
V AXELN Technical Overview

Contents

What is V AXELN? 2
High -Level Programming
Languages 3
Concurrent Execution of
Programs 3
Transparent Ethernet Support. .. 4
Debugging the Target System . .. 4
What is a V AXELN System? . .. 4

How do I Use V AXELN? 7
The Development
Environment 7
The Runtime Environment 9

V AXELN Product Details 10
V AXELN Programming
Concepts 10
The V AXELN Kernel 14
Job and Process Scheduling 16
Networking Part of the
V AXELN Architecture 19
V AXELN File Services 19
Performance Characteristics .. . 20

2

What is V AXELN?

V AXELN is a software product for the development of dedicated, realtime ap
plications for the VAX family of super minicomputers.

For the purpose of this discussion, a dedicated application is one in which the
computer is used to solve a specific problem or set of related problems. The term
spans a wide range of applications, including workstations designed for a
particular profession, automated industrial machinery and robots, process con
trol and simulation.

A realtime application is one in which the system's response to external events is
critical. V AXELN was designed with realtime applications in mind, and imparts
as little "overhead" as possible, thereby assuring the most speed and responsive
ness from the VAX processor.

Since they are optimized for speed and efficiency, V AXELN programs are per
fect for areas where general-purpose operating systems are not suited. V AXELN
systems include only those services that are needed to support the functions re
quired by the application. In other words, V AXELN systems are only as com
plex as they need to be to do their work. Such systems are called "statically
defined".

The VAXELN Toolkit is a layered product that runs on any VAX processor un
der the VMS operating system (V4.0 or later) or MicroVMS (V4.0 or later). The
Toolkit consists of a highly optimized, efficient kernel executive, a system image
builder, a remote symbolic debugger, an extended Pascal compiler (EPascal)
and runtime libraries that support EPascal, VAX C, and VAX FORTRAN 77.
Ada/ELN and its runtime libraries are supported as a separate option. During
program development, standard VMS utilities such as the VMS editors, linker
and library facilities are used to provide the simplest, and yet most comprehen
sive development environment available in the industry.

The development system, also known as the host, runs the V AXELN Toolkit un
der the VMS general-purpose multi-user operating system. The application sys
tem, known as the target, is executed under the control of the V AXELN kernel,
which, along with other Digital-supplied components, deals solely with the ap
plication at hand; i.e. a V AXELN system is dedicated to the application and
should not be considered a general-purpose operating system. Completed
VAXELN applications can be loaded from FILES-ll format disk media, or, if

the optional DECnet-V AX license and Ethernet hardware are present,
downloaded from the host to the target. Additionally, any V AXELN application
may be "blasted" into read-only memory (ROM) , through use of an optional
utility, for later installation and execution on the target system.

One of the more significant optimizations in V AXELN is in the development of
device drivers. V AXELN provides the ability to write drivers in a high-level lan
guage (EPascal, C or Ada®) and supplies templates for the commonly used driv
ers as part of the Toolkit. This means development time for your applications is
drastically reduced . Machine language programming is not required.

Traditionally, the application developer had to be an expert in several fields: de
sign of realtime systems, hardware architecture, programming in machine lan
guage and operating systems internals. The design of V AXELN eliminates, as
much as possible, those areas of the development process not directly associated
with the specific target application, and allows the developer to concentrate on
only the application. V AXELN provides the following features and capabilities
in pursuit of this goal.

• High-level programming languages

• Concurrent execution of programs

• Transparent Ethernet support

• Target system debugging

High-Level Programming Languages
V AXELN systems can be developed entirely in high-level languages. V AXELN
supports an extended version of ANSI/ ISO Pascal (EPascal), VAX C or Ada/
ELN (a fully compliant version of ANSI-MIL-STD-1815-A-1983 Ada). You may
also include modules written in VAX FORTRAN 77 in your application.
EPascal, C and Ada/ELN based applications have the ability to handle all hard
ware devices, exceptions, time outs and even power failures. The need to spend
weeks or even months developing and debugging drivers in machine language is
eliminated.

Concurrent Execution of Programs
VAXELN provides concurrent execution, i.e., a program made up of several
concurrently executing parts of EPascal, C, and Ada/ELN Programs. A full defi
nition of concurrent programming is beyond the scope of this discussion. How
ever, its most basic principle is that component parts of a program are allowed to

Ada is a registered trademark of the U.S. Government. 3

4

execute simultaneously (multitasking) and programs within an application sys
tem are also allowed to execute in parallel (multiprogramming) .

Even in cases where the programs and/ or program components do not actually
share the same processor (and so do actually execute in parallel), concurrent pro
gramming has numerous advantages in system design, including improved
performance, compared with simpler models in which every program runs to
completion before any other can run. .

Transparent Ethernet Support
Local area network support based on Ethernet is designed into V AXELN's basic
architecture. Data transmission facilities are provided to make it easy to distrib
ute an application's component programs among several participating network
nodes. Changing the node location of a program does not require rewriting the
program. Programs initially written to execute on the same processor may be
distributed among nodes on the network (such as when the application expands
and more processing power is required) .

Debugging the Target System
Once the application software has been written, it may be tested and debugged
in one of two ways. The V AXELN Toolkit provides a remote symbolic debugger
which allows the programmer to debug the target application from the host com
puter via an optional Ethernet connection. If the Ethernet is not available, the
application may be debugged directly on the target hardware via the local,
nonsymbolic debugger included in the Toolkit.

What is a VAXELN System?
A V AXELN system is a set of programs executing on VAX hardware, including
code and data provided by both Digital and the application developer. Dia
gramatically, a typical V AXELN system might be represented as shown in
Figure 1.

The hardware includes one or more VAX processors in a host-target relation
ship, plus optional peripheral devices including disks, terminals, communication
hardware, and special interfaces as defined by the specific application. The target
VAX can exist as a stand-alone system or included in a local area network as the
logistics of the application require.

Debuggers
8K Bytes
(Remote)
45K Bytes
(Local)

Kernel
24K Bytes

Network
Servers
18K Bytes

Device
Drivers
2-7K Bytes

File
Servers
50K Bytes

Essentially, programs executing in a V AXELN system may be classified as one of
two types:

• User Programs-written in a high-level language, including, for example, data
acquisition and reduction programs, process control supervisors, user-written
device drivers, etc.

• Digital Supplied Programs-including the kernel executive, the network and file
servers (if required), device drivers for standard Digital peripherals, and runtime
libraries.

Figure 1. V AXELN System Elements

5

When combined, using the Toolkit's system build utility, the user- and Digital
supplied programs comprise an application system. See Figure 2.

Target
VAX

~ -
File Service*

"' .. ~e~orkService*

Digital-Supplied Driver(s)*

Debugger*

Runtime Libraries*

Kernel Executive

VAXEL~

6

, --
User Supplied Drivers

User Module 1

User Module 2

0
0
0

User Written

System
Image

Fzgure 2. Target Application Environ
ment. The system image created by the
build utility consists of user-written
programs and selected software compo
nents(') provided in the VAXELN
Toolkit.

How do I Use VAXELN?

The V AXELN Toolkit has been described as "sophisticated tools for the com
puter craftsman". Indeed, V AXELN offers both the "friendly" yet powerful
development tools provided by V AXNMS and the elegant simplicity and effi
ciency of the V AXELN runtime environment.

The Development Environment
The V AXELN development environment requires the following hardware and
software components in order to produce an executable V AXELN application:

• Hardware: Any member of the VAX family of computers, supporting VMS/
MicroVMS V4.0 or later.

Optional Ethernet interfaces and the appropriate interconnecting hardware are
needed to support downline loading and symbolic debugging.

Optional peripheral devices from Digital, third party, or users may be needed for
some applications.

• Software: V AXNMS or Micro VMS V 4.0 or subsequent releases.

Optionally, DECnet-VAX V4.0 or subsequent release (for remote debugging
and/or downline loading of application software) .

VMS compilers to support development of applications in the following
languages:

VAX C Compiler V2.1 (or subsequent release) .

VAX FORTRAN 77 V4.4 (or subsequent release) .

Ada/ELN Compiler and Runtime Libraries Vl.O (or subsequent release).

Rdb/ELN V1.2 (or subsequent release for using RdbNMS compatible relational
database manager in VAXELN applications).

Also available are the VAX Language Sensitive Editor (LSE) Vl.2 or subsequent
release (for creating programs in an editing environment tailored for software
development in high-level languages) and DECprom Vl.l or subsequent release
(for programming EPROMs with V AXELN application images) .

The V AXELN development cycle has three distinct parts: design and coding,
debugging, and system integration. VAX/ VMS and the V AXELN Toolkit pro
vide all the necessary tools to satisfy the needs of the most sophisticated
developer.

7

Figure 3. Remote Debugging Envi
ronment. A target VAXELN applica
tion can be debugged from the host
development system using the remote,
symbolic debugger supplied with the
Toolkit.

8

Design and Coding D To facilitate the design of a complex, realtime application,
V AXELN employs features rarely seen in other realtime software products.
Oversimplified, a V AXELN application may be defined totally within the
context of a structured, modular, high-level language such as EPascal, Cor
AdaIELN. Language constructs that implement V AXELN architectural features
are either predefined in the compilers or provided as callable routines in run
time libraries.

Once compiled, the V AXELN application programs are processed by the stan
dard V AXNMS linker, merged with the selected Digital-supplied components,
(such as the kernel executive, the network and/ or file service and appropriate
device/ interface drivers) to comprise a V AXELN System Image. The image is a
direct address-for-address image of the final target system.

Debugging D Once the program has been successfully built, it is then necessary
to transfer it to a target environment, in which it may be debugged or checked
out. V AXELN supplies two debugging environments which may be used
depending on the hardware or logistical considerations of the application.

As shown in Figure 3, the remote, symbolic debugger provided with the Toolkit
allows the developer to downline load (given that the appropriate Ethernet hard
ware and DEenet-VAX software are in place) and run the application software
on the target VAX from the host VAX. Breakpoints can be set, variable contents
can be examined and modified, and code can even be altered via source listings
(instead of compiler generated assembler listings).

V AXNMS Host System

Ethernet

Target V AXELN
Application

Whereas most other debuggers will cause the entire system to halt if a breakpoint
is encountered in any given module, V AXELN allows all but the affected mod
ule to continue running as scheduled while the suspect module is investigated.
(Note that if there is a synchronization dependency between the affected module
and any other active module in the system the results may be unpredictable.)

If it is not feasible to debug the application with the remote debugger due to
physical distance between the host and target or lack of Ethernet capability, the
Toolkit also provides a local, non-symbolic debugger which provides all of the
traditional debugging functions such as examine/ deposit memory/ registers, set
breakpoints, etc. from the local target console terminal. See Figure 4.

Console
Terminal

I
VAXlVMS

Development
System

Target V AX Application
System

Local

I I Debugger

Mass Stonge Mass Storage
Transfer Media Transfer Media

System Integration D An individual program or part of an application may be
debugged independently of many of the other components of the final system
(for example, a driver for a specific device or a computation-intensive module) .
However, it is at some point in the development cycle when all the components
must be brought together and exercised as a whole.

The Runtime Environment
The V AXELN runtime environment requires the following hardware and soft
ware components:

• Hardware: VAX 11/730, 11/750, VAX 8500, 8550, 8700, 8800, or Micro V AX
II, KA620.

Optional Ethernet hardware is required for downline loading of V AXELN sys
tem images.

Optional Digital, third party or user-supplied peripheral devices may be re
quired for some applications.

• Software: A properly developed and debugged V AXELN system image consist
ing of the V AXELN kernel executive plus device drivers, file and network ser
vices and user code as required by the application and hardware configuration.

Figure 4 Local Debugging Environ
ment. When the application is not in
cluded in a local area network, it can
be debugged with the local debugger.

9

Fzgure 5. SingJe Processor
MuJtiprogramming. In multi
programming, more than one part 0/
an application can run on a single
processor.

lO

V AXELN Product Details

V AXELN Programming Concepts
Development of a V AXELN application begins with a design based on the
concept of concurrent execution of programs, also known as concurrency.
Concurrency is a proven approach for such applications as multiple programs
working together at the same time to solve a problem; production shop floor
management, aircraft cockpit simulation or accommodating a number of profes
sional workstations. This concept of concurrency has been built into V AXELN.

Programs in a V AXELN system are known as jobs. Multiple programs, or
jobs, comprise a typical V AXELN-based application. Within a job exist func
tionally independent components known as processes. The ability of these pro
cesses to operate independently and in parallel (concurrently) is known as
multitasking, and is managed by the V AXELN kernel executive. While only
one process at a time can execute in any single CPU, the realtime V AXELN
kernel is responsible for seeing to it that the CPU (as well as other resources) is
efficiently shared by all processes in the system. As described earlier, the jobs
that comprise a V AXELN system may reside on a single VAX processor, or be
distributed among several processors in a local area network (Figures 5 and 6).

Database

EXECUTIVE

Program
1

Program
3

Shop Floor

Program
2

Database Shop Floor

ETHERNET

Graphics
Terminal

Program
3

Multitasking D Multitasking is the level of concurrency where each program in
the application is divided into the necessary number of tasks. There is a separate
process written for each task to be performed, each process concentrating on its
own task. Processes mayor may not execute concurrently, depending on the
design of the program and the application at hand. While some processes are
unable to execute (i.e. while they are waiting for some event or a resource to
become available) other processes may execute and perform useful work for the
application. See Figure 7.

Master
Jobs Processes Subprocesses

Main Process Process Process
Program 1 Program -~ Block f- Block Block

Block 1 lA lB lC

I
~

Main Process Process Process
Program 2 Program f--I Block r~ Block - Block

Block 2 2A 2B 2C

~
Main Process Process Process

Program 3 Program -I Block r-+ Block - Block
Block 3 3A 3B 3C

Figure 6. Distributed Processing
Multiprogramming. In distributed
multiprocessing, more than one
application can run on two or more
processors connected together in a
local area network.

Figure 7. Master Process/ Subprocess
Relationship. Jobs that execute
application programs usually consist 0/
a master process and one or more
concurrently executing subprocesses.

11

12

Process Synchronization 0 Process synchronization is a mechanism for coordi
nating the execution of two or more processes. Typically, one process waits for
one or more of the other processes to complete some finite operation. Process
synchronization is needed in two cases: mutual exclusion and event response.

Mutual exclusion is the case in which a process is utilizing a shared resource and
must have exclusive access to it in order to prevent corruption of the resource (a
data buffer, for example). Event response is needed when a process must be ac
tivated in order to respond to a particular external or internal event (such as the
completion of a disk read).

Objects 0 Process synchronization is most commonly implemented by use of
entities known as objects. An object may be a flag, an event occurrence, receipt
of a message, etc .. V AXELN processes use objects in synchronizing their execu
tion with the events of the realtime application. Table 1 is a list of objects avail
able under V AXELN and a short description of each.

Table 1 V AXELN Objects

PROCESS-A process object represents an independent thread of execution of
a code segment (that is the process described earlier). In V AXELN there is a
master process (also known as the program) which controls one or more sub
processes. There can be any number of master processes executing the same
subprocess (thus V AXELN code generated by the compilers is termed multi
threaded). The family of the master processes and its subprocesses is known as
ajob.

PORT -A port represents a repository for messages waiting to be received
(sometimes known in other operating systems as a mailbox). Only the processes
in the job that created a port can receive a message from that port; any process in
any job can send a message to it.

Two ports, possibly in different jobs, can be bound together to create a circuit,
which increases the simplicity and reliability of interjob communication. Interjob
communication is discussed in more detail later.

MESSAGE-A message describes data transmitted between processes. A mes
sage may be sent between two processes or jobs residing on the same node or be
tween two nodes on the same local area network.

NAME-Ports may be assigned a name (e.g. Fred) which is known either locally
(only to jobs physically executing on a specific system, or node) or universally (to
all jobs executing on any node in the local area network comprising the system).

SEMAPHORE-The semaphore represents a synchronization gate used to me
ter process execution and synchronize access to shared resources. A semaphore
can be of two types, binary and counting. A binary semaphore may assume only
one of two values: 0 or 1. A counting semaphore may assume any value from 0 to
4 billion and is usually meant to keep track of the number of pending accesses to
a particular resource.

EVENT -An event object represents the state of an event used for process syn
chronization access to shared data. A typical event might be the completion of a
code segment or the completion of a disk access.

DEVICE-A device represents a device interrupt connected to an interrupt ser
vice routine or driver.

AREA-An area represents an amount of physical memory globally accessible
by all jobs within the same node.

To use these objects in programming a V AXELN application, the kernel pro
vides a number of operations or kernel procedures which, in turn, manipulate
the objects and report back to the issuing program the status or result of the
manipulation.

Table 2 represents the objects available to V AXELN processes and the oper
ations that may act on them.

Table 2 V AXELN Operations and Objects

OPERATION
Accept-Circuit
Allocate/Free
Clear
Connect-Circuit
Create/Delete

DisablelEnable
Disconnect-Circuit
Exit
Send/Receive
Signal
Suspend/Resume
Translate
Wait-Any/W ait-All

RELATED OBJECT
Port
Memory
Event
Port
Device, Event, Job, Message, Name, Port, Process,
Semaphore
Process
Port
Process
Message
Device, Event, Port, Time
Process
Name
Device, Event, Port, Process, Semaphore, Time

13

14

The V AXELN Kernel
The kernel is the layer of software that lies between the hardware and the ap
plication software. It is the kernel that provides direct manipulation of system
objects as directed by application programs through the use of the operations de
scribed above. The kernel thus provides for the controlled sharing of system re
sources and synchronizes communication among the various programs in the
system. The kernel also is responsible for maintaining all information about the
system as a whole and each program component (known as the system or pro
gram's context).

A VAXELN System D Any number of executable programs (jobs) can be
combined with the kernel to form a system. When a system is built, there is the
option to specify any number of programs that will be executed automatically
when the system is initially loaded on the target VAX.

As mentioned previously, each job consists of a master process and zero or more
subprocesses, which can execute independently in parallel, or concurrently.
Processes are created dynamically by the master process or any of the sub
processes. Once created, a process remains active until it terminates normally
or is terminated as a result of the delete operation.

Job termination normally occurs when the master process finishes executing its
code segment(s). The termination of the master process (or any process for that
matter) can also occur as a result of the signal or exit operations. Signalling a
process raises a special exception for that process which is handled much as
other hardware and software exceptions (such as divide by zero) . The process
may then take special measures if need be (e.g. close all open files) before exiting.

A process can also delete itself or any other process within the same job. Deleted
processes cannot be restarted; in general, signal and exit provide a more con
trolled means of forcing a process to terminate.

Job termination (i.e. when the master process terminates) also means that all of
its subprocesses and shared data are deleted from the system.

Process States D Each process in a V AXELN system is always in one of the
following process "states" (see Figure 8):

RUN-A process in the run state has control of the CPU (i.e. it is the process
currently executing).

READY -A process in the ready state is not running but is ready to run as soon
as possible as determined by the scheduler (details on process scheduling are
discussed later). All processes are initially in the ready state immediately
following their creation.

WAIT -A process in the wait state is waiting for some specific set of conditions
to be satisfied. It may be waiting for a particular amount of time to elapse, for the
occurrence of a specific event or series of events, for the receipt of a message,
and so forth . A process may put itself (and only itself) into the wait state by
issuing either of the two wait operations; wait-any (wait for any of the listed
conditions to be satisfied) or wait-all (wait for all of the listed conditions to be
satisfied) .

SUSPENDED-A process in this state is not eligible for execution (i.e. it cannot
enter the ready state) until it is resumed by another process in the same job. A
process can put itself or any other process in the same job into the suspended
state with the suspend operation.

Figure 8. Process States. Master
processes and subprocesses
are always in one of four states.

15

Figure 9. Process Scheduling. A
master process and subprocesses A and
B make use 0/ semaphore A and event
E to synchronize execution.

16

State transition, or changes from one state to another, describe the behavior of
the system according to the following rules:

• The initial state of every process is ready

• When the wait (or blocking) conditions for a process are satisfied it enters the
ready state

• When a suspended process is resumed, it re-enters its previous state; if the
process was in the ready state when it was suspended, it re-enters the ready state
when it is resumed. Note that if a suspended process was previously in the wait
state, if all its blocking conditions have been satisfied as of the time it is resumed,
it immediately enters the ready state without entering the wait state.

Job and Process Scheduling
V AXELN jobs and processes are all assigned priorities by the programmer. A
high priority indicates that the job or process should be given preference over
other jobs and processes of lower priority when it is ready to execute. A job
(currently executing or not) is rescheduled when one or more of its processes
enter the ready state and the job's priority is higher than the priority of the
currently executing job. Within that job, the process with the highest priority is
given control (enters the run state).

Job rescheduling, which is always pre-emptive-no round-robin or time
slicing-is illustrated in the state diagram of Figure 9.

Master
Process . ..

Create Wi · Signal
Subprocess A Semaphore A

Subprocess A • ...
Create . Wait for Signal Waidor

Subprocess B Semaphore A Semaphore B Event E

Subprocess B L-_-'-_---""'---___ -4--..,...$
Wait for Signal

Semaphore B Event E Time

Jobs may be assigned 32 levels of priority (zero being the highest). Within jobs,
processes may be assigned 16 levels of priority independent of their parent job's
priority. Since processes are automatically rescheduled in a predictable way, the
developer can design a system in which there are no important or noticeable
delays in a program's execution, even though it spends at least some of its time
idle while other programs execute. In principle, a program's execution speed is
determined by the speed of the slowest thread of execution.

Job Virtual Address Space 0 V AXELN uses the VAX memory management
hardware to map jobs into individual and unique virtual address space. When a
system is initially loaded onto the target VAX, the kernel maps the system image
containing all the program, shareable runtime and kernel images into the system
region (S0) of the VAX virtual address space. The system region maps the system
image and kernel data .

When a job is created to run a program image (process), the kernel creates a
page table in the program (user) region (P0) and maps the program image into
the P0 region of the job's virtual address space. Each job's P0 region maps the
program image, data and message buffers. The kernel also makes a copy of any
read/write data in the program image, though no copy is made of read-only code
or data. This means that if there are multiple jobs in a system running the same
program, there is only one copy of the read-only code and data, and as many
copies of the read/write data as there are jobs running the program.

The P0 region is used for static variables and message text. Since the runtime li
braries use variables allocated in the P0 region for many of their data structures,
the context of open file variables is also mapped into the P0 region.

All processes in a job share the same P0 page table and, consequently, the same
P0 region. This means that any data in the job's P0 region are accessible to
other processes in the same job. Assuming proper synchronization methods are
used by the processes, a pointer to any variable in the P0 region can be passed to
any other process within the job.

For each process created for a job, the kernel allocates a PI page table and
maps the process' kernel and user stacks in the PI region. The stacks are used
by programs for all process-local variables and the process' context (e.g.
procedure call frames). The PI region does not map any area of the program
image; it is used exclusively for dynamic memory. The kernel stack is fixed in
size and is used by kernel procedures and any programs that run exclusively in
kernel mode. The user stack is dynamically expandable by the kernel. This
feature is important in that it means programs may start out with a minimal
stack that will grow when necessary without preallocating memory that might
be wasted given a program's behavior in any particular situation.

17

18

Interjob Communication 0 In a V AXELN application, every job has a unique
and protected virtual address space. Within a single processor, the kernel sepa
rates each job's virtual address space using the VAX memory management hard
ware. Within a local area network, each job's virtual address space is separated
by virtue of the fact the jobs exist in the physical memories of different target sys
tems. To make the network movement of data between jobs the same in the non
network as well as in the network case, message passing is the only means of
interjob communication in V AXELN systems.

Messages 0 A message is recognized as a block of contiguous bytes of memory.
As V AXELN utilizes the Ethernet network protocol, the maximum size of a
message is also imposed. Because message passing is a key principle in V AXELN
programming, the kernel was designed to make message-passing operations ex
tremely efficient.

There are two means by which to implement message passing provided in
V AXELN; via datagrams or via virtual circuits. A datagram is the traditional
DECnet-VMS datagram-low overhead, fast but no acknowledgement of deliv
ery. Creating a virtual circuit between jobs guarantees delivery of the message
(via the Network Services Protocol-NSP available from the V AXELN Net
work Server) although it is somewhat slower due to the extra overhead entailed
in the guaranteed delivery mechanism.

Messages are transmitted from and received by ports, which may be created
dynamically by jobs and processes. To facilitate communication between jobs,
message ports can be assigned names. A name can be created and deleted
dynamically, may be up to 31 characters long, and be associated with a specific
port value. Since each name is associated with a port, a program can look up a
name and use the returned port value for communication with other jobs or
processes.

Names are defined as being either local or universal. Local names are known
only to jobs and processes on the system (node) on which they are created.
Universal names are known by all nodes (and thus all jobs and processes) in the
network. This ability to apply a logical name to a port allows the distribution of
the application across multiple VAX nodes on a local area network essentially
transparent to the designer/ programmer of V AXELN systems.

Message Transmission 0 Ports and messages can be used in two ways to transmit
data, as mentioned previously:

• Datagrams - One process can obtain the value of a port anywhere in the system
or in a different system running on a different Ethernet node.

• Virtual Circuits - Any two ports may be bound into pairs called "virtual
circuits". Since messages are the only means of interjob communication, and
since jobs can be located or relocated among several Ethernet nodes, the circuit
is the preferred method of message passing in V AXELN applications.

To send a message from a job to another job within the same system, the
V AXELN kernel does not physically move any data. It merely unmaps the mes
sage buffer's address from the sending job's virtual address space and maps it
into the receiving job's address space. In the case where the communicating jobs
are on different Ethernet nodes, the V AXELN Network Service physically trans
ports the data across the network where it is placed into the receiving job's vir
tual address space.

Networking Part of the V AXELN Architecture
V AXELN utilizes the DECnet Data Access Protocol (DAP) in all communica
tion scenarios within an application, not just message passing. Console and disk
I/O for example, also utilize DAP as their highest-level interface. All V AXELN
drivers have DAP front-ends to facilitate transparent multiprocessing in local
area network configurations. Thus if a job or a disk file is moved off one proces
sor and made resident on another node, the application program does not have
to be modified at all; the inclusion of the supplied network server will assume
the responsibility for ensuring the validity of the communication path. Thus, a
program on one node may open, read and write files located on another system
transparently to the application. This includes VMS nodes that may be physically
connected to the local area network (as long as access is limited to sequential
files) .

V AXELN File Services
VAXELN provides the ability to create, read and write ODS-II, FILES-ll
compatible disk files from the application. Files are limited to VMS sequential
files (sequential and random access) via an RMS-compatible calling interface. In
dexed, multikeyed, and relative access to RMS files is not supported. An optional
layered product, Rdb/ELN (V1.2 or later), may be used to provide a full rela
tional database facility for a V AXELN application.

It is worthy of note that V AXELN applications need not have any disks at all as
part of the system; system images may be loaded into the target hardware over
the Ethernet, from magnetic tape or from ROM as well as from disk. This ca
pability is extremely important where a V AXELN target system may be in a

19

20

physical environment where disks cannot be used, yet file access is necessary to
the application. The disks may be located on a "safer" system elsewhere on the
network, yet the isolated applications may still access @e data as if the disks were
physically located on the same system.

Performance Characteristics
V AXELN is designed for realtime applications, where responsiveness and
predictability are crucial. The V AXELN kernel is highly optimized to take full
advantage of the VAX architecture, and leaves as little as possible overhead be
tween the application code and the hardware.

For example, in response to external events (interrupts), the V AXELN kernel
imposes no more than three machine instructions from the time the interrupt is
recognized by the processor until the first instruction in the application's inter
rupt service routine begins to execute. Table 3 represents actual timing data for
V AXELN's performance as measured for interrupt latency, context switching
(the time required to change the thread of execution from one process to an
other) and process synchronization (SEMAPHORE versus MUTEX). All
timings are in microseconds and were achieved using a Micro VAX II processor.

Interrupt Latency

Context Switch

Table 3 V AXELN Timing Data

MUTEX (without context switch)

MUTEX (with context switch)

SEMAPHORE (without context switch)

SEMAPHORE (with context switch)

33 I-Lsec

285 I-Lsec

6I-Lsec

447 I-Lsec

289 I-Lsec

439 I-Lsec

Digital Equipment Corporation
Channels Marketing Group
4 Mount Royal Avenue
UP02-3
Marlboro, Massachusetts 01752

In Europe:
12 Avenue de Morgines
Case Postal 5103 CH-1213
Petit-Laney 1
Geneva, Switzerland

In Canada:
DEC of Canada LTD.
P.O. Box 13000
Kanata, Ontario K26929

The following are trademarks of Digital
Equipment Corporation:
DECnet
DECprom
Digital Logo
MicroVAX
MicroVMS
Rdb
VAX
VAXBI
VAXELN
VMS
Other trademarks include:
Ada (U.S. Government)

Digital believes the information in this publica
tion is accurate as of its publication date; such
information is subject to change without notice.
Digital is not responsible for any inadvertent
errors.

