
VAX/VMS
System Services

Reference Manual
Order No. AA:.OQ18B-TE

March 1980

This manual describes the VAX/VMS system services. It provides coding con
ventions, examples of how to use system services, and detailed reference
information on the arguments required by each system service.

VAX/VMS
System Services

Reference Manual
Order No. AA-00188-TE

SUPERSESSION/UPDATE INFORMATION: This document supersedes the VAX/VMS
System Services Reference Manual
(Order No. AA-D018A-TE).

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation . maynard, massachusetts

First Printing, August 1978
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished Under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (£) 1978, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-lo
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

5/80-14

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI
PDT

PREFACE

PART

CHAPTER

CHAPTER

I

1

1.1

1.1.1
1.1.2
1.1.3
1.2
1. 2 .1
1. 2. 2
1. 2. 3
1. 2. 4
1. 2. 5
1. 2. 6
1. 2. 7
1. 2. 8
1. 2. 9

2

2.1
2.1.1
2 .1. 2
2.1.2.1
2.1.2.2
2.1.2.3
2.1.2.4
2 .1. 3
2.1.3.1
2.1.3.2
2 .1. 4

2.1.4.1

2.1.4.2
2.1.5
2.1.5.1
2.1.5.2
2.1.5.3
2.1.5.4
2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3

CONTENTS

USING SYSTEM SERVICES

INTRODUCTION TO SYSTEM SERVICES

WHO CAN USE SYSTEM SERVICES: PRIVILEGE AND
PROTECTION

User Privileges and Resource Quotas
Control by Group Association
Protection by Access Mode

SUMMARY OF VAX/VMS SYSTEM SERVICES
Event Flag Services
AST (Asynchronous System Trap) Services
Logical Name Services
Input/Output Services
Process Control Services
Timer and Time Conversion Services
Condition-Handling Services
Memory Management Services
Change Mode Services

CALLING THE SYSTEM SERVICES

MACRO CODING
Argument Lists
$name G Form
Specirying Arguments with the $name Macro
Example of $name and $name G Macro Calls
Symbolic Names for Argument List Offsets
The $nameDEF Macro
The $name S Form
Specifying Arguments with the $name S Macro
Example of $name S Macro Call
Conventions for Coding Arguments to System
Services
Conventions for Coding Character String
Arguments
Conventions for Coding Numeric V~lues
Status Codes Returned from System Services
Information Provided by Status Codes
Testing Return Status Codes
System Messages Generated by Status Codes
~pecial Return Conditions

HIGH-LEVEL LANGUAGE CODING
Descriptors
Return Status
Information Provided by Status Codes
Testing the Return Status.Code
Special Return Conditions

iii

Page

xi

1-1

1-1
1-1
1-2
1-2
1-3
1-3
1-5
1-6
1-7
1-10
1-13
1-15
1-lfi
1-19

2-1

2-1
2-2
2-3
2-3
2-4
2-5
2-n
2-n
2-n
2-7

2-7

2-8
2-10
2-11
2-11
2-12
2-12
2-12
2-14
2-14
2-15
2-lfi
2-16
2-17

CHAPTER

CHAPTER

CHAPTER

CHAPTER

2.2.3
2.3

3

3.1
3.1.1

3.2
3.2.1
3.3
3.4
3.5

3.6
3.7
3.7.1

4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.4
4.5

5

5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2

5.4
5.5

6

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9
6.9.l
6.9.2
6.10
6.10.l

CONTENTS

Obtaining Values for Other Symbolic Codes
INTERPRETING THE CODING EXAMPLES

EVENT FLAG SERVICES

Page

2-18
2-18

3-1

EVENT FLAG NUMBERS AND EVENT FLAG CLUSTERS 3-1
Specifying Event Flag and Event Flag
Cluster Numbers 3-2

EXAMPLES OF EVENT FLAG SERVICES 3-2
Event Flag Waits 3-3

SETTING AND CLEARING EVENT FLAGS 3-3
COMMON EVENT FLAG CLUSTERS 3-4
DISASSOCIATING AND DELETING COMMON EVENT FLAG
CLUSTERS 3-5
EXAMPLE OF USING A COMMON EVENT FLAG CLUSTER 3-5
COMMON EVENT FLAG CLUSTERS IN SHARED MEMORY 3-7

Cluster Name 3-8

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

ACCESS MODES FOR AST EXECUTION
ASTS AND PROCESS WAIT STATES

Event Flag Waits
Hibernation
Resource Waits And Page Faults

HOW ASTS ARE DECLARED
THE AST SERVICE ROUTINE
AST DELIVERY

LOGICAL NAME SERVICES

LOGICAL NAMES AND EQUIVALENCE NAMES
LOGICAL NAME TABLES

Logical Name Table Numbers
Duplication of Logical Names

LOGICAL NAME TRANSLATION
Bypassing Logical Name Tables
Logical Name and Equivalence Name Format
Conventions

RECURSIVE TRANSLATION
DELETING LOGICAL NAMES

INPUT/OUTPUT SERVICES

ASSIGNING CHANNELS
QUEUING I/O REQUESTS
SYNCHRONIZING I/O COMPLETION
I/O COMPLETION STATUS
SIMPLIFIED FORMS OF THE $QIO MACRO ($QIOW,
$INPUT, $OUTPUT)
DEASSIGNING I/O CHANNELS
COMPLETE TERMINAL I/O EXAMPLE
CANCELING I/O REQUESTS
DEVICE ALLOCATION

Implicit Allocation
Deallocation

LOGICAL NAMES AND PHYSICAL DEVICE NAMES
Device Name Defaults

iv

4-1

4-2
4-3
4-3
4-3
4-3
4-3
4-4
4-5

5-1

5-1
5-2
5-4
5-4
5-4
5-5

5-5
5-6
5-6

6-1

6-1
fi-2
6-3
fi-5

6-h
6-6
6-7
6-10
6-10
6-11
6-12
n-12
n-12

CHAPTER

CHAPTER

CHAPTER

6 .11
6.12
6.13
6.13.1
6.13.2
6.13.3
6.13.4

7

7.1
7.2
7.3
7.3.1

7.3.2

7.3.3

7.3.4
7.3.5
7.4
7.4.1
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3
7.5
7.5.1
7.5.2
7.5.3
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.7
7.7.1
7.7.2

8

8.1
8.2
8.3
8.4
8.5
8.5.1
8.6
8.6.1
8.7
8.8

9

9.1
9 .1.1
9.2

CONTENTS

OBTAINING INFORMATION ABOUT PHYSICAL DEVICES
FORMATTING OUTPUT STRINGS
MAILBOXES

Mailbox Name Format
System Mailboxes
Mailboxes for Process Termination Messages
Mailboxes for System Processes

PROCESS CONTROL SERVICES

SUBPROCESSES AND DETACHED PROCESSES
THE EXECUTION CONTEXT OF A PROCESS
PROCESS CREATION

Defining an Image for a Subprocess to
Execute
Input, Output, and Error Devices for
Subprocesses
Disk and Directory Defaults for Created
Processes
Controlling Resources of Created Processes
Detached Processes

INTERPROCESS CONTROL AND COMMUNICATION
Restrictions on Process Creation and Control
Process Identification
Process Naming within Groups
Obtaining Information about Processes
Techniques for Interprocess Communication

PROCESS HIBERNATION AND SUSPENSION
Process Hibernation
Alternate Methods of Hibernation
Suspension

IMAGE EXIT
Image Rundown A9tivities
The $EXIT System Service
Exit Handlers
Forced Exit

PROCESS DELETION
The Delete Process System Service
Termination Mailboxes

TIMER AND TIME CONVERSION SERVICES

THE SYSTEM TIME FORMAT
THE CURRENT DATE AND TIME
OBTAINING AN ABSOLUTE TIME IN SYSTEM FORMAT
OBTAINING A DELTA TIME IN SYSTEM FORMAT
TIMER REQUESTS

Canceling Timer Requests
SCHEDULED WAKEUPS

Canceling Scheduled Wakeups
NUMERIC AND ASCII TIME
SETTING THE SYSTEM TIME

CONDITION-HANDLING SERVICES

Page

n-13
n-14
6-15
n-17
n-19
n-19
n-19

7-1

7-1
7-2
7-2

7-2

7-3

7-4
7-5
7-6
7-f,
7-f,
7-6
7-8
7-8
7-8
7-9
7-10
7-12
7-12
7-12
7-13
7-14
7-14
7-15
7-lfi
7-10
7-18

8-1

8-1
8-2
8-2
8-3
8-3
8-f,
8-n
8-n
8-7
8-7

9-1

TYPES OF EXCEPTION 9-1
Change Mode and Compatibility Mode Handlers 9-4

HOW TO SPECIFY CONDITION HANDLERS 9-4

v

CHAPTER

PART

9.3
9.4

9.4.1
9.4.2
9.5
9.6

9.7
9.8

10

10 .1
10.2

10.2.l

10.3
10.4
10.5
10.6
10.fi.l
10.6.2
10.6.3
10.6.4
10.6.5
10.6.5.1
10.6.6
10.fi.7
10.n.8
10.6.9
10.6.10
10.6.11
10.6.12
10.fi.13

II

CONTENTS

THE EXCEPTION DISPATCHER
THE ARGUMENT LIST PASSED TO A CONDITION
HANDLER

Signal Array Arguments
Mechanism Array Arguments

COURSES OF ACTION FOR THE CONDITION HANDLER
EXAMPLE OF CONDITION-HANDLING ROUTINES
CONTINUING AND RESIGNALING
UNWINDING THE CALL STACK
MULTIPLE EXCEPTIONS

MEMORY MANAGEMENT SERVICES

INCREASING VIRTUAL ADDRESS SPACE
INCREASING AND DECREASING VIRTUAL.ADDRESS
SPACE

Input Address Arrays and Return Address
Arrays

PAGE OWNERSHIP AND PAGE PROTECTION
WORKING SET PAGING
PROCESS SWAPPING
SECTIONS

Creating Sections
Opening the Disk File
Defining the Section Extents
Defining the Section Characteristics
Defining Global Section Characteristics
Global Section Name
Mapping Sections
Mapping Global Sections
Section Paging
Reading and Writing Data Sections
Releasing and Deleting Sections
Writing Back {Checkpointing) Sections
Image Sections
Page Frame Sections

SYSTEM SERVICE DESCRIPTIONS

$ADJSTK
$ADJWSL
$ALLOC
$ASCEFC
$ASCTIM
$ASSIGN
$BINTIM
$BRDCST
$CANCEL
$CANEXH
$CANTIM
$CANWAK
$CLREF
$CMEXEC
$CMKRNL
$CNTREG
$CRELOG
$CREMBX
$CREPRC

vi

Page

9-5

9-7
9-7
9-9
9-10

9-10
9-12
9-14

10-1

10-1

10-2

10-3
10-4
10-5
10-n
10-6
10-7
10-8
10-8
10-9
10-9
10-10
10-11
10-13
10-15
10-15
10-111
10-16
10-lfi
10-17

1

3
5
7
9
12
14
17
19
21
23
24
25
27
28
29
30
32
34
38

CONTENTS

Page

$CRETVA 48
$CRMPSC 50
$DACEFC 58
$DALLOC 59
$DASSGN 61
$DCLAST 63
$DCLCMH 65
$DCLEXH 6 7
$DELLOG 69
$DELMBX 71
$DELPRC 73
$DELTVA 75
$DGBLSC 77
$DLCEFC 80
$EXIT 82
$EXPREG 83
$FAQ 85
$FORCEX 98
$GETCHN 100
$GETDEV 103
$GETJPI 105
$GET MSG 113
$GETT IM lHi
$HIBER 117
$INPUT 119
$LCKPAG 120
$LWKSET 122
$MGBLSC 124
$NUMTIM 128
$OUTPUT 130
$PURGWS 131
$PUTMSG 132
$QIO 138
$QIOW 142
$READEF 144
$RESUME 145
$SCHDWK 147
$SETAST 150
$SETEF 151
$SETEXV 152
$SETIME 154
$SETIMR 156
$SETPRA 158
$SETPRI 159
$SETPRN 161
$SETPRT 162
$SETPRV 164
$SETRWM 1~7
$SETSFM Hi9
$SETSWM 171
$SNDACC 172
$SNDERR 177
$SNDOPR 178
$SNDSMB 185
$SUSPND 196
$TRNLOG 198
$ULKPAG 200
$ULWSET 202

vii

APPENDIX A

APPENDIX B

A.l
A.2

A.2.1
A.2.2
A.2.3
A.2.4
A.2.5
A.2.6
A.2.7
A.2.8
A.2.9
A.2.10
A.3

A.4

A.5
A.6

A.7

B.l
B.2
B.3

APPENDIX C

INDEX

FIGURE

C.l
c .1.1
c .1. 2
C.2

2-1
3-1
3-2
4-1
4-2
5-1
6-1

$UNWIND
$UPDSEC
$WAIT FR
$WAKE
$WFLAND
$WFLOR

CONTENTS

SYSTEM SYMBOLIC DEFINITION MACROS

USING SYSTEM SYMBOLS
$IODEF MACRO - SYMBOLIC NAMES FOR I/O FUNCTION
CODES

Terminal Driver
Disk Drivers
Magnetic Tape Drivers
Line Printer Driver
Card Reader Driver
Mailbox Driver
DMCll Driver
ACP Interface Driver
LPA-11 Driver
DR32 Driver

$MSGDEF MACRO - SYMBOLIC NAMES FOR SYSTEM
MAILBOX MESSAGES
$PRDEF MACRO - SYMBOLIC NAMES FOR PROCESSOR
REGISTERS
$PRTDEF - HARDWARE PROTECTION CODE DEFINITIONS
$PSLDEF MACRO - PROCESSOR STATUS LONGWORD
SYMBOL DEFINITIONS
$SSDEF MACRO - SYMBOLIC NAMES FOR SYSTEM
STATUS CODES

PROGRAM EXAMPLES

ORION PROGRAM EXAMPLE
CYGNUS PROGRAM EXAMPLE
LYRA PROGRAM EXAMPLE

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

VAX-11 MACRO FORMS
$name G Form
$name-S Form

SYSTEM SERVICE MACROS

Page

204
206
209
210
212
213

A-1

A-2

A-2
A-3
A-4
A-5
A-n
A-n
A-fi
A-7
A-7
A-8
A-8

A-9

A-10
A-11

A-11

A-12

B-1

B-1
B-8
B-15

C-1

C-1
C-1
C-2
C-3

Index-1

FIGURES

Interpreting MACRO Examples
Using Local Event Flags
Example of a Common Event Flag Cluster
Example of an AST
An AST Service Routine
Logical Name Table Entries
Synchronizing I/O Completion

viii

2-20
3-3
3-6
4-2
4-5
5-3
6-3

FIGURE

TABLE

6-2
6-3
6-4

6-5
7-1

7-2
7-3
7-4
7-5
8-1
9-1
9-2

9-3
9-4
10-1
10-2
10-3

1-1
1-2
1-3
1-4

1-4

1-5
1-6
1-7
1-8
1-9
3-1
6-1
7-1
7-2
9-1
10-1

PART II

1
2
3

4
5
6
7

CONTENTS

FIGURES (Cont.)

Example of Terminal Input and Output
Device Allocation and Channel Assignment
Example of Using Formatted ASCII Output
Program
Mailbox Creation and I/O
Defining Input and Output Streams for a
Subprocess
Process Hibernation
Example of an Exit Handler
Image Exit and Process Deletion
Using a Termination Mailbox
Timer Requests
Search of Stack for Condition Handler
Argument List and Arrays Passed to Condition
Handler
Example of Condition Handling Routines
Unwinding the Call Stack
Layout of Process Virtual Address Space
Creating and Mapping a Private Section
Creating and Mapping a Global Section

TABLES

Event Flag Services
AST (Asynchronous Stystem Trap) Services
Logical Name Services
(Part 1) Input/Output Services for
Device-Dependent I/O
(Part 2) Input/Output Services for Mailboxes
and Messages
Process Control Services
Timer and Time Conversion Services
Condition Handling Services
Memory Management Services
Change Mode Services
Summary of Event Flag and Cluster Numbers
Default Device Names for I/O Services
Process Identification
Process Hibernation and Suspension
Summary of Exception Conditions
Sample Virtual Address Arrays

Arguments for the $CRMPSC System Service
Summary of FAQ Directives
How FAQ Determines Output Field Lengths and
Fill Characters
Item Codes for Job/Process Information
Format of Accounting Log File Records
Request Types for Symbiont Manager Messages
Options for Symbiont Manager Messages

ix

Page

6-8
n-11

n-14
n-in

7-3
7-11
7-15
7-17
7-19
8-4
9-6

9-8
9-11
9-13
10-2
10-12
10-14

1-4
1-6
1-6

1-8

1-9
1-11
1-14
1-15
1-lf)
1-20
3-2
n-13
7-8
7-10
9-2
10-4

53
88

90
110
174
19 ()
192

PREFACE

This manual provides users of the VAX/VMS operating system with
detailed usage and reference information on the system services.

VAX/VMS system services can be used only
languages that produce native code for
present, these languages include VAX-11
high-level languages:

VAX-11 BLISS-32
VAX-11 COBOL-74
VAX-11 FORTRAN
VAX-11 BASIC
VAX-11 PASCAL
VAX-11 CORAL

Other languages may be added in the future.

INTENDED AUDIENCE

in
the

MACRO

programs written in
VAX-11 hardware. At

and the following

This manual is intended for system and application programmers who are
already familiar with VAX/VMS system concepts. For an overview of the
operating system and an introduction to some of the concepts used in
system services, see the VAX/VMS Summary Description and Glossary.

STRUCTURE OF THIS DOCUMENT

This manual is organized into two parts and three appendixes, as
follows:

Part I provides tutorial information on the use of system
services:

• Chapter 1 contains introductory information. It presents
overviews of the categories of system services and summarizes
the services in each category.

• Chapter 2 describes how to call system services. It contains
detailed information for the VAX-11 MACRO programmer and
general information for the high-level language programmer.
For specific information about a high-level language and
programming examples in that language, see the appropriate
language user's guide.

• Chapters 3 through 10 guide new users in understanding how the
system services work and how to use them. Each category of
services has its own chapter. Examples are provided in VAX-11
MACRO, although they are explained in a way meaningful to
high-level language programmers.

xi

Part II provides detailed reference information on each system
service. The descriptions are presented in alphabetical order
for ease of reference.

Appendix A lists the system-provided macro instructions that
define symbolic names for frequently used system constants.

Appendix B contains sample programs that use various system
services.

Appendix C summarizes the system service formats for easy
reference.

The following figure illustrates how to use this book.

Read Chapter 1 for an overview

of all services; decide which

service(s) you want to use.

Yes

more information

No

about how a service or >-N_o __ ~
group of services

works?

Yes

- -] Read the chapters (3-10)
for usage information and
examples of the services.

--" ""_" ___ ,]
To code a call to a system
service, read the reference
description of the service
in Part 11.

-----·-··""-"'"". ·--·-··. ···-·--·-

How to Use This Book

xii

Read Chapter 2 for

coding conventions
and examples.

ASSOCIATED DOCUMENTS

The following documents are prerequisite· for

• All Users:

VAX/VMS Summary Description and Glossary

• MACRO Programmers:

VAX-11 MACRO Language Reference Manual
VAX-ll MACRO User's Guide

• High-Level Language Programmers:

The language reference manual for your language
The user's guide for your language

The following documents may also be useful:

• VAX/VMS Real-Time User's Guide

• VAX/VMS Command Language User's Guide

• Introduction to VAX-11 Record Management Services

• VAX-11 Record Management Services Reference Manual

• VAX/VMS I/O User's Guide

• DECnet-VAX User's Guide

For a complete list of VAX-11 documents, including descriptions of
each, see the VAX-11 Information Directory and Index.

CONVENTIONS USED IN THIS DOCUMENT

The following syntactical conventions are used in this manual:

• Brackets ([]) in system service
optional arguments.

descriptions

• Horizontal ellipsis (•••) indicates: (1) when shown
format of a system service call, that additional
arguments have been omitted; (2) when shown in an
that additional arguments required by a service
pertinent to the example are not shown.

indicate

in the
optional
example,
but not

• Vertical ellipsis in coding examples indicates that lines of
code not pertinent to the example are not shown. For example:

• Uppercase letters in a system service format
that must be entered as shown; lowercase
variable data.

xiii

show keywords
letters show

SUMMARY OF TECHNICAL CHANGES

This manual applies to Version 2.0 of VAX/VMS. This section
summarizes the main technical changes from the Version 1.0 manual.

This manual contains detailed, language-specific information for
VAX-11 MACRO only. Detailed information about calling system services
from a high-level language can be found in the user's guide for that
language. However, to provide some help to high-level language
programmers, Section 2.2 contains general information about calling
system services from such languages, and Section 2.3 provides
"equivalents" of a VAX-11 MACRO coding example in the following
languages:

e VAX-11 FORTRAN

• VAX-11 COBOL-74

• VAX-11 BLISS-32

• VAX-11 CORAL

• VAX-11 PASCAL

• VAX-11 BASIC

The ability to have multiport memory shared by multiple processors has
expanded the capabilities of the following services:

$ASCEFC - Associate Common Event Flag Cluster

$CREMBX - Create Mailbox and Assign Channel

$CRMPSC - Create and Map Section

$DACEFC - Disassociate Common Event Flag Cluster

$DELMBX - Delete Mailbox

$DGBLSC - Delete Global Section

$DLCEFC - Delete Common Event Flag Cluster

$UPDSEC - Update Section File on Disk

and to services that can set, clear, or wait for event flags in shared
memory.

xv

Other changes include the following:

• $CREMBX (Create Mailbox and Assign Channel) operates
differently if a mailbox with the specified name already
exists. It now assigns a channel to the existing mailbox,
whereas before it replaced the previous equivalence name with
a new equivalence name and returned the status code
SS$ SUPERSEDE.

• $DASSGN (Deassign I/O Channel) does not require that all
additional channels assigned to a device be deassigned before
clearing the linkage to an associated mailbox.

• $GETJPI (Get Job/Process Information) accepts additional
arguments, allows "wildcard" process searching, and no longer
has the restriction that a process requesting information
about another process can obtain only information contained in
that other process's PCB (process control block). This
service returns immediately (often before obtaining the
desired information) if the information is about another
process.

• $GETMSG (Get Message) can process user-defined messages, in
addition to messages from the system message file.

• $SETIME (Set System Time) is a new service.

• $SETPRV (Set Privileges) is a new service.

• Quota descriptions and values in the
(Create Process) contain changes.
deductible are now pooled.

explanation
Most quotas

of $CREPRC
that were

• Page frame number (PFN) mapping is available with the $CRMPSC
service.

• The .ASCID assembler directive is used
character string descriptors in MACRO
replacing the user-written DESCRIPTOR macro.

to create input
coding examples,

• Appendix A includes new symbols defined by $SSDEF and other
macros.

• Appendix B is rewritten so that the explanations of the
program examples stand out more clearly and the examples are
easier to follow.

Errors and omissions in the Version 1.0 manual are corrected. For
example, certain message formatting and time conversion services are
not affected by system service failure exception mode.

xvi

PART I

USING SYSTEM SERVICES

CHAPTER 1

INTRODUCTION TO SYSTEM SERVICES

System services are procedures that the VAX/VMS operating system uses
to control resources available to processes; to provide for
communication among processes; and to perform basic operating system
functions, such as the coordination of input/output operations.

Although most system services are used primarily by the operating
system itself on behalf of logged-in users, many are available for
general use and provide techniques that can be used in application
programs. For example, when you log into the system, the Create
Process system service is called to create a process on your behalf.
You may, in turn, code a program that calls the Create Process system
service to create a subprocess to perform certain functions for an
application.

1.1 WHO CAN USE SYSTEM SERVICES: PRIVILEGE AND PROTECTION

Many system services are available and suitable for application
programs, but the use of some services must be restricted to protect
the performance of the system and the integrity of user processes.

For example, because the creation of permanent mailboxes uses system
dynamic memory, the unrestricted use of permanent mailboxes could
decrease the amount of memory available to other users. Therefore,
the ability to create permanent mailboxes is controlled: a user must
be specifically assigned the privilege to use the Create Mailbox
system service to create a permanent mailbox.

The various controls and restrictions applied to system service usage
are described below. The tables in Section 1.2 that summarize the
system services note any restrictions on the use of specific services.

1.1.1 User Privileges and Resource Quotas

The system manager, who maintains the user authorization file for the
system, grants privileges to use protected system services. The user
authorization file contains, in addition to profile information on
each user, a list of specific user privileges and resource quotas.

1-1

INTRODUCTION TO SYSTEM SERVICES

When you log into the system, the privileges and quotas you have been
assigned are associated with the process created on your behalf.
These privileges and quotas are applied to every image that the
process executes.

When an image issues a call to a system service that is protected by
privilege, the privilege list is checked. If you have been granted
the specific privilege required, the image is allowed to execute the
system service; otherwise, a status code indicating an error is
returned.

When a system service that uses a resource controlled by a quota is
called, the process's quota for that resource is checked. If the
process has exceeded its quota, or if it has no quota allotment, an
error status code may be returned. In some cases, the process may be
placed in a wait state until the resource becomes available; see
Section 2.1.5.4, "Special Return Conditions."

1.1.2 Control by Group Association

Some system services provide techniques for coordinating and
synchronizing the execution of different processes. These services
require cooperating processes to be in the same group; that is, the
group fields in the user identification codes (UICs) for the processes
must match.

For example, event flags are used to post the occurrence of events in
a program and can be shared among cooperating processes. However, the
processes that share a cluster of event flags must be in the same
group.

1.1.3 Protection by Access Mode

A process can execute at any one of four access modes: user,
supervisor, executive, or kernel. The access modes determine a
process's ability to access pages o'f virtual memory. Each page has a
protection code associated with it, specifying the type of access -
read, write, or no access -- allowed for each mode. The VAX-11/780
Architecture Handbook provides additional information on access modes.

For the most part, user-written programs execute in user mode; system
programs executing at the user's request (system services, for
example) may execute at one of the other three, more privileged,
access modes.

In some system service calls, the access mode of the caller is
checked. For example, when a process tries to cancel timer requests,
it can cancel only those requests that were issued from the same or
less privileged access modes. For example, a process executing in
user mode cannot cancel a timer request made from supervisor,
executive, or kernel mode, which are more privileged access modes.

1-2

INTRODUCTION TO SYSTEM SERVICES

1.2 SUMMARY OF VAX/VMS SYSTEM SERVICES

The following sections summarize
functional groups, with tables
each group. Each table lists:

the VAX/VMS system services in
listing the services that belong in

• The full name of the service and the short, macro name by
which it is alphabetized in this book.

• The functions performed by the service, with distinctions
based on privilege (where applicable).

• Restrictions on the use of the service, if any.
is keyed as follows:

This column

None

xxx privilege

yyy quota

Access mode

Processor

UIC protection

indicates that no restriction is placed on
the use of the service for this function.

indicates the specific user privilege that is
required to use the service for the requested
function.

indicates the specific resource quota that is
required to use the service for the requested
function.

indicates that this service uses the access
mode of the caller to determine whether the
caller can execute the function requested.

indicates restrictions when the function is
used with memory that is shared by multiple
processors.

indicates that this service may restrict
access based on the caller's UIC.

For detailed information about a restriction applied to any
specific service, see that service's description in Part II.

Chapters
examples,

3 through 10 provide additional information,
on the services listed in Tables 1-1 through 1-8.

1.2.1 Event Flag Services

including

A process can use event flags to synchronize sequences of operations
in a program. Event flag services clear, set, and read event flags,
and place a process in a wait state pending the setting of an event
flag or flags.

Table 1-1 lists the event flag services.

1-3

INTRODUCTION TO SYSTEM SERVICES

Table 1-1
Event Flag Services

.-------------··----------------------.------"'··-------
Service Name

Associate Common
Event Flag Cluster

($ASCEFC)

Disassociate Common
Event Flag Cluster

($DACEFC)

Delete Common Event
Flag Cluster

($DLCEFC)

Set Event Flag
($SETEF)

Clear Event Flag
($CLREF)

Read Event Flags
($READEF)

Function(s)

Creates a temporary com
mon event flag cluster

Creates a permanent com
mon event flag cluster

Creates a common event
flag cluster in memory
shared by multiple
processors

Establishes association
with an existing common
event flag cluster

Cancels association with
a common event flag
cluster

Marks a permanent common
event flag cluster for
deletion

Turns on an event flag
in a process-local event
flag cluster

Turns on an event flag
in a common event flag
cluster

Turns off an event flag
in a process-local event
flag cluster

Turns off an event flag
in a common event flag
cluster

Returns the status of
all event flags in a
process-local event flag
cluster

Returns the status of
all event flags in a
common event flag
cluster

Restriction(s)l

TQELM quota

PRMCEB privilege

SHMEM privilege

Group association

None

PRMCEB privilege
Group association

None

Group association

None

Group association

None

Group association

1. For an explanation of the terms used in this column, see Page 1-3.

(continued on next page)

1-4

Service Name

Wait for Single
Event Flag

($WAIT FR)

Wait for Logical
of Event Flags

($WFLOR)

Wait for
Logical AND
of Event Flags

($WFLAND)

INTRODUCTION TO SYSTEM SERVICES

OR

Table 1-1 (Cont.)
Event Flag Services

Function(s)

Places the current pro-
cess in a wait state
pending the setting of
an event flag in a
process-local event flag
cluster

Places the current pro-
cess in a wait state
pending the setting of
an event flag in a com-
mon event flag cluster

Places the current pro-
cess in a wait state
pending the setting of
any one of a specified
set of flags in a
process-local event flag
cluster

Places the current pro-
cess in a wait state
pending the setting of
any one of a specified
set of flags in a common
event flag cluster

Places the current pro-
cess in a wait state
pending the setting of
all specified flags in a
process-local event flag
cluster

Places the current pro-
cess in a wait state
pending the setting of
all specified flags in a
common event flag
cluster

Restriction(s)l

None

Group association

None

Group association

None

Group association

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.2 AST (Asynchronous System Trap) Services

be interrupted by events (such as I/O Process execution can
completion) for the
software interrupts
because they occur
services are provided

execution of designated subroutines. These
are called asynchronous system traps (ASTs)
asynchronously to process execution. System
so that a process can control the handling of

ASTs.

1-5

INTRODUCTION TO SYSTEM SERVICES

Table 1-2 lists the AST services.

Table 1-2
AST (Asynchronous System Trap) Services

Service Name

Set AST Enable
($SETAST)

Declare AST
($DCLAST)

Set Power Recovery
AST ($SETPRA)

Function(s)

Enables or disables the
delivery of ASTs

Queues an AST for delivery

Establishes AST routine to
receive control following
power recovery condition

Restriction (s) 1

None

ASTLM quota
Access mode

ASTLM quota

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.3 Logical Name Services

Logical name services provide a generalized technique for maintaining
and accessing character string logical name and equivalence name
pairs. Logical names can provide device-independence for system and
application program input and output operations.

Table 1-3 lists the logical name services.

Service Name

Create Logical
Name ($CRELOG)

Table 1-3
Logical Name Services

Function(s)
·---·

Places logical
name/equivalence name
pair in process logical
name table

Places logical
name/equivalence name
pair in group logical
name table

Places logical
name/equivalence name
pair in system logical
name table

-

Restriction(s)l
-~

Access mode

GRPNAM privilege
Group association

SY SN AM privilege

(continued on next page)

1-6

INTRODUCTION TO SYSTEM SERVICES

Service Name

Delete Logical Name
{$DELLOG)

Translate Logical
Name { $TRNLOG)

Table 1-3 {Cont.)
Logical Name Services

Function{s)

Removes logical
name/equivalence name
pair from process
logical name table

Removes logical
name/equivalence name
pair from group logical
name table

Removes logical
name/equivalence name
pair from system logical
name table

Searches logical name
tables for a specified
logical name and return
its equivalence name
when the first match is
found

Restriction{s)l

None

GRPNAM privilege
Group association

SYSNAM privilege

None

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.4 Input/Output Services

I/O services perform input and output operations directly, rather than
through the file-handling services of the VAX-11 Record Management
Services {RMS). I/O services:

• Perform logical and virtual input/output operations

• Format output lines converting binary numeric values to ASCII
strings and substituting variable data in ASCII strings

• Create mailboxes for interprocess communication

• Perform network operations

• Queue messages to system processes

Table 1-4 lists the I/O
additional information
covered in this manual:

services.
on aspects

The
of

following manuals provide
input/output operations not

• Introduction to VAX-11 Record Management Services

• VAX-11 Record Management Services Reference Manual

• VAX/VMS I/O User's Guide

• DECnet-VAX User's Guide

1-7

INTRODUCTION TO SYSTEM SERVICES

Table 1-4 (Part 1)
Input/Output Services for Device-Dependent I/O

Service Name

Assign I/O Channel
($ASSIGN)

Deassign
I/O Channel

($DASSGN)

Queue I/O Request
($QIO)

Queue I/O Request
and Wait for Event
Flag ($QIOW)

$INPUT

$OUTPUT

Formatted ASCII
Output ($FAQ)

Formatted ASCII
Output with List
Parameter ($FAOL)

Allocate Device
($ALLOC)

Function(s)

Establishes a path for
an I/O request

Establishes a path for
network operations

Releases linkage for an
I/O path

Releases a path from the
network

Initiates an input or
output operation

Initiates an input or
output operation and
causes the process to
wait until it is
completed before
continuing execution

Initiates virtual input
operation and waits for
completion

Initiates virtual output
operation and waits for
completion

Performs ASCII string
substitution, and
converts numeric data to
ASCII representation and
substitutes in output

Reserves a device for
exclusive use by a
process and its sub
processes

Reserves a spooled
device for exclusive use

Restriction (s) 1

None

NETMBX privilege

Access mode

Access mode2

Access mode2

Access mode

Access mode

None

None

ALLSPOOL privilege

1. For an explanation of the terms used in this column, see Page 1-3.

2. Depending on the specific nature of the input or output request,
the service may require the PHY IO, LOG IO, or MOUNT privileges,
or quotas for buffered I/O (BIOLM), direct I/O (DIOLM), buffer
space (BYTLM), or AST limit (ASTLIM).

(continued on next page)

1-8

INTRODUCTION TO SYSTEM SERVICES

Table 1-4 (Part 1) (Cont.)
Input/Output Services for Device-Dependent I/O

Service Name Function(s) Restriction(s)l

Deallocate Device Relinquishes exclusive Access mode
($DALLOC) use of a device

Get I/O Channel Provides information Access mode
Information about a device to which

($GETCHN) an I/O channel has been
assigned

Get I/O Device Provides information None
Information about a device

($GETDEV)

Cancel I/O Cancels pending I/O Access mode
on Channel requests on a channel

($CANCEL)

1. For an explanation of the terms used in this column, see Page 1-3.

Table 1-4 (Part 2)
Input/Output Services for Mailboxes and Messages

Service Name

Create Mailbox
and Assign
Channel

($CREMBX)

Delete Mailbox
($DELMBX)

Broadcast
($BRDCST)

Function(s)

Creates a temporary mail
box

Creates a permanent mail
box

Marks a permanent mailbox
for deletion

Sends a high-priority
message to an assigned
terminal

Sends a high-priority
message to a nonassigned
terminal or to all
terminals

Restriction(s)l

BYTLM quota
TMPMBX privilege
SHMEM pr i vilege2

PRMMBX privilege
SHMEM privilege2

PRMMBX privilege
Access mode
Processor

None

OPER privilege

l.For an explanation of the terms used in this column, see Page 1-3.

2. The SHMEM privilege is required only if the mailbox is created
in memory that is being shared by multiple processors.

(continued on next page)

1-9

INTRODUCTION TO SYSTEM SERVICES

Table 1-4 (Part 2) (Cont.)
Input/Output Services for Mailboxes and Messages

Service Name Function(s) Restriction(s)l
----------·-···-~I----------------~-.__ _____________ _

Send Message to
Accounting Manager

($SNDACC)

Send Message to
Symbiont Manager

{$SNDSMB) .

Send Message to
Operator

($SNDOPR)

Send Message to
Error Logger

{ $SNDERR)

Get Message
($GETMSG)

Put Message
{ $PUTMSG)

Controls accounting log
file activity

Writes a~ arbitrary
message to the accounting
log file

Requests symbiont manager
to initialize, modify, or
delete a printer or batch
job queue, or a device
queue

Requests symbiont manager
to delete or change char
acteristics of a queued
file

Writes a message to
designated operator(s)
terminal(s)

Enables or disables an
operator's terminal,
sends a reply to a user
request or initializes
the operator's log file

Writes arbitrary data to
the system error log file

Returns text of system
error message from
message file

Writes a message to the
current output and error
devices

OPER privilege

None

OPER privilege

Group association

None

OPER privilege

BUGCHK privilege

None

None

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.5 Process Control Services

Process control services allow you to create, delete, and control the
execution of processes.

Table 1-5 lists the process control services.

1-10

Service Name

Create Process
($CREPRC)

Delete Process
($DELPRC)

Suspend Process
($SUSPND)

Resume Process
($RESUME)

Hibernate ($HIBER)

INTRODUCTION TO SYSTEM SERVICES

Table 1-5
Process Control Services

Function(s)

Creates a subprocess

Creates a detached
process

Deletes the current
process or a subprocess

Deletes another process
in the same group

Deletes any process in
the system

Makes the current process
or a subprocess
nonexecutable and unable
to receive ASTs until a
subsequent resume or
delete request

Makes another process in
the same group non
executable and unable to
receive ASTs until a
subsequent resume or
delete request

Makes any process in the
system nonexecutable and
noninterruptible until a
subsequent resume or
delete request

Restores executability of
a suspended subprocess

Restores executability of
a suspended process in
the same group

Restores executability of
any suspended process in
the system

Makes the current process
dormant but able to
receive ASTs until a sub
sequent wakeup request

Restriction(s)l

PRCLM quota

DETACH privilege

None

GROUP privilege
Group association

WORLD privilege

None

GROUP privilege
Group association

WORLD privilege

None

GROUP privilege
Group association

WORLD privilege

None

.__ ___________ ---'...__ ___________ , _________ ____________ __,

1. For an explanation of the terms used in this column, see Page 1-3.

(continued on next page)

1-11

Service Name

Wake ($WAKE}

Schedule Wakeup
($SCHDWK}

Cancel Wakeup
($CANWAK)

Exit ($EXIT)

Force Exit
($FORCEX}

Declare Exit
Handler

($DCLEXH}

Cancel Exit
Handler

($CANEXH}

Set Process Name
($SETPRN}

INTRODUCTION TO SYSTEM SERVICES

Table 1-5 (Cont.)
Process Control Services

Function(s)

Restores executability of
the current process or a
hibernating subprocess

Restores executability of
a hibernating process in
the same group

Restores executability of
any hibernating process
in the system

Wakes a process after a
specified time interval
or at a specific time2

Cancels a scheduled
wakeup request2

Terminates execution of
an image and returns to
command interpreter

Causes image exit for the
current process or a
subprocess

Causes image exit for a
process in the same
group

Causes image exit for any
process in the system

Designates a routine to
receive control when
image exits

Cancels a previously
established exit handling
routine

Establishes a text name
string to be used to
identify the current
process

Restriction(s}l

None

GROUP privilege
Group association

WORLD privilege

None

None

GROUP privilege
Group association

WORLD privilege

None

Access mode

None

1. For an explanation of the terms used in this column, see Page 1-3.

2. Functions performed by these services are listed in detail in
Table 1-6.

(continued on next page)

1-12

Service Name

Set Priority
($SETPRI)

Set Resource Wait
Mode ($SETRWM)

Get Job/Process
Information

($GETJPI)

INTRODUCTION TO SYSTEM SERVICES

Table 1-5 (Cont.)
Process Control Services

Function(s)

Increases the execution
priority for any process

Changes the execution
priority for the current
process or a subprocess

Changes the execution
priority for a process in
the same group

Changes the execution
priority for any process
in the system

Requests wait, or that
control be returned
immediately, when a
system service call
cannot be executed
because a system resource
is not available

Returns information about
the current process

Returns information about
the current context of
other processes in the
same group

Returns information about
any other process in the
system

Restriction(s)l

ALTPRI privilege

None

GROUP privilege
Group association

WORLD privilege

None

N·one

GROUP privilege
Group association

WORLD privilege

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.6 Timer and Time Conversion Services

Timer services schedule program events for a particular time of day,
or for after a specified interval of time has elapsed. The time
conversion services provide a way to obtain and format binary time
values for use with the timer services.

Table 1-6 lists the timer and time conversion services.

1-13

INTRODUCTION TO SYSTEM SERVICES

Table 1-6
Timer and Time Conversion Services

-----------------"-·---~"-·--~-·---------.------------

Service Name Function(s) Restriction(s)l
t----------~--·~--···--+------------·-----------1-------------1

Get Time
($GETTIM)

Convert Binary Time
to Numeric Time

($NUMTIM)

Convert Binary Time
to ASCII String

($ASCTIM)

Convert ASCII
String to Binary
Time ($BINTIM)

Set Timer ($SETIMR)

Cancel Timer
Request

($CANTIM)

Schedule Wakeup
($SCHDWK)

Cancel Wakeup
($CANWAK)

Returns the date and
time in system format

Converts a date and time
from system format to
numeric integer values

Conve~ts a date and time
from system format to
an ASCII string

Converts a date and time
in an ASCII string to
the system date and time
format

Requests setting of an
event flag or queueing
of an AST based on an
absolute or delta time
value

Cancels previously
issued timer requests

Schedules a wakeup for
the current process or a
hibernating subprocess

Schedules a wakeup for a
hibernating process in
the same group

Schedules a wakeup for
any hibernating process
in the system

Cancels a scheduled
wakeup request for the
current process or a
hibernating subprocess

None

None

None

None

TQELM quota2

Access mode

ASTLM quota

GROUP privilege
ASTLM quota
Group association

WORLD privilege
ASTLM quota

None

'---------------·--·--1---------···--·-------·--·--··-·-·-----"--·-------------'
1. For an explanation of the terms used in this column, see Page 1-3.

2. Setting an event flag in a common event flag cluster requires
association based on group number; a timer request with an AST
requires ASTLM quota.

{continued on next page)

1-14

INTRODUCTION TO SYSTEJll SERVICES

Table 1-6 (Cont.)
Timer and Time Conversion Services

Service Name Function(s) Restriction(s)l
.--~--~---~---1,__-~~--~~~-~~-~--+---~~-~-~~--____,

Cancel Wakeup
($CANWAK)
(Cont.)

Set System Time
($SETIME)

Cancels a scheduled
wakeup request for a
hibernating process in
the same group

Cancels a scheduled
wakeup request for any
hibernating process in
the system

Sets or recalibrates the
current system time

GROUP privilege
Group association

WORLD privilege

OPER privilege
LOG_IO privilege ___________ _....._ ______ "' _______ __... __________ _

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.7 Condition-Handling Services

Condition handlers are procedures that can be designated to receive
control when a hardware or software exception condition occurs during
image execution. Condition-handling services designate condition
handlers for special purposes.

Table 1-7 lists the condition-handling services.

Service Name

Set Exception
Vector

($SETEXV)

Set System Service
Failure Exception
Mode ($SETSFM)

Unwind from
Condition Handler
Frame ($UNWIND)

Table 1-7
Condition Handling Services

Function(s)

Defines condition handlers
to receive control in case
of hardware- or software
detected exception condi
tions

Requests or disables gener
ation of a software excep
tion condition when a sys
tem service call returns an
error or severe error

Deletes a specified number
of call frames from the
call stack following a non-
recoverable exception con-
dition

Restriction(s)l

Access mode

None

None

-------------------·-----------·-_,, ______ __,

1. For an explanation of the terms used in this column, see Page 1-3.

(continued on next page)

1-15

INTRODUCTION TO SYSTEM SERVICES

Table 1-7 (Cont.)
Condition Handling Services

----------------------~-----~-----~--~----~-~~---------------

Service Name Function(s) Restriction (s) 1

----------~......_.,-~-------------------------------"·-----------.!
Declare Change
Mode or
Compatibility
Mode Handler

($DCLCMH)

Designates a routine to re
ceive control when change
mode to user instructions
are encountered

Designates a routine to re
ceive control when change
mode to supervisor instruc
tions are encountered

Designates a routine to re
ceive control when compati
bility mode exceptions
occur

Access mode

Access mode

None

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.8 Memory Management Services

Memory management services provide ways to use the virtual address
space available to a program. Included are services that:

• Allow an image to increase or decrease the amount of virtual
memory available

• Control the paging and swapping of virtual memory

• Create and access in memory files that contain shareable code
or data

Table 1-8 lists the memory management services.

Table 1-8
Memory Management Services

----------~~----~-~-----~~----- ----------....--------------......
Service Name Function(s) Restriction(s)l

1-------------- t-~--,·· ·-------·-------------+---------------1

Expand Program/
Control Region

($EXPREG)

Contract Program/
Control Region

($CNTREG)

Create Virtual
Address Space

($CRETVA)

Adds pages at the end
of the program or con
trol region

Deletes pages from the
end of the program or
control region

Adds pages to the
virtual address space
available to an image

None

None

None

'-------------..IL---... ------·--"-'"" ______________ .__ _____ _
1. For an explanation of the terms used in this column, see Page 1-3.

(continued on next page)

1-16

Service Name

Delete Virtual
Address Space

($DELTVA)

Create and Map
Section

($CRMPSC)

INTRODUCTION TO SYSTEM SERVICES

Table 1-8 (Cont.)
Memory Management Services

Function(s)

Makes a range of
virtual addresses un
available to an image

Identifies a disk file
as a private section
and establishes
correspondence between
virtual blocks in the
file and the process's
virtual address space

Identifies a di·sk file
containing shareable
code or data as a
temporary global sec
tion and establishes
correspondence between
virtual blocks in the
file and the process's
virtual address space

Identifies a disk file
containing shareable
code or data as a
permanent global sec
tion and establishes
correspondence between
virtual blocks in the
file and the process's
virtual address space

Identifies a disk file
containing shareable
code or data as a sys
tem global section and
establishes correspond
ence between virtual
blocks in the file and
the process's virtual
address space

Restriction (s) 1

None

Access mode

Access mode

PRMGBL privilege
SHMEM privilege2
Access mode

SYSGBL privilege
SHMEM pri vilege2
Access mode

1. For an explanation of the terms used in this column, see Page 1-3.

2. The SHMEM privilege is required only if the section is created
in memory that is being shared by multiple processors. In
addition, calls to $UPDSEC and $DGBLSC are valid only from
processes on the processor that created the section.

(continued on next page)

1-17

INTRODUCTION TO SYSTEM SERVICES

Table 1-8 {Cont.)
Memory Management Services

.....-----------·--t------·-~·--·-~--·----.-·--------···--------

Service Name

Create and Map
Section

($CRMPSC)
(Cont.)

Update Section File
on Disk

($UPDSEC)

Map Global Section
($MGBLSC)

Delete Global
Section ($DGBLSC)

Lock Pages in
Working Set

($LKWSET)

Unlock Pages from
Working Set

($ULWSET)

Purge Working
Set { $PURGWS)

Funct ion (s) Restriction(s)l

Identifies one or more
page frames in physi
cal memory as a pri
vate or global section
and establishes cor
respondence between
the page frames and
the process's virtual
address space.

Writes modified pages
of a private or global
section .into the
sect ion file

Establishes corre
spondence between a
global section and a
process's virtual
address space

Marks a permanent
global section for
deletion

Marks a system global
section for deletion

Specifies that
particular pages
cannot be paged out of
the process's working
set

Allows previously
locked pages to be
paged out of working
set

Removes all pages
within a specified
range from the current
working set

PFNMAP privilege3
Access mode

Access mode
Processor2

UIC protection

PRMGBL privilege
Processor2

SYSGBL privilege
Access mode
Processor2

Access mode

Access mode

None

....._ __________ ___. _______________ ___ , ____ , ____________ _
l.For an explanation of the terms used in this column, see Page 1-3.

2. The SHMEM privilege is required only if the section is created
in memory that is being shared by multiple processors. In
addition, calls to $UPDSEC and $DGBLSC are valid only from
processes on the processor that created the section.

3.The PRMGBL or SYSGBL privilege is also required for a permanent
global section or system global section, respectively. The SHMEM
privilege is also required if the section is located in memory
that is being shared by multiple processors.

(continued on next page)

1-18

INTRODUCTION TO SYSTEM SERVICES

Service Name

Lock Page in Memory
($LCKPAG)

Unlock Page in
Memory ($ULKPAG)

Adjust Working Set
Limit ($ADJWSL)

Set Protection on
Pages ($SETPRT)

Set Process Swap
Mode ($SETSWM)

Table 1-8 (Cont.)
Memory Management Services

Function(s)

Specifies that
particular pages may
not be swapped out of
memory

Allows previously
locked pages to be
swapped out of memory

Changes maximum number
of pages that the
current process can
have in its working
set

Controls access to a
range of virtual
addresses

Controls whether or
not the current
process can be swapped
out of the balance set

Restriction(s) 1

User privilege
Access mode

User privilege
Access mode

WSQUOTA quota

Access mode

PSWAPM privilege

··-

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.9 Change Mode Services

Change mode services alter the access mode of a process to a more
privileged mode to execute particular routines, or change the stack
pointer for a less privileged mode. These services are used primarily
by the operating system.

Table 1-9 lists the change mode services.

1-19

INTRODUCTION TO SYSTEM SERVICES

Service Name
-

Change to Executive
Mode ($CMEXEC)

Change to Kernel
Mode ($CMKRNL)

Adjust Outer Mode
Stack Pointer

($ADJSTK)

Table 1-9
Change Mode Services

Function(s)

Executes a specified
routine in executive

Executes a specified

mode

routine in kernel mode

Modifies the current
stack pointer for a less
privileged access mode

Restriction(s) 1

CMEXEC privilege
Access mode

CMKRNL privilege
Access mode

Access mode

-~c~·-· ---
1. For an explanation of the terms used in this column, see Page 1-3.

1-20

CHAPTER 2

CALLING THE SYSTEM SERVICES

System service procedures are called using the standard VAX-11
procedure calling conventions. The programming languages that
generate VAX-11 native mode instructions provide mechanisms for coding
the procedure calls. These languages and supporting documentation are
listed in the Preface.

When you code a system service call, you must supply whatever
arguments the service requires.

When the service completes execution, it returns control to the
calling program with a return status code. The caller should analyze
the status code to determine the success or failure of the service
call, so the program can alter the flow of execution, if necessary.

If you are a VAX-11 MACRO programmer, you should read Section 2.1 for
details on how to code the macro instructions that generate system
service calls.

If you program in any other language, you should read Section 2.2 for
general information on how to call system services. For detailed
information and examples, however, see the user's guide for your
language.

Each of these sections also discusses conventions for coding arguments
and methods of checking for the successful completion of a system
service.

Both the MACRO programmer and the high-level language programmer
should read Section 2.3, which provides help in interpreting the
coding examples that appear throughout Chapters 3-10.

2.1 MACRO CODING

System service macros generate argument lists and CALL instructions to
call system services. These macros are located in the system library
STARLET.MLB; this library is searched automatically for unresolved
references when you assemble a source program.

Knowledge of MACRO rules for assembly language coding is required for
understanding the material presented in this section. The VAX-11
MACRO Language Reference Manual and the VAX-11 MACRO User's Guide
contain the necessary prerequisite information.

2-1

CALLING THE SYSTEM SERVICES

2.1.1 Argument Lists

You can determine the arguments required by a system service from the
service description in Part II. The "Macro Format" for each system
service indicates the positional dependencies and keyword names of
each argument as shown in the following sample:

$SERVICE arga ,argb ,argc ,argd

This format indicates that the macro name of the service is $SERVICE
and that it requires four arguments, ordered as shown and with keyword
names ARGA, ARGB, ARGC, and ARGD. The argument list for this service
must have the format:

31 8 7 0

0 4

arga

1-----·-----·-·---"'""

argb

argc

argd

.___ ___ , __ _,_

All arguments are longwords. The first longword in the list must
always contain, in its low-order byte, the number of arguments in the
remainder of the list. The remaining three bytes must be zeros.

Many arguments to system services are optional; these are indicated
in the macro formats by brackets. For example, if the second and
third arguments of $SERVICE are optional, the macro format would
appear as:

$SERVICE arga , [argb] , [argc] , argd

If you omit an optional argument in a system service macro
instruction, the macro supplies a default value for the argument.

There are two generic macro forms for coding calls to system services:

$name G
$name-S

The form of the macro to use depends on how the argument list for the
system service is constructed:

• The $name G form requires you to construct an argument list
elsewhere- in the program and specify the address of this list
as an argument to the system service. (A macro is provided to
create an argument list for each system service.) With this
form, you can use the same argument list, with modifications
if necessary, for more than one invocation of the macro.

• The $name S form requires you to supply the arguments to the
system sirvice in the macro instruction. The macro generates
code to push the argument list onto the call stack during
program execution. With this form, you can use registers to
contain or point to arguments so you can write re-entrant
programs.

2-2

CALLING THE SYSTEM SERVICES

The $name G macro form generates a CALLG instruction; the $name S
macro form generates a CALLS instruction. The services are called
according to the standard procedure calling conventions. System
services save all registers except RO and Rl, and restore the saved
registers before returning control to the caller.

The following sections describe how to code system service calls using
each of these macro forms.

2.1.2 $name_G Form

The $name_G macro form requires a single -operand:

$name_G label

label
address of the argument list.

You can use the $name macro to create the argument list.
of the $name macro is:

The format

label: $name argl, ••• ,argn

label

$name

symbolic address of the generated argument list. This is the
label~given as an argument in the $name G macro form.

the service macro name.

argl, ••• ,argn
arguments to be placed in successive longwords in the argument
list.

2.1.2.1 Specifying Arguments with the $name Macro - When you use the
$name macro to construct an argument list for a system service, you
can specify the arguments in any of three ways:

1. By using keywords to describe the arguments. A keyword must
be followed by an equal sign {=) and then by the value of the
argument.

2. By using positional order, with omitted arguments indicated
by commas in the argument positions. You can omit commas for
optional trailing arguments.

3. By using both positional dependence and keyword names (you
must list positional arguments first).

For example, $SERVICE may have the format:

$SERVICE arga ,[argb] ,[argc] ,argd

Assume, for the purposes of this example, that ARGA and ARGB are
arguments that require you to code numeric values and that ARGC and
ARGD require you to code addresses.

The two following examples show valid ways of coding a $name macro to
construct an argument list for a later call to $SERVICE.

' 2-3

CALLING THE SYSTEM SERVICES

!Example 1: Using Keywords I
LIST: $SERVICE ARGB=O,ARGC=O,ARGA=l,ARGD=MYARGD

!Example 2: Specifying Arguments in Positional Orde~

LIST: $SERVICE 1,,,MYARGD

The argument list generated in both cases is:

LIST: .LONG
.LONG
.LONG
.LONG
.LONG

4
1
0
0
MYARGD

Note that all arguments, whether coded in positional order or by
keyword, must be expressions that the assembler can evaluate to
generate .LONG data directives.

2.1.2.2 Example of $name and $name G Macro Calls - This example shows
how you can code a call to the Read Event Flags {$READEF) system
service using an argument list created by $name.

As shown in Part II, the macro format of the $READEF system service
is:

$READEF efn ,state

The EFN argument must specify the number of an event flag cluster, and
the STATE argument must supply the address of a longword to receive
the contents of the cluster.

These arguments might be specified using the $name macro form as
follows:

READLST: SREADEF EFN~l,STATE=TESTFLAG ;ARGUMENT LIST FOR $READEF

This $READEF macro generates the code:

READLST: .LONG
+LONG
.LONG

2
1
TESTFLAG

;ARGUMENT LIST FOR SREADEF

To execute the $READEF macro now requires only the line:

SREADEF_G READLST

The macro generates the following code to call the Read Event Flags
system service:

CALLG READLST,@tSYSSREADEF

SYS$READEF is the name of a vector to the entry point of the Read
Event Flags system service. The linker automatically resolves the
entry point addresses for all system services.

2-4

CALLING THE SYSTEM SERVICES

2.1.2.3 Symbolic Names for Argument List Offsets - The $name G macro
form (used with the $name macro) is especially useful for: -

• Coding calls to system services that have long argument lists

• Services that may be called repeatedly during the execution of
a single program with the same, or essentially the same,
argument list

When you use this form, you can refer to arguments in the list
symbolically. Each argument in an argument list has an offset from
the beginning of the list; a symbolic name is defined for the numeric
offset of each argument. If you use the symbolic names to refer to
the arguments in a list, you do not have to remember the numeric
offset (which is based on the position of the argument shown in the
macro format). There are two additional advantages to referring to
arguments by their symbolic names:

1. Your code is more readable.

2. If an argument list for a system service changes with a later
release of a system, the symbols will not change.

The offset names for all system service argument lists are formed by
concatenating the service macro name with $ and the keyword name of
the argument, as follows: -

name$_keyword

where name is the macro name for the system service and keyword is the
keyword argument.

Similarly, the number of arguments required by a particular macro is
defined symbolically as:

name$ NARGS

Symbolic names for argument list offsets are defined automatically
whenever you use the $name form of the macro for a particular system
service.

For example, the $READEF macro defines the following values:

Symbolic Name

READEF$ NARGS
READEF$-EFN
READEF$-STATE

Value

Number of arguments in the list (2)
Offset of EFN argument (4)
Offset of STATE argument (8)

Thus, the $READEF macro can be coded to build an argument list for a
$READEF system service call as follows:

READLST: tREADEF EFN=1,STATE=TEST1

Later, the program may want to use a different value for the STATE
argument in calling the service. The following lines show how this
can be accomplished.

MOVAL TEST2,READLST+READEF$_STATE
$READEF_G READLST

The MOVAL instruction replaces the address TESTl in the $READEF
argument list with the address TEST2; the $READEF G macro calls the
system service with the modified list. -

2-5

CALLING THE SYSTEM SERVICES

2.1.2.4 The $nameDEF Macro - You can also define symbolic names for
system service argument lists using the $nameDEF macro. This macro
does not generate any executable code; it merely defines the symbolic
names so they can be used later in the program. For example:

$QIODEF

This macro defines the symbol QIO$ NARGS and symbolic names for the
$QIO argument list offsets. -

You may need to use the $nameDEF macro if you code an argument list to
a system service without using the $name macro form, or if a program
refers to an argument list in a separately assembled module.

2.1.3 The $name_s Form

The format of $name S macro call is:

$name_S argl, ••• , argn

The macro generates code to push the arguments on the stack in reverse
order. The actual instructions used to place the arguments on the
stack are determined as follows:

• If the system service requires a value for an argument, either
a PUSHL instruction or a MOVZWL to -(SP) instruction is
generated.

• If the system service requires an address for an argument, a
PUSHAB, PUSHAW, PUSHAL, or PUSHAQ instruction is generated,
depending on the context.

The macro then generates a call to the system service in the format:

CALLS #n,@#SYS$name

where n is the number of arguments on the stack.

2.1.3.1 Specifying Arguments with the $name S Macro - When you use
the $name S macro to construct an argument Tist for a system service,
you can specify arguments in any of three ways:

1. By using keywords to describe the arguments. All keywords
must be followed by an equal sign {=) and then by the value
of the argument.

2. By using positional order, with omitted arguments indicated
by commas in the argument positions. You can omit commas for
optional trailing arguments.

3. By using both positional dependence and keyword
(positional arguments must be listed first).

For example, $SERVICE might have the format:

$SERVICE arga ,[argb] ,[argc] ,argd

names

Assume, for the purposes of this example, that ARGA and ARGB are
arguments that require you to code numeric values and that ARGC and
ARGD require you to code addresses.

2-6

CALLING THE SYSTEM SERVICES

The two following examples show valid ways of coding the $name S macro
form to call $SERVICE.

IExample 1: Using Keywords!

MYARGD: +LONG 100

$SERVICE_S ARGB=tO,ARGC=O,ARGA~+1,ARGD=MYARGD

Example 2: Specifying Arguments in Positional Order

MYARGD: +LONG 100

$SERVICE_S t1•••MYARGD

The argument list is pushed on the stack as follows:

PUSHAL
PUSHL
PUSHL
PUSHL

MYARGD
iO
+o
$1

Note that all arguments, whether coded positionally or with keywords,
must be valid assembler expressions, since they are used as source
operands in instructions. Contrast this with the arguments for the
$name argument list, which the assembler uses for data-generating
directives.

2.1.3.2 Example of $name S Macro Call - Since a $name S macro
constructs the argument list at execution time, addresses and values
can be supplied using register addressing modes. The $READEF macro
used in the example of the $name G form can be coded as follows using
the $name_S form: -

SREADEF_S EFN=t1,STATE=<R10)

where RIO contains the address of the longword to receive the status
of the flags.

This macro instruction is expanded as follows:

PUSH AL
PUSHL
CALLS

<R10>
$1
#2~@1SYSSREADEF

2.1.4 Conventions for Coding Arguments to System Services

The arguments must be specified according to the macro assembler rules
for operand coding and addressing.

2-7

CALLING THE SYSTEM SERVICES

The way to specify a particular argument depends on:

• Whether the system service requires an address or a value as
the argument. In Part II, the descriptions of the arguments
following a system service macro format always indicate if the
argument is an address. An indicator, number, or mask takes a
value as the argument.

• The form of the system service macro being used. The
expansions of the $name and $name S macros in the examples in
the preceding sections showed the code generated by each macro
form.

If you are in doubt as to whether you have coded a value or an address
argument correctly, you can assemble the program with the .LIST MEB
directive to check the macro expansion. See the VAX-11 MACRO Language
Reference Manual for more details.

Arguments that are optional to system services always have default
values, regardless of whether they are value or address arguments. In
almost every case, an optional argument defaults to O.

When an argument is optional, the description of the argument always
describes what action the service takes when the default value is
used.

Address arguments may be optional when the system service returns
information; if the program does. not require the information, you can
omit the optional argument.

2.1.4.1 Conventions for Coding Character String Arguments - Many
system services require ASCII text strings as arguments or return
ASCII text strings. Character strings are identified to system
services by specifying the address of a quadword character string
descriptor containing the length of the string and its starting
address. The string itself may or may not follow the descriptor.

Descriptors are explained fully in the VAX-11 Procedure Calling and
Condition Handling Standard, which is printed in the· VAX-11
Architecture Handbook and in the VAX-11 Run-Time Library Reference
Manual. The format of a descriptor is as follows.

Relative byte location ""

Start of descriptor

length

type

class

is a word specifying the length of the string (in bytes).

is a byte specifying the data type of the argument.
is ignored by system services.

This field

is a byte specifying the class of descriptor. This field is
ignored by system services; therefore, dynamic string
descriptors are treated as fixed-length string descriptors.

2-8

· CALLING THE SYSTEM SERVICES

address
is a longword containing the address of the string.

To define a descriptor for input to a service and specify the ASCII
data, you can use the .ASCID directive. For example,

DESC: +ASCID /Hello!/

creates a descriptor followed by 6 bytes representing the string
"Hello!" The linker inserts a length value of 6 and the correct
address value in the descriptor when it binds the module into an
image.

To define a descriptor to hold data output from a service, define the
descriptor and allocate enough bytes to hold the data. For example,
if the service will return a string of up to 23 bytes, you can code
the descriptor and the 23-byte buffer as follows:

DESC: .LONG 23
+LONG DESC+S
.BLKB 23

When a service returns a string, you can optionally specify the
address of a word to receive the actual length of the string returned.

Example of Coding a Character String Descriptor: The Translate
Logical Name ($TRNLOG) system service uses character string
descriptors for both input and output: it accepts a logical name for
input and returns the equivalence name, if any, for the logical name.
The following example shows how these descriptors might be coded to
translate the logical name CYGNUS.

CYGNUSDESC:
NAMEDESC:

.LONG

.LONG
+BLKB

NAMELENGTH:
.BLKW

.ASCID /CYGNUS/

63
NAMEDESC+B
63

1

;DESCRIPTOR FOR CYGNUS LOGICAL NAME
PDESCRIPTOR FOR TRANSLATED OUTPUT
PLENGTH OF THE BUFFER
PADDRESS OF THE BUFFER
PTHE BUFFER

;RECEIVE OUTPUT LENGTH HERE

$TRNLOG_S LOGNAM=CYGNUSDESC,RSLLEN=NAMELENGTH,
RSLBUF=NAMEDESC

The input string for this service call is defined at the label
CYGNUSDESC. The output string that is returned from the service will
be written into the 63-byte buffer defined in the descriptor at the
label NAMEDESC. The actual length of the returned string will be
written in the word at the label NAMELENGTH.

When an output buffer is provided for a character string and the
string returned is longer than the buffer, the string returned is
truncated, and the service returns a status code (SS$ BUFFEROVF)
indicating that fact. (Note that SS$ BUFFEROVF is a "success" return
code. Status codes returned by system services are discussed in
Section 2.1.5.)

2-9

CALLING THE SYSTEM SERVICES

2.1.4.2 Conventions for Coding Numeric Values - Many system services
accept numeric values ·for particular arguments. In some cases, the
services check only the low-order portion of the longword argument
they are passed. These cases are:

• Indicators. Indicators can only have values
System services check only the low-order
arguments.

of
bit

O or 1 •
of these

• Event flag numbers. Event flag numbers can have values of O
through 255. System services check only the low-order byte of
these arguments.

• Access modes. Access modes can have values of
System services check only the low-order
arguments.

O through 3.
2 bits of these

• Channel numbers. Channel numbers as input arguments are
passed by immediate value. However, if you use the $service
or $service S form of the call, specify the label associated
with the address containing the channel number; for example:

$QIO_S ••• ,CHAN=DEVCHAN, •••

The macro expansion in these cases places the value of the
channel number onto the stack. System services check only the
low-order word of an input CHAN argument.

When you code any of the above types of argument, the high-order
portion of the argument should be zeros.

Note that many system services use access modes to protect system
resources, and thus employ a special convention for interpreting
access mode arguments (keyword ACMODE). You can specify an access
mode using a numeric value or a symbolic name. The access modes,
their numeric values, and symbolic names are:

Access Numeric Symbolic
Mode Value Name

Kernel 0 PSL$C KERNEL
Executive 1 PSL$C--EXEC
Supervisor 2 PSL$C--SUPER
User 3 PSL$C--USER

The symbolic names are defined in the $PSLDEF macro.

When you specify an access mode, the actual mode used is determined
after the service has compared the specified access mode with the
access mode from which the service was called. If the modes are
different, the less privileged access mode is always used. Because
this operation results in an access mode with a higher numeric value
(when the access mode of the caller is different from the specified
access mode), the access modes are said to be maximized.

Since much of the code you write will execute in user mode, you can
omit the access mode argument. The argument value defaults to O, and
when this value is compared with the current execution mode, the mode
with the higher value, 3 for user mode, is used.

2-10

CALLING THE SYSTEM SERVICES

2.1.5 Status Codes Returned from System Services

When a system service finishes execution, a numeric status value is
always returned in general register RO. Successful completion is
indicated by a status code with the low-order bit set. The low-order
three bits, taken together, represent the severity of the error.
Severity code values are:

Value

0
1
2
3
4
5-7

Meaning

Warning
Success
Error
Informational
Severe or fatal error
Reserved

Symbolic Name

STS$K WARNING
STS$K-SUCCESS
STS$K-ERROR
STS$K-INFO
STS$K=SEVERR

The symbolic names are defined in the $STSDEF macro.

The remaining bits in the low-order word classify the particular
return condition. The high-order word indicates that a system service
issued this status code.

Each numeric status code has a unique symbolic name in the format:

SS$_code

where code is a mnemonic describing the return condition. For
example, a successful return is usually indicated by

SS$_NORMAL

An example of an error return status code is:

SS$_ACCVIO

This status code indicates that an access violation occurred because a
service could not read an input field or write an output field.

The symbolic definitions for status codes are included in the default
system library. You can obtain a listing of these symbolic codes at
assembly time by invoking the system macro $SSDEF (see Appendix A) •
Use the symbolic names for system status codes to check return
conditions.

2.1.5.1 Information Provided by Status Codes - Status codes returned
by system services may provide information; that is, they do not
always just indicate whether or not the service completed
successfully. SS$ NORMAL is the usual status code indicating success,
but others are defined. For example, the status code SS$ BUFFEROVF,
which is returned when a character string returned by a-service is
longer than the buffer provided to receive it, is a success code.
This status code, however, gives the program additional information.

Warning returns and some error returns indicate that the service may
have performed some part, but not all, of the requested function.

are described
When you are

the return
to check for

The possible status codes that each service can return
with the individual service descriptions in Part II.
coding calls to system services, read the descriptions of
status codes to determine whether you want the program
particular return conditions.

2-11

CALLING THE SYSTEM SERVICES

2.1.5.2 Testing Return Status Codes - To test for successful
completion following a system service call, the program can test the
low-order bit of RO and branch to an error checking routine if this
bit is not set, as follows:

BLBC RO,errlabel 'ERROR IF LOW BIT CLEAR

The error checking routine may check for specific values or for
specific severity levels. For example, the following instruction
checks for an illegal event flag number error condition:

CMPL tSS$_ILLEFC,RO 9IS EVENT FLAG NUMBER ILLEGAL?

Note that return status codes are always longword values; however,
the high-order words of all status codes returned by system services
are always the same.

2.1.5.3 System Messages Generated by Status Codes - When you execute
a program with the DCL command RUN, the command interpreter uses the
contents of RO to issue a descriptive message if the program completes
with a nonsuccessful status.

The following example shows a simple error-checking procedure in a
main program:

tREADEF_S EFN=t64,STATE=TEST.
BSBW ERROR

ERROR: BLBC R0,10$
RSB

lOS: RET

9CHECK REGISTER 0
;succEss, RETURN
;EXIT WITH RO STATUS

Following a system service call, the BSBW instruction calls the
subroutine ERROR. The subroutine checks the low-order bit in register
O and if the bit is clear, branches to a RET instruction that causes
the program to exit with the status of RO preserved. Otherwise, the
subroutine issues an RSB to return to the main program.

If the event flag cluster requested in this call to $READEF is not
currently available to the process, the program exits and the command
interpreter displays the message:

%SYSTEM-F-UNASEFC, unassociated event flas cluster

The keyword UNASEFC in the message corresponds to the status code
SS$ UNASEFC.

2.1.5.4 Special Return Conditions - Two process execution modes
affect how control is returned to the calling program when an error
occurs during the execution of a system service. These modes are:

• Resource wait mode

• System service failure exception mode

If you change the default setting for either of these modes in a
program, the program must handle the special return conditions that
result. The next two sections discuss considerations for using these
modes.

2-12

CALLING THE SYSTEN SERVICES

Resource Wait Mode: Many system services require certain system
resources for execution. These resources include system dynamic
memory and process quotas for I/O operations. Normally, when a system
service is called and a required resource is not available, the
process is placed in a wait state until the resource becomes
available. Then, the service completes execution. This mode is
called resource wait mode.

In a real-time environment, however, it may not be practical or
desirable for a program to wait. In these cases, you can choose to
disable resource wait mode, so that when a required resource is
unavailable, control returns immediately to the calling program with
an error status code. You can disable (and re-enable) resource wait
mode with the Set Resource Wait Mode ($SETRWM) system service.

How a program responds to the unavailability of a resource depends
very much on the application and the particular service that is being
called. In some instances, the program may be able to continue
execution and retry the service call later. In other instances, it
may be necessary only to note that the program is being required to
wait.

System Service Failure Exception Mode: When an error occurs during
the execution of a system service, control normally returns to the
next instruction in the calling program, which can check the return
status code in RO to determine the success or failure of the service
call.

To detect and respond to system service call failures, you can use the
condition-handling mechanism of VAX/VMS to respond to system service
failures. Then, when an error occurs, a software exception condition
is generated, and control is passed to a condition-handling routine.

This mode is called system service failure exception mode, and can be
enabled (and disabled) with the Set System Service Failure Exception
Mode ($SETSFM) system service. For example:

$SETSFM_S ENBFLG=i1

This call enables the generation of exceptions when errors or severe
errors occur during execution of a system service (exceptions are not
generated for warning returns).

Certain formatting and conversion services are not affected by the
enabling of system service failure exception mode. The following
services will not generate exceptions when failures occur and system
service failure exception mode is enabled:

$ASCTIM
SB INT IM
SFAO/$FAOL
SGETMSG
SPUTMSG

If you code a program to execute with this mode enabled, you can code
a condition-handling routine. Information on condition handlers is
provided in Chapter 9, "Condition-Handling Services." If no
user-specified routine is available when an exception occurs and the
program was run with the DCL command RUN, the default condition
handler causes the program to exit and displays descriptive
information about the exception condition.

2-13

CALLING THE SYSTEM SERVICES

2.2 HIGH-LEVEL LANGUAGE CODING

Each high-level language supported by VAX/VMS provides some mechanism
for calling an external procedure and passing arguments to that
procedure. The specifics of the mechanism and the terminology used,
however, vary from one language to another.

VAX/VMS system services are external procedures that accept arguments.
There are three ways to pass arguments to system services:

• By immediate value.
passed (a number
value)

The argument is the actual value to be
or a symbolic representation of a numeric

• By address (also called "by reference"). The argument is the
address of an area or field that contains the value. An
argument passed by address is usually expressed as a reference
name or label associated with an area or field. (In fact, ·one
common error is to pass a numeric value without indicating
that it is passed by value; if the compiler assumes the
numeric value is an address, a run-time "access violation"
error occurs when, for example, the image tries to access
virtual address 0 or 1.)

• By descriptor. This argument is also an address, but of a
special data structure called a character string descriptor.
The format of a descriptor is explained in the next section.

The description of each service in Part II of this manual indicates
how each argument is to be passed. Phrases such as "an address" and
"address of a character string descriptor" identify address and
descriptor arguments, respectively. Words like "indicator," "number,"
"value," or "mask" indicate an argument passed by immediate value.

Some services also require service-specific data structures that
indicate functions to be performed or hold information to be returned.
For example, the Get Job/Process Information ($GETJPI) service
requires you to define an item list describing the specific
information requested and pointing to buffers to receive the
information. The description of this service in Part II includes the
format of the item list and a simple example in VAX-11 MACRO. You can
use this information and information from your programming language
manuals to define such an item list.

When a service returns control to your program, it places a return
status value in the general register RO. The value in the low-order
word indicates either that the service completed successfully or that
some specific error prevented the service from performing some or all
of its functions. After each call to a system service, you must check
whether it completed successfully. You can also test for specific
error conditions. (See Section 2.2.2 for more information on return
status values.)

2.2.1 Descriptors

A character string descriptor is a quadword (8-byte) area that
contains the length of the string data and the starting address of the
data. In most cases, the compiler automatically generates the
descriptor and the data; in some cases, you may need to define all
the fields yourself. (See the appropriate language user's guide.)

2-14

CALLING THE SYSTEM SERVICES

Descriptors are explained fully in the VAX-11 Procedure Calling and
Condition Handling Standard, which appears in the VAX-11 Architecture
Handbook and in the VAX-11 Run-Time Library Reference Manual. The
format of a descriptor is as follows.

Relative byte location--.._
0 Start of descriptor

class type length

4

address of data

rV ,-.lJ

• Length of data. Specifies the number of ASCII characters for
the data or the number of bytes in the buffer; this value is
placed in the low-order word of the longword. In some cases
you may want to move a value into this field during program
execution.

• Type. Specifies the data type of the argument. This byte is
ignored by system services.

• Class. Specifies the class of descriptor. This byte is
ignored by system services; therefore, dynamic string
descriptors are treated as fixed-length string descriptors.

• Address of data. Indicates the starting address of the data
in a manner appropriate to your language. You may have to
specify the reference name or label associated with the data.

• Data. If the descriptor is for input data for the service,
specify the data. If the descriptor is for output from the
service, simply allocate enough bytes to hold the data
returned by the service. (The data is not part of the
descriptor.)

2.2.2 Return Status

The operating system does not automatically handle system service
failure or warning conditions; you must test for them and handle them
yourself. This contrasts with the operating system's handling of
exception conditions detected by the hardware or software; the system
handles these exceptions by default, although you can intervene in or
override the default handling by declaring a condition handler (see
Chapter 9, "Condition Handling Services").

Each high-level language has some mechanism for obtaining the return
status, which is stored as a binary value in a longword. Depending on
your specific needs, you can test just the low-order bit, the low
order three bits, or the entire value:

• The low-order bit indicates successful 1 or nonsuccessful (0)
completion of the service.

2-15

•

CALLING THE SYSTEM SERVICES

The low-order three
severity of the error.

bits, taken together, represent
Severity code values are:

Value Severity Level

O Warning
1 Success
2 Error
3 Informational
4 Severe (or fatal) error
5-7 (Reserved)

the

• The remaining bits (3 through 31) classify the particular
return condition and the operating system component that
issued the status code. For system service return status
values, the high-order word (bits 16 through 31) contains
zeros.

Each numeric status code has a symbolic name in the format:

SS$ code

where "code" is a mnemonic code describing the return condition. For
example, the most common successful return is indicated by SS$ NORMAL,
and a common error status code is SS$ ACCVIO ("access vioTation,"
indicating that the service could not read an input argument or write
an output argument).

The symbols associated with the different return status value are
defined in the default system library.

2.2.2.1 Information Provided by Status Codes - Status codes returned
usually indicate whether the service completed successfully, although
sometimes they simply provide information to the calling program.
Moreover, a "success" return (severity level =l) does not necessarily
mean that the program achieved the desired result, but only that the
service completed all its functions and returned control to the
calling program. For example, the status code SS$ BUFFEROVF, which is
returned when a character string returned by a service is longer than
the buffer provided to receive it, is a "success" code.

Warning returns and some error returns indicate that the service may
have performed part but not all of the requested function(s).

are described
When you are

the return
to check for

The possible status codes that each service can return
with the tndividual service descriptions in Part II.
coding calls to system services, read the descriptions of
status codes to determine whether you want the program
particular return conditions.

2.2.2.2 Testing the Return Status Code - Each language provides some
mechanism for testing the return status. Often you need only check
the low-order bit, such as by a test for TRUE (success or
informational return) or FALSE (error or warning return).

To check the entire value for a specific return condition, each
language provides a way for your program to determine the values
associated with specific symbolically-defined codes. You should
always use these symbolic names when you code tests for specific
conditions.

2-16

CALLING THE SYSTEM SERVICES

Appendix A, Section A.7, lists the symbolic codes and their meanings.
For information on how to test for these codes, see the user's guide
for your programming language.

2.2.2.3 Special Return Conditions - Two process execution modes
affect how control is returned to the calling program when an error
occurs during the execution of a system service. These modes are:

• Resource wait mode

• System service failure exception mode

If you choose to change the default setting for either of these modes,
your program must handle the special conditions that result.

Resource Wait Mode: Many system services require certain system
resources for execution. These resources include system dynamic
memory and process quotas for I/O operations. Normally, when a system
service is called and a required resource is not available, the
program is placed in a wait state until the resource becomes
available. Then' the service completes execution. This mode is called
resource wait mode.

In a real-time environment, however, it may not be practical or
desirable for a program to wait. In these cases you can choose to
disable resource wait mode, so that when such a condition occurs,
control returns immediately to the calling program with an error
status code. You can disable (and reenable) resource wait mode with
the Set Resource Wait Mode ($SETRWM) system service.

How a program responds to the unavailability of a resource depends
very much on the application and the particular service that is being
called. In some instances, the program may want to continue execution
and retry the service call later. In other instances, it may be
necessary only to note that the program is being required to wait.

System Service Failure Exception Mode: System service failure
exception mode determines whether control is returned to the caller in
the normal manner following an error in a system service call, or
whether an exception is generated. System service failure exception
mode is disabled by default; the calling program receives control
following an error. You can enable and disable system service failure
exception mode with the Set System Service Failure Exception Mode
($SETSFM) service.

Certain formatting and conversion services are not affected by the
enabling of system service failure exception mode. The following
services will not generate exceptions when failures occur and system
service failure exception mode is enabled:

$ASCTIM
$BINTIM
$FAO/$FAOL
$GETMSG
$PUTMSG

It is recommended that high-level language programs not enable system
service failure exception mode, except perhaps in certain debugging
situations. If you enable system service failure exception mode and
do not declare your own condition handler, many error messages
displayed at run time will be meaningless. High-level language
compilers generate calls to system services for many statements or
instructions in source programs. (For example, reads and writes to

2-17

CALLING THE SYSTEM SERVICES

files generate calls to VAX-11 RMS, which uses the $QIO and $QIOW
services.) If you enable system service failure exception mode, many
different types of errors-- such as an I/O attempt to a nonexistent
device or non-numeric input to a math routine-- will generate the
message "%SYSTEM-F-SSFAIL, system service failure exception, ••• ".

2.2.3 Obtaining Values for Other Symbolic Codes

In addition to the symbolic codes for specific return conditions, many
individual services also have symbolic codes for offsets, identifiers,
or flags associated with these services. For example, the Create
Process ($CREPRC) service, which is used to create a subprocess or a
detached process, has symbolic codes associated with the various
privileges and quotas you can grant to the created process.

Appendix A lists the system symbolic definition macros available to
the VAX-11 MACRO programmer, as well as the symbols defined and their
meanings for several macros. Page references for symbols and meanings
for the remaining macros can be found in the index.

If your language has a method of obtaining values for these symbols,
this method is explained in the user's guide. If your language does
not have such a method, you may do the following:

• Write a short VAX-11 MACRO program containing the desired
macro(s).

• Assemble the program and generate
listing, find the desired symbols
values.

a listing.
and their

Using the
hexadecimal

• Define each symbol with its value within your source program.

For example, to use the Get Job/Process Information ($GETJPI) service
to find out the accumulated CPU time (in 10-millisecond ticks), you
must obtain the value associated with the item identifier JPI$ CPUTIM.
To do this:

• Create the following two-line VAX-11 MACRO program named
JPIDEF.MAR (although you may choose any name you wish):

$JPIDEF
+END

• Assemble the program:

$ MACRO/LIST JPIDEF

• Find the value of JPI$ CPUTIM and define the symbol in your
program.

2.3 INTERPRETING THE CODING EXAMPLES

Chapters 3 through 10 contain
MACRO) designed to familiarize
arguments. The examples do not
rather, they show only the code
a particular discussion.

many coding examples (using VAX-11
you with the system services and their
show complete programming sequences;
and/or arguments that are pertinent to

2-18

CALLING THE SYSTEM SERVICES

In some of the more complex examples, explanatory text is keyed to the
example using a special numeric symbol, for example, 1.

Although the examples are coded using VAX-11 MACRO, they are designed
to be as meaningful as possible to high-level language programmers.
Figure 2-1 provides additional help to high-level language programmers
in interpreting the MACRO examples. This figure shows a portion of
VAX-11 MACRO code and the "equivalent" in the following languages:

VAX-11 FORTRAN

VAX-11 COBOL-74

VAX-11 BLISS-32

VAX-11 CORAL

VAX-11 PASCAL

VAX-11 BASIC

2-19

CALLING THE SYSTEM SERVICES

MACRO Example

CYGIIES: • ASC I D~CYGNUS/
NAMDES: +LONG 63

.LONG NAMIIES+se
+Bl...KB 63

NAM LEN: • BLKW 1 G)

;DESCRIPTOR FOR CYGNUS STRING
;DESCRIPTOR FOR OUTPUT BUFFER

;OUTPUT BUFFER C63 BYTES>
;woRD TO RECEIVE LENGTH

.ENTRY oRioNrO 0 ;ROUTINE ENTRY POINT & MASK
0 $ TRNLOG .. MS LOGNAM=CYGDES r RSLLEN=NAMLEN r RSLBUF=NAMDES r -

DSBMSK=t4 ;noN'T SEARCH PROCESS TABLE
Ci)BLBC ROr ERROR ;CHECK FOR ERROR

.END

FORTRAN Equivalent

SUBROUTINE OR I ON Q

.
CHARACTER*63 NAMDESO
INTEGER*2 NAMLENG)
INTEGER*4 SYS$TRNLOG

! f'ROCEIHJRE OR I ON

!OUTPUT BUFFER
!WORD TO RECEIVE LENGTH
!DEFINE SYSTEM SERVICE FUNCTION

. e
0ICODE :.-.: SYS$TRNLOG C 'CYGNUS'' NAMLEN, NAMDES r' r /.VAL< 4))

(f)IF <+NOT. I CODE> GOTO 90000 ! BRANCH IF ERROR

END

Figure 2-1 Interpreting MACRO Examples

2-20

CALLING THE SYSTEM SERVICES

MACRO Notes

Ct A routine name and entry mask show the beginning of
executable code in a routine or subroutine.

f) The input character string descriptor argument is defined
using the .ASCID directive.

C) For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data.

Ct The MACRO directive .BLKW reserves a word to hold the output
length.

ti) Call the service by a macro name that has the suffix
G.

S or

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase in the system service
format descriptions in Part II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely if you specify arguments by keyword, but you must
code the comma for each missing argument if you specify
arguments by positional order.

Use the number sign (#) to indicate a literal value for an
argument.

~ The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service is clear (low bit clear failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status.

FORTRAN Notes

Ct The routine and its entry mask are defined by the SUBROUTINE
statement.

f) Specify the input character string directly in the system
service call. The compiler builds the descriptor.

C) The CHARACTER*63 declaration allocates 63 bytes for the
output data. The compiler builds the descriptor.

Ct The INTEGER*2 declaration reserves a word for the output
value.

ti) Call the service using the SYS$ form of the service name.

Enclose the arguments in parentheses, and code them in
positional order only. Code a comma for each optional
argument that you omit (including trailing arguments).

Use the %VAL function to indicate a literal value for an
argument.

~ The IF statement makes a FALSE logical test following the
function reference. (A FALSE value means that the low bit of
the status code is zero, indicating an error or warning.)

2-21

CALLING THE SYSTEM SERVICES

MACRO Example

CYGDES: • ASCIIl~CYGNUS/
NAMDES: +LONG 63

.LONG NAMDES+B$

.BLKB 63
NAML.EN: • BLKW 10

•

9DESCRIPTOR FOR CYGNUS STRING
9DESCRIPTOR FOR OUTPUT BUFFER

;OUTPUT BUFFER (63 BYTES>
9WORD TO RECEIVE LENGTH

• ENTRY ORION,OQ 9ROUTJ.NE ENTRY POINT & MASK
0 $TRNLOG._S LOGNAM=CYGDES 'RSLLEN==NAMl...EN ,RSL.BLJF::=NAMIIF.:'.S '·-

DSBMSK=t4 9DON'T SEARCH PROCESS TABLE
0 BLBC RO, ERROR ; CHECK FOF~ ERl~OR

.END

COBOL Equivalent

IDENTIFICATION DIVISION.
PROGRAM-ID. OIUON .Q

01 CYGf.IES PIC X(6) VALUE 1 CYGNUS 0 .8
01 DUMMY-ARG PIC S9(9) COMP VALUE O.
01 NAMDES PI C X (6:3) VALUE SPACES. $
01 NAMLEN PIC S9(4) COMP.8
01 DISABLE-MASK PIC 89(9) COMP VALUE 4.
01 RESULT PIC 89(9) COMP.

88 SUCCESSFUL VALUE 1+

PROCEDURE DIVISION.
STAFH OR:CON.

CALI... A SYS$Tl~NLCH3 11 0
USING BY DESCRIPTOR CYGDES,

BY REFERENCE NAMl...EN,
BY DESCRIPTOR NAMDES,
BY VALUE DUMMY-ARG, DUMMY-ARG, DISABLE-MASK

GIVING F~ESUL.T.

IF NOT SUCCESSFUi... 0
GO TO ERROR-CHECK.

STOP l~UN.

Figure 2-1 (Cont.) Interpreting MACRO Examples

2-22

CALLING THE SYSTEM SERVICES

MACRO Notes

t» A routine name and entry mask show the beginning of
executable code in a routine or subroutine.

f) The input character string descriptor argument is defined
using the .ASCID directive.

C) For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data. ·

C» The MACRO directive .BLKW reserves a word to hold the output
length.

0 Call the service by a macro name that has the suffix
G.

S or

0

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase in the system service
format descriptions in Part II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely if you specify arguments by keyword, but you must
code the comma for each missing argument if you specify
arguments by positional order.

Use the number sign (#) to indicate a literal value for an
argument.

The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service is clear (low bit clear failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status.

COBOL Notes

t» The PROGRAM-ID paragraph identifies the program by specifying
the program name, which is the global symbol associated with
the entry point. The compiler builds the entry mask.

f) Define the input string as alphanumeric (ASCII) data. The
compiler generates a descriptor when you specify "USING BY
DESCRIPTOR" in the CALL statement.

C) Allocate enough bytes for the alphanumeric output data. The
compiler generates a descriptor when you specify "USING BY
DESCRIPTOR" in the CALL statement.

C» This definition reserves a signed word with COMP (binary)
usage to receive the output value.

0 Call the service using the "SYS$" form of the service name,
and enclose the name in quotes.

Specify arguments in positional order only, with "USING ••• "
You cannot omit arguments; if you are accepting the default
for an argument, you must explicitly pass the default value
(DUMMY-ARG in this example).

You can specify explicitly how each argument is being passed:
BY DESCRIPTOR, BY REFERENCE (that is, by address), or BY
VALUE. You can also implicitly specify how an argument is
being passed: through the default mechanism (BY REFERENCE),
or through association with the last specified mechanism
(thus, the last two arguments in the example are implicitly
passed BY VALUE). Note, however, that all defaulted
arguments must be passed BY VALUE (even address arguments).

0 The IF statement tests RESULT for a value of 1 (SS$ NORMAL).
If RESULT is not equal to 1, control is passed to the routine
ERROR-CHECK.

2-23

CALLING THE SYSTEM SERVICES

MACRO Example
8

CYGDES:
NAMDES:

NAMLEN:

.ASCID /CYGNUS/

.LONG 63
• LONG NAMDES+S 0
.BLKB 63
.BLKW 18

9DESCRIPTOR FOR CYGNUS STRING
9DESCRIPTOR FOR OUTPUT BUFFER

;OUTPUT BUFFER (63 BYTES>
;woRD TO RECEIVE LENGTH

.ENTRY ORIQN,o0 ;ROUTINE ENTRY POINT & MASK
0 $TRNLOG ... S LOGNAM=CYGDES' RSLLEN::=NAMLEN 'RSLBUf."::::NAMDES' ·-

DSBMSK=t4 ;DON'T SEARCH PROCESS TABLE
0 BLDC RO, ERROR ; CHECK FOR ERROR

.END

BLISS Equivalent

MODULE ORION<IDENT I :I :I. I) ::::

BEGIN
EXTERNAL ROUTINE

ERROR_PROC! NOVALUE;

LIBRARY 'SYSSLIBRARY!STARLET.L32';

GLOBAL F~OUT INF or~ ION: NOVALl.J[:::: 0

BEGIN
OWN

! Error processing routine

! Library containing VMS macros (includins
! $TRNLOG). This declaration is reouired.

C) NAM~:;Tf~ ! VECTOF~ [63 v BYTE ::t v ! Tran~:; l ati::~;.:I st r :i. rt!'1 buff<·:) r
NAMDES! VECTORL2J INITIAl...(63,NAMSTR>, ' Translated strin~ descriptor

G) NAMl...EN! WOFUi; ! Translati-;)d !:;tr:i.n~.=.! le1v:ith
LOCAi... ' Return status from system service

\:>TATl.H:l;

MAc1:w f)
DESCRIPTOR<S> ! Macro to build descriptor for string literal

UPLIT< %CHARCOLJNTCS>v l.JPLIT BYTE(S) > z;

O srArun ::= $TF~NLDG c LOGNAM ''" nr:scrnrn:m < ,. CYGNu~:;') v
RSL.L.EN=NAMLFNY RSLBUF=NAMDLSYDSBMSK=4>?

0 IF NOT • STATUS THEN c1:;:r~oi:~ Pr~nc (.~:;TATU'.:;)?

Figure 2-1 (Cont.) Interpreting MACRO Examples

2-24

CALLING THE SYSTEM SERVICES

MACRO Notes

«t A routine name and entry mask show the beginning of
executable code in a routine or subroutine.

f) The input character string descriptor argument is defined
using the .ASCID directive.

6) For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data.

~ The MACRO directive .BLKW reserves a word to hold the output
length.

CD Call the service by a macro name that has the suffix
G.

s or

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase in the system service
format descriptions in Part II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely if you specify arguments by keyword, but you must
code the comma for each missing argument if you specify
arguments by positional order.

Use the number sign (#) to indicate a literal value for an
argument.

Cf) The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service is clear (low bit clear failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status.

BLISS Notes

«t The routine is defined by a GLOBAL ROUTINE declaration.

f) Define a constant input string argument using the DESCRIPTOR
macro.

6) The declarations of NAMSTR and NAMDES reserve space for a
63-byte output buff er and a 2-longword output buffer
descriptor. The INITIAL attribute initializes the descriptor
at compilation time.

~ The word element NAMLEN will receive the output string value.

CD Invoke the macro by its service name, without a suffix.

Enclose the arguments in parentheses, and specify them by
keyword. (Keyword names correspond to the names of the
arguments shown in lowercase in the system service format
descriptions in Part II.)

Since BLISS uses call-by-value argument transmission, no
special notation is required in passing DSBMSK=4.

Cf) The return status, which is assigned to the variable STATUS,
is tested for TRUE or FALSE. FALSE (low bit = 0) indicates
failure or warning.

2-25

CALLING THE SYSTEM SERVICES

MACRO Example

CYGDES: • ASC I D~CYGNUS/
NAMDES: .LONG 63

;DESCRIPTOR FOR CYGNUS STRING
;DESCRIPTOR FOR OUTPUT BUFFER

• LONG NAMDES+8 0
+BLKB 63

NAMLEN: • BLKW 10
;OUTPUT BUFFER <63 BYTES>
;WORD TO RECEIVE LENGTH

•
• ENTRY ORION,o0 ;ROUTINE ENTRY POINT & MASK

0$TRNLOG,."S LOGNAM=CYGDES, RSLLEN=NAMLEN, RSLBUF===NAMDES, .. "
DSBMSK=t4 ;DON'T SEARCH PROCESS TABLE

(DBLBC RO, El~ROR ; CHECK FOR ERROF~

•
• END

CORAL Equivalent

, cor~AL' EXAMPLE
'COMMON'
'DEFINE'
'DEFINE'
'DEFINE'

I L.IBRAf~Y I 0
'ENTER'
'SEGMENT'
'BEGIN'

(I LABEL I OR:CON);
VI 0 'VALUE''INTEGER'•;
LI • 1 LOCATION''INTEGER 1

•;

LB • 1 LOCATION''BYTE 1
•;

C'INTEGER''PROCEDURE' SYStTRNLOGCVIrLirVI,LB,L.B,VI));
OIUON9
ORION

'DEFINE' LOC "'LOCATION'•;
'DEFINE' NULL ·coJ•;
'INTEGER' STATUS,QUTSTRING;
'BYTE''ARRAY' NAMSTRC1:63J; (space for return strin~>

0 'INTEGER' 'Al~RAY'NAMDESl::I. :2::1; CsF-<:~cf~ f<:>r ri::~t1..1rn ~:>"l·,r:inr-;i t.:h?scriPtor)
'OVERLAY' NAMDESC1J 'WITH' 'INTEGER' NAMLEN;

0NAMLEN:=63; (set r..;i~~f.~ in t:fo~scri>~·tor)
NAMDESC2J:=L.OCCNAMSTRC1J); <set address in descriPtor)
OlJTSTRING:=LOC<NAMDESClJ); (point to descriptor>

8
0STATUS: ::::SYS$Tl~NLOG <•CYGNUS•, NAMLEN, OUTSHUNG' NULL' NULL' 4 >;

'COMMENT' Since NAMLEN has been 1..1Pdated OUTSTRING is
now usable to represent the ret1..1rned strins
:in another swstem service or OTS ca11;

0 1 IF I STATUS I MASI\ I 1 ::: 0 I THEN I

'BEGIN'

'END';

'COMMENT'

'END';
'FINISH'

'COMMENT' Error action would go here;

Other code would go here
as reuuired bw the aPPlication;

Figure 2-1 (Cont.) Interpreting MACRO Examples

2-20

CALLING THE SYSTEM SERVICES

MACRO Notes

t) A routine name and entry mask show the beginning of
executable code in a routine or subroutine.

The input character string descriptor argument is defined
using the .ASCID directive.

For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data.

The MACRO directive .BLKW reserves a word to hold the output
length.

CD Call the service by a macro name that has the suffix S or
G.

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase in the system service
format descriptions in Part II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely if ·you specify arguments by keyword, but you must
code the comma for each missing argument if you specify
arguments by positional order.

Use the number sign (#) to indicate a literal value for an
argument.

(i) The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service is clear (low bit clear failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status.

CORAL Notes

t) The system service routine and all its arguments are
specified in a 'LIBRARY' statement. CORAL manipulates
strings by pointers to descriptors. These pointers may be
contained in an integer variable so string arguments are
specified as 'VALUE''INTEGER'. All other argument
specifications are taken directly from the specification of
the system service in this manual. (Note: this example
shows Release 1 of VAX-11 CORAL. The implementation of
'VALUE''INTEGER' may be changed in a subsequent release of
the language. Refer to the VAX-11 CORAL User's Guide.)

f) Specify the input character string directly in the system
service call. CORAL builds string descriptors for string
literals, so the input string may be passed directly as an
argument.

C) While CORAL passes arrays by descriptor, the VAX/VMS
descriptor for a byte array is different from the descriptor
for a character string, so it is necessary to build a
descriptor for the output string.

~ CORAL does not support a ln-bit data type. If the return
length was required in a different context it might be
necessary to extract the low-order ln bits from the return
location. Here the high-order bits are zeroed by the
assignment to NAMLEN. By using the same location for
available length and returned length, a result string
descriptor is automatically constructed for further use.

CD Use the SYS$ form of the system service, and code the
arguments in positional order in parentheses.

CORAL does not permit arguments of a call to be omitted.
VAK/VMS system services accept the addrsss of location O to
represent the address of an omitted argument. The NULL macro
provides this in the example.

(i) The low order bit of STATUS is extracted and compared with o
to determine the success of the system service call.

2-27

CALLING THE SYSTE" SERVICES

MACRO Example

CYGDES: .ASCID~CYGNUS/
NAMDES: .LONG 63

• LONG NAMDES+B 8
.BLKB 63

NAMLEN: • BLKW 1 8

•

JDESCRIPTOR FOR CYGNUS STRING
JDESCRIPTOR FOR OUTPUT BUFFER

JOUTPUT BUFFER C63 BYTES>
JWORD TO RECEIVE LENGTH

• ENTRY ORIQN,o0 JROUTINE ENTRY POINT & MASK
0 $TRNLOG_S LOGNAM=CYGitES, RSLLEN=NAMLEN, RSLBUF=NAMDES, -

DSBMSK=t4 JDON'T SEARCH PROCESS TABLE
(DBLBC RO,ERROR ;CHECK FOR ERROR

.ENit

PASCAL Equivalent

PROGRAM ORION;

TYPE POS_WORD = o •• 65535;
SUE«63 :::: 1 •• 63;
WORD-TYPE :::: PACKED RECORD

SHORTWD : POS_WORD
END;

STRING_BUF =PACKED ARRAY C1 •• 128J OF CHAR;

VAR ICODE : INTEGER;
8 NAMLEN WORD ... TYPE;
8 NAMDES : STR:cNCL.BUF;

PROCEDURE ERROR;

FUNCTION SYS$TRNLOG CXSTDESCR CYGNUS : PACKED ARRAY CSUB63J OF CHAR;

BEGIN

0 VAR F~SLLEN : WORIL TYPE;
XSTDESCR RSLBUF : STRING_BUF;
XIMMED TABLE, ACMODE, DSBMSK : INTEGER> : INTEGER;
EXTERN;

• 0 I CODE : = SYS$ TRNLOG C 'CYGNUS' , NAMLEN, NAM DES, 0, 0, 4) ;
(D IF NOT ODD C I CODE> THEN ERl~OR;

END.

Figure 2-1 (Cont.) Interpreting MACRO Examples

2-28

CALLING THE SYSTEM SERVICES

MACRO Notes

0 A routine name and entry mask show the beginning of
executable code in a routine or subroutine.

f) The input character string descriptor argument is defined
using the .ASCID directive •

., For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data.

Gt The MACRO directive .BLKW reserves a word to hold the output
length.

CD Call the service by a macro name that has the suffix S or
G.

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase in the system service
format descriptions in Part II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely if you specify arguments by keyword, but you must
code the comma for each missing argument if you specify
arguments by positional order.

Use the number sign (#) to indicate a literal value for an
argument.

~ The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service is clear (low bit clear failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status.

PASCAL Notes

0 The system service routine must be declared in an
function declaration in the function and
declaration section. Note that all the parameters
system service call must be formally declared here.

external
procedure

for the

Specify the input character string directly to the
service call. The string descriptor is built
compiler •

system
by the

., The VAR declaration for the identifier NAMDES allocates a
packed array of 128 characters for the associated name which
is output from the system service. The packed array of
characters is used as the string data type in PASCAL. The
formal parameter RSLBUF in the external function declaration
corresponds to the actual parameter NAMDES.

Gt The VAR declaration for the identifier NAMLEN allocates a
word for the output length. The formal parameter RSLLEN in
the external function declaration corresponds to the actual
parameter NAMLEN.

CD Call the system service using the SYS$ form of the service
name. Enclose the arguments in parentheses and code them in
positional order. You cannot omit optional arguments. To
accept the default value for an argument, specify either the
default value if the argument is to be passed by immediate
value or a variable that has been assigned the default value
if the argument is to be passed by address (reference).

~ The IF statement makes a logical test following the function
reference to see if the service completed successfully. If
an error or warning occurred during the service call, the
procedure ERROR will be called.

2-29

CALLING THE SYSTEM SERVICES

MACRO Example

CYGDES: • ASCID~CYGNUS/
NAMDES: .LONG 63

• LONG NAMDES+8 0
.BLKB 63

NAMLEN: • BLKW 1 C)

;DESCRIPTOR FOR CYGNUS STRING
;DESCRIPTOR FOR OUTPUT BUFFER

;ouTPUT BUFFER (63 BYTES>
;woRD TO RECEIVE LENGTH

• ENTRY ORION, 0 0 ; ROUTINE ENTRY POINT & MASK
0 $TRNLOG._S LOGNAM==CYGDES, RSLLEN=NAMLEN, RSLBUF==NAMilf::s, ·-

DSBMSK=t4 ;DON'T SEARCH PROCESS TABLE
0 BLBC RO, ERROR ; CHECK FOR ERF<Of~

.END

BASIC Equivalent

SUB OF'<ION 0
COM NAMDES$==63 0
EXTERNAL SYS$TRNLOG
DECLARE WORD NAMLEN,C)

LONG SYSMHSTATUS

S•Jb>-:. ro~.:j ram OFUON
Define the fixed strin~ output
Declare the swstem service
Word to receive len~th &
L.cnsword to receive status

. f)
0SYf.LSTATUS NH SYS$Tl~NLOG (I CYGNUS I, NAMl...EN' NAMDES$,, '4/. BY VAU.JE)
0 IF < SYS""STATUS% AND U:) :::: 0/. &

THEN •••• Error Path> &
ELSE •••• Success Path

SLJEIEND

Figure 2-1 (Cont.) Interpreting MACRO Examples

2-30

CALLING THE SYSTEM SERVICES

MACRO Notes

«t A routine name and entry mask show the beginning of
executable code in a routine or subroutine.

The input character string descriptor argument is defined
using the .ASCID directive.

C) For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data.

C. The MACRO directive .BLKW reserves a word to hold the output
length.

Call the service by a macro name that has the suffix
G.

S or

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase in the system service
format descriptions in Part II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely if you specify arguments by keyword, but you must
code the comma for each missing argument if you specify
arguments by positional order.

Use the number sign (#) to indicate a literal value for an
argument.

~ The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service is clear (low bit clear = failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status.

BASIC Notes

«t The routine and its entry mask are defined by the SUB
statement.

f) Specify the input character string directly in the system
service call; the compiler builds the descriptor.

The COM NAMDES$=63 declaration allocates
output data in a static area. The
descriptor.

63 bytes for the
compiler builds the

C. The DECLARE WORD NAMLEN declaration reserves a 16-bit word
for the output value.

CD Invoke the system service as a function using the SYS$ form.

Enclose the arguments in parentheses, and code them in
positional order only. Code a comma for each optional
argument that you omit (including trailing arguments).

Use the modifier BY VALUE to indicate an immediate value
literal.

~ The IF statement makes a test on the low-order bit of the
return status. This form is recommended for all status
returns.

2-31

CHAPTER 3

EVENT FLAG SERVICES

Event flags are status posting bits maintained by VAX/VMS for general
programming use. Some system services set an event flag to indicate
the completion or the occurrence of an event: the calling program can
test the flag. For example~ the Queue I/O Request ($QIO) system
service sets an event flag when the requested input or output
operation completes.

Programs can use event flags to perform a variety of signaling
functions:

• Setting or clearing specific flags

• Testing the current status of flags

• Placing the current process in a wait state pending the
setting of a specific flag or a group of flags

Moreover, event flags can be used in common by more than one process,
as long as the cooperating processes are in the same group. Thus, if
you have developed an application that requires the concurrent
execution of several processes, you can use event flags to establish
communication among them and to synchronize their activity.

3.1 EVENT FLAG NUMBERS AND EVENT FLAG CLUSTERS

Each event flag has a unique decimal number; event flag arguments in
system service calls refer to these numbers. For example, if you
specify event flag 1 when you code a $QIO system service, then event
flag number 1 is set when the I/O operation completes.

To allow manipulation of groups of event flags, the flags are ordered
in clusters, with 32 flags in each cluster, numbered from right to
left, corresponding to bits O through 31 in a longword. The clusters
are also numbered. The range of event flag numbers encompasses the
flags in all clusters: event flag O is the first flag in cluster O,
event flag 32 is the first flag in cluster 1, and so on.

There are two types of clusters:

1. A local event flag cluster can only be used internally by a
single process. Local clusters are automatically available
to each process.

2. A common event flag cluster can be shared by cooperating
processes in the same group. Before a process can ref er to a
common event flag cluster, it must explicitly "associate"
with the cluster. Association is described in Section j.4,
"Common Event Flag Clusters."

3-1

EVENT FLAG SERVICES

The ranges of event flag numbers and the clusters to which they belong
are summarized in Table 3-1.

Table 3-1
Summary of Event Flag and Cluster Numbers

Cluster Event
Number Flag Numbers

0 0-31
1 32-63

2 64-95
3 96-127

Desc

-·
Proc
flag
gene

Assi
even

-~---n-----

ription

ess-local event
clusters for

ral use

gnable common
t flag cluster

Restriction

Event flags 24
through 31 are
reserved for
system use

Must be associated
before use ___ ," _______ "-" _ __.._ ___________________ ...;

3.1.1 Specifying Event Flag and Event Flag Cluster Numbers

The same system services manipulate flags in both local and common
event flag clusters. Since the event flag number implies the cluster
number, you do not have to specify the cluster number when you code a
system service call that refers to an event flag.

When a system service requires an event flag cluster number as an
argument, you need only specify the number of any event flag that is
in the cluster. Thus, to read the event flags in cluster 1, you could
specify any number in the range 32 through 63.

The VAX-11 Run-Time Library Reference Manual describes routines you
can use to allocate (LIB$GET EF), deallocate (LIB$FREE EF), and
reserve (LIB$RESERVE EF) an event flag from the process-wide- pool of
available event flags.

3.2 EXAMPLES OF EVENT FLAG SERVICES

Local event flags are most commonly used in coordination with other
system services. For example, with the Set Timer ($SETIMR) system
service you can request that an event flag be set at a specific time
of day or after a specific interval of time has passed. If you want
to place a process in a wait state for a specified period of time, you
could code an event flag number for the $SETIMR service and then use
the Wait for Single Event Flag ($WAITFR) system service, as follows:

TIME: .BLKQ 1 ;WILL CONTAIN TIME INTERVAL TO WAIT

$SETIMR_S EFN=t33,DAYTIM~TIME ;SET THE TIMER
$WAITFR_S EFN=t33 9WAIT UNTIL TIMER EXPIRES

In this example, the DAYTIM argument refers to a 64-bit time value.
Details on how to obtain a time value in the proper format for input
to this service are contained in Chapter 8, "Timer and Time Conversion
Services."

3-2

EVENT FLAG SERVICES

3.2.1 Event Flag Waits

Three system services place the process in a wait state pending the
setting of an event flag:

• The Wait for
places the
been set.

Single
process

Event Flag ($WAITFR) system service
in a wait state until a single flag has

• The Wait for Logical OR of Event Flags ($WFLOR) system
service places the process in a wait state until any one of a
specified group of event flags has been set.

• The Wait for Logical AND of Event Flags ($WFLAND) system
service places the process in a wait state until all of a
specified group of flags have been set.

Another system service that accepts an event flag number as an
argument is the Queue I/O Request ($QIO) system service. Figure 3-1
shows a program that issues two $QIO system service calls, and uses
the $WFLAND system service to wait until both I/O operations complete
before it continues execution.

0 $QIO_S EFN=t1, •••
BSBW ERROR
$Ql0_6 EFN=+2, •••
BSBW ERROR
$WFLAND_S EFN=t1,MASK=t~B0110
BSBW ERROR

;ISSUE FIRST QUEUE I/O REQUEST
9CHECK FOR ERROR
9ISSUE SECOND I/O REQUEST
9CHECK FOR ERROR
9WAIT UNTIL BOTH COMPLETE
9CHECK FOR ERROR

9CONTINUE EXECUTION

Figure 3-1 Using Local Event Flags

Notes on Figure 3-1:
0 The event flag argument is specified in each $QIO request.

Both of these event flags are in cluster o.

~ After both I/O requests are successfully queued, the program
calls the Wait for Logical AND of Event Flags ($WFLAND)
system service to wait until the I/O operations are
completed. In this service call, the EFN argument can
specify any event flag number in the cluster containing the
event flags to be waited for. The MASK argument specifies
which flags in the cluster are to be waited for: flags 1 and
2.

3.3 SETTING AND CLEARING EVENT FLAGS

The $SETIMR and $QIO system services clear the event flag specified in
the system service call before they queue the timer or I/O request.
This ensures the integrity of the event flag with respect to the
process. If you are using event flags in local clusters for other
purposes, be sure the flag's initial value is what you want before you
use it.

3-3

EVENT FLAG SERVICES

The ~et Event Flag ($SETEF) and Clear Event Flag
services set and clear specific event flags.
following system service call clears event flag 32:

$CLREF~S EFN=t32

($CLREF) system
For example, the

The $SETEF and $CLREF services return successful status codes that
indicate whether the flag specified was set or clear when the service
was called. The caller can thus determine the previous state of the
flag, if necessary. The codes returned are SS$_WASSET and SS$_WASCLR.

Event flags in common event flag clusters are all initially clear when
the cluster is created. The next section describes the creation of
common event flag clusters.

3.4 COMMON EVENT FLAG CLUSTERS

Before any processes can use event flags in a common event flag
cluster, the cluster must be created. The Associate Common Event Flag
Cluster {$ASCEFC) system service creates a common event flag cluster.
Once a cluster has been created, other processes in the same group can
call $ASCEFC to establish their association with the cluster, so they
can access flags in it.

When a common event flag cluster is created, it must be identified by
a name string. {Section 3.7.1 explains the format of this string.)
All processes that associate with the cluster must use the same name
to refer to the cluster; the $ASCEFC system service establishes the
correspondence between the cluster name and the cluster number that a
process assigns to it.

The following example shows how a process might create a common event
flag cluster named COMMON_CLUSTER and assign it a cluster number of 2:

CLUSTER:
.ASCID /COMMON-CLUSTER/ ;CLUSTER NAME

$ASCEFC_S EFN=t65,NAME=CLUSTER ;CREATE CLUSTER 2

Subsequently, other processes in the same group may associate with
this cluster. Those processes must use the same character string name
to refer to the cluster; however, the cluster numbers they assign do
not have to be the same.

Common event flag clusters are either temporary
PERM argument to the $ASCEFC system service
cluster is temporary or permanent.

Temporary clusters:

or permanent. The
defines whether the

• Require an element of the creating process's quota for timer
queue entries {TQELM quota).

• Are deleted when all processes associated with the cluster
have disassociated. Disassociation can be performed
explicitly, with the Disassociate Common Event Flag Cluster
{$DACEFC) system service, or implicitly, when the image
exits.

3-4

EVENT FLAG SERVICES

Permanent clusters:

• Require the creating process to have the PRMCEB
privilege.

user

• Continue to exist until they are explicitly marked for
deletion with the Delete Common Event Flag Cluster ($DLCEFC)
system service.

If cooperating processes that are going to use a common event flag
cluster all have the requisite privilege or quota to create a cluster,
the first process to call the $ASCEFC system service creates the
cluster.

3.5 DISASSOCIATING AND DELETING COMMON EVENT FLAG CLUSTERS

When a process no longer needs access to a common event flag cluster,
it issues the Disassociate Common Event Flag Cluster ($DACEFC) system
service. When all processes associated with a temporary cluster have
issued a $DACEFC system service, the system deletes the cluster. If a
process does not explicitly disassociate itself from a cluster, the
system performs an implicit disassociation when the image that called
$ASCEFC exits.

Permanent clusters, however, must be explicitly marked for deletion
with the Delete Common Event Flag Cluster ($DLCEFC) system service.
After the cluster has been marked for deletion, it is not deleted
until all processes associated with it have been disassociated.

3.6 EXAMPLE OF USING A COMMON EVENT FLAG CLUSTER

Figure 3-2 shows an example of four cooperating processes that share a
common event flag cluster. The processes named ORION, CYGNUS, LYRA,
and PEGASUS are in the same group.

3-5

EVENT FLAG SERVICES

!Process ORION)

CNAME: +ASCID /COMMON-CLUSTER/ ;DESCRIPTOR FOR CLUSTER NAME

• 0 $ASCEFC_s EFN=t64.NAME=CNAME ;cREATE COMMON CLUSTER
BSBW ERROR ;CHECK FOR ERROR

$WFLAND_S EFN=t64,MASK=t~XE
BSBW ERROR
$DACEFC_S EFN=t64

(P!OCessCTGNiiS]

;WAIT FOR FLAGS 1,2,3
; CHECK FOR ERli:Oli:
;DISASSOCIATE CLUSTER

ORION-FLAGS: .ASCID /COMMON-CLUSTER/ ;DESCRIPTOR FOR
; CLUSTEli: NAME

0 $ASCEFC .. _S EFN:-.::t64, NAME=OR I ON-.FLAGS
BSBW ERROR ;CHECK FOR ERROR
$SETEF_S EFN=t65 ;sET EVENT FLAG 1
BSBW ERROR ;CHECK FOR ERROR
SDACEFC_S EFN=t64 ;DISASSOCIATE

!Process LYRA!

SHARE: .ASCID /COMMON_CLUSTER/ ;DESCRIPTOR FOR CLUSTER NAME

•
SASCEFC_S EFN=t96,NAME=SHARE
BSBW ERROR
SSETEF _s l:~FN::::t99
BSBW Eli:F'<OR
SDACEFC_S EFN=t96

!Process PEGASUS!

; ASSOCIATE WI'TH CLUSTER :3
; CHECK FOR EF~li:OR
;SET FLAG 3
; CHECK FOR Er.;:Fmr<
; [1ISASSOCIATE

CLUSTER: +ASCID /COMMON_CLUSTER/ ;DESCRIPTOR FOR CLUSTER NAME

0 $ASCEFC_S EFN::::t~'>4, NAME:.-=CLl.JSTEI~ ; ASSOCIATE WITH Cl...USTEF~
BSBW ERROR ;CHECK FOR ERROR
SWAITFR_s EFN=t65 ;wAIT FOR FL.AG 1
BSBW ERROR ;CHECK FOR ERROR

;coNT:CNUE

SSETEF .. _S EFN:::::ft:66 ;SET FLAG 2
BSBW ERROR ; CHECK FOR 1:::1=~Rm-::

SDACEFC_S EFN=t64 ; [1:CSASSOCIATE

Figure 3-2 Example of a Common Event Flag Cluster

3-6

EVENT FLAG SERVICES

Notes on Figure 3-2:

C. Assume for this example that ORION is the first process to
issue the $ASCEFC system service and therefore is the creator
of the cluster. Since this is a newly created cluster, all
event flags in it are O.

~ The argument NAME in the $ASCEFC system service call is a
pointer to the descriptor CNAME for the name to be assigned
to the cluster; in this example, the cluster is named
COMMON CLUSTER. This service call associates this name with
cluster 2, containing event flags 64 through 95. Cooperating
processes CYGNUS, LYRA, and PEGASUS must use the same
character string name to refer to this cluster.

C) The continuation of process ORION depends on work done by
processes CYGNUS, LYRA, and PEGASUS. The Wait For Logical
AND of Event Flags ($WFLAND) system service call specifies a
mask indicating the event flags that must be set before
Process ORION can continue. The mask in this example, AXE is
the hexadecimal equivalent of binary 1110: it indicates that
the second, third, and fourth flags in the cluster must be
set.

~ Process CYGNUS executes, associates with the cluster, sets
event flag 65, and disassociates.

Ci) Process LYRA associates with the cluster, but instead of
referring to it as cluster 2, it refers to it as cluster 3
(with event flags in the range 96 through 127). Thus, when
process LYRA sets flag 99, it is setting the fourth bit in
COMMON CLUSTER.

G) Process PEGASUS associates with the cluster, waits for an
event flag set by process CYGNUS, and sets an event flag
itself.

fj When all three event flags are set, Process ORION continues
execution and calls the $DACEFC system service. Since ORION
did not specify the PERM argument when it created the
cluster, COMMON CLUSTER is deleted.

3.7 COMMON EVENT FLAG CLUSTERS IN SHARED MEMORY

A common event flag cluster in memory shared by multiple processors is
a vehicle by which processes executing on different CPUs can
communicate with each other. A process can create a common event flag
cluster using the Associate Common Event Flag Cluster ($ASCEFC)
service, specifying a cluster name that locates the cluster in memory
shared by multiple processors (see Section 3.7.1). Other processes on
the same or a different processor can associate with that cluster by
specifying the same cluster name.

The SHMEM user privilege is required to create or delete a common
event flag cluster in memory shared by multiple processors, but not to
associate with an existing cluster.

3-7

EVENT FLAG SERVICES

3.7.l Cluster Name

The NAME argument to the Associate Common Event Flag Cluster ($ASCEFC)
service identifies the cluster that the process is creating or
associating with. The NAME argument specifies a descriptor pointing
to a character string that determines whether the cluster is in memory
shared by multiple processors. The format of this string is as
follows:

[shared-memory-name:]cluster-name

shared-memory-name
Identifies the memory shared by multiple processors in which the
cluster exists or is to be created. (This name was assigned when
the memory unit was connected at system generation time.) If this
field is not included, the cluster exists or is created in memory
that is local to the processor on which the calling process is
executing.

cluster-name
rs the name of the cluster. You may choose any valid name, from
1 to 15 characters; however, all processes associating with the
same common event flag cluster must specify the same name.

If you wish, you can include both the shared-memory-name and the
cluster-name for an event flag cluster in memory shared by multiple
processors. However, if you want to use existing programs without
recompiling or relinking, you can specify just a cluster-name and have
the system translate it to a complete specification. The system
attempts to perform logical name t~anslation of the string specified
by the NAME argument in the following manner:

1. CEF$ is prefixed to the string (to the part before the colon
if both parts are present), and the result is subjected to
logical name translation.

2. The part of the name after the colon (if any) is appended to
the translated name.

3. If the result contains a logical name, steps 1 and 2 are
repeated (up to 9 more times, if necessary) until translation
does not succeed.

For example, assume that you have made the following logical name
assignment:

$ DEFINE CEF$CLUS_RT SHRMEM$1:CLUS_RT

Assume also that your program contains the following statements:

NAMEDESC: +ASCID /CLUS_RT/ ;DESCRIPTOR FOR LOGICAL NAME OF CLUSTER

$ASCEFC_S ••• ,NAME=NAMEDESC, •••

The following logical name translation takes place.

1. CEF$ is prefixed to CLUS_RT.

2. CEF$CLUS RT is translated to SHRMEMSl:CLUS RT. (No further
translation is successful. When logical name translation
fails, the string is passed to the service.)

3-8

EVENT FLAG SERVICES

There is one exception to the translation method described in this
section. If the name string starts with an underscore (_),the
VAX/VMS system strips the underscore and considers the resultant
string to be the actual name (that is, no further translation is
performed).

3-9

CHAPTER 4

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

Some system services allow a process to request that it be interrupted
when a particular event occurs. Since the interrupt occurs
asynchronously (out of sequence) with respect to the process's
execution, the interrupt mechanism is called an asynchronous system
trap (AST). The trap provides a transfer of control to a
user-specified routine that handles the event.

The system services that use the AST mechanism accept as an argument
the address of an AST service routine, that is, a routine to be given
control when the event occurs.

These services are:

• Queue I/O Request ($QIO)

• Set Timer ($SETIMR)

• Set Power Recovery AST ($SETPRA)

• Update Section File on Disk ($UPDSEC)

• Get Job/Process Information ($GETJPI)

e Declare AST ($DCLAST)

For example, if you code a Set Timer ($SETIMR) system service, you can
specify the address of a routine to be executed when a time interval
expires or at a particular time of day. The service sets the timer
and returns; the program image continues executing. When the
requested timer event occurs, the system "delivers" an AST by
interrupting the process and calling the specified routine.

Figure 4-1 shows a typical program that calls the $SETIMR system
service with a request for an AST when a timer event occurs.

4-1

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

NOONt .BLKQ 1 ;WILL CONTAIN 12:00 SYSTEM TIME
;ENTRY MASK FOR LIBRA .ENTRY LIBRArO

0 $SETIMR_S DAYTIM:::NOON, ASTADR=T1MEAST ; SET TIMER
BSBW ERROR ;CHECK FOR ERROR

I Timer I• Interrur•t

TIMEAST t
.WORD 0 ;ENTRY MASK FOR AST ROUTINE

;HANDLE TIMER REQUEST • RET
.END LIBRA

;noNE

Figure 4-1 Example of an AST

Notes on Figure 4-1:

0 The call to the $SETIMR system service requests an AST at
12:00 noon.

The DAYTIM argument refers to the quadword NOON, which must
contain the time in system time (64-bit) format. For details
on how this is done, see Chapter 8, "Timer and Time
Conversion Services." The ASTADR argument refers to TIMEAST,
the address of the AST service routine.

When the call to the system service completes, the process
continues execution.

f.J The timer expires at 12:00 and notifies the system. The
system interrupts execution of the process and gives control
to the AST service routine.

8 The user routine TIMEAST handles the interrupt. When the AST
routine completes, it issues a RET instruction to return
control to the program. The program resumes execution at the
point at which it was interrupted.

The following sections describe in more detail how ASTs work and how
to use them.

4.1 ACCESS MODES FOR AST EXECUTION

Each request for an AST is qualified by the access mode from which the
AST is requested. Thus, if an image executing in user mode requests
notification of an event by means of an AST, the AST service routine
executes in user mode.

Since the ASTs you use will almost always execute in user mode, you do
not need to be concerned with access modes. However, you should be
aware of some system considerations for AST delivery. These
considerations are described in Section 4.5, "AST Delivery."

4-2

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

4.2 ASTS AND PROCESS WAIT STATES

A process that is in a wait state can be interrupted for the delivery
of an AST and the execution of an AST service routine. When the AST
service routine completes execution, the process is returned to the
wait state, if the condition that caused the wait is still in effect.

The following wait states may be interrupted:

• Event flag waits

• Hibernation

• Resource waits and page faults

4.2.1 Event Flag Waits

If a process is waiting for an event flag and is interrupted by an
AST, the wait state is restored following execution of the AST service
routine. If the flag is set during the execution of the AST service
routine (for example, by completion of an I/O operation), then the
process continues execution when the AST service routine completes.

Event flags are described in detail in Chapter 3, "Event Flag
Services."

4.2.2 Hibernation

A process can place itself in a wait state with the Hibernate ($HISER)
system service. This wait state can be interrupted for the delivery
of an AST. When the AST service routine completes execution, the
process continues hibernation. The process can, however, "wake"
itself in the AST service routine or be awakened by another process or
as the result of a timer-scheduled wakeup request. Then, it continues
execution when the AST service routine completes.

Process suspension is another form of wait; however, a suspended
process cannot be interrupted by an AST. Process hibernation and
suspension are described in Chapter 7, "Process Control Services."

4.2.3 Resource Waits And Page Faults

When a process is executing an image, the system can place the process
in a wait state until a required resource becomes available, or until
a page in its virtual address space is paged into memory. These
waits, which are generally transparent to the process, can also be
interrupted for the delivery of an AST.

4.3 HOW ASTS ARE DECLARED

Most ASTs occur as the result of the completion of an asynchronous
event initiated by a system service, for example, a $QIO or $SETIMR
request, when the process requests notification by means of an AST.

There is also a system service that creates ASTs, the Declare AST
($DCLAST) system service. With this service, a process can declare an
AST only for the same or for a less privileged access mode.

4-3

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

You may find occasional use for the $DCLAST system service in your
programming applications; you may also find the $DCLAST service
useful when you want to test an AST service routine.

4.4 THE AST SERVICE ROUTINE

An AST service routine must be a separate routine. The system calls
the AST with a CALLG instruction; the routine must return using a RET
instruction. If the service routine modifies any registers other than
RO or Rl, it must set the appropriate bits in the entry mask so that
the contents of those registers are saved.

Since it is impossible to know when the AST service routine will begin
executing, you must take care when you code the AST service routine
that it does not modify any data or instructions used by the main
procedure.

On entry to the AST service routine, the Argument Pointer register
{AP) points to an argument list that has the format:

31 8 7 0

0 I
AST parameter

1-------·----·--·------------·--·--------------1

RO

~-------------·-------------------·--···--··-··-----

Rl

PC

PSL

.__ ___________ ·------ ---·------------~---~----·--'

The registers RO and Rl, the PC, and PSL in this list are those that
were saved when the process was interrupted by delivery of the AST.

The AST parameter is an argument passed to the AST service routine so
that it can identify the event that caused the AST. When you code a
call to a system service requesting an AST, or when you code a $DCLAST
system service, you can supply a value for the AST parameter. If you
do not specify a value, it defaults to O.

Figure 4-2 illustrates an AST service routine. In this example, the
ASTs are created by the $DCLAST system service: the ASTs are
delivered to the process immediately, so that the service routine is
called following each $DCLAST system service call.

4-4

.ENTRY

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

PEGASUs,o ;ENTRY MASK

0 tDCLASL"S ASTADR::::ASTRTN' ASTPRM:::::U ; AST' WITH PARM==1

tDCLAST_S ASTADR=ASTRTN,ASTPRM~+2 9AST WITH PARM=2

ASTRTN: • WORD
RET ;RETURN CONTROL
0 ;ENTRY MASK

f) CMPI... :B: :t., 4 <AP> ; CHECK AST PARAMETEF~ 1
BEQL 10$ 9IF 1 GOTO 10$
CMPL :B:2,4<AP> ;CHECK FOR PARM~2
BEQI... 20$;IF 2 GOTO 20$

;HANDLE FIRST AST
l~ET ; RETURN

;HANDLE SECOND AST
l~ET ; RETURN

+END PEGASUS

Figure 4-2 An AST Service Routine

Notes on Figure 4-2:

0 The program PEGASUS calls the Declare AST system service
twice to queue ASTs. Both ASTs specify the AST service
routine, ASTRTN. However, a different parameter is passed
for each call.

The first action that this AST routine takes is to check the
AST parameter, so that it can determine if the AST being
delivered is the first or second one declared. The value of
the AST parameter determines the flow of execution.

4.5 AST DELIVERY

When an AST occurs, the system may not be able to deliver the AST to
the process immediately. An AST cannot be delivered if any of the
following conditions exist:

• An AST service routine is currently executing at the same or
at a more privileged access mode.

Because ASTs are implicitly disabled when an AST service
routine executes, one AST routine cannot be interrupted by
another AST routine declared for the same access mode. It
can, however, be interrupted for an AST declared for a more
privileged access mode.

• AST delivery is explicitly disabled for the access mode.

A process can disable the delivery of AST interrupts with the
Set AST Enable ($SETAST) system service. This service may be
useful when a program is executing a sequence of instructions
that should npt be interrupted for the execution of an AST
routine.

4-5

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

• The process is executing at an access mode more privileged
than that for which the AST is declared.

For example, if a user mode AST is declared as the result of a
system service but the program is currently executing at a
higher access mode (because of another system service call,
for example), the AST is not delivered until the program is
once again executing in user mode.

If an AST cannot be delivered when the interrupt occurs, the AST is
queued until the condition(s) disabling delivery are removed. Queued
ASTs are ordered by the access mode from which they were declared,
with those declared from more privileged access modes at the front of
the queue. If more than one AST is queued for an access mode, the
ASTs are delivered in the order in which they are queued.

4-6

CHAPTER 5

LOGICAL NAME SERVICES

The VAX/VMS logical name services provide a technique for manipulating
and substituting character string names. Logical names are commonly
used to specify devices or files for input or output operations. You
can code programs with logical, or symbolic, names to refer to
physical devices or files, and then establish an equivalence, or
actual, name by issuing the ASSIGN command from the command stream
before program execution. When the program executes, a reference to
the logical name results in the use of the equivalence name.

This chapter describes how to use system services to establish logical
names for general application purposes. The system performs special
logical name translation procedures for names associated with I/O
services and with services that can deal with facilities located in
shared (multiport) memory; for further information see the following
sections:

• Device names for I/O services: Section 6.10 in this manual
and the discussion of logical names in the VAX/VMS Command
Language User's Guide.

• Common event flag cluster names: Section 3.7.1

• Mailbox names: Section 6.13.1

• Global section names: Section 10.6.5.1

5.1 LOGICAL NAMES AND EQUIVALENCE NAMES

Logical name and equivalence name strings can have a maximum of 63
characters. You can establish logical name and equivalence name
pairs:

e At the command level, with the ALLOCATE, ASSIGN, DEFINE, or
MOUNT commands

• In a program, with the Create Logical Name ($CRELOG) and
Create Mailbox and Assign Channel ($CREMBX) system services

For example, you could use the symbolic name TERMINAL to refer to an
output terminal in a program. For a particular run of the program,
you could use the ASSIGN command to establish the equivalence name
TTA2:.

5-1

LOGICAL NAME SERVICES

To perform an assignment in a program, you must provide character
string descriptors for the name strings and use the $CRELOG system
service as shown in the following example. In either case, the result
is the same: the logical name TERMINAL is equated to the physical
device name TTA2:.

TERMNAME: +ASCID /TERMINAL/
TTNAME: .ASCID /TTA2:/

•

~DESCRIPTOR FOR LOGICAL NAME
9DESCRIPTOR FOR EQUIVALENCE NAME

SCRELOG_S TBLFLG=t2rLOGNAM=TERMNAMErEQLNAM=TTNAME

The TBLFLG argument in this example indicates the logical name table
number (in this case, the process logical name table). Logical name
tables and logical name table numbers are discussed in the following
sections.

5.2 LOGICAL NAME TABLES

Logical name and equivalence name pairs are maintained in three
logical name tables:

• Process

• Group

• System

A process logical name table contains names used exclusively by the
process. A process logical name table exists for each process in the
system. Some entries in the process logical name table are made by
system programs executing at more privileged access modes; these
entries are qualified by the access mode from which the entry was
made. For example, logical names created at the command level are
supervisor mode entries.

The group logical name table contains names that cooperating processes
in the same group can use. The GRPNAM privilege is required to plac~
a name in the group logical name table.

The system logical name table contains names that all processes in the
system can access. This table includes the default names for all
system-assigned logical names. The SYSNAM privilege is required to
place a name in the system logical name table.

Figure 5-1 illustrates some sample logical name table entries.

5-2

LOGICAL NAME SERVICES

Logical Name Table for Process A (Group Number 200) 0
Logical Name Equivalence Name Access Mode

TERMINAL ... TTA2: User

INFILE ... DMl:[HIGGINS]TEST.DAT Supervisor

OUTFILE .. DMl:[HIGGINS]TEST.OUT Supervisor

I Group Logical Name Table} 8
Logical Name Equivalence Name Group Number

0TERMINAL .. TTAl: 100

G)MAILBOX ... MB3: 200

DISPLAY ... TERMINAL 200

0TERMINAL ... TTA3: 300

f system Logical Name Tablel~

Logical Name Equivalence Name

SYS$LIBRARY ----11•• DBAO: [SYSL IB]

SYS$SYSTEM ---·- DBAO: [SYSTEM]

Figure 5-1 Logical Name Table Entries

Notes on Figure 5-1:

0 This process logical name table equates
TERMINAL to the specific terminal TTA2:.
are equated to disk file specifications:
were created from supervisor mode.

the logical name
INFILE and OUTFILE

these logical names

8 The group logical name table shows entries qualified by group
numbers; only processes that have the indicated group number
can access these entries.

0 In Group 100, the logical name TERMINAL is equated to the
terminal TTAl:. Individual processes in Group 100 that want
to ref er to the logical name TERMINAL do not have to
individually assign it an equivalence name.

5-3

LOGICAL NAME SERVICES

Ct Group 200 has entries for logical names MAILBOX and DISPLAY.
Other processes in group 200 can use these logical names for
input or output operations.

Ct In Group 300, the logical name TERMINAL is equated to the
physical device name TTA3:. Note that there are two entries
for TERMINAL in the group logical name table. These are
discrete entries, since they are qualified by the number of
the group to which they belong.

~ The system logical name table contains the default physical
device names for all processes in the system. SYS$LIBRARY
and SYS$SYSTEM provide logical names for all users to refer
to the device(s) containing system files.

5.2.1 Logical Name Table Numbers

Each logical name table has a number associated with it. To place an
entry in a logical name table, specify a logical name table number
with the TBLFLG argument to the $CRELOG system service. The logical
name table numbers are as follows:

Table Number

Process 2
Group 1
System 0

The TBLFLG argument defaults to a value of O, that is, the system
logical name table.

5.2.2 Duplication of Logical Names

The process logical name table can contain entries for the same
logical name at different access modes. The group logical name table
can contain entries for the same logical name, as long as the group
numbers are different.

In all other cases, there can be only one entry for a particular
logical name in a logical name table. For example, if the logical
name TERMINAL is equated to TTA2: in the process table as shown in
the figure, and the process subsequently equates the logical name
TERMINAL to TTA3:, the equivalence of TERMINAL to TTA2: is replaced
by the new equivalence name. The successful return status code
SS$_SUPERSEDE indicates that a new entry replaced an old one.

Any number of logical names can have the same equivalence name.

5.3 LOGICAL NAME TRANSLATION

When you refer to a logical name for a physical device in an I/O
service, the service performs logical name translation automatically.
In many cases, a program must perform the logical name translation to
obtain the equivalence name for a logical name. The Translate Logical
Name ($TRNLOG) system service searches the logical name tables for a
specified logical name and returns the equivalence name.

5-4

LOGICAL NAME SERVICES

By default, the process, group, and system tables are all searched, in
that order, and the first match found is returned. Thus, if identical
logical names exist in the process and group tables, the process table
entry is found first, and the group table is not searched. When the
process logical name table is searched, the entries are searched in
order of access mode, with user mode entries matched first, supervisor
second, and so on.

The following example shows a call to the $TRNLOG system service to
translate the logical name TERMINAL.

TLOGDESC: .ASCID /TERMINAL/
TEl~LDESC:

+LONG 64

9DESCRIPTOR FOR INPUT LOGNAM
9BUFFER DESCRIPTOR FOR EQLNAME
;LENGTH
9ADDRESS OF BUFFER .LONG TEQLDESC+8

+BLKB 64
TLEN: • BU<W 1

9BUFFER OF 64 BYTES
9RECEIVE EQLNAM LENGTH HERE

tTRNLOG_S LOGNAM=TLOGDESC,RSLLEN=TLEN,RSLBUF=TEQLDESC

If the logical name table entries are as shown in
call to the $TRNLOG system service results in the
logical name TERMINAL. The equivalence name string
in the output buffer described by TEQLDESC.
equivalence name string is written into the word at

Figure 5-1, this
translation of the
TTA2: is placed
The length of the
TLEN.

Note that the call to $TRNLOG might be coded as follows:

STRNLOG_S LOGNAM=TLOGDESC,RSLLEN=TEQLDESC,RSLBUF=TEQLDESC

In this case the output equivalence name string length is written into
the first word of the character string descriptor. This descriptor
can then be used as input to another system service.

5.3.1 Bypassing Logical Name Tables

To disable the search of a particular logical name table, you can code
the optional argument DSBMSK to the $TRNLOG system service. This
argument is a mask that disables the search of one or more logical
name tables. The format of the mask is described in the discussion of
the $TRNLOG system service in Part II.

5.3.2 Logical Name and Equivalence Name Format Conventions

The operating system uses special conventions for logical
name/equivalence name assignments and translation. These conventions
are generally transparent to user programs; however, you should be
aware of the programming considerations involved.

If a logical name string is preceded with an underscore character () ,
$TRNLOG will not translate the logical name. Instead, it returns the
status code SS$ NOTRAN, strips the underscore from the logical name
string, then -writes the string into the result buffer. This
convention permits bypassing logical name translation in I/O services
when physical device name strings are specified.

5-5

LOGICAL NAME SERVICES

At login, the system creates default logical name table entries for
process permanent files. The equivalence names for these entries (for
example, SYS$INPUT and SYS$0UTPUT,) are preceded with a 4-byte header
that contains the following:

Byte(s)

0
1
2-3

Contents

AXlB (Escape character)
AXOO
RMS Internal File Identifier (!FI)

This header is followed by the equivalence name string. If any of
your program applications must translate system-assigned logical
names, the program must be prepared to check for the existence of this
header and then to use only the desired part of the equivalence
string.

For an example of how to do this, see Figure 6-2 in Section 6.7,
"Complete Terminal I/O Example."

5.4 RECURSIVE TRANSLATION

When a translate request is made for a logical name string, the
$TRNLOG system service searches the logical name tables only once. If
you structure one or more logical name tables such that logical name
equivalencies are several levels deep (that is, such that an
equivalence name is entered in the table as a logical name with
another equivalence name, and so on), you may require recursive
logical name translation. Note that Figure 5-1 earlier in this
chapter illustrates recursive entries: the logical name DISPLAY is
equated to the string TERMINAL in the group table, and the name
TERMINAL is equated to the device name string TTA2: in the process
table. The $TRNLOG system service must be used twice to complete the
translation of the logical name DISPLAY.

You can code a program loop so that the output string from the $TRNLOG
/service is reused as the input string, and check for the status code
SS$ NOTRAN following the call to the service. SS$ NOTRAN indicates
that no logical name was found, and that the input string has been
written into the output buffer.

5.5 DELETING LOGICAL NAMES

The Delete Logical Name ($DELLOG) system service deletes entries from
a logical name table. When you code a call to the $DELLOG system
service, you can specify a single logical name to delete, or you can
specify that you want to delete all logical names from a particular
table. For example, the following call deletes all names from the
process logical name table that were entered in the table from user
mode:

$DELLOG S TBLFLG=#2

Logical names that were placed in the process logical name table from
an image running in user mode are automatically deleted at image exit.
Entries made from the command stream are placed in the table by the
command interpreter; these are supervisor mode entries and are not
deleted at image exit.

5-6

CHAPTER 6

INPUT/OUTPUT SERVICES

There are two basic methods you can use to perform input/output
operations under VAX/VMS:

• VAX-11 Record Management Services (RMS)

• I/O system services

VAX-11 RMS provides a set
device-independent functions
modification.

of routines
such as data

for general purpose,
storage, retrieval, and

The I/O system services permit you to use the I/O resources of the
operating system directly in a device-dependent manner. I/O services
also provide some specialized functions not available in RMS. Using
I/O services requires more knowledge on your part, but can result in
more efficient input/output operations.

This chapter provides general information on how to use the I/O
services, including:

• Assigning channels

• Queuing I/O requests

• Allocating devices

• Using mailboxes

Examples are provided to show you how to use the I/O services for
simple functions, for example, terminal input and output operations.
If you plan to write device-dependent I/O routines, see the VAX/VMS
I/O User's Guide.

Other methods of performing I/O with VAX/VMS include the following,
which are documented in other manuals:

• Writing your own device driver. See the VAX/VMS Guide to
Writing a Device Driver

• Connecting to a device interrupt vector. See the VAX/VMS
Real-Time User's Guide

6.1 ASSIGNING CHANNELS

Before any input or output operation can be done to a physical device,
a channel must be assigned to the device to provide a path between the
process and the device. The Assign I/O Channel ($ASSIGN) system
service establishes this path.

6-1

INPUT/OUTPUT SERVICES

When you code a call to the $ASSIGN service, you must supply the name
of the device, which may be a physical device name or a logical name,
and the address of a word to receive the channel number. The service
returns a channel number, and you use this channel number when you
code an input or an output request.

For example, the following lines assign an I/O channel to the device
TTA2. The channel number is returned in the word at TTCHAN.

TTNAME: .ASCID /TTA2:/
TTCHAN: .BLKW 1

;TERMINAL DESCRIPTOR
;TERMINAL CHANNEL NUMBER

$ASSIGN_S DEVNAM=TTNAME,CHAN=TTCHAN

To assign a channel to the current default input or output device, you
must first translate the logical name SYS$INPUT or SYSSOUTPUT with the
Translate Logical Name ($TRNLOG} system service. Then, specify the
equivalence name returned as the DEVNAM argument to the $ASSIGN system
service. This technique requires you to interpret header information
preceding the equivalence name string for these devices. For an
example of this technique, see Figure 6-2 later in this chapter.

For more details on how $ASSIGN and other I/O services handle logical
names, see Section 6.10, "Logical Names and Physical Device Names."

6.2 QUEUING I/O REQUESTS

All input and output operations in VAX/VMS are initiated with the
Queue I/O Request ($QIO} system service. $QIO queues the request and
returns; while the operating system processes the request, the
program that issued the request can continue execution.

Required arguments to the $QIO service include the channel number
assigned to the device on which the I/O is to be done, and a function
code (expressed symbolically} that indicates the specific operation to
be performed. Depending on the function code, one through six
additional parameters may be required.

For example, the IO$ WRITEVBLK and IO$_READVBLK function codes are
device-independent codes used to read and write single records or
virtual blocks. These function codes are suitable for simple terminal
I/O. They require parameters indicating the address of an input or
output buffer and the buffer length. A call to $QIO to write a line
to a terminal might appear as:

$QIQ_S CHAN=TTCHAN,FUNC=•ros_WRITEVBLK, -
P1=BUFADDR,P2=BUFLEN

Function codes are defined for all supported device types, and most of
the codes are device dependent, that is, they perform functions that
are specific to a particular device. The $IODEF macro defines
symbolic names for these function codes, which are summarized in
Appendix A, "System Symbolic Definition Macros." For details on all
function codes and an explanation of the parameters required by each,
see the VAX/VMS I/O User's Guide.

6-2

INPUT/OUTPUT SERVICES

6.3 SYNCHRONIZING I/O COMPLETION

The $QIO system service returns control to the calling program as soon
as the I/O request is queued; the status code returned in RO
indicates whether or not the request was queued successfully. To
ensure proper synchronization of the I/O operation with respect to the
program, the program must:

1. Test for the completion of the Queue I/O operation

2. Test whether the I/O operation itself completed successfully

Optional arguments to the $QIO service provide techniques for
synchronizing I/O completion. There are three methods you can use to
test for the completion of an I/O request:

• Specify the number of an event flag to be set when the I/O
completes

• Specify the address of an AST routine to be executed when the
I/O completes

• Specify the address of an I/O status block in which the system
can place the return status when the I/O completes

Examples of using these three techniques are shown in Figure 6~1.

f Example 1: Event Flagsj O
8 $CHO S EFN=:::t1, •••

BSBW ERl:\:OR
SQIO_S EFN=t2, •••
E1SBW El~ROR

C) $WFLAND S EFN::::f:O, MASl(::::#'"'B 110

Notes on Example 1:

~ISSUE 1ST I/O REQUEST
;QUEUED SUCCESSFULLY?
PISSUE 2ND I/O REQUEST
9QUEUED SUCCESSFULLY?
;WAIT TILL BOTH DONE

0 When you code an event flag number as an argument,
clears the event flag when it queues the I/O request.
the I/O completes, the flag is set.

$QIO
When

8 In this example, the program issues two Queue I/O requests.
A different event flag is specified for each request.

0 The Wait for Logical AND of Event Flags ($WFLAND) system
service places the process in a wait state until both I/O
operations are complete. The EFN argument indicates that the
event flags are both in cluster O; the MASK argument
indicates the flags that are to be waited for.

Figure ~-1 Synchronizing I/O Completion

6-3

INPUT/OUTPUT SERVICES

I Example 2: An AST Rou~i.;~] 0 .

8 $QIO_S • • • 'ASTADR==TTAST 'ASTPRM==t1'... H/O WITH AST
BSBW ERROR ;QUEUED SUCCESSFULLY?

;CONTINUE

TT AST: • WORD 0 C)

RET

Notes on Example 2:

;AST SERVICE ROUTINE ENTRY MASK
;HANDLE I/O COMPLETION

;END OF SERVICE ROUTINE

0 When you code the ASTADR argument to the $QIO system service,
the system interrupts the process when the I/O completes and
passes control to the specified AST service routine.

8 The $QIO system service call specifies the address of the AST
routine, TTAST, and a parameter to pass as an argument to the
AST service routine. When $QIO returns control, the process
continues execution.

C) When the I/O completes, the AST routine TTAST is called, and
it responds to the I/O completion.

When this routine is finished executing, control returns to
the process at the point at which it was interrupted.

Figure 6-1 {Cont.) Synchronizing I/O Completion

6-4

INPUT/OUTPUT SERVICES

I Example 3: The I/O Status Block J 0
TTIOSB: .BU\Q :I. @ ;110 STATUS BLOCK

•
6) $CUO._S ••• , IOSB::::TTIOSB' • • • ;ISSUE I/O REQUEST

;QUEUED SUCCESSFULLY?
;cnNTINUE

BSBW ERROR

• TSTW
BEt~L

CMF'W
BNEQ

TTIOSB C)
:LO$
TTIOSB,tSS$_NORMAL
IO ERR

;rs I/O DONE YET?
PNO, LOOF' TIL DONE
; I/() SUCCESSFUi... 'r
; NO, El~ROF~

PYES, HANDLE IT

Notes on Example 3:

0 An I/O status block is a quadword structure that
uses to post the status of an I/O operation.
area must be defined in your program.

the system
The quadword

@ TTIOSB defines the I/O status block for this I/O operation.
The IOSB argument in the $QIO system service refers to this
quadword.

$QIO clears the quadword when it queues the
When the request is successfully queued,
continues execution.

I/O
the

request.
program

C) The process polls the I/O status block. If the low-order
word still contains O, the I/O operation has not yet
completed. In this example, the program loops until the
request is complete.

Figure 6-1 (Cont.) Synchronizing I/O Completion

6.4 I/O COMPLETION STATUS

When an I/O operation completes, the system posts the completion
status in the I/O status block, if one is specified. The completion
status indicates whether the operation actually completed
successfully, the number of bytes that were transferred, and
additional device-dependent return information.

The format of the information written in the IOSB is:

31 16 15 0

count l status

device-dependent information

~----------- ------------- -- ---------

The first word contains a system status code indicating the success or
failure of the operation. The status codes used are the same as for
all returns from system services; for example, SS$ NORMAL indicates
successful completion.

6-5

INPUT/OUTPUT SERVICES

The second word contains the number of bytes actually transferred in
the I/O operation.

The second longword contains device-dependent return information.

To ensure successful I/O completion and the integrity of data
transfers, the IOSB should be checked following I/O requests,
particularly for device-dependent I/O functions. For complete details
on how to use the I/O status block, see the VAX/VMS I/O User's Guide.

6.5 SIMPLIFIED FORMS OF THE $QIO MACRO ($QIOW, $INPUT, $OUTPUT)

The $QIOW macro combines the functions of the $QIO and the Wait for
Single Event Flag ($WAITFR) system services. $QIOW has the same
arguments as the $QIO macro. It queues the I/O request, and then
places the program in a wait state until the I/O is complete.

The $INPUT and $OUTPUT macros are a subset of the $QIOW macro: they
use only the function codes to read and write virtual blocks or
records (IO$ READVBLK and IO$ WRITEVBLK, respectively). These macros
provide an -efficient and easy way to specify I/O for terminals,
mailboxes, line printers, and interprocess network transfers.

When you code a $INPUT or $OUTPUT macro, you must specify the channel
on which the I/O is to be performed and the length and address of the
input or output buffer. Optionally, you can specify an event flag to
be set when the I/O is complete and the address of an I/O status
block. For example:

$INPUT CHAN=TTCHAN,LENGTH=INLEN,BUFFER=INBUF,EFN=tl,IOSB=TTIOSB

or

$OUTPUT CHAN=TTCHAN,LENGTH=OUTLEN,BUFFER=OUTBUF,EFN=t2rIOSB=TTIOSB

6.6 DEASSIGNING I/O CHANNELS

When a process no longer needs access to an I/O device, it should
release the channel assigned to the device by issuing the Deassign I/O
Channel ($DASSGN) system service. For example:

$DASSGN_S CHAN=TTCHAN

This service call releases the terminal channel assignment acquired in
the $ASSIGN example shown earlier. The system automatically deassigns
channels for a process when the image that assigned the channel exits.

INPUT/OUTPUT SERVICES

6.7 COMPLETE TERMINAL I/O EXAMPLE

Figure 6-2 shows a complete sequence of input and output operations
using the $INPUT and $OUTPUT macros to read and write lines to the
current default SYS$INPUT device. Note that if the program containing
these lines is executed interactively, the input/output is to the
current terminal.

6-7

INPUT/OUTPUT SERVICES

TT NAME: • ASCID /SYS$INf'UT I 0 ;DESCRIPTOR FOR TERMINAL NAME

TTCHAN: +BLKW 1 ;RECEIVE CHANNEL NUMBER HERE

TTIOSB: • Ill .. KW 1 • ;FIRST WORD OF rose, STATUS
TTIDLEN:

.BL..l\W

.BL.Kl...
j,

1.
;SECOND WORD, GET LENGTH
;SECOND LONGWORD OF IOSB

OUTLEN! • BL.Kl... 1 ;LENGTH OF STRING TO OUTPUT
;BUFFER TO READ INPUT INBUF: • BL.KB 80 •

DEVDESC: ;DESCRIPTOR FOR LOGICAi... NAME TRANSLATION
;LENGTH OF BUFFER NL.EN:

NAIHrF~:

NAME:

.LONG

.LONG
• BL.KB

.

t.,:·5
NAME:
f.>~5

;ADDRESS OF BUFFER
;ALLOCATE 63-BYTE BUFFER TO HOLD
;EQUIVALENCE NAME OF "SYS$INPLIT"

0 $ TF~Nl ... OG._.S LOGNAM::::TTNAME, 1:~Sl...l...EN::::NL.EN, F~SL.BLJF::::DEVDE~IC
CMPB NAME,t-X1B ;DOES NAME BEGIN WITH ESCAPE? <IF SOv

BNEQ
!:>UBI ...
ADDI. ..

1.0$
f.4,Nl...EN
:1:4, NADDF~

~ IT'S A PROCESS PERMANENT Fil...E.>
;No, f:>KIP
;OTHERWISE, SUBTRACT 4 FROM LENGTH
;ADD 4 TO ADDRESS

:I.()$: 0 1;AS~> :r: GN S DEVNAM===DEVDl:::i:;c, CHAN::::'fTCHAN ; Am> I GN CHANNEi ...
e~:;ew r:::r:;:F~CJR

0 $INPUT
BSBW

8 CMPW
BNrn

G MOVZWI...

CHAN=TTCHANvl...ENGTH=i80,BUFFER=INBLJF,IOSB=TTIOSB
Emw1:;:
TTIOSB,tSS$_NORMAI...
:r: Cl El:~r:~
TT ICll.EN, OUT LEN

; I/O ~~UCCESSFUL..?

;r:::m~cm :r:F NOT++.
;GET LENGTH OUT OF IOSB

@) !~OUTPUT CHAN::::TTCHAN, 1...ENGTH=::CJLJTL.EN, BUFFEf~:::: INBUF, I OSB::::TT I ClBB
BSBW Er:~ROI:~

CMPW TTICJSB,tSS$_NORMAL ;SUCCESSFUi...?
BNEQ IO_ERR ;BRANCH IF NOT

fD> !HtASSGN ... S CHAN==:T'fCHAN ; DONE, DEM:lSIGN CHANNEL..
Bf.->BW H~Ror:;:

Figure n-2 Example of Terminal Input and Output

6-8

INPUT/OUTPUT SERVICES

Notes on Figure 6-2:

C» TTNAME is a character string descriptor for the logical
device SYS$INPUT and TTCHAN is a word to receive the channel
number assigned to it.

~ The IOSB for the I/O operations is structured so that the
program can easily check for the completion status (in the
first word) and the length of the input string returned (in
the second word).

C) The string will be read into the buffer INBUF; the longword
OUTLEN will contain the length of the string for the output
operation.

~ The Translate Logical Name ($TRNLOG) system service
translates the logical name SYS$INPUT. On return from
$TRNLOG, the equivalence name is checked for a 4-byte header
beginning with an escape character. (This header is present
for all process permanent files; see Section 5.3.2, "Logical
Name and Equivalence Name Format Conventions.")

If this header is present, the program modifies the
descriptor for the device name -returned, so it can be used as
input to $ASSIGN.

~ $ASSIGN assigns a channel and writes the channel number at
TTCHAN.

Ci) If the $ASSIGN service completes successfully, the $INPUT
macro reads a line from the terminal, and requests that the
completion status be posted in the I/O status block defined
at TTIOSB.

fj The process waits until the I/O is complete, then checks the
first word in the I/O status block for a successful return.
If not successful, the program takes an error path.

6) Next, the length of the string read is moved into the
longword at OUTLEN. This is necessary because the $OUTPUT
macro requires a longword argument, but the length field of
the I/O status block is only a word long. The $OUTPUT macro
writes the line just read to the terminal.

CD The program performs error checks: first, it ensures that
the $OUTPUT macro successfully queued the I/O request; then,
when the request is completed, it ensures that the I/O was
successful.

(!) When all I/O operations on the channel are finished, the
channel is deassigned.

o-9

INPUT/OUTPUT. SERVICES

6.8 CANCELING I/O REQUESTS

If a process must cancel an I/O request that has been queued but not
yet completed, it can issue the Cancel I/O On Channel ($CANCEL) system
service. All pending I/O requests issued by the process on that
channel are canceled.

For example, the $CANCEL system service can be called as follows:

$CANCEL_$ CHAN=TTCHAN

In this example, the $CANCEL system service initiates the cancellation
of all pending I/O requests to the channel whose number is located at
TTCHAN.

The $CANCEL system service returns after initiating the cancellation
of the I/O requests. If the call to $QIO specified an event flag, AST
service routine, or I/O status block, the system sets the flag,
delivers the AST, or posts the I/O status block as appropriate when
the cancellation is actually completed.

6.9 DEVICE ALLOCATION

Many I/O devices are shareable; that is, more than one process can
access the device at a time. Each process, by issuing a $ASSIGN
service, is given a channel to the device for I/O operations.

In some cases, a process may need exclusive use of a device so that
data is not affected by other processes. To reserve a device for
exclusive use you must allocate it.

Device allocation is normally accomplished from the command stream,
with the ALLOCATE command. A process can also allocate a device by
calling the Allocate Device ($ALLOC) system service. When a device
has been allocated by a process, only the process that allocated the
device and any subprocesses it creates can assign channels to the
device.

When you code the $ALLOC system service, you must provide a device
name. The device name specified can be:

• A physical device name, for example, the tape drive MTB3:

• A logical name, for example, TAPE

• A generic device name, for example, MT:

If you specify a physical device name, $ALLOC attempts to allocate the
specified device.

If you specify a logical name, $ALLOC translates the logical name and
attempts to allocate the physical device name equated to the logical
name.

If you specify a generic device name, that is, if you specify a device
type but do not specify a controller and/or unit number, $ALLOC
attempts to allocate any device available of the specified type. More
information on the allocation of devices by generic names is provided
in Section 6.10.1.

When you specify logical names or generic device names, you must
provide fields for the $ALLOC system service to return the name and

6-10

INPUT/OUTPUT SERVICES

the length of the physical device that is actually allocated, so you
can provide this name as input to the $ASSIGN system service.

Figure 6-3 illustrates the allocation of a tape device specified by
the logical name TAPE.

LOGDEV: • ASC ID
DEVDESC:

.LONG

.LONG

.BL.KB
TAf'ECHAN:

.BL.KW

/TAPE/

~4
DEVDESC+8
64

1

;DESCRIPTOR FOR LOGICAL NAME
;DESCRIPTOR FOR PHYSICAL.. NAME
9LENGTH OF BUFFER
;ADDRESS OF BUFFER
;GET PHYSICAL NAME RETURNED

;CHANNEL FOR TAPE I/O

0 ~iAl ... L..OC.'"S DEVNAM::::LOGDEV, f'HYLEN::::DEVDESC 'F'HYBl.JF::::DEVDESC
EtSBW ERROF"<

f) $ASSIGN S DEVNAM::::[IEVDESC, CHAN::::TAf'ECHAN ; ASS:CGN CHANNEL
BSBW r:::r.;:Rrn:~

9CONTINUE WITH I/O

0 $DASSGN S CHAN::::TAF'ECHAN 9DEASSIGN CHANNEL
BSBW EF<F'<DF~
SDALL..OC_S DEVNAM=DEVDESC ; DEAL..1 ... 0CATE TAPE

Figure 6-3 Device Allocation and Channel Assignment

Notes on Figure 6-3:

0 The $ALLOC system service call requests allocation of a
device corresponding to the logical name TAPE, defined by the
character string descriptor LOGDEV. The argument DEVDESC
refers to the buffer provided to receive the physical device
name of the device actually allocated and the length of the
name string. $ALLOC translates the logical name TAPE, and
returns the equivalence name string of the device actually
allocated into the buffer at DEVDESC. It writes the length
of the string in the first word of DEVDESC.

f) The $ASSIGN command uses the character string returned by the
$ALLOC system service as the input device name argument, and
requests that the channel number be written into TAPECHAN.

0 When I/O operations are completed, the $DASSGN system service
deassigns the channel and the $DALLOC system service
deallocates the device. The channel must be deassigned
before the device can be deallocated.

6.9.1 Implicit Allocation

Devices that cannot be shared by more than one process, for example,
terminals and line printers, do not have to be explicitly allocated.
Since they are nonshareable, they are implicitly allocated by the
$ASSIGN system service when $ASSIGN is called to assign a channel to
the device.

6-11

INPUT/OUTPUT SERVICES

6.9.2 Deallocation

When the program has finished using an allocated device, it should
release the device with the Deallocate Device {SDALLOC) system
service, to make it available for other processes as in this example:

$DALLQC_S DEVNAM=DEVDESC

The system automatically deallocates devices allocated by an image at
image exit.

6.10 LOGICAL NAMES AND PHYSICAL DEVICE NAMES

When a device name is specified as input to an I/O system service, it
can be a physical device name or a logical name. When an underscore
character {) precedes a device name string, it indicates that the
string is a-physical device name string. For example:

TTNAME: .ASCID /_TTB3:/

Any string that does not begin with an underscore is considered a
logical name, even though it may be a phyE?ical device name. The
$ASSIGN, $DASSGN, $ALLOC, and $DALLOC system services call the
Translate Logical Name {$TRNLOG) system service to search the logical
name tables. The $TRNLOG service searches the process, group, and
system tables, in that order, and if it locates an entry for the
specified logical name, the I/O request is performed for the device
specified in the equivalence name string. The search is not
recursive; that is, if the result of the translation is another
logical name, the $TRNLOG service does not further translate the
result {see Section 5.4, "Recursive Translation").

If $TRNLOG does not locate an entry for the logical name, the I/O
service treats the name that is specified as a physical device name.
When you code the name of an actual physical device in a call to one
of these services, code the underscore character to bypass the logical
name translation.

When the $ALLOC system service returns the device name of the physical
device that has been allocated, the device name string returned is
prefaced with an underscore character. When this name is used for the
subsequent $ASSIGN system service, the $ASSIGN service does not
attempt to translate the device name.

If you use logical names in I/O service calls, you must be sure to
establish a valid device name equivalence before program execution.
You can do this by issuing an ASSIGN command from the command stream,
or by having the program establish the equivalence name before the I/O
service call with the Create Logical Name {$CRELOG) system service.

For details on how to create and use logical names, see Chapter 5,
"Logical Name Services."

6.10.l Device Name Defaults

If, after logical name translation, a device name string in an I/O
system service call does not fully specify the device name (that is,
device, controller, and unit), the service either provides default
values for nonspecified fields, or provides values based on device
ava ilabi 1 i ty.

6-12

INPUT/OUTPUT SERVICES

The following rules apply:

• The $ASSIGN, $DASSGN, and $DALLOC system services apply
default values as shown in Table 6-1.

• The $ALLOC system service treats the device name as a generic
device name and attempts to find a device that satisfies the
components of the device name that are specified, as shown in
Table 6-1.

Final Device
Name
Specification

DD:

DOC:

DON:

DOAN:

Key:

DD: is the
C: is the
c: is any
N: is the
n: is any

Table 6-1
Default Device Names for I/O Services

Device Name
Defaults for
$ASSIGN, $DASSGN,
and $DALLOC

DDAO : (unit 0
on controller A)

DOC 0 : (unit 0
on controller
specified)

DOAN: (unit
specified on
controller A)

DOAN:

Generic Device
Names Used
by $ALLOC

DDcn: (any available device of
the specified type)

DDCn: (any available unit on
the specified controller)

DDcN: (device of specified
type and unit on any available
controller)

DOAN:

device type specified
controller specified
controller
unit number specified
unit number

6.11 OBTAINING INFORMATION ABOUT PHYSICAL DEVICES

In cases where a generic (that is, nonspecific) device name is used in
an I/O service, the program may need to find out what device has
actually been used. The Get I/O Channel Information ($GETCHN) system
service provides specific information about the physical device to
which a channel has been assigned. The Get I/O Device Information
($GETDEV) system service returns information about a device that is
identified by its device name. The information returned includes the
unit number of the device, as well as additional device
characteristics.

When you code the $GETCHN or $GETDEV service, you must provide the
address of a buffer or buffers into which the system writes the
information. The format of the buffer and additional details about
these services are given in Part II. Details on the device-specific
information these services return is given in the VAXfVMS I/O User's
Guide. ---

fi-13

INPUT/OUTPUT SERVICES

6.12 FORMATTING OUTPUT STRINGS

When you are preparing output strings for a program, you may need to
insert variable information into a string prior to output, or you may
need to convert a numeric value to an ASCII string. The Formatted
ASCII Output ($FAQ) system service performs these functions.

Input to the $FAQ service consists of:

• A control string that contains the fixed text portion of the
output and formatting directives. The directives indicate the
position within the string where substitutions are to be made,
and describe the data type and length of the input values that
are to be substituted or converted.

• An output buffer to contain the string after conversions and
substitutions have been made.

• An optional argument indicating a word to receive the final
length of the formatted output string.

• Parameters that provide
directives.

arguments for the formatting

Figure 6-4 shows a call to the $FAQ system service to format an output
string for a $OUTPUT macro. Accompanying notes briefly discuss the
input and output requirements of FAO. Complete details on how to use
FAO, with additional examples, are provided in the description of the
$FAQ system service in Part II.

0 FAOSTr<: .Ascrn /FILE !AS DOES NOT EXIST/ Hll:~sc1:nPTOR FOR

f) FAODESC:
+LONG 80
+LONG FAOBUF

FAOBUF: .BL.KB 80

FAOl...EN: .LONG 0

9FAO CONTROL STRING
9DESCRIPTOR FOR FAD OUTPUT
9LENGTH OF BUFFER
;ADDRESS OF BUFFER
;BUFFER FOR FAO OUTPUT

;RECEIVE LENGTH OF FAD OUTPUT STRING

C) FIL.ESPEC: • ASCHI /DMA1: MYFil .. E. DAT I ; DESCIUPTOR Fm:;: FAO PAF~AMETER

.
8 $FAO S CTRSTF<::::FAOSTr.::, OUTl ... EN===FAOl .• EN, OUTBl.JF::::FAOX:1ESC, -..

Pi=tFILESPEC ;PARAMETER FOR FAQ
BSBW ERROR

0 ~rnUTPUT •• +, BUFFEt=;:::::FA(JBLJF, LENGTH::::FAOl...EN
BSBW ERt:;:OR

Figure 6-4 Example of Using Formatted ASCII Output Program

Notes on Figure 6-4:

0 FAOSTR provides the FAQ control string. !AS is an example of
an FAQ directive: it requires an input parameter that
specifies the address of a character string descriptor. When
FAQ is called to format this control string, !AS will be
substituted with the string whose address is specified.

f) FAQDESC is a character string descriptor for the output
buffer; $FAQ will write the string into the buffer, and will
write the length of the final formatted string in the
low-order word of FAOLEN. (A longword is reserved so that it
can be used for an input argument to the $OUTPUT macro.)

6-14

INPUT/OUTPUT SERVICES

C) FILESPEC is a character string descriptor defining an input
string for the FAQ directive !AS.

G» The call to $FAQ specifies the control string, the output
buffer and length fields, and the parameter Pl, which is the
address of the string descriptor for the string to be
substituted.

CD When $FAQ completes successfully, $OUTPUT writes the output
string:

FILE DMAl:MYFILE.DAT DOES NOT EXIST

6.13 MAILBOXES

Mailboxes are virtual devices that can be used for communication
between processes. Actual data transfer is accomplished by using RMS
or I/O services. When the create Mailbox and Assign Channel ($CREMBX)
service creates a mailbox, it also assigns a channel to it for use by
the creating process. Other processes can then assign channels to the
mailbox using either the $CREMBX or $ASSIGN system service. (If the
mailbox is located in memory shared by multiple processors, the first
process on each processor to create or assign a channel to a mailbox
must use the $CREMBX service.)

The Create Mailbox and Assign Channel ($CREMBX) system service creates
the mailbox. The $CREMBX system service identifies a mailbox by a
user-specified logical name and assigns it an equivalence name. The
equivalence name is a physical device name in the format MBn: where n
is a unit number.

When another process assigns a channel to the mailbox with the $CREMBX
or $ASSIGN system service, it can identify the mailbox by its logical
name. The service automatically translates the logical name. The
process can obtain the MBn: name by translating the logical name
(with the $TRNLOG system service), or it can call the Get I/O Channel
Information ($GETCHN) system service to obtain the unit number and the
physical device name.

Mailboxes are either temporary or
TMPMBX and PRMMBX are required
mailboxes, respectively.

permanent. The user privileges
to create temporary and permanent

For a temporary mailbox, the $CREMBX service enters the logical name
and equivalence name in the group logical name table of the process
that created it. The system deletes a temporary mailbox when no more
channels are assigned to it.

For a permanent mailbox, the $CREMBX service enters the logical name
and equivalence name in the system logical name table. Permanent
mailboxes continue to exist until they are specifically marked for
deletion with the Delete Mailbox ($DELMBX) system service.

A mailbox located in memory shared by multiple processors is also
deleted when all of the following occur:

• A processor is rebooted

• The multiport memory is not reinitialized

• No other processor has any processes with channels assigned to
the mailbox.

6-15

INPUT/OUTPUT SERVICES

Figure 6-5 shows an example of processes communicating by means of a
mailbox. The accompanying notes explain some of the arguments that
the $CREMBX system service requires.

f Process ORION I
MBLOGNAM: .ASCID /GROUP100_MAILBOX/ ;DESCRIPTOR FOR MAILBOX LOG. NAME
MBUFFER: +BLKB 128 ;INPUT BUFFER FOR MAILBOX READS
MBUFLEN: :LONG 128 PBUFFER LENGTH (128 BYTES>
MBXCHAN: +BLKW 1 ;MAILBOX CHANNEL NUMBER

MBXImJB: .BL.KW 1 ; IOSB FIF~ST wmrn <STATUS>
MBLEN: .BL.KW :I. ;rosa 2N[I wmrn <LENGTH>

+BL.Kl... :I. ; REMA I Nril~~r~ OF ro~rn

OUTLEN: +BLKL 1 ;LQNGWOrd:i TO GET LENGTH

.ENTRY ORION, ~M<R2rRJ,R4> ;ENTRY MASK
0 $CF~EMBX S Pl:::MFl ... G::::B=O,.. CHAN:::MBXCHAN,, MAXMSG::.~MBUFl ... EN""

BUFQLJO=t384,PROMSK=t-xoooo,1...0GNAM=MBl...OGNAM
BSBW El:::ROR

@ ~l>Q I CLS CHAN:::MBXCHAN, FUNC:::::f. I (N r~EA!IVBLI\, I DSB::-~MBX I OSB,,
ASTADR=MBXAST,P1=MBUFFERvP2=MBUFLEN

BSBW EF~l:::OR

1:;.:ET
MBXAST: • worm 0 0 ; AST r~OUT:t:NE ENTRY MASI\

CMPW MBXIOSB,tSSS_NORMAL ;110 SUCCESSFUL?
BNEQ ASTERR ;BRANCH IF NOT
MOVZWL MBLEN,OUTLEN ;MAl\E LENGTH A LONGWORD
$OUTPUT ••• vBUFFER=MBUFFER,LENGTH=OUTLEN, •••
BSBW E1:;.:1:;:0R

1:~ET

jProcess CYGNusl

MAILBOX: .ASCID /GROUP100_MAil...BOX/ ;DESCRIPTOR FOR MAILBOX LOG. NAME
MAIL.CHAN: PMAILBOX CHANNEL NUMBER

.BL.KW l
OUTBUF: .BLKB l28 ;BUFFER FOR OUTPUT MSG DATA
OUTLEN: .BL.KL :I. ;WILL CONTAIN LENGTH OF MSG

.ENTRY
e

CYGNUS, -M<R2,R3,R4> ;ENTRY MASI\
SASSIGN_S DEVNAM=MAILBOX,CHAN=MAILCHAN ;ASSIGN CHANNEL
BSBW El=~ROI:::

SOUTPUT CHAN=MAILCHAN~BUFFER=OUTBUF,LENGTH=OUTLEN11 •••
BSBW H~r~or~

l:::ET

Figure 6-5 Mailbox Creation and I/O

6-16

INPUT/OUTPUT SERVICES

Notes on Figure 6-5:

., Process ORION creates the mailbox and receives the channel
number at MBXCHAN.

•

This PRMFLG argument indicates that the mailbox is a
temporary mailbox. The logical name is entered in the group
logical name table.

The MAXMSG argument limits the size of messages that the
mailbox can receive. Note that the size indicated in this
example is the same size as the buffer (MBUFFER) provided for
the $QIO request. A buffer for mailbox I/O must be at least
as large as the size specified in the MAXMSG argument.

When a process creates a temporary mailbox, the
system memory that is allocated for buffering
subtracted from the process's buffer quota. Use
argument to specify how much of the process quota
be used for mailbox message buffering.

amount of
messages is
the BUFQUO
you want to

Mailboxes are protected devices. By specifying a protection
mask with the PROMSK argument, you can restrict access to the
mailbox. (In this example, all bits in the mask are clear,
indicating unlimited read and write access.)

After creating the mailbox, Process ORION issues a $QIO
system service, requesting that it be notified when I/O
completes (that is, when the mailbox receives a message) by
means of an AST interrupt. The process can continue
executing, but the AST service routine at MBXAST will
interrupt and begin executing when a message has been
received •

., When a message is sent to the mailbox (by CYGNUS), the AST is
delivered and ORION responds to the message. ORION gets the
length of the message from the first word of the I/O status
block at MBXIOSB and places it in the longword OUTLEN so it
can pass the length to $OUTPUT.

~ Process CYGNUS assigns a channel to the mailbox, specifying
the logical name the process ORION gave the mailbox. The
$OUTPUT form of the $QIOW system service writes a message
from the output buffer provided at OUTBUF.

Note that on a write operation to a mailbox, the I/O is not
complete until the message is read, unless you specify the
IO$M NOW function modifier. Therefore, if $QIOW (without the
IO$M-NOW function modifier) or $OUTPUT is used to write the
message, the process will not continue executing until
another process reads the message.

6.13.1 Mailbox Name Format

The logical name string assigned to a mailbox determines whether it is
located in memory that is used by a single processor or in memory that
is shared by multiple processors. The LOGNAM argument to the $CREMBX
service specifies a descriptor that points to a character string with
the following format:

[shared-memory-name:]mailbox-name

n-17

INPUT/OUTPUT SERVICES

shared-memory-name

Locates the mailbox within the named memory that is shared by
multiple processors. The name of this memory was specified at
system generation time. For example, the string SHRMEM$l:CHKPNT
identifies a mailbox named CHKPNT located in the shared memory
named SHRMEM$1.

If this part of the string is not included, the mailbox is not
located in memory that is shared by multiple processors.

mailbox-name

The name assigned to the mailbox (1 to 15 characters in length).

If you wish, you can include both the shared-memory-name and the
mailbox-name for a mailbox in memory shared by multiple processors.
However, if you want to use existing programs without recompiling or
relinking, you can specify just a mailbox-name and have the system
translate it to a complete specification. The system attempts to
perform logical name translation of the string specified by the LOGNAM
argument in the following manner:

1. MBX$ is prefixed to the string (to the part before the colon
if both parts are present), and the result is subjected to
logical name translation. If the translation does not
succeed, the string (without the MBX$ prefix) is made a
logical name with an equivalence name MBn: ("n" is a number
assigned by the system).

2. The part of the string after the colon (if any) is appended
to the translated name.

3. If the result contains a logical name, steps 1 and 2 are
repeated (up to 9 more times, if necessary) until translation
does not succeed.

For example, assume that you have made the following logical name
assignment:

$ DEFINE MBX$CHKPNT SHRMEMS1:CHKPNT

Assume that your program also contains the following statements:

MBXDESC: +ASCID /CHKPNT/ ;DESCRIPTOR FOR MAILBOX LOGICAL NAME

SCREMBX_$ LOGNAME=MBXDEsc, •••

The following logical name translation takes place:

1. MBX$ is prefixed to CHKPNT.

2. MBX$CHKPNT is translated to SHRMEM$l:CHKPNT.

Since no further translation is successful, the logical name CHKPNT is
created with the equivalence name MBn: ("n" is a number assigned by
the system) •

o-18

INPUT/OUTPUT SERVICES

There is one exception to the translation method described in this
section. If the name string starts with an underscore () , the
VAX/VMS system strips the underscore and considers the resultant
string to be the actual name (that is, no further translation is
performed).

6.13.2 System Mailboxes

The system uses mailboxes for communication among system processes.
All system mailbox messages contain, in the first word of the message,
a constant that identifies the sender of the message. These constants
have symbolic names (defined in the $MSGDEF macro) in the format:

MSG$_ sender

The remainder of the message contains variable information, depending
on the system component that is sending the message.

The format of the variable information for each message type is
documented with the system function that uses the mailbox.

6.13.3 Mailboxes for Process Termination Messages

When a process creates another process, it can specify the unit number
of a mailbox as an argument to the Create Process ($CREPRC) system
service. When the created process is deleted, the system sends a
message to the specified termination mailbox. An example of how to
create and use a termination mailbox is provided in Section 7.7.2,
"Termination Mailboxes."

A mailbox in memory shared by multiple processors cannot be used as a
process termination mailbox.

6.13.4 Mailboxes for System Processes

Certain I/O services are used internally by system processes to
communicate various kinds of information. These services are:

• Send Message to Accounting Manager ($SNDACC)

• Send Message to Operator ($SNDOPR)

• Send Message to Symbiont Manager ($SNDSMB)

Details on the formats of the messages and the information they
provide are given in the individual discussions of these services in
Part II.

6-19

CHAPTER 7

PROCESS CONTROL SERVICES

A process is the primary execution agent in VAX/VMS. When you log
into the system, the system creates a process for the execution of
program images. You can create another process to execute an image by
issuing the RUN command using any of the special qualifiers that
pertain to process creation. You can also code a program that creates
another process to execute a particular image.

Process control services allow you to create processes and to control
a process or group of processes. Included in this chapter are
discussions of:

• Subprocesses and detached processes

• The execution context of a process

• Process creation

• Interprocess control and communication

• Process hibernation and suspension

• Image exit and exit handlers

• Process deletion and termination messages

7.1 SUBPROCESSES AND DETACHED PROCESSES

A process is either a subprocess or a detached process. A subprocess
receives a portion of its creator's resource quotas and must terminate
before the creator. A detached process is fully independent; for
example, the process the system creates for you when you log in is a
detached process.

The Create Process ($CREPRC) system service creates both subprocesses
and detached processes. The ability to create subprocesses is
controlled by the PRCLM quota. The ability to create detached
processes is controlled by the DETACH privilege.

7-1

PROCESS CONTROL SERVICES

7.2 THE EXECUTION CONTEXT OF A PROCESS

The execution context of a process defines a process to the system.
It includes:

• The image that the process is executing

• The input and output streams for the image executing in a
process

• Disk and directory defaults for the process

• System resource quotas and user privileges available to a
process

When the system creates a detached process as the result of a login,
it uses the system authorization file to determine the process's
execution context.

For example, when you log into the system:

• The process created for you executes the image known as
LOGINOUT.

• The terminal you are using is established as the input,
output, and error stream for images that the process executes.

• Your disk and directory defaults are taken from the user
authorization file.

• The resource quotas and privileges you have been granted by
the system manager are associated with the created process.

When you code the $CREPRC system service to create a process, you
define the context by specifying arguments to the service.

7.3 PROCESS CREATION

The following subsections (7.3.1 to 7.3.5) show examples of process
creation and describe how the arguments you code to the $CREPRC system
service define the context of the process.

7.3.1 Defining an Image for a Subprocess to Execute

When you code the $CREPRC system service, use the IMAGE argument to
provide the process with the name of an image (program) to execute.
For example, the following lines create a subprocess to execute the
image named LIBRA.EXE.

PROGNAME: .ASCID /LIBRA/ ;DESCRIPTOR FOR IMAGE TO EXECUTE

$CREPRC_S IMAGE=PROGNAME ;CREATE PROCESS TO EXECUTE LIBRA

In this example, only a file name is specified; the service uses
current disk and directory defaults, performs logical name
translation, uses the default file type of EXE, and locates the most
recent version of the image file. When the subprocess completes
execution of the image, the subprocess is deleted. Process deletion
is described in Section 7.7.

7-2

PROCESS CONTROL SERVICES

7.3.2 Input, Output, and Error Devices for Subprocesses

When you code the $CREPRC system service you can provide equivalence
names for the logical names SYS$INPUT, SYS$0UTPUT, and SYS$ERROR.
These logical name/equivalence name pairs are placed in the process
logical name table for the created process.

Figure 7-1 shows an example
devices for a subprocess.
used.

of defining input, output, and error
The notes indicate how these devices are

INSTREAM: .ASCID /SUB-MAIL-BOX/
OUTSTREAM: +ASCID /COMPUTE_OUT/
PROGNAME: .ASCID /COMPUTE.EXE/

0

;DESCRIPTOR FOR INPUT STREAM
9DESCRIPTOR FOR OUTPUT STREAM
9DESCRIPTOR FOR IMAGE NAME

SCREPRC_s IMAGE=PROGNAMErINPUT=INSTREAMP - ;CREATE PROCESS
OUTPUT=OUTSTREAM~ERROR=OUTSTREAM

8 •
Figure 7-1 Defining Input and Output Streams for a Subprocess

Notes on Figure 7-1:

0 The INPUT argument equates the equivalence name SUB MAIL BOX
to the logical name SYS$INPUT. This logical name may
represent a mailbox that the calling process previously
created with the Create Mailbox and Assign Channel ($CREMBX)
system service. Any input the subprocess reads from the
logical device SYS$INPUT will be read from the mailbox.

8 The OUTPUT argument equates the equivalence name COMPUTE OUT
to the logical name SYS$0UTPUT. All messages the program
writes to the logical device SYS$0UTPUT will be written to
this file.

8 The ERROR argument equates the equivalence name COMPUTE OUT
to the logical name SYS~ERROR. All system-generated e~ror
messages will be written into this file. Since this is the
same file as that used for program output, the file
effectively contains a complete record of all output produced
during the execution of the program image.

The $CREPRC system service does not provide default equivalence names
for the logical names SYS$INPUT, SYS$0UTPUT, and SYS$ERROR; if none
are specified, entries in the group or system logical name tables, if
any, may provide equivalences. If, while the subprocess executes, it
reads or writes to one of these logical devices and no equivalence
name exists, an error condition results.

In a program that creates a subprocess, you can cause the subprocess
to share the input, output, or error devices of the creating process.
The following steps are required:

• Use the Translate Logical Name ($TRNLOG) system service to
obtain the current equivalence name for the logical name
SYS$INPUT, SYS$0UTPUT, or SYS$ERROR.

• Check whether the equivalence name returned contains system
header information (a 4-byte field beginning with an escape
character); if the logical name table entry was created by
the command interpreter, it will contain this header. If

7-3

•

PROCESS CONTROL SERVICES

there is a header, adjust the length of the string returned
and the address of the string returned by modifying these
fields in the character string descriptor of the resultant
name string.

Specify the address of this descriptor
INPUT, OUTPUT, or ERROR arguments to
service.

when
the

you code the
$CREPRC system

This procedure is illustrated in the following example.

NDESC:
NLEN:
NADDR:
NAME:

INPUT:

.LONG 63

.LONG NAME

.BLKB 63

.ASCID /SYS$INPUT/

;DESCRIPTOR FOR RESULT
;LENGTH OF STRING RETURNED
9ADDRESS OF STRING
~DEVICE NAME STRING RETURNED

;LOGICAL DEVICE NAME DESCRIPTOR

STRNLOG_S LOGNAM=INPUT,RSLLEN=NLEN,RSLBUF=NDESC
BSBW ERROR OBRANCH IF ERROR
CMPB NAME,t~X1B 9FIRST BYTE AN ESCAPE?
BNEQ 10$ 9NO, DON'T ADJUST
SUBL t4,NLEN 9SUBTRACT 4 FROM LENGTH
ADDL 44,NADDR ;ADD 4 TO ADDRESS

10S: $CREPRC_S ••• ,INPUT=NDESC,OUTPUT=NDESC, •••

When the subprocess executes, the logical names SYS$INPUT and
SYS$0UTPUT are equated to the device name of the creating process's
logical input device.

The subprocess can then use RMS to open the file for reading and/or
writing; or the subprocess can use the Assign I/O Channel ($ASSIGN)
system service to assign an I/O channel . to thjs device for
input/output operations by specifying the device name as the logical
name SYS$0UTPUT. For example:

OUTPUT: .ASCID /SYSSOUTPUT/
OUTCHAN: +BLKW 1

;LOGICAL NAME DESCRIPTOR
;CHANNEL NUMBER OF OUTPUT DEVICE

SASSIGN_S DEVNAM=OUTPLJT,CHAN=OUTCHAN

Logical name translation is described in more detail in Chapter 5,
"Logical Name Services." For more 'information on channel assignment
for I/O operations, see Chapter 6, "Input/Output Services."

7.3.3 Disk and Directory Defaults for Created Processes

When you use the $CREPRC system service to create a process to execute
an image, the system locates the image file within the context of the
created process. A subprocess inherits the current default device and
directory of its creator. A detached process uses the default device
and directory specified for its creator in the system user
authorization file.

If a created process runs an image that is not in its default
directory, you must identify the directory and perhaps also the device
in the file specification of the image to be run. Similarly, if a
created process uses an input, output, or error stream that is not its

7-4

PROCESS CONTROL SERVICES

current default (SYS$INPUT, SYS$0UTPUT, or SYS$ERROR), you must
provide a sufficiently complete file specification.

There is no way to define an alternative default device and/or
directory at process creation. The created process can, however,
define an equivalence for the logical device SYS$DISK by calling the
Create Logical Name ($CRELOG) system service. If the process is a
subprocess, you can define an equivalence name in the group logical
name tabls. The created process can also set its own default
directory by calling the RMS Default Directory control routine. For
details on how to call this routine, see the VAX-11 Record Management
Services Reference Manual.

7.3.4 Controlling Resources of Created Processes

Ordinarily, when you create a subprocess you need only assign it an
image to execute and, optionally, SYS$INPUT, SYS$0UTPUT, and SYS$ERROR
devices. The system provides default values for the process's
privileges, resource quotas, execution modes, and priority. In some
cases, however, you may want to specifically define these values. The
arguments to the $CREPRC system service that control these
characteristics are listed below, with considerations for their use.
For details, see the argument descriptions of $CREPRC in Part II.

• PRVADR - this argument defines the privilege list for the
created process. Normally, a subprocess will have its
creator's current privileges, and a detached process will have
the privileges specified for its creator in the system user
authorization file. In some circumstances, you may need to
create a process that has a special privilege, but you must
have the user privilege SETPRV to provide a subprocess with a
privilege you do not have.

Symbols associated with privileges are defined by the $PRVDEF
macro. Each symbol begins with PRV$V and identifies the bit
number that must be set to specify a -given privilege. The
following example shows the data definition for a mask
specifying the GRPNAM and GROUP privileges.

F'F~VM!:>!\: • LONG < l mPr~V$V Gr~PNAM> ' < l mr·1:~v!li v 01:~0UP> y GF:PNAM ('.:\Nfl Gr~oui::·

.LONG 0 ;QUADWORD MASK REQUIRED. NO BITS SET IN
;HIGH-ORDER LONGWORD FOR THESE PRIVILEGES.

• QUOTA - this argument defines the quota list for a subprocess
Since a subprocess receives a portion of its creator's quotas
for timer queue entries, I/O buffers, and so on, you may want
to control how much of each quota you want assigned to the
subprocess. If you do not code this argument, the system
defines default quotas for the subprocess; however, if your
process has only the default quotas, you must code this
argument to prevent the subprocess from exhausting all the
process's deductible quotas.

• STSFLG - the status flag is a set of bits that control some
execution characteristics of the created process, including
resource wait mode and process swap mode.

• BASPRI - this argument sets the base execution priority for
the created process. If not specified, it defaults to 2 for
VAX-11 MACRO and VAX-11 BLISS-32 and 0 for other languages.
If you want a subprocess to have a higher priority than its
creator, you must have the user privilege ALTPRI to raise the
priority level.

7-5

PROCESS CONTROL SERVICES

7.3.5 Detached Processes

The creation of a detached process is primarily a system function;
the DETACH privilege controls the ability to create a detached
process. The UIC argument to the $CREPRC system service defines
whether a process is a subprocess or a detached process; it provides
the created process with a user identification code (UIC). If you
omit the UIC argument, the $CREPRC system service creates a subprocess
that executes with your UIC.

7.4 INTERPROCESS CONTROL AND COMMUNICATION

Processes can be wholly independent, or they can be cooperative. You
may develop an application that requires the concurrent execution of
many programs. The following subsections discuss the things you might
consider when you develop such applications.

7.4.1 Restrictions on Process Creation and Control

There are three levels of process control privilege:

1. The creator of a subprocess can always issue
functions for that subprocess.

control

2. The GROUP privilege is required to issue process control
functions for other processes executing in the same group.

3. The WORLD privilege is required to issue process control
functions for any process in the system.

Additional privileges are required to perform some specific functions,
for example, to set a process's base priority to a higher level than
that of the requester.

7.4.2 Process Identification

In the examples shown in the preceding sections, the subprocesses are
not identified. Once created, the subprocesses execute according to
the image name or the input stream specified and are deleted when they
complete execution.

However, if you want to control the execution of a subprocess, you
must identify it. You must also identify detached processes that
execute in the same group if they communicate with each other or issue
control functions affecting each other.

There are two levels of process identification:

1. Process identification number (PIO). The system assigns this
unique 32-bit number to a process when it is created. If you
provide the PIDADR argument to the $CREPRC system service,
the system returns the process identification number at the
location specified. You can then use the process
identification number in subsequent process control services.

7-n

PROCESS CONTROL SERVICES

2. Process name. A process name is a 1- through 15-character
text name string. Each process name must be unique within
its group (processes in different groups can have the same
name). You can assign a name to a process by coding the
PRCNAM argument when you create it. You can then use this
name to refer to the process in other system service calls.

For example, you might code a $CREPRC system service as follows:

ORION: +ASCID /ORION/
ORIONID:

+LONG 0

;DESCRIPTOR FOR PROCESS NAME

9PROCESS ID RETURNED

SCREPRC_S PRCNAM=ORION,PIDADR=ORIONIDP+••

The service returns the process identification in the longword at
ORIONID. You can now use either the process name (ORION) or the
process identification (ORIONID) to refer to this process in other
system service calls.

A process can set or change its own name with the Set Process Name
($SETPRN) system service. For example, a process can set its name to
CYGNUS as follows:

CYGNUS: +ASCID /CYGNUS/ ;DESCRIPTOR FOR PROCESS NAME

SSETPRN_S PRCNAM=CYGNUS

Most of the process control services accept either the PRCNAM or
PIDADR arguments, or both. However, you are encouraged to identify a
process by its process identification for the following reasons:

• The service executes faster because it does not have to search
a table of process names.

• You must use the process identification for a process not in
your group (see Section 7.4.2.1).

When the PIDADR argument is coded and the specified address contains a
O, the services return the process identification. Thus, you can
obtain the process identification for a process by issuing any control
function, as long as you know the process name.

If neither argument is specified, the service is performed for the
calling process. For a summary of the possible combinations of these
arguments and an explanation of how the services interpret them, see
Table 7-1.

7-7

PROCESS CONTROL SERVICES

Table 7-1
Process Identification

Is A Is A
Process Process ID Process ID
Name Address Address Resultant Action by Services
Specified? Specified? Contains:

_,

no no -- The process identification of
the calling process is used.
The process identification is
not returned.

no yes zero The process identification of
the calling process is used
and returned.

no yes process id The process identification is
used and returned.

yes no -- The process name is used. The
process identification is not
returned.

yes yes zero The process name is used and
the process identification is
returned.

yes yes process id The process identification is
used and returned.

"·

7.4.2.1 Process Naming within Groups: Process names are always
qualified by their group number. The system maintains a table of all
process names; and when a PRCNAM argument is specified in a process
control service, the service searches for the process name specified
and for a match on the group number. This search fails if the
specified process name does not have the same group number. The
search fails even if the calling process has world control privilege.
To execute a process control service for a process that is not in the
caller's group, the requesting process must use a process
identification.

7.4.2.2 Obtaining Information about Processes: The Get Job/Process
Information ($GETJPI) system service allows a process to obtain
information about itself or another process. For complete details
about the $GETJPI system service, see the service description in Part
II.

7.4.2.3 Techniques for Interprocess Communication: There are several
ways that processes can communicate:

• Common event flag clusters

• Logical name tables

• Mailboxes

• Global sections

7-8

PROCESS CONTROL SERVICES

Common Event Flag Clusters: Processes executing within the same group
can use common event flag clusters to signal the occurrence or
completion of particular activities. For details on event flags,
event flag clusters, and an example of cooperating processes in the
same group using a common event flag, see Chapter 3, "Event Flag
Services."

Logical Name Tables: Processes executing in the same group can use
the group logical name table to provide member processes with
equivalence names for logical names. At least one member of the groµp
must have the user privilege to place names in the group logical name
table. For details on logical names and logical name tables, see
Chapter 5, "Logical Name Services."

Mailboxes: Mailboxes can be used as virtual input/output devices to
pass information, messages, or data among processes. For details on
how to create and use mailboxes, with an example of cooperating
processes using a mailbox, see Chapter 6, "Input/Output Services."
Mailboxes may also be used to provide a creating process with a way to
determine when and under what condition a created subprocess was
deleted. See Section 7.7.2 for an example of a termination mailbox.

Global Sections: Global sections are disk files containing shareable
code or data. Through the use of memory management services, these
files can be mapped to the virtual address space of more than one
process. In the case of a data file, cooperating processes can
synchronize reading and writing the data in physical memory; as the
data is updated, system paging results in the updated data being
written directly back into the disk file. Global sections are
described in more detail in Section 10.6, "Sections."

7.5 PROCESS HIBERNATION AND SUSPENSION

There are two ways to temporarily halt the execution of a process:
hibernation, performed by the Hibernate ($HIBER) system service, and
suspension, performed by the Suspend Process ($SUSPND) system service.
The process can continue execution normally only after a corresponding
Wake ($WAKE) system service if it is hibernating, or after a Resume
Process ($RESUME) system service if it is suspended.

Process hibernation and suspension are compared in Table 7-2.

7-9

PROCESS CONTROL SERVICES

Table 7-2
Process Hibernation and Suspension

Hibernation

Can only cause
self to hibernate

Reversed by $WAKE
system service

Interruptible; can
receive ASTs

Can wake self

Can schedule wakeup
at an absolute time
or at a fixed time
interval

Hibernate/wake
complete quickly;
require little
system overhead

Suspension

Can suspend self or another
process, depending on privilege

Reversed by $RESUME system service

Noninterruptible; cannot receive
AS Ts

Cannot cause self to resume

Cannot schedule resumption

Resumption takes longer;
$SUSPEND requires system
dynamic memory

....__ _____________________ _._" _____ -----~-----··---------------............

7.5.1 Process Hibernation

The hibernate/wake mechanism provides an efficient way to prepare an
image for execution and then place it in a wait state until it is
needed. When the wake request is issued, the image is reactivated
with little delay or system overhead.

For example, if you create a subprocess that must execute the same
function repeatedly and must execute immediately when it is needed,
you could use the $HIBER and $WAKE system services as shown in Figure
7-2.

There is a variation of the $WAKE system service that schedules a
wakeup for a hibernating process at a fixed time or at an elapsed
(delta) time interval. This is the Schedule Wakeup ($SCHDWK) system
service. Using the $SCHDWK service, a process can schedule a wakeup
for itself before issuing a $HIBER call. For an example of how to use
the $SCHDWK system service, see Chapter 8, "Timer and Time Conversion
Services."

7-10

PROCESS CONTROL SERVICES

!Process GEMINI!

ORION: .ASCID /ORION/
FASTCOMP: .ASCID /COMPUTE.EXE/

•

;DESCRIPTOR FOR SUBPROCESS NAME
;DESCRIPTOR FOR IMAGE NAME

0 $CF~EPRC S PRCNAM::::ORI()N, IMAGE::::FASTCOMP, • •• ;CREATE OIUON
BSBW ERROR ;CONTINUE

• 8 $WAKE-S PRCNAM::::QIUON
BSBW Et=;:RQR

$WAKE_S PRCNAM::::QRION
BSBW ERROR

I Process ORION I
COMPUTE:: @

• wrn:::x:i <>
$HIBEl:~ S

:LO$

; WAKE ot=~ION

;WAKE ORION AGAIN

;ENH~Y MASK
;SLEEP

; BAGI\ TO Sl ... EEP

Figure 7-2 Process Hibernation

Notes on Figure 7-2:

0 Process GEMINI creates the process ORION, specifying the
descriptor for the image named COMPUTE.

@ The image COMPUTE is initialized, and ORION issues the $HIBER
system service.

8 At an appropriate time, GEMINI issues a $WAKE request for
ORION. ORION continues execution following the SHIBER
service call. When it finishes its job, ORION loops back to
repeat the $HIBER call and to wait for another wakeup.

Hibernating processes can be interrupted by Asynchronous System Traps
(ASTs), as long as AST delivery is enabled. The process can issue a
$WAKE for itself in the AST service routine, and continue execution
following the execution of the AST service routine. For a description
of ASTs, and how to use them, see Chapter 4, "AST (Asynchronous System
Trap) Services."

7-11

PROCESS CONTROL SERVICES

7.5.2 Alternate Methods of Hibernation

Two additional techniques you can use to cause a process to hibernate
are:

• Code the STSFLG argument for the $CREPRC system service,
setting the bit that requests $CREPRC to place the created
process in a state of hibernation as soon as it is
initialized.

• Specify the /DELAY, /SCHEDULE, or /INTERVAL qualifiers of the
RUN command when you execute the image from the command
stream.

When you use the first method, the creating process can control when
to wake the created process. When you use the RUN command, the
qualifiers listed above control when the process will be awakened.

If the image to be executed does not itself call the $HIBER system
service, the image is placed in a state of hibernation whenever it
issues a RET instruction. Each time it is reawakened, it begins
executing at its entry point. If the image does call $HIBER, then it
begins executing at either the point following the call to $HIBER or
at its entry point {if it issues a RET instruction) each time it is
awakened.

If wakeup requests are scheduled at time intervals, the image can be
terminated with the Delete Process {$DELPRC) or Force Exit {$FORCEX)
system services, or from the command level with the STOP command. The
$DELPRC and $FORCEX system services are described later in this
chapter. The RUN and STOP commands are described in the VAX/VMS
Command Language User ·-~--.9._l:l_~de -~

These techniques allow you to code programs that can be executed a
single time, on request, or cyclically, depending on a particular set
of circumstances. Note that the program must ensure the integrity of
data areas that are modified during its execution, as well as the
status of opened files.

7.5.3 Suspension

Using the Suspend Process {$SUSPND) system service, a process can
place itself or another process into a wait stat& similar to
hibernation. Suspension, however, is a more pronounced state of
hibernation. A suspended process cannot be interrupted by ASTs, and
can resume execution only after another process issues a Resume
Process {$RESUME) system service for it. If ASTs were queued for the
process while it was suspended, they are delivered when the process
resumes execution.

7.6 IMAGE EXIT

When the image executing in a process completes normally, the
operating system performs a variety of image rundown functions. If
the image was executed by the command interpreter, image rundown
prepares the process for the execution of another image. If the image
was not executed by the command interpreter -- for example, if it was
executed by a subprocess -- the rundown readies the process for
deletion.

7-12

PROCESS CONTROL SERVICES

These exit activities are also initiated when an image completes
abnormally, as a result of any of the following:

• Specific error conditions caused by improper specifications
when a process was created. For example, if an invalid device
name is specified for SYS$INPUT, SYS$0UTPUT, or SYS$ERROR
logical names, or if an invalid or nonexistent image name is
specified, the error condition is noted within the context of
the created process.

• An exception occurring during execution of the image. When an
exception occurs, any user-specified condition handlers
receive control to handle the exception. If not, a
system-declared condition handler receives control, and it
initiates exit activities for the image. Condition-handling
is described in Chapter 9, "Condition-Handling Services."

• A Force Exit ($FORCEX) system service issued on behalf of the
process by another process.

7.6.1 Image Rundown Activities

The operating system performs image rundown functions that release
system resources that a process obtained while executing in user mode.
These activities are listed below.

• Exit handlers declared from user mode, if any, are called, and
the exit control blocks are released. (Exit handlers are
described in Section 7.6.3.)

• Common event flag clusters are disassociated.

• User mode ASTs that are queued but have not been delivered are
deleted, and ASTs are enabled for user mode.

• I/O channels are deassigned and any outstanding I/O requests
on the channels are canceled.

• Any interrupt vectors
disconnected.

connected with the image are

• All devices allocated to the process at user mode are
deallocated (devices allocated from the command stream in
supervisor mode are not deallocated).

• Timer-scheduled requests, including wakeup requests, are
canceled.

• Logical names in the process logical name table entered in
user mode are deleted (logical names entered from the command
stream in supervisor mode are not deleted).

• Exception vectors declared in user mode, compatibility mode
handlers, and change mode to user handlers are reset.

• System service failure exception mode is disabled.

• Memory pages occupied by the image are deleted and the
process's working set size limit is readjusted to its default
value.

7-13

PROCESS CONTROL SERVICES

7.6.2 The $EXIT System Service

To initiate the rundown activities described above, the system calls
the Exit ($EX1T) system service on behalf of the process. In some
cases, a process can call $EXIT to terminate the image itself, for
example, if an unrecoverable error occurs.

The $EXIT system service accepts a status code as an argument. If you
use $EXIT to terminate image execution, you can use this status code
argument to pass information about the completion of the image. If an
image does not call $EXIT, the current value in RO is passed as the
status code when the system calls $EXIT.

This status code is used as follows:

• The command interpreter uses the status code
error message when it receives control
rundown.

to display an
following image

• If the image has declared an exit handler, the status code is
written in the address specified in the exit control block.

• If the process was created by another process, and the creator
has specified a mailbox to receive a termination message, the
status code is written in the termination message when the
process is deleted.

The use of exit handlers and termination messages requires additional
coding considerations. These considerations are discussed in greater
detail below.

7.6.3 Exit Handlers

Exit handlers are routines that can perform image-specific cleanup or
rundown operations. For example, if an image uses system memory to
buffer data, an exit handler can ensure that the data is not lost when
the image exits as the result of an error condition.

To establish an exit handling routine, you must set up an exit control
block and specify the address of the control block on the Declare Exit
Handler ($DCLEXH) system service. Exit handlers are called using
standard calling conventions; you can provide arguments to the exit
handler in the exit control block. The first argument in the control
block argument list must specify the address of a longword for the
system to write the status code from $EXIT.

If an image declares more than one exit handler, the control blocks
are linked together on a last-in, first-out basis. After an exit
handler has been called and returns control, the control block is
removed from the list. Exit control blocks can also be removed prior
to image exit with the Cancel Exit Handler ($CANEXH) system service.

Exit handlers can also be declared from system routines executing in
supervisor or executive modes. These exit handlers are also linked
together, and receive control after exit handlers declared from user
mode have been executed.

Figure 7-3 shows an example of an exit handling routine.

7-14

PROCESS CONTROL SERVICES

EX I TBLOCK: 0
.LONG
.ADDRESS
.LONG

0
EXITRTN
1
STATUS
1

;EXIT CONTROL BLOCK
;SYSTEM USES THIS FOR POINTER
;ADDRESS OF EXIT HANDLER
;NUMBER OF ARGS FOR HANDLER
;ADDRESS TO RECEIVE STATUS CODE
;STATUS CODE FROM $EXIT

• AitDF~ESS
STATUS: .BLKI...

•
• ENTRY F'EGArus '"'M~R·~ R7 '

.. ~ ·~ .. '<" ·~c "°"' .. ~~·; f)
SDCLLXH-~ DE~BLK-LXITBLOCK
BSBW ERROR

;ENTRY MASK FOR PEGASUS
;DECLARE EXIT HANDLER

RET
EXITRTN:

;END OF MAIN ROUTINE
; EX IT HANDLEF~

A .wor~r1
w CMPL

BEQL

'"'M<R:~?>
STATUS,tSS$_NORMAL
101~

~ENTRY MASI<
; NORMAi... EXIT'!1

vYES11 FINISH
~NO, CLEAN UP

l~ET vFINISHED

Figure 7-3 Example of an Exit Handler

Notes on Figure 7-3:

0

7.6.4

EXITBLOCK is the exit control block for the exit handler
EXITRTN. The third longword indicates the number of
arguments to be passed. In this example, only one argument
is passed, the address of a longword for the system to store
the return status code. This argument must be provided in an
exit control block.

The $DCLEXH system service call designates the address of the
exit control block, thus declaring EXITRTN as an exit
handler.

EXITRTN checks the status code. If this is a normal exit,
EXITRTN returns control. Otherwise, it handles the error
condition.

Forced Exit

The Force Exit ($FORCEX) system service provides a way for a process
to initiate image rundown for another process. For example, the
following call to $FORCEX causes the image executing in the process
CYGNUS to exit:

CYGNUS: +ASCHI /CYGNUS/ ;PROCESS NAME DESCRIPTOR

SFORCEX_S PRCNAM~CYGNUS

The $FORCEX system service uses the AST mechanism to cause the image
to exit. If the process CYGNUS has disabled AST delivery, the image
cannot be forced to exit until CYGNUS reenables the delivery of ASTs.
AST delivery, and how it is disabled and reenabled, is described in
Chapter 4.

7-15

PROCESS CONTROL SERVICES

7.7 PROCESS DELETION

Process deletion completely removes a process from the system.
Deletion occurs as a result of any of the following conditions:

• The command stream contains a
end-of-file.

• An image specified by $CREPRC exits.

LOGOUT command or an

• A process issues a STOP command or exec·utes an image that
calls the Delete Process ($DELPRC) system service.

When the system is called to delete a process as a result of any of
the above conditions, it first locates all subprocesses, searching
hierarchically. Then, beginning with the lowest process in the
hierarchy and completing with the topmost process, each of the
following procedures is performed:

• The image executing in the process is run down. System
resources are released and, if this is a subprocess, quotas
are returned to the creator of the process. The image rundown
that occurs during process deletion is the same as that
described in Section 7.6.1. When a process is deleted,
however, the rundown releases all system resources, including
those acquired from access modes other than user mode.

• Resource quotas are released to the creating process, if the
process being deleted is a subprocess.

• If the creating process specified a termination mailbox, a
message indicating that the process is being deleted is sent
to the mailbox. For detached processes created by the system,
the termination message is sent to the system job controller.

• The control region of the process's virtual address space is
deleted. (The control region consists of memory allocated and
used by the system on behalf of the process.)

• All system-maintained information about the
deleted.

process is

Figure 7-4 illustrates the flow of events from image exit through
process deletion.

7.7.1 The Delete Process System Service

A process can delete itself or another process at any time, depending
on the restrictions outlined in Section 7.4.1. The Delete Process
($DELPRC) system service deletes a process. For example, if a process
has created a subprocess named CYGNUS, it can delete CYGNUS as shown
below:

CYGNUS: .ASCID /CYGNUS/ ~DESCRIPTOR FOR PROCESS NAME

SDELPRC_S PRCNAM=CYGNUS

Since a subprocess is automatically deleted when the image it is
executing terminates (or when the command stream for the command
interpreter reaches end-of-file), you do not normally need to issue
the $DELPRC system service explicitly.

7-16

PROCESS CONTROL SERVICES

Image exit

Call them, In LIFO order,
using argument list in exit
control block

Yes

Call the exit handler
declared by the
command interpreter*

Return to command
interpreter to execute
the next image

*This exit handler is declared
from supervisor mode and is
located during the normal
search for exit handlers.

No

No Call the Delete Process
($DELPRC) system service
to delete the process

Send a termination message
to the mailbox specified by
the process's creator

Figure 7-4 Image Exit and Process Deletion

No

As an alternative to deleting a process, you can use the Force Exit
($FORCEX) system service to force the exit of the image executing in a
process. If the $FORCEX system service is used, any exit handlers
that are declared for the image are executed during the image rundown.
Thus, if the process is using the command interpreter, it is not
deleted, but can run another image. Moreover, since the $FORCEX
system service uses the AST mechanism, the exit cannot be performed if
the process being forced to exit has disabled the delivery of ASTs.

7-17

PROCESS CONTROL SERVICES

7.7.2 Termination Mailboxes

A termination mailbox provides a process with a way of determining
when, and under what conditions, a process that it has created is
being deleted. The Create Process ($CREPRC) system service accepts
the unit number of a mailbox as an argument. When the created process
is deleted, the mailbox receives a termination message.

The first word of the termination message contains the symbolic
constant, MSGS_DELPROC, which indicates that it is a termination
message. The remainder of the message contains system accounting
information used by the job controller, and is in fact identical to
the first part of the accounting record sent to the system accounting
log file. The complete format of the termination message is provided
with the description of the $CREPRC system service in Part II.

The creating process can, if necessary, determine the process
identification of the process being deleted from the I/O status block
posted when the message is received in the mailbox. The second
longword of the IOSB contains the process identification of the
process that is being deleted.

A termination mailbox cannot be located in memory shared by multiple
processors.

Figure 7-5 illustrates a complete sequence of process creation, with a
termination mailbox. The Create Mailbox and Assign Channel ($CREMBX)
and Queue I/O Request ($QIO) system services are described in greater
detail in Chapter 6, "Input/Output Services."

7-18

EXCHAN:
• I{LKW

EXITBUF:
+LONG
+LONG

BBUF: • f.{LKB

EX IT MSG:. BL.KB

PROCESS CONTROL SERVICES

:I .

[I I B$K""L.ENGTH
BI{UF
II :c B$K LENGTH

ACC$K.". TE:.RMLEN

PTO HOLD CHANNEi... NO+ OF MAIL.BOX
;DESCRIPTOR FOR MAIL.BOX INFO
;1...ENGTH OF BUFFER <SEE SGETCHN EXPLANATION>
PADDRESS OF BUFFER
;BUFFER

;BUFFER FOR MAIL.BOX MESSAGE

MBXIOSB:.BLKW 1
MBl...EN: .BL.KW 1
MBP I II: • BL..l<L 1
L.YRAPJ:D:

;<SEE $SNDACC EXPLANATION FOR ACCSK-TERMl...EN>
;QUADWORII I/O STATUS BLOCK
;1...ENGTH OF I/O
;RECEIVES PID OF PROCESS DELETED

+LONG 0 ;GET PID OF SUBPROCESS
L.YREXE: +ASCID /LYRA.EXE/ ;NAME OF IMAGE FOR SUBPROCESS

• 0 $CF~EMBX.".S CHAN=EXCHAN, MAXMSG:::::lf: :I. :w 11 Pl=WMSl(:::::Jl:O, BLWQUO::::t240
; c1:~EATE MAIL.BOX

BSBW Em~cm

0 SGETCHN S CHAN::::EXCHAN' Pl:;: I BUF::::EX I TBUF
;GET MAILBOX INFO

BSE{W El:;:f'<OI:;:
• $Cl=~1::.p1:;:c .. "s I MAGE::::L YREXE II p I DADl:;:::::L.. YRAP ID'

, ••• ,- ;CREATE SUBPROCESS
MBXUNT=BBUF+DIBSW_UNIT ;SPECIFY TERMINATION MAILBOX

BSBW El:;:f~Cm
Q !~QI 0 8 CHAN:r.:EXCHAN, FUNC:::::U: I O~> F~l::.ADVBl...I< 11

;QIO <READ> TO MAILBOX
ASTAIIR=EXITAST11IOSB::::MBXIOSB11Pl::::EXITMSG11P2::::1ACC$K_TERMLEN

BSBW i:::1:rnm~

9CONTINUE EXECUTION

1:~1::.T

EXITAST: ;AST ROUTINE FOR TERMINATION MSG
; ENH~Y MASI<

10!1>:
:W!~:

0 .wmm
CMPW
rm Ee~
CMPW
BNEC~

CMPL
BNEC~

CMPI...
BECU ..

+
1:~ET

()

MBXIOSB11ISSS_NORMAL 9I/O SUCCESSFUL.1
20$;BRANCH IF NOT
EXITMSG+ACC$W_MSGTYP11IMSG$_DELPROC 9IS IT A TERMINATION MSG?
20$;NOY SOMETHING ELSE
LYRAPID11MBPID ;rs IT LYRA?
20$;N011 SOMEBODY ELSE
EXITMSG+ACCSl..._FINALSTS,iSSS_NORMAL ;DELETED NORMALLY?
1()$;YES, RETURN

;N011 RESPOND TO ERROR IN LYRA

f AST ROUTINE FINISHED
9HANDLE ALL OTHER CONDITIONS

Figure 7-5 Using a Termination Mailbox

7-19

PROCESS CONTROL SERVICES

Notes on Figure 7-5:

C. The Create Mailbox and Assign Channel ($CREMBX) system
service creates the mailbox, and returns the channel number
at EXCHAN. Note that the maximum message size for a
termination mailbox must be at least 84 (in this example it
is 120).

f) The Get I/O Channel Information ($GETCHN) system service
returns information about the mailbox. The information
returned in the buffer can be referred to by the symbolic
offsets defined in the $DIBDEF macro. These symbolic offsets
are listed under the explanation of the $GETCHN service in
Part II.

8 The Create Process ($CREPRC) system service creates a process
to execute the image LYRA.EXE, and returns the process
identification at LYRAPID. The MBXUNT argument refers to the
unit number of the mailbox, obtained from the buffer BBUF by
using the symbolic offset DIB$W_UNIT.

Gt The Queue I/O Request queues a read request to the mailbox,
specifying an AST service routine to receive control when the
mailbox receives a message and the address of a buffer to
receive the message. The information in the message can be
accessed by the symbolic offsets defined in the $ACCDEF
macro. The process continues executing.

ft When a message is received in the mailbox, the AST service
routine, EXITAST, receives control. Since this mailbox can
be used for other interprocess communication, the AST routine
checks: 1) for successful completion of the I/O operation by
examining the first word in the IOSB, 2) that the message
received is a termination message by examining the message
type field in the termination message at the offset
ACC$W MSGTYPE, 3) the process identification of the process
that has been deleted by examining the second longword of the
!OSB, and 4) the completion status of the process by
examining the status field in the termination message at the
offset ACC$L FINALSTS.

In this example, the AST service routine performs special
action when the subprocess is deleted. All other messages or
error conditions cause a branch to the label 20$.

7-20

CHAPTER 8

TIMER AND TIME CONVERSION SERVICES

Many applications require the scheduling of program activities based
on clock time. Under VAX/VMS, an image can schedule events for a
specific time of day or after a specified time interval. Timer
services can:

• Schedule the setting of an event flag or the queuing of an
asynchronous system trap (AST) for the current process, or
cancel a pending request that has not yet been honored

• Schedule a wakeup request for a hibernating process, or
cancel a pending wakeup request that has not yet been honored

• Set or recalibrate the current system time, if the caller has
the proper user privileges

The timer services require you to specify the time in a unique 64-bit
format. To work with the time in different formats, you can use time
conversion services to:

• Obtain the current date and time in an ASCII string or in
system format

• Convert an ASCII string into the system time format

• Convert a system time value into an ASCII string

• Convert the time from system format to integer values

This chapter describes the system time format and the services that
use it, with examples of scheduling program activities using the timer
services.

8.1 THE SYSTEM TIME FORMAT

VAX/VMS maintains the current date and time (using a 24-hour clock) in
64-bit format. The time value is a binary number in 100-nanosecond
units offset from the system base date and time, which is 00:00
o'clock, November 17, 1858 (the Smithsonian base date and time for the
astronomical calendar). All time values passed to system services
must also be in 64-bit format. A time value can be expressed as:

• An absolute time which is a specific date and time of day.
Absolute times are always positive values.

• A delta time which is a future offset (number of hours,
minutes, seconds, and so on) from the current time. Delta
times are always expressed as negative values.

8-1

TIMER AND TIME CONVERSION SERVICES

You can also specify the address of a time value as O; in this case
the system will always supply the current date and time by default.

8.2 THE CURRENT DATE AND TIME

The Convert Binary Time to ASCII String ($ASCTIM) system service
converts a time in system format to an ASCII string and returns the
string in a 23-byte buffer. If you want to obtain the current time in
ASCII, code the $ASCTIM system service as follows:

ATIMENOW:
+LONG
.LONG
.BLKB

23
ATIMENOW+8
23

9DESCRIPTOR FOR ASCII TIME
9LENGTH OF BUFFER
9ADDRESS OF BUFFER
923 BYTES RETURNED

SASCTIM_S TIMBUF=ATIMENOW 9GET CURRENT TIME

The string returned by the service has the format:

dd-mmm-yyyy hh:mm:ss.cc

where dd is the day of the month, mmm is the month (a 3-character
alphabetic abbreviation), yyyy is the year, and hh:mm:ss.cc is the
time in hours, minutes, seconds, and hundredths of seconds.

The current time can also be obtained in system format with the G~t

Time ($GETTIM) system service, which places the time in a quadword
buffer. For example:

TIME: .BLKQ 1 9BUFFER FOR TIME

SGETTIM_S TIMADR=TIME ;GET TIME

This call to $GETTIM returns the current date and time in system
format in the quadword buffer TIME.

8.3 OBTAINING ~N ABSOLUTE TIME IN SYSTEM FORMAT

The converse of the $ASCTIM system service is the Convert ASCII String
to Binary Time ($BINTIM) system service. You provide the service with
the time in the ASCII format shown above, and the service converts the
string to a time value in 64-bit format. You can then use this
returned value as input to a timer scheduling service.

When you code the ASCII string buffer, you can omit any of the fields,
and the service uses the current date or time value for the field.
Thus, if you want a timer request to be date-independent, you could
format the input buffer for the $BINTIM service as shown below. The
two hyphens that are normally embedded in the date field must be
included, and at least one blank must precede the time field.

ANDON: .ASCID /-- 12:00:00.00/
BNOON: .BLKQ 1

9DESCRIPTOR FOR ASCII 12 NOON
;BUFFER FOR BINARY 12 NOON

$BINTIM_S TIMBUF~ANOQN,TIMADR=BNOON ;CONVERT TIME

8-2

TIMER AND TIME CONVERSION SERVICES

When the $BINTIM service completes, a 64-bit time value representing
"noon today" is returned in the quadword at BNOON.

8.4 OBTAINING A DELTA TIME IN SYSTEM FORMAT

The $BINTIM system service also converts ASCII strings to delta time
values to be used as input to timer services. The buffer for delta
time ASCII strings has the format:

dddd hh:mm:ss.cc

The first field, indicating the number of days, must be specified as 0
if you are coding a "today" delta time.

The following example shows how to use the $BINTIM service to obtain a
delta time in system format.

ATENMIN: +ASCID /0 00:10:00.00/
BTENMIN: +BLKQ 1

;DESCRIPTOR FOR ASCII TEN MINUTES
9BUFFER FOR BfNARY TEN MINUTES

SBINTIM_S TIMBUF=ATENMINPTIMADR=BTENMIN 9CONVERT TIME

If you are a VAX-11 MACRO programmer, you can also specify approximate
delta time values at assembly time, using two MACRO .LONG directives
to represent a time value in terms of 100-nanosecond units. The
arithmetic is based on the formula:

1 second = 10 million * 100 nanoseconds

For example, the following statement defines a delta time value of 5
seconds:

FIVESEC: +LONG -10*1000*1000*5v-1 ;FIVE SECONDS

The value 10 million is expressed as 10*1000*1000 for readability.
Note that the delta time value is negative.

If you use this notation, however, you are limited to the maximum
number of 100-nanosecond units that can be expressed in a longword.
In terms of time values, this is somewhat more than 7 minutes.

8.5 TIMER REQUESTS

Timer requests made with the Set Timer ($SETIMR) system service are
queued, that is, they are ordered for processing according to their
expiration times. The TQELM quota controls the number of entries a
process can have pending in this timer queue.

When you code the $SETIMR system service, you can specify either an
absolute time or a delta time value. Depending on how you want the
request processed, you can specify either or both of the following:

• The number of an event flag to be set when the time expires.
If you do not specify an event flag, the system sets event
flag O.

• The address of an AST service routine to be executed when the
time expires.

8-3

TIMER AND TIME CONVERSION SERVICES

Optionally, you can specify a request identification for the timer
request. You can use this identification to cancel the request, if
necessary. The request identification is passed to the AST service
routine, if one is specified, as the AST parameter so that the AST
service routine can identify the timer request.

Figure 8-1 shows examples of timer requests using event flags and
ASTs. Event flags· and event flag services are described in more
detail in Chapter 3, "Event Flag Services." ASTs are described in more
detail in Chapter 4, "AST (Asynchronous System Trap) Services."

I Example 1: Setting an Ev~-;tFi~

A30SEC: +ASCID /0 oo:oo:J0.00/ ;DESCRIPTOR FOR ASCII 30
P SECONDS, DELTA TIME

B30SEC: +BLKQ 1 PQUADWORD TO HOLD CONVERTED
<BINARY> DELTA TIME

$BINTfM_S TIMBUF==A30SEC,TIMADR=B30SEC PCONVERT TO BINARY
BSBW El~ROR

Q $SETI MR.."S El:.-N=:l:4' DA YT 1 M=B30SEC P SET TI ME TO WA IT
BSBW ERROF'~

8 $WA I TFR_S EFN==:fl:4 P WA IT 30 SECONDS
BSBW ERR or~

Notes on Example 1:

0 The call to SSETIMR requests that event flag 4 be set in 30
seconds (expressed in the quadword B30SEC).

8 The Wait for Single Event Flag ($WAITFR) system service
places the process in a wait state until the event flag is
set. When the timer expires, the flag is set and the process
continues execution.

Figure 8-1 Timer Requests

8-4

TIMER AND TIME CONVERSION SERVICES

jExample 2: Using an AST Service Routine!

ANOON: .ASCID /-- 12:00:00.00/ PDESCRIPTOR FOR ASCII 12 NOON
BNOON: .BLKQ 1 PTO HOLD CONVERTED <BINARY> NOON

0 $IclNTIM S TIMBUF::::ANOON,, T:CMADR::::f.~NOON ; CONVEtH TO BINARY
BSBW ERROR

fl ~iSET I MFLS DAYT I M:r.:BNOON,, ASTAf.tl~::::ASTSl::JW, RE:'.(~ I [IT:::::B: 12
PSET TIMER FOR NOON,, SPECIFY AST ROUTINE,
9PASS REQUEST I.D. OF 12 AS AST PARAMETER+

BSBW El~FWR

l~ET

ASTSERV: f)
.wmm
CMPL.
BNEt~

l~ET

RET

0
:U~?.,4<AP>

:1.0$

Notes on Example 2:

;ENTRY MASK FOR AST ROUTINE
;19 THIS A "NOON" AST REQUEST?
9IF NOT~ HANDLE OTHER TYPECS)
;HANDLE "NOON" AST REQUEST

PHANDLE OTHER TYPES OF REQUESTS

0 The call to $BINTIM converts the ASCII string representing
12:00 noon to system format. The value returned in BNOON is
used as input to the $SETIMR system service.

8 The AST routine specified in the $SETIMR request will be
called when the timer expires, that is, at 12:00 noon. The
REQIDT argument identifies the timer request. (This argument
is passed as the AST parameter and is stored at offset 4 in
the argument list. See Section 4.4, "The AST Service
Routine.") The process continues execution; when the timer
expires, it is interrupted by the delivery of the AST. Note
that if the current time of day is past noon, the timer
expires immediately.

f) This AST service routine checks the parameter passed by the
REQIDT argument and checks, in this example, whether it must
service the 12:00 noon timer request or another type of
request (identified by a different REQIDT value). When the
AST service routine completes, the process continues
execution at the point of interruption.

Figure 8-1 (Cont.) Timer Requests

8-5

TIMER AND TIME CONVERSION SERVICES

8.5.1 Canceling Timer Requests

Cancel Timer Request ($CANTIM) system service cancels timer requests
that have not yet been processed. The entries are removed from the
timer queue. Cancellation is based on the request identification
given in the timer request. For example, to cancel the request
illustrated in Example 2 of Figure 8-1, you would code:

SCANTIM_S REQIDT=t12

If you assign the same identification to more than one timer request,
all requests with that identification are canceled. If you do not
specify the REQIDT argument, all your requests are canceled.

8.6 SCHEDULED WAKEUPS

Example 1 in Figure 8-1 showed a process placing itself in a wait
state for a period of time using the $SETIMR and $WAITFR services.
Another way for a process to make itself inactive is by hibernating.
A process hibernates by issuing the Hibernate ($BIBER) system service;
hibernation is reversed by a wakeup request, which can be effected
immediately with the $WAKE system service, or scheduled with the
Schedule Wakeup ($SCHDWK) system service.

The following example shows a process scheduling a wakeup for itself
prior to hibernating:

ATENSECl.ASCID /0 00100110.00/ ;DESCRIPTOR FOR 10-SECOND WAIT TIME
BTENSEC:.BLKQ 1 ;ro HOLD BINARY TEN-SECOND VALUE

SBINTIM_S TIMBUF=ATENSEC,TIMADR=BTENSEC ;CONVERT TIME
SSCHDWK_S DAYTIM=BTENSEC ;SCHEDULE WAKE
SHIBER_S ;SLEEP TEN SECONDS

Hibernation and wakeup are described in more detail in Chapter 7,
"Process Control Services." Note that a suitably privileged process
can wake or schedule a wakeup for another process; thus, cooperating
processes can synchronize activity using hibernation and scheduled
wakeups. Moreover, when you code a $SCHDWK system service, you can
specify that the wakeup request be repeated at fixed time intervals.

8.6.1 Canceling Scheduled Wakeups

Scheduled wakeup requests that are
processed can be canceled with
service.

pending but have not yet been
the Cancel Wakeup ($CANWAK) system

The following example shows the scheduling of wakeup requests for a
process, CYGNUS, and the subsequent cancellation of the wakeups. The
SSCHDWK system service in this example specifies a delta time of one
minute and an interval time of one minute; the wakeup is repeated
every minute until the requests are canceled.

8-6

TIMER AND TIME CONVERSION SERVICES

CYGNUS: +ASCID /CYGNUS/ 9DESCRIPTOR FOR PROCESS NAME
ONE-MIN:.ASCID /0 00:01:00.00/ ;DESCRIPTOR FOR 1 MIN <DELTA>
INTERVAL: .QUAD 1 ;a BYTES TO HOLD BINARY 1 MIN

SBINTIM_S TIMBUF=ONE_MIN,TIMADR=INTERVAL ;CONVERT TO BINARY

SSCHDWK_S PRCNAM=CYGNUSrDAYTIM=INTERVAL,REPTIM=INTERVAL
;WAKE UP EVERY MINUTE

SCANWAK_S PRCNAM=CYGNUS ;CANCEL WAKE-UPS

8.7 NUMERIC AND ASCII TIME

The Convert Binary Time to Numeric Time ($NUMTIM) system service
converts a time in the system format into binary integer values. The
service returns each of the components of the time (year, month, day,
hour, and so on) into a separate word of a seven-word buffer. The
$NUMTIM system service and the format of the information returned are
described in Part II.

When you need the time formatted into ASCII for inclusion in an output
string, you can use the $ASCTIM system service. The $ASCTIM service
accepts as an argument the address of a quadword that contains the
time in system format and returns the date and time in ASCII format.

If you want to include the date and time in a character string that
contains additional data, you can format the output string with the
Formatted ASCII Output ($FAQ) system service. The $FAQ system service
converts binary values to ASCII representations, and substitutes the
results in character strings according to directives supplied in an
input control string. Among these directives are 1%T and !%D, which
convert a quadword time value to an ASCII string and substitute the
result in an output string. For examples of how to do this, see the
discussion of $FAO in Part II.

8.8 SETTING THE SYSTEM TIME

The Set System Time ($SETIME) service allows a user with the operator
(OPER) and logical I/O (LOG IO) privileges to set the current system
time. You can specify a new system time (using the TIMADR argument),
or you can recalibrate the current system time using the processor's
hardware time-of-year clock (omitting the TIMADR argument). If you
specify a time, it must be an absolute time value; a delta time
(negative) value is invalid.

The system time is set whenever the system is booted. There is
normally no need to change the system time between system boots;
however, in certain circumstances you may wish to change the system
time without rebooting. For example, you might specify a new system
time to synchronize two processors, or to adjust for changes between
standard time and daylight savings time. You might wish to

8-7

TIMER AND TIME CONVERSION SERVICES

·recalibrate the time to ensure that the system time matches the
hardware clock time (the hardware clock is more accurate than the
system clock).

The $SETIME service is called automatically by the SET TIME operator
command.

Any change to the system time does not change the interval remaining
for existing time requests. This is true for both absolute and delta
time requests. The following example shows the effect of changing the
system time on an existing timer request. In the example, a wakeup
request scheduled for 08:30 is automatically changed to 09:30 when the
system time is changed from 08:00 to 09:00.

WAKEUP: • ASC I [I
NEWTIM: • ASCHt
HINTIM: + BLKQ

I-- oa:Jo:oo.001 ;9:30 TODAY
I-- 09:00:00.00I ;9 O'CLOCK TODAY
1 ;ro HOLD CONVERTED BINARY TIMES

ASSUME CURRENT SYSTEM TIME IS oe:oo:oo

• $BIN'J'IM __ 9

BSECW
$SCHDWK S
BSBW
$BINTIM .. _S

BSBW
~~SET 1 ME.._S
BSBW
$HI:BER._S

TI MBLJF::::lJAl<EUP,, ·-·
TIMADR::::J~J.NTIM

E 1:~ 1:~ () F~
DAYT'.CM::::BINTIM
i:-:1:~1~01~

r :t: MX:cUF::::NE:.WT IM,,
TIMADR:.~:B:CNTIM

ER Rm:;:
TIMAim::::BINTIM
Et~t:;:or.;:

;CONVERT WAKEUP T:t:ME TO BINARY

;scHEDULE WAKEUP FOR 8:30

;CONVERT NEW SYSTEM T:t:ME TO
IHNAt=~Y

;CHANGE SYSTEM TIME TO 09:00

;HIBERNATE TILL 9:30 (30 MINUTES>

SINCE THE INTERVAL BETWEEN THE CURRENT TIME AND THE WAKEUP
TIME WAS 30 MINUTES WHEN WE MADE THE $SETIME REQUEST,
CHANGING THE SYSTEM TIME TO 9:00 CAUSES THE WAKEUP TIME
TO BE CHANGED TO 9:30.

8-8

CHAPTER 9

CONDITION-HANDLING SERVICES

A condition handler is a procedure that is given control when an
exception occurs. An exception is an event that is detected by the
hardware or,software and that interrupts the execution of an image.
Examples of exceptions include arithmetic overflow or underflow and
reserved opcode or operand faults.

If you determine that a program needs to be informed of particular
exceptions so that it can take corrective action, you can code and
specify a condition handler. This condition handler, which will
receive control when any exception occurs, can test for specific
exceptions.

If an exception occurs and you have not specified a condition handler,
the default condition handler established by the command interpreter
is given control. If the exception is a fatal error, the default
condition handler issues a descriptive message and performs an exit on
behalf of the image that incurred the exception.

This chapter describes how the condition-handling mechanism in VAX/VMS
works and explains how to write a condition handler.

9.1 TYPES OF EXCEPTION

Exceptions can be generated by:

• Hardware

• Software

• System service failures

Hardware-generated exceptions always result in conditions that require
special action if program execution is to continue.

Software-generated exceptions result in error or warning conditions.
These conditions and their messages are documented in the VAX/VMS
System Messages and Recovery Procedures Manual or, for certain
software routines, in the manual associated with their routine. (For
example, linker error messages appear in the VAX-11 Linker Reference
Manual.)

System service failure exceptions occur when an error or severe error
status is returned from a call to a system service. You can choose to
handle error returns from system services by using the condition
handling mechanism rather than other error checking methods. If you
want to handle exceptions generated by service failures, you must

9-1

CONDITION-HANDLING SERVICES

enable system service failure exception mode with the Set System
Service Failure Mode ($SETSFM) system service. For example:

$SETSFM_S ENBFLG=t1

System service failure exception mode is initially disabled, and may
be enabled or disabled at any time during the execution of an image.
For additional information on system service failure exception mode,
see Section 2.1.5.4 (MACRO programmers) or Section 2.2.2.3 (high-level
language programmers).

Table 9-1 provides
exceptions.

a summary of common conditions caused by

Table 9-1
Summary of Exception Conditions

------ ···.,--r---··-·--·-··----···-·----··-···---- ·----

Condition
Name/Type

SS$ ACCVIO
-(Fault)

SS$ ARTRES
-(Trap)

SS$ ASTFLT
- (Fault)

SS$ BREAK
-(Fault)

SS$ CMODSUPR
:- (Trap)

SS$ CMODUSER
- (Trap)

Explanation

Access violation

Reserved arithmetic trap

Stack invalid during
attempt to deliver an
AST

Breakpoint instruction
encountered

Change mode to supervisor
instruction encountered2

Change mode to user
instruction encountered2

L..--------'------·-·····---"'·-····-·-------···-·-··

Additional Arguments

1. Reason for access violation. This is a
mask with the format:

Rit 0 = type of access violation

Bit 1

Rit ?.

0 page tahle entry protection
code did not permit intended
access

1 = POLR, PlLR, or SLR length
violation

paqe table entry reference
o specified virtual address

not accessible
associated page table entry
not accessible

intended access
o = read
1 = mociify

2. Virtual address to which access was
attenpted

None

1. Stack pointer value when fault occurred
?.. AST parameter of failed AST
3. Program counter (PC) at AST delivery

interrupt
4. Processor status longword (PSL) at AST

delivery interrupt!
5. Program counter (PC) to which AST would

have been deli ve recH
n. Processor status longword (PSL) to which

AST would have been deliverecH

None.

Change mode code. The possible values are
-3::17~8 through 327n7.

Change mode code. The possible values are
-327li8 through 327r-7.

The PC and PSL normally included in the signal array are not included in this argument list.
The sta~k pointer of the access mode receiving this exception is reset to its initial value.

If a change mode handler has been declared for user or supervisor modes with the Declare
Change Mode or Compatibility Mode Handler (SDCLCMH) system service, that routine receives
control when the associated trap occurs.

9-2

Condition
Name/Type

CONDITION-HANDLING SERVICES

Table 9-l(Cont.)
Summary of Exceptional Conditions

Explanation Additional Arguments

r....---------<~--------------~.----f..--------------- ----···· ---------···--
SS$ COMPAT

-(Fault)

SS$_DECOVF
(Trap)

SS$_FLTDIV
(Trap)

SS$ FLTDIV F
- (Fault)

SS$_FLTOVF
(Trap)

SS$_FLTOVF F
(FaultT

SS$_FLTUND
(Trap)

SS$ FLTUND F - (Fault)

SS$ INTDIV - (Trap)

SS$ INTOVF - (Trap)

SS$_0PCCUS
(Fault)

SS$_OPCDEC
(Fault)

SS$_PAGRDERR
(Fault)

SS$ RADRMOD
- (Fault)

SS$ ROPRAND
-(Fault)

SS$ SSFAIL
-(Fault)

SS$_SUBRNG

SS$ TBIT
-(Fault)

Compatibility mode
exception. This exception
condition can only occur
when executing in
compatibility mode.3

Decimal overflow

Floating/decimal divide by zero

Floating divide by zero
fault

Floating overflow

Floating overflow fault

Floating underflow

Floating underflow fault

Integer divide by zero

Integer overflow

Opcode reserved to customer
fault

Opcode reserved to Digital
fault

Read error occurred during
an attempt to read a faulted
page from disk

Attempt to use a reserved
addressing mode

Attempt to use a reserved
operand

System service failure (when
system service failure
exception mode is enabled)

Subscript range trap

Trace bit is pending following
an instruction

Type of compatibility exception. The possible
values are:

0 = Reserved instruction execution
l = BPT instruction executed
2 = IOT instruction executed
3 = EMT instruction executed
4 = TRAP instruction executed
5 = Illegal instruction executed
n = Odd address fault
7 = TBIT trap

None

None

None

None

None

None

None

None

None

None

None

1. Translation not valid reason.
a mask with the format:

Bit 0 = 0

This

Bit 1 = page table entry reference

is

0 = specified virtual address
not valid

1 = associated page table
not va 1 id

Bit ?. = intended access
0 = read
1 = modify

None

None

Status return from system service (RO)
(The same value is in RO of the
mechanism array)

None

None

entry

.._ _______ .__ ________________ __..__ ____________ , _______________ __J

3 If a compatibility mode
Compatibility Mode Handler
fault occurs.

handler has been declared with the Declare Chanqe Mode or
($DCLCMH) system service, that routine receives control when this

9-3

CONDITION-HANDLING SERVICES

9.1.l Change Mode and Compatibility Mode Handlers

There are two types of hardware exception that can be handled in a
special way, bypassing the normal condition-handling mechanism
described in this chapter. These are:

• Traps caused by change mode to user or change mode to
supervisor instructions

• Compatibility mode faults

You can use the Declare Change Mode or Compatibility Mode Handler
($DCLCMH) system service to establish procedures to receive control
when one of these conditions occurs. The $DCLCMH system service is
described in Part II.

9.2 HOW TO SPECIFY CONDITION HANDLERS

You can establish condition handlers to receive control in the event
of an exception in two ways:

1. By specifying the address of the entry mask of a condition
handler in the first longword of a procedure call frame

2. By establishing exception vector~ with the Set Exception
Vector ($SETEXV) system service

The first of these methods is the most common way to specify a
condition handler for a particular image. It is also the most
efficient way in terms of declaration. The VAX-11 MACRO programmer
can use a single move address instruction to place the address of the
condition handler in the longword pointed to by the current frame
pointer (FP). For example:

MOVAL HANDLER,(FP)

The high-level language programm~r can call the common run-time
library routine LIB$ESTABLISH (see the VAX-11 Run-Time Library
Reference Manual); however, some languages provide access to
condition-handling as part of the language.

Each procedure on the call stack can declare a condition handler.

The $SETEXV system service allows you to specify addresses for a
primary exception vector, a secondary exception vector, and a last
chance exception vector. Vectors may be specified for each access
mode. The primary exception vector is reserved for the debugger.

An address of O in the first longword of a procedure call frame or in
an exception vector indicates that no condition. handler exists for
that call frame or vector.

9-4

CONDITION-HANDLING SERVICES

9.3 THE EXCEPTION DISPATCHER

When an exception occurs, control is passed to the operating system's
exception dispatching routine. The exception dispatcher searches for
a condition-handling routine using the following search order:

1. The primary exception vector for the access mode at which the
program was executing when the exception occurred.

2. The secondary exception vector for the access mode at which
the program was executing when the exception occurred.

3. The condition handler address specified in the procedure call
stack of the access mode at which the program was executing
when the exception occurred. Call frames on the stack are
scanned backwards, using the saved frame pointer in each call
~rame to refer to the previous call frame.

4. The last chance exception vector for the access mode at which
the program was executing when the exception occurred.

The search is terminated when the dispatcher finds a condition
handler. If the dispatcher cannot find a user-specified condition
handler, it calls the default condition handler established by the
command interpreter, if the image was initiated by the command
interpreter. The default handler issues a message and either
continues program execution or performs an exit on behalf of the
process, depending on whether the condition was a warning or an error
condition, respectively.

The search can also be terminated when the dispatcher detects a saved
frame pointer containing a 0 (that is, it reaches the end of the
stack), or when an access violation occurs. In these cases, the
system performs an exit for the process, with the return status code
SS$ NOHANDLER indicating "absence of condition handler" (for a 0 frame
poi~ter) or SS$ ACCVIO indicating "bad stack" (for an access
violation). -

Figure 9-1 illustrates the exception dispatcher's search of the call
stack for a condition handler.

9-5

CONDITION-HANDLING SERVICES

..-------------··------··- ·---·-·-·--·----·---

Procedure
c

Procedure
B

Procedure
A

0 __ ,___,
FP

_ ___,

1
0

, __ ___,
FP

I
HANDLERA

FP

--

•

..,.,. ___ Exception

Occurs

Condition
Handler Found

----------------·

Figure 9-1 Search of Stack for Condition Handler

Notes on Figure 9-1:

1. The illustration of the call stack indicates the calling
sequence: Procedure A called Procedure B, and Procedure B
called Procedure C. Procedure A established a condition
handler.

2. An exception occurs while Procedure C is executing. The
exception dispatcher searches for a condition handler.

3. After checking for a condition handler declared in the
exception vectors (assume that none has been specified for
this process), the dispatcher looks at the first longword of
Procedure C's call frame. A value of 0 indicates that no
condition handler has been specified. The dispatcher locates
the call frame for Procedure B by using the frame pointer
(FP) in Procedure C's call frame. Again, it finds no
condition handler, and locates Procedure A's call frame.

4. The dispatcher locates and gives control to HANDLERA.

9-6

CONDITION-HANDLING SERVICES

9.4 THE ARGUMENT LIST PASSED TO A CONDITION HANDLER

When the dispatcher finds a condition handler, it passes control to it
using a CALLG instruction. The argument list passed to the condition
handler is constructed on the stack and consists of the addresses of
two argument arrays, as illustrated in Figure 9-2; these arguments
are described in detail in the next two subsections (9.4.1 and 9.4.2}.

You can define symbolic names to refer to these arguments using the
$CHFDEF macro instruction. The symbolic names are:

Symbolic Offset

CHF$L SIGARGLST
CHF$L-MCHARGLST

CHF$L SIG ARGS
CHF$L-SIG-NAME
CHF$L-SIG-ARG1 - -
CHF$L MCH ARGS
CHF$L-MCH-FRAME
CHF$L-MCH-DEPTH
CHF$L-MCH-SAVRO
CHF$L-MCH-SAVR1 - -

9.4.1 Signal Array Arguments

value

Address of signal array
Address of mechanism array

Number of signal arguments
Condition name
First signal-specific argument

Number of mechanism arguments
Establisher frame address
Frame depth of establisher
Saved register O
Saved register 1

The signal array contains values describing the condition.
values are:

These

1. Condition name -- The symbolic value assigned to the specific
condition. The possible conditions and their symbolic
definitions are listed in Table 9-1.

2. Additional arguments -- Specific information relating to the
condition. Table 9-1 also shows the additional arguments
provided with each condition.

3. PC -- The program counter at the time of the exception.
Depending on the type of exception (fault or trap), this can
be the address of the' instruction that caused the exception
(for a fault), or of the following instruction (for a trap).

4. PSL -- The processor status longword at the time of the
exception.

9-7

CONDITION-HANDLING SERVICES

Signal Array

-
In

condition name

first signal argument

Argument List
,..(, additional argumems for

I
't"

condition handler,

2 if any

address of signal array PC

address of mechanism array PSL

Mechanism Array

-._

establisher frame

depth

RO

RT

You can define symbolic names to refer to these arguments using the
$CHFDEF macro instruction. The symbolic names are:

Symbolic Offset

CHF$L_SIGARGLST
CHF$L_MCHARGLST

CHF$L-SIG-ARGS
CHF$L_SIG_NAME
CH F$L-SI G-ARG 1

CH F$L-MCH-ARGS
CHF$L-MCH-FRAME
CHF$L-MCH-DEPTH
CHF$L_MCH-SAVRO
CHF$L_MCH_SAVR1

Value

Address of signal array
Address of mechanism array

Number of signal arguments
Condition name
First signal-specific argument

Number of mechanism arguments
Establisher frame address
Frame depth of establisher
Saved register 0
Saved register 1

I 4

""
~

Figure 9-2 Argument List and Arrays Passed to Condition Handler

9-8

CONDITION-HANDLING SERVICES

9.4.2 Mechanism Array Arguments

The mechanism array describes the context in which the exception
occurred. The arguments supplied are:

1. Establisher frame -- The frame pointer (FP) register contents
of the call frame that established the condition handler.
This is the address of the longword containing the condition
handler address. For example, if the call stack is as shown
earlier in Figure 9-1, this argument points to the call frame
for Procedure A.

This value can be used to display local variables in the
procedure that established the condition handler, if the
variables are at known offsets from the FP of the procedure.

2. Depth -- The frame number of the procedure that established
the condition handler, relative to the frame of the procedure
that incurred the exception. The depth is determined as
follows:

Depth Meaning

-3 Condition handler was established in the last
chance exception vector

-2 Condition handler was established in the primary
exception vector

-1 Condition handler was established in the secondary
exception vector

0 Condition handler was established by the frame
that was active when the exception occurred

1 Condition handler was established by the caller of
the frame that was active when the exception
occurred

2 Condition handler was established by the caller of
the caller of the frame that was active when the
exception occurred

and so on.

For example, if the call stack is as shown earlier in Figure
9-1, the depth argument passed to HANDLERA would have a value
of 2.

The condition handler can use this argument to determine
whether it wants to handle the condition. For example, the
handler may not want to handle the condition if the exception
that caused the condition did not occur in the establisher
frame.

3. RO The contents of register O when the exception occurred.

4. Rl The contents of register 1 when the exception occurred.

9-9

CONDITION-HANDLING SERVICES

9.5 COURSES OF ACTION FOR THE CONDITION HANDLER

After the condition-handling routine determines the nature of the
exception, it can take one of the following courses of action:

1. Continue

The condition handler may or may not be able to fix the
problem but the program can continue execution. The handler
places the return status value SS$ CONTINUE in RO and issues
a RET instruction to return control to the dispatcher. The
exception dispatcher returns control to the procedure that
incurred the exception, at the instruction that caused the
exception. If the exception was a fault, the instruction
that caused it is reexecuted; if the exception was a trap,
control is returned at the instruction following the one that
caused it. (In the case of a trap, the instruction causing
the trap can sometimes be reexecuted by subtracting the
length of the instruction from the PC in the signal array.)

2. Resignal

The handler cannot fix the problem, or this condition is one
that it does not handle. It places the return status value
SS$ RESIGNAL in RO and issues a RET instruction to return
control to the exception dispatcher. The dispatcher resumes
its search for a condition handler. If it finds another
condition handler, it passes control to that routine.

3. Unwind

The condition handler cannot fix the problem, and execution
cannot continue using the current flow. The handler issues
the Unwind Call Stack ($UNWIND) system service to unwind the
call stack. Call frames may then be removed from the stack
and the flow of execution modified, depending on the
arguments to the $UNWIND service.

Examples of these three situations are shown in the next two sections.

9.n EXAMPLE OF CONDITION-HANDLING ROUTINES CONTINUING AND RESIGNALING

Figure 9-3 shows two procedures, A and B, that have declared condition
handlers. The notes describe the sequence of events that would occur
if a call to a system service failed during the execution of Procedure
B.

9-10

CONDITION-HANDLING SERVICES

+ENTRY PGMAPO 9ENTRY MASK FOR PROCEDURE A
9DECLARE CONDITION HANDLER
9ENABLE SSFAIL EXCEPTIONS
9CALL PROCEDURE B

0 MOVAL HANDl...F.:.RA' < FP >
$SETSFM_S ENBFLG=t1

f) CAL.LG ARGL :c ST, PGMEc

HANDLERA;f)
.WORD
MOVL
CMPL

~M<R2,R3,R4> 9ENTRY MASK OF HANDLERA
CHF$L_SIGARGLST<AP>,R4 9GET ADDR OF SIGNAL ARGS
tSS$_SSFAIL11CHF$L_SIG_NAME<R4>

:I. 0 ~~.;

;SYSTEM SERVICE FAILURE?
BNEC~ 10$;No - RESIGNAL

0·

MOVZWL tSS$_CONTINUE,RO
RET
MOVZWL tSSS-RESIGNAL11RO
l:::ET

;HANDLE SSFAIL EXCEPTION

9SIGNAL TO CONTINUE
;RETURN TO EXCEPTION DISPATCHER
9SIGNAL TO RESIGNAL
9RETURN TO DISPATCHER

+ENTl:::Y PGMB11
9MOVAI...

'''M<l:::2, R3111:M>
HANDl...EFU~" <Ff'>

;ENTRY MASK OF PROCEDURE B
;DECLARE CONDITION HANDLER

.0
HANDL..EFrn; 0

.WORD
MOVI...
CMPI...
BNEQ

MOVZWL
1:~ET

:1.os:(i) MOVZWL
1:::ET

~M<R211R311R4> ;ENTRY MASK OF HANDl...ERB
CHFSl..._SIGARGl...STCAP>11R4 ;GET ADDR OF SIGNAL ARGS
iSS$_BREAK,CHF$L_SIG_NAME<R4> PBREAKPOINT FAULT?
10$;N011 RESIGNAL

;YES, HANDLE EXCEPTION

=ft:SS~L.CONT:c Nm::,, RO P SIGNAi ... TO CONTINUE
Y 1::: 1::: Tl.IF~ N TO EXCEPTION DISPATCHER

tSSS_RESIGNAl...vRO Y f:>IGNAI... TO l:::ESIGNAL..
; 1:~1:::Tu1:~N TO f.I I SPATCHEF~

Figure 9-3 Example of Condition Handling Routines

Notes on Figure 9-3:

0 Procedure A executes and establishes condition handler
HANDLERA. HANDLERA is set up to respond to exceptions caused
by failures in system service calls.

8 During its execution, Procedure A calls Procedure B.

9 Procedure B establishes condition handler HANDLERB. HANDLERB
is set up to respond to breakpoint faults.

_, While Procedure B is executing, an exception occurs caused by
a system service failure.

0 The exception dispatcher searches the exception vectors for a
condition handler (assume there are none defined), and then
searches the call stack. HANDLERB is called with the
condition SS$ SSFAIL.

9-11

CONDITION-HANDLING SERVICES

CD Since HANDLERS only handles breakpoint faults, it places the
return value SS$ RESIGNAL in RO and returns control to the
exception dispatcher.

f) The exception dispatcher resumes its search for a condition
handler and calls HANDLERA.

CD HANDLERA handles the system service failure exception,
corrects the condition, places the return value SS$ CONTINUE
in RO, and returns control to the exception dispatcher.

4D The dispatcher returns control to Procedure s, and execution
of Procedure B resumes at the instruction following the
system service failure.

9.7 UNWINDING THE CALL STACK

The third course of action a condition handler can take is to unwind
the procedure call stack. The unwind operation is complex, and should
only be used when control must be restored to an earlier procedure in
the calling sequence. Moreover, use of the $UNWIND system service
req~ires the calling condition handler to be aware of the calling
sequence and of the exact point to which control is to return.

The $UNWIND system service accepts two optional arguments:

1. The depth to which the unwind is to occur. If the depth is
1, the call stack is unwound to the caller of the procedure
that incurred the exception. If the depth is 2, the unwind
is to the caller's caller, and so on.

2. The address of a location to receive control when the unwind
is complete, that is, a return PC to replace the current PC
in the call frame of the procedure that will receive control
when all specified frames have been removed from the stack.

If no arguments are supplied to the $UNWIND service, the unwind is
performed to the caller of the procedure that established the
condition handler that is issuing the $UNWIND service. Control is
returned to the address specified in the return PC for that procedure.
Note that this is the default and normal case for unwinding.

Figure 9-4 illustrates an unwind situation and describes some of the
possible results.

During the actual unwinding of the call stack, the unwind routine
examines each frame in the call stack to see if a condition handler
has been declared. If a handler has been declared, the unwind routine
calls the handler with the status value SS$ UNWIND (indicating that
the call stack is being unwound) in the conditTon name argument of the
signal array. When a condition handler is called with this status
value, it can perform any procedure-specific cleanup operations
required. After the handler returns, the call frame is removed from
the stack.

Thus, in Figure 9-4, HANDLERS may be called a second time, during the
unwind operation. Note that HANDLERS does not have to be able to
specifically interpret the SSS UNWIND status value; the RET
instruction merely returns controT to the unwind procedure, which does
not check any status values.

9-12

CONDITION-HANDLING SERVICES

Procedure
D

Procedure
c

Procedure
B

Procedure
A

0

FP

I
0

FP

1
HANDLE RB

FP

1
0

FP

~ -

.-. -

~ -

~

Figure 9-4 Unwinding the Call Stack

Notes on Figure 9-4:

1. The procedure call stack is as shown. Assume that no
exception vectors are declared for the process and that the
exception occurs during the execution of Procedure D.

2. Since neither Procedure D nor Procedure C has established a
condition handler, HANDLERS receives control.

3. If HANDLERS issues the $UNWIND system service with no
arguments, the call frames for s, C, and D are removed from
the stack (along with the call frame for HANDLERB itself),
and control returns to Procedure A. Procedure A receives
control at the point following its call to Procedure B.

4. If HANDLERS issues the $UNWIND system service specifying a
depth of 2, call frames for C and D are removed, and control
returns to Procedure B.

9-13

CONDITION-HANDLING SERVICES

9.8 MULTIPLE EXCEPTIONS

It is possible for a second exception to occur while a condition
handler or a procedure that it has called is still executing. In this
case, when the exception dispatcher searches for a condition handler,
it skips the frames that were searched to locate the first handler.

The search for a second handler terminates in the same manner as the
initial search, as described in Section 9.3.

If the $UNWIND system service is issued by the second active condition
handler, the depth of the unwind is determined according to the same
rules followed in the exception dispatcher's search of the stack: all
frames that were searched for the first condition handler are skipped.

If an exception occurs during the execution of a handler established
in the primary or secondary exception vector, that handler must handle
the additional condition.

9-14

CHAPTER 10

MEMORY MANAGEMENT SERVICES

The VAX/VMS memory management routines map and control the
relationship between physical memory and a process's virtual address
space. These activities are, for the most part, transparent to you as
a user and to your programs. However, you can in some cases make a
program more efficient by explicitly controlling its virtual memory
usage. Memory management services allow you to:

• Increase or decrease the virtual address space available in a
process's program or control region

• Control the process's working set size and the exchange of
pages between physical memory and the paging device

• Define disk files containing data or shareable images and map
the file into the process's virtual address space

This chapter discusses the services that provide these capabilities.
However, before you use any of these services, you should have an
understanding of the VAX-11 memory structure and memory management
routines. Where pertinent, virtual memory concepts related to the use
of particular services are discussed in this chapter. For more
background information, see the VAX/VMS Summary Description and
Glossary.

10.1 INCREASING VIRTUAL ADDRESS SPACE

The virtual address space of a process is divided into two regions:

1. The program region (PO), which contains the image currently
being executed.

2. The control region (Pl), which contains the information
maintained by the system on behalf of the process. It also
contains the user stack, which expands toward the
lower-addressed end of the control region.

Figure 10-1 illustrates the layout of a process's virtual memory. The
initial size of a process's virtual address space depends on the size
of the image being executed.

To facilitate memory protection and mapping, the virtual address space
is subdivided into 512-byte units called pages. Using memory
management services, a process can add a specified number of pages to
the end of either the program region or the control region. Adding
pages to the program region provides the process with additional space
for image execution, for example, for the dynamic creation of tables
or data areas. Adding pages to the control region increases the size

10-1

MEMORY MANAGEMENT SERVICES

of the user stack. (The user stack can also be expanded when the
image is linked, by the use of the STACK= option in a linker options
file.)

The maximum size to which a process can increase its address space is
controlled by an entry in the system authorization file for the user.

Virtual
Address

00000000

3FFFFFFF
40000000

7FFFFFFF

PROGRAM REGION
(PO)

I
I

direction of
growth

I

length------L-

CONTROL REGION
(Pl)

length- - - - - -.- -

I
I

direction of
growth

I
I

Figure 10-1 Layout of Process Virtual Address Space

10.2 INCREASING AND DECREASING VIRTUAL ADDRESS SPACE

The Expand Program/Control Region ($EXPREG) system service adds pages
to the end of either the program or control region, and optionally
returns the range of virtual addresses of the new pages. For example,
if you want to add four pages to a process's program region, you can
code a call to the $EXPREG system service as follows:

BEGf:>F'ACE:
• Bl...l'\I ... ;2 LONGWORDS TO HOLD START AND END OF NEW PAGES

SEXPREG_S PAGCNT=t4,RETADR=BEGSPACE,REGION~#O ;GET 4 PAGES

To add the same number of pages to the control region, you would
specify REGION=#l.

10-2

MEMORY MANAGEMENT SERVICES

When pages that have been added at the end of a region are no longer
needed, they can be deleted with the Contract Program/Control Region
($CNTREG) system service. As for the $EXPREG service, you code the
number of pages you want deleted and the region:

SCNTREG_S PAGCNT=+4,REGION=t0

Note that the REGION argument for both the $EXPREG and $CNTREG
services is optional; if not specified, the pages are added to or
deleted from the program region by default.

The $EXPREG and $CNTREG services can only add or delete pages at the
end of a particular region. When you need to add or delete pages that
are not at the end of these regions, you can use the Create Virtual
Address Space ($CRETVA) and Delete Virtual Address Space ($DELTVA)
system services. For example, if you have used the $EXPREG service
twice to add pages to the program region, and want to delete the first
range of pages but not the second, you could use the $DELTVA system
service as shown in the following sequence:

BEGSPACEA: +BLKL
BEGSPACEB: +BLKL

2
2

02 LONGWORDS TO HOLD START + END OF 1ST AREA
92 LONGWORDS TO HOLD START + END OF 2ND AREA

SEXPREG_S PAGCNT=t4,RETADR=BEGSPACEA~REGION=#O OFOUR PAGES
BSBW ERROR

+

SEXPREG_S PAGCNT=l3vRETADR=BEGSPACEBvREGION=IO ;THREE MORE
BSBW ERROR

SDELTVA_S INADR=BEGSPACEA ;DELETE FIRST 4 PAGES
BSBW ERROR

In the above example, the first call to $EXPREG adds four pages to the
program region; the virtual addresses of the pages are returned in
the 2-longword array at BEGSPACEA. The second call adds three pages,
and returns the addresses at BEGSPACEB. The call to $DELTVA deletes
the first four pages that were added.

10.2.1 Input Address Arrays and Return Address Arrays

When the $EXPREG system service adds pages to a region, it adds them
in the normal direction of growth for the region. The return address
array, if requested, indicates the order in which the pages were
added:

• If the program region is expanded, the starting virtual
address is lower than the ending virtual address.

• If the control region is expanded, the starting virtual
address is higher than the ending virtual address.

Conversely, the direction of contraction with the $CNTREG system
service is from a higher to a lower address in the program region and
from a lower to a higher address in the control region.

The addresses returned indicate the first byte in the first page added
or deleted and the last byte in the last page added or deleted.

10-3

MEMORY MANAGEMENT SERVICES

When input address arrays are specified for the Create or Delete
Virtual Address Space system services ($CRETVA and $DELTVA,
respectively), these services add or delete pages beginning with the
address specified in the first longword and ending with the address
specified in the second longword.

The order in which the pages are added or deleted does not have to be
in the normal direction of growth for the region. Moreover, since
these services only add or delete whole pages, they ignore the
low-order 9 bits of the specified virtual address (the low-order 9
bits contain the byte offset within the page). The virtual addresses
returned do indicate the byte offsets.

Table 10-1 shows some sample virtual addresses that might be specified
as input to $CRETVA or $DELTVA and shows the return address arrays, if
all pages are successfully added or deleted.

Table 10-1
Sample Virtual Address Arrays

Input Array Output Array
Start End Region Start End

1010 Hi70 PO 1000 17FF

1450 1451 PO 1400 15FF

1450 1450 PO 1400 15FF

7FFEC010 7FFEC010 Pl 7FFEC1FF 7FFECOOO

7FFEC010 7F'FEBCAO Pl 7FFEC1FF 7FFEBCOO

Number of
Pages

4

l

l

l

3

Note that if the input virtual addresses are the same, as in the
fourth item in Table 10-1, a single page is added or deleted. The
return address array indicates that the page was added or deleted in
the normal direction of growth for the region.

10.3 PAGE OWNERSHIP AND PAGE PROTECTION

Each page in a process's virtual address space is owned by a
particular access mode. The owner is the access mode that created the
page. For example, pages in the program region initially provided for
the execution of an image are owned by user mode. Pages that the
image creates dynamically are also owned by user mode. Pages in the
control region, except for the pages containing the user stack, are
normally owned by more privileged access modes.

Only the owner of a page can delete the page or otherwise affect it.
The owner of a page can also indicate, by means of a protection code,
the type of access that each access mode will be allowed.

The Set Protection on Pages ($SETPRT) system service changes the
protection assigned to a page or group of pages. The protection is
expressed as a code that indicates the specific type of access (none,
read-only, or read/write) for each of the four access modes (kernel,
executive, supervisor, user). Only the owner access mode or a more
privileged access mode can change the protection for a page.

10-4

When an
access
occurs.
whether
read or
service

MEMORY MANAGEMENT SERVICES

image attempts to access a page that is protected against the
attempted, a hardware exception called an access violation

When an image calls a system service, the service determines
an access violation would occur when the image attempted to

write a page it is not privileged to access. If so, the
returns the status code SS$ ACCVIO.

Since the memory management services add, delete, or modify a single
page at a time, one or more pages can be successfully affected before
an access violation is detected. If the RETADR argument is specified
in the service call, the service returns the addresses of pages
actually affected before the error. If no pages are affected, that
is, if an access violation would occur on the first page specified,
the service returns a -1 in both longwords of the return address
array.

If the RETADR argument is not specified, no information is returned.

10.4 WORKING SET PAGING

When a process is executing an image, a subset of its pages resides in
physical memory; these pages are called the process's working set.
The working set includes pages in both the program region and the
control region.

When the image refers to a page that is not in memory, a hardware
fault occurs, and the page is brought into memory, replacing an
existing page in the working set. If the page that is going to be
replaced has been modified during the execution of the image, that
page is written onto a secondary storage device called the paging
device. When this page is needed again, it is brought back into
memory, again replacing a current page from the working set. This
exchange of pages between physical memory and secondary storage is
called paging.

The paging of a process's working set is transparent to the process.
However, if a program is very large, or if pages in the program image
that are heavily used are being paged in and out frequently, the
overhead required for paging may decrease the program's efficiency.
Some system services allow a process, within limits, to counteract
these potential problems:

• The Adjust Working Set Limit ($ADJWSL) system service
increases or decreases the maximum number of pages that a
process can have in its working set.

• The Purge Working Set ($PURGWS) system service removes one or
more pages from the working set.

• The Lock Pages in Working Set ($LKWSET) system service makes
one or more pages in the working set ineligible for paging.

The initial size of a process's working set is defined by the
process's working set default (WSDEFAULT) quota. Since some programs
may have larger memory requirements than others, a program can call
the $ADJWSL system service to dynamically increase the process's
working set limit. When the additional pages are no longer needed in
the working set, the program can call the $ADJWSL service to decrease
the working set limit. It can also call the SPURGWS system service to
remove pages no longer in use from the working set.

10-5

MEMORY MANAGEMENT SERVICES

When the system pages a process's working set, the pages in the
working set are paged on a first-in, first~out basis. Under some
circumstances, an image may not want certain pages to be paged out at
all; in this case, the image can lock these pages in the working set.
As long as the process's working set is in memory, these pages cannot
be paged out until they are explicitly unlocked with the Unlock Pages
in Working Set ($ULWSET) system service.

10.5 PROCESS SWAPPING

The operating system balances the needs of all the processes that are
currently executing, providing each with the system resources it
requires on an as-needed basis. The memory management routines
balance the process's memory requirements. Thus, the sum of the
working sets for all processes that are currently in physical memory
is called the balance set.

When a process whose working set is in memory becomes inactive -- for
example, to wait for an I/O request or to hibernate -- the entire
working set may be removed from memory to provide space for another
process's working set to be brought in for execution. This removal of
a process's working set is called swapping. When a process is swapped
out of the balance set, all of the pages of its working set (modified
and unmodified pages) are swapped, including any pages that had been
locked in the working set.

It is possible for a high-priority process to lock its entire working
set in the balance set. While pages can still be paged in and out of
the working set, the process remains in memory even when it is
inactive. To lock itself in the balance set, the process issues the
Set Process Swap Mode ($SETSWM) system service. For example:

iSETSWM_S SWPFLG=t1

This call to $SETSWM disables process swap mode. Swap mode can also
be disabled by setting the appropriate bit in the STSFLG argument to
the Create Process ($CREPRC) system service; however, you must have
the PSWAPM privilege to alter process swap mode.

Another way that a process can lock pages in memory is with the Lock
Pages in Memory ($LCKPAG) system service. When a page is locked in
memory with this service, the page remains in memory even when the
remainder of the process's working set is swapped out of the balance
set. This system service has limited applicability, but may be useful
in special circumstances, for example, for routines that perform I/O
operations to slow devices or graphics devices.

Pages locked in memory can be unlocked with the Unlock Pages in Memory
($ULKPAG) system service. The user privilege PSWAPM is required to
issue the $LCKPAG or $ULKPAG service.

10.6 SECTIONS

A section is a disk file or a portion of a disk file containing data
or code that can be brought into memory and made available to a
process for manipulation and execution. A section can also be one or
more consecutive page frames in physical memory or I/O space instead
of a disk file; such sections, which require you to specify page
frame number mapping, are discussed in Section 10.6.13.

10-6

MEMORY MANAGEMENT SERVICES

Sections are either private or global (shared):

• Private sections are accessible only by the process that
creates them. A process can define a disk data file as a
section, map it into its virtual address space, and
manipulate it.

• Global sections can be shared by more than one process. One
copy of the global section resides in physical memory, and
each process sharing it refers to the same copy. A global
section can contain shareable code or data that can be read,
or read and written, by more than one process. Global
sections are either temporary or permanent, and can be
defined for use within a group or on a system-wide basis.

When modified pages in disk file sections are paged out of memory
during image execution, they are written back into the section file,
rather than into the paging file, as is the normal case with files.
(Howeve~ demand-zero or copy-on-reference sections are not written
back into the section file.)

The use of disk file sections involves two distinct operations:

1. The creation of a section defines a disk file as a section
and informs the system what portions of the file contain the
section.

2. The mapping of a section makes the section available to a
process and establishes the correspondence between virtual
blocks in the file and specific addresses in the process's
virtual address space.

The Create and Map Section ($CRMPSC) system service creates and/or
maps a private section or a global section. Since a private section
is used only by a single process, creation and mapping are
simultaneous operations. In the case of a global section, one process
can create a permanent global section and not map it; other processes
can map to it. A process can also create and map a global section in
one operation.

The following sections describe creating, mapping, and using disk file
sections. In each case, considerations that are common to both
private sections and global sections are described~first, followed by
additional notes and requirements for the use of global sections.
Section 10.6.13 discusses special requirements for page frame
sections.

10.6.1 Creating Sections

The steps involved in creating disk file sections are:

1. Opening or creating the disk file containing the section

2. Defining which virtual blocks in the file comprise the
section

3. Defining the characteristics of the section

10-7

MEMORY MANAGEMENT SERVICES

10.6.2 Opening the Disk File

Before a file can be used as a section, it must be opened using RMS.

The following example shows the file access block {FAB), OPEN macro,
and channel specification on the $CRMPSC system service to open an
existing file for reading:

SECFAB: $FAB FNM=<SECTION.TST>,FOP=UFO ;FILE ACCESS BLOCK

$OPEN FAB=SECFAB
$CRMPSC_S CHAN=SECFAB+FAB$L_srv ••••

The file options {FOP) parameter indicates that the file is to be
opened for user I/O; this option is required so that RMS assigns the
channel using the access mode of the caller. RMS returns the channel
number on which the file is accessed in the offset FAB$L STV; this
channel number is specified as input to the $CRMPSC systim service
{CHAN argument). The same channel number can be used for multiple
create and map section operations. For global sections associated
with the same file, each process must open the file as shared by using
the SHR parameter.

The file may be a new file that is to be created while it is in use as
a section. In this case, use the $CREATE macro to open the file. If
you are creating a new file, the file access block {FAB) for the file
must specify an allocation quantity {ALQ parameter}.

$CREATE can also be used to open an existing file; if the file does
not exist, it will be created. The following example shows the
required fields in the FAB for the conditional creation of a file:

GBLFAB: $FAB FNM=<GLOBAL.TST>,ALQ=4,FAC=PUT,
FOP=<UFO,CIF,CBT>,SHR=PUT

$CREATE FAB=GBLFAB

When the $CREATE macro is invoked, it creates the file GLOBAL.TST if
the file does not currently exist. The CBT {contiguous-best-try)
option requests that if possible, the file be contiguous. Although it
is not required that section files be contiguous, better performance
can result if they are.

10.6.3 Defining the Section Extents

Once the file is successfully opened, the $CRMPSC system service can
create a section from the entire file, or from only certain portions
of it. The following arguments to $CRMPSC define the extents of the
file that comprise the section:

• PAGCNT {page count). This argument is required;
indicates the number of virtual blocks in the file.
blocks correspond to pages in the section.

it
These

• VBN {virtual block number). This argument defines the number
of the virtual block in the file that is the beginning of the
section. It is an optional argument. If it is not
specified, it defaults to l; that is, the first virtual

10-8

MEMORY MANAGEMENT SERVICES

block in the file is the beginning of the section. (If you
have specified physical page frame number mapping, the VBN
argument specifies the starting page frame number.)

10.6.4 Defining the Section Characteristics

The FLAGS argument to the $CRMPSC system service defines the following
section characteristics:

• Whether it is a private section or a global section (the
default is to create a private section)

• How the pages of the section are to be treated when they are
copied into physical memory or when a process refers to them.
The pages in a section can be:

•

Read/write or read-only

Created as demand-zero pages or as copy-on-reference
pages, depending on how the processes are going to use the
section and whether the file contains any data (see
Section 10.6.8, "Section Paging").

Whether the section is to be mapped to a
specific physical page frames (Section
physical page frame sections).

disk file or to
10.6.13 discusses

10.6.5 Defining Global Section Characteristics

If the section is a global section, it must be assigned a character
string name (GSDNAM argument) so that other processes can identify it
when they map it. The format of this character string name is
explained in the next subsection (10.n.5.l).

The FLAGS argument specifies the type of global section:

• Group temporary (the default)

• Group permanent

• System temporary

• System permanent

Group global sections can be shared only by processes executing with
the same group number. The name of a group global section is
implicitly qualified by the group number of the process that created
it. When other processes map to it, their group numbers must match.

A temporary global section is automatically deleted when no processes
are mapped to it, but a permanent global section remains in existence
even when no processes are mapped to it. A permanent global section
must be explicitly marked for deletion with the Delete Global Section
($DGBLSC) system service.

The user privileges PRMGBL and SYSGBL are required to create permanent
group global sections, or system global sections (temporary or
permanent), respectively.

A system global section is available to all processes in the system.

10-9

MEMORY MANAGEMENT SERVICES

Optionally, a process creating a global section can specify a
protection mask (PROT argument) restricting all access or a type of
access (read, write, execute, delete) to other processes.

10.6.5.1 Global
descriptor that
format:

Section
points

Name - The GSDNAM argument specifies a
to a character string with the following

[shared-memory-name:]global-section-name

shared-memory-name

Identifies the global section to be created, mapped, or deleted
as within the named memory that is shared by multiple processors.
The name of this memory was specified at system generation time.
For example, the string SHRMEM$l:GSDATA identifies a global
section named GSDATA located in the shared memory named SHRMEM$1.

If this part of the string is not included and the section is
being mapped or deleted, the system tries to find the specified
global section first in local memory and then in shared memory
units (in the order in which they were connected).

global-section-name

The name assigned to the global section. You may choose any
valid name, from 1 to 15 characters; however, all processes
mapping to the same global section must specify the same name.

If you wish, you can include both the shared-memory-name and the
global-section-name for a global section in memory shared by multiple
processors. However, if you want to use existing programs without
recompiling or relinking, or if you want the program to work whether
the section is in local memory or shared memory, you can specify just
a global-section-name and have the system translate it to a complete
specification. The system attempts to perform logical name
translation of the string specified by the GSDNAM argument in the
following manner:

1. GBL$ is prefixed to the string (to the part before the colon
if both parts are present), and the result is subjected to
logical name translation.

2. The part of the string after the colon (if any) is appended
to the translated name.

3. If the result contains a logical name, steps 1 and 2 are
repeated (up to 9 more times, if necessary) until translation
does not succeed.

For example, assume that you have made the following logical name
assignment:

$ DEFINE GBLSGSDATA SHRMEMS1:GSDATA

Your program contains the following statements:

NAMEDESC: .ASCID /GSDATA/ ;DESCRIPTOR FOR LOGICAL NAME OF SECTION

SCRMPSC_S GSDNAM=NAMEDESCv++•

10-10

MEMORY MANAGEMENT SERVICES

The following logical name translation takes place:

1. GBL$ is prefixed to GSDATA.

2. GBL$GSDATA is translated to SHRMEM$l:GSDATA. (No further
translation is successful. When logical name translation
fails, thP string is passed to the service.)

There are two exceptions to the logical name translation method
discussed in this section:

• If the name string starts with an underscore () , the VAX/VMS
system strips the underscore and considers the resultant
string to be the actual name (that is, no further translation
is performed).

• If the global section has a name in the format "name nnn,"
VAX/VMS first strips the underscore and the digits (nnn)~ then
translates the resultant name according to the sequence
discussed in this section, and finally reappends the
underscore and digits. The system uses this method in
conjunction with known images and shared files installed by
the system manager.

10.6.6 Mapping Sections

When you code the $CRMPSC system service to create and/or map a
section, you must provide the service with a range of virtual
addresses (INADR argument) into which the section is to be mapped.

If you know specifically which pages the section should be mapped
into, you provide these addresses in a 2-longword array. For example,
to map a private section of 10 pages into virtual pages 10 through 19
of the program region, specify the input address array as follows:

MAPRANGE:
.LONG AX1400
.LONG AX2300

;ADDRESS (HEX) OF PAGE 10
;ADDRESS (HEX) OF PAGE 19

However, you do not need to know the explicit addresses to provide an
input address range. If you simply want the section mapped into the
first available virtual address range in the program (PO) or control
(Pl) region, you can specify the SEC$M EXPREG flag bit in the FLAGS
argument. In this case, the addresses specified by the INADR argument
simply control whether the service finds the first available space in
the program or control region. The value specified or defaulted for
the PAGCNT argument determines the number of pages mapped. The
following example shows part of the code to map a section at the
current end of the program region.

MAPRANGE:
.LONG AX200
.LONG AX200

RETRANGE:
.BLKL 2

$CRMPSC S

;ANY PROGRAM (PO) REGION ADDRESS
;ANY PO ADDRESS (CAN BE SAME)

;ADDRESS RANGE RETURNED HERE

INADR=MAPRANGE,RETADR=RETRANGE,
FLAGS=<SEC$M_EXPREG>, •••

10-11

MEMORY MANAGEMENT SERVICES

The addresses specified do not have to be currently in the process's
virtual address space. The $CRMPSC system service creates the
required virtual address space during the mapping of the section. If
you code the RETADR argument, the service returns the range of
addresses actually mapped.

Once a section has been successfully mapped, the image can refer to
the pages using a base register or pointer and predefined symbolic
offset names or labels defining offsets of an absolute program section
or structure.

Figure 10-2 shows an example of creating and mapping a process
section.

SECFAB: $FAB FNM=<SECTION.TST>,FOP=UFO,FAC=PUTvSHR=<GET,PUT>

MAPRANGE:
.LONG
+LONG

RETRANGE:
+BL..KL

ENDRANGE:
+BLKL.

0 $OPEN
BSBW

'"X:t.400
"'X2~rno

1

1

FAB::::SECFAB
ERROF<

;FIRST PAGE
;1...AST PAGE

;FIRST PAGE MAPPED

;LAST PAGE MAPPED

;OPEN SECTION FILE

8 $CRMPSC .. wS INADR::=MAPRANGE, ; INPUT ADDF~ESS AF~~1AY
RETADR=RETRANGEv- ;OUTPUT ARRAY
PAGCNT=t4,- ;MAP FOUR PAGES

0 FLAGS:.-=tSEC$M WRT, ·- ; li:EAI:l/WI:~ I TE SECT I ON
CHAN=SECFABtFABSL_STV ;CHANNEL NUMBER

8 BSBW
MDVI...

E1=moR
RETr<ANGE, FM ;POINT TO START OF SECTION

Figure 10-2 Creating and Mapping a Private Section

Notes on Figure 10-2:

O The OPEN macro opens the section file defined in the file
access block SECFAB. (The FOP parameter to the $FAB macro
must specify the UFO option.)

8 The $CRMPSC system services uses the addresses specified at
MAPRANGE to specify an input range of addresses into which
the section will be mapped. The PAGCNT argument requests
that only four pages of the file be mapped.

0 The FLAGS argument requests that the pages in the section be
read/write. The symbolic flag definitions for this argument
are defined in the $SECDEF macro. Note that the file access
field (FAC parameter) in the FAB also indicates that the file
is to be opened for writing.

When $CRMPSC completes, the addresses of the
were mapped are returned in the output
RETRANGE. The address of the beginning of
placed in register 6, which serves as
section.

10-12

four pages that
address array at
the section is
a pointer to the

MEMORY MANAGEMENT SERVICES

10.6.7 Mapping Global Sections

A process that creates a global section can map to it when it creates
it. Then, other processes can map it by calling the Map Global
Section ($MGBLSC) system service.

When a process maps a global section, it must specify the global
section name assigned to the section when it was created, whether it
is a group or system global section, and whether it desires read-only
or read/write access. The process may also specify:

• A version identification (!DENT argument), indicating the
version number of the global section (When multiple verisons
exist) and whether more recent versons are acceptable to the
process.

• A relative page number (RELPAG argument), specifying the page
number, relative to the beginning of the section, to begin
mapping the section. In this way, processes can use only
portions of a section. Additionally, a process can map a
piece of a section into a particular address range and
subsequently map a different piece of the section into the
same virtual addresses.

To specify that the global section being mapped is located in physical
memory that is being shared by multiple processors, you can include
the shared memory name in the GSDNAM argument character string (see
Section 10.6.5.1). A demand-zero global section in memory shared by
multiple processors must be mapped when it is created.

Cooperating processes can both issue a $CRMPSC system service to
create and map the same global section. The first process to call the
service actually creates the global section; subsequent attempts to
create and map the section result only in mapping the section for the
caller. The successful return status code SS$ CREATED indicates that
the section did not already exist when the $CRMPSC system service was
called. If the section did exist, the status code SS$ NORMAL is
returned. -

Figure 10-3 shows one process (ORION) creating a global section and a
second process (CYGNUS) mapping the section.

10-13

MEMORY MANAGEMENT SERVICES

!Process ORION]

FLGCLUSTER: ;DESCRIPTOR FOR COMMON EVENT FLAG CLUSTER NAME
.ASCID /FLAG-CLUSTER/

FLGSET ::: 65 ;FLAG NUMBER TO ASSOCIATE AND SET
FLGWAIT = 66 ;FLAG NUMBER TO WAIT FOR

GLOBALSEC: ;DESCRIPTOR FOR GLOBAL SECTION NAME
.ASCID /GLOBAL_SECTION/

FNM=<GLOBAL.TST>,FOP:::<UFO,CIF11CBT>,
AL0::::4 11 FAC:::PUT

0 $ASCEFC-.S EFN:::tFl .. GSET, NAME::::FLGCLUSTER
BSBW ERROR

8 $CRMPSC_S GSDNAM:::GLOBALSEC11- ;CREATE GLOBAi... SECTJ:ON
FLAGS:::tSEC$M_WRT!SEC$M_GBl...11 •••

BSI(W Eli:ROR
$SETEF_S EFN=tFl...GSET ;SET COMMON EVENT FL.AG

I Precess CYGNUS j
CLUSTER: +ASCID /FLAG_CLUSTER/ ;CLUSTER NAME DESCRIPTOR
FL.GSET :::: 65
FLGWA IT :::: 66

SECTION: +ASCID /GLOBAl..._SECTION/ ;SECTION NAME DESCRIPTOR

8 $ASCEFC ... S EFN=:::tFl...GSET, NAME~-=:CL.USTEli:
BSBW ERli:Dli:
SWAITFR_S EFN=#Fl...GSET
BSBW EfHWli:
SMGBl...SC_S INADR:::MAPRANGE11RETADR=RETRANGE11-

FL.AGS=iSEC$M_GBl...11- OGl...OBAI... SECTION
GSDNAM=SECTION ;SECTION NAME

BBBW Eli:li:Dli:

Figure 10-3 Creating and Mapping a Global Section

Notes on Figure 10-3:

0 The processes ORION and CYGNUS are in the same group. Each
process first associates with a common event flag cluster
named FLAG CLUSTER to use common event flags to synchronize
their use ;f the section.

ORION creates the global section named GLOBAL SECTION,
specifying flags that indicate that it is a global section
(SEC$M GBL) and that it is read/write. Input and output
address arrays, the page count parameter and the channel
number arguments are not shown; procedures for coding them
are the same as shown earlier in Figure 10-2.

The process CYGNUS associates with the common event flag
cluster and waits for the flag defined as FLGSET. ORION sets
this flag when it has completed creating the section. To map
the section, CYGNUS specifies the input and output address
arrays, the flag indicating that it is a global section, and
the global section name. In this example, the number of
pages mapped is the same as that specified by the creator of
the section.

10-14

MEMO-RY MANAGEMENT SERVICES

10.6.8 Section Paging

The first time that an image executing in a process refers to a page
that was created during the mapping of a disk file section, the page
is copied into physical memory. The address of the page in the
process's virtual address space is mapped to the physical page.
During the execution of the image, normal paging can occur; however,
pages in sections are not written into the page file when they are
paged out, as is the normal case. Rather, if they have been modified,
they are written back into the section file on disk. The next time a
page fault occurs for the page, the page is brought back from the
section file.

However, if the pages in a section were defined as demand-zero pages
or copy-on-reference pages when the section was created, the pages are
treated differently:

• If the call to $CRMPSC requested that pages in the section be
treated as demand-zero pages, these pages are initialized to
zeros when they are first brought into physical memory. If
the file is either a new file that is being created as a
section or a file that is being completely rewritten,
demand-zero pages provide a convenient way of initializing the
pages. The pages are paged back into the section file.

• If the call to $CRMPSC requested that pages in the section be
copy-on-reference pages, each process that maps to the section
receives its own copy of the section, on a page-by-page basis
from the file, as it refers to them. These pages are never
written back into the section file, but are paged to the
paging file as needed.

In the case of global sections, more than one process can be mapped to
the same physical pages. If these pages need to be paged out or
written back to the disk file defined as the section, these operations
are done only when no processes are currently mapped to the pages.

10.6.9 Reading and Writing Data Sections

Read/write sections provide a way for a process or cooperating
processes to manipulate data files in virtual memory.

The sharing of global sections may involve application-dependent
synchronization techniques. For example, one process can create and
map to a global section in read/write status; other processes can map
to it in read-only status and interpret data written by the first
process. Or, two or more processes can write to the section
concurrently. (In this case, the application program must provide the
necessary synchronization and protection.)

When a file that has been mapped as a section is written back to disk,
its version number is not incremented but the revision number is. A
full directory listing indicates the revision number of the file and
the date and time that the file was last updated.

When the file has been updated, the process or processes can release,
or unmap, the section. The section is then written back into the disk
file defined as a section.

10-15

MEMORY MANAGEMENT SERVICES

10.6.10 Releasing and Deleting Sections

A process unmaps a section by deleting the virtual addresses in its
own virtual address space to which it has mapped the section. If a
return address range was specified to receive the virtual addresses of
the mapped pages, this address range can be used as input to the
Delete Virtual Address Space ($DELTVA) system service. For example:

SDELTVA_S INADR=RETRANGE

When a process unmaps a private section, the section is deleted; that
is, all control information maintained by the system is deleted. A
temporary global section is deleted when all processes that have
mapped to it have unmapped it. Permanent global sections are not
deleted until they are specifically marked for deletion with the
Delete Global Section ($DGBLSC) system service; they are then deleted
when no more processes are mapped.

Note that deleting the pages occupied by a section does not delete the
section file, but rather cancels the process's association with the
file. Moreover, when a process deletes pages mapped to a read/write
section and no other processes are mapped to it, all modified pages
are written back into the section file.

When a section has been deleted, the channel assigned to it can be
deassigned. The process that created the section can deassign the
channel (with the Deassign I/O Channel system service). For example:

SDASSGN_S CHAN~GBLFAB+FABSL_STV

10.6.11 Writing Back (Checkpointing) Sections

Since read/write sections are normally not updated on disk until the
physical pages they occupy are paged out, or until all processes
referring to the section have unmapped it, a process may want to
ensure that all modified pages are successfully written back into the
section file at regular intervals.

The Update Section File on Disk ($UPDSEC) system service writes the
modified pages in a section into the disk file. This process of
writing back modified pages in a section is sometimes called
"checkpointing" the section. The SUPDSEC system service is described
in Part II.

10.6.12 Image Sections

Global sections can contain shareable code. An image file that is
going to be defined as a section must contain position-independent
code.

The operating system uses global sections to implement shareable code
as follows:

1. The object module containing code to be shared is linked to
produce a shareable image. The shareable image is not, in
itself, executable. It contains a series of sections, called
image sections.

10-16

MEMORY MANAGEMENT SERVICES

2. A user links private object modules with the shareable image
to produce an executable image. Only image section
descriptor records from the shareable image file are bound
with the image sections from the user's code (unless
/SHAREABLE=COPY was specified in a linker options file).

3. The system manager uses the INSTALL command to create a
permanent global section from the shareable image file,
making the image sections available for sharing.

4. When the user runs the executable image, the system
automatically maps the global sections created by the INSTALL
command into the virtual address space of the user's process.

For details on how to create and identify shareable images and how to
link them with private object modules, see the VAX-11 Linker Reference
Manual. For information on installing shareable images and making
them available for sharing as global sections, see the VAX/VMS System
Manager's Guide.

10.6.13 Page Frame Sections

A page frame section is one or more contiguous pages of physical
memory or I/O space that have been mapped as a section. One use of
page frame sections is to map to an I/O page, thus allowing a process
to read device registers. A process mapped to an I/O page can also
connect to a device interrupt vector.

A page frame section differs from a disk file section in that it is
not associated with a particular disk file and is not paged. However,
it is similar to a disk file section in most other respects: you
create, map, and define the extent and characteristics of a page frame
section in essentially the same manner as you do a disk file section.

To create a page frame section, you must specify page frame number
mapping by setting the SEC$M PFNMAP flag bit in the FLAGS argument to
the Create and Map Section ($~RMPSC) service. The VBN argument is now
used to specify the first page frame to be mapped instead of the first
virtual block. You must have the user privilege PFNMAP to create or
delete a page frame section, but not to map to an existing one.

Because this type of section is not associated with a disk file, the
RELPAG, CHAN, and PFC arguments to the $CRMPSC service are not used in
creating or mapping a page frame section. For the same reason, the
SEC$M CRF (copy on reference) and SEC$M DZRO (demand-zero) bit
settings in the FLAGS argument do not apply.- Pages in page frame
sections are not written back to any disk file (including the paging
file).

Use caution in working with page frame sections. If you permit write
access to the section, each process that writes to the section does so
at its own risk. Serious errors can occur if a process writes
incorrect data or writes to the wrong page, especially if the page is
also mapped by the system or by another process. Thus, the security
of a system can be violated or damaged by any user having the PFNMAP
privilege.

10-17

PART II

SYSTEM SERVICE DESCRIPTIONS

This part of the manual describes each of the VAX/VMS system services.
The services are presented in alphabetical order by their abbreviated
names.

Each system service description consists of the following categories,
as applicable. Certain services require detailed information beyond
these categories. For these services, the additional information
appears after the "Notes" section.

Macro Format

Shows the macro name, with all keyword arguments
positional order. Spaces between arguments are
readability and are not part of the macro syntax.

High-Level Language Format

listed in
present for

Shows the procedure name and a generalized format for calling the
service from a high-level language, with all arguments listed in
positional order. For more information about a specific
language, see Section 2.3 in Part I. Spaces between arguments
are present for readability and are not part of the statement
syntax.

Arguments

Describes each of the arguments.

Return Status

Lists the possible return status codes from the service with an
explanation of the return condition. The successful returns are
listed first, in alphabetical order, followed by warning and
severe error return status codes, also in alphabetical order.
All status codes are severe errors, unless otherwise indicated.

1

Three severe errors may occur for all services and are not listed
with each service description. These are:

SS$ ACCVIO

The argument list cannot be read by the caller (using
the $service G form), and the service is not called.
The meaning of SS$ ACCVIO in this case is different
from the meaning- of the SS$ ACCVIO status listed for
many individual services; in Ihese latter cases, the
service is called, but one or more specific arguments
are addresses that cannot be read or written by the
caller.

SS$ INSFARG

Not enough arguments were supplied to the service.

SS$ ILLSER

An illegal system service was called.

Privilege Restrictions

Notes any user privileges required to execute the service or to
request a particular function of the service, or any access mode
restrictions applied to the service.

Resources Required/Returned

Notes

Lists any system resources or process quotas used by the service,
or returned to a process as a result of service execution.

Contains the "fine print" of the service description, as well as
references to related services or additional information.

2

$ADJSTK - ADJUST OUTER MODE STACK POINTER

$ADJSTK

$ADJSTK - ADJUST OUTER MODE STACK POINTER

The Adjust Outer Mode Stack Pointer system service modifies the stack
pointer for a less privileged access mode. This service is used by
the operating system to modify a stack pointer for a less privileged
access mode after placing arguments on the stack.

Macro Format

$ADJSTK [acmode] , [adjust] ,newadr

High-Level Language Format

SYS$ADJSTK ([acmode] , [adjust] ,newadr)

acmode

Access mode for which the stack pointer is to be adjusted. If
not specified, this value defaults to O, indicating kernel access
mode.

adjust

Signed adjustment value. The contents of the longword addressed
by the NEWADR argument are adjusted by the amount specified in
the low-order 16 bits of this argument. The result is loaded
into the stack pointer for the specified access mode.

If not specified, or specified as O, the stack pointer is loaded
with the address specified by the NEWADR argument.

newadr

Address of a longword to receive the updated value. If the
longword contains a nonzero value, then that value is updated by
the ADJUST argument value and the result is loaded into the stack
pointer.

If the longword contains a O, the current value of the stack
pointer is updated by the ADJUST argument value.

Return Status

SS$_NORMAL

Service successfully completed.

SS$ ACCVIO

The longword to store the updated stack pointer or a portion of
the new stack segment cannot be written by the caller.

SS$_NOPRIV

The specified access mode is equal to or more privileged than the
calling access mode.

3

Notes

$ADJSTK - ADJUST OUTER MODE STACK POINTER

Combinations of zero and nonzero values for the ADJUST argument
and the NEWADR longword provide the following results:

If the ADJUST
argument
specifies:

0

0

a value

a value

And the longword
addressed by
NEWADR contains:

0

an address

0

an address

The stack
pointer
is:

not changed

loaded with the
address specified

adjusted by the
specified value

loaded with the
specified address,
adjusted by the
specified value

In all cases, the updated stack pointer value is written into the
longword addressed by NEWADR.

4

$ADJWSL - ADJUST WORKING SET LIMIT

$ADJWSL

$ADJWSL - ADJUST WORKING SET LIMIT

The Adjust Working Set Limit system service changes the current limit
of a process's working set size by a specified number of pages. This
service allows a process to control the number of pages resident in
physical memory for the execution of the current image.

Macro Format

$ADJWSL [pagcnt] , [wsetlm]

High-Level Language Format

SYS$ADJWSL([pagcnt] ,[wsetlm])

pagcnt

Number of pages to adjust the current maximum working set size.
A positive value increases the maximum working set size; a
negative value decreases it. If not specif.ied, or specified as
O, the current working set size limit is returned in the address
specified by the WSETLM argument, if that argument is coded.

wsetlm

Address of a longword to receive the new working set size limit,
or, if the PAGCNT argument is not specified, to receive the
current working set size limit.

Return Status

SS$_NORMAL

Service successfully completed.

SS$ ACCVIO

The longword to receive the new working set size limit cannot be
written by the caller.

Resources Required/Returned

The initial value of a process's working set size is controlled
by the working set default quota (WSDEFAULT). The maximum value
to which it may be increased is controlled by the working set
limit quota (WSQUOTA).

5

Notes

$ADJWSL - ADJUST WORKING SET LIMIT

If a program attempts to adjust the working set size beyond the
system-defined upper and lower limits, no error condition is
returned. The working set size is adjusted to the maximum or
m1n1mum size allowed; the caller can check the new working set
size to verify the change.

For more details on memory management concepts and additional services
that help a process control paging and swapping, see Chapter 10,
"Memory Management Services."

6

$ALLOC - ALLOCATE DEVICE

$ALLOC

$ALLOC - ALLOCATE DEVICE

The Allocate Device system service reserves a device for exclusive use
by a process and its subprocesses. No other process can allocate the
device or assign channels to it until the image that called $ALLOC
exits or explicitly deallocates the device with the Deallocate Device
($DA~LOC) system service.

Macro Format

$ALLOC devnam , [phylen] , [phybuf] , [acmode]

High-Level Language Format

SJS$ALLOC (devnam , [phylen] , [phybuf] , [acmode])

devnam

Address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character in the string is an
underline character() , the name is considered a physical device
name. Otherwise, a single level of logical name translation is
performed and the equivalence name, if any, is used. The final
name, however, cannot contain a node name unless the name is that
of the host system.

phylen

Address of a word to receive the length of the allocated device
name string.

phybuf

Address of a character string descriptor pointing to the buffer
to receive the physical device name string of the allocated
device. The first character in the string returned is an
underline character (_).

acmode

Access mode to be associated with the allocated device. The
specified access mode is maximized with the access mode of the
caller. Only equal or more privileged access modes can
deallocate the device.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ BUFFEROVF

Service successfully completed. The physical name returned
overflowed the buffer provided, and has been truncated.

7

$ALLOC - ALLOCATE DEVICE

SS$ ACCVIO

The device name string, string descriptor, or
buffer descriptor cannot be read by the caller;
name buffer cannot be written by the caller.

physical name
or the physical

SS$ DEVALLOC

Warning. The device is already allocated to another process, or
an attempt to allocate an unmounted shareable device failed
because other processes had channels assigned to the device.

SS$ DEVMOUNT

The specified device is currently mounted and
allocated; or the device is a mailbox.

SS$ IVDEVNAM

cannot be

No device name string was specified, or the device name string
contains invalid characters.

SS$ IVLOGNAM

The device name string has a length of 0 or has more than 63
characters.

SS$ NONLOCAL

Warning. The device is on a remote node.

SS$ NOPRIV

An attempt was made to allocate a spooled device and the
requesting process does not have the required privilege.

SS$ NOSUCHDEV

Warning. The specified device does not exist in the host system.

Privilege Restrictions

Notes

The user privilege ALLSPOOL is required to allocate a spooled
device.

1. When a process calls the Assign I/O Channel (~ASSIGN) system
service to assign a channel to a nonsha~eable, nonspooled
device, such as a terminal or line printer, the device is
implicitly allocated to the process.

2. This service can only be used to allocate devices that exist
on the host system.

For an example of how to use this service and
allocation of devices by generic device
"Input/Output Services."

a description of
names, see Chapter

the
6,

8

$ASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER

$ASCEFC

$ASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER

The Associate Common Event Flag Cluster system service causes a named
common event flag cluster to be associated with a process for the
execution of the current image and assigned a process-local cluster
number for use with other event flag services. If the named cluster
does not exist but the process has suitable privilege, the service
creates the cluster.

Macro Format

$ASCEFC efn ,name , [prot] , [perm]

High-Level Language Format

ef n

name

prot

perm

SYS$ASCEFC (efn , name , [prot] , [perm])

Number of any event flag in the common cluster to be associated.
The flag number must be in the range of 64 through 95 for cluster
2 and 96 through 127 for cluster 3.

Address of a character string descriptor pointing to the text
name string for the cluster. (Section 3.7.1 explains the format
of this string.) The name is implicitly qualified by the group
number of the process issuing the associate request.

Protection indicator controlling group access to the common event
flag cluster. A value of 0 (the default) indicates that any
process in the creator's group may access the cluster. A value
of 1 indicates that access is restricted to processes executing
with the creator's UIC.

Permanent indicator. If perm is equal to 1, the common event
cluster is marked permanent.

If perm is equal to O, the cluster is temporary;
default value.

this is the

Return Status

SS$_NORMAL

Service successfully completed.

SS$_ACCVIO

The cluster name string or string descriptor cannot be read by
the caller.

9

$ASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER

SS$_EXPORTQUOTA

The process has exceeded the number of clusters that processes on
this port of the multiport (shared) memory can associate with.

SS$_EXQUOTA

The process has exceeded its timer queue entry quota; this quota
controls the creation of temporary common event flag clusters.

SS$ INSFMEM

Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SS$_ILLEFC

An illegal event flag number was specified. The cluster number
must be in the range of event flags 64 through 127.

SS$_INTERLOCK

The bit map lock for allocating common event flag clusters from
the specified shared memory is locked by another process.

SS$_IVLOGNAM

The cluster name string has a length of 0 or has more than 15
characters.

SS$ NOPRIV

The process does not have the privilege to create a permanent
cluster, the process does not have the privilege to create a
common event flag cluster in memory shared by multiple
processors, or the protection applied to an existing cluster by
its creator prohibits association.

SS$ NOSHMBLOCK

No shared memory control block for common event flag clusters is
available.

SS$ SHMNOTCNCT

The shared memory named in the NAME string is not known to the
system. This error can be caused by a spelling error in the
string, an improperly assigned logical name, or the failure to
identify the memory as shared at SYSGEN time.

Privilege Restrictions

The user privilege PRMCEB is required to create a permanent
common event flag cluster.

The user privilege SHMEM is required to create a common event
flag cluster in memory shared by multiple processors.

10

$ASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER

Resources Required/Returned

Notes

Creation Gf temporary common event flag clusters uses the
process's quota for timer queue entries (TQELM); the creation of
a permanent cluster does not effect the quota. The quota is
restored to the creator of the cluster when all processes
associated with the cluster have disassociated•

1. When a process associates with a common event flag cluster,
that cluster's reference count is increased by 1. The
reference count is decreased when a process disassociates the
cluster either explicitly with the Disassociate Common Event
Flag Cluster ($DACEFC) system service, or implicitly, at
image exit.

Temporary clusters are automatically deleted when their
reference count goes to O; permanent clusters must be
explicitly marked for deletion with the Delete Common Event
Flag Cluster ($DLCEFC) system service.

2. Since this service automatically creates the common event
flag cluster if it does not already exist, cooperating
processes need not be concerned with which process executes
first to create the cluster. The first process to call
$ASCEFC creates the cluster and the others associate with it
regardless of the order in which they call the service.

The initial state for all event flags in a newly-created
common event flag cluster is O.

3. If a process has already associated a cluster number with a
named common event flag cluster and then issues another call
to $ASCEFC with the same cluster number, the service
disassociates the number from its first assignment before
associating it with its second.

For an example of the $ASCEFC system service
services that manipulate event flags, see
Services."

and descriptions of
Chapter 3, "Event Flag

11

$ASCTIM - CONVERT BINARY TIME TO ASCII STRING

$ASCTIM

$ASCTIM - CONVERT BINARY TIME TO ASCII STRING

The Convert Binary Time to ASCII String system service converts an
absolute or delta time from 64-bit system time format to an ASCII
string. The formats of the strings returned are described in Note 3
on the next page.

Macro Format

$ASCTIM [timlen] ,timbuf , [timadr] , [cvtflg]

High-Level Language Format

SYS$ASCTIM([timlen] ,timbuf , [timadr] , [cvtflg])

timlen

Address of a word to receive the length of the output string
returned.

timbuf

Address of a character string descriptor pointing to the buffer
to receive the converted string. The buffer length specified in
the descriptor, together with the CVTFLG argument, controls what
information is returned. See Note 4 on the next page.

timadr

Address of the 64-bit time value to be converted. If no address
is specified or is specified as 0 (the default), the current date
and time are returned. A positive time value represents an
absolute time. A negative time value represents a delta time.
If a delta time is specified, it must be less than 10,000 days.

cvtflg

Conversion indicator. A value of 1 causes only the hour, minute,
second, and hundredth of second fields to be returned, depending
on the length of the buffer. A value of 0 (the default) causes
the full date and time to be returned, depending on the length of
the buffer.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ IVTIME

The specified delta time is equal to or greater than 10,000 days.

12

Notes

$ASCTIM - CONVERT BINARY TIME TO ASCII STRING

1. The $ASCTIM service executes at the access mode of the caller
and does not check whether address arguments are accessible
before it executes. Therefore, an access violation causes an
exception condition if the input time value cannot be read or
the output buffer or buffer length cannot be written.

2. This service does not check the length of the argument list,
and therefore cannot return the SS$ INSFARG (insufficient
arguments) error status code. If tne service does not
receive enough arguments (for example, if you omit required
commas in the call), you might not get the desired result.

3. The ASCII strings returned have the following formats:

4.

Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

Delta Time: dddd hh:mm:ss.cc

Length
Field (Bytes) Contents Range of

dd 2 day of month 1 - 31
1 hyphen

mmm 3 month JAN, FEB,
MAY, JUN,
SEP, OCT,

1 hyphen

values

MAR, APR,
JUL, AUG,
NOV, DEC

yyyy 4 year 1858 - 9999

blank 1 blank

hh 2 hour 00 - 23
1 colon

mm 2 minutes 00 - 59
1 colon

SS 2 seconds 00 - 59
1 period

cc 2 hundredths 00 - 99
of seconds

dddd 4 number of 000 - 9999
days

Some possible combinations of buffer length specification
CVTFLG arguments, and their results, are shown below:

Buff er Length CVTFLG Information
Time Value Specified Argument Returned

Absolute 23 0 date and time

Absolute 11 0 date

Absolute 11 1 time

Delta 16 0 days and time

Delta 11 1 time

and

For an example of the $ASCTIM system service, see Chapter 8, "Timer
and Time Conversion Services."

13

$ASSIGN - ASSIGN I/O CHANNEL

$ASSIGN

$ASSIGN - ASSIGN I/O CHANNEL

The Assign I/O Channel system service (1) provides a process with an
I/O channel so that input/output operations can be performed on a
device, or (2) establishes a logical link with a remote node on a
network.

Macro Format

$ASSIGN devnam ,chan ,[acmode] ,[mbxnam]

High-Level Language Format

SYS$ASSIGN (devnam , ch an , [acmode] ,, [mbxnam])

devnam

ch an

Address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character in the string is an
underline character () , the name is considered a physical device
name. Otherwise, a sTngle level of logical name translation is
performed and the equivalence name, if any, is used.

If the device name contains a double colon (::), the system
assigns a channel to the device NETO: and performs an access
function on the network.

Address of a word to receive the channel number assigned.

acmode

Access mode to be associated with the channel. The specified
access mode is maximized with the access mode of the caller. I/O
operations on the channel can only be performed from equal and
more privileged access modes.

mbxnam

Address of a character string descriptor pointing to the logical
name string for the mailbox to be associated with the device, if
any. The mailbox receives status information from the device
driver, as described in Note 2, below.

An address of 0 implies no mailbox; this is the default value.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ REMOTE

Service successfully completed. A logical link is established
with the target on a remote node.

14

$ASSIGN - ASSIGN I/O CHANNEL

SS$_ABORT

A physical line went down during a network correct operation.

SS$ ACCVIO

The device or mailbox name string or string descriptor cannot be
read by the caller, or the channel number cannot be written by
the caller.

SS$_DEVACTIVE

A mailbox name has been specified, but a mailbox is already
associated with the device.

SS$_DEVALLOC

Warning. The device is allocated to another process.

SS$ DEVNOTMBX

A logical name has been specified for the associated mailbox, but
the logical name refers to a device that is not a mailbox.

SS$_EXQUOTA

The target of the assignment is on a remote node and the process
has insufficient buffer quota to allocate a network control
block.

SS$ INSFMEM

The target of the assignment is on a remote node and there is
insufficient system dynamic memory to complete the request.

SS$_IVDEVNAM

No device name was specified, or the device or mailbox name
string contains invalid characters. If the device name is a
target on a remote node, this status code indicates that the
Network Connect Block has an invalid format.

SS$_IVLOGNAM

The device or mailbox name string has a length of O or has more
than 63 characters.

SS$_NOIOCHAN

No I/O channel is available for assignment.

SS$_NOLINKS

No logical network links are available.

SS$_NOPRIV

The process does not have the privilege to perform network
operations.

SS$_NOSUCHDEV

Warning. The specified device or mailbox does not exist.

15

$ASSIGN - ASSIGN I/O CHANNEL

SS$ NOSUCHNODE

The specified network node is nonexistent or unavailable.

SS$ REJECT

The network connect was rejected by the network software or by
the partner at the remote node; or the target image exited
before the connect confirm could be issued.

Privilege Restrictions

The NETMBX privilege is required to perform network operations.

Resources Required/Returned

Notes

System dynamic memory is required if the target device is on a
remote system.

1. For details on how to use $ASSIGN in conjunction with network
operations, see the DECnet-VAX User's Guide.

2. Only the owner of a device can associate a mailbox with the
device (the owner is the process that has allocated the
device, either implicitly or explicitly), and only one
mailbox can be associated with a device at a time. If a
mailbox is associated with a device, the device driver can
send messages containing status information to the mailbox,
as in the following cases:

• If the device is a terminal, a message indicates dialup,
hangup, or the reception of unsolicited input.

• If the target is on a network, the message may indicate
that the network is connected or initiated, or whether the
line is down.

• If the device is a line printer, the message indicates
that the printer is offline.

For details on the message format and the information
returned, see the VAX/VMS I/O User's Guide.

MBilboxes cannot be associated
file-oriented (DEV$M_FOR) or
characteristics.

with devices
shareable

that have
(DEV$M_SHR)

A mailbox is disassociated from a device when the channel
that associated it is deassigned.

3. Channels remain assigned until they are explicitly deassigned
with the Deassign I/O Channel ($DASSGN) system service, or,
if they are user-mode channels, until the image that assigned
the channel exits.

4. The $ASSIGN service establishes a path to a device, but does
not check whether the caller can actually perform
input/output operations to the device. Privilege and
protection restrictions may be applied by the device drivers.
For details on how the system controls access to devices, see
the VAX/VMS I/O User's Guide.

For examples of how to use $ASSIGN to assign channels for input/output
operations, see Chapter 6, "Input/Output Services."

ln

$BINTIM - CONVERT ASCII STRING TO BINARY TIME

$BINTIM

$BINTIM - CONVERT ASCII STRING TO BINARY TIME

The Convert ASCII String to Binary Time system service converts an
ASCII string to an absolute or delta time value in the system 64-bit
time format suitable for input to the Set Timer ($SETIMR) or Schedule
Wakeup ($SCHDWK) system services.

Macro Format

$BINTIM timbuf ,timadr

High-Level Language Format

SYS$BINTIM(timbuf ,timadr)

timbuf

Address of a character string descriptor pointing to the buffer
containing the absolute or delta time to be converted. The
required formats of the ASCII strings are described in the Notes,
below.

If a delta time is specified, it must be less than 10,000 days.

timadr

Address of a quadword that is to receive the converted time in
64-bit format.

Return Status

SS$_NORMAL

Service successfully completed.

SS$ IVTIME

Notes

The syntax of the specified ASCII string is invalid, or the time
component is out of range.

1. The $BINTIM service executes at the access mode of the caller
and does not check whether address arguments are accessible
before it executes. Therefore, an access violation causes an
exception condition if the input buffer or buffer descriptor
cannot be read or the output buffer cannot be written.

2. This service does not check the length of the argument list,
and therefore cannot return the SS$ INSFARG (insufficient
arguments) error status code. If the service does not
receive enough arguments (for example, if you omit required
commas in the call), you might not get the desired result.

17

$BINTIM - CONVERT ASCII STRING TO BINARY TIME

3. The required ASCII input strings have the format:

Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

Delta Time: dddd hh:mm:ss.cc

Length
Field (Bytes) Contents Range of values

dd 2 day of month 1 - 31
1 hyphen Required syntax

mmm 3 month JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC

1 hyphen Required syntax
yyyy 4 year 1858 - 9999

blank n blank Required syntax

hh 2 hour 00 - 23
1 colon Required syntax

mm 2 minutes 00 - 59
1 colon Required syntax

SS 2 seconds 00 - 59
1 period Required syntax

cc 2 hundredths 00 - 99
of seconds

dddd 4 number of 000 - 9999
days (in
24-hour
units)

4. The following syntax rules apply to the coding of the ASCII
input string:

• Any of the fields of the date and time can be omitted.

For absolute time values, the $BINTIM service supplies the
current system date and time for nonspecified fields.
Trailing fields can be truncated. If leading fields are
omitted, the punctuation (hyphens, blanks, colons,
periods) must be specified. For example, the string

12:00:00.00

results in an absolute time of 12:00 on the current day.

For delta time values, the $BINTIM service defaults
nonspecified fields to O. Trailing fields can be
truncated. If leading fields are omitted from the time
value, the punctuation (blanks, colons, periods) must be
specified. For example, the string

0 : : 10

results in a delta time of 10 seconds.

• For both absolute and delta time values, there can be any
number of leading or trailing blanks, and any number of
blanks between fields normally delimited by blanks.
However, there can be no embedded blanks within either the
date or time fields, and no trailing characters that are
not blanks (blank = hex 20).

18

$BRDCST - BROADCAST

$BRDCST

$BRDCST - BROADCAST

The Broadcast system service writes a message to one or more
terminals.

Macro Format

$BRDCST msgbuf, [devnam]

High-Level Language Format

SYS$BRDCST(msgbuf, [devnam])

msgbuf

Addess of a character string descriptor pointing to the text of
the message to be broadcast. The maximum length of the message
is 250 bytes.

devnam

Address of a character string descriptor pointing to the name of
the terminal that is to receive the message. The string may be
either.a physical device name or a logical name. If the first
character in the string is an underscore character () , the name
is considered a physical device name. Otherwise, a sTngle level
of logical name translation is performed and the equivalence
name, if any, is used.

If this argument is omitted, or specified as O, then the message
is broadcast to all terminals.

If the first longword in the descriptor contains a O, the message
is sent to all terminals that are currently allocated to
processes.

Return Status

SS$_NORMAL

Service successfully completed.

SS$_ACCVIO

The message buffer or buffer descriptor, or the device name
string or string descriptor, cannot be read by the caller.

SS$ DEVOFFLINE

The specified terminal is offline, has disabled broadcast message
reception, has enabled passall mode, or is not a terminal.

SS$_EXQUOTA

The process has exceeded its buffer space quota and .has disabled
resource wait mode with the Set Resource Wait Mode ($SETRW~)
system service.

19

$BRDCST - BROADCAST

SS$ INSFMEM

Insufficient system dynamic memory is available to complete the
request and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SS$_NOPRIV

The process does not have the privilege to broadcast messages.

SS$_NOSUCHDEV

Warning. The specified terminal does not exist, or it cannot
receive the message.

Privilege Restrictions

The user privilege OPER is required to broadcast a message to
more than one terminal or to broadcast a message to a terminal
that is allocated to any other user.

Resources Required/Returned

Notes

This service requires system dynamic memory, and uses the
process's buffered I/O byte count quota (BYTLM) to buffer the
message while the service executes.

1. The service does not return control to the caller until all
specified terminals have displayed the broadcast message.

2. The current state (reading or writing) of each specified
terminal determines when the message is displayed:

• If the terminal is reading, the read operation is
suspended, the broadcast occurs, and then the line
being read is redisplayed (a CTRL/R is performed).

• If the terminal is writing, the message is broadcast
when the current write is complete.

However, the message is not displayed in any of the following
cases: the terminal is in PASSALL mode, the current
operation is a "read physical block" (IO$ READPBLK function
code), or the current operation has Tno echo" specified
(IOSM NOECHO function modifier) or "no format" specified
(IO$M=NOFORMAT function modifier).

After the message is displayed, each terminal is returned to
the state it was in prior to receiving the message. The
message is preceded and followed by a carriage return/line
feed.

A terminal cannot receive a broadcast message, however, if it
has the /NOBROADCAST characteristic.

20

$CANCEL - CANCEL I/O ON CHANNEL

$CANCEL

$CANCEL - CANCEL I/O ON CHANNEL

The Cancel I/O On Channe~ system service cancels all pending I/O
requests on a specific channel. In general, this includes all I/O
requests that are queued as well as the request currently in progress.

Macro Format

$CANCEL chan

High-Level Language Format

SYS$CANCEL(chan)

ch an

Number of the I/O channel on which I/O is to be canceled.

Return Status

SS$ NORMAL

Service successfully completed.

SS$_EXQUOTA

The process has exceeded
disabled resource wait
($SETRWM) system service.

SS$ INSFMEM

its
mode

quota
with

for
the

direct I/O and has
Set Resource Wait Mode

Insufficient system dynamic memory is available to cancel the
I/O, and the process has disabled resource wait mode with the Set
Resource Wait Mode ($SETRWM) system service.

SS$_IVCHAN

An invalid channel was specified, that is, a channel number of O
or a number larger than the number of channels available.

SS$ NOPRIV

The specified channel is not assigned, or was assigned from a
more privileged access mode.

Privilege Restrictions

I/O can be canceled only from an access mode equal to or more
privileged than the access mode from which the original channel
assignment was made.

21

$CANCEL - CANCEL I/O ON CHANNEL

Resources Required/Returned

Notes

The Cancel I/O on channel system service requires system dynamic
memory and uses the process's direct I/O limit (DIOLM) quota.

1. When a request currently in progress is canceled, the driver
i~ notified immediately. Actual cancellation may or may not
occur immediately depending on the logical state of the
driver. When cancellation does occur, the action taken for
I/O in progress is similar to that taken for queued requests:

2.

a. The specified event flag is set.

b. The first word of the I/O status block, if specified, is
set to SS$ CANCEL if the I/O request is queued or to
SS$_ABORT if-the I/O is in progress. ·

c. The AST, if specified, is queued.

Proper synchronization between this service and the actual
canceling of I/O requests requires the issuing process to
wait for I/O completion in the normal manner and then note
that the I/O has been canceled.

If the I/O operation is a virtual I/O operation involving a
disk or tape ACP, the I/O cannot be canceled. In the case of
a magnetic tape, however, cancellation may occur if the
device driver is hung.

3. Outstanding I/O requests are automatically canceled at image
exit.

For an example of the $CANCEL system service and additional
information on system services that perform device-dependent I/O
operations, see Chapter 6, "Input/Output Services."

22

$CANEXH - CANCEL EXIT HANDLER

$CANEXH

$CANEXH - CANCEL EXIT HANDLER

The Cancel Exit Handler system service deletes an exit control block
from the list of control blocks for the calling access mode. Exit
control blocks are declared by the Declare Exit Handler ($DCLEXH)
system service, and are queued according to access mode in a last-in
first-out order.

Macro Format

$CANEXH [desblk]

High-Level Language Format

SYS$CANEXH([desblk])

desblk

Address of the control block describing the exit handler to be
canceled. If not specified, or specified as O, all exit control
blocks are canceled for the current access mode.

Return Status

SS$ NORMAL

Service succ~ssfully completed.

SS$_ACCVIO

The first longword of the exit control block or the first
longword of a previous exit control block in the list cannot be
read by the caller, or· the first longword of the preceding
control block cannot be written by the caller.

SS$_NOHANDLER

Warning. The exit handler specified does not exist.

23

$CANTIM - CANCEL TIMER

$CANTIM

$CANTIM - CANCEL TIMER

The Cancel Timer
subset of the
image executing
identification
If more than
identification,

Request system service cancels all or a selected
Set Timer requests previously issued by the current

in a process. Cancellation is based on the request
specified in the Set Timer ($SETIMR) system service.
one timer request was given the same request
they are all canceled.

Macro Format

$CANTIM [reqidt] ,[acmode]

High-Level Language Format

SYS$CANTIM([reqidt] , [acmode])

reqidt

Request identification of the timer request(s) to be canceled. A
value of 0 (the default) indicates that all timer requests are to
be canceled.

acmode

Access mode of the request(s) to be canceled. The access mode is
maximized with the access mode of the caller. Only those timer
requests issued from an access mode equal to or less privileged
than the resultant access mode are canceled.

Return Status

SS$ NORMAL

Service successfully completed.

Privilege Restrictions

Timer requests can be canceled only from access modes equal to or
more privileged than the access mode from which the requests were
issued.

Resources Required/Returned

Notes

Canceled timer requests are restored to the process's quota for
timer queue entries (TQELM quota).

Outstanding timer requests are automatically canceled at image
exit.

For an example of the $CANTIM
information on timer scheduled
Time Conversion Services."

system service and additional
requests, see Chapter 8, "Timer and

24

$CANWAK - CANCEL WAKEUP

$CANWAK

$CANWAK - CANCEL WAKEUP

The Cancel Wakeup system service removes all scheduled wakeup requests
for a process from the timer queue, including those made by the caller
or by other processes. Scheduled wakeup requests are made with the
Schedule Wakeup ($SCHDWK) system service.

Macro Format

$CANWAK [pidadr] , [prcnam]

High-Level Language Format

SYS$CANWAK([pidadr] , [prcnam])

pidadr

Address of a longword containing the process identification of
the process for which wakeups are to be canceled.

prcnam

Address of a character string descriptor pointing to the process
name string. The process name is implicitly qualified by the
group number of the process issuing the cancel wakeup request.

If neither a process identification nor a process name is specified,
scheduled wakeup requests for the caller are canceled. For details on
how the service interprets the PIDADR and PRCNAM arguments, see Table
7-1 in Chapter 7, "Process Control Services."

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The process name string or string descriptor cannot be read by
the caller, or the process identification cannot be written by
the caller.

SS$_IVLOGNAM

The process name string has a length of 0 or has more than 15
characters.

SS$_NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV

The process does not have the privilege to cancel wakeups for the
specified process.

25

$CANWAK - CANCEL WAKEUP

Privilege Restrictions

User privileges are required to cancel scheduled wakeup requests
for:

• Other processes in the same group {GROUP privilege)

• Any other process in the system {WORLD privilege)

Resources Required/Returned

Notes

Canceled wakeup requests are restored to the process's AST limit
quota {ASTLM).

1. Pending wakeup requests issued by the current image are
automatically canceled at image exit.

2. This service only cancels wakeup requests that have been
scheduled; it does not cancel wakeup requests made with the
Wake Process {$WAKE) system service.

For an example of the $CANWAK system service, see Chapter 8, "Timer
and Time Conversion Services." For more information on process
hibernation and waking, see Chapter 7, "Process Control Services."

26

$CLREF - CLEAR EVENT FLAG

$CLREF

$CLREF - CLEAR EVENT FLAG

The Clear Event Flag system service sets an event flag in a local or
common event flag cluster to O.

Macro Format

$CLREF ef n

High-Level Language Format

SYS$CLREF (efn)

ef n

Number of the event flag to be cleared.

Return Status

SS$_WASCLR

Service successfully completed. The specified event flag was
previously O.

SS$ WASSET

Service successfully completed. The specified event flag was
previously 1.

SS$_ILLEFC

An illegal event flag number was specified.

SS$ UNASEFC

Notes

The process is not associated with the cluster containing the
specified event flag.

For an example of the $CLREF system service, see Chapter 3,
"Event Flag Services."

27

$CMEXEC - CHANGE TO EXECUTIVE MODE

$CM EXEC

$CMEXEC - CHANGE TO EXECUTIVE MODE

The Change to Executive Mode system service allows a process to change
its access mode to executive, execute a specified routine, and then
return to the access mode in effect before the call was issued.

Macro Format

$CMEXEC routin ,[arglst]

High-Level Language Format

SYS$CMEXEC(routin ,[arglst])

rout in

Address of the routine to be executed in executive mode.

arglst

Address of the argument list to be supplied to the routine, if
any.

Return Status

SS$ NOPRIV

The process does not have the privilege to change mode to
executive.

All other values returned are from the routine executed.

Privilege Restrictions

Notes

A process can call this service if it has the user privilege
CMEXEC and is currently executing in either executive or kernel
mode.

1. The $CMEXEC system service uses standard procedure calling
conventions to pass control to the specified routine. If no
argument list is specified, the argument pointer (AP)
contains a O, unless it is modified by the caller. (However,
to conform to the VAX-11 procedure calling standard, you must
not omit the ARGLIST argument.) The routine must exit with a
RET instruction.

2. The specified routine should place a status value in RO
before returning.

28

$CMKRNL - CHANGE TO KERNEL MODE

$CMKRNL

$CMKRNL - CHANGE TO KERNEL MODE

The Change to Kernel Mode system service allows a process to change
its access mode to kernel, execute a specified routine, and then
return to the access mode in effect before the call was issued.

Macro Format

$CMKRNL routin ,[arglst]

High-Level Language Format

SYS$CMKRNL(routin ,[arglst])

rout in

Address of the routine to be executed in kernel mode.

arglst

Address of the argument list to be supplied to the routine, if
any.

Return Status

SS$_NOPRIV

The process does not have the privilege to change mode to kernel.

All other values returned are from the routine executed.

Privilege Restrictions

Notes

A process cah call this service if it has the user privilege
CMKRNL and is currently executing in either executive or kernel
mode.

1. The $CMKRNL system service uses standard procedure calling
conventions. to pass control to the specified routine. If no
argument list is specified, the argument pointer (AP)
contains a 0, unless it is modified by the caller. (However,
to conform to the VAX-11 procedure calling standard, you must
not omit the ARGLIST argument.) The routine must exit with a
RET instruction.

2. The specified routine should place a status value in RO
before returning.

29

$CNTREG - CONTRACT PROGRAM/CONTROL REGION

$CNTREG

$CNTREG - CONTRACT PROGRAM/CONTROL REGION

The Contract Program/Control Region system service deletes a specified
number of pages from the current end of the program or control region
of a process's virtual address space. The deleted pages become
inaccessible; any references to them cause access violations.

Macro Format

$CNTREG pagcnt , [retadr] , [acmode] , [region]

High-Level Language Format

SYS$CNTREG (pagcnt , [retadr] , [acmode] , [region])

pagcnt

Number of pages to be deleted from the current end of the program
or control region.

retadr

Address of a 2-longword array to receive the virtual addresses of
the starting page and ending page of the deleted area.

acmode

Access mode of the
specified access
caller.

region

owner of the pages to be deleted. The
mode is maximized with the access mode of the

Region indicator. A value of O (the default) indicates that the
program region (PO region) is to be contracted, and a value of 1
indicates that the control region (Pl region) is to be
contracted.

Return Status

I SS$_NORMAL

Service successfully completed.

SS$ ACCVIO

The return address array cannot be written by the caller.

SS$ ILLPAGCNT

The specified page count was less than 1.

SS$ PAGOWNVIO

A page in the specified range is owned by a more privileged
access mode.

30

Notes

$CNTREG - CONTRACT PROGRAM/CONTROL REGION

1. If an error occurs while deleting pages, the return range, if
requested, indicates the pages that were successfully deleted
before the error occurred. If no pages were deleted, both
longwords in the return address array contain a -1.

2. The $CNTREG system service can delete pages only from the
current end of the process's program or control region. To
delete a specific range of pages in either region, use the
Delete Virtual Address Space {$DELTVA) system service.

For an example of the $CNTREG system service and additional details on
page creation and deletion, see Section 10.2, "Increasing and
Decreasing Virtual Address Space."

31

$CRELOG - CREATE LOGICAL NAME

$CRELOG

$CRELOG - CREATE LOGICAL NAME

The Create Logical Name system service inserts a logical name and its
equivalence name into the process, group, or system logical name
table. If the logical name already exists in the respective table,
the new definition supersedes the old.

Macro Format

$CRELOG [tblflg] ,lognam ,eqlnam ,[acmode]

High-Level Language Format

SYS$CRELOG([tblflg] ,lognam ,eqlnam ,[acmode])

tblflg

Logical name table number. A value of 0 indicates the system
table (this is the default value), 1 indicates the group table,
and 2 indicates the process logical name table.

lognam

Address of a character string descriptor pointing to the logical
name string.

eqlnam

Address of a character string descriptor pointing to the
equivalence name string.

acmode

Access mode to be associated with the logical name table entry.
Access modes only qualify names in the process logical name
table. The specified access mode is maximized with the access
mode of the caller.

Return Status

SS$ NORMAL

Service successfully completed. A new name was entered in the
specified logical name table.

SS$ SUPERSEDE

Service successfully completed. A new equivalence name replaced
a previous equivalence name in the specified logical name table.

SS$ ACCVIO

The logical name or equivalence name string or string descriptor
cannot be read by the caller.

32

$CRELOG - CREATE LOGICAL NAME

SS$_INSFMEM

Insufficient system dynamic memory is available to allocate a
group or system logical name table entry or the process has
exceeded its limit for process logical name table entries. The
code is only returned if the process has disabled resource wait
mode with the Set Resource Wait Mode ($SETRWM) system service.

SS$_IVLOGNAM

The logical name or equivalence name string has a length of O, or
has more than 63 characters.

SS$ IVLOGTAB

An invalid logical name table number was specified.

SS$_NOPRIV

The process does not have the privilege to place an entry in the
specified logical name table.

Privilege Restrictions

The user privileges GRPNAM
entries in the group
respectively.

and
and

SYSNAM are required to place
system logical name tables,

Resources Required/Returned

Notes

1. Up to 5 pages of memory are available in the control region
of a process's virtual address space to store names in the
process logical name table.

2. Creation of logical names for the group and system logical
name tables requires system dynamic memory.

Logical names can also be created from the command stream, with
the ASSIGN, DEFINE, ALLOCATE, and MOUNT commands.

For examples of the $CRELOG system service and details on logical name
translation and deletion, see Chapter 5, "Logical Name Services."

33

$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

$CREMBX

$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

The Create Mailbox and Assign Channel system service creates a virtual
mailbox device named MBn: and assigns an I/O channel to it. The
system provides the unit number, n, when it creates the mailbox. If a
mailbox with the specified name already exists, the $CREMBX service
assigns a channel to the existing mailbox.

Macro Format

$CREMBX [prmflg] ,chan , [maxmsg] , [bufquo] , [promsk]
, [acmode] , [lognam]

High-Level Language Format

SYS$CREMBX ([prmflg] , ch an , [maxmsg] , [bufquo] , [promsk]
,[acmode] ,[lognam])

prmflg

ch an

Permanent indicator. A value of 1
mailbox is to be created. The
entered in the system logical name
default) indicates a temporary
specified, is entered in the group

indicates that a permanent
logical name, if specified, is
table. A value of O (the
mailbox. The logical name, if
logical name table.

Address of a word to receive the channel number assigned.

maxmsg

Number indicating the maximum size of messages that can be sent
to the mailbox. If not specified, or specified as O, the system
provides a default value.

bufquo

Number of bytes of system dynamic memory
buffer messages sent to the mailbox.
this value must be less than or equal
quota. If not specified, or specified
a default value.

promsk

that can be used to
For a temporary mailbox,
to the process buff er

as O, the system provides

Numeric value representing the protection mask for the mailbox.

The mask contains four 4-bit fields:

15 11 7 3 0

.--W-O_R_L_D~..--G-R_O_U_P~~l-O_W_N_E_R~.--1 SYS~

34

$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

Bits, which are read from right to left in each field, indicate
when they are cleared that read, write, execute and delete
access, in that order, are granted to the particular category of
user.

Only read access and write access are meaningful for mailbox
protection.

If not specified, or specified as O, read access and write access
are granted to all users.

acmode

Access mode to be associated with
mailbox is assigned. The access
access mode of the caller.

lognam

the channel to which the
mode is maximized with the

Address of a character string descriptor pointing to the logical
name string for the mailbox. (Section 6.13.1 explains the format
of this string.) The logical name is entered into the group
logical name table (if it is a temporary mailbox) or the system
logical name table (if it is a permanent mailbox). In either
case, the MBn: name is entered as the equivalence name (the
first character in the equivalence name string is an underline
character []) • Processes can use the logical name to assign
other I/O channels to the mailbox.

Return Status

SS$_NORMAL

Service successfully completed.

SS$_ACCVIO

The logical name string or string descriptor cannot be read by
the caller, or the channel number cannot be written by the
caller.

SS$_EXPORTQUOTA

The process has exceeded the number of mailboxes that processes
on this port of the multiport (shared) memory can create.

ss$_EXQUOTA

The process has exceeded its buffered I/O byte count quota.

SS$ INSFMEM

Insufficient system dynamic memory is available to complete the
service.

SS$ INTERLOCK

The bit map lock for allocating mailboxes from the specified
shared memory is locked by another process.

35

$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

SS$ IVLOGNAM

The logical name string has a length of O or has more than 63
characters.

SS$ NOIOCHAN

No I/O channel is available for assignment.

SS$_NOPRIV

The process does not have the privilege to create a temporary
mailbox, a permanent mailbox, or a mailbox in memory that is
shared by multiple processors.

SS$ NOSHMBLOCK

No shared memory mailbox control block is available to use to
create a new mailbox.

SS$ SHMNOTCNCT

The shared memory named in the LOGNAM string is not known to the
system. This error can be caused by a spelling error in the
string, an improperly assigned logical name, or the failure to
~dentify the memory as shared at SYSGEN time.

SS$ TOOMANYLNAM

Logical name translation of the LOGNAM string exceeded the
allowed depth.

Privilege Restrictions

The user privileges TMPMBX and PRMMBX are required to create
temporary and permanent mailboxes, respectively.

The user privilege SHMEM is required to create a mailbox in
memory that is shared by multiple processors.

Resources Required/Returned

1. System dynamic memory is required for the allocation of a
device data base for the mailbox and for ,an entry in the
logical name table, if a logical name is specified.

2. When a temporary mailbox is created, the process's buffered
I/O byte count (BYTLM) quota is reduced by the amount
specified in the BUFQUO argument. The size of the mailbox
unit control block and the logical name (if one is specified)
are also subtracted from the quota. The quota is returned to
the process when the mailbox is deleted.

36

Notes

$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

1. After a mailbox is created, the creating process and other
processes can assign additional channels to it by calling the
Assign I/O Channel ($ASSIGN) system service. The system
maintains a reference count of the number of channels
assigned to a mailbox; the count is decreased whenever a
channel is deassigned with the Deassign I/O Channel ($DASSGN)
system service or when the image that assigned the channel
exits. If it is a temporary mailbox, it is deleted when
there are no more channels assigned. A permanent mailbox
must be explicitly .marked for deletion with the Delete
Mailbox ($DELMBX) system service, and is then deleted when no
more channels are assigned to it.

2. A mailbox is treated as a shareable device;
however, be mounted or allocated.

it cannot,

3. Mailboxes are assigned sequentially increasing unit numbers
(from 1 to a maximum of 65,535) as they are created. When
all unit numbers have been used, the system starts numbering
again at unit 1.

4. A process can obtain the unit number of the created mailbox
by calling the Get I/O Channel Information ($GETCHN) system
service.

5. Default values for the maximum message size and the buffer
quota (an appropriate multiple of the message size) are
determined for a specific system during system generation.
However, for termination mailboxes the maximum message size
must be at least as large as the termination message
(currently 84 bytes).

6. The reason $CREMBX simply assigns a channel if the mailbox
already exists is to remove the need for cooperating
processes to be concerned over which process must execute
first to create the mailbox. If a temporary mailbox is being
created, $CREMBX implicitly qualifies the mailbox name with
the group number to check whether the mailbox already exists.
In other words, there can be only one mailbox per group with
the same name. For permanent mailboxes, there can be only
one mailbox with a particular name. However, there can be a
permanent mailbox and group mailboxes with the same name.

For an example of mailbox creation and input/output operations to it,
see Section 6.13, "Mailboxes."

37

$CREPRC - CREATE PROCESS

$CREPRC

$CREPRC - CREATE PROCESS

The Create Process system service allows a process to create another
process. The created process can be either a subprocess or a detached
process.

A detached process is a fully independent process. For example, the
process that the system creates when a user logs in is a detached
process. A subprocess, on the other hand, is related to its creator
in a tree-like structure; it receives a portion of the creating
process's resource quotas and must terminate before the creating
process. The specification of the UIC argument controls whether the
created process is a subprocess or a detached process.

Macro Format

$CREPRC [pidadr] , [image] , [input] , [output] , [error]
, [prvadr] , [quota] , [prcnam] , [baspri] , [uic]
,[mbxunt] ,[stsflg]

High-Level Language Format

SYS$CREPRC([pidadr] ,[image] ,[input] ,[output] ,[error]
, [prvadr] , [quota] , [prcnam] , [baspri] , [uic]
, [mbxunt] , [stsflg])

pidadr

image

input

Address of a longword to receive the process identification
number assigned to the created process.

Address of a character s~ring descriptor pointing to the file
specification of the image to be activated in the created
process. The image name can have a maximum of 63 characters.

Address of a character string descriptor pointing to the
equivalence name string to be associated with the logical name
SYS$INPUT in the logical name table for the created process. The
equivalence name string can have a maximum of o3 characters.

output

error

Address of a character string descriptor pointing to the
equivalence name string to be associated with the logical name
SYS$0UTPUT in the logical name table for the created process.
The equivalence name string can have a maximum of 63 charactersr

Address of a character string descriptor pointing to the
equivalence name string to be associated with the logical name
SYS$ERROR in the logical name table for the created process. The
equivalence name string can have a maximum of 63 characters.

38

$CREPRC - CREATE PROCESS

prvadr

quota

Address of a 64-bit mask defining privileges for the created
process. The mask is formed by setting the bits corresponding to
specific privileges (see Section 7.3.4 for an example). The
$PRVDEF macro defines the following symbolic names for the bit
settings:

Name

PRV$V ALLSPOOL
PRV$V-BUGCHK
PRV$V-BYPASS
PRV$V-CMEXEC
PRV$V-CMKRNL
PRV$V-DETACH
PRV$V-DIAGNOSE
PRV$V-EXQUOTA
PRV$V-GROUP
PRV$V=GRPNAM

PRV$V LOG IO
PRV$V-MOUNT
PRV$V-NETMBX
PRV$V=NOACNT

PRV$V OPER
PRV$V-PFNMAP
PRV$V-PHY IO
PRV$V=PRMCEB

PRV$V PRMGBL
PRV$V-PRMMBX
PRV$V-PSWAPM
PRV$V-SETPRI
PRV$V-SETPRV
PRV$V=SHMEM

PRV$V SYSGBL
PRV$V-SYSNAM
PRV$V=SYSPRV

PRV$V TMPMBX
PRV$V-VOLPRO
PRV$V=WORLD

Privilege

Allocate a spooled device
Make bug check error log entries
Bypass UIC-based protection
Change mode to executive
Change mode to kernel
Create detached processes
Diagnose devices
Exceed quotas
Group process control
Place name in group logical
name table
Perform logical I/O operations
Issue mount volume QIO
Create a network device
Create processes for which no accounting is
done
All operator privileges
Map to section by physical page frame number
Perform physical I/O operations
Create permanent common
event flag clusters
Create permanent global sections
Create permanent mailboxes
Change process swap mode
Set any process priority
Set any process privileges
Allocate structures in memory shared by
multiple processors
Create system global sections
Place name in system logical name table
Access files and other resources as if you have
a system UIC
Create temporary mailboxes
Override volume protection
World process control

The user privilege SETPRV is required
privileges other than one's own.
this privilege, the mask is minimized
of the creating process, that is, any
not have are not granted but no error

to grant a process any
If the caller does not have
with the current privileges
privileges the creator does
status code is returned.

Address of a list of values assigning resource quotas to the
created process. If no address is specified, or the address is
specified as O, the system supplies default values for the
resource quotas.

The format of the quota list and considerations for specifying
quota values are described later in this section, under the
heading "Format of the Quota List." The specific quotas, their
defaults, and their minimum values, are listed under the heading
"Quota Descriptions."

39

$CREPRC - CREATE PROCESS

prcnam

Address of a character string descriptor pointing to a 1- to
15-character process name string to be assigned to the created
process. The process name is implicitly qualified by the group
number of the caller, if a subprocess is created, or by the group
number in the UIC argument, if a detached process is created.

baspri

uic

Numeric value indicating the base priority to be assigned to the
created process. The priority must be in the range of 0 to 31,
where 31 is the highest priority level and 0 is the lowest.
Normal priorities are in the range O through 15, and real-time
priorities are in the range 16 through 31.

If not specified, the base priority for the created process is 2
for VAX-11 MACRO and VAX-11 BLISS-32 and 0 for other languages.

The user privilege SETPRI is required to set a priority higher
than one's own. If the caller does not have this privilege, the
specified base priority is compared with the caller's priority
and the lower of the two values is used.

Numeric value representing the user identification code (UIC) of
the created process. This argument also indicates whether a
process is a subprocess or a detached process.

If not specified, or specified as O (the default), it indicates
that the created process is a subprocess; the subprocess has the
same UIC as the creator.

If a nonzero value is specified, it indicates that the created
process is a detached process. The specified value is
interpreted as a 32-bit octal number, with two 16-bit fields:

bits 0-15 member number
bits 16-31 group number

The user privilege DETACH is required to create a detached
process.

mbxunt

Unit number of a· mailbox to receive a termination message, when
the created process is deleted. If not specified, or specified
as 0 (the default), the system sends no termination message when
it deletes the process. The format of the message is described
in Note 2 below.

40

$CREPRC - CREATE PROCESS

stsflg

32-bit status flag indicating options selected for the created
process. The flag bits, when set, have the following meanings:

Bit

0
1
2
3
4
5

6

7

8-31

Return Status

SS$ NORMAL

Meaning

Disable resource wait mode
Enable system service failure exception mode
Inhibit process swapping (PSWAPM privilege required)
Do not perform accounting (NOACNT privilege required)
Batch (non-interactive) process
Force process to hibernate before it executes the
image
Provide detached process executing LOGINOUT.EXE with
authorization file attributes of the creator; do not
check authorization file
Process is a network connect object (NETMBX privilege
required)
Reserved. These bits must be O.

Service successfully completed.

SS$_ACCVIO

The caller cannot read a specified input string or
descriptor, the privilege list, or the quota list.
caller cannot write the process identification.

SS$ DUPLNAM

string
or, the

The process name specified duplicates one already specified
within that group.

SS$_EXQUOTA

1. The process has exceeded its quota for the creation of
subprocesses.

2. A quota value specified for the creation of a subprocess
exceeds the creator's corresponding quota; or, the quota is
deductible and the remaining quot~ for the creator would be
less than the minimum.

SS$_INSFMEM

Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SS$ IVLOGNAM

The specified process name has a length of 0 or has more than 15
characters.

SS$_IVQUOTAL

The quota list is not in the proper format.

41

$CREPRC - CREATE PROCESS

SS$ IVSTSFLG

A reserved status flag was set.

SS$ NOPRIV

The caller has violated one of the privilege restrictions listed
below.

SS$_NOSLOT

No process control block or swap slot is available.
words, the maximum number of processes that
concurrently in the system has been reached.

In other
can exist

Privilege Restrictions

User privileges are required to:

• Create detached processes (DETACH privilege)

• Set a created subprocess's base priority higher than one's own
(ALTPRI privilege)

• Grant a process user privileges that the caller does not have
(SETPRV privilege)

• Disable either process swap
accounting functions (NOACNT
process

mode (PSWAPM privilege) or
privilege) for the created

• Create a network connect object (NETMBX privilege)

Resources Required/Returned

Notes

1. The number of subprocesses that a process
controlled by the subprocess quota (PRCLM);
is returned when a subprocess is deleted.

can create is
the quota amount

2. The Create Process system service requires system dynamic
memory.

3. When a subprocess is created, the value of any deductible
quota is subtracted from the total value the creator has
available; and when the subprocess is deleted, the unused
portion of any deductible quota is added back to the total
available to the creator. Any pooled quota value is shared
by the creator and all its subprocesses. "Deductible" and
"pooled" quotas are defined later in this section under the
heading "Quota Descriptions." Information about how quotas
are determined at process creation appears later under the
heading "Quota Values."

1. Some error conditions are not detected until the created
process executes. These conditions include an invalid or
nonexistent image; invalid SYS$INPUT, SYS$0UTPUT, or
SYS$ERROR logical name equivalences; and inadequate quotas
or insufficient privilege to execute the requested image.

42

$CREPRC - CREATE PROCESS

2. If a mailbox unit is specified, the mailbox is not used until
the created process actually terminates. At that time, a
$ASSIGN system service is issued for the mailbox in the
context of the terminating process and an accounting message
is sent to the mailbox. If the mailbox no longer exists,
cannot be assigned, or is full, the error is treated as if no
mailbox had been specified.

The message is sent before the process rundown is initiated
but after the process name has been set to null. Thus, a
significant interval of time can occur between the sending of
the termination message and the final deletion of the
process.

To receive the message, the caller must issue a read to the
mailbox. When the I/O completes, the second longword of the
I/O status block, if one is specified, contains the process
identification of the deleted process.

Symbolic names for offsets of fields within the accounting
message are defined in the $ACCDEF macro. The offsets, their
symbolic names, lengths, and the contents of each field are
listed below.

Off set

0
2
4
8

12
16

24

32
44

48

52
56
60

64

68

72

80

Name

ACC$W MSGTYP

ACC$L FINALSTS
ACC$L-PID

ACC$Q_TERMTIME

ACC$T ACCOUNT

ACC$T USERNAME
ACC$L-CPUTIM

ACC$L_PAGEFLTS

ACC$L PGFLPEAK
ACC$L-WSPEAK
ACC$L-BIOCNT

ACC$L DIOCNT

ACC$L VOLUMES

ACC$Q_LOGIN

ACC$L OWNER

Length

word
word
longword
longword
longword
quadword

8 bytes

12 bytes
longword

longword

longword
longword
longword

longword

longword

quadword

longword

Contents

MSG$ DELPROC
not used
Exit status code
Process identification
Not used
Current time in system
format at process
termination
Account name for
process, blank filled
User name, blank filled
CPU time used by the
process, in
10-millisecond units
Number of page faults
incurred by the process
in its lifetime
Peak paging file usage
Peak working set size
Count of buffered I/O
operations performed by
the process
Count of direct I/O
operations performed by
the process
Count of volumes mounted
by the process
Time in system format
that process logged in
Process identification
of owner

The length of the termination message is equated to the
constant ACC$K_TERMLEN.

3. All subprocesses created by a process must terminate before
the creating process can be deleted. If subprocesses exist
when thei·r creator is deleted, they are automatically
deleted.

43

/'

$CREPRC - CREATE PROCESS

For examples of subprocess creation, termination mailboxes, and system
services that control the execution of processes, see Chapter 7,
"Process Control Services."

Format of the Quota List

The system defines specific resources that are controlled by quotas.
A quota limits the use of a particular system resource by a process.

The quota list addressed by the QUOTA argument of the $CREPRC system
service consists of consecutive quota values contained in longwords,
each preceded by a byte that indicates the quota type.

The $PQLDEF macro defines symbolic names for the quotas in the format:

PQL$_type

The quota list is terminated by the type code PQL$_LISTEND. For
example, a quota list may be specified as:

QLIST: +BYTE PQLS_PRCLM LIMIT NUMBER OF SUBPROCESSES
MAX = 2 SUBPROCESSES +LONG 2

.BYTE PQLS_ASTLM
+LONG 6
.BYTE PQLS_LISTEND

LIMIT NUMBER OF ASTS
MAX - 6 OUTSTANDING ASTS
END OF QUOTA LIST

Quota Descriptions

The individual quota types are described below. Each description also
indicates the following characteristics of the quota:

• Minimum value. A process cannot be created if it does not
have a quota equal to or greater than this minimum.

• Default value •
a particular
default value.

If the quota list does not specify a value for
quota, the system assigns the process this

• Deductible/Pooled/Nondeductible.

Deductible quotas: When a subprocess is created, the value
for a deductible quota is subtracted from the creator's
current quota, and is returned to the creator when the
subprocess is deleted. (Quotas are never deducted from the
creator when a detached process is created.) There is
currently only one deductible quota, the CPU time limit.

Pooled quotas: These quotas are established when a detached
process is created, and are shared by that process and all its
descendent subprocesses. Charges against pooled quota values
are subtracted from the current available totals as they are
used, and are added back to the total when they are not being
used.

Non-deductible quotas: These quotas are established and
maintained separately for each process and subprocess.

Note that the minimum and default values listed are not necessarily
those provided at your installation; they are, however, the values
recommended for general use.

The explanation under the heading "Quota Values," which appears later
in this section, describes how these characteristics may affect quota
assignments.

44

$CREPRC - CREATE PROCESS

PQL$_ASTLM

AST limit. This quota restricts both the number of outstanding
AST routines specified in system service calls that accept an AST
address and the number of scheduled wakeup requests that can be
issued.

Minimum: 2
Default: 6
Non-deductible

PQL$_BIOLM

Buffered I/O limit. This quota limits the number of outstanding
system-buffered I/O operations. A buffered I/O operation is one
which uses an intermediate buffer from the system pool rather
than a buffer specified in a process's $QIO request.

Minimum: 2
Default: 6
Non-deductible

PQL$_BYTLM

Buffered I/O byte count quota. This quota limits the amount of
system space that can be used to buffer I/O operations or to
create temporary mailboxes.

Minimum:
Default:
Pooled

PQL$_CPULM

1024
8192

CPU time limit. This quota can be used to limit the total amount
of CPU time used by a process. If the quota is specified as O,
there is no CPU time limit; the creating process, however, must
have unlimited CPU time itself in order to grant the created
process unlimited time.

If specified, the CPU time limit must be specified in units of 10
milliseconds. This quota is consumable; when the time limit has
been used, the process is deleted. If a subprocess is given
limited CPU time, the amount of time used is not returned to the
creator when the subprocess is deleted.

Minimum: 0
Default: 0
Deductible

PQL$_DIOLM

Direct I/O quota. This quota limits the number of outstanding
direct I/O operations. A direct I/O operation is one for which
the system locks the pages containing the associated I/O buffer
in memory for the duration of the I/O operation.

Minimum: 2
Default: 6
Non-deductible

45

$CREPRC - CREATE PROCESS

PQL$_FILLM

Open file quota. This quota limits the number of files that a
process can have open at one time.

Minimum: 2
Default: 10
Pooled

PQL$ _ PGFLQUOTA

Paging file quota. This quota limits the number of pages that
can be used to provide secondary storage in the paging file for a
process's execution.

Minimum:
Default:
Pooled

PQL$_PRCLM

256
2048

Subprocess quota. This quota limits the number of subprocesses a
process can create.

Minimum: 0
Default: 8
Pooled

PQL$_TQELM

Timer queue entry quota. This quota limits both the number of
timer queue requests a process can have outstanding and the
creation of temporary comm6n event flag clusters.

Minimum: 0
Default: 8
Pooled

PQL$_WSDEFAULT

Default working set size. This quota defines the number of pages
in the default working set for any image executed by the process.
The maximum size that can be specified for this quota is
determined by the working set size quota.

Minimum: 10
Default: 100
Non-deductible

PQL$_WSQUOTA

Working set size quota. This quota limits the maximum size to
which an image can expand its working set size with the Adjust
Working Set Limit ($ADJWSL) system service.

Minimum: 10
Default: 120
Non-deductible

46

$CREPRC - CREATE PROCESS

Quota Values

Values specified in the quota list are not necessarily the quotas that
will actually be assigned to the created process. The $CREPRC system
service performs the following steps to determine the quota values
that will be assigned:

1. It constructs a default quota list for the process being
created, assigning it the default values for all quotas.

2. It reads the specified quota list, if any,
corresponding items in the default list.
contains multiple entries for a quota,
specification is used.

and updates the
If the quota list
only the last

3. For each item in the updated quota list, it compares the
quota value with the minimum value required for the quota and
uses the larger value.

If a subprocess is being created:

1. The resulting value is compared with the current value of
the corresponding quota of the creator. If the value
exceeds the creator's quota, the status code SS$ EXQUOTA
is returned and the subprocess is not created.

2. If the quota is
resulting value
that the creator
quota required.
returned and the

a deductible quota, it deducts the
from the creator's quota and verifies

will still have at least the m1n1mum
If not, the status code SS$ EXQUOTA is

subprocess is not created. -

3. Pooled quota values are ignored.

If a detached process is created, the resulting values are
not compared with the creator's, nor are quotas deducted.
Moreover, the service does not check that a specified quota
value exceeds the maximum allowed by the system.

47

$CRETVA - CREATE VIRTUAL ADDRESS SPACE

$CRETVA

$CRETVA - CREATE VIRTUAL ADDRESS S~ACE

The Create Virtual Address Space system service adds a range of
demand-zero allocation pages to a process's virtual address space for
the execution of the current image.

Macro Format

$CRETVA inadr, [retadr] ,[acmode]

High-Level Language Format

inadr

SYS$CRETVA(inadr ,[retadr] ,[acmode])

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be created. If the starting
and ending virtual addresses are the same, a single page is
created. Only the virtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually created.

acmode

Access mode and protection for the new pages. The specified
access mode is maximized with the caller's access mode. The
protection of the pages is read/write for the resultant access
mode and those more privileged.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The input address array cannot be read by the caller, or the
return address array cannot be written by the caller.

SS$_EXQUOTA

The process has exceeded its paging file quota.

SS$ INSFWSL

The process's working set limit is not large enough to
accommodate the increased size of the virtual address space.

SS$ NOPRIV

A page in the specified range is in the system address space.

48

$CRETVA - CREATE VIRTUAL ADDRESS SPACE

SS$_PAGOWNVIO

A page in the specified range already exists and can not be
deleted because it is owned by a more privileged access mode than
that of the caller.

SS$_VASFULL

The process's virtual address space is full; no space is
available in the page tables for the requested pages.

Resources Required/Returned

Notes

The processes paging file quota (PGFLQUOTA) and working set limit
quota (WSQUOTA) must be sufficient to accommodate the increased
size of the virtual address space.

1. Pages are created starting at the address contained in the
first longword of the location addressed by the parameter
INADR and ending with the second longword. The ending
address can be lower than the starting address. The return
address array indicates the byte addresses of the pages
created.

2. If an error occurs while creating pages, the return array, if
requested, indicates the pages that were successfully created
before the error occurred. If no pages were created, both
longwords of the return address array contain a -1.

3. If $CRETVA creates pages that already exist, the service
deletes those pages if they are not owned by a more
privileged access mode than that of the caller. Any such
deleted pages are reinitialized as demand-zero pages.

The Expand Program/Control Region ($EXPREG) also adds pages to a
process's virtual address space. For additional details on page
creation and deletion, see Section 10.2, "Increasing and Decreasing
Virtual Address Space."

49

$CRMPSC - CREATE AND MAP SECTION

$CRMPSC

$CRMPSC - CREATE AND MAP SECTION

The Create and Map Section system service creates and/or maps a
section. A section can be a disk file section or a page frame
section. A disk file section is data or code from a disk file that
can be brought into memory and made available, either only to the
process that creates it (private section) or to all processes that map
to it (global section). A page frame section consists of one or more
page frames in physical memory or I/O space; such sections are
discussed in Section 10.6.13.

Creating a disk file section involves defining all or part of a disk
file as a section. Mapping a disk file section involves making a
correspondence between virtual blocks in the file and pages in the
caller's virtual address space. If the $CRMPSC-service specifies a
global section that already exists, the service maps it.

Depending on the actual operation requested,
required or optional. Table 1 summarizes
service interprets the arguments passed. to
circumstances it requires or ignores arguments.

certain arguments are
how the $CRMPSC system
it, and under what

Macro Format

$CRMPSC [inadr] , [retadr] , [acmode] , [flags] , [gsdnam] , [ident]
, [relpag] , [chan] , [pagcnt] , [vbn] , [prot] , [pfc]

High-Level Language Format

inadr

SYS$CRMPSC ([inadr] , [retadr] , [acmode] , [flags] , [gsdnam] , [ident]
, [relpag] , [chan] , [pagcnt] , [vbn] , [prot] , [pfc])

Address of a 2-longword array containing the starting and ending
virtual addresses in the process's virtual address space into
which the section is to be mapped. If the starting and ending
virtual addresses are the same, a single page is mapped (except
when the SEC$M EXPREG bit is set in the FLAGS argument). Only
the virtual pa~e number portion of the virtual addresses is used;
the low-order 9 bits are ignored.

If the SEC$M EXPREG bit is set in the FLAGS argument, the
addresses specified in the INADR argument simply determine
whether the sect ion is mapped in the program· (PO) or control (Pl)
region.

If this argument is not specified, or specified as O, the secti-0n
is not mapped.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages into which the section was
actually mapped.

50

$CRMPSC - CREATE AND MAP SECTION

acmode

flags

Access mode to be the owner of the pages created during the
mapping. The access mode is maximized with the access mode of
the caller.

Mask defining the section type and characteristics. This mask is
the logical OR of the flag bits you wish to set. The $SECDEF
macro defines symbolic names for the flag bits in the mask.
Their meanings and the default values they override are:

Flag Meaning Default Attribute

SEC$M GBL
SEC$M-CRF
SEC$M-DZRO

Global section
Pages are copy-on-reference
Pages are demand-zero pages

Private section
Pages are shared
Pages are not zeroed
when copied

SEC$M EXPREG Map into first
available space

Map into range
specified by INADR
argument

SEC$M WRT
SEC$M-PERM
SEC$M-PFNMAP
SEC$M-SYSGBL

Read/write section
Permanent
Page frame section
System global section

Read-only
Temporary
Disk file section
Group global section

gsdnam

ident

Address of a character string descriptor pointing to the text
name string for the global section. (Section 10.6.5.1 explains
the format of this text name string.) For group global sections,
the global section name is implicitly qualified by the group
number of the process creating the global section.

Address of a quadword indicating the version number of a
section, and, for processes mapping to an existing
section, the criteria for matching the identification.

global
global

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits. Values
for these fields can be assigned by installation convention to
differentiate versions of global sections. If no version number
is specified when a section is created, processes that specify a
version number when mapping cannot access the global section.

The first longword specifies, in its low-order 3 bits, the
matching criteria. The valid values, symbolic names by which
they can be specified, and their meanings are:

Value/Name

0 SEC$K MATALL
1 SEC$K=MATEQU

2 SEC$K_MATLEQ

Match Criteria

Match all versions of the section
Match only if major and minor identifications
match
Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor
identification of the global section

51

$CRMPSC - CREATE AND MAP SECTION

The match control field is ignored when a section is mapped at
creation time. If no address is specified, or is specified as O
(the default}, the version number and match control fields
default to 0.

relpag

ch an

Relative page number within the section of the first page in the
section to be mapped. If this argument is not specified or is
specified as O (the default}, the global section is mapped
beginning with the first virtual block in the file. This
argument must be 0 for demand-zero sections in memory shared by
multiple processors.

Number of the channel on which the file has been accessed. The
file must have been accessed with an RMS $OPEN macro; the file
options parameter (FOP} in the FAB must indicate a user file open
(UFO keyword}. The access mode at which the channel was opened
must be the same or less privileged than the access mode of the
caller.

pagcnt

vbn

prot

Number of pages in the section. The specified page count is
compared with the number of pages in the section file; if they
are different, the lower value is used. If the page count is not
specified or is specified as 0 (the default}, the size of the
section file is used. However, for physical page frame sections,
this argument must not be O.

Virtual block number in the file that marks the beginning of the
section. If this argument is not specified or is specified as O
(the default}, the section is created beginning with the first
virtual block in the file.

If you specified page frame number mapping (by setting the
SEC$M PFNMAP flag), this argument specifies the page frame number
where-the section begins in memory.

Numeric value representing the protection mask to be applied to
the global section.

The mask contains four 4-bit fields:

15 11 7 3 0

I
WORLD

I
GROUP I OWN~-F=l

Bits read from right to left in each field, when clear, indicate
that read, write, execute, and delete access, in that order, are
granted to the particular category of user.

Only read access and write access are meaningful for section
protection.

If not specified, or specified as O, read access and write access
are granted to all users.

52

$CRMPSC - CREATE AND MAP SECTION

pfc

Page fault cluster size. If specified, the cluster size
indicates how many pages are to be brought into memory when a
page fault occurs for a single page. This argument is not used
for physical page frame sections or for global sections in memory
shared by multiple processors.

Table 1
Arguments for the $CRMPSC System Service

Create and Create and
Map Global Map Globall Map Private

Argument Section Section Section

INADR Optiona12 Required Required

RETADR Optional Optional Optional

ACMODE Optional Optional Optional

FLAGS
SEC$M GBL Required Ignored ---
SEC$M-CRF3 Optional Not used Optional
SEC$M-DZR03 Optional Not used Optional
SEC$M-EXPREG Optional Optional Optional
SEC$M-PERM Optional2 Not used Not used
SEC$M-PFNMAP Optional Not used Not used
SEC$M-SYSGBL Optional Optional Not used
SEC$M=WRT Optional Optional Optional

GSDNAM Required Required Not used

!DENT Optional Optional Not used

RELPAG3 Optional Optional Not used

CHAN3 Required Required

PAGCNT Required Required

VBN3 Optional Optional

PROT Optional Not used

PFC3 Optiona14 Optional

1. The Map Global Section ($MGBLSC) system service maps an existing
global section.

2. INADR can be omitted only if you wish to create but not map a
global section; however, in such a case you must make the section
permanent, because temporary sections are automatically deleted when
no processes are mapped to them. INADR cannot be omitted for
demand-zero sections in memory shared by multiple processors.

3. For physical page frame sections: VBN specifies the start.ing page
frame number; RELPAG, CHAN, and PFC are not used; the SEC$M CRF and
SEC$M_DZRO flag bit settings are invalid.

4. This argument is not used for global sections in memory shared by
multiple processors.

53

$CRMPSC - CREATE AND MAP SECTION

Return Status

SS$ NORMAL

Service successfully completed. The specified global section
already existed and has been mapped.

SS$ CREATED

Service successfully completed. The specified global section did
not previously exist and has been created.

SS$ ACCVIO

The input addres~ array or the global section name or name
descriptor cannot be read, or the return address array cannot be
written, by the caller.

SS$ ENDOFFILE

Warning. The starting virtual block number specified is beyond
the logical end-of-file.

SS$_EXPORTQUOTA

The process has exceeded the
processes on this port of
create.

SS$ GPTFULL

numbei of global sections that
the multiport (shared) memory can

There is no more room in the system global page table to. set up
page table entries for the section.

SS$ GSDFULL

There is no more room in the system space allocated to maintain
control information for global sections.

SS$_EXQUOTA

The process exceeded its paging file quota while creating
copy-on-reference pages.

SS$ ILLPAGCNT

The page count value is negative, or is zero for a physical page
frame section.

SS$ INSFMEM

Not enough pages are available in the specified shared memory to
create the section.

SS$_INSFWSL

The process's working set limit is not large enough to
accommodate the increased size of the address space.

SS$ INTERLOCK

The bit map lock for allocating global sections from the
specified shared memory is locked by another process.

54

$CRMPSC - CREATE AND MAP SECT.ION

SS$_IVCHAN

An invalid channel number was specified, that is a channel number
of O or a number larger than the number of channels available.

SS$ IVCHNLSEC

The channel number specified is currently active.

SS$_IVLOGNAM

The specified global section name has a length of O, or has more
than 15 characters.

SS$ IVSECFLG

An invalid flag has been specified: a reserved flag, a flag
requiring a privilege you lack, or an invalid combination of
flags.

SS$ IVSECIDCTL

The match control field of the global section identification is
invalid.

SS$_NOTFILEDEV

The device is not a file-oriented, random-access, or directory
device.

SS$ NOPRIV

The process does not have the privilege to create a system global
section (SYSGBL) or a permanent group global section (PRMGBL).

The process does not have the privilege to create a section
starting at a specific physical page frame number (PFNMAP).

The process does not have the privilege to create a global
section in memory shared by multiple processors (SHMEM).

A page in the input address range is in the system address space.

The specified channel does not exist or was assigned from a more
privileged access mode.

SS$ NOSHMBLOCK

No shared memory control block for global sections is available.

SS$ PAGOWNVIO

A page in the specified input address range is owned by a more
privileged access mode.

SS$_SECTBLFUL

There are no entries available in the system global section
table.

55

$CRMPSC - CREATE AND MAP SECTION

SS$ SHMNOTCNCT

The shared memory named in the GSDNAM string is not known to the
system. This error can be caused by a spelling error in the
string, an improperly assigned logical name, or the failure to
identify the memory as shared at SYSGEN time.

SS$ TOOMANYLNAM

Logical name translation of the GSDNAM string exceeded the
allowed depth.

SS$ VASFULL

The process's virtual address space is full; no space is
available in the page tables for the pages created to contain the
mapped global section.

Privilege Restrictions

The user privilege SYSGBL is required to create a system global
section; the PRMGBL privilege is required to create a permanent
global section.

The user privilege PFNMAP is required to create a section
starting at a specific page frame number. However, the PFNMAP
privilege is not required to map to an existing global section at
a specific page frame number.

The user privilege SHMEM is required to create a global section
in memory that is shared by multiple processors. However, the
SHMEM privilege is not required to map to an existing global
section in memory shared by multiple processors.

Resources Required/Returned

Notes

The process's working set limit quota (WSQUOTA) must be
sufficient to accommodate the increased size of the virtual
address space when mapping a section. If the section pages are
copy-on-reference, the process must also have sufficient paging
file quota (PGFLQUOTA).

1. When the $CRMPSC system service maps a section, it calls the
Create Virtual Address Space ($CRETVA) system service to add
the pages specified by the INADR argument or requested by the
SEC$M EXPREG flag bit setting to the process's virtual
address space. The virtual addresses can be in the program
(PO) region or the control (Pl) region.

The $CRMPSC system service returns the virtual addresses of
the pages created in the RETADR argument, if specified. The
section is mapped from a low address to a high address,
regardless of whether the section is mapped in the program or
control region.

56

$CRMPSC - CREATE AND MAP SECTION

2. If an error occurs during the mapping of a global section,
the return address array, if specified, indicates the pages
that were successfully mapped when the error occurred. If no
pages were mapped, both longwords of the return address array
contain -1.

If the global section is permanent, it is not deleted if the
mapping operation fails.

3. The SEC$M PFNMAP flag setting identifies the memory for the
section as starting at the page frame number specified in the
VBN argument and extending for the number of pages specified
in the PAGCNT argument. Setting the SEC$M PFNMAP flag places
these restrictions on the following arguments:

RELPAG - Does not apply
CHAN - Does not apply
PAGCNT - Must be specified; cannot be zero
VBN - Specifies first page frame to be mapped
PFC - Does not apply

Setting the SEC$M PFNMAP flag also places restrictions on
these other flag values:

SEC$M CRF - Must be 0
SEC$M=DZRO - Must be O.

For examples of the creation and mapping of private and global
sections, see Section 10.6, "Sections."

57

$DACEFC - DISASSOCIATE COMMON EVENT FLAG CLUSTER

$DACEFC

$DACEFC - DISASSOCIATE COMMON EVENT FLAG CLUSTER

The Disassociate Common Event Flag Cluster system service releases the
calling process's association with a common event flag cluster.

Macro Format

$DACEFC ef n

High-Level Language Format

SYS$DACEFC(efn)

ef n

Number of any event flag in the common cluster to be
disassociated. The flag number must be in the range of 64
through 95 for cluster 2 and 96 through 127 for cluster 3.

Return Status

SS$_NORMAL

Service successfully completed.

SS$ ILLEFC

An illegal event flag number was specified. The number must be
in the range of event flags n4 through 127.

SS$ INTERLOCK

Notes

The bit map lock for allocating common event flag clusters from
the specified shared memory is locked by another process.

1. The count of processes associated with the cluster is
decreased for each process that disassociates. When the
image that associated with a cluster exits, the system
performs an implicit disassociate for the cluster. When the
count of processes associated with a temporary cluster or
with a permanent cluster that is marked for deletion reaches
zero, the cluster is automatically deleted.

2. If a process issues this service specifying an
cluster with which it is not associated,
completes successfully.

event flag
the service

For an example of the $DACEFC system service and a description of the
creation and association of common event flag clusters, see Section
3.4, "Common Event Flag Clusters."

58

$DALLOC - DEALLOCATE DEVICE

$DALLOC

$DALLOC - DEALLOCATE DEVICE

The Deallocate Device system service deallocates a previously
allocated device. Exclusive use by the issuing process is
relinquished and other 'processes can assign,or allocate the device.

Macro Format

$DALLOC [devnam] ,[acmode]

High-Level Language Format

SYS$DALLOC([devnam] ,[acmode])

devnam

Address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character in the string is an
underline character () , the name is considered a physical device
name. Otherwise, a single level of logical name translation is
performed and the equivalence name, if any, is used. The final
name, however, cannot contain a node name unless the name is that
of the host system.

If no device name is specified, all devices allocated by the
process from access modes equal to or less privileged than that
specified are deallocated.

acmode

Access mode
performed.
the caller.

Return Status

SS$_NORMAL

on behalf of which the deallocation is to be
The access mode is maximized with the access mode of

Service successfully completed.

SS$_ACCVIO

The device name string or string descriptor cannot be read by the
caller.

SS$ DEVASSIGN

Warning. The device cannot be deallocated because the process
still has channels assigned to it.

SS$ DEVNOTALLOC

Warning. The device is not allocated to the requesting process.

59

$DALLOC - DEALLOCATE DEVICE

SS$ IVDEVNAM

No device name string was specified or the device name string
contains invalid characters.

SS$ IVLOGNAM

The device name string has a length of O or has more than 63
characters.

SS$ NOPRIV

The device was allocated from a more privileged access mode.

SS$ NOSUCHDEV

Warning. The specified device does not exist in the host system.

Privilege Restrictions

Notes

An allocated device can be deallocated only from access modes
equal to or more privileged than the access mode from which the
original allocation was made.

1. A process cannot deallocate a device at any time. If, at the
time of deallocation, the issuing process has one or more I/O
channels assigned to the device, the device remains
allocated.

2. The system automatically deallocates all devices that were
allocated at user mode at image exit.

3. If an attempt is made to deallocate a mailbox, success is
returned but no operation is performed.

For an example of how to use this service and additional notes on
device allocation, see Section 6.9, "Device Allocation."

60

$DASSGN - DEASSIGN I/O CHANNEL

$DASSGN

$DASSGN - DEASSIGN I/O CHANNEL

The Deassign I/O Channel system service releases an I/O channel
acquired for input/output operations with the Assign I/O Channel
($ASSIGN) system service.

Macro Format

$DASSGN chan

High-Level Language Format

SYS$DASSGN(chan)

ch an

Number of the I/O channel to be deassigned.

Return Status

SS$_NORMAL

Service successfully completed.

SS$ IVCHAN

An invalid channel number was
number of 0 or a number
available.

specified; that is, a channel
larger than the number of channels

SS$_NOPRIV

The specified channel is not assigned, or was assigned from a
more privileged access mode.

Privilege Restrictions

Notes

An I/O channel can be deassigned only from an access mode equal
to or more privileged than the access mode from which the
original channel assignment was made.

1. When a channel is deassigned, any outstanding I/O requests on
the channel are canceled. If a file is open on the specified
channel, the file is closed.

2. If a mailbox was associated with the device when the channel
was assigned, the linkage to the mailbox is cleared.

3. If the I/O channel was assigned for a network operation, the
network link is disconnected. For more information on
channel assignment and deassignment for network operations,
see ihe DECnet-VAX User's Guide.

61

$DASSGN - DEASSIGN I/O CHANNEL

4. If the specified channel is the last channel assigned to a
device that has been marked for dismounting, the device js
dismounted.

5. I/O channels assigned from user mode are automatically
deassigned at image exit.

For an example of the
information· on channel
Channels."

$DASSGN system service
assignment, see Section

62

and
6.1,

additional
"Assigning

$DCLAST - DECLARE AST

$DCLAST

$DCLAST - DECLARE AST

The Declare AST system service queues an AST for the calling or for a
less privileged access mode. For example, a routine executing in
supervisor mode can declare an AST for either supervisor or user mode.

Macro Format

$DCLAST astadr ,[astprm] ,[acmode]

High-Level Language Format

SYS$DCLAST(astadr ,[astprm] ,[acmode])

astadr

Address of the entry mask of the AST service routine.

astprm

Value to be passed to the AST routine as an argument, if any.

acmode

Access mode for which the AST is to be declared. This access
mode is maximized with the access mode of the caller. The
resultant mode is the access mode for which the AST is declared.

Return Status

SS$_NORMAL

Service successfully completed.

SS$_EXQUOTA

The process has exceeded its AST limit quota.

SS$_INSFMEM

Insufficient system dynamic memory is available to complete the
service, and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

Resources Required/Returned

1. The Declare AST system service requires system dynamic
memory.

2. This service uses the process's AST limit quota (ASTLM).

63

Notes

$DCLAST - DECLARE AST

1. The $DCLAST system service does not validate the address of
the AST service routine. If an illegal address, for example,
an address of O, is specified, an access violation occurs
when the AST service routine is given control.

For an example of the $DCLAST system service and notes and coding
conventions for AST service routines, see Chapter 4, "Asynchronous
System Trap (AST) Services."

64

$DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY MODE HANDLER

$DCLCMH

$DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY MODE HANDLER

Declare Change Mode or Compatibility Mode Handler ($DCLCMH) system
service establishes the address of a routine to receive control when
(1) a Change Mode to user or Change Mode to Supervisor instruction
trap occurs, or (2) a compatibility mode fault occurs.

Macro Format

$DCLCMH addres, [prvhnd] ,[type]

High-Level Language Format

SYS$DCLCMH(addres , [prvhnd] , [type])

add res

Address of a routine to receive control when a change mode trap
or a compatibility mode fault occurs. An address of 0 clears a
previously declared handler.

prvhnd

type

Address of a longword to receive the address of a previously
declared handler.

Type indicator. If specified as 0 (the default), a change mode
handler is declared for the access mode at which the request is
issued. If specified as 1, a compatibility mode handler is
declared.

Return Status

SS$_NORMAL

Service successfully completed.

SS$_ACCVIO

Notes

The longword to receive the address of the previous change mode
handler cannot be written by the caller.

1. A change mode handler provides users with a dispatching
mechanism similar to that used for system service calls. It
allows a routine that executes in supervisor mode to be
called from user mode. The change mode handler is declared
from supervisor mode; when the process is then executing in
user mode and issues a Change Mode to Supervisor instruction,
the change mode handler receives control, and executes in
supervisor mode.

65

$DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY MODE HANDLER

2. Compatibility mode handlers are used by the operating system
to bypass normal condition handling procedures when an image
executing in compatibility mode incurs a compatibility mode
exception.

3. When the change mode or compatibility mode handler receives
control, the stack pointer points to the change mode code
specified in the change mode instruction or the compatibility
exception type code. On exit, the handler must remove the
code from the stack, then relinquish control with an REI
instruction.

4. A change mode handler can be declared only from user or
supervisor modes.

66

$DCLEXH - DECLARE EXIT HANDLER

$DCLEXH

$DCLEXH - DECLARE EXIT HANDLER

The Declare Exit Handler system service describes an exit handling
routine to receive control when an image exits. Image exit normally
occurs when the image currently executing in a process returns control
to the operating system. Image exit may also occur when the Exit
($EXIT) or Force Exit ($FORCEX) system services are called.

Macro Format

$DCLEXH desblk

High-Level Language Format

SYS$DCLEXH(desblk)

desblk

Address of a control block describing the exit handler. The exit
control block has the format:

31

....

forward link

exit handler address

0

address to store reason for exit

additional arguments
for exit handler,

if any

The system fills in the first longword.

Return Status

SS$_NORMAL

Service successfully completed.

SS$ ACCVIO

8 7 0

l n

....

r

The first longword of the exit control block cannot be written by
the caller.

SS$ NOHANDLER

Warning. No exit handler control block address was specified, or
the address specified is O.

67

Notes

$DCLEXH - DECLARE EXIT HANDLER

1. Exit handlers are described by exit control blocks. The
operating system maintains a separate list of these control
blocks for user, supervisor, and executive modes. The
$DCLEXH system service adds the description of an exit
handler to the front of one of these lists. The actual list
to which the exit control block is added is determined by the
access mode of the caller.

This service can only be called from user, supervisor, and
executive modes.

2. At image exit, the exit handlers declared from user mode are
called first; they are called in the reverse order from
which they were declared.

Each exit handler is. executed only once; it must be
redeclared before it can be executed again. The exit
handling routine is called as a normal procedure with the
argument list specified in the 3rd through nth longwords of
the exit control block. The first argument is the address of
a longword to receive a system status code indicating the
reason for exit; the system always fills in this longword
before calling the exit handler.

3. The cancel Exit Handler ($CANEXH) removes an exit control
block from the list.

For an example of an exit control block and a description of the
action the system takes when an image exits, see Section 7.6, "Image
Exit."

68

$DELLOG - DELETE LOGICAL NAME

$DELLOG

$DELLOG - DELETE LOGICAL NAME

The Delete Logical Name system service deletes a logical name and its
equivalence name from the process, group, or system logical name
table.

Macro Format

$DELLOG [tblflg] , [lognam] , [acmode]

High-Level Language Format

SYS$DELLOG ([tblflg] , [lognam] , [acmode])

tblf lg

Logical name table number. A value of O (the default) indicates
the system table, 1 indicates the group table, and 2 indicates
the process table.

lognam

Address of a character string descriptor pointing to the logical
name string. If omitted, all logical names the process is
privileged to delete in the specified table are deleted.

acmode

Access mode associated with the process logical name table entry.
The specified access mode is maximized with the access mode of
the caller; only the logical name entered at the resulting
access mode or a less privileged access mode is deleted. This
argument is used only for deleting names from the process logical
name table.

Return Status

SS$_NORMAL

Service successfully completed.

SS$_ACCVIO

The logical name string or string descriptor cannot be read by
the caller.

SS$ IVLOGNAM

The logical name string has a length of O, or has more than n3
characters.

SS$ IVLOGTAB

An invalid logical name table number was specified.

69

$DELLOG - DELETE LOGICAL NAME

SS$ NOLOGNAM

Either (1) the specified logical name does not exist in the
specified logical name table, or (2) the specified logical name
exists in the process logical name table but the entry was made
from a more privileged access mode.

SS$ NOPRIV

The process does not have the privilege to delete an entry from
the specified logical name table.

Privilege Restrictions

The user privileges GRPNAM and SYSNAM are required to
names from the group and system logical name
respectively.

delete
tables,

Resources Required/Returned

Notes

1. Deletion of a logical name from the group or system table
returns storage to system dynamic memory.

2. When a logical name is deleted from the process logical name
table, the number of bytes in the control region of the
process's virtual address space required to maintain the
table entry become available for other process logical name
table entries.

1. Logical names can be deleted from the command stream with the
DEASSIGN command.

2. Names in the process logical name table that were created
from user mode are automatically deleted at image exit.

For an example of the $DELLOG system service and additional details on
logical name creation and translation, see Chapter 5, "Logical Name
Services."

70

$DELMBX - DELETE MAILBOX

$DELMBX

$DELMBX - DELETE MAILBOX

The Delete Mailbox system service marks a permanent mailbox for
deletion. The actual deletion of the mailbox and of its associated
logical name assignment occur when no more I/O channels are assigned
to the mailbox.

Macro Format

$DELMBX chan

High-Level Language Format

SYS$DELMBX(chan)

ch an

Number of the channel assigned to the mailbox.

Return Status

SS$ NORMAL

Service successfully completed.

SS$_DEVNOTMBX

The specified channel is not assigned to a mailbox.

SS$ INTERLOCK

SS$ -

SS$ -

The bit map lock for allocating mailboxes from the specified
shared memory is locked by another process.

IV CHAN

An invalid
number of
available.

NOPRIV

channel
0 or

number was specified, that is, a channel
a number larger than the number of channels

The specified channel is not assigned to a device; the process
does not have the privilege to delete a permanent mailbox or a
mailbox in memory shared by multiple processors; or the access
mode of the caller is less privileged than the access mode from
which the channel was assigned.

Privilege Restrictions

1. The user privilege PRMMBX is required to delete a -permanent
mailbox.

2. The user privilege SHMEM is required to delete a mailbox
located in memory that is shared by multiple processors.

71

Notes

$DELMBX - DELETE MAILBOX

3. A mailbox can be deleted only from an access mode equal to or
more privileged than the access mode from which the mailbox
channel was assigned.

1. Temporary mailboxes are automatically deleted when their
reference count goes to zero.

2. The $DELMBX system service does not deassign the channel
assigned by the caller, if any. The caller must deassign the
channel with the Deassign I/O Channel ($DASSGN) system
service.

For information on the creation and use of mailboxes, see Section
6.13, "Mailboxes."

72

$DELPRC - DELETE PROCESS

$DELPRC

$DELPRC - DELETE PROCESS

The Delete Process system service allows a process to delete itself or
another process.

Macro Format

$DELPRC [pidadr] , [prcnam]

High-Level Language Format

SYS$DELPRC ([pidadr] , [prcnam])

pidadr

Address of a longword containing the process identification of
the process to be deleted.

prcnam

Address of a character string descriptor pointing to the process
name string. The process name is implicitly qualified by the
group number of the process issuing the delete.

If neither a process identification nor a process name is specified,
the caller is deleted and control is not returned. For details on how
the service interprets the PIDADR and PRCNAM arguments, see Table 7-1
in Chapter 7, "Process Control Services."

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The process name string or string descriptor cannot be read by
the caller, or the process identification cannot be written by
the caller.

SS$ INSFMEM

Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SS$ NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$ NOPRIV

The process does not have the privilege to delete the specified
process.

73

$DELPRC - DELETE PROCESS

Privilege Restrictions

User privileges are required to delete:

• Other processes in the same group (GROUP privilege)

• Any process in the system (WORLD privilege)

Resources Required/Returned

1. The Delete Process system service requires system dynamic
memory.

2. Deductible resource quotas granted to subprocesses are
returned to the creator when the subprocesses are deleted.

Notes

1. When a subprocess is deleted, a termination message is sent to
its creator, provided that the mailbox to receive the message
still exists and the creating process has access to the
mailbox. The termination message is sent before the final
rundown is initiated; thus, the creator may receive the
message before the process deletion is complete.

2. Due to the complexity of the required rundown operations, a
significant time interval occurs between a delete request and
the actual disappearance of the process. The Delete Process
service, however, returns immediately after initiating the
rundown operation. If subsequent delete requests are issued
for a process currently being deleted, the requests return
immediately with a return status code indicating successful
completion.

For a complete list of the actions performed by the system when it
deletes a process, see Sections 7.6, "Image Exit," and 7.7, "Process
Deletion."

74

$DELTVA - DELETE VIRTUAL ADDRESS SPACE

$DEL TVA

$DELTVA - DELETE VIRTUAL ADDRESS SPACE

The Delete Virtual Address Space system service deletes a range of
addresses from a process's virtual address space. Upon successful
completion of the service, the deleted pages are inaccessible; any
references to them cause access violations.

Macro Format

$DELTVA inadr ,[retadr] ,[acmode]

High-Level Language Format

inadr

SYS$DELTVA(inadr ,[retadr] ,[acmode])

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be deleted. If the starting
and ending virtual addresses are the same, a single page is
deleted. Only the virtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually deleted.

acmode

Access mode on behalf of which the service is to be performed.
The specified access mode is maximized with the access mode of
the caller. The resultant access mode is used to determine
whether the caller can actually delete the specified pages.

Return Status

SS$_NORMAL

Service successfully completed.

SS$ ACCVIO

The input address array cannot be read by the caller, or the
return address array cannot be written by the caller.

SS$_NOPRIV

A page in the specified range is in the system address space.

SS$ PAGOWNVIO

A page in the specified range is owned by an access mode more
privileged than the access mode of the caller.

75

$DELTVA - DELETE VIRTUAL ADDRESS SPACE

Privilege Restrictions

Notes

Pages can only be deleted from access modes equal to or more
privileged than the access mode of the owner of the pages.

1. The $DELTVA system service deletes pages starting at the
address contained in the second longword of the INADR array
and ending at the address in the first longword. Thus, if
the same address array is used for the Create Virtual Address
Space ($CRETVA) as for the $DELTVA system service, the pages
are deleted in the reverse order from which they were
created.

2. If any of the pages in the specified range have already been
deleted or do not exist, the service continues as if the
pages were successfully deleted.

3. If an error occurs while deleting pages, the return array, if
requested, indicates the pages that were successfully deleted
before the error occurred. If no pages are deleted, both
longwords in the return address array contain a -1.

For an example of the $DELTVA system service
information on page creati-0n and deletion, see
"Increasing and Decreasing Virtual Address Space."

and additional
Section 10.2,

76

$DGBLSC - DELETE GLOBAL SECTION

$DGBLSC

$DGBLSC - DELETE GLOBAL SECTION

The Delete Global Section system service marks an existing permanent
global section for deletion. The actual" deletion of the global
section takes place when all processes that have mapped the global
section have deleted the mapped pages.

Macro Format

$DGBLSC [flags] ,gsdnam ,[ident]

High-Level Language Format

SYS$DGBLSC([flags] ,gsdnam ,[ident])

flags

Mask indicating global section characteristics. The only
significant bit used for the deletion of global sections is the
group/system flag. If this argument is specified as 0 (the
default), it indicates that the global secti~n is a group global
section; if specified as SEC$M SYSGBL, it indicates a system
global section. -

gsdnam

ident

Address of a character string descriptor pointing to the text
name string of the global section to be deleted. (Section
10.6.5.1 explains the format of this text name string.) For group
global sections, the global section name is implicitly qualified
by the group number of the caller.

Address of a quadword indicating the version number of the global
section to delete and the matching criteria to be applied.

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits.

The first longword specifies, in the low-order 3 bits, the
matching criteria. Their valid values, the symbolic names by
which they can be specified, and their meanings are listed below:

Value/Name

0 SEC$K MATALL
1 SEC$K=MATEQU

2 SEC$K_MATLEQ

Match Criteria

Match all versions of the section
Match only if major and minor identifications
match
Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor
identification of the global section.

If no address is specified or is specified as 0 (the default),
the version number and match control fields default to O.

77

$DGBLSC - DELETE GLOBAL SECTION

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The global section name or name descriptor or the section
identification field cannot be read by the caller.

SS$ INTERLOCK

The bit map lock for allocating global sections from the
specified shared memory is locked by another process.

SS$ IVLOGNAM

The global section name has a length of O, or has more than 15
characters.

SS$ IVSECFLG

An invalid flag has been specified. Either a reserved flag has
been set, or one requiring a user privilege.

SS$ IVSECIDCTL

The section identification match control field is invalid.

SS$ NOPRIV

The caller does not have the privilege to delete a system global
section (SYSGBL), or does not have read/write access to a group
global section.

The caller does not have the privilege to delete a global section
located in memory that is shared by multiple processors (SHMEM).

SS$ NOSUCHSEC

Warning. The specified global section does not exist, or the
identifications do not match.

SS$_NOTCREATOR

The section is in memory shared by multiple processors, and was
created by a process on another processor.

SS$ SHMNOTCNCT

The shared memory named in the GSDNAM string is not known to the
system. This error can be caused by a spelling error in the
string, an improperly assigned logical name, or the failure to
identify the memory as shared at SYSGEN time.

SS$ TOOMANYLNAM

Logical name translation of the GSDNAM string exceeded the
allowed depth of 10.

78

$DGBLSC - DELETE GLOBAL SECTION

Privilege Restrictions

Notes

The user privileges SYSGBL and PRMGBL are required to delete
system and permanent global sections, respectively.

The user privilege SHMEM is required to delete a global section
located in memory that is shared by multiple processors.

The user privilege PFNMAP is required to delete a page frame
section.

1. Afte~ a global section has been marked for deletion, any
process that attempts to map it receives the warning return
status code SS$_NOSUCHSEC.

2. Temporary global sections are automatically deleted when the
count of processes using the section goes to O.

3. This service does not unmap a section from a process's
virtual address space. When a process no longer requires use
of a section, it can unmap the section by calling the Delete
Virtual Address Space {$DELTVA) system service to delete the
pages to which the section is mapped.

4. A section located in memory that is shared by multiple
processors can be marked for deletion only by a process
running on the same processor that created the section •.

For information on the creation and use of sections, see Section 10.n,
"Sections."

79

$DLCEFC - DELETE COMMON EVENT FLAG CLUSTER

$DLCEFC

$DLCEFC - DELETE COMMON EVENT FLAG CLUSTER

The Delete Common Event Flag Cluster system service marks a permanent
common event flag cluster for deletion. The cluster is actually
deleted when no more processes are associated with it.

Macro Format

$DLCEFC name

High-Level Language Format

name

SYS$DLCEFC(name)

Address of a character string descriptor pointing to the name of
the cluster. (Section 3.7.1 describes the format of this name
string.) The name is implicitly qualified by the group number of
the caller.

R~turn Status

SS$ NORMAL

Service successfully completed.

SS$ IVLOGNAM

The cluster name string has a length of 0 or has more than 15
characters.

SS$ NOPRIV

The process does not have the privilege to delete a permanent
common event flag cluster, or the process does not have the
privilege to delete a common event flag cluster in memory shared
by multiple processors.

Privilege Restrictions

Notes

The user privilege PRMCEB is required to delete a permanent
common event flag cluster, except when the UIC of the caller is
the same as the UIC of the creator of the cluster.

The user privilege SHMEM is required to delete an event flag
cluster in memory shared by multiple processors.

1. The $DLCEFC system service does not perform an implicit
disassociate request for the caller. A process disassociates
with a cluster by calling the Disassociate Common Event Flag
Cluster ($DACEFC) system service. The system performs an
implicit disassociate for the cluster at image exit.

80

$DLCEFC - DELETE COMMON EVENT FLAG CLUSTER

2. If the cluster has already been deleted or does not exist,
the $DLCEFC service returns the status code SS$ NORMAL.

For an example of creating and using a common event flag cluster, see
Section 3.4, "Common Event Flag Clusters."

81

$EXIT - EXIT

$EXIT

$EXIT - EXIT

The Exit system service is used by the operating system to initiate
image rundown when the current image in a process completes execution.
Control normally returns to the command interpreter.

Macro Format

$EXIT [code]

High-Level Language Format

code

SYS$EXIT ([code])

Longword value to be saved in the process header as the
completion status of the current image. If not specified in a
macro call, a value of 1 is passed as the completion code for
VAX-11 MACRO and VAX-11 BLISS-32 and a value of O is passed for
other languages. This value can be tested at the command level
to provide conditional command execution.

Return Status

Notes

No status codes are returned by this service because control is
not returned to the caller; rather, an exit to the command
interpreter is performed.

For a complete list of the actions taken by the system at image
exit, see Section 7.6, "Image Exit."

82

$EXPREG - EXPAND PROGRAM/CONTROL REGION

$EXP REG

$EXPREG - EXPAND PROGRAM/CONTROL REGION

The Expand Program/Control Region system service adds a specified
number of new virtual pages to a process's program region or control
region for the execution of the current image. Expansion occurs at
the current end of that region's virtual address space.

Macro Format

$EXPREG pagcnt, [retadr] ,[acmode] ,[region]

High-Level Language Format

SYS$EXPREG(pagcnt ,[retadr] , [acmode] ,[region])

pagcnt

Number of pages to add to the current end of the program or
control region.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually added.

acmode

Access mode and protection for the new pages. The specified
access mode is maximized with the access mode of the caller. The
protection of the pages is read/write for the specified access
mode and more privileged access modes.

region

Region indicator. A value of 0 (the default) indicates that the
program region (PO region) is to be expanded. A value of 1
indicates that the control region (Pl region) is to be expanded.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The return address array cannot be written by the caller.

SS$_EXQUOTA

The process exceeded its paging file quota.

SS$ ILLPAGCNT

The specified page count was less than 1.

83

$EXPREG - EXPAND PROGRAM/CONTROL REGION

SS$ INSFWSL

The process's working set limit is not large
accommodate the increased virtual address space.

enough to

SS$_VASFULL

The process's virtual address space is full; no space is
available in the process page table for the requested regions.

Resources Required/Returned

Notes

The process's paging file quota (PGFLQUOTA) and working set limit
quota (WSQUOTA) must be sufficient to accommodate the increased
size of the virtual address space.

1. The new pages, which were previously inaccessible to the
process, are created as demand-zero pages.

2. Because the bottom of the user stack is normally located at
the end of the control.region, expanding the control region
is equivalent to expanding the user stack. The effect is to
increase the available stack space by the specified number of
pages.

3. The starting address returned is always the first available
page in the designated region; therefore, the ending address
is smaller than the starting address when the control region
is expanded and is larger than the starting address when the
program region is expanded.

4. If an error occurs while adding pages, the return address
array, if requested, indicates the pages that were
successfully added before the error occurred. If no pages
were added, both longwords of the return address array
contain a -1.

5. The information returned in the location addressed by the
RETADR argument, if specified, can be used as the input range
to the Delete Virtual Address Space ($DELTVA) system service.
Pages can also be deleted with the Contract Program/Control
Region ($CNTREG) system service.

For an example of the $EXPREG system service and additional
information on creating and deleting pages, see Section 10.2,
"Increasing and Decreasing Virtual Address Space."

84

$FAO - FORMATTED ASCII OUTPUT

$FAO

$FAO - FORMATTED ASCII OUTPUT

The Formatted ASCII Output system service converts binary values into
ASCII characters and returns the converted characters in an output
string. It can be used to:

• Insert variable character string data into an output string

• Convert binary values into the ASCII representations of their
decimal, hexadecimal, or octal equivalents and substitute the
results into an output string.

Syntactical notes, lists of valid FAQ directives and parameters, and
examples of using FAO appear later in this section.

The Formatted ASCII Output with List Parameter ($FAOL) macro provides
an alternate way to specify input parameters for a call to the $FAQ
system service. The formats for both $FAQ and $FAOL appear below.

Macro Format

$FAQ ctrstr , [outlen] ,outbuf , [pl] , [p2] ••• , [pn]
or

$FAOL ctrstr , [outlen] ,outbuf ,prmlst

High-Level Language Format

SYS$FAO (ctrstr , [outlen] ,outbuf , [pl] , [p2] ••• , [pn])
or

SYS$FAOL(ctrstr ,[outlen] ,outbuf ,prmlst)

ctrstr

Address of a character string descriptor pointing to the control
string. The control string consists of the fixed text of the
output string and FAQ directives.

outlen

Address of a word to receive the actual length of the output
string returned.

outbuf

Address of a character string descriptor pointing to the output
buffer. The fully formatted output string is returned in this
buffer.

pl - pn

Directive parameters contained in longwords. Depending on the
directive, a parameter may be a value that is to be converted,
the address of the string that is to be inserted, or a length or
argument count. Each directive in the control string may require
a corresponding parameter or parameters.

85

$FAO - FORMATTED ASCII OUTPUT

prmlst

Address of the parameter list of longwords to be used as Pl
through Pn for the $FAOL macro. The parameter list may be a data
structure that already exists in a program and from which certain
values are to be extracted.

Return Status

SS$ BUFFEROVF

Service successfully completed. The formatted output string
overflowed the output buffer and has been truncated.

SS$ NORMAL

Service successfully completed.

SS$ BADPARAM

Notes

An invalid directive was specified in the FAQ control string.

1. The $FAQ S macro form uses a PUSHL instruction for all
parameters (Pl through Pn) coded on the macro instruction;
if a symbolic address is specified, it must be preceded with
a number sign (#) character or loaded into a register.

2. A maximum of 20 parameters can be specified on the $FAQ macro
instruction. If more than 20 parameters are required, use
the $FAOL macro.

3. The $FAO system service executes at the access mode of the
caller and does not check whether address arguments are
accessible before it executes. Therefore, an access
violation causes an exception condition if an input field
cannot be read or an output field cannot be written. Note
that an access violation can occur if an invalid length is
specified for an argument, or if an FAO parameter is coded
incorrectly.

4. This service does not check the length of the argument list,
and therefore cannot return the SS$ INSFARG (insufficient
arguments) error status code. If the service does not
receive enough arguments (for example, if you omit required
commas in the call), you might not get the desired result.

FAQ Directives

An FAQ directive has the format:

!DD

(exclamation mark) indicates that the following character or
characters are to be interpreted as an FAQ directive.

DD is a 1- or 2-character code indicating the action that FAQ is
to perform. Each directive may require one or more input
parameters on the call to $FAO. All directive codes for FAQ
must be specified in uppercase letters.

86

$FAQ - FORMATTED ASCII OUTPUT

Optionally, a directive may include:

• A repeat count

• An output field length

A repeat count is coded as follows:

!n(DD)

where n is a decimal value instructing FAQ to repeat the directive for
the specified number of parameters.

An output field length is specified as follows:

!lengthDD

where "length" is a decimal value instructing FAQ to place the output
resulting from a directive into a field of "length" characters in the
output string.

A directive may contain both a repeat count and an output length, as
shown below:

ln(lengthDD)

Repeat counts and output field lengths may be specified as variables,
by using a # (number sign) in place of an absolute numeric value. If
a # is specified for a repeat count, the next parameter passed to FAQ
must contain the count. If a # is specified for an output field
length, the next parameter must contain the length value.

If a variable output field length is specified with a repeat count,
only one length parameter is required; each output string will have
the specified length.

FAQ Control String and Parameter Processing

An FAO control string may be any length and may contain any number of
FAO directives. The only restriction is on the use of the !
character (ASCII code ~X21) in the control string. If a literal l is
required in the output string, the directive !1 provides an escape.

When FAQ processes a control string, each character that is not part
of a directive is written into the output buffer. When a directive is
encountered, it is validated; if it is not a valid directive, FAO
terminates and returns an error status code. If the directive is
valid, and if it requires one or more parameters, the next consecutive
parameters specified are analyzed and processed.

FAQ reads parameters from the argument list; it does not check the
number of arguments it has been passed. If there are not enough
parameters coded in the argument list, FAQ will continue reading past
the end of the.list. It is your responsibility, when coding a call to
$FAO, to ensure that there are enough parameters to satisfy the
requirements of all the directives in the control string.

Table 2 summarizes the FAQ directives and lists the parameter(s)
required by each directive. Table 3 summarizes how FAQ determines the
length of each output field in the control string as it processes
directives and substitutes character strings in the control string
while formatting the output buffer.

Examples in the next subsection, "FAQ Examples," describe in more
detail how to use FAO.

87

$FAO - FORMATTED ASCII OUTPUT

Table 2
Summary of FAQ Directives

..------------.---------,.-------------------------.------------------.

Directive _l_ ·-·- -· __ --~u_n_c ~-i-~-=--- _______________ __._ ____ P_a_r_a_m_e_t_e_r_(_s_> _1 _____ ____,

Character String Substitution
t-------------r------------------------- ---- ----------------------~-------------------t

!AC Inserts a counted ASCII string

!AD

!AF

!AS

Inserts an ASCII string

Inserts an ASCII string;
Replaces all nonprintable
ASCII codes with periods (.)

Inserts an ASCII string

Address of the string;
the first byte must
contain the length

1) Length of string
2) Address of string

1) Length of string
2) Address of string

Address of quadword
character string
descriptor pointing
to the string

- -------- ---- ________________ ___,_ ___________________ _
Numeric Conversion (zero-filled)

1-----------------y---- -- ------- -- --------- ---------------- --------------------.----------------------------- ------------!
!OB
!OW
!OL

!XB
!XW
!XL

!ZB
!ZW
!ZL

Converts a byte to octal
Converts a word to octal
Converts a longword to octal

Converts a byte to hexadecimal
Converts a word to hexadecimal
Converts a longword to hexadecimal

Converts an unsigned decimal byte
Converts an unsigned decimal word
Converts an unsigned decimal longword

Numeric Conversion (blank-filled)

Value to be converted to
ASCII representation

For byte or word
conversion, FAO uses only
the low-order byte or
word of the longword
parameter

1------------..------------------------------ --------- --------- ----------------, ---------------------------
1 UB Converts an unsigned decimal byte Value to be converted to
!UW Converts an unsigned decimal word ASCII representation
!UL Converts an unsigned decimal longword

!SB
!SW
!SL

Converts a signed decimal byte
Conve~ts a signed decimal word
Converts a signed decimal longword

For byte or word
conversion, FAQ uses only
the low-order byte or
word of the longword
parameter

1. If a variable repeat count and/or a variable output field length is specified with a
directive, parameters indicating the count and/or length must precede other parameters
required by the directive.

88

Directive

$FAQ - FORMATTED ASCII OUTPUT

Table 2 (Cont.)
Summary of FAQ Directives

Function Parameter{s)l

Output String Formatting

!/

! 1

1%S

1%T

1%D

In<
I>

!n*c

Inserts new line {CR/LF)

Inserts a tab

Inserts a form feed

Inserts an exclamation mark

Inserts the letter S if most recently
converted numeric value is not 1

Inserts the system time

Inserts the system date and time

None

Address of a quadword time
value to be converted to
ASCII. If 0 is specified,
the current system time is
used.

Defines output field width of n None
characters. All data and
directives within delimiters are left
justified and blank-filled within
the field

Repeats the specified character in the
output string n times

Parameter ~nterpretation

!- Reuses last parameter in· the list None

!+ Skips the next parameter in the list

1. If a variable repeat count and/or a variable output field length is specified with a
directive, parameters indicating the count and/or length must precede other parameters
required by the directive.

89

$FAQ - FORMATTED ASCII OUTPUT

Table 3
How FAQ Determines Output Field Lengths and Fill Characters

Conversion
/Substitution Type

Hexadecimal
Byte
Word
Longword

Octal
Byte
Word
Longword

Signed or Unsigned
Decimal

Unsigned Zero-filled
Decimal

ASCII String
Substitution

Default Length
of Output Field

···•···-·-···········

2 (zero-filled)
4 (zero-filled)
8 (zero-filled)

3 (zero-filled)
I) (zero-filled)
ll (zero-filled)

As many characters
as necessary

As many characters
as necessary

Length of input
character string

Action When Explicit
Output Field Length is
Longer than Default

ASCII result is riqht
justified and blank
filled to the specified
length

Hexadecimal or octal
output is always zero-
f i lled to the default
output field length then
blank-filled to specified
length

ASCII result is right
justified and blank-filled
to the specified length

ASCII result is right
justified and zero-filled
to the specified length

ASCII string is left
justified and blank-filled
to the specified length

90

Action When Explicit
Output Field Length is
Shorter than Default

ASCII result is
truncated on the
left

Signed and unsigned
decimal output fields
are completely filled
with asterisks(*)

ASCII string is
truncated on the
riqht

FAO EXAMPLES

FAO Examples

Each of the examples on the following pages shows an FAQ control
string with several directives, parameters defined as input for the
directives, and the calls to $FAQ to format the output strings. The
numbered examples illustrate:

1. $FAQ macro, !AC, !AS, !AD, and !/ directives

2. $FAQ macro, ! ! ' and !AS directives, repeat count, output
field length

3. $FAQ macro, !UL, !XL, !SL directives

4. $FAQL macro, !UL, !XL, !SL directives

5. $FAQL macro, !UB, !XB, !SB directives

6. $FAQ macro, !XW, 1 zw' !- directives, repeat count, output
field length

7. $FAQL macro, !AS, !UB, !%S, !- directives, variable repeat
count

8. $FAQ macro, !n*c (repeat character), !%D directives

9. $FAQ macro, !%D and !%T (with output field lengths), !n*
(with variable repeat count)

10. $FAQ macro, !< and !> (define field width), !AC, and !UL
directives

Each example is accompanied by notes, under the heading "Results".
These notes show the output string created by the call to $FAQ and
describe in more detail some considerations for using directives. The
sample output strings show delta characters (A) in all places where
FAQ output contains multiple blanks.

Each of the examples refers to the following output fields (these
fields are not shown in the data areas for each example):

FAODF.::sc:
• LONG
+LONG

FAOBUF: + Bl...l<B
FAOl...EN: + Bl ... l<W

+f.H .. KW

BO
FAOBUF
BO
:I.
1

;DESCRIPTOR FOR OUTPUT BUFFER
~OUTPUT BUFFER LENGTH
;ADDRESS OF BUFFER
;BO-CHARACTER BUFFER
;RECEIVE LENGTH OF OUTPUT
;RESERVE WORD FOR SQIO

These examples assume that each call to $FAQ will be followed by a
call to $QIO or to $OUTPUT to write the output string produced by FAQ.
The $QIO system service (and the $OUTPUT macro) require that the
length be specified as a longword; therefore, an extra word is
provided following the word defined to receive the length of the
output string returned by $FAO.

91

FAQ EXAMPLES

!Example ij
; CONTROL STRING AND INPUT PARAMETERS FOR EXAMPLE 1

SLEEPSTR: +ASCID @!/SAILORS: !AC !AS !AD@ ;DESCRIPTOR FOR CONTROL
;STRING. @ IS DELIMITER SINCE I IS IN CONTROL STRING

WINKEN: .ASCIC /WINKEN/
BLINKEN: +ASCID /BLINKEN/
NOD: .ASCII /NOD/
NODLEN: .LONG NODLEN-NOD

; CALL TO $FAO

;coUNTED ASCII STRING
~CHARACTER STRING DESCRIPTOR
;ASCII sn~ING
;LENGTH OF ASCII STRING

SFAQ_S CTRSTR=SLEEPSTR,QUTLEN=FAOLEN,OUTBUF=FAODESC,
Pl=tWINKEN,P2=tBLINKENvP3=NODLEN,P4=tNOD

Results:

$FAQ writes the output string into FAQBUF:

<CR><LF>SAILORS: WINKEN BLINKEN NOD

The !/ directive provides a carriage return/line feed character (shown
as <CR><LF>) for terminal output.

The !AC directive requires the address of a counted ASCII string (Pl
argument); the number sign (#) is required to specify the parameter,
so that the PUSHL instruction used by the $FAQ macro pushes the
address rather than its contents.

The !AS directive requires the address of a character
descriptor (P2 argument).

string

The !AD directive requires two parameters: the length of the string
to be substituted (P3 argument) and its address (P4 argument).

I Example 2 j

; CONTROL STRING AND INPUT PARAMETERS FOR EXAMPLE 2

NAMESTR: .ASCID /UNABLE TO LOCATE !3C8AS)! !/

JONES: • ASCH! /JONES/
HAF~l~IS: +ASCID /HAF~RIS/

WILSON: .Ascrn /WILSON/

; CALL TO $FAO

; DESCH I PT DI:~ FOi:~

CONTl:~ol... ~:>rt:~ I NG

il NAME DESCI:~ I PTOI:~
;NAME DESCRIPTOR
; NAME DESCl:~IPTOI:~

$FAO ... S CTRSTl:~::::NAMESTF~, OUTLEN::~FAOLEN,, ClUTBl.JF::::FAODESC'
P1=#JONES,P2=#HARRIS,P3=tWil...SON

Results:

$FAQ writes the output string into FAQBUF:

UNABLE TO LOCATE JONt:::St.MHAFmIB66WH .. SONM !

The !3(8AS) directive contains a repeat count: 3 parameters
(addresses of character string descriptors) are required. $FAQ
left-justifies each string into a field of 8 characters (the output
field length specified).

92

FAQ EXAMPLES

The !l directive supplies a literal 1 in the output.

If ~he directive were specified without an output field length, that
is, if the directive had been specified as 13(AS), the 3 output fields
would be concatenated, as follows:

UNABLE TO LOCATE JONESHARRISWILSON!

f Examples 3,4, and sl
; CONTROL STRINGS AND INPUT PARAMETERS FOR EXAMPLES 3, 4 AND 5

LONGSTR: ;DESCRIPTOR FOR CONTROL STRING <LONGWORD CONVERSION>
+ASCID /VALUES !UL <DEC> !XL <HEX> !SL <SIGNED)/

BYTESTR: ;DESCRIPTOR FOR CONTROL STRING <BYTE CONVERSION>
+ASCID /VALUES !UB <DEC> !XB <HEX> !SB <SIGNED)/

VAL!: +LONG 200 ;DECIMAL 200
VAL2: +LONG 300 ;DECIMAL 300
VAL3: +LONG -400 ;NEGATIVE 400

; CALL TO $FAQ <EXAMPLE 3)

$FAO_S CTRSTR=LONGSTR,QUTBUF=FAODESCvOUTLEN=FAOLEN,
P1=VAL1 vP2=VAL2,P3=VAL3

Results for Example 3:

$FAQ writes the output string:

VALUES 200 <DEC> 0000012C <HEX> -400 <SIGNED>

The longword value 200 is converted to decimal, the value 300 is
converted to hexadecimal, and the value -400 is converted to signed
decimal. The ASCII results of each conversion are placed in the
appropriate position in the output string.

Note that the hexadecimal output
zero-filled to the left. This
hexadecimal longwords.

CALL TO SFAO <EXAMPLE 4)

string has 8 characters and is
is the default output length for

SFAOL_S CTRSTR=LONGSTRvOUTBUF=FAODESCvOUTLEN=FAOLEN,
PRMLST=VAL1

Results for Example 4:

$FAQ writes the output string:

VALUES 200 CDEC> 0000012C <HEX) -400 <SIGNED>

The results are the same as the results of example 3. However, unlike
the $FAQ macro, which requires each parameter on the call to be coded,
the $FAQL macro points to a list of consecutive longwords, which FAQ
reads as parameters.

CALL TO SFAO <EXAMPLE 5)

SFAOL_S CTRSTR=BYTESTRvOUTLEN=FAOLEN,OUTBUF=FAODESc,
PRMLST=VAL1

93

FAQ EXAMPLES

Results for Example 5:

$FAQ writes the output string:

VALUES 200 <DEC> 2C CHEX> 112 CSIGNED>

The input parameters are the same as those for Example 4. However,
the control string (BYTESTR) specifies that byte values are to be
converted. FAQ uses the low-order byte of each longword parameter
passed to it. The high-order 3 bytes are not evaluated. Compare
these results with the results of Example 4.

fExample 61
; CONTROL STRING FOR EXAMPLE 6

MUL TSTI:;:: • ASCID /HEX: ! 2 (6XW) l.l::]:W-··DEC: ! 2 (-..) ! 2 ('7ZW) I

; CAL.I... TO F AO

SFAO_S CTRSTR=MULTSTR,OUTLEN=FAOl...ENPOUTBUF=FAODESC,
P1=t10000,P2=#9999

Results:

FAQ writes the output string:

HEX: l:::t.662'71. OM270F ZEl:;:o DEC: 00 :I. 00000009999

Each of the directives !2(6XW) and !2(7ZW) contain repeat counts and
output lengths. First, FAQ performs the !XW directive twice, using
the low-order word of the numeric parameters passed. The output
length specified is 2 characters longer than the default output field
width of hexadecimal word conversion, so 2 spaces are placed between
the resulting ASCII strings.

The !- directive causes FAQ to back up over the parameter list. A
repeat count is specified with the directive, so that FAQ skips back
over two parameters; then, it uses the same two parameters for the
!ZW directive. The !ZW directive causes the output string to be
zero-filled to the specified length, in this example, 7 characters.
Thus, there are no blanks between the output fields.

94

FAO EXAMPLES

fExample 11
; CONTROL STRING AND INPUT PARAMETERS FOR EXAMPLE 7

ARGSTR: +ASCID /!AS RECEIVED !UB ARG!%S: !-!#<4UB>I

LISTA: +LONG DIUON
+LONG ~~
+LONG 1()

.LONG 1.23

.LONG 210

LISH<: +LONG LYRA
• LONG :l
+LONG r)t::"t::'

A",.,,1 ... 1

ORION: .ASCID /ORION/

LYRA: +ASCID /LYRA/

v CALLS TO FAO

;ADDRESS OF NAME STRING
;NUMBER OF ARGS IN LIST
;MWUMENT :l
;MWUMENT 2
; ARGUMENT ~5

;ADDRESS OF NAME STRING
;NUMBER OF ARGS IN LIST
;ARGUMENT 1

;DESCRIPTOR FOR PROCESS ORION

;DESCRIPTOR FOR PROCESS LYRA

$FAQL_S CTRSTR=ARGSTR,OUTLEN=FAOLEN,QUTBUF=FAODESC,
PF~ML.~:>T::::f... I STA

SFAOl..._S CTRSTR=ARGSTR,QUTl...EN=FAOl...EN,OUTBUF=FAODESCv
Pl:~MLST::::f... I STB

Results:

Following the first call to $FAOL shown above, FAO writes the output
string:

Following the second call, FAQ writes the output string:

In each of the examples, the PRMLST argument points to a different
parameter list; each list contains, in the first longword, the
address of a character string descriptor. The second longword begins
an argument list, with the number of arguments remaining in the list.
The control string uses this second longword twice: first to output
·the value contained in the longword, and then to provide the repeat
count to output the number of arguments in the list (the !- directive
indicates that FAQ should reuse the parameter).

The 1%8 directive provides a conditional plural. When the last value
converted has a value not equal to 1, FAQ outputs an "S"; if the
value is a 1 (as in the second example), FAQ does not output an "S".

The output field length defines a width of 4 characters for each byte
value converted, to provide spacing between the output fields.

95

FAQ EXAMPLES

!Example al
; CONTROL STRING FOR EXAMPLE 8

TIMESTR: +ASCID /!5*> NOW rs: !%D/

; CAL.I... TO $FAO

SFAO_S CTRSTR=TIMESTR,OUTLEN=FAOl...EN,OUTBUF=FAODESCv
P:l.~=:11:0

Results:

FAQ writes the output string:

>>>>> NOW IS: dd-mmm-YYYY hh:mm:ss.cc

where dd-mmm-yyyy is the current.day, month, and year, and hh:mm:ss.cc
is the current time of day in hours, minutes, seconds, and hundredths
of seconds.

The !5*> directive requests FAQ to write five greater than (>)
characters into the output string. Since there is a space after the
directive, FAQ also writes a space after the > characters on output.

The !%0 directive requires the address of a quadword time value, which
must be in the system time format. However, when the address of the
time value is specified as O, FAQ uses the current date and time. For
information on how to obtain system time values in the required
format, see Chapter 8, "Timer and Time Conversion Services." For a
detailed description of the ASCII date and time string returned, see
the discussion of the Convert Binary Time to ASCII String ($ASCTIM)
system service in Part II.

!Example 91
; CONTROL STRING FOR EXAMPLE 9

DAYTIMSTR: +ASCID /DATE: !11%D!l*_TIME: !5%T/

; CALL.. TO FAD

SFAO_S CTRSTR=DAYTIMSTR,OUTL..EN=FAOl...ENvOUTBUF=FAODESCv
Pl=IO,P2=t5,P3=10

Results:

FAQ writes the output string:

DATE : d d mm m \:~ ~:~ \:~ ~:~ T J ME : h h : mm

In this example, an output length of 11 bytes is specified with the
!%0 directive, so that FAQ truncates the time from the date and time
string, and outputs only the date.

The !#* directive requests that the underline character () be
repeated the number of times specified by the next parameter. Since
P2 is specified as 5, 5 underlines are written into the output string.

The 1%T directive normally returns the full system time; in this
example, the 15%T directive provides an output length for the time;
only the hours and minutes fields of the time string are written into
the output buffer.

96

FAQ EXAMPLES

!Example ioj
9 CONTROL STRING AND PARAMETERS FOR EXAMPLE 10

WIDTHSTR: .ASCID /!25<VAR: !AC VAL: ! UL! >TOTAL..: ! '7UI.../

UARlNAME: +ASCIC /INVENTORY/
VAR1: +LONG 334
VARlTOT:.LONG 6554

VAR2NAME: +ASCIC /SAL.ES/
VAR2: .LONG 280
VAR2TOT:+LONG 10750

; CAL.LS TO ~l>FAO

; VAl1: I ABLE :1. NAME
; CURm~:NT VALUE
; VAf~ :I. TOTAL.

vVAR ~?. NAME
; CUFmENT VALUE
v VM-:: ~.~ TOTAL

SFAO_S CTRSTR=WIDTHSTR,OUTLEN=FAOLENvOUTBUF=FAODESC,
P1=1VAR1NAME,P2=VAR1,P3=VAR1TOT

Results:

tFAO_S CTRSTR=WIDTHSTR,OUTLEN=FAOLEN,OUTBUF=FAODESCv
P1=1VAR2NAMEvP2=VAR2vP3=VAR2TOT

Following the first call to FAQ shown above, FAQ writes the output
string:

VAR: INVENTORY VAL.: 334AATOTAL:AAA6554

After the second call, FAQ writes the output string:

VAF~: SAL.ES VAi...: 2BOAAAAAATOTAI ... :u:1.on;o

The !25< directive requests an output field width of 25 characters;
the end of the field is delimited by the !> directive. Within the
field defined in the example above are two directives, !AC and !UL.
The strings substituted by these directives can vary in length, but
the entire field always has 25 characters.

The !7UL directive formats the longword passed in each example (P2
argument) and right-justifies the result in a 7-character output
field.

97

$FORCEX - FORCE EXIT

$FORCEX

$FORCEX - FORCE EXIT

The Force Exit system service causes an Exit ($EXIT) system service
call to be issued on behalf of a specified process.

Macro Format

$FORCEX [pidadr] , [prcnam] , [code]

High-Level Language Format

SYS$FORCEX ([pidadr] , [prcnam] , [code])

pidadr

Address of a longword containing the process identification of
the process to be forced to exit.

prcnam

code

Address of a character string descriptor pointing to the process
name string. The name is implicitly qualified by the group
number of the process issuing the force exit request.

Longword completion code value to be used as the exit parameter.
If not specified, a value of 0 is passed as the completion code.

If neither a process identification nor a process name is specified,
the caller is forced to exit and control is not returned. For details
on how the service interprets the PIDADR and PRCNAM arguments, see
Table 7-1 in Chapter 7, "Process Control Services."

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The process name string or string descriptor cannot be read by
the caller, or the process identification cannot be written by
the caller.

SS$ NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

98

$FORCEX - FORCE EXIT

SS$_NOPRIV

The process does not have the privilege to force an exit for the
specified process.

SS$_INSFMEM

Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

Privilege Restrictions

User privileges are required to force an exit for:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

Resources Required/Returned

Notes

The Force Exit system service requires system dynamic memory.

1. The image executing in the target process follows normal exit
procedures. For example, if any exit handlers have been
specified, they gain control before the actual exit occurs.
Use the Delete Process ($DELPRC) system service if you do not
want a normal exit.

2. When a forced exit is requested for a process, a user mode
AST is queued for the target process. The AST routine
actually causes the Exit system service call to be issued by
the target process. Because the AST mechanism is used, user
mode ASTs must be enabled for the target process, or no exit
occurs until ASTs are re-enabled. (Thus, for example, a
suspended process cannot be stopped by $FORCEX.) The process
that called $FORCEX receives no notification that the exit is
not being performed.

3. The $FORCEX system service completes successfully if a force
exit request is already in effect for the target process but
the exit is not yet completed.

For an example of the $FORCEX system service and an explanation of the
actions performed by the system when an image exits see Section 7.n,
"Image Exit."

99

$GETCHN - GET I/O CHANNEL INFORMATION

$GETCHN

$GETCHN - GET I/O CHANNEL INFORMATION

The Get I/O Channel Information system service returns
about a device to which an I/O channel has been assigned.
information are optionally returned:

information
Two sets of

• The primary device characteristics

• The secondary device characteristics

In most cases the two sets of characteristic information are
identical. However, the two sets provide different information in the
following cases:

• If the device has an associated mailbox, the primary
characteristics are those of the assigned device and the
secondary characteristics are those of the associated mailbox.

• If the device is a spooled device, the primary characteristics
are those of the intermediate device and the secondary
characteristics are those of the spooled device.

• If the device represents a logical link on the network, the
secondary characteristics contain information about the link.

Macro Format

$GETCHN chan , [prilen] , [pribuf] , [scdlen] , [scdbuf]

High-Level Language Format

SYS$GETCHN (chan , [prilen] , [pribuf] , [scdlen] , [scdbuf])

ch an

Number of the I/O channel assigned to the device.

pr ilen

Address of a word to receive the length of the
characteristics.

pribuf

primary

Address of a character string descriptor pointing to the buffer
that is to receive the primary device characteristics. An
address of 0 (the default) implies that no buffer is specified.

scdlen

Address of a word to receive the length of the secondary
characteristics.

scdbuf

Address of a character string descriptor pointing to buffer that
is to receive the secondary device characteristics. An address
of 0 (the default) implies that no buffer is specified.

100

$GETCHN - GET I/O CHANNEL INFORMATION

Return Status

SS$_BUFFEROVF

Service successfully completed. The device information returned
overflowed the buffer(s) provided and has been truncated.

SS$_NORMAL

Service successfully completed.

SS$_ACCVIO

A buffer descriptor cannot be read by the caller, or a buffer or
buffer length cannot be written by the caller.

SS$_IVCHAN

An invalid channel number was specified, that is, a channel
number of 0 or a number larger than the number of channels
available.

SS$ NOPRIV

The specified channel is not assigned or was assigned from a more
privileged access mode.

Privilege Restrictions

Notes

The Get I/O Channel Information service can be performed only on
assigned channels and from access modes that are equal to or more
privileged than the access mode from which the original channel
assignment was made.

1. The Get I/O Device Information
returns the same information
Information system service.

($GETDEV) system service
as the Get I/O Channel

2. The $GETCHN and $GETDEV system services return information in
a user-supplied buffer. Symbolic names defined in the
$DIBDEF macro reprisent offsets from the beginning of the
buffer. The length of the buffer is defined in.the constant
DIB$K_LENGTH.

101

$GETCHN - GET I/O CHANNEL INFORMATION

The field offset names, lengths, and contents are listed below.

Field Name Length (bytes) Contents

DIB$L DEVCHAR
DIB$B-DEVCLASS
DIB$B-DEVTYPE
DIB$B-SECTORS
DIB$B-TRACKS
DIB$W-CYLINDERS

DIB$W DEVBUFSIZ
DIB$L-DEVDEPEND
DIB$L=MAXBLOCK

DIB$W UNIT
DIB$W-DEVNAMOFF
DIB$L-PID
DIB$L-OWNUIC
DIB$W-VPROT
DIB$W-ERRCNT
DIB$L-OPCNT
DIB$W-VOLNAMOFF
DIB$W=RECSI Z

4
1
1
1
1
2

2
4
4

2
2
4
4
2
2
4
2
2

Device characteristics
Device class
Device type
Number of sectors per track (disk)
Number of tracks per cylinder (disk)
Number of cylinders on the volume
(disk)
Device buffer size
Devi~e dependent information
Number of logical blocks on the volume
(disk)
Unit number
Offset to device name string
Process identification of device owner
UIC of device owner
Volume protection mask
Error count
Operation count
Offset to volume label string
Blocked record size (valid for
magnetic tap~s when DIB$W VOLNAMOFF is
nonzero)

The device name string and volume label string are returned in the
buffer as counted ASCII strings and must be located by using their
offsets from the beginning of the buffer.

Any fields not applicable to a particular device are returned as
zeros.

For further details on the
device-dependent information
Guide.

contents
returned,

102

of this
see the

buff er and on
VAX/VMS I/O User's

$GETDEV - GET I/O DEVICE INFORMATION

$GETDEV

$GETDEV - GET I/O DEVICE INFORMATION

The Get I/O Device Information system service returns information
about an I/O device. This service allows a process to obtain
information about a device to which the process has not assigned a
channel. It returns the same information as described in the
explanation of the Get I/O Channel Information ($GETCHN) system
service. See Note 2 under the $GETCHN system for the format of
information returned.

Macro Format

$GETDEV devnam , [prilen] , [pribuf] , [scdlen] , [scdbuf]

High-Level Language Format

SYS$GETDEV(devnam , [prilen] , [pribuf] , [scdlen] , [scdbuf])

devnam

Address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character in the string is an
underline character () , the name is considered a physical device
name. Otherwise, a single level of logical name translation is
performed and the equivalence name, if any, is used.

prilen

Address of a word to receive the length of the
characteristics.

pribuf

primary

Address of a character string descriptor pointing to the buffer
that is to receive the primary device characteristics. An
address of 0 (the default) implies that no buffer is specified.

scdlen

Address of a word to receive the length of the secondary
characteristics.

scdbuf

Address of a character string descriptor pointing to buffer that
is to receive the secondary device characteristics. An address
of 0 (the default) implies that no buffer is specified.

Return Status

SS$ BUFFEROVF

Service successfully completed. The device information returned
overflowed the buffer(s) provided and has been truncated.

103

$GETDEV - GET I/O DEVICE INFORMATION

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

A buffer descriptor cannot be read by the caller, or a buffer or
buffer length cannot be written by the caller.

SS$ IVDEVNAM

No device name was specified, or the device name string has
invalid characters.

SS$_IVLOGNAM

The device name string has a length of 0 or has more than 63
characters.

SS$ NONLOCAL

Warning. The device is on a remote system.

SS$ NOSUCHDEV

Warning. The specified device does not exist on the host system.

104

$GETJPI - GET JOB/PROCESS INFORMATION

$GETJPI

$GETJPI - GET JOB/PROCESS INFORMATION

The Get Job/Process Information system service provides accounting,
status, and identification information about a specified process.

Macro Format

$GETJPI [efn], [pidadr], [prcnam] ,itmlst, [iosb], [astadr], [astprm]

High-Level Language Format

efn

SYS$GETJPI ([efn], [pidadr], [prcnam], itmlst, [iosb], [astadr], [astprm])

Number of the event flag to be set when the request completes.
If not specified, this argument defaults to O.

pidadr

Address of a longword containing the process identification of
the process for which information is requested.

prcnam

Address of a character string descriptor pointing to a 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the process issuing the request.

itmlst

iosb

Address of a list of item descriptors that describe the specific
information requested and point to buffers to receive the
information. The format of the list is described later in this
section. The item codes are listed in Table 4.

Address of a quadword I/O status block that is to receive final
completion status.

astadr

Address of the entry mask of an AST service routine to be
executed when the service completes. If specified, the AST
routine executes at the access mode from which the $GETJPI
service was requested.

astprm

AST parameter longword to be passed to the AST completion
routine.

If neither a process identification nor a process name is specified,
information about the calling process is returned. For details on how
the service interprets the PIDADR and PRCNAM arguments, see Table 7-1
in Chapter 7, "Process Control Services."

105

$GETJPI - GET JOB/PROCESS INFORMATION

Return Status

SS$ NORMAL

Service successfully completed.

SS$_BADPARAM

The item list contains an invalid identifier.

SS$ ACCVIO

The item list cannot be read by the caller, or the buffer length
or buffer cannot be written by the caller.

SS$ IVLOGNAM

The process name string has a length of o, or has more than 15
characters.

SS$ NOMOREPROC

warning. During a "wildcard" process search (see Note 3), no
more processes were found.

SS$_NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$ NOPRIV

The process does not have the privilege to obtain information
about the specified process.

SS$ SUSPENDED

The specified process is suspended or in a miscellaneous wait
state, and the requested information cannot be obtained.

Privilege Restrictions

Notes

User privileges are required to obtain information about:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

1. Effective with Release 2 of VAX/VMS, the $GETJPI service sets
event flag 0 at request completion by default. If any of
your programs running under an earlier release depend on
event flag 0 being clear after a call to $GETJPI, you will
have to modify these programs.

106

$GETJPI - GET JOB/PROCESS INFORMATION

2. If you request information about a process other than your
own, $GETJPI operates asynchronously: that is, it returns
control to your program before it places the requested
information in the specified buffers. In such a case, if
your program needs the information before it can proceed, you
must wait for an event flag. For example:

$GETJPI_S EFN=t2,++•
BSBW ERROR
SWAITFR_S EFN=$2
BSBW ERROR

If you request information about your own process, $GETJPI
does not return control to your program until after it places
the requested information in the specified buffers.

The reason that getting information about another process is
an asynchronous operation is that the information may be
contained in the other process's virtual address space and
the process might have a lower priority or might be currently
swapped out of the balance set. To allow your program to
overlap other functions with the time needed to schedule the
other process for execution or swap it into the balance set,
$GETJPI returns immediately after it has queued its
information-gathering request to the other process.

3. You can use "wildcard" process searching to get information
about processes in the system for which you have the
privilege to obtain information. To use this feature, set
the longword pointed to by the PIDADR argument to negative
one (-1), and then call $GETJPT continually (specifying the
same PIDADR argument) until you receive the return status
SS$ NOMOREPROC.

This service uses the l~ngword pointed to by the PIDADR
argument to contain a value representing the current search
context; therefore, you must specify the same PIDADR
argument for each call to use this feature. To start a
second "wildcard" process search after completing the first,
you must set the longword pointed to by the PIDADR argument
to -1 again.

The following example shows a segment of code to obtain the
user name of every process for· which the caller has the
privilege to obtain information.

107

PID:
ITEMS:

UNAME:
UNAMES:
IOSB:

START:

l ... OOP:

WAIT:

Bl~B

$GETJPI - GET JOB/PROCESS INFORMATION

$JP:CDEF

.LONG
+WORD
.wmw
+LONG
+LONG
+LONG
+BLl\B
• BLl\I...
• BLl\t~

• WOl~D

... 1.
12
,JP I $... USERNAME
UNA ME
UN AMES
0
12
1
1

0

Define SGETJPI item codes

•wild<~(Hd· P:cr1
Size of username buffer
Username item code
Address of username buffer
Address to return username size
End of li~;t
U~;f~ rnamf~ b•Jf f <·~ r
Username size buffer
ComPletion status

$GETJPI_S EFN=il,PIDADR=PID,ITMl...ST=ITEMS,IOSB=IOSB
BLBS RO,WAIT If success, continue
CMPW RO,tSS$_NOPRIV No Privilese to set info on Process?
BEQI... LOOP If no Priv, trw next process
CMPW RO,tSS$_SLJSPENDED ~ Process suspended?
BEQL LOOP ; If hles, trLl next Process
CMPW RO,ISS$_NOMOREPROC ; No more Processes?
BEQL DONE If wesr all done
BSBW ERROR Else, error
SWAITFR_S EFN=tl Wait for information
MOVZWL IOSBrRO Get completion status
BSBW ERROR Check for errors
BSBW DISPLAY-NAME DisPlaw the name
LOOP

Format of Item List for $GETJPI System Service

The item list used for input to the $GETJPI system service consists of
one or more consecutive item descriptors. Each item descriptor in this
list has the format:

31 16 15 0

~-----i-te-m-co_d_e _____ -___ -~~---bu-ff-er-le_n_gt_h ____ ___.

buffer address

return length address

L----------------·-------··----------·-······-·-----···----------'

buffer length

Length of the buffer to receive the specified information. All
buffers reserved to receive information should be longwords, unless
otherwise indicated in Table 4.

item code

Symbolic name defining the information to be returned.
names have the format:

JPI$ code

The symbolic

These symbolic names are defined in the $JPIDEF macro. The codes are
listed in Table 4.

108

$GETJPI - GET JOB/PROCESS INFORMATION

buffer address

Address of the buffer to receive the specified information. If the
buffer is too small for the requested information, $GETJPI truncates
the information.

return length address

Address of a word to receive the length of the information returned.
If this address is specified as O, no length is returned.

The list of item descriptors must be terminated by an item code of O or a
longword of o.

All buffers are zero-filled on return, if necessary.

For example, an item list can be coded as follows to obtain the process
identification and process name of a process:

GETl...H>T:. wrn:rn 4
• WOF~D ,JP I ~> P :r. D
• l...ONG GETP ID
.1...CJNG 0
• WC)RD 1 ~::;
+WORD JPIS_PRCNAM
+LONG (;lETPl:~CNAM

• LONG Pl~CNAM" .. l...EN
+LONG ()

GETF' ID: • BL.Kl... :I.
GETPF~CNAM:

• Bl...l<E(:I.~.)

F'l:::CNAM LEN:
.BL.KW :I.

109

;1...ENGTH OF BUFFER
; 1=~EC~LJEST PI II
;ADDRESS TCJ RECEIVE PID
;DON'T NEED LENGTH RETURN
;LENGTH OF BUFFER
;REQUEST PROCESS NAME
;ADDRESS TO RECEIVE NAME
;ADDRESS TO RECEIVE LENGTH
;END OF GETl...IST
; l~ETUl=~N PI D HEl:~E

;RETURN PROCESS NAME HERE

;RETURN LENGTH OF PROCESS NAME

Item
Identifier

JP!$ ACCOUNT

JPI$_APTCNT

JP!$ ASTACT

JP!$ ASTCNT

JP!$ ASTEN

JP!$ ASTLM

JP!$ AUTHPRIV

JPI$ BIOCNT

JP!$ BIOLM

JP!$ BUFIO

JP!$ BYTCNT

JP!$ BYTLM

JP!$ CPULIM

JP!$ CPUTIM

JP!$ CURPRIV

JP!$ DFPFC

JP!$ DFWSCNT

JP!$ DIOCNT

JP!$ DIOLM

JP!$ DIRIO -

JP!$ EFCS

JP!$ EFCU

JP!$ EFWM

$GETJPI - GET JOB/PROCESS INFORMATION

Table 4
Item Codes for Job/Process Information

Data
Type

string

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

Information Returned

Account name string (1-8 characters)

Active page table count

Access modes with active ASTs

Remaining AST quota

Access modes with ASTs enabled

AST limit quota

Quadward mask of privileges the
process is authorized to enable

Remaining buffered I/O quota

Buffered I/O limit quota

Count of
operations

process buffered

Remaining buffered I/O byte
quota

I/O

count

Buffered I/O byte count limit quota

Limit on process CPU time

Accumulated CPU time (in
10-millisecond tics)

Quadword mask of process's current
privileges

Default page fault cluster size

Default working set size

Remaining direct I/O quota

Direct I/O limit quota

Count of direct I/O operations for
process

Local event flags 0 through 31

Local event flags 32 through n3

Event flag wait mask

(continued on next page)

110

Item
Identifier

JPI$_EXCVEC

JPI$ FILCNT

JPI$_FILLM

JPI$_FINALEXC

JPI$_FREPOVA

JPI$_FREP1VA

JPI$_GPGCNT

JPI$_GRP

JPI$ IMAGNAM -
JPI$ IMAGPRIV -

JPI$ _LOGINTIM

JPI$_MEM

JPI$_OWNER

JPI$_PAGEFLTS

JPI$_PGFLQUOTA

JPI$_PID

JPI$_PPGCNT

$GETJPI - GET JOB/PROCESS INFORMATION

Table 4 (Cont.)
Item Codes for Job/Process Information

Data
Type

address

value

value

address

value

value

value

value

str ;i.r,g

value

value

value

value

value

value

value

value

Information Returned

Address of a list of exception vectors
in the following order: primary and
secondary exception vectors for kernel
mode; primary and secondary exception
vectors for executive mode; primary
and secondary exception vectors for
supervisor mode; primary and
secondary exception vectors for user
mode

Remaining open file quota

Open file quota

Address of a list of final exception
vectors for kernel, executive,
supervisor, then user access mode

First free page at end of program
region

First free page at end of control
region

Global page count in working set

Group number of UIC

Current image file name (1 to 64
characters)

Quadword mask of privileges the
current image was installed with

Process creation time; returned as
64-bit system time value

Member number of UIC

Process identification
owner

Count of page faults

of process

Paging file quota (maximum virtual
page count)

Process identification

Process page count in working set

(continued on next page)

111

Item
Identifier

JPI$ PRCCNT -
JPI$ PRCLM

JPI$ PRCNAM -
JPI$ PRI -
JP!$ PRIB -
JPI$ PROCPRIV

JP!$ STATE

JP!$ STS

JPI$ TERMINAL

JPI$ TMBU

JPI$_TQCNT

JPI$_TQLM

JP!$ UIC

JPI$ USERNAME

JPI$ VIRTPEAK

JP!$ VOLUMES

JPI$ WSAUTH

JPI$ WSPEAK

JPI$_WSQUOTA

JPI$ WSSIZE

$GETJPI - GET JOB/PROCESS INFORMATION

Table 4 (Cont.)
Item Codes for Job/Process Information

Data
Type

·-

value

value

string

value

value

value

value

value

string

value

value

value

value

string

value

value

value

value

value

value

Information Returned

Count of subprocesses

Subprocess quota

Process name (1-15 characters)

Current process priority

Process's base priority

Quadword mask of process's default
privileges

Process state (Always SCH$K CUR for
the current process. States are
defined by the $STATEDEF macro and
contained in SYS$LIBRARY:LIB.MLB.)

Process status flags (defined by the
$PCBDEF macro and contained in
SYS$LIBRARY:LIB.MLB)

Login terminal name for interactive
users (1-7 characters)

Termination mailbox unit number

Remaining timer queue entry quota

Timer queue entry quota

Process's UIC

User name string (1-12 characters)

Peak virtual address size

Count of currently mounted volumes

Maximum authorized working set size

Working set peak

Working set size quota

Process's current working set size
..._ _____________ ...___. _____________________ __,

112

$GETMSG - GET MESSAGE

$GETMSG

$GETMSG - GET MESSAGE

The Get Message system service locates and returns message text
associated with a given message identification code into the caller's
buffer. The message can be from the system message file or can be a
user-defined message.

Macro Format

$GETMSG msgid ,msglen ,bufadr , [flags] , [outadr]

High-Level Language Format

msgid

SYS$GETMSG(msgid ,msglen ,bufadr ,[flags] ,[outadr])

Identification of the message to be retrieved. Each message has
a unique identification, contained in the high-order 29 bits of
system longword status codes.

msglen

Address of a word to receive the length of the string returned.

buf adr

flags

Address of a character string descriptor pointing to the buffer
to receive the message string. The maximum size of any message
that can be returned is 256 bytes.

Mask defining message content. The bits in the mask and their
meanings are:

Bit Value Meaning

0 1 Include text of message
0 Do not include text of message

1 1 Include message identifier
0 Do not include message identifier

2 1 Include severity indicator
0 Do not include severity indicator

3 1 Include facility name
0 Do not include facility name

If this argument is omitted in a MACRO or BLISS service call, it
defaults to a value of 15; that is, all flags are set and all
components of the message are returned. If this argument is
omitted in a FORTRAN service call, it defaults to a value of o.

113

$GETMSG - GET MESSAGE

outadr

Address of a 4-byte array to receive the following values:

Byte

0
1
2
3

Contents

Reserved
Count of FAO arguments associated with message
user-specified value in message; if any
Reserved

Return Status

SS$ BUFFEROVF

Service successfully completed. The string returned overflowed
the buffer provided, and has been truncated.

SS$ MSGNOTFND

Service successfully completed; however, the message code cannot
be found, and a default message has been returned (see Note 6).

SS$ NORMAL

Notes

Service successfully completed.

1. The operating system uses this service to retrieve messages
based on unique message identifications and to prepare to
output the messages.

2. The message identifications correspond to the symbolic names
for status codes returned by system components, for example
SS$ code from system services, RMS$_code for RMS messages,
and-so on.

3. When all bits in the FLAGS argument are set, $GETMSG returns
a string in the format:

facility-severity-ident, message-text

where:

facility

severity

identifies the component of the operating
system

is the severity code (the low-order three
bits of the status code)

ident is the unique message identifier

message-text is the text of the message

For example, if the MSGID argument is specified as:

MSGID=#SS$ DUPLNAM

$GETMSG returns the string:

%SYSTEM-F-DUPLNAM, duplicate process name

114

$GETMSG - GET MESSAGE

4. This service does not check the length of the argument list,
and therefore cannot return the SS$ INSFARG (insufficient
arguments) error status code. If the service does not
receive enough arguments (for example, if you omit required
commas in the call), you might not get the desired result.

5. Users can define their own messages with the MESSAGE command.
See the VAX-11 Utilities Reference Manual and the VAX/VMS
Command Language user's Guide.

6. The message text associated with a particular 32-bit message
identification can be retrieved from one of several places.
This service takes the following steps to locate the message
text:

1. All message sections
executing image are
information.

linked
searched

into
for

the currently
the associated

2. If the information is not found, the process
permanent message file is searched. (The process
permanent message file can be specified by the SET
MESSAGE command.)

3. If the information is not found, the system-wide
message file is searched.

4. If the information is not found, a message in the
form

%facility-severity-NONAME, message=xxxxxxxx[hex],
(facility=n, message=n[dec])

is returned to the caller's buffer and the status
code SS$ MSGNOTFND is returned.

115

$GETTIM - GET TIME

$GETTIM

$GETTIM - GET TIME

The Get Time system service furnishes the current system time in
64-bit format. The system time is updated every 10 milliseconds, and
the time is returned in 100-nanosecond units from the system base
time.

Macro Format

$GETTIM timadr

High-Level Language Format

SYS$GETTIM(timadr)

timadr

Address of a quadword that is to receive the current time in
6 4- bi t format •

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

Notes

The quadword to receive the time cannot be written by the caller.

For an example of the $GETTIM system service, and additional
details on the system time format, see Chapter 8, "Timer and Time
Conversion Services."

116

$BIBER - HIBERNATE

$HIBER

$BIBER - HIBERNATE

The Hibernate system service allows a process to make itself inactive
but to remain known to the system so that it can be interrupted, for
example to receive ASTs. A hibernate request is a wait-for-wake-event
request. When a wake is issued for a hibernating process with the
$WAKE system service or a result of a Schedule Wakeup ($SCHDWK) system
service, the process continues execution at the instruction following
the Hibernate call.

Macro Format 1

$HIBER S

High-Level Language Format

SYS$HIBER

Return Status

SS$ NORMAL

Notes

Service successfully completed.

1. A hibernating process can be swapped out of the balance set
if it is not locked into the balance set.

2. The wait state caused by this system service can be
interrupted by an asynchronous system trap (AST) if (1) the
access mode at which the AST is to execute is equal to or
more privileged than the access mode from which the hibernate
request was issued and (2) the process is enabled for ASTs at
that access mode.

When the AST service routine completes execution, the system
re-executes the $HIBER system service on the process's
behalf. If a wakeup request has been issued for the process
during the execution of the AST service routine (either by
itself or another process), the process resumes execution.
Otherwise, it continues to hibernate.

3. If one or more wakeup requests are issued for the process
while it is not hibernating, the next hibernate call returns
immediately, that is, the process does not hibernate. No
count is maintained of outstanding wakeup requests.

1. Only the " S" macro form is provided for the Hibernate system
service.

117

$HISER - HIBERNATE

4. Although this service has no arguments~ a FORTRAN function
reference must use parentheses to indicate a null argument
list, as in:

ISTAT=SYS$HIBER()

For an example of the $HISER system service and additional information
on process hibernation, see Section 7.5, "Process Hibernation and
Suspension." For an example of scheduled wakeup requests, see Section
8.6, "Scheduled Wakeups."

118

$INPUT - QUEUE INPUT REQUEST AND WAIT FOR EVENT FLAG

$INPUT

$INPUT - QUEUE INPUT REQUEST AND WAIT FOR EVENT FLAG

The $INPUT macro is a simplified form of the Queue I/O Request and
Wait for Event Flag ($QIOW) system service. This macro queues a
virtual input operation using the IO$ READVBLK function code and waits
for I/O completion.

Macro Format

ch an

$INPUT chan ,length ,buffer ,[iosb] ,[efn]

Number of the I/O channel assigned to the device from which input
is to be read.

length

Length of the input buffer.

buff er

iosb

ef n

Notes

Address of the input buffer.

Address of a quadword I/O status block.

Number of the event flag to be set when the request is complete.
The default is event flag O.

The $INPUT macro has only one form. Arguments must be coded as
for the $name S macro form, but " S" must not be included in the
macro call. -

Return Status, Privilege Restrictions, Resources Required/Returned,
Additional Notes

See the description of the Queue I/O Request ($QIO) system
service.

119

$LCKPAG - LOCK PAGES IN MEMORY

$LC KP AG

$LCKPAG - LOCK PAGES IN MEMORY

The Lock Pages In Memory system service locks a page or range of pages
in memory. The specified virtual pages are forced into the working
set and then locked in memory. A locked page is not swapped out of
memory if its process's working set is. These pages are not
candidates for page replacement and in this sense are locked in the
working set as well.

Macro Format

$LCKPAG inadr ,[retadr] ,[acmode]

High-Level Language Format

inadr

SYS$LCKPAG(inadr ,[retadr] ,[acmode])

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be locked. If the starting and
ending virtual addresses are the same, a single page is locked.
Only the virtual page number portion of the virtual addresses is
used; the low-order 9 bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually locked.

acmode

Access mode of the locked pages. The specified access mode is
maximized with the access mode of the caller. The resultant
access mode must be equal to or more privileged than the access
mode of the owner of each page in order to lock the page.

Return Status

SS$ WASCLR

Service successfully completed. All of the specified pages were
previously unlocked.

SS$ WASSET

Service successfully completed. At least one of the specified
pages was previously locked in memory.

SS$ ACCVIO

1. The input array cannot be read by the caller, or the output
array cannot be written by the caller.

2. A page in the specified range is inaccessible or does not
exist.

120

$LCKPAG - LOCK PAGES IN MEMORY

SS$_LCKPAGFUL

The system-defined maximum limit on the number of pages that can
be locked in memory has been reached.

SS$ NOPRIV

The process does not have the privilege to lock pages in memory.

Privilege Restrictions

Notes

1. The user privilege PSWAPM is required to lock pages in
memory.

2. The access mode of the
privileged than the
being locked.

caller must be equal to or more
access mode of the owner of the pages

1. If more than one page is being locked and it is necessary to
determine specifically which pages had been previously
locked, the pages should be locked one at a time.

2. If an error occurs while locking pages, the return array, if
requested, indicates the pages that were successfully locked
before the error occurred. If no pages are locked, both
longwords in the return address array contain a -1.

3. Pages that are locked in memory can be unlocked with the
Unlock Pages from Memory ($ULKPAG) system service. Locked
pages are automatically unlocked at image exit.

121

$LKWSET - LOCK PAGES IN WORKING SET

$LWKSET

$LKWSET - LOCK PAGES IN WORKING SET

The Lock Pages in Working Set system service allows a process to
specify that a group of pages that are heavily used should never be
replaced in the working set. The specified pages are brought into the
working set if they are not already there and are locked so that they
do not become candidates for replacement.

Macro Format

$LKWSET inadr , [retadr] , [acmode]

High-Level Language Format

inadr

SYS$LKWSET (inadr , [retadr] , [acmode])

Address of a 2-longword array containing ~he starting and ending
virtual addresses of the pages to be locked. If the starting and
ending virtual addresses are the same, a single page is locked.
Only the virtual page number portion of the virtual addresses is
used; the low-order 9 bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually locked.

acmode

Access mode of the locked pages. The specified access mode is
maximized with the access mode of the caller. The resultant
access mode must be equal to or more privileged than the access
mode of the owner of each page in order to lock the paga.

Return Status

SS$_WASCLR

Service successfully completed. All of the specified pages were
previously unlocked.

SS$ WASSET

Service successfully completed. At least one of the specified
pages was previously locked in the working set.

SS$ ACCVIO

1. The input address array cannot be read by the caller, or the
output address array cannot be written by the caller.

2. A page in the specified range is inaccessible or nonexistent.

122

$LKWSET - LOCK PAGES IN WORKING SET

SS$ LKWSETFUL

The locked working set is full. If any more pages are locked,
there will not be enough dynamic pages available to continue
execution.

SS$ NOPRIV

A page in the specified range is in the system address space.

Privilege Restrictions

Notes

The access mode of the caller must be equal to or more privileged
than the access mode of the owner of the pages being locked.

1. If more than one page is being locked and it is necessary to
determine specifically which pages had been previously
locked, the pages should be locked one at a time.

2. If an error occurs while locking pages, the return array, if
requested, indicates the pages that were successfully locked
before the error occurred. If no pages are locked, both
longwords in the return address array contain a -1.

3. Pages that are locked in the working set can be unlocked with
the Unlock Page from Working Set (SULWSET) system service.

For an explanation of the relationship between a process's working set
and its virtual address space, see Chapter 10, "Memory Management
Services."

123

$MGBLSC - MAP GLOBAL SECTION

$MGBLSC

$MGBLSC - MAP GLOBAL SECTION

The Map Global Section provides a process with access to an existing
global section. Mapping a global section establishes the
correspondence between pages in the process's virtual address space
and the physical pages occupied by the global section.

Macro Format

$MGBLSC inadr ,[retadr] ,[acmode] ,[flags] ,gsdnam ,[ident]
,[relpag]

High-Level Language Format

inadr

SYS$MGBLSC(inadr ,[retadr] ,[acmode] ,[flags] ,gsdnam ,[ident]
,[relpag])

Address of a 2-longword array containing the starting and ending
virtual addresses in the process's virtual address space into
which the section is to be mapped. The pages can be in the
program (PO) region or the control (Pl) region.

The second longword (ending address), however, is ignored by this
service. The section is mapped as follows: the first relative
page (RELPAG argument) is mapped at the starting virtual address,
and the end of the section determines the actual ending virtual
address.

If the SEC$M EXPREG bit is set in the FLAGS argument, the
addresses s~ecified in the INADR argument determine only whether
the section will be mapped in the program (PO) or control (Pl)
region.

Only the virtual page number portion of the virtual addresses is
used; the low-order 9 bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages into which the section was
actually mapped.

acmode

Access mode indicating the owner of the pages created during the
mapping. The access mode is maximized with the access mode of
the caller.

124

flags

$MGBLSC - MAP GLOBAL SECTION

Mask defining the section type and characteristics. This mask is
the logical OR of the flag bits you wish to set. The flag bits
for the mask are defined in the $SECDEF macro. Their meanings
and the default values they override are:

Flag

SEC$M WRT
SEC$M-SYSGBL
SEC$M-EXPREG

Meaning

Map section read/write
System global section
Map into first available
virtual address range

Default Attribute

Map section read-only
Group global section
Map into address
range specified by
INADR

gsdnam

ident

Address of a character string descriptor pointing to the text
name string for the global section. (Section 10.6.5.1 explains
the format of this text name string.) For group global sections,
the global section name is implicitly qualified by the group
number of the caller. All section names are implicitly qualified
by their identification fields.

Address of a quadword indicating the version number of the global
section and the criteria for matching the identification.

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits.

The first longword specifies, in the low-order 3 bits, the
matching criteria. Their valid values, the symbolic names by
which they can be specified, and their meanings are listed below:

Value/Name

0 SEC$K MATALL
1 SEC$K=MATEQU

2 SEC$K_MATLEQ

Match Criteria

Match all versions of the section
Match only if major and minor identifications
match
Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor
identification of the global section

If no address is specified or is specified as 0 (the default),
the version number and match control fields default to O.

relpag

Relative page number within the section of the first page to be
mapped. If not specified or specified as 0 (the default), the
global section is mapped beginning with the first virtual block
in the section.

125

$MGBLSC - MAP GLOBAL SECTION

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The input address array, the global section name or name
descriptor, or the section identification field cannot be read by
the caller, or the return address array cannot be written by the
caller.

SS$ ENDOFFILE

Warning. The starting virtual block number specified is beyond
the logical end-of-file.

SS$_EXQUOTA

The process exceeded
copy-on-reference pages.

SS$ INSFWSL

its paging file quota

The process's working set limit is not large
accommodate the increased virtual address space.

SS$ INTERLOCK

creating

enough to

The bit map lock for allocating global sections from the
specified shared memory is locked by another process.

SS$ IVLOGNAM

The global section name has a length of O, or has more than 15
characters.

SS$ IVSECFLG

A reserved flag was set.

SS$ IVSECIDCTL

The match control field of the global section identification is
invalid.

SS$_NOPRIV

The file protection mask specified when the global section was
created prohibits the access or the type of access requested by
the caller.

A page in the input address range is in the system address space.

SS$ NOSUCHSEC

Warning. The specified global section does not exist.

SS$ PAGOWNVIO

A page in the specified input address range is owned by a more
privileged access mode.

126

$MGBLSC - MAP GLOBAL SECTION

SS$_SHMNOTCNCT

The shared memory named in the GSDNAM string is not known to the
system. This error can be caused by a spelling error in the
string, an improperly assigned logical name, or the failure to
identify the memory as shared at SYSGEN time.

SS$ T60MANYLNAM

Logical name translation of the GSDNAM string exceeded the
allowed depth.

SS$ VASFULL

The process's virtual address space is full; no space is
available in the page tables for the pages created to contain the
mapped global section.

Privilege Restrictions

The privilege to map a global section, and whether it may be
mapped read/write or read-only, is determined by the protection
mask assigned to the global section when it was created.

Resources Required/Returned

Notes

The process's working set limit quota (WSQUOTA) must be
sufficient to accommodate the increased size of the virtual
address space when mapping a section. If the section pages are
copy-on-reference, the process must also have sufficient paging
file quota (PGFLQUOTA).

1. When the $MGBLSC system service maps a global section, it
adds pages to the process's virtual address space. The
section is mapped from a low address to a high address,
regardless of whether the section is mapped in the program or
control region.

2. If an error occurs during the mapping of a global section,
the return address array, if specified, indicates the pages
that were successfully mapped when the error occurred. If no
pages were mapped, both longwords of the return address array
contain -1.

For an example of the $MGBLSC system service and additional details on
global section creation and use, see Section 10.6, "Sections."

127

$NUMTIM - CONVERT BINARY TIME TO NUMERIC TIME

$NUMTIM

$NUMTIM - CONVERT BINARY TIME TO NUMERIC TIME

The Convert Binary Time to Numeric Time system service converts an
absolute or delta time from 64-bit system time format to binary
integer date and time values. The numeric time is placed in a
user-specified buffer as illustrated in Figure 1.

month of year year since 0

hour of day day of month

~------------------ ~---·-~---·--~·-----------4--------------

second of minute minute of hour

hundredths of second

Figure 1 Format of Numeric Time Buffer

Macro Format

$NUMTIM timbuf , [timadr]

High-Level Language Format

SYS$NUMTIM(timbuf , [timadr])

timbuf

Address of a 7-word buffer to receive the date and time
information.

timadr

Address of a 64-bit time value to be converted. If not specified
or specified as O, the current system time is used. A positive
time value represents an absolute time. A negative time value
indicates a delta time.

Return Status

SS$_NORMAL

Service successfully completed.

SS$ ACCVIO

The 64-bit time value cannot be read by the caller, or the
numeric buffer specified cannot be written by the caller.

SS$ IVTIME

The specified delta time is equal to or greater than 10,000 days.

128

Notes

$NUMTIM - CONVERT BINARY TIME TO NUMERIC TIME

If a delta time is specified, the year and month fields of the
information returned are zero. The day field contains the
integer number of days specified by the delta time; it must be
less than 10,000 days.

129

$OUTPUT - QUEUE OUTPUT REQUEST AND WAIT FOR EVENT FLAG

$OUTPUT

$OUTPUT - QUEUE OUTPUT REQUEST AND WAIT FOR EVENT FLAG

The $OUTPUT macro is a simplified form of the Queue I/O Request and
Wait for Event Flag ($QIOW) system service. This macro performs a
virtual output operation using the IO$ WRITEVBLK function code and
waits for I/O completion.

Macro Format

ch an

$OUTPUT chan ,length ,buffer , [iosb] ,[efn]

Number of the I/O channel assigned to the device to which output
is to be written.

length

Length of the output buffer.

buff er

iosb

ef n

Notes

Address of the output buffer.

Address of quadword I/O status block.

Number of the event flag to be set when the request is complete.
The default is event flag O.

1. The $OUTPUT macro has only one form. Arguments must be coded
as for the $name S macro form, but " S" must not be included
in the macro ca11:

2. The $OUTPUT macro supplies a P4 value of hexadecimal 20 to
the $QIOW service. For output to a terminal, this value is a
carriage control specifier indicating the following sequence:
line feed, print buffer contents, return.

Return Status, Privilege Restrictions, Resources Required/Returned,
Additional Notes

See the description of the Queue I/O Request ($QIO) system
service for details.

130

$PURGWS - PURGE WORKING SET

$PURGWS

$PURGWS - PURGE WORKING SET

The Purge Working Set system service enables a process to remove pages
from its current working set to reduce the amount of physical memory
occupied by the current image.

Macro Format

$PURGWS inadr

High-Level Language Format

inadr

SYS$PURGWS{inadr)

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be potentially purged from the
working set. The $PURGWS system services locates pages within
this range that are in the current working set and removes them.

If the starting and ending virtual addresses are the same, only
that single page is a candidate for purging. Only the virtual
page number portion of the virtual addresses is used; the
low-order 9 bits are ignored.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

Notes

The input address array cannot be read by the caller.

To purge the entire working set, the caller can specify a range
of pages from 0 through 7FFFFFFF. The image continues executing,
and pages that are needed are brought back into the working set
as the page faults occur.

131

$PUTMSG - PUT MESSAGE

$PUTMSG

$PUTMSG - PUT MESSAGE

The Put Message system service is a generalized message formatting and
output routine used by the operating system to write informational and
error messages to user processes.

Detailed information on the format of the message argument vector and
the use of this service follows the "Return Status" description.

Macro Format

$PUTMSG msgvec ,[actrtn] , [facnaml

High-Level Language Format

SYS$PUTMSG(msgvec ,[actrtn] ,[facnam])

msgvec

Address of a message argument vector that lists the message
identifications of messages to be output and FAO arguments
associated with each message, if any. The format of the message
vector is described later in this section.

actrtn

Address of the entry mask of a user-specified action routine to
receive control during message processing. The action routine
receives control after a message is formatted but before it is
actually written to the user. If no address is specified, or
specified as 0 (the default), it indicates that there is no
action routine.

f acnam

Address of a character string descriptor pointing to the facility
name to be used in the first or only message formatted by
$PUTMSG.

If not specified, the default facility name associated with the
message is used in the first message.

Return Status

SS$ NORMAL

Notes

Service successfully completed.

1. $PUTMSG returns the first message with the percent sign (%)
prefix in front of the message. By convention, messages
after the first message in a series are prefixed with a
hyphen (-).

132

$PUTMSG - PUT MESSAGE

2. This service does not check the length of the argument list,
and therefore cannot return the SS$ INSFARG (insufficient
arguments) error status code. If the service does not
receive enough arguments (for example, if you omit required
commas in the call), you might not get the desired result.

Format of the Message Argument Vector for $PUTMSG

The general format of a message argument vector is as shown below.
Messages with facility codes of either O (system status codes) or 1
(RMS status codes) vary from the basic format.

first
message
description

2nd.3rd,... (
message {
descriptions :

31

argument count

default message flags

new message flags

16 15 0

argument count

message identification

FAO count

FAO arguments

Specifies the total number of longwords in the message vector.

default message flags

Specifies a mask defining the portions of the message(s) to be
requested from the SGETMSG system service. If not specified, the
process default message flags are used. (These flags can be set
using the SET MESSAGE command; see the VAX/VMS Command Language
User's Guide.) If a mask is specified, it is passed to SGETMSG as
the FLAGS argument.

This mask establishes the default flags for each message in this
call until a new set of flags (if any) is specified. That is,
each specified "new message flags" field sets a new default.

The bits in the mask and their meanings are:

Bit Value meaning

0 1 Include text of message
0 Do not include text of message

1 1 Include message identifier
0 Do not include message identifier

2 1 Include severity level indicator
0 Do not include severity level indicator

3 1 Include facility name
0 Do not include facility name

Bits 4 through 15 must be zeros.

133

$PUTMSG - PUT MESSAGE

message identification

32-bit numeric value that uniquely identifies this message.
Messages can be identified by symbolic names defined for system
return status codes, RMS status codes, and so on.

FAQ count

Number of FAQ arguments for this message, if any, that follow in
the message vector. The FAQ argument count is required for any
message identifier for which the facility code is other than 0
{the system) or 1 {RMS). If a message with any other facility
code has no associated FAQ arguments, the FAQ argument count must
be specified as O, unless the message identifier is the final
item in the message vector.

new message flags

New mask for the $GETMSG flags, defining a new default for this
message and all subsequent messages.

FAQ arguments •••

FAQ arguments required by the message.

2nd, 3rd, ••• message descriptions

Descriptions of next associated messages, if messages are linked
in a series.

Message identifications for system status codes, system exception
condition values, and RMS status codes are handled as follows:

1. If the status code is a system message {that is, it has a
facility code of O), an FAQ argument count, new messages
flags, or FAQ arguments cannot be specified. Each longword
in the list {following the first message identification) is
treated as an additional message identification.

2. If the message identification is a system exception message
number {for example, SS$ CQMPAT), the FAQ arguments for the
message must immediately follow the message identification in
the message vector. $PUTMSG determines the count of FAQ
arguments from the message number.

Note that the format of the message argument vector for an
exception condition status code is identical to the signal
array argument list passed to a condition handler when the
system signals an exception condition.

3. If the message identification is an RMS status code (that is,
it has a facility code of 1), you must specify a second
longword following the status code in place of the FAQ
argument count and new message flags. This longword is
reserved for an RMS status value {STV) for those RMS messages
that have status values associated with them. If the status
code has no STV value associated with it, SPUTMSG ignores the
second longword. $PUTMSG uses the STV value as an FAQ
argument or as another message identification, depending on
the value of the RMS message number.

No FAQ arguments can be specified for RMS status codes. If
specified, $PUTMSG treats them as additional message
identifiers.

134

$PUTMSG - PUT MESSAGE

The following example shows a message argument vector that requests
$PUTMSG to output:

1. The complete message associated with the system status code
SS$ ABORT

2. The complete message associated with the system status code
RMS$ FNF

VECTOI:~: • LONG
• LONG
• l ... ONG
.LONG

:·5
ss~li ABOF\:T
1:~MS$ FNF
()

;ARGUMENT COUNT & NULL MSG. FLAGS
; ABOl\T MESS1!:iGE
;FILE NOT FOUND MESSAGE
;NULi... STV PARAMETER

SPUTMSG_S MSGVEC~VECTOR

When this message vector has been processed, the following messages
are written to the current SYS$0UTPUT device (and to SYS$ERROR, if it
is different):

%SYSTEM-F-ABORTv abort
-RMS-E-FNF, file not found

Using the $PUTMSG System Service

$PUTMSG retrieves a message from the system message file by calling
the Get Message ($GETMSG) system service and formats the message by
calling the Formatted ASCII Output ($FAQ) system service, if
necessary.

The Put Message ($PUTMSG) system service writes one or more formatted
messages to a process's current output and/or error devices. A
message is written after an action routine specified in the call to
$PUTMSG, if any, returns control with a successful status value. If
there is no action routine, the message is always written.

The actual disposition of each message depends on the severity level
of the status value associated with the message. The following table
indicates:

• Whether the message is written to the current output device
(SYS$0UTPUT)

• Whether the message is written to the current error device
(SYS$ERROR)

• Whether the message cancels the effect of CTRL/O, that is, if
the -message is displayed when the CTRL/O function has canceled
all output to the terminal

Severity Written to Written to Cancels
Level SYS$0UTPUT SYS$ERROR CTRL/O

Warning yes yes yes

Success yes no no

Error yes yes yes

.Informational yes yes no

Severe error yes yes yes

135

$PUTMSG -·PUT MESSAGE

$GETMSG Processing - The $GETMSG system service returns a message
string based on the numeric status code value passed to it. The
content of the string returned depends on the flags, if any, specified
in the message argument vector. You can request that the message
include or not include the facility name, severity level, message
code, or text. The following example shows a message vector that
requests only the text portion of the message associated with the
system status code SS$ DUPLNAM:

VECTOI:~: • WORD 1 ; Al:~Gl.JMENT COUNT
• l1JOl:~D '"BOOO:I.
+LONG sss_DUPLNAM

;MSG+ FLAGS - TEXT ONLY
;MESSAGE IDENTIFICATION

If this message vector is specified for a call to $PUTMSG, $PUTMSG
outputs the message:

duplicate Process name

$GETMSG uses the facility code in the message identification to obtain
the facility name string to insert in a message. Each system
component has a unique code. The facility code is contained in bits
16 through 27 of the message identification. For example, the system
has facility code of O, the command interpreter is 1, the debugger is
2, and so on.

You can override the facility name by specifying the FACNAM argument
to SPUTMSG. For example:

FAC: .ASCID /HEl ... 1 ... 0/ YflEBCl:~IPTOF~ FOi:~ NE~J F1:)Cil...ITY NAME
VECTOR: .LONG 1 PARG. COLINTv NO MSG. FLAGS

.LONG SS$_NOPRIV ;MESSAGE IDENTIFICATION

$PUTMSG_S MSGVEC=VECTORYFACNAM=FAC

This call to $PUTMSG results in the message:

%HELLO-F-NOPRIV, no Privile~e for attempted operation

You can modify a facility code in a message
calling $PUTMSG by changing bits lo through 27.
status code can be specified as follows:

.LONG 2@16!SS$_code

identification before
For example, a system

In this example, the facility number 2 is inserted in the message
identification. You can override the facility name string DEBUG in
the message by specifying message flags in the argument vector to
suppress the facility name, or you can use the FACNAM argument to
$PUTMSG to specify an alternate facility name~

This technique allows you to use shared system message codes that have
associated FAQ arguments. If you do not modify the facility number in
the shared system message identifications, you cannot specify FAQ
arguments.

When a message identification contains an unknown facility code,
$GETMSG places the string NQNAME in place of the facility name in the
message string.

136

$PUTMSG - PUT MESSAGE

$FAO Processing - If the string returned by $GETMSG contains any FAQ
directives, and if the facility code is other than 0 or 1, SPUTMSG
calls the $FAQ system service to format the message. $PUTMSG calls
$FAO with the argument count and arguments specified in the message
argument vector.

The FAQ argument count, if any, for a message is indicated in the
message file that defines the message text. The message text itself
contains embedded FAO directives. You can examine the message text to
determine the arguments required by FAO. For example, the message
text associated with the system status code SHRS BEGIN is defined as:

!AS beginning

This text requires the address of a character string descriptor
pointing to the text to be substituted in place of the FAO directive
!AS. (For details on how to use FAQ and how to specify arguments for
other FAQ directives, see the description of the $FAO system service.)

To use $PUTMSG to access and/or output a system shared message that
has FAQ arguments associated with it, you must change the facility
code. The following example shows a message vector, including the FAO
argument count and argument, to output the message associated with the
status code SHR$ BEGIN •

NAME~

• V,IOF~D
• liJOF\D
•LONG
• ~·JOF~D
• liJORD
• 1...ClNG

3
'''BOOO :I.
2rn :I. 6 ! SHF~~l> HEG IN
:I.
()

NAME

Y 1~1:~GUMENT COUNT (l...ONGliJOF~DS)
Y ME~:;s,~GE FL.AG!:;
;MESSAGE IDENTIFICATION
;FAD ARGUMENT COUNT
;No NEW MSG. FL.GS •
v F AO 1~1:~GUMENT

When $PUTMSG is called with this message vector, it displays the line:

PUTMSG tests besinnins

Note that the facility code in the message identification is modified
to allow the specification of FAQ arguments; and that the message
flags in the second word of the vector suppresses the printing of
facility name, severity level, and message code.

The Action Routine - The action routine, if any, is called as a normal
procedure each time a message is formatted, but before it is actually
output. The action routine receives as an argument the address ,of a
character string descriptor pointing to the formatted message. The
action routine can access the message text, scan it, write it to a
user-specified file or device, modify it, and so on.

On return from the action routine, $PUTMSG examines the completion
code from the routine specified in Register O. If the completion code
indicates success (any odd numeric value), $PUTMSG outputs the message
as described earlier under "Using the $PUTMSG System Service.TI If the
completion code indicates non-success (any even numeric value),
$PUTMSG does not output the message.

137

$QIO - QUEUE I/O REQUEST

$QIO

$QIO - QUEUE I/O REQUEST

The Queue I/O Request system service initiates an input or output
operation by queueing a request to a channel associated with a
specific device. Control returns immediately to the issuing process,
which can synchronize I/O completion in one of three ways:

1. Specify the address of an AST routine that is to execute when
the I/O completes.

2. Wait for a specified event flag to be set.

3. Poll the specified I/O status block for a completion status.

The event flag and I/O status block, if specified, are cleared before
the I/O request is queued.

Macro Format

$QIO [efn] ,chan ,func , [iosb] , [astadr] , [astprm]
,[pl] ,[p2] ,[p3] ,[p4] ,[pS] ,[pn]

High-Level Language Format

ef n

ch an

f unc

iosb

SYS$QIO ([efn] , chan , func , [iosb] , [astadr] , [astprm]
,[pl] ,[p2] ,[p3] ,[p4] ,[pS] ,[pn])

Number of the event flag that is to be set at request completion.
If not specified, it defaults to O.

Number of the I/O channel assigned to the device to which the
request is directed.

Function code and modifier bits that specify the operation to be
performed. The code is expressed symbolically. For reference
purposes, the function codes are listed in Appendix A, Section
A.2. Complete details on valid I/O function codes and parameters
required by each are documented in the VAX/VMS I/O User's Guide.

Address of a quadword I/O status block that is to receive final
completion status.

astadr

Address of the entry mask of an
executed when the I/O completes.
executes at the access mode from
requested.

138

AST service routine to be
If specified, the AST routine

which the $QIO service was

$QIO - QUEUE I/O REQUEST

astprm

AST parameter to be passed to the AST service routine.

pl to p6

Optional device- and function-specific I/O request parameters.

The first parameter may be specified as Pl or PlV,
whether the function code requires an address
respectively. If the keyword is not used, Pl is
that is, the argument is considered an address.

P2 through Pn are always interpreted as values.

Return Status

SS$ NORMAL

depending on
or a value,

the default;

Service successfully completed.
successfully queued.

The I/O request packet was

SS$ ABORT

A network logical link was broken.

SS$ ACCVIO

The I/O status block cannot be written by the caller.

This status code may also be returned if parameters for
device-dependent function codes are incorrectly specified.

SS$ DEVOFFLINE

The specified device is offline, that is, not currently available
for use.

SS$_EXQUOTA

The process has exceeded its buffered I/O quota, direct I/O
quota, or buffered I/O byte count quota and has disabled resource
wait mode with the Set Resource Wait Mode ($SETRWM) system
service; or the process has exceeded its AST limit quota.

SS$ ILLEFC

An illegal event flag number was specified.

SS$ INSFMEM

Insufficient system dynamic memory is available to complete the
service, and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SS$ IVCHAN

An invalid channel number was specified, that is, a channel
number of 0 or a number larger than the number of channels
available.

139

$QIO - QUEUE I/O REQUEST

SS$ NOPRIV

The specified channel does not exist or was assigned from a more
privileged access mode.

SS$ UNASEFC

The process is not associated with the cluster containing the
specified event flag.

Privilege Restrictions

The Queue I/O Request system service can be performed only on
assigned I/O channels and only from access modes that are equal
to or more privileged than the access mode from which the
original channel assignment was made.

Resources Required/Returned

Notes

1. Queued I/O requests use the process's quota for buffered I/O
(BIOLM) or direct I/O (DIOLM); the process's buffered I/O
byte count (BYTLM) quota; and, if an AST service routine is
specified, the process's AST limit quota (ASTLM).

2. System dynamic memory is required to construct a data ba~e to
queue the I/O request. Additional memory may be required on
a device-dependent basis.

1. The specified event flag is set if the service terminates
without queuing an I/O request.

2. The I/O status block has the format:
31 16 15 0 E oou~ - ~:~,,~~opon-do~n--t --;---,~-,m--•-ti-on_--_-_"-"_st-at-us--------1

status

Completion status of the I/O request.

byte count

Number of bytes actually transferred.

device and function dependent information

varies according to the device and operation being
performed. The information returned for each device and
function code is documented in the VAX/VMS I/O User's
Guide.

140

$QIO - QUEUE I/O REQUEST

3. Many services return character string data and write the
length of the data returned in a word provided by the caller.
Function codes for the $QIO system service (and the LENGTH
argument of the $OUTPUT system service) require length
specifications in longwords. If lengths returned by other
services are to be used as input parameters for $QIO
requests, a longword should be reserved to ensure that no
error occurs when $QIO reads the length.

4. For information on performing input and output operations on
a network, see the DECnet-VAX User's Guide.

For examples of the $QIO system service, including the use of event
flags, AST service routines, and an I/O status block, see Chapter n,
"Input/Output Services."

141

$QIOW - QUEUE I/O REQUEST AND WAIT FOR EVENT FLAG

$QIOW

$QIOW - QUEUE I/O REQUEST AND WAIT FOR EVENT FLAG

The Queue I/O RBquest and Wait for Event Flag system service combines
the $QIO and $WAITFR (Wait for Single Event Flag) system services. It
can be used when a program must wait for I/O completion.

Macro Format

$QIOW [efn] ,chan ,func , [iosb] , [astadr] , [astprm]
,[pl] ,[p2J ,[p3J ,[p4J ,[pSJ ,[pol

High-Level Language Format

efn

ch an

f unc

iosb

SYS$QIOW([efn] ,chan ,func , [iosb] , [astadr] , [astprml
, [pl] , [p2J , [p3J , [p4J , [pSJ , [pnJ)

Number of the event flag that is to be set at request completion.
If not specified, it defaults to 0.

Number of the I/O channel assigned to the device to which the
request is directed.

Function code and modifier bits that specify the operation to be
performed. The code is expressed symbolically.

Address of a quadword I/O status block that is to receive final
completion status.

astadr

Address of the entry mask of an
executed when the I/O completes.
executes at the access mode from
requested.

AST service routine to be
If specified, the AST routine

which the $QIO service was

astprm

AST parameter to be passed to the AST completion routine.

pl to p6

Optional device- and function-specific I/O request parameters.

The first parameter may be specified as Pl or PlV,
whether the function code requires an address
respectively. If the keyword is not used, Pl is
that is, the argument is considered an address.

P2 through Pn are always interpreted as values.

142

depending on
or a value,

the default;

$QIOW - QUEUE I/O REQUEST AND WAIT FOR EVENT FLAG

Return Status, Privilege Restrictions, Resources Required/Returned,
Notes

See the description of the $QIO system service for details.

143

$READEF - READ EVENT FLAGS

$READEF

$READEF - READ EVENT FLAGS

The Read Event Flags system service returns the current status of all
32 event flags in a local or common event flag cluster.

Macro Format

$READEF efn ,state

High-Level Language Format

ef n

state

SYS$READEF{efn ,state)

Number of any event flag within the cluster to be read. A flag
number of 0 through 31 specifies cluster O, 32 through n3
specifies cluster 1, and so forth.

Address of a longword to receive the current status of all event
flags in the cluster.

Return Status

SS$ WASCLR

Service successfully completed.
clear.

SS$ WASSET

The specified event flag is

Service successfully completed. The specified event flag is set.

SS$ ACCVIO

The longword that is to receive the current state of all event
flags in the cluster cannot be written by the caller.

SS$ ILLEFC

An illegal event flag number was specified.

SS$ UNASEFC

The process is not associated with the cluster containing the
specified event flag.

144

$RESUME - RESUME PROCESS

$RESUME

$RESUME - RESUME PROCESS

The Resume Process system service causes a process previously
suspended by the Suspend Process ($SUSPND) system service to resume
execution, or cancels the effect of a subsequent suspend request.

Macro Format

$RESUME [pidadr] , [prcnam]

High-Level Language Format

SYS$RESUME ([pidadr] , [prcnam])

pidadr

Address of a longword containing the process identification of
the process to be resumed.

prcnam

Address of a character string descriptor pointing to the 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the process issuing the resume
request.

If neither a process identification nor a process name is specified,
the resume request is for the caller. For details on how the service
interprets the PIDADR and PRCNAM arguments, see Table 7-1 in Chapter
7, "Process Control Services."

Return Status

SS$ NORMAL

Service successfully completed.

SS$_ACCVIO

The process name string or string descriptor cannot be read by
the caller, or the process identification cannot be written by
the caller.

SS$ IVLOGNAM

The specified process name has a length of O, or has more than 15
characters.

SS$ NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV

The process does not have the privilege to resume the execution
of the specified process.

145

$RESUME - RESUME PROCESS

Privilege Restrictions

Notes

User privileges are required to resume execution of:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

If one or more resume requests are issued for a process that is
not suspended, a subsequent suspend request completes
immediately, that is, the process is not suspended. No count is
maintained of outstanding resume requests.

For more information on process suspension see Section 7.5, "Process
Hibernation and Suspension."

146

$SCHDWK - SCHEDULE WAKEUP

$SCHDWK

$SCHDWK - SCHEDULE WAKEUP

The Schedule Wakeup system service schedules the awakening of a
process that has placed itself in a state of hibernation with the
Hibernate ($HIBER) system service. A wakeup can be scheduled for a
specified absolute time or for a delta time. Optionally, the request
can specify that the wakeup is to be repeated at fixed intervals.

Macro Format

$SCHDWK [pidadr] , [prcnam] , dayt im , [re pt im]

High-Level Language Format

SYS$SCHDWK ([pidadr] , tprcnam] ,daytim , [reptim])

pidadr

Address of a longword containing the process identification of
the process to be awakened.

prcnam

Address of a character string descriptor pointing to the 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the process issuing the schedule
wakeup request.

daytim

Address of a quadword containing the expiration time in the
system 64-bit time format. A positive time value indicates an
absolute time at which the specified process is to be awakened.
A negative time value indicates an offset (delta time) from the
current time.

reptim

Address of a quadword containing the time interval (expressed in
delta time format) at which to repeat the wakeup request. If not
specified, it defaults to O, which indicates that the request is
not to be repeated.

If neither a process identification nor a process name is specified,
the scheduled wakeup request is for the caller. For details on how
the service interprets the PIDADR and PRCNAM arguments, see Table 7-1
in Chapter 7, "Process Control Services."

147

$SCHDWK - SCHEDULE WAKEUP

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The expiration time, repeat time, process name string or
descriptor cannot be read by the caller, or the
identification cannot be written by the caller.

SS$_EXQUOTA

The process has exceeded its AST limit quota.

SS$ INSFMEM

string
process

Insufficient system dynamic memory is available to allocate a
timer queue entry, and the process has disabled resource wait
mode with the Set Resource Wait Mode ($SETRWM) system service.

SS$ IVLOGNAM

The process name string has a length of 0 or has more than 15
characters.

SS$ IVTIME

The specified delta repeat
absolute time plus delta
time.

SS$ NONEXPR

time is a positive value, or an
repeat time is less than the current

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$ NOPRIV

The process does not have the privilege to schedule a wakeup
request for the specified process.

Privilege Restrictions

User privileges are required to schedule wakeup requests for:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

Resources Required/Returned

A scheduled wakeup request uses the caller's AST limit quota
(ASTLM) and requires system dynamic memory to allocate a timer
queue entry.

148

Notes

$SCHDWK - SCHEDULE WAKEUP

1. If one or more scheduled wakeup requests are issued for a
process that is not hibernating, a subsequent hibernate
request by the target process completes immediately, that is,
the process does not hibernate. No count is maintained of
outstanding wakeup requests.

2. Scheduled wakeup requests that have not yet been processed
can be canceled with the Cancel Wakeup ($CANWAK) system
service.

3. If a specified absolute time value has already passed and no
repeat time is specified, the timer expires at the next clock
cycle (that is, within 10 milliseconds).

4. A repeat time value cannot
(Any smaller value is
milliseconds.)

be less
increased

than 10 milliseconds.
automatically to 10

For an example of the $SCHDWK system service, and for information on
how to format a system time value for input to this service, see
Chapter 8, "Timer and Time Conversion Services." For more information
on process hibernation and waking, see Chapter 7, "Process Control
Services."

149

$SETAST - SET AST ENABLE

$SET AST

$SETAST - SET AST ENABLE

The Set AST Enable system service enables or disables the delivery of
ASTs for the access mode from which the service call was issued.

Macro Format

$SETAST enbf lg

High-Level Language Format

SYS$SETAST(enbflg)

enbf lg

AST enable indicator.
calling access mode.

A value of 1 enables AST delivery for
A value of 0 disables AST delivery.

the

Return Status

SSS WASCLR

Service successfully completed. AST delivery was previously
disabled for the calling access mode.

SS$ WASSET

Notes

Service successfully completed. AST delivery was previously
enabled for the calling access mode.

1. When an image is executing in user mode, the system keeps
ASTs enabled for all higher access modes. If a higher access
mode disables AST delivery, it should reenable ASTs for its
own access mode before returning to a lower access mode.

2. If an AST is queued for an access mode that has disabled AST
delivery, the system cannot deliver ASTs to less privileged
access modes until the access mode reenables AST delivery.

For additional notes on AST delivery and the usage of ASTs, see
Chapter. 4, "Asynchronous System Trap (AST) Services."

150

$SETEF - SET EVENT FLAG

$SETEF

$SETEF - SET EVENT FLAG

The Set Event Flag system service sets an event flag in a local or
common event flag cluster to 1. Any processes waiting for the event
flag are made runnable.

Macro Format

$SETEF efn

High-Level Language Format

SYS$SETEF(efn)

ef n

Number of the event flag to be set.

Return Status

SS$_WASCLR

Service successfully completed. The specified event flag was
previously O.

SS$ WASSET

Service successfully completed. The specified event flag was
previously 1.

SS$ ILLEFC

An illegal event flag number was specified.

SS$ UNASEFC

The process is not associated with the cluster containing the
specified event flag.

For an example of the $SETEF system service and
event flags and event flag ·clusters, see
Services."

151

more information on
Chapter 3, "Event Flag

$SETEXV - SET EXCEPTION VECTOR

$SETEXV

$SETEXV - SET EXCEPTION VECTOR

The Set Exception Vector system service assigns
address to an exception vector or cancels
assigned to a vector.

a condition handler
an address previously

Macro Format

$SETEXV [vector] , [addres] , [acmode] , [prvhnd]

High-Level Language Format

SYS$SETEXV([vector] , [addres] , [acmode] , [prvhnd])

vector

Vector number. A value of 0 (the default) indicates that the
primary vector is to be modified. A value of 1 indicates that
the secondary vector is to be modified. A value of 2 indicates
that a last chance exception vector is to be modified.

add res

Condition handler address. If not specified or specified as O,
it indicates that there is no condition handler or that the
vector is to be canceled. If an address is specified, it is the
address of the entry mask of the condition handler.

acmode

Access mode for which the exception vector is to be modified.
The access mode of the caller is maximized with the specified
access mode to determine which vector to modify.

prvhnd

Address of a longword to receive the previous contents of the
vector.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The longword that is to receive the previous contents of the
vector cannot be written by the caller.

Privilege Restrictions

A process cannot modify a vector associated with a
privileged access mode.

152

more

Notes

$SETEXV - SET EXCEPTION VECTOR

1. Condition handlers are normally declared on the procedure
call stack.

2. The primary exception vector and the last chance exception
vector are used by the system debugger. The command
interpreter uses the last chance exception vector.

3. User mode exception vectors are canceled at image exit.

Condition handling and conventions for coding condition-handling
routines are described in Chapter 9, "Condition-Handling Services."

153

$SETIME - SET SYSTEM TIME

$SETI ME

$SETIME - SET SYSTEM TIME

The Set System Time service causes the current system time to be
changed or recalibrated.

Macro Format

$SETIME [t imadr]

High-level Language Format

SYS$SETIME([timadr])

timadr

Address of a quadword that contains the time (in n4-bit format)
that will become the new current system time. If the argument is
not specified or is specified as O, the current time is
recalibrated using the processor's hardware time-of-year clock.
A negative (delta) time value is invalid.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The quadword that contains the new system time value cannot be
read by the caller.

SS$ NOIOCHAN

No I/O channel is available for assignment. (See Note 2.)

SS$ NOPRIV

The process does not have the privileges to set the system time.

Privilege Restrictions

The operator (OPER) and logical I/O (LOG_IO) user privileges are
required to set the system time.

154

Notes

$SETIME - SET SYSTEM TIME

1. Any change to the sys~em time does not change the interval
remaining for any existing timer requests. This is true for
both absolute and delta time requests.

2. The $SETIME service saves the new time (for future reboots)
in the system image SYS$SYSTEM:SYS.EXE. To save the time,
the service assigns a channel to the system boot device and
calls the $QIOW service. This I/O operation requires the
LOG IO user privilege.

For further information and an example using this service, see Section
8.8, "Setting the System Time."

155

$SETIMR ~ SET TIMER

$SETI MR

$SETIMR - SET TIMER

The Set Timer system service allows a process to schedule the setting
of an event flag and/or the queuing of an AST at some future time.
The time for the event can be specified as an absolute time or as a
delta time.

Macro Format

$SETIMR [efn] ,daytim , [astadr] , [reqidt]

High-Level Language Format

ef n

SYS$SETIMR ([efn] ,daytim , [astadr] , [reqidt])

Event flag number of the event flag to set when the time interval
expires. If not specified, it defaults to O.

daytim

Address of the quadword expiration time. A positive time value
indicates an absolute time at which the timer is to expire. A
negative time value indicates an offset (delta time) from the
current time.

astadr

Address of the entry mask of an AST service routine to be called
when the time interval expires. If not specified, it defaults to
o, indicating no AST is to be queued.

reqidt

Number indicating a request identification. If not specified, it
defaults to o. A unique request identification can be specified
in each set timer request, or the same identification can be
given to related timer requests. The identification can be used
later to cancel the timer request(s). If an AST service routine
is specified, the identification is passed as the AST parameter.

Return Status

SS$_NORMAL

Service successfully completed.

SS$ ACCVIO

The expiration time cannot be read by the caller.

SS$_EXQUOTA

The process exceeded its quota for timer entries or its AST limit
quota; or there is insufficient system dynamic memory to
complete the request and the process has disabled resource wait
mode with the Set Resource Wait Mode ($SETRWM) system service.

156

$SETIMR - SET TIMER

SS$_ILLEFC

An illegal event flag number was specjfied.

SS$ INSFMEM

Insufficient dynamic memory is available to allocate a timer
queue entry and the process has disabled resource wait mode with
the Set Resource Wait Mode ($SETRWM) system service.

SS$ UNASEFC

The process is not associated with the cluster containing the
specified event flag.

Resources Required/Returned

Notes

1. The Set Timer system service requires dynamic memory.

2. The Set Timer system service uses the process's quota for
timer queue entries (TQELM) and, if an AST service routine is
specified, the process's AST limit quota (ASTLM).

1. The access mode of the caller is the access mode of the
request and of the AST.

2. If a specified absolute time value has already passed, the
timer expires at the next clock cycle (that is, within 10
milliseconds).

3. The Convert ASCII String to Binary Time ($BINTIM) system
service converts a specified ASCII string to the quadword
time format required as input to the $SETIMR service.

For examples of the $SETIMR system service, see Chapter 8, "Timer and
Time Conversion Services." For an example of an AST service routine,
see Chapter 4, "AST (Asynchronous System Trap} Services."

157

$SETPRA - SET POWER RECOVERY AST

$SETPRA

$SETPRA - SET POWER RECOVERY AST

The Set Power Recovery AST system service establishes a routine to
receive control using the AST mechanism after a power recovery is
detected.

Macro Format

$SETPRA astadr , [acmode]

High-Level Language Format

SYS$SETPRA(astadr ,[acmode])

astadr

Address of the entry mask for a power recovery AST routine. An
address of 0 indicates that power recovery AST notification for
the process is disabled.

acmode

Access mode at which the power recovery AST routine is to
execute. The specified access mode is maximized with the access
mode of the caller to determine the access mode to use.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ EXQUOTA

The process exceeded its quota for outstanding AST requests.

Resources Required/Returned

Notes

The $SETPRA system service uses the process's AST limit quota
(ASTLM) •

1. The AST parameter contains the amount of time that the power
was off in hundredths of seconds.

2. Only one power recovery AST routine can be specified for a
process. The AST entry point address is cleared at image
exit.

3. The entry and exit conventions for the power recovery AST
routine are the same as for all AST service routines •. These
conventions are described in Chapter 4, "Asynchronous System
Trap (AST) Services."

158

$SETPRI - SET PRIORITY

$SETPRI

$SETPRI - SET PRIORITY

The Set Priority system service changes a process's base priority.
The system scheduler uses the base priority to determine the order in
which executable processes are to run.

Macro Format

$SETPRI [pidadr] , [prcnam] ,pri , [prvpri]

High-Level Language Format

SYS$SETPRI ([pidadr] , [prcnam] ,pri , [prvpri])

pidadr

Address of the process identification of the process whose
priority is to be set.

prcnam

pri

Address of a character string descriptor pointing to a 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the process issuing the set
priority request.

New base priority to be established for the process. The new
priority is contained in bits 0 through 4 of the argument.

Normal priorities are in the range 0 through 15, and real-time
priorities are in the range 16 through 31.

If the specified priority is higher than the caller's priority,
and if the caller does not have the privilege to set the target
process's priority to a value higher than its own, the caller's
priority is used.

prvpri

Address of a longword to receive the previous base priority of
the specified process.

If neither a process identification nor a process name is specified,
the set priority request is for the caller. For details on how the
service interprets the PIDADR and PRCNAM arguments, see Table 7-1 in
Chapter 7, "Process Control Services."

159

$SETPRI - SET PRIORITY

Return Status

SS$_NORMAL

Service successfully completed.

SS$ ACCVIO

The process name string or string descriptor cannot be read by
the caller, or the process identification or previous priority
longword cannot be written by the caller.

SS$ IVLOGNAM

The process name string has a length of O, or has more than 15
characters.

SS$ NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$ NOPRIV

The process does not have the privilege to set the specified
priority for the specified process.

Privilege Restrictions

Notes

user privileges are required to:

• Change the priority for other processes in the same group
(GROUP privilege)

• Change the priority for any other process in the system (WORLD
privilege)

• Set any process's priority to a value greater than one's own
initial base priority (ALTPRI privilege)

A process's base priority remains in effect until specifically
changed or until the process is deleted.

160

$SETPRN - SET PROCESS NAME

$SETPRN

$SETPRN - SET PROCESS NAME

The Set Process Name system service allows a process to establish or
to change its own process name.

Macro Format

$SETPRN [prcnam]

High-Level Language Format

SYS$SETPRN([prcnam])

prcnam

Address of a character string descriptor pointing to the 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the caller. If not specified,
or specified as O, the process's current name is deleted.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The process name string or string descriptor cannot be read by
the caller.

SS$ DUPLNAM

The specified process name duplicates one already specified
within that group.

SS$ IVLOGNAM

Notes

The specified process name has a length of O or has more than 15
characters.

1. A process name remains in effect until specifically changed
or until the process is deleted.

2. Process names provide an identification mechanism for
processes executing with the same group number. Processes
can also be identified by process identifications.

For an example of the $SETPRN system service, and details on process
identification and system services providing process control
functions, see Chapter 7, "Process Control Services."

161

$SETPRT - SET PROTECTION ON PAGES

$SETPRT

$SETPRT - SET PROTECTION ON PAGES

The Set Protection On Pages system service allows an image running in
a process to change the protection on a page or range of pages.

Macro Format

$SETPRT inadr ,[retadr] ,[acmode] ,prot ,[prvprt]

High-Level Language Format

inadr

SYS$SETPRT(inadr ,[retadr] ,[acmode] ,prot ,[prvprt])

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages on which protection is to be
changed. If the starting and ending virtual addresses are the
same, a single page is changed. Only the virtual page number
portion of the virtual address is used;, the low-order 9 bits are
ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages that had their protection changed.

acmode

prot

Access mode on behalf of which the request is being made. The
specified access mode is maximized with the access mode of the
caller. The resultant access mode must be equal to or more
privileged than the access mode of the owner of each page in
order to change the protection.

New protection specified in bits 0 through 3 in the format of the
hardware page protection. The high-order 28 bits are ignored.
Symbolic names defining the protection codes are listed in
Appendix A, Section A.5 "$PRTDEF - Hardware Protection Code
Definitions."

If the protection is specified as O, the protection defaults to
kernel read-only.

prvprt

Address of a byte to receive the protection previously assigned
to the last page whose protection was changed. This argument is
useful only when protection for a single page is being changed.

162

$SETPRT - SET PROTECTION ON PAGES

Return Status

SS$_NORMAL

Service successfully completed.

SS$_ACCVIO

1. The input address array cannot be read by the caller, or the
output address array or the byte to receive the previous
protection cannot be written by the caller.

2. An attempt was made to change the protection of a nonexistent
page.

SS$_EXQUOTA

The process exceeded its paging file quota while changing a page
in a read-only private section to a read/write page.

SS$_IVPROTECT

The specified protection code has a numeric value of 1 or is
greater than 15.

SS$ LENVIO

A page in the specified range is beyond the end of the program or
control region.

SS$ NOPRIV

A page in the specified range is in the system address space.

SS$ PAGOWNVIO

Page owner violation. An attempt was made to change the
protection on a page owned by a more privileged access mode.

Privilege Restrictions

For pages in global sections, the new protection can alter only
the accessibility of the page for modes less privileged than the
owner of the page.

Resources Required/Returned

Notes

If a process changes any
read-only to read/write,
file quota (PGFLQUOTA).

pages in a private section from
the service uses the process's paging

If an error occurs while changing page protection, the return
array, if requested, indicates the pages that were successfully
changed before the error occurred. If no pages have been
affected, both longwords in the return address array contain a
-1.

163

$SETPRV - SET PRIVILEGES

$SETPRV

$SETPRV - SET PRIVILEGES

The Set Privileges system service allows a process to enable or
disable specified user privileges.

Macro Format

$SETPRV [enbflg] ,[prvadr], [prmflg], [prvprv]

High-Level Language Format

SYS$SETPRV([enbflg], [prvadr], [prmflg], [prvprv])

enbf lg

Enable indicator. A value of l indicates that the privileges
specified in the PRVADR argument are to be enabled. A value of
O, the default, indicates that the privileges are to be disabled.

prvadr

Address of a o4-bit mask defining the privileges to be enabled or
disabled. The mask is formed by setting the bits corresponding
to specific privileges (see Section 7.3.4 for an example).
Privilege bit settings are defined by the $PRVDEF macro, and the
symbolic names are listed in the PRVADR argument description for
the Create Process ($CREPRC) service. If this argument is not
specified or is specified as O, the privileges are not altered.

prmf lg

Permanent indicator. A value of 1 indicates that the specified
privileges are to be permanently enabled or disabled, that is,
until they are again changed or until the process is deleted. A
value of O, the default, indicates that the specified privileges
are to be enabled or disabled temporarily, that is, until the
current image exits (at which time the process's permanently
enabled privileges will be restored).

prvprv

Address of a quadword buffer to receive the previous privilege
mask. If this argument is not specified or is specified as O,
the previous privileges mask is not returned.

Return Status

SS$ NORMAL

Service successfully completed. All specified privileges that
the process can enable (see "Privilege Restrictions") were
enabled, or all ~pecified privileges were disabled.

SS$ ACCVIO

The privilege mask cannot be read or the previous privilege mask
cannot be written by the caller.

164

$SETPRV - SET PRIVILEGES

Privilege Restrictions

Notes

To enable a privilege permanently, at least one of the following
must be true: the process is authorized to set the specified
privilege (see Notes 1 and 2), or the process is executing in
kernel or executive mode.

To enable a privilege temporarily, at least one of the following
must be true: the process is authorized to set the specified
privilege (see Notes 1 and 2), the process is executing in kernel
or executive mode, or the image currently executing is a known
image installed with the specified privilege.

1. The system maintains four separate privilege masks for each
process:

• AUTHPRIV - Privileges that the process is authorized
to enable, as designated by the system manager or the
process creator. The AUTHPRIV mask never changes
during the life of the process.

• PROCPRIV - Privileges that are designated as
permanently enabled for the process. The PROCPRIV
mask can be modified by this service.

• IMAGPRIV - Privileges that the current image is
installed with.

• CURPRIV - Privileges that are currently enabled. The
CURPRIV mask can be modified by this service.

When a process is created, its AUTHPRIV, PROCPRIV, and
CURPRIV masks have the same contents. Whenever a system
service (other than $SETPRV) must check the process
privileges, it checks the CURPRIV mask. When a process runs
a known image, the privileges that the image was installed
with are enabled in the CURPRIV mask; when the known image
exits, the PROCPRIV mask is copied to the CURPRIV mask.

165

$SETPRV - SET PRIVILEGES

2. When the $SETPRV service checks whether the process has the
SETPRV privilege, it examines the AUTHPRIV mask. Therefore,
it is useless for a process to call this service to "give"
itself the SETPRV privilege, because the service can set bits
only in the CURPRIV and PROCPRIV masks.

3.

4.

You can obtain a process's privilege masks with the Get
Job/Process Information { $GET,JPI) service. The item
identifier for a given mask is the mask name preceded by
JPI$ {for example, JPI$ AUTHPRIV to
privTleges the process is authorized to

You can also enable or disable process
SET PROCESS/PRIVILEGES command {see
Language User's Guide).

106

obtain the mask of
enable).

privileges with the
the VAX/VMS Command

$SETRWN - SET RESOURCE WAIT MODE

$SETRWM

$SETRWM - SET RESOURCE WAIT MODE

The Set Resource Wait Mode system service allows a process to indicate
what action a system service should take when it lacks a system
resource required for its execution:

• When resource wait mode is enabled (the default mode), the
service waits until a resource is available and then resumes
execution.

• When resource wait mode is disabled, the
control to the caller immediately with
indicating that a resource is unavailable.

service returns
a status code

Macro Format

$SETRWM [watflg]

High-Level Language Format

SYS$SETRWM([watflg])

watflg

Wait indicator. A value of O (the default) indicates that
resources are to be awaited; this is the initial setting for
resource wait mode. A value of 1 indicates that failure status
should be returned immediately.

Return Status

SS$ WASCLR

Service successfully completed.
previously enabled.

Resource wait mode was

SS$ WASSET

Notes

Service successfully completed.
previously disabled.

Resource wait mode was

1. The following system resources and process quotas are
affected by resource wait mode:

• System dynamic memory

• UNIBUS adapter map registers

• Direct I/O quota (DIOLM)

• Buffered I/O quota (BIOLM)

• Buffered I/O byte count limit (BYTLM)

2. If resource wait mode is disabled, it remains disabled until
it is explicitly reenabled or until the process is deleted.

167

$SETRWN - SET RESOURCE WAIT MODE

For further information on resource wait mode, see Section 2.1.5.4
(for MACRO programmers) or Section 2.2.2.3 (for high-level language
programmers).

168

$SETSFM - SET SYSTEM SERVICE FAILURE EXCEPTION MODE

$SETS FM

$SETSFM - SET SYSTEM SERVICE FAILURE EXCEPTION MODE

The Set System Service Failure Exception Mode system service controls
whether a software exception is generated when an error or severe
error status code is returned from a system service call. Initially,
system service failure exceptions are disabled; the caller should
explicitly test for successful completion following a system service
call.

Macro Format

$SETSFM [enbflg]

High-Level Language Format

SYS$SETSFM([enbflg])

enbf lg

Enable indicator. A value of 1 indicates that
failure exceptions are to be generated. A
default) disables their generation.

system service
value of 0 (the

Return Status

SS$ WASCLR

Service successfully
previously disabled.

completed. Failure exceptions were

SS$ WASSET

Notes

Service successfully
previously enabled.

completed. Failure exceptions were

1. When enabled, system service failure exceptions are generated
only if the service call originated from user mode. The
$SETSFM system service can be called, however, from any
access mode. If enabled, system service failure exception
mode remains enabled until explicitly disabled or until the
image exits.

2. If failure exceptions are enabled, a condition handler can be
specified in the first longword of the procedure call stack
or with the Set Exception Vector ($SETEXV) system service.
If no condition handler is specified by the user, a default
system handler is used. This condition handler causes the
image to exit and then displays the exit status.

3. The argument list provided to the condition handler has the
code SS$ SSFAIL in the condition name argument of the signal
array.

169

$SETSFM - SET SYSTEM SERVICE FAILURE EXCEPTION MODE

For further information on system service failure exception mode, see
Section 2.1.5.4 (for MACRO programmers) or Section 2.2.2.3 (for
high-level language programmers).

For an explanation and examples of condition handling routines, the
format of the argument lists passed to the condition handler, and a
discussion of the appropriate actions a condition handler may take,
see Chapter 9, "Condition-Handling Services."

170

$SETSWM - SET PROCESS SWAP MODE

$SETSWM

$SETSWM - SET PROCESS SWAP MODE

The Set Process Swap Mode system service allows a process to control
whether it can be swapped out of the balance set. Once a process is
locked in the balance set, it cannot be swapped out of memory until it
is explicitly unlocked.

Macro Format

$SETSWM [swpflg]

High-Level Language Format

SYS$SETSWM([swpflg])

swpflg

Swap indicator. A value of O (the default) allows the process to
be swapped; this is the initial setting for swap mode. A value
of 1 inhibits swapping.

Return Status

SS$ WASCLR

Service successfully completed. The process was not previously
locked in the balance set.

SS$ WASSET

Service successfully completed.
locked in the balance set.

The process was previously

SS$ NOPRIV

The process does not have the privilege to alter its swap mode.

Privilege Restrictions

Notes

The user privilege PSWAPM is required to alter process swap mode.

1. If a process is locked in the balance set it remains locked
until explicitly unlocked or until the process is deleted.

2. Specific pages of a process's virtual address space can be
locked in the balance set with the Lock Pages in Memory
($LCKPAG) system service.

171

$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

$SNDACC

$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

The Send Message to Accounting Manager system service controls
accounting log activity and allows a process to write an arbitrary
data message into the accounting log file. This file, located on the
system disk in the directory [SYSMGR] and named ACCOUNTNG.DAT, is
sequentially organized and contains variable-length records. Detailed
information about the format of messages sent to and received from the
accounting manager follows the "Notes" section. Table 5 shows the
format of accounting log file records.

Macro Format

$SNDACC msgbuf , [chan]

High-Level Language Format

SYS$SNDACC(msgbuf , [chan])

msgbuf

ch an

Address of a character string descriptor pointing to the message
buffer. The types of message and the buffer formats are
described later in this section.

Number of the channel assigned to the mailbox to receive the
reply. If no channel number is specified or if it is specified
as O (the default), no reply is returned.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The message buffer or buffer descriptor cannot be read by the
caller.

SS$ BADPARAM

The specified message has a length of 0 or has more than 254
characters.

SS$ DEVNOTMBX

The channel specified is not assigned to a mailbox.

88$ IN8FMEM

Insufficient system dynamic memory is available to complete the
service, and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

172

$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

SS$_IVCHAN

An invalid channel number was specified, that is, a channel
number of 0 or a number larger than the number of channels
available.

SS$_NOPRIV

The caller does not have write access to the specified mailbox.

Privilege Restrictions

The user privilege OPER is required to create a new log file or
to enable or disable accounting.

Resources Required/Returned

Notes

The Send Message to Accounting Manager system service requires
system dynamic memory.

1. The general procedure for coding a call to this service
involves the following steps:

a. Construct the message buffer and place its final length
in the first word of the buffer descriptor.

b. Call the $SNDACC system service.

c. Check the return status code from the service to ensure
successful completion.

d. Issue a read request to the mailbox specified, if any.
When the read completes, check that the operation was
successfully performed.

2. By default, the system writes a record into the accounting
log file whenever a job terminates. Termination records are
written for interactive users, batch jobs, non-interactive
processes, login failures, and print jobs. The $SNDACC
system service allows users to write additional data into the
accounting log and allows privileged users to disable or
enable all accounting or accounting for particular types of
jobs.

Table 5 lists the fields in the accounting record and notes
which portions of the accounting record are written for each
type of job. The $ACCDEF macro defines symbolic names for
the message types, fields within the accounting record, and
job type record codes for selective accounting.

173

$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

Table 5
Format of Accounting Log File Records

Accounting Log File Record Header (Present in all types of log file records)

Offset Field Name Length Contents

t----·--·-1 -···· ---------·--·-- --------·· --------

0
2
4
8

12
16
24
32

ACC$W MSGTYP
ACC$W-MSGSIZ
ACC$L-FINALSTS
ACC$L-PID
ACC$L-JOBID
ACC$Q-TERMTIME
ACC$T-ACCOUNT
ACC$T=USERNAME

word
word
longword
longword
longword
quadword
8 bytes
12 bytes

Record type code l
Length of data message
Final exit status
Process identification
Job identification
System time at job termination
Account name (blank-filled)
User name (blank-filled)

Job Information (Present in termination messages for interactive processes,
non-interactive processes, and batch jobs)

Offset Field Name L ength Contents
-·-····-··-+--·

44 ACC$L CPUTIM l
48 ACC$L-PAGEFLTS l
52 ACC$L-PGFLPEAK 1
56 ACC$CWSPEAK 1
60 ACC$L-BIOCNT l
64 ACC$L-DIOCNT l
68 ACC$CVOLUMES l
72 ACC$Q-LOGIN q
80 ACC$L-OWNER 1

ACC$K=TERMLEN c

ongword
ongword
ongword
ongword
ongword
ongword
ongword
uadword
ongword
onstant

CPU time in IO-millisecond units2
Count of page faults during process lifetime
Peak size of process paging file
Peak size of working set
Count of buffered I/O operations performed
Count of direct I/O operations performed
Count of volumes mounted
System time at login
Process identification of process's owner
Length of non-batch job termination message

Batch Job Accounting Information (Present only in batch job termination records)

Offset Field Name Length Contents

84 ACC$T JOB NAME 8 bytes Job name (blank-filled)
92 ACC$T= JOB - QUE Hi bytes Queue name (counted ASCII string)

ACC$K JOB - LEN constant Length of termination record for batch jobs - - '----------·-····--·--·-···-····-····-· ·---

Printer Job Information (Present only in printer job termination records. The
record contains default header record and CPU time followed by the data listed
below)

~~---~-...

Off set Field Name Length Contents
-

48 ACC$L PAGCNT longword Symbiont page count
52 ACC$CQIOCNT longword Symbiont QIO count
56 ACC$L-GETCNT longword Symbiont GET count
60 ACC$Q-QUETIME quadword System time that job was queued
68 ACC$T-PRT NAME 8 bytes Name of print job
76 ACC$T-PRT-QUE 12 bytes Name of print queue

ACC$K=PRT=LEN constant Length of print job accounting record
-·----··'---- ------····---···--·-·-

User Data (Present in user-written messages)

--

Off set Field Name Length Contents

44 ACC$T USER DATA 144 bytes - User data written to accounting file
ACC$K INS LEN constant - Length of user-written accounting file - record

-~-.. ~~- -···-~----· -----------~-----------·

1. The record type code can be one of the following values:

ACC$K BATTRM
ACC$K-INTTRM
ACC$K-PRCTRM
ACC$K-LOGTRM
ACC$K-PRTJOB
ACC$K=INSMSG

Batch job termination
Interactive job termination
Subprocess or detached process termination
Login failure termination
Print job accounting message
User-inserted message

log

2. CPU time accounting is not performed for a print job since there is no
process creation or termination involved with the job.

174

$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

Format of Messages Sent to the Accounting Manager

A message buffer for a message to the accounting manager begins with a
word defining the message type. Some message types require that data
follow the message type code in the buffer. The message types and
data, if any, required by each are listed below.

1. ACC$K INSMESG

Insert an arbitrary message in the accounting log file. The
message code is followed by any arbitrary data. When the
message is inserted in the accounting log file, the default
header precedes the user-specified data.

2. ACC$K NEWFILE

Requests that the current log file be closed and a new file
created. Operator privilege is required to create a new log
file. No data is required for the message.

3. ACC$K ENABACC

Enables accounting for all types of jobs. Operator privilege
is required to enable accounting. No data is required for
the message.

4. ACC$K DISAACC

Disables accounting for all types of job. Operator privilege
is required to disable accounting. No data is required for
the message.

5. ACC$K ENABSEL

Enables accounting for certain types of job. Operator
privilege is required to selectively enable accounting. The
message type code must be followed by one or more bytes
indicating the type of job for which accounting is to be
enabled. (The job type codes below are also used to indicate
the record type in the first word of each accounting log file
record. See Table 5.)

Code

ACC$K BATTRM
ACC$K-INSMSG
ACC$K-INTTRM
ACC$K-LOGTRM
ACC$K=PRCTRM

ACC$K_PRTJOB

Job Type

Batch job
Arbitrary (user-inserted) messages
Interactive job
Login failure termination
Non-interactive process (subprocess
or detached process)
Print job

The list of job type codes must be terminated with a byte
containing O.

6. ACC$K DISASEL

Disables accounting for certain types of job. Operator
privilege is required to selectively disable accounting. The
message type code is followed by one or more bytes indicating
the types of job for which accounting is to be disabled. The
codes are listed above, under ACC$K_ENABSEL.

175

$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

Format of Response from the Accounting Manager

If a mailbox is specified, the accounting manager returns a message in
the format:

Bits

0-15

16-31

32-63

Contents

MSG$ ACCRSP indicates that the message is a response
from- the qccounting manager. (This symbolic name is
defined in the $MSGDEF macro.}

0

Status code indicating the success of the operation.

If the mailbox cannot handle the message (because there is
insufficient buffer space or because a message is too long}, or if the
mailbox no longer exists when the reply is sent, the response is lost.

Status Codes Returned in the Mailbox!

SS$ NORMAL
Request successfully performed.

JBC$ ACMINVOP
-An invalid operation was requested.

JBC$ NOPRIV
-The process does not have the privilege to perform the requested

operation.

The symbols for these status codes are defined by the $JBCMSGDEF macro
and are contained in the macro library SYS$LIBRARY:LIB.MLB.

176

$SNDERR - SEND MESSAGE TO ERROR LOGGER

$SN DERR

$SNDERR - SEND MESSAGE TO ERROR LOGGER

The Send Message To Error Logger system service writes an arbitrary
message to the system error log file. The user-specified message is
preceded by the date and time.

Macro Format

$SNDERR msgbuf

High-Level Language Format

SYS$SNDERR{msgbuf)

msgbuf

Address of character string descriptor pointing to the message to
be inserted in the system error log file.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The message buffer or buffer descriptor cannot be read by the
caller.

SS$_INSFMEM

Insufficient system dynamic memory is available to complete the
service, and the process has disabled resource wait mode with the
Set Resource Wait Mode {$SETRWM) system service.

SS$_NOPRIV

The process does not have the BUGCHK privilege.

Privilege Restrictions

The user privilege BUGCHK is required to send a message to the
error log file.

Resources Required/Returned

The Send Message To Error Logger system service requires system
dynamic memory.

177

$SNDOPR - SEND MESSAGE TO OPERATOR

$SNDOPR

$SNDOPR - SEND MESSAGE TO OPERATOR

The Send Message To Operator system service allows a process to send a
message to one or more terminals designated as operators' terminals
and optionally receive a reply. The service also allows a process to
enable a terminal as an operator's terminal or to initialize the
operator communication log file (that is, close the current version of
the file and open a new version).

Detailed information about $SNDOPR message types and message formats
follows the "Notes" section.

Macro Format

SSNDOPR msgbuf , [chan]

High-Level Language Format

SYS$SNDOPR(msgbuf , [chan])

msgbuf

ch an

Address of character string descriptor pointing to the message
buffer. The types of message and the buffer formats are
described later in this section.

Number of the channel assigned to the mailbox to which the reply
is to be sent, if any. A channel number of 0 (the default)
implies no mailbox unit.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The message buffer or buffer descriptor cannot be read by the
caller.

SS$ BADPARAM

The specified message has a length of O or has more than 128
bytes.

SS$ DEVNOTMBX

The channel specified is not assigned to a mailbox.

SS$ DEVOFFLINE

There is no operator designated to receive messages.

178

$SNDOPR - SEND MESSAGE TO OPERATOR

SS$ INSFMEM

SS$ -

SS$ -

Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) syste'm service.

IV CHAN

An invalid
number of
available.

NOPRIV

channel
0 or

number was specified, that is, a channel
a number largfrr than the number of channels

The process does not have the privilege to send a message to the
operator, the process does not have read/write access to the
specified mailbox, or the channel was assigned from a more
privileged access mode.

Privilege Restrictions

The user privilege OPER is required to issue the Send Message To
Operator system service to enable a terminal as an operator's
terminal, to reply to or cancel a user's request, or to
initialize the operator communication log file.

Resources Required/Returned

Notes

The Send Message To Operator system service requires system
dynamic memory.

1. The general procedure for using this service is as follows:

a. Construct the message buffer and place its final length
in the first word of the buffer descriptor.

b. Issue the $SNDOPR system service.

c. Check the return status code from the service to ensure
successful completion.

d. Issue a read request to the mailbox specified, if any.
When the read completes, check that the operation was
successfully performed.

179

$SNDOPR - SEND MESSAGE TO OPERATOR

2. This service is used by the system to implement the REQUEST
and REPLY commands, which provide communications between
users and operators. An operator establishes a terminal as
an operator's console by issuing the REPLY/ENABLE command,
specifying the types of message that will be handled. Users
can then send messages to the operator with the REQUEST
command, optionally requesting replies.

Messages are displayed on a specified operator's terminal in
the format:

Opcom -- time -- User="username" ACNT="acccunt 1

[Opcom ~- *** REPLY-ID = n ***l
0PCOffi messa~e-text

If a reply is requested, the operator request is kept active
until the operator responds.

The VAX/VMS Operator's Guide describes the REQUEST and REPLY
commands in greater detail.

$SNDOPR Message Types and Message Formats

The $OPCDEF macro defines symbolic names for operator message types,
offsets within messages, and return status codes.

The $SNDOPR system service handles these message types:

Code Type of Request

OPC$_RQ RQST Request operator functions

OPC$_RQ_CANCEL Cancel a user request

OPC$_RQ_REPLY Reply to user request

OPC$_RQ_TERME Enable terminal for operator's use

OPC$_RQ_LOGI Initialize log file

OPC$_RQ_STATUS Report operator's status to the terminal

180

$SNDOPR - SEND MESSAGE TO OPERATOR

Each message type has a different format. The maximum length of any
message is 128 bytes, including message text. The message formats are
explained below.

loPC$_RQ_RQST Request Codel

Constructs a message to be displayed at an operator's terminal
(REQUEST command). The message format is:

Off set

OPC$B MS TYPE

Length

byte

OPC$B MS TARGET 3 bytes

OPC$L_MS_RQSTID Longword

Contents

OPC$_RQ_RQST identifies the
message

type of

Mask indicating which operators will
receive the message. The symbolic names
to create the mask are:

OPC$M NM CARDS
OPC$M-NM-CENTRL
OPC$M-NM-DEVICE
OPC$M-NM-DISKS
OPC$M-NM-N'fWORK
OPC$M-NM-TAPES
OPC$M-NM-PRINT
OPC$M-NM-OPER1

OPC$M NM OPER12

Card device operator
Central operator
Device status information
Disk operator
Network operator
Tape operator
Printer operator
System manager-defined
operator functions

User-specified message identification to
be used for replying

OPC$L_MS_TEXT 0-120 bytes Up to 120 bytes of message text

joPC$_RQ_CANCEL Request Code'

Notifies an operator that a request is to be canceled.

The message format is the same as for the message type OPC$_RQ_ROST
except that:

• The message type field must contain OPC$_RQ_CANCEL

• The message has no message text.

181

$SNDOPR - SEND MESSAGE TO OPERATOR

loPC$_RQ_REPLY Request Codel

Constructs a reply to a user request (REPLY command).
format is:

The message

Off set

OPC$B MS TYPE

Length

byte

OPC$W MS STATUS word

OPC$L MS RPLYID longword

OPC$W MS OUNIT

OPC$T MS ONAME

OPC$L MS OTEXT

word

Contents

OPC$_RQ_REPLY identifies the type
message

Return status:

OPC$ RQSTCMPLTE Request completed
OPC$-RQSTABORT Request denied
OPC$-RQSTPEND Request pending
OPC$=RQSTCAN Request canceled

of

Identification of message to which reply
is directed

Unit number of terminal

Device name (counted ASCII string)

Reply message text, if any

I OPC$ _ RQ_ TERME --Req~_:~ t 'code I
Enables a terminal for operator use (REPLY/ENABLE command). The
message format is:

Off set

OPC$B MS TYPE

OPC$B MS ENAB
OPC$L-MS-MASK

OPC$W MS OUNIT

OPC$T MS ONAME

Length

byte

3 bytes
longword

word

I oPcs _ RQ_ LoG I Req-~~~t-c;a-;i

Contents

OPC$_RQ_TERME identifies the type
message

of

Masks defining the type of messages for
which the terminal is enabled (The same
message types must be specified in both
masks.)

Unit number of terminal

Device name (counted ASCII string)

Initializes the log file of operator messages (REPLY/LOG command).
This file is explained in the VAX/VMS Operator's Guide. The message
format is:

182

$SNDOPR - SEND MESSAGE TO OPERATOR

Off set Length Contents

OPC$B MS TYPE byte OPC$ - - RQ_LOGI identifies the type of
message

7 bytes Ignored

OPC$W MS OUNIT word Unit number of terminal -
OPC$T MS ON AME Device name (counted ASCII string) -

joPC$_RQ_STATUS Request Code!

Reports the operator's status to the terminal. The message format is:

Off set

OPC$B MS TYPE

OPC$W MS OUNIT

OPC$T MS ONAME

Length Contents

byte OPC$_RQ_STATUS identifies the type of message

word Unit number of terminal

Device name (counted ASCII string)

Format of Response from Operator Communication Manager

When the operator replies to a message, the reply is placed in the
specified mailbox in the format:

Off set Length

OPC$8 MS TYPE word

OPC$W MS STATUS word

OPC$L MS RPLYID longword

Contents

MSG$ OPREPLY indicates that the message
is a response to an operator's request.
This symbolic name is defined in the
$MSGDEF macro.

Return s.tatus.

Identification of message for which reply
is made (specified in user request
message)

OPC$L MS TEXT 0-128 bytes Up to 128 bytes of message text taken
from reply

If the mailbox specified to receive the reply cannot handle the reply
message (either because of insufficient buffer space or because the
message is too big), the message is lost.

183

$SNDOPR - SEND MESSAGE TO OPERATOR

Status Codes Returned in Mailbox:

OPC$ NOPERATOR

Success. There was no operator enabled to receive the message.

OPC$_RQSTCMPLTE

Success. The operator completed the request.

OPC$ RQSTPEND

Success. The operator will perform the request when possible.

OPC$_RQSTABORT

The operator could not satisfy the request.

OPC$_RQSTCAN

The caller canceled the request.

184

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

$SNDSMB

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

The Send Message To Symbiont Manager system service is used by the
operating system to queue user's print files to a system printer or to
queue command procedure files for detached job execution.

Symbiont manager requests do the following:

• Create and delete queues

• Add or delete files from a queue

• Change the attributes of files in a queue

• Start and restart dequeuing

Detailed information about the format of messages to
from the symbiont manager follow the "Notes" section.
request types for symbiont manager messages. Table
options for symbiont manager messages.

Macro Format

$SNDSMB msgbuf , [chan]

High-Level Language Format

SYS$SNDSMB(msgbuf , [chan])

msgbuf

and responses
Table ~ shows
7 shows the

Address of a character string descriptor pointing to the message
buffer. The buffer formats and the types of messages are
described later in this section

ch an

Number of the channel assigned to the mailbox to receive the
reply. If no channel number is specified, or if it is specified
as 0 (the default), it indicates that no reply is desired.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The message buffer or buffer descriptor cannot be read by the
caller.

SS$ BADPARAM

The specified message has a length of 0 or has more than 200
characters.

185

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

SS$ DEVNOTMBX

The specified channel is not assigned to a mailbox.

SS$ INSFMEM

Insufficient system dynamic memory is available to complete the
servi~e, and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SS$ IVCHAN

An invalid channel number was
number of O or a number
available.

specified; that is, a channel
larger than the number of channels

SS$ NOPRIV

The caller does not have write access to the specified mailbox.

Resources Required/Returned

The Send Message To Symbiont Manager system service requires
system dynamic memory.

Privilege Restrictions

Notes

There are several levels of privilege involved in symbiont
control:

• The OPER privilege allows you to perform all the functions of
this service. You need the OPER privilege for any function
that affects a queue itself (for example, initializing or
deleting a queue).

• The WORLD privilege allows you to perform functions that
affect any entry in a queue, regardless of which process owns
the job or file associated with the entry.

• The GROUP privilege allows you to perform functions that
affect any entry in a queue, as long as the job or file
associated with the entry is owned by a process in your group.

1. The general procedure for using this service is as follows:

a. Construct the message buffer and place its final length
in the first word of the buffer descriptor.

b. Issue the $SNDSMB system service.

c. Check the return status code from the service to ensure
successful completion.

d. Issue a read request to the mailbox specified, if any.
When the read completes, check that the operation was
successfully performed.

186

CPU

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

2. A working set default size and a working set quota (maximum
size) are included in each user record in the system user
authorization file (UAF), and can be specified for individual
jobs and/or for all jobs in a given queue. The following
decision table shows the action taken for different
combinations of specifications involving working set size and
working set quota values.

Value specified
for job?

No

No

Yes

Yes

Value specified
for queue?

No

Yes

Yes

No

Action taken

Use UAF value

Use value for queue

Use lower of the two

Compare specified value
with UAF value; use
lower

3. A CPU time limit for the process is included in each user
record in the system user authorization file (UAF). You can
also specify any or all of the following: a CPU time limit
for individual jobs, a default CPU time limit for all jobs in
a given queue, and a maximum CPU time limit for all jobs in a
given queue. The following decision table shows the action
taken for each of these possible combinations.

time limit Default CPU time Maximum CPU time Action taken
specified for limit specified specified for queue?
job? for queue?

No No No Use UAF value

Yes No No Use smaller of job's 1 imi t
anti UAF value

Yes Yes No Use smaller of job's limit
anti UAF value

Yes No Yes Use smaller of job's 1 i mi t
and maximum

Yes Yes Yes Use smaller of job's limit
and maximum

No Yes Yes Use smaller of queue's
tie fault and maximum

No No Yes Use maximum

No Yes No Use smaller of UAF value
and queue's default

187

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Format of Messages Sent to Symbiont Manager

Messages are variable-length, and their formats depend on the request
type. Each request type can require from 0 through 5 additional data
fields, and can be followed by options. Some options require
additional data.

The general message format is:

request [queuename] [devname] [fileid] [di rid]
[filename] [jobid] [jobname] [option [opdata]]

request

16-bit field indicating the request type. The $SMRDEF macro
defines symbolic codes for each request in the format:

SMR$C code

Valid request codes, and the required and optional fields for
each, are listed in Table 6.

queue name

16-byte queue name. The length of the name must be in the first
byte. A queue name can be a physical device name (for example,
LPAO:), a logical name (for example, SYS$PRINT), or a designated
name string, such as BATCH or AFTERS.

Some request types require two queue names,
SMR$K MERGE.

for example

devname

16-byte field containing the name of the device on which the file
resides. The length of the device name must be in the first
byte. The device name is returned by RMS as a counted ASCII
string in the NAM$T DVI field of the auxiliary name block (NAM)
when the file is opened.

file id

di rid

6-byte file identification. RMS returns the file
in the auxiliary name block (NAM) beginning
NAM$W FID when the file is opened.

identification
at the offset

6-byte directory identification returned by RMS in the name block
(NAM) at the offset NAM$W DID.

filename

jobid

20-byte field containing the name of a file to be queued. The
first byte in the field must contain the length.

16-bit job header
returned in the
the operation.

identifying the job. This information is
message queued to the mailbox on completion of

188

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

jobname

8-byte blank-filled ASCII name string.

option

Byte indicating an optional parameter
$SMRDEF macro defines symbolic names
format:

for the request. The
for the options in the

SMO$C_option

Valid options for each request type are listed in Table n. The
options and any data required by each are listed in Table 7.

opdata

Any data required by the specified option.

Syntax Notes

1. Fields within the message buffer must be placed in
consecutive positions in the buffer, with no intervening
blanks •.

2. The message length passed to the service indicates the total
length of the buffer. If a byte of binary O's follows an
option or its required data, the message scan is terminated.
Therefore, fixed-length message buffers can be used, with a 0
indicating termination of the option list.

The following example shows an input message buff er for the $SNDSMB
system service:

1~DDl...I~:;T:

~ V.JOF~D
DEt): ~ Bl ... l\B
FIL.ID: ~Bl...l\W

F I I... EN : ~ BI... I\ B
OPTS: ~ Bl...l\B
(.:1DDESC:

~LONG
~LONG

SMl:~1lil\ 1~DDF I 1...
:1.6
3
20
1 ()

l- ME~:;s,~GE BUFFEF~

OREQUEST TYPE TO ADD A FILE
PMOVE DEVICE NAME HERE <COUNTED STRING>
PMOVE FIL.EID HERE
OMOVE FILENAME HERE
;LEAVE ROOM FOR 10 OPTIONS
;DESCRIPTOR FOR MESSAGE

1~DDE~:>C····1~DDL I ST ; LENGTH OF Bl.JFFEI:~
ADDl...IST ;ADDRESS OF BUFFER

tSNDSMB_S MSGBUF=ADDESC ;ADD FILE TO QUEUE

189

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Table 6
Request Types for Symbiont Manager Messages

Request Function Required Data valid Options

-+- "

SMR$K_ABORT Stops printing the current queuename SMOSK:.,_REQUEUE
file and skips to the
next file

SMR$K_ADDFIL Adds a file to a job devname SMOSK COPIES
fileid SMO$K-BRSTPAG
di rname·l SMO$K-DELETE
filename 2 SMOSK-DOUBLE

SMOSK-FLAGPAG
SMO$K-NOBRSTPAG
SMO$K-NOFEED
SMOSK-NOFLAGPAG
SMO$K-PAGCNT
SMOSK=PAGHDR

SMR$K_ALTER Changes attributes of a queuename SMOSK CRPULIM
previously queued job and johid SMO$K-DQCHAR
requeues the job SMOSK-FORMTYP

SMO$K-HOLD
SMO$K-JOBCOPY
SMO$K-JOBNAME
SMOSK-JOBPRI
SMO$K-LOWER
SMO$K-NOCPULM
SMOSK-NOLOWER
SMO$K-NOWSDFT
SMO$K-NOWSQUO
SMO$K-RLSTIM
SMOSK-WSDEFLT
SMOSK=WSQUOTA

SMR$K_ASSIGN Directs a queue to a queuename None
specific device [devname]

SMR$K_CLSJOB Closes the job None SMO$K FORMTYP
SMO$K-HOLD
SMO$K-JOBPRI
SMOSK=RLSTIM

SMR$K_CREJOB Creates a job queuename SMOS CPULIM
SMO$K DQCHAR
SMO$K-FORMTYP
SMOSK-HOLD
SMOSK-JOBCOPY
SMO$!CJOBPRI
SMO$K-LOWER
SMO$K-NOCPULM
SMOSK-NOLOWER
SMOSK-NOWSDFT
SMOSK-NOWSQUO
SMOSK-PARAMS
SMOSK-RLSTIM
SMO$K-WSDEFLT
SMOSK=WSQUOTA

SMR$K_DELETE Deletes a device queue queuename None

SMR$K_ENTER Enters a file in a queuename SMO$K BRSTPAG
queue for a device devname SMO$K-COPIES

file id SMOSCDELETE
dirnamel SMOSK-DOUBLE
filename2 SMO$K-FLAGPAG

SMO$K-FORMTYP
SMO$K-HOLD
SMOSK-JOBCOPY
SMO$CLOWER
SMOSK-NOBRSTPAG
SMOSK-NOFEED
SMO$K-NOFLAGPAG
SMOSK-NOLOWER
SMOSK-PAGCNT
SMOSK-PAGHDR
SMO$K-J08PRI
SMOSK=RLSTIM

1. The dirname field is required only if file is to be deleted after processing.

2. The filename field is optional; it can be used for informational purposes.

190

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Table n (Cont.)
Request Types for Symbiont Manager Messages

Request

SMR$K_INITIAL

SMR$K_JUSTIFY

SMR$K_MERGE

SMR$K_PAUSE

SMR$K _REDIRECT

SMR$K_RELEASE

SMR$K_RMVJOB

SMR$K_START

SMR$K_STOP

SMR$K_SYNCJOB

Function

Initializes or reinitializes
a queue

Issues hardware form
feed

Deletes jobs from second
queue and places them in
first queue

Temporarily suspends current
operation

Redirects second queue to
first queue

Releases a held job for
printing

Removes a job from
a queue

Enables printing on a device,
resumes printing on a paused
device, or restarts printing
on a stopped device

Stops printing on a device
(for a batch job, equivalent
to PAUSE)

Waits for a batch job to
complete

Required Data

queuename

queuename

queuenamel
queuename2

queuename

queuenamel
[queuename2]

queuename
jobidl

jobid

queuename

queuename

queuename
[jobid]2
[jobnamel

Valid Options

SMOSK CURDQCHAR
SMOSK-CURFORM
SMOSK-DCPULM
SMOSK-DEFBRST
SMOSK-DEFFLAG
SMOSK-DETJOB
SMO$K-DISWAP
SMOSK-GENDEV
SMOSK-GENPRT
SMOSK-INIPRI
SMOSK-JOBLIM
SMO$K-MCPULM
SMO$K-NODCPULM
SMOSK-NODEFBRST
SMOSK-NODEFFLAG
SMOSK-NOGENDEV
SMOSK-NOGENPRT
SMOSK-NOMCPULM
SMOSK-NOTRMDEV
SMOSK-NOWSDFLT
SMOSK-NOWSQUTA
SMOSK-SMBNAME
SMOSK-TRMDEV
SMOSK-WSDFLT
SMOS(~WSQUTA

None

None

None

None

None

None

SMOSK CURDQCHAR
SMO$K-CURFORM
SMOSK-DCPULM
SMOSK-DEFBRST
SMOSK-DEFFLAG
SMOSK-DETJOB
SMOSK-GENDEV
SMOSK-GENPRT
SMOSK-INIPRI
SMOSK-JOBLIM
SMOSK-MCPULM
SMOSK-NEXTJOB
SMOSK-NODCPULM
SMOSK-NODEFBRST
SMOSK-NODEFFLAG
SMOSK-NOGENDEV
SMOSK-NOGENPRT
SMOSK-NOMCPULM
SMOSK-NOTRMDEV
SMOSK-NOWSDFLT
SMOSK-NOWSQUTA
SMOSK-PAGNUM
SMOSK-SMBNAME
SMOSK-TOPOFILE
SMOSK-TRMDEV
SMOSK-WSDFLT
SMOSK=WSQUTA

None

1. A jobid is optional; if specified as 0 or not specified, the first job in queue
is released.

2. Either the jobid or the jobname must be specified.

191

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Table 7
Options for Symbiont Manager Messages

~----------~--,--·---------------.--------------..,

Option

SMO$K_BRSTPAG

SMO$K_COPIES

SMO$K_CPULIM

SMO$K_CURDQCHAR

SMO$K_CURFORM

SMO$K_DCPULM

SMO$K_DEFBRST

SM0$K_DEFFLAG

SMO$K_DELETE

SMO$K_DETJOB

SMO$K_DISWAP

SMO$K_DOUBLE

SMO$K_DQCHAR

SMO$K_FLAGPAG

SMO$K_FORMTYPE

SMO$K_GENDEV

SMO$K_GENPRT

SMO$K_HOLD

SMO$K_INIPRI

SMO$K_JOBCOPY

SMO$K_JOBLIM

SMO$K_JOBNAME

SM0$K_JOBPRI

SM0$K_LOWER

SMO$K_MCPULM

SMO$K_NEXTJOB

Function

Specifies that a burst page
should be printed

Specifies the number of
copies of the file to
print

Specifies CPU time limit
for batch job

Specifies current queue
characteristics

Defines form type currently
on printer

Specifies default CPU time
limit for jobs originating
from a specific batch job
queue (must be less than or
equal to SMO$K_MCPULM)

Specifies that queue prints
burst page by default

Specifies that queue prints
flag page by default

Deletes file after printing

Defines queue as a detached
job (batch) queue

Disables swapping of all
batch jobs in queue

Double-spaces printer output

Specifies characteristics
the device queue must
have before a job in
it can be dequeued

Specifies that a flag page
should be printed

Specifies the form type

Defines the queue as a
generic device queue

Defines the queue as a
generic printer file
queue

Holds job until specifically
released

Specifies initial priority
of batch job

Specifies a repeat count
for the entire job

Specifies maximum number
of jobs in batch queue

Specifies the job name

Specifies priority for
queuing of a job

Specifies that printer
must be equipped with
upper-case and lowercase
characters

Specifies maximum CPU
time for jobs originating
from a specific batch queue

Terminates current job and
start printing with next
job

192

Required Data

None

Number of copies (1 byte)

Number of 10-ms units
(unsigned longword)

16 bytes (128 bits,
each corresponding to a
characteristic)

Type of form (1 byte)

Number of 10-ms units
(unsigned longword)

None

None

None

None

None

None

16 bytes (128 bits,
each corresponding to a
characteristic)

None

Type of form (1 byte)

None

None

None

Priority (1 byte)
range: O through 15

Repeat count (1 byte)

Number of jobs
(1 byte)

Counted ASCII string
(1 to 8 bytes)

Priority (1 byte)
range: 0 through 31

None

Number of 10-ms units
(unsigned longword)

None

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Table 7 (Cont.)
Options for Symbiont Manager Messages

~--------,-----------·-- -------,--------------,
Option

SMO$K _ NOBRSTPAG

SMO$K_NOCPULM

SMO$K_NODCPULM

SMO$K _ NODEFBRST

SMO$K _ NODEFFLAG

SMO$K_NOFEED

SMO$K_NOFLAGPAG

SMO$K_NOGENDEV

SMO$K_NOGENPRT

SMO$K_NOLOWER

SMO$K_NOMCPULM

SMO$K_NOTRMDEV

SMO$K_NOWSDFLT

SMO$K_NOWSDFT

SMO$K _ NOWSQUO

SMO$K_NOWSQUTA

SMO$K_PAGCNT

SMO$K_PAGHDR

SM0$K_PARAMS

SM0$K_SMBNAME

SM0$K_REQUEUE

SM0$K_RLSTIM

SMO$K_SPCCNT

SM0$K_TOPOFI LE

SM0$K_TRMDEV

SMO$K_WSDEFLT

SMO$K_ WSDF'LT

SMO$K_WSQUOTA

SMO$K_WSQUTA

Func.t ion

Specifies that no burst
page should be printed

No CPU time limit is
specified for batch job

No default CPU time limit
is specified for jobs ori
ginating from this queue

Specifies that printer
does not. generate burst
page by default

Specifies that printer does
not generate flag page
by default

Cancels automatic
form feed for output

Specifies that no flag page
should be printed

Disallows generic spooling
to the device

Disallows generic printing
on the specified device

Specifies that lowercase
printer is not reuired

No maximum CPU time
limit is specified for
jobs originating from
this queue.

Specifies that device is
not a terminal

No working set default size
is specified for jobs
originating from this batch
queue

No working set default size
is specified for this job

No working set quota is
specified for this job

No working set quota is
specified for jobs origina
ting from this batch queue

Specifies the number of
pages to print

Prints file specification on
the top of each output page

Specifies parameters for a
batch job

Specifies name of print
symbiont for jobs
originating from this queue

Places aborted line
printer job back into
the queue

Specifies time to release
a held job

Restarts current job
backspacing or forward
spacing pages

Restarts current job at top
of file

Specifies that device is a
terminal

Specifies default working
set size for batch job
must be less than or
equal to SMO$K_WSQUOTA)

Specifies default working
set size for jobs origin
ating from this queue (must
be less than or equal to
SMOS _ WSQUTA)

Specifies working set quota
for batch job

Specifies working set quota
for jobs originating from
this queue

Required Data

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

Number of pages (1 word)

None

One or more counted ASCII
strings terminated by
0 (maximum length of
all strings is fi3 bytes)

Image file specifica
tion (counted ASCII
string, max. 15 bytes
plus count byte)

None

Binary absolute time value
(quac'lword)

Signed Hi-bit integer
specifying
plus or minus page count

None

None

Nul'lber of memory pages
(1 word)

Number of memory pages
(1 word)

Number of memory pages
(1 word)

Number of memory pages
(1 word)

--------'----------- ----

193

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Format of Response from Symbiont Manager

If a mailbox is specified, the symbiont manager returns to it the
following information:

Bits Contents

0-15 MSG$ SMBRSP indicates that the message is from the
symbiont manager. (This name is defined in the $MSGDEF
macro.)

16-31 Jobid.

32-63 Status code indicating the success of the operation.

If the mailbox cannot handle the message (because there is
insufficient buffer space or because a message is too long), or if the
mailbox no longer exists when the reply is sent, the response is lost.

Status Codes Returned in Mailbox:

JBC$ NORMAL

Service successfully completed.

JBC$ ILLDEVNAM

The device name specified has more than 15 characters.

JBC$ ILLDEVTYP

The symbiont manager cannot create a queue for the device type
specified.

JBC$ ILLFILNAM

The filename specified has more than 19 characters.

JBC$ ILLQUENAM

The specified queue name has more than
type of queue associated with the
request •

. JBC$ INVREQ

An invalid request type was specified.

JBC$ NOOPENJOB

15 characters; or the
name is invalid for this

There is no outstanding open print job for the caller.

JBC$ NOPRIV

The process does not have the privilege to perform the requested
operation.

JBC$_NOQUEHDR

The symbiont manager has no more space to allocate a queue
header.

194

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

JBC$_NOQUESPACE

The specified device queue is full.

JBC$_NOSUCHJOB

The specified record was not a print job.

JBC$_NOSUCHQUE

There is no queue for the specified device.

JBC$ PARLENEXD

The parameter string exceeds the maximum permitted length.

JBC$_QUENOSTOP

The specified queue is still active.

JBC$ SMINVOPR

The request type specified is illegal; or an attempt was made to
start a queue that was already started.

JBC$ SMINVOPT

A specified option is invalid for the request type.

JBC$_SMINVREQ

An invalid request type was specified.

JBC$ SMZEROJOB

A job was released that had no files in it.

JBC$ SYMBDSAB

The symbiont manager is disabled.

JBC$ TRMMBXUSE

For a SMR$K SYNCJOB request, another job is already waiting for
the specified job to complete. (Only one job can be waiting for
a specified job to complete.)

These status codes are defined in the $JBCMSGDEF macro.

195

$SUSPND - SUSPEND PROCESS

$SUSPND

$SUSPND - SUSPEND PROCESS

The Suspend Process system service allows a process to suspend itself
or another process. A suspended process cannot receive ASTs or
otherwise be executed until another process resumes or deletes it.

Macro Format

$SUSPND [pidadr J , [prcnam]

High-Level Language Format

SYS$SUSPND ([pidadr] , [prcnam]}

pidadr

Address of.a longword containing the process identification of
the process to be suspended.

prcnam

Address of a character string descriptor pointing to the 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the process issuing the suspend.

If neither a process identification nor a process name is specified,
the caller is suspended. For details on how the service interprets
the PIDADR and PRCNAM arguments, see Table 7-1 in Chapter 7, "Process
Control Services."

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The process name string or string descriptor cannot be read by
the caller, or process identification cannot be written by the
caller.

SS$ INSFMEM

Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM} system service.

SS$ IVLOGNAM

The specified process name has a length of 0 or has more than 15
characters.

SS$ NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

196

$SUSPND - SUSPEND PROCESS

SS$ NOPRIV

The target
requesting
privilege.

process
process

was not created by the caller and the
does not have group or world process control

Privilege Restrictions

User privileges are required to suspend:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

Resources Required/Returned

Notes

The Suspend Process system service requires system dynamic
memory.

1. The suspend process system service completes successfully if
the target process is already suspended.

2. Unless it has pages locked in the balance set, a suspended
process can be removed from the balance set to allow other
processes to execute.

3. The Resume Process ($RESUME) system service allows a
suspended process to continue. If one or more resume
requests are issued for a process that is not suspended, a
subsequent suspend request completes immediately; that is,
the process is not suspended. No count is maintained of
outstanding resume requests.

For more information on process suspension, see Section 7.5, "Process
Hibernation and Suspension."

197

$TRNLOG - TRANSLATE LOGICAL NAME

$TRNLOG

$TRNLOG - TRANSLATE LOGICAL NAME

The Translate Logical Name system service searches the logical name
tables for a specified logical name and returns an equivalence name
string. The process, group, and system logical name tables are
searched in that order.

The first string match returns the equivalence string into a
user-specified buffer; the search is not recursive.

Macro Format

$TRNLOG lognam , [rsllen] ,rslbuf , [table] , [acmode] , [dsbmsk]

High-Level Language Format

SYS$TRNLOG (lognam , [rsllen] , rslbuf , [table] , [acmode] , [dsbmsk])

lognam

Address of a character string descriptor pointing to the logical
name string.

rsllen

Address of a word to receive the length of the translated
equivalence. name string.

rslbuf

table

Address of a character string descriptor pointing to the buffer
which is to receive the resultant equivalence name string.

Address of a byte to receive the number of the logical name table
in which the match was found. A return value of O indicates that
the logical name was found in the system logical name table; 1
indicates the group table, and 2 indicates the process table.

acmode

Address of a byte to receive the access mode from which the
logical name table entry was made. Data received in this byte is
valid only if the logical name match was found in table 2, the
process logical name table.

dsbmsk

Mask in which bits set to 1 disable the search of particular
logical name tables. If bit 0 is set, the system logical name
table is not searched; if bit 1 is set, the group logical name
table is not searched; if bit 2 is set, the process logical name
table is not searched.

If no mask is specified or is specified as 0 (the default), all
three logical name tables are searched.

198

$TRNLOG - TRANSLATE LOGICAL NAME

Return Status

SS$_NORMAL

Service successfully completed. The equivalence name string was
placed in the output buffer.

SS$_NOTRAN

Service successfully completed. The input logical name string
was placed in the output buffer because no equivalence name was
found.

SS$ ACCVIO

The logical name string or string descriptor cannot be read. by
the caller; or the output length, output buffer, or table or
access mode field cannot be written by the caller.

SS$ IVLOGNAM

The specified logical name string has a length of 0 or has more
than 63 characters.

SS$ RESULTOVF

Notes

The buffer to receive the resultant string has a length of zero,
or it is smaller than the string.

If the first character of a specified logical name is an
underline character () , no translation is performed. However,
the underscore character is removed from the string and the
modified string is returned in the output buffer.

For an example of the $TRNLOG system service, see Figure 2-1 at the
end of Chapter 2. For additional information on this service, see
Chapter 5, "Logical Name Services."

199

$ULKPAG - UNLOCK PAGES FROM MEMORY

$ULKPAG

$ULKPAG - UNLOCK PAGES FROM MEMORY

The Unlock Pages from Memory system service releases the page lock on
a page or range of pages previously locked in memory by the Lock Pages
in Memory ($LCKPAG) service.

Macro Format

$ULKPAG inad r , [retadr] , [acmode]

High-Level Language Format

inadr

SYS$ULKPAG (inadr , [retadr] , [acmode])

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be unlocked. If the starting
and ending virtual addresses are the same, a single page is
unlocked. Only the virtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually unlocked.

acmode

Access mode of the locked pages. The specified access mode is
maximized with the access mode of the caller. The resultant
access mode must be equal to or more privileged than the access
mode of the owner of each page in order to unlock the page.

Return Status

SS$ WASCLR

Service successfully completed. At least one of the specified
pages was previously unlocked.

SS$ WASSET

Service successfully completed. All of the specified pages were
previously locked.

SS$ ACCVIO

1. The input array cannot be read by the caller, or the output
array cannot be written by the caller.

2. A page in the specified range is inaccessible or does not
exist.

200

$ULKPAG - UNLOCK PAGES FROM MEMORY

Privilege Restrictions

Notes

1. The user privilege PSWAPM is required to lock or unlock pages
from memory.

2. The access mode of the caller
privileged than the access
that are to be unlocked.

must be equal to or more
mode of the owner of the pages

1. If more than one page is being unlocked and it is necessary
to determine specifically which pages had been previously
unlocked, the pages should be unlocked one at a time.

2. If an error occurs while multiple pages are being unlocked,
the return array, if requested, indicates the pages that were
successfully unlocked before the error occurred. If no pages
were unlocked, both longwords of the return address array
contain a -1.

3. Locked pages are automatically unlocked at image exit, when
the system deletes the pages.

201

$ULWSET - UNLOCK PAGES FROM WORKING SET

$ULWSET

$ULWSET - UNLOCK PAGES FROM WORKING SET

The Unlock Pages from Working Set system service allows a process to
specify that a group of pages that were previously locked in the
working set are to be unlocked and become candidates for page
replacement like other working set pages.

Macro Format

$ULWSET inadr , [retadr] , [acmode]

High-Level Language Format

inadr

SYS$ULWSET (inadr , [retadr] , [acmode])

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be unlocked. If the starting
and ending virtual address are the same, a single page is
unlocked. Only the virtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually unlocked.

acmode

Access mode on behalf of which the request is being made. The
specified access mode is maximized with the access mode of the
caller. The resultant access mode must be equal to or more
privileged than the access mode of the owner of each page in
order to unlock the page.

Return Status

SS$_WASCLR

Service successfully completed. At least one of the specified
pages was previously unlocked.

SS$_WASSET

Service successfully completed. All of the specified pages were
previously locked in the working set.

SS$_ACCVIO

1. The input array cannot be read by the caller, or the output
array cannot be written by the caller.

2. A page in the specified range is inaccessible or does not
exist.

202

$ULWSET - UNLOCK PAGES FROM WORKING SET

SS$ NOPRIV

A page in the specified range is in the system address space.

Privilege Restriction

Notes

The access mode of the caller must be equal to or more privileged
than the access mode of the owner of the pages that are to be
unlocked.

1. If more than one page is being unlocked and it is necessary
to determine specifically which pages had been previously
unlocked, the pages should be unlocked one at a time.

2. If an error occurs while multiple pages are being unlocked,
the return array, if requested, indicates the pages that were
successfully unlocked before the error occurred. If no pages
were unlocked, both longwords in the return address array
contain a -1.

203

$UNWIND - UNWIND CALL STACK

$UNWIND

$UNWIND - UNWIND CALL STACK

The Unwind Call Stack system service allows a condition-handling
routine to unwind the procedure call stack to a specified depth.
Optionally, a new return address can be specified to alter the flow of
execution when the topmost call frame has been unwound.

Macro Format

$UNWIND [depadr] , [newpc]

High-Level Language Format

SYS$UNWIND([depadr] , [newpc])

depadr

new pc

Address of a longword indicating the depth to which the stack is
to be unwound. A depth of 0 indicates the call frame that was
active when the condition occurred, 1 indicates the caller of
that frame, 2 indicates the caller of the caller of the frame,
and so on. If depth is specified as 0 or less, no unwind occurs;
a successful status code is returned. If no addres& is
specified, the unwind is performed to the caller of the frame
that established the condition handler.

Address to be given control when the unwind is complete.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The call stack is not accessible to the caller. This condition
is detected when the call stack is scanned to modify the return
address.

SS$ INSFRAME

There are insufficient call frames to unwind to the specified
depth.

SS$ NOSIGNAL

Warning. No signal is currently active for an
condition.

SS$ UNWINDING

Warning. An unwind is already in progress.

204

exception

Notes

$UNWIND - UNWIND CALL STACK

The actual unwind is not performed immediately. Rather, the
return addresses in the call stack are modified so that when the
condition handler returns, the unwind procedure is called from
each frame that is being unwound.

For an explanation of condition handling and an example of a call to
$UNWIND, see Chapter 9, "Condition-Handling Services."

205

$UPDSEC - UPDATE SECTION FILE ON DISK

$UPDSEC

$UPDSEC - UPDATE SECTION FILE ON DISK

The Update Section File on Disk system service writes all modified
pages in an active private or global section back into the section
file on disk. One or more I/O requests are queued, based on the
number of pages that have been modified.

Macro Format

$UPDSEC inadr , [retadr] , [acmode] , [updflg] , [efn] , [iosb]
, [astadr] , [astprm]

High-Level Language Format

inadr

SYS$UPDSEC (inadr , [retadr] , [acmode] , [updflg] , [efn] , (iosb]
, [astadr] , [astprm])

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be potentially written back
into the section file. The $UPDSEC system service locates pages
within this range that were modified and writes only the mod~fied
pages (with contiguous pages, if convenient) back into the
section file on disk.

If the starting and ending virtual addresses are the same, a
single page is a candidate for writing. Only the virtual page
number portion of the virtual addresses is used; the low-order 9
bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the first and last pages queued for writing
in the first I/O request.

acmode

Access mode on behalf of which the service is performed. The
specified access mode is maximized with the access mode of the
caller. The resultant access mode is used to determine whether
the caller can actually write the pages.

updflg

ef n

Update indicator for read/write global sections. If specified as
O (the default), all read/write pages in the global section are
updated in the section file on disk, regardless of whether or not
they have been modified. If specified as 1, the caller is the
only process actually writing the global section, and only those
pages that were actually modified by the caller are to be
written.

Number of an event flag to set when the section file is updated.
If not specified, it defaults to O.

206

iosb

$UPDSEC - UPDATE SECTION FILE ON DISK

Address of a quadword I/O status block that is to receive the
completion status when the section file has been updated.

astadr

Address of the entry mask of an AST service routine to be
executed when the section file has been updated. If specified,
the AST service routine executes at the access mode from which
the section file update was requested.

astprm

AST parameter to be passed to the AST service routine.

Return Status

SS$ NORMAL

Service successfully completed. One or more I/O requests were
queued.

SS$ NOTMODIFIED

Service successfully completed. No pages in the
range were section pages that had been modified;
were queued.

SS$ ACCVIO

input address
no I/O requests

The input address array cannot be read by the caller, or the
output address array cannot be written by the caller.

SS$_EXQUOTA

The process has exceeded its AST limit quota.

SS$ ILLEFC

An illegal event flag number was specified.

SS$ IVSECFLG

An invalid flag was specified.

SS$ NOTCREATOR

The section is in memory shared by multiple processors and was
created by a process on another processor.

SS$ NOPRIV

A page in the specified range is in the system address space.

SS$ PAGOWNVIO

A page in the specified range is owned by an access mode more
privileged than the access mode of the caller.

SS$ SHMNOTCNCT

The section is specified as being in memory shared by multiple
processors, but this shared memory is not known to the system.

207

$UPDSEC - UPDATE SECTION FILE ON DISK

SS$ UNASCEFC

The process is not associated with the cluster containing the
specified event flag.

Privilege Restrictions

Only pages that are owned by the calling or a less privileged
access mode can be updated.

Resources Required/Returned

Notes

The Update Section File on Disk system service requires the
process's direct I/O limit (DIRIO) to queue the I/O request;
and, if the ASTADR argument is specified, the process's AST limit
quota (ASTLM).

1. The $UPDSEC system service scans pages starting at the
address contained in the first longword of the location
pointed to by the INADR argument and ending with the address
in the second longword. Within this range, pages are
candidates for being updated based on whether they are
read/write pages that were modified. Unmodified pages that
share a cluster with modified pages are also written. The
ending address can be lower than the starting address.

2. If the $UPDSEC system service returns an error, both
longwords in the return address array contain a -1. In this
case, no I/O completion is indicated, that is, the event flag
is not set, no AST is delivered, and the I/O status block is
not posted.

3. Proper use of this service requires the caller to synchronize
completion of the update request by checking the return
status from $UPDSEC. If SS$ NOTMODIFIED is returned, the
caller can continue. If SSS NORMAL is returned, the caller
should wait for the I/O to complete and then check the status
returned in the I/O status block.

When all I/O is complete, the I/O status block, if specified,
is filled in as follows:

a. The first word contains the completion status of the
output request.

b. If an error occurred in the I/O request, the first bit in
the second word is set if a hardware write error
occurred.

c. The second longword contains the virtual address of the
first page that was not written.

4. For a global section located in memory shared by multiple
processors, only processes running on the processor that
created the section can call the $UPDSEC service specifying
that section. Processes on another processor that attempt to
update the section file will receive an error status code
indicating that the request was not performed.

208

$WAITFR - WAIT FOR SINGLE EVENT FLAG

$WAITFR

$WAITFR - WAIT FOR SINGLE EVENT FLAG

The Wait for Single Event Flag system service tests a specific event
flag and returns immediately if the flag is set. Otherwise, the
process is placed in a wait state until the event flag is set.

Macro Format

$WAITFR ef n

High-Level Language Format

SYS$WAITFR (efn)

efn

Number of the event flag for which to wait.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ILLEFC

An illegal event flag number was specified.

SS$ UNASEFC

Notes

The process is not associated with the cluster containing the
specified event flag.

The wait state caused by this service can be interrupted by an
asynchronous system trap (AST) if (1) the access mode at which
the AST executes is less than or equal to the access mode from
which the wait was issued and (2) the process is enabled for ASTs
at that access mode.

When the AST service routine
repeats the $WAITFR request.
process resumes execution.

completes execution, the system
If the event flag has been set, the

209

$WAKE - WAKE

$WAKE

$WAKE - WAKE

The Wake system service activates a process that has placed itself in
a state of hibernation with the Hibernate ($HIBER) system service.

Macro Format

$WAKE [pidadr] , [prcnam]

High-Level Language Format

SYS$WAKE ([pidadr] , [prcnam])

pidadr

Address of a longword containing the process identification of
the process to be awakened.

prcnam

Address of a character string descriptor pointing to the process
name string. The name is implicitly qualified by the group
number of the process issuing the wake.

If neither a process identification nor a process name is specified,
the wake request is for the caller. For details on how the service
interprets the PIDADR and PRCNAM arguments, see Table 7-1 in Chapter
7, "Process Control Services."

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ACCVIO

The process name string or string descriptor cannot be read by
the caller, or the process identification cannot be written by
the caller.

SS$ IVLOGNAM

The specified process name string has a length of 0 or has more
than 15 characters.

SS$ NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$ NOPRIV

The process does not have the privilege to wake the specified
process.

210

$WAKE - WAKE

Privilege Restrictions

Notes

User privileges are required to wake:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privlege)

1. If one or more wake requests are issued for a process that is
not currently hibernating, a subsequent hibernate request
completes immediately, that is, the process does not
hibernate. No count is maintained of outstanding wakeup
requests.

2. A hibernating process can also be awakened with the Schedule
Wakeup ($SCHDWK) system service.

For an example of the $WAKE system service and a discussion of the
hibernate/wake mechanism, see Chapter 7, "Process Control Services."

211

$WFLAND - WAIT FOR LOGICAL AND OF EVENT FLAGS

$WFLAND

$WFLAND - WAIT FOR LOGICAL AND OF EVENT FLAGS

The Wait for Logical AND of Event Flags system service all-0ws a
process to specify a mask of event flags for which it wishes to wait.
All of the indicated event flags within a specified event cluster must
be set; otherwise, the process is placed in a wait state until they
are all set.

Macro Format

$WFLAND efn ,mask

High-Level Language Format

ef n

mask

SYS$WFLAND(efn ,mask)

Number of any event flag within the cluster being used.

32-bit mask in which bits set to 1 indicate the event flags
within the cluster that must be set.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ILLEFC

An illegal event flag number was specified.

SS$_UNASEFC

Notes

The process is not associated with the cluster containing the
specified event flag.

The wait state caused by this service can be interrupted by an
asynchronous system trap (AST) if (1) the access mode at which
the AST is to execute is less than or equal to the access mode
from which the wait was issued and (2) the process is enabled for
ASTs at that access mode.

When the AST service routine completes execution, the system
repeats the $WFLAND request. If the specified event flags are
all set, the process resumes execution.

For an example of the $WFLAND system service, see Chapter 3, "Event
Flag Services."

212

$WFLOR - WAIT FOR LOGICAL OR OF EVENT FLAGS

$WFLOR

$WFLOR - WAIT FOR LOGICAL OR OF EVENT FLAGS

The Wait for Logical OR of Event Flags system service tests the event
flags specified by a mask within a specified cluster and returns
immediately if any of them is set. Otherwise, the process is placed
in a wait state until at least one of the selected event flags is set.

Macro Format

$WFLOR efn ,mask

High-Level Language Format

ef n

mask

SYS$WFLOR(efn ,mask)

Number of any event flag within the cluster being used.

32-bit mask in which bits set to 1 indicate the event flags of
interest.

Return Status

SS$ NORMAL

Service successfully completed.

SS$ ILLEFC

An illegal event flag number was specified.

SS$ UNASEFC

Notes

The process is not associated with the cluster containing the
specified event flag.

The wait state caused by this service can be interrupted by an
asynchronous system trap (AST) if (1) the access mode at which
the AST is to execute is less than or equal to the access mode
from which the wait was issued and (2) the process is enabled for
ASTs at that access mode.

When the AST service routine completes execution, the system
repeats the $WFLOR request. If any of the event flags has been
set, the process resumes execution.

213

APPENDIX A

SYSTEM SYMBOLIC DEFINITION MACROS

This appendix summarizes system-provided macros that define symbolic
values for use with system services, and lists the symbols defined by
each macro. The macros listed in this appendix are:

Macro

$IODEF

$MSGDEF

$PRDEF

$PRTDEF

$PSLDEF

$SSDEF

Symbols Defined

Symbolic names for I/O function codes

Symbolic names to identify mailbox message senders

Internal processor registers

Symbolic names for hardware protection codes

Processor status longword (PSL) mask and field
definitions, and symbolic names for access modes

Symbolic names for system status codes

The symbolic definitions generated by each of the above macros are
listed on the following pages. Definitions generated by the following
macros are listed elsewhere in this manual (consult the Index for page
number references).

Macro

$ACCDEF

$CHFDEF

$DIBDEF

Symbols Defined

Accounting manager request type codes and process
termination message and accounting record
information offsets

Condition handler argument offsets

Device information buffer offsets

$JBCMSGDEF Job controller return status codes (Symbols are in
SYS$LIBRARY:LIB.MLB.)

$JPIDEF

$0PCDEF

$PQLDEF

$PRVDEF

$SECDEF

$SMRDEF

Job/process information request type codes

Operator communication manager request type codes,
buffer offsets, and return status codes

Quota types for process creation quota list

User privileges

Attribute flags for private/global section creation
and mapping

Symbiont manager request type and option codes

A-1

SYSTEM SYMBOLIC DEFINITION MACROS

A.l USING SYSTEM SYMBOLS

The default system macro library, STARLET.MLB, contains the macro
definitions for most system symbols. When you assemble a source
program that calls any of these macros, the assembler automatically
searches STARLET.MLB for the macro definitions.

Each symbol name has a numeric value. To obtain a list of symbols and
their values in alphabetic order, use the following procedure:

1. Create a file with the file type of MAR containing the lines:

SxxDl~

4END

where xx is the pref ix of the macro defining the symbols you
need, for example, $SSDEF or $MSGDEF. You can specify more
than one macro in the same assembly source file to obtain the
numeric values for more than one set of definitions.

2. Assemble the file and request a listing with the MACRO
command:

$ MACRO/LIST file-name

where file-name is the file name of the file containing the
$xxDEF macro call(s). The input file type defaults to MAR.

The symbols and their hexadecimal values appear in the
listing file file-name.LIS.

A.2 $IODEF MACRO - SYMBOLIC NAMES FOR I/O FUNCTION CODES

The function codes and function modifiers defined in the $IODEF macro
are grouped according to the devices for which the I/O operation is
requested. For your convenience, the arguments (Pl, P2, and so on),
are also listed. This section provides information for the following
device drivers:

• Terminal driver

• Disk drivers

• Magnetic tap~ drivers

• Line printer driver

• Card reader driver

• Mailbox driv~r

• DMCll driver

• ACP interface driver

• LPA-11 driver

• DR32 driver

For detailed information on the functions, arguments, and modifiers
accepted by a specific device driver, see the appropriate chapter in
the VAX/VMS I/O User's Guide.

A-2

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.1 Terminal Driver

Functions

IO$ READVBLK
IO$-READLBLK
IO$-READPBLK
IO$-READPROMPT

IO$ WRITEVBLK
IO$-WRITELBLK
IO$-WRITEPBLK

IO$ SETMODE
IO$-SETCHAR

IO$ SETMODE!IO$M HANGUP
IO$-SETCHAR 1 IO$M-HANGUP

IO$ SETMODE!IO$M CTRLCAST
IO$-SETMODE!IO$M-CTRLYAST
IO$-SETCHAR!IO$M-CTRLCAST
IO$=SETCHAR!IO$M=CTRLYAST

1. Only for IO$ READPROMPT

Arguments

Pl - buffer address
P2 - buffer size
P3 - timeout
P4 - read terminator

block address
PS - prompt string

buffer address 1
P6 - prompt string

buffer sizel

Pl - buffer address
P2 - buffer size
P3 - (ignored)
P4 - carriage control

specifier2

Pl - characteristics
buffer address

P2 - (ignored)
P3 - speed specifier
P4 - fill specifier
PS - parity flags

(none)

Pl - AST service
routine address

P2 - AST parameter
P3 - access mode to

deliver AST

2. Only for IO$ WRITELBLK and IO$ WRITEVBLK

A-3

Modifiers

IO$M NOECHO
IO$M-CVTLOW
IO$M-NOFILTR
IO$M-TIMED
IO$M-PURGE
IO$M-DSABLMBX
IO$M-TRMNOECHO
IO$M-REFRESH

IO$M CANCTRLO
IO$M-ENABLMBX
IO$M-NOFORMAT
IO$M-REFRESH

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.2 Disk Drivers

Functions

IO$ READVBLK
10$-READLBLK
10$-READPBLK
10$-WRITEVBLK
10$-WRITELBLK
10$-WRITEPBLK

10$ SETMODE
10$-SETCHAR

IO$ CREATE
IO$-ACCESS
IO$-DEACCESS
IO$-MODIFY
IO$-DELETE

IO$ FORMATS -

1. Only for IO$

Arguments

Pl - buffer address
P2 - byte count
P3 - disk address

Pl - characteristic buffer
·address

Pl - FIB descriptor address
P2 - file name string

address
P3 - result string length

address
P4 - result string descriptor

address
PS - attribute list address

Pl - density with which to
reformat the diskette

READPBLK and 10$ WRITEPBLK -
2. Only for IO$ CREATE and 10$ ACCESS

3. Only for IO$ CREATE and IO$ DELETE

4. Only for IO$ WRITE PBLK - -
s. Only for RX02 diskette

A-4

Modifiers

10$M DATACHECK
IO$ M-INHRETRY
10$M-INHSEEK 1
IO$M-DELDATA4 I 5

I 0$ IN HR ET RY

IO$M CREATE 2
IO$M-ACCESS 2
IO$M-DELETE 3

SYSTEM SYMBOLIC"DEFINITION MACROS

A.2.3 Magnetic Tape Drivers

Functions

IO$ READVBLK
IO$-READLBLK
IO$-READPBLK
IO$-WRITEVBLK
IO$-WRITELBLK
IO$-WRITEPBLK

IO$ SETMODE
IO$-SETCHAR

IO$ CREATE
IO$-ACCESS
IO$-DEACCESS
IO$-MODIFY
IO$-ACPCONTROL

IO$ SKIPFILE

Arguments

Pl - buff er address
P2 - byte count

Pl - characteristics buffer
address

Pl - FIB descriptor address
P2 - file name string

address
P3 - result string length

address
P4 - result string descriptor

address
PS - attribute list address

Pl - skip n tape marks

IO$ SKIPRECORD Pl - skip n records

IO$ MOUNT (none)

IO$ REWIND (none)
IO$-REWINDOFF

IO$ WRITEOF (none)

IO$ SENSEMODE (none) -
1. Only for read functions

2. Only for write functions

3. Only for IO$ CREATE and IO$ ACCESS -
4. Only for IO$ ACPCONTROL

A-5

Modifiers

IO$M DATACHECK
IO$M-INHRETRY
IO$M-REVERSE 1
IO$M::INHEXTGAP 2

IO$ M INHRETRY
IO$ M-INHEXTGAP

IO$M CREATE 3
IO$M-ACCESS 3
IO$M-DMOUNT 4

IO$M INHRETRY

IO$M INHRETRY

IO$ M INHRETRY
IO$M-NOWAIT

IO$M INHEXTGAP
IO$ M-INHRETRY

IO$M INHRETRY

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.4 Line Printer Driver

Functions

IO$ WRlTEVBLK
IO$-WRlTELBLK
IO$-WRlTEPBLK

IO$ SETMODE
IO$-SE'fCHAR

Arguments

Pl - buffer address
P2 - buffer size
P3 - (ignored)
P4 - carriage control

specifierl·

Pl - characteristics buffer
address

1. Only for 10$ WRlTEVBLK and 10$ WRlTELBLK

A.2.5 Card Reader Driver

Functions Arguments

IO$ READLBLK
IO$-READVBLK
!0$-READPBLK

Pl - buff er address
P2 - byte count

IO$ SETMODE
IO$-SETCHAR

Pl - characteristics
buffer address.

IO$ SENSEMODE (none)

A.2.6 Mailbox Driver

Functions

IO$ READVBLK
10$-READLBLK
IO$-READPBLK
!0$-WRITEVBLK
!0$-WRlTELBLK
!0$-WRITEPBLK

IO$ WRITEOF

10$ SETMODE!IO$M READATTN
l0$-SETMODE!IO$M-WRTATTN - -

Arguments

Pl - buff er address
P2 - buffer size

(none)

Pl - AST address
Pl - AST parameter

A-6

Modifiers

(none)

(none)

Modifiers

IO$M BINARY
IO$M-PACKED

(none)

Modifiers

IO$M NOW

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.7 DMCll Driver

Functions

IO$ READLBLK
!0$-READPBLK
IO$-READVBLK
IO$-WRITELBLK
IO $-WRIT EP BLK
!0$-WRITEVBLK

IO$ SETMODE
IO$-SETCHAR

IO$ SETMODE!IO$M ATTNAST
IO$-SETCHAR!IO$M-ATTNAST - -

IO$ SETMODE!IO$M SHUTDOWN
IO$=SETCHAR!IO$M=SHUTDOWN

IO$ SETMODE!IO$M STARTUP
IO$-SETCHAR!IO$M-STARTUP

1. Only for IO$ READLBLK

2. Only for IO$ READPBLK

3. Only for IO$ WRITELBLK

Arguments

Pl - buffer address
P2 - message size
P6 - diagnostic buffer2

Pl - characteristics
buff er address

Pl - AST service
routine address

P2 - (ignored)
P3 - AST access mode

Pl - characteristics
block address

Pl - characteristics
block address

P2 - (ignored)
P3 - receive message

blocks

and IO$ READPBLK

and IO$ WRITEPBLK

and IO$ WRITEPBLK

A.2.8 ACP Interface Driver

Modifiers

IO$M DSABLMBX 1
IO$M-NOW 1
IO$M-ENABLM.BX 3

Functions Arguments Modifiers

IO$ CREATE Pl -
IO$-ACCESS P2 -
IO$-DEACCESS
IO$-MODIFY P3 -
!0$-DELETE
IO$-ACPCONTROL P4 -

PS -

FIB descriptor address
file name string
address
result string length
address
result string descriptor
address
attribute list address

IO$ MOUNT (none)

1. Only for IO$ CREATE and IO$ ACCESS

2. Only for IO$ CREATE and IO$ DELETE

3. Only for IO$ ACPCONTROL

A-7

IO$M CREATE l
IOSM-A.CCESS 1
IO$M-DELETE 2
IO$ M-DMOUNT 3

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.9 LPA-11 Driver

Functions Arguments

IO$ LOADMCODE Pl - address of microcode image
P2 - size of microcode image
P3 - starting microcode address

IO STARTPROC (none)

IO$ INITIALIZE Pl - address of initialization table
P2 - size of table

IO$ SETCLOCK P2 - mode word

IO$ STARTDATA

P3 - clock control and status
P4 - clock preset

Pl - starting address of command
table

P2 - length of command table
P3 - AST address of normal buff er

completion AST routine
P4 - AST address of buffer overrun

completion AST routine

A.2.10 DR32 Driver

Functions

IO$ LOADMCODE

IO$ STARTDATA

Arguments

Pl - address of microcode
P2 - size of microcode

Pl - address of command table
P2 - size of command table

A-8

Modifiers

IO$M SETEVF

Modifiers

IO$M SETEVF

SYSTEM SYMBOLIC DEFINITION MACROS

A.3 $MSGDEF MACRO - SYMBOLIC NAMES FOR SYSTEM MAILBOX MESSAGES

Symbolic Name

MSG$ TRMUNSOLIC
MSG$-CRUNSOLIC
MSG$-DELPROC
MSG$-SNDSMB
MSG $-DEVOFFL IN
MSG$-TRMHANGUP
MSG$-DEVONLIN
MSG$-OPRQST
MSG$-OPREPLY
MSG$-SMBINI
MSG$-SMBDON
MSG$-SNDACC
MSG$-XM DATAVL
MSG$-XM-SHUTDN
MSG$-XM-ATTN
MSG$-INlOPR
MSG$-ABOOPR
MSG$-SUSOPR
MSG$-RESOPR
MSG$-DELSMB
MSG$-SMBRSP
MSG$-ACCRSP
MSG$-SCANBAD
MSG$-SCANRSP
MSG$-ABORT
MSG$-CONFIRM
MSG$-CONNECT
MSG$-DISCON
MSG$-EXIT
MSG $-INT MSG
MSG$-PATHLOST
MSG$-PROTOCOL
MSG$-REJECT
MSG$-THIRDPARTY
MSG$-TIMEOUT

Meaning

Unsolicited terminal data
Unsolicited card reader data
Delete process
Send to symbiont manager
Device offline
Terminal hangup
Device online
Operator request
Operator reply
Symbiont is initiated
Symbiont has finished
Send to accounting manager
Data available (DMC-11)
Unit shutdown (DMC-11)
Unit attention (DMC-11)
Initiate file printing
Abort printing a file
Pause printing a file
Resume printing a file
Symbiont should delete itself
Symbiont response
Accounting manager response

Network partner aborted link
Network connect confirm
Network inbound connect initiate
Network partner disconnected-hangup
Network partner exited prematurely
Network interrupt message; unsolicited data
Network path lost to partner
Network protocol error
Network connect reject
Network third party disconnect
Network connect timeout

A-9

SYSTEM SYMBOLIC DEFINITION MACROS

A.4 $PRDEF MACRO - SYMBOLIC NAMES FOR PROCESSOR REGISTERS

Symbolic Name

PR$ KSP
PR$-ESP
PR$-SSP
PR$-USP
PR$-ISP
PR$-POBR
PR$-POLR
PR$-PlBR
PR$-PlLR
PR$-SBR
PR$-SLR
PR$-PCBB
PR$-SCBB
PR$- IPL
PR$-ASTLVL
PR$-SIRR
PR$-SISR
PR$-MAPEN
PR$-TBIA
PR$-TBIS
PR$-ICCS
PR$-NICR
PR$- I CR
PR$-TODR
PR$-RXCS
PR$-RXDB
PR$-TXCS
PR$-TXDB
PR$-ACCS
PR$-ACCR
PR$-PME
PR$-SID
PR$-WCSA
PR$-WCSD
PR$-SBIFS
PR$-SBIS
PR$-SBISC
PR$-SBIMT
PR$-SBIER
PR$-SBITA
PR(=SBIQC

Register

Kernel stack pointer
Executive stack pointer
Supervisor stack pointer
User stack pointer
Interrupt stack pointer
PO base register
PO limit register
Pl base register
Pl limit register
System base register
System limit register
Process control block base register
System control block base register
Interrupt priority level register
AST level register
Software interrupt request register
Software interrupt summary register
Mapping enable register
Translation buffer invalidate all
Translation buffer invalidate single
Interval clock control status register
Interval clock next interval register
Interval clock interval count register
Time of day register
Console receiver control status register
Console receiver data buffer register
Console transmit control status register
Console transmit data buffer register
Accelerator control status register
Accelerator reserved
Performance monitor enable
System identification register
WCS address register
WCS data register
SBI fault status register
SBI silo register

. SBI comparator register
SBI maintenance register
SBI error register
SBI timeout address register
SBI quadword clear register

A-10

SYSTEM SYMBOLIC DEFINITION MACROS

A.5 $PRTDEF - HARDWARE PROTECTION CODE DEFINITIONS

Symbolic Name

PRT$C NA
PRT$C-KR
PRT$C-KW
PRT$C-ER
PRT$C-EW
PRT$C-SR
PRT$C-SW
PRT$C-UR
PRT$C-UW
PRT$C-ERKW
PRT$C-SRKW
PRT$C-SREW
PRT$C-URKW
PRT$C-UREW
PRT$C-URSW

Meaning

No access
Kernel read only
Kernel write
Executive read only
Executive write
Supervisor read only
Supervisor write
User read only
User write
Executive read; kernel write
Supervisor read; kernel write
Supervisor read; executive write
User read; kernel write
User read; executive write
User read; supervisor write

A.6 $PSLDEF MACRO - PROCESSOR STATUS LONGWORD SYMBOL DEFINITIONS

Symbolic Name

PSL$V TBIT
PSL$S-TBIT
PSL$M-TBIT
PSL$V-IV
PSL$S-IV
PSL$M-IV
PSL$V-FU
PSL$S-FU
PSL$M-FU
PSL$V-DV
PSL$S-DV
PSL$M-DV
PSL$V-IPL
PSL$S-IPL
PSL$V-PRVMOD
PSL$S-PRVMOD
PSL$V-CURMOD
PSL$S-CURMOD
PSL$V-IS
PSL$S-IS
PSL$M-IS
PSL$V-FPD
PSL$S-FPD
PSL$M-FPD
PSL$V-TP
PSL$S-TP
PSL$M-TP
PSL$V-CM
PSL$S-CM
PSL$M-CM

Meaning

TBIT enable field
Length of TBIT enable field
Mask for TBIT enable field
Integer overflow field
Length of integer overflow field
Mask for integer overflow field
Floating undefined field
Length of floating undefined field
Mask for floating undefined field
Divide by zero field
Length of divide by zero field
Mask for divide by zero field
Interrupt priority field
Length of interrupt priority field
Previous processor mode field
Length of previous processor mode field
Current processor mode field
Length of current processor mode field
Interrupt stack field
Length of interrupt stack field
Mask for interrupt stack field
First part done field
Length of first part done field
Mask for first part done field
Trace trap pending field
Length of trace trap pending field
Mask for trace trap pending field
Compatibility mode field
Length of compatibility mode field
Mask for compatibility mode field

Symbolic Names for Access Modes

Symbolic Name

PSL$C KERNEL
PSL$C-EXEC
PSL$C-SUPER
PSL$'C-USER

Access Mode

Kernel
Executive
Supervisor
User

Number

0
1
2
3

A-11

SYSTEM SYMBOLIC DEFINITION MACROS

A.7 $SSDEF MACRO - SYMBOLIC NAMES FOR SYSTEM STATUS CODES

The $SSDEF macro instruction defines symbolic names for system service
return status codes and for exception condition names. The "Type"
column, below, indicates one of the following:

Type

Success
Warning
Error
Severe
Condition

Status Code

SS$ ABORT
SS$-ACCONFLICT
SS$=ACCQUOTA

SS$ ACCVIO
SS$-ACCVIO
SS$-ACPVAFUL

SS$ ARTRES
SS$-ASTFLT
SS$-BADATTRIB
SS$-BADCHKSUM
SS$-BADESCAPE
SS$-BADFILEHDR
SS$-BADFILENAME
SS$-BADFILEVER
SS$-BADIMGHDR
SS$-BADIRECTORY
SS$-BADISD
SS$-BADPARAM
SS$-BADQFILE
SS$-BADQUEUEHDR
SS$-BADSTACK

SS$ BADVEC

SS$ BEGOFFILE
SS$-BLOCKCNTERR
SS$-BREAK
SS$-BUFBYTALI

SS$ BUFFEROVF
SS$-BUFNOTALIGN
SS$-BUGCHECK
SS$-CANCEL
SS$-CHANINTLK
SS$-CLIFRCEXT
SS$-CMODSUPR
SS$-CMODUSER
SS$-COMPAT
SS$-CONTINUE

SS$ CONTROLC
SS$-CONTROLO
SS$-CONTROLY
SS$=CREATED

Meaning

Successful completion
Warning return
E r r or re tu r.n
Severe error return
Exception condition

Type

Severe
Warning
Severe

Severe
Condition
Severe

Condition
Condition
Severe
Warning
Severe
Warning
Warning
Warning
Severe
Warning
Severe
Severe
Severe
Severe
Severe

Severe

warning
Warning
Condition
Severe

Success
Severe
Severe
Warning
Severe
Warning
Condition
Condition
Condition
Success

Success
Success
Success
Success

Meaning

Abort
File access conflict
ACCOUNT had inadequate quota at
remote mode
Access violation
Access violation
MTAACP's virtual address space is
full
Reserved arithmetic trap
AST fault
Bad attribute control list
Bad file header checksum
Syntax error in escape sequence
Bad file header
Bad file name syntax
Bad file version number
Bad image header
Bad directory file format
Illegal image section descriptor
Bad parameter value
Invalid disk quota file format
Interlocked queue corrupted
Bad stack encountered during
exception dispatch
Invalid charge-mode or message
vector
Beginning of file
Block count error
Breakpoint instruction fault
Device does not support
byte-aligned transfers
Output buffer overflow
Buffer incorrectly aligned
Internal consistency failure
I/O operation canceled
Channel usage interlocked
CLI forced exit
Change mode to supervisor trap
Change mode to user trap
Compatibility mode fault
Continue execution at point of
condition
Operation completed under CRTL/C
Output completed under CTRL/O
Operation completed under CTRL/Y
File did not exist; was created

A-12

Status Code

SS$ CTRLERR
SS$-DATACHECK
SS$-DATAOVERUN
SS$-DEBUG

SS$ DECOVF
SS$-DEVACTIVE
SS$-DEVALLOC

SS$ DEVALRALLOC

SS$ DEVASSIGN
SS$-DEVCMDERR
SS$-DEVFOREIGN
SS$-DEVICEFULL
SS$-DEVMOUNT
SS$-DEVNOTALLOC
SS$ DEVNOTMBX
SS$-DEVNOTMOUNT
SS$-DEVOFFLINE
SS$-DEVREQERR
SS$-DIRFULL
SS$ DISCONNECT

SS$ DRVERR
SS$-DUPDSKQUOTA
SS$-DUPFILENAME
SS$-DUPLNAM
SS$ ENDOFFILE
SS$-ENDOFTAPE
SS$-ENDOFUSRLBL
SS$ ENDOFVOLUME
SS$-EXCPUTIM
SS$-EXDISKQUOTA
ss()XPORTQUOTA

SS$ EXQUOTA
SS$-FCPREADERR
SS$-FCPREPSTN
SS$-FCPREWNDERR
SS$-FCPSPACERR
SS$-FCPWRITERR
SS$-FILACCERR

SS$ FILALRACC
SS$-FILELOCKED
SS$-FILENUMCHK
SS$-FILEPURGED
SS$ FILESEQCHK
SS$-FILESTRUCT
SS$-FILNOTACC
SS$-FILNOTCNTG
SS$-FILNOTEXP
SS$-FLTDIV
SS$-FLTDIV F
SS$-FLTOVF
SS$-FLTOVF F
SS$-FLTUND
SS$-FLTUND F
SS$-FORMAT
SS$-GPTFULL

SYSTEM SYMBOLIC DEFINITION MACROS

Type

Severe
Severe
Warning
Condition

Condition
Severe
Warning

Success

Warning
Severe
Severe
Warning
Severe
Warning
Severe
Severe
Severe
Severe
Warning
Severe

Severe
Severe
Warning
Severe
Warning
Warning
Warning
Warning
Severe
Severe
Severe

Severe
Warning
Warning
Warning
Warning
Warning
Severe

Severe
Warning
Warning
Success
Warning
Warning
Severe
Severe
Severe
Condition
Condition
Condition
Condition
Condition
Condition
Severe
Severe

Meaning

Fatal controller error
Write check error
Data overrun
Command interpreter
signal
Decimal overflow
Device active

debugger

Device already allocated to
another user
Device already allocated to this
job
Device has channels assigned
Device command error
Device is mounted foreign
Device full - allocation failure
Device is already mounted
Device not allocated
Device not mailbox
Device not mounted
Device not in configuration
Device request error
Directory is full
Process is disconnected from the
requested interrupt vector
Fatal drive error
Duplicate disk quota file entry
Duplicate file name
Duplicate process name
End of file reached
End of tape
End of user labels
End of volume
CPU time limit expired
Disk quota exceeded
Exceeded quota permitted by
processes on this port of a
multiport (shared) memory
Exceeded quota
File processor read error
File processor reposition error
File processor rewind error
File processor space error
File processor write error
Magnetic tape file access
non-blank
File already accessed on channel
File is deaccess locked
File ID file number check
Oldest file version purged
File ID file sequence number check
Unsupported file structure level
File not accessed on channel
File is not contiguous as required
File not expired
Floating/decimal divide by zero
Floating divide by zero fault
Floating overflow
Floating overflow fault
Floating underflow
Floating underflow fault
Invalid media format
Global page table full

A-13

Status Code

SS$ GSDFULL

SS$ HANGUP
S'S$-HEADERFULL
SS$-IDMISMATCH

SS$ IDXFILEFULL
SS$-ILLBLKNUM
SS$-ILLCNTRFUNC
SS$-ILLEFC
SS$-ILLIOFUNC
SS$-ILLLBLAST

SS$ ILLPAGCNT
SS$-ILLSEQOP
SS$-ILLSER
SS$-ILLUSRLBLRD
SS$-ILLUSRLBLWT
SS$-INCVOLLABEL
SS$-INSFARG
SS$=INSFBUFDP

SS$ INSFMAPREG
SS$-INSFMEM
SS$-INSFRAME
SS$ INSFSPTS

SS$ INSFWSL
SS$-INTDIV
SS$=UJTERLOCK

SS$ INTOVF
SS$-INVLOGIN

SS$ IVADDR
SS$-IVBUFLEN
SS$-IVCHAN
SS$-IVCHNLSEC

SS$ IVDEVNAM
SS$-IVGSDNAM
SS$ IVLOGNAM
SS$-IVLOGTAB
SS$=IVLVEC

SS$ IVMODE

SS$ IVPROTECT
SS$-IVQUOTAL
SS$-IVSECFLG

SS$ IVSECIDCTL

SS$ IVSSQR
SS$-IVSTSFLG
SS$-IVTIME
SS$=LCKPAGFUL

SS$ LENVIO
SS$-LKWSETFUL

SYSTEM SYMBOLIC DEFINITION MACROS

Type

Severe

Severe
Warning
Severe

Warning
Severe
Severe
Severe
Severe
Warning

Severe
Severe
Severe
Warning
Warning
Severe
Severe
Severe

Severe
Severe
Severe
Severe

Severe
Condition
Severe

Condition
Severe

Severe
Severe
Severe
Severe

Severe
Severe
Severe
Severe
Severe

Severe

Severe
Severe
Severe

Severe

Severe
Severe
Severe
Severe

Severe
Severe

Meaning

Global section descriptor table
full
Data set hang-up
File header full
Identification does
existing section
Index file full

not

Illegal logical block number
Illegal ACP control function
Illegal event flag cluster
Illegal I/O function code

match

Illegal user label AST control
block address
Illegal page count parameter
Illegal sequential operation
Illegal service call number
Illegal read of user labels
Illegal write of user labels
Incorrect volume label
Insufficient call arguments
Unable to allocate a buffered data

map registers
dynamic memory

path
Insufficient
Insufficient
Insufficient
Insufficient
entries to
system

call frames to unwind
system page table

map process buff er to

Insufficient working set limit
Integer divide by zero
Unable to acquire system
structure interlock
Integer overflow
Login information
remote mode
Invalid media address
Invalid buffer length
Invalid I/O channel

invalid

data

at

Invalid channel for create and map

device name
global section name
logical name

section
Invalid
Invalid
Invalid
Invalid
Section
privilege
Invalid

logical name table number
not installed with

mode for requested
function
Invalid page protection code
Invalid quota list
Invalid process/global section
flags
Invalid section identification
match control
Invalid system service request
Invalid status flag
Invalid time
No more pages can be locked in
memory
Address space length violation
Locked portion of working set is
full

A-14

Status Code

SS$ MBFULL
SS$-MBTOOSML
SS$-MCHECK
SS $-MCNOTVAL ID
SS$-MEDOFL
SS$-MSGNOTFND
SS$=MTLBLLONG

SS$ MULTRMS

SS$ MUSTCLOSEFL
SS$-NOAQB
SS$-NODATA
SS$-NODISKQUOTA
SS$-NOHANDLER
SS$-NOHOMEBLK
SS$ NOIOCHAN
SS$-NOLINKS
SS$-NOLOGNAM
SS$-NOMBX

SS$ NOMOREFILES
SS$-NOMOREPROC
SS$-NONEXDRV
SS$-NONEXPR
SS$-NONLOCAL
SS$-NOP1VA

SS$ NOPRIV

SS$ NOQFILE
SS$-NORMAL
SS$-NOSHMBLOCK

SS$ NOSIGNAL
SS$-NOSLOT

SS$ NOSOLICIT
SS$-NOSUCHDEV
SS$-NOSUCHFILE
SS$-NOSUCHNODE
SS$-NOSUCHOBJ

SS$ NOSUCHSEC
SS$-NOSUCHUSER

SS$ NOTAPEOP
SS$=NOTCREATOR

SS$ NOTFILEDEV
SS$-NOTINSTALL

SS$ NOTINTBLSZ
SS$-NOTLABELMT
SS$-NOTMODIFIED
SS$-NOTNETDEV
SS$-NOTRAN
SS$-NOTSQDEV
SS$-NOTVOLSET
SS$-NOWRT

SYSTEM SYMBOLIC DEFINITION MACROS

Type

Warning
Severe
Severe
Severe
Severe
Success
Severe

Severe

Warning
Severe
Severe
Severe
Warning
Warning
Severe
Severe·
Severe
Severe

Warning
Warning
Severe
Warning
Warning
Severe

Severe

Severe
Success
Severe

Warning
Severe

Severe
Warning
Warning
Severe
Severe

Warning
Severe

Severe
Severe

Severe
Severe

Severe
Severe
Success
Severe
Success
Severe
warning
Severe

Meaning

Mailbox full
Mailbox is too small for request
Detected hardware error
Device microcode is not valid
Medium offline
Message not in system message file
Magnetic tape volume label can be
no more than six characters
Multiple RMS vectors specified for
privileged shareable image
Must close file
ACP queue header not found
Mailbox empty
No disk quota entry for this UIC
No condition handler found
Home block not found on volume
No I/O channel available
No slots in logical link vector
No logical name match
No associated mailbox for inbound
connects
No more files
No more processes found
Nonexistent drive
Nonexistent process
Nonlocal device
Pl space not supported in
shareable images
No privilege for attempted
operation
No disk quota file available
Normal successful completion
No free shared memory control
block available for creation
No signal currently active
No process control block or swap
slot available
Interrupt message not solicited
No such device available
No such file
Specified node does not exist
Networks object is unknown at
remote mode
No such (global) section
Login information not recognized
at remote mode
No tape operator
Request denied: user is not on
creator port
Device is not file-structured
Writable shareable images must be
installed
Block size is greater than 2048
Not labeled tape
No section pages were modified
Not a network communication device
No string translation performed
Not sequential device
Volume is not part of a volume set
Cannot create writable section to
read-only file

A-15

Status Code

SS$ OPCCUS
SS$-OPCDEC
SS$-OPINCOMPL
SS$-OPRABORT
SS$-OVRDSKQUOTA
SS $-PAG OWNVIO
SS$-PAGRDERR
SS$-PARITY
SS$-PARTESCAPE
SS$-PFMBSY
SS$-PLHLDR
SS$-POWERFAIL
SS$-PRIVINSTALL

SS$ PROTINSTALL
SS$-PROTOCOL
SS$-PSTFULL
SS$-QFACTIVE
SS$-QFNOTACT
SS$-RADRMOD
SS$-RDDELDATA

SS$ REJECT
SS$-RELINK

SS$ REMOTE

SS$ REMRSRC
SS$-RESIGNAL
SS$-RESULTOVF
SS$-ROPRAND
SS$-SECTBLFUL

SS$ SHARTOOBIG

SS$ SHMGSNOTMAP

SS$ SHMNOTCNCT
SS$-SSFAIL
SS$-SUBRNG
SS$-SUPERSEDE
SS$-SUSPENDED

SS$ SYSVERDIF

SS$ TAPEPOSLOST
SS$-TBIT
SS$-THIRDPARTY

SS$ TIMEOUT
SS$-TOOMANYLNAM

SS$ TOOMANYVER
SS$-TOOMUCHDATA

SS$ UNASEFC
SS$-UNREACHABLE
SS$-UNSAFE
SS$-UNWIND
SS$-UNWINDING
SS$-VASFULL

SYSTEM SYMBOLIC DEFINITION MACROS

Type

Condition
Condition
Severe
Severe
Success
Severe
Condition
Severe
Severe
Severe
Condition
Severe
Severe

Severe
Severe
Severe
Severe
Severe
Condition
Success

Severe
Severe

Success

Severe
Warning
Severe
Condition
Severe

Severe

Severe

Severe
Condition
Condition
Success
Severe

Success

Severe
Condition
Severe

Severe
Severe

Warning
Severe

Severe
Severe
Severe
Warning
Warning
Severe

Meaning

Opcode reserved to customer fault
Opcode reserved to DIGITAL fault
Operation incomplete
Aborted by operator
Disk usage exceeds disk quota
Page owner violation
Page read error
Parity error
Partial escape
Page fault monitor in use
Reserved for future use
Power failure occurred
Shareable images must be installed
to run privileged image
Protected images must be installed
Network protocol error
Process section table is full
Disk quota file is already active
Disk quota file is not active
Reserved addressing fault
Sector contained deleted data
address mark
Network connect rejected
Obsolete image header - please
relink
Assignment completed on remote
node
Resource error at remote node
Resignal condition to next handler
Resultant string overflow
Reserved operand fault
Section table (process/global)
full
New version of shareable image too
big - relink all images
Shared memory global section not
mapped during creation
Shared memory not connected
System service failure exception
Subscript range trap
Logical name superseded
Process suspended or in
miscellaneous wait state
Privilege removed ~ system version
mismatch - please relink
Magnetic tape position lost
Tbit pending fault
Logical link disconnected by a
third party
Device timeout
Logical name translation exceeded
allowed depth
Too many higher file versions
Too much optional or interrupt
message data
Unassociated event flag cluster
Node is known but unreachable
Drive unsafe
Unwind currently in progress
Unwind already in progress
Virtual address space full

A-16

SYSTEM SYMBOLIC DEFINITION MACROS

Status Code Type Meaning

SS$ VECFULL - Severe Privileged vector limit of 42
exceeded

SS$ VECINUSE Severe AST vector already enabled
SS$-VOLINV Severe Volume invalid
SS$-WAITUSRLBL Warning Waiting,, for user labels
SS$-WASCLR Success Previous state was clear
SS$-WASECC Success Successful transfer; no data

check
SS$ WASSET Success Previous state was set
SS$-WRITLCK Severe Write lock error
SS$-WRONGACP Severe Wrong ACP for device

A-17

APPENDIX B

PROGRAM EXAMPLES

This appendix presents three VAX-11 MACRO programs: ORION, CYGNUS,
and LYRA. These programs do not perform any useful work; they are
intended only to illustrate how to call various system services.

Each program is preceded by an introduction identifying the services
it uses and the main functions it performs. In addition, the program
themselves contain many comments related to specific data definitions
and portions of code.

To help you locate the system service calls in the programs, the
macros are printed in red.

B.l ORION PROGRAM EXAMPLE

The program ORION uses the following system services:

$ASSIGN (Assign I/O Channel)
$OUTPUT (form of Queue I/O Request and Wait For Event Flag)
$NUMTIM (Convert Binary Time to Numeric Time)
$BINTIM (Convert ASCII String to Binary Time)
$SETIMR (Set Timer)
$WAITFR (Wait for Single Event Flag)
$READEF (Read Event Flags)
$SETPRN (Set Process Name)

This sample program illustrates:

1. Assigning an I/O channel to a terminal and writing messages
to the terminal. The device name is specified by the logical
name TERMINAL. Before ORION is run, the logical name must be
assigned an equivalence device name.

2. Using the $NUMTIM system service to find out whether the
current time is before or after noon. A call to $SETIMR is
made conditionally if the time is prior to noon.

3. How to obtain a delta time value in the system format to use
as input to the Set Timer ($SETIMR) system service.

4. Calls to the Set Timer system service.

a. Event flag - The $SETIMR call is followed by a wait for
the specified event flag. When the timer expires, the
program calls $READEF and displays the current status of
the event flag cluster.

B-1

5.

PROGRAM· EXAMPLES

b. AST routine - one AST routine is for a delta time
interval. The other (conditional) is for an absolute
time. In either case, the program continues execution
and will be interrupted when the timer requests are
processed.

An example of terminal input. The
character string to be used as
current process. Then it uses this
$SETPRN system service •

• TITLE ORION SYSTEM SERVICES TEST
.!DENT /01/

program prompts for a
the process name of the
name as input to the

Macro library calls

$IODEF
$SSDEF
$READEFDEF

;Define I/O function codes
;Define system status values
;Define offsets for $READEF

Local macro defined in private macro library

MESSAGE ;Output messages formatted by FAQ

.MACRO MESSAGE
$OUTPUT CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
BSBW ERROR

.ENDM MESSAGE

Read-only data program section

.PSECT RODATA,NOWRT,NOEXE

; Local Read/Write Data

TTNAME: .ASCID /TERMINAL/ ;Terminal logical name

; FAO control strings and data for timer {AST and event flag) tests

ASCNOON: .ASCID /-- 12:00:00.00/

TENSEC: .ASCID /0 00:00:10/

;Noon in ASCII format

;Ten seconds delta time in ASCII format

DISPLAYEFN: ;Display cluster contents
.ASCID /CLUSTER 2 CONTENTS: !XL/

TIMSTR: ;Display message after event flag wait
.ASCID @!/TIMER ENTRY PROCESSED; CLUSTER 2 = !XL@

NOONMSG: ;Display message at noon
.ASCIC /I'M YOUR TIME AST ROUTINE; IT'S NOON ••• /

SECMSGDESC: ;Display message from AST routine
.ASCID @!/TIME AST ROUTINE; DELTA TIME 1%T@

TWENTY: .LONG -10*1000*1000*20,-l ;20 seconds delta time

B-2

PROGRAM EXAMPLES

; Announcement messages

FAOSTR: ;Master control string
.ASCID @!/ORION: !AC @ ;Name, message

; Announcement messages and lengths for outputting

HELLO: .ASCII /HELLO ••• MY NAME IS ORION ••• /
HELLOLEN:

.LONG HELLOLEN-HELLO

TIMERMSG:
.ASCII /BEGINNING TIMER TESTS ••• /

TIMERLEN:
.LONG TIMERLEN-TIMERMSG

EFNWAITMSG:
.ASCII /TIMER SET; WAIT TEN SECONDS/

EFNWAITLEN:
.LONG EFNWAITLEN-EFNWAITMSG

ASTWAITMSG:
.ASCII /TIMER SET; AST IN 20 SECONDS/

ASTWAITLEN:
.LONG ASTWAITLEN-ASTWAITMSG

; Prompt for terminal input

PROMPT: .ASCII /ENTER 1-15 CHARACTER NAME FOR PROCESS:/
'PROMPTLEN:

.LONG PROMPTLEN-PROMPT

Error message c~ntrol strings

ERRSTR formats error message if a system servite fails
IOERRSTR formats error message if I/O fails
BADASTSTR formats error message if error in AST routine

ERRSTR:
.ASCID @!/SYSTEM SERVICE ERROR AT APP. !XL RO=!XL@

IOERRSTR:
.ASCID @!/I/O ERROR; IOSB !XW@

BADASTSTR:
.ASCID /BAD AST PARAMETER !UL/

WAKEUP: .ASCII /AWAKENED ••• /
WAKEUPLEN: .LONG WAKEUPLEN-WAKEUP

Read/write data

.PSECT RWDATA,RD,WRT,NOEXE

; FAO control string and buffer for all announcement messages

FAODESC:
.LONG
.LONG

80
FAOBUF

B-3

;Descriptor for FAO output buffer
;Address of buffer

FAOBUF: • BLKB
FAOLEN: • WORD

.WORD

80
0
0

PROGRAM EXAMPLES

;FAQ buffer
;Length of final string, always
;Need longword for $OUTPUT

Buffer to format messages from AST routine; a separate output buffer
ensures that if the AST is delivered while another message is being
written into the FAO output buffer, no data or message will be lost.

FASTDESC:
.LONG
.LONG

FASTBUF: • BLKB
FASTLEN: • WORD

.WORD

80
FASTBUF
80
0
0

;Descriptor for FAO output buffer

;FAQ buffer
;Length of final string, always
;Need longword for $OUTPUT

; Receive channel number assigned to terminal and I/O status here

TTCHAN: .BLKW 1 ;Terminal channel

TTIOSB: ; IOSB for terminal input
.BLKW 1 ;Return status

TTLEN: .BLKW 1 ;Length of I/O
.BLKL 1 ;Device char

; Argument list for $NAME_G form of a system service call

READLST:
$READEF EFN=32,STATE=EFNTEST

Buffer to obtain numeric values of components of time. Since
the only field of interest is the hours field, the remaining
fields in the buffer are not formatted.

TIMES: .BLKW
HOURS: • BLKW

.BLKW

3
1
3

;Year, month, day
;Current time in hours
;Remainder of buffer

Buffer for terminal input (will create input descriptor for
$SETPRN system service)

NAMEDESC:
.LONG
.LONG

NAME: • BLKB

15
NAME
15

;Fields for timer tests

NOON: .BLKQ 1

TEN: .BLKQ 1

EFNTEST:
.LONG 0

EFNTEST2:
.LONG 0

;Descriptor setup
;Initial size of buffer
;Address of buffer
;Name string here

;will contain 12:00 noon in system format

;Will contain 10 second delta time

;Receive status of event flags

;Status after timer test

Longword to save PC on entry to error handling subroutine

B-4

PROGRAM EXAMPLES

SAVEPC: .BLKL 1

Code begins here •

• PSECT TIMER,EXE,NOWRT
.ENTRY ORION,AM<R2,R3,R4,R5,R6> ;Entry mask

Assign an I/O channel to the device specified by the logical name
TERMINAL and issue a message indicating we're off and running.
Do not perform normal error checking here: instead, let the
command interpreter issue a message based on the status in RO
if the channel assignment fails.

SETUP:
$ASSIGN S DEVNAM=TTNAME,CHAN=TTCHAN
BLBS -R0,10$;All okay, continue
RET ;Otherwise exit with status in RO

10$: $OUTPUT CHAN=TTCHAN,BUFFER=HELLO,LENGTH=HELLOLEN
BSBW ERROR

Call Read Event Flags to get status of event flags before beginning
tests and use FAQ to output the contents of local event flag cluster 2

$READEF G READLST
$FAO S -CTRSTR=DISPLAYEFN,OUTBUF=FAODESC,OUTLEN=FAOLEN,

- Pl=EFNTEST
MESSAGE

Announce start of timer tests

TIMETEST:
$OUTPUT CHAN=TTCHAN,BUFFER=TIMERMSG,LENGTH=TIMERLEN
BSBW ERROR

Call $NUMTIM to find out if it is currently AM or PM. If
the program is being run in the AM (any time), we'll call
$SETIMR to notif~ us via an AST when the time rolls over
to afternoon. If it's already PM, skip this setting of
the timer.

$NUMTIM S TIMBUF=TIMES
BSBW -ERROR
CMPW HOURS,#12
BGEQ 10$

;Before or afternoon?
;After, skip setting timer

Fall through here: format ASCII string representing 12 noon
into system quadword time format and call $SETIMR with
the address of AST service routine to handle timer requests.

$BINTIM S TIMBUF=ASCNOON,TIMADR=NOON ;Get binary noon time
BSBW -ERROR ;Error check

$SETIMR S DAYTIM=NOON,ASTADR=TIMEAST,REQIDT=#l2
BSBW -ERROR ;Error check

Now, get a delta time of 10 seconds formatted into a quadword

B-5

PROGRAM EXAMPLES

10$: $BINTIM_S TIMBUF=TENSEC,TIMADR=TEN ;Get binary delta time
BSBW ERROR ;Error check
$SETIMR S EFN=#33,DAYTIM=TEN ;Set timer (ten seconds)
BSBW -ERROR ;Error check

Announce wait for event flag and wait; then read the
event flag cluster and output its contents

$OUTPUT CHAN=TTCHAN,BUFFER=EFNWAITMSG,LENGTH=EFNWAITLEN
$WAITFR S EFN=#33 ;Now wait
BSBW -ERROR ;Error check

Update argument list for $READEF and then call it with new address
to write the cluster into. When complete, format a message and
display the contents of the cluster.

MOVAL EFNTEST2,READLST+READEF$ STATE
$READEF_G READLST -
BSBW ERROR ;Error check
$FAO_S CTRSTR=TIMSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,

Pl=EFNTEST2
BSBW ERROR ;Error check
MESSAGE

Announce setting of timer with AST in 20 seconds (using
alternate method of coding delta time). Then, set timer
and continue.

$OUTPUT CHAN=TTCHAN,BUFFER=ASTWAITMSG,LENGTH=ASTWAITLEN

$SETIMR_S DAYTIM=TWENTY,ASTADR=TIMEAST,REQIDT=#20
BSBW ERROR ;Error check

Issue a prompt for terminal input: request a name for the current
process and then use the character string entered as the process
name.

RDNAME:

10$:

$OUTPUT CHAN=TTCHAN,BUFFER=PROMPT,LENGTH=PROMPTLEN
BSBW ERROR ;Error check

$INPUT CHAN=TTCHAN,BUFFER=NAME,LENGTH=NAMEDESC,
IOSB=TTIOSB

BSBW ERROR

CMPW
BEQL
$FAQ S

TTIOSB,#SS$ NORMAL ;I/O successful?
10$ - ;Yes, go on
CTRSTR=IOERRSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,
Pl=TTIOSB

MESSAGE
BRW RD NAME
MOVZWL TTLEN,NAMEDESC
$SETPRN_S PRCNAM=NAMEDESC
BSBW ERROR

;Go try again
;Update descriptor length
;Set process name

Hibernate. When ORION is run interactively, the terminal is dormant.
When the AST for the Set Timer service is delivered, ORION
will awaken long enough to execute the AST service routine and

B-6

PROGRAM EXAMPLES

then resume execution.

If ORION is run in a subprocess, wakeups can be scheduled for
delta time intervals. Each time it is awakened, ORION displays a
message and then resumes hibernating.

HIB: $HIBER s ;For now
$OUTPUT CHAN=TTCHAN,BUFFER=WAKEUP,LENGTH=WAKEUPLEN
BRB HIB
RET

; AST routine to handle timer requests

TIMEAST:
.WORD
CMPL
BEQL
CMPL
BEQL
BRW

0
#12, 4 (AP)
10$
#20,4(AP)
20$
30$

;Entry mask for timer AST routine
;Is it noon AST?
;Yes, go do it
;Is it delta time AST?
;Yes, go do that
;Neither, issue error message

Format message for noon AST

10$: $FAQ S
BSBW
$0UTPUT
BSBW
RET

CTRSTR=FAOSTR,OUTBUF=FASTDESC,OUTLEN=FASTLEN,Pl=#NOONMSG
ERROR ; Error check
CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
ERROR ;Error check

Format message for 20 second AST

20$: $FAQ S CTRSTR=SECMSGDESC,OUTBUF=FASTDESC,OUTLEN=FASTLEN,-
Pl=#TWENTY

$OUTPUT CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
RET

Format message if spurious AST

30$: $FAQ S CTRSTR=BADASTSTR,OUTLEN=FASTLEN,OUTBUF=FASTDESC,-
Pl=4(AP)

$OUTPUT CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
RET

Error handling routine: checks status code in RO.
If low bit set, returns to mainline routine. Otherwise,
displays approximate PC and RO when system service call
encounters an error and issues RET that causes image exit.

ERROR:
BLBC
RSB

R0,10$;If error, branch
;Otherwise, continue

; Use FAQ to format output error message

10$:

END:

MOVL
$FAQ S

BLBC
$OUTPUT
RET
.END

(SP) ,SAVEPC
CTRSTR=ERRSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,
Pl=SAVEPC,P2=RO
RO ,END
CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN

ORION

B-7

PROGRAM EXAMPLES

B.2 CYGNUS PROGRAM EXAMPLE

The program CYGNUS uses the following system services:

$TRNLOG - Translate Logical Name
$ASSIGN - Assign I/O Channel
$DCLEXH - Declare Exit Handler
$CREMBX - Create Mailbox
$GETCHN - Get I/O Channel Device Information
$CREPRC - Create Process
$FAQ - Formatted ASCII Output
$QIO - Queue I/O Request
$CRELOG - Create Logical Name
$WAKE - Wake Process
$SETSFM - Set System Service Failure Exception Mode
$WAITFR - Wait for Single Event Flag
$DELLOG - Delete Logical Name
$DASSGN - Deassign I/O Channel

This sample program illustrates:

1. Assigning a channel to the current output
translating the logical name SYS$OUTPUT.

device by

2. Declaring an exit handler to receive control at image exit.
The exit handler ensures that the image exits in a grac.eful
manner.

3. Creating a mailbox and using the $GETCHN system service to
obtain the unit number.

4. Creating a subprocess and using the mailbox created as a
termination mailbox. When the subprocess terminates, an AST
service routine interprets the message.

5. Placing names in the group logical name table.

6. Waking a hibernating subprocess. The subprocess created by
this program places itself in hibernation after getting
started. When awakened, it translates the logical names
placed in the group logical name table •

• !DENT /01/

system macro definitions required by CYGNUS

$SSDEF
$IODEF
$MSGDEF
$PQLDEF
$ACCDEF
$DIBDEF

Local macros:

;Define status codes for returns
;Define I/O functions codes for $QIO
;Define names for mailbox messag·es
;Define names for quota list
;Define names for termination message
;Define names for device information buffer

MESSAGE, to output messages formatted by FAQ

.MACRO MESSAGE
$OUTPUT CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
BSBW ERROR

.ENDM MESSAGE

B-8

PROGRAM EXAMPLES

GRPNAME, to place logical name/equivalence name
pairs in the group logical name table with $CRELOG and
do error checking •

• MACRO GRPNAME LOGICAL,EQUAL
$CRELOG_S TBLFLG=#l,LOGNAM=LOGICAL,EQLNAM=EQUAL
BSBW ERROR

.ENDM GRPNAME

Read-only data program section

.PSECT RODATA,NOWRT,NOEXE

Descriptor for input logical name

OUTPUT: .ASCID /SYS$0UTPUT/

; Buffers for announcement messages and lengths

HELLO: .ASCID /CYGNUS ••• HELLO/
HELLOLEN:

.LONG HELLOLEN-HELLO

BYE: .ASCII /CYGNUS EXIT HANDLER ••• /
BYELEN: .LONG BYELEN-BYE

Control strings for output messages formatted by FAO and associated
counted ASCII strings to insert in messages

PRCSTR:
.ASCID /LYRA CREATED, PID !XL/ ;display PID of subprocess

ASTERRSTR:
.ASCID @!/MAILBOX MESSAGE HAS !AC !XW@

IOERR: .ASCIC 'I/O ERROR'
!DERR: .ASCIC /BAD MSG ID/

PIDERRSTR:

;I/O error in AST routine
;Mailbox message not termination message

.ASCID @!/SPURIOUS PROCESS ID !XL IN DELETION MAILBOX@

DONESTR:
.ASCID @!/LYRA COMPLETED; STATUS !XL TIME !%T@

BADEXSTR:
.ASCID @!/EXIT DUE TO ERROR !XL@

Descriptor to define name of image for subprocess to execute.

LYRAEXE:
.ASCID /LYRA.EXE/

Quota list for subprocess: defines minimal quotas required for
for the subprocess to execute and ensures that the creating
image will have sufficient quotas to continue.

QLIST: • BYTE PQL$_BYTLM ;Buffer quota

B-9

PROGRAM EXAMPLES

.LONG

.BYTE

.LONG

.BYTE

.LONG

.BYTE

.LONG

.BYTE

.LONG

.BYTE

1024
PQL$ FILLM
3 -

PQL$ PGFLQUOTA
256 -
PQL$ PRCLM
1 -
PQL$ TQELM
3 -
PQL$_LISTEND

;Open file quota

;Paging file quota

;Subprocess quota

;Timer queue quota

; Logical name/equivalence name pairs for group table.
; Note that one of the names is recursive in the table.

ORION: .ASCID /ORION/
HUNTER: .ASCID /HUNTER/
PEGASUS:.ASCID /PEGASUS/
HORSE: .ASCID /HORSE/
LYRA: .ASCID /LYRA/
HARP: .ASCID /HARP/
CYG: .ASCID /CYGNUS/
SWAN: .ASCID /SWAN/
DUCK: .ASCID /UGLY DUCKLING/
TALE: .ASCID /FAIRY TALE!/

Read/write data program section

.PSECT RWDATA,RD,WRT,NOEXE

TTCHAN: • BLKW 1 ;Channel number of terminal

; Output buffer to receive physical terminal name

TTNAME: .LONG
TTADDR: .LONG
TT: .BLKB

n3
TT
63

; Termination control block

EXITBLOCK:
.BLKL
.LONG
.LONG
.LONG

ERRPC: • BLKL
STATUS: • BLKL

1
EXI'fRTN
2
STATUS
1
1

;Descriptor length
;Address of buffer
;Maximum logical name length

;Exit control block
;System uses this for pointer
;Address of routine
;Number of arguments for handler
;Address to store status
;Store PC (if error)
;Status code at exit

; Fields used for termination mailbox creation, message buffering

EX CHAN: • BLKW
EXITBUF:

.LONG

.LONG
BBUF: .BLKL
ENDBUF:
MBXIOSB:

.BLKW
MBLEN: • BLKW
MBPID: .BLKL

1

ENDBUF-BBUF
BBUF
DIB$K LENGTH

1
1
1

B-10

;Channel number of mailbox
;Descriptor for channel data
;Length of buffer
;Address of buffer

;I/O status block
;Status of I/0 completion
;Length of operation here
;PID of process deleted

PROGRAM EXAMPLES

EXITMSG:
.BLKB ACC$K TERMLEN

; Receive PID of subprocess here

LYRAPID:
.BLKL 1

;Buffer for mailbox message

; Output buffers for strings formatted by FAQ

FAODESC:
.LONG
.LONG

FAOBUF: • BLKB
FAOLEN: • BLKW

.BLKW

80
FAOBUF
80
1
1

;Descriptor for output buffer
;SO-character buffer
;Address
;Buffer
;Receive length here
;Need longword for $QIO

Need separate FAQ buffers for use in AST routine to ensure
that data doesn't get clobbered asynchronously

FASTDESC:
.LONG
.LONG

FASTBUF:.BLKB
FASTLEN:. BLKW

.BLKW

80
FASTBUF
80
1
1

Program code begins here •

• PSECT CODE,EXE,RD,NOWRT
CYGNUS::

.WORD 0

;Length
;Address
;Buffer
;Get length
;Need longword for $QIO

;Entry mask

First, translate logical name SYS$0UTPUT to find name of
current output device. If the image is run interactively,
its equivalence name is system-defined, and will contain
a 4-byte header. The program must check for the header and update
the descriptor so the device name will be valid for calling $ASSIGN.

$TRNLOG_S LOGNAM=OUTPUT,RSLLEN=TTNAME,RSLBUF=TTNAME
BSBW ERROR
CMPB TT,#AXlB
BNEQ 10$
SUBL #4,TTNAME
ADDL #4,TTADDR

;First byte escape?
;No, go ahead
;Subtract 4 from length of name
;Add 4 to address in descriptor

Call $ASSIGN to assign an I/O channel and issue message verifying
successful initialization

10$: $ASSIGN S DEVNAM=TTNAME,CHAN=TTCHAN
BSBW -ERROR ;Error check

$OUTPUT CHAN=TTCHAN,BUFFER=HELLO,LENGTH=HELLOLEN
BSBW ERROR

Declare exit handler to do cleanup operations

B-11

PROGRAM EXAMPLES

$DCLEXH S DESBLK=EXITBLOCK
BSBW -ERROR

; Create a mailbox for subprocess termination message, then
; get the unit number of the mailbox by doing a $GETCHN

MAILBOX:
$CREMBX S CHAN=EXCHAN,MAXMSG=#l20,BUFQU0=#240,PROMSK=#O
BSBW -ERROR
$GETCHN S CHAN=EXCHAN,PRIBUF=EXITBUF
BSBW -ERROR

Create the subprocess. Since the logical name SYS$OUTPUT
has already been translated, the same equivalence name can be
given to LYRA as its logical output device.
LYRA will be able to assign a channel to this device as well.
The MBXUNT argument specifies the name of the mailbox just
created; the mailbox will receive a message when LYRA exits.

PROCESS:
$CREPRC S IMAGE=LYRAEXE,PIDADR=LYRAPID,

-MBXUNT=BBUF+DIB$W UNIT,
OUTPUT=TTNAME,QUOTA=QLIST

BSBW ERROR

Lf okay, format an output message showing the process id •••

$FAQ S CTRSTR=PRCSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,-
- Pl=LYRAPID

BSBW ERROR
$OUTPUT CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
BSBW ERROR

Queue an I/O request to the mailbox with an AST
to receive notification when LYRA completes.

$QIO_S EFN=#4,CHAN=EXCHAN,FUNC=#IO$ READVBLK,
ASTADR=EXITAST,IOSB=MBXIOSB,=
Pl=EXITMSG,P2=#ACC$K TERMLEN

BSBW ERROR -

Place names in the group logical name table using the macro GRPNAME.
It will be LYRA's task, when awakened, to translate these
names and display the results at the terminal.
Note that translation of the name CYGNUS will require
recursive translation.

PUT NAMES:
GRPNAME ORION,HUNTER

GRPNAME PEGASUS,HORSE

GRPNAME LYRA,HARP

GRPNAME CYG,SWAN

GRPNAME SWAN,DUCK

GRPNAME DUCK,TALE

B-12

PROGRAM EXAMPLES

After placing names in the table, wake LYRA, who has been hibernating,
to perform the logical name translation.

$WAKE S PIDADR=LYRAPID
BSBW - ERROR
RET ;All finished

AST service routine to read the termination mailbox.
In this example, only one message is actually expected in the mailbox
but the program performs all the following checks:

1. That the I/O completed successfully.
2. That the message in the mailbox is a process termination message.
3. That the process being deleted is the subprocess created.

This service routine enables system service failure exception
mode as an error handling device: if a system service
call fails, an exception condition will occur. CYGNUS
does not declare a condition handler, so the image
will be forced to terminate, and the system will display
pertinent information about the exception condition.

EXITAST:
.WORD 0 ;Entry mask

$SETSFM S ENBFLG=#l ;Enable SSFAIL exceptions

Check IOSB to ensure that I/O completed successfully

CMPW
BEQL
$FAO S

$OUTPUT
BRW

MBXIOSB,#SS$ NORMAL ;Check that I/O was succ~ssful
20$ - ; Okay, go on
CTRSTR=ASTERRSTR,- ;Otherwise, format error msg
OUTLEN=FASTLEN,OUTBUF=FASTDESC-
Pl=#IOERR, - ;I/O error
P2=MBXIOSB ;Display IOSB
CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
50$;Return

Check message type field in mailbox message to ensure that the message
is a process termination message.

20$: CMPW
BEQL
$FAO_S

$OUTPUT
BRW

EXITMSG+ACC$W MSGTYP,#MSG$DELPROC ;Check message identification
30$ - ;Okay, go on
CTRSTR=ASTERRSTR,- ;Otherwise, format error message
OUTLEN=FASTLEN,OUTBUF=FASTDESC,-
Pl=#IDERR, - ;Invalid PID error
P2=EXITMSG+ACC$W MSGTYP ;Print message type code
CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
50$;Return

; Compare the second longword in the IOSB with the PID returned
; by $CREPRC to ensure that the termination message is for LYRA.

30$:

35$:

CMPL
BNEQ
BRW

LYRAPID,MBPID
35$
40$

;LYRA deletion?
;Yes, go on

SFAO S CTRSTR=PIDERRSTR,- ;Otherwise, format error message
OUTLEN=FASTLEN,OUTBUF=FASTDESC,-

B-13

PROGRAM EXAMPLES

Pl=MBPID ;Display spurious PID
$OUTPUT CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
BRW 50$ · ;Return

; Format an output message indicating LYRA's final exit status
; and the time of day at which LYRA terminated.

40$: $FAO S CTRSTR=DONESTR, - ;Format message telling of LYRA's demise
- OUTLEN=FASTLEN,OUTBUF=FASTDESC,-

Pl=EXITMSG+ACC$L FINALSTS, - ;Get status code
P2=#EXITMSG+ACC$Q TERMTIME ;and time of deletion

$OUTPUT CHAN=TTCHAN,BUFFER=FAST~UF,LENGTH=FASTLEN
50$: $SETSFM S ENBFLG=#O . ;Disable exceptions

RET - ;Return

This is the exit handler for CYGNUS. It receives control
when CYGNUS exits, either normally, or as a result of
an error condition.

EXITRTN:
.WORD O ;Entry mask
$OUTPUT CHAN=TTCHAN,BUFFER=BYE,LENGTH=BYELEN
BSBW ERROR
BLBS STATUS,20$;Normal exit, continue

; If error, format error message using argument list in
; exit control block

10$: $FAO S CTRSTR=BADEXSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,-
- Pl=STATUS,P2=ERRPC

BSBW ERROR
$OUTPUT CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN

Common code for both normal and error exit:·wait for subprocess
to terminate (if it hasn't already), then delete all names
from the group logical name table.

20$:

30$:

$WAITFR S EFN=#4
BSBW -ERROR
$DELLOG S TBLFLG=#l
BSBW -ERROR
$DASSGN S CHAN=EXCHAN
BSBW -ERROR
MOVL STATUS,RO
RET

;Wait for termination message

;Delete all names

;Deassign mailbox channel

;Restore saved status code
;Exit with status

Common error handling routine. This routine checks the
status code in RO; if success, returns to mainline of
program. If there is an error, the PC is placed in the exit
control block.so that exit routine can format and display
an error message.

ERROR:
BLBC R0,10$
RSB

10$: MOVL (SP) ,ERRPC
RET
.END CYGNUS

;Check status code
;Low bit set, go back
;Store PC
;RET will cause image exit

B-14

PROGRAM EXAMPLES

B.3 LYRA PROGRAM EXAMPLE

The program LYRA uses the following system services:

$TRNLOG - Translate Logical Name
$ASSIGN - Assign I/O Channel
$HIBER - Hibernate
$FAOL - Formatted ASCII Output with List Parameter

LYRA is the subprocess created by CYGNUS. After assigning a channel
to its current output device, LYRA hibernates. When awakened by
CYGNUS, LYRA translates the logical names placed in the group logical
name table by CYGNUS, and displays the results of the translations on
the terminal.

When LYRA exits, a termination message is sent to the mailbox
specified by CYGNUS •

• IDENT /01/

Macro library call

$SSDEF ;Define system status values

Local macro

MESSAGE, to output messages formatted by FAQ

.MACRO MESSAGE
$OUTPUT CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
BSBW ERROR

.ENDM MESSAGE

Local data program section starts here

.PSECT RODATA,NOWRT,NOEXE

; Logical name of logical output device

OUTPUT: .ASCID /SYS$0UTPUT/

; Announcement messages

HELLO: .ASCII /LYRA: INITIALIZING ••• AND SO TO SLEEP/
HELLOLEN:

.LONG HELLOLEN-HELLO

WAKEMSG:
.ASCII /LYRA: OKAY, WILL DO LOGICAL NAME TRANSLATION ••• /

WAKELEN:
.LONG WAKELEN-WAKEMSG

; FAO control string for logical name output message

LOGNAMSTR:
.ASCID @!/LYRA: !AS IS A !AS@

B-15

PROGRAM EXAMPLES

; Error message control string

ERRSTR:
.ASCID @!/LYRA: SYSTEM SERVICE ERROR AT APP. !XL RO=!XL@.

; Logical names to be translated

ORIONLOG:
.ASCID /ORION/

CYGNUSLOG:
.ASCID /CYGNUS/

LYRALOG:
.ASCID /LYRA/

PEGASUSLOG:
.ASCID /PEGASUS/

Read/write data program section starts here

.PSECT RWDATA,RD,WRT,NOEXE

; Output buffer for all output formatted by FAQ

FAOLEN: • WORD
.WORD

FAODESC:
.LONG
.LONG

FAOBUF: • BLKB

0
0

80
FAOBUF
80

;Length of final string, always
;Need longword for $OUTPUT

; Word to receive channel number of terminal

OUTCHAN: .BLKW 1

Buffers to maintain logical name/equivalence name pairs
in routine that performs logical name translation

LOGBUFA:
.LONG
.LONG

BUFA: .BLKB
LOGBUFB:

.LONG

.LONG
BUFB: .BLKB

LOG LEN: • LONG

n3
BUFA
63

63
BUFB
fi3

0 ;Save length of equivalence name

; Parameter list for call to FAOL (used by translate routine)

TL I ST:
TLOGNAM:

.LONG
TEQLNAM:

.LONG

0

0

;Address of logical name descriptor

;Address of equivalence descriptor

B-16

PROGRAM EXAMPLES

SAVER3: • LONG 0 ;Save register contents for switch

Longword to store the PC when a system service call results in an
error. LYRA checks the low bit of RO following each service call.
If set, LYRA continues; otherwise, it saves the PC and branches
to an error handling routine that displays the saved PC and the
contents of RO.

ERRPC: • LONG 0

Code begins here •

LYRA::

• PSECT CODE,EXE,RD,NOWRT
.ENABL LSB

.WORD AM<R2,R3,R4,R5,Rn>

;For address of SSFAIL

;Entry mask

Assign channel to device referred to by logical name
SYS$0UTPUT. This name was placed in the logical name
table by CYGNUS (it is also CYGNUS's logical output device).

20$: $ASSIGN S DEVNAM=OUTPUT,CHAN=OUTCHAN
BLBS -RO, 30$
RET ;Exit with status if ASSIGN fails

30$: $OUTPUT CHAN=OUTCHAN,BUFFER=HELLO,LENGTH=HELLOLEN
BLBS R0,40$
MOVAL 30$,ERRPC
BRW ERROR

40$: $HIBER S
BLBS - RO, 50$
MOVAL 40$,ERRPC
BRW ERROR

50$: $OUTPUT CHAN=OUTCHAN,BUFFER=WAKEMSG,LENGTH=WAKELEN
BLBS R0,60$
MOVAL 50$,ERRPC
BRW ERROR

60$:

When awakened, begin translating logical names. To translate the
names, place address of a logical name descriptor in R2 and then
go to the subroutine that performs the translation. Repeat for
each logical name to translate.

MOVAL
JSB
MOVAL
JSB
MOVAL
JSB
MOVAL
JSB

ORIONLOG,R2
TRANSLATE
CYGNUSLOG,R2
TRANSLATE
LYRALOG,R2
TRANSLATE
PEGASUSLOG,R2
TRANSLATE

All finished, return

RET

.ENABL LSB
Subroutine to translate and print logical names:

B-17

PROGRAM EXAMPLES

On entry to this subroutine,
R2 = address of logical name to translate
It uses: R3 to hold address of final result buffer

R4 to hold address of intermediate buffer

TRANSLATE:
MOVAL
MOVAL

LOG BU FA ,R3
LOGBUFB ,R4

;Get addresses of buffers

; Initial translation places resultant equivalence name in buffer pointed
; to by R3

10$: $TRNLOG_S LOGNAM=(R2) ,RSLLEN=LOGLEN,RSLBUF=(R3)
BLBS R0,30$
MOVAL 10$,ERRPC
BRW ERROR

Place length of equivalence name in first word of descriptor and use this
descriptor as input for next translation. If SS$ NOTRAN is returned,
then there was no recursion of name. If not, update registers to
provide input and output descriptors for translation and repeat
translation until SS$ NOTRAN is returned.

30$: MOVZWL LOGLEN,(R3) ;Fix length in buffer
$TRNLOG S LOGNAM=(R3) ,RSLLEN=LOGLEN,RSLBUF=(R4)
BLBS -RO ,40$

40$:

MOVAL 30$,ERRPC
BRW ERROR

CMPW
BEQL
MOVL
MOVL
MOVL
MOVZWL
BRB

RO,#SS$ NOTRAN
50$ -
R3,SAVER3
R4,R3
SAVER3,R4
#63,(R4)
30$

;Final?
;Yes, go print
;Otherwise, switch

;Restore length
;Try again

; Place addresses of logical name and equivalence names in FAQ parameter list
; and call FAQ to format output message, then output the message.

50$:

60$:

70$:

MOVL
MOVL
$FAOL S

BLBS
MOVAL
BRW
$OUTPUT
BLBS
MOVAL
BRW
MOVL
MOVL
RSB

R2,TLOGNAM
R3,TEQLNAM
CTRSTR=LOGNAMSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,
PRMLST=TLIST
R0,60$
50$,ERRPC
ERROR
CHAN=OUTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
R0,70$
60$,ERRPC
ERROR
#63 ,LOGBUFA
63, LOGBUFB

;To main routine

Error-handling routine:
This routine uses the saved PC and RO to format a message describing
the conditions under which a call to a system service failed.

ERROR:

.B-18

PROGRAM EXAMPLES

$FAQ S CTRSTR=ERRSTR,OUTBUF=FAODESC,OUTLEN=FAOLEN,-
Pl=ERRPC,P2=RO

$OUTPUT CHAN=OUTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
RET
.END LYRA

B-19

APPENDIX C

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

C.l VAX-11 MACRO FORMS

C.l.l $name_G Form

Format

label

$name G label

Address of argument list; argument list may be created with
$nam& macro form.

$name Macro Format

label: $name argl , ••• ,argn

label

Symbolic address of the generated argument list.

name

Macro name.

argl-argn

Arguments to be placed in successive longwords in the argument
list. A longword of zeros is generated for a nonspecified
argument. Arguments can be specified (1) in positional order,
with commas indicating no specified arguments; or (2) using
keyword = argument. If keywords are used, arguments can be
specified in any order.

Argument List Offset Names

The $name macro automatically defines symbolic names for argument
list of offsets. The offset names can also be defined with the
$name DEF. The symbolic names defined are:

C-1

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

name$ NARGS

Number of arguments in list.

name$_keyword

Symbolic name for offset of each argument in list.

C.1.2 $name_S Form

Format

$name S argl , ••• ,argn

argl - argn

Arguments for macro instruction.

Arguments can be specified (1) in positional order, with commas
indicating nonspecified arguments, or (2) using keyword=argument.
If keywords are used, arguments can be specified in any order.

C-2

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

C.2 SYSTEM SERVICE MACROS

Adjust Outer Mode Stack -Pointer

$ADJSTK [acmode] , [adjust] ,newadr

acmode access mode for which to adjust stack pointer

adjust 16-bit signed adjustment value

newadr = address of longword to store updated value

Adjust Working Set Limit

$ADJWSL [pagcnt] , [wsetlm]

pagcnt =number of pages to add to working set (if positive).
Number of pages to subtract from working set (if
negative).

wsetlm address of longword to receive new working set limit,
or current working set limit if pagcnt not specified.

Allocate Device

$ALLOC devnam , [phylen] , [phybuf] , [acmode]

devnam address of device name or logical name
descriptor

string

phylen

phybuf

address of word to receive length of physical name

address of physical name buffer descriptor

acmode access mode associated with allocated device

Associate Common Event Flag Cluster

$ASCEFC efn ,name , [prot] , [perm]

efn number of any event flag in the cluster with which to
associate

name address of the text name string descriptor

prot protection indicator for the cluster
0 -> default, any process in group
1 -> only owner's UIC

perm permanent indicator
0 -> temporary cluster
1 -> permanent cluster

C-3

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Convert Binary Time to ASCII String

$ASCTIM [timlen] ,timbuf , [timadr] , [cvtflg]

timlen = address of a word to receive the number of characters
inserted into the output buffer.

timbuf = address of a quadword descriptor describing the
buffer to receive the converted time.

timadr

cvtflg

address of the quadword containing the o4-bit time to
be converted to ASCII. If O, use current time.

conversion indicator
0 -> return full date and time
1 -> return converted time only

Assign I/O Channel

$ASSIGN devnam ,chan , [acmode] , [mbxnam]

devnam = address of device name or logical name
descriptor

string

ch an

acmode

mbxnam

address of word to receive channel number assigned

access mode associated with channel

address of mailbox logical name string descriptor, if
mailbox associated with device

Convert ASCII String to Binary Time

$BINTIM timbuf ,timadr

timbuf address of string descriptor for ASCII time string

timadr address of quadword to receive o4-bit binary time
value

Absolute time strings are specified in the format:

dd-mmm-yyyy hh:mm:ss.cc

Delta time strings are specified in the format:

dddd hh:mm:ss.cc

Broadcast

$BRDCST msgbuf , [devnam]

msgbuf address of message buffer ~tring descriptor

devnam terminal device name string descriptor. If O, send
message to all terminals. If first word in
descriptor is O, send message to all allocated
terminals.

C-4

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Cancel I/O on Channel

$CANCEL chan

chan number of the channel on which I/O is to be canceled

Cancel Exit Handler

$CANEXH [desblk]

desblk = address of exit control block describing exit handler
to be deleted. If O, delete all.

Cancel Timer Request

$CANTIM [reqidt] , [acmode]

reqidt

acmode

Cancel Wakeup

request identification for request to be canceled.
If O, all requests canceled.

access mode of requests to be canceled

$CANWAK [pidadr] , [prcnam]

pidadr = address of process identification of process for
which wakeups are to be canceled

prcnam = address of process name string descriptor

Clear Event Flag

$CLREF ef n

efn = number of event flag to be cleared

Change to Executive Mode

$CMEXEC routin , [arglst]

routin = address of the routine to be executed in executive
mode

arglst address of argument list to be supplied to the
routine

Change to Kernel Mode

$CMKRNL routin , [arglst]

routin address of routine to be executed in kernel mode

arglst address of argument list to be supplied to routine

C-5

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Contract Program/Control Region

$CNTREG pagcnt , [retadr] , [acmode] , [region]

pagcnt number of pages to be deleted from end of region

retadr address of 2-longword array to receive virtual
addresses of starting and ending page of deleted area

acmode access mode for which service is performed

region region indicator
0 -> program (PO) region
1 -> control (Pl) region

Create Logical Name

$CRELOG [tblf lg] , lognam , eqlnam , [acmode]

tblflg = logical name table number
O -> system (default)
1 -> group table
2 -> process table

lognam address of logical name string descriptor

eqlnam address of equivalence name string descriptor

acmode access mode for logical name (process table only)

Create Mailbox and Assign Channel

$CREMBX [prmflg] ,chan ,[maxmsg] ,[bufquo] ,[promsk] ,[acmode]
, [lognam]

prmflg

ch an

maxmsg

bufquo

promsk

acmode

lognam

permanent flag
o -> temporary mailbox (default)
1 -> permanent mailbox

address of word to receive channel assigned

maximum message size that may be received by mailbox

number of bytes of dynamic memory that can be used to
buffer mailbox messages

protection mask for mailbox

access mode of created mailbox

address of logical name string descriptor for mailbox

C-6

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Create Process

$CREPRC [pidadr] , [image] , [input] , [output]

pidadr

image

input

output

error

prvadr

quota

prcnam

baspri

, [error] , [prvadr] , [quota] , [prcnam]
, [baspri] , [uic] , [mbxunt] , [stsflg]

address of longword in which to return process
identification of created process

address of string descriptor for image name

address of string descriptor for SYS$ INPUT logical
name

address of string descriptor for SYS$0UTPUT logical
name

address of string descriptor for SYSSERROR logical
name

address of quadword privilege list

address of quota list

address of string descriptor for process name

base priority (0-31) to set for new process (macro
default = 2)

uic user identification code. If O, create a subprocess

mbxunt

stsflg

mailbox unit for termination message

status and mode flag bits

Bit Meaning

0 disable resource wait mode
1 enable system service failure exception mode
2 inhibit process swapping
3 disable accounting messages
4 batch process
5 cause created process to hibernate
o allow login without authorization file check
7 process is a network connect object

Create Virtual Address Space

$CRETVA inadr , [retadr] , [acmode]

inadr

retadr

acmode

address of 2-longword array containing starting and
ending virtual address of pages to be created

address of a 2-longword array to receive starting and
ending virtual address of pages actually created

access mode for the new pages (protection
read/write for acmode and more privileged modes)

C-7

is

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Create and Map Section

$CRMPSC [inadr]
, [ident]
I [pfC]

, [retadr]
, [relpag]

,[acmode] ,[flags] ,[gsdnam]
, [chan] , [pagcnt] , [vbn] , [prot]

inadr = address of 2-longword array containing starting and
ending virtual addresses of space into which section
is to be mapped

retadr address of 2-longword array to receive addresses
actually mapped

acmode access mode of owner of pages

flags = section characteristics

Flag

SEC$M GBL
SEC$M-CRF
SEC$M-DZRO
SEC$M-EXPREG
SEC$M-PERM
SEC$M-PFNMAP
SEC$M-SYSGBL
SEC$M-WRT

Meaning

Global section
Copy-on-reference pages
Demand zero pages
Find first available space
Permanent section
Page frame section
System global section
Read/write section

gsdnam = address of global section name string descriptor

ident = address of quadword containing version identification
and match control

relpag = relative page number within section to begin mapping

chan number of channel on which file is accessed

pagcnt number of pages in section

vbn = virtual block number of beginning of section or
physical page frame number of beginning of section

prot protection mask

pf c page fault cluster size

Disassociate Common Event Flag Cluster

$DACEFC efn

efn number of any event flag in the cluster to be
disassociated

Deallocate Device

$DALLOC [devnam] ,[acmode]

devnam = address of device name string descriptor.
deallocate all devices.

acmode access mode associated with device

C-8

If 0 I

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Deassign I/O Channel

$DASSGN chan

chan number of channel to be deassigned

Declare AST

$DCLAST astadr ,[astprm] ,[acmode]

astadr address of entry mask of AST routine

astprm value to be passed to AST routine as an argument

acmode access mode for which the AST is to be declared

Declare Change Mode or Compatibility Mode Handler

$DCLCMH addres , [prvhnd] , [type]

add res address of change mode or compatibility mode handler

prvhnd address of longword to receive previous handler
address

type handler type indicator
0 -> change mode handler for current mode
1 -> compatibility mode handler

Declare Exit Handler

$DCLEXH desblk

desblk address of exit control block containing:

31

I

forward link

exit handler address

address to store reason for exit

additional arguments

for exit handler,
if any

C-9

8 7 0

r

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Delete Logical Name

Delete

$DELLOG [tbl flg] , [1 ognam] , [acmode J

tblflg = logical name table number
0 -> system
1 -> group
2 -> process

lognam address of logical name string descriptor. If
delete all names in the specified table.

acmode access mode of logical name {process table only)

Mailbox

$DELMBX ch an

ch an channel number assigned to the mailbox

0'

Delete Process

$DELPRC [pidadr] , [prcnam]

pidadr = address of longword containing process identification
of process to be deleted

prcnam address of string descriptor for process name of
process to be deleted.

Delete Virtual Address Space

$DELTVA inadr , [retadr] , [acmode)

inadr

retadr

acmode

address of 2-longword array containing starting and
ending virtual addresses of pages to delete

address of 2-longword array to receive starting and
ending addresses of pages actually deleted

access mode for which service is performed

Delete Global Section

$DGBLSC [flags] ,gsdnam , [ident]

flags type of section
0 -> group global section
SEC$M_SYSGBL -> system global section

gsdnam = address of global section name string descriptor

ident address of quadword containing version identification
and match control

Delete Common Event Flag Cluster

$DLCEFC name

name address of text name, string descriptor of permanent
cluster

C-10

Exit

$EXIT

code

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

[code]

longword to be saved in process header as completion
status of current image (macro default = 1)

Expand Program/Control Region

$EXPREG pagcnt , [retadr] , [acmode] , [region]

pagcnt

retadr

acmode

region

number of pages to add to end of specified region

address of 2-longword
addresses of starting
region

array to receive virtual
and ending pages of expanded

access mode of the new pages

region indicator
0 -> expand program (PO) region
l -> expand program (Pl) region

Formatted ASCII Output

$FAQ

ctrstr

outlen

outbuf

pl •••

ctrstr , [outlen] ,outbuf , [pl] , [p2] ••• [pn]

address of string descriptor for ASCII control string

address of word in which to store output string
length

address of output buffer string descriptor

variable number of arguments to FAQ

Formatted ASCII Output With List Parameter

$FAOL ctrstr , [outlen] ,outbuf ,prmlst

ct rs tr address of string descriptor for control string

outlen address of word to receive output string length

outbuf address of output buffer string descriptor

prmlst address of a list of longword parameters

Force Exit

$FORCEX [pidadr] , [prcnam] , [code]

pidadr = address of process identification of process to be
forced to exit

prcnam

code

address of process name string descriptor for forced
process

longword completion status for Exit service

C-11

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Get I/O Channel Information

$GETCHN chan , [prilen] , [pribufl , [scdlen] , [scdbuf]

chan = number of a channel assigned to the device

prilen address of word to receive length of primary buffer

pribuf = address of primary buffer descriptor

scdlen address of word to receive length of secondary buffer

scdbuf address of secondary buffer descriptor

Get I/O Device Information

$GETDEV devnam , [prilen] , [pribuf] , [scdlen] , [scdbuf]

devnam = address of device name or logical name
descriptor

string

prilen = address of word to receive length of primary buffer

pribuf address of primary buffer descriptor

scdlen address of word to receive length of secondary buffer

scdbuf address of secondary buffer descriptor

Get Job/Process Information

Get

$GETJPI [efn] , [pidadr] , [prcnam] , itmlst , [iosb), [astadr],
[astprm]

efn = event flag number of flag to be set at request
completion

pidadr address of process identification

prcnam address of process name string descriptor

itmlst = address of a list of item descriptors

iosb address of a quadword I/O status block

astadr = address of entry mask of AST routine

astprm value to be passed to AST routine as an argument

Message

$GET MSG msgid ,msglen ,bufadr , [flags] , [outadr]

msgid identification of message to be retrieved

msglen address of a word to receive length of string
returned

buf adr = address of buffer descriptor of buff er to receive
string

C-12

Get Time

flags

outadr

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

flag bits for message content (macro default 15)

Bit Value Meaning

0 1 Include text
0 Do not include text

1 1 Include identifier
0 Do not include identifier

2 1 Include severity
0 Do not include severity

3 1 Include component
0 Do not include component

address of 4-byte array to receive the following
values:

Byte

0
1
2
3

Contents

Reserved
Count of FAQ arguments
User value
Reserved

$GETTIM timadr

timadr = address of a quadword to receive n4-bit current time
value

Hibernate

$HIBER S

$INPUT Macro

$INPUT chan ,length ,buffer , [iosb] , [efn]

ch an number of the channel on which I/O is to be performed

length length of the input buff er

buff er address of the input buffer

iosb address of quadword I/O status block

ef n event flag to set on completion (default 0)

Lock Pages in Memory

$LCKPAG inadr , [retadr] , [acmode]

inadr

retadr

acmode

address of 2-longword array containing starting and
ending addresses of pages to be locked

address of 2-longword array to receive addresses of
pages actually locked

access mode to check against the owner of the pages

C-13

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Lock Pages in Working Set

$LKWSET inadr , [retadr] , [acmode]

inadr

retadr

acmode

address of 2-longword array containing starting and
ending virtual addresses of pages to be locked

address of a 2-longword array to receive starting and
ending virtual addresses of pages actually locked

access mode to be checked against the page owner

Map Global Section

$MGBLSC inadr , [retadr] , [acmode] , [flags]
, [relpag]

,gsdnam ,[ident]

inadr

retadr

acmode

flags

gsdnam

ident

relpag

address of 2-longword array containing starting and
ending addresses of pages to be mapped

address of 2-longword array to receive
addresses of pages mapped

access mode of owner of mapped pages

virtual

flags overriding default section characteristics

Flag

SEC$M WRT
SEC$M-SYSGBL
SEC$M-EXPREG

Meaning

Read/write section
System global section
Find first available space

address of global section name descriptor

address of quadword containing version identification
and match control

relative page number within global section

Convert Binary Time to Numeric Time

$NUMTIM timbuf , [timadr]

timbuf = address of a 7-word buffer to receive numeric time
information

timadr address of a quadword containing the n4-bit time. If
O, use current time

Buffer format:

31 16 15 0
~---------------------- -~---···-~···----- ------------.

month of year year since 0

hour of day day of month

!-----------------------+------------------l

second of minute minute of hour

hundredths of second

C-14

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

$OUTPUT Macro

$OUTPUT chan, length, buffer, [iosb], [efn]

chan channel on which I/O is directed

length length of the output buff er

buffer address of the output buffer

iosb address of quadword I/O status block

ef n event flag number to set on completion (default 0)

Purge Working Set

Put

$PURGWS inadr

inadr

Message

$PUTMSG

msgvec

actrtn

f acnam

address of 2-longword array containing starting and
ending addresses of pages to be removed

msgvec , [actrtn] , [facnam]

address of message argument vector

address of entry mask of action routine

address of facility name string descriptor

Queue I/O Request

$QIO
$QIOW

ef n

ch an

f unc

iosb

astadr

astprm

pl •••

[efn] , chan , func , [iosb] , [astadr] , [astprm]
,[plJ ,[p2J ,[p3J ,[p4J ,[pSJ ,[pnJ

number of event flag to set on completion

number of channel on which I/O is directed

function code specifying action to be performed

address of quadword I/O status block to receive final
completion status information

address of entry mask of AST routine

value to be passed to AST routine as argument

optional device- and function-specific parameters

Queue I/O Request and Wait for Event Flag

See QIO for argument description

C-15

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Read Event Flag

$READEF efn ,state

efn event flag number of any flag in the cluster to be
read

state

Resume Process

address of a longword to receive current state of all
flags in the cluster

$RESUME [pidadr] , [prcnam]

pidadr = address of process identification of process whose
execution is to be resumed

prcnam = address of name string descriptor of process whose
execution is to be resumed

Schedule Wakeup

$ s c HD WK [pi dad r] , [pr c n am] , day t i m , [rep t i m]

pidadr = address of process identification of process to be
awakened

prcnam

daytim

reptim

Set AST Enable

address of name string descriptor of process to be
awakened

address of quadword containing time to wake

address of quadword containing repeat time interval

$SETAST enbflg

enbf lg = AST enable indicator
O -> disable ASTs for caller at current access mode
1 -> enable ASTs for caller at current access mode

Set Event Flag

$SETEF ef n

efn = event flag number of flag to set

Set Exception Vector

$SETEXV [vector] , [addres] , [acmode] , [prvhnd]

vector = vector number

add res

acmode

O -> modify primary vector
1 -> modify secondary vector
2 -> modify last chance vector

exception handler address (0 indicates
vector)

access mode for which vector is set

deassign

prvhnd address of longword to receive previous handler
address

C-16

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Set System Time

$SETIME [timadr]

timadr = address of quadword containing new system time in
64-bit format. If O, recalibrate system time using
hardware time-of-year clock.

Set Timer

$SETIMR [efn] ,daytim , [astadr] , [reqidt]

efn event flag to set when timer expires

daytim address of quadword containing 64-bit time value

astadr address of entry mask of AST routine

reqidt request identification of this timer request

Set Power Recovery AST

$SETPRA astadr , [acmode]

astadr address of power recovery AST routine

acmode access mode of AST

Set Priority

$SETPRI [pidadr] , [prcnam] ,pri , [prvpri]

pidadr = address of process identification of process whose
priority is to be set

prcnam

pri

prvpri

Set Process Name

address of name string descriptor of process whose
priority is to be set

new base priority for the process (0 - 15
timesharing; ln - 31 are real-time)

are

address of longword to receive previous base priority

$SETPRN [prcnam]

prcnam = address of the process name string descriptor

C-17

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Set Protection on Pages

$SETPRT inadr , [retad r] , [acmode] , prot , [prvprt]

inadr = address of 2-longword array containing starting and
ending virtual addresses of pages for which to change
protection

retadr address of 2-longword array to receive starting and
ending addresses of pages that had their protection
changed

acmode access mode of request

prot new protection

prvprt address of byte to receive previous protection of
last page changed

Set Privileges

$SETPRV [enbflg] , [prvadr] , [prmflg] , [prvprv]

enbflg = enable indicator
0 -> disable specified privileges
1 -> enable specified privileges

prvadr = 64-bit mask defining the privileges to be enabled or
disabled

prmflg

prvprv

permanent indicator
0 -> enable or disable temporarily
1 -> enable or disable permanently

address of quadword buffer to receive
privilege mask

Set Resource Wait Mo.de

$SETRWM [watflg]

watflg = wait indicator
0 -> wait for resources
1 -> return failure status immediately

Set System Service Failure Mode

$SETSFM [enbflg]

enbflg = enable indicator
0 -> disable generation of exceptions on

system service failures
1 -> generate exceptions for ·system service

failures

C-18

previous

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Set Process Swap Mode

$SETSWM [swpflg]

swpflg = swap indicator
0 -> enable swapping
1 -> disable swapping (lock in balance set)

Send Message to Accounting Manager

$SNDACC msgbuf , [chan]

msgbuf address o~ message buffer string descriptor

ch an number of channel assigned to mailbox to receive
reply

Send Message to Error Logger

$SNDERR msgbuf

msgbuf = address of message buffer string descriptor

Send Message to Operator

$SNDOPR msgbuf ,[chan]

msgbuf address of message buffer string descriptor

ch an number of channel assigned to mailbox to receive
reply

Send Message to Symbiont Manager

$SNDSMB msgbuf ,[chan]

msgbuf address of message buff er string descriptor

ch an number of channel assigned to mailbox to receive
reply

Suspend Process

$SUSPND [pidadr] , [prcnam]

pidadr = address of process identification of process to be
suspended

prcnam address of name string descriptor of process to be
suspended

C-19

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Translate Logical Name

$TRNLOG lognam , [rsllen] , rslbuf , [table] , [acmode] , [dsbmsk]

lognam

rsllen

address of logical name string descriptor

address of word to receive length of resultant name
string

rslbuf = address of descriptor pointng to buffer to hold
result string (equivalence name)

table

acmode

dsbmsk

address of byte to receive logical name table number

address of byte to receive access mode of entry
{process table only)

table search disable mask

Bit Set

0
l
2

Meaning

Do not search system table
Do not search group table
Do not search process table

Unlock Pages From Memory

$ULKPAG inadr , [retadr] , [acmode]

inadr

retadr

acmode

address of 2-longword array containing starting and
ending virtual addresses of pages to be unlocked

address of a 2-longword array to receive starting and
ending virtual addresses of pages actually unlocked

access mode to check against the owner of the pages

Unlock Pages From Working Set

$ULWSET inadr , [retadr] , [acmode]

inadr address of 2-longword array containing starting and
ending virtual addresses of pages to be unlocked

retadr address of a 2-longword array to receive starting and
ending virtual addresses of pages actually unlocked

acmode = access mode to check against the owner of the pages

Unwind Call Stack

$UNWIND [depadr] , [newpc]

depadr = address of longword containing number of logical
frames (depth) to unwind call stack

new pc address to be given control when the unwind is
complete

C-20

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Update Section File on Disk

$UPDSEC inadr , [retadr] , [acmode] , [updflg] , [efn] , [iosb]
, [astadr] , [astprm]

inadr

retadr

acmode

updflg

address of 2-longword array containing
ending addresses of the pages to
written

address of 2-longword array to receive
the first and last page queued in
request

starting and
be potentially

addresses of
the first I/O

access mode on behalf of which the service is
performed

update indicator for read/write global sections
0 -> write all read/write pages in the section
1 -> write all pages modified by the caller

efn number of event flag to set when the section file is
updated

iosb address of quadword I/O status block

astadr address of entry mask of an AST service routine

astprm AST parameter to be passed to the AST service routine

Wait for Single Event Flag

Wake

$WAITFR ef n

efn event flag number to wait for

$WAKE [pidadr] , [prcnam]

pidadr

prcnam

address of process identification of process to be
awakened

address of name string descriptor of process to be
awakened

Wait for Logical AND of Event Flags

$WFLAND efn ,mask

efn event flag number of any flag within the cluster

mask 32-bit mask of flags that must be set

Wait for Logical OR of Event Flags

$WFLOR efn ,mask

efn event flag number of any flag within the cluster

mask = 32-bit mask of flags, any of which must be set

C-21

INDEX

$ACCDEF macro,
process termination message

offsets, 43
symbols defined, 175

$ADJSTK format, 3
$ADJWSL format, 5
$ALLOC format, 7
$ASCEFC format, 9
$ASCTIM format, 12
$ASSIGN format, 14
$BINTIM format, 17
$BRDCST format, 19
$CANCEL format, 21
$CANEXH format, 23
$CANTIM format, 24
$CANWAK format, 25
$CHFDEF macro, 9-7
$CLREF format, 27
$CMEXEC format, 28
$CMKRNL format, 29
$CNTREG format, 30
$CRELOG format, 32
$CREMBX format, 34
$CREPRC format, 38
$CRETVA format, 48
$CRMPSC format, 50
$DACEFC format, 58
$DALLOC format, 59
$DASSGN format, nl
$DCLAST format, 63
$DCLCMH format, 65
$DCLEXH format, 67
$DELLOG format, 69
$DELMBX format, 71
$DELPRC format, 73
$DELTVA format, 75
$DGBLSC format, 77
$DIBDEF macro,

symbols defined, 102
$DLCEFC format, 80
$EXIT format, 82
$EXPREG format, 83
$FAO format, 85
$FAOL format, 85
$FORCEX format, 98
$GETCHN format, 100
$GETDEV format, 103
$GETJPI format, 105
$GETMSG format, 113
$GETTIM format, 115
$HIBER format, 117
$INPUT macro,

example, 6-6
format, 119

$IODEF macro, 6-2
symbols defined, A-2 to A-8

$JBCMSGDEF macro, 176, 194 to 195

$JPIDEF macro, 108
symbols defined, 110 to 112

$LCKPAG format, 120
$LKWSET format, 122
$MGBLSC format, 124
$MSGDEF macro, A-9

symbolic names defined A-9
$nameDEF macro, 2-6
$name G form of system service

macro, 2-3
example, 2-3 to 2-4

$name S form of system service
macro, 2-6

example, 2-7
$NUMTIM format, 128
$OPCDEF macro,

symbols defined, 180 to 184
$OUTPUT macro,

example, 6-6
format, 130

$PQLDEF macro, 44
symbols defined, 45 to 46

$PRDEF macro,
symbols defined, A-10

$PRTDEF macro, 162
symbols defined, A-11

$PRVDEF macro,
symbols defined, 39

$PSLDEF macro,
symbols defined, A-11

$PURGWS format, 131
$PUTMSG format, 132
$QIO format, 138
$QIOW,

$INPUT and $OUTPUT forms 6-6
format, 142

$READEF format, 144
$RESUME format, 145
$SCHDWK format, 147
$SECDEF macro, 51

symbols defined, 51,125
$SETAST format, 150
$SETEF format, 151
$SETEXV format, 152
$SETIME format, 154
$SETIMR format, 156
$SETPRA format, 158
$SETPRI format, 159
$SETPRN format, 161
$SETPRT format, 162
$SETPRV format, 164
$SETRWM format, 167
$SETSFM format, 169
$SETSWM format, 171
$SMRDEF macro, 188

symbols defined, 190 to 193
$SNDACC format, 172

Index-1

$SNDERR format, 177
$SNDOPR format, 178
$SNDSMB format, 185
$SSDEF macro, 2-11

symbols defined, A-12 to A-17
$SUSPND format, 196
$TRNLOG format, 198
$ULKPAG format, 200
$ULWSET format, 202
$UNWIND format, 204
$UPDSEC format, 206
$WAITFR format, 209
$WAKE format, 210
$WFLAND format, 212
$WFLOR format, 213

A
Absolute time, 8-1

buffer format, 18
Access modes, 1-2

conventions for coding, 2-10
effect on AST delivery, 4-5

to 4-6
symbolic names defined, A-11

Accounting log file, 172
format of records, 174

ACP interface driver I/O
function codes, A-7

Addresses,
virtual, 10-1 to 10-4

Adjust Outer Mode Stack Pointer
($ADJSTK} system service, 3

Adjust Working Set Limit
($ADJWSL} system service,
5 to 6

increase working set size,
10-5

Allocate Device ($ALLOC} system
service, 7 to 8

example, 6-11
Allocation,

device, 6-10 to n-11, 7
Argument list, 2-2

for AST service routine, 4-4
for system services,

format, 2-2
passed to a condition hand

ler, 9-8
Arguments,

conventions for high-level
language coding, 2-14 to
2-15

conventions for VAX-11 MACRO
coding, 2-7 to 2-10

Arrays,
argument lists for condition

handlers, 9-7 to 9-9
virtual address, 10-3 to 10-4

INDEX

ASSIGN command, 5-1
Assign I/O Channel ($ASSIGN}

system service, 14 to 16
example, 6-2

Associate Common Event Flag
Cluster ($ASCEFC} system
service, 9 to 11

examples, 3-4, 3-6 to 3-7
AST (asynchronous system trap},

4-1 to 4-2
declare, 63 to 64

example, 4-5
delivery, 4-5 to 4-6
disable/enable delivery, 150
execution,

access modes, 4-2
power recovery, 158
service routine, 4-4

example, 4-5
services,

general information, 4-1
summary, 1-5 to 1-6

synchronize I/O completion,
6-3 to 6-4

used with timer services, 8-3
example, 8-5

B
Balance set, 10-6, 171

swapping, 10-6, 171
BASIC coding example, 2-30 to

2-31
BLISS-32 coding example, 2-24

to 2-25
Broadcast ($BRDCST} system

service, 19 to 20

c
Cancel Exit Hand1er ($CANEXH}

system service, 7-14, 23
Cancel I/O On Channel ($CANCEL}

system service, 6-10, 21 to
22

example, 6-10
Cancel Timer Request ($CANTIM}

system service, 8-6, 24
example, 8-6

Cancel Wakeup ($CANWAK} system
service, 8-6 to 8-7, 25 to
26

cancel wakeup requests exa~ple,
8-6 to 8-7

Card reader driver I/O function
codes, A-6

Index-2

Change mode,
handler, 9-4, n5 to 66
services,

summary, 1-19 to 1-20
to executive, 28
to kernel, 29

Change to Executive Mode
($CMEXEC) system service,
28

Changa to Kernel Mode ($CMKRNL)
system service, 29

Channel assignment, 6-1 to 6-2,
14 to 16

mailboxes, 34
Character string descriptor,

high-level language coding,
2-14 to 2-15

MACRO coding, 2-8 to 2-9
Checkpointing sections, 10-16
Clear Event Flag ($CLREF) system

service, 27
example, 3-4

Clusters,
event flag, 3-1 to 3-2

COBOL coding example, 2-22 to
2-23

Common event flag cluster, 3-4
to 3-5, 9 to 11

example of use, 3-5 to 3-7
for process communication, 7-9
in shared memory, 3-7 to 3-9

Compatibility mode handler,
9-4' n5 to ()6

Condition handler, 9-1, 9-4
courses of action, 9-10
declare on call stack, 9-4
example of condition handling

routines, 9-10 to 9-12
search of call stack, 9-6

Condition-handling services,
general information, 9-1
summary, 1-15 to 1-16

Contract Program/Control Region
($CNTREG) system service,
30 to 31

example, 10-3
Control block,

exit handler, 67
Control region, 10-1 to 10-2

contract, 30 to 31
expand, 10-2 to 10-3, 83 to 84

Control string,
FAO, 87

Conventions for coding,
access modes, 2-10
arguments to system services,

high-level languages, 2-14
to 2-15

MACRO, 2-7 to 2-10

INDEX

Convert ASCII String to Binary
Time ($BINTIM) system
service, 17 to 18

examples, 8-2, 8-3
Convert Binary Time to ASCII

String ($ASCTIM) system
service, 12 to 13

example, 8-2
Convert Binary Time to Numeric

Time ($NUMTIM) system
service, 128 to 129

CORAL coding example, 2-26 to
2-27

Create and Map Section ($CRMPSC)
system service, 50 to 57

example of mapping a section,
10-12

Create Logical Name ($CRELOG)
system service, 32 to 33

example, 5-2
Create Mailbox and Assign

Channel ($CREMBX) system
service, 34 to 37

examples, 6-16 to 6-17, 7-19 to
7-20

Create Process ($CREPRC) system
service, 38 to 47

examples, 7-2, 7-3, 7-4, 7-7,
7-19 to 7-20

Create Virtual Address Space
($CRETVA) system service,
48 to 49

D
Date,

system format, 8-1 to 8-2
Deallocate Device ($DALLOC)

system service, 6-12, 59
to 60

Deassign I/O Channel ($DASSGN)
system service, 61 to 62

example, 6-11
Declare AST ($DCLAST) system

service, 63 to 64
example, 4-4 to 4-5

Declare Change Mode or Compati
bility Mode Handler ($DCLCMH)
system service, n5 to 66

Declare Exit Handler ($DCLEXH)
system service, 67 to 68

example, 7-15
Default,

Index-3

arguments for system
services, 2-8

device names, 6-12 to 6-13
disk and directory for

created process, 7-4 to
7-5

Delete Common Event Flag
Cluster ($DLCEFC) system
service, 80 to 81

Delete Global Section ($DGBLSC)
system service,
77 to 79

Delete Logical Name ($DELLOG)
system service,
69 to 70

Delete Mailbox ($DELMBX) system
service, 71 to 72

Delete Process ($DELPRC) system
service, 7-16, 73 to 74

Delete Virtual Address Space
($DELTVA) system service,
75 to 76

example, 10-3
Delete,

common event flag clusters,
3-5, 80 to 81

mailboxes, 6-15, 71 to 72
processes, 7-16 to 7-17, 73

to 74
timer requests, 8-6, 24
virtual address space, 10-3,

75 to 76
Delivery,

AST, 4-5 to 4-6
enable/disable, 150

Delta time, 8-1
how to specify, 8-3

Descriptor,
high-level language coding,

2-14 to 2-15
MACRO coding, 2-8 to 2-9

Detached process, 7-6
compared with subprocess,

7-1
Device,

allocate, 6-10 to 6-11, 7 to 8
assign I/O channel, 6-2, 14

to 16
deallocate, 6-12, 59 to 60
information, 100 to 105
names, 6-12 to 6-13
physical names vs. logical

names, 6-12
Directive (FAO),

format, 86 to 87
summary, 88 to 89

Disassociate Common Event Flag
Cluster ($DACEFC) system

service, 58
example, 3-6 to 3-7

Disk driver I/O function codes,
A-4

Dispatcher,
exception, 9-5

DMCll driver I/O function codes,
A-7

INDEX

E
Equivalence names, 5-1 to 5-2
Error,

cause exception condition,
9-1 to 9-2

checking,
high-level languages, 2-15

to 2-17
MACRO, 2-11 to 2-12

logger,
send message to, 177

messages,
obtain text, 113 to 115
output, 132 to 137

return status codes, 2-11,
2-15 to 2-16,

listing, A-12 to A-17
stream defined for process,

7-3 to 7-4
Event flag, 3-1 to 3-2

clearing, 27
clusters, 3-1 to 3-2
common clusters, 3-1 to 3-~,

3-4 to 3-5
associate, 3-4 to 3-5, 9 to 11
create, 3-4 to 3-5, 9 to 11
delete, 3-5, 80 to 81
disassociate, 3-5, 58
in shared memory, 3-7 to 3-9

read status of, 144
services,

general information, 3-1
summary, 1-3 to 1-5

setting, 3-1 to 3-2, 151
used with I/O services, 6-3
used with timer services,

8-3 to 8-4
waits, 3-3, 4-3

Exception, 9-1
caused by system service

failure, 9-1 to 9-2, lfi9 to 170
conditions, 9-1 to 9-2

summary, 9-2 to 9-3
dispatcher, 9-5 to 9-6
vectors, 9-4, 152 to 153

Exit ($EXIT) system service,
7-14, 82

Exit,
forced, 7-15, 98 to 99
handler, 7-14 to 7-15, 67 to 68

cancel, 7-14, 23
control block format, 67
declare, fi7 to 68
example, 3-50

image exit, 7-12 to 7-13
Expand Program/Control Region

{$EXPREG) system service
10-2 to 10-3, 83 to 84

example, 10-3

Index-4

F
FAO, 6-14 to 6-15

control string, 87
directives,

examples, 91 to 97
format, 86 to 87
summary, 88 to 89

Force Exit ($FORCEX) system
service, 7-15, 98 to 99

contrast with process
deletion, 7-17

Formatted ASCII Output ($FAQ)
system service, 85 to 97

examples, 6-14 to 6-15, 91 to
97

Formatted ASCII Output with
List Parameter ($FAOL)
macro, 85 to 86

examples, 93 to 94, 95
FORTRAN coding example, 2-20

to 2-21
Function codes for I/O opera

tions, 6-2
summary, A-2 to A-8

G
Get I/O Channel Information

($GETCHN) system service,
100 to 102

example, 7-19 to 7-20
Get I/O Device Information

($GETDEV) system service,
103 to 104

Get Job/Process Information
($GETJPI) system service,
105 to 112

used for process control, 7-8
wildcard searching, 107

Get Message ($GETMSG) system
service, 113 to 115

Get Time ($GETTIM) system
service, 8-2, 116

Global sections,
creating, 10-7 to 10-11, 50 to

57
defined, 10-7
deleting, 10-16, 77 to 79
group and system, 10-9
mapping, 10-13 to 10-14, 50,

124 to 127
name format, 10-10 to 10-11
in shared memory, 10-10 to

10-11
temporary and permanent, 10-9

Group,
logical name table, 5-2 to 5-4
number,

INDEX

Group, (Cont.)
qualify process names, 7-8
restrict system service use,
1-2

H
Handler,

change mode, 9-4, 65 to 66
compatibility mode, 9-4, 65 to 66
condition, 9-1, 9-4
exit, 7-14 to 7-15, 67 to 68

cancel, 7-14, 23
Hibernate ($HIBER) system

service, 7-9 to 7-11, 117
to 118

example, 7-11
Hibernation, 7-9 to 7-12

compared with suspension,
7-10

with scheduled wakeup, 8-6
High-level language coding, 2-14

to 2-18
examples, 2-18 to 2-31

I/O,
$QIO system service, 6-2, 138

to 141
$QIOW system service, 6-6, 142

to 143
cancel, 6-10, 21 to 22
channels,

assign, 6-1 to 6-2, 14 to 16
deassign, 61 to 62
obtain information, 100 to 102

device,
obtain information, 103-104

example (terminal), 6-7 to 6-9
function codes,

how used, 6-2
summary, A-2 to A-8

mailboxes,
example, 6-16 to 6-17

services,
general information, 6-1
summary, 1-7 to 1-10

status block, 6-5 to 6-6, 140
Image,

exit, 7-12 to 7-13, 82
compared with process

deletion, 7-16
exit handlers, 7-14 to 7-15
forced 7-15, 7-17, 98 to 99

force exit, 7-15, 7-17, 98
to 99

rundown, 7-13

Index-5

INDEX

Indicators,
conventions for coding, 2-10,

2-14
Input,

stream defined for process,
7-3

terminal I/O, 6-7 to 6-9
virtual blocks, 119

$INPUT macro, 6-6, 119

L
Line printer driver I/O

function codes, A-6
Lock Pages in Memory ($LCKPAG)

system service, 120 to 121
Lock Pages in Working Set

($LKWSET) system service,
122 to 123

increase program efficiency,
10-5 to 10-6

Lock pages,
memory, 10-6, 120 to 121
working set, 10-5, to 10-6,

122 to 123
Logical names,

create, 5-1 to 5-2, 32 to 33
example, 5-2

delete, 5-6, 69 to 70
process permanent files, 5-6
services,

general information, 5-1
summary, 1-6 to 1-7

tables, 5-2 to 5-4
example, 5-3 to 5-4

translation, 5-4 to 5-5, 198
to 199

common event flag cluster
names, 3-8 to 3-9

global section names, 10-10
to 10-11

mailbox names, 6-17 to 6-19
used by I/O services, 6-12 to 6-13
used for process communica

tion, 7-9

M
MA780 memory (see "Shared

memory")
Magnetic tape driver I/O

function codes, A-5
Mailbox driver I/O function

codes, A-6
Mailboxes,

creating, 6-15, 34 to 37
deleting, 71 to 72

Mailboxes, (Cont.)
example of creation and I/O

6-16 to 6-17
name format, 6-17 to 6-19
in shared memory, 6-17 to 6-19
system, 6-19
used for process communica

tion, 7-9
used for process termination

message, 6-19, 7-18 to
7-20

Map Global Section ($MGBLSC)
system service, 10-13,
124 to 126

example, 10-14
Mapping,

global sections, 10-13 to
10-14, 50, 124 to 127

sections, 10-7, 10-11
Maximize access mode,

definition, 2-10
Memory,

lock pages in memory, 10-6,
120 to 121

management services,
general information, 10-1
summary, 1-16 to 1-19

unlock pages, 10-6, 200 to 201
Messages,

associated with sy~tem status
codes, 2-11, 2-15 to 2-16,
A-12 to A-17

output, 132 to 137
Multiport memory (See "Shared

memory")

N
NARGS, 2-5
Numeric time buffer format,

128

0
Open,

disk file for use as a
section, 10-8

Operator,
send message to, 178 to 184

Output,
format for character strings,

6-14 to 6-15, 85
formatting with $FAO, 6-14

to 6-15, 85 to 97 '
stream defined for process,

7-3 to 7-4
system messages, 132 to 137
virtual blocks, 130

Index-6

INDEX

$OUTPUT macro, 6-6, 130
Owner,

of memory page, 10-4 to 10-5

p
Page,

copy-on-reference, 10-15
define in section 10-9

demand-zero, 10-15
define in section, 10-9

lock in memory, 120 to 121
lock in working set, 122 to

123
protection,

set or change, 162 to 163
symbolic names, A-11

Page frame number (PFN} map
ping, 10-17

Page frame sections, 10-17
Paging,

sections, 10-15
working set, 10-5 to 10-6

Parameter,
FAO, 87
for AST service routine, 4-4

PASCAL coding example, 2-28
to 2-29

PFN mapping, 10-17
Print queue,

manipulate, 185 to 195
Priority,

set or change process, 159
to 160

Private sections, 10-7
creating and mapping, 50 to 57

Privilege,
defined by access mode, 1-2
defined for process, 7-5, 164

to 165
list of privilege bits, 39
masks, 165
required for process control,

7-6
set or change process, 164

to 165
to use system services, 1-1

Process,
control services,

general information, 7-1
summary, 1-10 to 1-13

creation, 38 to 47
examples, 7-2, 7-3, 7-4, 7-7,

7-19 to 7-20
deletion, 7-16 to 7-17, 73 to

74
compared with image exit,

7-16 to 7-17
detached process, 7-1

Process, (Cont. }
identification, 7-6 to 7-8
logical name table, 5-2 to 5-4
name, 7-7 to 7-8

qualified by group number,
7-8

set or change, 161
obtain information, 105 to 112
permanent files, 5-6
resume after suspension,

7-9, 7-12, 145 to 146
set or change priority, 159

to 160
subprocess, 7-1, 7-2 to 7-4
suspend, 7-9, 7-12, 196

to 197
termination message format,

43
Processor registers,

symbolic names, A-10
Processor status longword,

symbolic field definitions,
A-11

Program examples, B-1 to B-19
Program region, 7-1 to 7-2

contract, 10-2 to 10-3,
30 to 31

example of expanding, 10-2
expand, 10-2 to 10-3, 83 to

84
Protection,

page, 162 to 163
Purge Working ($PURGWS} system

service, 131
Put Message ($PUTMSG} system

service, 132 to 137

Q
Queue I/O Request ($QIO} system

service, 6-2, 138 to 141
Queue I/O Request and Wait for

Event Flag ($QIOW} system
service, 6-6, 142 to 143

Quotas, 1-1 to 1-2, 39, 44 to 47

R
Read Event Flags ($READEF}

system service, 144
Resource,

quotas, 1-1 to 1-2, 39, 44 to
47

wait mode, 2-13, 2-17
set or change, 167 to 168

Resume Process ($RESUME} system
service, 7-9, 7-12, 145 to
146

Index-7

INDEX

Return status codes,
high-level language coding,

2-15 to 2-10
MACRO coding, 2-11 to 2-12
obtain system messages, 113

to 115
summary, A-12 to A-17

RMS (Record Management Services),
6-1

open file for mapping, 10-8

s
Sample programs B-1 to B-19
Schedule Wakeup ($SCHDWK)

system service, 8-6, 147
to 149

cancel wakeups, 8-6 to 8-7,
25 to 26

examples, 8-6, 8-7
Search of call stack,

exception dispatcher, 9-5
to 9-6

Sections, 10-6 to 10-17
checkpoint, 10-16, 206 to 208
creating, 10-7 to 10-11, 50

to 57
defining extents, 10-8

to 10-9
deleting, 10-ln
examples, 10-8, 10-12
global,

deleting, 10-16, 77 to 79
mapping, 3-87, 4-111

mapping, 10-3 to 10-14, 50,
124 to 127

page frame, 10-17
paging, 10-15
private, 10-7
unmapping, 10-ln
using to share data, 10-15

Send Message to Accounting
Manager ($SNDACC) system
service, 172 to 176

Send Message to Error Logger
($SNDERR) system service,
177

Send Message to Operator
($SNDOPR) S¥Stem service,
178 to 184

Send Message to Symbiont
Manager ($SNDSMB) system
service, 185 to 195

Service routine,
AST, 4-4 to 4-5

Set AST Enable ($SETAST) system
service, 150

Set Event Flag (SSETEF) system
service, 3-3 to 3-4, 151

Set Exception Vector ($SETEXV)
system service, 9-4, 152
to 153

Set Power Recovery AST ($SETPRA)
system service, 158

Set Priority (SSETPRI) system
service 157 to 160

Set Privileges ($SETPRV)
system service, 164 to 166

Set Process Name ($SETPRN)
system service, 161

Set Process Swap Mode ($SETSWM)
system service, 10-5, 171

example, 10-6
Set Protection on Pages

($SETPRT) system service,
162 to ln3

Set Resource Wait Mode ($SETRWM)
system service, 2-13, 2-17
167 to 168

Set System Service Failure
Exception Mode (SSETSFM)
system service, 2-13, 2-17

to 2-18, 169 to 170
example, 2-13

Set System Time ($SETIME) system
service, 8-7 to 8-8, 154 to
155

example, 8-8
Set Timer ($SETIMR) system

service, 8-3 to 8-5, 156 to
157

examples with AST, 4-2, 8-5
examples with event flag,

3-2 I 8-4
Shared (multiport) memory,

common event flag clusters, 3-7
to 3-9

global sections, 10-10 to 10-11
mailboxes, 6-17 to 6-19

Stack pointer,
modifying, 3

Subprocess, 7-1, 7-2 to 7-4
deletion, 7-16
example of creating, 7-2

Suspend Process ($SUSPND)
system service, 7-9, 7-12
190 to 197

Suspension, 7-9, 7-12, 196 to 197
compared with hibernation, 7-10

Swap mode,
disable or enable, 10-6, 171

Swapping, 10-6
disallow process swapping,

10-'1, 171
process from balance set,

10-6
Symbiont manager,

format of messages, 188 to 189
send message to, 185 to 195

Index-8

Symbolic names, 2-11, 2-16
obtain numeric values, A-2
page protection, A-11
processor registers, A-10
system status codes,

summary, A-12 to A-17
use in error checking, 2-11,

2-16
Synchronize I/O completion, o-3

to 6-5
System logical name table, 5-2

to 5-4
System service failure exception

mode, 2-13, 2-16 to 2-17,
9-1 to 9-2

set or change, 169 to 170
System time,

format, 8-1 to 8-2
setting, 8-7 to 8-8, 154 to

155

T

Table,
logical name, 5-2 to 5-4

Terminal driver I/O function
codes, A-3

Terminal,
assign channel, 6-2
broadcast messages to, 19 to

20
I/O example, 6-7 to 6-9

Termination mailbox, 6-19, 7-18
to 7-20

example, 7-19 to 7-20
message format, 43

Time,
ASCII format, 13, 18

absolute time buffer, 18
$ASCTIM, 12 to 13

convert to ASCII, 8-2, 12 to
13

convert to binary, 8-2 to 8-3
17 to 18

convert to binary integer
values, 8-7

buffer format, 128
set system time, 8-7 to 8-8,

154 to 155
system format, 8-1 to 8-2

obtain, 8-2, 116
Timer and time conversion

services,
general information, 8-1
summary, 1-13 to 1-15

Timer requests, 8-3 to 8-6
cancel, 8-6, 24
setting, 156 to 157

INDEX

Translate Logical Name (STRNLOG)
system service, 5-4 to 5-6,

198 to 199
examples, 2-20 to 2-31, 5-5

Translate,
logical name, 5-4 to 5-6,

198 to 199

u
Unlock Pages from Memory

($ULKPAG) system service,
200 to 201

Unlock Pages from Working Set
($ULWSET) system service
202 to 203

Unwind Call Stack ($UNWIND)
system service, 9-12 to
9-13, 204 to 205

example, 9-13
Unwinding the call stack,

9-12 to 9-13, 204 to 205
Update Section File on Disk

($UPDSEC) system service,
10-16, 206 to 208

User privileges, 1-1, 39

v
VAX-11 BASIC coding example,

2-30 to 2-31
VAX-11 BLISS-32 coding example,

2-24 to 2-25
VAX-11 COBOL-74 coding example,

2-22 to 2-23
VAX-11 CORAL coding example,

2-26 to 2-27
VAX-11 FORTRAN coding example,

2-20 to 2-21
VAX-11 MACRO,

coding system service calls,
$name macro, 2-3 to 2-4
$name G form, 2-3
$name-S form, 2-6

VAX-11 PASCAL coding example,
2-28 to 2-29

Virtual address space,
add and delete addresses, 10-2

to 10-3
add pages, 48 to 49, 83 to 84
delete pages, 30 to 31, 75 to

76
layout, 10-1 to 10-2
mapping sections in 10-11 to

10-14
specifying arrays, 10-3 to

10-4

Index-9

w
Wait for Logical AND of Event

Flags ($WFLAND) system
service, 3-3, 212

examples, 3-3, 3-6
Wait for Logical OR of Event

Flags ($WFLOR) system
service, 3-3, 212

Wait for Single Event Flag
($WAITFR) system' service,
3-3, 209

example, 3-6
Wait,

event flag, 3-3
I/O, 6-6
resource wait mode, 2-13, 2-17
set or change, 167 to 168

INDEX

Wake ($WAKE) system service,
7-10, 210 to 211

example, 7-11
Wakeup a hibernating process,

7-10 to 7-11, 210 to 211
timer scheduled, 8-6, 147 to

149
cancel, 8-6 to 8-7

Wildcard process searching, 107
Working set, 10-5 to 10-6

lock pages, 10-5 to 10-6,
122 to 123

paging, 10-5 to 10-6
purge, 10-5, 131
size,

changing, 10-5, 5 to 6
unlock pages, 10-5 to 10-6,

202 to 203

Index-10

.
Q)

.~

C)
c
0
0

READER'$ COMMENTS

VAX/VMS
System Services

Reference Manual
AA-D018B-TE

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement •

Did you find errors in this manual? If so, specify ~he error and the
page number.

-----------------.. ---------------

.Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] High-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify>-~~~~~~~~~~~~~~~~~--

City ______________ state _______ Zip Code ______ _

or
Country

- - Do Not Tear - Fold Here and Tape - - - - - - - - - -

~D~DDmD I I

Do Not Tear - Fold Here

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A 14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage l
Necessary

if Mailed in the
United States

