

Reference Pages Section 1: Commands M - Z

Order Number: AO-PCOWA-T1

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This manual describes commands from M to Z that are available to all UL TRIX users for
both RISe and VAX platforms.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1984, 1986, 1988, 1990
All rights reserved.

Portions of the information herein are derived from copyrighted material as permitted under license agreements with
AT&T and the Regents of the University of California. © AT&T 1979, 1984. All Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license agreement with
Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 1985, 1986,
1988.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

Ilmaala
CDA
DDIF
DDIS
DEC
DECnet
DEC station

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
ULTRIX Mail Connection

ULTRIX Worksystem Software
UNIBUS
VAX
VAX station
VMS
VMS/UL TRIX Connection
VT
XUI

Ethernet is a registered trademark of Xerox Corporation.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers.

System V is a registered trademark of AT&T.

Tektronix is a trademark of Tektronix, Inc.

Teletype is a registered trademark of AT&T in the USA and other countries.

UNIX is a registered trademark of AT&T in the USA and other countries.

About Reference Pages

The ULTRIX Reference Pages describe commands, system calls, routines, file
formats, and special files for RISe and V AX platforms.

Sections
The reference pages are divided into eight sections according to topic. Within each
section, the reference pages are organized alphabetically by title, except Section 3,
which is divided into subsections. Each section and most subsections have an
introductory reference page called intro that describes the organization and
anything unique to that section.

Some reference pages carry a one- to three-letter suffix after the section number, for
example, scan(1mh). The suffix indicates that there is a "family" of reference
pages for that utility or feature. The Section 3 subsections all use suffixes and other
sections may also have suffixes.

Following are the sections that make up the ULTRIX Reference Pages.

Section 1: Commands

This section describes commands that are available to all UL TRIX users. Section 1 is
split between two binders. The first binder contains reference pages for titles that fall
between A and L. The second binder contains reference pages for titles that fall
between M and Z.

Section 2: System Calls
This section defines system calls (entries into the UL TRIX kernel) that are used by
all programmers. The introduction to Section 2, intro(2), lists error numbers with
brief descriptions of their meanings. The introduction also defines many of the terms
used in this section.

Section 3: Routines

This section describes the routines available in ULTRIX libraries. Routines are
sometimes referred to as subroutines or functions.

Section 4: SpeCial Files

This section describes special files, related device driver functions, databases, and
network support.

Section 5: File Formats

This section describes the format of system files and how the files are used. The files
described include assembler and link editor output, system accounting, and file
system formats.

Section 6: Games
The reference pages in this section describe the games that are available in the
unsupported software subset. The reference pages for games are in the document
Reference Pages for Unsupported Software.

Section 7: Macro Packages and Conventions

This section contains miscellaneous information, including ASCII character codes,
mail addressing formats, text formatting macros, and a description of the root file
system.

Section 8: Maintenance
This section describes commands for system operation and maintenance.

Platform Labels
The ULTRIX Reference Pages contain entries for both RISC and V AX platforms.
Pages that have no platform label beside the title apply to both platforms. Reference
pages that apply only to RISe platforms have a "RISC" label beside the title and the
VAX-only reference pages that apply only to VAX platforms are likewise labeled
with ' 'VAX." If each platform has the same command, system call, routine, file
format, or special file, but functions differently on the different platforms, both
reference pages are included, with the RISC page first.

Reference Page Format
Each reference page follows the same general format. Common to all reference pages
is a title consisting of the name of a command or a descriptive title, followed by a
section number; for example, da t e(1). This title is used throughout the
documentation set.

The headings in each reference page provide specific information. The standard
headings are:

Name

Syntax

Description

Options

Restrictions

Examples

iv About Reference Pages

Provides the name of the entry and gives a short description.

Describes the command syntax or the routine definition. Section 5
reference pages do not use the Syntax heading.

Provides a detailed description of the entry's features, usage, and
syntax variations.

Describes the command-line options.

Describes limitations or restrictions on the use of a command or
routine.

Provides examples of how a command or routine is used.

Return Values

Diagnostics

Files

Environment

See Also

Conventions

Describes the values returned by a system call or routine. Used in
Sections 2 and 3 only.

Describes diagnostic and error messages that can appear.

Lists related files that are either a part of the command or used
during execution.

Describes the operation of the system call or routine when
compiled in the POSIX and SYSTEM V environments. If the
environment has no effect on the operation, this heading is not
used. Used in Sections 2 and 3 only.

Lists related reference pages and documents in the UL TRIX
documentation set.

The following documentation conventions are used in the reference pages.

%

user input

The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to
represent this prompt.

A number sign is the default superuser prompt.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in text to indicate the exact name of a
command, routine, partition, pathname, directory, or file. This
typeface is also used in interactive examples to indicate system
output and in code examples and other screen displays.

UPPERCASE
lowercase

rlogin

filename

[]

{ I }

The UL TRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

This typeface is used for command names in the Syntax portion
of the reference page to indicate that the command is entered
exactly as shown. Options for commands are shown in bold
wherever they appear.

In examples, syntax descriptions, and routine definitions, italics
are used to indicate variable values. In text, italics are used to
give references to other documents.

In syntax descriptions and routine definitions, brackets indicate
items that are optional.

In syntax descriptions and routine definitions, braces enclose lists
from which one item must be chosen. Vertical bars are used to
separate items.

About Reference Pages v

cat(1)

In syntax descriptions and routine definitions, a horizontal ellipsis
indicates that the preceding item can be repeated one or more
times.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat (1) indicates that you can find the material on the
cat command in Section 1 of the reference pages.

Online Reference Pages
The ULTRIX reference pages are available online if installed by your system
administrator. The man command is used to display the reference pages as follows:

To display the Is(1) reference page:

% man ls

To display the passwd(1) reference page:

% man passwd

To display the passwd(5) reference page:

% man 5 passwd

To display the Name lines of all reference pages that contain the word "passwd":

% man -k passwd

To display the introductory reference page for the family of 3xti reference pages:

% man 3xti intro

Users on ULTRIX workstations can display the reference pages using the
unsupported xman utility if installed. See the xman(1X) reference page for details.

Reference Pages for Unsupported Software
The reference pages for the optionally installed, unsupported UL TRIX software are in
the document Reference Pages for Unsupported Software.

vi About Reference Pages

m4(1)

Name
na4-naacroprocessor

Syntax
m4 [options] [files]

Description
The m4 naacro processor is intended as a front end for Ratfor, C, and other languages.
Each of the argunaent files is processed in order; if there are no argunaents, or if an
argunaent is hypen (-), the standard input is read. The processed text is written on the
standard output.

Options
The options and their effects are as follows:

-e

-s

-Bint

-Hint

-Sint

-Tint

Operate interactively. Interrupts are ignored and the output is
unbuffered.

Enable line sync output for the C preprocessor (#line ...)

Change the size of the push-back and argwnent collection buffers
frona the default of 4,096.

Change the size of the symbol table hash array frona the default of
199. The size should be prinae.

Change the size of the call stack from the default of 100 slots.
Macros take three slots, and non-macro argunaents take one.

Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags naust appear before any file nanaes and before any -D or
-U flags:

-Dname[= val]
Defines name to valor to null in val's absence.

-Uname undefines name.

Macro calls have the following forna:

name (argl,arg2, ... , argn)

The left parenthesis (() must imnaediately follow the nanae of the naacro. If a
defined naacro nanae is not followed by a left parenthesis, it is deenaed to have no
argunaents.

Leading unquoted blanks, tabs, and new lines are ignored while collecting argunaents.
Potential naacro nanaes consist of alphabetic letters, digits, and underscore (_), where
the first character is not a digit.

Left and right single quotes (' ') are used to quote strings. The value of a quoted
string is the string stripped of the quotes.

Commands 1-389

m4(1)

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. Macro evaluation proceeds normally during the
collection of the arguments, and any commas or right parentheses which happen to
turn up within the value of a nested call are as effective as those in the original input
text. After argument collection, the value of the macro is pushed back onto the input
stream and rescanned.

The m4 makes available the following built-in macros. They may be redefined, but
once this is done the original meaning is lost. Their values are null unless otherwise
stated.

define

undefine

defn

pushdef

popdef

ifdef

changequote

changecom

divert

un divert

The second argument is installed as the value of the macro
whose name is the first argument. Each occurrence of $n in
the replacement text, where n is a digit, is replaced by the
n -th argument. Argument 0 is the name of the macro;
missing arguments are replaced by the null string. $# is
replaced by the number of arguments; $* is replaced by a list
of all the arguments separated by COITllnaS; $@ is like $*,
but each argument is quoted (with the current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful
for renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the
previous one, if any.

If the first argument is defined, the value is the second
argument, otherwise the third. If there is no third argument,
the value is null. The word unix is predefined on UNIX
versions of m 4 .

Change quote characters to the first and second arguments.
The changequote without arguments restores the original
values (that is, ' ").

change left and right comment markers from the default #
and new-line. With no arguments, the comment mechanism
is effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes new
line. With two arguments, both markers are affected.
Comment markers may be up to five characters long.

The m4 maintains 10 output streams, numbered 0-9. The
final output is the concatenation of the streams in numerical
order; initially stream 0 is the current stream. The divert
macro changes the current output stream to its (digit-string)
argument. Output diverted to a stream other than 0 through
9 is discarded.

causes immediate output of text from diversions named as
arguments, or all diversions if no argument. Text may be
undiverted into another diversion. Undiverting discards the
diverted text.

1-390 Commands

divnum

dnl

ifelse

iner

deer

eval

len

index

substr

shift

trans lit

include

sinclude

sysemd

sysval

maketemp

m4exit

m4(1)

returns the value of the current output stream.

reads and discards characters up to and including the next
new line.

has three or more arguments .. If the first argument is the
same string as the second, then the value is the third
argument. If not, and if there are more than four arguments,
the process is repeated with arguments 4, 5, 6 and 7.
Otherwise, the value is either the fourth string, or, if it is not
present, null.

returns the value of its argument incremented by 1. The
value of the argument is calculated by interpreting an initial
digit-string as a decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using
32-bit arithmetic. Operators include +, -, *, /, %, "
(exponentiation), bitwise &, I , 1\, and ~; relationals;
parentheses. Octal and hex numbers may be specified as in
c. The second argument specifies the radix for the result;
the default is 10. The third argument may be used to specify
the minimum number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second
argument begins (zero origin), or -1 if the second argument
does not occur.

returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length of the
SUbstring. A missing third argument is taken to be large
enough to extend to the end of the first string.

is an unimplemented macro. Using shift generates an error
message.

transliterates the characters in its first argument from the set
given by the second argument to the set given by the third.
No abbreviations are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is
inaccessible.

executes the UNIX command given in the first argument.
No value is returned.

is the return code from the last call to syscmd.

fills in a string of XXXXX in its argument with the current
process id.

causes immediate exit from m4. Argument 1, if given, is the
exit code; the default is O.

Commands 1-391

m4{1)

m4wrap

errprint

dumpdef

traceon

traceoft'

See Also

argument 1 will be pushed back at final BOF. For example:

m4wrap('cleanup()')

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or
for all if no arguments are given.

with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified.
Macros specifically traced by traceon can be untraced only
by specific calls to traceoff.

"The M4 Macro Processor," ULTRIX Supplementary Documents Vol. II:Programmer

1-392 Commands

machine (1)

Name
machine - return architecture type of machine

Syntax
machine

Description
The machine command prints on the standard output the architecture of the
machine. Legal values are either mips or vax depending upon your hardware. The
machine command is used within shell procedures to tailor the results to a specific
architecture.

The exit value of machine is always zero.

Commands 1-393

mail (1)

Name

Syntax

mail - send or read mail

mail [-v] [-i] [-n] [-e] [-s subject] [user ...]
mail [-v] [-i] [-n] -f [name]
mail [-v] [-i] [-n] -u user
mail nodename::username (If DEC net is installed.)

Description
The rna i 1 utility is an intelligent mail processing system which has a command
syntax similar to ed. However, in mai 1 lines are replaced by messages.

If DECnet is installed on your system, you can also send and receive mail from other
DECnet users. See mailaddr(7) for information on DECnet addressing.

Sending mail. To send a message to one or more persons, type mail and the names
of the people receiving your mail. Press the RETURN key. Note that if you use
other arguments, the names of the recipients should always be the last element on the
command line. For example,

mail -v -s "mail message" users

If you do not specify a subject on the command line, you are prompted for a subject.
After entering a subject, and pressing the RETURN key, type your message. To send
the message, type a period (.) or CTRL D at the beginning of a new line.

You can use tilde (-) escape sequences to perform special functions when composing
mail messages. See the list of options for more on tilde escape sequences.

Reading mail. In normal usage mail is given no arguments and checks your mail
out of the mail directory. Then it prints out a one line header of each message there.
The current message is initially the first message and is numbered 1. It can be
displayed using the pr int command.

The -e option causes mail not to be printed. Instead, an exit value is returned. For
the exit status, see RETURN VALUES. You can move among the messages by
typing a plus sign (+) followed by a number to move forward that many messages, or
a minus sign (-) followed by a number to move backward that many messages.

Disposing of mail. After reading a message you can delete (d) it or reply (r) to it.
Deleted messages can be undeleted, however, in one of two ways: you can use the
undelete (u) command and the number of the message, or you can end the mail
session with the exit (x) command. Note that if you end a session with the quit (q)
command, you cannot retrieve deleted messages.

Specifying messages. Commands such as print and delete can be given a list of
message numbers as arguments. Thus, the command

delete 1 2

deletes messages 1 and 2, while the command

delete 1-5

deletes messages 1 through 5. The asterisk (*) addresses all messages, and the dollar
sign ($) addresses the last message. For example, the top command, which prints

1-394 Commands

mail (1)

the first few lines of a message, can be used in the following manner to print the first
few lines of all messages:

top *

Replying to or originating mail. Use the reply command to respond to a message.

Ending a mail processing session. End a mail session with the quit (q)
command. Unless they were deleted, messages that you have read go to your mbox
file. Unread messages go back to the mail directory. The -f option causes mail to
read in the contents of your mbox (or the specified file) for processing. When you
qui t, the mail utility writes undeleted messages back to this file. The -u flag is a
short way of specifying: mail -f /usr / spool/mail/user.

Personal and systemwide distribution lists. You can create a personal distribution
list that directs mail to a group of people. Such lists can be defined by placing a line
similar to the following in the .mailrc file in your home directory:

alias cohorts bill ozalp jkf mark kridle@ucbcory

Cohorts is the name of the distribution list that consists of the following users: bill,
ozalp, jkf, mark, and kridle@ucbcory. A list of current aliases can be displayed with
the alias (a) command in mail.

System wide distribution lists can be created by editing /usr / lib/ aliases.
The syntax of system wide lists differs from that of personally defined aliases.

Personal aliases are expanded in mail you send. When a recipient on a personally
defined mailing list uses the reply (r) option, the entire mailing list receives the
response automatically. System wide aliases are not expanded when the mail is sent,
but any reply returned to the machine will have the system-wide alias expanded as all
mail goes through sendrnail.

Forwarding is also a form of aliasing. A . forward file can be set up in a user's
home directory. Mail for that user is then redirected to the list of addresses in the
. forward file. See aliases(5) and sendmail(8) for more information.

Network mail (ARPA, UUCP, Berknet, DECnet) See mailaddr(7) for a description
of network addresses.

Options

-e Causes mail not to be printed. Instead, an exit value is returned.

-f Causes mail to read in the contents of your mbox file (or another file you
specify) for processing.

-i Causes tty interrupt signals to be ignored. This is useful when using rna i 1
on noisy phone lines.

-0 Inhibits the reading of lusr/lib/Mail.rc.

-s Specifies a subject on the command line. Note that only the first argument
after the -s flag is used as a subject and that you must enclose subjects
containing spaces in quotes.

-u Specifies a short hand for expressing the following:

mail -f /usr/spool/mail/user

Commands 1-395

mail (1)

-v Prints the mail message. The details of delivery are displayed on the
user's terminal.

The following options can be set in the .mailrc file to alter the behavior of the mail
command.

Each command is typed on a line by itself and may take arguments following the
command word and the command abbreviation. For commands that take message
lists as arguments, if no message list is given, then the next message forward which
satisfies the command's requirements is used. If there are no messages forward of
the current message, the search proceeds backwards. If there are no good messages
at all, mail cancels the command, displaying the message: No applicable messages.

?

Prints out the previous message. If given a numeric argument n, prints
n -th previous message.

Prints a brief summary of commands.

Executes the ULTRIX shell command which follows,

alias (a) Prints out all currently-defined aliases, if given without arguments.
With one argument, prints out that alias. With more than one
argument, creates a new or changes an old alias. These aliases are in
effect for the current mail session only.

alternates (alt)
Informs mail that you have several valid addresses. The
al ternates command is useful if you have accounts on more than
one machine. When you reply to messages, mail does not send a
copy of the message to any of the addresses listed on the alternates
list. If the alternates command is given with no argument, the
current set of alternate names is displayed.

chdir (ch) Changes the user's working directory to that specified. If no directory
is given, then the chdir command changes to the user's login
directory.

copy (co) Takes a message list and file name and appends each message to the
end of the file. The copy command functions in the same way as the
save command, except that it does not mark the messages that you
copy for deletion when you quit.

delete (d) Takes a list of messages as argument and marks them all as deleted.
Deleted messages are not saved in mbox, nor are they available for
most other commands.

dp (or dt) Deletes the current message and prints the next message. If there is no
next message, mail returns a message: at EOF.

edit (e) Takes a list of messages and points the text editor at each one in tum.
On return from the editor, the message is read back in.

exit (ex or x) Returns to the Shell without modifying the user's system mailbox,
mbox file, or edit file in - f.

file (fi) Switches to a new mail file or folder. If no arguments are given, it
tells you which file you are currently reading. If you give it an
argument, it writes out changes (such as deletions) you have made in
the current file and reads in the new file. Some special conventions are

1-396 Commands

mail (1)

recognized for the name. A pound sign (#) indicates the previous file,
a percent sign (%) indicates your systemb mailbox, %user indicates
the user's system mailbox, an ampersand (&) indicates your -/mbox
file, and +folder indicates a file in your folder directory.

folders List the names of the folders in your folder directory.

folder (fo) Switches to a new mail file or folder. The folder command
functions in the same way as the file command.

from (f) Takes a list of messages and prints their message headers in the order
that they appear in the mail directory, not in the order given in the list.

headers (h) Lists the current range of headers, which is an 18 message group. If a
plus sign (+) is given as an argument, then the next message group is
printed. If a minus sign (-) is given as an argument, the previous
message group is printed.

help Prints a brief summary of commands. Synonymous with ?

hold (ho, also preserve)

ignore

rnail(m)

Takes a message list and marks each message in it to be saved in the
user's system mailbox instead of in mbox. The hold command does
not override the delete command.

Adds the list of header fields named to the ignored list. Header fields
in the ignore list are not printed on your terminal when you print a
message. This command is frequently used to suppress certain
machine-generated header fields. The type and print commands
are used to print a message in its entirety, including ignored fields. If
ignore is executed with no arguments, it lists the current set of
ignored fields.

Takes login names and distribution group names as arguments and
sends mail to those people.

mbox Indicates that a list of messages should be sent to mbox in your home
directory when you quit. This is the default action for messages if you
did not set the hold option.

next (n, + or CR)
Goes to the next message in sequence and types it. With an argument

list, it types the next matching message.

preserve (pre)

print (p)

Print (P)

quit (q)

Takes a message list and marks each message in it to be saved in the
user's system mailbox instead of in mbox . Synonymous with the
hold command.

Takes a message list and types out each message on the user's
terminal, without printing any specified ignored fields.

Prints a message in its entirety, including specified ignored fields.

Terminates the session. All undeleted, unsaved messages are saved in
the user's mbox file in his login directory; all messages marked with
hold or preserve or that were never referenced are saved in his
system mailbox; and all other messages are removed from his system
mailbox. If new mail arrives during the session, the user receives the

Commands 1-397

mail (1)

reply (r)

Reply (R)

respond

save (s)

set (se)

shell (sh)

size

source (so)

top

type (t)

type (T)

message: You have new mail. If given while editing a mailbox file
with the - f flag, then the edit file is rewritten. A return to the Shell is
effected, unless the rewrite of the edit file fails, in which case the user
can escape with the exit command.

Takes a message list and sends mail to the sender and all recipients of
the specified message. The default message must not be deleted.

Replies to originator of the message. Does not reply to other recipients
of the original message.

Takes a message list and sends mail to the sender and all recipients of
the specified message. Synonymous with rep 1 y.

Takes a message list and a file name and appends each message to the
end of the file. The messages are saved in the order in which they
appear in the mail directory, not in the order given in the message list.
The filename, which is enclosed in quotes, followed by the line count
and character count; is displayed on the user's tennirlal.

Prints all variable values when no arguments are given. Otherwise,
the set command sets the specified option. Arguments either take the
form

option=value

or

option

Invokes an interactive version of the shell.

Takes a message list and prints out the size (in characters) of each
message. The size of the messages are printed in the order that they
appear in the mail directory, not in the order given in the list.

Reads mail commands from a file.

Takes a message list and prints the top few lines of each. The number
of lines printed is controlled by the variable toplines and defaults
to five.

Takes a message list and types out each message on the user's
terminal, without printing any specified ignored fields. Synonymous
with print.

Prints a message in its entirety, including specified ignored fields.
Synonymous with print.

unalias Takes a list of names defined by alias commands and cancels the
list of users. The group names no longer have any significance.

undelete (u) Takes a message list and marks each one as not being deleted.

unset

visual (v)

write (w)

Takes a list of option names and discards their remembered values; the
inverse of set.

Takes a message list and invokes the display editor on each message.

Takes a message list and a file name and appends each message to the
end of the file. Synonymous with save.

1-398 Commands

xit (x)

z

mail (1)

Returns to the Shell without modifying the user's system mailbox,
mbox, or edit file in -f. Synonymous with exit.

Presents message headers in windowfulls as described under the
headers command. You can move forward to the next window with
the z command. Also, you can move to the previous window by using
z-.

The following is a summary of the tilde escape functions that you can use when
composing mail messages. Note that you can only invoke these functions from
within the body of a mail message and that the sequences are only executed if they
are placed at the beginning of lines .

.... !command Executes the indicated shell command, then returns to the message.

Prints a brief summary of tilde commands.

""': Executes the mail commands. (For example, the command '" : 1 0
prints out message number 1 0 while '" : - prints out the previous
message .

.... c name ... Adds the given names to the list of carbon copy recipients .

.... d Reads the file named dead letter from your home directory into the
message .

.... e Invokes the text editor on the message you are typing. After the
editing session is finished, you may continue appending text to the
message.

""'f messages Reads the named messages into the message being sent. If no
messages are specified, reads in the current message .

.... h Edits the message header fields by typing each one in turn and
allowing the user to append text to the end or to modify the field by
using the current terminal erase and kill characters.

""'m messages Reads the named messages into the message being sent, shifted one
tab space to the right. If no messages are specified, reads the current
message .

.... p Prints the message on your terminal, prefaced by the message header
fields .

.... q Aborts the message being sent, copying the message to dead.letter in
your home directory if the save option is set .

.... r filename Reads the named file into the message .

.... s string Causes the named string to become the current subject field .

.... t name ... Adds the given names to the direct recipient list.

.... v Invokes an alternate editor (defined by the VISUAL option) on the
message. Usually, the alternate editor is a screen editor. After you
quit the editor, you can resume appending text to the end of your
message .

.... w filename Writes the message onto the named file .

.... \ command Pipes the message through the command as a filter. If the command

Commands 1-399

mail (1)

--string

gives no output or terminates abnormally, retains the original text of
the message. The command fmt(1) is often used as command to
rejustify the message.

Inserts the string of text in the message prefaced by a single tilde (-).
If you have changed the escape character, then you should double that
character in order to send it.

Options are controlled via the set and unset commands. Options may be either
binary or string. If they are binary you should see whether or not they are set; if they
are string it is the actual value that is of interest.

The binary options include the following:

. append Causes messages saved in mbox to be appended rather than
prepended. (This is set in /usr/lib/Mail.rc on version 7 systems.)

ask

askcc

autoprint

debug

dot

hold

ignore

ignoreeof

msgprompt

metoo

nosave

quiet

verbose

Causes mail to prompt you for the subject of each message you
send. If you simply respond with a new line, no subject field is
sent.

Asks you at the end of each message whether you want to send a
carbon copy of the message to additional recipients. Responding
with a new line indicates your satisfaction with the current list.

Causes the delete command to behave like dp - thus, after
deleting a message, the next one is typed automatically.

Causes mail to output information useful for debugging mail.
Setting the binary option debug is the same as specifying -d on
the command line.

Causes mail to interpret a period alone on a line as the terminator
of a message you are sending.

Holds messages in the system mailbox by default.

Causes interrupt signals from your terminal to be ignored and
echoed as at signs (@).

Causes mail to refuse to accept a control-d as the end of a
message.

Prompts you for the message text and indicates how to terminate
the message.

Includes the sender in the distribution group receiving a mail
message.

Prevents rna i 1 from copying aborted messages into the dead.letter
file in your home directory.

Suppresses the printing of the version when first invoked.

Displays the details of each message's delivery on the user's
terminal. Setting the verbose option is the same as typing -von
the command line.

The string options include the following:

EDITOR Pathname of the text editor to use in the edit command and -e
escape. If not defined, then a default editor is used.

1-400 Commands

SHELL

VISUAL

crt

escape

folder

record

toplines

mail (1)

Pathname of the shell to use in the ! command and the,..,! escape.
A default shell is used if this option is not defined.

Pathname of the text editor to use in the vis ua 1 command and
-v escape.

Threshold to determine how long a message must be before more
is used to read it.

The first character of this option gives the character to use in the
place of tilde (-) to denote escapes, if defined.

Directory name to use for storing folders of messages. If this name
begins with a backs lash (I) rna i 1 considers it an absolute
pathname; otherwise, the folder directory is found relative to your
home directory.

Pathname of the file used to record all outgoing mail. If it is not
defined, then outgoing mail is not so saved.

The number of lines of a message that is printed out with the top
command; normally, the first five lines are printed.

Return Values

Files

If mail is invoked with the -e option, the following exit values are returned:
o the user has mail
1 the user has no mail

lusrlspooVmaiV*
-1mb ox
-I.mailrc
Itmp!R#
lusr/lib/Mail.help*
lusr/lib/Mail.rc
Message*

mail directory
your read mail
file giving initial mail commands
temporary for editor escape
help files
system initialization file
temporary for editing messages

See Also
binmail(1), fmt(l), newaliases(1), aliases(5), mailaddr(7), sendmail(8)

Commands 1-401

make (1)

Name
make, s5make - maintain, update, and regenerate groups of programs

Syntax
make [·f makefile] [options] [names]

s5make [·f makefile] [options] [names]

Description

This is the SYSTEM V version of the make command with some Berkeley
compatibility added.

Options

-b

-d

-e

-f makefile

-i

-k

-m

-0

-p

-q

-r

-s

-s

-t

1-402 Commands

Compatibility mode for old makefiles.

Debug mode. Displays detailed information on files and times
examined.

Causes environment variables to override assignments within
makefiles.

Uses the specified description file name. A file name of - denotes
the standard input. The contents of the file specified as makefile
override the built-in rules.

Ignores error codes returned by invoked commands. This mode is
entered if the special target name .IGNORE appears in the
description file.

Stops work on the current entry, but continues on other branches
that do not depend on that entry.

Displays a memory map showing text, data, and the stack. Does
not operate on systems without the get u system call.

No execute mode. Displays commands, but does not execute
them. Even lines beginning with an at sign (@) are printed.

Displays the complete set of macro definitions and target
descriptions.

Question mode. Returns a zero or nonzero status code depending
on whether the target file is or is not up to date.

Does not use the built-in rules.

Silent mode. Suppresses the display of command lines before
executing. This mode is also entered if the special target name
.SILENT appears in the description file.

Abandon work on the current entry if it fails; the opposite of the -k
option. If both options are specified, the last one specified on the
command line is used.

Touches target files (causing them to be up to date) rather than

Special Names

. DEFAULT

.PRECIOUS

. SILENT

.IGNORE

. SUFFIXES

Discussion

make{1)

issuing usual commands.

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists.

Dependents of this target are not removed when quit or interrupt is
hit.

Same effect as the -s option .

Same effect as the -i option .

Dependencies of the .SUFFIXES special target are added to the
table of known suffixes.

The make program executes commands in make/tie to update one or more target
names . The name argument is typically a program. If no -f option is present,
makefile, Makefile, s.makefile, and s.Makefile are tried in order. If makefile is -,
the standard input is taken. You can specify more than one -f makefile argument.

The make program updates a target only if its dependents are newer than the target.
All prerequisite files of a target are added recursively to the list of targets. Missing
files are deemed to be out of date.

The makefile argument contains a sequence of entries that specify dependencies. The
first line of an entry is a blank-separated, non-null list of targets, then a colon (:),
then a (possibly null) list of prerequisite files or dependencies. Text following a
semicolon (;) and all following lines that begin with a tab are shell commands to be
executed to update the target. The first line that does not begin with a tab or number
sign (#) begins a new dependency or macro definition. Shell commands can be
continued across lines with the backslash followed by a new-line (RET) sequence.
Everything printed by make (except the initial tab) is passed directly to the shell.
For example:

echo a\
b

These entries produce the following:

ab

This output is exactly the same as what would have been produced by the shell.

Number sign (#) and new-line surround comments.

The following makefile says that pgm depends on two files a. 0 and b. 0, and that
they in turn depend on their corresponding source files (a. c and b . c) and a
common file incl. h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Commands 1-403

make (1)

Command lines are executed one at a time, each by its own shell. The first one or
two characters in a command can be the following: -, @, -@, or @-. If @ is
present, printing of the command is suppressed. If - is present, rna k e ignores an
error. A line is printed when it is executed unless the -s option is present, or the
entry .SILENT: is in makefile, or unless the initial character sequence contains a @.
The -n option specifies printing without execution. However, if the command line
has the string $(MAKE) in it, the line is always executed (see discussion of the
MAKEFLAGS macro under Environment). The -t (touch) option updates the
modified date of a file without executing any commands.

Commands returning nonzero status normally terminate make. If the -i option is
present, or the entry .IGNORE: appears in makefile, or the initial character sequence
of the command contains -, the error is ignored. If the -k option is present, work
stops on the current entry, but continues on other branches that do not depend on that
entry.

The -b option allows old makefiles (those written for the old version of make) to run
without errors. ine difference between the oid version of make and this version is
that this version requires all dependency lines to have a (possibly null or implicit)
command associated with them. The previous version of make assumed, if no
command was specified explicitly, that the command was null.

Interrupt and quit cause the target to be deleted unless the target is a dependent of the
special name .PRECIOUS.

Environment
The environment is always read by make. All variables are assumed to be macro
definitions and processed as such. The -e option causes the environment to override
the macro assignments in a makefile.

The make command operates in three compatibility modes. The type of mode is
determined by value of the PROG_ENV environment variable and by the way that
make is executed. The PROG_ENV variable has three valid values:

• BSD

• POSIX

• SYSTEM_FIVE

In BSD mode, make executes with Berkeley compatibility. This means that
/bin/ sh is always used as the command interpreter regardless of the value of
SHELL, and the commands are echoed to standard out without a prefixed <tab>.

In POSIX mode, make executes with POSIX compatibility, such that the SHELL
environment variable is always ignored, SHELL is always overridden by
MAKESHELL, the shell is always used to execute commands, and commands are
echoed to standard out with a prefixed <tab>.

SYSTEM_FIVE mode causes make to run with SYSTEM V compatibility such that
SHELL is used to execute commands and commands are echoed to standard out with
a prefixed <tab>.

For all modes, SHELL has a default value of /bin/ sh. When make is executed
with the command name s Smake, it always executes in SYSTEM_FIVE mode and
ignores the environment variable PROG_ENV.

1-404 Commands

make (1)

The MAKEFLAGS environment variable is processed by make as containing any
legal input option (except -f, -p, and -d) defined for the command line. Further,
upon invocation, make invents the variable if it is not in the environment, puts the
current options into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This proves very useful for
super-makes. In fact, as noted above, when the -0 option is used, the command
$(MAKE) is executed anyway. Hence, one can perfonn a make -0 recursively on a
whole software system to see what would have been executed. This is because the
-0 is put in MAKEFLAGS and passed to further invocations of $(MAKE). This is
one way of debugging all of the makefiles for a software project without actually
doing anything.

Macros
Macros can be defined in four different ways. Some macros are defined by default by
make internally. All environment variables are assumed to be macro definitions and
macros can be defined in the makefile as well as on the make command line. By
default, the internal default macros are overridden by environment variables, macros
defined in the makefile override environment variables and macros defined on the
command line override macros defined in the makefile. The -e option changes this
such that environment variables override macros defined in the makefile.

Entries of the fonn string] = string2 are macro definitions. String2 is defined as all
characters up to a comment character or an unescaped new-line. Subsequent
appearances of $(string] [: substl =[subst2JJ) are replaced by string2 . The
parentheses are optional if a single character macro name is used and there is no
substitute sequence. The optional : subst] = subst2 is a substitute sequence. If it is
specified, all non-overlapping occurrences of substl in the named macro are replaced
by subst2. The occurrence of subst] must be a suffix at the end of the word string].
Strings (for the purposes of this type of substitution) are delimited by blanks, tabs,
new-line characters, and beginnings of lines. An example of the use of the substitute
sequence is shown under Libraries.

The MACHINE macro is defined by make to allow for machine independent
makefiles. The legal values are: vax or mips.

Internal Macros
There are five internally maintained macros which are useful for writing rules for
building targets.

$* The macro $* stands for the file name part of the current
dependent with the suffix deleted. It is evaluated only for
inference rules.

$@

$<

The $@ macro stands for the full target name of the current target.
It is evaluated only for explicitly named dependencies.

The $< macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out-of-date with
respect to the target (that is, the manufactured dependent file
name). Thus, in the .c.o rule, the $< macro would evaluate to the
.c file. An example for making optimized .0 files from .c files is:

.c.O:
cc -c -0 $*.c

or:

Commands 1-405

make(1)

$?

$%

.c.o:
cc -c -0 $<

The $? macro is evaluated when explicit rules from the make file
are evaluated. It is the list of prerequisites that are out of date with
respect to the target; essentially, those modules which must be
rebuilt.

The $% macro is only evaluated when the target is an archive
library member of the form Iib(file.o). In this case, $@ evaluates
to lib and $% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to directory part for D
and file part for F. Thus, $(@D) refers to the directory part of the string $@. If
there is no directory part, J is generated. The only macro excluded from this
alternative form is $? The reasons for this are debatable.

Suffixes
eertain names (for instance, those ending with .0) have prerequisites such as .c, .s,
which can be inferred. If no update commands for such a file appear in make/tie, and
if an inferable prerequisite exists, that prerequisite is compiled to make the target. In
this case, make has inference rules which allow building files from other files by
examining the suffixes and determining an appropriate inference rule to use. The
current default inference rules are:

.c .c'" .sh .sh'" .c.o .c"'.o .c"'.c .s.o .s"'.o .y.o
.y"'.o .1.0 .1"'.0 .y.c .Y"'.c .1.c .c.a .c"'.a .s"'.a .h"'.h

The internal rules for make are contained in the source file rules.c for the make
program. These rules can be locally modified. To print out the rules compiled into
make in a form suitable for recompilation, the following command is used from
/bin/sh:

make -fp - 2>/dev/nu11 </dev/nul1

The only peculiarity in this output is the (null) string which printf(3s) prints when
handed a null string.

A tilde in the above rules refers to an sees file. Thus, the rule .c o would
transform an sees e source file into an object file (.0). Because the s. of the sees
files is a prefix, it is incompatible with the make suffix point-of-view. Hence, the
tilde is a way of changing any file reference into an sees file reference.

A rule with only one suffix (that is, .c:) is the definition of how to build x from x.c.
In effect, the other suffix is null. This is useful for building targets from only one
source file (for example, shell procedures, simple e programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is inferred as
a prerequisite. The default list is:

. SUFFIXES: .0 .c .y .1 .s

Here again, the above command for printing the internal rules display the list of
suffixes implemented on the current machine. Multiple suffix lists accumulate;
.SUFFIXES: with no dependencies clears the list of suffixes.

1-406 Commands

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

make{1)

This is because make has a set of internal rules for building files. The user may add
rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and
YFLAGS are used for compiler options to cc(1), lex(1), and yacc(1), respectively.
Again, the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix
.0 from a file with suffix .c is specified as an entry with .c.o: as the target and no
dependents. Shell commands associated with the target define the rule for making a
.0 file from a .c file. Any target that has no slashes in it and starts with a dot is
identified as a rule and not a true target.

Libraries

If a target or dependency name contains parentheses, it is assumed to be an archive
library, the string within parentheses referring to a member within the library. Thus
lib(file.o) and $(LIB)(file.o) both refer to an archive library which contains file.o.
(This assumes the LIB macro has been previously defined.) The expression
$(LIB)(filel.o file2.0) is not legal. Rules pertaining to archive libraries have the form
.xx.a where the XX is the suffix from which the archive member is to be made. An
unfortunate byproduct of the current implementation requires the XX to be different
from the suffix of the archive member. Thus, one cannot have lib(file.o) depend
upon file.o explicitly. The most common use of the archive interface follows. Here,
we assume the source files are all C type source:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up-to-date

.c.a:
$(CC) -c $(CFLAGS1) $<
ar rv $@ $*.0
rm -f $*.0

In fact, the .c.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $?
@echo lib is now up-to-date

. c.a:;

Here the substitution mode of the macro expansions is used. The $? list is defined
to be the set of object file names (inside lib) whose C source files are out-of-date.
The substitution mode translates the .0 to .c. (Unfortunately, one cannot as yet
transform to .c ; however, this may become possible in the future.) Note also, the
disabling of the .c.a: rule, which would have created each object file, one by one.
This particular construct speeds up archive library maintenance considerably. This

Commands 1-407

make(1)

type of construct becomes very cumbersome if the archive library contains a mix of
assembly programs and C programs.

Restrictions

Files

Some commands return non-zero status inappropriately; use -i to overcome the
difficulty. File names with the characters = : @ do not work. Commands that are
directly executed by the shell, notably cd(1), are ineffectual across new-lines in
make. The syntax (lib(filel.o file2.o file3.o) is illegal. You cannot build Iib(file.o)
from file.o. The macro $(a:.o=.c"') does not work.

[Mm]akefile and s.[Mm]akefile

See Also
cc(l), cd(l), lex(l), sh(l), yacc(1), sSmake(l)

1-408 Commands

Name

Syntax

man - displays manual pages online

man -k keyword ...
man -f page _title ...
man [options] [-roff_options] ... [section] page_title ...
man [options] [section page_title ...] ...

/nsr/bin/man [option] [section] page_title ...
/nsr/bin/man [options] [section page_title ...] ...

man (1)

Description
There are two man commands: /usr /ucb/man, and /usr /bin/man. For most
users, /usr /ucb/man is the default man command. The command

which man

shows you which man command is the default. The recommended default is
/usr /ucb/man.

Both the man commands provide online displays of specified reference pages.

The lusr/ucb/man Command.

The basic function of this command is to provide online displays of reference pages.
You can use options, however, to direct the man command to display one line
summaries of reference pages which contain specific keywords, to display one line
summaries of specific reference pages, to use special formatting options when
preparing the reference page for display or printing, and to search alternate reference
page directories for specified reference pages.

If an option is not used, the man command formats and displays one or more
specified reference pages. If there are multiple reference pages which match a
specified name, only the first matching reference page is displayed. If there are
multiple matches in a section for a specified name, the matching page in the first
alphabetically occurring subsection is displayed.

If you specify the man command with a section argument, the man command looks
in that section of the reference pages for the specified page titles. A section consists
of a number in the range 0 to 9, optionally followed by an alphanumeric subsection,
or section can be the name 'local', 'new', 'old', or 'public'. Numbers 0 and 9 are
non-standard. If a section is omitted, the man command searches all sections of
the reference pages. The man command displays commands (both standard and
local) over subroutines in system libraries, and displays the first occurrence it finds, if
any. If Section 1 is specified, the sections n, 1, and 0 are also searched, if they exist.

The section and page _title ... arguments can be paired, so that multiple pages can be
searched for in a section, and multiple sections can be searched for a page or pages.

All displays are directed to standard out, unless redirected, or unless the -t option is
specified. If the standard output is a teletype device, the man command completes
the following: pipes the output through the cat(l) command using the option -s to
eliminate unnecessary blank lines and invokes the page(l) command using the

Commands 1-409

man (1)

option -s to display a screen at a time.

If a specified reference page is not already formatted, but the source file exists, the
man command preprocesses the file through the tbl(l) command. The command
next pipes the output to the nroff(l) command, or to the troff command if the
-t option was specified, using the man(7) macros package. If the tbl output was
directed to the nroff command, the output is then piped through the col(l)
postprocessor, then directed to standard out. If the appropriate /usr /man/ cat?
directory exists, the formatted display is saved there.

The lusr/bin/man Command
The /usr /bin/man command performs the same basic function as the
/usr /ucb/man command, that is, formats and displays or prints specified reference
pages. It does not provide all the functions of / u s r / u cb / man, and there are some
differences in common functions.

The /usr /bin/man command searches for the specified reference pages, and
formats and displays all reference pages matching the specified names. If no section
is specified, all sections I through 8 are searched. In the case of multiple matches,
the display order is in numeric section order, and ASCII subsection order within a
section.

All displays are directed to standard out, unless redirected, or unless an option is used
which requests processing through the troff command. If a troff option was not
specified, then the standard output is to a teletype device. If the standard output is a
teletype device, the /usr /bin/man pipes the output through the col(l)
postprocessor, then directs the output to standard out.

The /usr /bin/man command does not use preformatted files. It searches only the
/ u s r / man / man [1-8] directories for source files.

If a specified file exists, it is always preprocessed through the tbl(l) command.

If an option is not used, the /usr /bin/man command formats and displays
specified reference pages using the nroff command.

If multiple options are specified, only the last one is executed, except that multiple
-roff options are accepted and executed.

Options

lusr/ucb/man Options

The following options are recognized only by the /usr /ucb/man command. Note
that the options - and - k do not have the same functionality as the corresponding
/usr /bin/man options.

Squeeze multiple blank lines from output.

-f Display one line summaries of each page title specified on the
command line.

-k Display one line summaries of each reference page that contains the
specified keyword or keywords.

-p manpath Search the specified manpath directory instead of /usr /man.

-s Remove unnecessary blank lines.

1-410 Commands

-t

man{1)

Phototypesets the output through the traff command.

This option requires the installation of the traff command, which is
unsupported. When the -t option is specified, the traff output is
directed, by 1 P r' s -t option, to the printer or typesetter specified by
the PRINTER environment variable. PRINTER must be set to a
printer which is capable of handling traff output files. The default
is the Ip printer (see lpr(l) description of the -t option for more
information).

lusr/bin/man Options
The following options are recognized by the /usr /bin/man command. Note that
the options - and - k do not have the same functionality as the corresponding
/usr /ucb/man options.

-roff_ options Inserts the specified roff_ option in front of the -man option when the
appropriate *roff text formatter is called (the other options determine
which *roff formatter is called). Multiple roJ! options can be
specified. If a null value is specified, the results are unpredictable.

-e l-et I-te Preproceses the display with the eqn command, then performs the
same steps as the -t option.

This option requires the installation of the eqn and traff
commands, which are unsupported.

-ek I-ke Preproceses the display with the eqn command, then performs the
same steps as the - k option.

This option requires the installation of the eqn, tc, and traff
commands, which are unsupported.

-k Formats the display through the traff command, using troff's -t
option, then directs the output to the t c command.

-n
-ne l-en

-t

-w

Restrictions

This option requires the installation of the tc and traff commands,
which are unsupported.

Formats the display through the nraff command. This is the default.

Preproceses the display with the neqn command, then performs the
same steps as the -n option.

This option requires the installation of the n e qn command, which is
unsupported.

Photypesets the output through the traff command.

This option requires the installation of the traff command, which is
unsupported.

Shows where the specified reference pages are located, relative to the
/ u s r / man directory.

The reference pages are reproducible on phototypesetters or on hardcopy devices.
However, some devices do not properly handle special characters which causes
information to be lost.

Commands 1-411

man (1)

Some options require the installation of unsupported software. Use of these options
is at your own risk.

Options which call the neqn or eqn commands will generally fail when used with
the ULTRIX reference pages, because any ULTRIX reference pages which use *eqn
commands were preprocessed through the neqn text formatter before being packaged
for shipment to you. *eqn text preprocessors generally report numerous errors when
attempts are made to reprocess files a second time through an *eqn text
preprocessor.

Both /usr/ucb/man and /usr/bin/man commands cd to the /usr/man
directory before searching for and formatting files. Some reference pages assume that
this happens. Therefore, an attempt to format some reference pages manually with a
*roff text formatter may fail if you are not sitting in the /usr /man directory.

lusr/ucb/man Restrictions

If a specified reference page exists in the appropriate /usr /man/man? directory,
but there is no appropriate /usr /man/ cat? directory, you will not be able to
scroll backwards in the display.

The man directories for sections n, 1, 0, p, 0 and 9 are optional directories. They must
be created by the system administrator.

The /usr /man/ cat? directories are not required to exist. They must be created
by the system administrator. This is generally done through the catman(8)
command.

Examples

/usr/ucb/man Examples

The following examples all assume the use of the default command:
/usr /ucb/man.

The following example shows how to locate reference pages containing the keyword
'graph':

% man -k graph

The following example shows how to display the graph(lg) reference page:

% man 19 graph

The following example shows how to display plot reference pages:

% man 1 plot 3 plot

The following example shows how to display chmod and chown reference pages:

% man 1 chmod chown 2 chmod chown

The following example shows how to display a reference page test in the
/ u s r / man / man 1 directory. In order to locate the t est reference page here, it
must have the file name test .1, so its reference page title would be test(l).

% man local test

To locate the test reference pages in Section 1:

% man 1 test lshS test

1-412 Commands

Files

man{1)

If you have a directory / us r /1 a cal / man which contains man? subdirectories,
which also contain reference pages, then the following example shows how to display
a reference page game s located somewhere in a subdirectory of
/usr/lacal/man:

% man -P /usr/local games

lusr/bin/man Examples

The following example shows how to display chmad reference pages:

% /usr/bin/man chmod

The above displays all the chmad reference pages from all sections of the installed
reference pages.

The following example shows how to display all the test reference pages in
Section 1:

% /usr/bin/man 1 test

The following example shows how to locate all the test reference pages:

% /usr/bin/man -w test

The following example shows how to locate all the intra reference pages in
Section 3:

% /usr/bin/man -w 3 intro

The following example displays the man(1) reference page with a starting page
number of 10.

% /usr/bin/man -nlO 1 man

/usr /ucb/man The default man command.

/usr /bin/man The alternate man command.

/usr /man/man? /* These directories contain the online reference pages which
are divided into sections 1 through 8, n, 1, 0, and p. Sections
o and 9 can also exist but these are non-standard sections.

/usr /man/ cat? /* These directories contain the files generated by the man and
ca tman commands.

/usr / lib/whatis This file contains the summary lines of each reference page.

Commands 1-413

man (1)

manpath/man/man? /*

See Also

These directories contain reference pages to be searched by
the man command when the - P manpath option is specified.
These directories must have the same organization and
format as /usr /man.

apropos(l), col(l), man(7), moff(l), page(l), tbl(l), whatis(l), whereis(l), catman(8)

1-414 Commands

Name

Syntax

mark(1mh)

mark - mark messages

mark [+/oldername] [msgs] [-sequence name ...] [-add] [-delete] [-list] [-public]
[-nopublic] [-zero] [-nozero] [-help]

Description
Use the mark command to assign a name to a sequence of messages within the
current folder. You can then use this message sequence with any MH command that
takes a msg or msgs argument.

The following example shows how you can create a message sequence called "out"
containing messages 10--20 in the current directory. The second part of the example
shows how this sequence can be used in conjunction with the rmm command, to
delete all the messages in the sequence.

% mark 10-20 -sequence out

% rmm out

You can specify a folder other than the current folder, by using the <+folder>
argument.

Sequences still point to the same messages even if you sort all the messages in the
folder with so rtm .

If you delete a message or refile it in another folder, it is also deleted from the
sequence.

You can use mark in conjunction with pick to give you a very powerful and
flexible way to manipulate messages. The following example shows how you can
combine the two commands together to select all messages from Adrian and put them
in a sequence named Ateam. See pick(lmh) for more details of the power of
pick.

mark 'pick -from Adrian' -sequence Ateam

Note that you cannot use special characters, such as hyphens, in sequence names.
Sequence names can consist of alphanumeric characters, but the first character must
be alphabetic.

If you create a sequence using mark, the ordering of messages within the folder
remains unchanged. So if messages 3, 7 and 9 are put into the sequence, they are
still shown as messages 3, 7 and 9 if you use scan after incorporating them into the
sequence. The scan command does not show any differences between messages
that are in sequences and ordinary messages within a folder.

Options

If you use mark on its own without specifying -sequence name, it displays the
sequences that have been created in the current folder. The following example shows
how this works. It also illustrates that one message can be in more than one
sequence at the same time.

Commands 1-415

mark(1mh)

% mark
cur: 19
one: 2 7 9
Two: 2-4

An identical result can be obtained if you use mark-list

A message sequence is a keyword, just like one of the reserved message names,
such as first or next. Unlike the reserved message names, you can define,
modify, and remove the semantics of a message sequence. Message sequences are
folder-specific, for example: the sequence name seen in folder +inbox need not
have any relation whatsoever to the sequence of the same name in a folder of a
different name.

You can manipulate sequences with three options:

-add
-delete
-list

These switches are mutually exclusive: the last occurrence of any of them overrides
any previous occurrence of the other two.

The -add switch tells mark to add messages to sequences or to create a new
sequence. For each sequence named via the -sequence <name> argument the
messages named in <ms 9 s > (which defaults to the current message if no ms 9 s are
given), are added to the sequence. The messages to be added need not be absent
from the sequence. If you specify the -zero option, all messages in the sequence
are removed from the sequence, before the new messages are added to it. Note the
messages are removed from the sequence only. They are not deleted or removed
from your folder.

If you specify -add-nozero the specified messages are appended to the sequence.

The -delete switch tells mark to delete messages from sequences, and is the
opposite of -add. For each of the specified sequences, the named messages are
removed from the sequence. These messages need not be already present in the
sequence. If the -zero switch is specified, then all the messages in the folder are
appended to the sequence prior to the removal of the messages. The following
example shows how this works in a folder with sixteen messages.

% mark -delete -zero 7 -sequence not seven

% mark
notseven: 1-6 8-16

Hence, -delete -zero means that each sequence should contain all messages
except those indicated, while -delete -nozero means that only the indicated
messages should be removed from each sequence. As expected, the command
mark -sequence seen -delete all deletes the sequence seen from the
current folder.

When creating (or modifying) a sequence, the -public switch indicates that the
sequence should be made readable for other MH users. In contrast, the -nopublic
switch indicates that the sequence should be exclusive to your MH environment.

The -1 i s t switch tells rna r k to list the sequences defined for the folder and the
messages associated with those sequences.

1-416 Commands

Files

mark(1mh)

You can list each sequence named by using the -sequence name switch. If you
do not specify the sequence name, -1 i s t lists all sequences, and the messages
associated with those sequences, in the specified folder. The -zero switch does not
affect the operation of -1 is t .

The name used to denote a message sequence must consist solely of alphabetic
characters, and cannot be one of the reserved message names (such as, fir s t cu r
and so forth).

You can define up to a maximum of 10 sequences in anyone folder.

The name used to denote a message sequence cannot occur as part of a message
range: for example, constructs like seen: 20 or seen -10 are forbidden.

The defaults for this command are:

+folder defaults to the current folder
-add if msgs is specified, -list otherwise
msgs defaults to cur (or all if -list is specified)
-nopublic if the folder is read-only, -public otherwise
-no zero

$HOME/.mh_profile Your user profile

Profile Components
Path: To your MH directory
Current-Folder: To find the default current folder

See Also
folder(1mh), pick(1mh), sortm(1mh)

Commands 1-417

VAX mdtar(1)

Name
mdtar - multivolume archiver

Syntax
mdtar [key] [name ...]

Description
The mdtar command saves multiple files on multiple archives (usually an RX50
diskette, but any file/device may be specified). mdtar actions are controlled by the
key argument. The key is a string of characters containing one function letter and
one or more function modifiers. Other arguments to mdtar are file or directory
names specifying which files to dump or restore. In all cases, appearance of a
directory name refers to the files and, recursively, subdirectories of that directory.
mdtar also saves special files.

Options

-c Changes directory to specified name. This allows multiple directories
not related by a close common parent, to be archived using short relative
path names. For example, to archive files from /usr/include and
from / et c, one might use

tar c -c /usr include . -C /etc .

The function portion of the key is specified by a letter.

e Creates a new archive. Writing begins at the beginning of the archive
instead of after the last file.

r Writes the named files to the end of the archive.

t If no file argument is given, all Generates archive table of contents. If
no argument is given, all of the names on the archive are listed. Produce
a Table of contents.

u Updates the current archive. Adds the named files to the archive, if they
are not there already or if they have been modified since last put on the
archive.

x Extracts each specified file from the archive. If the named file matches a
directory whose contents had been written onto the archive, this directory
is recursively extracted. The owner, modification time, and mode are
restored if you are the superuser and if you have also specified the p
switch. If no file argument is given, the entire content of the archive is
extracted. If multiple entries specifying the same file are on the archive,
the last one overwrites previous versions.

The following characters may be used to qualify the function desired in addition to
one or more of the above letters.

0 ••• 9 Selects unit number of the drive as an alternate disk drive. The default
disk drive is the device named / dev / r r a 1 a .

A Uses the specified number (next argument) as archive with which to

1-418 Commands

mdtar(1)

begin the output. This switch is intended for error recovery. rndtar
outputs files in terms of Archives. Each Archive contains a number of
files. If rndtar has been requested to dump a path (set of files) that
consist of (for example) 10 archives and there is an error writing the nth
Archive, then the A modifier may be used to restart rndtar at the nth
Archive.

CAUTION

You must issue the same path (set of files) as in the first command. This
will guarantee that rndtar will begin at the correct file on Archive n.

If the v mode is specified, rndtar outputs informational messages to inform the user
of progress. For example, the following command will dump the entire directory
structure:

mdtar cv

If an error occurs on Archive 7, to restart at the 7th Archive, without having to re
dump the first 6 Archives, issue the following command:

mdtar cvA 7

rndtar will tell you it is skipping the first 6 Archives and will resume output with
the data that begins Archive 7.

b Uses the specified number (next argument) as the blocking factor. The
default is 20 (the maximum is 20).

B Forces output blocking to 20 blocks per record.

f Uses the specified file (next argument) as the name of the archive. If the
name of the file is -, tar writes to standard output (piping).

F[F] Operates in fast mode. When F is specified, rnd tar skips all sees
directories, core files, and errs files. When FF is specified, rndtar also
skips all a.out and *.0 files.

h Saves a copy of the file (excludes symbolic links). The default action of
rndtar is to place symbolic link information on the output device. A
copy of the file IS NOT saved on the output device.

Ignores checksum errors found in the archive.

Displays an error message if all links to the files dumped cannot be
resolved. If -1 is not specified, no error messages are printed.

m Does not restore file modification times. The modification time is the
time of extraction. Normally, rndtar restores modification times of
regular and special files.

o Suppresses the normal directory information. On output, rndtar
normally places information specifying owner and modes of directories
in the archive. Former versions of tar, when encountering this
information will give the error message

<name>/: cannot create.

p Restores the named files to their original modes, ignoring the present
urnask(2). Setuid and sticky information will also be restored to the
super-user. You must be Superuser to perform this option. For further

Commands 1-419

VAX

VAX mdtar(1)

infonnation, see stat(2), S_ISVTX.

s Uses specified number (next argument) as size of media in 512-byte
blocks. This enables mdtar to be used with devices of different
physical media sizes. The default is 800 blocks (assumption is an RX50
output Archive).

v Displays detailed (verbose) infonnation as it archives files. Nonnally
mdtar does its work silently. With the t function, the verbose option
gives more infonnation about the archive entries than just their names.

#cd
#tar cvf tar-out vmunix

Produces the output "a vmunix 1490 blocks" where 1490 is the number
of 512 byte blocks in the file "vmunix".

#tar xvf tar-out

Produces the output "x vmunix, 762880 bytes, 1490 blocks" where
762880 is the number of bytes and 1490 is the number of 512 byte
blocks in the file "vmunix" which was extracted.

w Displays action to be taken for each file and prompts for confinnation. If
a word beginning with 'y' is given, the action is done. Any other input
means do not do it.

Restrictions

The u option can be slow.

The current limit on file name length is 100 characters.

There is no way to follow symbolic links selectively.

Diagnostics
Indicates bad key characters and archive read/write errors.

Indicates if enough memory is not available to hold the link tables.

Files
/tmp/tar*

See Also
stat(2), tar(1)

1-420 Commands

mesg(1)

Name
mesg - allow or disallow messages

Syntax
mesg [0] [y]

Description
The mesg command with argument 0 forbids messages via write and talk by
revoking non-user write permission on the user's terminal. The mesg command with
argument y reinstates permission. All by itself, me s g reports the current state
without changing it.

Diagnostics
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

Files
/dev/tty*

See Also
talk(l), write(1)

Commands 1-421

mh(1mh)

Name
mh - Message Handler

Description

MH consists of a collection of fairly simple single-purpose programs to send, receive,
save, and retrieve messages. See the individual MH reference pages for descriptions
of the programs that make up MH.

Unlike mail, MH is an optionally installed basesystem component. You can freely
intersperse MH commands with other shell commands that allow you to read and
answer your mail while you are performing another task.

To get started using MH, edit either the. profile, . login, or . cshrc files in
your home directory to add the pathname / u s r / n ew / mh to your $ PAT H. Check
the manual entry for the shell you use, if you do not know how to do this. Run the
inc command, if you have never used MH before. The inc command creates the
necessary default files and directories after prompting you. It also moves mail from
your system maildrop into your MH + inbox folder. Each message is converted to
MH format and stored as separate files in your + inbox folder until you read it.
When you read a message, you can refile it in another file that you create.

Folders are directories in which messages are stored; the folders themselves are
stored in your Mail directory. They are similar to folders in a normal office filing
system. See refile(lmh) and folder(lmh) for more details. For each message
it processes, inc prints one line only. The one-line display contains the From:
field, the Subject: field and as much of the first line of the message as it can
accommodate. The first message that inc processes becomes your current message.
The current message is the message that all MH commands operate on unless you
have specified the msg argument. You must run inc each time you want to
incorporate new mail into your MH file.

The scan command prints a list of the messages in your current folder.

The commands show, next and prev are used to read specific messages from the
current folder. Of these, show displays the current message. You can also display a
specific message by specifying its number, which you pass as an argument to show.
In the following example, the contents of message number lOin the current folder
will be displayed.

% show 10

The commands next and prev respectively display, the message numerically
following or preceding the current message. In all cases, the message displayed
becomes the current message. If there is no current message, show may be called
with an argument, or next may be used to advance to the first message. The
command rmm (remove message) deletes the current message.

You can delete messages other than the current message by specifying the message
number or the message numbers. When you specify more than one message, you
separate each message number by a space. In the following example, messages 2, 4
and 6 in the current folder are deleted.

% rmm 246

1-422 Commands

mh(1mh}

The command repl is used to respond to the current message (by default). It places
you in the editor with a prototype response form. While you are in the editor, you
may peruse the item you are responding to by reading the file @ •

The camp command allows you to compose a message by putting you in the editor
on a blank message header form, and then lets you send it.

All the MH commands may be run with the single argument, -help, which causes
them to print a list of the arguments with which they may be invoked.

Commands which take a message number as an argument (scan, show, repl, also
take one of the following words: first, prev, cur, next, or last to indicate
(respectively) the first, previous, current, next, or last message in the current folder.

Commands, such as rmm, scan, or show, which take a range of message numbers
also take any of the following abbreviations:

numl-num2 - Indicates all messages in the range numl to num2, inclusive. The
specified range must contain at least one message.

num:+n
num:-n - Up to n messages beginning with (or ending with) message num. The

value of num may be any of the MH message keywords: first, prev,
cur, next or last.

first: n
prev: n
next: n
last: n - The first, previous, next or last n messages, if they exist.

There are many other possibilities, such as creating multiple folders for different
topics, and automatically refiling messages according to subject, source, destination,
or content. See the individual Reference Pages for more details of the rest of the MH
commands.

Following is a list of all the MH commands:

ali(lmh) -list mail aliases
anno(lmh) -annotate messages
burst(1mh) -explode digests into messages
comp(1mh) -compose a message
dist(1mh) -redistribute a message to additional addresses
folder(lmh) -setllist current folder/message
folders(1mh) -list all folders
forw(lmh) -forward messages
inc(lmh) -incorporate new mail
mark(Imh) -mark messages
mhl(Imh) -produce formatted listings of MH messages
mhmail(lmh) -send or read mail
mhpath(1mh) -print full pathnames of MH messages and folders
msgchk(lmh) -check for messages
msh(Imh) -MH shell
next(1mh) -show the next message
packf(1mh) -compress a folder into a single file
pick(1mh) -select messages by content
prev(1mh) -show the previous message

Commands 1-423

mh(1mh)

Files

prompter(lmh)
rcvstore(1mb)
refile(1mb)
repl(lmh)
rmf(lmh)
rmm(1mh)
scan(1mh)
send(1mh)
slocal(lmh)
show(lmh)
sortm(lmh)
whatnow(lmh)
whom(lmh)

mh-alias(5mh)
mh_fonnat(5mh)
mh-mail(5mh)
mh-profile(5mh)
mtstailor(5mh)

ap(8mh)
conflict(8mh)
dp(8mh)
install-mb(8mh)
post(8mh)

/usr/new/mh
/usr/newflib/mh

1-424 Commands

-prompting editor front end
-incorporate new mail asynchronously
-file messages in other folders
-reply to a message
-remove folder
-remove messages
-produce a one line per message scan listing
-send a message
-receive mail hooks
-show (list) messages
-sort messages
-prompting front-end for send
-report who will receive a message when it is sent

-alias file for MH message system
-format file for MH message system
-message format for MH message system
-user customization for MH message system
-system customization for MH

-parse addresses RFC 822-style
-search for alias/password conflicts
-parse dates RFC 822-style
-initialize the MH environment
-deliver a message

directory containing commands
MH library

Name

Syntax

mhl(1mh)

mhl - produce formatted listings of MH messages

lusr/new/lib/mh/mhl [-bell] [-nobeU] [-clear] [-noclear] [-folder +/oldername]
[-form/ormjile] [-length lines] [-width columns] [-moreproc program]
[-nomoreproc] [files ...] [-help]

Description

The mhl command is a program for listing formatted messages and it can be used as
a replacement for more (the default showproc).

As with more, each of the messages specified as arguments (or the standard input)
are output. If more than one message file is specified, you are prompted prior to each
one, and a <RETURN> or <EOT> begins the output, with <RETURN> clearing the
screen (if appropriate), and <EOT> (usually CTRL-D) suppressing the screen clear.
An <INTERRUPT> (usually CTRL-C) aborts the current message output, prompting
for the next message, if there is one, and a <QUIT> (usually CTRL-E) terminates the
program without generating a core dump.

Options

The -bell option tells mhl to ring the terminal bell at the end of each page, while
the - c 1 ear option tells mh 1 to clear the screen at the end of each page, or output a
formfeed after each message. Both of these switches, and their inverse counterparts,
take effect only if the profile entry moreproc is defined but empty, and if mhl is
outputting to a terminal. If the moreproc entry is defined and non-empty, and mhl
is outputting to a terminal, then mhl causes the moreproc to be placed between the
terminal and mhl, and the switches are ignored. Furthermore, if the -clear switch
is used and mhl' s output is directed to a terminal, then mhl consults the $TERM
and $ TERMCAP environment variables to determine your terminal type in order to
find out how to clear the screen. If the -clear switch is used and mhl' s output is
not directed to a terminal (for example, a pipe or a file), then mhl sends a formfeed
after each message.

To override the default moreproc and the profile entry, use the
-moreproc program switch. Note that mhl never starts a moreproc if
invoked on a hardcopy terminal.

The -length length and -width width switches set the screen length and
width, respectively. These default to the values indicated by $TERMINFO, if
appropriate; otherwise they default to 40 and 80, respectively.

The default format file used by mhl is called mhl. format (which is first searched
for in your MH directory, and then sought in the /usr /new / lib/mh directory).
This can be changed by using the - form format f i 1 e switch.

Finally, the -folder +folder switch sets the MH folder name, which is used for
the -messagename switch described below. The environment variable
$mhfolder is consulted for the default value which show, next, and prev
initialize appropriately.

Commands 1-425

mhl(1mh)

The mh 1 command operates in two phases: read and parse the format file then
process each message (file). During the first phase, an internal description of the
format is produced as a structured list. In the second phase, this list is traversed for
each message, outputting message information under the format constraints from the
format file.

The "mhl.format" form file contains information controlling screen clearing, screen
size, wrap-around control, transparent text, component ordering, and component
formatting. Also, a list of components that should be ignored may be specified, and
a couple of special components are defined to provide added functionality. Message
output is in the order specified by the order in the format file.

Each line of mhl.format has one of the formats:

icomrnent
:cleartext
variable [variable ...]
component: [variable, ...]

A line beginning with a semi colon (;) is a comment, and is ignored. A line
beginning with a colon (:) is clear text, and is output exactly as is. A line containing
only a colon (:) produces a blank line in the output. A line beginning with
"component:" defines the fonnat for the specified component, and finally, remaining
lines define the global environment.

For example, the line:

width=80,length=40,clearscreen,overflowtext="** * ",overftowoffs et=5

defines the screen size to be 80 columns by 40 rows, specifies that the screen should
be cleared prior to each page, that the overflow indentation is 5, and that overflow
text should be flagged with "***".

If variables or arguments follow a component, they apply only to that component,
otherwise, their affect is global. Since the whole format is parsed before any output
processing, the last global switch setting for a variable applies to the whole message
if that variable is used in a global context (bell, clearscreen, width, length). All of
the current variables and their arguments are shown in the following table.

Variable Type Semantics

width integer screen width or component width
length integer screen length or component length
offset integer positions to indent "component: "
overflowtext string text to use at the beginning of an

overflow line
overflowoffset integer positions to indent overflow lines
compwidth integer positions to indent component text

after the first line is output
uppercase flag output text of this component in all

upper case
nouppercase flag do not use uppercase
clearscreen flag/G clear the screen prior to each page
noclearscreen flag/G do not clear the screen
bell flag/G ring the bell at the end of each page
nob ell flag/G disable bell

1-426 Commands

component

nocomponent

center

nocenter
leftadjust

noleftadjust
compress
nocompress
formatfield
addrfield
datefield

string/L

flag

flag

flag
flag

flag
flag
flag
string
flag
flag

mhl(1mh)

name to use instead of "component" for
this component
do not output "component: " for this
component
center component on line (works for
one-line components only)
do not center
strip off leading white-space on each
line of text
do not leftadjust
change newlines in text to spaces
do not compress
format string for this component
field contains addresses
field contains dates

To specify the value of integer-valued and string-valued variables, follow their name
with an equals-sign and the value. Integer-valued variables are given decimal values,
while string-valued variables are given arbitrary text bracketed by double-quotes. If a
value is suffixed by / G or / L, then its value is useful in a global-only or local-only
context (respectively). A line of the form:

ignores=component, ...

specifies a list of components which are never output.

The component "MessageName" (case-insensitive) outputs the actual message name
(file name) preceded by the folder name if one is specified or found in the
environment. The format is identical to that produced by the -header option to
show.

The component "Extras" outputs all of the components of the message which were
not matched by explicit components, or included in the ignore list. If this component
is not specified, an ignore list is not needed since all non-specified components are
ignored.

If -nocomponent is not specified, then the component name is output as it appears
in the format file.

The default format is:

: -- using template mhl.format
overflowtext="***",overflowoffset=5
leftadjust,compwidth=9
ignores=msid,msgid,message-id,received
Date;formatfield="%«nodate{text})%{text}%I%(pretty{text})%>"
To:
cc;

From:
Subject:

extras:nocomponent

body:nocomponent,overflowtext=,overflowoffset=O,noleftadjust

The variable formatfield specifies a format string (see mh-format(5mh)). The
variables addrfield and datefield (which are mutually exclusive), control the
interpretation of the escapes.

Commands 1-427

mhl (1 mh)

Files

By default, mhl does not apply any fonnatting string to fields containing address or
dates (see mh-mail(5mh) for a list of these fields). Note that this results in faster
operation since mhl must parse both addresses and dates in order to apply a fonnat
string to them. If desired, mh 1 can be given a default fonnat string for either address
or date fields (but not both). To do this, on a global line specify either the variable
addrfield or the variable datefield, along with the variable formatfield.

The defaults for mhl are:

-bell
-noel ear
-length 40
-width 80

/usr/new/lib/mh/mhl.format
or <mh-dir>/mhl.format
$HOME/.mh-profile

The message template
Rather than the standard template
The user profile

Profile Components
Path: To detennine your MH directory
moreproc: Program to use as interactive front-end

See Also
more(l), show(1mh), ap(8mh), dp(8mh)

1-428 Commands

Name

Syntax

mhmail (1 mh)

mhmail - send or read mail

mhmail [addrs ...] [-body text] [-cc addrs ..] [-from addr] [-subject subject]
[-help]

Description

mhmail is intended as a replacement for the standard mail programs, bellmail and
ucbmail. See binmail(1) and mail(1) for more details of these mail programs.
When invoked without arguments, it simply invokes inc to incorporate new
messages from the user's maildrop. When one or more users is specified, a message
is read from the standard input and spooled to a temporary file. mhmail then
invokes post with the name of the temporary file as its argument to deliver the
message to the specified user.

Options

Files

The -subject subject switch can be used to specify the Subject: field of the
message. The -body text switch can be used to specify the text of the message;
if it is specified, then the standard input is not read. Normally, addresses appearing
as arguments are put in the To: field. If the -cc switch is used, all addresses
following it are placed in the cc: field.

By using -from addr, you can specify the From: header of the draft. post
fills in the Sender: header correctly.

Normally, people will use camp and send to send messages.

/usr/new/mb/inc
/usr/new /lib/mb/post
/tmp/mhmail/*

Program to incorporate a maildrop into a folder
Program to deliver a message
Temporary copy of message

Profile Components
None

See Also
inc(1mh), post(Smh)

Commands 1-429

mhpath (1 mh)

Name
mhpath - print full pathnames of MH messages and folders

Syntax
mhpath [+foldername] [msgs] [-help]

Description

Use the mhpath command to display the full pathname of the specified folder. If
you do not specify a folder, mhpath will display the pathname of the current folder.

If you specify a message with its message number, mhpath displays the pathname
of the specified message. In the following example, mhpath displays message
number three in the folder +inbox.

$ mhpath +inbox 3
/r/phyl/Mail/inbox

You can also specify a number of messages, or a range of messages. The following
examples demonstrate mhpath displaying the path name for messages two and five
and also two to five, in the current folder.

$ mhpath 2 5
/r/phyl/Mail/inbox/2
/r/phyl/Mail/inbox/5

$ mhpath 2-5
/r/phyl/Mail/inbox/2
/r/phyl/Mail/inbox/3
/r/phyl/Mail/inbox/4
/r/phyl/Mail/inbox/5

If the top of the range that you specify is greater than the last message in the folder,
rnhpath displays as much of the specified range as possible. Additionally rnhpath
can take a keyword or a sequence name. The following keywords are acceptable:
new, first, last, next, cur and all. The keywords first and last
display the pathnames for the first or last message in the specified folder. Both these
keywords can be used in conjunction with a number to display the pathnames for the
first or last n messages. The following example displays the pathnames for the first 2
messages in the current folder.

$ mhpath first:2
/r/phyl/Mail/test/3
/r/phyl/Mail/test/5

The keyword new displays the pathname for the message after the last message in
the folder. You cannot use new as part of a message range.

The keywords prev and next display the pathname for either the last message or
the next message relative to the current message of the specified folder. The
keyword cur displays the pathname of the current message in the specified folder.

You can use more than one keyword in the same rnhpath command line. See the
following example.

$ mhpath +test last new
/r/phyl/Mail/test/6
/r/phyl/Mail/test/7

1-430 Commands

Files
$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user's MH directory
Current-Folder: To find the default current folder

See Also
folder(lmh)

mhpath (1 mh)

Commands 1-431

mkdir(1)

Name
mkdir - make a new directory

Syntax
mkdir -p dirname ...

Description
The rnkdir command creates specified directories in mode 777. The directories are
then modified by urnask(2), according to how you have set up urnask. Standard
entries, '.', for the directory itself, and ' .. ' for its parent, are made automatically.

The rnkdir command requires write permission in the parent directory.

Options

-p Create intermediate directories as required. If this option is not specified,
the full path prefix of dirname must already exist.

See Also
rrn(l)

1-432 Commands

mkfifo (1)

Name
mkfifo - make fifo special files

Syntax
mkfifo filename ...

Description
The mkfifo command creates the 'fifo special files' named by its operand list. The
operands are taken sequentially, in the order specified, and each 'fifo special file' is
either completed or, in the case of an error or signal, not created at all. Unless
interrupted, mk f if 0 will attempt to create all files specified. Error messages are
written to standard error.

Each 'fifo file' is created with a mode of 666, read and write privileges for the user,
group and other. The mode is modified by clearing those bits set in the process's file
mode creation mask. See umask(2) for more information.

See Also
mknod(2), stat(2), umask(2)

Commands 1-433

mkstr(1)

Name
mkstr - create an error message file

Syntax
mkstr [-] message file prefix file ...

Description
The mkstr command is used to create files of error messages. Its use can make
programs with large numbers of error diagnostics much smaller, and reduce system
overhead in running the program as the error messages do not have to be constantly
swapped in and out.

The mkstr command will process each of the specified files, placing a massaged
version of the input file in a file whose name consists of the specified prefix and the
original name. A typical usage of mk s t r would be:

mkstr pi strings xx *.c

This command would cause all the error messages from the C source files in the
current directory to be placed in the file pistrings and processed copies of the source
for these files to be placed in files whose names are prefixed with xx.

To process the error messages in the source to the message file mkstr keys on the
string 'error("' in the input stream. Each time it occurs, the C string starting at the
'"' is placed in the message file followed by a null character and a new-line character.
The null character terminates the message so it can be easily used when retrieved, the
new-line character makes it possible to sensibly cat the error message file to see its
contents. The massaged copy of the input file then contains a lseek pointer into
the file which can be used to retrieve the message, that is:

char filename[] = "/usr/lib/pi_strings";
int file = -1;

error(a1, a2, a3, a4)
{

oops:

Options

char buf[256];

Bif (efil < 0)
efil = open(efilname, 0);
if (efil < 0) {

perror(efilname);
exit(2);

if (lseek (efil, (long) a1, 0) I I read (efil, buf, 256) <= 0)
goto oops;

printf(buf, a2, a3, a4);

Places error messages at the end of specified message file.

1-434 Commands

mkstr(1)

See Also
xstr(l), Iseek(2)

Commands 1-435

mktemp(1)

Name
mktemp - make a name for a temporary file

Syntax
mktemp [-c] [-d directory name] [-p prefix]

Description
The mktemp command makes a name for the pathname of a temporary file and
writes that name to standard output. The name will not duplicate that of an existing
file. Subsequent calls to mktemp will only generate a new file name if all previously
generated file names have been created by the user and still exist. Error messages are
written to standard error.

The directory_name generated by mk temp is the concatenation of a directory name,
a slash C/), a file prefix, a dot C.), a four digit number and a unique character.

The directory name is chosen as follows:

(1) If the -d option is specified, directory_name is used.

(2) Otherwise, if the TMPDIR environment variable is set and a string that
would yield a unique name can be obtained using the value of that variable
as a directory name, this value is used.

(3) Otherwise, /tmp is used.

The prefix is chosen as follows:

Options

-c

(1) If the -p option is specified, prefix is used.

(2) Otherwise, if the LOGNAME environment variable is set, it is used as the
prefix·

(3) Otherwise, the user's login name is used.

Causes mktemp to attemp to create a regular file using the generated
(or created) name string. If file creation is successful, a zero length file
is created with access permissions derived from the process's file
mode creation mask, see umask(2). No attempt is made to create a
file if the length of the generated (or created) name string exceeds
1023 characters. It is the user's responsibility to remove files created
by use of this option.

-d directory name
- Causes directory_name to be used as the directory portion of the

-p prefix

1-436 Commands

pathname. In this case, directory name is used instead of TMPDIR
and /tmp. -

Causes the string prefix to be used as the file's prefix. It is used instead
of LOGNAM and the user's login name. If the prefix is longer the 249
characters, it will be silently truncated to that length before the
concatenation of the suffix.

mktemp(1)

Environmental Variables

LOGNAME When the -p prefix option is not specified, the value of this variable is
used as the prefix of the filename, if it exists.

TMPDIR

Restrictions

When the -d directory name option is not specified, the value of this
variable is used instead of / trnp .

If the user does not have write permission in the directory specified, and error
message is reported and / trnp is used in its place. The entire path name can not
exceed 1023 characters, and the temporary file name can not exceed 255 characters. If
the generated file name is too long it is truncated to fit before the suffix is added.

See Also
stat(2), urnask(2), rnkternp(3)

Commands 1-437

more(1)

Name

Syntax

more, page - display file data at your terminal

more [-cdflsu] [-n] [+linenumber] [+/pattern] [name ...]

page more options

Description
The more filter allows you to examine a file one screenful of text at a time on a
soft-copy terminal. It normally pauses after each screenful, printing --More-- at the
bottom of the screen. If the user then types a carriage return, one more line is
displayed. If the user presses the space bar, another screenful is displayed.

Options

+linenumber Start up at linen umber.

+/pattern

-c

-d

-f

-I

-n

-s

-u

1-438 Commands

Start up two lines before the line containing the regular expression
pattern. The command line options are:

Begins each page at the top of the screen and erases each line just
before it draws on it. This avoids scrolling the screen, making it
easier to read while more is writing. This option is ignored if the
terminal does not have the ability to clear to the end of a line.

Displays extended continuation prompt at end of each display. The
more command prompts the user with the message "Press space to
continue, ' q' to quit." at the end of each screenful, and responds to
subsequent illegal user input by printing "Press 'h' for instructions."
instead of ringing the bell. This is useful if more is being used as a
filter in some setting, such as a class, where many users may be
unsophisticated.

Counts logical text lines (does not fold long lines). This option is
recommended if nroff output is being piped through ul, since the
latter may generate escape sequences. These escape sequences contain
characters which would ordinarily occupy screen positions, but which
do not print when they are sent to the terminal as part of an escape
sequence. Thus more may think that lines are longer than they
actually are, and fold lines erroneously.

Ignores line feeds (CTRL/Ls) and normally, pauses at line feeds. If
this option is not given, more pauses after any line that contains a "L,
as if the end of a screenful had been reached. Also, if a file begins
with a form feed, the screen is cleared before the file is printed.

Specifies number of line more displays.

Squeezes multiple blank lines from the output, producing only one
blank line. Especially helpful when viewing nroff output, this
option maximizes the useful information present on the screen.

Ignores all underlining in the data. If the terminal can perform

more{1)

underlining or has a stand-out mode, more outputs appropriate escape
sequences to enable underlining or stand-out mode for underlined
information in the source file. The -u option suppresses this
processing.

If the program is invoked as page, then the screen is cleared before each screenful is
printed (but only if a full screenful is being printed), and k - 1 rather than k - 2 lines
are printed in each screenful, where k is the number of lines the terminal can display.

The more command looks in the file /etc/termcap to determine terminal
characteristics, and to determine the default window size. On a terminal capable of
displaying 24 lines, the default window size is 22 lines.

The more command looks in the environment variable MORE to pre-set any flags
desired. For example, if you prefer to view files using the -c mode of operation, the
csh command setenv MORE -c or the sh command sequence MORE=' -c' ; export
MORE would cause all invocations of more, including invocations by programs
such as man and msgs, to use this mode. Normally, the user places the command
sequence which sets up the MORE environment variable in the .cshrc or .profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed
along with the --More-- prompt. This gives the fraction of the file (in characters, not
lines) that has been read so far.

Other sequences which may be typed when more pauses, and their effects, are as
follows (i is an optional integer argument, defaulting to 1) :

i <space>

AD

d

iz

is

if

ib or i AD

qorQ

=

v

h or?

ilexpr

in

Display i more lines, (or another screenful if no argument is given)

Display 11 more lines (a "scroll"). If i is given, then the scroll size is
set to i.

Same as AD (control-D)

Same as typing a space except that i , if present, becomes the new
window size.

Skip i lines and print a screenful of lines

Skip i screenfuls and print a screenful of lines

Skip back i screenfuls and print a screenful of lines

Exit from more.

Display the current line number.

Start up the editor v i at the current line.

Help command; give a description of all the more commands.

Search for the i -th occurrence of the regular expression expr. If there
are less than i occurrences of expr, and the input is a file (rather than a
pipe), then the position in the file remains unchanged. Otherwise, a
screenful is displayed, starting two lines before the place where the
expression was found. The user's erase and kill characters may be
used to edit the regular expression. Erasing back past the first column
cancels the search command. of the last regular expression entered.

Search for the i -th occurrence

(single quote) Go to the point from which the last search started. If no

Commands 1-439

more(1)

Files

search has been perfonned in the current file, this command goes back
to the beginning of the file.

!command Invoke a shell with command. The characters '%' and 'I' in
"command" are replaced with the current file name and the previous
shell command respectively. If there is no current file name, '%' is
not expanded. The sequences '\%" and '\!" are replaced by "%" and
"!" respectively.

i :n skip to the i -th next file given in the command line (skips to last file if
n doesn't make sense)

i :p Skip to the i -th previous file given in the command line. If this
command is given in the middle of printing out a file, then more goes
back to the beginning of the file. If i doesn't make sense, more skips
back to the first file. If more is not reading from a file, the bell is
rung and nothing else happens.

:f Display the current file name and line number.

:q or :Q Exit from more

(dot) Repeat the previous command.

The commands take effect immediately, that is, it is not necessary to type a carriage
return. Up to the time when the command character itself is given, the user may hit
the line kill character to cancel the numerical argument being fonned. In addition,
the user may hit the erase character to redisplay the --More--(xx%) message.

At any time when output is being sent to the tenninal, the user can hit the quit key
(nonnally control-\). The more command stops sending output, and displays the
usual--More-- prompt. The user may then enter one of the above commands in the
nonnal manner. Unfortunately, some output is lost when this is done, due to the fact
that any characters waiting in the tenninal's output queue are flushed when the quit
signal occurs.

The tenninal is set to noecho mode by this program so that the output can be
continuous. What you type not show on your tenninal, except for the / and !
commands.

If the standard output is not a teletype, then more acts just like cat, except that a
header is printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n I more -s

/etc/tenncap
/usr/lib/more.help

Tenninal data base
Help file

See Also
csh(1), man(1), msgs(1), script(1), sh(1), environ(7)

1-440 Commands

msgchk(1mh)

Name
msgchk - check for messages

Syntax
msgchk [-nodate] [-notifyaillmaillnomail] [users ...] [-help]

Description

The msgchk program checks all known mail drops for mail that is waiting for you.
msgchk displays whether you have mail waiting to be read or not and shows the
date that you last read your mail. You can suppress this display by specifying
-nodate with msgchk. The following example shows msgchk in use.

$ msgchk
You have new mail waiting; last read on Tue, 07 Jun 88 17:21 :49 WET

Options
The -notify type switch indicates under what circumstances msgchk should
produce a message. The type switch can take values of all, mail, nomail.
The default is -notify all which says that msgchk will report the status of the
maildrop regardless of whether it has mail in it or not. The mail switch sets
msgchk to report the status of the maildrop only if there is mail waiting. The
-nomail switch sets msgchk to report the status of the maildrop only if there is no
mail in it.

You can use msgchk to check on the status of other users' maildrops by specifying
their user names. The following example illustrates this.

$ msgchk Rabb Jones
Rabb doesn't have any new mail waiting;

last read on Tue 07 Jun 13:22:25 WET
Jones has new mail waiting; last read on Tue, 07 Jun 17:30:05 WET

Restrictions

msgchk does not understand the $MAILDROP envariable.

Files
$HOME/.mh_profile
/usr/new /lib/mh/mtstailor
/usr/spool/mail/$USER

Profile Components
None

See Also
inc(lmh)

The user profile
Tailor file
Location of mail drop

Commands 1-441

msh(1mh)

Name
msh - MH shell

Syntax
msh [-prompt string] [-scan] [-noscan] [-topcur] [-notopcur] [file] [-help]

Description

The command ms h is an interactive program that implements a subset of the normal
MH commands operating on a single file in packf format. That is, msh is used to
read a file that contains a number of messages, as opposed to the standard MH style of
reading a number of files, each file being a separate message in a folder.

The chief advantage of msh is that, unlike the normal MH style, it allows a file to
have more than one message in it. In addition, msh can be used on other files, such
as message archives which have been packed (see packf(lmh)).

When invoked, msh reads the named file, and enters a command loop. You can type
most of the normal MH commands. The syntax and semantics of these commands
typed to ms h are identical to their MH counterparts. In cases where the nature of ms h
would be inconsistent with the way MH works (for example, specifying a +/older
with some commands), msh will duly inform you. The commands that msh
currently supports are:

ali burst camp dist folder
forw inc mark mhmail msgchk
next packf pick prev refile
rep 1 rmm scan send show
sortm what now whom

In addition, msh has a help command which gives a brief overview of all the msh
options. To terminate msh, either type CTRL-D, or use the quit command.

If the file is writable and has been modified, then using quit will ask you if the file
should be updated.

Options
The -prompt string switch sets the prompting string for msh.

You may wish to use an alternative MH profile for the commands that msh executes;
see mh-profile(5mh) for details of the H envariable.

A redirection facility is supported by msh. Commands may be followed by one of
the following:

Open an interprocess channel -
connect output to another UL TRIX
command

> Write output to file
> > Append output to file

If file starts with a tilde (....), then a Cshell-like expansion takes place. Note that
command is interpreted by sh(l). Also note that msh does not support history
substitutions, variable substitutions, or alias substitutions.

1-442 Commands

Files

msh(1mh)

When parsing commands to the left of any redirection symbol, IDsh will honor the
backslash (\) as the quote next-character symbol, and double quote (") as quote
word delimiters. All other input tokens are separated by whitespace (spaces and
tabs).

The following defaults are used by ms h :

file defaults to . /msgbox
-prompt (msh)
-noscan
-notopcur

The argument to the -prompt switch must be interpreted as a single token by the
shell that invokes IDS h. Therefore, you should place the argument to this switch
inside double-quotes.

There is a strict limit of messages per file in packf format which msh can handle.
Usually, this limit is 1000 messages.

Please remember that msh is not the cshell, and that a lot of the facilities
provided by the latter are not present in the former.

In particular, msh does not understand back-quoting, so the only effective way to use
pick inside msh is to always use the -seq select switch. If you put the line

pick: -seq select -list

in your mh_profile file, pick will work equally well from both the shell and msh.

OME/.mh_profile
/usr/new /lib/mh/mtstailor

The user profile
tailor file

Profile Components
Path:
Msg-Protect:
fileproc:
showproc:

To determine your MH directory
To set mode when creating a new CW file
Program to file messages
Program to show messages

mt(1)

Name
mt - magnetic tape manipulating program

Syntax
mt [-f tapename] command [count]

Description
The mt command permits the operation of a magnetic tape drive.

Options
The -f flag option uses the specified tape device (next argument) in place of either
that tape device defined by your TAPE environment variable (.login or .profile) or
/dev/nrmtOh.

Some operations may be performed multiple times by specifying count. By default,
mt performs the requested operation once.

The command argument defines the operation to be performed. Only as many
characters as are required to uniquely identify a command need be specified.

The following is a list of commands:

bsf Backspace count files.

bsr

cache

c1hrdsf

c1serex

c1sub

eof, weof

eotdis

eoten

1-444 Commands

Backspace count records.

Allows mt to use the cache buffer on a tape drive that has
the cache buffer feature.

Clear hardware/software problem. Works with tape drives
which use the TMSCP tape controller interface tms(4).
This command is restricted to root access only.

Clear serious exception. Works with tape drives which use
the TMSCP tape controller interface tms(4).

Clear subsystem. Works with tape drives which use the
TMSCP tape controller interface tms (4). This command is
restrictt!d to root access only.

Write count end-of-file marks at the current position on the
tape.

Disable end-of-tape detection. When the end of tape is
reached, the tape will run off the reel. Only the superuser
can issue this command. The command remains in effect for
the device until end-of-tape detection is enabled with the
eoten command.

Enable end-of-tape detection. When the end-of-tape markers
are reached, the tape is halted on the reel, between the two
end-of-tape markers. Only the superuser can issue this
command. The command remains in effect for the device
until end-of-tape detection is disabled with the eotdis
command. This is the default mode after a system boot.

fsf

fsr

nocache

omine, rewom

rewind

status

Forward-space count files.

Forward-space count records.

mt(1)

Disables the use of the cache buffer for any tape drive that
has the cache buffer feature.

Rewind the tape and place the tape unit off-line.

Rewind the tape.

Print status infonnation about the tape unit.

Examples
This example shows how to rewind the tape rrnt 0 1:

mt -f /dev/rmtOl rewind

This example shows how to backspace the tape nmtlh three files:

mt -f /dev/nrmtlh bsf 3

This example shows how to write two end-of-file marks at the current position on
tape nmt6h:

mt -f /dev/nrmt6h eof 2

Return Value

Files

In shell scripts, rnt returns a 0 exit status when the operation(s) were successful, 1 if
the command was unrecognized, and 2 if an operation failed.

/dev/rmt?h or /dev/rmt?l
Raw magnetic tape interface with rewind when closed

/dev/nmt?h or /dev/nmt?)
Raw magnetic tape interface with no rewind when closed

See Also
dd(l), tar(l), ioctl(2), mtio(4), tms(4), environ(7)

Commands 1-445

mv(1)

Name
mv - move or rename files

Syntax
mv [-i] [-f] [-]filel file2

mv [-i] [-f] [-] file ... directory

Description
The mv command moves (changes the name of) filel to file2 .

If file2 already exists, it is removed before filel is moved. If file2 has a mode which
forbids writing, mv prints the mode and reads the standard input to obtain a line. If
the line begins with y, the move takes place. If it does not, mv exits. For further
information, see chmod(2).

In the second form, one or more files (plain files or directories) are moved to the
directory with their original file-names.

The mv command refuses to move a file onto itself.

Options

-f

-i

Restrictions

Interprets all following arguments as file names to allow file
names starting with a minus.

Force. This option overrides any mode restrictions or the -i
switch.

Interactive mode. If a move is to supersede an existing file,
the system prompts youw with the name of the file followed
by a question mark. If you type a string that begins with y,
the move occurs. If you type any other response, the move
does not occur.

If filel and file2 lie on different file systems, mv must copy the file and delete the
original. In this case the owner name becomes that of the copying process and any
linking relationship with other files is lost.

See Also
cp(l), 10(1)

1-446 Commands

nawk(1)

Name
nawk - data transformation, report generation language

Syntax
nawk [-f programfile] [-Fs] [program] [var=value 000] [file ...]

Description
The nawk language is a file-processing language which is well-suited to data
manipulation and retrieval of information from text files. This reference page
provides a full technical description of nawk; if you are unfamiliar with the
language, you will probably find it helpful to read the Guide to the nawk Utility
before reading the following material.

A nawk program consists of any number of user-defined functions and 'rules' of the
form:

pattern { action}

There are two ways to specify the nawk program:

(a) Directly on the command line. In this case, the program is a single
command line argument, usually enclosed in apostrophes (').

(b) By using the -f program file option (where programfile contains the nawk
program). More than one -f option can appear on the command line. The
program will consist of the concatenation of the contents of all the specified
program files . You can use - in place of a file name, to obtain input from the
standard input.

The input data manipulated by the nawk program is provided in files specified on the
command line. If no such files are specified, data is read from the standard input.
You can also specify a file name of - to mean the standard input.

Input to nawk is divided into records. By default, records are separated by new-line
characters; however, you can specify a different record separator if you wish.

One at a time, and in order, each input record is compared with the pattern of every
'rule' in the nawk program. When a pattern matches, the action part of the rule is
performed on the current input record. Patterns and actions often refer to separate
fields withip a record. By default, fields are separated by white space (blanks, new
lines, or horizontal tab characters); however, you can specify a different field
separator string using the -Fs option (see Input).

You can omit the pattern or action part of a nawk rule (but not both). If pattern is
omitted, the action is performed on every input record (as if every record matches).
If action is omitted, every record matching the pattern will be written to the standard
output.

If a line in a nawk program contains a '#' character, the '#' and everything after it is
considered to be a comment.

Program lines can be continued by adding a backslash '\' to the end of the line.
Statement lines ending with a comma',', double or-bars 'II', or double ampersands
'&&', are automatically continued.

Commands 1-447

nawk(1)

Options

-f program/tie
Tells nawk to obtain its program from the specified file. There can be
more than one of these on the command line.

-Fs Says that s is the field separator character within records.

Variables and Expressions

There are three types of variables in nawk: identifiers,fields, and array elements.

An identifier is a sequence of letters, digits, and underscores beginning with a letter
or an underscore.

Fields are described in the Input subsection.

Arrays are associative collections of values called the elements of the array. Array
elements are referenced with constructs of the form

identifier [subscript]

where subscript has the form expr or expr,expr, ... Each such expr can have any string
value. Arrays with multiple expr subscripts are implemented by concatenating the
string values of each expr with a separator character SUBSEP separating multiple
expr. The initial value of SUBSEP is set to '\034' (ASCII field separator).

Fields and identifiers are sometimes called scalar variables to distinguish them from
arrays.

Variables are not declared and need not be initialized. The value of an uninitialized
variable is the empty string. Variables can be initialized on the command line using

var=value

Such initializations can be interspersed with the names of input files on the command
line. Initializations and input files will be processed in the order they appear on the
command line. For example, the command

nawk -f progfile A=l fl f2 A=2 f3

sets A to 1 before input is read from f1 and sets A to 2 before input is read from f3.

Certain built-in variables have special meaning to nawk, as described in later
sections.

Expressions consist of constants, variables, functions, regular expressions and
'subscript in array' conditions (see below) combined with operators. Each variable
and expression has a string value and a corresponding numeric value; the value
appropriate to the context is used. If a string is used in a numeric context, and the
contents of the string cannot be interpreted as a number, the 'value' of the string is
taken to be zero.

Numeric constants are sequences of decimal digits.

String constants are quoted, as in "x". Escape sequences accepted in literal strings
are:

1-448 Commands

Escape
\a
\b
\f

ASCII Character
audible bell
backspace
formfeed

nawk(1)

\n new-line
\r carriage return
\ t horizontal tab
\ v vertical tab
\ 000 octal value 000

\ xdd hexadecimal value dd
\ " quotation mark
\ c any other character c

The regular expression syntax understood by nawk is the extended regular
expressions of the egrep utility described in grep(l). Characters enclosed in slash
characters '/' are compiled as regular expressions when the n a w k program is read.
In addition, literal strings and variables are interpreted as dynamic regular
expressions on the right side of a ',.,' or '!,.,' operator, or as certain arguments to
built-in matching and substitution functions. Note that when literal strings are used
as regular expressions, extra backslashes are needed to escape regular expression
metacharacters because the backslash is also the literal string escape character.

The 'subscript in array' condition is defined as:

index in array

where index looks like expr or (expr, ... ,expr). This condition evaluates to 1 if the
string value of index is a subscript of array, and to 0 otherwise. This is a way to
determine if an array element exists. If the element does not exist, this condition will
not create it.

Symbol Table

The symbol table can be accessed through the built-in array SYMT AB.

SYMTAB [expr]

is equivalent to the variable named by the evaluation of expr. For example,

SYMTAB ["var"]

is a synonym for the variable var.

Environment

A nawk program can determine its initial environment by examining the ENVIRON
array. If the environment consists of entries of the form:

name=value

then

ENVIRON [name]

has string value

"value"

For example, the following program is equivalent to the default output of env(l):

BEGIN {
for (i in ENVIRON)

printf("%s=%s\n", i, ENVIRON[i])
exit

Commands 1-449

nawk(1)

Operators
The usual precedence order of arithmetic operations is followed unless overridden
with parentheses; a table giving the order of operations appears at the end of the
Guide to the nawk Utility. The unary operators are

Negation
+ Nothing (place holder)

Decrement by one
++ Increment by one

where the '++' and '--' operators can be used as either postfix or prefix operators, as
in C.

The binary arithmetic operators are

+ Addition
Subtraction

* Multiplication
/ Division
% Modulus
1\ Exponentiation

The conditional operator

expr ? expr 1 : expr2

evaluates to expr 1 if the value of expr is non-zero, and to expr2 otherwise.

If two expressions are not separated by an operator, their string values are
concatenated.

The operator ',..,' yields 1 (true) if the regular expression on the right side matches the
string on the left side. The operator '!,..,' yields 1 when the right side has no match
on the left. To illustrate:

$2 '" /[0-9]/

selects any line where the second field contains at least one digit. Any string or
variable on the right side of ',..,' or '!-' is interpreted as a dynamic regular expression.

The relational operators are the usual '<', '<=', '>', '>=', '==', and '!='.

The boolean operators are 'II' (or), '&&' (and), and '!' (not).

Values can be assigned to a variable with

var = expr

If op is a binary arithmetic operator,

var op= expr

is equivalent to

var = var op expr

Command Line Arguments
The built-in variable ARGC is set to the number of command line arguments. The
built-in array ARGV has elements subscripted with digits from zero to ARGC-l,
giving command line arguments in the order they appeared on the command line.

1-450 Commands

nawk{1)

The ARGC count and the ARGV vector do not include command line options
(beginning with '-') or the program file (following - f). They do include the name
of the command itself, initialization statements of the fonn

var=value

and the names of input data files.

The nawk language actually creates ARGC and ARGV before doing anything else.
It then walks through ARGV processing the arguments. If an element of ARGV is
the empty string, it is simply skipped. If it contains an equals sign '=', it is
interpreted as a variable assignment. If it is a minus sign '-', it stands for the
standard input and input is immediately read from the standard input until end-of-file
is encountered. Otherwise, the argument is taken to be a file name; input will be read
from that file until end-of-file is reached. Note that the program is executed by
'walking through' ARGV in this way; thus if the program changes ARGV, different
files can be read and assignments made.

Input
Input is divided into records. Each record is separated from the next with a record
separator character. The value of the built-in variable RS gives the current record
separator character; by default, it begins as the new-line '\n'. If you assign a different
character to RS, na wk will use that as the record separator character from that point
on.

Records are divided into fields. Each field is separated from the next with a field
separator string, given by the value of the built-in variable FS. You can set a
specific separator string by assigning a value to FS or by specifying the -Fs option
on the command line. FS can be be assigned a regular expression. For example,

FS = "[,:$]"

says that fields can be separated by commas, colons, or dollar signs. As a special
case, assigning FS a string containing only a blank character sets the field separator
to white space. In this case, any sequence of contiguous space and/or tab characters
is considered a single field separator. This is the default for FS. However, if FS is
assigned a string containing any other character, that character designates the start of
a new field. For example, if we set

FS="\t"

(the tab character),

texta \t textb \t \t \t textc

contains five fields, two of which only contain blanks. With the default setting, the
above would only contain three fields because the sequence of multiple blanks and
tabs would be considered a single separator.

Various pieces of infonnation about input are provided by the built-in variables listed
below.

NF
NR
FILENAME
FNR

Numb~r of fields in the current record
Number of records read so far
Name of file containing current record
Number of records read from current file

Commands 1-451

nawk(1)

Field specifiers have the form $i where i runs from 1 through NF. Such a field
specifier refers to the ith field of the current input record. $0 (zero) refers to the
entire current input record.

The getline function can read a value for a variable or $0 from the current input,
from a file, or from a pipe. The result of getline is an integer indicating whether the
read operation was successful. A value of 1 indicates success; 0 indicates end-of-file
encountered; and -1 indicates that an error occurred. Possible forms for getline are:

getline Reads next input record into $0 and splits the record into fields. NF, NR,
and FNR are set appropriately.

getline var
Reads next input record into the variable var. The record is not split into
fields (which means that the current $i values do not change). NR and FNR
are set appropriately.

getline <expr
Interprets the string value of expr to be a file name. The next record from
that file is read into $0 and split into fields. NF is set appropriately.

getline var <expr
Interprets the string value of expr to be a file name, and reads the next record
from that file into the variable var. The record is not split into fields.

expr I getline
Interprets the string value of expr as a command line to be executed. Output
from this command is piped into getline, and read into $0 in a manner
similar to getline <expr. See the SYSTEM FUNCTION section for
additional details.

expr I getline var
Executes the string value of expr as a command and pipes the output of the
command into getline. The result is similar to getline var <expr.

c1ose(expr)
Only a limited number of files and pipes can be open at one time. This
function will close open files or pipes. The expr must be one that came
before 'I' or after '>' in getline, or after '>', '»', or 'I' .in print or printf as
described in the Output section. By closing files and pipes that are no
longer needed, you can use any number of files and pipes in the course of
executing a nawk program.

Built-In Arithmetic Functions

int(expr)
Returns the integer part of the numeric value of expr. If (expr) is omitted, the
integer part of $0 is returned.

exp(expr), log(expr), sqrt(expr)
Returns the exponential, natural logarithm, and square root of the numeric
value of expr. If (expr) is omitted, $0 is used.

sin(expr), cos(expr)
Returns the sine and cosine of the numeric value of expr (interpreted as an
angle in radians).

atan2(expri,expr2)

1-452 Commands

Returns the arctangent of expr 1/ expr2 in the range of -1t through n.

randO
Returns a random floating-point number in the range 0 through 1.

srand(expr)

nawk(1)

Sets the seed of the rand function to the integer value of expr. If (expr) is
omitted, nawk sets a default seed (which is the same each time nawk is
invoked).

Built-In String Functions

len = length(expr)
Returns the number of characters in the string value of expr. If (expr) is
omitted, $0 is used.

n = split(string, array, regexp)
Splits the string into fields. The expression regexp is a regular expression
giving the field separator string for the purposes of this operation. The
elements of array are assigned the separated fields in order; subscripts for
array begin at 1. All other elements of array are discarded. The result of
split is the number of fields into which string was divided (which is also
the maximum subscript for array). Note that regexp divides the record in
the same way that the FS field separator string does. If regexp is omitted
in the call to split, the current value of FS will be used.

str = substr(string, m, len)
Returns the substring of string that begins in position m and is at most len
characters long. The first character of the string has m equal to one. If len
is omitted, the rest of string is returned.

pos = index(sl, s2)
Returns the position of the first occurrence of string s2 in string s 1; if s2 is
not found in sl, index returns zero.

pos = match(string, regexp)
Searches string for the first substring matching the regular expression
regexp, and returns an integer giving the position of this substring. If no
such substring is found, match returns zero. The built-in variable
RSTART is set to pos and the built-in variable RLENGTH is set to the
length of the matched string. These are both set to zero if there is no
match. The regexp can be enclosed in slashes or given as a string.

n = gsub(regexp, repl, string)
globally replaces all SUbstrings of string that match the regular expression
regexp, and replaces the substring with the string repl. If string is
omitted, the current record ($ 0) is used. The notation gsub returns the
number of substrings that were replaced or zero if no match occurred.

n = sub(regexp, repl, string)
Works like gsub except that at most one match and substitution is
attempted.

str = sprintf(ftnt, expr, expr ...)
Formats the expression list expr, expr, ... using specifications from the
string fmt, then returns the formatted string. The ftnt string consists of
conversion specifications which convert and add the next expr to the

Commands 1-453

nawk(1)

string, and ordinary characters which are simply added to the string.
Conversion specifications have the form

%[-] [x] [.y]c

where

left justifies the field
x is the minimum field width
y is the precision
c is the conversion character

In a string, the precision is the maximum number of characters to be
printed from the string; in a number, the precision is the number of digits
to be printed to the right of the decimal point in a floating point value. If
x or y is '*' (asterisk), the minimum field width or precision will be the
value of the next expr in the call to sprintf.

The conversion character c is one of foilowing:

d Decimal integer
o Unsigned octal integer
x Unsigned hexadecimal integer
u Unsigned decimal integer
f Floating point
e Floating point (scientific notation)
g The shorter of e and f (suppresses non-significant zeros)
c Single character of an integer value
s String

n = ord(expr)
Returns the integer value of first character in the string value of expr.
This is useful in conjunction with '%c' in sprintf.

str = tolower(expr)
Converts all letters in the string value of expr into lower case, and returns
the result. If expr is omitted, $0 is used.

str = toupper(expr)
Converts all letters in the string value of expr into upper case, and returns
the result. If expr is omitted, $0 is used.

The System Function

status = system(expr)

1-454 Commands

Executes the string value of expr as a command. For example,

system("tail " $1)

calls the tail(1) command, using the string value of $1 as the file that
tail should examine. See the Restrictions section for a discussion of
the execution of the command.

User-Defined Functions
You can define your own functions using the form

function name (parameter-list) {
statements

nawk{1)

A function definition can appear in the place of a pattern {action} rule. The
parameter-list contains any number of normal (scalar) and array variables separated
by commas. When a function is called, scalar arguments are passed by value, and
array arguments are passed by reference. The names specified in the parameter-list
are local to the function; all other names used in the function are are global. Local
scalar variables can be defined by adding them to the end of the parameter list.
These extra parameters are not used in any call to the function.

A function returns to its caller either when the final statement in the function is
executed, or when an explicit return statement is executed.

Patterns and Actions
A pattern is a regular expression, a special pattern, a pattern range, or any arithmetic
expression.

BEGIN is a special pattern used to label actions that should be performed before any
input records have been read. END is a special pattern used to label actions that
should be performed after all input records have been read.

A pattern range is given as

pattern1 ,pattern2

This matches all lines from one that matches pattern] to one that matches pattern2 ,
inclusive.

If a pattern is omitted, or if the numeric value of the pattern is non-zero (true), the
resulting action is executed for the line.

An action is a series of statements terminated by semicolons, new-lines, or closing
braces. A condition is any expression; a non-zero value is considered true, and a zero
value is considered false. A statement is one of the following:

expression

if (condition)
statement

[else
statement]

while (condition)
statement

do
statement

while (condition)

for (expression1; condition; expression2)
statement

The for statement is equivalent to:

expression1
while (condition) {

Commands 1-455

nawk(1)

statement
expression2

The for statement can also have the form

for (i in array)
statement

The statement is executed once for each element in array; on each repetition, the
variable i will contain the name of a subscript of array, running through all the
subscripts in an arbitrary order. If array is multi-dimensional (has multiple
subscripts), i will be expressed as a single string with the SUBSEP character
separating the subscripts. The following simple statements are supported:

break Exits a for or a while loop immediately.

continue
Stops the current iteration of a for or while loop and begins the next
iteration (if there is one).

next Terminates any processing for the current input record and immediately
starts processing the next input record. Processing for the next record will
begin with the first appropriate rule.

exi t[(expr)]
Immediately goes to the END action if it exists; if there is no END action,
or if nawk is already executing the END action, the nawk program
terminates. The exit status of the program is set to the numeric value of
expr. If (expr) is omitted, the exit status is O.

return [expr]
Returns from the execution of a function. If an expr is specified, the value
of the expression is returned as the result of the function. Otherwise, the
function result is undefined.

delete array[i]
Deletes element i from the given array.

print expr, expr, ...
Described below.

printf jmt, expr, expr, ...
Described below.

Output
The print and printf statements write to the standard output. Output can be
redirected to a file or pipe as described below.

If >expr is added to a print or printf statement, the string value of expr is taken to
be a file name, and output is written to that file. Similarly, if >RI » expr is added,
output will be appended to the current contents of the file. The distinction between
'>' and '»' is only important for the first print to the file expr. Subsequent outputs
to an already open file will append to what is there already.

In order to eliminate ambiguities, statements such as

print a > b c

are syntactically illegal. Parentheses must be used to resolve the ambiguity.

1-456 Commands

nawk(1)

If lexpr is added to a print or printf statement, the string value of expr is taken to be
an executable command. The command is executed with the output from the
statement piped as input into the command.

As noted earlier, only a limited number of files and pipes can be open at any time.
To avoid going over the limit, you should use the close function to close files and
pipes when they are no longer needed.

The print statement prints its arguments with only simple formatting. If it has no
arguments, the current input record is printed in its entirety. The output record
separator ORS is added to the end of the output produced by each print statement;
when arguments in the print statement are separated by commas, the corresponding
output values will be separated by the output field separator OFS. ORS and OFS are
built-in variables whose values can be changed by assigning them strings. The
default output record separator is a new-line and the default output field separator is a
space. The format of numbers output by print is given by the string OFMT. By
default, the value is '%.6g'; this can be changed by assigning OFMT a different
string value.

The printf statement formats its arguments using the fmt argument. Formatting is
the same as for the built-in function sprintf. Unlike print, printf does not add
output separators automatically. This gives the program more precise control of the
output.

Restrictions
The longest input record is restricted to 20,000 bytes and the maximum number of
fields supported is 4000. The length of the string produced by sprintf is limited to
1024 bytes.

The ord function may not be recognized by other versions of awk. The toupper and
tolower functions and the ENVIRON array variable are found in the Bell Labs
version of awk; this version is a superset of 'New AWK' as described in The AWK
Programming Language by Aho, Weinberger, and Kernighan.

The shell that is used by the functions

get line print printf system

and the return value of the system function is described in system(3).

Examples
The following example outputs the contents of the file input 1 with line numbers
prepended to each line:

nawk '{print NR ":" SO}' inputl

The following is an example using var=value on the command line:

nawk '{print NR SEP SO}' SEP=":" inputl

The nawk program script can also be read from a file as in the command line:

nawk -f addline.nawk inputl

This example produces the same output as the previous example when the file
addline. nawk contains

{print NR ". " SO}

Commands 1-457

nawk{1)

The following program appends all input lines starting with 'January' to the file jan
(which can already exist or not), and all lines starting with 'February' or 'March' to
the file febmar:

/AJanuary/ {print » "jan"}
/AFebruaryIAMarch/ {print » "febmar"}

This program prints the total and average for the last column of each input line:

{s += $NF}
END {print "sum is", s, "average is", s/NR}

The following program interchanges the first and second fields of input lines:

{

tmp = $1
$1 = $2
$2 = tmp
print

The following example inserts line numbers so that output lines are left-aligned:

{printf "%-6d: %s\n", NR, $O}

This example prints input records in reverse order (assuming sufficient memory):

{

}

END

a [NR] = $0 # index using record number

for (i = NR; i>O; --i)
print a[i]

The next program determines the number of lines starting with the same first field:

{

++a[$l] # array indexed using the first field

END # note output will be in undefined order
for (i in a)

print a[i], "lines start with", i

The following program can be used to determine the number of lines in each input
file:

}
END

1-458 Commands

++a[FILENAME]

for (file in a)
if (a[file] == 1)

print file, "has 1 line"
else

print file, "has", a[file], "lines"

nawk(1)

This program illustrates how a two dimensional array can be used in nawk. Assume
the first field contains a product number, the second field contains a month number,
and the third field contains a quantity (bought, sold, or whatever). The program
generates a table of products versus month.

BEGIN
{

}

{NUMPROD = 5}

array[$1,$2] += $3

END {
print "\t Jan\t Feb\tMarch\tApril\t May\t" \

"June\tJuly\t Aug\tSept\t Oct\t Nov\t Dec"
for (prod = 1; prod <= NUMPROD; prod++) {

printf "%-7s", "prod#" prod
for (month = 1; month <= 12; month++){

printf "\t%5d", array [prod, month]

printf "\n"

As this program reads in each line of input, it reports whether the line matches a
pre-determined value:

function randint() {

}
BEGIN

}

END

return (int((rand()+1)*10))

prize[randint(),randint()] = "$100";
prize[randint(),randint()] = "$10";
prize[l,l] = "the booby prize"
}

if (($1,$2) in prize)
printf "You have won %s!\n", prize[$1,$2]

This example prints lines whose first and last fields are the same, reversing the order
of the fields:

$l==$NF {
for (i = NF; i > 0; --i)

printf "%s", $i (i>l ? OFS ORS)

The following program prints the input files from the command line. The in files
function first empties the array passed to it, and then fills the array. Notice that the
extra parameter i of infiles is a local variable.

function infiles(f, i) {

}

BEGIN

for (i in f)
delete f[i]

for (i = 1; i < ARGC; i++)
if (index (ARGV[i] , "=") 0)

infiles(a)
for (i in a)

f[i] = ARGV[i]

print a[i]

Commands 1-459

nawk(1)

exit

This example is the standard recursive factorial function:

function fact(num) {
if (num <= 1)

return 1
else

return num * fact (num - 1)

print $0 " factorial is " fact ($0) }

The last program illustrates the use of getline with a pipe. Here, getline sets the
current record from the output of the wc(1) command. The program prints the
number of words in each input file.

function words (file, string)

BEGIN

See Also

string = "wc " fn
string I getline
close (string)
return ($2)

for (i=l; i<ARGC; i++) {
fn = ARGV[i]
printf "There are %d words in %5.",

words (fn), fn

ed(l), grep(l), sed(l), ex(l), system(3), ascii(7),
"Awk - A Pattern Scanning and Processing Language" ULTRIX Supplementary
Documents, Vol. II: Programmer

1-460 Commands

Name

Syntax

netstat - show network status

oetstat [-Aao] [-f address Jamily] [system] [core]
oetstat [-himors] [-f address Jamily] [system] [core]
oetstat [-0] [-I interface] interval [system] [core]

netstat{1)

Description
The netstat command displays the contents of network-related data structures
symbolically. Depending on the options for the information presented, there are a
number of output formats. The first form of the command displays a list of active
sockets for each protocol. The second form presents the contents of one of the other
network data structures according to the option selected. The third form, with an
interval specified, continuously displays the information regarding packet traffic on
the configured network interfaces. If no options are specified, netstat displays the
state of all active sockets from those using any of the protocols listed in
/etc/protocols.

The arguments, system and core allow substitutes for the defaults /vmunix and
/dev/kmem.

If an interval is specified, netstat display the information regarding packet traffic
on the configured network interfaces continuously, pausing interval seconds before
refreshing the screen.

There are a number of display formats, depending on the information presented. The
default display, for active sockets, shows the local and remote addresses, send and
receive queue sizes (in bytes), protocol, and, optionally, the internal state of the
protocol.

Address formats are either of the form host.port or network. port, if a socket's address
specifies a network but no specific host address. When known, the host and network
addresses are displayed symbolically according to the data bases / etc/hosts and
/ etc/networks, respectively. If a symbolic name for an address is unknown, or
if the -0 option is specified, the address is printed in the Internet dot format. Refer
to inet(3n) for more information regarding this format. Unspecified, or wildcard,
addresses and ports appear as an asterisk (*).

The interface display provides a table of cumulative statistics regarding packets
transferred, errors, and collisions. The network address (currently Internet specific)
of the interface and the maximum transmission unit (mtu) are also displayed.

The routing table display indicates the available routes and their status. Each route
consists of a destination host or network and a gateway to use in forwarding packets.
The flags field shows the state of the route (for example, U if up), whether the route
is to a gateway (0), and whether the route was created dynamically by a redirect (D).
Direct routes are created for each interface attached to the local host. The gateway
field for such entries shows the address of the outgoing interface. The refcnt field
gives the current number of active uses of the route. Connection oriented protocols
normally hold on to a single route for the duration of a connection, while
connectionless protocols obtain a route while sending to the same destination. The
use field provides a count of the number of packets sent using that route. The
interface entry indicates the network interface utilized for the route.

Commands 1-461

netstat(1)

When netstat is invoked with an interval argument, it displays a running count of
statistics related to network interfaces. This display consists of a column for the
primary interface (the first interface found during autoconfiguration), and a column
summarizing information for all interfaces. The primary interface may be replaced
with another interface with the -I option. The first line of each screen of information
contains a summary since the system was last rebooted. Subsequent lines of output
show values accumulated over the preceding interval.

Options

-A

-a

=f address Jamily

-b

-I interface

-i

-m

-D

-r

-s
-t

See Also

Displays the address of any associated protocol control
blocks; used for debugging.

Displays the information for all sockets. Normally sockets
used by server processes are not shown.

Limits statistics or address control block reports to those of
the specified address family. Recognized address families are
inet, for AF_lNET, and unix, for AF_UNIX.

Displays the state of the IMP host table.

Shows information only about this interface. Used with an
interval displayed below.

Displays status information for autoconfigured interfaces.
Interfaces statically configured into a system, but not located
at boot time are not shown.

Displays information for the memory management routines
The network manages a private share of memory.

Displays network addresses as numbers. Normally
netstat interprets addresses and attempts to display them
symbolically.

Displays the routing tables. When -s is also present, shows
routing statistics instead.

Displays per-protocol statistics.

Displays time until interface watchdog routine starts up
(used only in conjunction with -i option).

iostat(l), vmstat(l), hosts(5), networks(5), protocols(5), services(5), trpt(8c)

1-462 Commands

newal iases (1)

Name
newaliases - rebuild the data base for the mail aliases file

Syntax
newaliases

Description
The newaliases command rebuilds the random access data base for the mail
aliases file /usr/lib/aliases. It must be run each time
/usr / lib/ aliases is changed in order for the change to take effect.

See Also
aliases(5), sendmail(8)

Commands 1-463

newinv(1)

Name
newinv - update distribution kit master inventory

Syntax
lusrlsys/dist/newinv mi-file input-path

Description
The newinv command interactively maintains the master inventory files used for
producing distributions in setld format. The program updates the master inventory
for a product when changes are made to the hierarchy of files which are to be
packaged in the subsets which constitute the product.

The product hierarchy is scanned to produce a list of component path names relative
to input-path. The list of path names is processed against the mi-file to produce a list
of those files which have been removed from the product hierarchy and a list of those
files which have been added.

The user is then given an opportunity to intervene and direct the inventory
maintenance by editing these lists. The user is placed in the editor with each list
available for editing. The editor used is the one specified by the EDITOR
environment variable. If EDITOR is not set, vi is used. When editing the list of files
which have been removed from the product, the user is expected to verify that the
removals were intentional, and confirm the intent by removing the associated record
from the file. When editing the list of files which have been added to the product, the
user is expected to provide flags and subset information for each new file,
transforming the elements of the list into master inventory records.

Both of these lists are merged with the records for the files which have not been
changed to produce a new copy of the master inventory file.

Arguments

mi-file

input-path

Restrictions

The pathname of the master inventory file to be processed. If no
master inventory file exists, you must create an empty one before
using the newinv command.

The name of the product hierarchy to be scanned for files
belonging in the inventory. All files and directories found below
the input-path will be processed as belonging in the inventory.

The default text editor if not specified in $EDITOR is /usr /ucb/vi.

Files in the product hierarchy cannot be excluded from the master inventory. Files
can be blocked from being kitted in the final distribution kit by setting the subset
field of the master inventory record to NOSHIP.

Examples
To update the master inventory file ULT400.mi from the hierarchy beginning at
Ivarlkitslinput, type:

newinv ULT400.mi /var/kits/input

1-464 Commands

newinv(1)

Diagnostics
newinv: where is mi-file?
The mi-file specified on the command line cannot be found.

input-path: bad directory.
The input-path directory specified on the command line does not exist.

Files

rni-file .bkp Backup copy of master inventory

rni-file. dead The list of files missing from the product.

rni-file.extra
The list of files new to the product.

rni-file. join Intermediate join file.

rni - f i 1 e . trnp List of all files in the product.

See Also
kits(1), vi(1), stl_mi(5), environ(7), setld(8)
Guide to Preparing Software for Distribution on ULTRIX Systems

Commands 1-465

next (1 mh)

Name

Syntax

next - show the next message

next [+foldername] [-header] [-noheader] [-showproc program] [-noshowproc]
[switches for showproc] [-help]

Description

Files

The command next displays the next message in the current folder if you do not
specify a folder with the +folder argument. The next message is the one after the
current message in the specified folder. If you specify a folder with next, that
folder will become the current folder. The message that is shown will become the
current message.

Like show, it passes any switches onto the program showproc, which is called to
list the message. This command is very similar to show next. See show(1mh) for
more information.

The defaults for next are:
+folder defaults to the current folder
-header

$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder
Program to show the message

Current-Folder:
showproc:

See Also
show(1mh), prev(1mh)

1-466 Commands

Name

Syntax

nice, nohup - execute a command at a lower priority

nice [-number] command [arguments]

nohup command [arguments]

nice{1)

Description
The nice command executes command with low scheduling priority (Bourne Shell
only). If the number argument is present, the priority is incremented (higher numbers
mean lower priorities) by that amount up to a limit of 20. The default number is 10.

The super-user may run commands with priority higher than normal by using a
negative priority, for example, '-10'.

The nohup command executes command immune to hangup and terminate signals
from the controlling terminal. The priority is incremented by 5. The nohup
command should be invoked from the shell with an ampersand (&) in order to
prevent it from responding to interrupts by or stealing the input from the next person
who logs in on the same terminal. The syntax of nice is also different.

Options

-number Increments the priority by a specified number up to a limit
of 20. The default is 10.

Restrictions
The nice and nohup commands are particular to sh(l). If you use csh(1), then
commands executed with an ampersand (&) are automatically immune to hangup
signals while in the background. There is a built-in command nohup which
provides immunity from terminate, but it does not redirect output to nohup.out.

The nice command is built into csh(l) with a slightly different syntax than
described here. The form "nice +10" nices to positive nice, and "nice -10" can be
used by the superuser to give a process more of the processor.

Diagnostics
The nice command returns the exit status of the subject command.

Files
nohup.out standard output and standard error file under nohup

See Also
csh(1), getpriority(2), renice(8)

Commands 1-467

nidi (1 ncs)

Name
nidl- Network Interface Definition Language Compiler

Syntax
nidi filename [options]

Description
The nidI compiler is for the Network Interface Definition Language (NIOL).

The filename argument is the pathname of an interface definition file, written in the C
syntax of NIOL.

The compiler generates a header file, a client stub file, a server stub file, and a client
switch file, all in C source code. The compiler derives the names of these output
files from filename by replacing the suffix (the rightmost period and all subsequent
characters) with extensions for the client stub, server stub, and client switch.

Options

-confirm

-cpp pathname

-def dell [dej2 ...]

Display the options chosen but do not compile anything. In
displaying information about -idir, the compiler constructs
the list of all directories it would use to resolve relative
pathnames of imported files, not just the ones explicitly
supplied. (If the list is empty, the compiler uses only the
current directory.) This option is useful for viewing the 'idir
list' and for viewing the default values for other options.

Run the specified program instead of the default C
preprocessor. You can use the -confirm option to view the
default pathname.

Pass the specified definitions to the C preprocessor. A
definition can take either of two forms: symbol or
symbol=value.

-exts cstub-ext, sstub-ext, cswtch-ext

-f77c

-f77s

1-468 Commands

Set the extensions that the compiler uses to name the stub
and switch files it generates. The text strings cstub-ext,
sstub-ext, and cswtch-ext must be separated by commas,
with no spaces; they are used as extensions for the client
stub, the server stub, and the client switch, respectively.
You can use the -confirm option to view the defaults.

Generate client switch code that is compatible with the
ULTRIX f77 compiler. The NIOL compiler appends an
underscore () character to the name of each client switch
routine, so that the routines can be called from FORTRAN
programs generated by the f 77 compiler.

Generate server stub code that is compatible with the
ULTRIX f77 compiler. The NIDL compiler appends an
underscore () character to the name of each manager
routine that the stub calls, so that the stub can call routines

nidi (1 ncs)

generated by the f 77 compiler.

-idir directory1 [directory2 ...]

-m

-no_cpp

-no def idir

-no warn

-out directory

Use the specified directories as paths from which to resolve
relative pathnames of imported files. The compiler generates
an ordered list of these directories. By default, it prepends
to this list your current working directory and appends the
system idl directory. You can suppress this default by
supplying the -no _ def _idir option.

Support multiple versions and multiple managers within a
single server. This option allows a server to export more
than one version of an interface ('multiple versions ') and to
implement an interface for more than one type (,multiple
managers').

The compiler appends the version number to the interface
name when it generates identifiers in the stub and header
files. For example, the interface specifier for version 3 of
the foobar interface would be foobar _ v3$if _spec.

The server for an interface compiled with -m must use
rpc_ $register_mgr to register its managers. The
server supplies the name of a manager EPV to
rpc $register mgr; the manager code defines this
EPV ~ If the server supports objects of several types, it must
use rpc_$register_object to register each object.
These registrations enable the RPC runtime library at the
server host to dispatch incoming requests to the correct
manager.

If you do not specify either -m or its counterpart, -s, the
compiler assumes -s and issues a warning. However, this
default may be removed or changed in future NIDL
compilers. Even if your server exports only one version of
its interface and contains only one manager, use the-m
option, so that it will be easy for you to incorporate multiple
versions and multiple managers later.

Do not run the C preprocessor on the input file. If you
specify this option, the NIDL compiler does not interpret any
C preprocessor statements (such as #include statements)
in the interface definition.

Do not prepend the current working directory or append the
system i dl directory to the list of directories constructed
from -idir arguments. If you specify -no _ def _ idir without
-idir, the compiler resolves pathnames of imported files only
relative to the current working directory.

Do not generate any stub or switch files. The NIDL
compiler generates only header files and insert files.

Suppress warning messages.

Place the generated files in directory. The default is the
current working directory.

Commands 1-469

nidi (1 ncs)

-s

-version

See Also
uuid~en(3ncs)

Allow a server to export only a single version of an interface
and to implement an interface for only a single type. This
option requests the behavior of NIDL compilers before
Version 1.5, which added support for multiple versions and
multiple interfaces. (See the -m option.)

The server for an interface compiled with -s must use
rpc_ $register to register its interfaces.

If you do not specify either -s or its counterpart, -m, the
compiler assumes -s and issues a warning. However, this
default may be removed or changed in future NIDL
compilers. Even if your server exports only one version of
its interface and contains only one manager, use the -m
option, so that it will be easy for you to incorporate multiple
versions and multiple managers later.

Reduce the size of generated stub code, possibly at the
expense of slower data marshalling.

Display the version number of the NIDL compiler but do not
compile anything or generate any output files.

DECrpc Programming Guide

1-470 Commands

Name

Syntax

nl (1)

nl - line numbering filter

nl [-h type] [-b type] [-f type] [-v start#] [-i incr] [-p] [-I num] [-s sep] [-w
width] [-n format] [-d de lim] file

Description
The n 1 command reads lines from the named file or from the standard input, if no
file is named, and reproduces the lines on the standard output. Lines are numbered
on the left in accordance with the command options in effect.

The n 1 command views the text it reads in terms of logical pages. Line numbering
is reset at the start of each logical page. A logical page consists of a header, a body,
and a footer section. Empty sections are valid. Different line numbering options are
independently available for header, body, and footer. For example, you can elect not
to number header and footer lines while numbering blank lines in the body.

The start of logical page sections is signaled by input lines containing nothing but the
following delimiter characters:

Line contents Start of

\:\:\:

\:\:

\:

header

body

footer

Unless otherwise specified, n 1 assumes that the text it is reading is in the body of a
single logical page.

Options
Command options may appear in any order and may be intermingled with an optional
file name. Only one file may be named.

-b type

-h type

-f type

-p

-v start#

Specifies which logical page body lines are to be numbered.
The following are recognized types and their meaning: a,
number all lines; t, number lines with printable text only; n,
no line numbering; pstring, number only lines that contain
the regular expression specified in string.

The default type for logical page body is t (text lines
numbered).

Same as -b type except for header. Default type for logical
page header is n (no lines numbered).

Same as -b type except for footer. Default for logical page
footer is n (no lines numbered).

Do not restart numbering at logical page delimiters.

The initial value used to number logical page lines. Default
is 1.

Commands 1-471

nl (1)

-i incr

-s sep

-w width

-nformat

-I num

-dxx

Examples

The increment value used to number logical page lines.
Default is 1.

The character used in separating the line number and the
corresponding text line. Default sep is a tab.

The number of characters used for the line number. Default
width is 6.

The line numbering format. Recognized values are the
following: In, left justified, leading zeroes suppressed; rn,
right justified, leading zeroes suppressed; rz, right justified,
leading zeroes kept. Default format is rn (right justified).

The number of blank lines to be considered as one. For
example, -12 results in only the second adjacent blank being
numbered (if the appropriate -ha, -ba, or -fa option is set).
Default is 1.

The delimiter characters specifying the start of a logical page
section may be changed from the default characters (\:) to
two user-specified characters. If only one character is
entered, the second character remains the default character
(:). No space should appear between the -d and the
delimiter characters. To enter a backs lash, you must type
two backslashes (I/).

nl -vlO -ilO -d!+ filel

This command numbers file 1 starting at line number 10 with an increment of ten.
The logical page delimiters are !+.

See Also
pr(l)

1-472 Commands

nm(1)

Name
run - name list dump of RIse object files

Syntax
nm [-adefghnopruvxABTV] [filel ..• filen]

Description
The nm command prints listings fonnats for the symbol and external sections of the
symbol table. A file can be an object or an archive. If you do not specify a file, this
command assumes a.out.

Options
The -A and -B options specify AT&T System V style output or Berkeley (4.3 BSD)
style output, respectively. The default is Berkeley (4.3 BSD).

NOTE

Some options can change the version-specific defaults. These options
change the meaning of overloaded flags after -A or -B is specified.

A nonnal Berkeley system produces the address or value field followed by a letter
showing what section the symbol or external is in and the name of the symbol or
external.

These section letters describe the infonnation that om generates:

N nil storage class, compiler internal usage

T external text

t local text

D external initialized data

d local initialized data

B external zeroed data

b local zeroed data

A external absolute

a local absolute

U external undefined

G external small initialized data

g local small initialized data

S external small zeroed data

s local small zeroed data

R external read only

r local read only

C common

Commands 1-473

Rise

Rise nm(1)

E small common

V external small undefined

The standard System V format and the -a specified Berkeley format provide an
expanded listing with these columns:

Name the symbol or external name

Value the value field for the symbol or external, usually an address or interesting
debugging information

Class the symbol type

Type the symbol's language declaration

Size unused

Index the symbol's index field

Section the symbol's storage class

NOTE
Every effort was made to map the field's functionality into System V
nomenclature.

The nm command accepts these options:

-a prints debugging information, effectively turning Berkeley into System V
format

-b prints the value field in octal

-d prints the value field in decimal (the System V default)

-e prints external and statics only

-f produces full output-nm still accepts this old option, but ignores it

-h does not print headers

-n for System V, sorts external symbols by name (default for Berkeley), and for
Berkeley, sorts all symbols by value

-0 for System V, prints the value field in octal, and for Berkeley prepends the
filename to each symbol-good for grepping through nm of libraries

-p prints symbols as they are found in the file (the System V default)

-r reverses the sense of a value or name sort

-u prints only undefined symbols

-v sorts external symbols by value

-x prints value field in hexadecimal (Berkeley default)

-T truncates long names, inserting an asterisk (*) as the last printed character

-V prints version information on stderr

1-474 Commands

nm(1) VAX

Name
nm - print program's name list

Syntax
nm [options] [file ...]

Description
The nm command prints the name list (symbol table) of each object file in the
argument list. If an argument is an archive, a listing for each object file in the archive
is produced. If no file is given, the a. out file is used.

Each symbol name is preceded by its value, which is blank if undefined, and a letter.
The letter defines the symbol type:

U Undefined

A Absolute

T Text segment symbol

D Data segment symbol

B Bss segment symbol

C Common symbol

f File name

For dbx(1) symbol table entries (see -a option below).

If the symbol is local (non-external), the letter is in lower case. The output is sorted
alphabetically.

Options

-a Displays all symbols including debug symbol table.

-e Prints only global (external) symbols.

-f Displays all symbols including debug symbol table.

-g Prints only global (external) symbols.

-n Sorts numerically rather than alphabetically.

-0 Prepends file or archive element name to each output line.

-p Prints symbolic table order and does not sort.

-r Sorts in reverse order.

-u Displays only undefined symbols.

Diagnostics

bad format

cannot open

invalid argument

Indicates that the file is neither an archive file nor a .0 file.

Indicates that the file could not be opened.

Indicates that an invalid option was specified.

Commands 1-475

VAX nm(1)

no name list

ran out of memory

See Also

Indicates that the file does not contain a symbol table.

Indicates that the string table in either the archive or .0 file is
too big.

ar(l), ar(5), a.out(5), stab(5)

1-476 Commands

nroff (1)

Name
nroff - format text

Syntax
nroff [option ...] [file ...]

Description
The nroff command formats text in the named files for typewriter-like devices. For
further information, see the appropriate *roff reference pages. The full capabilities of
nroff are described in the Nroffrrroff User's Manual.

If no file argument is present, the standard input is read. An argument consisting of a
single minus (-) is taken to be a file name corresponding to the standard input.

Options

Files

The options, which may appear in any order so long as they appear before the files,
are:

-olist

-oN

-sN

-mname

-raN

-i

-q

-Tname

-e

-b

Print only pages whose page numbers appear in the comma-separated
list of numbers and ranges. A range N-M means pages N through M;
an initial -N means from the beginning to page N; and a final N
means from N to the end.

Number first generated page N.

Stop every N pages. The nroff command halts prior to every N
pages (default N = 1) to allow paper loading or changing, and resumes
upon receipt of a new line.

Prepend the macro file /usr / lib/tmac/tmac. name to the input
files.

Set register a (one-character) to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input-output mode of the rd request.

Prepare output for specified terminal. Known names are the tabname
files in /usr / lib/term. The default name is tab37 for the
Teletype Corporation Model 37 terminal.

Produce equally-spaced words in adjusted lines, using full terminal
resolution.

Use output tabs during horizontal spacing to speed output and reduce
output character count. Tab settings are assumed to be every 8
nominal character widths.

/tmp/ta * temporary file
/usr/lib/tmac/tmac. * standard macro files
/usr/lib/term/* terminal driving tables for nroff

Commands 1-477

nroff{1)

See Also
col(l), tbl(l), term(5), man(7), me(7), ms(7), term(7)
"Nroff/froff User's Manual" and "A TROFF Tutorial" ULTRIX Supplementary
Documents Vol. I: General User

1-478 Commands

Name

Syntax

nslookup (1)

nslookup - interactively query servers running BIND, or BIND and Hesiod together

lusr/ucb/nslookup [host][server]
lusr/ucb/nslookup [-][server]

Description
The nslookup command queries the BIND/Hesiod servers. This command has two
modes: interactive and non-interactive. Interactive mode allows you to query the
BIND/Hesiod server for information about various hosts and domains. Non
interactive mode allows you to obtain just the name and Internet address of a host or
domain.

Use interactive mode if you have no arguments to provide. In this case, nslookup
queries the default BIND/Hesiod server. To specify a BIND/Hesiod server to query,
the first argument should be a dash (-) and the second argument should be the name
of the server.

Use non-interactive mode when the name of the host you are looking up is the first
argument. The optional second argument specifies a BIND/Hesiod server. If you do
not supply a second argument, the current BIND/Hesiod server is queried.

To terminate the nslookup command from within interactive mode, press
<CTRL/D>. To terminate only the current lookup activity, press <CTRL/C>.

Non-interactive Options

host [server]
The host option is the name of the host for which you are looking up
information. If you do not specify a server, the default server is queried. You
can specify the server by either name or IP address.

- [server]
The - option returns the name and IP address of the default server, or the
server you specify. It then places you in interactive mode. If you do not
specify a server, the default server is queried. You can specify the server by
either name or IP address.

Interactive Options
The command line length must be less than 80 characters. Any unrecognized
command is interpreted as a host name. The following are the standard options:

host [server]
Looks up information for host using the current default server or using server
if it is specified.

server server
Changes the default server to the server specified. This option uses the current
default server.

Iserver server
Changes the default server to the server specified. This option uses the initial

Commands 1-479

nslookup (1)

default server to look up information about the server specified.

root Changes the default server to the server for the root of the domain name space
specified. Currently, the host nic.ddn.mil is used.

finger [name] [> [>] file]
Connects with the finger server on the current host. The current host is defined
when a previous lookup for a host was successful and returned address
information. See the set querytype=value command. The name field is
optional; but if used, it specifies a user name. You can use the> and »
options to redirect output to the file specified.

Is [-adhlmst] domain [> [>] file]
Lists the information available for the domain specified. The default output
contains host names and their Internet addresses.

-a Lists aliases of hosts in the domain, CNAME entries.

-d Lists all entries in the domain.

-h Lists CPU and operating system information for the domain,
HINFO entries.

-I Same as -d.

-m Lists mail exchangers in the domain, MX entries.

-s Lists well known services in the domain, WKS entries.

-t Lists Hesiod text information, TXT entries.

If you redirect the output to a file, hash marks are printed for every 50 records
received from the server.

view file
Sorts and lists the output of the Is command with the more command.

help or?
Print a brief summary of the nslookup commands and options.

set keyword[=value]
Changes the set options that affect the lookups, except for keywords all and
ALL which display information. Valid keywords are:

1-480 Commands

all Prints the current values of the options you can set, as well as
information about the current default server.

ALL Prints the current values of the options you can set, as well as
information about the current default server. In addition, the ALL
option prints the server state information.

[no]debug Turns on debugging mode. Verbose information is printed about
the packet sent to the server and the resulting answer.

The default is nodebug , which you can abbreviate to [no]deb.

[no]defname

[no]recurse

Appends the default domain name to every lookup. The default is
nodefname, which you can abbreviate to [no]def.

Tells the BIND/Hesiod server to query other servers if it does not

[no]vc

nslookup (1)

have the information. The default is recurse, and the abbreviation
is [no]rec.

Uses a TCP connection when sending requests to the server. The
default is novc, and the abbreviation is [no]v.

domain=name

c1ass=value

Changes the default domain to the domain name specified. The
default domain name is appended to all lookup requests if the
defname option is set. The default value is set in the
/etc/resolv. conf file, which you can abbreviate to do.

Changes the class of information returned from a query to one of
the following values:

IN Internet (default)

HS Hesiod

ANY any

The abbreviation for the class option is c1.

querytype=value
Changes the type of information returned from a query to value.
The following is a list of the most common values:

A host Internet address (default)

CNAME canonical name for an alias

MX mail exchanger

NS name server

PTR host Internet name

SOA Start of authority

TXT A Hesiod data query

WKS A well known service

The abbreviation for the querytype option is q.

retry=number
Sets the number of retries to the number specified. If a reply to a
request is not received within a certain amount of time (changed
with set timeout), the request is resent. The retry value controls
how many times a request is to be resent before giving up. The
default retry number is 2, and the abbreviation for the retry option
is ret.

root=host Changes the name of the root server to the host name specified.
This affects the root command. The default is n i c . ddn . mi 1,
and the abbreviation is roo

timeout=number
Changes the time-out interval for waiting for a reply to the number
specified (in seconds). The default is 10 seconds, and the
abbreviation for the timeout option is t.

Commands 1-481

nslookup (1)

Tutorial
The domain name space is tree-structured and has six top-level domains:

• ARPA (for ARPAnet hosts)

The ARPA domain is currently one of the top-level domains, but is being
phased out.

• COM (for commercial establishments)

• EDU (for educational institutions)

• GOV (for government agencies)

• ORG (for not for profit organizations)

• MIL (for MILNET hosts)

If you are looking for a specific host, you need to know something about the host's
organization in order to determine the top-level domain it belongs to. For instance, if
you want to find the Internet address of a host at UCLA, do the following:

1. Connect with the root server, using the root command. The root server of the
name space has knowledge of the top-level domains.

2. Connect with a server for the ucla. edu domain. The domain name for
UCLA, which is a university, is ucla. edu. To connect with this server, you
can type:

'* nslookup
> server ucla.edu

The response is the names of the hosts that act as servers for the domain
ucla. edu. Note that the root server does not have information about
ucla. edu, but knows the names and addresses of hosts that do. All future
queries are sent to the UCLA BIND server.

3. Request information about a particular host in the domain, for example,
purple. To do this, type the host name. To request a list of hosts in the
UCLA domain, use the Is command. The Is command requires a domain
name (in this case, ucla. edu) as an argument.

Note that if you are connected with a BIND server that handles more than one
domain, all lookups for host names must be fully specified with its domain. For
instance, the domain harvard. edu is served by seismo. css. gov, which also
services the css. gov and cornell. edu domains. A lookup request for the host
novel in the harvard. edu domain must be specified as
novel. harvard. edu. However, you can use the set domain=name and set
defname commands to automatically append a domain name to each request.

After a successful lookup of a host, use the finger command to see who is on the
system or to get information about a specific person. To get other information about
the host, use the set querytype=va[ue command, which allows you to change the
type of information obtained and request another lookup. The finger command
requires that the information requested information be of type A, a host Internet
address.

1-482 Commands

nslookup (1)

Hesiod Tutorial
If you have set up Hesiod on your UL TRIX system and would like to look at this
information, you must use the set class=value and set querytype=value
commands, where value is HS and TXT respectively.

The following example presumes that the networks database is set up to be
distributed with BIND/Hesiod. The answer received from the nslookup command
is that 128.45 is the network number for the network named ethernet in the
networks.dec.com domain.

nslookup
Default Server: localhost.dec.com
Address: 127.0.0.1

> set cl=hs
> set q=txt
> ethernet.networks
Server: localhost.dec.com
Address: 127.0.0.1

ethernet.networks.dec.com ethernet:128.45
>

Diagnostics
If the lookup request was not successful, the nslookup command displays one of
the following error messages:

Time-out
The server did not respond to a request after a certain amount of time (changed with
set timeout=value) and a certain number of retries (changed with set retry=value).

No information
Depending on the query type set with the set querytype command, no information
about the host was available, although the host name is valid.

Non-existent domain
The host or domain name does not exist.

Connection refused
The connection to the BIND/Hesiod server was refused.

Network is unreachable
The connection to the BIND/Hesiod server cannot be made at the current time.

Server failure
The BIND/Hesiod server found an internal inconsistency in its database and could
not return a valid answer.

Refused
The BIND/Hesiod server refused to service the request.

Format error
The name server found that the request packet was not in the proper format. Contact
your DIGITAL Field Service representative.

Commands 1-483

nslookup (1)

Files

/var/dss/namedb BIND server data file directory

/var/dss/namedb/named.boot
BIND server boot file

/var/dss/namedb/hosts.db
BIND primary server hosts file

/var/dss/namedb/hosts.rev
BIND primary server reverse address hosts file

/var/dss/namedb/named.local
BIND server local host reverse address host file

/var/dss/namedb/named.ca
BIND server cache file

/etc/resolv.conf
BIND data file

See Also
finger(l), more(l), nsquery(l), resolver(3), resolver(5), named(8)
Guide to the BINDIHesiod Service

1-484 Commands

nsquery{1)

Name
nsquery - name server query command

Syntax
lusr/ucb/nsquery [lookup] [host] [server]

Description
The nsquery command provides an interface to obtain host name and address
information.

If you specify host, the nsquery command obtains information about the specified
host. If no host is specified, the nsquery command obtains information about the
local host system.

If you specify server, the nsquery command queries the BIND server that you
specify. If you do not specify a server, the nsquery command queries the default
BIND server.

Options

Files

lookup Retrieves the host name, Internet Protocol (IP) address, and aliases of the
specified host. If no host or server is specified, the nsquery command
obtains information about the local system from the default BIND server.

If you do specify the lookup option, the nsquery command obtains the
information about the BIND server and host specified (or their defaults). If
the system from which you issue the nsquery command is a BIND
server, and you do not specify the lookup option, information about only
that server is retrieved.

/var/dss/namedb Directory containing BIND server data file

/var/dss/namedb/named.boot
BIND server boot file

/var/dss/namedb/hosts.db
Host database file containing name to address mapping for
BIND primary server

/var/dss/namedb/hosts.rev
Host database file containing address to name mapping for
BIND primary server

/var/dss/namedb/named.local
Local host database file containing address to name mapping
for BIND server

/var/dss/namedb/named.ca
BIND server cache file

/etc/resolv.conf
BIND data file

Commands 1-485

nsquery{1)

See Also
nslookup(l), resolver(3), resolver(5), named(8)
Guide to the BINDIHesiod Service

1-486 Commands

ntp(1)

Name
ntp - query a clock running the Network Time Protocol daemon, ntpd

Syntax
/usr/etc/ntp [-v][-s][-f] hostl I IPaddressl ...

Description
The n t p command is used to determine the offset between the local clock and a
remote clock. It can also be used to set the local host's time to a remote host's time.
The n t p command sends an NTP packet to the NTP daemon, n t pd, running on
each of the remote hosts specified on the command line. The remote hosts must be
running ntpd. When the ntpd daemon on the remote host receives the NTP
packet, it fills in the fields (as specified in RFC 1129), and sends the packet back.
The n t p command then formats and prints the results on the standard output.

NOTE

You can specify hosts by either host name or Internet address. The hosts
that you specify must either exist in the / etc/hosts file, or in the
master ho s t s database, if the database is being served to your system
by BIND/Hesiod or Yellow Pages.

The default output shows the roundtrip delay of the NTP packet in seconds, the
estimated offset between the local time and remote time in seconds, and the date in
ct irne format. See the ct irne(3) reference page for more information.

The - sand - f options can be used to reset the time of the local clock. Use n t p
with these options to initialize the system time prior to running the n t pd daemon.

Options

-v Specifies verbose output. The output shows the full contents of the received
NTP packets, plus the calculated offset and delay.

-s Sets local clock to remote time. This only happens if the offset between the
local and remote time is less than 1000 seconds. The local clock is not reset if
the remote host is unsynchronized.

If you specify more than one host name on the command line, n t p queries
each host in order, waiting for each host to answer or timeout before querying
the next host. The local clock is set to the time of the first remote host that
responds.

-f Forces setting local clock regardless of offset. The - f option must be used
with - s option. The local clock is not reset if the remote host is
unsynchronized.

Restrictions
Using the -s and -f options require that you be logged on as superuser.

Commands 1-487

ntp (1)

Examples
The following is the default output to an n t p query about a remote host with an
internet address of 555.5.55.5:

lusr/etc/ntp 555.5.55.5

555.5.55.5: delay:1.845207 offset:-0.358460 Mon Mar 20 08:05:44 1989

The following is the verbose output to an n t p query about the same remote host:

lusr/etc/ntp -v 555.5.55.5

Packet from: [555.5.55.5]
Leap 0, version 1, mode Server, poll 6, precision -10 stratum 1 (WWVB)
Synch Distance is 0000.1999 0.099991
Synch Dispersion is 0000.0000 0.000000
Reference Timestamp is a7bea6c3.88b40000 Tue Mar 7 14:06:43 1989
Originate Timestamp is a7bea6d7.d7e6e652 Tue Mar 7 14:07:03 1989
Receive Timestamp is a7bea6d7.cf1aOOOO Tue Mar 7 14:07:03 1989
Transmit Timestamp is a7bea6d8.0cccOOOO Tue Mar 7 14:07:04 1989
Input Timestamp is a7bea6d8.1a77e5ea Tue Mar 7 14:07:04 1989
555.5.55.5: delay:0.019028 offset:-0.043890 Tue Mar 7 14:07:04 1989

The fields are interpreted as follows:

Packet from: [internet address]
The address of the remote host from which this NTP packet was received.

Leap n
The leap second indicator. Non-zero if there is to be a leap second inserted in
the NTP timescale. The bits are set before 23:59 on the day of insertion and
reset after 00:00 on the following day.

version n
The NTP protocol version.

mode type

Poll x

The NTP mode can be Server, Client, Symmetric Passive, Symmetric Active,
or Broadcast. See RFC 1129 for more information on NTP modes.

The desired poll rate of the peer in seconds as a power of 2. For example, if
poll is equal to 6, that means that the poll rate is one message exchanged every
2**6 seconds.

Precision x
The precision of the remote host's clock in seconds as a power of 2. For
example, if precision is equal to -10, that means that the precision is 2**-10.
The ntpd daemon sets this automatically.

Stratum n (source)
The stratum of the clock in the NTP hierarchy, along with the source of the
clock. The source is either the name of a reference standard (such as WWVB
or GOES), or the Internet address of the clock that this clock references.

Synch Distance is nn.nn nn.nn
The values reported are used internally by ntpd.

Synch Dispersion is nn.nn nn.nn
The values reported are used internally by ntpd.

1-488 Commands

ntp{1)

The next five timestamps are given as NTP fixed-point values, in both hexadecimal
and ctirne. The timestamps are set either by this NTP process, or by the remote
host you are querying. These timestamps are used by the local host to calculate
delay and offset for this query.

Reference Timestamp is hex-timestamp ctime _string
This specifies the last time the remote host clock was adjusted. (remote
time)

Originate Timestamp is hex-timestamp ctime string
This specifies when the NTP request was transmitted by the local host to
the remote host. (local time)

Receive Timestamp is hex-timestamp ctime _string
This specifies when the NTP request was received at the remote host.
(remote time)

Transmit Timestamp is hex-timestamp ctime _string
This specifies when the NTP response was transmitted by the remote host.
(remote time)

Input Timestamp is hex-timestamp ctime _string
This specifies when the NTP response was received by the local host. (local
time)

hostname: delay:time offset:time

Diagnostics

This field summarizes the results of the query, giving the host name or internet
address of the responding clock specified in the command line, the round-trip
delay in seconds, and the offset between the two clocks in seconds (assuming
symmetric round-trip times).

The following error messages can be returned by NTP:

Tirneout

hosmame is not responding
May indicate that the ntpd daemon is not running on the
remote host.

No such host: hostname

See Also

The ntpd daemon cannot resolve the specified host name in
the / etc/hosts file. Check that the host exists in the
jete/hosts file, or that it exists in the master hosts
database, if the database is being served to your system by
BIND/Hesiod or Yellow Pages.

ctime(3), ntp.conf(5), ntpd(8), ntpdc(8)
RFC 1129-1nternet time synchronization: The Network Time Protocol
Guide to System and Network Setup
Introduction to Networking and Distributed System Services

Commands 1-489

od{1)

Name
od - create file octal dump

Syntax
od [options] [file] [offset] [label]

Description
The od command displays file, or its standard input, in one or more dump formats as
selected by the first argument. If the first argument is missing, -0 is the default.
Dumping continues until end-of-file.

Options

-3 Interprets bytes as characters and display them with their ACSII names. If
the p character is given also, then bytes with even parity are underlined.
The P character causes bytes with odd parity to be underlined. Otherwise
the parity bit is ignored.

-b Displays bytes as unsigned octal.

-c Displays bytes as ASCII characters. Certain non-graphic characters appear
as C escapes: null=\o, backspace=\b, formfeed=\f, newline=\n, return=\r,
tab=\t; others appear as 3-digit octal numbers. Bytes with the parity bit set
are displayed in octal.

-d Displays short words as unsigned decimal.

-f Displays long words as floating point.

-b Displays short words as unsigned hexadecimal.

-i Displays short words as signed decimal.

-I Displays long words as signed decimal.

-0 Displays short words as unsigned octal.

-s[n] Looks for strings of ASCII characters of n minimum length. By default,
the minimum length is 3 characters.

-v Displays all data and indicates lines identical to the last line shown with an
* in column 1.

-w[n] Specifies the number of input bytes to be interpreted and displayed on each
output line. If w is not specified, 16 bytes are read for each display line. If
n is not specified, it defaults to 32.

-x Displays short words as hexadecimal.

An upper case format character implies the long or double precision form of the
object.

The offset argument specifies the byte offset into the file where dumping is to
commence. By default this argument is interpreted in octal. A different radix can be
specified; If " ." is appended to the argument, then offset is interpreted in decimal. If
offset begins with "x" or "Ox", it is interpreted in hexadecimal. If "b" ("B") is
appended, the offset is interpreted as a block count, where a block is 512 (1024)

1-490 Commands

od(1)

bytes. If the file argument is omitted, an offset argument must be preceded by "+".

The radix of the displayed address is the same as the radix of the offset, if specified;
otherwise it is octal.

The label is interpreted as a pseudo-address for the first byte displayed. It is shown
in "0" following the file offset. It is intended to be used with core images to
indicate the real memory address. The syntax for label is identical to that for offset.

Restrictions
A file name argument can't start with "+". A hexadecimal offset can't be a block
count. Only one file name argument can be given.

It is an historical botch to require specification of object, radix, and sign
representation in a single character argument.

See Also
adb(1) - VAX only, dbx(1)

Commands 1-491

Rise odump(1)

Name
odump - dumps selected parts of an object file

Syntax
odump [options] file ...

Description
The odump command dumps selected parts of each objectfile. This command works
for object files and archives of object files.

Options
The following options are available with the odump command:

-8

-f

-g

-0

-h

-i

-s

-r

-I

-t

-zname

-c

-L
-F
-p

-R

Dumps the archive header for each member of the specified archive
file.

Dumps each file header.

Dumps the global symbols from the symbol table of a RISe archive.

Dumps each optional header.

Dumps section headers.

Dumps the symbolic information header.

Dumps section contents.

Dumps relocation information.

Dumps line number information.

Dumps symbol table entries.

Dumps line number entries for the specified function name.

Dumps the string table.

Interpret and print the contents of the .lib sections.

Dumps the file descriptor table.

Dumps the procedure descriptor table.

Dumps the relative file index table.

The odump command accepts these modifiers with the options:

-d number Dumps the section number or a range of sections starting at number
and ending either at the last section number or the number you specify
with +d.

+d number Dumps sections in the range beginning with the first section or
beginning with the section you specify with -d.

-0 name Dumps information only about the specified name. This modifier
works with -h, -S, -r, -I, and -to

-p Does not print headers

1-492 Commands

-tindex

+tindex

-u

-v

odump(1)

Dumps only the indexed symbol table entry. You can also specify a
range of symbol table entries by using the modifier -t with the +t
option.

Dumps the symbol table entries in the specified range. The range
begins at the first symbol table entry or at the entry specified by -to
The range ends with the specified indexed entry.

Underlines the name of the file for emphasis.

Dumps infonnation symbolically rather than numerically (for example,
Static rather than OX02). You can use -v with all the options except
-so

-z name ,number

+znumber

Dumps the specified line number entry or a range of line numbers.
The range starts at the number for the named function.

Dumps line numbers for a specified range. The range starts at either
the name or number specified by -z The range ends with the number
specified by +z.

Also, an option and its modifier can be separated by using blanks. The name can be
separated from the number that modifies -z by replacing the comma with a blank.

The odurnp command tries to fonnat infonnation in a helpful way, printing
infonnation in character, hexadecimal, octal, or decimal as appropriate.

See Also
a.out(5), ar(5)

Commands 1-493

Rise

pack(1)

Name

Syntax

pack, pcat, unpack - compress and expand files

pack [-] [-f] name ...

pcat name ...

unpack name ...

Description
The pack command stores the specified files in a compressed fonn. Wherever
possible (and useful), each input file name is replaced by a packed file name.z with
the same access modes, access and modified dates, and owner as those of name. The
-f option forces packing of name. Using this option you can cause an entire directory
to be packed even if some of the files cannot benefit from it. If pack is successful,
name is removed. Packed files can be restored to their original form using unpack
or pcat.

The pack command uses Huffman (minimum redundancy) codes on a byte-by-byte
basis. If a hyphen (-) is used as an argument, an internal flag is set that causes the
number of times each byte is used, its relative frequency, and the code for the byte to
be printed on the standard output. Additional occurrences of a hyphen (-) in place of
name causes the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and the
character frequency distribution. Because a decoding tree forms the first part of each
.z file, it is usually not worthwhile to pack files smaller than three blocks, unless the
character frequency distribution is skewed, which may occur with printer plots or
pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules,
which use a larger character set and have a more uniform distribution of characters,
show little compression. The packed versions are about 90% of the original size.

The pack command returns a value that is the number of files that it failed to
compress.

No packing occurs if one of the following is true:

• The file appears packed.

• The file name exceeds 12 characters.

• The file has links.

• The file is a directory.

• The file cannot be opened.

• No disk storage blocks can be saved by packing.

• A file called name. z already exists.

• The .z file cannot be created.

• An I/O error occurred during processing.

1-494 Commands

pack(1)

The last segment of the file name must not exceed 12 characters to allow space for
the appended .z extension. Directories cannot be compressed.

The pc at command does for packed files what cat (1) does for ordinary files,
except that pcat can not be used as a filter. The specified files are unpacked and
written to the standard output. Thus, to view a packed file named name.z use:

peat name.z

or just:

peat name

To make an unpacked copy, say nnn, of a packed file named name. z (without
destroying name.z) use the command:

peat name >nnn

The pca t command returns the number of files it was unable to unpack. Failure
may occur if:

the file name (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

The unpack command expands files created by pack. For each file name
specified in the command, a search is made for a file called name.z (or just name, if
name ends in .z). If this file appears to be a packed file, it is replaced by its
expanded version. The new file has the .z suffix stripped from its name, and has the
same access modes, access and modification dates, and owner as those of the packed
file.

The unpack command returns a value that is the number of files it was unable to
unpack. Failure occurs for the same reasons that it occurs in pca t, as well as for
the following:

a file with the unpacked name already exists;
if the unpacked file cannot be created.

This command is present only for compatibility. In general, the compress(1)
command runs faster and gives better compression.

See Also
cat(I), compress(1)

Commands 1-495

packf{1mh)

Name
packf - compress a folder into a single file

Syntax
packf [+folder] [msgs] [-file name] [-help]

Description

Each message in a folder is normally stored as a separate file. The packf command
takes all messages from the current folder and copies them to a single specified file.
Each message in the file is separated by four <CTRL-A's> and a newline.

You can specify a folder other than the current folder using by the +folder argument.
If you do not want all the messages in a folder to be packed into one file, you can
specify a number of messages or a range of messages with message numbers. The
following example show messages one and three, and one through three in the folder
+lrp being packed into a file.

$ packf +Irp 1 3
Create file "/machine/disk/username/msgbox"? y

$ packf +Irp 1·3

Options

Files

If you specify an existing file using the - f i 1 e filename switch then the specified
messages will be appended to the end of that file, otherwise a new file will be created
and the messages appended. If you do not specify a filename, packf will create one
for you.

If a folder is given, it will become the current folder. The first message packed will
become the current message.

The default settings for packf are:

+folder defaults to the current folder
msgs defaults to all
-file

$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder Current-Folder:
Msg-Protect: To set mode when creating a new file

1-496 Commands

pagesize (1)

Name
pagesize - print system page size

Syntax
pagesize

Description
The pagesize command prints the size of a page of memory in bytes, as returned
by getpages i ze(2). This program is useful in constructing portable shell scripts.

See Also
getpagesize(2)

Commands 1-497

passwd(1)

Name
passwd - create or change password

Syntax
passwd [-aefs] [name]

Description
The passwd command lets you or the superuser change your password. When you
enter the passwd command, the program prompts you for the old password and then
for the new password. Next, the program asks you for the new password again, to
verify that you have typed it correctly. Note that the passwords are not displayed on
the screen.

Your new password must meet the length requirements specified by the superuser.
To review these requirements, refer to the / etc/ svc. conf file. (This is a read
only file.)

If your system is running with increased security, you may have to choose a
password from a list of randomly generated passwords, or you may need
authorization to change your password. At higher security levels, you may be
prohibited from changing your password until its minimum lifetime has expired, as
specified in the Authorization Database.

If you are running the BIND/Hesiod service, your password will be updated
automatically on the server.

Options

-a Supply a list of randomly generated passwords. (See the Examples section.)

-e Use an extended protocol when communicating with a prompter program. As
a result, the standard input and output (used by login) is sent to this
program.

-f Change the finger information, not the password. The finger program provides
information about current UL TRIX users, such as login and terminal name, idle
time and office location.

-s Change the login shell of the password file, not the password entry.

Restrictions
If you use a hardcopy terminal, you must destroy all print outs of valid passwords.

Examples
The following example illustrates the -a option, which displays a list of randomly
generated passwords and their suggested pronunciation with hyphens. The hyphens
delineate the syllables of the passwords:

1-498 Commands

passwd -a abed
Changing password for abed

Here are some suggested passwords:

ryegd
aswurku
ryedok
teleees
wahislas

ryeg-di
a-swurk-u
ryed-ok
tel-ee-eos
wa-hi-slas

Enter new password:

passwd(1)

Diagnostics

Files

Password must be at least 6 characters long, password unchanged
Your password does not meet the minimum length requirement specified in
/etc/svc.conf.

Warning: Only the first 8 characters of the password are significant
Your password exceeds the maximum length requirement specified in
/etc/svc.conf.

Permission denied
You do not have the privilege to change your password. The minimum lifetime
has not expired.

Password is not different enough, unchanged
Your new password must be different from your old password.

Password must be different than logname, and not resemble previous password
Your new password must be different from your login name.

Verification failed, password unchanged
You misspelled the verification of your new password.

/etc/passwd

/etc/auth.dir

/etc/auth.pag

/etc/svc.conf

Password file

Authorization data base directory

Authorization data base page

Data base service selection and security configuration file

NOTE

Only the superuser and members of the group authread can access the
/ etc/ auth. dir and / etc/ auth. pag files.

Commands 1-499

passwd(1)

See Also
chfn(l), chsh(l), finger(l), login(l), shexp(l), yppasswd(lyp), passwd(5yp),
edauth(8), vipw(8)
Guide to System Environment Setup
Security Guide/or Users and Programmers
"Password Security: A Case History", ULTRIX Supplementary Documents, Volume
III: System Manager

1-500 Commands

Name

Syntax

paste - merge file data

paste filel file2 ...
paste -d list filel file2 ...
paste -s [-d list] filel file2 ...

paste (1)

Description
In the first two forms, paste concatenates corresponding lines of the given input
files filel ,file2, etc. It treats each file as a column or columns of a table and pastes
them together horizontally (parallel merging).

In the last form, the pa s t e command combines subsequent lines of the input file
(serial merging).

In all cases, lines are glued together with the tab character, or with characters from
an optionally specified list. Output is to the standard output, so it can be used as the
start of a pipe, or as a filter, if - is used in place of a file name.

Options

Used in place of any file name, to read a line from the standard input.
(There is no prompting).

-dUst Replaces characters of all but last file with nontabs characters (default tab).
One or more characters immediately following -d replace the default tab as
the line concatenation character. The list is used circularly, i. e. when
exhausted, it is reused. In parallel merging (i. e. no -s option), the lines
from the last file are always terminated with a new-line character, not from
the list. The list may contain the special escape sequences: \n (new-line),
\t (tab), \\ (backslash), and \0 (empty string, not a null character). Quoting
may be necessary, if characters have special meaning to the shell (for
example, to get one backslash, use -d ''\ \\ \").
Without this option, the new-line characters of each but the last file (or last
line in case of the -s option) are replaced by a tab character. This option
allows replacing the tab character by one or more alternate characters (see
below).

-s Merges subsequent lines rather than one from each input file. Use tab for
concatenation, unless a list is specified with -d option. Regardless of the
list, the very last character of the file is forced to be a new-line.

Examples

Is I paste -d" " -

list directory in one column

Is I paste - - - -

list directory in four columns

paste -s -d"\t\n" file

combine pairs of lines into lines

Commands 1-501

paste (1)

Diagnostics

line too long

too many files

See Also
cut(1), grep(I), pr(1)

1-502 Commands

Output lines are restricted to 511 characters.

Except for -s option, no more than 12 input files may be
specified.

pc(1)

Name
pc - Pascal compiler

Syntax
pc [option] name ...

Description
The pc command is a Pascal compiler. If given an argument file ending with a .p, it
compiles and loads the file into an executable file called, by default, a.out.

A program may be separated into more than one .p file. The pc command compiles
a number of argument .p files into object files (with the extension .0 in place of .p).
Object files may then be loaded into an executable a.out file. Exactly one object file
must supply a program statement to successfully create an executable a.out file. The
rest of the files must consist only of declarations which logically nest within the
program. References to objects shared between separately compiled files are allowed
if the objects are declared in included header files, whose names must end with .h.
Header files may only be included at the outermost level, and thus declare only
globally available objects. To allow functions and procedures to be declared, an
external directive has been added, whose use is similar to the forward directive but
restricted to appear only in . h files. The function and procedure bodies may not
appear in . h files. A binding phase of the compiler checks that declarations are used
consistently, to enforce the type checking rules of Pascal. The binder is not as strict
as described here, with regard to the rules about external declarations only in .h files
and including .h files only at the outermost level.

Object files created by other language processors may be loaded together with object
files created by pc. The functions and procedures they define must have been
declared in .h files included by all the .p files which call those routines. Calling
conventions are as in C, with var parameters passed by address.

Options
The following options have the same meaning as in cc (1) and f77 (1). See
ld (1) for load-time options.

-c Suppresses loading and produce .0 files from source files.

-g Produces additional symbol table information for dbx (1) •

-w
-0

-0 output

-p

-s

Suppresses warning messages.

Invokes an object-code improver.

Names the final output file output instead of a.out.

Prepares object files for profiling. For further information,
see pro f (1) •

Compiles the named program, and leave the assembler
language output on the corresponding file suffixed .s. No.o
file is created.

Commands 1-503

VAX

VAX pc(1)

The following options are peculiar to pc.

-c

-b
-iname

-I

Compiles code to perform runtime checks, verify ass e rt
calls, and initialize all variables to zero as in pi.

Block buffers the file output.

Produces a listing for the specified procedures, functions and
incl ude files.

Makes a program listing during translation.

-s Accepts standard Pascal only and non-standard constructs
cause warning diagnostics.

Because the -s option is usurped by the compiler, it is not possible to pass the strip
option to the loader. Thus programs which are to be stripped, must be run through
s t rip (1) after they are compiled.

- t directory

-z

Uses the given directory for compiler temporary files.

Allows execution profiling with pxp by generating
statement counters, and arranging for the creation of the
profile data file pmon.out when the resulting object is
executed. The -z flag doesn't work for separately compiled
files.

Other arguments are taken to be loader option arguments, perhaps libraries of pc
compatible routines. Certain flags can also be controlled in comments within the
program.

Restrictions
The keyword packed is recognized but has no effect.

Diagnostics

Files

See pi (1) for an explanation of the error message format.

file.p
/usr/lib/pcO
/lib/fl
/usr/lib/pc2
/lib/c2
/usr/lib/pc3
/usr/lib/pc2. * strings
/usr/lib/how _pc
/usr/lib/libpc.a
/usr/lib/libm.a
/lib/libc.a

pascal source files
compiler
code generator
runtime integrator (inline expander)
peephole optimizer
separate compilation consistency checker
text of the error messages
basic usage explanation
intrinsic functions and I/O library
math library
standard library, see intro(3)

See Also
pi(l), pxp(1), pxref(l)
"Berkeley Pascal User's Manual," ULTRIX Supplementary Documents,
Vol. II:Programmer

1-504 Commands

pdx(1)

Name
pdx - pascal debugger

Syntax
pdx [-r] [objfile]

Description
The pdx command is a tool for source level debugging and execution of Pascal
programs. The objfile is an object file produced by the Pascal translator pi(1). If no
objfile is specified, pdx looks for a file named "obj" in the current directory. The
object file contains a symbol table which includes the name of the all the source files
translated by pi to create it. These files are available for perusal while using the
debugger.

If the file .pdxinit exists in the current directory, then the debugger commands in it
are executed.

The -r option causes the obJfile to be executed immediately; if it terminates
successfully pdx exits. Otherwise it reports the reason for termination and offers the
user the option of entering the debugger or simply letting px continue with a
traceback. If -r is not specified, pdx just prompts and waits for a command.

The commands are:

run [args] [<filename] [> filename]
Start executing objfile, passing args as command line arguments; < or >
can be used to redirect input or output in the usual manner.

trace [in procedure/function] [if condition]
trace source-line-number [if condition]
trace procedure/function [in procedure/function] [if condition]
trace expression at source-line-number [if condition]
trace variable [in procedure/function] [if condition]

Have tracing information printed when the program is executed. A
number is associated with the command that is used to turn the tracing off
(see the delete command).

The first argument describes what is to be traced. If it is a source-line
number, then the line is printed immediately prior to being executed.
Source line numbers in a file other than the current one must be preceded
by the name of the file and a colon, for example, "mumble.p: 17".

If the argument is a procedure or function name then every time it is
called, information is printed telling what routine called it, from what
source line it was called, and what parameters were passed to it. In
addition, its return is noted, and if it's a function then the value it is
returning is also printed.

If the argument is an expression with an at clause then the value of the
expression is printed whenever the identified source line is reached.

If the argument is a variable then the name and value of the variable is

Commands 1-505

VAX

VAX pdx(1)

printed whenever it changes. Execution is substantially slower during this
form of tracing.

If no argument is specified then all source lines are printed before they are
executed. Execution is substantially slower during this form of tracing.

The clause "in procedure/function" restricts tracing information to be
printed only while executing inside the given procedure or function.

Condition is a Pascal boolean expression and is evaluated prior to printing
the tracing information; if it is false then the information is not printed.

There is no restriction on the amount of information that can be traced.

stop if condition
stop at source-line-number [if condition]
stop in procedure/function [if condition]
stop variable [if condition]

Stop execution when the given line is reached, procedure or function
called, variable changed, or condition true.

delete command-number
The trace or stop corresponding to the given number is removed. The
numbers associated with traces and stops are printed by the status
command.

status [> filename]
Print out the currently active trace and stop commands.

cont Continue execution from where it stopped. This can only be done when
the program was stopped by an interrupt or through use of the stop
command.

step Execute one source line.

next Execute up to the next source line. The difference between this and step
is that if the line contains a call to a procedure or function the step
command will stop at the beginning of that block, while the next
command will not.

print expression [, expression •••]
Print out the values of the Pascal expressions. Variables declared in an
outer block but having the same identifier as one in the current block may
be referenced as "block-name. variable".

whatis identifier
Print the declaration of the given identifier.

which identifier
Print the full qualification of the given identifier, that is the outer blocks
that the identifier is associated with.

assign variable expression
Assign the value of the expression to the variable.

call procedure(parameters)
Execute the object code associated with the named procedure or function.

1-506 Commands

help

gripe

where

pdx(1)

Print out a synopsis of pdx commands.

Invokes a mail program to send a message to the person in charge of
pdx.

Print out a list of the active procedures and functions and the respective
source line where they are called.

source filename
Read pdx commands from the given filename. Especially useful when the
filename has been created by redirecting a status command from an earlier
debugging session.

dump [> filename]
Print the names and values of all active data.

list [source-line-number [, source-line-number]]
list procedure/function

List the lines in the current source file from the first line number to the
second inclusive. As in the editor "$" can be used to refer to the last
line. If no lines are specified, the entire file is listed. If the name of a
procedure or function is given lines n-k to n+k are listed where n is the
first statement in the procedure or function and k is small.

file [filename]
Change the current source file name to filename. If none is specified then
the current source file name is printed.

edit [filename]
edit procedure/function-name

Invoke an editor on filename or the current source file if none is specified.
If a procedure or function name is specified, the editor is invoked on the
file that contains it. Which editor is invoked by default depends on the
installation. The default can be overridden by setting the environment
variable EDITOR to the name of the desired editor.

pi Recompile the program and read in the new symbol table information.

sh command-line
Pass the command line to the shell for execution. The SHELL
environment variable determines which shell is used.

alias new-command-name old-command-name
This command makes pdx respond to new-command-name the way it
used to respond to old-command-name.

quit Exit pdx .

The following commands deal with the program at the px instruction level rather than
source level. They are not intended for general use.

tracei [address] [if cond]
tracei [variable] [at address] [if cond]
stopi [address] [if cond]
stopi [at] [address] [if cond]

Turn on tracing or set a stop using a px machine instruction addresses.

Commands 1-507

VAX

VAX pdx(1)

xi address [, address]
Print the instructions starting at the first address. Instructions up to the
second address are printed.

xd address [, address]
Print in octal the specified data location(s).

Options

-r Causes obifile to be executed immediately. Normally pdx prompts and
waits for a command.

Restrictions

Files

The pdx command does not understand sets, and provides no information about files.

The whatis command doesn't quite work for variant records.

Unexpected results occur if a procedure invoked with the call command does a non
local goto.

ob j Pascal object file

.pdxinit
pdx initialization file

See Also
pi(1), px(1)

1-508 Commands

pg(1)

Name
pg - file perusal filter for soft-copy tenninals

Syntax
pg [-number] [-p string] [-eefs] [+linenumber] [+/pattern/] [files •••]

Description
The pg command is a filter that allows the examination of files one screenful at a
time on a soft-copy terminal. When the file name is designated by a minus (-)
and/or NULL argument, the pg command reads from the standard input. Each
screenful is followed by a prompt. If the user types a carriage return, another page is
displayed.

This command is different from previous paginators because it allows you to back up
and review material that has already passed.

In order to detennine terminal attributes, pg scans the terminfo(5) data base for
the tenninal type specified by the environment variable TERM. If TERM is not
defined, the terminal is assumed to be a dumb terminal. The pg command takes
responses that can be divided into three categories: those causing further perusal,
those that search, and those that modify the perusal environment.

Commands causing further perusal normally take a preceding address, which is an
optionally signed number indicating the point from which further text should be
displayed. This address is interpreted in either pages or lines depending on the
command. A signed address specifies a point relative to the current page or line, and
an unsigned address specifies an address relative to the beginning of the file. Each
command has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+ l)<newline> or <blank>

(+1) I

(+1) d or AD

Causes one page to be displayed. The address is specified in
pages.

Causes pg to simulate scrolling the screen, forward or
backward, the number of lines specified when used with a
relative address. With an absolute address this command
prints a screenful beginning at the specified line.

Simulates scrolling half a screen forward or backward.

The following perusal commands take no address:

• or AL

$

Causes the current page of text to be redisplayed .

Displays the last windowful in the file. Use with caution
when the input is a pipe.

Commands 1-509

pg(1)

The following commands are available for searching for text patterns in the text. The
regular expressions described in ed(l) are available. They must always be
terminated by a <newline>, even if the -n option is specified.

ilpatternl Searches forward for the ith (default i=l) occurrence of
pattern. Searching begins immediately after the current page
and continues to the end of the current file, without wrap
around.

i "pattern"
i?pattern?

Searches backwards for the ith (default i=l) occurrence of pattern.
Searching begins immediately before the current page and continues to the
beginning of the current file, without wrap-around. The circumflex (A)
notation is useful for Adds 100 terminals which do not handle the question
mark (?) properly.

After searching, pg normally displays the line found at the top of the screen. This
can be modified by appending m or b to the search command to leave the line found
in the middle or at the bottom of the window from now on. The suffix t can be used
to restore the original situation.

The user of pg can modify the environment of perusal with the following commands:

in

iw

sfilename

h

qorQ

!command

Begins perusing the ith next file in the command line. The i
is an unsigned number. Default value is 1.

Begins perusing the ith previous file in the command line. i
is an unsigned number. Default is 1.

Displays another window of text. If i is present, sets the
window size to i.

Saves the input in the named file. Only the current file
being perused is saved. The white space between the s and
filename is optional. This command must always be
terminated by a <newline>, even if the -n option is
specified.

Helps by displaying an abbreviated summary of available
commands.

Quits pg.

The command is passed to the shell, whose name is taken
from the SHELL environment variable. If this is not
available, the default shell is used. This command must
always be terminated by a <newline>, even if the -n option
is specified.

At any time when output is being sent to the terminal, the user can hit the quit key
(normally control-\) or the interrupt (break) key. This causes pg to stop sending
output and to display the prompt. The user may then enter one of the above
commands in the normal manner. Unfortunately, some output is lost when this is
done, because any characters waiting in the terminal's output queue are flushed when
the quit signal occurs.

1-510 Commands

pg(1)

If the standard output is not a terminal, then pg acts just like cat(1), except that a
header is printed before each file (if there is more than one).

Options
The command line options are:

-number Specifies the size (in lines) of the window that pg is to use instead
of the default. (On a terminal containing 24 lines, the default
window size is 23).

-p string

-c

-e

-f

-s

+linenumber

+/pattern/

Causes pg to use string as the prompt. If the prompt string
contains a %d, the first occurrence of %d in the prompt is replaced
by the current page number when the prompt is issued. The
default prompt string is designated by a colon (:).

Homes the cursor and clears the screen before displaying each
page. This option is ignored if clear_screen is not defined for this
terminal type in the terminfo(5) data base.

Causes pg not to pause at the end of each file.

Inhibits pg from splitting lines. Normally, pg splits lines longer
than the screen width, but some sequences of characters in the text
being displayed (for example, escape sequences for underlining)
generate undesirable results. The -f option prevents the splitting
of these sequences.

Causes pg to print all messages and prompts in standout mode
(usually inverse video).

Starts up at linenumber.

Starts up at the first line containing the regular expression pattern.

Examples

Notes

The following example shows how the pg command is used reading system news:

news I pg -p "(Page %d):"

While waiting for terminal input, pg responds to BREAK, DEL and the circumflex
(A) by terminating execution. Between prompts, however, these signals interrupt pg
command's current task and place the user in prompt mode. These should be used
with caution when input is being read from a pipe, since an interrupt is likely to
terminate the other commands in the pipeline.

Restrictions
Terminal tabs must be set every eight positions.

Using pg as a filter with another command changes the terminal I/O options. For
example, crypt(l) terminal settings may not be restored correctly.

Commands 1-511

pg(1)

Files

/usr/lib/terminfo/*
Tenninal infonnation data base

/tmp/pg* Temporary file when input is from a pipe

See Also
crypt(l), ed(l), grep(l), tenninfo(5)

1-512 Commands

pi (1)

Name
pi - Pascal interpreter code translator

Syntax
pi [options] [-i name ...] name.p

Description
The pi command translates the program in the file name.p leaving interpreter code in
the file obj in the current directory. The interpreter code can be executed using px.
The pix command performs the functions of pi and px for 'load and go' Pascal.

Options
The following flags are interpreted by pi. The associated options can also be
controlled in comments within the program as described in the "Berkeley Pascal
User's Manual."

-b Block buffers the file output.

-i Enables listing for specified procedures and functions and while processing
specified include files.

-I Creates a program listing while translating source.

-D Begins each listed include file on a new page with a banner line.

-p Suppresses control flow backtrace on error; suppresses statement limit
counting.

-s Accepts standard Pascal only; non-standard constructs cause warning
diagnostics.

-t Suppresses runtime tests of subrange variables and treat; treats assert
statements as comments.

-u Runs in card image mode; only the first 72 characters of input lines are used.

-w Suppresses all warning diagnostics.

-z Enables execution profiling with pxp by generating statement counters, and

Restrictions

arranging for the creation of the profile data file pmon.out when the resulting
object is executed.

The keyword packed is recognized but has no effect.

When include files are present, diagnostics relating to the last procedure in one file
may appear after the beginning of the listing of the next.

Commands 1-513

VAX

VAX pi (1)

Diagnostics

Files

For a basic explanation type:

pi

In the diagnostic output of the translator, lines containing syntax errors are listed with
a flag indicating the point of error. Diagnostic messages indicate the action which
the recovery mechanism took in order to be able to continue parsing. Some
diagnostics indicate only that the input is 'malformed.' This occurs if the recovery
can find no simple correction to make the input syntactically valid.

Semantic error diagnostics indicate a line in the source text near the point of error.
Some errors evoke more than one diagnostic to help pinpoint the error; the follow-up
messages begin with an ellipsis ' ... '.

The first character of each error message indicates its class:

E
e
w
s

Fatal error; no code is generated.
Non-fatal error.
Warning - a potential problem.
Non-standard Pascal construct warning.

If a severe error occurs which inhibits further processing, the translator gives a
diagnostic and then 'QUIT'.

file.p
file.i
/usrflib/pi3.*strings
/usrfliblhow _pi *
obj

input file
include file(s)
text of the error messages
basic usage explanation
interpreter code output

See Also
pix(1), px(1), pxp(1), pxref(1)
"Berkeley Pascal User's Manual," ULTRIX Supplementary Documents,
"01. II: Programmer

1-514 Commands

Name

Syntax

pick(1mh)

pick - select messages by content

pick [+folder] [msgs] [-and ...] [-or ...] [-not ...] [-Ibrace ..• -rbrace] [-cc pattern]
[-date pattern] [-from pattern] [-search pattern] [-subject pattern] [-to pattern]
[--othercomponent pattern] [-after date] [-before date] [-datefieldjield]
[-sequence name ...] [-public] [-nopublic] [-zero] [-nozero] [-list] [-nolist]
[-help]

Description
Pick lets you search messages in a folder on a diverse range of search criteria.

You can search the mail headers or the text of some or all of the messages within a
folder for the specified criteria. You can use pattern matching or date constraint
operations. You can define the messages found as a sequence or you can use the
results directly. The following example shows pick identifying all the mail in the
current folder that was sent by Christine.

% pick -from christine
1
3
8

The search of the mail header fields that has just been performed is case insensitive.
Therefore in the previous example, pick would find messages that were from
Christine as well as messages that were from christine. However the full -search
option is not case insensitive. The way in which the -search option works is
described later in this reference page.

Options

You can search on the contents of any known mail header field by specifying the
header field as a -option. Themail header fields that pick knows about are
To:, cc:, Date:, From:, or Subject:.

If you want to search on some other mail header field, you can do this by using the
- - component pattern option. If you use this option, you must precede the mail
header field with two minus signs. The following example shows pick being used
to search on the reply-to: field.

% pick --reply-to Scott
17

If you want to search the entire message, and not just the message header, you can do
this using the -search option. The -search option is a modified grep(1). As
such it gives full regular expression capabilities (see ed(l)) within pattern matching.

Pattern matching is performed on a per-line basis. Within the header of the message,
each component is treated as one long line, but in the body, each line is separate.
Lower-case letters in the search pattern will match either lower or upper case in the
message, while upper case will match only upper case.

Commands 1-515

pick(1mh)

The following example shows a pick command that will search all messages in the
current folder for the word strawberries.

% pick -search "strawberries"
2
4

You can specify a folder other than the current folder using the +foldername
option. Also, if you do not want to search all messages within the specified folder,
you can specify more than one message or a range of messages using the message
numbers. In the following example pick searches messages 10--20 in the +sent
folder for messages that were sent to Kafka.

% pick +sent 10-20 -to Kafka
pick: no messages match specification

You can define a sequence name in which pick can store the details of the messages
found. You can manipulate these sequences with any of the MH commands that will
take the msgs argument.

A sequence name should always begin with a letter and should not contain any non
alphanumeric characters such as punctuation marks. The following example shows
the creation of a sequence called Jack.

% pick -from Jack -sequence Jack
3 hits

Whenever pick processes a -sequence name, it calls the -nolist option. This
suppresses the list of messages meeting the search criteria that pick nonnally
generates. Instead pick indicates how many records met the search criteria.

pick nonnally zeros the sequence before adding to it. This means that any
messages that are already in the defined sequence will be lost. If you want to save
the messages that are already in the defined sequence, you can do so by specifying
the -nozero option. In this case the new messages will be added to the existing
messages and numbered accordingly.

If the messages that make up a message sequence are read only, the message
sequence that you create will not be accessible to other MH users. If you want to
change this you can do so with the -public and -nopublic switches. You can
use the -nopublic switch to ensure that the sequence that you create is only
accessible to yourself.

In addition to this, you can also combine the output of pick directly with any MH
command. In order to do this you need to encase the pic k command, and its
associated options and arguments, inside single back quotes (' C). This technique is
known as back quoting and is familiar to most UL TRIX users. You should consult
your UL TRIX shell Reference Pages for more details. The following example would
give you a listing of all the mail sent to you from Jones. See scan(1mh) for details
of the listing that would be produced.

% scan 'pick -from jones'

If pick finds that there is no mail from Jones, it will output the illegal character O.
This will cause the MH command, that was going to process the output from the
pick operation, to fail gracefully.

Independent of any pattern-matching operations requested, the switches -after date
or -before date may also be used to introduce date/time constraints on all of the
messages. By default, the Date: field is consulted. However you can specify an

1-516 Commands

pick(1mh)

alternative date field, such as Deli very-Date:, by using the -datefieldjield
option. You must define the -datefield before you use the -after or
-before switch it applies to. You must place the arguments to the -after or
-before switches inside double-quotes (n n).

The following example shows pick searching for all messages sent to Holloway
since 10th June.

% pick -to holloway -after "10 Jun 88"
19

Pick will actually parse the date fields in each of the specified messages and
compare them to the date/time specified by the -after and -before switches. If
-after is given, then only those messages whose Date: field value is
chronologically after the date specified will be examined. The -before switch
specifies the complementary action.

Both the -after and -before switches take legal RFC 822-style date
specifications as arguments. pick will assume certain missing fields so that the
entire date need not be specified. These fields are (in order of defaulting): timezone,
time and timezone, date, date and timezone. All defaults are taken from the current
date, time, and timezone.

In addition to RFC 822-style dates, pick will also recognize any of the days of the
week Sunday, Monday, and so on), and the special dates today, yesterday,
and tomorrow. All days of the week refer to a day in the past. Therefore pick
interprets Saturday as last Saturday and not this Saturday. Finally, in addition to
these special specifications, you can also direct pick to start its search a number of
days ago. The following example searches for messages sent about strawberries in
the last ten days.

% pick -subject: strawberries -10
1
6

The pick command also supports complex boolean operations on the searching
primitives with the -and, -or, -not, and -lbrace ... -rbrace switches.
For example,

% pick -after yesterday -and -lbrace -from freida -or -from fear -rbrace

identifies messages recently sent by frieda or fear.

The matching primitives take precedence over the -not switch, which in tum takes
precedence over -and which in tum takes precedence over -or.

You can override the default precedence with the -lbrace and -rbrace switches.
These act just like opening and closing parentheses in logical expressions.

Restrictions

The sequence name, punctuation and message list must not exceed 1024 characters.
In practice, this gives a reasonable limit of approximately 200 non-consecutive
messages in a sequence.

Commands 1-517

pick{1mh}

Files
$HOME/.mh_profile The user profile

Profile Components
Path: To determine your MH directory
Current-Folder: To find the default current folder

See Also
ed(1), grep(1), inc(1mh), mark(1mh)

1-518 Commands

pix(1) VAX

Name
pix - Pascal interpreter and executor

Syntax
pix [-blopstuwz] [-i name ...] name.p [argument ...]

Description
The pix command is a 'load and go' version of Pascal which combines the functions
of the interpreter code translator pi and the executor px. It uses pi to translate the
program in the file name.p and, if there were no fatal errors during translation, causes
the resulting interpreter code to be executed by px with the specified arguments. A
temporary file is used for the object code. The file obj is neither created nor
destroyed.

Options

Files

-b Block buffers the output.

-iname Enables the listing for any specified procedures and functions, and while
processing any specified include files.

-I Creates a program listing while translating source.

-0 Begins each listed include file on a new page and with a banner line.

-p Suppresses control flow backtraces on error.

-s Accepts standard Pascal only.

-t Suppresses runtime test of subrange variables.

-u Runs in card image mode.

-w Suppresses all warning diagnostics.

-z Enables execution profiling.

/usr/ucb/pi
/usr/ucb/px
/tmp/pix*
/usr/lib/how _pix

Pascal translator
Pascal executor
temporary
basic explanation

See Also
pi(1), px(1)
"Berkeley Pascal User's Manual," ULTRIX Supplementary Documents Vol.
II: Programmer

Commands 1-519

Rise pixie (1)

Name
pixie - add profiling code to a program

Syntax
pixie in_pro~name [options]

Description
The pixie command reads an executable program, partitions it into basic blocks, and
writes an equivalent program containing additional code that counts the execution of
each basic block. A basic block is a region of the program that can be entered only at
the beginning and exited only at the end. The pixie command also generates a file
containing the address of each of the basic blocks.

When you run the pixie-generated program, it (provided it terminates normally or via
a call to exi t(2» generates a file containing the basic block counts. The name of the
file is that of the original program with any leading directory names removed and
".Counts" appended. prof(1) and pixstats(1) can analyze these files and
produce a listing of profiling data.

Options

-bbaddrs name

-[no]quiet

-[no]dwops

-[no]textdata

-[no]idtrace

-[no]itrace

-[no]dtrace

-[no]oldtrace

1-520 Commands

Specify a name for the translation. The default is to remove
any leading directory names from the in_prog_name and
append ".pixie".

Specify a name for the file of basic block addresses. Default
is to remove any leading directory names from the
in_prog_name and append ".Addrs".

Controls whether a summary is given of the binary-to-binary
translation process. The default is -noquiet.

Controls translation of double-word load/store instructions so
that binaries using these instructions can be run on old
processors. The default is -nodwops (translate).

Controls whether pixie puts the original text into the
translated output. This is required to correctly translate
programs with data in the text section (for example, f77
format statements in some compiler releases). The default is
-textdata (include original text).

Disables or enables tracing of instruction and data memory
references. -idtrace is equivalent to using both -it race and
-dtrace together. The default is -noidtrace

Disable or enable tracing of instruction memory references.
The default is -noitrace

Disable or enable tracing of data memory references.
Currently, -dtrace requires -itrace. The default is
-nodtrace

Disable or enable the old memory reference trace fonnat.

The default is -oldtrace.

-idtrace _sample number

pixie (1)

Record only lout of every number memory reference
chunks. (This feature not yet implemented.)

-idtrace_file number Specify a UNIX file descriptor number for the trace output
file. The default is 19.

Restrictions
The handler function address to the signal system calls is not translated, therefore,
programs that receive signals cannot work pixified.

Programs that call vfork cannot work pixified because the child process modifies the
parent state required for pixie operation. Use fork instead.

Pixified code is substantially larger than the original code. Conditional branches that
used to fit in the 16-bit branch displacement field may no longer fit, generating a
pixie error.

See Also
prof(1), pixstats(1)

Commands 1-521

Rise

Rise pixstats (1)

Name
pixstats - analyze program execution

Syntax
pixstats program [options]

Description
The pixstats command analyzes a program's execution characteristics. To use
pixstats , invoke the pix i e(1) command to translate and instrument the executable
object module for the program. Then execute the translation on an appropriate input.
This produces a .Counts file. You can then use pixstats to generate a detailed report
on opcode frequencies, interlocks, a mini-profile, and more.

Options

-cycle ns

-r2010

-disassemble

Restrictions

Assume a ns cycle time when converting cycle counts to seconds.

Use r2010 floating point chip operation times and overlap rules.
This is the default.

Disassemble and show the analyzed object code.

The pixstats command models execution assuming a perfect memory system. Cache
misses, and so on, increase execution above the pixstats predictions.

See Also
pixie(1), prof(1)

1-522 Commands

plot{1g)

Name
plot - graphics filters

Syntax
plot [-Tterminal [raster]] [-1#] [-w#] [-c#]

Description
The plot command reads plotting instructions from the standard input and produces
plotting instructions for a specified terminal on the standard output. For further
information see plot(5).

Options
The following options are available with the plot command.

-Tterminal Uses the specified terminal name as the terminal type for which
plotting instructions are to be generated. If a terminal type is not
specified, the environment parameter $TERM is used. For more
information, see environ(7). The terminal type can be one of
the following:

4020 Tektronix 4020 storage scope.

450 DASI Hyterm 450 terminal (diablo mechanism).

300 DASI 300 or GSI terminal (diablo mechanism).

300S DASI 300S terminal (diablo mechanism).

4014 or tek
Tektronix 4014 or 4015 with Enhanced Graphics
Module. (Usc 4013 for Tektronix 4014 or Tektronix
4015 without the Enhanced Graphics Module).

4013 Tektronix 4013 Storage scope

aed AED 512 color graphics terminal

bitgraph or bg
BBN bitgraph graphics terminal

crt Any crt capable of running vi(1)

dumb dumb terminals without cursor addressing or line
printers

grn given a plot file, produces a grn file.

hp7221 Hewlett Packard 7221 Graphics terminal.

hp2648 Hewlett Packard 2648 Graphics terminal.

imagen or ip
Imagen laser printer (default 240 DPI resolution).

Ivp16 DEC LVP16 Graphics Plotter.

hp7475a HP 7475A Graphics Plotter.

Commands 1-523

plot{1g)

ver Versatec D1200A printer-plotter. This version of plot
places a scan-converted image in / u s r / tmp / r as t e r
and sends the result directly to the plotter device rather
than to the standard output. The optional argument
causes a previously scan-converted file raster to be sent
to the plotter.

var Benson Varian printer-plotter.

vt125 DEC vtl25 terminal.

raster Is a scan-converted temporary file that is sent directly to the
plotter. The raster file is only specified with the -Tver option.

If terminal is either an Ivp16 or a hp7475a, you can specify the following options.
These options must follow the - Tterminal option:

-1#

-wI
-c#

length of paper window in plotter units (unit scale)

width of paper window in plotter units (unit scale)

initial pen carousel to be used

Restrictions

Files

A lockout protection does not exist for / u s r / tmp / r a s t e r .

/usr/bin/t4013
/usr/bin/aedplot
/usr/bin/bgplot
/usr/bin/crtplot
/usr/bin/dumbplot
/usr/bin/gigiplot
/usr/bin/gmplot
/usr/bin/hpplot
/usr/bin/hp 7221 plot
/usr/bin/implot
/usr/bin/lvp 16
/usr/bin/tek
/usr/bin/t450
/usr/bin/t300
/usr/bin/t300s
/usr/bin/vplot
/usr/tmp/raster

See Also
graph(1g), plot(3x), plot(5)

1-524 Commands

pmerge{1)

Name
pmerge - pascal file merger

Syntax
pmerge name.p ...

Description
The pme rge command assembles the named Pascal files into a single standard
Pascal program. The resulting program is listed on the standard output. It is
intended to be used to merge a collection of separately compiled modules so that they
can be run through pi, or exported to other sites.

Restrictions

Files

Very minimal error checking is done, so incorrect programs will produce
unpredictable results. Block comments should be placed after the keyword to which
they refer or they are likely to end up in bizarre places.

/usr/tmp/MG* default temporary files

See Also
pc(l), pi(l),
Auxiliary documentation "Berkeley Pascal User's Manual," ULTRIX Supplementary
Documents Vol. II:Programmer

Commands 1-525

pr(1)

Name
pr - print files

Syntax
pr [options] [files]

Description
The pr command prints the named files on the standard output. If file is designated
by a minus sign (-), or if no files are specified the p r command assumes standard
input. By default, the listing is separated into pages, each headed by the page
number, a date and time, and the name of the file.

By default, columns are of equal width, separated by at least one space. Lines that
do not fit are truncated. However, if the -s option is used, lines are not truncated and
columns are separated by the separation character.

If the standard output is associated with a tenninal, error messages are withheld until
pr has finished printing.

Options
The following options can be used singly or in combination:

-a
-b
-d

-eck

-f

-b

-ick

+k

-k

-Ik

·-m

-nck

1-526 Commands

Prints multi-column output across the page.

Prints blank headers.

Double-spaces the output.

Expands input tabs to character positions k+l, 2*k+l, 3*k+l, ... n*k+1. If k
is 0 or is omitted, tabs are set at every eighth position. Tab characters in
the input are expanded into the appropriate number of spaces. The default
for c (any non-digit character) is the tab character; therefore, if c is given, it
is treated as the input tab character.

Uses fonn-feed character for new pages. The default is to use a sequence
of line-feeds. The·f option causes the pr command to pause before
beginning the first page if the standard output is associated with a tenninal.

Uses the next argument as the header to be printed instead of the file name.

Replaces white space in output by inserting tabs to character positions k+ 1,
2*k+l,3*k+l, ... n*k+1. If k is 0 or is omitted, tabs are set at every eighth
position. The default for c (any non-digit character) is the tab character;
therefore, if c is given, it is treated as the input tab character.

Begins printing with page k (default is 1).

Produces k-column output (default is 1). The -e and -i options are
assumed for multi-column output.

Sets the length of a page to k lines. The default is 66 lines.

Merges and prints all files simultaneously, one per column (overrides the
-k, and -a options).

Numbers lines. The default for k is 20. The number occupies the first k+ 1

pr(1)

character positions of each column of nonnal output or each line of -m
output. If c, which is any non-digit character is given, it is appended to the
line number to separate it from whatever follows. The default for c is a
tab.

-ok Offsets each line by k character positions (default is 0). The number of
character positions per line is the sum of the width and offset.

-p Pauses before beginning each page if the output is directed to a tenninal.
The pr command rings the bell at the tenninal and awaits a carriage return.

-r Suppresses diagnostic reports on failure to open files.

-sc Separates columns by the single character c instead of by the appropriate
number of spaces (default for c is a tab).

-t Suppresses the five-line identifying header and the five-line trailer nonnally
supplied for each page. The·t option causes the pr command to quit
printing after the last line of each file without spacing to the end of the
page.

-wk Sets the width of a line to k character positions. The default is 72 for
equal-width multi-column output; otherwise there is no limit.

Examples
Print filel and file2 as a double-spaced, three-column listing with the heading: file
list.

Files

pr -3dh "file list" filel file2

Writefilel onfile2, expanding tabs to columns 10, 19, 28, 37, ... :

pr -e9 -t <filel>file2

/dev/tty* to suspend messages

See Also
cat(l)

Commands 1-527

prev(1mh)

Name

Syntax

prev - show the previous message

prey [+foldername] [-header] [-noheader] [-showproc program] [-noshowproc]
[-switches for showproc] [-help]

Description

Files

The command prev displays the previous message in the current folder. You can
specify a folder other than the current folder by typing the +foldername argument
after the command. The command in the following example will display the
previous message in the folder +copylog. If you specify a folder, that folder will
become the current folder.

$ prey +copylog

The prev command performs a show on the previous message in the specified
folder. Like show, it passes any switches on to the program named by
showproc, which is called to list the message (see show(lmh». When a message
has been displayed by prev, it becomes the current message.

The prev command is really a link to the show program. As a result, if you make
a link to prev and that link is not called prev, your link will act like show
instead. To avoid this, add a profile-entry for the link to your MH profile and add the
argument prev to the entry.

$HOME/.mh_profile The user profile

Profile Components
Path: To determine your MH directory

To find the default current folder
Program to show the message

Current-Folder:
showproc:

See Also
show(1mh), next(lmh)

1-528 Commands

print (1)

Name
print - pr to the line printer

Syntax
print file ...

Description
The print command uses pr to print a copy of each named file on the line printer.
It is a one line shell script:

lpr -p $*

See Also
lpr(l), pr(1)

Commands 1-529

printenv (1)

Name
printenv - display value of a shell variable

Syntax
printenv [name]

Description
The printenv command prints out the values of the variables in the environment.
If a name is specified, only its value is printed.

If a name is specified and it is not defined in the environment, printenv returns
exit status 1, else it returns status O.

See Also
csh(I), environ(7), sh(1)

1-530 Commands

prmail (1)

Name
pnnail - print out mail in the post office

Syntax
prmail [user ...]

Description

Files

The prmail command prints the mail which waits for you, or the specified user, in
the post office. Themail is not disturbed.

/usr/spool/mail/* post office

See Also
biff(1), binmail(1), from(1), mail(1)

Commands 1-531

Rise prof{1)

Name

Syntax

prof - analyze profile data

prof [options] [prog_name] [pcsampling_dataJr,le ...]
prof -pixie [-Dote comment_string] [options] [prog_ name [bbaddrs Jtle [
bbcounts Jtle ...]]]

Description
The prof command analyzes one or more data files generated by the compiler's
execution-profiling system and produces a listing. Prof can also combine those data
files or produce a feedback file that lets the optimizer take into account the program's
runtime behavior during a subsequent compilation. Profiling is a three-step process:
first compile the program, then execute it, and finally run prof to analyze the data.

The compiler system provides two kinds of profiling:

1. pc-sampling interrupts the program periodically, recording the value of
the program counter.

2. basic-block counting divides the program into blocks delimited by labels,
jump instructions, and branch instructions. It counts the number of times
each block executes. This provides more detailed (line by line)
information than pc-sampling.

Using Pc-sampling
To use pc-sampling, compile your program with the option -p (strictly speaking, it is
sufficient to use this option only when linking the program.) Then run the program,
which allocates extra memory to hold the profile data, and (provided the program
terminates normally or calls exi t(2)) records the data in a file at the end of
execution.

The environment variable PROFDIR determines the name of the pc-sampling data
file and determines whether pc-sampling takes place: if it is not set, the pc-sampling
data file is named mOD.out ; if it is set to the empty string, no profiling occurs; if it
is set to a non-empty string, the file is named string/pid.progname, where pid is the
process id of the executing program and progname is the program's name, as it
appears in argv[O]. The subdirectory string must already exist.

After running your program, use prof to analyze the pc-sampling data file.

For example:

cc -c myprog.c
cc -p -0 myprog myprog.o
myprog (generates "mon.out")
prof myprog mon.out

When you use prof for pc-sampling, the program name defaults to a.out and the
pc-sampling data file name defaults to mOD.out ; if you specify more than one pc
sampling data file, prof reports the sum of the data.

1-532 Commands

prof (1)

Using Basic-block Counting
To use basic-block counting, compile your program without the option -p . Use
pixie(l) to translate your program into a profiling version and generate a file,
whose name ends in .Addrs, containing block addresses. Then run the profiling
version, which (assuming the program terminates normally or calls exi t(2» will
generate a file, whose name ends in .Counts, containing block counts. Then use
prof with the -pixie option to analyze the bbaddrs and bbcounts files. Notice that
you must tell prof the name of your original program, not the name of the profiling
version.

For example:

cc -c rnyprog.c
cc -0 rnyprog rnyprog.o
pixie -0 rnyprog.pixie rnyprog (generates "rnyprog.Addrs")
rnyprog.pixie (generates "rnyprog.Counts")
prof -pixie rnyprog rnyprog.Addrs rnyprog.Counts

When you use prof with the -pixie option, the program name defaults to a.out ,the
bbaddrs file name defaults to program_name.Addrs, and the bbcounts file name
defaults to program _ name.Counts. If you specify more than one bbcounts file (never
specify more than one bbaddrs file), prof reports the sum of the data. -note
comment _string If you use this argument, the comment _string appears near the
beginning of the listing as a comment.

Provided you do not use -pixie, prof processes mon.out files produced by earlier
versions of the compiler system using the obsolete -p2 or -p3 options.

Options
For each prof option, you need type only enough of the name to distinguish it from
the other options (usually the first character is sufficient). Unless otherwise noted,
each part of the listing operates only on the set of procedures that results from the
combination of the -exclude and -only options.

If the options you specify would neither produce a listing nor generate a file, prof
uses -procedures plus -heavy by default.

-pixie Selects pixie mode, as opposed to pc-sampling mode.

-procedures
Reports time spent per procedure (using data obtained from pc-sampling
or basic-block counting; the listing tells which one). For basic-block
counting, this option also reports the number of invocations per
procedure.

-heavy Reports the most heavily used lines in descending order of use (requires
basic-block counting).

-lines Like -heavy, but gives the lines in order of occurrence.

-invocations

-zero

For each procedure, reports how many times the procedure was invoked
from each of its possible callers (requires basic-block counting). For this
listing, the -exclude and -only options apply to callees, but not to
callers.

Prints a list of procedures that were never invoked (requires basic-block

Commands 1-533

Rise

Rise prof{1)

counting).

-testcoverage
Reports all lines that never executed (requires basic-block counting).

-feedback filename
Produces a file with information that the compiler system can use to
decide what parts of the program will benefit most from global
optimization and what parts will benefit most from in-line procedure
substitution (requires basic-block counting). See cc(I).

-merge filename
Sums the pc-sampling data files (or, in pixie mode, the bbcounts files)
and writes the result into a new file with the specified name. The -only
and --exclude options have no effect on the merged data.

-only procedure name
If you use one or more -only options, the profile listing includes only
the named procedures, rather than the entire program. If any option uses
an uppercase 0 for Only, prof uses only the named procedures, rather
than the entire program, as the base upon which it calculates percentages.

--exclude procedure name
If you use one or more --exclude options, the pro filer omits the specified
procedure and its descendents from the listing. If any option uses an
uppercase E for Exclude, prof also omits that procedure from the base
upon which it calculates percentages.

--clock megahertz

-quit n

Alters the appropriate parts of the listing to reflect the clock speed of the
CPU. If you do not specify megahertz, it defaults to 8.0.

Truncates the -procedures and -heavy listings. It can truncate after n
lines (if n is an integer), after the first entry that represents less than n
percent of the total (if n is followed immediately by a percent character
(%», or after enough entries have been printed to account for n percent
of the total (if n is followed immediately by cum%). For example:

-quit 15

truncates each part of the listing after 15 lines of text.

-quit 15%

truncates each part after the first line that represents less than 15 percent
of the whole.

-quit 15cum%

truncates each part after the line that brought the cumulative percentage
above 15 percent.

Restrictions
The prof command does not yet take into account interactions among floating-point
instructions.

1-534 Commands

Files
crtO.o normal startup code
mcrtO.o startup code for pc-sampling
libprofl.a library for pc-sampling
mon.out default pc-sampling data file

See Also
as(l), cc(l), pixie(l), profil(2), monitor(3)
Guide to Languages and Programming

prof(1) Rise

Commands 1-535

VAX prof(1)

Name
prof - profile an object file

Syntax
prof [-a] [-I] [-0] [-z] [-s] [-v] [low [-high]]] ffilel ffile2 ...]]

Description
The prof command interprets the file produced by the monitor (3) subroutine.
Under default modes, the symbol table in the named object file (a. out default) is read
and correlated with the profile file (mon.out default). For each external symbol, the
percentage of time spent executing between that symbol and the next is printed (in
decreasing order), together with the number of times that routine was called and the
number of milliseconds per call. If more than one profile file is specified, the output
represents the sum of the profiles.

Options
In order for the number of calls to a routine to be tallied, the -p option of c c (1) ,
f77 (1) or pc (1) must have been given when the file containing the routine was
compiled. This option also arranges for the profile file to be produced automatically.

-a Displays all symbols rather than just external symbols.

-I Displays output by symbol value.

-0 Displays output by number of calls.

-s Summary profile file is produced in mon.sum. This is useful only when more
than one profile file is specified.

-v Produces graphic output for display by the plot (lg) filters. When plotting,
the numbers low and high, by default a and 100, may be given, which causes a
,selected percentage of the profile to be plotted with accordingly higher
resolution.

-z Routines having zero usage, as indicated by call counts and accumulated time,
are printed in the output.

Restrictions

Files

Beware of quantization errors.

The f 77 command causes confusion because the entry points are at the bottom of
subroutines and functions.

mon.out for profile
a.out for namelist
mon.sum for summary profile

1-536 Commands

prof(1) VAX

See Also
cc(1), plot(1g), profil(2), monitor(3)

Commands 1-537

prompter (1 mh)

Name

Syntax

prompter - prompting editor front-end

prompter [-ddif] [-erase chr] [-kill chr] [-prepend I-noprepend] [-rapid I
-norapid] file [-help]

Description
The prompter editor is a rudimentary editor provided by comp, dist, forw,
or repl. You do not need to specify this editor. It is automatically called by the
above commands. You can change this editor to an editor of your choice, by
inserting the following line in your .mhyrofile file.

editor:editorname

Any ULTRIX editor can be specified in your .mhyrofile.

You can also specify an alternative editor each time that you use comp, dist,
forw, or repl, by using the -edi tor editorname option. This is useful if you
have special requirements for a message. You can use an editor other than the one
you normally use. The following example shows how you can compose a message
using v i as the editor:

$ comp -editor vi

The prompter editor allows rapid composition of messages. It is particularly
useful to network and low-speed (less than 2400 baud) users of'MH. The
prompter editor is an MH program. It can have its own profile entry with switches,
but it is not invoked directly. The commands comp, dist, forw, and repl
invoke prompter as an editor, either when invoked with -editor prompter,
or by the profile entry Editor: prompter, or when given the command
edi t prompter when prompted with What now?

For each empty component prompter finds in the draft, you are prompted for a
response; a <RETURN> will cause the whole component to be left out. Otherwise, a
back-slash (\) preceding a <RETURN> will continue the response on the next line,
allowing for multiline components. Continuation lines must begin with a space or
tab.

Each non-empty component is copied to the draft and displayed on the terminal.

The start of the message body is indicated by a blank line or a line of dashes. If the
body is non-empty, the prompt, which is not written to the file, is

--------Enter additional text

or (if -prepend was given)

--------Enter initial text

Typing of the message body is terminated with an end-of-file (usually CTRL-D).
At this point control is returned to the calling program, where you are asked What
now? See whatnow(lmh) for the valid options to this query.

1-538 Commands

prompter (1 mh)

An interrupt (usually CTRL-C) during component typing will abort prompter and
the MH command that invoked it. An interrupt during message-body typing is
equivalent to CTRL-D, for historical reasons. This means that prompter should
finish up and exit.

The prompter editor uses stdio(3s), therefore do not edit files with nulls in them.

Options

-ddif

-prepend

-rapid

-erase char

-kill char

Prepare a DDIF document for mailing. The -ddif option will
accept specification of either a DDIF(5) or DOTS(5) file. If the
DDIF(5) file contains external references to other files, these are
packed together in a single DOTS(5) encoding as a part of the
preparations for packaging the document for mailing.

Adds text to the beginning of the message body and have the rest
of the body follow. This is useful for the forw command.

Causes the text to not be displayed on your terminal if the draft
already contains text in the message-body, This is useful for low-
speed terminals.

Specifies the line-editing characters where chr may be a character
or \nnn, where nnn is the octal value for the character.

Specifies the line-editing characters where chr may be a character
or \nnn, where nnn is the octal value for the character.

The first non-flag argument to prompter is taken as the name of the draftjile, and
subsequent non-flag arguments are ignored. Repl invokes editors with two file
arguments:

The default settings for prompter are: -prepend and -norapid

Examples

Files

The following is an example using the -ddif switch, plus send draft:

% prompter -ddif; send draft
To: <address>
cc: <other recipients>
Subject: <title of the message>
DDIF/DOTS file : <name of the DDIF or DOTS file>

$HOME/.mh_profile
/tmp/prompter*

The user profile
Temporary copy of message

Profile Components
prompter-next:
Msg-Protect:

To name the editor to be used on exit from prompter
To set mode when creating a new draft

Commands 1-539

prompter(1mh)

See Also
capsar(1), comp(lmh), dist(lmh), forw(1mh), repl(1mh), whatnow(1mh), stdio(3s),
DDIF(5), DOTS(5), mh_profile(5mh)

1-540 Commands

prs (1)

Name
prs - display information from an sees file

Syntax
prs [-d[dataspec]] [-r[SID]] [-e] [-I] [-a] files

Description
The p r s command prints on the standard output all or parts of an sees file in a user
supplied format. For further information, see sccsfile(5). If a directory is
named, prs behaves as though each file in the directory were specified as a named
file, except that non-sees files (last component of the path name does not begin with
s.), and unreadable files are silently ignored. If a name of - is given, the standard
input is read; each line of the standard input is taken to be the name of an sees file
or directory to be processed; non-sees files and unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter arguments,
and file names.

Options
All the described keyletter arguments apply independently to each named file:

-a

-d[dataspec]

-e

-I

-r[SID]

Data Keywords

Displays printing of information for both removed and
existing deltas. For example, removed delta type = R, and
existing delta type = D. For further information, see
rmde 1 (1). If the -a keyletter is not specified, information is
provided only for existing deltas.

Displays information specified by dataspec. The dataspec is
a string consisting of sees file data keywords (see DATA
KEYWORDS) interspersed with optional user-supplied text.

Displays information for all deltas created earlier than and
including the delta designated by the -r keyletter.

Displays information for all deltas created later than and
including the delta designated by the -r keyletter.

Indicates delta version number. If no SID is specified, the
SID of the most recently created delta is assumed.

Data keywords specify which parts of an sees file are to be retrieved and printed on
the standard output. All parts of an sees file have an associated data keyword. For
further information, see sccsfile(5). There is no limit on the number of times a
data keyword may appear in a dataspec.

The information printed by prs consists of the user supplied text and the appropriate
values (extracted from the sees file) substituted for the recognized data keywords in
the order of appearance in the dataspec. The format of a data keyword value is
either Simple (S), in which keyword substitution is direct, or Multi-line (M), in
which keyword substitution is followed by a carriage return.

Commands 1-541

prs (1)

User supplied text is any text other than recognized data keywords. A tab is
specified by \t and carriage return/new-line is specified by \n.

Table 1. sees Files Data Keywords

Keyword Data Item File Section Value Format
:Dt: Delta Infonnation Delta Table See below* S
:DL: Delta line statistics :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu: Lines unchanged by Delta nnnnn S
:DT: Delta type DorR S
:1: SCCS ID string (SID) :R:.:L:.:B:.:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:D: Date Delta created :Dy:/:Dm:/:Dd: S
:Dy: Year Delta created nn S
:Dm: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th:::Tm:::Ts: S
:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer who created Delta logname S
:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) :DS: :DS: ... S
:Dx: Deltas excluded (seq #) :DS: :DS: ... S
:Dg: Deltas ignored (seq #) :DS: :DS: ... S
:MR: MR numbers for delta text M
:C: Comments for delta text M
:UN: User names User names text M
:FL: Flag list Flags text M
:Y: Module type flag text S
:MF: MR validation flag yes or no S
:MP: MR validation pgm name text S
:KF: Keyword error/warning flag yes or no S
:KV: Keyword validation string text S
:BF: Branch flag yes or no S
:J: Joint edit flag yes or no S
:LK: Locked releases :R: ... S
:Q: User-defined keyword text S
:M: Module name text S
:FB: Floor boundary :R: S
:CB: Ceiling boundary :R: S
:Ds: Default SID :1: S
:ND: Null delta flag yes or no S
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body text M
:W: A fonn of what (1) string N/A :Z::M::I: S
:A: ~ fonn of what (1) string N/A :Z::Y: :M: :I::Z: S
:Z: what (1) string delimiter N/A @(#) S
:F: SCCS file name N/A text S
:PN: SCCS file path name N/A text S

1-542 Commands

prs (1)

*:Dt: = :Ot: :1: :0: :T: :P: :OS: :OP:

Examples
The following is an example of a prs command line and what it produces on the
standard output:

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

Users and/or user IDs for s.file are:
xyz
131
abc

This is another example and its output.

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.file

Newest delta for pgm main.c: 3.7 Created 77/12/1 By case

This is an example of a special case:

prs s.file

This is what it may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000 MRs: b178-12345
b179-54321 COMMENTS: this is the comment line for s.file initial delta
for each delta table entry of the "0" type. The only keyletter argument
allowed to be used with the special case is the -a keyletter.

Diagnostics
See sccshelp (1) for explanations.

Files

/tmp/pr?????

See Also
admin(I), delta(I), get(I), help(I), sccs(I), sccsfile(5)
Guide to the Source Code Control System

Commands 1-543

pS(1)

Name
ps - print process status statistics

Syntax
ps [options] [name list] [core]

Description
The ps command prints infonnation about processes. Without the -3 option, only
your processes are candidates to be printed by p s. Specifying the -3 option causes
other users' processes to be printed, and specifying the -x option includes processes
without control tenninals.

You must use the -k option and specify both namelist and core files when looking at
a crash dump. The optional name list argument indicates that infonnation is to be
gathered using the specified system namelist file. (The name list file is a kernel image
file). If namelist is not specified, ps uses /vmunix. The core argument indicates
that infonnation is to be gathered using the specified corefile. If core is not specified,
ps uses /dev/mem.

Options

-# Represents any given process number and must be the last option given.
When used in combinations, this option overrides -3 and is overridden
by -tx.

-C Causes the % CPU field of the display to reflect the absolute percentage
of cpu used by the process during its resident time for scheduling.

-S Causes the TIME field of the display to reflect the amount of
user+system time spent by a process and its children.

-3 Displays infonnation for processes executed from all users' tenninals.
The default is to show processes executed from your terminal only.
When used in combinations, this option is overridden by -#.

-c Displays the command names as stored internally in the system for
accounting purposes instead of the command arguments, which are kept
in the process address space. This display is more reliable, if less
informative, because a process is free to destroy the latter information.

-e Displays the environment as well as the command arguments.

-g Displays all processes within the process group. Without this option, ps
prints only "interesting" processes. Processes are considered
uninteresting if they are process group leaders; top-level command
interpreters and processes waiting for users to login on free terminals are
therefore nonnally not shown.

-k Uses the core file in place of / dev /kmem and / dev /mem. If the -k
option is used but no core file is specified, ps uses / dev /mem.

-I Displays infonnation in long fonnat, showing the fields PPID, CP, PRI,
NI, ADDR, SIZE, RSS, and WCHAN as described under Output Fields.

-s Adds the size SSIZ of the kernel stack of each process to the basic

1-544 Commands

ps(1)

output format for use by system maintainers.

-tx Displays information for specified terminal only. Restricts output to
processes whose controlling terminal is x. The argument x should be
specified as printed by p s; for example, t3 for tty3, teo for console, tdO
for ttydO, t? for processes with no terminal, t for processes at the current
tty, and so forth, are proper specifications for x. This option must be the
last one given. When used in combinations, this option overrides -# and
-a.

-u Displays user-oriented output, which includes fields USER, %CPU, and
%MEM, SIZE. It also displays SZ and RSS, which are computed
differently than for the -I and -v options. The SZ field is computed as
SIZE + TSIZ (virtual size plus size of text). The TRS field is computed
as RSS + (TRS/xccount) where xccount is the number of processes
currently sharing the text.

-v Displays process system time and user time in addition to cumulative
time. This display includes fields RE, SL, PAGEIN, SIZE, RSS, LIM,
TSIZ, TRS, %CPU and %MEM, described under Output Fields.

-w Produces 132-column rather than 80 column output. If repeated, as ww,
produces arbitrarily wide output. This information is used to decide how
much to print for long commands.

-x Displays information for all processes, including those not executed from
terminals.

The ps command ignores all options not mentioned in the reference page.

Restrictions
Information on processes can change while ps is running. The picture it gives is a
snapshot taken at a given time.

Output Fields
All output formats include, for each process:

PID The process identification (PID) number

TT

TIME

STAT

Control terminal of the process

Includes both user and system time

The state of the process, given by a sequence of four letters, for example,
RWNA.

The first letter indicates the run status of the process:

R Running processes

T Stopped processes

P Processes in page wait

D Processes in disk (or other short-term) waits

S Processes sleeping for less than about 20 seconds

I Idle processes (sleeping longer than about 20 seconds)

Commands 1-545

ps(1)

The second letter indicates whether a process is swapped out:

W Processes that are swapped out

Z Processes that are killed but not yet removed

(blank)
Processes that are in core

> Processes that have specified a soft limit on memory requirements
and are exceeding that limit. Such a process is not swapped.

The third letter indicates whether a process is running with altered CPU
scheduling priority, using nice(1).

N The process priority is reduced

< The process priority has been artificially raised

(blank)
Processes running without special treatment

The fourth letter indicates any special treatment of the process for virtual
memory. The possibilities are:

A Stands for VA_ANOM. Typically represents a lisp(1) process
making disk usage more efficient by removing gaps caused by
deletes and collecting the remaining data.

S Stands for V A_SEQL. Typical of large image processing
programs that are using virtual memory to sequentially address
voluminous data.

(blank)
Stands for V A_NORM.

Fields that are not common to all output formats:

USER Name of the owner of the process

% CPU CPU utilization of the process. This is a decaying average over a minute
or less of previous (real) time. Because the time base over which this is
computed varies since processes may be very young, it is possible for the

, sum of all %CPU fields to exceed 200%.

NICE (or NI) Process scheduling increment. For further information, see
setpriori ty(2).

SIZE (or SZ) Virtual size of the process (in 1024-byte units)

RSS Real memory (resident set) size of the process (in 1024-byte units)

LIM Soft limit on memory used, specified via a call to get r 1 imi t (2). If no
limit has been specified, then shown as xx

TSIZ Size of text (shared program) image

TRS Size of resident (real memory) set of text

% MEM Percentage of real memory used by this process.

RE Residency time of the process (seconds in core)

SL Sleep time of the process (seconds blocked)

1-546 Commands

ps(1)

PAGEIN Number of disk I/O operations resulting from references by the process
to pages not loaded in core

UID

PPID

CP
PRI

ADDR

Numerical user identification number of process owner

Numerical identification number of parent of process

Short-term CPU utilization factor used in scheduling

Process priority (nonpositive when in noninterruptible wait)

Swap address of the process or page frame of the beginning of the user
page table entries

WCHAN Event for which process is waiting (an address in the system), with the
initial part of the address trimmed off. For example, 80004000 prints as
4000.

F Flags associated with process as in < sys/proc. h >:

SLOAD
SSYS

SLOCK
SSWAP

STRC
SWTED
SULOCK
SPAGE
SKEEP

SOMASK
SWEXIT
SPHYSIO

SVFORK

SVFDONE

SNOVM

SPAGI

SSEQL
SUANOM
SXCTDAT

SNOCLDSTP

SOWEUPC
SSEL
SLOGIN
SPTECHG
SLKDONE

00000001
00000002

00000004
00000008

00000010
00000020
00000040
00000080
00000100

00000200
00000400
00000800

00001000

00002000

00004000

00008000

00010000
00020000
00080000

00100000

00200000
00400000
00800000
01000000
04000000

Process is resident in memory
System process: swapper, pager,
idle (RISC only), trusted path daemon
Process is being swapped out
Process requested swapout for page table
growth
Traced
U sed in tracing
Locked in by plock(2)
Waiting for page-in to complete
Protected from swapout while tranferring
resources to another process
Used by sigpause(2)
Exiting
Protected from swapout while doing physical
I/O
Process resulted from a vfork(2) that is not
yet complete
Parent has received resources returned by
vfork(2) child
Process has no virtual memory, as it is a
parent in the context of vfork(2)
Process is demand paging data pages from its
text gnode.
Process has advised of sequential memory access
Process has advised of random memory access
Process has indicated intent to execute data
or stack (RISC only)
POSIX environment: no SIGCLD generated when
children stop (formerly named SOUSIG)
Process is owed a profiling tick
Used by select(2)
A login process
The pte's for the process have changed
System V file lock applied

Commands 1-547

ps(1)

Files

SFIXADE

SEXECDN
SIDLEP

08000000

10000000
20000000

Fix-up of unaligned accesses is attempted
(RISC only)
Process has done an execve(2)
The idle process (RISC only)

A process that has a parent and has exited, but for which the parent has not yet
waited, is marked <defunct>. A process that is blocked trying to exit is marked
<exiting>; the ps command makes an educated guess as to the file name and
arguments given when the process was created by examining memory or the swap
area. The method is inherently somewhat unreliable and in any event a process is
entitled to destroy this information, so the names cannot be counted on too much.

/vmunix

/dev/kmem

/dev/mem

/dev/drum

/vmcore

/dev

System namelist

Kernel memory

User process info

Swap device

Core file

Searched to find swap device and tty names

See Also
kill(1), w(1), dump(5)

1-548 Commands

ptx(1)

Name
ptx - create permuted index

Syntax
ptx [option ...] [input [output]]

Description
The ptx command generates a permuted index to file input on file output (standard
input and output default). It has three phases: the first does the permutation,
generating one line for each keyword in an input line. The keyword is rotated to the
front. The permuted file is then sorted. Finally, the sorted lines are rotated so the
keyword comes at the middle of the page. The ptx command produces output in the
form:

.xx "tail" "before keyword" "keyword and after" "head"

where .xx may be an nraff or traff macro for user-defined formatting. The
before keyword and keyword and after fields incorporate as much of the line as fits
around the keyword when it is printed at the middle of the page. The t ail and
head commands, at least one of which is an empty string "", are wrapped-around
pieces small enough to fit in the unused space at the opposite end of the line. When
original text must be discarded, '/' marks the spot.

Options
The following options can be applied:

- b break Use the characters in the break file as separators. In any
case, tab, new line, and space characters are always used as
break characters.

-f

-gn

-i ignore

-0 only

-r

-t

-wn

Folds upper and lower case letters for sorting.

Uses specified number as interfield gap. The default gap is 3
characters.

Do not use as keywords any words given in the ignore file.
If the -i and -0 options are missing, use /usr/lib/eign as the
ignore file.

Use words listed only in the only file.

Uses leading nonblanks as reference identifiers. Attach that
identifier as a 5th field on each output line.

Prepares the output for the phototypesetter. The default line
length is 100 characters.

Use the next argument, n, as the width of the output line.
The default line length is 72 characters.

Commands 1-549

ptx(1)

Restrictions

Files

Line length counts do not account for overstriking or proportional spacing.

/usr/bin/sort
/usr/lib/eign

1-550 Commands

pwd(1)

Name
pwd - print working directory

Syntax
pwd

Description
The pwd command prints the pathname of the working (current) directory.

Restrictions
In csh(l) the command dirs is always faster (although it can give a different answer
in the rare case that the current directory or a containing directory was moved after
the shell descended into it).

See Also
cd(1), csh(l), getwd(3)

Commands 1-551

VAX px(1)

Name
px - Pascal code executor

Syntax
pX [obj [argument ...]]

Description
The px command interprets the abstract machine code generated by pi. The first
argument is the file to be interpreted, and defaults to obj; remaining arguments are
available to the Pascal program using the built-ins argv and argc. The px command
is also invoked by pix when running 'load and go'.

If the program terminates abnormally an error message and a control flow backtrace
are printed. The number of statements executed and total execution time are printed
after normal termination. The p option of pi suppresses all of this except the
message indicating the cause of abnormal termination.

Restrictions
Post-mortem traceback is not limited; infinite recursion leads to almost infinite
traceback.

Diagnostics

Files

Most run-time error messages are self-explanatory. Some of the more unusual ones
are:

Reference to an inactive file
A file other than input or output was used before a call to reset or rewrite.

Statement count limit exceeded
The limit of 500,000 executed statements (which prevents excessive looping
or recursion) has been exceeded.

Bad data found on integer read
Bad data found on real read

Usually, non-numeric input was found for a number. For reals, Pascal
requires digits before and after the decimal point so that numbers like '.1' or
'21.' evoke the second diagnostic.

panic: Some message
Indicates a internal inconsistency detected in px probably due to a Pascal
system bug.

obj
pmon.out

default object file
profile data file

See Also
pi(1), pix(1)
"Berkeley Pascal User's Manual," ULTRIX Supplementary Documents, Vol.
II: Programmer

1-552 Commands

pxp(1) VAX

Name
pxp - Pascal execution profiler

Syntax
pxp [-acdefjnstuw] [-23456789] [-z[name ...]] name.p

Description
The pxp command can be used to obtain execution profiles of Pascal programs or as
a pretty-printer. To produce an execution profile all that is necessary is to translate
the program specifying the z option to pi or pix, to execute the program, and to
then issue the command

pxp -z name.p

A reformatted listing is output if none of the c, t, or z options are specified; thus

pxp old.p > new.p

places a pretty-printed version of the program in old.p in the file new.p.

Options
The use of the following options of pxp is discussed in sections 2.6, 5.4, 5.5 and
5.10 of the Berkeley Pascal User's Manual.

-d

-a
-c

-d

-e

-f

-j

-0

-s
-t

-u

-w
-z

Underscores all keywords.

Uses the specified number (-d) as the indentation unit. The default is 4.

Displays all procedures (even those not executed).

Uses the core file in generating the profiling data.

Displays all declaration parts.

Eliminates include directives when reformatting a file. The include is
replaced by the reformatted contents of the specified file.

Displays all parenthesized expression.

Left justifies all procedures and functions.

Begins a new page for each included file. In profiles, print a blank line at the
top of the page.

Strips comments from the input text.

Prints a table summarizing procedure and function call counts.

Generates the output in card image format, using only the first 72 characters of
input lines. '"

Suppresses all warning diagnostics.

Generate an execution profile for the specified modules (next arguments). If no
name s, are given the profile is of the entire program. If a list of names is
given, then only any specified procedures or functions and the contents of any
specified include files appear in the profile.

Commands 1-553

VAX pxp(1)

Restrictions
Does not place multiple statements per line.

Diagnostics

Files

For a basic explanation of the pxp command, type:

pxp

Error diagnostics include 'No profile data in file' with the c option if the z option was
not enabled to pi; 'Not a Pascal system core file' if the core is not from a px
execution; 'Program and count data do not correspond' if the program was changed
after compilation, before profiling; or if the wrong program is specified.

name.p

name.i

pmon.out

core

/usr/lib/how _pxp

input file

include file(s)

profile data

profile data source with -c

information on basic usage

See Also
pi(l), px(l)
"Berkeley Pascal User's Manual," ULTRIX Supplementary Documents
Vol. II: Programmer

1-554 Commands

pxref{1)

Name
pxref - Pascal cross-reference program

Syntax
pxref [-] name

Description
The pxref command makes a line numbered listing and a cross-reference of
identifier usage for the program in name. The keywords gete and label are treated
as identifiers for the purpose of the cross-reference. The include directives are not
processed, but cause the placement of an entry indexed by '#include' in the
cross-reference.

Options

Optional argument that suppresses the line numbered listing.

Restrictions
Identifiers are trimmed to 10 characters.

See Also
"Berkeley Pascal User's Manual," ULTRIX Supplementary Documents
Vol II: Programmer

Commands 1-555

quota{1)

Name
quota - display disk usage and limits

Syntax
quota [-qv] [user]

Description
The quota command displays users' disk usage and limits. Only the super-user may
use the optional user argument to view the limits of users other than himself.

The quota command reports only on file systems which have disk quotas. If quota
exits with a non-zero status, one or more file systems are over quota.

Options

-q Prints a message that contains information only on file systems where usage is
over quota

-v Displays users quotas on file systems where no storage is allocated.

See Also
quota(2), edquota(8), quotaon(8),
"Disk Quotas in a UNIX Environment", ULTRIX Supplementary Documents
Vol. III: System Manager

1-556 Commands

ranlib(1)

Name
ran lib - convert archives to random libraries

Syntax
ranlib archive ...

Description
The ranlib command converts each archive to a form which the loader can load
more rapidly. The ranlib command uses ar(l) to reconstruct the archive, so that
sufficient temporary file space must be available in the file system which contains the
current directory.

See Also
ar(l), ld(l), lorder(l)

Commands 1-557

Rise

VAX ranlib(1)

Name
ranlib - convert archives to random libraries

Syntax
ranlib archive ...

Description
The ran 1 ib command converts each archive to a fonn which the loader can load
more rapidly. The ranlib command does this by adding a table of contents called
_.SYMDEF to the beginning of the archive. the ranlib command uses ar(1) to
reconstruct the archive, so that sufficient temporary file space must be available in the
file system which contains the current directory.

Restrictions
Because generation of a library by ar and randomization of the library by ranlib
are separate processes, phase errors are possible. The loader, 1 d, warns when the
modification date of a library is more recent than the creation date of its dictionary;
but this means that you get the warning even if you only copy the library.

See Also
ar(l), ld(l), lorder(l)

1-558 Commands

rcp(1c)

Name
rcp - remote file copy

Syntax
rep [-p] filel file2
rep [-r] [-p] file ... directory

Description
The rep command copies files between machines. Eachfile or directory argument is
either a remote file name of the form rhost:path, or a local file name. Local file
names do not contain colons (:) or backslashes (\) before colons.

Note that the rep command refuses to copy a file onto itself.

If path is not a full path name, it is interpreted relative to your login directory on
rhost. To ensure that the metacharacters are interpreted remotely, a remote host's
path can be quoted by either using a backs lash (\) before a single character, or
enclosing character strings in double (") or single (') quotes.

The rep command does not prompt for passwords; your current local user name
must exist on rhost and allow remote command execution via rsh{lc).

The rep command handles third party copies, where neither source nor target files
are on the current machine. Hostnames may also take the form rname@rhost to use
rname rather than the current user name on the remote host. The following example
shows how to copy the file foo from userl@machl to user2@mach2:

$ rep userl@maehl:foo user2@maeh2:foo

Note that the file .rhosts on mach2 in user2's account must include an entry for
machl userl. Also note that it may be necessary for the person implementing the
rep command to be listed in the .rhosts file for machl userl.

By default, the mode and owner of file2 are preserved if file2 already exists.
Otherwise, the mode of the source file modified by umask(2) on the destination host
is used.

Options

-p Preserves the modification times and modes of the source files in its copies,
ignoring the uma s k .

-r Copies files in all subdirectories recursively, if the file to be copied is a
directory. In this case the destination must be a directory.

Commands 1-559

rcp(1c)

Restrictions
The rep command is confused by output generated by commands in a .login,
.profile, or .cshrc file on the remote host. In particular, 'where are you?' and 'rcp:
protocol sctewup' are messages which can result if output is generated by any of the
startup files.

See Also
ftp(lc), rlogin(lc), rsh(1c)

1-560 Commands

Name

Syntax

rcvstore (1 mh)

rcvstore - incorporate new mail asynchronously

rcvstore [+folder] [-create] [-nocreate] [-sequence name] [-public] [-nopublic]
[-zero] [-nozero] [-help]

Description

Files

The command rcvstore incorporates a message from the standard input into an MH
folder. If +folder is not specified, the folder named inbox in your MH directory
will be used instead. The new message being incorporated is assigned the next
highest number in the folder.

If the specified (or default) folder does not exist, then it will be created if the
-create option is specified; otherwise rcvstore will exit.

If your profile contains a Msg-Protect: nnn entry, it will be used as the protection
on the newly created messages; otherwise the MH default of 0600 will be used.
During all operations on messages, this initially assigned protection will be preserved
for each message, so chrnod may be used to set a protection on an individual
message, and its protection will be preserved thereafter.

The rcvstore command will incorporate anything except zero length messages
into your MH folder.

If the profile entry Unseen-Sequence is present and non-empty, then rcvstore
will add the newly incorporated message to each sequence named by the profile
entry. This is similar to the Previous-Sequence profile entry supported by all
MH commands which take rnsgs or rnsg arguments. Note that rcvstore will not
zero each sequence prior to adding messages.

Furthermore, the incoming messages may be added to user-defined sequences as they
arrive by appropriate use of the -sequence option. As with pick, the -zero
and -nozero switches can also be used to zero old sequences. Similarly, the
-public and -nopublic switches may be used to force additions to public and
private sequences.

The defaults for this command are:

+/older defaults to inbox
-create
-nopublic if the folder is read-only, -public otherwise
-no zero

$HOME/.mh_profile The user profile

Commands 1-561

rcvstore (1 mh)

Profile Components
Path:
Folder-Protect:
Msg-Protect:
Unseen-Sequence:

See Also

To determine your MH directory
To set mode when creating a new folder
To set mode when creating a new message
To name sequences denoting unseen messages

chmod(l), inc(lmh), pick(lmh), mh-mail(5mh)

1-562 Commands

Name

Syntax

rdist (1)

rdist - remote file distribution program

rdist [-nqbRhivwy] [-f distfile] [-d var=value] [-m host] [name ...]

rdist [-nqbRhivwy] [-c name ... [Iogin@]host[:dest]

Description
The rdist program maintains identical copies of files over multiple hosts. It
preserves the owner, group, mode, and mtime of files if possible and can update
programs that are executing. rdist reads commands from distfile to direct the
updating of files and/or directories. If distfile is '-', the standard input is used. If no
-f option is present, the program looks first for 'distfile', then 'Distfile' to use as the
input. If no names are specified on the command line, rdi s t will update all of the
files and directories listed in distfile. Otherwise, the argument is taken to be the
name of a file to be updated or the label of a command to execute. If label and file
names conflict, it is assumed to be a label. These may be used together to update
specific files using specific commands.

Options

-c Forces rdi st to interpret the remaining arguments as a small distfile. The
equivalent distfile is as follows.

(name ...) -> [login@]host
install [dest];

-d Defines var to have value. The -d option is used to define or override variable
definitions in the distfile. Value can be the empty string, one name, or a list of
names surrounded by parentheses and separated by tabs and/or spaces.

-m Limit which machines are to be updated. Multiple -m arguments can be given
to limit updates to a subset of the hosts listed the distfile.

-n Print the commands without executing them. This option is useful for
debugging distfile.

-q Quiet mode. Files that are being modified are normally printed on standard
output. The -q option suppresses this.

-R Remove extraneous files. If a directory is being updated, any files that exist on
the remote host that do not exist in the master directory are removed. This is
useful for maintaining truly identical copies of directories.

-h Follow symbolic links. Copy the file that the link points to rather than the link
itself.

-i Ignore unresolved links. Rdist will normally try to maintain the link structure
of files being transferred and warn the user if all the links cannot be found.

-v Verify that the files are up to date on all the hosts. Any files that are out of date
will be displayed but no files will be changed nor any mail sent.

Commands 1-563

rdist (1)

-w Whole mode. The whole file name is appended to the destination directory
name. Normally, only the last component of a name is used when renaming
files. This will preserve the directory structure of the files being copied instead
of flattening the directory structure. For example, renaming a list of files such
as (dirl/fl dir2/f2) to dir3 would create files dir3/dirl/fl and dir3/dir2/f2
instead of dir3/fl and dir3/f2.

-y Younger mode. Files are normally updated if their mtime and size (see
stat(2)) disagree. The -y option causes rdist not to update files that are
younger than the master copy. This can be used to prevent newer copies on
other hosts from being replaced. A warning message is printed for files which
are newer than the master copy.

-b Binary comparison. Perform a binary comparison and update files if they differ
rather than comparing dates and sizes.

Distfile contains a sequence of entries that specify the files to be copied, the
destination hosts, and what operations to perform to do the updating. Each entry has
one of the following formats.

<variable name> '=' <name list>
[label:] <source list> '->' <destination list> <command list>
[label:] <source list> '::' <time_stamp file> <command list>

The first format is used for defining variables. The second format is used for
distributing files to other hosts. The third format is used for making lists of files that
have been changed since some given date. The source list specifies a list of files
and/or directories on the local host which are to be used as the master copy for
distribution. The destination list is the list of hosts to which these files are to be
copied. Each file in the source list is added to a list of changes if the file is out of
date on the host which is being updated (second format) or the file is newer than the
time stamp file (third format).

Labels are optional. They are used to identify a command for partial updates.

Newlines, tabs, and blanks are only used as separators and are otherwise ignored.
Comments begin with a sharp sign (#) and end with a newline.

Variables to be expanded begin with dollar sign ($) followed by one character or a
name enclosed in curly braces (see the examples at the end).

The source list and destination list have the following format:

<name>
or

'(' <zero or more names separated by white-space> ')'

The shell meta-characters [,], {, }, *, and? are recognized and expanded (on the
local host only) in the same way as csh. They can be escaped with a backs lash O.
The tilde character (-) is also expanded in the same way as csh, but is expanded
separately on the local and destination hosts. When the -w option is used with a file
name that begins with tilde (-), everything except the home directory is appended to
the destination name. File names which do not begin with / or - use the destination
user's home directory as the root directory for the rest of the file name.

1-564 Commands

rdist (1)

The command list consists of zero or more commands of the following format.

'install' <options> opt_dest_name ';'
'notify' <name list>';'
'except' <name list>';'
'except_pat' <pattern list>';'
'special' <name list> string ';'

The install command is used to copy out of date files and/or directories. Each source
file is copied to each host in the destination list. Directories are recursively copied in
the same way. opt dest name is an optional parameter to rename files. If no install
command appears in the-command list or the destination name is not specified, the
source file name is used. Directories in the path name will be created if they do not
exist on the remote host. To help prevent disasters, a non-empty directory on a target
host will never be replaced with a regular file or a symbolic link. However, under
the -R option a non-empty directory will be removed if the corresponding filename is
completely absent on the master host. The options are -R, -h, -i, -v, -w, -y, and -b
and have the same semantics as options on the command line except they only apply
to the files in the source list. The login name used on the destination host is the
same as the local host unless the destination name is of the format login@host.

The notify command is used to mail the list of files updated (and any errors that may
have occurred) to the listed names. If no at sign (@) appears in the name, the
destination host is appended to the name (for example, namel@host, name2@host,
...).
The except command is used to update all of the files in the source list except for the
files listed in name list. This is usually used to copy everything in a directory except
certain files.

The except -pat command is like the except command except that pattern list is a list
of regular expressions (see ed(l) for details). If one of the patterns matches some
string within a file name, that file will be ignored. Note that since \e is a quote
character, it must be doubled to become part of the regular expression. Variables are
expanded in pattern list but not shell file pattern matching characters. To include a
dollar sign ($), it must be escaped with \e.

The special command is used to specify s h commands that are to be executed on the
remote host after the file in name list is updated or installed. If the name list is
omitted then the shell commands will be executed for every file updated or installed.
The shell variable FILE is set to the current filename before executing the commands
in string. String starts and ends with double quotes (") and can cross multiple lines
in distfile. Multiple commands to the shell should be separated by semi-colons (;).
Commands are executed in the user's home directory on the host being updated. The
special command can be used to rebuild private databases, etc. after a program has
been updated.

The following is a small example.

HOSTS = (matisse root@arpa)

FILES = (/bin /lib /usr/bin /usr/games
/usr/include/ { * .h, { stand,sys, vax * ,pascal,machine } /*.h}
/usr/lib /usr/man/man? /usr/ucb /usr/local/rdist)

Commands 1-565

rdist (1)

EXLIB = (Mail.rc aliases aliases.dir aliases.pag crontab dshrc
sendmail.cf sendmail.fc sendmail.hf sendmail.st uucp vfont)

${FILES} -> ${HOSTS}
install -R ;

srcs:

except /usr/lib/$ {EXLIB} ;
except /usr/games/lib ;
special/usr/lib/sendmail "/usr/lib/sendmail -bz" ;

/usr/src/bin -> arpa
except_pat (\\0\$ /SCCS\$) ;

IMAGEN = (ips dviimp catdvi)

imagen:
/usr/local/${IMAGEN} -> arpa

install /usr/local/lib ;
notify ralph ;

${FILES} :: stamp. cory
notify root@cory ;

Restrictions
Source files must reside on the local host where rdist is executed.

There is no easy way to have a special command executed after all files in a
directory have been updated.

Variable expansion only works for name lists; there should be a general macro
facility.

rdist aborts on files which have a negative mtime (before Jan 1, 1970).

Diagnostics

Files

A complaint about mismatch of rdist version numbers may really stem from some
problem with starting your shell (that is, you are in too many groups).

distfile
/tmp/rdist *

input command file
temporary file for update lists

See Also
sh(1), csh(1), stat(2)

1-566 Commands

Name

Syntax

refer (1)

refer - find and fonnat bibliographic references

refer [-a] [-b] [-c] [-e] [-fn] [-kx] [-Im,n] [-0] [-p bib] [-skeys] [-B/.m] [-P]
[-S] [file ...]

Description
The refer command is a preprocessor for *roff that finds and fonnats references
for footnotes or endnotes. It is also the base for a series of programs designed to
index, search, sort, and print stand-alone bibliographies, or other data entered in the
appropriate fonn.

Given an incomplete citation with sufficiently precise keywords, refer will search a
bibliographic database for references containing these keywords anywhere in the title,
author, journal, and so forth. The input file (or standard input) is copied to standard
output, except for lines between .[and .] delimiters, which are assumed to contain
keywords, and are replaced by infonnation from the bibliographic database. The user
may also search different databases, override particular fields, or add new fields. The
reference data, from whatever source, are assigned to a set of *roff strings. Macro
packages such as ms (7) print the finished reference text from these strings. By
default references are flagged by footnote numbers.

Options
The following options are available:

-ar

-Bl.m

-b

-ckeys

-e

Reverses order of first author names. For example, Jones, J. A. instead
of J. A. Jones. If n is omitted all author names are reversed.

Bibliography mode. Take a file composed of records separated by
blank lines, and turn them into *roft' input. Label I will be turned into
the macro .m with I defaulting to %X and .m defaulting to .AP
(annotation paragraph).

Creates bare entries: no flags, numbers, or labels.

Capitalizes fields whose key letters are in string.

Accumulates all references in one list. Default is to create references
where encountered in text. Accumulate them until a sequence of the
fonn

. [
$LIST$
.]

is encountered, and then write out all references collected so far.

-fn Set the footnote number to n instead of the default of 1 (one). With
labels rather than numbers, this flag is a no-op.

-kx Uses specified label in place of numbering for each reference data line
beginning % x:. By default x is L.

Commands 1-567

refer (1)

-Im,n

-p

-0

-pbib

-s
-skeys

Instead of numbering references, use labels made from the senior
author's last name and the year of publication. Only the first m letters
of the last name and the last n digits of the date are used. If either m
or n is omitted the entire name or date respectively is used.

Places punctuation marks .,:;?! after the reference signal, rather than
before. (Periods and commas used to be done with strings.)

Do not search the default file /usr/dict/papers/lnd. If there is a REFER
environment variable, the specified file will be searched instead of the
default file; in this case the -0 flag has no effect.

Specifies file to be searched before /usr / diet/papers.

Produce references in the Natural or Social Science format.

Uses specified key in sorting references. Implies -e. The key-letters in
keys may be followed by a number to indicate how many such fields
are used, with + taken as a very large number. The default is AD
which sorts on the senior author and then date; to sort, for example, on
all authors and then title use -sA + T .

To use your own references, put them in the format described below. They can be
searched more rapidly by running indxbib(l) on them before using refer.
Failure to index results in a linear search. When refer is used with the eqn,
neqn or tbl preprocessors refer should be first, to minimize the volume of data
passed through pipes.

The refer preprocessor and associated programs expect input from a file of
references composed of records separated by blank lines. A record is a set of lines
(fields), each containing one kind of information. Fields start on a line beginning
with a "%", followed by a key-letter, then a blank, and finally the contents of the
field, and continue until the next line starting with "%". The output ordering and
formatting of fields is controlled by the macros specified for *roff (for footnotes
and endnotes) or roffbib (for stand-alone bibliographies). For a list of the most
common key-letters and their corresponding fields, see addbib(l). An example of a
refer entry is given below.

Restrictions
Blank spaces at the end of lines in bibliography fields will cause the records to sort
and reverse incorrectly. Sorting large numbers of references causes a core dump.

Examples

%A M. E. Lesk
%T Some Applications of Inverted Indexes on the UNIX System
%B UNIX Programmer's Manual
%V 2b
%I Bell Laboratories
%C Murray Hill, NJ
%D 1978

1-568 Commands

refer (1)

Files
/usr/dict/papers directory of default publication lists
/usr/lib/refer directory of companion programs

See Also
addbib(l), sortbib(l), rofibib(l), indxbib(l), lookbib(l)

Commands 1-569

refile (1 mh)

Name

Syntax

refile - file message in other folders

refile [msgs] [-draft] [-link] [-nolink] [-preserve] [-nopreserve] [-src
+ foldername] [-file filename] + folder [-help]

Description

Use the refile command to move the specified message from the current folder to
another folder or a number of other folders.

If you do not specify a message, the current message will be refiled. Use refile
in conjunction with the message numbers, to refile a message other than the current
message. You can refile more than one message at a time by specifying:

• more than one message number

• a range of message numbers

• a sequence of messages defined by pick (see pick(lmh))

The following example shows how to refile messages 3 and 5 in the folder +records.

$ refile 3 5 +records

Options

You will normally refile messages from the current folder into another folder.
However, you can specify an alternative source folder using the -src+folder option.
The following example shows how to refile a message from the +inbox folder
when +inbox is not the current folder.

$ refile 3 -src +inbox +outbox

You can refile a message in more than one folder, as the following example
shows. This means that you could reference mail both under the name of the sender
and the subject that the message deals with.

$ refile +jones +map

Note that folder names are case sensitive, so you must type the exact folder name
including any capital letters.

When you refile a message, the message is normally (-nolink) moved from
the source folder to the destination folder. You can keep a copy of the message in
the source folder, if you want, by specifying the -link option. The following
example takes the thirteenth message in the current folder and refiles it in the
+test folder. Message 13 however remains in the current folder as well as
appearing in the +test folder.

$ refile -link 13 +test

Normally when you refile a message, the message number is reset to the next
available number. So if you were refiling message number 109 into a folder that
only contained five messages, the message number would probably not be the same
in the new file as it was in the old file. This happens because the -nopreserve

1-570 Commands

Files

refile (1 mh)

option of refile is normally in force. You can make sure that the message that
you are refiling has the same number in the destination folder as it did in the source
folder by specifying the -preserve option. You cannot have two messages with
the same message number, so you need to use this option carefully.

You can use re f i 1 e to move a file out of a directory into a message folder using
the - f i 1 e filename option, provided that the file is formatted as a mail message.
This means that the message must have the minimum header fields separated from
the body of the message by a blank line or a line of dashes. The following example
shows this option being used to refile the file <mail file> into the +test folder.

$ refile -file mailfile +test

You can refile the draft message, or the current message in your drafts file, if you
use refile with the -draft option.

$HOME/.mh_profile The user profile

Profile Components
Path:
Current-Folder:
Folder-Protect:
rmmproc:

Context

To determine your MH directory
To find the default current folder
To set mode when creating a new folder
Program to delete the message

If -src +folder is given, it will become the current folder. If neither -link nor
a 11 is specified, the current message in the source folder will be set to the last
message specified; otherwise, the current message will not be changed.

If the Previous-Sequence profile entry is set, in addition to defining the named
sequences from the source folder, refile will also define those sequences for the
destination folders. See rnhyrofile(Smh) for information concerning the
previous sequence.

See Also
folder(lmh), mh_profile(Smh)

Commands 1-571

repl (1 mh)

Name

Syntax

repl - reply to a message

repl [+folder] [msg] [-annotate] [-noannotate] [-ce allltolcc!me] [-noee
allltolcc!me] [-draftfolder +foldername] [-draftmessage msg] [-nodraftfolder]
[-editor editor] [-noedit] [-fcc +foldername] [-filter filterfile] [-formformfile]
[-format] [-noformat] [-inplaee] [-noinpJaee] [-query] [-no query] [-width
columns] [-whatnowproe program] [-nowhatnowproe] [-help]

Description

You can use the repl command to reply to a specified message. If you do not
specify a message, repl will create a reply to the current message. You can reply to
messages other than the current message by specifying the message number. The
message replied to will become the current message.

You normally reply to a message in the current folder. However, you can reply to a
message in another folder by using the -folder<foldername> option. If you do
specify a folder, that folder will become the current folder.

When you reply to a message, repl automatically fills in the mail header for you,
taking the information it needs from the mail header of the original message. The
following example shows how rep 1 constructs the mail header for the return
message.

To: <Reply-To> or <From> or <sender>
cc: <cc>, <To>, and yourself
Subject: Re: <Subject>
In-reply-to: Your message of <Date>.
<Message-Id>

Field names enclosed in angle brackets « » indicate the contents of the named field
from the original message.

Options

You can create a different mail header from the default and use it every time you
reply to mail. If you create an alternative mail header and store it in the file
replcomps in your MH directory, repl will use it instead of the default header
file. You can also vary the appearance of the mail header for the reply, by using the
- f 0 rm<formfile> option. If you specify a header file with the f 0 rm<formfile>
option, this header file will always be used regardless of how the other options are
set.

Normally, repl will reply to the original sender and send carbon copies to all the
addressees on the original message. You can change this, if you want, by specifying
the -cc<type> option. The cc option lets you select the following type switches.

all replies to all addresses on the original message
to replies to all addresses in the To: field
cc replies to all addressees in the cc: field
me sends you a copy of the reply

1-572 Commands

repl (1 mh)

In addition to this you can modify the list of recipients by specifying the -query
option. This option modifies the action of the -cc type switch by interactively
asking you if each address that would normally be placed in the To: and cc: list
should actually receive a copy.

You cannot reply to a message if you have a message in your draft file, until you
have cleared the draft file. If the draft already exists, repl will ask you for the
disposition of the draft. A reply of qui t will abort repl, leaving the draft intact;
replace will replace the existing draft with a blank skeleton; and list will
display the draft.

You can avoid this by setting up a +drafts folder. This will allow you to have
more than one incomplete or unsent message in your system at the same time. See
folders(1mh) for details of how you can do this.

You can also avoid this problem by specifying -draftfolder +foldername. This
option lets you determine which folder the message reply is created in. In the
following example the message reply would be created in the +answer folder.

% repl -draftfolder +answer

This reply will be created regardless of whether there is a message already in the
draft folder. '

Finally, if you do not have a drafts folder set up, you can use the -draftmessage
filename option. This option allows you to specify a file in which the draft message
will be created.

The editor that is provided with repl is prompter. See prompter(1mh) for
more details of this editor. You can specify an alternative editor using the
-edi tor<editorname> option. If you are regularly going to use the same editor,
you can specify this by putting the following line in your .mh-profile.

% editor: <editorname>

See mh-profile(Smh) for more details. The -noedit switch can be used to call
repl without an editor. See comp(1mh) for more details.

Note that while in the editor, the message being replied to is available through a link
named "@" (assuming the default whatnowproc). In addition, the actual
pathname of the message is stored in the envariable $edi tal t, and the pathname
of the folder containing the message is stored in the envariable $mhfolder.

Although repl uses the -form formfile switch to direct it how to construct the
beginning of the draft, the -filter filterfile switch tells repl how the message,
being replied to, should be formatted in the body of the draft. If - f i It e r is not
specified, then the message being replied to is not included in the body of the draft.
If -fil ter filterfile is specified, then the message being replied to is filtered (re
formatted) prior to being output to the body of the draft. The filter file for repl
should be a standard form file for mhl, as repl will invoke mhl to format the
message being replied to. There is no default message filter. The -filter option
must be followed by a file name.

Commands 1-573

repl (1 mh)

A filter file that is commonly used is:

body:nocomponent,compwidth=9,offset=9

This outputs a blank line and then the body of the message being replied to, indented
by one tab-stop.

If the -annotate switch is given, the message being replied to will be annotated
with the lines

Replied: date
Replied: addrs

where the address list contains one line for each addressee. The annotation will be
done only if the message is sent directly from repl. If the message is not sent
immediately from repl, comp -use may be used to re-edit and send the
constructed message, but the annotations will not take place. The - inplace switch
causes annotation to be done in place in order to preserve links to the annotated
message.

The -format switch specifies that Internet-style formatting should be used. This is
the default set up for address formatting. If -format is specified, then lines
beginning with the fields To:, cc: and Bcc: will be standardized and have
duplicate addresses removed.

You can use -noformat in conjunction with the -width option to format your
own address header. However, this can result in creating a message header that will
not be accepted by MH or other mail systems. You should only attempt to change the
default setting from -format to -noformat if you completely understand the
implications of any changes you intend to make.

The -width option governs the maximum width of the header line. Lines
exceeding this width are split.

The -fcc +folder switch can be used to automatically specify a folder to receive
Fcc:s. More than one folder, each preceded by -fcc can be named.

Upon exiting from the editor, repl will invoke the whatnow program. See
whatnow(1mh) for a discussion of available options. The invocation of this
program can be inhibited by using the -nowhatnowproc switch. But as it is
actually the whatnow program which starts the initial edit, specifying
-nowhatnowproc will prevent any edit from occurring.

If the whatnowproc is whatnow, then repl uses its own built-in whatnow, it
does not actually run the whatnow program. Hence, if you define your own
whatnowproc, do not call it whatnow since repl will not run it.

1-574 Commands

Files

repl (1 mh)

If your current working directory is not writable, the link named @ is not available.
The default settings for this command are:

+/older defaults to the current folder
msg defaults to the current message
-cc all
-format
-noannotate
-nodraftfolder
-noinplace
-noquery
-width 72

/usr/newflib/mh/replcomps
<mh-dir>/replcomps
$HOME/.mh_profile
<mh-dir>/draft

The reply template
Alternative to the standard reply template
The user profile
The draft file

Profile Components
Path: To determine your MH directory

To determine your mailboxes Alternate-Mailboxes:
Current-Folder:
Draft-Folder:
Editor:
Msg-Protect:
fileproc:
mhlproc:
whatnowproc:

See Also

To find the default current folder
To find the default draft-folder
To override the default editor
To set mode when creating a new message (draft)
Program to refile the message
Program to filter message being replied to
Program to ask the "What now?" questions

comp(lmh), dist(1mh), forw(lmh), prompter(lmh), send(lmh), whatnow(lmh), mh
format(5mh)

Commands 1-575

reset (1)

Name
reset - reset terminal mode

Syntax
reset

Description
The reset command sets the terminal to cooked mode, turns off cbreak and raw
modes, turns on nl, and restores special characters that are undefined to their default
values. The reset command also clears the LLITOUT bit in the local mode word.

This is most useful after a program dies leaving a terminal in a funny state; you have
to type "<LP>reset<LF>" to get it to work then to the shell, as <CR> often doesn't
work; often none of this will echo.

It is a good idea to follow reset with tset(l)

Restrictions
Doesn't set tabs properly. It can't interpret choices for interrupt and line kill
characters, so it leaves these set to the local system standards.

See Also
stty(1), tset(1)

1-576 Commands

Name
rev - reverse character positions in file data

Syntax
rev [file ...]

Description

rev (1)

The rev command copies the named files to the standard output, reversing the order
of characters in every line. If no file is specified, the standard input is copied.

Commands 1-577

rlogin (1 c)

Name

Syntax

rlogin - remote login

rlogin rhost [-e e] [-8] [-L] [-I username]
rhost [-eel [-8] [-L] [-I username]

Description
The r 1 og i n command connects your terminal on the current local host system,
[host, to the remote host system, rhost.

Each host has a file / etc/hosts. equi v which contains a list of rhosts with
which it shares account names. The host names must be the standard names as
described in rsh(1c). When you use the rlogin command to login as the same
user on an equivalent host, you do not need to specify a password.

You can also have a private equivalence list in a file .rhosts in your login directory.
Each line in this file should contain the rhost name and a username separated by a
space, giving additional cases where logins without passwords are permitted. If the
originating user is not equivalent to the remote user, then the remote system prompts
for a login and password as in 10gin(1).

To avoid security problems, the .rhosts file must be owned by either the remote user
or root and it may not be a symbolic link.

Your remote terminal type is the same as your local terminal type, which is specified
by your environment TERM variable. Except for delays, all echoing takes place at
the remote site so the rlogin is transparent. Flow control by < CTRL IS> and
<CTRL/Q>, and flushing of input and output on interrupts are handled properly. The
optional argument -8 allows an eight-bit input data path at all times. Otherwise,
parity bits are stripped except when the remote site's stop and start characters are
other than <CTRL/S> and <CTRL/Q>. A tilde followed by a dot (-.) on a separate
line disconnects from the remote host, where the tilde (-) is the escape character.
Similarly, a tilde followed by <CTRL/Z> (- <CTRL/Z», where <CTRL/Z> is the
suspend character, suspends the rlogin session.

Substitution of the delayed-suspend character, which is normally <CTRL/y>, for the
suspend character suspends the send portion of the rlogin, but allows output from the
remote system. A different escape character may be specified by the -e option.
There is no space separating this option flag and the argument character.

Options

-8

-ee

-I username

-L

1-578 Commands

Allows an 8-bit input data path at all times.

Uses the specified character as the rlogin escape character.
If not specified, uses a tilde (,..,).

Logs you in as the specified user, not as your user login
name.

Runs session in litout mode.

Files
/usr/hosts/*

See Also
rsh(1c)

rlogin (1 c)

for rhost version of the command

Commands 1-579

rm(1)

Name

Syntax

nn, nndir - remove (unlink) files or directories

rm [-f] [-r] [-i] [-]file-or-directory-name ...
rmdir directory-name ...

Description
The rm command removes the entries for one or more files from a directory. If there
are no links to the file then the file is destroyed. For further infonnation, see In(1).

The rmdi r command removes entries for the named directories, which must be
empty. If they are not empty, the directories remain, and rmdir displays an error
message (see EXAMPLES).

To remove a file, you must have write pennission in its directory, but you do not
need read or write pennission on the file itself. When you are using rm from a
tenninal, and you do not have write pennission on the file, the rm command asks for
confinnation before destroying the file.

If input is redirected from the standard input device (your tenninal), then rm checks
to ensure that input is not coming from your tenninal. If not, rm sets the -f option,
which overrides the file protection, and removes the files silently, regardless of what
you have specified in the file redirected as input to rm. See EXAMPLES.

Options

Specifies that the named files have names beginning with a minus (for example
-myfile).

-f Forces the removal of file or directory without first requesting confinnation.
Only system or usage messages are displayed.

-i Prompts for yes or no response before removing each entry. Does not ask when
combined with the -f option. If you type a y, followed by any combination of
characters, a yes response is assumed.

-r Recursively removes all entries from the specified directory and, then, removes
the entry for that directory from its parent directory.

Examples
The following example shows how to remove a file in your current working
directory.

rm myfile

This example shows use of the null option to remove a file beginning with a minus
sign.

rm - -gorp

This example shows how a confinnation is requested for removal of a file for which
you do not have write pennission.

rm test file

1-580 Commands

rm(1)

rm: override protection 400 for test file? y

This example shows how the combination of -i and -r options lets you examine all
the files in a directory before removing them. In the example, mydirectory is a
subdirectory of the current working directory. Note that the last question requests
confirmation before removing the directory itself. Although the user types "y",
requesting removal of the directory, the rrn command does not allow this, because
the directory is not empty; the user typed "n" to the question about the file file2 , so
file2 was not removed.

rm -ir mydirectory
rm: remove mydirectory/filel? y
rm: remove mydirectory/file2? n

rm: remove mydirectory? y
rm: mydirectory: Directory not empty

This example illustrates that rrn overrides file protection when input is redirected
from the standard input device. The user creates a file named "alfie", with a read
only file protection. The user then creates a file named "ans" to contain the
character "n". The rrn command following destroys the file "alfie", even though
the redirected input file requested no deletion.

cat > alfie
hello
Ad
chmod 444 alfie
cat > ans
n
Ad
rm < ans alfie

See Also
unlink(2)

Commands 1-581

rmail (1)

Name
rmail - route mail to users on remote systems

Syntax
rmail user ...

Description
The rmail command interprets incoming mail received via uucp(1c), collapsing
"From" lines in the form generated by binmail(1) into a single line of the form
"return-path! sender" ,and passing the processed mail on to sendmail(8).

The rmail is explicitly designed for use with uucp and sendmail.

See Also
binmail(1), uucp(1c), sendmail(8)

1-582 Commands

rmdel (1)

Name
rmdel - remove a delta from an SCCS file

Syntax
rmdel -r files

Description
The rmde 1 command removes the delta specified by the SID from each named sees
file. The delta to be removed must be the most recent delta in its branch in the delta
chain of each named sees file. In addition, the SID specified delta must not be that
of a version being edited for the purpose of making a delta, for example, if a p-file
exists for the named sees file, the SID specified delta must not appear in any entry
of the p-file). For further information, see get(l).

If a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If - is given
as the name, the standard input is read and each line of the standard input is taken to
be the name of an sees file to be processed. Non-Sees files and unreadable files are
silently ignored.

Certain permissions are necessary to remove a delta. If you make a delta or own the
file and directory, you can remove it.

Options

-rSID Specifies the delta version number.

Diagnostics
Use sccshelp(l) for explanations.

Files
x-file For further information, see del ta(1).
z-file For further information see del ta(1).

See Also
delta(1), get(1), help(1), prs(1), sccs(1), sccsfile(5)
Guide to the Source Code Control System

Commands 1-583

rmf(1mh)

Name
rmf - remove folder

Syntax
rmf [+/oldername] [-interactive] [-nointeractive] [-help]

Description

Files

The rmf command removes all of the messages (files) within the current folder and
then removes the folder itself. If there are any files within the folder which are not
part of MH, they are not removed, and an error message is displayed.

You can specify a folder other than the current folder, by using the +folder option.
If you do not specify a folder, and rmf cannot find the current folder, rmf asks you
whether you want to delete + inbox instead.

Note that the rmf command irreversibly deletes messages that do not have other
links, so use it with caution.

If the folder being removed is a subfolder, the parent folder becomes the new current
folder, and rmf tells you that this has happened. This provides an easy mechanism
for selecting a set of messages, operating on the list, then removing the list and
returning to the current folder from which the list was extracted.

The rmf of a read-only folder deletes the private sequence and cur information
(atr-, seq- and folder entries) from the profile without affecting the folder
itself. If you have sub-folders within a folder, you must delete all the sub folders
before you can delete the folder itself.

$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder Current-Folder:

Context

This command sets the current folder to the parent folder if a sub-folder is removed.
If the current folder is removed, it makes inbox current. In all other cases it does
not change the current folder or message.

See Also
rmm(lmh)

1-584 Commands

rmm(1mh)

Name
rmm - remove messages

Syntax
rmm [+/older] [msgs] [-help]

Description

Files

The rmm command deletes the current message from the current folder.

It removes messages by renaming the message files with preceding commas. Many
sites consider files that start with a comma to be a temporary backup, and arrange for
cron(8) to remove such files once a day.

You can specify messages and folders other than the current ones by using the
+folder and msgs arguments.

If you have a profile component such as

rmmproc: /bin/rm

then instead of simply renaming the message file, rmm will call the named program
to delete the file.

The current message is not changed by rmm, so a next will advance to the next
message in the folder as expected.

The default settings for this command are:
+/older defaults to the current folder
msgs defaults to the current message

$HOME/.mh_profile The user profile

Profile Components
Path: To determine your MH directory

To find the default current folder
Program to delete the message

Current-Folder:
rmmproc:

See Also
rmf(lmh)

Commands 1-585

rOffbib{1)

Name
roffbib - run off bibliographic database

Syntax
roftbib [options] [file ...]

Description
The roffbib command prints out all records in a bibliographic database, in
bibliography format rather than as footnotes or endnotes. Generally it is used in
conjunction with sortbib:

sortbib database I roffbib

Options
The roffbib command accepts most of the options understood by nroff(1).

-Tterm Uses specified name as terminal type for which output is prepared.

-x Suppresses the printing of abstracts.

If abstracts or comments are entered following the %X field key, roffbib fonnats
them into paragraphs for an annotated bibliography. Several %X fields may be given
if several annotation paragraphs are desired.

-e Formats text with equally spaced words, justified lines, and full resolution.

-h Uses tabs in horizontal spacing to speed output and reduce output
character count. Tab characters are assumed to be every 8 nominal
character widths.

-D Uses specified number (-oN) as first page to be printed.

-0 Uses specified list (-olist) as only pages to be printed. A range N-M
means pages N through M. An initial -N means from the beginning to
page N. A final N- means from N to the end.

-s Stops after specified number of pages (-sn).

- m mac Specifies a user-defined set of macros with space between -m and the
macro file name. This set of macros replaces the ones defined in
/usr/lib/tmac/tmac.bib.

-V Sends output to the Versatec.

-Q Queues output for the phototypesetter.

-raN Sets named register a to specified value N.

Four command-line registers control formatting style of the bibliography, much like
the number registers of ms(7). The command-line argument -rNI numbers the
references starting at one (1). The flag -rV2 double spaces the bibliography, while
-r V 1 double spaces references but single spaces annotation paragraphs. The line
length can be changed from the default 6.5 inches to 6 inches with the -rL6i
argument, and the page offset can be set from the default of 0 to one inch by
specifying -rOli (capital 0, not zero). Note: with the -V and -Q flags the default
page offset is already one inch.

1-586 Commands

Files
/usr/lib/tmac/tmac.bib file of macros used by nroffltroff

See Also
addbib(l), indxbib(l), lookbib(l), refer(l), sortbib(l)

roffbib(1)

Commands 1-587

rsh (1 c)

Name

Syntax

rsh - remote shell

rsh host [-I username] [-0] command
host [-I username] [-0] command

Description
The rsh command connects to the specified host, and executes the specified
command. The r s h command copies its standard input to the remote command, the
standard output of the remote command to its standard output, and the standard error
of the remote command to its standard error. Interrupt, quit and terminate signals are
propagated to the remote command. The r s h command normally terminates when
the remote command does.

The remote usemame used is the same as your local usemame, unless you specify a
different remote name with the -I option. This remote name must be equivalent, in
the sense of rlogin(lc), to the originating account. No provision is made for
specifying a password with a command.

If you omit command, then instead of executing a single command, you are logged in
on the remote host using rlogin(1c).

Shell metacharacters which are not quoted are interpreted on local machine, while
quoted metacharacters are interpreted on the remote machine. Thus the command

rsh otherhost cat remotefile > > localfile

appends the remote file remotefile to the localfile localfiIe , while

rsh otherhost cat remotefile "> >" otherremotefile

appends remote file to otherremotefile.

Host names are given in the file /ete/hosts. Each host has one standard name
(the first name given in the file), which is rather long and unambiguous, and
optionally one or more nicknames. The host names for local machines are also
commands in the directory /usr /hosts. If you put this directory in your search
path then the r s h can be omitted.

Options

-I username

-0

Restrictions

Logs you in as the specified user, not as your user login
name.

Redirects all command input to /dev/null.

If you are using e s h(1) and put a r s h(1 c) in the background without redirecting its
input away from the terminal, it blocks even if no reads are posted by the remote
command. If no input is desired you should redirect the input of r s h to
/dev/null using the -0 option.

1-588 Commands

Files

You cannot run an interactive command like vi(l). Use rlogin(lc).

Stop signals stop the local r s h process only.

/etc/hosts
/usr/hosts/*

See Also
rlogin(lc)

rsh (1c)

Commands 1-589

ruptime (1 c)

Name
ruptime - show host status of local machines

Syntax
ruptime [options] [machinename]

Description
The ruptime command gives a status line like uptime(1) for each machine on the
local network. If a machinename is given, the status of only the named machine is
given. These status lines are formed from packets broadcast by each host on the
network once a minute.

Machines for which no status report has been received for 5 minutes are shown as
being down.

Options

-3 Users idle an hour or more are not counted unless this option is specified.

-d Display only those hosts that are considered down.

-I Sort the status list by load average. If more than one sort option is given,
ruptime uses the last one.

-r Show only hosts that are up and running.

-t Sort the status list by uptime. If more than one sort option is given, ruptime
uses the last one.

-u Sort the status list by number of users. If more than one sort option is given,
rupt ime uses the last one.

-nn Show only those hosts with nn or more users.

Restrictions
Because the rwhod daemon sends its information in broadcast packets it generates a
large amount of network traffic. On large networks the extra traffic may be
objectionable. Therefore, the rwhod daemon is disabled by default. To make use of
the rwhod daemon for both the local and remote hosts, remove the comment
symbols (#) from in front of the lines specifying rwhod in the /etc/rc file.

If the rwhod daemon is not running on a remote machine, the machine may
incorrectly appear to be down when you use the ruptime command to determine its
status. See the rwhod(8) reference page for more information.

If a system has more than 40 users logged in at once, the number of users displayed
by the ruptime command is incorrect. Users who login to a machine after that
point fail to increment the user count that appears in the output of the rupt ime
command. This is due to the maximum size limit of an Ethernet packet, which is
1500 bytes, and the fact that the rwhod daemon must broadcast its information in a
single packet.

1-590 Commands

Files
/usr/spooVrwho/whod. * Infonnation about other machines

See Also
rwho(lc), rwhod(8c)

ruptime (1 c)

Commands 1-591

rwho(1c)

Name
rwho - who is logged in on local machines

Syntax
rwho [-ah] [users]

Description
The rwho command lists the login name, terminal name, and login time for users on
all machines on the local network. If no report has been received from a machine for
5 minutes, rwho assumes that the machine is down, and does not report users last
known to be logged in to that machine. If a user has not typed to the system for a
minute or more, rwho reports this idle time.

If a user has not typed to the system for an hour or more, the user is omitted from the
output of rwho.

If given a list of user names, the rwho command reports on the status of only those
names.

Options

Files

-a Lists all users. Normally, rwho omits users who have not typed to the system
for an hour or more. If the -a flag is specified, these users are also listed.

-h Sorts users by host name. Normally, rwho prints its output sorted by user
name. If the -h flag is specified, the results are sorted by host name.

/usr/spool/rwho/whod. * Information about other machines

See Also
ruptime(1 c), rwhod(8c)

1-592 Commands

sact (1)

Name
sact - display current SCCS file editing activity

Syntax
sactfiles

Description
The sact command informs the user of any impending deltas to a named SCCS file.
This situation occurs when the get command with the -e option has been previously
executed without a subsequent execution of the de 1 t a command. If a directory is
named on the command line, sact behaves as though each file in the directory were
specified as a named file, except that non-SCCS files and unreadable files are silently
ignored. If a name of - is given, the standard input is read with each line being taken
as the name of an SCCS file to be processed.

The output for each named file consists of five fields separated by spaces.

Field 1 Specifies the SID of a delta that currently exists in the SCCS file to
which changes will be made to make the new delta.

Field 2 Specifies the SID for the new delta to be created.

Field 3 Contains the login name of the user who will make the delta (that is,
executed a get for editing.

Field 4

Field 5

Diagnostics

Contains the date that get -e was executed.

Contains the time that get -e was executed.

See sccshelp(l) for explanations.

See Also
delta(l), get(l), help(l), sccs(l), sccsfile(5), sccshelp(l), unget(l)
Guide to the Source Code Control System

Commands 1-593

scan(1mh)

Name

Syntax

scan - produce a one-line-per-message scan listing

scan [+Jolder] [msgs] [--clear] [-noclear] [-formJormaijile] [-format string]
[-header] [-noheader] [-width columns] [-help]

Description

The s can command produces a one-line-per-message listing of the messages in the
current folder. You can s can a folder other than the current folder by using the
+Joldername argument.

You can use the msgs argument to produce a scan listing of a number of messages
or a range of messages in the specified folder. The following example would
produce a listing of messages 10 through 20 in the folder +inbox.

$ scan +inbox 10-20

You can also use scan in conjunction with a message sequence defined by pick.
See pick(1mh) for details.

Each scan line contains the message number (name), the date, the From: field,
the Subject: field, and, if room allows, some of the body of the message. For
example:

15+ 7/ 5 Dcrocker
16 - 7/ 5 dcrocker
18 7/ 6 Obrien
19 7/ 7 Obrien

Volunteers «Last week I asked
message id format «I recommend
Re: Exit status from mkdir
"scan" listing format in MH

The + on message 15 indicates that it is the current message. The - on message 16
indicates that it has been replied to, as indicated by a Replied: component
produced by an -annotate switch to the repl command. If there is sufficient
room left on the scan line after the subject, the line will be filled with text from the
body, preceded by «, and terminated by» if the body is sufficiently short.

Scan actually reads each of the specified messages and parses them to extract the
desired fields. During parsing, appropriate error messages will be produced if there
are format errors in any of the messages.

Options
The -header switch produces a header line prior to the scan listing. The header
line displays the name of the folder and the date and time.

1-594 Commands

Files

scan{1mh)

If the -clear switch is used and scan's output is directed to a tenninal, then
s can will consult the $ TERM and $ TERMCAP envariables to detennine your
tenninal type in order to find out how to clear the screen prior to exiting. If the
-clear switch is used and scan's output is not directed to a tenninal, then scan
will send a fonnfeed prior to exiting.

In the following example, the scan command produces a scan listing of the current
folder, followed by a fonnfeed, followed by a fonnatted listing of all messages in the
folder, one per page. Omitting -show pr -f will cause the messages to be
concatenated, separated by a one-line header and two blank lines.

(scan -clear -header; show all -show pr -f) I lpr

If scan encounters a message without a Date: field, the date is filled in with the
last write date of the message, and post-fixed with a *. This is particularly useful
for scanning a draft folder, as message drafts usually are not allowed to have dates
in them.

To override the output fonnat used by scan, the -format string or
-format file switches are used. This pennits individual fields of the scan listing
to be extracted with ease. The string is simply a fonnat string and the file is simply a
fonnat file. See mh-format(5mh) for more details.

Because MH has been configured with the BERK option, scan has two other
switches: -reverse and -noreverse. These make scan list the messages in
reverse order. In addition, scan will update the MH context prior to starting the
listing, so interrupting a long scan listing preserves the new context. The default
configuration file that is supplied with MH has the BERK option enabled.

The defaults for this command are:

+/older defaults to the folder current
msgs defaults to all
- forma t defaulted as described above
-noheader
-width defaulted to the width of the tenninal

The argument to the - forma t switch must be interpreted as a single token by the
shell that invokes scan. Therefore, you should place the argument to this switch
inside double quotes (" ").

$HOME/.mh_profile The user profile

Profile Components
Path: To detennine your MH directory

To detennine your mailboxes Altemate-Mailboxes:
Current-Folder: To find the default current folder

See Also
inc(1), pick(1), show(1), mh-fonnat(5)

Commands 1-595

scat (1)

Name
scat - sparse data file utility

Syntax
scat -c file1 ... filen
scat -d file1 ... filen
scat [-m] file1 file2

Description
The scat command copies, moves, compresses, or decompresses sparse data files.

Options

-c Compresses or reduces the size of sparse data files and makes them contiguous
data files. Use the -c option, for example, when you want to put sparse data
files on external media such as magnetic tape. Each sparse data file is replaced
by one with the extension . S, while keeping the same ownership modes,
access, and modification times. If no files are specified, the standard input is
compressed to the standard output. Compressed files can be restored to their
original form using the -d option.

-d Decompresses or expands compressed sparse data files and makes them sparse
again. Use the -d option to restore compressed sparse data files to sparse data
files. This option looks for files with the extension . S, and if the files are
valid compressed sparse data files and then decompresses them. The
decompressed files will have the. S extension removed.

-m Moves or renames a sparse data file.

See Also
sa vecore(8)

1-596 Commands

sccs(1)

Name
sccs - Source Code Control System

Syntax
sees (flags] command [command-option] [file] [sccs]

Description
sees is a source management system which maintains records of changes made in
files within that system. Records stating what the changes were, why and when they
were made, and who made them are kept for each version. Previous versions can be
recovered, and different versions can be maintained simultaneously. sees also
insures that two people are not editing the same file at the same time.

The sees system has two levels of operation, a preprocessor called sees and the
traditional sees commands. The preprocessor sees(l) provides an interface with
the more traditional sees commands, such as get, delta, and so forth. The see s (1)
interface is a more user-friendly environment for the sees user. Some of the
commands are more intuitive, such as sees edit rather than the traditional get -e to
retrieve a file for editing. Some commands perform multiple operations, such as sees
delget which performs a delta on the file, and then get the changed file back.

The sees(l) preprocessor also restructures the method in which sees files are
stored and manipulated. In the traditional version of sees, files (s-files, p-files, and
so forth) are stored in the directory that contains the g-files, unless an sees directory
is explicitly defined with each command. The sees(1) preprocessor expects that an
sees directory is available within the directory that contains the g-files and that this
directory also contains the sees files. The sees directory is owned by see s ,
providing an additional level of security. This method also cleans up the directory
where the g-files are stored. One other important difference in using the preprocessor
is that the file specification is the name of the g-file rather than the name of the s-file
when invoking an sees command. If sees is specified rather than the file name,
the sees preprocessor handles this in the same manner as the traditional commands
handle it. Each s-file in the directory sees is acted upon as if explicitly named.
Please note that not all sccs(l) preprocessor commands permit this feature.

The traditional sees commands are also included for reference in SEE ALSO. If
the sccs(1) preprocessor is used, small discrepancies may exist due to conflicts
between the command parameters and the secs(l) preprocessor parameters.

sees stores all versions of each file along with the logged data about each version in
the s-file. Three maj or operations can be performed on the s-file.

To retrieve a file for reading or printing use the following command:

sees get [filename] [sees]

The latest version is retrieved and is NOT intended for edit.

To retrieve a file for edit use the following command:

sees edit [filename] [sees]

The latest version is retrieved and only one person can edit a given file at one time.

Commands 1-597

sccs(1)

Flags

To merge a file back into the s-file use the following command:

sees delta [filename] [sees]

This is a companion operation to the edit command (Step 2). A new version number
is assigned. Comments explaining the changes are saved.

A delta consists of the changes made to a file, not the file itself. All deltas to a given
file are stored, enabling you to get a version of the file that has selected deltas
removed which gives you the option of removing your selected changes later.

An SID is an identification number for a delta. It consists of two parts, a release
number and a level number. The release number normally remains constant but can
be changed when major changes in the file are made. The level numbers represent
each delta for a given file. A SID can also be used to represent a version number of
the entire file.

To create all the source files in a given directory in SCCS format, run the following
shell script from csh:

mkdir sees save
ehown sees sees
foreaeh i (*. [.eh])

end

sees admin -i$i $i
mv $i save/$i

Note that to run the chown command, you must be the superuser. However, the
Guide to the Source Code Control System describes a method for setting up SCCS
files that makes superuser privileges unnece.ssary.

To create a single source file in SCCS format, assuming the presence of the SCCS
directory, use the following command:

sees create <filename>

Because the number and types of commands used within SCCS are many and
complex, the following quick reference table is included here. See the Guide to the
Source Code Control System for further explanations of commands.

--d<dir>

-p<path>

-r

The <dir> represents a directory to search out of. It should be a
full pathname for general usage. For example, if <dir> is
/usr / src/ sys, then a reference to the file dev /bio. c
becomes a reference to /usr / src/ sys / dev /bio. c.

Prepends <path> to the final component of the pathname. By
default, this is SCCS. For example, in the --d example above, the
path then gets modified to
/usr/src/sys/dev/sees/s .bio. c. In more common
usage (without the --d flag), prog. c would get modified to
sees/ s. prog. c. In both cases, the s. gets automatically
prepended.

Run as the real user.

1-598 Commands

sccs(1)

Commands
These commands should all be preceded by sees.

get Gets files for compilation (not for editing). Id keywords are
expanded.

edit

delta

unedit

info

check

prs

create

tell

clean

what

admin

-e

-rSID

-p

-k

-ilist

-xlist

-m

Gets a writable copy of the file.

Get specified version.

Send to standard output rather than to the actual file.

Gets a writable copy of the file. Does not expand id
keywords.

Include list of deltas.

Exclude list of deltas.

Precede each line with SID of delta being created.

-cdate Do not apply any deltas created after date.

Gets files for editing. Id keywords are not expanded. Should be
matched with a delta command after editing.

-rSID Get specified version. If SID specifies a release that
does not yet exist, the highest numbered delta is
retrieved and the new delta is numbered with SID

-b Create a branch.

-ilist Include list of deltas

-xlist Exclude list of deltas

Merge a file retrieved using edit back into the s-file. Collect
comments about why this delta was made.

Remove a file that has been edited previously without merging the
changes into the s-file.

Display a list of all files being edited.

-b Ignore branches.

-u[user] Ignore files not being edited by user.

Same as info, except that nothing is printed if nothing is being
edited and exit status is returned.

Produces a report of changes to the named file. Time, date, user,
number of lines changed, the revision number, and comments are
listed for each delta.

Create an s. file and do not remove the associated g-file.

Same as info, except that only the file name of files being edited is
listed.

Remove all files that can be regenerated from the s-file.

Find and print id keywords.

Create or set parameters on s-files.

Commands 1-599

sccs(1)

fix

delget

deledit

diffs

sccsdiff

help

Id Keywords

%Z%

%M%

%1%

%W%

%G%.

%R%.

%Y%

See Also

-ifile

-z

-fjlag

-dflag

-tfile

Create, using file as the initial contents.

Rebuild the checksum in case the file has been
corrupted.

Turn on the flag.

Tum off (delete) the flag .

Replace the text in the s-file with the contents offile.
If file is omitted, the text is deleted. Useful for storing
documentation or design and implementation
documents to insure distribution with the s-file.

Useful flags are:

b Allow branches to be made using the -b flag to edit.

dSID Default SID to be used on a get or edit.

Cause No Id Keywords error message to be a fatal
error rather than a warning.

t The module type; the value of this flag replaces the
% Y% keyword.

Remove a delta and reedit it.

Do a delta followed by a get.

Do a delta followed by an edit.

Compare the g-file out for edit with an earlier SCCS version.

Compare any two SCCS versions of a g-file.

Given either a command name, or an sccs message number, this
command provides additional information.

Expands to @(#) for the what command to find.

The current module name, for example, prog.c.

The highest SID applied.

A shorthand for "%Z%%M% <tab> %1%".

The date of the delta corresponding to the %1%. keyword.

The current release number, for example, the first component of
the %1% keyword.

Replaced by the value of the t flag (set by admin).

admin(1), cdc(1), comb(1), delta(1), get(1), prs(1), rmdel(1), sccshelp(1), unget(1),
val(l), what(l), sccsfile(5)
Guide to the Source C ode Control System

1-600 Commands \

sccsd iff (1)

Name
sccsdiff - compare and display sees delta differences

Syntax
sccsditT -rSID 1 -rSID2 [-p] [-sn] files

Description
The sec s di f f command compares two versions of an sees file and generates the
differences between the two versions. You can specify any number of sees files,
but arguments apply to all files.

Options

-p

-rSID?

-sn

Displays output using pr(1) command.

Indicates deltas to be prepared. Versions are passed to bdiff(1) in the
order given.

Sets number of lines each segment is to contain. This is useful when
di f f fails due to a high system load.

Diagnostics
"file: No differences"
If the two versions are the same. Use sccshelp(1) for explanations.

Files

/tmp/get?????
temporary files

See Also
bdiff(l), cmp(1), comm(l), diff(l), diff3(1), diffmk(1), get(l), prs(1), sccs(1),
sccshelp(1)
Guide to the Source Code Control System

Commands 1-601

sccshel p (1)

Name

Syntax

sccshelp - display sees help infonnation

sees heJp [args]
seesheJp [args]

Description

Files

The sccshelp command explains the use of a sccs command or provides additional
infonnation on sccs-generated messages. Zero or more arguments may be supplied to
help. If no arguments are given, sccshelp will prompt for one.

The arguments may be either message numbers (which nonnally appear in
parentheses following messages), command names, or one of the following types:

type 1
Begins with nonnumerics, ends in numerics. The nonnumeric prefix
is usually an abbreviation for the program or set of routines which
produced the message (For example, ge6, for message 6 from the get
command).

type 2
Does not contain numerics (For example, get, a command name)

type 3
Is all numeric (For example, 212)

When all else fails, try

sees help stuck.

/usr/lib/sccs.help
Directory containing files of message text

/usr/lib/sccs.help/helploc
File containing locations of help files not in /usr / lib/help.

1-602 Commands

script (1)

Name
script - generate script of your terminal session

Syntax
script [-a] [file]

Description
The script command calls a forked shell and then makes a typescript of everything
printed on your terminal. The typescript is written to file, or appended to file if the
-a option is given. If no file name is given, the typescript is saved in the file
typescript. Later, it can be sent to the line printer with Ipr.

When script is run, it will execute your .cshrc file and will also put you under
control of a new pty. The script program ends when the forked shell exits.

This program is useful when using a crt and you want a hard-copy record of the
dialog. An example of how script can be used is a student handing in a program
that was developed on a crt when hard-copy terminals are in short supply.

Options

-a Appends output to the outputfile.

Restrictions
Because the script command uses a second pair of pseudo ttys, some commands
will fail when run under script. For example, the whoami command may not
always return a usemame.

Also, the vi editor can be affected by script. The vi commands j, k, h, and I
that are used to move the cursor, do not always function properly. If the screen
becomes garbled when using these commands, use <ctrl> L to refresh the screen.

See Also
pty(4)

Commands 1-603

sed(1)

Name
sed - stream text editor

Syntax
sed [-0] [-e script] [-f sfile] [file ...]

Description
The sed command copies the namedfiles (standard input default) to the standard
output, edited according to a script of commands. The -f option causes the script to
be taken from file sfile; these options accumulate. If there is just one -e option and
no -f's, the flag -e may be omitted. The -0 option suppresses the default output.

A script consists of editing commands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation sed cyclically copies a line of input into a pattern space (unless
there is something left after a 'D' command), applies in sequence all commands
whose addresses select that pattern space, and at the end of the script copies the
pattern spac~ to the standard output (except under -0) and deletes the pattern space.

An address is either a decimal number that counts input lines cumulatively across
files, a '$' that addresses the last line of input, or a context address, '/regular
expression!', in the style of ed(1) modified thus:

• In a context address, the construction \?regular expression?, where? is any
character, is identical to /regular expression/. Note that in the context
address \xabc\xdejx, the second x stands for itself, so that the regular
expression is abcxdef.

• The escape sequence '\n' matches a new line embedded in the pattern
space.

• A command line with no addresses selects every pattern space.

• A command line with one address selects each pattern space that matches
the address.

• A command line with two addresses selects the inclusive range from the
first pattern space that matches the first address through the next pattern
space that matches the second. (If the second address is a number less than
or equal to the line number first selected, only one line is selected.)
Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the
negation function'!' (below).

In the following list of functions the maximum number of permissible addresses for
each function is indicated in parentheses.

An argument denoted text consists of one or more lines, all but the last of which end
with '\' to hide the new line. Backslashes in text are treated like backslashes in the
replacement string of an's' command, and may be used to protect initial blanks and
tabs against the stripping that is done on every script line.

1-504 Commands

sed(1)

An argument denoted rfile or wfile must terminate the command line and must be
preceded by exactly one blank. Each wfile is created before processing begins.
There can be at most 10 distinct wfile arguments.

(l)a\
text

Append. Place text on the output before reading the next input line.

(2) b label

(2)c\
text

Branch to the ':' command bearing the label. If label is empty, branch to
the end of the script.

Change. Delete the pattern space. With 0 or 1 address or at the end of a
2-address range, place text on the output. Start the next cycle.

(2) d Delete the pattern space. Start the next cycle.

(2) D Delete the initial segment of the pattern space through the first new line.
Start the next cycle.

(2) g Replace the contents of the pattern space by the contents of the hold space.

(2) G Append the contents of the hold space to the pattern space.

(2) h Replace the contents of the hold space by the contents of the pattern space.

(2) H Append the contents of the pattern space to the hold space.

(l)i\
text

Insert. Place text on the standard output.

(2) n Copy the pattern space to the standard output. Replace the pattern space
with the next line of input.

(2)N Append the next line of input to the pattern space with an embedded new
line. (The current line number changes.)

(2) p Print. Copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first new line to
the standard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.

(2) r rfile Read the contents of rfile. Place them on the output before reading the
next input line.

(2) s/regular expression/replacement/flags
Substitute the replacement string for instances of the regular expression in
the pattern space. Any character may be used instead of '/'. For a more
complete description see ed(l). The flags is zero or more of

g Global. Substitute for all nonoverlapping instances of the regular
expression rather than just the first one.

p Print the pattern space if a replacement was made.

w wfile Write. Append the pattern space to wfile if a replacement was
made.

Commands 1-605

sed(1)

(2)t label
Test. Branch to the ':' command bearing the label if any substitutions have
been made since the most recent reading of an input line or execution of a
't'. If label is empty, branch to the end of the script.

(2)w wfile
Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y/stringl/string2/
Transform. Replace all occurrences of characters in stringl with the
corresponding character in string2. The lengths of stringl and string2 must
be equal.

(2)! function

(0): label

Don't. Apply the function (or group, if function is '{ ') only to lines not
selected by the address(es).

This command does nothing; it bears a label for 'b' and 't' commands to
branch to.

(1) = Place the current line number on the standard output as a line.

(2) { Execute the following commands through a matching '}' only when the
pattern space is selected.

(0) An empty command is ignored.

Options

-e script Uses specified file as input file of commands to be executed.

-f sfile Uses specified file as input file of commands to be executed. May be used
with -e option to indicate two script files.

-D Suppresses all normal output.

See Also
awk(l), ed(l), grep(l), lex(l)

1-606 Commands

Name

Syntax

send(1mh)

send - send a message

send [-alias aliasfile] [-draft] [-draftfolder +foldername] [-draftmessage msg]
[-nodraftfolder] [-filter filterfile] [-nofilter] [-format] [-noformat] [-forward]
[-noforward] [-msgid] [-nomsgid] [-push] [-nopush] [-verbose] [-noverbose]
[-watch] [-nowatch] [-width columns] [file ••.] [-help]

Description
Use send to send the draft message to the specified recipients. You normally choose
send as one of the options from the whatnow program. However, you can use
send just like any other MH command.

Normally messages are created in the file draft. This file is stored in your Mail
directory. The draft message remains in the file dr aft until it is either sent or
deleted.

The command send will normally search for the draft file and cause it to be
delivered to each of the destinations in the To:, ee:, Bee:, and Fee: fields of
the message. If send is redistributing a message, as invoked from dist, the
corresponding Resent-xxx fields are examined instead. The delivery is carried out
using post(8mh).

Options

You can specify alternative messages or files to be used by send, provided that
they are formatted as legal mail messages. If you use the -draftfolder
foldername option, send will search the specified folder for the draft message and
will deliver it to the specified recipients. If there is no draft message in the specified
folder, send will display an error message. In the following example send will
search the folder +test for the draft message and send it if one exists.
% send -draftfolder +test

If you specify the -draftmessage filename option, you can send a file instead of
a folder. If you do not specify a directory, the file will be assumed to be in your
Mail directory. Note that, if you specify a relative pathname (one that doesn't start
with a I), send will assume that the pathname is relative to your Mail directory. In
the following example send will search for the file draftmessage in user Robb's
test directory.

% send -draftmessage robb/testldraftmessage

You should not attempt to use both the -draftfolder and the -draftmessage
options at the same time.

Issuing send with no file argument will query whether the draft is the intended
file, whereas -draft will suppress this question. Once the transport system has
successfully accepted custody of the message, the file will be renamed with a leading
comma. This allows it to be retrieved until the next draft message is sent. If there
are errors in the formatting of the message, send will abort and issue an error

Commands 1-607

send{1mh)

message.

If a Bcc: field is encountered, its addresses will be used for delivery, and the
Bcc: field will be removed from the message sent to sighted recipients. The blind
recipients will receive an entirely new message with a minimal set of headers.
Included in the body of the message will be a copy of the message sent to the sighted
recipients. If you specify - f i 1 t e r filterfile then this copy is filtered (re-formatted)
prior to being sent to the blind recipients.

Prior to sending the message, the fields From: user@local, and Date: now
will be appended to the headers in the message. If the environment variable
$ SIGNATURE is set, then its value is used as your personal name when constructing
the From: line of the message. If this variable is not set, then send will consult
the profile entry Signature: for this information.

If -msgid is specified, then aMes sage- ID: field will also be added to the
message.

If send is redistributing a message (when invoked by dist), then "Resent-" will
be prepended to each of these fields: "From:", "Date:", and "Message-ID:". If
the message already contains a "From:" field, then a "Sender: user@local" field
will be added as well.

By using the -format switch, each of the entries in the To: and cc: fields will
be replaced with standard format entries. This standard format is designed to be
usable by all of the message handlers on the various systems around the Internet. If
-noformat is given, then headers are output exactly as they appear in the message
draft.

If an Fcc: folder is encountered, the message will be copied to the specified folder
for the sender in the format in which it will appear to any normal recipients of the
message. That is, it will have the appended fields and field reformatting. The Fcc:
fields will be removed from all outgoing copies of the message.

By using the -width columns switch, you can specify how long send should make
header lines containing addresses.

By using the -alias aliasfile switch, you can direct send to consult the
named files for alias definitions (more than one file, each preceded by -alias, can
be named). See mh-alias(5mh) for more information.

If -push is specified, send performs its actions in the background. If you specify
-push, and -forward and the draft cannot be sent, then the -forward switch
says that draft should be forwarded with the failure notice sent to the sender. This
differs from putting send in the background because the output is trapped and
analyzed by MH .

If -verbose is specified, send will indicate the interactions occurring with the
transport system, prior to actual delivery. If -watch is specified send will monitor
the delivery of local and network mail. Hence, by specifying both switches, a large
amount of information can be gathered about each step of the message's entry into
the transport system. The defaults for the send command are:

f i 1 e defaults to <mh-dir>/draft
-alias /usr/new/lib/mh/MailAliases
-nodraftfolder
-nofilter
-format

1-608 Commands

-forward
-nornsgid
-nopush
-noverbose
-nowatch
-width 72

Files
$HOME/.mh_profile The user profile

Profile Components
Path:
Draft-Folder:
Signature:
mailproc:
postproc:

See Also

To determine the user's MH directory
To find the default draft-folder
To determine the user's mail signature
Program to post failure notices
Program to post the message

send{1mh)

comp(lmh), dist(lmh), forw(1mh), repl(1mh), mh-alias(Smh), post(Smh)

Commands 1-609

sh(1)

Name

Syntax

sh, for, case, if, while, :, ., break, continue, cd, eval, exec, exit, export, login, read,
readonly, set, shift, times, trap, umask, wait - command language

sh [-ceiknrstuvx] [arg...]

Description
The s h command is a command programming language that executes commands
read from a terminal or a file. See Invocation for the meaning of arguments to the
shell.

Commands
A simple command is a sequence of nonblank words separated by blanks (a blank is a
tab or a space). The first word specifies the name of the command to be executed.
Except as specified below, the remaining words are passed as arguments to the
invoked command. The command name is passed as argument O. For further
information, see execve(2). The value of a simple command is its exit status if it
terminates normally or 200+status if it terminates abnormally. For a list of status
values, see sigvec(2).

A pipeline is a sequence of one or more commands separated by I. The standard
output of each command but the last is connected by a pipe(2) to the standard input
of the next command. Each command is run as a separate process; the shell waits for
the last command to terminate.

A list is a sequence of one or more pipelines separated by;, &, && or II and
optionally terminated by ; or &. ; and & have equal precedence which is lower than
that of && and II, && and II also have equal precedence. A semicolon causes
sequential execution. An ampersand causes the preceding pipeline to be executed
without waiting for it to finish. The symbol && (I D causes the list following to be
executed only if the preceding pipeline returns a zero (nonzero) value. Newlines may
appear in a list, instead of semicolons, to delimit commands.

A command is either a simple command or one of the following. The value returned
by a command is that of the last simple command executed in the command.

for name [in word ...] do list done
Each time a for command is executed, name is set to the next word in the
for word list. If in word ... is omitted, in "$@" is assumed. Execution
ends when there are no more words in the list.

case word in [pattern [I pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for file
name generation.

if list then list [elif list then list] ... [else list] fi

1-610 Commands

The list following if is executed and if it returns zero, the list following
then is executed. Otherwise, the list following elif is executed and if its
value is zero, the list following then is executed. Failing that, the else list
is executed.

sh(1)

while list [do list] done

(list)

{ list}

A while command repeatedly executes the while list and, if its value is
zero, executes the do list; otherwise the loop terminates. The value
returned by a while command is that of the last executed command in the
do list. Use until in place of while to negate the loop termination test.

Execute list in a subshell.

list is simply executed.

The following words are only recognized as the first word of a command and when
not quoted.

if then else elif fi case in esac for while until do done { }

Command substitution
The standard output from a command enclosed in a pair of back quotes C ') may be
used as part or all of a word; trailing new lines are removed.

Parameter substitution
The character $ is used to introduce substitutable parameters. Positional parameters
may be assigned values by set. Variables may be set by writing

name =value [name =value] ...

$ {parameter}
A parameter is a sequence of letters, digits or underscores (a name), a
digit, or any of the characters * @ # ? - $!. The value, if any, of the
parameter is substituted. The braces are required only when parameter is
followed by a letter, digit, or underscore that is not to be interpreted as
part of its name. If parameter is a digit, it is a positional parameter. If
parameter is * or @ then all the positional parameters, starting with $1,
are substituted separated by spaces. $0 is set from argument zero when
the shell is invoked.

$ {parameter -word}
If parameter is set, substitute its value; otherwise substitute word.

$ {parameter= word}
If parameter is not set, set it to word; the value of the parameter is then
substituted. Positional parameters may not be assigned to in this way.

$ {parameter? word}
If parameter is set, substitute its value; otherwise, print word and exit
from the shell. If word is omitted, a standard message is printed.

$ {parameter+word}
If parameter is set, substitute word; otherwise substitute nothing.

In the above word is not evaluated unless it is to be used as the substituted string.
(So that, for example, echo ${d-'pwd'} will only execute pwd if d is unset.)

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.
Options supplied to the shell on invocation or by set.

? The value returned by the last executed command in decimal.
$ The process number of this shell.

The process number of the last background command invoked.

Commands 1-611

sh(1)

The following parameters are used but not set by the shell.

HOME
The default argument (home directory) for the cd command.

PATH
The search path for commands (see execution).

MAIL
If this variable is set to the name of a mail file, the shell informs the
user of the arrival of mail in the specified file.

PSt Primary prompt string, by default '$ '.
PS2 Secondary prompt string, by default '> '.
IFS Internal field separators, normally space, tab, and newline.

Blank interpretation
After parameter and command substitution, any results of substitution are scanned for
internal field separator characters (those found in $IFS) and split into distinct
arguments where such characters are found. Explicit null arguments (" II or ""') are
retained. Implicit null arguments (those resulting from parameters that have no
values) are removed.

File name generation
Following substitution, each command word is scanned for the characters *, ? and [•
If one of these characters appears, the word is regarded as a pattern. The word is
replaced with alphabetically sorted file names that match the pattern. If no file name
is found that matches the pattern, the word is left unchanged. The character. at the
start of a file name or immediately following a /, and the character /, must be
matched explicitly.

* Matches any string, including the null string.
? Matches any single character.
[•.•] Matches anyone of the characters enclosed. A pair of characters separated

by - matches any character lexically between the pair.

Quoting.
The following characters have a special meaning to the shell and cause termination of
a word unless quoted.

; & () I < > new line space tab

A character may be quoted by preceding it with a \. \new-Iine is ignored. All
characters enclosed between a pair of quote marks (' '), except a single quote, are
quoted. Inside double quotes () parameter and command substitution occurs and \
quotes the characters \ ' " and $.

"$*" is equivalent to "$1 $2 ••• " whereas
"$@" is equivalent to "$1" "$2" ••••

Prompting
When used interactively, the shell prompts with the value of PSI before reading a
command. If at any time a new line is typed and further input is needed to complete
a command, the secondary prompt (SPS2) is issued.

Input output
Before a command is executed, its input and output may be redirected using a special
notation interpreted by the shell. The following may appear anywhere in a simple
command or may precede or follow a command and are not passed on to the invoked
command. Substitution occurs before word or digit is used.

1-612 Commands

sh(1)

< word Use file word as standard input (file descriptor 0).

> word Use file word as standard output (file descriptor 1). If the file does not
exist, it is created; otherwise it is truncated to zero length.

» word Use file word as standard output. If the file exists, output is appended (by
seeking to the end); otherwise the file is created.

« word The shell input is read up to a line the same as word, or end of file. The
reSUlting document becomes the standard input. If any character of word
is quoted, no interpretation is placed upon the characters of the document;
otherwise, parameter and command substitution occurs, \new-Iine is
ignored, and \ is used to quote the characters \ $, and the first character of
word.

< & digit The standard input is duplicated from file descriptor digit; see dup(2).
Similarly for the standard output using> .

< & - The standard input is closed. Similarly for the standard output using>.

If one of the above is preceded by a digit, the file descriptor created is that specified
by the digit (instead of the default 0 or 1). For example,

... 2>&1

creates file descriptor 2 to be a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the command is
the empty file / de v / n u 11. Otherwise, the environment for the execution of a
command contains the file descriptors of the invoking shell as modified by input
output specifications.

Environment
The environment is a list of name-value pairs that is passed to an executed program
in the same way as a normal argument list; see execve(2) and environ(7). The
shell interacts with the environment in several ways. On invocation, the shell scans
the environment and creates a parameter for each valid name found (except IPS),
giving it the corresponding value. (IPS cannot be set by the environment; it can only
be set in the current shell session.) Executed commands inherit the same
environment. If the user modifies the values of these parameters or creates new
ones, none of these affects the environment unless the export command is used to
bind the shell's parameter to the environment. The environment seen by any
executed command is thus composed of any unmodified name-value pairs originally
inherited by the shell, plus any modifications or additions, all of which must be noted
in export commands.

The environment for any simple command may be augmented by prefixing it with
one or more assignments to parameters. Thus these two lines are equivalent

TERM=450 cmd args
(export TERM; TERM=450; cmd args)

If the -k flag is set, all keyword arguments are placed in the environment, even if
they occur after the command name. The following prints 'a=b c' and 'c':
echo a=b c
set -k
echo a=b c

Commands 1-613

sh(1)

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if the
command is followed by &; otherwise signals have the values inherited by the shell
from its parent. (But see also trap.)

Execution
Each time a command is executed, the above substitutions are carried out. Except for
the special commands listed below, a new process is created and an attempt is made
to execute the command with an execve(2).

The shell parameter $P A TH defines the search path for the directory containing the
command. Each alternative directory name is separated by a colon (:). The default
path is :/bin:/usr/bin. If the command name contains a /, the search path is not
used. Otherwise, each directory in the path is searched for an executable file. If the
file has execute permission but is not an a.out file, it is assumed to be a file
containing shell commands. A subshell (that is, a separate process) is spawned to
read it. A parenthesized command is also executed in a subshell.

Special commands
The following commands are executed in the shell process and, except where
specified, no input output redirection is permitted for such commands.

• file

break

No effect; the command does nothing .
Read and execute commands from file and return. The search path
$P A TH is used to find the directory containing file.
[n] Exit from the enclosing for or while loop, if any. If n is specified,

break n levels.
continue [n] Resume the next iteration of the enclosing for or while loop. If n

cd

eval

exec

exit

export

login
read

is specified, resume at the nth enclosing loop.
[arg] Change the current directory to arg. The shell parameter

$HOME is the default arg.
[arg ...] The arguments are read as input to the shell and the resulting

command(s) executed.
[arg ...] The command specified by the arguments is executed in place

of this shell without creating a new process. Input output arguments may
appear and if no other arguments are given cause the shell input output to
be modified.
[n] Causes a noninteractive shell to exit with the exit status specified

by n. If n is omitted, the exit status is that of the last command executed.
(An end of file will also exit from the shell.)
[name ...] The given names are marked for automatic export to the

environment of subsequently executed commands. If no arguments are
given, a list of exportable names is printed.
[arg ...] Equivalent to 'exec login arg ... '.

name ... One line is read from the standard input; successive words of the
input are assigned to the variables name in order, with leftover words to
the last variable. The return code is 0 unless the end-of-file is
encountered.

readonly [name ...] The given names are marked readonly and the values of these
names may not be changed by subsequent assignment. If no arguments
are given, a list of all readonly names is printed.

set [-eknptuvx [arg ...]]
-e If noninteractive, exit immediately if a command fails.
-k All keyword arguments are placed in the environment for a

1-614 Commands

sh(1)

command, not just those that precede the command name.
-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Tum off the -x and -v options.

These flags can also be used upon invocation of the shell. The current set
of flags may be found in $-.

Remaining arguments are positional parameters and are assigned, in order,
to $1, $2, and so forth. If no arguments are given, the values of all names
are printed.

shift The positional parameters from $2 ... are renamed $1 ...

times Print the accumulated user and system times for processes run from the
shell.

trap [arg] [n] ... The arg is a command to be read and executed when
the shell receives signal(s) n. (Note that arg is scanned once when the trap
is set and once when the trap is taken.) Trap commands are executed in
order of signal number. If arg is absent, all trap(s) n are reset to their
original values. If arg is the null string, this signal is ignored by the shell
and by invoked commands. If n is 0, the command arg is executed on
exit from the shell, otherwise upon receipt of signal n as numbered in
sigvec(2). The trap with no arguments prints a list of commands
associated with each signal number.

umask [nnn]
The user file creation mask is set to the octal value nnn . For further
information, see urnask(2). If nnn is omitted, the current value of the
mask is printed.

wait [n] Wait for the specified process and report its termination status. If n is not
given, all currently active child processes are waited for. The return code
from this command is that of the process waited for.

Invocation
If the first character of argument zero is -, commands are read from $HOME/. profile,
if such a file exists. Commands are then read as described below. The following
flags are interpreted by the shell when it is invoked.
-c string If the -c flag is present, commands are read from string.
-s If the -s flag is present or if no arguments remain, then commands are

read from the standard input. Shell output is written to file descriptor 2.
-i If the -i flag is present or if the shell input and output are attached to a

terminal (as told by gtty), then this shell is interactive. In this case the
terminate signal SIGTERM is ignored (so that 'kill 0' does not kill an
interactive shell) and the interrupt signal SIGINT is caught and ignored
(so that wait is interruptible). For further information, see sigvec(2).
In all cases SIGQUIT is ignored by the shell.

The remaining flags and arguments are described under the set command.

Commands 1-615

sh(1)

Restrictions
If « is used to provide standard input to an asynchronous process invoked by &, the
shell becomes confused about naming the input document. A garbage file
/trnp/ sh* is created, and the shell complains about not being able to find the file by
another name.

The sh command is not 8-bit clean. The sh5 command is 8-bit clean.

VAX Only Restriction
If s h is run from another program (by the system or exec system calls) whose
maximum descriptor in use is number 10, the prompt string is not printed.

Diagnostics

Files

Errors detected by the shell, such as syntax errors cause the shell to return a nonzero
exit status. If the shell is being used noninteractively, then execution of the shell file
is abandoned. Otherwise, the shell returns the exit status of the last command
executed (see also exit).

$HOME/.profile
/trnp/sh*
/dev/null

See Also
csh(1), sh5(1), test(1), execve(2), environ(7)

1-616 Commands

Name

Syntax

sh5, rsh5 - shell, the standard/restricted command programming language

sh5 [-acetbiknrstuvx] [args]
rsh5 [-acethiknrstuvx] [args]

shS(1)

Description
The s h 5 program is a command line interpreter and programming language that
executes commands read from a terminal or a file. The r s h 5 program is a restricted
version of the standard command interpreter s h 5. It is used to set up login names
and execution environments whose capabilities are more controlled than those of the
standard shell. See Invocation below for the meaning of arguments to the shell.
This version of the shell is from System V Release 2. For further information about
the standard Bourne shell interpreter, see sh(l).

Definitions

A blank is a tab or a space. A name is a sequence of letters, digits, or underscores
beginning with a letter or underscore. A parameter is a name, a digit, or any of the
characters *, @, #, ?, -, $, and !.

Commands

A simple command is a sequence of nonblank words separated by blanks. The first
word specifies the name of the command to be executed. Except as specified below,
the remaining words are passed as arguments to the invoked command. The
command name is passed as argument O. For further information, see execve(2).
The value of a simple command is its exit status if it terminates normally, or (octal)
200+status if it terminates abnormally. For a list of status values, see signal(3).

A pipeline is a sequence of one or more commands separated by I (or, for historical
compatibility, by A). The standard output of each command but the last is connected
by a pipe(2) to the standard input of the next command. Each command is run as a
separate process. The shell waits for the last command to terminate. The exit status
of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by;, &, &&, or II, and
optionally terminated by ; or &. Of these four symbols, ; and & have equal
precedence, which is lower than that of && and II. The symbols && and II also have
equal precedence. A semicolon (;) causes sequential execution of the preceding
pipeline. An ampersand (&) causes asynchronous execution of the preceding
pipeline. That is, the shell does not wait for that pipeline to finish. The symbol &&
(II) causes the list following it to be executed only if the preceding pipeline returns a
zero (nonzero) exit status. An arbitrary number of new-lines may appear in a list,
instead of semicolons, to delimit commands.

A command is either a simple command or one of the following. Unless otherwise
stated, the value returned by a command is that of the last simple command executed
in the command.

for name [in word...] do list done
Each time a for command is executed, name is set to the next word taken

Commands 1-617

shS(1)

from the in word list. If in word ... is omitted, then the for command
executes the do list once for each positional parameter that is set. For
further information, see Parameter Substitution below. Execution ends
when there are no more words in the list.

case word in [pattern [I pattern] ...) list ;;] ... esac
case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for file
name generation except that a slash, a leading dot, or a dot immediately
following a slash need not be matched explicitly. For further information,
see File Name Generation.

if list then list [elif list then list] ... [else list] fi
The list following if is executed and, if it returns a zero exit status, the list
following the first then is executed. Otherwise, the list following elif is
executed and, if its value is zero, the list following the next then is
executed. Failing that, the else list is executed. If no else list or then list
is executed, then the if command returns a zero exit status.

while list do list done
A while command repeatedly executes the while list and, if the exit status
of the last command in the list is zero, executes the do list. Otherwise the
loop terminates. If no commands in the do list are executed, then the
while command returns a zero exit status. The until command may be
used in place of while to negate the loop termination test.

(list) Execute list in a sub-shell.

{list; } Simply executes list from current shell.

name 0 {list;}
Define a function which is referenced by name. The body of the function
is the list of commands between { and }. Execution of functions is
described below. For further information, see Execution.

The following words are only recognized as the first word of a command and when
not quoted:

if then else elif fi case esac for while until do done { }

Comments

A word beginning with # causes that word and all the following characters up to a
new-line to be ignored.

Command Substitution

The standard output from a command enclosed in a pair of grave accents
('command') may be used as part or all of a word. Trailing new-lines are removed.

Parameter Substitution

The character $ is used to introduce substitutable parameters. There are two types of
parameters, positional and keyword. If parameter is a digit, it is a positional
parameter. Positional parameters may be assigned values by set. Keyword
parameters (also known as variables) may be assigned values by writing:

name = value [name = value] ...

1-618 Commands

sh5(1)

Pattern-matching is not performed on value. There cannot be a function and a
variable with the same name.

${parameter}
The value, if any, of the parameter is substituted. The braces are required
only when parameter is followed by a letter, digit, or underscore that is
not to be interpreted as part of its name. If parameter is * or @, all the
positional parameters, starting with $1, are substituted (separated by
spaces). Parameter $0 is set from argument zero when the shell is
invoked.

${parameter:-word}
If parameter is set and is non-null, substitute its value. Otherwise
substitute word.

${parameter:=word}
If parameter is not set or is null set it to word. The value of the
parameter is substituted. Positional parameters may not be assigned to in
this way.

${parameter: ?word}
If parameter is set and is non-null, substitute its value; otherwise, print
word and exit from the shell. If word is omitted, the message "parameter
null or not set" is printed.

${parameter:+word}
If parameter is set and is non-null, substitute word; otherwise substitute
nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so
that, in the following example, pwd is executed only if d is not set or is null:

echo ${d:-'pwd'}

If the colon (:) is omitted from the above expressions, the shell only checks whether
parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed

command.
$ The process number of this shell.

The process number of the last background command invoked.

The following parameters are used by the shell:
LOGNAME

The name of the user's login account, corresponding to the login
name in the user database.

HOME
The default argument (home directory) for the cd(l) command.

PATH
The search path for commands. For further information, see
Execution below. The user may not change PATH if executing
under rshS.

CDPATH
The search path for the cd(1) command.

MAIL

Commands 1-619

sh5(1)

If this parameter is set to the name of a mail file and the MAILP A TH
parameter is not set, the shell informs the user of the arrival of mail
in the specified file.

MAILCHECK
This parameter specifies how often (in seconds) the shell will check
for the arrival of mail in the files specified by the MAILP ATH or
MAIL parameters. The default value is 600 seconds (10 minutes). If
set to 0, the shell will check before each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the
shell informs the user of the arrival of mail in any of the specified
files. Each file name can be followed by % and a message that will
be printed when the modification time changes. The default message
is you have mail.

PSt Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default "> ".
IFS Internal field separators, normally space, tab, and new-line.
SHELL

When the shell is invoked, it scans the environment for this name.
For further information, see Environment below. If it is found and
there is an 'r' in the file name part of its value, the shell becomes a
restricted shell.

The shell gives default values to PATH, PSI, PS2, MAILCHECK and IFS.
LOGNAME, HOME, and MAIL are set by login(l).

Blank Interpretation

After parameter and command substitution, the results of substitution are scanned for
internal field separator characters (those found in IFS) and split into distinct
arguments where such characters are found. Explicit null arguments (tt tt or ") are
retained. Implicit null arguments, those resulting from parameters that have no
values are removed.

File Name Generation

Following substitution, each command word is scanned for the characters *, ?, and [.
If one of these characters appears the word is regarded as a pattern. The word is
replaced with alphabetically sorted file names that match the pattern. If no file name
is found that matches the pattern, the word is left unchanged. The character. at the
start of a file name or immediately following a I, as well as the character I itself, must
be matched explicitly.

* Matches any string, including the null string.
? Matches any single character.
[...] Matches anyone of the enclosed characters. A pair of characters

separated by - matches any character lexically between the pair,
inclusive. If the first character following the opening "[" is a"!"
any character not enclosed is matched.

1-620 Commands

sh5(1)

Quoting
The following characters have a special meaning to the shell and cause termination of
a word unless quoted:

; & () I A < > new-line space tab

A character may be quoted (that is, made to stand for itself) by preceding it with a \.
The pair \new-Iine is ignored. All characters enclosed between a pair of single quote
marks (' '), except a single quote, are quoted. Inside double quote marks (" "),
parameter and command substitution occurs and \ quotes the characters \, " ", and $.
"$*" is equivalent to "$1 $2 ... ", whereas "$@" is equivalent to "$1" "$2"

Prompting
When used interactively, the shell prompts with the value of PSI before reading a
command. If at any time a new-line is typed and further input is needed to complete
a command, the secondary prompt (that is, the value of PS2) is issued.

Input/output
Before a command is executed, its input and output maybe redirected using a special
notation interpreted by the shell. The following may appear anywhere in a simple
command or may precede or follow a command and are not passed on to the invoked
command. Substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor 1). If the file does

not exist it is created. Otherwise, it is truncated to zero length.
»word Use file word as standard output. If the file exists output is

appended to it, by first seeking to the end-of-file. Otherwise, the
file is created.

«[-]word The shell input is read up to a line that is the same as word, or to an
end-of-file. The resulting document becomes the standard input. If
any character of word is quoted, no interpretation is placed upon the
characters of the document. Otherwise, parameter and command
substitution occurs, (unescaped) \new-Iine is ignored, and \ must be
used to quote the characters \, $, " and the first character of word.
If - is appended to «, all leading tabs are stripped from word and
from the document.

<&digit Use the file associated with file descriptor digit as standard input.
Similarly for the standard output using >&digit.

<&- The standard input is closed. Similarly for the standard output
using >&-.

If any of the above is preceded by a digit, the file descriptor which will be associated
with the file is that specified by the digit, instead of the default 0 or 1. For example:

... 2>&1

This associates file descriptor 2 with the file currently associated with file descriptor
1.

The order in which redirections are specified is significant. The shell evaluates
redirections left-to-right. For example:

... l>xxx 2>&1

Commands 1-621

sh5(1)

The first associates file descriptor 1 with file xxx. It associates file descriptor 2 with
the file associated with file descriptor 1 (that is, xxx). If the order of redirections
were reversed, file descriptor 2 would be associated with the terminal (assuming file
descriptor 1 had been) and file descriptor 1 would be associated with file xxx .

If a command is followed by & the default standard input for the command is the
empty file /dev/null. Otherwise, the environment for the execution of a command
contains the file descriptors of the invoking shell as modified by input/output
specifications.

Redirection of output is not allowed in the restricted shell.

Environment
The environment is a list of name-value pairs that is passed to an executed program
in the same way as a normal argument list. For further information, see
environ(7). The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter for each name
found, giving it the corresponding value. If the user modifies the value of any of
these parameters or creates new parameters, none of these affects the environment
unless the export command is used to bind the shell's parameter to the environment
(see also set -a). A parameter may be removed from the environment with the unset
command. The environment seen by any executed command is thus composed of
any unmodified name-value pairs originally inherited by the shell, minus any pairs
removed by unset, plus any modifications or additions, all of which must be noted in
export commands.

The environment for any simple command may be augmented by prefixing it with
one or more assignments to parameters. Thus:

TERM=450 cmd
(export TERM; TERM=450; cmd)

These are equivalent (as far as the execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment, even if
they occur after the command name. The following first prints a=b c and c:

echo a=b c
set -k
echo a=b c

Signals

The INTERRUPT and QUIT signals for an invoked command are ignored if the
command is followed by &. Otherwise signals have the values inherited by the shell
from its parent, with the exception of signal 11. For further information, see also the
trap command below.

Execution
Each time a command is executed, the above substitutions are carried out. If the
command name matches one of the Special Commands listed below, it is executed
in the shell process. If the command name does not match a Special Command, but
matches the name of a defined function, the function is executed in the shell process
(note how this differs from the execution of shell procedures). The positional
parameters $1, $2, are set to the arguments of the function. If the command

1-622 Commands

sh5(1)

name matches neither a Special Command nor the name of a defined function, a
new process is created and an attempt is made to execute the command via
execve(2).

The shell parameter PATH defines the search path for the directory containing the
command. Alternative directory names are separated by a colon (:). The default path
is :/bin:/usr/bin (specifying the current directory, Ibin, and lusr/bin, in that order).
Note that the current directory is specified by a null path name, which can appear
immediately after the equal sign or between the colon delimiters anywhere else in the
path list. If the command name contains a / the search path is not used. Such
commands will not be executed by the restricted shell. Otherwise, each directory in
the path is searched for an executable file. If the file has execute permission but is
not an a.out file, it is assumed to be a file containing shell commands. A sub-shell is
spawned to read it. A parenthesized command is also executed in a sub-shell.

The location in the search path where a command was found is remembered by the
shell (to help avoid unnecessary exec later). If the command was found in a relative
directory, its location must be re-determined whenever the current directory changes.
The shell forgets all remembered locations whenever the PATH variable is changed or
the hash -r command is executed (see below).

Special Commands

Input/output redirection is now permitted for these commands. File descriptor 1 is
the default output location.

No effect; the command does nothing. A zero exit code is returned .
• file Read and execute commands fromfile and return. The search path

specified by PATH is used to find the directory containing file.
break [n]

Exit from the enclosing for or while loop, if any. If n is specified break n
levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is
specified resume at the n -th enclosing loop.

cd [arg] Change the current directory to arg. The shell parameter HOME is the
default arg. The shell parameter CDPATH defines the search path for the
directory containing arg. Alternative directory names are separated by a
colon (:). The default path is <null> (specifying the current directory).
Note that the current directory is specified by a null path name, which can
appear immediately after the equal sign or between the colon delimiters
anywhere else in the path list. If arg begins with a I the search path is not
used. Otherwise, each directory in the path is searched for arg. The
cd(1) command may not be executed by rshS.

echo [arg ...]
Echo arguments. See echo(1sh5) for usage and description.

eval [arg ...]
The arguments are read as input to the shell and the resulting command(s)
executed.

exec [arg ...]
The command specified by the arguments is executed in place of this shell
without creating a new process. Input/output arguments may appear and,
if no other arguments are given, cause the shell input/output to be
modified.

Commands 1-623

sh5(1)

exit [n] Causes a shell to exit with the exit status specified by n. If n is omitted
the exit status is that of the last command executed (an end-of-file will
also cause the shell to exit.)

export [name ...]
Each given name is marked for automatic export to the environment of
subsequently-executed commands. If no arguments are given, a list of all
names that are exported in this shell is printed. Function names may not
be exported.

hash [-r] [name ...]
For each name, the location in the search path of the command specified
by name is determined and remembered by the shell. The -r option causes
the shell to forget all remembered locations. If no arguments are given,
information about remembered commands is presented. Hits is the
number of times a command has been invoked by the shell process. Cost
is a measure of the work required to locate a command in the search path.
There are certain situations which require that the stored location of a
command be recalculated. Commands for which this will be done are
indicated by an asterisk (*) adjacent to the hits information. Cost will be
incremented when the recalculation is done.

pwd Print the current working directory. For use and description, see pwd(1).
read [name ...]

One line is read from the standard input and the first word is assigned to
the first name, the second word to the second name, etc., with leftover
words assigned to the last name. The return code is 0 unless an end-of
file is encountered.

readonly [name ...]
the given names are marked readonly and the values of the these names
may not be changed by subsequent assignment. If no arguments are given,
a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is
omitted, the return status is that of the last command executed.

set [-aefltkntuvx [arg ...]]
-a Mark variables which are modified or created for export.
-e Exit immediately if a command exits with a nonzero exit status.
-f Disable file name generation
-h Locate and remember function commands as functions are defined

(function commands are normally located when the function is
executed).

-k All keyword arguments are placed in the environment for a
command, not just those that precede the command name.

-0 Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to be turned off. These flags can
also be used upon invocation of the shell. The current set of flags may be
found in $-. The remaining arguments are positional parameters and are
assigned, in order, to $1, $2, If no arguments are given the values of
all names are printed.

1-624 Commands

shift [n]

test

times

sh5(1)

The positional parameters from $n+l ... are renamed $1 If n is not
given, it is assumed to be 1.

Evaluate conditional expressions. For usage and description, see
test(1sh5).

Print the accumulated user and system times for processes run from the
shell.

trap [arg] [n...]
The command arg is to be read and executed when the shell receives
signal(s) n. Note that arg is scanned once when the trap is set and once
when the trap is taken. Trap commands are executed in order of signal
number. Any attempt to set a trap on a signal that was ignored on entry to
the current shell is ineffective. An attempt to trap on signal 11 (memory
fault) produces an error. If arg is absent all trap(s) n are reset to their
original values. If arg is the null string this signal is ignored by the shell
and by the commands it invokes. If n is 0 the command arg is executed
on exit from the shell. The trap command with no arguments prints a list
of commands associated with each signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a command
name.

uUmit [-fp] [n]
imposes a size limit of n
-f imposes a size limit of n blocks on files written by child processes

(files of any size may be read). With no argument, the current limit
is printed.

-p changes the pipe size to n (UNIX/RT only).
If no option is given, -f is assumed.

umask [nnn]
The user file-creation mask is set to nnn. For further infonnation, see
umask(2). If nnn is omitted, the current value of the mask is printed.

unset [name...]
For each name, remove the corresponding variable or function. The
variables PATH, PSt, PS2, MAILCHECK and IFS cannot be unset.

wait [n] Wait for the specified process and report its tennination status. If n is not
given all currently active child processes are waited for and the return code
is zero.

Invocation
If the shell is invoked through execve(2) and the first character of argument zero is
-, commands are initially read from fetefprofile and from $HOMEf.profile, if such
files exist. Thereafter, commands are read as described below, which is also the case
when the shell is invoked as fbinfshS. The flags below are interpreted by the shell
on invocation only. Note that unless the --c or -s flag is specified, the first argument
is assumed to be the name of a file containing commands, and the remaining
arguments are passed as positional parameters to that command file:

--c string
-s

If the --c flag is present commands are read from string.
If the -s flag is present or if no arguments remain commands are read
from the standard input. Any remaining arguments specify the positional
parameters. Shell output (except for Special Commands) is written to
file descriptor 2.

Commands 1-625

sh5(1)

-i If the -i flag is present or if the shell input and output are attached to a
tenninal, this shell is interactive. In this case TERMINATE is ignored
(so that kill 0 does not kill an interactive shell) and INTERRUPT is
caught and ignored (so that wait is interruptible). In all cases, QUIT is
ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

Rsh5 Only
The r s h 5 shell is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The actions of
rsh5 are identical to those of sh5, except that the following are disallowed:

changing directory, see cd(l,)
setting the value of $P ATH,
specifying path or command names containing /,
redirecting output (> and »).

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, r s h 5 invokes
sh5 to execute it. Thus, it is possible to provide to the end-user shell procedures
that have access to the full power of the standard shell, while imposing a limited
menu of commands. This scheme assumes that the end-user does not have write and
execute pennissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control
over user actions, by perfonning guaranteed setup actions and leaving the user in an
appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (/usr/rbin) that can
be safely invoked by rshS. Some systems also provide a restricted editor, red,
see ed(l.)

Exit Status
Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero
exit status. If the shell is being used noninteractively execution of the shell file is
abandoned. Otherwise, the shell returns the exit status of the last command executed
(see also the exit command above).

Restrictions
If a command is executed, and a command with the same name is installed in a
directory in the search path before the directory where the original command was
found, the shell will continue to exec the original command. Use the hash command
to correct this situation.

If you move the current directory or one above it, pwd may not give the correct
response. Use the cd command with a full path name to correct this situation.

If you startup a shell using execve(2) with an 'r' in the argv[O] string, the System
V shell goes into restricted mode.

1-626 Commands

Files
/etc/profile
$HOME/.profile
/tmp/sh*
/dev/null

sh5(1)

See Also
cd(1), echo(1shS), login(1), printenv(l), pwd(1), sh(1), test(1shS) dup(2), execve(2),
fork(2), pipe(2), ulimit(2), umask(2), wait(2), signal(3), a.out(S), environ(7)

Commands 1-627

shexp(1)

Name
shexp - display password expiration infonnation for a user

Syntax
shexp [-q] [username]

Description
The command shexp is used to display a user's password expiration infonnation.
The specified username, or logname if no username is supplied, is converted to a
UID by searching through the passwd file. The UID is then used to look up the
user's entry in the Auth Data Base. The password expiration infonnation is then
printed out in ct ime (3) fonnat.

% shexp
Expires Tue Dec 6 10:49:18 EST 1988

If the password has already expired the word Expires will be replaced with the word
Expired. If password expiration is disabled for the particular user in question the
output of shexp will be Never expires.

Options

-q Instead of displaying the expiration date and time in ct ime (3) fonnat,
shexp outputs it as three decimal numbers: the minimum password lifetime,
the maximum password lifetime, and the password modification time. All
three numbers are displayed as they are found in the auth database.

Restrictions
Only the super-user may obtain infonnation about users with UIDs other than the real
UID of the invoking process.

Diagnostics

Files

User not found in passwd data base.
There is no entry in /etc/passwd for the specified username.

Cannot stat auth file.
The auth database is missing (security features may not be enabled).

Insufficient privilege.
An insufficiently privileged user is asking for infonnation about a username with a
UID different then their current real-UID.

An exit value of 0 indicates a successful operation, any other exit status indicates an
error.

/etc/auth. [pag,dir]
/etc/passwd

1-628 Commands

shexp(1)

See Also
passwd(1), getauthuid(3), auth(5)
ULTRIX Security Guide/or Users and Programmers

Commands 1-629

show(1mh)

Name

Syntax

show - show (list) messages

show [+folder] [msgs] [-draft] [-header] [-noheader] [-showproc program]
[-noshowproc] [switches for showproc] [-help]

Description
Use show to display the contents of the current message. You can specify
alternative messages or folders by using the <+folder> or <msgs> arguments. In
the following example, show will display the contents of message 36, in the current
folder, on the screen.

$ show 36

If a folder is given, it will become the current folder. The last message shown will
become the current message.

You can specify a number of messages or a range of messages using the <msgs>
argument. If you specify more than one message; the default showproc, more,
will prompt for a <RETURN> prior to listing each message.

Typically, the messages are listed exactly as they are, with no reformatting. A
program named by the showproc profile component is invoked to do the listing,
and any switches not recognized by s how are passed along to that program. The
default program is known as more. The more command lists each message, a page
at a time. When the end of the page is reached, more waits for a <SPACE> or
<RETURN>. If you press <RETURN>, more will print the next line. If you press
the spacebar, more prints the next screen of data. At the end of the message, more
will automatically return you to the system prompt. Press q to quit from more before
you have finished reading the message.

Options

To override the default and the showproc profile component, use the
-showproc program switch. In the following example, show will cause the
pr(l) program to list the current message.

$ show -showproc pr

The MH command mhl can be used as a showproc to show messages in a more
uniform fonnat. See mhl(lmh) for more details. If you are going to use the same
showproc all the time, it is advisable to specify it in your .mh_profile. You
can specify any switches, that the specified show program normally takes, after the
-showproc option. If the -noshowproc option is specified, /bin/ cat is used
instead of showproc.

The -header switch tells show to display a one-line header, which contains the
folder and the message number.

If the standard output is not a terminal, no queries are made, and each file is listed
with a one-line header and two lines of separation.

1-630 Commands

show(1mh)

The command show -draft will list the file <mh-dir>/draft if it exists.

If the profile entry Unseen-Sequence is present and non-empty, then show will
remove each of the messages shown from each sequence named by the profile entry.
This is similar to the Previous-Sequence profile entry supported by all MH
commands which take msgs or msg arguments.

This command has the following default settings:

+folder defaults to the current folder
msgs defaults to cur
-format
-header

Restrictions

Files

The -header switch does not work when rnsgs expands to more than one message.
If the showproc is mhl, then this problem can be circumvented by referencing the
messagenarne field in the rnhl format file.

The command show updates your context before showing the message. Hence
show may mark messages as seen before you actually see them. However, this is
generally not a problem, unless you are using the unseen messages mechanism, and
you interrupt show while it is showing unseen messages.

If showproc is mhl, then show uses a built-in mhl: it does not actually run the
mhl program. Hence, if you define your own showproc, do not call it rnhl since
show will not run it.

If more(1) is your showproc (the default), then avoid running show in the
background with only its standard output piped to another process. In the following
incorrect example, show will go into a tty input state.

$ show 1 print &

To avoid this problem, re-direct show's diagnostic output as well.
For users of csh:

$ show 1& print &

For users of sh:

$ show 2>&1 I print &

$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder Current-Folder:
Unseen-Sequence:
showproc:

To name sequences denoting unseen messages
Program to show messages

Commands 1-631

show(1mh)

See Also
mhl(lmh), more(1), next(1mh), pick(1mh), prev(1mh), scan(lmh)

1-632 Commands

size (1)

Name
size - prints the section size of an object file

Syntax
size [-0 -d -x -A -B -V] [filet ••• filen]

Description
The size command prints infonnation about the text, rdata, data, sdata, bss and sbss
sections of each file. The file can be an object or an archive. If you do not specify a
file, size uses a .out as the default.

Options
The -0, -x, and -d options print the size in octal, hexadecimal, and decimal,
respectively.

The -A and -B options specify AT&T System V style output or Berkeley (4.3BSD)
style output, respectively. The version of UNIX running at your site detennines the
default. System V style, which is more verbose than Berkeley, dumps the headers of
each section. The Berkeley version prints size infonnation for each section,
regardless of whether the file exists, and prints the total in hexadecimal and decimal.

The -V option prints the version of size that you are using.

Commands 1-633

Rise

VAX size (1)

Name
size - print program's sizes

Syntax
size [object ...]

Description
The size command prints the (decimal) number of bytes required by the text, data,
and bss portions, and their sum in hex and decimal, of each object-file argument. If
no file is specified, a. out is used.

See Also
a.out(5)

1-634 Commands

Name
sleep - suspend execution for a time

Syntax
sleep time

Description
The sleep command suspends execution for time seconds. It is used to execute a
command after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true

do

command

sleep 37

done

Restrictions
The time must be less than 2,147,483,647 seconds.

See Also
setitimer(2), alarm(3), sleep(3)

Commands 1-635

slocal (1 mh)

Name

Syntax

slocal - MH receive-mail hooks

slocal $HOME/.maildelivery [-formformfile] [switches for postproc] address ...
[-help]
/usr/new/Iib/mh/rcvpack file [-help]
/usr/new/lib/mh/rcvtty [command ",] [-help]

Description
A receive-mail hook is a program that is run whenever you receive a mail message,
You do not invoke the hook yourself, it is invoked on your behalf by sendmail,
when you include the line:

I /usr/new/lib/mh/slocal -user $USER

in your. forward file in your home directory.

The . rnaildeli very file, which is an ordinary ASCII file, controls how local
delivery is performed. This file is read by slocal.

The format of each line in the . rna i 1 de 1 i ve ry file is

field pattern action result string

where
field:

The name of a field that is to be searched for a pattern. This is any field in
the headers of the message that might be present. In addition, the following
special fields are also defined:

source: the out-of-band sender information
addr: the address that was used to cause delivery to the recipient
default: this matches only if the message hasn't been delivered yet
*: this al ways matches

pattern:
The sequence of characters to match in the specified field. Matching is case
insensitive but not RE-based.

action:

1-636 Commands

The action to take to deliver the message. This is one of

file or >:
Append the message to the file named by string using the standard
maildrop delivery process. If the message can be appended to the
file, then this action succeeds.

When writing to the file, a new field is added:

Delivery-Date: date

which indicates the date and time that the message was appended to
the file.

slocal (1 mh)

pipe or I:
Pipe the message as the standard input to the command named by
string, using the Bourne shell sh (1) to interpret the string. Prior to
giving the string to the shell, it is expanded with the following built
in variables:

$(sender): the return address for the message
$(address): the address that was used to cause delivery to the
recipient
$(size): the size of the message in bytes
$(reply-to): either the Reply-To: or From: field of the
message
$ (info): miscellaneous out-of-band information

When a process is invoked, its environment is as follows:

The user/group id's are set to recipient's id's
The working directory is the recipient's directory
The umask is 0077
The process has no /dev/tty;
The standard input is set to the message
The standard output and diagnostic output are set to /dev/null
All other file-descriptors are closed
The envariables $USER, $HOME, $SHELL are set appropriately
No other envariables exist.

The process is given a certain amount of time to execute. If the
process does not exit within this limit, it will be terminated. The
amount of time is calculated as «size times 60) plus 300) seconds,
where size is the number of bytes in the message.

The exit status of the process is consulted to determine the success of
the action. An exit status of zero means that the action succeeded.
Any other exit status (or abnormal termination) means that the action
failed.

In order to avoid any time limitations, you might implement a
process that began by forking. The parent would return the
appropriate value immediately, and the child could continue on,
doing whatever it wanted for as long as it wanted. This approach
should only be used if you do not care about the outcome of the
action; because the success or failure of the child process cannot be
passed back to slocal. However, if the parent is going to return a
non-zero exit status, then this approach can lead to quicker delivery
into your maildrop.

qpipe or <caret>:

destroy:

result:

Similar to pipe, but executes the command directly, after built-in
variable expansion, without assistance from the shell.

This action always succeeds.

Commands 1-637

slocal (1 mh)

Indicates how the action should be performed:

A:

R:

?:

Perform the action. If the action succeeded, then the message is
considered delivered.

Perform the action. Regardless of the outcome of the action, the
message is not considered delivered.

Perform the action only if the message has not been delivered. If the
action succeeded, then the message is considered delivered.

The file is always read completely, so that several matches can be made and several
actions can be taken. The .maildelivery file must be owned either by the user or by
root, and must be writable only by the owner. If the .maildelivery file cannot be
found, or does not perform an action which delivers the message, then the file
/usr/new/lib/mh/maildelivery is read according to the same rules. This
file must be owned by the root and must be writable only by the root. If this file
cannot be found or does not perform an action which delivers the message, then
standard delivery to the user's maildrop, /usr/spooVmail/$USER, is performed.

Arguments in the .maildelivery file are separated by white space or comma. Since
double-quotes are honored, these characters may be included in a single argument by
enclosing the entire argument in double-quotes. A double-quote can be included by
preceding it with a backslash.

The following example shows how slocal could be used.

In this example, line-by-line comments have been extracted from the code to aid
readability of the example. The line numbers would not normally be in the code;
they are simply there to help you. The code fragment precedes the explanation.

Code Fragment

#field
I)To
2)From
3)Sender
4)To
5)addr
6)addr
7)From
8)default
9)*

Commentary

pattern
mmdf2
mmdf
uk-mmdf-workers
Unix
jpo=mmdf
jpo=ack
steve

action
file
pipe
file
>
I
I
destroy
>
I

result string
A mmdf2.log
A err-mess age-archive
? mmdf2.log
A unix-news
A mmdf-redist
R "resend -r $(reply-to)"
A
? mailbox
R rcvalert

1) file mail with mmdf2 in the "To:" line into file mmdf2.log
2) Messages from mmdf pipe to the program err-message-archive
3) Anything with the "Sender:" address "uk-mmdf-workers"
3) file in mmdf2.log if not filed already
4) "To:" unix - put in file unix-news
5) if the address is jpo=mmdf - pipe into mmdf-redist
6) if the address is jpo=ack - send an acknowledgement copy back
7) anything from steve - destroy!

1-638 Commands

slocal (1 mh)

8) anything not matched yet - put into mailbox
9) always run rcvalert

Four programs are currently available, rcvdist (redistribute incoming messages to
additional recipients), rcvpack (save incoming messages in a pack/file), and rcvtty
(notify user of incoming messages). The fourth program, rcvstore is described on the
rcvstore(1mh) reference page. They all reside in the lusrlnewlliblmhl directory.

The rcvdist program will resend a copy of the message to all of the addresses
listed on its command line. It uses the format string facility described in rnh
forrnat(5mh).

The rcvpack program will append a copy of the message to the file listed on its
command line. Its use is obsoleted by the .rnaildelivery.

The rcvtty program executes the named file with the message as its standard input,
and gives the resulting output to the terminal access daemon for display on your
terminal. If the terminal access daemon is unavailable on your system, then rcvt t y
will write the output to your terminal if, and only if, your terminal has "world
writable" permission. If no file is specified, or is bogus, etc., then the rcvt ty
program will give a one-line scan listing to the terminal access daemon.

Restrictions

Files

For compatibility with older versions of MH, if slocal cannot find the user's
.rnaildelivery file, it will attempt to execute an old-style rcvrnail hook in the
user's $HOME directory. In particular, it will first attempt to execute. rnh receive
file maildrop directory user. Failing that it will attempt to execute -

$HOME/bin/rcvmail user file sender

before giving up and writing to the user's maildrop.

In addition, whenever a hook or process is invoked, file-descriptor three (3) is set to
the message in addition to the standard input.

Only two return codes are meaningful, others should be.

/usr/new /lib/mh/mtstailor
$HOME/.maildelivery
/usr/new /lib/mh/maildeli very

tailor file
The file controlling local delivery
Rather than the standard file

Commands 1-639

soelim (1)

Name
soelim - eliminate nrotI source directives from nrotI input

Syntax
soelim [file ...]

Description
The S oe 1 im command reads the specified files or the standard input and performs
the textual inclusion implied by the nroff directives of the form

.50 somefile

when they appear at the beginning of input lines. This is useful since programs such
as tbl do not normally do this; it allows the placement of individual tables in
separate files to be run as a part of a large document.

Note that inclusion can be suppressed by using ", instead of ' .', that is

so /usr/lib/tmac.s

A sample usage of soelim would be

soelim exum?n I tbl I nroff -ms I col I lpr

Options

File name corresponding to standard input.

Restrictions
The format of the source commands must involve no strangeness - exactly one blank
must precede and no blanks follow the file name.

See Also
colcrt(1), more(1)

1-640 Commands

sort (1)

Name
sort - sort file data

Syntax
sort [options] [-k keydef] [+posl [-pos2]] [file ...]

Description
The sort command sorts lines of all the named files together and writes the result
on the standard output. The name '-' means the standard input. If no input files are
named, the standard input is sorted.

Options
The default sort key is an entire line. Default ordering is lexicographic by bytes in
machine collating sequence. The ordering is affected globally by the following
options, one or more of which may appear.

-b Ignores leading blanks (spaces and tabs) in field comparisons.

-d

-f

-i

-k keydef

-0

-r

-tx

Sorts data according to dictionary ordering: letters, digits, and blanks
only.

Folds uppercase to lowercase while sorting.

Ignore characters outside the ASCII range 040-0176 in nonnumeric
comparisons.

The keydef argument is a key field definition. The format is field start,
ffield_endj [type], where field_start and field_end are the definition of
the restricted search key, and type is a modifier from the option list
[bdfinr]. These modifiers have the functionality, for this key only, that
their command line counter-parts have for the entire record.

Sorts fields with numbers numerically. An initial numeric string,
consisting of optional blanks, optional minus sign, and zero or more
digits with optional decimal point, is sorted by arithmetic value. (Note
that -0 is taken to be equal to 0.) Option 0 implies option b.

Reverses the sense of comparisons.

Uses specified character as field separator.

The notation +posl -pos2 restricts a sort key to a field beginning at posl and ending
just before pos2. Posl and pos2 each have the form m.n, optionally followed by one
or more of the options bdfior, where m tells a number of fields to skip from the
beginning of the line and n tells a number of characters to skip further. If any
options are present they override all the global ordering options for this key. If the b
option is in effect n is counted from the first nonblank in the field; b is attached
independently to pos2. A missing .n means .0; a missing -pos2 means the end of the
line. Under the -tx option, fields are strings separated by x; otherwise fields are
nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys
compare equal. Lines that otherwise compare equal are ordered with all bytes
significant.

Commands 1-641

sort{1)

These are additional options:

-c Checks sorting order and displays output only if out of order.

-m

-oname

-T
-u

Merges previously sorted data.

Uses specified file as output file. This file may be the same as one of
the inputs.

Uses specified directory to build temporary files.

Suppresses all duplicate entries. Ignored bytes and bytes outside keys
do not participate in this comparison.

Examples

Print in alphabetical order all the unique spellings in a list of words. Capitalized
words differ from uncapitalized.

sort -u +Of +0 list

Print the password file, sorted by user id number (the 3rd colon-separated field).

sort -t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of (month day) entries.
The options -urn with just one input file make the choice of a unique representative
from a set of equal lines predictable.

sort -urn +0 -1 dates

Restrictions
Very long lines are silently truncated.

Diagnostics

Files

Comments and exits with nonzero status for various trouble conditions and for
disorder discovered under option c.

/usr/tmp/stm*, /tmp/* first and second tries for temporary files

See Also
comm(l), join(l), rev(l), uniq(l)

1-642 Commands

Name

Syntax

sortS (1)

sortS - internationalized System S sort and/or merge files

sortS [-emu] [-ooutput] [-ykmem] [-zrecsz] [-XJ [-dfiMnr] [-htx] [+posl [-pos2]]
[files]

Description
The sortS command sorts lines of the named files together and writes the result on
the standard output. The standard input is read if a hyphen (.) is used as a file name
or if no input files are named.

Comparisons are based on one or more sort keys extracted from each line of input.
By default, there is one sort key, the entire input line, and ordering is determined by
the collating sequence specified by the LC_COLLATE locale. The LC_COLLATE
locale is controlled by the settings of either the LANG or LC_COLLATE
environment variables. See setlocale (3int) for more information.

Options
The following options alter the default behavior:

-e Checks that the input file is sorted according to the ordering rules; gives no
output unless the file is out of order.

-m Merges only; the input files are already sorted.

-u Suppresses all but one in each set of lines having equal keys.

-ooutput
Specifies the name of an output file to use instead of the standard output. The
file may be the same as one of the inputs. Blanks between -0 and output are
optional.

-ykmem
Specifies the number of kilobytes of memory to use when sorting a file. If this
option is omitted, sort5 begins using a system default memory size, and
continues to use more space as needed. If kmem is specified, sort5 starts using
that number of kilobytes of memory. If the administrative minimum or
maximum is violated, the value of the corresponding minimum or maximum is
used. Thus, -yO is guaranteed to start with minimum memory. By convention,
-y (with no argument) starts with maximum memory.

-zrecsz
Records the size of the longest line read in the sort phase so buffers can be
allocated during the merge phase. If the sort phase is omitted using either the
-e or -m options, a system default size is used. Lines longer than the buffer
size cause sortS to terminate abnormally. Supplying the actual number of
bytes (or some larger value) in the longest line to be merged prevents abnormal
termination.

-X Sorts using tags. Upon input each key is converted to a tag value which is
sorted efficiently. This option makes international sorting faster but it consumes
more memory since both key and tag must be stored.

Commands 1-643

sortS (1)

The following options override the default ordering rules:

-d Specifies Dictionary order. Only letters, digits and blanks (spaces and tabs) are
significant in comparisons.

-f Folds lower case letters into upper case.

-i Ignores characters outside the ASCII range 040-0176 in non-numeric
comparisons.

-0 Sorts an initial numeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, by arithmetic value.
The -0 option implies the -b option, which tells the sortS command to
ignore leading blanks when determining the starting and ending positions of a
restricted sort key.

-r Reverses the sense of comparisons.

When ordering options appear before restricted sort key specifications, the requested
ordering rules are applied globally to all sort keys. When attached to a specific sort
key (described below), the specified ordering options override all global ordering
options for that key.

The notation +pos] -pos2 restricts a sort key to one beginning at pos] and ending at
pos2. The characters at positions pos] and pos2 are included in the sort key
(provided that pos2 does not precede pos]). A missing -pos2 means the end of the
line.

Specifying pos] and pos2 involves the notion of a field, that is a minimal sequence
of characters followed by a field separator or a new-line. By default, the first blank
of a sequence of blanks acts as the field separator. The blank can be either a space or
a tab. All blanks in a sequence of blanks are interpreted as a part of the next field;
for example, all blanks at the beginning of a line are considered Ito be part of the first
field. The treatment of field separators is altered using the following options:

-tx Uses x as the field separator character. Although it may be included in a sort
key, x is not considered part of a field. Each occurrence of x is significant (for
example, xx delimits an empty field).

-b Ignores leading blanks when determining the starting and ending positions of a
restricted sort key. If the -b option is specified before the first +pos]
argument, it is applied to all +pos] arguments. Otherwise, the b flag may be
attached independently to each +pos] or -pos2 argument.

Pos] and pos2 each have the form m.n optionally followed by one or more of the
flags bdfior. A starting position specified by +m.n is interpreted to mean the n + 1 st
character in the m + 1 st field. A missing .n means .0, indicating the first character of
the m+ 1st field. If the b flag is in effect n is counted from the first non-blank in the
m+ 1st field; +m.Ob refers to the first non-blank character in the m+ 1st field.

A last position specified by -m.n is interpreted to mean the nth character (including
separators) after the last character of the m th field. A missing .n means .0,
indicating the last character of the m th field. If the b flag is in effect n is counted
from the last leading blank in the m+1st field; -m.1 b refers to the first non-blank in
the m + 1 st field.

When there are multiple sort keys, later keys are compared only after all earlier keys
are found to be equal. Lines that otherwise compare equal are ordered with all bytes
significant.

1-644 Commands

sort5 (1)

Examples
Sort the contents of infile with the second field as the sort key:

sort5 +1 -2 infile

Sort, in reverse order, the contents of infilel and infi,le2, placing the output in out/zle
and using the first character of the second field as the sort key:

sort5 -r -0 outfile +1.0 -1.2 infilel infile2

Sort, in reverse order, the contents of infilel and infile2 using the first non-blank
character of the second field as the sort key:

sort5 -r +1.0b -l.lb infilel infile2

Print the password file sorted by the numeric user ID (the third colon-separated field):

sort5 -t: + 2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first occurrence
of lines having the same third field (the options -urn with just one input file make
the choice of a unique representative from a set of equal lines predictable):

sort5 -urn +2 -3 infile

Diagnostics

Files

Comments and exits with non-zero status for various trouble conditions (for example,
when input lines are too long), and for disorder discovered under the -c option.

When the last line of an input file is missing a new-line character, sortS appends one,
prints a warning message, and continues.

/usr/tmp/stm???

See Also
comm(l), join(l), uniq(1), setlocale(3int), strcoll(3int)

Commands 1-645

sortbib(1)

Name
sortbib - sort bibliographic database

Syntax
sortbib [-sKEYS] database ...

Description
The sortbib command sorts files of records containing refer key-letters by user
specified keys. Records may be separated by blank lines, or by .[and .] delimiters,
but the two styles may not be mixed together. This program reads through each
database and pulls out key fields, which are sorted separately. The sorted key fields
contain the file pointer, byte offset, and length of corresponding records. These
records are delivered using disk seeks and reads, so sortbib may not be used in a
pipeline to read standard input.

By default, sortbib alphabetizes by the first %A and the %D fields, which contain
the senior author and date. The -8 option is used to specify new KEYS. For instance,
-sATD will sort by author, title, and date, while -sA+D will sort by all authors, and
date. Sort keys past the fourth are not meaningful. No more than 16 databases may
be sorted together at one time. Records longer than 4096 characters will be
truncated.

The sortbib command sorts on the last word on the %A line, which is assumed to
be the author's last name. A word in the final position, such as "jr." or "ed.", will
be ignored if the name beforehand ends with a comma. Authors with two-word last
names or unusual constructions can be sorted correctly by using the nroff
convention "\0" in place of a blank. A %Q field is considered to be the same as
%A, except sorting begins with the first, not the last, word. The sortbib
command sorts on the last word of the %D line, usually the year. It also ignores
leading articles (like "A" or "The") when sorting by titles in the % T or %J fields; it
will ignore articles of any modem European language. If a sort-significant field is
absent from a record, sortbib places that record before other records containing
that field.

Options

-sKEYS
Specifies new sort KEYS. For example, ATD sorts by author, title, and date.

See Also
addbib(I), indxbib(I), lookbib(l), refer(l), rofibib(l)

1-646 Commands

sortm{1mh)

Name
sortm - sort messages

Syntax
sortm [+folder] [msgs] [-datefieldjield] [-verbose] [-noverbose] [-help]

Description

The command so rtm sorts all the messages in the current folder into chronological
order according to the contents of the Date: fields of the messages. After sorting
the messages, sort renumbers the messages sequentially.

You can sort the messages contained in a folder other than the current folder by
specifying the +folders argument. If you do not want to sort all the messages in a
folder, you can sort some of them by specifying the msgs argument. The following
example would sort messages 10-30 in the folder called +test.

$ sortm +test 10-30

Messages which are in the folder, but not specified by msgs, are moved to the end of
the folder.

If a folder is given, it will become the current folder.

The -verbose switch tells sortm to tell you the general actions that it is taking to
place the folder in sorted order.

The -datefield <fieldname> switch tells sortm the name of the field to use
when making the date comparison. If you have a special field in each message, such
as Delivery-Date:, then the -datefield switch can be used to tell sortm
which field to examine. If sortm encounters a message without a date-field, or if
the message has a date-field that sortm cannot parse, then sortm attempts to keep
the message in the same relative position. However, this does not always work; for
instance, if the first message encountered lacks a date which can be parsed, then it
will usually be placed at the end of the messages being sorted.

When sortm complains about a message which it cannot order, it complains about
the message number prior to sorting.

The default settings for this command are:

+folder defaults to the current folder
msgs defaults to all
-datefielddate
-noverbose

Commands 1-647

sortm(1mh)

Files
$HOME/.mh_profile The user profile

Profile Components
Path: To determine your MH directory
Current-Folder: To find the default current folder

See Also
folder(lmh)

1-648 Commands

Name

Syntax

spell(1)

spell, spellin, spellout - check text for spelling errors

spell [-v] [-b] [-x] [-d hlist] [+local-file] [-s hstop] [-h spellhist] [file ...]

spellin [list]

spellout [-d] list

Description
The spell command collects words from the named documents, and looks them up
in a spelling list. Words that are not on the spelling list and are not derivable from
words on the list (by applying certain inflections, prefixes or suffixes) are printed on
the standard output. If no files are specified, words are collected from the standard
input.

The spell command ignores most troff, tbl and eqn constructions.

Two routines help maintain the hash lists used by spell. Both expect a set of
words, one per line, from the standard input. The spellin command combines the
words from the standard input and the preexisting list file and places a new list on the
standard output. If no list file is specified, a new list is generated. The spellout
command looks up each word from the standard input and prints on the standard
output those that are missing from (or present on, with option -d) the hashed list file.
For example, to verify that hookey is not on the default spelling list, add it to your
own private list, and then use it with spell,

echo hookey spellout /usr/dict/hlista
echo hookey spellin lusr/dict/hlista > myhlist
spell -d myhlist <filename>

Options

-v

-b

-x

-d hlist

- h spellhist

Displays words not found in spelling list with all plausible
derivations from spelling list.

Checks data according to British spelling. Besides preferring
centre, colour, speciality, travelled, this option insists upon -ise
instead of -ize in words like standardise.

Precedes each word with an equal sign (=) and displays all
plausible derivations.

Specifies the file used for the spelling list.

Specifies the file used as the history file.

Commands 1-649

spell(1)

-s hstop

+ local-file

Specifies the file used for the stop list.

Removes words found in local-file from the output of the spell
command. The argument local-file is the name of a file provided
by the user that contains a sorted list of words, one per line. With
this option, the user can specify a list of words for a particular job
that are spelled correctly.

The auxiliary files used for the spelling list, stop list, and history file may be
specified by arguments following the -d, -s, and -b options. The default files are
indicated below. Copies of all output may be accumulated in the history file. The
stop list filters out misspellings (for example, thier=thy-y+ier) that would otherwise
pass.

Restrictions

Files

The coverage of the spelling list is uneven; new installations will probably wish to
monitor the output for several months to gather local additions.

The spell command works only with ASCII text files.

/usr/dict/hlist[ab]

/usr/dict/hstop
/dev/null
/trnp/spell.$$*
/usr/lib/spell

hashed spelling lists, American &
British, default for -d
hashed stop list, default for -s
history file, default for -h
temporary files

See Also
deroff(1), sed(1), sort(1), tee(1)

1-650 Commands

spline(1g)

Name
spline - interpolate smooth curve

Syntax
spline [option ...]

Description
The spline command takes pairs of numbers from the standard input as abcissas
and ordinates of a function. It produces a similar set, which is approximately equally
spaced and includes the input set, on the standard output. The cubic spline output
has two continuous derivatives, and a sufficient number of points to look smooth
when plotted.

Options
The following options are recognized, each as a separate argument.

-a Supplies abcissa automatically and uses specified number (next argument) for
spacing. Default is 1.

-k Sets the boundary constant to the specified value (next argument). By default k =
O. For example,

.. I.' Icy" " Icy" .Yo = 1 , Yn = n- 1

-n Uses specified number (n) in calculating intervals between lower and upper
limits. (Default n = 100.)

-p Periodically produces output (matches derivates at ends). First and last input
values should normally agree.

-x Uses specified numbers (next arguments) as lower and upper limits. Normally
these limits are calculated from the data. Automatic abcissas start at lower limit
(default 0).

Restrictions
A limit of 1000 input points is enforced silently.

Diagnostics
When data is not strictly monotone in x, spline reproduces the input without
interpolating extra points.

See Also
graph(lg), plot(lg)

Commands 1-651

split (1)

Name
split - split file into smaller files

Syntax
split [-n] [file [name]]

Description
The split command reads file and writes it in n-line pieces (default 1000), as many
as necessary, onto a set of output files. The name of the first output file is name with
aa appended, and so on lexicographically. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is
used.

Options

Uses standard input.

-0 Writes specified number of lines to each output file. Default is 1000.

1-652 Commands

stcode (1 ncs)

Name
stcode - translate a hexadecimal status code value to a textual message

Syntax
stcode hex stat code

Description
The steode command prints the textual message associated with a hexadecimal
status code. This command is useful when a program produces a hexadecimal status
code instead of a textual message.

The steode command processes predefined status codes. No provision is currently
made to add user-defined status codes to the error text database.

Examples
Translate the hexadecimal status code 1 cO 1 0003:

=It stcode lcOlOOO3
unknown interface (network computing system/RPC runtime)

Commands 1-653

strextract (1 int)

Name
strextract - batch string extraction

Syntax
strextract [-p pattern/tie] [-i ignorefile] [-d] [source-program ...]

Descri ption
The strextract command extracts text strings from source programs. This
command also writes the string it extracts to a message text file. The message text
file contains the text for each message extracted from your input source program. The
strextract command names the file by appending .msg to the name of the input
source program.

In the source-program argument, you name one or more source programs from which
you want messages extracted. The strextract command does not extract
messages from source programs included using the #include directive. Therefore,
you might want a source program and all the source programs it includes on a single
strextract command line.

You can create a patterns file (as specified by pattern/tie) to control how the
strextract command extracts text. The patterns file is divided into several
sections, each of which is identified by a keyword. The keyword must start at the
beginning of a new line, and its first character must be a dollar sign ($). Following
the identifier, you specify a number of patterns. Each pattern begins on a new line
and follows the regular expression syntax you use in the regex(3) routine. For more
information on the patterns file, see the patterns (Sint) reference page.

In addition to the patterns file, you can create a file that indicates strings that
extract ignores. Each line in this ignore file contains a single string to be ignored
that follows the syntax of the regex(3) routine.

When you invoke the strextract command, it reads the patterns file and the file
that contains strings it ignores. You can specify a patterns file and an ignore file on
the strextract command line. Otherwise, the strextract command matches
all strings and uses the default patterns file.

If strextract finds strings which match the ERROR directive in the pattern file, it
reports the strings to standard error (stderr.) but does not write the string to the
message file.

After running strextract, you can edit the message text file to remove text
strings which do not need translating before running s t rme rge .

It is recommended that you use extract command as a visual front end to the
strextract command rather than running strextract directly.

Options

-i Ignore text strings specified in ignorefile. By default, the strextract
command searches for ignorefile in the current working directory, your home
directory, and /usr / lib/ intln.

1-654 Commands

If you omit the - i option, strextract recognizes all strings specified in the
patterns file.

strextract (1 i nt)

-p Use patternfile to match strings in the input source program. By default, the
command searches for the pattern file in the current working directory, your
home directory, and finally /usr / lib/ intln.

If you omit the -p option, the strextract command uses a default patterns
file that is stored in /usr / lib/ intln/patterns .

-d Disables warnings of duplicate strings. If you omit the -d option,
strextract prints warnings of duplicate strings in your source program.

Restrictions
Given the default pattern file, you cannot cause strextract to ignore strings in
comments that are longer than one line.

You can specify only one rewrite string for all classes of pattern matches.

The strextract command does not extract strings from files include with
#include directive. You must run the strextract commands on these files
separately.

% strextract -p c-patterns prog.c prog2.c
% vi prog.msg
% strmerge -p c-patterns prog.c prog2.c
% gencat prog.cat prog.msf prog2.msf
% vi nl-prog.c
% vi nl-prog2.c
% cc nl-prog.c nl-prog2.c -Ii

In this example, the strextract command uses the cyatterns file to
detennine which strings to match. The input source programs are named prog. c
and prog2 . c.

If you need to remove any of the messages or extract one of the created strings, edit
the resulting message file, prog. msg. Under no conditions should you add to this
file. Doing so could result in unpredictable behavior.

You issue the strmerge command to replace the extracted strings with calls to the
message catalog. In response to this command, strmerge, creates the source
message catalogs, prog .msf and prog2 .msf, and the output source programs,
nlyrog. c and nlyrog2. c.

You must edit nlyrog. c and nl_prog2. c to include the appropriate catopen
and catclose function calls.

The gencat command creates a message catalog and the cc command creates an
executable program.

See Also
intro(3int), gencat(lint), extract(lint), strmerge(lint), regex(3), catopen(3int),
patterns(5int)
Guide to Developing International Software

Commands 1-655

strings (1)

Name
strings - print ASCII strings in program

Syntax
strings [-Ia] [-0] [-number] file ...

Description
The strings command looks for ascii strings in a binary file. A string is any
sequence of 4 or more printing characters ending with a newline or a null.

The strings command is useful for identifying random object files and many other
things.

Options

- or -a Looks through the entire object file for ASCII strings. Default is to look
only in the initialized data space.

-number Sets the minimum string length to specified number of characters and
default is 4.

-0 Precedes each string with its file offset (octal).

See Also
od(1)

1-656 Commands

strip (1)

Name
strip - remove symbols and relocation bits

Syntax
strip name ...

Description

Files

The strip command removes the symbol table and relocation bits ordinarily attached
to the output of the assembler and loader. This can help create space after a program
has been debugged.

The strip command and the ld (1) 0 command with the -s option are equivalent.

/tmp/stm? temporary file

See Also
ld(l)

Commands 1-657

Rise

VAX strip (1)

Name
strip - remove symbol table and relocation bits

Syntax
strip name ...

Description
The strip command removes the symbol table and relocation bits ordinarily
attached to the output of the assembler and loader. This is useful to save space after
a program has been debugged.

The effect of s t rip is the same as use of the -s option of 1 d .

Restrictions
Strip will not strip files with unresolved relocation information.

Files
/tmp/stm?

See Also
ld(l)

1-658 Commands

temporary file

strmerge (1 int)

Name
strmerge - batch string replacement

Syntax
strmerge [-m prefix] [-p patternfi.le] [-s string] source-program ...

Description
The strmerge command reads the strings specified in the message file produced by
strextract and replaces those strings with calls to the message file in the source
program to create a new source program. The new version of source program has the
same name as the input source program, with the prefix nl_. For example, if the input
source program is named prog. c, the output source program is named
nlyrog. c. You use this command to replace hard-coded messages (text strings
identified by the strextract command) with calls to the catgets function and
to create a source message catalog file. The source message catalog contains the text
for each message extracted from your input source program. The strmerge
command names the file by appending .msf to the name of the input source program.
For example, the source message catalog for the prog. c program is named
prog .rnsf. You can use the source message catalog as input to the gencat
command.

At run time, the program reads the message text from the message catalog. By
storing messages in a message catalog, instead of your program, you allow the text of
messages to be translated to a new language or modified without the source program
being changed.

In the source-program argument, you name one or more source programs for which
you want strings replaced. The strrnerge command does not replace messages for
source programs included using the #include directive. Therefore, you might want
a source program and all the source programs it includes on a single s t rrne rge
command line.

You can create a patterns file (as specified by patternfi.le) to control how the
strrnerge command replaces text. The patterns file is divided into several sections,
each of which is identified by a keyword. The keyword must start at the beginning of
a new line, and its first character must be a dollar sign ($). Following the identifier,
you specify a number of patterns. Each pattern begins on a new line and follows the
regular expression syntax you use in the ed editor. For more information on the
patterns file, see the patterns(5int) reference page.

Options

-m Add prefix to message numbers in the output source program and source
message catalog. You can use this prefix as a mnemonic. You must process
source message catalogs that contain number prefixes using the gencat-h
option. Message numbers will be in the form:

<prefix><msg_num>

Set numbers will be in the form:

Commands 1-659

strmerge (1 int)

If you process your input source program with this option, the resulting source
program and source message catalog may not be portable. For more
information, see the Guide to Developing International Software.

-p Use patternfile to match strings in the input source program. By default, the
command searches for the pattern file in the current directory, your home
directory and finally /usr / lib/ intln.

If you omit the -p option, the strmerge command uses a default patterns
file that is stored in /usr / lib/ intln/pat terns.

-s Write string at the top of the source message catalog. If you omit the - s
option, strmerge uses the string specified in the $CATHEAD section of the
patterns file.

Restrictions
You can specify only one rewrite string for all classes of pattern matches.

The strmerge command does not verify if the message text file matches the source
file being rewritten.

The strmerge command does not replace strings to files included with #include
directive. You must run the strmerge command on these files separately.

Examples
The following produces a message file prog 0 cat for a program called prog. c.

% strextract -p cyatterns prog.c prog2.c
% vi prog.msg
% strmerge -p cyatterns prog.c prog2.c
% gencat prog.cat prog.msf
% vi nlyrogoc
% vi nlyrog2.c
% cc nlyrog.c nlyrog2.c -Ii

In this example, the strextract command uses the c_patterns file to
determine which strings to match. The input source programs are named prog 0 c
and prog2 0 c.

If you need to remove any of the messages or extract one of the created strings, edit
the resulting message file, prog 0 msg. Under no conditions should you add to this
file. Doing so could result in unpredictable behavior.

You issue the s t rme rge command to replace the extracted strings with calls to the
message catalog. In response to this command, strmerge creates the source
message catalogs, prog omsf and prog2 omsf, and the output source programs,
nlyrog 0 c and nlyrog2 0 c.

Before compiling the source programs, you must edit nlyrog 0 c and
nl_prog2. c to include the appropriate catopen and catclose function calls.

The gencat command creates a message catalog and the cc command creates an
executable program.

1-660 Commands

strmerge (1 int)

See Also
intro(3int), extract(lint), gencat(lint), strextract(lint), trans(1int), regex(3),
catopen(3int), catgets(3int), pattems(5int)
Guide to Developing International Software

Commands 1-661

stty (1)

Name
stty - set terminal options

Syntax
stty [option ...]

Description
The s tty command sets or reports certain input/output characteristics of the current
output terminal. Output from the s tty program is sent to the diagnostic output
(standard error). The stty command is used in two terminal environments. The
terminal environment is determined by the setting of the terminal's line discipline. If
the terminal's line discipline is set to anything other than TERMIODISC (termio line
discipline), refer to the sections entitled "Non-Termio Operation" and "Non-Termio
Options." If your terminal line is set to the termio line discipline, refer to the
sections entitled "Termio Operation" and "Termio Options."

Note that you can use the command stty disc to find out the current line
discipline of your terminal.

Non-termio Operation
With no argument, the s tty command reports the speed of the terminal and the
settings of the options that are different from their defaults. The following arguments
report the current settings of the terminal:

all Reports all normally used non-termio option settings.

everything Reports all non-termio option settings.

Non-Termio Options
The option strings for terminals that are not using the termio line discipline are
selected from the following set:

even

-even

odd

-odd

raw

-raw

cooked

cbreak

-cbreak

1-662 Commands

Allows even parity input.

Disallows even parity input.

Allows odd parity input.

Disallows odd parity input.

Specifies raw mode input with no input processing (for example,
erase, kill, interrupt); parity bit passed back.

Negates raw mode.

Negates raw mode.

Makes each character available to read(2) as it is received; all
processing other than erase and kill processing is performed.

Makes characters available to read only when new line is received.

-nl

nl

echo

-echo

lease

-lease

tandem

-tandem

-tabs

tabs

ek

termiod

disc

old

stty (1)

Allows carriage return for new-line, and outputs CR-LF for
carriage return or new-line.

Accepts only new-line to end lines.

Echoes back every character typed.

Does not echo characters.

Maps upper case to lower case.

Does not map case.

Enables flow control. The system sends out the stop character
when its internal queue is in danger of overflowing on input; it
sends the start character when it is ready to accept further input.

Disables flow control.

Replaces tabs with spaces when printing.

Preserves tabs. This option may cause unpredictable behavior if
unprintable characters, such as escape sequences, are sent to the
terminal.

Sets erase and kill characters to the pound sign (#) and at sign (@)
respectively.

Sets line discipline to termio line discipline. Note that once the
line discipline has been changed to TERMIODISC, the termio
options to s tty should be used.

Reports the current line discipline.

Sets line discipline to the old line discipline (OTTDISC).

The following commands take a character argument c. You may specify u or undef
instead of c to leave the value undefined. The two character sequence of <CTRL/x>
is also interpreted as a control character, with < CTRL /? > representing delete.

erase c Sets the erase character to c. The default is the pound sign (#), but
it is often reset to <CTRL/H>.

kill c Sets the kill character to c. The default is the at sign (@), but it is
often reset to <CTRL/U>.

intr c Sets the interrupt character to c. The default is DEL or <CTRL/?>
but it is often reset to <CTRL/C>.

quit c Sets the quit character to c. The default is <CTRLA>.

start c Sets the start character to c. The default is <CTRL/Q>.

stop c Sets the stop character to c. The default is <CTRL/S>.

eof c Sets the end of file character to c. The default is <CTRL/S>.

brk c Sets the break character to c. The default is undefined. This
character causes a wakeup.

crO crt cr2 cr3 Selects style of delay for carriage return; see ioctl(2) for more
information.

Commands 1-663

stty (1)

nlO nil nl2 nl3

tabO tabl tab2

from

bsO bsl

dec

size

rows i

cols i

excl

-excl

o

Selects style of delay for linefeed.

Selects style of delay for tab.

Selects style of delay for form feed.

Selects style of delay for backspace.

Sets all modes suitable for Digital Equipment Corporation
operating systems users. This command sets erase to <CTRL/?>,
kill to <CTRL/U>, and interrupt to <CTRL/C>. It also sets the
decctlq and newcrt options.

Prints the display size. The format is (rows) (columns).

Sets the number of rows in the display to i.

Sets the number of columns in the display to i.

Sets line to exclusive use.

Clears exclusive use status.

Hangs up phone line immediately.

5075 110 134 150 200 300 600 1200 1800240048009600 exta extb
Sets terminal baud rate to the number given, if possible.

The following are unsupported terminal devices:

tty33 Sets all modes suitable for the Teletype Corporation Model 33
terminal.

tty37

vt05

tn300

ti700

tek

Sets all modes suitable for the Teletype Corporation Model 37
terminal.

Sets all modes suitable for Digital Equipment Corporation VT05
terminal.

Sets all modes suitable for a General Electric TermiNet 300.

Sets all modes suitable for Texas Instruments 700 series terminal.

Sets all modes suitable for Tektronix 4014 terminal.

A teletype driver that supports the job control processing of csh(l) and has more
functionality than the basic driver is fully described in tty(4). The following
options apply only to it:

new

crt

crtbs

prterase

crterase

Uses new driver (switching flushes typeahead). Sets line discipline
to NTTYDISC.

Sets options for a CRT (crtbs, ctlecho and, if greater than or equal
to 1200 baud, it sets crterase and crtkill.)

Echoes backspaces on erase characters.

Echoes characters that have been erased.

Wipes out erased characters with the following combination of
keystrokes: backspace-space-backspace.

1-664 Commands

-crterase

crtkill

-crtkill

ctlecho

-ctlecho

decctlq

-decctlq

noflsh

-noflsh

tostop

-tostop

tilde

-tilde

flusho

-ftusho

pendin

-pendin

Iitout

-lit out

autoftow

-autoflow

nohang

-nohang

pass8

stty (1)

Leaves characters visible that have been erased. Invoke this option
by using the backstroke key alone.

Wipes out input. Similar to crterase in how it works.

Echoes the line kill character and a new line on line kill.

Echoes control characters as a circumflex followed by the
character. For example, <CTRL/X> echoes as AX. Type two
backspaces following the EOT character «CTRL/D».

Echoes control characters as themselves; in cooked mode EOT
«CTRL/D» is not echoed.

Enables a start character (normally <CTRL/Q» to restart output
when it has been suspended.

Enables any character that you type to restart output when it has
been suspended. The start character restarts output without
providing any input. This is the default.

Suppresses flushing of input and output queues upon receipt of an
interrupt signal.

Flushes input and output queues upon receipt of interrupt signal.

Stops background jobs if they attempt terminal output.

Allows output from background jobs to the terminal.

Converts the tilde (,..,) to a backslash (\) on output.

Suppresses conversion of the tilde (,..,) to a backslash (\).

Discards output usually because the user hit a <CTRL/O> (internal
state bit).

Output is not discarded.

Resubmits input that is pending after a switch from cbreak to
cooked. Activated when a read becomes pending or more input
arrives (internal state bit).

Specifies that input is not pending.

Sends output characters without any processing.

Does normal output processing, such as inserting delays.

Causes the terminal multiplexer to automatically respond to start
and stop characters. This functionality is only provided if the stop
character is < CTRL / S > and the start character is <CTRL/Q>.

Uses software controlled flow control.

Does not send a hangup signal if the carrier drops. Note that the
nohang option should be used carefully. For example, suppose
that you have the nohang option in your .login file and are
logged in over a modem. If the carrier drops, the next call in on
this line gets your active shell.

Sends a hangup signal to control process group when carrier drops.

Allows full eight bit ascii characters in input and output.

Commands 1-665

stty(1)

-pass8 Strips characters to seven bits, thus disallowing the use of eight bit
ascii characters.

The following special characters are applicable only when the line discipline is set to
NTTYDISC. They are not nonnally changed. The s tty new option sets the line
discipline to NTTYDISC.

susp c

dsusp c

rprnt c

flush c

werase c

Inext c

quote c

Sets the suspend process character to c. The default is <CTRL/Z>.

Sets the delayed suspend process character to c. The default is
<CTRL/Y>.

Sets the reprint line character to c. The default is <CTRL/R>.

Sets the flush output character to c. The default is <CTRL/O>.

Sets the word erase character to c. The default is <CTRL/W>.

Sets the literal next character to c. The default is <CTRLN>.

Sets the quote character (for erase and kill) to c. The default is
<CTRL,I\>.

Termio Operation
This section describes the arguments and options that are used when the tenninal line
is set to the tennio line discipline (TERMIODISC). The tennio line discipline is
intended for programs that use either IEEE PI003 tennios, or System Five style
tennio. Unless noted otherwise, all options in this section are applicable to both
IEEE PI003 tennios or System Five tennio.

With no arguments, stty reports the speed of the tenninal and the settings of certain
options.

-a Reports option settings relevant to System Five tennios.

-p Reports option settings relevant to IEEE POSIX tennios.

For more infonnation about the modes listed in the first five groups below refer to
termio(4) and termios(4).

Termio Options
For tenninals that are using the tennio line discipline, select option strings from the
following set:

Control Modes

parenb (-parenb)

parodd (-parodd)

cs5 cs6 cs7 cs8

o

Enables (disables) parity generation and detection.

Selects odd (even) parity.

Select character size.

Hangs up phone line immediately.

5075 110 134 150200300600 1200 1800240048009600 exta extb

1-666 Commands

hupel (-hupel)

estopb (-cstopb)

eread (-cread)

eloeal (-cloeal)

loblk (-Ioblk)

autoftow (-autoftow)

Input Modes

stty (1)

Sets terminal baud rate to the number given, if possible. (All
speeds are not supported by all hardware interfaces.)

Sends (does not send) hangup signal on last close of terminal
line.

Uses two (one) stop bits per character.

Enables (disables) the receiver.

Assumes a line without (with) modem control.

Blocks (does not block) output from a non-current layer.
(System Five termio only)

Line operates with (without) hardware monitored flow control.
(POSIX only)

ignbrk (-ignbrk) Ignores (does not ignore) break on input.

brkint (-brkint) Signals (does not signal) INTR on break.

ignpar (-ignpar) Ignores (does not ignore) parity errors.

parmrk (-parmrk) Marks (does not mark) parity errors.

inpek (-inpek) Enables (disables) input parity checking.

istrip (-istrip)

inler (-inler)

igner (-igner)

iernl (-iernl)

iuele (-iuele)

ixon (-ixon)

ixany (-ixany)

ixoff (-ixofl)

Output Modes

opost (-opost)

Strips (does not strip) input characters to seven bits.

Maps (does not map) NL to CR on input.

Ignores (does not ignore) CR on input.

Maps (does not map) CR to NL on input.

Maps (does not map) upper-case alphabetics to lower case on
input.

Enables (disables) START/STOP output control. Output is
stopped by sending an Ascn DC3 and started by sending an
Ascn DCl.

Allows any character (only DCl) to restart output.

Requests that the system send (not send) START/STOP
characters when the input queue is nearly empty/full.

Post-processes output (does not post-process output; ignores all other
output modes).

oleue (-oleue)
Maps (does not map) lower-case alphabetics to upper case on output.

Commands 1-667

stty (1)

onlcr (-onlcr)
Maps (does not map) NL to CR-NL on output.

ocrnl (-ocrnl)
Maps (does not map) CR to NL on output.

on ocr (-onocr)
Does not output (outputs) CRs at column zero.

onlret (-onlret)
Performs (does not perform) the CR function on the terminal NL.

ofill (-ofill)
Uses fill characters (uses timing) for delays.

of del (-of del)
Specifies fill characters as DELs (NULs).

crO crl cr2 cr3
Selects style of delay for carriage returns.

nlO nil Selects style of delay for line-feeds.

tabO tabl tab2 tab3
Selects style of delay for horizontal tabs.

bsO bsl Selects style of delay for backspaces.

ffO ff1 Selects style of delay for form-feeds.

vtO vtl Selects style of delay for vertical tabs.

Local Modes

isig (-isig)

icanon (-icanon)

xcase (-xcase)

echo (-echo)

echoe (-echoe)

echok (-echok)

echon) (-echonl)

noflsh (-noflsh)

ctlech (-ctlech)

prtera (-prtera)

Enables (disables) the checking of characters against the special
control characters INTR and QUIT.

Enables (disables) canonical input (ERASE and KILL
processing).

Presents canonical (unprocessed) upper/lower-case.

Echoes (does not echo) every character typed.

Echoes (does not echo) ERASE character as a backspace-space
backspace string. Note that this mode erases the ERASEed
character on many CRT terminals; however, it does not keep
track of column position and, as a result, may be confusing on
escaped characters, tabs, and backspaces.

Echoes (does not echo) NL after KILL character.

Echoes (does not echo) NL.

Disables (enables) flush after INTR or QUIT.

Echoes (echo control characters unchanged) control characters
as AX and delete as A? (POSIX only)

Echoes (does not echo) erased characters enclosed within back
and forward slashes (\!) for printing terminals. (POSIX only)

1-668 Commands

ertera (-crtera) Wipes out (simply backspace) erased characters with
backspace-space-backspace. (POSIX only)

stty (1)

ertkil (-crtkil) Wipes out line (kill character and newline) with backspace
space-backspace. (POSIX ONLY)

Control Assignments

control-character c Sets control-character to c, where control-character is erase,
kill, intr, quit, eof, eol, min, or time (min and time are used
with -ieanon.

The following control characters are applicable to POSIX mode only: susp, dsusp,
rprnt, flush, werase, Inext, quote.

If c is preceded by a circumflex (A), then the value used is the corresponding CTRL
character (for example, Ad is a CTRL·d); A? is interpreted as DEL and ~ is
interpreted as undefined.

The new option sets the line discipline to NTTYDISC. Note that this changes the
line discipline to be a non-termio line discipline. Once this has been done the s tty
options described in the non-termio section should be used.

Combination Modes

evenp or parity Enables parenb and es7.

oddp Enables parenb, es7, and parodd.

-parity, -evenp, or -oddp
Disables parenb, and set es8.

nl (-nl) Unsets (sets) iernl, onler. In addition -nl unsets inler, igner,
oernl, and onlret.

lease (-lease)

LCASE (-LCASE)

Sets (unsets) xease, iucle, and olcue.

Sets (unsets) xease, iucle, and oleue.

tabs (-tabs or tab3) Preserves (expands to spaces) tabs when printing.

ek Resets ERASE and KILL characters back to normal # and @.

sane Resets all modes to some reasonable values.

See Also
ioct1(2), tabs(1), tset(I), tty(4), termio(4), termios(4)

Commands 1-669

style (1)

Name
style - analyze surface characteristics of a document

Syntax
style [-ml] [-mm] [-a] [-e] [-I num] [-r num] [-p] [-P] file ...

Description
The style command analyzes the surface characteristics of the writing style of a
document. It reports on readability, sentence length and structure, word length and
usage, verb type, and sentence openers. Because style runs deroff before
looking at the text, formatting header files should be included as part of the input.
The default macro package -ms may be overridden with the flag -mm. The flag -ml,
which causes deroff to skip lists, should be used if the document contains many
lists of non-sentences. The other options are used to locate sentences with certain
characteristics.

Options

-a Displays all sentences with their length and readability index.

-e Displays all sentences that begin with an expletive.

-I num
Displays all sentences longer than num.

-ml Skips lists in document.

-mm
Overrides the default macro package -ms.

-P Displays parts of speech of the words in the document.

-p Displays all sentences that contain a passive verb.

-rnum
Displays all sentences whose readability index is greater than num.

Restrictions
Use of non-standard formatting macros may cause incorrect sentence breaks.

See Also
deroff(1), diction(1)

1-670 Commands

Name

Syntax

su - substitute a user ID

su [username]

su - [username]

su -f [username]

su(1)

Description
The s u command requests the password of the specified username. If the correct
password is given, s u changes to that username without changing the current
directory. The user environment is unchanged except for HOME and SHELL which
are taken from the password file entry for username. The shell that is run is also
taken from the password file entry for username. The new user ID stays in force until
the shell exits.

If no username is specified, 'root' is assumed. To remind the superuser of his
responsibilities, the shell substitutes '#' for its usual prompt.

Options

-f Prevents csh(l) from executing the .cshrc file, making su start up faster.

Simulates a full login.

Diagnostics

Sorry
An invalid password was supplied for the specified username.

Unknown login: username
The specified username was not found in the passwd database.

No directory
The home directory for the username is not accessible at this time (only with
"-" argument).

No shell
The shell specified in the passwd database entry for username could not be
executed.

Kerberos initialization failure
Consult your system administrator.

If enhanced security features are enabled the following error messages are also
possible:

Requires secure terminal
Attempt to su to UID 0 on a line that is not marked secure in /etc/ttys.

User's password has expired
Access is denied because the password for username is expired.

This account is disabled

Commands 1-671

su(1)

Files

Access is denied because the auth entry corresponding to username is marked
disabled.

/usr/adm/sulog
Log file of anyone who became root, with a date mark.

See Also
csh(1), sh(1), passwd(5yp), environ(7), edauth(8)
ULTRIX Security Guide/or Users and Programmers

1-672 Commands

sum (1)

Name
sum - print object file's checksum

Syntax
sum file ...

Description
The s urn command calculates and prints a 16-bit checksum for the named file, and
also prints the number of blocks in the file. It is typically used to look for bad spots,
or to validate a file communicated over some transmission line.

Diagnostics
'Read error' is indistinguishable from end of file on most devices; check the block
count.

See Also
wc(l)

Commands 1-673

VAX symorder (1)

Name
symorder - rearrange name list

Syntax
symorder order list symbolfile

Description
The orderlist is a file containing symbols to be found in symbolfile, 1 symbol per
line.

The symbolfile is updated in place to put the requested symbols first in the symbol
table, in the order specified. This is done by swapping the old symbols in the
required spots with the new ones. If all of the order symbols are not found, an error
is generated.

This program was specifically designed to cut down on the overhead of getting
symbols from Ivmunix.

See Also
nlist(3)

1-674 Commands

sync(1)

Name
sync - update the super block

Syntax
/bin/sync

Description
The sync command executes the sync system primitive. The sync command can
be called to insure all disk writes have been completed before the processor is halted
in a way not suitably done by reboot(8) or hal t(8).

See sync(2) for details on the system primitive.

See Also
fsync(2), sync(2), ha1t(8), reboot(8), update(8)

Commands 1-675

tabs (1)

Name
tabs - set tabs

Syntax
tabs [-n] [terminal]

Description
The tabs command sets the tabs on a variety of tenninals. Various tenninal names
given in term(7) are recognized; the default is, however, suitable for most 300 baud
tenninals.

Options

-n Does not indent left margin. Default is to indent.

See Also
stty(1), tenn(7)

1-676 Commands

tail (1)

Name
tail - print lines from file

Syntax
tail [±[number][lbc][fr]] [file]

Description
The t ail command copies the named file to the standard output beginning at a
designated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the end of
the input. The number is counted in units of lines, blocks or characters, according to
the appended option I, b or c. When no units are specified, counting is by lines.

Specifying r causes tail to print lines from the end of the file in reverse order. The
default for r is to print the entire file this way. Specifying f causes tail not to quit
at end of file, but rather to reread the file repeatedly.

Restrictions
The results of the tail command are unpredictable with character special files.

See Also
dd(l)

Commands 1-677

talk (1)

Name

Syntax

talk, otalk - talk to another user

talk person [ttyname]

otalk person [ttyname]

Description
The tal k command is a visual communication program which copies lines from
your terminal to that of another user.

If you wish to talk to someone on your own machine, then person is just the person's
login name. If you wish to talk. to a user on another host, then person is of the form :

host!user
or

host.user
or

host:user
or

user@host

The form user@host is perhaps preferred.

If you want to talk. to a user who is logged in more than once, the ttyname argument
may be used to indicate the appropriate terminal name.

When first called, it sends the message

Message from TalkDaemon@his_machine ...
talk: connection requested by your_name@your_machine.
talk: respond with: talk your_name@your_machine

to the user you wish to talk to. At this point, the recipient of the message should
reply by typing

talk your_name@your_machine

It doesn't matter from which machine the recipient replies, as long as his login-name
is the same. Once communication is established, the two parties may type
simultaneously, with their output appearing in separate windows. Typing Ctrl-L will
cause the screen to be reprinted, while your erase, kill, and word kill characters will
work in talk. as normal. To exit, just type your interrupt character; talk then moves
the cursor to the bottom of the screen and restores the terminal.

Permission to talk. may be denied or granted by use of the mesg command. At the
outset talking is allowed. Certain commands, in particular nroff and pr(l)
disallow messages in order to prevent messy output.

In order to use the talk program with machines on your network that may be
running earlier versions of UL TRIX, you must initiate a session with the command
otalk (/usr/ucb/otalk.) instead of the command talk. You must also respond to a
request from a machine running an older version of the tal k program with the
otalk command. See the Restrictions section.

1-678 Commands

talk (1)

Examples
The following example demonstrates how to use the otalk command. In this case,
userl, whose system (systeml) is running ULTRIX V2.2 initiates a session with
user2, whose system (system2) is running ULTRIX V3.0. Userl types the following:

system1> talk user2@system2

The following message appears on the screen of user2:

Message from Talk_Daemon@system2 at 12:37 ...
talk: connection requested by user1@system1.
talk: respond with: otalk userl@system1

To establish the connection user2 follows the instructions from the Talk_Daemon and
types the following at the system prompt:

system2> otalk userl@systeml

Restrictions

Files

The version of talk released with ULTRIX V3.0 uses a protocol that is
incompatible with the protocol used in earlier versions. Starting with UL TRIX V3.0,
the talk program communicates with other machines running ULTRIX, V3.0 (and
later), and machines running 4.3 BSD or versions of UNIX based on 4.3 BSD.

The tal k command is not 8-bit clean. Typing in DEC Multinational Characters
(DECMCS) causes the characters to echo as a sequence of a carets (A) followed by
the character represented with its high bit cleared. This limitation makes tal k
unusable if you want to communicate using a language which has DECMCS
characters in its alphabet.

/ etc / h 0 S t s to find the recipient's machine

/ etc/utmp to find the recipient's tty

See Also
mail(1), mesg(l), who(1), write(l), talkd(8c)

Commands 1-679

tar (1)

Name
tar - multivolume archiver

Syntax
tar [key] [name ...]

Description

Keys

The tape archiver command, tar, saves and restores multiple files to and from a
single archive. The default archive device is /dev/rmtOh, but any file or device
may be requested through the use of options.

The key is a string of characters containing at most one function letter and possibly
names specifying which files to dump or restore. In all cases, appearance of a
directory name refers to the files and (recursively) subdirectories of that directory.

This utility supports EOT handling which allows the use of multiple media. The
utility prompts for the next volume when it encounters the end of the current volume.

The function portion of the key is specified by one of the following letters:

c Create a new archive on tape, disk or file. Writing starts at the beginning
of the archive instead of after the last file.

r Write the named files to the end of the archive.

t List the names of the files as they occur on the input archive.

u Add the named files to the archive if they are not there already or if they
have been modified since they were last put in the archive.

x Extract the named files from the archive. If the named file matches a
directory whose contents had been written into the archive, the directory is
recursively extracted. The owner, modification time, and mode are
restored, if possible. If no file argument is given, the entire content of the
archive is extracted. Note that if multiple entries specifying the same file
are in the archive, the last one overwrites all previous versions extracted.

Options
You can use one or more of the following options in addition to the letter which
selects the function desired.

0 ... 9 Substitute number for the device unit number as in / dev / rmt 41= h. The
default is the high density rewind tape device number zero named
/ dev / rmt Oh. The command

tar cv4 tar.c

uses device / dev / rmt 4 h .

A Use next argument as archive number with which to begin output.

B Force input and output blocking to 20 blocks/record. This option allows
tar to work across a communications channel where the blocking may
not be maintained.

1-680 Commands

D

C

F[F]

H

M

N

o

p

R

s
v

b

d

f

tar (1)

Directory output in original tar style.

Use to perfonn a directory change prior to archiving data.

Operate in/ast mode. When -F is specified, tar skips all sees
directories, core files, and error files. When -FF is specified, tar also
skips all a . out and *.0 files.

Help mode. Print a summary of the function keys and options.

Next arg specifies maximum archive number to be written and prints
current archive number on output line.

No multi-archive, file splitting, or new header format on output. Output
directories in previous tar fonnat. On input, set file UID & OlD from file
header vs. values in /ete/passwd and group files.

Include file owner & group names in verbose output (t & x functions) if
present in archive header. Output warning message if owner or group
name not found in /ete/passwd or jete/group file (cru functions).

Used to specify Po six fonnat tapes. Unnecessary with keys other than
the c key.

Each named file contains a list of newline separated file names which
will be added to (c function key) or extracted from (x function key) the
archive.

Output User Group Standard archive fonnat.

Display extended verbose infonnation. Included are the version number
of tar, the number of blocks used on the device, the number of blocks
in a file, and the protection modes given in a fonnat similar to the Is -I
command. In addition to this infonnation, V provides the infonnation
given by the v option.

Use the next argument as the blocking factor for tape records. The
default is 20 (the maximum is also 20). This option should only be used
with raw magnetic tape archives (See the f option). The block size is
detennined automatically when reading tapes (x and t) keys.

Use /dev/r????? (depending on your system) as the default device
(blocking factor of 10).

Use the next argument as the name of the archive instead of /dev/rmtOh.
If the name of the file is - , tar writes to standard output or reads from
standard input, whichever is appropriate. Thus, tar can be used as the
head or tail of a filter chain. You can also use tar to move hierarchies.
The following example shows how to move the directory fromdir to the
directory todir :

cd fromdir; tar cf - . I (cd todir; tar xpf -)

h Save a copy of the actual file on the output device under the symbolic
link name, instead of placing the symbolic information on the output.
The default action of tar is to place symbolic link infonnation on the
output device. A copy of the file itself is not saved on the output device.

Ignore checksum errors found in the archive.

Commands 1-681

tar(1)

Complain if tar cannot resolve all of the links to the files dumped. If
this is not specified, no error messages are printed.

m Do not restore the modification times. The modification time will be the
time of extraction. Tar normally restores modification times of regular
and special files.

o Suppress the normal directory information. On output, tar normally
places information specifying owner and modes of directories in the
archive. Former versions of tar, when encountering this information
will give error message of the form,

p

s

v

<name>/: cannot create

tar will place information specifying owner and modes of directories in
the archive.

Restore the named files to their original modes, ignoring the present
umask(2). Setuid and sticky bit information is also restored to the
superuser.

Next argument specifies size of archive in 512 byte blocks.

Write the name of each file treated, preceded by the function letter, to
diagnostic output. Normally, tar does its work silently. With the t
function key, the verbose option provides more information about the
tape entries than just their names.

#cd /
#tar cvf tar-out vrnunix

Produces the output "a vmunix 1490 blocks" where 1490 is the number
of 512 byte blocks in the file "vmunix".

#tar xvf tar-out

Produces the output "x vmunix, 762880 bytes, 1490 blocks" where
762880 is the number of bytes and 1490 is the number of 512 byte
blocks in the file "vmunix" which was extracted.

w Print the action to be taken, followed by file name, then wait for user
confirmation. If a word beginning with the letter y is given, the action is
done. Any other input means do not do it.

Examples
To archive files from jusrjinclude and jetc, type:

tar c -c /usr/include . -c /etc .

The tar command can properly handle blocked archives.

1-682 Commands

Restrictions
There is no way to ask for the nth occurrence of a file.

Tape errors are handled ungracefully.

The u key can be slow.

The limit on file name length is 100 characters.

There is no way to follow symbolic links selectively.

tar (1)

On SCSI tape devices tar (when reading) may end on one volume of a multi-volume
set without prompting for the next volume. This is a very infrequent condition. The
next volume should be loaded and the command issued again.

Diagnostics

Files

Indicates bad key characters and read/write errors.
Indicates if enough memory is not available to hold the link tables.

/dev/rrntOh
/dev/rrala
/trnp/tar*

See Also
mdtar(l), mt(l), tar(5)

Commands 1-683

tarsets (1)

Name
tarsets - subset kitting command file generator

Syntax
lusrlsys/distltarsets [-d] pathname

Arguments
pathname

Specify the root directory for the file hierarchy containing the files to be kitted in the
subset.

Description
The tarsets command reads subset inventory records from standard input and
writes a command procedure to standard output. This command procedure contains
the commands required to create subset images for the subset described in the input.

The tarsets command is used by the kits utility to produce software kits for use
with the set 1 d utility.

All error diagnostics are written to the file stderr in the current directory.

Options

-d Enable debugging. Debug trace diagnostics are written to ts.dbg in the
current directory.

Restrictions
The output command procedure produces multiple tar files. Each tar file has a goal
size of 400Kb. This is an anachronism from the days of software distribution on
RX50 diskettes. The command procedure is modified automatically to produce a
single subset image when tarsets is called from the kits utility.

Return Value
The exit status from the tarsets command is zero unless a hard link referenced in
the input inventory cannot be found in the input inventory, in which case the status is
1.

Diagnostics
Invalid Record on line n

The input record on line n is not in subset inventory format.

path1 -> path2 link reference unresolved.
The input record for path1 contains a pointer to path2 in the referent field
and path2 does not appear in the inventory. This indicates that path2 was
deleted from the inventory after being created by the invcutter command.

Warning: file filename is n blocks too large for diskette
This is an obsolete message. It can be ignored.

1-684 Commands

Files

tarsets (1)

Writing Oversized File Volume ...
This is an obsolete message. It can be ignored.

i Blocks, j Chars on Volume k

stderr

ts.dbg

This is an informational message. The number j is the number of
characters in the command written to the output to produce volume k.

Diagnostic output.

Debug diagnostic output.

See Also

invcutter(l), kits(1), stl_inv(5), setld(8).

Guide to Preparing Software for Distribution on ULTRIX Systems

Commands 1-685

tbl (1)

Name
tbl - format tables for nroff or *roff

Syntax
tbl [files ...]

Description
The tbl preprocessor is used for formatting tables for nroff or *roff. The input
files are copied to the standard output, except for lines between . TS and . TE
command lines, which are assumed to describe tables and are reformatted.

Options

- TX Produces output without fractional line motions. Use when the destination
output device or printer or post-filter cannot handle fractional line motions.

-ms Reads in ms macros prior to table formatting.

-mm Reads in the rom macros prior to table formatting, if your system has the
*roff rom macros installed.

Examples

As an example, letting \t represent a tab (which should be typed as a genuine tab) the
input

yields

1-686 Commands

.TS
css
ccs
ccc
Inn.
Household Population
Town\tHouseholds
\tNumber\tSize
Bedminster\t789\t3.26
Bernards Twp.\t3087\t3.74
Bernardsville\t2018\t3.30
Bound Brook\t3425\t3.04
Branchburg\t 1644\t3.49
Bridgewater\t7897\t3.81
Far Hills\t240\t3.19
.TE

Household Population
Town Households

Bedminster
Bernards Twp.
Bernardsville
Bound Brook
Branchburg
Bridgewater
Far Hills

Number Size
789 3.26

3087 3.74
2018 3.30
3425 3.04
1644 3.49
7897 3.81
240 3.19

tbl (1)

If no arguments are given, tbl reads the standard input, so it may be used as a filter.
When tbl is used with eqn or neqn, the tbl command should be first, to
minimize the volume of data passed through pipes.

See Also
nroff(l)
"Thl - A Program to Format Tables," ULTRIX Supplementary Documents, Vol.
I:General User

Commands 1-687

tee (1)

Name
tee - pipe output to terminal and file

Syntax
tee [-i] [-a] [file ...]

Description
The tee command transcribes the standard input to the standard output and makes
copies in the files.

Options

-a Appends input to existing files.

-i Ignores interrupts.

1-688 Commands

telnet (1 c)

Name
telnet - user interface to the TELNET protocol

Syntax
telnet [host [port]]

Description
The telnet interface is used to communicate with another host using the TELNET
protocol. If telnet is invoked without arguments, it enters command mode, which
is indicated by the prompt, telnet>. In this mode, telnet accepts and executes the
commands listed below. If it is invoked with arguments, it performs an open
command (see below) with those arguments.

Once a connection is opened, telnet enters input mode. The input mode is either
character-at-a-time or line-by-line, depending on what the remote system supports. In
character-at-a-time mode, text is sent to the remote host as it is typed. In line-by-line
mode, text is echoed locally and only completed lines are sent to the remote host.
The local-echo-character, initially AE. turns the local echo on and off, which is
useful when you want to enter passwords without them echoing to the screen.

In either mode, if the localchars toggle is TRUE (the default in line mode), then the
user's quit, intr, and flush characters are trapped locally and sent as TELNET
protocol sequences to the remote side. Options such as toggle autoflush and toggle
autosynch flush previous terminal input, as in quit and intr, in addition to flushing
subsequent output to the terminal until the remote host acknowledges the TELNET
sequence.

To issue telnet commands when in input mode, precede them with the telnet
escape character, initially the control character followed by a right bracket (A D.
When in command mode, use the normal terminal editing conventions.

The following commands are available:

open host [port]

close

quit

z

mode type

status

Opens a connection to the named host. If no port number is
specified, telnet attempts to contact a TELNET server at the
default port. The host specification may be either a host name or
an Internet address specified in the dot notation. For further
information, see hosts(5) and inet(3n).

Closes a TELNET session and returns to command mode.

Closes any open TELNET session and exits telnet.

Suspends telnet. This command only works when the user is
using the c s h(1).

The type is either line, for line-by-line mode, or character, for
character-at-a-time mode. The local host asks the remote host for
permission to go into one or the other mode. The remote host
enters the requested mode if it is capable of it.

Shows the current status of telnet. This includes the peer one
is connected to, as well as the state of debugging.

Commands 1-689

telnet (1 c)

display [argument ...]

? [command]

send argument(s)

1-690 Commands

Displays all, or some, of the set and toggle values (see below).

Accesses on-line help. With no arguments, telnet prints a help
summary. If a command is specified, telnet prints the help
infonnation for that command.

Sends one or more special character sequences to the remote host.
One or more of the following arguments can be specified:

escape
Sends the current telnet escape character (initially the
control character followed by a right bracket, A D.

synch

brk

ip

ao

ayt

ec

el

ga

nop

?

Sends the TELNET SYNCH sequence. This sequence causes
the remote system to discard input that was previously
entered but that it has not yet read. This sequence is sent as
TCP urgent data and may not work if the remote system is a
4.2 BSD system. If it does not work, a lower case r may be
echoed on the tenninal screen.

Sends the TELNET BRK (Break) sequence, which may have
significance to the remote system.

Sends the TELNET IP (Interrupt Process) sequence, which
causes the remote system to abort the currently running
process.

Sends the TELNET AO (Abort Output) sequence, which
causes the remote system to flush all output from the remote
system to the user's tenninal.

Sends the TELNET AYT (Are You There) sequence. The
remote system mayor may not respond.

Sends the TELNET EC (Erase Character) sequence, which
causes the remote system to erase the last character entered.

Sends the TELNET EL (Erase Line) sequence, which causes
the remote system to erase the line currently being entered.

Sends the TELNET GA (Go Ahead) sequence. Often this
sequence has no significance to the remote system.

Sends the TELNET NOP (No OPeration) sequence.

Prints out help infonnation for the send command.

telnet{1c)

set argument value
Sets a telnet variable to a specific value. The off value turns off
the function associated with the variable. The current values of
variables can be displayed with the display command.

The following variables that can be specified:

echo
Toggles between local echoing of entered characters, and suppressing
echoing of entered characters when in line-by-line mode. The value
is initially "E.

escape
Enters the telnet command mode when you are connected to a
remote system. The value is initially the control character followed
by a left bracket (/I. D.

interrupt

quit

Sends a TELNET IP sequence (see send ip above) to the remote host
if telnet is in localchars mode (see toggle localchars below) and
the interrupt character is typed. The initial value for the interrupt
character is the terminal's intr character.

Sends a TELNET BRK sequence (see send brk above) to the remote
host if telnet is in localchars mode (see toggle localchars below)
and the quit character is typed. The initial value for the quit
character is the terminal's quit character.

jlushoutput

erase

kill

eo!

Sends a TELNET AO sequence (see send ao above) to the remote
host if telnet is in localchars mode (see toggle localchars below) and
the jlushoutput character is typed. The initial value for the flush
character is the terminal's flush character.

Sends a TELNET Ee sequence (see send ec above) to the remote
system if telnet is in localchars mode (see toggle localchars below),
and if telnet is operating in character-at-time mode. The initial value
for the erase character is the terminal's erase character.

Sends a TELNET EL sequence (see send el above) to the remote
system if telnet is in localchars mode (see toggle localchars
below) and if telnet is operating in character-at-a-time mode.
The initial value for the kill character is the terminal's kill character.

Sends this character to the remote system if telnet is operating in
line-by-line mode and this character is entered as the first character
on a line. The initial value of the eof character is the terminal's eof
character.

toggle arguments ...
Toggles (between TRUE and FALSE) flags that control how telnet
responds to events. More than one argument may be specified and the
current value of these flags can be displayed with the display command.

Commands 1-691

telnet (1 c)

1-692 Commands

Valid arguments for the toggle command are the following:

localchars
Causes the flush, interrupt, quit, erase, and kill characters to be
recognized locally and transformed into appropriate TELNET control
sequences if this flag is set to TRUE. (See set above). The
appropriate TELNET control sequences are: ao, ip, brk, ec, and el,
respectively. For more information see the send command. The
initial value for this toggle is TRUE in line-by-line mode, and
FALSE in character-at-a-time mode.

autoflush
Causes the telnet command to not display any data on the user's
terminal until the remote system acknowledges (via a TELNET
Timing Mark option) that it recognized and processed the following
TELNET sequences: ao, intr, or quit. Both autoflush and localchars
must be TRUE for autofiush to work in this manner. The initial
value for this toggle is TRUE if the terminal user did not specify
stty noflsh. Otherwise it is FALSE. For further information,
see stty(1).

autosynch
Causes the TELNET SYNCH sequence to follow the TELNET
sequence that is initiated when either the intr or quit character is
typed. The autosynch flag works in this manner when both the
autosynch and localchars are TRUE. This procedure should cause
the remote system to begin throwing away all previously typed input
until both of the TELNET sequences have been read and acted upon.
The initial value of this toggle is FALSE.

crmod
Toggles carriage return mode. When this mode is enabled, most
carriage return characters received from the remote host are mapped
into a carriage return followed by a line feed. It is useful only when
the remote host sends carriage returns but never line feeds. The
initial value for this toggle is FALSE.

debug
Toggles socket level debugging which is useful only to the
superuser. The initial value for this toggle is FALSE.

options
Toggles the display of internal telnet protocol processing that
deals with TELNET options. The initial value for this toggle is
FALSE.

netdata

?

Toggles the display of all network data (in hexadecimal fonnat). The
initial value for this toggle is FALSE.

Displays the legal toggle commands.

telnet (1 c)

Restrictions
In line-by-line mode, the terminal's EOF character is only recognized and sent to the
remote system when it is the first character on a line.

Commands 1-693

test (1)

Name

Syntax

test - test conditional expression

test expr
[expr]

Description
The t est command evaluates the expression expr. If the value of expr is true, the
test command returns a zero exit status; otherwise, it returns a nonzero exit status.
The t est command also returns a nonzero exit status if no arguments are specified.

Options
The following primitives are used to construct expr:

- r file Tests if the file exists and is readable.

-w file

-f file

-dfile

-sfile

-t [fildes]

-z sl

-D sl

sl = s2

sl /= s2

sl

nl -eq n2

nl -ge n2

nl -gt n2

nl -Ie n2

nl -It n2

Tests if the file exists and is writable.

Tests if the file exists and is not a directory.

Tests if the file exists and is a directory.

Tests if the file exists and has a size greater than zero.

Tests if the open file, whose file descriptor number is fildes
(1 by default), is associated with a terminal device.

Tests if the length of string sl is zero.

Tests if the length of the string sl is nonzero.

Tests if the strings sl and s2 are equal.

Tests if the strings sl and s2 are not equal.

Tests if sl is not the null string.

Tests if number! equals number2.

Tests if number! is greater than or equal to number2.

Tests if number! is greater than number2.

Tests if numberl is less than or equal to number2.

Tests if number! is less than number2.

nl -De n2 Tests if numberl is not equal to number2.

These primitives can be combined with the following operators:

!expr

expr -a expr

expr -0 expr

(expr ...)

1-694 Commands

Negates evaluation of expression.

Tests logical and of two expressions.

Tests logical or of two expressions.

Groups expressions.

test (1)

The -a operator takes precedence over the -0 operator. Note that all the operators
and flags are separate arguments to t est. Note also that parentheses are
meaningful to the Shell and must be escaped.

See Also
find(1), sh(1), test(1 sh5)

Commands 1-695

test{1sh5)

Name

Syntax

test - condition evaluation command

test expr
[expr]

Description
The test command evaluates the expression expr. If the value of expr is true, the
test command returns a zero exit status; otherwise, it returns a nonzero exit status.
The t est command also returns a nonzero exit status if no arguments are specified.
The following primitives are used to construct expr:

-r file True if file exists and is readable.

-w file True if file exists and is writable.

-x file

-f file

-dfile

-cfile

-bfile

-pfile

-ufile

-gfile

-kfile

-sfile

-t [fildes]

-z sl

-0 sl

sl = s2

sl != s2

sl

nl -eq n2

1-696 Commands

True if file exists and is executable.

True if file exists and is a regular file.

True if file exists and is a directory.

True if file exists and is a character special file.

True if file exists and is a block special file.

True if file exists and is a named pipe (fifo).

True if file exists and its set-user-ID bit is set.

True if file exists and its set-group-ID bit is set.

True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.

True if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

True if the length of string sl is zero.

True if the length of the string sl is non-zero.

True if strings sl and s2 are identical.

True if strings sl and s2 are not identical.

True if sl is not the null string.

True if the integers nl and n2 are algebraically equal. Any of the
comparisons -De, -gt, -ge, -It, and -Ie may be used in place of
-eq.

These primitives can be combined with the following operators:

unary negation operator.

-a binary and operator.

test{1sh5)

-0

(expr)

binary or operator (-a has higher precedence than -0).

parentheses for grouping.

Note that all the operators and flags are separate arguments to the test command.
Note also that parentheses are meaningful to the Shell and must be escaped.

See Also

Note

In the form of the command that uses square brackets ([D, instead of the
word test, the brackets must be delimited by blanks.

find(1), sh5(1), test(1)

Commands 1-697

tftp{1c)

Name
tftp - trivial file transfer program

Syntax
tftp [host] [port]

Description
The tftp command provides the user interface to the Internet standard Trivial File
Transfer Protocol. The program allows a user to transfer files to and from a remote
network site. The remote host can be specified on the command line. If you specify
the remote host on the command line t f t P uses host as the default host for future
transfers.

If a port is specified, t f t P uses that port number instead of the standard t f t P
service port. When the user invokes the tftp program tftp enters its command
interpreter and awaits instructions. The prompt tftp> is displayed on the screen.

The following commands are recognized by tftp:

? Displays a help message that gives a brief summary of the
commands.

ascii Specifies mode ascii.

binary Specifies mode binary.

connect host-name [port]
Sets the host and, optionally, sets port for transfers. Note
that the TFrP protocol does not maintain connections
between transfers. Because connect merely remembers
what host should be used for transfers instead of actually
creating a connection, it is not necessary to use the
connect command. The remote host can be specified as
part of the get or put commands.

get remote-file ... [local-file]

mode

1-698 Commands

Gets a file or set of files from the specified sources. If the
host has already been specified, the source can be in the
form of a filename on the remote host. If the host has not
been specified, the source can be a string of the form
host:file, specifying both a host and filename at the same
time. If the latter form is used, the last hostname entered
becomes the default for future transfers.

Sets the file transfer type to network ASCII or binary. The
default type is network ASCII.

tftp(1c)

put local-file ... [remote-file/directory]

quit

rexmt

status

timeout

trace

verbose

Restrictions

Puts a file or set of files to the specified remote file or
directory. If the remote host has already been specified, the
destination can be a filename on it. If the remote host has
not been specified, the destination can be a string of the form
host:filename, specifying both a host and filename at the
same time. If the latter form is used, the last hostname
entered becomes the default for future transfers. If the
remote-directory form is used, the remote host is assumed to
be a UNIX machine.

Exits the t ft P program.

Sets the retransmit timer.

Shows what tftp believes to be the current connection
status.

Set the transaction timeout.

Sets the packet trace flag.

Sets the verbose mode flag.

Since the TFTP protocol does not support any authentication, files must be world
read (writable) on the remote system.

Because there is no user-login validation within the TFTP protocol, the remote site
should have some sort of file access restrictions in place. The exact methods are
specific to each site.

Commands 1-699

tic (1)

Name
tic - terminfo compiler

Syntax
tic [-v[n]] [file ...]

Description
The tic command translates terrninfo files from the source format into the
compiled format. The results are placed in the directory /usr / lib/terminfo.
The compiled format is necessary for use with the library routines described in
intro(3cur). The file argument contains one or more terrninfo terminal
descriptions in terrninfo(5) source format.

The tic command compiles all terminfo descriptions in the given files. Each
description in the file describes the capabilities of a particular terminal. When a
use = entry _name field is discovered, tic duplicates the capabilities in entry_name
for the current entry, with the exception of the capabilities that are explicitly defined
in the current entry.

If the environment variable TERMINFO is set, the results are placed there instead of
in /usr/lib/terminfo. The variable TERMINFO must be a directory
pathname. The compiled results are placed in subdirectories of the directory specified
by the TERMINFO environment variable.

-v[n] Causes tic to output trace information showing its progress (verbose
mode). The optional integer n is a number from 1 to 10, inclusive,
indicating the desired level of information. If n is greater than 1, the level
of detail is increased. If n is omitted, the default is 1.

Restrictions

Files

Total compiled entries cannot exceed 4096 bytes.

The entry_name field cannot exceed 128 bytes.

When an entry, for example entry_name_1, contains a use=entry_name_2 field, any
canceled capabilities in entry_name _2 must also appear in entry_name _1 before use=
for these capabilities to be canceled in entry _name _1.

/usr/lib/terminfo/*/*
Compiled terminal capability data base

See Also
intro(3cur), terminfo(5), Guide to X/Open Curses Screen-Handling

1-700 Commands

time(1)

Name
time - time a command

Syntax
time command

Description
The given command is executed; after it is complete, time prints the elapsed time
during the command, the time spent in the system, and the time spent in execution of
the command. Times are reported in seconds.

The times are printed on the diagnostic output stream.

The time is built in to esh(l), using a different output fonnat.

The time command can be used to cause a command to be timed no matter how
much CPU time it takes. Thus

% time ep /ete/re /usr/bill/re
O.Ou 0.1s 0:01 8% 2+1k 3+2io 1pf+Ow
% time we /ete/re /usr/bill/re

52 178 1347 /ete/re
52 178 1347 /usr/bill/re
104 356 2694 total

0.1u 0.1s 0:00 13% 3+3k 5+3io 7pf+Ow
%

indicates that the ep command used a negligible amount of user time (u) and about
l/lOth of a system time (s); the elapsed time was 1 second (0:01), there was an
average memory usage of 2k bytes of program space and 1k bytes of data space over
the cpu time involved (2+ 1k); the program did three disk reads and two disk writes
(3+2io), and took one page fault and was not swapped (lpf+Ow). The word count
command we on the other hand used 0.1 seconds of user time and 0.1 seconds of
system time in less than a second of elapsed time. The percentage '13%' indicates
that over the period when it was active the command we used an average of 13
percent of the available CPU cycles of the machine.

Restrictions
Elapsed time is accurate to the second, while the CPU times are measured to the
100th second. Thus the sum of the CPU times can be up to a second larger than the
elapsed time.

The time is a built-in command to e s h(1), with a much different syntax. This
command is available as /bin/time to esh users.

See Also
csh(l)

Commands 1-701

tip (1 c)

Name

Syntax

tip, cu - connect to a remote system

tip [-v] [-speed] system-name
tip [-v] [-speed] phone-number
cu phone-number [-t] [-s speed] [-a acu] [-IUne] [-#]

Description
The tip and eu commands establish a full-duplex connection to another system,
giving the appearance of being logged in directly on the remote cpu. Modems must
be present on your system and configured into the / et e / remot e file in order for
tip and eu to work. See uuepsetup(8) for information on how to set up the
modems.

You must have an account on the system (or equivalent) into which you wish to log
in. The preferred interface is tip. The eu interface is included for those people
attached to the "call UNIX" command of version 7. This manual page describes
only tip.

Options

-# Uses specified speed (#) as baud rate.

-I Uses specified terminal line.

-v Displays all variable settings.

Typed characters are normally transmitted directly to the remote system, which does
the echoing as well. A tilde (-') appearing as the first character of a line is an escape
signal. The tilde escapes are:

"'CTRL/D",.
Drop the connection and exit (you may still be logged in on the remote
machine).

"'C [name]
Change directory to name (no argument causes a change to your home
directory).

"'! Escape to a shell (exiting the shell returns you to tip).

"'> Copy file from local to remote. The tip command prompts for the name of a
local file to transmit.

"'< Copy file from remote to local. The tip command prompts first for the name
of the file to be sent, then for a command to be executed on the remote system.

"'p from [to]
Send a file to a remote UNIX host. The put command causes the remote UNIX
system to run the command string: cat> to, while tip sends it the from file. If
the to file is not specified the from file name is used. This command is actually
a UNIX specific version of the "'> command.

"'t Take a file from a remote UNIX host. As in the put command the to file

1-702 Commands

tip(1c)

defaults to the from file name if it isn't specified. The remote host executes the
command string cat 'from';echo "A to send the file to tip.

"'I Pipe the output from a remote command to a local UNIX process. The
command string sent to the local UNIX system is processed by the shell.

"'# Send a BREAK to the remote system. For systems which don't support the
necessary ioetl call the break: is simulated by a sequence of line speed
changes and DEL characters.

"'S Sets a variable. See the discussion below.

"'v Displays sets as they are made.

"'CTRL/Z
Stop tip (only available with job control).

"'? Displays a summary of the tilde escapes

The tip utility uses the file jete/remote to find how to reach a particular system
and to find out how it should operate while talking to the system. Refer to
remote(5) for a full description. Each system has a default baud rate with which to
establish a connection. If this value is not suitable, the baud rate to be used may be
specified on the command line, for example, tip -300 mds.

When tip establishes a connection it sends out a connection message to the remote
system; the default value, if any, is defined in / ete/ remote.

When tip prompts for an argument (for example, during setup of a file transfer) the
line typed may be edited with the standard erase and kill characters. A null line in
response to a prompt, or an interrupt, will abort the dialogue and return you to the
remote system.

The tip command guards against multiple users connecting to a remote system by
opening modems and terminal lines with exclusive access, and by honoring the
locking protocol used by uuep(lc).

During file transfers tip provides a running count of the number of lines transferred.
When using the > and < commands, the eofread and eofwrite variables are used to
recognize end-of-file when reading, and specify end-of-file when writing (see below).
File transfers normally depend on tandem mode for flow control. If the remote
system does not support tandem mode, echocheck may be set to indicate tip should
synchronize with the remote system on the echo of each transmitted character.

When tip must dial a phone number to connect to a system it will print various
messages indicating its actions. The tip command supports two methods of dialing
modems. Tailored subroutines built into tip support the DIGITAL DN-II, DF02,
DF03, DF112, DF124, and DF224 modems, the Racal-Vadic 831 auto-call modem,
the Ventel212+ modem, Racal-Vadic 3451 modem, and the Bizcomp 1031 and 1032
integral call unit/modems.

A generic dialer interface provides an alternative method to tailored subroutines for
each type of modem. The generic method uses entries similar to termeap(5) to
provide tip with the information needed to activate some modem and place a call.
The file used by the generic dialer is / ete/ aeueap and the format of entries in this
file are described in aeueapS.

Commands 1-703

tip (1c)

Note that the generic dialer interface is used whenever the AT field from an entry of
/ etc/remote matches the name field of an entry of / etc/ acucap. If no match
is found, then the tailored subroutine list is searched and will be used if that modem
is supported there.

Caution

When using a DIGITAL DFl12 modem, disable the' 'Interface Test
Mode Indicate" option (set switchpack2, switch 6 to the OFF position) ..

VARIABLES The tip command maintains a set of variables which control its
operation. Some of these variables are read-only to normal users (root is allowed to
change anything of interest). Variables may be displayed and set through the s
escape. The syntax for variables is patterned after vi(1) and mai 1(1). Supplying
all as an argument to the set command displays all variables readable by the user.
Alternatively, the user may request display of a particular variable by attaching a ? to
the end. For example escape? displays the current escape character.

Variables are numeric, string, character, or boolean values. Boolean variables are set
merely by specifying their name; they may be reset by prepending a ! to the name.
Other variable types are set by concatenating an = and the value. The entire
assignment must not have any blanks in it. A single set command may be used to
interrogate as well as set a number of variables. Variables may be initialized at run
time by placing set commands (without the -s prefix in a file .tiprc in one's home
directory). The -v option causes tip to display the sets as they are made. Certain
common variables have abbreviations. The following is a list of common variables,
their abbreviations, and their default values.

beautify

baudrate

(bool) Discard unprintable characters when a session is being scripted;
abbreviated be.

(num) The baud rate at which the connection was established; abbreviated
ba.

dialtimeout
(num) When dialing a phone number, the time (in seconds) to wait for a
connection to be established; abbreviated dial.

echocheck

eofread

eofwrite

eol

escape

(bool) Synchronize with the remote host during file transfer by waiting for
the echo of the last character transmitted; default is off.

(str) The set of characters which signify an end-of-transmission during a
-< file transfer command; abbreviated eofr.

(str) The string sent to indicate end-of-transmission during a -> file
transfer command; abbreviated eofw.

(str) The set of characters which indicate an end-of-line. The tip
command will recognize escape characters only after an end-of-line.

(char) The command prefix (escape) character; abbreviated es; default

1-704 Commands

tip (1 c)

value is -.

exceptions

force

framesize

host

prompt

raise

raisechar

record

script

(str) The set of characters which should not be discarded due to the
beautification switch; abbreviated ex; default value is \t\n\t\b.

(char) The character used to force literal data transmission; abbreviated fo ;
default value is AP.

(num) The amount of data (in bytes) to buffer between file system writes
when receiving files; abbreviated fr .

(str) The name of the host to which you are connected; abbreviated hOe

(char) The character which indicates an end-of-line on the remote host;
abbreviated pr; default value is 0 This value is used to synchronize during
what data transfers. The count of lines transferred during a file transfer
command is based on receipt of this character.

(bool) Upper case mapping mode; abbreviated ra; default value is off.
When this mode is enabled, all lower case letters will be mapped to upper
case by tip for transmission to the remote system.

(char) The input character used to toggle upper case mapping mode;
abbreviated rc; default value is A A.

(str) The name of the file in which a session script is recorded; abbreviated
rec; default value is tip.record.

(bool) Session scripting mode; abbreviated sc; default is off. When script
is true, tip will record everything transmitted by the remote system in
the script record file specified in record. If the beautify switch is on, only
printable ASCII characters will be included in the script file (those
characters between 040 and 0177). The variable exceptions is used to
indicate characters which are an exception to the normal beautification
rules.

tabexpand

verbose

SHELL

HOME

(bool) Expand tabs to spaces during file transfers; abbreviated tab; default
value is false. Each tab is expanded to 8 spaces.

(bool) Verbose mode; abbreviated verb; default is true. When verbose
mode is enabled, tip prints messages while dialing, shows the current
number of lines transferred during a file transfer operations, and more.

(str) The name of the shell to use for the -! command; default value is
/bin/she

Commands 1-705

tip{1c)

(str) The home directory to use for the -c command; default value is taken
from the environment.

Diagnostics
Diagnostics are self-explanatory.

Files
/etc/remote
/etc/phones
/etc/acucap
$ {REMOTE}
$ {PHONES}
-/.tiprc
/usr/spooVuucp/LCK .. *

See Also

global system descriptions
global phone number data base
shared autodial modem database
private system descriptions
private phone numbers
initialization file.
lock file to a void conflicts with uucp

acucap(5), phones(5), remote(5), uucpsetup(8)

1-706 Commands

touch (1)

Name
touch - update access and modification times of a file

Syntax
touch [-amcf] [mmddhhmm[yy]]files

Description
The touch command causes the access and modification times of each argument to
be updated. The file name is created if it does not already exist. If no time is
specified, the current time is used. For a more detailed explanation of how to specify
the date and time, see date(l).

The return code from t ouch is the number of files for which the times could not be
successfully modified, including files that did not exist and were not created. This
utility runs under the SYSTEM_FIVE environment.

Options

-a Causes touch to update the access time.

-c Prevents touch from creating the file if it did not previously exist.

-f Attempts to force the touch in spite of read and write restrictions on a file.

-m Causes touch to update the modification time.

Note that the default setting for the touch command is -am.

Restrictions
The -m flag used by itself will not work on files which are accessed over NFS.

See Also
date(1), utime(2)

Commands 1-707

tr(1)

Name
tr - translate characters

Syntax
tr [-cds] [string] [string2]]

Description
The t r command copies the standard input to the standard output with substitution
or deletion of selected characters. Input characters found in string] are mapped into
the corresponding characters of string2. When string2 is short it is padded to the
length of string] by duplicating its last character. Any combination of the options
-cds may be used: -c complements the set of characters in string] with respect to
the universe of characters whose ASCII codes are 0 through 0377 octal; -d deletes all
input characters in string]; -s squeezes all strings of repeated output characters that
are in string2 to single characters.

In either string the notation a-b means a range of characters from a to b in increasing
ASCII order. The backslash character (\) followed by l, 2 or 3 octal digits stands for
the character whose ASCII code is given by those digits. A \ followed by any other
character stands for that character.

The following example creates a list of all the words in 'filel' one per line in 'file2',
where a word is taken to be a maximal string of alphabetics. The second string is
quoted to protect \ from the Shell. 012 is the ASCII code for newline.

tr -cs A-Za-z '\012' <file 1 >file2

Options

-c Translates complements: stringl to those not in stringl.

-d Deletes all characters in string 1 from output.

-s Squeezes succession of a character in string 1 to one in output.

Restrictions
'\0', '\00', and '\000' are equivalent for NUL character.

'\012' is treated as octal 12 and not a NUL followed by characters 1 and 2.

See Also
ed(1), ascii(7), expand(1)

1-708 Commands

trace (1)

Name
trace - trace system calls of programs

Syntax
trace [options] cmd args ...

Description
The trace command with no flag arguments traces for the given cmd and args all
system calls made and prints a time stamp, the PID, call and/or return values and
arguments and puts its output in the file trace.dump.

Options

-ffilename
Puts dump in file filename.

-z Echos arguments only.

Only one of the following option arguments can be specified at one time.

-c# Traces given PIDs and their children. Up to sixteen PIDs can be specified.

-g# Traces given groups only. Up to sixteen Group IDs can be specified.

-pi Traces given PIDs only. Up to sixteen PIDs can be specified.

-s# Traces given system calls only. Up to sixteen PIDs can be specified.

-u# Traces given UIDs only. Up to sixteen PIDs can be specified.

Examples

trace -f ls.dump ls -1 /dev >ls.out

runs the cmd Is -1 /dev and puts the trace in Is.dump and ls output in Is.out.

trace -f csh.trace -p $$ &

will trace your login shell in the background. To stop the trace just send it a
termination signal (that is, kill -TERM trace_pid).

Restrictions
Due to security, no one, not even the super-user can trace anyone elses programs.
This sort of negates some of the usefulness of the -g and -u flags.

The setuid program cannot be traced.

Only 16 numbers can be given to the -c, -p, -g, -u, and -s flags.

The kernel must be configured with the SYS_ TRACE option for this command to
work; otherwise, the message "Cannot open /dev/trace" is printed.

Commands 1-709

trace (1)

Files

/dev/trace

trace. dump

See Also

read only character special device for reading syscall data.

default file for the system call trace data.

open(2), close(2), ioct1(2), select(2), read(2), trace(5)

1-710 Commands

trans (1 int)

Name
trans - translation tool for use with source message catalogs

Syntax
trans [-c] [-0 name] file .msf

Description
The trans command assists in the translation of source message catalogs. The
command reads input from file .msf and writes its output to either a file named
trans. msf or a file you name on the command line. The command displays
file.msfin a multiple window screen that lets you simultaneously see the original
message, the translated text you enter, and any messages from the trans command.
This mUltiple window screen is easier to use for translating messages than a single
window screen.

The top window in the multiple window screen displays the text in the message
source file file.msf. The editor displays the current message in reverse video.

In the center window, trans displays a prompt that asks you to enter a translated
message. You use a control key editor to move the cursor and delete text in the
center window. The control key sequences are defined as follows:

Key Sequence

CTRL/k
CTRL/h
CTRL/l
CTRL/w
CTRL/f
CTRL/e
CTRL/b
CTRL/n
CTRL/p
CTRL/u
CTRL/i
CTRL/r
DEL

Meaning

Display control key help
Back space
Forward space
Back word
Forward word
Move to end of input
Move to beginning of input
Next line
Previous line
Delete input
Insert mode (default)
Replace mode
Delete previous character

If you need to span more than one line with the translated text, type a backs lash (\)
and press the RETURN key to enable line continuation. After you finish entering the
translated text, press the RETURN key to signal that you have finished translating
that message.

The bottom window displays any messages generated by t ran s. If an error occurs,
t ran s prompts you to re-enter the entire line, including the message label or
number.

Commands 1-711

trans (1 int)

Options

-c Display comment lines beginning with a dollar sign ($) for translation, in
addition to messages.

-0 Call the output file name. The default is output file name is trans .msf.

Restrictions
Your terminal must be 80 columns by 24 lines for trans to display its three
window screen.

You cannot interrupt a t ran s session and restart it at the point you stopped. You
must complete the all the changes to a file before exiting a file.

See Also
intro(3int), extract(lint), gencat(1int), strextract(lint), strmerge(lint)
Guide to Developing International Software

1-712 Commands

Name

Syntax

true, false - provide test for status values

true
false

Description

true (1)

The true and false commands are usually used in a Bourne shell script. They
test for the appropriate status "true" or "false" before running (or failing to run) a list
of commands.

Examples

while true
do

command list
done

Diagnostics
The true command has exit status zero.

See Also
csh(1), sh(1)

Commands 1-713

tset (1)

Name

Syntax

tset - set terminal mode

tset [options] [-m [ident] [test baudrate] : type] ... [type]
reset ...

Description
The tset command sets up your terminal when you first log in to a UNIX system.
It does terminal dependent processing such as setting erase and kill characters, setting
or resetting delays, sending any sequences needed to properly initialized the terminal,
and the like. It first determines the type of terminal involved, and then does
necessary initializations and mode settings. The type of terminal attached to each
UNIX port is specified in the /etc/ttys database. Type names for terminals may be
found in the terrncap(5) database. If a port is not wired permanently to a specific
terminal (not hardwired) it will be given an appropriate generic identifier such as
dialup.

In the case where no arguments are specified, t set simply reads the terminal type
out of the environment variable TERM and re-initializes the terminal. The rest of
this manual concerns itself with mode and environment initialization, typically done
once at login, and options used at initialization time to determine the terminal type
and set up terminal modes.

When used in a startup script (.profile for sh(l) users or .login for csh(l) users) it is
desirable to give information about the type of terminal you will usually use on ports
which are not hardwired. These ports are identified in / etc/ttys as dialup or
plugboard or arpanet. To specify what terminal type you usually use on these ports,
the -m (map) option flag is followed by the appropriate port type identifier, an
optional baud rate specification, and the terminal type. (The effect is to "map" from
some conditions to a terminal type, that is, to tell tset "If I'm on this kind of port,
guess that I'm on that kind of terminal".) If more than one mapping is specified, the
first applicable mapping prevails. A missing port type identifier matches all
identifiers. Any of the alternate generic names given in terrncap may be used for
the identifier.

A baudrate is specified as with stty(l), and is compared with the speed of the
diagnostic output (which should be the control terminal). The baud rate test may be
any combination of: >, @, <, and !; @ means "at" and! inverts the sense of the
test. To avoid problems with metacharacters, it is best to place the entire argument
to -m within " ... " characters; users of csh(l) must also put a "\" before any"!"
used here. Thus

tset -m 'dialup>300:adm3a' -m dialup:dw2 -m 'plugboard:?adm3a'

causes the terminal type to be set to an adm3a if the port in use is a dialup at a speed
greater than 300 baud; to a dw2 if the port is (otherwise) a dialup (that is, at 300
baud or less). (The examples given here appear to take up more than one line, for
text processing reasons. When you type in real tset commands, you must enter
them entirely on one line.) If the type finally determined by tset begins with a
question mark, the user is asked if he really wants that type. A null response means
to use that type; otherwise, another type can be entered which will be used instead.

1-714 Commands

tset (1)

Thus, in the above case, the user will be queried on a plugboard port as to whether
they are actually using an adm3a.

If no mapping applies and a final type option, not preceded by a -m, is given on the
command line then that type is used; otherwise the identifier found in the
/etc/ttys database will be taken to be the terminal type. This should always be
the case for hardwired ports.

It is usually desirable to return the terminal type, as finally determined by t s et ,
and information about the terminal's capabilities to a shell's environment. This can
be done using the - option; using the Bourne shell, s h(1)

export TERM; TERM='tset - options ... '

Or using the C shell, c s h(1)

setenv TERM 'tset - options ... '

With c shit is convenient to make an alias in your .cshrC:

alias tset 'setenv TERM 'tset - \!*"

Either of these aliases allow the command

tset 2621

to be invoked at any time from your login csh. Note to Bourne Shell users: It is
not possible to get this aliasing effect with a shell script, because shell scripts cannot
set the environment of their parent. (If a process could set its parent's environment,
none of this nonsense would be necessary in the first place.)

These commands cause tset to place the name of your terminal in the variable
TERM in the environment. For further information, see environ(7).

Once the terminal type is known, tset engages in terminal driver mode setting.
This normally involves sending an initialization sequence to the terminal, setting the
single character erase (and optionally the line-kill (full line erase)) characters, and
setting special character delays. Tab and newline expansion are turned off during
transmission of the terminal initialization sequence.

On terminals that can backspace but not overstrike (such as a CRT), and when the
erase character is the default erase character ('#' on standard systems), the erase
character is changed to BACKSPACE (Control-H).

Options

Name of terminal is output on stndout, captured by the shell, and placed in the
environment variable TERM.

-ec Uses the specified character as the erase character. The default is the backspace
character on the terminal, usually AH. The character c can either be typed
directly, or entered using the hat notation used here.

-I Suppresses transmitting terminal initialization strings.

-kc Uses the specified character as the kill character. It is similar to -e but for the
line kill character rather than the erase character; c defaults to AX (for purely
historical reasons). The kill characters is left alone if -k is not specified. The
hat notation can also be used for this option.

Commands 1-715

tset (1)

-0 Initializes the "new" tty driver, if applicable. On systems with the Berkeley
4BSD tty driver, specifies that the new tty driver modes should be initialized for
this tenninal. For a CRT, the CRTERASE and CRTKILL modes are set only if
the baud rate is 1200 or greater. See tty4 for more detail.

-Q Suppresses erase and kill character message.

If t set is invoked as re s et, it will set cooked and echo modes, turn off cbreak
and raw modes, turn on newline translation, and restore special characters to a
sensible state before any terminal dependent processing is done. Any special
character that is found to be NULL or "-1" is reset to its default value.

This is most useful after a program dies leaving a tenninal in a funny state. You
may have to type "<LF>reset<LF>" to get it to work since <CR> may not work in this
state. Often none of this will echo.

Examples
These examples all assume the Bourne shell and use the - option. If you use c s h ,
use one of the variations described above. Note that a typical use of t set in a
.profile or .login will also use the -e and -k options, and often the -0 or -Q options
as well. These options have not been included here to keep the examples small.
(NOTE: some of the examples given here appear to take up more than one line, for
text processing reasons. When you type in real t s et commands, you must enter
them entirely on one line.)

At the moment, you are on a 2621. This is suitable for typing by hand but not for a
.profile, unless you are always on a 2621.

export TERM; TERM='tset - 2621'

You have an h19 at home which you dial up on, but your office terminal is hardwired
and known in /etc/ttys.

export TERM; TERM='tset - -m dialup:h19'

You have a switch which connects everything to everything, making it nearly
impossible to key on what port you are coming in on. You use a vt100 in your office
at 9600 baud, and dial up to switch ports at 1200 baud from home on a 2621.
Sometimes you use someone elses terminal at work, so you want it to ask you to
make sure what terminal type you have at high speeds, but at 1200 baud you are
always on a 2621. Note the placement of the question mark, and the quotes to
protect the greater than and question mark from interpretation by the shell.

export TERM; TERM='tset - -m 'switch>1200:?vt100' -m
'switch<=1200:2621'

All of the above entries will fall back on the terminal type specified in / et c / tty s
if none of the conditions hold. The following entry is appropriate if you always dial
up, always at the same baud rate, on many different kinds of terminals. Your most
common terminal is an adm3a. It always asks you what kind of terminal you are on,
defaulting to adm3a.

export TERM; TERM='tset - ?adm3a'

If the file / et c / tty s is not properly installed and you want to key entirely on the
baud rate, the following can be used:

export TERM; TERM='tset - -m '>1200:vt100' 2621'

1-716 Commands

tset (1)

Here is a fancy example to illustrate the power of tset and to hopelessly confuse
anyone who has made it this far. You dial up at 1200 baud or less on a conceptIOO,
sometimes over switch ports and sometimes over regular dialups. You use various
terminals at speeds higher than 1200 over switch ports, most often the terminal in
your office, which is a vt100. However, sometimes you log in from the university
you used to go to, over the ARPANET; in this case you are on an ALTO emulating a
dm2500. You also often log in on various hardwired ports, such as the console, all
of which are properly entered in / etc/ttys. You want your erase character set to
control H, your kill character set to control U, and don't want t s et to print the
"Erase set to Backspace, Kill set to Control U" message.

export TERM; TERM='tset -e -kAU -Q - -m
'switch<=1200:conceptlOO' -m 'switch:?vtlOO' -m
dialup:conceptlOO -m arpanet:dm2500'

Restrictions

Files

For compatibility with earlier versions of tset a number of flags are accepted whose
use is discouraged:

-d type equivalent to -m dialup:type

-p type equivalent to -m plugboard:type

-a type

-Ec

-r

equivalent to -m arpanet:type

Sets the erase character to c only if the terminal can backspace.

prints the terminal type on the standard output

prints the terminal type on the diagnostic output.

/etc/ttys port name to terminal type mapping database
/etc/termcap terminal capability database

See Also
csh(I), sh(1), stty(1), termcap(5), ttys(5), environ(7)

Commands 1-717

tsort (1)

Name
tsort - create topological sort

Syntax
tsort [file]

Description
The t sort command produces on the standard output a totally ordered list of items
consistent with a partial ordering of items mentioned in the input file. If no file is
specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of
different items indicate ordering. Pairs of identical items indicate presence, but not
ordering.

Diagnostics
Odd data: there is an odd number of fields in the input file.

See Also
lorder(l)

1-718 Commands

tty (1)

Name
tty - print current tenninal name

Syntax
tty [-s]

Description
The tty command prints the pathname of the user's tenninal unless the -s (silent) is
given. In either case, the exit value is zero if the standard input is a tenninal and one
if it is not.

Options

-s Suppresses pathname.

Diagnostics
Prints 'not a tty' if the standard input file is not a tenninal.

Commands 1-719

Rise uac(1)

Name
uac - Unaligned Access Message Control

Syntax
nac [s] [p] value

Description
The uac command controls the printing of "Fixed up unaligned data access for pid
nnn at pc OxAddr" messages. The command is used to set or display the flag that
controls printing the message for the system or for the parent process of the user,
which is typically a shell.

Options

Values

The following options can be used with the uac command:

s Set/display the current flag setting for the system.

p Set/display the current flag setting for the parent process.

If value is present, the flag is set; otherwise, the current flag setting is displayed. The
value can be either a zero (0), which turns the flag off, or a one (1), which turns the
flag on.

Restrictions
You must be superuser to set the system flag.

1-720 Commands

ul (1)

Name
ul - process underscores for tenninal

Syntax
ul [-i] [-t terminal] [name ...]

Description
The ul command reads the named files (or standard input if none are given) and
translates occurrences of underscores to the sequence which indicates underlining for
the tenninal in use, as specified by the environment variable TERM. The -t option
overrides the tenninal kind specified in the environment. The file /etc/tenncap is read
to detennine the appropriate sequences for underlining. If the tenninal is incapable
of underlining, but is capable of a standout mode then that is used instead. If the
tenninal can overstrike, or handles underlining automatically, ul degenerates to
cat(l). If the tenninal cannot underline, underlining is ignored.

The -i option causes u 1 to indicate underlining by a separate line containing
appropriate dashes '-'; this is useful when you want to look at the underlining which
is present in an nroff output stream on a crt-tenninal.

Options

-i Displays underscoring on separate line containing appropriate dashes (-).

-t terminal
Uses type of specified tenninal in place your tenninal's type.

Restrictions
The nroff command usually outputs a series of backspaces and underlines
intennixed with the text to indicate underlining. No attempt is made to optimize the
backward motion.

See Also
man(l), nroff(l), colcrt(1)

Commands 1-721

uname(1)

Name
unarne - print name of current UNIX system

Syntax
uoame [options]

Description
The uname command prints the current system name of the UNIX system on the
standard output file. The command detennines which system is being used.

Options

-s Print the system name (default).

-0 Print the nodename (the nodename may be a name that the system is
known by to a communications network).

-r Print the operating system release.

-v Print the operating system version.

-m Print the machine hardware name.

-a Print all the above infonnation.

1-722 Commands

unget(1)

Name
unget - undo a previous get of an sees file

Syntax
uoget [-rSID] [-s] [-o]files

Description
The unget command undoes the effect of a get -e done prior to creating the
intended new delta. If a directory is named, unget behaves as though each file in
the directory were specified as a named file, except that non-sees files and
unreadable files are ignored. If - is given as a name, the standard input is read, with
each line being taken as the name of an sees file to be processed.

Options
Keyletter arguments apply independently to each named file.

-0

-rSID

-s

Diagnostics

Retains copy of sees file which normally is removed from current
directory.

Indicates delta version number. This would have been specified by get
as the new delta. The use of this keyletter is necessary only if two or
more outstanding gets for editing on the same sees file were done by
the same person (login name). A diagnostic results if the specified SID
is ambiguous, or if it is necessary and omitted on the command line.

Suppresses normal messages, on the standard output of the intended
delta's SID.

See sccshelp(1) for explanations.

See Also
delta(1), get(1), sccs(1)
Guide to the Source Code Control System

Commands 1-723

uniq (1)

Name
uniq - report repeated lines in a file

Syntax
uniq [-udc[+n][-n]] [input[output]]

Description
The uniq command reads the input file comparing adjacent lines. In the normal
case, the second and succeeding copies of repeated lines are removed; the remainder
is written on the output file. Note that repeated lines must be adjacent in order to be
found. For further information, see sort (1).

Options

The n arguments specify skipping an initial portion of each line in the comparison:

-n Skips specified number of fields. A field is defined as a string of non-space,
non-tab characters separated by tabs and spaces from its neighbors.

+n Skips specified number of characters in addition to fields. Fields are skipped
before characters.

-c Displays number of repetitions, if any, for each line.

-d Displays only lines that were repeated.

-u Displays only unique (nonrepeated) lines.

If the -u flag is used, just the lines that are not repeated in the original file are output.
The -d option specifies that one copy of just the repeated lines is to be written. The
normal mode output is the union of the -u and -d mode outputs.

The -c option supersedes -u and -d and generates an output report in default style
but with each line preceded by a count of the number of times it occurred.

See Also
comm(1), sort(1)

1-724 Commands

uptime(1)

Name
uptime - display system status

Syntax
uptime [-w]

Description

Files

The upt irne command prints the current time, the length of time the system has
been up, the number of current users, and the average number of jobs in the run
queue in the last 1, 5, and 15 minute periods. It is, essentially, the first line of a w(l)
command. The -w option provides the same output as the w command.

/vmunix system name list

See Also
w(1)

Commands 1-725

users (1)

Name
users - print names of users who are logged in

Syntax
users

Description

Files

The users command lists the login names of the users currently on the system in a
compact, one-line fonnat.

/etc/utmp

See Also
who(l)

1-726 Commands

uucp(1c)

Name
uucp, uulog, uuname - unix to unix copy

Syntax
uucp [option ...] source-file... destination-file

uulog [option ...]

uuname [option ...]

Description
The uucp command copies files named by the source-file arguments to the
destination-file argument. A file name either may be a path name on your machine
or may have the form

system-name!pathname

where 'system-name' is taken from a list of system names which uucp knows about.
Shell metacharacters ?*[] appearing in the pathname part will be expanded on the
appropriate system.

Pathnames may be a full pathname, a pathname preceded by -user, where user is a
userid on the specified system and is replaced by that user's login directory, or
anything else prefixed by the current directory.

If the result is an erroneous pathname for the remote system, the copy will fail. If
the destination-file is a directory, the last part of the source-file name is used. If a
simple -user destination is inaccessible to uucp, data is copied to a spool directory
and the user is notified by mail(l).

The uucp command preserves execute permissions across the transmission and gives
0666 read and write permissions. For further information, see chmod(2).

Options
The following options are interpreted by uucp.

-d Creates all necessary directories for the file copy.

-c Uses the source file when copying out rather than copying the file to the spool
directory.

-m Sends you mail when the copy is complete.

-nrec
Sends mail to the recipient.

-W Expands only local files. Normally files names are prepended with the current
working directory if a full path is not specified. The -W tells uucp to expand
local files only.

The uulog command prints a summary of uucp and uux transactions that were
recorded in the file /usr / spool/uucp/LOGFILE.

The options cause uulog to print logging information:

-ssys
Displays information about work involving specified system.

Commands 1-727

uucp{1c)

-uuser
Displays infonnation about work involving specified user.

The uuname command lists the uucp names of known systems.

-I Lists local system name.

Warnings
The domain of remotely accessible files can (and for obvious security reasons,
usually should) be severely restricted. You will very likely not be able to fetch files
by pathname. Ask a responsible person on the remote system to send them to you.
For the same reasons, you will probably not be able to send files to arbitrary
pathnames.

Restrictions

Files

All files received by uucp will be owned by uucp.
The -m option will only work sending files or receiving a single file. (Receiving
multiple files specified by special shell characters ?*[] will not activate the -m
option.)

/usr/spooVuucp - spool directory
/usr/lib/uucp/* - other data and program files
/etc/acucap - shared autodial modem database

See Also
mail(l), uux(lc), acucap(5)
"Uucp Implementation Description," ULTRIX Supplementary Documentation, Vol.
III:System Manager

1-728 Commands

Name

Syntax

uuencode(1c)

uuencode, uudecode - encode/decode a binary file for transmission via mail

uuencode [file] remotedest I mail sysl!sys2!..!decode
uudecode [file]

Description
The uuencode and uudecode commands are used to send a binary file by uucp
(or other) mail. This combination can be used over indirect mail links even when
uusend(lc) is not available.

The uuencode command takes the named source file (default standard input) and
produces an encoded version on the standard output. The encoding uses only
printing ASCII characters, and includes the mode of the file and the remotedest for
recreation on the remote system.

The uudecode command reads an encoded file, strips off any leading and trailing
lines added by mailers, and recreates the original file with the specified mode and
name.

The intent is that all mail to the user "decode" should be filtered through the
uudecode program. This way the file is created automatically without human
intervention. This is possible on the uucp network by either using sendmail or by
making rmail be a link to Mail instead of mail. In each case, an alias must be
created in a master file to get the automatic invocation of uudecode.

If these facilities are not available, the file can be sent to a user on the remote
machine who can uudecode it manually.

The encode file has an ordinary text form and can be edited by any text editor to
change the mode or remote name.

Restrictions
The file is expanded by 35% (3 bytes become 4 plus control information) causing it
to take longer to transmit.

The user on the remote system who is invoking uudecode (often uucp) must have
write permission on the specified file.

See Also
mail(l), uucp(1c), uusend(1c), uux(lc), uuencode(5)

Commands 1-729

uuid_gen (1 ncs)

Name
uuid~en - UUID generating program

Syntax
/etc/ncs/uuid_gen [-c] [-c] [-version]

Description
The uuid_gen program generates Universal Unique Identifiers (UUIDs). Without
options, it generates a character-string representation of a UUID. The -c option
enables you to generate a template for Network Interface Definition Language
(NIDL) files. The -C option enables you to generate source-code representations of
UVIDs, suitable for initializing variables of type uuid_ $t .

Options

-c

-C
-version

Examples

Generate a template, including a UUID attribute, for an interface
definition in the C syntax of NIDL.

Generate a C source-code representation of a VUID.

Display the version of the Network Computing Kernel (NCK) that
this uuid_gen belongs to but do not generate a VVID. (NCK is
part of the Network Computing System (NCS) on which DECrpc is
based.)

Generate a character-string representation of a VUID:

$ letclncsluuid _gen
34dc23469000.0d.OO.OO.7c.5f.OO.OO.OO

Generate a template for an interface definition in the C syntax of NIDL:

$ letclncsluuid_gen -c
%c
[
uuid(34dc23gecOOO.Od.OO.OO.7c.5f.OO.OO.oO),
version(l)
]
interface INTERFACENAME {

Generate a template for an interface definition in the C syntax of NIDL. Redirect the
output to the file myfile. idle

$ letclncsluuid _gen -c >myftle.idl

Generate a C source-code representation of a VVID:

$ letclncsluuid _gen -C
= { Ox34dc23af,
OxfOOO,
OxOOOO,
OxOd,
{OxOO, OxOO, Ox7c, Ox5f, OxOO, OxOO, OxOO} }i

1-730 Commands

uuid_gen (1 ncs)

See Also
DECrpc Programming Guide

Commands 1-731

uusend(1c)

Name
uusend - send a file to a remote host

Syntax
uusend [-m mode] sourcefile sysl!sys2!..lremotefile

Description
The uusend command sends a file to a given location on a remote system. The
system need not be directly connected to the local system, but a chain of uucp (1 c)
links needs to connect the two systems.

The sourcefile can be "-", meaning to use the standard input. Both of these options
are primarily intended for internal use of uusend.

The remotefile can include the -userid syntax.

Options

-mmode
Specifies octal number for mode of file on the remote system. Default is mode
of input file.

Restrictions
All systems along the line must have the uusend command available and allow
remote execution of it.

Some uucp systems have a restriction where binary files cannot be the input to a
u ux (1 c) command. If this exists in any system along the line, the file will show
up severly distorted.

Diagnostics
If anything goes wrong any further away than the first system down the line, you will
never hear about it.

See Also
uucp(1c), uuencode(1c), uux(lc)

1-732 Commands

uustat(1c)

Name
uustat - uucp status inquiry and job control

Syntax
uustat [options]

Description
The uustat command either displays the status of or cancels previously specified
uucp commands, or it provides general status on uucp connections to other
systems.

Options

-chour
Removes entries older than specified hour. This option can only be executed by
the user uucp or the super-user.

-jail
Reports status of all requests.

-kjobn
Kills specified job. The killed uucp request must belong to the person issuing
the uustat command unless that person has "super-user" privilege.

-mmch
Reports status of accessibility of machine mch. If mch is specified as all, then
the status of all machines known to the local u u cp are provided.

-ohour
Reports status of requests which are older than specified hour.

-ssys
Reports status of uucp requests for specified system.

-uuser
Reports status of requests issued by specified user.

-v Invokes verbose printout option. If this option is not specified, a status code is
printed with each u u cp request.

-yhour
Reports status of all requests that are younger than specified hour.

When no options are given, uustat outputs the status of all uucp requests issued
by the current user. Note that only one of the options -j, -m, -k, -c, can be used
with the other options. For example, the command

uustat -usteve -slimbo -y63 -v

will print the verbose status of all uucp jobs that were issued by user steve destined
for system limbo within the last 63 hours. The format of each job status entry is:

job# user destination spool_time status_time status

where the status may be either an octal number or a verbose description. The octal
code corresponds to the following description:

Commands 1-733

uustat(1c)

Files

OCTAL STATUS
00001 Copy failed for unknown reasons.
00002 Permission to access local file is denied.
00004 Permission to access remote file is denied.
00010 Bad uucp command is generated.
00020 Remote system cannot create temporary file.
00040 Cannot copy to remote directory.
00100 Cannot copy to local directory.
00200 Local system cannot create temporary file.
00400 Cannot execute uucp.
01000 Copy succeeded.
02000 Copy finished, job deleted.
04000 Job is queued.

The format for the machine accessibility status entries is:

system status_time last_success_time status

where

system is the system in question

status time
- is the time the last status entry was made.

last success time
- is the last time a connection was successfully made to this system. A

conversation could be ended prematurely after a successful connection.

status is a self-explanatory description of the machine status.

In the current implementation uux requests are not recorded in the uustat logging
files. This implies that mail and news requests are not recorded by uustat.

/usr/spooVuucp/
/usr/lib/uucp!L_stat
/usr/lib/uucp!R_stat

spool directory (top level)
system status file
request status file

See Also
uucp(lc)

1-734 Commands

uux(1c)

Name
uux - unix to unix command execution

Syntax
DUX [-] command-string

Description
The uux command gathers 0 or more files from various systems, executes a
command on a specified system, and sends standard output to a file on a specified
system.

The command-string is made up of one or more arguments that look like a shell
command line, except that the command and file names may be prefixed by system
nameL A null system-name is interpreted as the local system.

File names may be one of the following:

• A pathname

• A pathname preceded by xxx, where xxx is a userid on the specified system
and is replaced by that user's login directory

• Any other syntax that is prefixed by the current directory.

For example, the following command line gets the fl files from the usg and pwba
machines, executes a di f f command and puts the results in fl.diff in the local
directory.

uux n!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fl.diff"

When using special shell characters such as <>'!, you should either quote the entire
command-string, or you should quote the special characters as individual arguments.

The u ux command attempts to get all files to the execution system. If both the file
and command are located on different remote sites, the file is first brought to the local
system and is then transferred to the execution system.

If you want to include files as arguments to a command, but you do not want those
files to be processed by uux, enclose the filename in parentheses. For example:

uux a!uucp b!/usr/file (c!/usr/file)

The previous example sends a u ucp command to system a. The / u s r / f i 1 e is
transferred from system b to the local system, and then is passed to system a .
When /usr/file arrives at system a the uucp command executes and sends
/usr / file to system c.

If the request is not allowed on the remote system, the u ux command notifies you.
This response is sent through remote mail from the remote machine.

Options

-c, .)
Do not copy local file to the spool directory for transfer to the remote machine.
This is the default.

-ggrade

Commands 1-735

uux(1c)

Specifies the grade which is a single letter or number from 0 to 9, A to Z, or a
to z. The highest grade is 0, the lowest grade is z. The default is A. Lower
grades should be specified for high-volume jobs, such as news.

-0 Sends no notification to user.

-p,-
Reads stdin.

-r Queues the job, but does not start the file transfer.

-xdebug
Produces debugging output on stdout. The debug option is a number between 0
and 9. Higher numbers provide more detailed information. Debugging is
permitted only for those users with read access to L. sys(5).

-z Notify the user if the command fails.

Warning
An installation may limit the list of commands executable on behalf of an incoming
request from uux. Typically, a restricted site permits little other than the receipt of
mail through uux.

Restrictions

Files

Only the first command of a shell pipeline may have a system-name!. All other
commands are executed on the system of the first command.

The use of the shell metacharacter asterisk (*) shell metacharacter may not behave as
you expect. The shell tokens «< ») are not implemented.

You are not notified when execution on a remote machine is denied. Only
commands listed in /usr / lib/uucp/L. cmds on the remote system are executed
at the remote system.

/usr/spooVuucp spool directory
/usr/lib/uucp/* other data and programs

See Also
uucp(lc)
"Uucp Implementation Description" ULTRIX Supplementary Documents Vol. III:
System Manager

1-736 Commands

val (1)

Name
val - validate SCCS file

Syntax
val-
val [-s] [-rSID] [-mname] [-ytype] files

Description
The val command determines if the specified file is an sees file meeting the
characteristics specified by the optional argument list. Arguments to val may
appear in any order. The arguments consist of keyletter arguments that begin with a
"-" and named files.

The val command has a special argument, "-," which causes reading of the
standard input until an end-of-file condition is detected. Each line read is
independently processed, as if it were a cOlnmand line argument list.

The val command generates diagnostic messages on the standard output for each
command line and file processed and also returns a single 8-bit code upon exit as
described below.

Options
The effects of any keyletter argument apply independently to each named file on the
command line. The keyletter arguments are defined as follows:

Causes stdin to be read until end of file.

-s Suppresses all error messages.

-rSID
Indicates specified delta version number. A check is made to
determine if the SID is ambiguous, for example, r1 is ambiguous
because it physically does not exist but implies 1.1, 1.2, and so forth,
which may exist) or invalid, for example, rI.O or rl.l.O are invalid
because neither case can exist as a valid delta number). If the SID is
valid and not ambiguous, a check is made to determine if it actually
exists.

-mname
Compares specified value with the SCCS val.l keyword.

-ytype
Compares specified type with sces keyword.

The 8·bit code returned by val is a disjunction of the possible errors. It can be
interpreted as a bit string where set bits are interpreted (from left to right) as:

bit 0 = missing file argument
bit 1 = unknown or duplicate keyletter argument
bit 2 = corrupted sees file
bit 3 = can't open file or file not sees
bit 4 = SID is invalid or ambiguous
bit 5 = SID does not exist
bit 6 = %Y%, -y mismatch

Commands 1-737

val (1)

bit 7 = %M%, -m mismatch

Note that va 1 can process two or more files on a given command line and can
process multiple command lines when reading the standard input. In these cases, an
aggregate code is returned - a logical OR of the codes generated for each command
line and file processed.

Restrictions
The val command can process up to 50 files on a single command line. Any
number above 50 produces a core dump.

Diagnostics
Use sccshelp(1) for explanations.

See Also
admin(1), delta(1), get(1), prs(1), sccs(1)
Guide to the Source Code Control System

1-738 Commands

vc(1)

Name
vc - version control program

Syntax
vc [-a] [-t] [-cchar] [-5] [keyword=value ... keyword=value]

Description
The vc command copies lines from the standard input to the standard output under
control of its arguments and control statements encountered in the standard input. In
the process of performing the copy operation, user declared keywords may be
replaced by their string value when they appear in plain text and/or control
statements.

The copying of lines from the standard input to standard output is conditional. It is
based on tests (in control statements) of keyword values specified in control
statements or as vc command arguments.

A control statement is a single line beginning with a control character, except as
modified by the -t keyletter (see below). The default control character is colon (:),
except as modified by the -c keyletter (see below). Input lines beginning with a
backslash (\) followed by a control character are not control lines and are copied to
the standard output with the backslash removed. Lines beginning with a backslash
followed by a noncontrol character are copied in their entirety.

A keyword is composed of 9 or fewer alphanumerics; the first must be alphabetic. A
value is any ASCII string that can be created with ed(l). A numeric value is an
unsigned string of digits. Keyword values should contain blanks or tabs.

Replacement of keywords by values occurs whenever a keyword surrounded by
control characters is encountered on a version control statement. The -a keyletter
(see below) forces replacement of keywords in all lines of text. An uninterpreted
control character may be included in a value by preceding it with \. If a literal \ is
desired, then it too must be preceded by \.

Options
Keyletter arguments:

-a Replaces the keywords surrounded by control characters in all text lines.

-cchar
Specifies a control character to be used in place of :.

-5 Suppresses all warning messages.

-t Ignores all characters from the beginning of the line to the first tab character. If
one is found, all characters up to and including the tab are discarded.

Version Control Statements:

:dcl keyword[, ••• , keyword]
Used to declare keywords. All keywords must be declared.

Commands 1-739

vc(1)

:asg keyword=value

::text

Used to assign values to keywords. An asg statement overrides the assignment
for the corresponding keyword on the vc command line and all previous asg's
for that keyword. Keywords declared, but not assigned values have null
values.
:if condition

:end
Used to skip lines of the standard input. If the condition is true all lines
between the if statement and the matching end statement are copied to the
standard output. If the condition is false, all intervening lines are discarded,
including control statements. Note that intervening if statements and matching
end statements are recognized solely for the purpose of maintaining the proper
if-end matching.
The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<value>

::= ["not"] <or>
::= <and> I <and> "I" <or>
::= <exp> I <exp> "&" <and>
::= "(Ii <or> ")" I <value> <op> <value>
::= "=" I "!=" I "<" I ">"
::= <arbitrary Ascn string> I <numeric string>

The available operators and their meanings are:

=
!=
&
I
>
<
()
not

equal
not equal
and
or
greater than
less than
used for logical groupings
may only occur immediately after the if, and
when present, inverts the value of the
entire condition

The> and < operate only on unsigned integer values. For example, : 012 > 12
is false). All other operators take strings as arguments. For example, ill: 012
!= 12 is true). The precedence of the operators (from highest to lowest) is:

= != > < all of equal precedence
&
I

Parentheses can be used to alter the order of precedence.
Values must be separated from operators or parentheses by at least one blank
or tab.

Used for keyword replacement on lines that are copied to the standard output.
The two leading control characters are removed, and keywords surrounded by
control characters in text are replaced by their value before the line is copied to
the output file. This action is independent of the -a keyletter.

1-740 Commands

:on

: off
Tum on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on line ••. (915)

vc(1)

on the diagnostic output. The vc command halts execution, and returns an exit
code of 1.

Diagnostics
Use help(1) for explanations.

Exit Codes
0- normal
1 - any error

Commands 1-741

VAX vcc(1)

Name
vcc - VAX C compiler

Syntax
vee [option ...] file ...

Description
The vee command invokes the VAX C compiler for UL TRIX and accepts the
following types of arguments:

• Arguments whose names end with .c. These arguments are treated as C source
programs. The source code is compiled and the resulting object code is left in a
file whose name is the same as the source except with a .0 file extension. If
you choose to compile and load a single program in one step, the vee
command program deletes the intermediate object code file.

• Arguments whose names end with .s. These arguments are treated as assembly
source programs and are passed to the assembler, which creates an output file
with a .0 extension.

• Arguments whose names end in something other than .c or .s. These
arguments are treated as either compiler or linker option arguments or C
compatible object programs that were produced during an earlier vee
compilation or were extracted from the libraries of C-compatible routines.

Options
The VAX C compiler for ULTRIX can produce two types of object files: the
standard BSD .0 format used by Id(1), or an object format that can be read only by
lk(1). The object file format, and the linker used is controlled by the -V lk-object
option. By default, the compiler produces standard BSD .0 format.

The following options are accepted by the vee command. See lk(l) or Id(1) for
load-time options.

-b
-Bstring

--c

-Dname=def
-Dname

-E

-Em

1-742 Commands

Does not pass the -Ie library to the linker by default.

Finds substitute compiler, preprocessor, assembler, and
linker in the files named by string. If string is empty, uses a
standard backup version.

Suppresses the loading phase of the compilation and forces
an object file to be produced even if only one program is
compiled.

Defines name to the preprocessor. This functions as if an
additional #define preprocessor directive were embedded in
the source code. If no definition is given, the name is
defined as 1.

Runs only the macro preprocessor on the named C programs
and sends the result to the standard output.

Runs only the macro preprocessor on the named C programs

-f

-g

-Idir

-Ix

-Md

-Mg

-0 output

-0

-p

-pg

vcc(1}

and produces the makefile dependencies.

Uses single-precision rather than double-precision floating
point representation. Procedure arguments are still promoted
to double-precision floating point format. Programs with a
large number of single-precision computations run faster
with this option. However, a slight loss in precision may
result since intermediate results are saved using a single
precision representation rather than the default double
precision representation.

Generates additional symbol table information for dbx(1).
This also passes the -Ig flag to the linker.

Seeks #include files whose names do not begin with a
directory specification in the following directories: first, in
the directory of the file argument; second, in directories
named in -I options; finally, in directories in a standard list.

Uses the specified library. This option lists an abbreviation
for the library name /1 ib /1 ibx.a, where x is a string. If
the library is not found, the linker tries /usr / lib/ libx.a.
If that does not exist, the linker tries
/usr / local/ lib/ libx.a. A search for a library starts
when the library name is encountered, so the placement of a
-I within the compilation or the linker command line is
significant.

Specifies DFLOAT (the default) double-precision floating
point type and passes the -Ic flag to the linker.

Specifies GFLOAT double precision floating point type and
passes the -leg flag to the linker. This option uses the
GFLOAT version of libc. If the math library is used with
code compiled with the -Mg flag, the GFLOAT version is
linked by specifying -Img to the vee or the linker
command.

Names the final output file output. If this option is used, the
file a.out is left undisturbed. If the named file has a .0 or .a
file extension, the following error message is displayed: -0

would overwrite.

Invokes the object-code improver. This option is on by
default and has no effect.

Produces code that counts the number of times each routine
is called. If loading takes place, it replaces the standard
startup routine with one that initially calls moni tor and
writes out a mon.out file upon normal termination of
program execution. The prof command is then used to
generate an execution profile.

Produces counting code similar to that generated by -p, but
invokes a run-time recording mechanism that keeps more
extensive statistics and produces a gmon.out file upon
normal termination. In addition, a profiling library is

Commands 1-743

VAX

VAX vcc(1)

-t [pOal]

-Uname

-v file

-Varg

-w
-Y[option}

1-744 Commands

searched instead of the standard C library. The gp r 0 f
command is then used to generate an execution profile.

Finds only the designated preprocessor, compiler, assembler,
and linker in the files whose names are constructed by a -B
option.

Removes any initial definition of name.

Produces a listing in file, complete with cross-reference and
machine code listing sections.

Compiles the source code using vendor specific options. The
available options are described in detail in the Guide to VAX
C for ULTRlX.

The following is a list of the available options:

cross reference

debug

define

g_float

list

Ik_object

machine code

object

optimize

show

standard

un define

warnings

Generates a cross reference listing
section

Generates a loadable module for use
with dbx

Assigns a specified value to a name

Uses the G_floating point type

Generates a list file

Generates object files in lk format,
instead of BSD .0 format and uses
the lk linker

Generates the machine code listing
section

Generates an object file with a
specific name

Selects code optimization

Includes symbol and intermediate
expansions

Selects portability mode

Revokes the assignment of a value
to a name

Disables warning or informational
messages

Suppresses warning diagnostics.

Compiles a file for one of the following options:

POSIX

vcc(1) VAX

If no -Y option is specified, vee searches for the PROG_ENV variable to be
defined. If PROG_ENV is set to SYSTErvl_FIVE or POSIX, the effect is the same as
-YSYSTEM FIVE or -YPOSIX. If PROG_ENV is not set to either
SYSTEM_FIVE or POSIX, the effect is the same as -YBSD.

If no option is specified with - Y, the default is - YSYSTEM _FIVE. If an option
other than SYSTEM_FIVE, BSD, or POSIX is specified, a warning message is
printed and -Y is ignored. If there are multiple -Y options, only the last one takes
effect.

If - YSYSTEM _FIVE is explicitly specified, the - YSYSTEM _FIVE parameter is
added to the linker call. In addition, the following occurs:

• -DSYSTEM_FIVE is added to the vaxe command (or epp command
if -E is specified).

• The linker parameters -Ie, -leg, or -Ie J> are preceded with -Ie V, -Ie V g,
or -Ie V _p (if not suppressed by -b).

• The linker parameters -1m, -Img, or -Imp are changed to -1m V, -1m V g,
or -1m V _p (if present).

If - YBSD is specified, then the parameter - YBSD is added to the 1 k call.

If -YPOSIX is specified, then the parameter -DPOSIX is added to the vaxe call.
Also, the parameter - YPOSIX is added to the linker call.

If - Y does not exist and PROG_ENV is not defined, the default is
-YSYSTEM FIVE.

Default Symbols And Macros
The VAX C compiler recognizes the following predefined symbols. The symbols are
all assigned the value one (1). You can use these symbols to separate portable and
nonportable code within your V AX C programs:

vaxc
vaxllc
vax

VAXC
VAX11
VAX

In addition to the VAX symbols definitions, listed above, the V AX C compiler for
UL TRIX provides the following default symbols:

unix Any UNIX system
bsd4_2 Berkeley UNIX Version 4.2
ultrix ULTRIX only
vax VAX processor only

The V AX C compiler recognizes the following predefined macros:

DATE Evaluates to a string, specifying the compilation date
FILE Evaluates to a string, specifying the current source file
LINE Evaluates to an integer, specifying the line containing the

macro reference.
_ TlME_ Evaluates to a string, specifying the compilation time

Commands 1-745

VAX vee (1)

Restrictions
The compiler treats the register keyword as a suggestion, attaching the register
keyword to a variable declaration does not guarantee that the variable will be
allocated to a register.

If the -Mg flag is used to produce GFLOA T code, it must be used when compiling
all of the modules to be linked. Use the -Mg flag if you use the vee command to
invoke the linker indirectly to link the modules. If you invoke the linker directly, use
the -leg flag rather than -Ie flag. If the math library is used, specify the -Img flag
rather than the -1m flag in order to use the GFLOAT version.

The compiler and the linker, cannot detect the use of mixed double floating point
types. If you use them, your program's results may be erroneous.

Diagnostics

Files

The diagnostics produced by VAX C are self-explanatory. Occasional messages are
produced by the assembler or loader.

file.c
file.o
a.out
/usr/bin/vcc
/lib/cpp
/usr/lib/cerrfile
/usr/lib/vaxc
/lib/crtO.o
/lib/mcrtO.o
/usr/lib/gcrtO.o
/lib/libc.a
/usr/libcg.a
/usr/lib/libc_p.a
/usr/include
/usr/man/man l/vcc.l
mon.out
gmon.out

input file
object file
loaded output
command program
preprocessor
error message file
compiler
runtime startoff
startoff for profiling
startoff for gprof-profiling
standard library
GFLOAT version of the standard library
profiling library
standard directory for #include files
manual page
file produced for analysis by prof(l)
file produced for analysis by gprof(l)

See Also
adb(1), as(1), dbx(l), gprof(l), ld(l), Ik(I), prof(l), monitor(3)
Guide to VAX C

1-746 Commands

Name

Syntax

vdoc(1)

vdoc - invokes CDA Viewer for character-cell displays

vdoc [-fformat] [-0 optionsJile] [-r] [-w paper_width] [-hpaper_height] [-p]
inputfiIe

Description
The vdo c command invokes the CDA Viewer that enables you to view the inputfile
on a character-cell terminal. If inputfile is not specified, vdoc reads from standard
input.

Options

-fformat

-0 options Jile

Specifies the format of inputfile and invokes an appropriate
input converter as part of CDA. The ddif, dtif and text input
converters are provided in the base system kit. Additional
converters can be added by the CDA Converter Library and
other layered products. Contact your system manager for a
complete list of the input formats supported on your system.
The default format is ddif.

Names the file passed to the input converter to control
specific processing options in that converter. Refer to your
documentation set for a description of converter options.

The options file has a default file type of .cda_options. Each
line of the options file specifies a format name that can
optionally be followed by _input or _output to restrict the
option to either an input or output converter. The second
word is a valid option preceded by one or more spaces, tabs,
or a slash (/) and can contain upper- and lowercase letters,
numbers, dollar signs, and underlines. The case of letters is
not significant. If an option requires a value, then spaces,
tabs, or an equal sign can separate the option from the value.

Each line can optionally be preceded by spaces and tabs and
can be terminated by any character other than those that can
be used to specify the format names and options. The syntax
and interpretation of the text that follows the format name is
specified by the supplier of the front and back end converters
for the specified format.

To specify several options for the same input or output
format, specify one option on a line. If an invalid option for
an input or output format or an invalid value for an option is
specified, the option may be ignored or an error message
may be returned. Each input or output format that supports
processing options specifies any restrictions or special
formats required when specifying options.

By default, any messages that occur during processing of the

Commands 1-747

vdoc(1)

-r

-w paper _width

-h paper _height

-p

See Also

options file are written to the system standard error
location. For those input fonnats that support a LOG
option, messages can be directed to a log file.

Specifies that the CDA Viewer is to override the format of
the document. If the -r qualifier is not specified, the CDA
Viewer retains the formatting information stored in the
document.

Specifies the paper width in units of characters. The -w
qualifier always specifies the fallback formatted document
page width to be used when the -r (override format) qualifier
is specified or when the document has no inherent format.
When used with the -p (page mode) qualifier, the display
page width is determined from the terminal and is unrelated
to the fonnatted page width. In nonpage mode, the specified
-w value is used for both fallback document page width and
the display page width. If the -w qualifier is not specified,
the default width is 80 characters.

Specifies the paper height in units of characters. The-h
qualifier always specifies the fallback formatted document
page height to be used when the -r (override format) qualifier
is specified or when the document has no inherent format.
When used with the -p (page mode) qualifier, the display
page height is determined from the terminal and is unrelated
to the fonnatted page height. In nonpage mode, the specified
-h value is used for both fallback document page height and
the display page height. If the -h qualifier is not specified,
the default height is dependent on the document.

Specifies that the CDA Viewer is to pause after displaying
each page. The user can also page backward and go directly
to the top or bottom of the document. If the -p qualifier is
not specified, the CDA Viewer displays each page without
pausing.

cdoc(1), dxvdoc(1X), DDIF(5), DTIF(5), CDA(5), DOTS(5)

1-748 Commands

vi (1)

Name
vi - screen editor

Syntax
vi [-t tag] [+command] [-I] [-r] [-wn] [-x] name ...

Description
The vi (visual) editor is a display-oriented text editor based on ex(l). The ex
command and the vi command run the same code. You can access the command
mode of ex from within vi.

The following is a list of some of the vi commands. See the Vi Beginner's
Reference card and the Introduction to Display Editing with Vi for more details on
using vi.

Screen Control Commands

<CTRLIL>

<CTRL/Y>

<CTRL/E>

Paging Commands

<CTRL/F>

< CTRLIB >

<CTRLiD>

<CTRLIU>

Reprints current screen.

Exposes one more line at top of screen.

Exposes one more line at bottom of screen.

Pages forward one screen.

Pages back one screen.

Pages down half screen.

Pages up half screen.

Cursor Positioning Commands

j

k

h

Moves cursor down one line, same column.

Moves cursor up one line, same column.

Moves cursor back one character.

Moves cursor forward one character.

<RETURN> Moves cursor to beginning of next line.

o Moves cursor to beginning of current line.

$ Moves cursor to end of current line.

<SPACE> Moves cursor forward one character.

n G Moves cursor to beginning of line n. Default is last line of file.

/pattern Moves cursor forward to next occurrence of pattern.

?pattern Moves cursor backward to next occurrence of pattern.

n Repeats last / or ? pattern search.

Text Insertion Commands

a Appends text after cursor. Terminated by <ESC>.

Commands 1-749

vi (1)

A Appends text at the end of the line. Terminated by <ESC>.

Inserts text before cursor. Terminated by <ESC>.

I Inserts text at the beginning of the line. Terminated by <ESC>.

o Opens new line below the current line for text insertion.
Terminated by <ESC>.

o Opens new line above the current line for text insertion.
Terminated by <ESC>.

<DELETE> Overwrites last character during text insertion.

<ESC> Stops text insertion.

Text Deletion Commands

dw

x

dd

Deletes current word.

Deletes current character.

Deletes current line.

D, d$ Deletes from cursor to end of line.

P Puts back text from the previous delete.

Text Change Commands

cw Changes characters of current word until stopped with escape
key.

c$ Changes text up to the end of the line.

C, c$ Changes remaining text on current line until stopped by
pressing the escape key.

xp

J

Changes case of current character.

Transposes current and following characters.

Joins current line with next line.

rx Replaces current character with x.

Buffer Usage Commands

[a-z]n yy Yanks n lines to the [a-z] buffer. Default is current line.

[a-z]np

Exiting vi

ZZ
:wq

:q

Puts n yanked text lines from the a-z buffer, after the cursor.

Exits vi and saves changes

Writes changes to current file and quits edit session.

Quits edit session (no changes made).

The view command uses all of the same edit or commands as vi. However, view
does not allow you to write the file. See view(l).

1-750 Commands

Options

-t tag

vi (1)

Specifies a list of tag files. The tag files are preceded by a backslash (\)
and are separated by spaces. The tag option should always be the first
entry.

+command Tells the editor to begin by executing the specified command. A useful
example would be +/pattern to search for a pattern.

-I Sets the showmatch and lisp options for editing LISP code.

-r name Retrieves the last saved version of the name'd file in the event of an
editor or system crash. If no file is specified, a list of saved files is
produced.

-wn Sets the default window size to n. This option is useful for starting in a
small window on dialups.

NOTE

The -x option is available only if the Encryption layered product is
installed.

-x Causes vito prompt for a key. The key is used to encrypt and decrypt
the contents of the file. If the file contents have been encrypted with one
key, you must use the same key to decrypt the file.

Restrictions
Software tabs using AT work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and delete
character operations in the terminal.

The wrapmargin option sometimes works incorrectly because it looks at output
columns when blanks are typed. If a long word passes through the margin and onto
the next line without a break, then the line is not broken.

Insert/delete within a line can be slow if tabs are present on intelligent terminals,
since the terminals need help in doing this correctly.

Saving text on deletes in the named buffers is somewhat inefficient.

The source command does not work when executed as :source; there is no way to
use the :append, :change, and :insert commands, since it is not possible to give on
a :global you must Q to ex command mode, execute them, and then reenter the
screen editor with vi or open.

See Also
ed(1), ex(1), view(1)
"An Introduction to Display Editing with Vi", ULTRIX Supplementary Documents,
Vol. I: General User

Commands 1-751

view(1)

Name
view - displays a file using the vi commands

Syntax
view [-t tag] [-r] [+command] [-I] [-wn] [-x] name ...

Description
The view command displays a text file. The view command and the vi command
run almost the same code except that in view changes to a file are not allowed. It is
possible to get to the command mode of e x from within both.

The following is a list of some of the view commands. See the vi Beginner's
Reference card and the Introduction to Display Editing with vi for more details that
can be helpful for using view.

Screen Control Commands

<CTRL/L>

<CTRLIY>

<CTRL/E>

Paging Commands

<CTRL/F>

<CTRL/B>

<CTRL/D>

<CTRL/U>

Reprints current screen.

Exposes one more line at top of screen.

Exposes one more line at bottom of screen.

Pages forward one screen.

Pages back one· screen.

Pages down half screen.

Pages up half screen.

Cursor Positioning Commands

j

k

h

1-752 Commands

<RETURN>

o
$

<SPACE>

nG

/pattern

?pattern

n

Moves cursor down one line, same column.

Moves cursor up one line, same column.

Moves cursor back one character.

Moves cursor forward one character.

Moves cursor to beginning of next line.

Moves cursor to beginning of current line.

Moves cursor to end of current line.

Moves cursor forward one character.

Moves cursor to beginning of line n. Default is last line of
file.

Moves cursor forward to next occurrence of pattern.

Moves cursor backward to next occurrence of pattern.

Repeats last / or ? pattern search.

view (1)

Exiting view

ZZ Exits view.

:q

Options

-ttag

Quits view session.

Specifies a list of tag files. The tag files are preceded by a backslash (\)
and are separated by spaces. The tag option should always be the first
entry.

+command Tells the editor to begin by executing the specified command. An
example would be +/pattern that would search for a pattern.

-I Sets the showmatch and lisp options for viewing LISP code ..

-r Retrieves the last saved version of the name' d file in the event of a
system crash. If no file is specified, a list of saved files is produced.

-wn Sets the default window size to n. This option is useful for starting in a
small window on dialups.

NOTE

The -x option is available only if the Encryption layered product is
installed.

-x Causes view to prompt for a key. The key is used to encrypt and decrypt
the contents of the file. If the file has been encrypted with one key, you
must use the same key to decrypt the file.

See Also
edit(l), ex(1), vi(1)
"An Introduction to Display Editing with vi" in the ULTRIX Supplementary
Documents Vol. I: General User

Commands 1-753

vmstat(1)

Name

Syntax

vmstat - report virtual memory statistics

vmstat [interval [count]]
vmstat -v [interval [count]]
vmstat -fKSsz
vmstat -Kks name list [corefile]

Description
The vms tat command reports statistics on processes, virtual memory, disk, trap,
and cpu activity.

If vms tat is specified without arguments, this command summarizes the virtual
memory activity since the system was last booted. If the interval argument is
specified, then successive lines are summaries of activity over the last interval
seconds. Because many statistics are sampled in the system every five seconds, five
is a good specification for interval; other statistics vary every second. If the count
argument is provided, the statistics are repeated count times.

When you run vms tat the format fields are as follows:

Procs: information about numbers of processes in various states.

r in run queue

b blocked for resources (i/o, paging, and so on.)

w runnable or short sleeper « 20 seconds) but swapped

faults: trap/interrupt rate averages per second over the last 5 seconds.

in (non clock) device interrupts per second

sy system calls per second

cs cpu context switch rate (switches/second)

cpu: breakdown of percentage usage of cpu time

us user time for normal and low priority processes

sy system time

id cpu idle time

Memory: information about the use of virtual and real memory. Virtual pages are
considered active if they belong to processes which are running or have run in the
last 20 seconds.

avm active virtual pages

fre size of the free list

Pages are reported in units of 1024 bytes.

If the number of pages exceeds 9999, it is shown in a scaled representation. The
suffix k indicates multiplication by 1000 and the suffix m indicates multiplication by
1000000. For example, the value 12345 appears as 12k.

1-754 Commands

vmstat(1)

page: information about page faults and paging activity. These are averaged every
five seconds, and given in units per second. The size of a unit is always 1024 bytes
and is independent of the actual page size on a machine.

re page reclaims (simulating reference bits)

at pages attached (found in free list not swapdev or filesystem)

pi pages paged in

po pages paged out

fr pages freed per second

de anticipated short term memory shortfall

sr pages scanned by clock algorithm, per-second

disk: sO, sl ... sn: Paging/swapping disk sector transfers per second (this field is
system dependent). Typically paging is split across several of the available drives.
This will print for each paging/swapping device configured into the kernel.

Options

-f Provides reports on the number of forks and vforks since system startup
and the number of pages of virtual memory involved in each kind of fork.

-K Displays usage statistics of the kernel memory allocator.

-k Allows a dump to be interrogated to print the contents of the sum structure
when specified with a namelist and corefile. This is the default.

-S Replaces the page reclaim (re) and pages attached (at) fields with processes
swapped in (si) and processes swapped out (so).

-s Prints the contents of the sum structure, giving the total number of several
kinds of paging related events that have occurred since boot.

-v Prints an expanded form of the vitual memory statistics.

-z Zeroes out the sum structure if the UID indicates root privilege.

Examples

Files

The following command prints what the system is doing every five seconds:

vmstat 5

To find the status after a core dump use the following:

cd lusr/adm/crash
vrnstat -k vrnunix.? vmcore.?

/ dev / kmem Kernel memory

/vmunix System namelist

Commands 1-755

w(1)

Name
w - display who is logged in and what they are doing

Syntax
w [options] [user]

Description
The w command prints a summary of the current activity on the system, including
what each user is doing. The heading line shows the current time of day, how long
the system has been up, the number of users logged into the system, and the load
averages. The load average numbers give the number of jobs in the run queue
averaged over 1, 5 and 15 minutes.

The fields output are:
The users login name
The name of the tty the user is on
The host from which the user is logged in
The time of day the user logged on
The number of minutes since the user last typed anything
The CPU time used by all processes and their children on that terminal
The CPU time used by the currently active processes
The name and arguments of the current process

Options

-d Outputs debug information.

-f Suppresses the 'from' field.

-b Suppresses the normal header from the output.

-I Displays information in long format (default).

-s Displays information in short format. In the short form, the tty is abbreviated,
the login time and cpu times are left off, as are the arguments to commands.

-u Outputs the same information as the upt ime command.

If a user name is included, the output will be restricted to that user.

Restrictions
The notion of the "current process" is unclear. The current algorithm is "the
highest numbered process on the terminal that is not ignoring interrupts, or, if there is
none, the highest numbered process on the terminal". This fails, for example, in
critical sections of programs like the shell and editor, or when faulty programs
running in the background fork and fail to ignore interrupts. (In cases where no
process can be found, w prints "-".)

The CPU time is only an estimate, in particular, if someone leaves a background
process running after logging out, the person currently on that terminal is "charged"
with the time.

1-756 Commands

Files

w(1)

Background processes are not shown, even though they account for much of the load
on the system.

Sometimes processes, typically those in the background, are printed with null or
garbaged arguments. In these cases, the name of the command is printed in
parentheses.

The w command does not know about conventions for detection of background jobs.
It will sometimes find a background job instead of the right one.

/etc/utmp
/dev/kmem
/dev/drum

See Also
finger(l), ps(1), who(l)

Commands 1-757

wait{1)

Name
wait - wait for process completion

Syntax
wait [Pid]

Description
The wait command waits until all processes started with an ampersand (&) have
completed and reports on abnormal terminations.

If a numeric pid is given and is the process ID of a background process, then wait
waits until that process is completed. If pid is not a background process, wait waits
until all background processes have completed.

Because the wai t(2) system call must be executed in the parent process, the Shell
itself executes wait without creating a new process.

Restrictions
Because not all the processes of a 3- or more-stage pipeline are children of the Shell,
the wa i t command does not work on them.

The [Pid] is available only with sh5.

See Also
sh(1), sh5(l), wait(2)

1-758 Commands

wall (1)

Name
wall - write to all users

Syntax
wall

Description
The wall command reads its standard input until an BOF. It then sends this
message, preceded by 'Broadcast Message ... ', to all logged in users.

The sender should be super-user to override any protections the users may have
invoked.

Diagnostics

Files

'Cannot send to ... ' when the open on a user's tty file fails.

/dev/tty?
/etc/utmp

See Also
mesg(1), write(1)

Commands 1-759

wc{1)

Name
wc - count words, lines, and characters

Syntax
we [-Iwe] [name ...]

Description
The we command counts lines, words and characters in the named files, or in the
standard input if no name appears. A word is a maximal string of characters
delimited by spaces, tabs or new lines.

If an argument beginning with one of "lwc" is present, the specified counts (lines,
words, or characters) are selected by the letters I, w, or e. The default is -Iwe.

Options

-c Displays number of characters only.

-I Displays number of lines only.

-w Displays number of words only.

1-760 Commands

what{1)

Name
what - display ID keywords from SCCS file

Syntax
what [-s] files

Description
The what command searches the given files for all occurrences of the pattern that
get(l) substitutes for %Z% (this is @(#) at this printing) and prints out what
follows until the first ", >, new-line, \ or null character. For example, if the C
program in file f.c contains

char ident[] = "@(#)identification information ";

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

Use what in conjunction with the SCCS command get(l), which automatically
inserts identifying information, but information can also be inserted manually.

Restrictions
It is possible that an unintended occurrence of the pattern @(#) could be found. This
causes no harm in nearly all cases.

Diagnostics
Use sccshelp(l) for explanations.

Options

-s Quit after finding the first occurrence of the pattern in the file.

See Also
get(l), help(l), sccs(l)
"An Introduction to the Source Code Control System," ULTRIX Supplementary
Documentation Vol. II:Programmer

Commands 1-761

whatis(1)

Name
whatis - display command description

Syntax
whatis command ...

Description

Files

The whatis command looks up a given command and gives the header line from
the manual section. You can then run the man(l) command to get more information.
If the line starts "name(section) ... " you can do "man section name" to get the
documentation for it. Try' 'whatis ed" and then you should do "man 1 ed" to get
the manual.

The whatis command is actually just the -f option to the man(l) command.

lusr/lib/whatis Data base

See Also
man(l), catman(8)

1-762 Commands

Name

Syntax

whatnow(1mh)

whatnow - prompting front-end for send

whatnow [-draftfolder +/older] [-draftmessage msg] [-nodraftfolder]
[-editor editorname] [-noedit] [-prompt string] [file] [-help]

Description

After you have finished an editing session from comp, dist, forw or repl; the
whatnow program prompts you for the next required action. Press <RETURN> at
the what now? prompt, to see a list of the available options. These options are:

display [<switches>]
edit [<editorname> <switches>]
list [<switches>]
push [<switches>]
quit [-delete]
refile [<switches>] +folder
send [-watch <switches>]
whom [-check <switches>]

Use display if you have been using repl or dist and want to see the original
message. Use edit [<editorname>switches] if you want to continue editing the
draft. Use list to display the draft message. If you use push, send operates in
the background and frees your terminal while the message is being sent.

Use qui t to exit from whatnow and to save the draft message. The quit -d
option will exit from whatnow and delete the draft message.

Use refile+folder to refile the draft message in a specified folder. The send
option will cause the message to be delivered. Use whom to find out who will
receive the mail when it is sent.

Unless the -noedi t argument is set, the editor starts when whatnow is invoked.

For the edi t response, any valid switch to the editor is valid. Similarly, for the
send and whom responses, any valid switch to send and whom commands,
respectively, are valid.

For the push response, use any valid switch to send. MH invokes send with the
-push option.

For the refile response, any valid switch to the fileproc is valid.

For the display and list responses, any valid argument to the lproc is valid.
If any non-switch arguments are present, then the pathname of the draft will be
excluded from the argument list given to the lproc (this is useful for listing another
MH message).

See mh-profile(Smh) for further information about how editors are used by MH.
It also describes proc and fileproc and shows how complex variables can be
used to direct whatnow's actions.

Commands 1-763

whatnow (1 mh)

Options

Files

The default prompt is What now? You can change this using the -prompt
string option. You must encase the string in double quotes (" "), if you want the
prompt string to include spaces. The following example would set the prompt to be
"Now What?".

$ whatnow -prompt "Now What?"

The whatnow program normally searches for the draft message in your Mail
directory. You can change this by using the -draftfolder<+folder> option. In
the following example, whatnow would search in the +test folder for the draft
message.

$ whatnow -draftfolder +test

This would be useful, only if you had previously created a draft message in a specific
folder. See comp(lmh) for details.

You can also direct whatnow to search for a specific file by using the
draftmessage<filename> option. If you do not specify a directory path,
whatnow will assume that it is located in your Mail directory. Similarly, if you
specify a directory pathname that is not absolute (that is, does not begin with a / ./ or
a .. f) whatnow will assume that the path is relative to your Mail directory and not
your home directory.

If sendproc is send, then whatnow uses a built-in send, it does not actually
run the send program. Hence, if you define your own sendproc, do not call it
send, as whatnow will not run it.

$HOME/.mh_profile
<mh-dir>/draft

The user profile
The draft file

Profile Components
Path: To determine your MH directory

To find the default draft-folder
To override the default editor

Draft-Folder:
Editor:
<lasteditor>-next:
fileproc:
lproc:
sendproc:
whomproc:

See Also

To name an editor to be used after exit from <lasteditor>
Program to refile the message
Program to list the contents of a message
Program to use to send the message
Program to determine who a message would go to

comp(lmh), send(lmh), whom(lmh)

1-764 Commands

whereis (1)

Name
whereis - locate source, binary, and or manual for program

Syntax
whereis [-sbm] [-u] [-SBM dir ... -f] name ...

Description
The whereis command locates source/binary and manuals sections for specified
files. The supplied names are first stripped of leading pathname components and any
(single) trailing extension of the form" .ext", for example," .c". Prefixes of "s."
resulting from use of source code control are also dealt with. The whereis
command then attempts to locate the desired program in a list of standard places.

Options

-S dir
Search for source files in specified directory.

-B dir
Search for binary files in given directory.

-Mdir
Search for manual section files in given directory.

-b Searches only for binary files.

-f Terminates last directory list created from use of -S, -B or -M flags and signals
the start of file names.

-m Searches only for manual section files.

-s Searches only for source files.

-u Searches for files that do not have one of binary, source or manual section files.

Examples

A file is said to be unusual if it does not have one entry of each requested type.
Thus "whereis -m -u *" asks for those files in the current directory which have
no documentation.

The following finds all the files in /usr /ucb which are not documented in
/usr /man/manl with source in /usr / src/ cmd:

cd /usr/ucb
whereis -u -M /usr/rnan/rnanl -8 /usr/src/crnd -f *

Restrictions
Since the program uses chdi r(2) to run faster, pathnames given with the -M -S and
-B must be full. That is, they must begin with a "/,'.

Commands 1-765

whereis(1)

Files
lusrlsrc/*
lusrl { doc,man} 1*
/lib, letc, lusr/{lib,bin,ucb,old,new,local}

1-766 Commands

which (1)

Name
which - locate program file

Syntax
which [name ...]

Description
The which command takes a list of names and looks for the files which would be
executed had these names been given as commands. Each argument is expanded if it
is aliased, and searched for along the user's path. Both aliases and path are taken
from the user's .cshrc file.

Restrictions
Must be executed by a csh, since only csh's know about aliases.

Diagnostics

Files

A diagnostic is given for names which are alia sed to more than a single word, or if
an executable file with the argument name was not found in the path.

-/.cshrc source of aliases and path values

Commands 1-767

who(1)

Name
who - print who and where users are logged in

Syntax
who [who-file] [am i]

Description

Files

The who command, without an argument, lists the login name, terminal name, and
login time for each current UNIX user.

Without an argument, who examines the /etc/utmp file to obtain its information. If a
file is given, that file is examined. Typically the given file will be /usr/adm/wtmp,
which contains a record of all the logins since it was created. Then who lists logins,
logouts, and crashes since the creation of the wtmp file. Each login is listed with
user name, terminal name (with /dev/ suppressed), and date and time. When an
argument is given, logouts produce a similar line without a user name. Reboots
produce a line with , ' in the place of the device name, and a fossil time indicative
of when the system went down.

With two arguments, as in 'who am I' (and also 'who are you'), who tells who you
are logged in as.

/etc/utmp

See Also
getuid(2), utmp(5)

1-768 Commands

whoami (1)

Name
whoami - print your current login name

Syntax
whoami

Description
The whoami command prints who you are. It works even if you are su'd, while
'who am i' does not since it uses / etc/utmp.

Files
/etc/passwd

See Also
who(l)

Name data base

Commands 1-769

whom(1mh)

Name

Syntax

whom - report to whom a message would go

whom [-alias aliasfile] [-check] [-nocheck] [-draft] [-draftfolder +/older]
[-draftmessage msg] [-nodraftfolder] [file] [-help]

Description

The whom command is used to expand the headers of a message into a set of
addresses and optionally to verify that those addresses are deliverable at that time if
-check is given.

Options

Files

The whom program normally searches for the draft message in your Mail directory.
You can change this by using the -draftfolder +/older option. In the following
example, whom would search in the +test folder for the draft message.

% whom -draftfolder +test

This would be useful, only if you had previously created a draft message in a specific
folder. See comp(1mh) for details.

You can also direct whom to search for a specific file by using the draftmessage
filename option. If you do not specify a directory path, whom will assume that it is
located in your Mail directory. Similarly, if you specify a directory pathname that is
not absolute (does not begin with a \) whom will assume that the path is relative to
your Mail directory and not your home directory.

By using the -alias aliasfile switch, you can direct send to consult the
named files for alias definitions. You can reference more than one file, but each
filename must be preceded by the word -alias. See mh-alias(5mh) for more
information.

With the -check option, whom makes no guarantees that the addresses listed as
being correct are really deliverable: rather, an address being listed as correct means
that at the time that whom was run the address was thought to be deliverable by the
transport service. For local addresses, this is absolute; for network addresses, it
means that the host is known; for uucp addresses, it means that the UUCP network is
available for use.

The defaults for this command are:

f i 1 e defaults to <mh-dir>/draft
-no check
-alias /usr/new/lib/mh/MailAliases

$HOME/.mh_profile The user profile

1-770 Commands

whom(1mh)

Profile Components
Path: To detennine your MH directory (mh-dir)
Draft-Folder: To find the default draft-folder
postproc: Program to post the message

See Also
comp(1mh), mh-alias(5mh), post(8mhs)

Commands 1-771

write (1)

Name
write - write message to another user

Syntax
write user [ttyname]

Description

Files

The wri te command copies lines from your terminal to that of another user. When
first called, it sends the message

Message from yoursystem!yourname yourttyname ...

The recipient of the message should write back at this point. Communication
continues until an end of file is read from the terminal or an interrupt is sent. At that
point wr i te writes 'EDT' on the other terminal and exits.

If you want to write to a user who is logged in more than once, the ttyname argument
may be used to indicate the appropriate terminal name.

Permission to write may be denied or granted by use of the mesg command. At the
outset writing is allowed. Certain commands, in particular nroff and pr(l)
disallow messages in order to prevent messy output.

If the character '!' is found at the beginning of a line, w r i t e calls the shell to
execute the rest of the line as a command.

The following protocol is suggested for using wri te: when you first write to
another user, wait for him to write back before starting to send. Each party should
end each message with a distinctive signal. The letter '0' is the convention for 'over'
which indicates that the message is complete. The letters '00' are the convention for
'over and out' which is used when the conversation is about to be terminated.

/etc/utmp
Ibinlsh

to find user
to execute '!'

See Also
mail(1), mesg(1), who(l)

1-772 Commands

xargs (1)

Name
xargs - construct argument list and execute command

Syntax
xargs [flags] [command [initial-arguments]]

Description
The command xargs combines fixed initial-arguments with arguments read from
standard input to execute a specified command one or more times. The number of
arguments read when a command is invoked and how they are combined is
determined by the options specified.

The specified command, (which can be a Shell file) is searched for using ones'
SPATH specification. If command is not specified, Ibin/echo is used.

Arguments read from standard input are defined as contiguous strings of characters
delimited by one or more blanks, tabs, or newlines; empty lines are always discarded.
Blanks and tabs can be embedded as part of an argument if they contain an escape
character or if they are quoted. Characters enclosed in quotes (single or double) are
taken literally, and the delimiting quotes are removed; a backslash (\) escapes the
next character.

Options
Each argument list begins with the initial-arguments, followed by arguments read
from standard input, with the exception of the -i option. See the description of the -i
option for more information.

The options -i, -I, and -n determine how arguments are selected when each
command is invoked. If none of these options are specified, the initial-arguments are
followed by arguments read continuously from standard input until the internal buffer
is full; then, command executes with the accumulated arguments. This process
repeats until no arguments exist. When conflicts arise, such as the -I option 'used
with the -n, the last option has precedence. The options values are as follows:

-In umber
Execute command for each non-empty number lines of arguments from
standard input. When command is invoked for the final time, it has fewer
lines of arguments if fewer than a specified number remain. A line ends with
the first newline unless the last character of the line is a blank or a tab; a
trailing blank or tab signals continuation through the next non-empty line. If
number is is not specified, the value 1 is assumed. The option -x is forced.

-ireplstr (Insert mode)
Execute command for each line from standard input, taking the entire line as a
single argument and inserting it in initial-arguments for each occurrence of
replstr. A maximum of five arguments specified in initial-arguments can
contain one or more occurrence of replstr. Blanks and tabs at the beginning
of each line are discarded. A constructed arguments cannot exceed 255
characters and the option -x is a forced. A {Il is assumed for replstr if not
specified.

-nnumber

Commands 1-773

xargs (1)

Execute command using as many standard input arguments as possible, up to
the specified number arguments maximum. Fewer arguments are used if their
total size is greater than size characters, and when the last command is
invoked, fewer number of arguments remain. If the option -x is also include,
each specified number of arguments must fit in the size limitation, or else
xargs terminates execution.

-t (Trace mode)
Echo the command and each constructed argument list to file descriptor 2
prior to their execution.

-p (Prompt mode)
Asks the user whether or not command should be executed each time
command is invoked. Trace mode (-t) is turned on to print the command
instance to be executed, followed by a ? .• prompt. A reply of y executes the
command; any other response does not invoke that particular command.

-x Causes the command xargs to terminate if an argument list is greater than the
specified size of characters; the option -x is forced by the options -i and -I.
When the options -i, -I, or -n are included, the total length of all arguments
must be within the specified size limit.

-ssize The maximum size of each argument list is set to size characters; size must be
a positive integer less than or equal to 470. If -s is not included, 470 is the
default. Note that the character count for size includes one extra character for
each argument and the count of characters in the command name.

-eeofstr
The option eofstr is taken as the logical end-of-file string. Underscore (_) is
assumed for the logical EOF string if -e is not specified. The value -e
without eofstr specified turns off the logical EOF string capability; the
underscore is taken literally. The command xargs reads standard input until
either end-of-file or the logical EOF string is encountered.

The command xargs terminates if it receives a return code of -1 from command or if
it cannot execute command. When command is a Shell program, it should explicitly
exit with an appropriate value to avoid returning with -1. See sh(l) for more
information.

Examples
The following example moves all files from directory $1 to directory $2 and echoes
the move command prior to executing it:

Is $1 I xargs -i -t mv $l/{ } $2/{ }

The following example combines the output of the parenthesized commands onto one
line, which is then echoed to the end of file log:

(logname; date; echo $0 $*) I xargs »log

In the next example, the user is prompted to specify which files in the current
directory are to be archived. The first example archives the files one at a time; the
second example archives groups of files:

Is I xargs -p -1 ar r arch

Is I xargs -p -1 I xargs ar r arch

1-774 Commands

xargs (1)

The following example executes di.ff(l) with successive pairs of arguments originally
typed as Shell arguments:

echo $* I xargs -n2 diff

See Also
sh(l).

Commands 1-775

xsend{1}

Name

Syntax

xsend, xget, enroll- secret mail (available only if the Encryption layered product is
installed)

xsend person
xget
enroll

Description

Files

This reference page describes software that is available only if the Encryption layered
product is installed.

These commands implement a secure communication channel on a local machine.
Mail sent using xsend is the same as mail but no one can read the message except
the intended recipient.

To receive messages use, enroll. The enroll command asks for a password
that you must enter to receive secret mail.

To receive secret mail use, xget. The xget command asks for your password,
then gives you the messages.

To send secret mail, use xsend in the same manner as the ordinary mail command;
however, xsend will accept only one target. A message announcing the receipt of
secret mail is sent by ordinary mail.

/usr/spool/secretmail/*.key:
keys

/usr/spool/secretmail/*. [0-9] :
messages

See Also
binmail(l), mail(l), crypt(l)

1-n6 Commands

xstr (1)

Name
xstr - extract strings from C program

Syntax
xstr [-c] [-] [file]

Description
The xstr command maintains a file strings into which strings in component parts of
a large program are hashed. These strings are replaced with references to this
common area. This serves to implement shared constant strings, most useful if they
are also read-only.

The command

xstr -c name

will extract the strings from the C source in name, replacing string references by
expressions of the form (&xstr[number]) for some number. An appropriate
declaration of xstr is prepended to the file. The resulting C text is placed in the file
x.c, to then be compiled. The strings from this file are placed in the strings data base
if they are not there already. Repeated strings and strings which are suffices of
existing strings do not cause changes to the data base.

After all components of a large program have been compiled a file xs.c declaring the
common xs t r space can be created by a command of the form

xstr

This xs.c file should then be compiled and loaded with the rest of the program. If
possible, the array can be made read-only (shared) saving space and swap overhead.

The xs t r command can also be used on a single file. A command

xstr name

creates files x.c and xs.c as before, without using or affecting any strings file in the
same directory.

It may be useful to run xstr after the C preprocessor if any macro definitions yield
strings or if there is conditional code which contains strings which may not, in fact,
be needed. The xstr command reads from its standard input when the argument '-'
is given. An appropriate command sequence for running xstr after the C
preprocessor is:

cc -E name.c I xstr -c -
cc -c x.c
mv x.o name.o

The xstr command does not touch the file strings unless new items are added, thus
make can avoid remaking xs.o unless truly necessary.

Commands 1-777

xstr (1)

Options

Reads stdin.

-c Extracts strings from specified C source (next argument).

Restrictions
If a string is a suffix of another string in the data base, but the shorter string is seen
first by xstr both strings will be placed in the data base, when just placing the
longer one there will do.

Files
strings
x.c
xS.c
/tmp/xs*

See Also
mkstr(l)

1-778 Commands

Data base of strings
Massaged C source
C source for definition of array 'xstr'
Temp file when 'xstr name' doesn't touch strings

yacc(1)

Name
yacc - yet another compiler-compiler

Syntax
yacc [-vd] grammar

Description
The yacc command converts a context-free grammar into a set of tables for a simple
automaton which executes an left recursive parsing algorithm. The grammar may be
ambiguous; specified precedence rules are used to break ambiguities.

The output file, y . tab. c, must be compiled by the C compiler to produce a
program yyparse. This program must be loaded with the lexical analyzer program,
yylex, as well as main and yyerror, an error handling routine. These routines must be
supplied by the user; lex (1) is useful for creating lexical analyzers usable by
yacc.

Options

-d Writes all define statements to y . tab. h file. This allows source files other
than y. tab. c to access the token codes.

-v Writes description of parsing tables and report of grammatical conflicts to
y. output file.

Diagnostics
The number of reduce-reduce and shift-reduce conflicts is reported on the standard
output; a more detailed report is found in the y. output file. Similarly, if some
rules are not reachable from the start symbol, this is also reported.

Restrictions

Files

Because file names are fixed, at most one yacc process can be active in a given
directory at a time.

y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp, yacc.acts temporary files

See Also
lex(l)
"YACC - Yet Another Compiler Compiler" ULTRIX Supplementary Documents Vol.
II: Programmer

Commands 1-779

yes(1)

Name
yes - be repetitively affinnative

Syntax
yes [arg]

Description
The yes command repeatedly outputs "y". If arg is given, that argument is output
repeatedly. Tenninate the yes command with <CTRL/C>

1-780 Commands

Name

Syntax

ypcat - print values from a YP data base

ypcat [-k] [-t] [-d domainname] mname
ypcat -x

ypcat{1yp)

Description
The ypcat command prints values stored in a yellow pages (YP) map specified by
mname, which may be either a mapname or a map nickname.

To look at the network-wide password database, passwd.byname, with the nickname
passwd, type:

ypcat passwd

Options

-d domainname
Displays infonnation on the domain specified by domainname.

-k Displays keys for maps in which values are null or key is not part of the value.

-t Inhibits translation of mname to mapname. For example,

ypcat -t passwd

will fail because there is no map named passwd, whereas

ypcat passwd

will be translated to

ypcat passwd.byname.

-x Displays map nickname table. This lists the nicknames (mnames) the command
knows of, and indicates the mapname associated with each nickname.

See Also
domainname(lyp), ypmatch(lyp), ypfiles(5yp), ypserv(8yp)

Commands 1-781

ypmatch (1 yp)

Name

Syntax

ypmatch - print the value of one or more keys from a yp map

ypmatch [-d domain] [-k] [-t] key ... mname
ypmatch -x

Description

The ypmatch command prints the values associated with one or more keys from the
yellow pages (YP) map (database) specified by a mname, which may be either a
mapname or a map nickname.

Multiple keys can be specified. After the key values and the map name have been
specified, ypma t ch searches the map for all of the specified keys. The specified
keys must be exact values in terms of capitalization and length. The ypmatch
command does not have a pattern matching capability. If ypmatch cannot match a
key, it produces a diagnostic message.

Options

-d Displays key values for specified domain.

-k Displays key, followed by a colon (:), before displaying value of the key. This is
useful if the keys are not duplicated in the returned values, or if the number of
specified keys is so large that the output is confusing.

-t Inhibits translation of nickname to mapname. For example,

ypmatch -t zippy passwd

fails because there is no map named passwd, while

ypmatch zippy passwd

succeeds because ypma t ch translates it to

ypmatch zippy passwd.byname.

-x Displays map nickname table. This option tells ypma t ch to list the nicknames
(mnames) with their associated mapnames.

See Also
ypfiles(5yp), ypcat(1 yp)

1-782 Commands

yppasswd (1 yp)

Name
yppasswd - change password in yellow pages (YP) service.

Syntax
yppasswd [name]

Description
The yppasswd command lets you change your password in the yellow pages (YP)
map, a network data base service. Only you or the superuser can change your YP
password.

When you enter the yppasswd command, the program prompts you for the old
password and then for the new password. Note that the passwords are not displayed
on the screen.

Next, the program asks you for the new password again, to verify that you have
typed it correctly. If you do not type the passwords correctly, you will receive an
error message after you enter the new password.

Your new yP password must meet one of the following requirements:

• It must be a combination of at least six alphanumeric characters, or

• It must be a minimum of four characters, with at least one being non
alphanumeric, such as a control sequence.

NOTE

The passwd command does not change the YP password. This
command only changes the local password file (/ etc/passwd) , and
not the YP master password file. See Chapter 3 of the Guide to the
Yellow Pages Service for further information.

Diagnostics

Please use a longer password
Your new password does not meet the minimum length requirement.

Mismatch- password unchanged
You misspelled your new password or its verification.

couldn't change passwd
Your new password can not be activated. It must be different from your old password
and your login name.

Commands 1-783

yppasswd (1 yp)

Files

/ etc/passwd Password file

/ et c / yp Yellow Pages directory

See Also
passwd(lyp), passwd(5yp), ypfiles(5yp), yppasswdd(8yp)
Guide to the Yellow Pages Service

1-784 Commands

Name

Syntax

ypwhich (1yp)

ypwhich - detennine which host is the current YP server or map master.

ypwhich [-d domain] [-VI] [-V2] [hostname]
ypwhich [-d domain] [-m mname] [-t]]
ypwhich -x

Description
The ypwhich command identifies the YP server that currently supplies yellow
pages services to a YP client. It also identifies which YP server is the master for a
map. If invoked without arguments, ypwhich returns the host name of the YP
server for the local machine. If hostname is specified, ypwhich checks that
machine to find out which YP master it is using.

Refer to ypfiles(5yp) and ypserv(8yp) for an overview of the yellow pages.

Options

-VI

-V2

Identifies which server is serving v.l YP protocol-speaking client processes.

Identifies which server is serving v.2 yP protocol-speaking client processes.

If neither version is specified, ypwhich attempts to locate the server that
supplies the current v.2 services. If there is no v.2 server currently bound,
ypwhich attempts to locate the server supplying the v.l services. Since YP
servers and yP clients are both backward compatible, the user need seldom be
concerned about which version is currently in use.

-d Uses domain instead of the current domain.

-mmname
Finds the master YP server for a map. No hostname can be specified with -me
The mname argument can be a mapname, or a nickname for a map.

-t Inhibits nickname translation and is useful if there is a mapname identical to a
nickname.

-x Displays the map nickname table. This option lists the nicknames (mnames)
that the command knows of, and indicates the mapname associated with each
nickname.

See Also
ypfiles(5yp), rpcinfo(8nfs), ypserv(8yp), ypsetup(8yp)

Commands 1-785

Special Characters

? command (TELNET), 1--690

? command (tftp), 1--698

Numbers

2780e emulator spooler, 1-2

See also 3780e emulator spooler

3780e emulator spooler, 1-3

See also 2780e emulator spooler

A

A C program checker

lint(l), 1-353

account command (ftp), 1-251

adb debugger, 1-5, 1-11

See also gcore command

addresses, 1-10

command list, 1-7, 1-10

core file, 1-5

diagnostics, 1-11

dyadic operators, 1--6

expressions, 1-5

monadic operators, 1--6

od command, 1-5

options, 1-5

restricted, 1-11

variables, 1-10

addbib program, 1-12

keyletters, 1-12

options, 1-12

admin command (sccs), 1-14 to 1-18, 1-599

See also delta command (sccs)

See also val command (sccs)

admin command (sccs) (cont.)

See also vc command (sccs)

options, 1-14

ali command, 1-19

alias command (csh), 1-128

alias command (mail), 1-396

See also unalias command (mail)

alias command (pdx), 1-507

aliases file

rebuilding, 1-463

alloc command (csh), 1-128

alternates command (mail), 1-396

anno command, 1-21

annotating messages, 1-21

append command (ftp), 1-251

apply program, 1-22

restricted, 1-22

apropos command, 1-23

ar program, 1-27

See also nm command

See also ranlib command

options, 1-27

restricted, 1-28

archive file

copying, 1-105, 1-107

maintaining, 1-27

ordering, 1-370

printing object files, 1-475

reconstructing, 1-557, 1-558

arithmetic language

See bc language

arithmetic package

See dc program

Index

as assembler, 1-33

as command (RISe), 1-29

ascii command (ftp), 1-251

ascii command (tftp), 1-698

assign command (pdx), 1-506

at command, 1-34

restricted, 1-35

auth database

examination, 1-628

shexp command, 1-628

awk programming language, 1-36, 1-38

See also nawk utility

B

See also sed stream editor

built-in functions, 1-37

restricted, 1-38

statement list, 1-36

basename command, 1-39

bc language, 1-40 to 1-42

See also dc program

dc program and, 1-41

restricted, 1-42

bdilf command, 1-43

See also diff command

bell command (ftp), 1-251

bg command (csh), 1-128

bibliography

creating, 1-12

editing, 1-12

finding references, 1-369

formatting, 1-586

indexing, 1-369

searching, 1-567

sorting, 1-646

bill' command, 1-44

binary command (ftp), 1-251

binary command (tftp), 1-698

binary file

finding printable strings, 1-656

installing, 1-292

sending in mail, 1-729

Index-2

binmail program, 1-45

See also mail program

command reference list, 1-45

options, 1-46

restricted, 1-46

blank

defined, 1-617

Bourne shell

sh command interpreter, 1-713

break command (csh), 1-128

break command (sh), 1-614

break command (System V), 1-623

breaksw command (csh), 1-128

broadcast message

sending, 1-759

bsf command (mt), 1-444

bsr command (mt), 1-444

burst command, 1-47

bye command (ftp), 1-251

c
e compiler

See cc compiler

C flow graph

See cHow command

e program

building cross-reference table, 1-157

creating error message file, 1-434

displaying call graph profile data and, 1-271

displaying on standard output, 1-56

formatting, 1-289 to 1-291

implementing shared constant strings, 1-777

verifying, 1-356

e shell

See csh command interpreter, 1-118

cache command (mt), 1-444

cal command, 1-49

restricted, 1-49

calendar

printing, 1-49

calendar command, 1-50

See also leave command

restricted, 1-50

call command (dbx), 1-173

call command (pdx), 1-506

capsar utility, 1-51

case command (csh), 1-129

case command (ftp), 1-251

case command (sh), 1-610

case command (System V), 1-618

cat command, 1-54

See also more command

catch command (dbx), 1-172

catpw command

reference page, 1-55

cb program, 1-56

cc compiler, 1-64 to 1-67

See also ctags command

See also ctrace debugger

See also cxref command

See also gprof command

See also ld command

See also lk command

See also mkstr command

See also prof command

See also xstr command

diagnostics, 1-153

options, 1-64 to 1-66, 1-745

restricted, 1-66

ccat command, 1-94

cd command (csh), 1-68, 1-129

cd command (ftp), 1-251

cd command (sh), 1-68, 1-614

cd command (System V), 1-68, 1-623

cdc command (sccs), 1-69, 1-70

restricted, 1-70

cdoc command, 1-71

cdup command (ftp), 1-251

cftow command, 1-73

options, 1-74

restricted, 1-74

changequote macro, 1-390

character

translating, 1-708

chdir command (csh), 1-129

chdir command (mail), 1-396

check command (sccs), 1-599

checknr command, 1-75

options, 1-75

chfn command, 1-77

See also finger command

restricted, 1-77

chgrp command, 1-78

See also install command

chmod command, 1-79, 1-81e

See also install command

restricted, 1-80

chsh program, 1-82

clean command (sccs), 1-599

clear command, 1-83

clhrdsf command (mt), 1-444

close command (ftp), 1-252

close command (TELNET), 1-689

clserex command (mt), 1-444

clsub command (mt). 1-444

cmp command. 1-84

col command. 1-85

restricted. 1-85

colcrt command. 1-86

See also ul command

colrm command. 1-87

column

filtering multiple. 1-85

removing from file, 1-87

comb command (sccs), 1-88

options, 1-88

restricted. 1-88

comm command, 1-90

command

applying to arguments, 1-22

executing later, 1-34

getting online information, 1-762

locating online information, 1-409, 1-765

showing executed, 1-337

timing, 1-701

comp command. 1-91

compact command, 1-94

comparing files with cmp, 1-84

comparing files with comm, 1-90

Index-3

compiler

creating, 1-779

compress command, 1-96, 1-98

compressing sparse data files, 1-596

connect command (tftp), 1-698

cont command (dbx), 1-172

cont command (pdx), 1-506

continue command (csh), 1-129

continue command (sh), 1-614

continue command (System V), 1-623

copy command (mail), 1-396

See also save command (mail)

copying sparse data files, 1-596

cord command, 1-100

cp command, 1-104

See also dd command

See also mv command

cpio command, 1-105, 1-106, 1-107

ar command, 1-105

function keys, 1-106

options, 1-105

restricted, 1-107

cpp command, 1-108, 1-111

cpustat command (SMP), 1-114

cr command (ftp), 1-252

crash dump

anyalyzing, 1-544

create command (sccs), 1-599

creating messages, 1-91

crypt command

encryption, 1-116

csh command interpreter, 1-118

See also echo command

argument list processing, 1-138

built-in commands, 1-128

command definition, 1-119

command input/output, 1-126

command substitution, 1-125

expressions, 1-127

file name substitution, 1-125

flow of control, 1-128

lexical structure, 1-118

non-built-in commands, 1-138

quoted strings and, 1-122

Index-4

csh command interpreter (cont.)

repeating commands, 1-120

reporting job status, 1-120

restricted, 1-143

running jobs, 1-119

signal handling, 1-139

substituting an alias, 1-122

variable substitution, 1-123, 1-125

variables, 1-135

csplit command, 1-144

ctags command, 1-146

options, 1-146

restricted, 1-147

ctc command, 1-149

ctcr command, 1-149

ctod command, 1-148

ctrace command, 1-150e

ctrace debugger, 1-149 to 1-154

diagnostics, 1-152

options, 1-149

restricted, 1-152

statement-by-statement control, 1-151

cu command, 1-702

cut command, 1-155

See also paste command

options, 1-155

cxref command, 1-157

D
date

printing, 1-158

setting, 1-158

showing, 1-756, 1-768

date command, 1-158, 1-15ge

diagnostics, 1-160c

field descriptors, 1-158

multiuser mode and, 1-160c

dbx command (RISe only), 1-161

dbx debugger, 1-170

See also gcore command

accessing source files, 1-174

adb debugger, 1-170

arguments, 1-170

dbx debugger (cont.)

command aliases, 1-174

executing commands, 1-171

machine-level commands, 1-176

miscellaneous commands, 1-176

options, 1-170

printing variables, 1-173

restricted, 1-177

dc program, 1-178

See also be language

diagnostics, 1-180

dd command, 1-181 to 1-183

diagnostics, 1-183

example, 1-182

options, 1-181 to 1-182

restricted, 1-183

debug command (ftp), 1-252

debugger

dbx command, 1-161

source-level, 1-161

decompressing sparse data files, 1-596

define macro, 1-390

deledit command (sees), 1-600

delete command (dbx), 1-172

delete command (ftp), 1-252

delete command (mail), 1-396

See also undelete command (mail)

delete command (pdx), 1-506

delget command (sees), 1-600

delta

defined, 1-598

delta command (sees), 1-184 to 1-186, 1-599

See also rmdel command (sees)

cdc command (sees), 1-69

keyletters, 1-184 to 1-185

restricted, 1-185

deroff interpreter, 1-187

restricted, 1-187

dfcommand

See also dumpfs command

dgate command, 1-190

dgated daemon, 1-190

diagnostics

explained, 1-1

diagnostics (cont.)

handling, 1-758

diction program, 1-191

restricted, 1-191

diff command, 1-192

diagnostics, 1-194

restricted, 1-193

difD command, 1-195

restricted, 1-196

diffmk command, 1-197

restricted, 1-197

diffs command (sees), 1-600

dir command (csh), 1-129

dir command (ftp), 1-252

dircmp command, 1-198

directory

comparing, 1-192

creating, 1-432

listing, 1-382

removing, 1-580

dirname command, 1-199

disconnect command (ftp), 1-252

disk

displaying free space, 1-188

displaying usage, 1-556

displaying used space, 1-188

reporting I/O statistics, 1-295

reporting statistics, 1-755

summarizing usage, 1-207

disk quota

displaying, 1-556

display command (TELNET), 1-690

display folders

pathnarne, 1-430

displaying folders, 1-243

dist command, 1-201

divert macro, 1-390

divnum macro, 1-391

dnl macro, 1-391

domain

defined, 1-204

getting name, 1-204

setting name, 1-204

Index-5

domainname command, 1-204

dp command (mail), 1-396

dtoc command, 1-205

du command, 1-207

restricted, 1-207

dump command (pdx), 1-507

dumpdef macro, 1-392

E
echo arguments, 1-209

echo command (csh), 1-129

echo command (general), 1-208

echo command (System V), 1-623

ed line editor, 1-210

command list, 1-213

constructing addresses, 1-212

constructing regular expressions, 1-210

diagnostics, 1-218

interrupt signal, 1-218

restricted, 1-218

edit command (mail), 1-396

edit command (pdx), 1-507

edit command (sccs), 1-599

editors

ed, 1-210

edit, 1-223

ex, 1-223

red,l-21O

sed,I-604

vi (screen), 1-749

egrep command, 1-276

else command (csh), 1-130

encryption

crypt command, 1-116

ex editor, 1-223

secret mail, 1-776

vi screen editor, 1-749

view command, 1-752

end command (csh), 1-130, 1-135

endif command (csh), 1-131

endnote

formatting, 1-567

Index-6

environment

printing variable values, 1-530

eor command (mt), 1-444

eotdis command (mt), 1-444

eoten command (mt), 1-444

error command, 1-220 to 1-222

options, 1-221

restricted, 1-222

error message

producing, 1-208

viewing in source code, 1-220 to 1-222

errprint macro, 1-392

eval command (csh), 1-129

eval command (sh), 1-614

eval command (System V), 1-623

evalmacro, 1-391

ex editor, 1-223

exec command (csh), 1-129

exec command (sh), 1-614

exec command (System V), 1-623

exit code

exit status, 1-1

exit command (csh), 1-129

exit command (mail), 1-396

exit command (sh), 1-614

exit command (System V), 1-624

exit status

defined, 1-1

expand command, 1-225

See also fold command

Expanding packed messages, 1-47

explain program, 1-191

export command (sh), 1-614

export command (System V), 1-624

expr command, 1-226

examples, 1-226

expression

taking arguments as, 1-226

extract utility, 1-228

eyacc compiler, 1-232

F

false command, 1-713

fg command (csh), 1-129

fgrep command, 1-276

file

See also specific files

appending, 1-688

backing up, 1-680 to 1-683

backing up multiple, 1-418

breaking into pieces, 1-652

changing tabs to blanks in, 1-225

combining, 1-300

comparing, 1-43, 1-84, 1-90, 1-192, 1-195,

1-197, 1-300, 1-641, 1-724

compressing, 1-94

converting, 1-181

converting to sccs format, 1-598e

copying, 1-104

copying portions, 1-677

copying remote, 1-559

cutting fields from, 1-155

determining extension, 1-233

displaying, 1-54, 1-94

displaying first lines, 1-279

dumping in various format, 1-490

finding, 1-234

finding executable, 1-767

finding pattern, 1-276, 1-368

getting block count, 1-673

getting character count, 1-760

getting line count, 1-760

getting word count, 1-760

listing information, 1-382

merging, 1-641

merging horizontally, 1-501

moving, 1-446

overwriting, 1-688

printing, 1-374

printing at line printer, 1-529

processing matching text, 1-36

removing, 1-580

renaming, 1-446

reversing lines, 1-577

file (cont.)

sending to remote host, 1-732

sorting, 1-641

specifying line width, 1-239

transferring, 1-251

transferring remote, 1-698

updating, 1-402

updating date, 1-707

xcpp file, 1-157

file command (general), 1-233

file command (mail), 1-396

See also folder command (mail)

file command (pdx), 1-507

file name

stripping affixes, 1-39

file transfer program

ftp program, 1-251

find command, 1-234

See also test command

finger command, 1-236

and the who command, 1-236

options, 1-236

restricted, 1-236

fix command (sees), 1-600

fmt text formatter, 1-238

See also pr command

fold command, 1-239

See also expand command

folder command, 1-240

folder command (mail), 1-397

folders

removing, 1-584

folders command, 1-243

folders command (mail), 1-397

footnote

formatting, 1-567

for command (sh), 1-610

for command (System V), 1-617

foreach command (csh), 1-130

fork

reporting, 1-755

form command (ftp), 1-252

Fortran program

breaking into separate files, 1-250

Index-7

forw command, 1-245

Forwarding messages, 1-245

from command (mail), 1-249, 1-397

fsf command (mt), 1-445

fsplit program, 1-250

fsr command (mt), 1-445

flp program, 1-251

See a/so rep command

command list, 1-251

file-naming conventions, 1-257

options, 1-258

parameters supported, 1-257

restricted, 1-258

f77 compiler

See a/so ctags command

See a/so gprof command

See also prof command

f77 program

displaying call graph profile data and, 1-271

G

gcore command, 1-260

gencat utility, 1-261

get command (flp), 1-252

get command (sccs), 1-263 to 1-268, 1-599

See a/so delta command (sees)

See also rmdel command (sees)

See a/so unget command (sees)

See a/so what command (sees)

auxiliary file list, 1-267

identification keywords, 1-266

options, 1-263

restricted, 1-267

get command (tftp), 1-698

getopt command, 1-269

glob command (csh), 1-130

glob command (flp), 1-252

goto command (csh), 1-130

gprof command, 1-271

options, 1-271

restricted, 1-272

graph

drawing, 1-274

Index-8

graph command, 1-274

See also plot command

See a/so spline command

options, 1-274

restricted, 1-275

graphics filter, 1-523

grep command, 1-276

See also cut command

See a/so look command

See also sed stream editor

diagnostics, 1-277

options, 1-277

restricted, 1-277

gripe command (pdx), 1-507

group

displaying memberships, 1-278

group ID

changing, 1-78

groups command, 1-278

H

hard link

defined, 1-362

hash command (flp), 1-252

hash command (System V), 1-624

hashstat command (csh), 1-130

head command

See a/so tail command, 1-279

headers command (mail), 1-397

help command (mail), 1-397

help command (pdx), 1-507

history command (csh), 1-130

hold command (mail), 1-397

host

printing, 1-281

host ID

See a/so host name

printing in hexadecimal, 1-280

setting in hexadecimal, 1-280

host name

See also host ID

setting, 1-281

hostid command, 1-280

hostname command, 1-281

ic utility, 1-282

id command, 1-286

if command (csh), 1-130

if command (sh), 1-610

if command (System V), 1-618

ifdef macro, 1-390

ifelse macro, 1-391

ignore command (dbx), 1-172

ignore command (mail), 1-397

inc command, 1-287

include macro, 1-391

Incorporating mail, 1-287

incr macro, 1-391

indent command

comments recognized, 1-290

diagnostics, 1-291

multiline expressions and, 1-290

options, 1-289, 1-289 to 1-291

restricted, 1-291

setting default formatting, 1-290

index command, 1-549

index macro, 1-391

indxbib command, 1-369

info command (sccs), 1-599

install command, 1-292

Internet File Transfer Protocol interface

ftp program, 1-251

interprocess communication package

reporting status, 1-297

intro(l) keyword, 1-1

invcutter command, 1-293

I/O statistics

See also disk

See also terminal

reporting, 1-295

iostat command

See also netstat command

See also vmstat command, 1-295

ipcrm command, 1-296

ipcs command

J

column headings listed, 1-297

options, 1-297, 1-297

jobs command (csh), 1-131

join command

K

comm command, 1-300, 1-300

restricted, 1-301

sort command, 1-300

kill command (csh), 1-131

kill command (general), 1-303

restricted, 1-303

kits

L

setld format distribution kits, 1-304

updating master inventory, 1-464

last command

See also lastcomm command, 1-336

lastcomm command, 1-337

See also last command

lcd command (ftp), 1-252

ld command, 1-347

See also lk command

See also ranlib command

See also strip command

options, 1-347

restricted, 1-349

leave command, 1-350

len macro, 1-391

lex program generator, 1-351

options, 1-351

lexical analysis program

example, 1-351

generating, 1-351

library file

archive file, 1-27

Index-9

limit command (csh), 1-131

line command, 1-352

line feed

reversing, 1-85

link

creating, 1-362

defined, 1-362

link editor (general)

See ld command

link editor (V AX FORTRAN)

See 1k command

lint command, 1-356

exit system call and, 1-357

options, 1-356

list command (pdx), 1-507

Listing formatted messages, 1-425

Ik command, 1-359

See also ranIib command

See also strip command

options, 1-359

restricted, 1-361

In command, 1-362

options, 1-362

Location Broker

lb_admin, 1-338

lock

command, 1-363

logging in

See also password, 1-364

to remote system, 1-578, 1-702

login

printing last, 1-336

login command (csh), 1-132

login command (general)

dgate command, 1-190

diagnostics, 1-365, 1-364

login command (sh), 1-614

login shell field

changing, 1-82

login time

showing, 1-768

logname command, 1-367

logout command (csh), 1-132

Index-10

look command, 1-368

lookbib command, 1-369

lorder command, 1-370

See also ranlib command

See also tsort command

Ip command, 1-371

Ipq command, 1-372

Ipr command, 1-374

See also lpq command

See also lprm command

See also print command (general)

Iprm command, 1-379

diagnostics, 1-380

restricted, 1-379

Ipstat command, 1-381

Is command (ftp), 1-252

Is command (general), 1-382

options, 1-382

restricted, 1-383

Itf command, 1-384

diagnostics, 1-387

keys, 1-384

options, 1-384, 1-387

M
m4 macro processor

macro list, 1-390, 1-389

macdef command (ftp), 1-253

machine command, 1-393

magnetic tape

labeling, 1-384

manipulating, 1-444

mail

creating a distribution list, 1-395

deleting, 1-394

ending a session, 1-395

formatting, 1-238

listing header lines in mailbox file, 1-249

printing, 1-394, 1-531

processing for sendmail daemon, 1-582

reading, 1-394

replying to, 1-395

reporting incoming, 1-44

mail (cont.)

sending, 1-45, 1-394, 1-401

sending binary file, 1-729

specifying messages, 1-394

undeleting, 1-394

mail aliases

listing, 1-19

mail command (mail), 1-397

mail program, 1-401

See also biff command

See also fmt text formatter

See also from command (mail)

See also prmail command

See also talk program

See also uuencode command

See also write command

command list, 1-396

flags, 1-395, 1-394

tilde escapes, 1-399

make command, 1-402

make command (System V)

options, 1-402

make keyword, 1-402

maketemp macro, 1-391

man command, 1-409

See also apropos command

See also man macro package

See also ul command

See also whatis command (general)

options, 1-410

mark command, 1-415

mdelete command (ftp), 1-253

mdir command (ftp), 1-253

mdtar command

See also tar command

diagnostics, 1-420

function modifiers, 1-418

key list, 1-418, 1-418

restricted, 1-420

memory

reporting statistics, 1-754

mesg command, 1-421

See also talk program

message

copying to another user, 1-772

interactive, 1-678

prohibiting, 1-421

replying to, 1-572

show next message, 1-466

show previous message, 1-528

message queue

removing, 1-296

reporting status, 1-297

Message sequences, 1-415

messages

check for, 1-441

filing in other folders, 1-570

select by content, 1-515

mget command (ftp), 1-253

MH overview, 1-422

mh summary, 1-422

mhl command, 1-425

mhmail command, 1-429

mhpath command, 1-430

mkdir command, 1-432

See also rmdir command

mkdir command (ftp), 1-253

mkstr command, 1-434

See also xstr command

mls command (ftp), 1-253

mode

changing, 1-79

mode command (ftp), 1-253

mode command (TELNET), 1-689

mode command (tftp), 1-698

more command, 1-438 to 1-440

options, 1-438

moving sparse data files, 1-596

mput command (ftp), 1-253

msgchk command, 1-441

msh command, 1-442

mt program, 1-444, 1-445e

command list, 1-444

mv command, 1-446

Index-11

N

name

defined, 1--617

nawk utility

arrays, 1-448

built-in functions, 1-452, 1-453

described, 1-447

restrictions, 1-457

statement list, 1-455

user-defined functions, 1-455

netstat command, 1-461

See also iostat command

See also vmstat command

options, 1-462

network

displaying status, 1-461

interface display, 1-461

routing table display, 1-461

Network Interface Definition Language Compiler

nidI, 1-468

newaliases command, 1-463

newinv command, 1-464

next command, 1-466

next command (dbx), 1-173

next command (mail), 1-397

next command (pdx), 1-506

nice command (csh), 1-132

nice command (sh), 1-467

nl command, 1-471

nm command

diagnostics, 1-475

options, 1-475, 1-475

nmap command (ftp), 1-253

nocache command (mt), 1-445

nohup command (csh), 1-132

nohup command (sh), 1-467

notify command (csh), 1-132

nroft' text processor

See also checknr command

See also colcrt command

See also rofibib text processor

See also soelim command

See also tbl preprocessor

Index-12

nroft'text processor (cont.)

options, 1-477

previewing output, 1-86

refer preprocessor, 1-567, 1-477

nslookup command, 1-479

nsquery command, 1-485

ntp command, 1-487

sample output, 1-488

ntrans command (ftp), 1-254

o
object file

combining, 1-347, 1-359

finding printable strings, 1--656

ordering, 1-370, 1-718

printing size, 1--634

od command

See also strings command

options, 1-490, 1-490

omine command (mt), 1-445

onintr command (csh), 1-132

online information

accessing, 1-23

open command (ftp), 1-254

open command (TELNET), 1--689

otalk program, 1--678

p

pack command, 1-494

packf command, 1-496

page

reporting statistics, 1-755

page command, 1-438

page size

printing, 1-497

pagesize command, 1-497

parameter

defined, 1--611, 1--617

Pascal compiler

error recovery, 1-232, 1-503

Pascal execution profiler

See pxp command

Pascal interpreter

See px command

Pascal interpreter and executer

See pix command

Pascal interpreter code translator

See pi code translator

See pix command

Pascal program

creating line-numbered listing, 1-555

debugging, 1-505

displaying call graph profile data and, 1-271

interpreting, 1-513, 1-519, 1-552

listing cross-references, 1-555

merging compiled modules, 1-525

profiling, 1-553

passive verb

finding, 1-670

passwd command, 1-498

See also yppasswd command, 1-498

passwd file (general)

user name and, 1-77

password

changing, 1-498

changing in yellow pages, 1-783

creating, 1-498

printing with catpw, 1-55

paste command

diagnostics, 1-502

examples, 1-501

options list, 1-501, 1-501

pattern

matching, 1-612, 1-620

pc compiler

See also ctags command

See also gprof command

See also ld command

See also make command (general)

See also pdx debugger

See also pi code translator

See also pix command

See also pmerge command

See also prof command

See also px command

See also pxp command

pc compiler (cont.)

See also pxref program

options, 1-503, 1-503

restricted, 1-504

pdx debugger, 1-505

See also pi code translator

instructor-level commands, 1-507

option, 1-508

restricted, 1-508

pg command, 1-509

pi code translator, 1-513

See also pix command

See also pmerge command

See also px command

diagnostics, 1-514

flags, 1-513

restricted, 1-513

pi command (pdx), 1-507

pick command, 1-515

pipeline

defined, 1-610, 1-617

lists, 1-610

pipelines

lists, 1-617

pix command, 1-519

See also px command

plot command, 1-523

See also prof command

See also spline command

See also term command

pmerge command, 1-525

popd command (csh), 1-132

pr command

See also print command (general)

preserve command (mail), 1-397

See also hold command (mail)

prev command, 1-528

print command, 1-526

print command (general), 1-529

print command (mail), 1-394, 1-397

See also ignore command (mail)

See also print command (mail)

print command (pdx), 1-506

Index-13

print queue

removing jobs, 1-379

printenv command, 1-530

printer

See also printer queue

changing tabs to blanks for, 1-225

folding text lines for, 1-239

status information, 1-381

printer queue

displaying, 1-372

priority

setting low, 1-467

prmail command, 1-531

process

getting core image, 1-260

printing status, 1-544, 1-756, 1-768

reporting statistics, 1-754

suspending, 1-635

terminating, 1-303

process ID

getting, 1-544

prof command, 1-532, 1-536

See also gprof command

options, 1-536

restricted, 1-536

profile data

analyzing, 1-532

profile file

displaying data, 1-536

program

executing later, 1-34

locating binary, 1-765

locating manual, 1-765

locating source, 1-765

updating, 1-402

prompt command (ftp), 1-254

prompter editor front-end, 1-538

proxy command (ftp), 1-254

prs command, 1-543e

prs command (sees), 1-541

options, 1-541

ps command

See also w command

field list, 1-545

Index-14

ps command (cont.)

options, 1-544, 1-544

restricted, 1-545

ptx command

options, 1-549, 1-549

restricted, 1-550

pushd command (csh), 1-132

put command (ftp), 1-255

put command (tftp), 1-699

pwd command (general)

See also dirs command (csh), 1-551

pwd command (nfs), 1-255

pwd command (System V), 1-624

px command, 1-552

See also pi code translator

See also pix command

pxp command, 1-553

options, 1-553

restricted, 1-554

pxref program, 1-555

Q

quit command (mail), 1-397

quit command (nfs), 1-255

quit command (pdx), 1-507

quit command (TELNET), 1-689

quit command (tftp), 1-699

quota command, 1-556

quote command (ftp), 1-255

R

ranlib command, 1-557, 1-558

See also lorder command

rcp command, 1-559

rcvstore command, 1-561

read command (sh), 1-614

read command (System V), 1-624

readability

analyzing, 1-670

readonly command (sh), 1-614

readonly command (System V), 1-624

recv command (ftp), 1-255

red line editor, 1-210

redistributing messages, 1-201

refer preprocessor, 1-567

See also indxbib command

See also lookbib command

addbib program, 1-567

lookbib command, 1-567

options, 1-567

restricted, 1-568

roffbib text processor, 1-567

sortbib command, 1-567

Reference Pages Manual

accessing on line, 1-409

printing, 1-409

refile command, 1-570

rehash command (csh), 1-133

relational data base operator, 1-300

relocation bits

removing, 1-658

reminder service

creating a calendar, 1-50

reminding you to leave, 1-350

remote system

logging in, 1-190

remotehelp command (ftp), 1-255

rename command (ftp), 1-255

repeat command (csh), 1-133

repl command, 1-572

reply command (mail), 1-398

rerun command (dbx), 1-171

reset command, 1-576

See also tset command

reset command (ftp), 1-255

respond command (mail), 1-398

See also reply command (mail)

return code

exit status, 1-1

return command (dbx), 1-173

return command (System V), 1-624

rev command, 1-577

rewind command (mt), 1-445

rewolffl command (mt), 1-445

rexmt command (tftp), 1-699

rlogin command, 1-578

See also dgate command

See also rcp command

See also tip command

rlogin command (general)

See also rlogin command

rm command, 1-580

confirming file removal, 1-580e

examining files, 1-581e

options, 1-580

removing file, 1-580e

rmail command, 1-582

rmdel command (sees), 1-583

rmdir command (ftp), 1-255

rmdir command (general), 1-580

rmf command, 1-584

rmm command, 1-585

roftbib text processor, 1-586

rsh program, 1-588

See also rcp command

See also rlogin command

options, 1-588

restricted, 1-588

rsh5 program, 1-617

restricted, 1-626

run command (dbx), 1-171

run command (pdx), 1-505

run queue

showing average, 1-768

runique command (ftp), 1-255

ruptime command

description, 1-590

options, 1-590

restrictions, 1-590

s
sact command (sees), 1-593

save command (mail), 1-398

scan command, 1-594

scat command, 1-596

sees file

changing delta commentary, 1-69

Index-15

sees file (cont.)

changing parameters, 1-14 to 1-18

comparing, 1-601

creating, 1-14 to 1-18

data keywords, 1-541

getting, 1-263 to 1-268

identifying, 1-761

printing, 1-541, 1-593

reconstructing, 1-88

recording changes, 1-597

removing delta, 1-583

ungetting, 1-723

validating, 1-737

version control, 1-739

sees identification string

See SID

sees preprocessor, 1-597

See also get command (sees)

See also sees file

See also sccshelp command

changing file, 1-184 to 1-186

command list, 1-599

keywords, 1-600

sccsdiff command, 1-601

sccsdiff command (sees), 1-600

sccshelp command, 1-600, 1-602

script command, 1-603

sed command, 1-604

semaphore set

removing, 1-296

reporting status, 1-297

send command, 1-607

send command (ftp), 1-255

send command (TELNET), 1-690

send port command (ftp), 1-256

set command (csh), 1-133

set command (mail), 1-398

See also unset command (mail)

options, 1-400

set command (sh), 1-614

set command (System V), 1-624

set command (TELNET), 1-691

setenv command (csh), 1-133

Index-16

setld

format distribution kits, 1-304

newinv command, 1-464

Setting current folder, 1-240

sh command (pdx), 1-507

sh command interpreter, 1-610, 1-616

See also echo command

See also false command

See also wait command (general)

command substitution, 1-611

directing input, 1-612

directing output, 1-612

environment, 1-613

executing commands, 1-614

parameter substitution, 1-611

prompts, 1-612

quoting characters, 1-612

signals, 1-614

special commands, 1-614

shared memory

reporting status, 1-297

shared memory ID

removing, 1-296

shell command (mail), 1-398

shell command interpreter

diagnostics, 1-616

restricted, 1-616

shexp command, 1-628

shift command (csh), 1-133

shift command (sh), 1-615

shift command (System V), 1-625

shift macro, 1-391

show command, 1-630

shS command interpreter, 1-617 to 1-627

command substitution, 1-618

comments, 1-618

directing input, 1-621

directing output, 1-621

environment, 1-622

executing commands, 1-622

exit status, 1-626

invoking, 1-625

parameter substitution, 1-618

prompts, 1-621

shS command interpreter (cont.)

restricted, 1-626

signals, 1-622

special characters and, 1-621

SID

defined, 1-598

simple command

defined, 1-610, 1-617

sincIude macro, 1-391

size command (general), 1-634

size command (mail), 1-398

sleep command, 1-635

slocal command, 1-636

SMP

reporting CPU statistics, 1-114

soelim command, 1-640

Software kits

producing, 1-684

producing inventory records for, 1-293

sort command, 1-641, 1-642e

See also look command

See also uniq command

diagnostics, 1-642

options, 1-641

restricted, 1-642

sortbib command, 1-646

sortm command, 1-647

sortS command, 1-643

source code control system preprocessor

See sccs preprocessor

source command (csh), 1-133

source command (mail), 1-398

source command (pdx), 1-507

sparse data files, 1-596

spell command, 1-649

options, 1-649

restricted, 1-650

spellin command, 1-649

spellout command, 1-649

spline command, 1-651

split command, 1-652

status command (dbx), 1-172

status command (ftp), 1-256

status command (mt), 1-445

status command (pdx), 1-506

status command (TELNET), 1-689

status command (tftp), 1-699

step command (dbx), 1-172

step command (pdx), 1-506

stop command (csh), 1-134

stop command (dbx), 1-172

stop command (pdx), 1-506

stopi command (pdx), 1-507

stream text editor, 1-604

strextract utility, 1-654

string

defined, 1-656

strings command, 1-656

strip command, 1-658

strmerge utility, 1-659

struct command (ftp), 1-256

stty command, 1-662

See also tset command

See also tty command

style program, 1-670

See also diction program

su command, 1-671

substr macro, 1-391

sum command, 1-673

See also wc command

sunique command (ftp), 1-256

superblock

updating, 1-675

suspend command (csh), 1-134

switch command (csh), 1-134

symbol table

printing, 1-475

removing, 1-658

updating, 1-674

symbol type

reference list, 1-475

symbolic link, 1-362

symorder command, 1-674

sync command, 1-675

syscmd macro, 1-391

system

See also host ID

Index-17

system (cont.)

See also host name

changing user information, 1-77

listing user information, 1-236

reporting statistics, 1-754

showing login time, 1-756

showing run queue average, 1-725, 1-756

showing uptime, 1-725, 1-756, 1-768

showing user activity, 1-756, 1-768

showing users, 1-726, 1-756, 1-768

system call tracer, 1-709

T
tab character

changing to spaces, 1-225

table

formatting, 1-686

tabs command

See also term command, 1-676

tags file

See ctags command

tail command, 1-677

talk program, 1-678

See also mesg command

See also write command

tar command

See also ar program

See also mdtar command

diagnostics, 1-683

keys, 1-680

options, 1-680 to 1-682, 1-680 to 1-683, 1-682e

restricted, 1-683

tarsets command, 1-684

tbl preprocessor

eqn and, 1-687, 1-686

tee command, 1-688

tell command (sees), 1-599

TELNET protocol

See telnet user interface

telnet user interface, 1-689

command list, 1-689

terminal

capturing session in a file, 1-603

Index-18

terminal (cont.)

clearing screen, 1-83

getting pathname, 1-719

locking, 1-363

reporting I/O statistics, 1-295

resetting, 1-576

setting, 1-714 to 1-717

setting tabs, 1-676

showing name, 1-756, 1-768

underlining and, 1-721

viewing one screenful at a time, 1-438 to 1-440

Terminals

setting input/output characteristics, 1-662

terminfo compiler

tic, 1-700

test command, 1-694

See also find command

command programming language, 1-696

test command (System V), 1-625

text processor

for monospace output, 1-477

tftp program, 1-698

authentication and, 1-699

tic

terminfo compiler, 1-700

time

setting, 1-158

showing, 1-756, 1-768

time command, 1-701

printing, 1-158

time command (csh), 1-134

timeout command (tftp), 1-699

times command (sh), 1-615

times command (System V), 1-625

tip command, 1-702

See also rlogin command

tilde escapes, 1-702

variables, 1-704, 1-706

toggle command (TELNET), 1-691

top command (mail), 1-398

touch command, 1-707

tr command, 1-708

trace command (dbx), 1-171

trace command (ftp), 1-256

trace command (general), 1-709

trace command (pdx), 1-505

trace command (tftp), 1-699

tracei command (pdx), 1-507

trans utility, 1-711

translit macro, 1-391

trap command (sh), 1-615

trap command (System V), 1-625

Trivial File Transfer Protocol

tftp program, 1-698

user interface, 1-698

true command, 1-713

tset command, 1-714 to 1-717, 1-716

See also term command

options, 1-715

restricted, 1-717

tsort command, 1-718

tty command, 1-719

type command (ftp), 1-256

type command (mail), 1-398

See also print command (mail)

type command (System V), 1-625

typescript file

creating, 1-603

u
uac command, 1-720

ul command, 1-721

uUmit command (System V), 1-625

umask command (csh), 1-134

umask command (sh), 1-615

umask command (System V), 1-625

unalias command (csh), 1-134

unalias command (mail), 1-398

uncompact command, 1-94

undefine macro, 1-390

undelete command (mail), 1-398

undivert macro, 1-390

unedit command (sccs), 1-599

unexpand command, 1-225

unget command (sccs), 1-723

unhash command (csh), 1-134

uniq command, 1-724

See also cmp command

See also comm command

See also diff command

See also diff3 command

See also diffmk command

See also join command

See also sccsdiff command

Universal Unique Identifiers

uuid~en, 1-730

unlimit command (csh), 1-134

unset command (csh), 1-135

unset command (mail), 1-398

unset command (System V), 1-625

unsetenv command (csh), 1-135

uptime command, 1-725

See also w command

user command (ftp), 1-256

user ID

changing temporarily, 1-671

showing, 1-768

showing effective, 1-769

users command, 1-726

See also finger command

See also who command

uucp utility, 1-727

See also rmail command

See also uusend command

See also uustat program

displaying command status, 1-733

displaying connection status, 1-733

options, 1-727

remote system pathnames and, 1-728w

restricted, 1-728

uudecode command, 1-729

uuencode command, 1-729

uusend command, 1-732

uustat program

options, 1-733

uux command, 1-735

Index-19

v
val command (sees), 1-737

interpreting 8-bit exit code, 1-737

key letters , 1-737

processing multiple files, 1-738

restricted, 1-738

VAXC

vcc compiler, 1-742

VAX·ll assembler

See as assembler

vc command (sees), 1-739

exit codes, 1-741

options, 1-739

vee compiler, 1-742

default macros, 1-745

default symbols, 1-745

files, 1-746

options, 1-742

restricted, 1-746

vdoc command, 1-747

verbose command (ftp), 1-256

verbose command (tftp), 1-699

version control statement, 1-739

vfork

reporting, 1-755

vi (screen) editor, 1-749

vi screen editor

See also fmt text formatter

view command, 1-752

encryption, 1-752

virtual memory

reporting statistics, 1-754

visual command (mail), 1-398

vmstat command, 1-754

See also iostat command

See also netstat command

format fields, 1-754

w
w command, 1-756

options, 1-756

output fields, 1-756

Index-20

w command (cont.)

restricted, 1-756

wait command (csh), 1-135

wait command (general), 1-758

wait command (sh), 1-615

wait command (System V), 1-625

wall command, 1-759

See also mesg command

See also write command (general)

we command, 1-760

See also sum command

weof command (mt), 1-444

what command (sees), 1-599, 1-761

whatis command (general), 1-762

whatis command (pdx), 1-506

whatnow command, 1-763

where command (pdx), 1-507

whereis command, 1-765

example, 1-765

which command (csh), 1-767

which command (pdx), 1-506

while command (csh), 1-135

while command (sh), 1-611

while command (SystemV), 1-618

who command, 1-768

See also finger command

See also users command

See also whoami command

whoami command, 1-769

working directory

changing, 1-68

printing pathname, 1-551

write command

See also mesg command

write command (general), 1-772

See also talk program

See also wall command

write command (mail), 1-398

See also save command (mail)

x
xargs command, 1-773

xd command (pdx), 1-508

xi command (pdx), 1-508

xit command (mail), 1-399

See also exit command (mail)

xsend command

secret mail, 1-776

xstr command, 1-777

v

See also mkstr command

restricted, 1-778

yacc compiler, 1-779

See also eyacc compiler

See also lex program generator

yellow pages service

changing password in, 1-783

yes command, 1-780

VPmap

printing key values, 1-782

printing values, 1-781

YP server

determining, 1-785

ypcat command, 1-781

ypmatch command, 1-782

yppasswd command, 1-783

ypwhich command, 1-785

z
z command (mail), 1-399

z command (TELNET), 1-689

Index-21

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

* Internal

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Reference Pages Section 1: Commands M - Z

AO-PCOWA-T1

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of!

What do you like best about this manual? _____________________ _

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Namerritle _____________________ _ Dept. ______ _
_________________________ Drue _____ _

Company

Mailing Address
____________ Email ___________ Phone ______ _

I

I
I
I
I
I
I
I
I

IIIIDIITM -----------------------------[[l-[ll----------;;~;;;~----I
- - - - -_. Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1111111111111111111111 lid 1IIIIh II II 1111 II 111111111

. - - - - - - -. Do Not Tear - Fold Here

IF MAILED IN THE
UNITED STATES

Cut
Along
Dotted
Line

Reader's Comments ULTRIX
Reference Pages Section 1: Commands M - Z

AD-PCOWA-T1

Please use this postage-paid fonn to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Perfonnance Report (SPR) service, submit your
comments on an SPR fonn.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough infonnation) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find infonnation) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name/fitle ______________________ _ Dept.
_______________________________ Dme _________________ _

Company

Mailing Address
_____________ Email Phone

I
I
I
I
I
I
I
I

- - - - - -. Do Not Tear - Fold Here and Tape

1lIllamo 1M -----------------------------Ill-Ill----------::::::~E----I
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFlWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

II h 1IIIIIIIh U diu I ddh 1IIIIIIIh 1IIIIIIIIIIni

-- - ----. Do Not Tear- Fold Here

I
I
I
I
I
1

Cut :
Along ~
Dotted'
Line

