
VAXNMS Primer
Order No. AA-00308-TE

March 1980

This tutorial document Introduces a new VAX/VMS user to the DIGITAL Com
mand Language, file manipulation, program development, and elementary
operating system concepts.

VAXNMS Primer
Order No. AA-00308-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes the VAX/VMS Primer
(Order No. AA-D030A-TE)

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, August J

Revised, March J

The information in this document is subject to change without notice and should not be construed
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no respo
bility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copie
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplie<
DIGITAL or its affiliated companies.

Copyright© 1978, 1980 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests
user's critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

Q/Rn-14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI
PDT

Contents

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Accessing the System and Typing Commands

Discusses how to use your terminal and some of its special keys; how to
identify yourself to the system; how to enter commands and respond to error
conditions.

Files: Using the Editor

Introduces files and explains how to use the editor, an interactive program
you use to create and modify files.

Program Development

Provides an overview of the steps required to create, compile, and run pro-
grams from the terminal. Sample programs illustrate each of the steps
required for programs written in:

• VAX-11 FORTRAN
• VAX-11 MACRO

Files: Commands to Manipulate Flies

Describes files in more detail, and gives examples of system commands that
manipulate, modify, and delete files.

Logical Names: Flies for Program 1/0

Introduces the concept of logical names for program input/output files, and
tells how to make the connection between a program's reference to an input or
output file or device and a physical file or device.

Chapter 6. Tailoring the Command Language

Describes ways that you can use the command language to save time and
effort; shows examples of creating command procedures and discusses how to
submit batch jobs to the system from a terminal or card reader.

1-1

2-1

3-1

4-1

5-1

6-1

Glossary Glossary-1

iii

Figures

Tables

iv

1-1 The LA120 Terminal
1-2 The VT JOO Terminal.
1-3 The LA120 and VTlOO Keyboard Layouts.
2-1 Creating a File with the SOS Editor .. .
3-1 Steps in Program Development
3-2 Commands for FORTRAN Program Development
3-3 Commands for MACRO Program Development
5-1 Using Logical Names
6-1 A Sample Batch Job for the Card Reader . . .

1 Sources of Information in VAX-11 Documentation. .
2-1 Punctuation Marks for SOS Line Number Arguments
2-2 A Subset of SOS Commands

1-1
1-2
1-2
2-4
3-3
3-4
3-10
5-2
6-7

vi

2-6
2-7

Preface

People use a V AX-11 computer system to do work, principally programming. To do their
work, they use the V AXNMS operating system, a software component of a V AX-11 com
puter system which allows many users to share the resources of the computer and its hard
ware devices (such as terminals, disks, magnetic tapes, and printers).

The objective of this primer is to introduce you, a new user, to the V AXNMS operating
system. Thus, the primer presents:

• Some of the fundamental operations you must be familiar with to use the operating
system, such as:

Using a terminal
Using an editor
Developing programs
Correcting mistakes

• Examples of using the operating system's command language, DCL (DIGITAL Command
Language). DCL is the primary method you use to tell the operating system what work you
want it to do. In the primer is information on:

Entering commands
Interpreting messages
Tailoring commands for specific uses

• Frequently used terms and concepts you encounter when using the operating system, such
as:

Terminal session
Batch job
File specification
Logical names

• The places to go for more information about the operating system, its command language,
and its other features and services. For example:

Table 1 lists general information categories for V AX-11 documentation.

Summary sections at the end of each chapter point to sources of specific information
about material discussed in that chapter.

Depending on your prior experience or knowledge, you may want to read this primer care
fully or just skim it for specific details.

v

vi

Table 1: Sources of Information in V AX-11 Documentation

For information on:

V AXNMS Features and
Documentation

The Command Language

V AX-11 Programming
Languages:

VAX-11 MACRO

VAX-11 FORTRAN

VAX-11 BASIC

V AX-11 BLISS-32

VAX-11 COBOL-74

VAX-11 PASCAL

Program Development,
Testing, and Control

File and Record Management

VAX/VMS Installation,
Management, and Operations

Look in these manuals:

VAX-11 Information Directory and Index
VAX/VMS Summary Description and Glossary

VAX/VMS Command Language User's Guide
VAX/VMS Guide to Using Command Procedures

VAX-11 MACRO User's Guide
VAX-11 MACRO Language Reference Manual

VAX-11 FORTRAN User's Guide
VAX-11 FORTRAN Language Reference Manual

VAX-11 BASIC User's Guide
V AX-11 BASIC Language Reference Manual

V AX-11 BLISS-32 User's Guide
BLISS Language Guide

VAX-11 COBOL-74 User's Guide
VAX-11 COBOL-74 Language Reference Manual

VAX-11 PASCAL User's Guide
VAX-11 PASCAL Language Reference Manual

VAX-11 Text Editing Reference Manual
V AX-11 EDT Editor Reference Manual
V AX-11 Linker Reference Manual
V AX-11 Symbolic Debugger Reference Manual
VAXNMS Real-Time User's Guide
VAX/VMS Guide to Writing a Device Driver
VAX/VMS System Messages and Hecovery

Procedures Manual

Introduction to V AX-11 Record Management
Services

V AX-11 Record Management Services
Reference Manual

V AX-11 Record Management Services User's
Guide

RMS-11 User's Guide

VAX/VMS Release Notes
VAX-11 Software Installation Guide
VAX/VMS System Manager's Guide
V AXNMS Operator's Guide
V AXNMS UETP User's Guide

(Continued on next page)

Table 1: Sources of Information in VAX-11 Documentation (Cont.)

For information on:

Programming Utilities and
Development Tools

Compatibility Mode
Programming

Look in these manuals:

V AX-11 Utilities Reference Manual
VAX-11 PATCH Utility Reference Manual
VAX-11 Sort User's Guide
V AXNMS System Services Reference Manual
V AXNMS 1/0 User's Guide
VAX-11 Run-Time Library Reference Manual
V AX-11 Guide to Creating Modular Library

Procedures
V AXNMS System Dump Analyzer Reference

Manual

VAX-11/RSX-llM User's Guide
V AX-11/RSX-1 lM Programmer's Reference

Manual
RMS-11 User's Guide
RMS-11 MACR0-11 Reference Manual

vii

Graphic Conventions Used in this Primer

(CTRL/Y)

(CTRL/R)

(CTRL/U)

(CTRL/C)

(CTRL/Z)

(CTRL/S)

(¢_IBQ9)
(CTRL/O)

$ sho1,..1 tir11e
05-JUN-1978 11:55:22

$ tYPe MYfile+dat

All commands are

um

These symbols indicate that you press the ESCAPE,
RETURN, DELETE, or TAB key on the terminal.

These symbols indicate that you hold down the CTRL key
while you press a terminal key, for example, Y. These sym
bols represent control key sequences. In some examples, con
trol key sequences are shown as a circumflex C) and a letter,
for example "Y, because that is how the system displays
them.

In examples of commands you enter and system responses, all
the lines you type are shown in red letters. Everything the
system prints or displays is shown in black letters.

A vertical ellipsis in an example means that not all the data
the system would display in response to the particular com
mand is shown; or that not all the data a user would enter is
shown.

A word or phrase in bold indicates a term defined in the
Glossary at the end of this primer.

Chapter 1
Accessing the System and Typing Commands

Interactive users communicate with the V AXNMS operating system
through a terminal; a terminal looks and sometimes behaves like a type
writer, except that it is connected to the computer. You tell the system what
you want it to do by typing commands at the terminal. The system responds
by performing your request. If the system cannot properly interpret what you
type, it displays an error message on your terminal screen.

Batch users communicate with the system by entering all the commands they
want to execute on cards and placing the cards in the system card reader. The
system produces a printed listing describing the outcome of the job.

This primer emphasizes how to use V AXNMS interactively. Chapter 6 shows
how any of the commands described can be submitted in a batch job.

1.1 Terminals

The terminals you can use to communicate with the V AXNMS operating
system fall into two general categories: hardcopy terminals and video display
terminals.

Hardcopy terminals print on continuous forms of paper. Figure 1-1 shows an
example of a hardcopy terminal, the LA120.

Video display terminals display your typed input and system responses on a
screen similar to a television picture tube. Figure 1-2 shows an example of a
video display t~rminal, the VTlOO.

Figure 1-1: The LA120 Terminal

1-1

Figure 1-2: The VTlOO Terminal

1.2 Keyboards

Figure 1-3 shows the keyboard layouts of the LA120 and VTlOO terminals. All
terminal keyboards have the same basic configuration as a typewriter, in
terms of the positions of the alphabetic and numeric keys. However, a termi
nal has additional keys that provide special signals to the operating system; to
use the terminal effectively, you should become familiar with these keys.

The symbols in the diagram are the symbols used throughout this text as a
shorthand notation to refer to pressing these keys. For example, the symbol
~ in text means that you press the key labeled RETURN, ~ means that

you hold down the CTRL key while you press the Y key.

1.3 Logging In

To access the system from a terminal and identify yourself to the system, you
must log in. When you log in successfully, you establish a terminal session.

However, before you can log in to the system, you must have an account.
Accounts are set up by the system manager, or whoever is responsible at your
installation for authorizing the use of the system. This person must provide
you with a user name and a password.

Your user name is a unique name that identifies you to the system and
distinguishes you from other users. In many cases, a user name is the same as
a person's real first or last name.

Your password is for your protection. If you maintain its secrecy, other users
cannot gain access to the system under your user name.

When you access the system, you must enter both your user name and your
password before you are allowed to begin typing commands.

1-2 Accessing the System

LA120

~-------- ---------,

ONLINE LOCAL KIOLOCKEO LI L2 L3 L4 gggg §§§[]
SET-UP m1 CLEA2LL 9., Qu, S2oLG £ ... ,, 9.cElvE O 80/132 RESET t I - -. ' PP~ PF~ PF• ,.._

CLEAATAB TABS LOCAL A/8 1/0 SPEED SPEED COLUMNS

VTlOO

Figure 1-3: The LA120 and VTlOO Keyboard Layouts

1.3.1 Getting the Terminal Ready

Before you use the terminal, be sure that:

• The terminal is plugged in and the power is turned on.

• If the terminal has a LOCAL/REMOTE switch, the switch is set to
REMOTE. (If you are using a dial-up connection, check installation in
structions for special procedures.)

The terminal should then be ready to accept your login. If you have any
problems with the login procedure described in the next section. get help from
the system operator or system manager. The terminal may not be properly
connected to the computer, or the baud rate (the speed at which the terminal
transmits or receives characters) may not be correctly set.

1.3.2 Getting the Computer's Attention

Press (8fil) or tTRL/v) to signal the system that you want to log in. The system
responds by prompting you for your user name. Enter your user name followed
by (Bfil). After you enter your name, the system prompts you to enter your

Accessing the System 1-3

password. When you type the password, the system does not echo it; that is,
the password is not displayed on the terminal.

The login sequence looks like the following:

~
Use rna1,1e: MALCOLM~
Pass•~o rd:~

WELCOME TO VAX/VMS VERSION 2.00
$

The dollar sign is a symbol the system uses as a prompt. When this character
appears on the far left of the terminal, it indicates that the login was success
ful and that you can begin entering commands to the system.

Note that if you type your user name or your password incorrectly, the system
displays an error message and that you must repeat the login procedure.

1.4 Entering Commands

All commands to the system are words that describe the functions they per
form. For example:

$ sho•11• ti1t1e~

The system responds to this command by displaying the current date and
time, as follows:

17-JUL-1978 11:55:40
$

When you enter commands, you can type them using either uppercase or
lowercase letters, or a combination of both.

Commands utilize command parameters to define what is to be acted upon
by the command and command qualifiers to define how that action is to
occur.

You use command parameters to define the object of a command verb or to
specify a command function. For example:

$Print 11n·file.lis~

In this command, MYFILE.LIS is a parameter for the PRINT command. The
PRINT command requires an object; in this case, the name of the file you
want printed.

You use command qualifiers to restrict or modify the function the command is
to perform. For example:

$ Print /coPies=2 IT\Yfile.lis~

1-4 Accessing the System

In this command, /COPIES=2 is a qualifier that indicates how many copies of
the file (MYFILE.LIS) you want printed. You must always precede each
qualifier in a command with a slash character (I) .

All command qualifiers and those parameters which do not require a file
name are constructed using keywords. Keywords have a predefined meaning
for the commands in which they are used. You must use them as defined, in
some cases supplying a value to complete them. For example, the /COPIES
qualifier for the PRINT command needs a value: you supply the number of
copies you want printed.

1.4.1 Defaults

A default is an action taken by a command when you do not specify a choice.
Defaults are applied to command qualifiers as well as to the names of files you
specify as command parameters. For example, the /COPIES qualifier shown
in the PRINT command has a default value of 1 because printing one copy of
a file is a common need. If you do not tell the print command how many
copies of the file you want, it prints a single copy by default.

1.4.2 System Responses

The system responds to some commands by giving you information about
what it has done. For example, when you use the PRINT command, the
system displays the job identification number it assigned to the print job:

$Print 1t1~·file.lisfilf)
Job 210 entered on ~ueue SYS$PRINT

You can use this job identification number to determine the status of your job
in the queue.

Not all commands display informational messages; in fact, successful comple
tion of a command is most commonly indicated by a $ prompt for another
command. Nonsuccessful completion is always indicated by an error message
or messages.

1.4.3 Recovering from Errors

Some of the keys noted on the keyboard in Figure 1-3 provide line-editing
functions. By using these keys to correct errors you make while typing lines,
you will not pass a bad command to the system.

The line-editing function keys are:

@ru

Backspaces over one character typed on the current line, then deletes the
character. Some video display terminals actually move the print position
backward and erase the character when you press @ru. Otherwise, the termi
nal prints a backslash character (\), then each deleted character, then an
other backslash before it prints the next character you enter.

Accessing the System 1-5

On some terminals, the key that performs the delete function is marked
RUBOUT.

tTRL/U)

Deletes the current line and performs a carriage return so you can reenter the
entire line. Use tTRL/u) when a line contains a number of mistakes and it would
be tedious to use @ID •

tTRL/R)

Performs a carriage return and displays the current line, leaving the print
element or cursor at the end of the line so you can continue typing input. Use
tTRL/R) when you have deleted a lot of characters on a line, but cannot read the
line easily because of the backslash characters. For example:

$ P r o n \ n o \ i n t frl u \ u \ }' trRL/R)

$Print1rn·

tTRL/C) and tTRL/Y)

Cancel an entire command, regardless of how many lines were used to enter it.

You can also use tTRL/v) or tTRL/c) to interrupt the system while it is executing a
command. This is useful in cases when you have entered a command and you
want to stop it. Press tTRL/Y) (or tTRL/c)) and then issue the STOP command, as
shown below:

$ t}'Pe 11l}'file.lisfil!)

tl8Lf'O
$ stop~
$

In this example, tTRL/v) interrupted the typing of a long file and the STOP
command terminated the output.

1.4.4 Error Messages

If, despite the use of line-editing function keys, you enter a command incor
rectly, the system responds with an error message. If you enter a command
name incorrectly, the system displays a message and prompts for a command
line as if no command had been entered:

$ c a P }' ru
%DCL-W-IVVER5t unrecosnized coMMand

\CAPY\
$

The three-part code preceding the descriptive part of the message indicates
that the message is from DCL, the command interpreter; that it is a warning
(W) message; and that the mnemonic for this particular message is IVVERB.

1-6 Accessing the System

You can also receive error messages during command execution if a command
cannot perform the function you have requested. For example, if you type a
PRINT command correctly, but the file that you specify does not exist, the
PRINT command informs you of the error:

$ Print nofile.datru
%PRINT-W-OPENINt error oPenins DBA1:[MALCOLMJNOFILE.DAT;
as inPut
-RMS-E-FNFt file not found

The first message is from the PRINT command: it tells you it cannot open the
file. The second message indicates the reason, that is, the file cannot be
found. The facility name in this message, RMS, is the VAXNMS file system;
error messages related to file handling are generally RMS messages.

1.4.5 Truncating and Abbreviating Commands

When you type commands or keywords, you do not always need to type the
full command or keyword name. In fact, you never have to type more than
four characters, and in many cases you can type only one or two characters.
The rule to follow is: a four-character abbreviation will always work and you
must type at least the minimum number of characters necessary to make the
command or keyword unique.

For example, the SET and SHOW commands both begin with the letter "S."
Therefore, when you type either of these commands, you must type at least
two characters, SE or SH, to make the command unique.

The examples in this primer show full command and keyword names, so that
you can become familiar with the commands and what they do.

1.5 Command Prompting

When you enter a command at the terminal, you do not need to enter the
entire command on one line. If you enter a command without specifying
required parameters, the system prompts you for the additional data it re
quires, as shown below:

$ Printru
$_File: rTD'file.datru

In this example, no parameter was entered, so the system prompted for a file
specification parameter.

If a command requires two or more parameters, it prompts for each param
eter. In response to each prompt, you can enter the prompted parameter or all
the remaining parameters. For example:

$ COP~'IBTIJ
$._Fro1T1: f i lel+ datru
$_To: file2.datru

Accessing the System 1-7

In this example, each file specification is entered separately. You could, how
ever, enter both file specifications following the first prompt, as shown below:

$ COPd8ff)
$_Fro1r1: filel.dat file2.dat(BTI)

1.6 The HELP Command

When you are using the system, you may not always have a reference manual
available at your terminal, and you may want to see the format of a command
before you enter it. The HELP command is designed to provide you with this
information.

For example:

$ help~T)

When you type this command, the system responds by displaying information
about using the HELP command.

If you type:

$help Print(BTI)

The information displayed includes a synopsis of what the PRINT command
does, the valid qualifiers and their default values, and the parameters re
quired by the command.

The HELP command also tells you what additional information is available,
in the form of keywords that you can also specify. For example, the HELP
PRINT command tells you that additional information is available about the
PRINT command qualifiers. Then, you can type:

$ help Print 91.!alifiers(BTI)

The HELP command displays a list of valid qualifiers for the PRINT
command.

1. 7 Logging Out

When you are finished using the computer, use the LOGOUT command to
end the terminal session:

$ loaout®~t)

The system responds:

MALCOLM loaaed out at 17-JUL-1878 12:43:10.38

1-8 Accessing the System

Note that shutting your terminal off, or setting the REMOTE/LOCAL switch
to LOCAL while you are logged on, does not cause the system to log you out
automatically. You must use the LOGOUT command to end a terminal ses
sion. If you shut a terminal off without logging out properly, another user can
later turn the terminal on and use your account to access your files.

1.8 For More Information

The VAX/VMS Command Language User's Guide is the primary reference for
information about the DIGITAL Command Language and the DCL com
mand interpreter. The manual contains complete descriptions of DCL com
mands, defines the grammar of the DCL command language, and illustrates
command usage with many examples.

Accessing the System 1-9

Chapter 2
Files: Using the Editor

2.1 Files

Before you can use the V AXNMS operating system to create and run pro
grams, you should have an understanding of how the operating system uses
and identifies files. You should also know something about the editor, an
interactive program you can use to create and update source programs or data
files.

A file is a collection of logically related data located on a medium, such as a
disk, tape, or card deck. Many system commands require input files or pro
duce output files. To access files that already exist, or to give names to files
that you create with system commands, you must know how to identify files.

The system uniquely identifies a file by its file specification. Some of the
characteristics of a file specification are described below.

A file is first identified by its location, that is, the physical device on which it
is stored. When you log in to the system, the system assumes that all the files
you create or use are on a specific disk, your default disk. This default is
provided for you by the system manager who sets up your account.

Since a disk can contain files belonging to many different users, each disk has
a set of files called directories. A directory is simply a catalog of the files on
that disk that belong to a particular user. As with the default disk, the system
also assumes that the files you refer to are cataloged in a default directory.

You can find out what your current default disk and directory are by issuing
the SHOW DEFAULT command:

$ sho1,,1 default(BIT)
D5A2:CMALCOLMJ

This response from the SHOW DEFAULT command indicates that the de
fault disk device is DBA2 and the default directory is named MALCOLM.

2.2 File Names and File Types

By taking advantage of your default disk and directory, you can identify a file
uniquely by specifying its file name and file type, in the format:

f i 1 ena1r1e. t}'Pe

The file name can have from one to nine of the alphanumeric characters A
through Z and 0 through 9. When you create files, you can give them any
names that are meaningful to you.

2-1

The file type can be from one to three alphanumeric characters; it must be
preceded by a period. The file type describes more specifically the kind of
data in the file. Again, you can choose any alphanumeric characters for the
file type. However, the system recognizes several default file types used for
special purposes.

Among these default file types are:

File Type

FOR

MAR

DAT

LIS

OBJ

EXE

Use

VAX-11 FORTRAN language source statements

V AX-11 MACRO assembly source statements

Data file

Output listing from a compiler or the assembler

Object module output from a compiler or the assembler

Executable program image

For example, if you create a file containing source statements for a FOR
TRAN program, you should use the file type FOR.

2.2.1 Version Numbers

Every file also has a file version number associated with it to distinguish
among copies of the file made during various updating operations.

You specify a version number in a file specification by placing it after the file
type, preceded by a semicolon (;) or a period (.). For example:

$Print 1rn•file.lis;2(FITT)

This PRINT command requests that the version numbered 2 of the file
MYFILE.LIS be printed.

When you create a new file, the system always assigns it a version number of
1. When you make an update, the system increments the version by 1. When
you refer to an existing file without specifying a version number, the system
always locates the most recent version (that is, the highest number). You can
override these default version numbers by specifying an explicit version num
ber in a command, as shown in the example above.

2.3 Using the Editor

An editor is a program that lets you create and modify files. When you issue
the EDIT command from the terminal, you enter the file name and file type of
the file you want to create or modify, as shown below:

$edit ne1,.1file.dat@:1)

2-2 Using the Editor

This command invokes the editor and begins an editing session, during which
you use a special set of commands that the editor understands and uses to
process the file named NEWFILE.DAT.

When you use the editor, what you type is not recorded in a file until you
instruct the editor to copy the input data from system memory and write it
into a disk file. You can then access the file at a later time and make changes
to it, such as adding or deleting text.

The default V AXNMS editor is called SOS. When you issue the EDIT com
mand, SOS identifies itself and you begin your editing session. The following
sections describe how to use the editor to create and make changes to a file.

2.3.1 What an SOS File Looks Like

SOS "sees" text in terms of lines; a line is a string of characters, spaces, and
tabs ending with a ~. Every line in an SOS file has a number which is
displayed with the text. The three numbers below start three separate SOS
lines:

00100 ~
00200 This is an SOS line~
00300 111111111122222222223333333333QQQQQQQQQQ5555555555GGGGGGGGGG
777777777788888888888888888889111111111122222222223333333333QQQQQQQQQQ
5555555555GGGGGGGGGG77777777778888888888899899999900000000001111111111
22222222223333333333QQQQQQQQQQ5555555555GGGGGGGGGG77777777778888888888
99999999990000000000111111111122222222223333333333QQQQQQQQQQ5555555555
GGGGGGGGGG777777777788888888888889888888000000000011111111112222222222
3333333333aaaaaaaaaa5555555555********** THE MAXIMUM sos LINE IS 500
CHARACTERS LONG ****~

When you use SOS to create a new file, SOS assigns the line numbers as you
enter lines into the file. If you use SOS to edit a file that does not have line
numbers (for example, a file created with some other editor), SOS assigns the
line numbers when it opens the file for editing.

2.3.2 Creating a New File

To invoke SOS, use the EDIT command, giving the file specification of the
file you want to create. SOS will supply your default disk and directory name
for the file if you do not specify the disk and directory when you give the file
specification.

SOS responds to the EDIT command by displaying its current mode (either
Input mode or Edit mode) and the full file specification of the file. If the file
you specify is a new one, SOS places itself in Input mode and prompts you to
begin entering input, as shown in the following example.

$edit ne1,.,1file.datffiIT)
InPut:DBA2:[MALCOLMJNEWFILE.DAT;1
00100

The line number prompt (00100) appears when you are in Input mode. In
Input mode, each line you enter is placed in the file.

Using the Editor 2-3

Terminate each line by pressing ~. After each line, SOS prompts with a new
line number for the next line. By default, SOS begins numbering at 100 and
uses an increment of 100 for each line.

If you make mistakes while you are entering input lines, you can use the line
editing function keys on your terminal to correct mistakes, or tTRL/u) to discard
a line.

When you have finished entering text, press@ to signal SOS that you do not
want to enter more input. (On some terminals, the key that performs the
escape key function is labeled ALTmode, SELect, or PREfix.)

You can press @ either at the end of the last line of input, or following the
prompt for the next line. When you press@, SOS echoes it on your terminal
as a dollar sign ($) character. SOS leaves Input mode and enters Edit mode.
In Edit mode, SOS Interprets each line that you enter as a command for it to
perform a particular operation. When SOS is in Edit mode, it displays an
asterisk (*) in column 1.

Figure 2-1 shows a sample editing session to create a new file.

Terminal Display

$edit ne•A• file.dat~
InPut:D6A2:CCRAMERJNEWFILE.DAT;1
00100
00200
00200
00300
ooaoo
00500
00800

SOS i s n o •A• i n I n P u t 111 o d e • ~
It talks each lo AU
It ta~tes e1.1en· line You~
enter and~
shies it a line nur11ber.rsru

~
Get out of InPut r11ode~

00700 with an escape,$

*

Comments

Invoke SOS
SOS new file message
Prompt; first line entered
Discard line
Retype line 200
Enter line 300
Enter line 400
A blank line
Enter line 600
m is displayed as $

SOS Edit mode prompt

Figure 2-1: Creating a File with the SOS Editor

2.3.3 Writing a File onto Disk

As you are entering input for a file, you can request SOS to write the data into
a disk file to save what you have entered. There are two SOS commands for
this purpose: W (Save World) and E (End).

If you want to stay in SOS, and make changes to lines you have entered, use
the W (Save World) command:

*IAI~

SOS responds by writing the file to disk, telling you the file specification of
the saved file, and returning control to you in SOS Edit mode.

[06A2:CMALCOLMJNEWFILE.DAT;1J

*

2-4 Using the Editor

If you want to terminate the session with SOS, save your edited file, and
return to the D.CL command level, use the E (End) command instead of the
W command:

SOS also responds to the End command by displaying the file specification
before it exits:

[05A2:[MALCOLMJNEWFILE.DAT;1J
$

The dollar sign prompt indicates that you have ended your editing session and
can now enter system commands.

2.3.4 Editing an Existing File

When you invoke SOS to edit a file that a~ready exists, SOS places itself in
Edit mode when it opens the file. For example, if you issue the EDIT com
mand to edit the file NEWFILE.DAT and this file already exists, SOS
responds as shown below:

$edit ne1 ... 1file.datru
Edit:D5A2:[MALCOLMJNEWFILE.DAT;1

*
The asterisk prompt indicates that SOS is ready to accept editing commands.

2.3.5 SOS Commands

SOS has a command language of its own. SOS commands are usually one
character abbreviations of a verb, for example E for End, I for Input, F for
Find, and so on.

Some SOS commands also accept qualifiers that modify or restrict the action
of a command.

Many SOS commands accept qualifiers that specify a line number or a range
of line numbers. The line numbers tell SOS on which lines to perform the
requested command. For example, the P (Print) command requests SOS to
display a line or a range of lines in the file on the terminal. To display lines
300 and 400, type: '

*P300: l'.lOOIBrf)
00300 enter and
00400 fives it a line nuMber.

For some commands, a qualifier is a character string that you want SOS to
locate or change. You must terminate character string qualifiers by pressing
~. For example, the Find command requests SOS to locate and display the

next line that contains a particular character string. To locate the line that
contains the string "escape", type:

*fescape@QIBrf)
00700 with an escape.

Using the Editor 2-5

After you enter a command to SOS, you must always use IB.[[) to pass the
command to SOS for execution. SOS responses depend on the operation per
formed. If you make an error typing a command - for example, a spelling
error - SOS issues the message:

Illesal syntax of coMMand

You must retype the command.

2.3.6 Specifying Line Numbers in SOS Commands

When you edit a file with SOS, SOS always keeps track of the current line.
This is the number of the line that you are "looking at" at any particular
time. When you use SOS commands that add or delete lines, the current line
can move toward a smaller number or toward a larger number in the file.

Although you do not always need to know the line number of a line you want
to look at or change, you may at times want to specify a line number in a
command.

For commands that accept a line number or range of line numbers for a
qualifier, you can use a variety of shorthand notations to represent line num
bers. The shorthand consists of punctuation marks that have specific mean
ings to SOS when they appear in place of or with line numbers. Some of these
punctuation marks and their meanings are summarized in Table 2-1.

Table 2-1: Punctuation Marks for SOS Line Number Arguments

Mark Meaning Example Explanation of Example

Range 100:500 Lines 100 through 500

Current line .:500 Current line through line 500

First line .. First line through current line

* Last line .:* Current line through last line

Increment 1 300;10 Increment new lines by 10 while doing
this command

,
1 The use of increments is discussed in Section 2.3.10, "Inserting Lines in a File."

2.3.7 Summary of Frequently Used SOS Commands

Table 2-2 lists some of the more frequently used SOS commands. This table
does not represent a complete list of commands, nor even all of the possible
things that each of the commands listed can do. Rather, it summarizes the
commands and qualifiers described in this chapter.

2-6 Using the Editor

2.3.8 Examples of SOS Editing Commands

The following sections show examples of using the SOS commands listed in
Table 2-2. The examples also illustrate combinations of line number quali
fiers, using positions and ranges for different commands.

Table 2-2: A Subset of SOS Commands

Command Qualifiers 1 Function

(BTI) None Print the next line in the file

~ None Print the previous line in the file

p position or range Display line(s) at the terminal

I position Insert new line(s) into the file

N increment and range Renumber the lines in the file

R position or range Replace one or more lines with new
line(s)

D position or range Delete line(s) from the file

F string~ Find and print the next line containing
the specified string

s string (§Ql string ~ Substitute one string for another

E None End the editing session

1 Key:
position
range
increment
string

means you can specify a single line number
means you can specify a range of line numbers
is a numeric value for line-number incrementing
is any character string

For the purposes of the examples, suppose you have created an SOS file as
follows:

$ edit sastest.datID
lnPut:DBA2:[MALCOLMJSOSTEST.DAT;1
00100 This is the first lineID
00200 a f a f i 1 e ta t n· au t SOS. ID
00300 Cho~\eberries t Persi1rHr1on Seeds t Mansoes+ID
ooaoo APPles t Pears t Plu1r1s t Cherries+ ID
00500 Here is the fifth line.ID
00800 The sixth line.ID
00700 And the se1.1enth+ID
00800 M}' little Persi1r11r1on seed.ID
00800 The sinsed shores t the bears 1,.,1ho taU\ t®9

*'"'ID
[DBA2:[MALCOLMJSOSTEST.DAT;1J

*

Using the Editor 2-7

The lines in this sample file are used to illustrate the SOS commands in the
remainder of this section. Note that the W (Save World) command saved the
input text, and that SOS issues its Edit mode prompt for you to enter com
mands.

It is good practice to use the W command frequently during an editing session,
to protect your input or modifications from being lost through some user error.

2.3.9 Scanning a File

There are a number of ways you can skip through a file, displaying lines on
the terminal before making changes to them.

For convenience, SOS interprets two of the keys on your keyboard as com
mands. These are IBm and @.

When SOS is in Edit mode and you press IBm on a line that has no command
on it, SOS moves forward one line in the file and displays the next line.
Conversely, if you press @, SOS backs up one line and displays the previous
line.

For example, after you issue the W command above, the current line is still
positioned at the last line of text that was entered. The following example
shows the effect of using IBm and @.

*@g
00800 MY little PersiMMon seed.
*@g
00700 And the seventh.
*IBrD
00800 MY little PersiMMOn seed.
*IBrD
00900 The sinsed shores, the bears who talkt
*IBrD
No such line exists

*
If SOS is already pointing at the last line of the file, and you press IBm, SOS
informs you that there are no more lines, as the example shows.

To display a line that is not immediately before or after the current line and to
position the current line pointer at that line, use the P (Print) command. For
example:

*P500IBr!)
00500 Here is the fifth line.

When you specify a line number, you can omit the leading zeros.

To display the current line (in case you lose track of where you are in a file),
use the period (.), as follows:

*P+~
00500 Here is the fifth line.

2-8 Using the Editor

The P command also prints a range of lines, for example:

*P500:700(B@
00500 Here is the fifth line.
00800 The sixth line.
00700 And the seventh+

To position SOS to point to the first line in the file, and to display the line,
use the circumflex ("), as follows:

*P ... (@)

00100 This is the first line

On some terminals, this function of the circumflex character is performed by
an up-arrow (t).

Similarly, you can display the last line in the file by specifying:

P(B@
00900 The sinsed shorest the bears who talkt

If you use the P command without specifying a line number or a range of line
numbers, SOS displays 16 lines, beginning with the current line.

2.3.10 Inserting Lines in a File

The I (Input) command tells SOS to enter Input mode, so you can enter new
lines of text into the file. You must specify where you want the new lines to go.
The following example shows how you would request SOS to enter Input mode
to insert a new line of text following the current line:

*P500(B@
00500 Here is the fifth line.
*i + ~
00550 add a ne1,.1 line@
*

The SOS input prompt indicates the new line will be numbered 550. After you
enter the line, SOS returns to Edit mode when you press either~ or@ to
terminate the line. The current line pointer is positioned at the last line of
text entered.

To insert a new line of text following a line that is not the current line, specify
the line number, as follows:

*iGOO~
00850 Tertrlinate the line 1,.iith return or escape@

*
The asterisk prompt indicates that SOS has returned to Edit mode.

2.3.10.1 Line Number Increments for Inserting Lines - SOS has two ways to
handle multiple-line insertions. One way is for insertions after the last line in
a file, another for insertions between existing lines.

Using the Editor 2-9

"t,.

When you begin inserting lines following the last line in the file, SOS does not
return to Edit mode, but expects that you want to enter more than one line.
For example, the following sequence shows how to position the current line at
the end of the file and begin entering new lines into the file.

* i * (Bfil)
01000 Enter ne1,.1 lines of text as lons@ITJ
01100 as }'OU 1,.1ant; SOS Keeps Pro1r1Ptins' for 1r1ore lines@ITJ
01200 until }'OU use escaPe to return to Edit 1r1ode.(§g

*

Note that SOS numbers the new lines using the default increment for line
numbers, 100, beginning after the last line in the file.

When you want to insert more than one line between two existing lines in the
file, specify a line number increment when you issue the I command. For
example, the following commands tells SOS to insert new lines following line
700, and to number each new line in increments of 5:

*i 700; 5(Bfil)
00705 A ne1,.1 line heret incre1r1ented tn' 5.(8fil)
00710 Another ne1,.1 line.(Bfil)
00715 Last ne1,.1 line.(8fil)
00720 (§g

*

The semicolon (;) in the above example represents a temporary increment:
SOS numbers new lines by 5 as long as it is in Input mode as a result of this I
command.

In this example, @ is pressed after the prompt for the line 720. You could
have pressed @ rather than ~ at the end of line 715. The result is the same;
the last new line that is actually entered in the file is line 715.

2.3.10.2 Renumbering Lines - If you insert many new lines between existing
lines, SOS may run out of room to write the new lines into the file. If so, it
issues the message: ·

Insufficient line nuMbers for insertion

*

Before you can enter any more lines at this position in the file, you must use
the N (reNumber) command to renumber the lines:

This command renumbers all lines in the file. SOS uses an increment of 100,
unless you have specified another increment during the current SOS editing
session. If you have, SOS uses the last increment you specified. For example,
if you had specified an increment of 5 (as in the insert example above), all
lines in the file would be renumbered in increments of five. Note that when

2-10 Using the Editor

SOS finishes renumbering the lines it issues the asterisk prompt. The SOS
current line pointer is positioned at the end of the file.

The line numbers shown in the remaining examples in this chapter reflect the
result of a reNumber command.

2.3.11 Deleting Lines

The D (Delete) command deletes one or more lines from a file. For example,
to position the line pointer at line 400 and delete the line, enter the com
mands:

* P 4 o o (8D)
00400 APPies, Pearst Plums, Cherries.
* d + (ffi)
1 Line(s) deleted (00400/1).

*

SOS responds by telling you the line number of the deleted line. When you
use the D command to delete only the current line, you can omit the period
(.); SOS deletes the current line by default. The D command does not change
the position of the current line pointer. To move the line pointer to the next
line in the file, you must press ~.

The /1 in the SOS response shown above is a page number. With SOS you can
use page numbers to divide large files into manageable units. In fact, SOS will
create a new page for you if you attempt to include more than 65535 line
numbers in one page. In small files, like the ones in this primer, the entire file
is usually on a single page, page 1.

2.3.12 Replacing Lines

The R (Replace) command combines the Delete and Input commands. When
you specify a line number or a range of line numbers, SOS first deletes the
specified line(s), then goes into Input mode to accept a line of input. The
following example shows how to replace a single line:

* P 1400(ffi)
' 01400 The sinsed shores, the bears who talKt

* r • (ffi)
1 Line(s) deleted (001400/1).
01400 The sinsins sands, the beasts that taU:. ,~

*
After you enter the new line, SOS returns to Edit mode when you press either
(§9 or ~ unless you have replaced the last line in the file. Note that the line

replaced here, entered as line 900 during the original input in the file, is now
line 1400 as a result of the reNumber command.

You can also specify a range of lines, for example:

* r500: 700(ffi)
3 Line(s) deleted (00500/1:00700)
00500

Using the Editor 2-11

This command requests SOS to delete lines 500 through 700 and to place itself
in Input mode to accept replacement lines for lines 500, 600, and 700.

When you want to replace one or more lines with a larger number of lines of
input, specify a line number increment with the R command. Increment
arguments for the R command are the same as for the I (Input) command,
described above. For example:

*r500:7oo;10~

This command deletes lines 500 through 700 and causes SOS to enter Input
mode; SOS numbers the input lines you type in increments of 10 until you
press ®_G to return to Edit mode.

2.3.13 Editing with the Find and Substitute Commands

The F (Find) and S (Substitute) commands give you an easy way to locate
and change lines in a file when you do not know the line numbers. Use the F
command to request SOS to locate a particular character string. The charac
ter string can be as long as 200 characters. You must terminate the string with
m and then use ~ to terminate the command line.

When SOS searches for a string, it begins the search at the line following the
current line and searches toward the end of the file. For example:

SOS searches for the string "persimmon" beginning with the line following
the current line. When it locates the string, it displays the line, then issues the
Edit mode prompt: ·

01300 MY little Persimmon seed.

*

If it does not find the string, it issues the message:

Strins not foundt search failed

*
•

In this case, the current line remains at its original position. If you want SOS
to search the lines before the current line in the file, position the current line
at the beginning of the file and repeat the F command, as shown below:

*p ·' (Bfl)

00100 This is the first line
*f (BIT)
00300 ChoKeberriest Persimmon Seedst Mansoes.

SOS always remembers the last Find command string, so you do not need to
retype the character string to repeat the command. Note in the above exam
ple that the occurrence of the requested string (persimmon) begins with an

2-12 Using the Editor

uppercase P. The Find command does not distinguish between uppercase and
lowercase letters unless you use the Exact option, as shown below:

*f Persi1tHt1on~ ,e~
01300 MY little PersiMMOn seed.

The S (Substitute) command substitutes one character string for another.
The following lines show an example of an S command:

*P1300~
01300 MY little PersiMMon seed.
*sPersifTlfTlOn seed~chic~~adee~~
01300 MY little chickadee.

*
After locating and displaying line 1300, the S command requests SOS to
change the string "persimmon seed" to "chickadee." The @ key delimits
each of the character string arguments. SOS displays the line with the
change.

In the above example, the S command is issued when the line containing the
specified string is the current line. If the string you want to change is not on
the current line, SOS begins searching for the string (as it would for a Find
command). When it locates the string, it performs the substitution and prints
the line.

The Substitute command changes all occurrences of a string on a line. For
example:

*P300~
00300 ChoKeberries, PersiMMon Seedst Mansoes.
*s ,@g and~~
00300 ChoKeberries and PersiMMon Seeds and Mansoes.

This Substitute command substitutes the string "and" for each comma (,) in
the line.

2.3.14 For More Information

The VAX-11 Text Editing Reference Manual contains a complete description
of how to use SOS. In that manual, you will find additional examples of the
commands presented in this chapter, and information on many more com
mands and special editing techniques.

Another editor used with the VAX/VMS operating system is named EDT. For
information on the features and use of EDT, refer to the VAX-11 EDT Editor
Reference Manual.

Using the Editor 2-13

Chapter 3
Program Development

Four steps are required to develop a program:

• Creating the source program file

• Compiling or assembling the source program file to produce an object
module file

• Linking the object module file to produce an executable image

• Executing and debugging the program

These steps are common to all the languages available on the V AXNMS
operating system.

3.1 Creating The Program

When you write a program, you must create a file that contains the program
source statements. If you are an interactive user, you use the editor to create
the source program. If you are a batch user, you create the file on punched
cards, and submit the cards in your batch job.

3.2 Compiling or Assembling the Program

You use a DCL command to invoke a language processor, either a compiler or
an assembler. There is a command to invoke each processor.

Command

BASIC
BLISS
COBOL/C74
FORTRAN
MACRO
PASCAL

Invokes

VAX-11 BASIC compiler
V AX-11 BLISS-32 compiler
VAX-11 COBOL-74 compiler
VAX-11 FORTRAN compiler
VAX-11 MACRO assembler
VAX-11 PASCAL compiler

The language processors check your source program for syntax and program
ming errors, and then translate your input source file into a binary form that
can be interpreted by the computer. The translated code -that is, the object
module - is written into a file called an object module file.

3.3 Linking the Object Module

An object module is not, in itself, executable; generally, an object module
contains references to other programs or routines that must be combined with

3-1

the object module so that it can be executed. It is the function of the linker to
do the combining.

The LINK command invokes the linker. The linker searches system libraries
to resolve references to routines or symbols that are not defined within the
object modules it is linking. You can request the linker to include more than
one object module as input, or specify your own libraries of object modules for
it to search.

The linker creates an image, which is a file containing your program in an
executable format.

3.4 Executing the Program

The RUN command executes an image, that is, it places the image created by
the linker into memory so that it can run.

The first time you run a program, it may not execute properly; if it has a bug,
or programming error, you may be able to determine the cause of the error by
examining the output from the program. When you have determined the
cause of the error, you can correct your source program and repeat the compi
lation, linking, and running steps to test the result. Figure 3-1 illustrates
these steps in program development.

The remaining sections in this chapter show the commands to create, com
pile, and execute a program in these programming languages:

• VAX-11 FORTRAN

• VAX-11 MACRO

These sections describe the input and output files used in each step and the
naming conventions for the files. They also present optional command quali
fiers you can use to create additional output files, including program listings.

Each section also contains a sample program. If you have access to a terminal,
you can create the programs and issue the commands that are described.

At the end of the chapter is a list of additional documentation that you can
consult for further information about the language, programming considera
tions, and other tools provided by V AXNMS for program development.

If you are a high-level language programmer, you can scan the section on
FORTRAN program development to learn the concepts of program develop
ment. For pointers to where you can find more information, see the VAX-11
Information Directory and Index.

3-2 Program Development

Use the editor to create
a disk file containing your
source program statements.
Specify the name of this file
when you invoke the compiler
or assembler.

Commands invoke language
processors that check syntax,
create object modules, and
if requested, generate
program listings.

If a processor signals any
errors, use the editor to
correct the source program.

The linker searches the system
libraries to resolve references
in the object module and create
an executable image. Optionally,
you can specify private libraries
to search, and request the linker
to create a storage map of
your program.

The linker issues diagnostic
messages if an object module
refers to subroutines or symbols
that are not available or
undefined. If the linker cannot
locate a subroutine, you must
reissue the LINK command
specifying the modules or
libraries to include. If a
symbol is undefined, you may
need to correct the source program.

The RUN command executes a
program image. While your
program is running, the system
may detect errors and issue
messages. To determine if your
program is error-free, check
its output.

If there is a bug in your
program, determine the cause
of the error and correct the
source program.

Source
program

Compiler
or

Assembler

no

Link the
object module

no

Run the
executable

image

no

SUCCESS

yes

----,

Correct the
source program

'-y~s- - - - _I - - - - -

yes

Figure 3-1: Steps in Program Development

Program Development 3-3

3.5 A FORTRAN Program

The steps required to prepare a VAX-11 FORTRAN1 program to run on
VAXNMS are illustrated in Figure 3-2. Figure 3-2 also notes the default file
types used by the FORTRAN, LINK, and RUN commands. For any of these
commands, you can specify an explicit file type to override the defaults when
you name an input or output file.

~MMANDS

$EDIT AVERAGE.FOR
Use the file type of FOR to
indicate the file contains a
VAX-11 FORTRAN
program.

$FORTRAN AVERAGE
The FORTRAN command
assumes the file type of an
input file is FOR.

(If you use the /LIST
qualifier, the compiler
creates a listing file.)

$LINK AVERAGE
The LINK command assumes
the file type of an input file
is OBJ.

(If you use the IMAP qualifier,
the linker creates a map file.)

$RUN AVERAGE
The RUN command assumes
the file type of an image is
EXE.

Create a
source program

Compile the
source program

Link the
object module

G~:t::~e
mage ___ _,

INPUT/OUTPUT Fl LES

LJ AVERAGE.FOR
.....

.,,,

~ AVERAGE.OBJ
(AVERAGE.LIS)

.....

libraries

AVERAGE.EXE
(AVERAGE.MAP)

Figure 3-2: Commands for FORTRAN Program Development

3.5.1 Creating The Source Program

Use the editor (described in Chapter 2) to create a source program inter
actively. For example, to create the FORTRAN program called AVERAGE,
issue the EDIT command as follows:

$edit a1.ierase.for~
InPut:DBA2:[MALCOLMJAVERAGE.FOR;1
00100

1 The VAX-11 FORTRAN compiler is referred ·to simply as FORTRAN throughout this
manual.

3-4 Program Development

The line number prompt indicates that SOS is ready to accept input lines.

The program AVERAGE is shown below. When you type the input state
ments, you can use the lffiW key to align the statement and comments col
umns. The terminal has internal tab settings at every eight character posi
tions.

100
200
300 c
llOO C
500
GOO
700
800
900 5

1000
1100
1200 10
1300
1 llOO
1500 20
1800
1700
1800
1900
2000 c
2100 c
2200
2300 llO
2ll00
2500
2600 50
2700
2800
2900

PROGRAM AVERAGE

COMPUTES THE AVERAGE OF NUMBERS ENTERED AT TERMINAL
TO TERMINATE THE PROGRAM, ENTER 9999

TOTAL 0
N = 0

N = N + 1
WRITE <G dO>

INITIALIZE ACCUMULATOR
INITIALIZE COUNTER

PROMPT TO ENTER NUMBER

FORMAT (' ENTER NUMBER, END WITH 9999')
READ (5120> K READ NUMBER FROM TERMINAL

FORMAT I10
IF < K , EQ, 9989 > GOTO llO 9899 MEANS NO MORE INPUT
TOTAL = TOTAL + K ! COMPUTE TOTAL WITH NUMBER
GO TO 5

NOW1 COMPUTE AVERAGE BY DIVIDING TOTAL BY THE NUMBER OF
TIMES THROUGH THE LOOP

AVERAG = TOTAL/N
WRITE (8150> AVERAG

FORMAT (I Al,JERAGE IS I 1F10.2)

STOP
END

DISPLAY THE RESULT

The program AVERAGE reads and writes lines to the current input and
output devices; it prompts for the user to enter numbers and then computes
the average of the numbers entered. This program purposely has a syntax
error and a bug, so you can get an idea of how to use V AXNMS to correct
programming errors.

3.5.2 The FORTRAN Command

When you enter the FORTRAN command from the terminal, the FORTRAN
compiler, by default:

• Produces an object module that has the same file name as the source file
and a file type of OBJ

• Uses FORTRAN compiler defaults when it creates the output files (quali
fiers on the FORTRAN command can override these defaults)

To compile the source program AVERAGE, issue the command:

$ fortran a1.ieraae(8(0

Program Development 3-5

Since the FORTRAN command assumes a file type of FOR, you need not
specify the file type when you name the file to be compiled.

If the compilation is successful- that is, if the compiler did not detect any
errors - the system displays a prompt for the next command:

$

If there are any errors, the FORTRAN compiler displays information on the
terminal. If you entered the source program AVERAGE exactly as it appeared
above, then you received the message:

%FORT-F-ERROR 33t Missins operator or deliMiter SYMbol
[FORMAT IJ in Module AVERAGE at line 8

%FORT-F-ENDNOOBJt DB2:[MALCOLMJAVERAGE.FOR;1 t
COMPieted with 1 diasnostic-
object deleted

This message indicates that the FORMAT statement was incorrectly coded;
you must put parentheses around the format specification.

To correct the error, edit the source file:

$ edit al.lerase.form
Edit:DBA2[MALCOLMJAVERAGE.FOR;1
*

Now, use editor commands to locate the line and correct the error, as shown
below:

* f i 1 O lESCJ C8U)
1500 20 FORMAT 110
*r•*ffil
1500 20 FORMAT <I10>m

*
The Find command locates the FORMAT statement that is in error and the
Replace command replaces the line. If you had more than one error in your
source file, correct these errors, too.

When you are satisfied with the changes, use the End command to write the
updated file onto disk:

*eID
[0BA2:[MALCOLMJAVERAGE.FOR;zJ
$

Notice that SOS has created a new version of the file AVERAGE.FOR.

Now you can recompile the program:

$ fortran al.leraseO*I)

The FORTRAN command always uses, by default, the version of the file with
the highest version number. If the program compiles successfully this 'time,

3-6 Program Development

you can go on to the next step. Otherwise, repeat the proced~re of correcting
the source file and compiling.

When you compile a source program, use the /LIST qualifier on the FOR
TRAN command to request the compiler to create a program listing. For
example:

$ fortran/list a1.1erase(Btl)

The FORTRAN compiler creates, in addition to an object module, a file
named AVERAGE.LIS. To obtain a printed copy of the program, use the
PRINT command as shown below:

The PRINT command uses the default file type of LIS.

3.5.3 Linking the Object Module

To link the program AVERAGE, issue the LINK command as follows:

This LINK command creates a file named AVERAGE.EXE, which is an
executable program image. The linker automatically includes in the execut
able image any library routines that the compiler requested for input/output
handling, error routines, and so on.

3.5.4 Running the Program

To execute the program AVERAGE, use the RUN command. When you issue
the RUN command, you provide the name of an executable image. By de
fault, the RUN command assumes a file type of EXE. Thus, to run the
program AVERAGE, type the RUN command as follows:

AVERAGE is interactive: it prompts you to continue entering numbers and it
keeps a cumulative sum of the numbers you enter. When you enter 9999, it
computes the average of all the numbers you entered. A typical run of this
program might appear as follows:

ENTER NUMBERt END WITH 9998
3 3 (BIT)
ENTER NUMBERt END WITH 8888
BG (BIT)
ENTER NUMBER; END WITH 8888
8 8 (ffi)
ENTER NUMBERt END WITH 8888
8988(Btl)
At,lERAGE IS 48.50
FORTRAN STOP
$

Program Development 3-7

As you can see, the program is not comp'uting the average correctly. By look
ing at the program listing, you can see that the error occurs because the loop
counter (N) is incremented a final time when you enter 9999 to terminate
entering numbers. The value N must be decremented by 1.

To correct the error, edit the source file again:

$edit a1.1erase.forru
Edit:DBA2:[MALCOLMJAVERAGE.FOR;z
* f TOTAL/ @ID
2300 ao AVERAG = TOTAL/N
*r.(80
2300 ao Al,JERAG = TOTAL/ (N-1) ([@

* e 00)
[DBA2:[MALCOLMJAVERAGE.FOR;3J

.$

The Find command locates the string TOTAL/ and the Replace command
replaces the line. The End command writes a new version of the file onto disk.

Now, repeat the compiling, linking, and running:

$ fort ran al)e rase(RU)
$ link a1.1eraa'e~

$ run a1.1erase(Bill
ENTER NUMBER, END WITH 8889
3 3 (Bill
ENTER NUMBER, END WITH 9999
GG(8TI)
ENTER NUMBER; END WITH 9999
9 9 (Bill
ENTER NUMBER, END WITH 8999
9999(fil!l
At,JERAGE IS 88.00
FORTRAN STOP
$

In this example, the bug was easy to spot; this is not usually the case, how
ever, and you may need to investigate a program further to debug it.

3.5.5 Debugging a FORTRAN Program

The VAXNMS operating system has a debugger, a program that permits you
to debug your programs interactively. When you want to use the debugger,
you have to compile the source program with the /DEBUG and /NOOPTIM
IZE qualifiers, as follows:

$ fortran/debus/no0Pti11lize al.leraa'e(Bill

These qualifiers make the later use of the debugger program possible with this
FORTRAN program. When the compilation completes, use the /DEBUG
qualifier when you link the object module:

3-8 Program Development

N~w, when you use the RUN command to execute the program image AVER
AGE.EXE, the debugger takes control, and you can use debugging commands
to stop the execution of the program at a particular statement and examine or
modify a variable.

For information on how to use the debugger, see the VAX-11 FORTRAN
User's Guide.

3.6 A MACRO Program

The steps required to prepare a VAX-11 MACR01 program to run under
VAXNMS are illustrated in Figure 3-3. Figure 3-3 also notes the default file
types used by the MACRO, LINK, and RUN commands. For any of these
commands, you can specify an explicit file type to override the default when
you name an input or output file.

COMMANDS

$EDIT NAME.MAR
Use the file type of MAR to
indicate the source file
contains a VAX-11 MACRO
program.

$MACRO NAME
The MACRO command
assumes the file type of an
input file is MAR.

If you use the /LIST
qualifier, the assembler
creates a listing file.

$LINK NAME
The LINK command assumes
the file type of an input file
is OBJ.

If you use the IMAP qualifier,
the linker creates a map file.

$RUN NAME
The RUN command assumes
the file type of an image is
EXE.

INPUT/OUTPUT FILES

---------~:::, Create the
source program

NAME.MAR

libraries

Assemble the
source program

Link the
object module

Run the
executable

image

NAME.OBJ
(NAME.LIS)

libraries

§ NAME.EXE
~ (NAME.MAP)
:::.
~

Figure 3-3: Commands for MACRO Program Development

1 The VAX-11 MACRO assembler is referred to simply as MACRO throughout this manual.

Program Development 3-9

3.6.1 Creating The Source Program

Use the editor (described in Chapter 2) to create a source program inter
actively. For example, to create the MACRO program called NAME, issue the
EDIT command as follows:

$edit na111e+111arllirn
·rnput:D6A2:CMALCOLMJNAME.MAR;1
00100

The line number prompt indicates that SOS is ready to accept input lines.

The program NAME is shown below. When you type the input statements,
you can use the @W key to align the operand and comments columns. The
terminal has internal tab settings at every eight character positions.

The program uses VAX-11 RMS to read and write lines to the current termi
nal; it issues a prompting message asking for the user's name and redisplays
whatever is entered in response. This program purposely has a syntax error
and a bug, so you get an idea of how to use V AXNMS to correct programming
errors.

100
200
300
1.100
500
BOO
700
BOO
900

1000
1100
121)0
1300
11.100
1500
1000
1700
1800
1900
2000
2100
2200
2300
21.100
2500
2000
2700
2800
2900
3000
3100
3200
3300
31.100
3500
3000
3700
3800
3900
1.1000
1.1100
1.1200
1.1300
1.11.100
1.1500
l.IBOO
1.1700
1.1800
4900
5000
5100
5200
5300
51.100

, TITLE NAME
.IOENT /01/
.PSECT RWOATA1WRT1NOEXE

DEFINE CONTROL BLOCKS FOR TERMINAL INPUT ANO OUTPUT

TRMFAB: tFAB FNM=SYStINPUT1RAT=CR1FAC=<GET1PUT> IFAB FOR TERMINAL

TRMRAfl: tRAB FAB•TRMFAB1Uf1F=BUFFER1USZ=BUFSIZ1 -
ROP•PMT1 PBF=PMSG1 I PSZ=P1SIZ

BUFFER:
BUFSIZ•

PMSG1:
P1SIZ=

OUTMSG
OUTBUF
OUTLEN
MSGSIZ

.BLKB 132

.-BUFFER

.ASCII /ENTER YOUR NAME:

.-PMSG1

.ASCII /HELL01 YOUR NAME
,BLKB 30
,LONG OUTBUF-OUTMSG
.BLKL 1

.PSECT NAME1EXE1NOWRT

.ENTRY BEGIN10

$OPEN FAB=TRMFAB
BLBC R01ERRDR
$CONNECT RAB=TRMRAB
BLBC R01ERROR

$GET
BLBC

RAB=TRMRAB
R01ERROR

IS/

INPUT READ BUFFER
BUFFER LENGTH

PROMPT MESSAGE
MESSAGE SIZE

OUTPUT MESSAGE
MOVE NAME HERE

ADD LENGTHS HERE

ENTRY MASK

OPEN TERMINAL FI LE
EXIT IF ERROR
ESTABLISH RAB
EXIT IF ERROR

ISSUE PROMPT
EXIT IF ERROR

MOVE NAME ENTERED INTO OUTPUT MESSAGE1 AND FIX UP LENGTH

MOVC3
MOVZWL
ADDL

TRMRAB+RA6$W_RSZ16UFFER1DUTBUF
TRMRAB+RA6$W_RSZ1MSGSIZ
MSGSIZ10UTLEN

AFTER CONSTRUCTING OUTPUT MESSAGE 1 OUTPUT IT

MO VAL
MOVW
$PUT
BLBC

OUTMSG1TRMRAB+RA6$L_Rf1F
MSGSIZ1TRMRAB+RAB$W_RSZ
RAB=TRMRAB
R01ERROR

ALL DONE 1 CLOSE THE FI LE

$CLOSE FAB=TRMFAB

ERROR:

RET
.ENO BEGIN

UPDATE RAB: ADDRESS
UPDATE RAB: SIZE

El< IT IF ERROR

3-10 Program Development

3.6.2 The MACRO Command

When you enter the MACRO command from the terminal, the MACRO
assembler, by default:

1. Produces an object module that has the same file name as the source file
and a file type of OBJ

2. Uses MACRO assembler defaults when it creates output files (qualifiers
on the command line can override these defaults)

3. Searches the system macro library for definitions for system macros, such
as the RMS macros $FAB and $RAB used in the sample program
NAME.MAR

To assemble the source program NAME, issue the command:

$ 1r1acro/list na1r1e(Bfil)

Since the MACRO command assumes a file type of MAR, you need not
specify the file type when you name the file to be assembled. The /LIST
qualifier indicates that you want a listing of the program; if there are
any errors in the assembly, you may need the listing to determine what the
errors are.

If the assembly is successful - that is, if the assembler did not detect any
errors -the system displays a prompt for the next command:

$

If errors occur, a message is displayed at the terminal. If you entered the
source program NAME exactly as it appeared above, then you received an
error message:

%MACRO-E-UNTERMARGtUnterminated arsument
There were 1 error t 0 warninss t and 0 information messases on lines:
1500(1)

This message indicates that the ASCII string argument coded on line 1500 is
incorrect; you must terminate the string with a slash (I) character.

To correct the error, edit the source file:

$edit na1r1e+1r1ar(Bfil)
Edit:DBA2:[MALCOLMJNAME+MAR;1

Now, use editor commands to locate the line and correct the error, as shown
below:

*P1500(Bfil)
01500 PMSG 1 : .ASCII /ENTER YOUR NAME: ;PROMPT MESSAGE
* r • (Bfl)
01500 PMSG1: .ASCII /ENTER YOUR NAME:/ ;PROMPT MESSAGE@
*

Program Development 3-11

The Print command prints the line (1500) that was in error; the Replace
command replaces the line. If you had more than one error in your source file,
correct these errors, too.

When you are satisfied with the changes, use the End command to write the
updated file onto disk:

* e (Bfil)
[0BA2:CMALCOLMJNAME.MAR;2J
$

Notice that SOS has created a new version of the file NAME.MAR.

Now, you can reassemble the program:

$ rriac ro/ 1 i st narrie~

If the program assembles successfully this time, you can go on to the next
step. Otherwise, repeat the procedure of looking at the listing, correcting the
source file, and assembling.

3.6.3 Linking the Object Module

To link the program NAME, issue the LINK command as follows:

$ lin~\ na1rie(Bfil)

This LINK command creates a file named NAME.EXE, which is an execut
able program image. The linker automatically includes in the executable
image any library procedures required by the RMS routines used.

3.6.4 Running the Program

To execute the program NAME, use the RUN command. When you issue the
RUN command, you provide the name of an executable image. By default,
the RUN command assumes a file type of EXE. Thus, to run the program
NAME, type the RUN command as follows:

$ run na1rieID

NAME is interactive: it prompts you to enter your name, then it uses the
string you entered to create an output string and outputs it. A typical run of
this program might appear as follows:

ENTER YOUR NAME:YORICKID
HELLOt YOUR
$

As you can see, the program is writing only the first 11 characters of the
output message. If you examine the listing, you can see that on line 4300 the
MOVW instruction places the wrong length in the buffer size field of the RAB;

3-12 Program Development

. it uses the MSGSIZ field (that is, the length of the string you entered) rather
than the sum of the string you entered and the OUTMSG string.

To correct the error, edit the source file again:

$edit na1r1e.1r1ar~
Edit:DBA2:EMALCOLMJNAME.MAR;z
*P.4300~
04300 MOl.'W MSGSIZtTRMRAB+RAB$W~RSZ ;UPDATE RAB:SIZE
*r.~
04300 MOl.'W OUTLENtTRMRAB+RAB$W~RSZ ;UPDATE RAB:SIZE~
*e~
EDBA2:EMALCOLMJNAME.MAR;3J
$

Now, repeat the assembling, linking, and running:

$ 1r1acro na1r1e~
$ lird\ natrle~
$run na1r1e~
ENTER YOUR NAME:YORICK~
HELLOt YOUR NAME IS YORICK
$

In this example, the bug was easy to spot; this is not always the case, however,
and you may need to investigate a program further to debug it.

3.6.5 Debugging a MACRO Program

The VAX/VMS operating system has a debugger, a program that permits you
to debug your programs interactively. When you want to use the debugger,
you can assemble the source program with the /ENABLE=DEBUG qualifier,
as follows:

$ 1r1acro/enable=debus na1r1e~

This qualifier requests the assembler to include, in the object module, special
information the debugger can use. When you link the object module you must
specify the /DEBUG qualifier to link the debugger program with your pro
gram. For example:

$ 1 ird\/debus na1r1e~

Now when you use the RUN command to execute the program image
NAME.EXE, the debugger takes control, and you can use debugging com
mands to stop the execution of the program at a particular instruction and
examine or modify a variable.

For information on how to use the debugger, see the VAX-11 Symbolic De
bugger Reference Manual.

Program Development 3-13

3.7 For More Information

The two programs and the command examples presented in this section have
shown only the simplest cases, using defaults for getting a program to run. As
you learn to use the MACRO assembler or FORTRAN compiler on V AXNMS
you will want to create more complex programs. The V AXNMS operating
system provides many programming capabilities beyond those of the VAX-11
MACRO assembler and instruction set, or the V AX-11 FORTRAN language.

Some of the manuals you will find useful are described below.

• The VAX-11 FORTRAN Language Reference Manual describes the fea
tures and syntax of the FORTRAN language.

• The VAX-11 FORTRAN User's Guide provides details on how to use FOR
TRAN on the V AXNMS operating system.

• The VAX-11 MACRO Language Reference Manual describes the features
and syntax of the MACRO langauge.

• The VAX-11 MACRO User's Guide provides details on how to use the
VAX-11 MACRO assembler.

• The VAX/VMS Command Language User's Guide contains reference infor
mation for all the commands that have been used in the examples in this
section.

• The VAX -11 Linker Reference Ma nu al describes how to use the linker and
describes the options available to you when you link a program.

• The Introduction to VAX-11 Record Management Services describes the
file formats used in VAXNMS, and the VAX-11 Record Management Ser
vices Reference Manual and the VAX-11 Record Management Services
User's Guide describe the macros that can be used to create, read, and
update files.

As you write new programs, you may want to use the VAX-11 Common Run
Time Procedure Library, which contains procedures you can call from your
programs. For example, there are library procedures that:

• Perform common mathematical functions, such as computing the sine of an
angle

• Manipulate character string data for input and output routines

• Convert data from one type to another, for example, changing a numeric
ASCII string to a binary value or a floating-point number to scientific nota
tion

A procedure in the Run-Time Library is automatically located by the linker
when you link a program that calls it. Moreover, these procedures can be
called and used by any language supported by the V AXNMS operating sys
tem. For details on how to use these procedures, see the VAX-11 Run-Time
Library Reference Manual.

3-14 Program Development

Additional programming capabilities are available through the V AXNMS
system services. System services are operating system procedures you can use
to synchronize program events using timers, or to establish communications
among separate programs. For details on how to use these system services,
and information on other kinds of services, see the VAX/VMS System Ser
vices Reference Manual.

Program Development 3-15

Chapter 4
Files: Commands to Manipulate Files

The two previous chapters showed how to create files using the editor and
illustrated the files that are required to develop executable programs.

This chapter describes in more detail how you can use the command language
to manipulate files, including files that reside on disks other than your default
disk, or on devices other than disks. This chapter contains examples of:

• Identifying files

• Listing files in a directory

• Creating and using subdirectories

• Displaying files at your terminal

• Deleting files

• Copying files

• Printing files

• Renaming files

4.1 Identifying Files

A complete file specification contains all the information the system needs to
know to locate and identify a file. A complete file specification has the format:

node::device:[directoryJfilenaMe+tYPe;uersion

The punctuation marks (colons, brackets, period, semicolon) are required
syntax that separate the various components of the file specification.

4.1.1 Nodes

When computer systems are linked together to form a network, each system in
the network is called a node, and is identified within the network by a unique
node name. If your system is a network node, you can gain access to a file
located at another node by including the node name in the file specification.

4-1

4.1.2 Devices

A device name identifies the physical device on which a file is stored. A
device name has three fields:

1. The device type. Each hardware device has a unique name that identifies
it. For example, an RP06 disk is DB and a TE16 magnetic tape is MT.

2. A controller designator. The controller designator identifies the hardware
controller to which the device is attached.

3. The unit number. The unit number uniquely identifies a device on a
particular controller.

Some examples of device names are:

Name

DBA2

MTAO

TTB3

Device

RP06 disk on controller A, unit 2

TE16 magnetic tape on controller A, unit 0

Terminal on controller B, unit 3

If you omit a device name from a file specification, the system assumes that
the file is on your default disk device.

4.1.3 Directories

If you type a file specification and omit a directory name, the system assumes
the file is in your default directory. However, you can access files in other
directories (including directories that catalog files belonging to other users) by
specifying the directory name in a file specification.

For example, to display on your terminal the contents of a file named
CONTENTS.DAT belonging to a user whose directory is JONES, issue the
TYPE command as shown below:

$ t>'Pe [jonesJcontents.datm

Note that the file specification does not include a device name. For this
command to execute successfully, the directory JONES must be on your
default disk device. This is because the system always applies a default when
you omit a device name. If user JONES's directory is on the disk DBB2 you
would issue the TYPE command as:

$ t>'Pe dbb2:[jonesJcontents.datm

In both of these examples, it is assumed that the user Jones has permitted
other users to access files in the directory. The system protects all users' files,
by default. You can explicitly allow or restrict access to your own files, either
generally or on a file-by-file basis, with the SET PROTECTION command.

4-2 Commands to Manipulate Files

Files can also be cataloged in subdirectories. A subdirectory is a file (cata
loged in a directory) that lists additional files. A subdirectory name is formed
by concatenating its name to the name of the directory that lists it. For
example:

$ t>'Pe [jones.datafileslMeMo.surt1~

This TYPE command requests a display of the file MEMO.SUM that is
cataloged in the subdirectory [JONES.DATAFILES]. The subdirectory file
name is DATAFILES.DIR, and is cataloged in the directory [JONES].

Subdirectories and how to create them are described in more detail in Section
4.3.

4.1.4 Changing Defaults

The SET DEFAULT command allows you to change your default disk and/or
default directory during a terminal session. For example:

$ set default dbb2:~

After you issue this command, the system uses the disk DBB2 as the default
disk for all files that you access or create with DCL commands or with your
own programs. (You must, of course, have access to a directory on the disk.)
The changes you make with the SET DEFAULT command remain in effect
until you issue another SET DEFAULT command, or until you log out.

4.1.5 Version Numbers

A version number is a decimal number (ranging from 1 to 32767) that the
system assigns to a file when the file is created or updated. When you initially
create a file -for example, with the editor -or when you first compile or
assemble a source program to create an object module file, the system assigns
the file a version number of 1. Subsequently, when you update a file or create
additional versions of it, the system automatically increments the version
number.

Thus, if you edit a source file a few times and compile the program, you have
several different versions of the files. For example:

Command

edit test.for

fortran test

edit test.for

fortran test

Output File

test.for;!

test.obj;!

test.for;2

test.obj;2

Commands to Manipulate Files 4-3

You rarely need to specify a version number with a file specification. The
system assumes default values for version numbers, as it does with devices,
directories, and file types. Version number defaults are determined as follows:

1. For an input file, the system uses the highest existing version number of
the file.

2. For an output file, the system adds 1 to the highest existing version
number.

When you specify a version number in a file specification, you can precede the
version number with either a semicolon (;) or a period (.).

4.2 Listing Files in a Directory

The DIRECTORY command lists the names of files in a particular directory.
If you type the DIRECTORY command with no parameters or qualifiers, the
command displays the files listed in your default directory on the terminal.
For example:

$ directon·~

DI RECTORY DBA 1: [CRAMER Ji.
AVERAGE.EXE;z AVERAGE.EXE;1 AVERAGE.FOR;z AVERAGE.FOR;1
At.JERAGE. OBJ; 2 Al.JERAGE. OBJ; 19

Total of G files ••

The following notes are keyed to this sample output of the DIRECTORY
command:

0 The disk and directory name.

9 The file names, file types, and version numbers of each file in the
directory.

8 The total number of files in the directory.

4.2.1 Listing Information about Specific Files

When you issue the DIRECTORY command, you can provide one or more file
specifications so you can obtain a listing about only particular files. For exam
ple, to find out how many versions currently exist of the file AVERAGE.FOR,
issue the DIRECTORY command as follows:

DIRECTORY DBAl:CCRAMERJ

At.JERAGE. FOR; 2 Al.JERAGE. FOR; 1

Total of 2 files.

4-4 Commands to Manipulate Files

The asterisk in the above command line is a wild card character. Whenever
it appears in a file specification, it indicates that all files that satisfy the
explicit parts of the file specification are to be located. As another example:

$ directory *•obJ!Brn

This command results in a display of all files in the default directory that
have file types of OBJ. For example:

DIRECTORY DBA1:ECRAMERJ

At.lERAGE. OBJ; 2 At.IERAGE. OBJ; 1

Total of 2 files.

4.3 Creating and Using Subdirectories

Normally, the system manager provides each system user with only one direc
tory to catalog and maintain files. If you are a frequent user of the system
and work on several applications, you will find it convenient to organize a
directory into several directory files. You can create subdirectories in any
directory in which you can create files. Each directory can list files that have a
common use.

The CREATE/DIRECTORY command creates a subdirectory. For example:

$create/director>' [1r1alcol1r1.testfilesJ!Brn

This command creates the subdirectory file TESTFILES.DIR in the directory
MALCOLM. You can specify the subdirectory name, [MALCOLM.TEST
FILESJ, in commands or programs. For example, you could copy files from a
default directory to the [MALCOLM.TESTFILESJ subdirectory using the
copy command:

$COP}' ne1,.1file.* [1r1alcolrr1.testfilesJ!Brn

In fact, there are no files in a subdirectory until you either create them there
or copy them from some other directory.

To establish [MALCOLM.TESTFILESJ as your default directory, use the
SET DEFAULT command:

$set default [rr1alcolrr1.testfilesJ!Brn
$edit ne1,.1file.tst(BITJ
InPut:DBA1:EMALCOLM.TESTFILESJNEWFILE.TST;1

The SET DEFAULT command requests the system to use the subdirectory as
the default directory to search for input files or to create output files. The
EDIT command invokes the SOS editor. SOS displays the subdirectory name
in the file specification of the file NEWFILE. TST.

Commands to Manipulate Files 4-5

To return to your established default directory, reissue the SET DEFAULT
command:

$set default [r11alcolr11JIBfil)

You can change the default directory as many times during a terminal session
as you want. Use the SHOW DEFAULT command to determine, at any time,
the current directory.

4.4 Displaying Flies at Your Terminal

The TYPE command displays a file at your terminal. For example:

$ t}'Pe sostest.dat(8Ii)
This is the first line
of a file to try out SOS.
ChoKeberriest PersiMMon Seedst Mansoes.

While a file is being displayed, you can interrupt the output by using any of
the following CTRL key combinations:

tTAL/s) suspends the output of the file and the processing of the command. To
resume display, press~. The interrupted command displays lines begin
ning at the point at which processing was interrupted.

tTAL/c) or tTRL(Yl interrupts command processing and the system prompts you to
enter another command.

4.5 Deleting Files

Quite often, as you develop and update programs you end up with many
versions of source files, object modules, and program images. Since these files
take up space on your disk, you may want to delete versions of files that you
no longer need.

The DELETE command deletes specific files. When you use the DELETE
command, you must specify a file name, file type, and version number (hav
ing to specify a version number provides some protection against accidental
deletion). However, any of these file components can be specified as a wild
card character. You can also enter more than one file specification on a com
mand line. Some examples of the DELETE command are:

Command

$delete a1.1erase.obJH

4-6 Commands to Manipulate Files

Result

Deletes the file named AVERAGE.OBJ ;1

Deletes all files with file types of LIS
(thus, this command deletes all versions of
all program listings)

Deletes two early versions of the same data
file

4.5.1 Purging Files

You may want to clean up your directory by getting rid of all early versions of
particular files. If you have many versions of a file, naming them all on the
DELETE command would be tedious.

The PURGE command allows you to delete all but the most recent version(s)
of a file. For example:

The command deletes all files named AVERAGE.FOR except the file with the
highest version number.

The /KEEP qualifier of the PURGE command allows you to specify that you
want to keep more than one version of a file. For example:

This command deletes all but the two most recent versions of the file
TEST.DAT.

4.6 Copying Files

The COPY command makes copies of files. You can use it to make copies of
files in your default directory, to copy files from other directories, to copy files
from other devices, or to create files consisting of more than one input file.

When you issue the COPY command, you specify first the name(s) of the
input file(s) you want to copy, then the name of the output file. For example,
the following COPY command copies the contents of the file PAYROLL.TST
to a file named PAYROLL.OLD.

$ copy PaYroll.tst payroll.oldIBfil)

If a file named PAYROLL. OLD exists, a new version of that file is created
with a higher version number.

When you copy files from devices other than your default disk, you must
specify the device name in the COPY command. For example, the following
COPY command copies a file from your default directory onto an RK06 disk.

$COP)' Pa)'roll.tst d1r1a1:IBfil)

Note that the output file specification did not include a file name or file type;
the COPY command uses the same file name and file type as the input file, by
default.

Commands to Manipulate Files 4-7

Before you can copy any files to or from devices other than system disks, you
must gain access to these devices. You do this by:

• Mounting the volume, with the MOUNT command.

• Ensuring that the volume has a directory for cataloging the file. If no direc
tory exists, use the CREATE command to create one.

Note that the VAXNMS operating system protects access to volumes that
individuals maintain for private purposes, as well as access to system vol
umes. For details on the commands and procedures necessary to prepare and
use disks and tapes, see the VAX/VMS Command Language User's Guide.

4. 7 Printing Files

When you use the PRINT command to obtain a printed copy of a file, the
system cannot always print the file immediately, since there may be only one
or two line printers for all users to share. The system enters the name of the
file you want to print in a queue, and prints the file at the first opportunity.

A printer file is preceded by a header page describing the file so you can
identify your listing. For example, if you issue the following command, the
header page will show your user name and the file name, type, and version
number of the file.

$ Print db2:[JonesJaverase.lisffirn
Job 210 entered on queue SYS$PRINT

When you use the PRINT command, the system responds with a message
indicating the job number it assigned to the job. By referring to this number,
you can determine whether the file was printed by using the SHOW QUEUE
command or request that it not be printed by using the DELETE/ENTRY
command.

The PRINT command also has qualifiers that allow you to control the number
of copies of the file to print, the type of forms to print the file on, and so on.
These characteristics can be changed for a file that has not yet been printed
by using the SET QUEUE/ENTRY command.

4.8 Renaming Files

The RENAME command changes the identification of one or more files. For
example, the following command changes the name of the most recent version
of the file PAYROLL.DAT to TEST.OLD.

$ rena1r1e Pa}'roll.dat test.old(8D)

You can use wild card characters if you want to change a number of files that
have either a common file name or file type. For example:

4-8 Commands to Manipulate Files

This REN AME command changes the directory name for all versions of all
files that have file names of PAYROLL. The files are now cataloged in the
subdirectory MALCOLM.TESTFILES.

4.9 For More Information

The VAX/VMS Command Language User's Guide describes in more detail
the commands presented here. Part II of that manual lists all the commands
in alphabetical order and includes descriptions of parameters and qualifiers,
as well as giving additional examples of each command.

Remember, too, that while you are using the terminal, you can use the HELP
command to receive on-the-spot assistance if you cannot remember a parame
ter or qualifier. Or, you can let the system prompt you for command param
eters, if you cannot remember the order in which you have to enter them.

Commands to Manipulate Files 4-9

Chapter 5
Logical Names: Files for Program Input/Output

When you design programs to read and write data, you can code the programs
to read or write different files each time you run them. This is called device
and file independence.

In the VAX/VMS operating system, device independence is accomplished
through the use of logical names. When you code a program, you refer to an
input or output file according to the syntax requirements of the language you
are using. After the program is compiled and linked, but before you run it, you
can make the connection between the logical names you used in the program
and the actual files or devices you want to use when you run the program.

The ASSIGN command makes this connection: it establishes the correspond
ence between a logical name (that is, the name you use in the program) and
an equivalence name (that is, the actual file or device to use).

Figure 5-1 shows how logical nam·es are used. The program FICA contains
OPEN, READ, and WRITE statements in a general form; the program reads
from a file referred to by the logical name INFILE, and writes to a file referred
to by the logical name OUTFILE.

For different runs of the program, the ASSIGN command establishes different
equivalence names for INFILE and OUTFILE. In the first example, the pro
gram reads the file JANUARY.DAT from the device DBAl and writes to the
file JANUARY.OUT on the same disk device. In the second example, it reads
the file FEBRUARY.DAT from the device DBA2 and writes the file
FEBRUARY.OUT to that device.

5-1

Terminal Display Disk Input/Output Files

$SHOW DEFAULT
DBA1: [WELLADAY]

$ASSIGN JANUARY.DAT INFILE~-------
$ ASSIGN JANUARY.OUT OUTFILE------
$ RUN FICA

The program, FICA.EXE contains 1/0
statements to open, read, and write
files referred to by the logical names
INFI LE and OUTFI LE:

•
•

OPEN 'INFILE', 'OUTFILE'

•
•
•

READ INFILE
WRITE OUTFILE

$ASSIGN DBA2:FEBRUARY.DAT INFILE~---
$ ASSIGN DBA2: FEBRUARY.OUT OUTFI LE----
$ RUN FICA

Figure 5-1: Using Logical Names

5.1 Logical Names in Commands

DBA1

DBA2

The use oflogical names is not restricted to application programs. Commands
that read or write files, such as COPY and TYPE, also accept logical names
for a file specification. For example:

$ assisn [chucl\Jpersonnel.rec r11>'filelliIT)
$ tYPe fTlYfile~

The ASSIGN command equates the logical name MYFILE to the file
PERSONNEL.REC listed in the directory CHUCK. The TYPE command
requests the system to display this file on the terminal.

5-2 Logical Names

A logical name can also define only the first portion of a file specification. For
example:

$ assisn dba2:[1,1alcollt1.testfiles] testCBm
$run test:1r1e1,10CBm
$Print test:1T1e1T10.lisCBm

The ASSIGN command equates the logical name TEST to the disk device
and directory DBA2:[MALCOLM.TESTFILESl. Subsequently, the RUN
command executes the program image MEMO.EXE cataloged in this sub
directory and the PRINT command prints another file. The system always
examines file specifications to see if the portion of the file specification that
precedes the colon (:) is a logical name; if it is (as in this example), the system
substitutes the equivalence name.

5.2 System Default Logical Names

When you log in to the system or submit a batch job, the system provides
several default logical names. These names are used by the command inter
preter to read your command lines and to print responses or error messages.
Among these logical names ar·e:

Logical
Name

SYS$INPUT

SYS$0UTPUT

SYS$ERROR

SYS$DISK

Use

The default input stream from which the system reads
commands and your programs read data
Default interactive assignment: your terminal

Default batch assignment: the command procedure or
batch stream

The default output stream to which the system writes re
sponses to commands and your programs write data

Default interactive assignment: your terminal

Default batch assignment: batch log file

The default device to which the system writes all error and
informational messages

Default interactive assignment: your terminal

Default batch assignment: batch job log file

Your default disk device.
Default assignment: set in user authorization file

You can use these logical names in programs. For example, if you code a
program to write a file to a device named SYS$0UTPUT, the output file goes
to your terminal if you execute the program interactively, or to the batch job
log file if you execute the program in a batch job.

Logical Names 5-3

You can also assign a logical name to another logical name. For example, to
test the program FICA shown in Figure 5-1, you could assign the logical name
OUTFILE to the logical name SYS$0UTPUT, as follows:

$ ass i sn sYs$01.1tP1Jt outf i 1 e(flli)

Then, when FICA writes to the logical device OUTFILE, the output is di
rected to your terminal.

The remaining sections of this chapter contain additional language-specific
examples of how logical names are used for program input and output.

5.3 FORTRAN Input/Output

The VAX/VMS system supplies several default logical names for use with
FORTRAN programs. These logical names provide default devices for the
input/output statements indicated:

Logical
Name

FOR$READ

FOR$PRINT

FOR$ACCEPT

FOR$TYPE

Use

Default input device read by READ statements that do not
specify a logical unit number

Default assignment: SYS$ IN PUT

Default output device written by PRINT statements

Default assignment: SYS$0UTPUT

Default input device read by ACCEPT statements

Default assignment: SYS$ I NP UT

Default output device written by TYPE statements

Default assignment: SYS$0UTPUT

You do not need to take any special action to direct input or output when you
use these statements: the system translates the logical name SYS$INPUT or
SYS$0UTPUT and locates the current equivalence for that logical name.

However, when you want to have a program read or write data from or to a
device or file other than a default, or when you specify a logical unit number
on an input/output statement, you can take special action: you can assign an
equivalence name for the logical name.

5-4 Logical Na mes

5.3.1 Changing Default Logical Names

The ASSIGN command changes the equivalence for a logical name. For ex
ample, suppose you have a FORTRAN program named STAT that uses both
TYPE and PRINT statements, as follows:

TYPE 30tAtBtC

PRINT 100tDtEtF

To execute this program so that output from the PRINT statement goes to a
disk file rather than to the terminal, enter an ASSIGN command before
running the program:

$ assian statdata.out for$PrintIBITJ
$ run stat(BIT)

When STAT finishes execution, all output lines written by the PRINT state
ment are contained in the file STATDATA.OUT. The system uses your de
fault disk device and directory to catalog the file.

5.3.2 Logical Names for Unit Numbers

The concept of logical names and default logical name assignments applies to
specifying input/output files by logical unit numbers. Each logical unit num
ber has an associated default logical name, and each logical name has a
default equivalence name. These logical names and equivalence names are as
follows:

Logical Default
Unit Name Equivalence

1 FOROOl FOROOl.DAT
2 FOR002 FOR002.DAT
3 FOR003 FOR003.DAT
4 FOR004 FOR004.DAT
5 FOR005 SYS$INPUT
6 FOR006 SYS$0UTPUT

n FOROnn FOROnn.DAT

For example, a program named BALANCE may contain the lines:

READ C23t90>AtBtC

90 FORMAT C3F10.4)

Logical Names 5-5

In the above example, 23 is a logical unit number. Before executing this
program, you can assign an equivalence name to the logical name FOR023 so
that the READ statements read from a specific file, as follows:

$ assisn libra.tst for023(8ft)
$run balance!Bm

If you do not assign FOR023, the system uses the default equivalence name
FOR023.DAT. In either case, the system uses your current default disk and
directory. ,

5.3.3 Logical Names in OPEN Statements

If you code a program that uses an OPEN statement to define an input or
output file, you can specify the NAME parameter to give the file specification
for the file. In this case, the system does not use the default equivalence name
to locate a file for input or output, but uses the name specified.

A typical OPEN statement may look like the following:

OPEN <UNIT=18tNAME='WEATHER.STS')

When the program uses a READ statement to read the logical unit 19, it reads
the file WEATHER.STS. Note that the system supplies your current disk and
directory defaults to locate the file.

You can also specify a logical name with the NAME parameter. For example:

OPEN <UNIT=20tNAME='OUTFILE')

Before you execute the program containing this OPEN statement, you can
assign an equivalence name to the logical name OUTFILE, as follows:

$ assisn dr11a1:[scratchJtest3.out outfile(8ft)

Now, when an input/output statement in the program refers to logical unit 20,
the system uses the equivalence name established for OUTFILE. Thus, the
following statement results in a read from the file
DMAl: [SCRATCHlTEST3. OUT:

READ <20t80>AtBtC

If there is no equivalence name for the logical name OUTFILE when you run
this program, the system assumes that OUTFILE is a file specification. It uses
your current disk and directory defaults and the default file type of DAT to
complete the file specification for the output file.

5.3.4 For More Information

You can find additional details on how to specify input and output files for
FORTRAN programs in the VAX-11 FORTRAN User's Guide.

5-6 Logical Nam es

5.4 MACRO Input/Output

V AX-11 Record Management Services (RMS) provide macros for device- and
file-independent input/output operations.

RMS uses control blocks to obtain information about the file or device you
want to access (the File Access Block, or FAB) and the way you want to access
records in the file (the Record Access Block, or RAB).

The $FAB macro constructs a FAB. When you code the $FAB macro, specify
the file name (FNM) parameter to give the file specification of the file or
device to which input/output is directed. For example:

OUTFAB: SFAB FNM=<WEATHER.STS>
OUTRAB: $RAB FAB=OUTFAB

The $RAB macro constructs a control block for record processing information.

The $OPEN and $CONNECT macros open the file for processing, and estab
lish the connection between the FAB and the RAB. For example:

$OPEN FAB=OUTFAB
$CONNECT RAB=OUTRAB

When the program uses a $PUT macro to write to the output file defined by
this FAB and RAB, it writes to the file WEATHER.STS. Note that the
system supplies your current default disk and directory name to identify the
file.

You can also specify a logical name with the FNM parameter in the $F AB
macro. For example:

OUTFAB: $FAB FNM=<OUTFILE>
OUTRAB: $RAB FAB=OUTFAB

Before you execute the program to write this output file, you can assign an
equivalence name to the logical name OUTFILE, as follows:

$ assisn d1r1a1:[scratchJtest3.aut autfileID

Now, when a $PUT macro refers to the RAB established for OUTFILE, the
system uses the equivalence name. For example, the following line in a pro
gram results in a write to the file DMA1:[SCRATCHJTEST3.0UT:

SPLIT RAB=OUTRAB

If there is no equivalence name for the logical name OUTFILE when you run
this program, the system assumes that OUTFILE is a file specification. It uses
your current disk and directory defaults to complete the file specification, but
does not supply a default file type. The output file would be named
OUTFILE.

Logical Nam es 5-7

5.4.1 For More Information

For details on how to use RMS macros, see the VAX-11 Record Management
Services User's Guide and VAX-11 Record Management Services Reference
Manual. Additional information on using logical names in MACRO programs
is contained in the VAX-11 MACRO User's Guide.

5-8 Logical Names

Chapter 6
Tailoring the Command Language

The command lines used as examples in this book will acquaint you with
some frequently used sequences of commands and demonstrate basic uses of
the command language.

As you continue to use the command language, however, you will discover
that it is a powerful and flexible programming and applications development
tool. You can simplify the command language to save yourself time during
interactive terminal sessions and to establish your own default commands and
command qualifiers. You can create command procedure files to execute
batch jobs, either interactively or from a card reader. You can construct
command procedures to perform development and applications programming
tasks.

This chapter provides some elementary information on techniques you can
use to specialize the command language for your individual needs. For exam
ple, you can:

• Use assignment statements to establish synonyms to use in place of com
mand names and entire command strings, as well as to establish default
qualifiers for commands.

• Create command procedures to perform a specialized set of commands.

• Submit command procedures for processing as batch jobs

• Use command procedures to perform programming functions, using the
command language as a high-level programming language.

6.1 Assignment Statements

Assignment statements equate character strings, arithmetic values, or ex
pressions to symbolic names. Assignment statements and the symbols they
create have many specialized uses, particularly in command procedures.

Symbolic names for character strings are defined as shown in the following
example:

$ tirt1e := sho1,.1 tirt1e(Bfl)

TIME is a symbolic name, and the string SHOW TIME is the value of the
symbol.

6-1

Subsequently, you can enter the word TIME as if it were a system command,
as follows:

$ ti111e ~
18-JAN-1978 11:55:40

The system substitutes the string SHOW TIME for the symbol TIME and
executes the command SHOW TIME. The substitution is automatic because
the word TIME is the first word in the command line.

You can also define symbols for use as synonyms for system commands. For .
example, if you want to define a synonym for the DIRECTORY command
that automatically includes the /FULL qualifier, you can define the symbol
LIST as follows:

$ list := directory/full(Bfi)

Then, if you issue the following command line, the system substitutes the
name DIRECTORY/FULL for the symbol LIST:

$list 11n'file.datffi)

The system executes the command string DIRECTORY /FULL
MYFILE.DAT.

6.1.1 Symbol Concatenation

Symbols can be concatenated with other symbols or items on a command line.
In this case, a symbol name must be enclosed in apostrophes (') to indicate to
the system that it must perform symbol substitution. For example:

$ pquals := /coPies=2/for111s=4/noburst(Bfi)
$Print rePort.dat'Pc:iuals'~

The assignment statement equates the symbol name PQUALS to a list of
qualifiers for the PRINT command. When the PRINT command is issued, the
symbol PQUALS is enclosed in apostrophes. The system performs the substi
tution and executes the command:

PRINT REPORT.DAT/COPIES=2/FORMS=4/N06URST

6.2 Command Procedures

Command procedures are files that contain lines and, in some cases, data to
be used as command or program input.

6-2 Tailoring the Command Language

The default file type for a command procedure is COM. For example, a
procedure named AVERAGE.COM might look like the following:

$ FORTRAN AVERAGE
$ LINK Al.JERAGE
$ ASSIGN/USER-MODE TTB3: SYS$INPUT
$ RUN Al.IERAGE

Every line in this command procedure begins with a dollar sign ($). This is
required syntax for all command lines in a procedure that the system must
process.

To execute this command procedure, use the Execute procedure (@) com
mand as shown below:

When this command is executed, the system searches for the file
AVERAGE.COM. When it locates the file, the system reads each command
line in the file and executes it.

Note that you can execute this command procedure for the AVERAGE.FOR
program created in Chapter 3, if you substitute the device name of your
terminal for the TTB3: symbol in the ASSIGN command.

6.2.1 Using Symbols in Command Procedures

The sample command procedure shown in the preceding section is not very
flexible: it can be used to compile, link, and execute only the FORTRAN
program named AVERAGE. Command procedures can be made more general
by using symbols, and letting the system substitute the symbol's value while
it executes the command procedure.

The examples in the next two sections show two ways to write a generalized
procedure to compile, link, and run any FORTRAN program.

6.2.1.1 Global Symbols - Suppose that the command procedure
DOFOR.COM contains the lines:

$ FORTRAN 'PROGRAM'
$ LINK I PROGRAM I

$ RUN 'PROGRAM'

Before you execute this command procedure, you must define a value - in
this case, a file name - for the symbol PROGRAM. Use an assignment state
ment as shown below:

In this assignment statement, the two equal signs are required to make the
symbol PROGRAM a global symbol. Assignment statements with one equal

Tailoring the Command Language 6-3

sign are local symbols. Local symbols are recognized only at the command
level at which they are defined (thus, a symbol defined at the interactive level
is recognized only at the interactive level, and not within a command proce
dure). Global symbols are recognized and substituted in any command proce
dure you execute. Thus, when you enter the following command line, the
system substitutes the value AVERAGE for the symbol PROGRAM on each
command line:

$ @doforIBrn

If you subsequently redefine the value of PROGRAM to a different file name
and execute DOFOR again, a different source program will be compiled,
linked, and run.

6.2.1.2 Passing Parameters to Command Procedures - An alternate way to
code the procedure DOFOR.COM is to take advantage of special symbols that
the system defines automatically when you ex~cute a command procedure.
These symbols, called parameters, are named Pl, P2, P3, and so on up to PB,
and are defined on the @ command line.

For example, assume that DOFOR.COM has the lines:

$FORTRAN 'P1'
$LINK 'P1'
$RUN 'P1'

To define a value - in this example, the file name - for the symbol Pl, enter
the name when you execute the command procedure, as follows:

The system automatically equates the name AVERAGE to the symbol Pl, the
first (and, in this example, the only) parameter passed to the command proce
dure. P2 through PB are equated to null strings. When the command proce
dure executes, the value AVERAGE is substituted for the symbol Pl.

6.2.2 Redefining System Commands

You can use command procedures and assignment statements together to
redefine and expand system commands.

For example, suppose that during your terminal sessions you frequently com
pile and recompile programs, creating many listing files (file type of LIS).

Since you want to keep your disk file directory uncluttered, you want to purge
these listings on a regular basis. You could create a command procedure,
named LOG.COM, that contains the lines:

$ PURGE *.LIS
$ LOGOUT

6-4 Tailoring the Command Language

You can use this command procedure in place of the LOGOUT command
when you want to end your terminal session, as follows:

$ @los(8fi)

Then, the PURGE command line is automatically executed before you are
logged out of the system.

Moreover, you could define a symbol named LOG that is equated to the
following command string: ·

$ los :== @los(8fi)

Then, when you type the command line

$ los(8fi)

the system substitutes the symbol name LOG with the @LOG command
string, and executes your command procedure.

6.2.2.1 A LOGIN.COM Fiie - If you become a frequent user of the VAX/VMS
system, you may find that you are entering the same sequence of commands
or assignment statements every time you log in. If this is the case, you can
place these commands and statements in a special command procedure.

The command procedure file must be named LOGIN.COM, and it must be in
your default disk directory. When you log in to the system, the system auto
matically searches for a file with this file name. If the system locates the
LOGIN .COM file, it automatically executes it.

For example, a LOGIN .COM file might contain:

$ TIME :== SHOW TIME
$ LIST :== DIRECTORY
$ LOG : = = @LOG
$ ASSIGN EMALCOLM.TESTFILESJ TEST
$ TEST :== SET DEFAULT EMALCOLM.TESTFILESJ

Note that all the assignment statements define global symbols. Otherwise, the
symbols would only be recognized within the file LOGIN.COM, and would be
useless to you.

Since command procedures can be executed from within other command
procedures, you may want to place the assignment statements you use for
system command synonyms in a separate file, and execute this procedure in
the LOGIN .COM file. For example, suppose the file SYNONYM.COM con
tains the lines:

$ TIME :== SHOW TIME
$ LIST :== DIRECTORY
$ LOG : = = @LOG

Tailoring the Command Language 6-5

Your LOGIN.COM file would contain the line:

$ @SYNONYM

When this command is executed, the definitions m the synonym file are
established.

6.3 Batch Job Processi~g

Command procedures can be submitted to the operating system as batch jobs.
Batch jobs submitted by all users are placed in a job queue, and processed
from the queue.

If you want to execute a command procedure that requires a lot of processing
time, you can submit the procedure to the batch job queue by using the
SUBMIT command. For example:

$ subfrlit PaYrollIBm .
Job 312 entered on ~ueue SYS$BATCH

In this command, PAYROLL is the file name of a command procedure. The
SUBMIT command assumes a file type of COM. The response from the
SUBMIT command indicates that the job was successfully queued for pro
cessing and gives the job identification the system assigned to the job.

If you do not have access to a terminal, and if your installation has a card
reader available for reading batch jobs, you can submit the command proce
dure on punched cards. The card deck must be preceded by $JOB and
$PASSWORD cards that identify you to the system.

6.3.1 A Sample Batch Job

A batch job (submitted either from the terminal or through a card reader) can
contain both commands and data. Figure 6-1 illustrates a sample batch job,
as it would be submitted in a card reader. The same job submitted interac
tively for execution would not contain the $JOB or $PASSWORD cards.

6.3.2 Batch Job Output

When the system processes a batch job, it equates the logical name SYS$IN
PUT with the command input stream, whether a command procedure file or a
deck of cards. The logical names SYS$0UTPUT and SYS$ERROR are
equated to a batch job log file. The system creates this file in your default
directory as it processes a batch job that you queue. When the job completes,
the system queues the file for printing and deletes it after printing.

6-6 Tailoring the Command Language

_i$EOJ

... input data ...

6RUN PAY

L$ASSIGN PAY10.0UT FOR010

_L$UNK PAY
L.

... source statements ...

L$FORTRAN SYS$1NPUT/OBJECT=PAY/NOLIST !----'

L$PASSWORD HENRY

$JOB HIGGINS
t--

1--

~

f---

1--

Figure 6-1: A Sample Batch Job for the Card Reader

Notes for Figure 6-1:

1. The JOB command specifies the user name of the user. HIGGINS, who is
submitting the batch job and the PASSWORD command gives the pass
word. These cards are the means the batch user uses to log in from a card
reader.

2. The FORTRAN command specifies the input file using the logical name
SYS$INPUT. All the cards following the card with the FORTRAN com
mand, until the next card that begins with a dollar sign, are the source
statements. The /OBJECT qualifier specifies the file name for the FOR
TRAN command to use when it creates the object module.

3. The LINK command links the object module just created. The ASSIGN
command equates the file name PAYlO.OUT to the logical name FOROlO
so that when the program is run, the output file written to the logical unit
10 is written to the file PAYlO.OUT in the user Higgins's current default
directory.

4. The cards following the card with the RUN command contain the input
for the program PAY. When the program reads from the logical device
SYS$INPUT, the cards are read in and processed.

5. The EOJ command signals the end of the batch job.

Tailoring the Command Language 6-7

6.4 Programming Command Procedures
The examples of assignment statements and command procedures in this
chapter show only a few things you can do with command procedures. There is
a special set of commands that you can use in command procedures to per
form functions similar to those available in high-level programming lan
guages. Some brief examples of these commands are shown below to illustrate
the versatility of VAXNMS command procedures. You can:

• Assign arithmetic values to symbol names, and use these symbols in assign
ment statements with arithmetic expressions. For example:

$ COUNT == 1

$ COUNT == COUNT + 1

• Transfer control to a command line in a procedure that is not the next line
in the file. For example:

$ LOOP:

$ GOTO LOOP

• Conditionally execute a command based on a comparison of values, strings,
or symbols. For example:

$ IF COUNT.LT.10 THEN GOTO LOOP

• Interactively define a value for a symbol by displaying a prompting message
on the terminal. For example:

$ INQUIRE NUMBER
$ IF NUMBER.EQ.1 THEN GOTO NEXT

• Establish a default course of action should an error occur during processing
of any command or program. For example:

$ ON ERROR THEN EXIT

For additional examples of developing command procedures, see the
VAX/VMS Guide to Using Command Procedures.

6-8 Tailoring the Command Language

Glossary

assembler

Language processor that translates a source program containing assembly language
directives and machine instructions into an object module.

assignment statement

batch

Definition of a symbol name to use in place of a character string or numeric value.
Symbols can define synonyms for system commands, or can be used for variables in
command procedures.

Mode of processing in which all commands to be executed by the operating system
and, optionally, data to be used as input to the commands are placed in a file or
punched onto cards and submitted to the system for execution.

command

An instruction or request for the system (or a system program, such as the editor) to
perform a particular action. An entire command can consist of the command name,
parameters, and qualifiers.

command interpreter

The operating system component responsible for reading and translating interactive
and batch commands. The default command interpreter for the V AXNMS operating
system interprets the DIGITAL Command Language (DCL).

command procedure

File containing a predefined sequence of commands to be executed by the operating
system. The command procedure can be submitted for execution at the terminal or as
a batch job.

compiler

Language processor that translates a source program containing high-level language
statements (for example, FORTRAN) into an object module.

current line

Pointer used by the editor to keep track of the position within a file being edited.

Glossary-I

debugger

Interactive program that allows you to display and modify program variables during
execution and to step through a program to locate and detect programming errors.

default

Assumed value supplied by the system when a command qualifier does not specifi
cally override the normal command function; fields in a file specification that the
system fills in when the specification is not complete.

default disk

The disk from which the system reads and to which the system writes, by default, all
files that you create. The default is used whenever a file specification in a command
does not explicitly name a device.

device name

Identification of a physical hardware device (for example, DBA2) or a logical name
(for example, SYS$0UTPUT) that is equated to a physical device name.

directory

File listing files cataloged on a particular device for a user.

Edit mode

editor

Mode of operation using the system editor in which every line that is typed at the
terminal is interpreted as a command for the editor.

Program that creates or modifies files. In V AXNMS, the default system editor is
interactive.

equivalence name

file

Character string equated to a logical name, such that when a command or program
refers to a file or device by its logical name, the system tranlates the logical name to
its predefined equivalence name.

Collection of data, generally used to refer to data stored on a magnetic medium,. such
as a disk.

file name

A one- to nine-character name component of a file specification.

2-Glossary

file specification

Unique indentification of a file. A file specification describes the physical location of
the file, as well as file name and file type identifiers that describe the file and its
contents.

file type

A one- to three-character type component of a file specification. A file type generally
describes the nature of a file, or how it is used, for example, FOR indicates a FOR
TRAN source program.

file version number

Numeric component of a file specification. As files are updated and changed, the
file's version number is updated with each successive copy.

global symbol

image

A symbol defined with an assignment statement that is recognized in any command
procedure that is executed.

Output from the linker, created from processing one or more object modules. An
image is the executable version of a program.

Input mode

Mode of operation using the system editor in which every line that is typed at the
terminal is accepted as input text for a file.

interactive

Mode of communication with the operating system in which a user enters a com
mand, and the system executes it and responds.

keyword

linker

A command name, qualifier, or option. When users enter keywords, the keywords
must be typed either verbatim or using a valid truncation.

Program that creates an executable program, called an image, from one or more
object modules produced by a language compiler or assembler. Programs must be
linked before they can be executed.

Glossary-3

local symbol

A symbol defined with an assignment statement that is recognized only within the
command procedure in which it is defined.

loglcal name

log In

logout

Character string used to refer to files or devices by other than their specific names. A
command or program can refer to a file by a logical name; the logical name can be
equated to an equivalence name at any time; when the command or program refers to
the logical name, the system translates the logical name to its defined equivalence
name.

To perform a sequence of actions at a terminal that establishes a user's communica
tion with the operating system and sets up default characteristics for the user's
terminal session.

The procedure that terminates an interactive user's communication with the opera
ting system. The LOGOUT command executes the procedure and ends a terminal
session.

node name

The component of a file specification which identifies the location of a computer
system in a network of computer systems.

object module

Output from a language compiler or assembler that can be linked with other object
modules to produce an executable image.

parameter

Object of a command. A parameter can be a file specification or a keyword option.
Or, a symbol value passed to a command procedure.

password

Protective keyword associated with a user name. A user logging into the system must
supply the correct password before the system will allow access.

qualifier

Keyword that modifies the operation of a command. A qualifier is always preceded by
a slash character (/).

4-Glossary

subdirectory

Directory file cataloged in a higher-level directory that lists additional files belonging
to the owner of the directory.

terminal

Hardware communication device, with a typewriter-like keyboard that receives and
transmits information between users and the system.

terminal session

Your activities on the system between the time you log in at a terminal and the time
you log out.

user name

Name by which the system identifies a particular user. To access the system, a user
specifies a user name, followed by a password ..

wild card character

A symbol used with many DCL commands in their file specifications. A wild card
character, such as an asterisk (*), indicates that any item will satisfy the specifica
tion component.

Glossary-5

READER'S COMMENTS

VAX/VMS Primer
AA-D030B-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

---··-·-

Did you find errors in this manual? If so, specify the error and the page number.

------------------·----·· ·-

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
High-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

D
D
D
D
D
D Other (please specify) _______ -----------~-----

. Date--------

Organization ___________ _

City ___________________ _
State ------ Zip Code--------

or
Country

- - DoNotTear-FoldHereandTape - - - - - - - - - - - -

Do Not Tear- Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

II No Postage
Necessary

if Mailed in the
United States

