-processing 
option, 4-15 

Definition of terms, 1-2 
DEL, 

file access option bit, 4-12 
file-sharing bit, 4-25 

Delete access rights, 6-9 
Delete file-processing option, 

4-16 
Delete service, 

$DELETE macro instruction, 11-3 
Deleting a file name, 13-7 
DEQ parameter, 

default extension quantity 
field, 4-9, n-16 

Device characteristics field, 
4-27 

Device identification, 8-7 
DFL parameter, 

data buckets fill size field, 
6-21 

DFW file-processing option bit, 
4-15 

Directory, 
entry removal, 9-10 
file scan, 13-12 
identification, 8-7 
specification, 8-n, 8-7 

Disconnect service, 
$DISCONNECT macro instruction, 

11-5, 11-6 
Disk volume, 8-5 
Display service, 

$DISPLAY macro instruction, 9-8 
DLT file-processing option bit, 

4-16 
DNA parameter, 

default file specification 
string address field, 4-11 

DNM parameter, 4-11 
DNS parameter, 

default file specification 
string size field, 4-10 

DTP parameter, 
key data type field, n-22 

Dynamic access, 10-1 

E 
ED'!' parameter, 

expiration date and time field, 
6-5 

End of file, 11-15 
End of file labels, B-20 
End-of-file record-processing 

option, 5-14 
End of volume labels, B-19 
Enter service, 

$ENTER macro instruction, 13-1 

EOF record-processing option 
bit, 5-14 

EOFl label, B-20 
EOF2 label, B-20 
EOVl label, B-20 
EOV2 label, B-20 
Erase Service, 

$ERASE macro instruction, 9-10 
Error status codes, 8-8 
ESA parameter, 

expanded string area address 
field, 7-3 

ESC file-processing option bit, 
D-1 

ESS parameter, 
expanded string area size 

field, 7-4 
Establishing a record stream, 

11-2 
Execute access rights, 6-8 
Expanded strinq area address 

field, -
ESA parameter, 7-3 

Expanded string area size field, 
ESS parameter, 7-4 

Expiration date and time field, 
EDT parameter, 6-5 

Explicit assembly time 
initialization, 8-6 

Extend service, 
$EXTEND macro instruction, 9-13 

Extended attribute block chain, 
6-1 

Extended attribute block pointer 
field, 

XAB parameter, 4-26 
Extended Attribute Blocks, 4-26 

F 
FAB, 

allocation, 4-1, 4-3 
fields, 4-1 

FAB parameter, 
file access block address field, 

5-5 
FAB parameters, 

ALQ, 4-4 
BKS, 4-5 
BLS, 4-8 
CTX, 4-9 
DEQ, 4-9 
DNA, 4-10 
DNM, 4-11 
ONS, 4-11 
FAC, 4-12 
FNA, 4-13 
FNM, 4-14 
FNS, 4-14 

Index-3 



FAB parameters, (Cont.) 
FOP, 4-14 
FSZ, 4-18 
MRN, 4-19 
MRS, 4-20 
NAM, 4-20 
ORG, 4-21 
RAT, 4-21 
RFM, 4-23 
RTV, 4-24 
SHR, 4-25 
XAB, 4-26 

FAC parameter, 
file access field, 4-12 

File access bit offset, 4-13 
File access block field, 

FAB parameter, 5-5 
File access block, 

FAB, 4-1, 9-1 
File access field, 

FAC parameter, 4-12 
File access mask value, 4-13 
File access option bits, 4-12 
File access privileges, h-8 
File attribute information, 9-8 
File extension, 9-13 
File header characteristics XAB, 

$XABFHC macro instruction, 
h-35 

File header labels, B-14 
File headers, B-8 
File identification, 8-8 
File identifier, B-9 
File name, 

change, 13-9 
deletion, 13-7 
insertion, 13-1 
rename service, 13-9 

File name status bits, 7-8 
File number, B-9 
File organization, 1-1, B-1 
File organization field, 

ORG parameter, 4-21 
File positioning, 12-5 
File-processing macro 

instructions, 9-1 
File-processing option bits, 

CBT, 4-15 
CIF, 4-16 
CTG, 4-15 
DFW, 4-15 
DLT, 4-16 
ESC, D-1 
!NP, D-1 
KFO, D-1 
MXV, 4-H) 
NAM, 4-lf} 
NEF, 4-17 
NFS, 4-17 
OFP, 4-16 

INDEX 

File-processing option bits (Cont.) 
POS, 4-17 
PPF, D-1 
RCK, 4-15 
RWC, 4-17 
RWO, 4-17 
SCF, 4-16 
SPL, 4-17 
SQO, 4-15 
SUP, 4-16 
TEF, 4-15 
TMD, 4-17 
TMP, 4-17 
UFM, D-1 
UFO, 4-18 
WCK, 4-ln 

File-processing options filed, 
FOP parameter, 4-14 

File protection field, 
PRO parameter, 6-8 

File protection XAB, 
$XABPRO macro instruction, 6-1, 

6-7 
File sequence number, B-9 
File sharing, 10-8 
File-sharing field, 

SHR parameter, 4-24, 11-2 
File specification, 

components, 4-10 
default application, 8-4 
parsing, 7-4, 13-4, C-1 

File specification processing 
macro instructions, 13-1 

File specification string address 
field, 

FNA parameter, 4-13 
File specification string size 

field, 
FNS parameter, 4-14 

Files-11 directories, B-9 
Find service, 

$FIND macro instruction, 11-7 
Fixed control area, B-4 
Fixed control area size, 5-13 
Fixed control area size field, 

FSZ parameter, 4-18 
Fixed-length record format, 4-23, 

B-4 
FLG parameter, 

key options flag field, ~-24 
Flush service, 

$FLUSH macro instruction, 
11-9 

FNA parameter, 
file specification string 

address field, 4-13 
FNM parameter, 4-14 
FNS parameter, 

file specification string size 
field, 4-14 

Index-4 -



INDEX 

FOP parameter, 
file-processing options field, 

4-15 
FORTRAN carriage control, 4-22 
f'ree service, 

$FREE macro instruction, 11-11 
Free space file, B-8 
FSZ parameter, 

fixed control area size field, 
4-18 

FTN bit, 4-22 
Fully qualified file specifica

tion, 8-7 

G 
GET, 

file access option bit, 4-12 
file-sharing bit, 4-25 

Get service, 
$GET macro instruction, 11-12 

Group and member number field, 
UIC parameter, 6-10 

Group user class, 6-8 

H 
HDRl label, B-14 
HDR2 label, B-14 
Home block, B-7 

IAN/6 
IAN parameter, 

index buckets area number 
field, n-2n 

IFL parameter, 
index buckets fill size field, 

n-27 
Implicit assembly time 

initialization, 8-n 
Independent record stream, 10-5 
Index buckets area number field, 

IAN parameter, 6-2n 
Index buckets fill size field, 

IFL parameter, 6-27 
Index file, B-7 
Index file bit map, B-8 
Indexed file, 6-15, n-19 
INP file-processing option bit, 

D-1 
Internal stream identifier field, 

ISI, 5-20 
Internal file identifier field, 

IF!", 4-28 

K 
KBF parameter, 

key buffer address field, 5-5 
KFO file-processing option bit, 

D-1 
Key buffer address field, 

KBF parameter, 5-n 
Key data type field, 

DTP parameter, n-24 
Key definition XAB, 

$XABKEY macro instruction, 
6-21 

Key definition XAB parameters, 
DAN, 6-20 
DFL, 6-21 
DTP, 6-22 
FLG, n-24 
IAN, n-26 
KNM, 6-28 
LAN, 6-29 
NUL, n-29 
POS, n-30 
REF, 6-31 
SIZ, 6-32 

Key name address field, 
KNM parameter, 6-28 

Key position field, 
POS parameter, n-30 

Key of reference field, 
KRF parameter, 5-7 

Key options flag field, 
FLG parameter, 6-24 

KEY record access mode bit, 5-12 
Key size field, 

KSZ parameter, 5-7 
SIZ parameter, n-32 

Keys, 
alternate, 6-20, 6-25 
primary, 6-20, n-2n 
segmented, n-32 
simple, 6-32 
size, 6-32 

Known file open file-processinq 
option, D-1 

KNM parameter, 
key name address field, 6-28 

KRF parameter, 
key of reference field, 5-7 

KSZ parameter, 
key size field, 5-7 

L 
LAN parameter, 

lowest level of index area 
number field, n-29 

LBN, 
logical block number, B-5 

Index-5 



INDEX 

LOC parameter, 
location field, 6-16 

LOC record-processing option 
bit, 5-15 

Locate mode, 5-15, 10-2, 11-13, 
11-9, 11-27 

Locate mode record-processing 
option, 5-15 

Location field, 
LOC parameter, n-17 

Logical block numbers, 8-5 
Logical names, 7-3, 8-9 
Lowest level of index area 

numher field, 
LAN parameter, 6-29 

M 
Macro instructions, 

general format, 8-1 
Magnetic tape, B-10 
Magnetic tape interchange, 4-8 
Magnetic tape labels, B-19 
Manual unlock record-processing 

option, 5-16 
Manual record locking, 10-11 

declaration of, 10-11 
Master file directory, 

MFD, B-7, 8-8 
Maximize version file-processing 

option, 4-16 
Maximum record number field, 

MRN parameter, 4-19 
Maximum record size field, 

MRS parameter, 4-19 
Maximum record sizes, 

fixed-length records, 4-19 
variable-length records, 4-19 
variable with fixed control 

records, 4-20 
MSC parameter, 

multiblock count field, 5-8 
MBF parameter, 

multibuffer count field, 5-9 
MFD, 

master file directory, B-7, B-8 
Modifying record contents, 11-27 
Move mode, 10-2, 11-17 
MRN parameter, 

maximum record number field, 
4-19 

MRS parameter, 
maximum record size field, 4-20 

MSE file-sharing bit, 4-25 
Multiblock count field, 

MBF parameter, 5-9 
Multiple record streams, 10-8 
Multistream access, 4-25 
MXV file-processing option bit, 4-ln 

N 
NAM block, 

allocation, 7-2 
create by, 8-7 
fields, 7-2 
open by, 8-4, 8-7 

NAM block input file-processing 
option, 4-16 

NAM block parameters, 
ESA, 7-3 
ESS, 7-4 
RLF, 7-4 
RSA, 7-5 
RSS I 7-5 

NAM file-processing option bit, 
4-16 

Name block, 
NAM block, 7-1 

Name block address field, 
NAM parameter, 4-20 

NEF file-processing option bit, 
4-17 

Next block pointer, 12-3 
Next Record, 10-4 

contents, 10-4 
Next volume service, 

$NXTVOL macro instruction, 
11-17 

Next XAB address field, 
NXT parameter, 6-3, 6-4 

NFS file-processing option bit, 
4-17 

NIL file-sharing bit, 4-25 
NLK record-processing option 

bit, 5-15 
No lock record-processing option, 

5-15 
Nonexistent record-processing 

option, 5-16 
Noninitializable FAB fields, 4-27 
Noninitializable key fi~lds, 6-33 
Noninitializable NAM block 

fields, 7-h 
Noninitializable RAB fields, 5-21 
Nonfile-structure file-processing 

option, 4-17 
Nonfile-structured operations, 

12-10 
Not end of file-processing 

option, 4-17 
NXR record-processing option bit, 

5-1() 
NXT parameter, 

next XAB address field, 6-3, 
6-5 

Null key value field, 
NUL parameter, 6-29 

NUL parameter field, 
null key value, n-29 

Index-6 



INDEX 

0 
OFP file-processing option bit, 

4-16 
Open by NAM block, 8-4, 8-7, 

9-14 
Open service, 

$OPEN macro instruction, 9-14 
Order of chained XABs, 6-3 
ORG parameter, 

file organization field, 4-21 
Output file parse file-processing 

option, 4-16 
Owner user class, 6-8 

p 
Parameter delimiters, 8-2 
Parse service, 13-6, 13-12 

$PARSE macro instruction, 13-4 
Parsing a file specification, 

13-5, C-1 
Path to a file, 4-13, 8-3 
PBF parameter, 

prompt buffer address field, 
5-10 

PMT record-processing option 
bit, 5-17 

POS file-processing option bit, 4-16 
POS parameter, 

key position field, 6-30 
Positioning a file, 12-5 
PPE file-processing option bit, 

4-16 
Primary, 

index, 6-26 
key, '1-21 

PRN bit, 4-22 
PRO parameter, 

file protection field, 6-8 
Process permanent file-processing 

option, 4-16 
Process permanent files, 8-9 
Program section $RMSNAM, 4-11 
Prompt buffer address field, 

PBF parameter, 5-10 
Prompt buffer size field, 

PSZ parameter, 5-11 
Prompt record-processing 

option, 5-17 
PSZ parameter, 

prompt buffer size field, 5-11 
PTA record-processing option 

bit, 5-17 
Purge type-ahead record-proces

s i ng option, 5-17 
PUT, 

file access option bit, 4-12 
file-sharing bit, 4-25 

Put service, 
$PUT macro instruction, 11-9 

R 
RAB, 

allocation, 5-3 
fields, 5-1 

RAB parameters, 
BKT, 5-4 
CTX, 5-5 
FAB, 5-5 
KBF, 5-6 
KRF, 5-6 
KSZ, 5-7 
MBC, 5-8 
MBF, 5-9 
PBF, 5-10 
PSZ, 5-11 
RAC, 5-11 
RBF, 5-12 
RHB, 5-13 
ROP, 5-13 
RSZ, 5-18 
TMO, 5-17 
UBF, 5-20 
usz, 5-20 

RAC parameter, 
record access mode field, 5-11 

RAH record-processing option bit, 
5-15 

Random access by key value, 5-6, 
5""'.'11, 10-1 

Random access by record's file 
address, 5-12, 10-2, 11-22 

Random access by RFA record 
access mode, 11-20 

Random starting point, 11-7 
RAT parameter, 

record attributes field, 4-21 
RBF parameter, 

record address field, 5-12 
RCK file-processing option bits, 

4-15 
Read access rights, 6-8 
Read no echo record-processing 

option, 5-17 
Read no filter record-processing 

option, 5-17 
Read of locked records allowed, 

5-16 
Read service, 

$READ macro instruction, 
12-3 

Read-ahead record-processing 
option, 5-15 

Read-check file-processing 
option, 4-16 

Record access, 10-1 

Index-7 



INDEX 

Record access block, 
RAB , 5 -1 , 11-1 

Record access mode, 
random by key (relative record 

number), 5-6, 5-12, 10-1, B-2 
Record access mode 

random by record's file 
address, 5-12, 10-2, 11-20, 
B-2 

sequential, 5-12, 10-1, B-2 
Record access mode bits, 5-12 
Record access mode field, 

RAC parameter, 5-11 
specification, 10-1 

Record address field, 
RBF parameter, 5-12 

Record attributes field, 
RAT parameter, 4-21 

Record cell, B-1 
Record contents, 11-25 
Record control information, 4-21 
Record format, 

fixed-length, B-4 
variable with fixed-length 

control, B-4 
variable-length, B-4 

Record format field, 
RFM parameter, 4-23 

Record header field, 
RHB parameter, 5-13 

Record-processing macro instruc
t ions, 11-1 

Record-processing options bits, 
ASY, 5-13 
BIO, 4-14 
cco, 5-17 
CVT, 5-17 
EOF, 5-14 
KGE, 5-14 
KGT, 5-14 
LIM, 5-15 
LOA, 5-14 
LOC, 5-15 
NLK, 5-16 
NXR, 5-16 
PMT, 5-17 
PTA, 5-17 
RAH, 5-15 
RLK, 5-16 
RNE, 5-17 
RNF, 5-17 
TMO, 5-17 
TPT, 5-16 
UIF, 5-16 
ULK, 5-Hi 
WBH, 5-15 

Record-processing options field, 
10-2, 10-11, 

ROP parameter, 5-13 
use with record locking, 10-10 

Record, 
locking, 10-1, 10-9, 10-10, 

11-7 
removal, 11-3 
retrieval, 11-12 

Record (cont.) 
skipping, 11-7 
stream, 5-1, 11-2 
tranfer mode, 5-18 
types of, 10-10 
unlocking, 11-11, 11-22 

Record size field, 
RSZ parameter, 5-18 

Record streams, 10-1, 10-5 
Record's file address, 5-20 
Related file NAM block address 

field, 
RLF parameter, 7-4 

Relative file organization, B-1 
Relative record number, 4-19 
Relative volume number, B-9 
Relative volume number field, 

VOL parameter, 6-18 
Release service, 

$RELEASE macro instruction, 
11-22 

Remove service, 
$REMOVE macro instruction, 

13-7 
Removing records, 11-3 
Rename service, 

$RENAME macro instruction, 
13-9 

Resultant file specification, 
string, 7-5 

Resultant string area address 
field, 

RSA parameter, 7-5 
Resultant string area size field, 

RSS parameter, 7-5 
Retrieval window size field, 

RTV parameter, 4-24 
Revision date and time field, 

6-6 
Revision date and time XAB, 

$XABRDT macro instruction, 
n-38 

Revision number, 6-5, 6-38 
Rewind on close file-processing 

option, 4-16 
Rewind on open file-processing 

option, 4-17 
Rewind service, 

$REWIND macro instruction, 
11-22 

RFA record access mode bit, 5-12 
RFM parameter, 

record format field, 4-23 
RHB parameter, 

record header field, 5-13 

Index-8 



RLF parameter, 
related file NAM block address 

field, 7-4 
RLK record-processing option 

bit, 5-16 
RNE record-processing option 

bit, 5-17 
RNF record-processing option 

bit, 5-17 
ROP parameter, 

record-processing options 
field, 5-13 

RSA parameter, 
Resultant string area address 

field, 7-5 
RSS parameter, 

Resultant string area size 
field, 7-5 

RSZ parameter, 
record size field, 5-18 

RTV parameter, 
retrieval window size field, 

4-24 
Run-time, 

control block initialization, 
14-1 

initialization, 8-6 
processing interface, 8-1 

Rundown control routine, 15-1 
RWC file-processing option bit, 

4-16 
RWO file-processing option bit, 

4-H 

s 
SCF file-processing option bit, 

4-H 
Search service, 

$SEARCH macro instruction, 
13-12 

Segmented keys, n-30 
SEQ record access mode bit, 5-11 
Sequential file organization, 

B-2 
Sequential only file-processing 

option, 4-15 
Sequential record access mode, 

5-12, 10-1 
Set list file, B-9 
Shared sequential files, 4-25, 

6-15 
SHR parameter, 

file-sharing field, 4-25 
Simple keys, ()-32 
Single record stream, 10-5 
SIZ parameter, 

key size field, ()-32 
Skipping records, 11-7 

INDEX 

Space service, 
$SPACE macro instruction, 12-5 

SPL file-processing option bit, 
4-17 

Spool file-processing option, 
4-17 

Spool device characteristics 
field, 4-27 

SQO file-processing option bit, 
4-15 

Statement conventions, 2-1 
Status value field, 4-27, 5-21, 

A-1 
Store macro instructions, 

addressing expression restric
tions, 14-2 

formation, 14-1 
Storage bit map file, B-8 
Subdirectory, B-10 
Submit command file-processing 

option, 4-16 
Summary XAB parameter, 

NXT, n-34 
SUP file-processing option bit, 

4-16 
Supersede file-processing option, 

4-16 
Synchronous operations, 10-1, 

10-7 
SYS$ERROR, 8-9 
SYS$ INPUT, 8-9 
SYS$0UTPUT, 8-9 
SYS$RMSRUNDWN, 15-1 
SYS$SETDDIR, 15-2 
SYS$SETDFPROT, 15-2 
System service exceptions, 8-8 
System user class, 6-8 

T 
TEF file-processing option bit, 

4-15 
Temporary file-processing option, 

4-17 
Temporary marked for delete file 

processing option, 4-17 
Terminating a record stream, 11-5 
Time-out period field, 

TMO parameter, 5-19 
Time-out record-processing option, 

5-17 
TMD file-processing option bit, 

4-17 
TMO parameter, 

time-out period field, 5-19 
TMO record-processing option 

bit, 5-H 
TMP file-processing option bit, 

4-17 

Index-9 



INDEX 

TPT record-processing option bit, 
5-17 

Translation of logical names, 
7-3, 8-9 

TRN file access option bit, 4-12 
Truncate at end of file-proces

sing option, 4-15 
Truncate put record-processing 

option, 5-ln 
Truncate service, 

$TRUNCATE macro instruction, 
11-2() 

Types of record locking, 10-10 

u 
UBF parameter, 

user record area address field, 
5-20 

UFD, 
user file directory, B-9 

UFM file-processing option bit, 
D-1 

UFO file-processing option bit, 
4-18 

UIC, 
user identification code, B-9 

UIC parameter, 
group and member number fields, 

6-8 
UIF record-processing option, 

bit, 5-10 
ULK record-processing option 

bit, 5-16 
Undefined record format, 4-24 
Unlocking records, 11-11, 11-22 
UPD, 

file access option bit, 4-12 
file-sharing bit, 4-25 

Update service, 
$UPDATE macro instruction, 

11-27 
UPI file-sharing bit, 4-25 
User classes, 

group, ()-8 
owner, f>-8 
system, '1-8 
world, f>-8 

User context field, 
CTX parameter, 4-9, 5-5 

User control blocks, 
FAB, 4-1 
general, 3-1 
NAM, 7-1 
RAB, 5-1 
XAB, 6-1 

User file directory, 
UFD, B-9 

User file mode, 4-18 

User file open, 4-18 
User identification code, 

UIC, B-9 
User record area address field, 

UBF parameter, 5-20 
User record area size field, 

USZ parameter, 5-20 
usz parameter, 

user record area size field, 
5-20 

v 
V format variable-lenqth records, 

B-4 
Variable-length records, 4-19 
Variable with fixed-control 

records, 4-20 
VAX-11 RMS, 

control routines, 15-1 
facilities, 3-1 
functions, 1-1 
routines, 3-2 

VBN, 
virtual block number, B-5 

Virtual block numbers, 5-4, B-5 
VOL parameter, 

relative volume number field, 
6-19 

VOLl label, B-11 

w 
Wait service, 

$WAIT macro instruction, 11-30 
WBH record-processing option bit, 

5-14 
WCk file-processing option bit, 

4-15 
Wild card characters, 

file specifications, 8-5, 8-6 
processing, 13-4, 13-12 
substitution, 7-7 

World user class, n-8 
Write access rights, n-8 
Write service, 

$WRITE macro instruction, 12-7 
Write-behind record-processing 

option, 5-15 
Write-check file-processing 

option, 4-16 

x 
XAB block length field, '1-2 
XA B ch a i n , fl - 3 

Index-10 



XAB parameter, 
extended attribute block 

pointer field, 4-2n 
XAB type code field, h-2 
XAB types, 6-3 
XABALL parameters, 

AID, 6-12 
ALN, 6-13 
ALQ, 6-14 
AOP, 6-14 
BKZ, 6-15 
DEQ, fi-10 
Loe-, 6-16 
NXT, 6-3 
VOL, 6-18 

XABDAT parameter, 
EDT, 6-5 

INDEX 

XABKEY parameters, 
DAN, h-20 
DFL, 6-21 
DTP, 6-22 
FLG, 6-24 
IAN, 6-26 
IFL, fi-27 
KNM, 6-28 
LAN, 6-28 
NUL, 6-29 
POS, 6-30 
REF, 6-31 
SIZ, 6-32 

XABPRO parameters, 
PRO, h-8 
UIC, 6-10 

XAB, 
extended attribute block, 6-1 

Index-11 





. 
~ 
c 

rn 
c 
0 
c 

READER'S COMMENTS 

VAX-11 Record Management 
Services Reference Manual 

AA-D031C-TE 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. If you require a written reply and are 
eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR 
form. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement • 

Did you find errors in this manual? If so, specify the error and the 
page number. 

Please indicate the type of reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 

[] Other (please specify>~~~~~~~~~~~~~~~~~~ 

CitY~~~~~~~~~~~~~--State~--~~-----Zip Code~--~----~
or 

Country 



- - Do Not Tear - Fold Here and Tape - - - - - - - - - - - -

Do Not Tear - Fold Here 

POSTAGE WILL BE PAID BY ADDRESSEE 

BSSG PUBLICATIONS TW/A 14 

DIGITAL EQUIPMENT CORPORATION 

1925 ANDOVER STREET 

TEWKSBURY, MASSACHUSETTS 01876 

No Postage 
Necessary 

if Mailed in the 
United States 


