
ULTRIX/SQL

UL TRIX/SQL Reference Manual

Order Number: AA-PBZ6A-TE

UL TRIX/SQL Reference Manual

Order Number: AA-PBZ6A-TE

June 1990

Software Version:

Operating System and Version:

UL TRIXlSQL Version 1.0

UL TRIX Version 4.0 or higher

ULTRIX

This manual contains reference information about interactive SQL statements and
ULTRIX/SQL operating system commands. ULTRIX/SQL Version 1.0 is based on Release
6.2 of INGRES.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1990
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

IJDmaOID
CDA
DDIF
DDIS
DEC
DECnet
DECstation

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

UL TRIX Worksystem Software
VAX
VAXstation
VMS
VMS/ULTRIX Connection
VT
XUI

UNIX is a registered trademark of AT&T in the USA and other countries.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

INGRES is a trademark of Ingres Corporation.

Contents

Preface

Purpose of this Document

Intended Audience

Structure of This Manual

Compatibility with Remote Access to RdbNMS

Associated Documents

Conventions

References to Products

1 ULTRIX/SQL Syntax

1.1 Introduction... 1-1

1.2 Notation and Terminology ... 1-1

1.3

1.2.1 Key Words .. 1-1

1.2.2 Names.. 1-2

1.2.3 Comments ... 1-2

1.2.4 Statement Separator ... 1-2

Data Types .. .

1.3.1 Fixed-Length Character Strings

1.3.2 Varying-Length Character Strings

1.3.3 Integer Data Types .. .

1.3.4 Floating-Point Numeric Data Types

1-2

1-3

1-3

1-4

1-4

1.3.5 Dates... 1-5

1.3.5.1 Date Output... 1-5
1.3.5.2 Date Input ... 1-5
1.3.5.3 International Date Formats.. 1-8

1.3.6 Money ... 1-8

1.3.7 Storage Fonnats for Data Types .. 1-9

1.4 Constants 1-10

1.4.1 String Constants 1-10

1.4.2 Numeric Constants ... 1-11

1.4.3 The null Constant.. 1-11

1.5 Structured Data............ ... 1-11

1.5.1 Tables... 1-11

1.5.2 Columns... 1-11

1.5.3 Rows.. 1-12

1.5.4 A Sample Database... 1-12

1.5.5 Correlation Names .. 1-12

1.5.6 Groups ... 1-14

1.6 Expressions.. 1-14

1.6.1 Columns... 1-15

1.6.2 Parentheses....... ... 1-15

1.6.3 Arithmetic Operations 1-15

1.6.3.1 Operators... 1-15
1.6.3.2 Arithmetic Operations on Dates.. 1-16

1.6.4 Type Conversion... 1-17

1.6.4.1 Default Numeric Type Conversion
1.6.4.2 Numeric Overflow
1.6.4.3 Default Character Type Conversion
1.6.4.4 Explicit Type Conversion Functions .. .

1-17
1-18
1-18
1-19

1.6.5 Scalar Functions 1-19

1-20
1-20
1-23
1-25

1.6.5.1
1.6.5.2
1.6.5.3
1.6.5.4

Numeric Functions .. .
String Functions
Date Functions
The Ifnull Function

1.6.6 Dbmsinfo() Function... 1-25

1.6.7 Set Functions... 1-26

1.6.7.1 The count Function... 1-27
1.6.7.2 Restrictions on the Use of Set Functions.. 1-28
1.6.7.3 ifnull and Set Functions ... 1-28

1.7 Search Conditions... 1-29

1.7.1 Subqueries... 1-30

1.7.2 Comparison Predicate .. 1-31

iv Contents

1.7.3 like Predicate... ... 1-31

1.7.4 between Predicate... 1-32

1.7.5 in Predicate ... 1-33

1.7.6 any-or-all Predicate .. 1-33

1.7.7 exists Predicate........................ 1-34

1.7.8 is null Predicate .. 1-34

1.8 Data Manipulation Statements... 1-35

1.8.1 Select... 1-35

1.8.2 Update ... 1-37

1.8.3 Delete .. 1-37

1.8.4 Insert.. 1-37

1.9 Relational Concepts.. 1-38

1.9.1 Expressing Relational Operators in SQL 1-38

1.9.1.1 Projection.. 1-38
1.9.1.2 Restriction... 1-39
1.9.1.3 Cartesian Product.. 1-39
1.9.1.4 Join.. 1-39

1.9.2 Nulls and Defaults.. 1-40

1.10 Transactions 1-41

1.10.1 Transaction Control Statements 1-41

1.1 0.2 Committing Transactions 1-41

1.10.3 Transaction Rollback ... 1-42

1.10.4 Interrupt and Timeout Handling in Transactions ... 1-42

1.10.5 SQL Transaction Semantics... 1-42

1.11 Database Procedures 1-43

1.11.1 Using Database Procedures ... 1-43

1.11.1.1 Permissions on Procedures 1-44
1.11.1.2 Error Handling 1-44
1.11.1.3 Message Handling ... 1-45

1.11.2 Creating and Executing a Procedure................................... 1-45

1.11.2.1 Creating a Procedure....... 1-45
1.11.2.2 Executing a Procedure ... 1-47

1.11.3 Dropping a Procedure... ... 1-47

1.12 Multi-File System Databases... 1-47

1.12.1 ULTRIX/SQL Locationnames and Areas 1-47

Contents v

1.12.2 Assigning Database Tables to Single Areas ... 1-48

1.12.2.1 Relocating the Database User Tables.. 1-48
1.12.2.2 Multi-Location Tables.. 1-48

2 ULTRIX/SQL Statements

2.1 Introduction 2-1

2.2 commit ... 2-2

2.3 copy .. 2-3

2.4 create index 2-12

2.5 create integrity .. 2-15

2.6 create procedure 2-16

2.7 create table....................... 2-19

2.8 create view ... 2-22

2.9 declare.. 2-24

2.10 delete.. 2-25

2.11 drop .. 2-26

2.12 drop integrity ... 2-27

2.13 drop permit .. 2-28

2.14 drop procedure ... 2-29

2.15 grant ... 2-30

2.16 help... 2-31

2.17 if-then-else ,... 2-34

2.18 insert ... 2-37

2.19 message ... 2-39

2.20 modify 2-41

2.21 return....... 2-47

2.22 rollback .. 2-48

vi Contents

2.23 save 2-49

2.24 select.. 2-50

2.25 set... 2-54

2.26 update .. 2-60

2.27 while - endwhile 2-62

3 Terminal Monitor Command Line Interface to ULTRIX/SQL

3.1 Introduction... 3-1

3.2 Messages, Prompts and Diagnostics ... 3-1

3.3 Terminal Monitor Commands.. 3-2

3.4 Flags 3-4

4 Forms-Based Interface to ULTRIX/SQL

4.1 Overview....... 4-1

4.2 Entering ULTRIX/SQL Statements 4-1

4.2.1 isql Menu Items .. 4-2

4.2.2 Help ... 4-3

4.3 Input/Output Screens.. 4-3

4.3.1 Input Screen.. 4-3

4.3.1.1 Loading a File (Read).. 4-4
4.3.1.2 Writing to a File (Write) .. 4-4
4.3.1.3 Clearing the Work Space (Blank) 4-4

4.3.2 Output Screen 4-4

4.3.2.1 Output Frame ... 4-5
4.3.2.2 Returning to the Input Frame .. 4-7

4.3.3 Error Messages 4-7

5 ULTRIX/SQL Operating System Commands

5.1 Introduction... 5-1

5.2 accessdb... 5-2

5.3 auditdb... 5-3

Contents vii

5.4 catalogdb.. 5-6

5.5 ckpdb.. 5-8

5.6 copydb.. 5-10

5.7 createdb.. 5-12

5.8 destroydb ... 5-15

5.9 finddbs ... 5-16

5.10 isql.. 5-17

5.11 optimizedb... 5-20

5.12 rollforwarddb .. 5-24

5.13 sql... 5-26

5.14 statdump .. 5-29

5.15 sysmod... 5-31

5.16 unloaddb .. 5-32

A Key Words

A.I ULTRIX/SQL.. A-I

A.2 Embedded ULTRIX/SQL... A-I

A.3 ANSI SQL... A-2

A.4 Host Language Key Words .. A-2

B Standards Compliance and Compatibility Information

B.1 conventions... B-1

B.2 Data Types ... B-2

B.3 Statements ... B-3

C Using Forms-Based Applications

C.1 Overview... C-1

viii Contents

C.2 Accessing Databases C-l

C.3 Menus .. C-2

C.3.l Menu Key.. C-2

C.3.2 Long Menus .. C-2

C.4 Selecting an Operation from the Menu... C-3

C.4.l Selection by Function Key.. C-3

C.4.2 Selection by Name ... C-4

C.4.3 Moving Between Menus .. C-4

C.5 Standard ULTRIX/SQL Operations .. C-4

C.6 ULTRIX/SQL Keys .. C-5

C.6.1 Function Keys... C-5

C.6.2 Cursor Movement and Editing Keys... C-5

C.6.3 Insert and Overstrike.. C-6

C.7 On-Screen Help C-6

C.8 Error Messages C-7

D Defining Your Terminal

D.l Overview D-l

D.2 Defining Your Terminal... D-l

D.3 Additional Features of Terminal Use .. D-2

D.3.1 Printing the Screen ... D-2

D.3.2 Redrawing the Screen .. D-3

D.4 Terminal Names for ULTRIX/SQL... D-3

E Defining Function and Control Keys

E.l Overview... E-l

E.2 The Purpose of the ULTRIX/SQL Termcap File E-l

E.3 Defining Function and Control Key Mappings.. E-3

E.4 Types of Mapping Objects E-4

E.4.l FRS Commands.. E-5

Contents ix

E.4.2 Menu Items... E-6

E.4.3 FRS Keys... E-7

E.4.4 Mapping File Syntax E-8

E.4.4.1 Mapping Statements E-9
E.4.4.2 Disabling Statements.. E-10
E.4.4.3 Comments ... E-10
E.4.4.4 Mapping File Errors ... E-11

E.S Levels of Mapping E-11

E.S.1 Installation-Level Mapping.. E-11

E.S.2 Terminal-Type Level Mapping.. E-13

E.S.2.1 VT100 Terminals.. E-13
E.S.2.2 VT220 Terminals.. E-1S

E.S.3 User-Level Mapping... E-17

E.6 Obtaining Information on Mappings .. E-18

E.7 FRS Command Defaults... E-18

E.8 Mapping Restrictions and Troubleshooting .. E-19

E.8.1 Restrictions and Limitations .. E-20

E.8.2 Troubleshooting Checklist ... E-21

F How to Write ULTRIX/SQL Termcap Descriptions

F.1 Overview ... F-l

F.2 Writing the Description .. F-2

F.2.1 Preparing the Description .. F-2

F.2.2

F.2.3

F.2.4

F.2.S

F.2.6

General Format .. .

Special Characters

Names

Capabilities

Suggested Approach to Getting Started

F-2

F-3

F-4

F-4

F-S

F.3 The Eleven Basic Commands .. F-6

F.4 Optional Termcap Entries for Advanced Features ... F-10

F.4.1 Commands Used to Program Video Attributes .. F-10

F.4.2 Commands Needed for Boxing Characters F-11

F.4.3 Commands Needed for Function Keys ... F-12

x Contents

F.5 Commands Needed for Arrow Keys ... F-14

F.5.1 Commands Used for Color.. F-14

F.5.2 Command to Specify FRS Mapping File for Terminal................................. F-15

F.5.3 Commands to Optimize Cursor Movement.. F-15

F.6 Commands for Special Situations F-16

F.6.1 Commands from the ULTRIX Termcap File.. F-16

F.6.2 Commands for Specific Terminals.. F-16

F.7 Examples of Termcap Descriptions .. F-17

F.7.1 VT100 (All-Inclusive) ... F-17

F.7.2 VT100 (Simple) .. F-17

F.7.3 Envision 230 ... F-18

G The ULTRIX/SQL Standard Catalog Interface

G.1 Introduction... G-1

G.2 Standard Catalog Interface .. G-2

G.2.1 The iidbcapabilities Catalog .. G-2

G .2.2 The iidbconstants Catalog G-3

G.2.3 The iitables Catalog ... G-4

G.2.4 The iicolumns Catalog ... G-8

G .2.5 The iiphysical_tables Catalog G-10

G.2.6 The iiviews Catalog ... G-11

G.2.7 The iiindexes Catalog .. G-11

G.2.8 The iiindex_columns Catalog.. G-12

G.2.9 The iialt_columns Catalog... G-13

G.2.10 The iistats Catalog.. G-13

G .2.11 The iihistograms Catalog G-14

G.2.12 The iipermits Catalog... G-14

G.2.13 The iiintegrities Catalog .. G-15

G .2.14 The iimulti_Iocations Catalog G-15

G .2.15 The iiprocedures Catalog G-16

G .2.16 The iiregistrations Catalog G-16

G.3 The DBMS System Catalogs .. G-17

Index

Contents xi

Preface

Purpose of this Document

The ULTRIX/SQL Reference Manual describes the ULTRIX/SQL relational
database system and query language. It serves as the primary reference to the
syntax and function of ULTRIX/SQL commands and files. It is not intended to
serve as a tutorial on structured query languages in general or on the use of
relational database systems.

This manual assumes you are using ULTRIX/SQL in an interactive capacity. If you
intend to embed SQL commands in a host language application, you should also
refer to the ULTRIX/SQL Reference Guide to Embedded SQL, which describes the
embedded ULTRIX/SQL command set and those features that differ from
ULTRIX/SQL in their embedded implementation.

Intended Audience

The ULTRIX/SQL Reference Manual is intended for readers who have a basic
understanding of how SQL and relational database systems work. The reader is not
required to have a detailed understanding of the computer's operating system.
However, readers should be familiar with logging on and off, as well as with the
computer's file system if advanced features are to be used.

This manual is also intended as the primary reference for the ULTRIX/SQL System
Administrator and thus contains some information useful in maintaining the
ULTRIX/SQL system.

Structure of This Manual

The ULTRIX/SQL Reference Manual is divided into the following parts:

• Chapter 1 describes and explains the syntactic elements of the structured
query language, ULTRIX/SQL.

• Chapter 2 is a reference section that describes each SQL command.

• Chapter 3 describes the Terminal Monitor command line interface to
interactive ULTRIX/SQL, which you invoke with the sql command. The
Terminal Monitor interface allows you to enter, edit, save, print or execute an
SQL query, as well as perform other useful tasks, by typing special commands
on the Terminal Monitor command line.

Preface xiii

• Chapter 4 describes how to use the forms-based interface to interactive
ULTRIX/SQL, which you invoke with the isql command. The forms-based
interface allows you to enter, edit, save or execute a query by choosing menu
options and entering text in a form displayed on the screen.

• Chapter 5 describes the ULTRIX/SQL operating system commands that allow
you to create or destroy databases, execute SQL and embedded SQL
programs, and perform some database maintenance functions.

• Appendix A lists the words that are reserved in the ULTRIX/SQL
environments.

o Appendix B provides tables that summarize ULTRIX/SQL compliancy with
ANSI Standard SQL and X/Open SQL, as well as ULTRIX/SQL compatibility
with VAX RdbNMS SQL.

• Appendix C describes how to access databases, use menus, and move between
fields using the ULTRIX/SQL forms-based utilities, accessdb, catalogdb, and
isql.

• Appendix D explains how to define your terminal to ULTRIX/SQL.

• Appendix E explains how to customize the user environment by mapping
ULTRIX/SQL operations and cursor movement to function and control keys.

• Appendix F explains how to write termcap definitions for terminals not
defined in the standard ULTRIX/SQL termcap file, and how to modify an
existing term cap entry.

• Appendix G contains an in-depth description of the system catalogs required
to operate an ULTRIX/SQL environment.

Compatibility with Remote Access to Rdb/VMS

This document assumes that your installation does not include Remote Access to
RdbNMS. If your installation includes this option, be sure to check your
documentation for Remote Access to RdbNMS for information about syntax that
may differ from that described in this manual. Remote Access to RdbNMS is a
VMS layered product installed on a VMS system running RdbNMS, which is
connected to your ULTRIX/SQL system(s).

Areas that may differ include:

• Length of varchar data type

• Legal row size

• Command usage

• Name length

• Table size

xiv Preface

Associated Documents

The following associated manuals are included in your ULTRIX/SQL base system
documentation set:

ULTRIXISQL Database Administrator's Guide
ULTRIXISQL NET User's Guide
ULTRIXISQL Operations Guide
ULTRIXISQL Reference Manual
ULTRIXISQL Release Notes

Conventions

The following conventions are used to describe syntax in this manual:

o Boldface type is used to identify reserved words and required symbols and
punctuation in syntax that must be typed as shown when used. Boldface is
also used to indicate data types and key names.

• Words in italics within text and syntax diagrams represent variable elements
of syntax that are to be supplied by the program or the user. Italics are also
used within text to introduce new terminology or to show emphasis.

• Color indicates components of the SQL language that are specific to
ULTRIX/SQL. These components are not included in current versions of the
ANSI or X/Open standard for SQL and, therefore, may not be portable to
other implementations of the SQL language.

o Double quotes (" ") within the general text indicate a specific value of a
parameter. Double quotes (" ") and single quotes (' ') within syntax and in
code examples have specific meanings within the context of SQL or a host
programming language.

• Reserved words are shown in boldface, lowercase letters (except in host
language examples, where embedded SQL statements appear in uppercase to
distinguish them from the host language code). Although ULTRIX/SQL does
not actually distinguish between uppercase and lowercase in reserved words,
it does convert any uppercase letters to lowercase. This is true only for
reserved words. Variables are case sensitive.

• This documentation uses generic keyboard key names. The key names on your
particular keyboard may vary slightly from those used in this documentation.
Key names joined by a hyphen (such as Control-P) indicate that the user is to
press the named keys simultaneously.

• Syntax diagrams may continue over several lines. Line wraps and additional
lines in statement and command line syntax are indented under the first line of
the statement or command.

• Clauses enclosed in square brackets ([]) within syntax diagrams are optional.

• Clauses or arguments enclosed in braces ({ }) within syntax diagrams are
optional and can be repeated zero or more times.

Preface xv

• Clauses or reserved words separated by vertical bars (I) within syntax
diagrams indicate lists from which one element is to be chosen.

• Examples of code are separated from the text and are shown in a special,
constant-width typeface.

• Pseudocode, a description of an operation without the actual code, is shown in
italics within examples. This generic program code is used to clarify overall
syntax structure without unnecessary detail.

• Within examples, the percent sign (%) represents an operating system prompt,
although your system may use another customized prompt.

References to Products

xvi Preface

The ULTRIX/SQL documentation to which this manual belongs often refers to
products by their abbreviated names:

• ULTRIX/SQL refers to ULTRIX/SQL database software and to its
implementation of the SQL language. (Repetitive occurrences of
ULTRIX/SQL have been shortened to SQL.)

• RdbNMS refers to VAX Rdb/VMS database software.

ULTRIX/SQL Syntax 1

1.1 Introduction

The ULTRIX/SQL structured query language (SQL) allows you to retrieve, manage
and maintain data in an existing ULTRIX/SQL database. SQL statements are
high-level descriptions of what needs to be done rather than how it should be done.
In relational database terminology, SQL provides "automatic navigation" to the
data in the database.

SQL statements can be used in any of several contexts. First, they may be entered
directly through the ULTRIX/SQL Terminal Monitor. Second, they can be
embedded within programs written in high level languages using embedded SQL.

Consult Chapter 3 of this manual for information about the ULTRIX/SQL Terminal
Monitor. For information about embedded ULTRIX/SQL, consult the ULTRIX/SQL
Reference Guide to Embedded SQL and the ULTRIX/SQL Companion Guides for
the host language at your installation.

There are four major ULTRIX/SQL statements, each beginning with one of the
following key words:

select
insert
delete
update

As the key words suggest, the statements are used respectively for selecting data,
inserting data, deleting data and updating data values. The syntactical forms of the
four statements are similar, that of select statements being the most general. For
that reason, select statements are used in this chapter to illustrate SQL syntax.

1.2 Notation and Terminology

1.2.1 Key Words

A list of all key words in ULTRIX/SQL is included as Appendix A to this
document. There you will also find the key words of embedded ULTRIX/SQL and
ANSI standard SQL.

ULTRIXlSQL Syntax 1-1

1.2.2 Names

Names in ULTRIX/SQL are sequences of no more than 32 alphanumeric
characters. The underscore (_), number sign (#), at sign (@) and dollar sign ($)
characters are considered to be part of the alphanumeric character set. Names must
begin with an alphabetic character or an underscore Cj. Thus, a name may begin
with "a" through "z" (uppercase or lowercase) or underscore (_). The rest of the
name may contain any of those characters, as well as the numerals 0 through 9, the
number sign (#), the at sign (@) and the dollar sign ($). You may not begin a name
with "ii" because names beginning with "ii" are reserved for use by ULTRIX/SQL.

ULTRIX/SQL converts all uppercase letters in a name to lowercase.

1.2.3 Comments

A comment is an arbitrary sequence of characters bounded by /* on the left and by
*/ on the right. For example:

/* This is a comment */

A comment so bounded is ignored in query processing.

1.2.4 Statement Separator

Interactive ULTRIX/SQL does not require a statement terminator. Therefore,
statement syntax descriptions do not include a semicolon (;).

The semicolon is required as a statement separator when entering queries in the
Terminal Monitor if more than one statement precedes \g. (Chapter 3 discusses the
Terminal Monitor.) A group of statements followed by \g is called a go block.

Examples showing modules of code in this manual include optional semicolons as
statement separators. Since SQL is used in a variety of contexts, the optional
statement separator helps avoid side effects which could result if the context were
to change.

1.3 Data Types

There are three classes of data type: character, numeric, and abstract. Character
strings can be fixed length (c and char) or variable length (text and varchar).
Numeric strings may be exact numeric (integer, smallint, and integerl) or
approximate numeric (float and float4). The abstract data types are date and
money.

Note

The following are valid synonyms for the data types discussed in the
preceding paragraph: character is equivalent to char; integer2 is
equivalent to smallint; int and integer4 are equivalent to integer; real is
equivalent to float4; double precision and floatS are equivalent to float.

1-2 UL TRIXlSQL Syntax

Class Sub-Class Data Type

Numeric Approximate numeric float (floatS, double precision)

float4 (real)

Exact numeric integer (int, illteger4)

smallint (integer2)

integerl

Character Fixed length c

char (character)

Varying length text

varchar

Abstract date

money

1.3.1 Fixed-Length Character Strings

Fixed-length character strings are sequences of no more than 2000 ASCII
characters. Uppercase and lowercase alphabetic characters within character strings
are accepted literally.

Two types of fixed-length character strings are supported in ULTRIX/SQL: char
and c. Strings of type char may contain any character, printing or non-printing.
Blanks are significant when comparing char strings. The preferred fixed-length
character type is char.

Only characters that can be printed are allowed within c strings. Non-printing
characters (for instance, control characters) are converted to blanks.

Blanks are ignored when comparing c strings. For example, the c string

the house is around the corner

is treated identically to:

thehouseisaroundthecorner

1.3.2 Varying-Length Character Strings

Varying-length character strings are sequences of no more than 2000 ASCII
characters. Uppercase and lowercase alphabetic characters within varying-length
character strings are accepted literally.

To include a quotation mark within a variable-length character string, you double it,
as in:

the "dog" is black

ULTRIXlSQL Syntax 1-3

This evaluates to:

the 'dog' is black

There are two types of varying-length character strings in ULTRIX/SQL: text and
varchar. The preferred varying-length, character-string type is varchar. All ASCII
characters except the null character are allowed within text strings. Null characters
are converted to blanks. Strings of type varchar may contain any character,
including non-printing characters and the null character.

Blanks are significant in comparisons for both text and varchar data types. For
example, the character string

the house is around the corner

is considered distinct from:

thehouseisaroundthecorner

There are some differences in the way the two data types handle blanks. In
comparing strings of unequal length, varchar effectively adds blanks to the end of
the shorter string to make it the same length as the longer string. Text does not add
blanks; it will consider a shorter string as "less than" a longer string if all
characters up to the length of the shorter string are equal. As an example of how
this affects comparisons, consider the two strings (a) "abcd\OOI" and (b) "abcd"
where ''\001'' represents one ASCII character, controlA. If these are compared as
text, then (a) > (b). However, if compared as varchar, then (a) < (b), since the
"blank" character added by varchar has a higher ASCII value than "001."

1.3.3 Integer Data Types

Integer values range from -2,147,483,648 to +2,147,483,647, and they contain no
fractional part. Integer values that exceed that range are converted to floating-point.
If an integer is less than +32,767 and greater than -32,768, it is treated as a
two-byte integer. Otherwise it is converted to a four-byte integer.

The three integer data types are integer! (1-byte), smallint (2-byte), and integer
(4-byte).

1.3.4 Floating-Point Numeric Data Types

Floating-point values consist of an integer part, a decimal point and a fractional or
scientific notation part of the following format:

[+1-] {dig} [.dig{dig}][eIE [+1-] {dig}]

where dig is a digit. An example is:

2.3 e-02

A mantissa with a missing exponent has an exponent of one (1) inserted.
Floating-point numbers are double-precision quantities with a range of
approximately -10**38 to + 10**38 and a precision of approximately 16 significant
figures.

1-4 UL TRIXlSQL Syntax

The character used to indicate the decimal point, by default a period (.), can be
changed by means of the IT_DECIMAL environment variable, described in the
ULTRIX/SQL Operations Guide.

The approximate numeric data types are float4 (4-byte) and float (8-byte).

1.3.5 Dates

Dates are represented by the abstract data type, date.

1.3.5.1 Date Output

ULTRIX/SQL supports date values that constitute either absolute dates and times or
time intervals. ULTRIX/SQL outputs such values as strings of 25 characters with
trailing blanks inserted.

ULTRIX/SQL uses one of the following output formats for an absolute date or time:

Format Example

dd-mrrun-yyyy 15-nov-1982

dd-mmm-yyyy hh:mm:ss 15-nov-1982 12:32:48

ULTRIX/SQL displays 24-hour times for the current time zone, which is
determined when ULTRIX/SQL is initialized. Dates are stored in Greenwich Mean
Time and adjusted for your time zone when they are displayed.

For a time interval, ULTRIX/SQL displays the most significant portions of the
interval that fit in the 25-character string. If necessary, ULTRIX/SQL inserts
trailing blanks to fill out the string. The output format appears as follows:

yy yrs mm mos dd days hh hrs mm mins ss sees

Significance is a function of the size of any component of the time interval. For
instance, consider the following time interval:

5 yrs 4 mas 3 days 12 hrs 32 mins 14 sees

ULTRIX/SQL displays such an interval as follows:

5 yrs 4 mas 3 days 12 hrs

1.3.5.2 Date Input

Dates are input as quoted character strings. ULTRIX/SQL accepts the following
valid input formats:

Absolute dates (US)-Valid formats for input of November 15,1982:

Format Example

'mmlddlyy , '11/15/82'

'dd-mmm-yy , , 15-nov-82'

ULTRIXlSQL Syntax 1-5

Format

'dd-mrrun-yyyy ,

'rrun-dd-yy ,

'yy.mm.dd'

'mmddyy ,

'rrun/dd '

'rrun-dd '

'today'

'now'

Example

~15-nov-1982~

~11-15-82~

~82.11.15~

~111582~

~ 11/15~

~11-15~

The string ~today~ is a legal absolute date with today~s date as its value.

The string ~now~ is a legal absolute date and time with today's date and
the current time as its value.

The preceding date formats are the default formats, also known as US format. See
the following section titled "International Date Formats" for information about
changing the date format conventions to accommodate international conventions.

Absolute times-Valid formats for input of 10:30:00:

Format Example

'hh:mm:ss' '10:30:00'

'hh:mm:ss xxx' , 10:30:00 pst'

'hh:mm' , 10:30~

Note

ULTRIX/SQL supplies the appropriate time zone designation. Time
formats are assumed to be on a 24-hour clock. However, times entered
with a designation of "am" or "pm" are automatically converted to
24-hour internal representation. Any such designation must follow the
absolute time and must precede the time zone, if included. If you do not
specify a date with an absolute time, today's (that is, the current day's)
date is supplied.

Absolute date and time-Valid input formats for November 15, 1982, 10:30:00:

Format Example

'rrun/dd/yy hh:mm:ss' '11/15/82 10:30:00'

'dd-mrrun-yy hh:rrun:ss ' , 15-nov-82 10:30:00'

'rrun/dd/yy hh:mm:ss xxx' '11/15/82 10:30:00 pst'

'dd-mrrun-yy hh:rrun:ss xxx ' , 15-nov-82 10:30:00 pst'

'rrun/dd/yy hh:mm' ~11/15/82 10:30~

1-6 UL TRIXlSQL Syntax

Format Example

'dd-mmm-yy hh:mm' '15-nov-8210:30'

'mmlddlyy hh:mmxu' '11/15/82 10:30 pst'

'dd-mmm-yy hh:mmxu' '15-nov-82 10:30 pst'

Date intervals--Valid formats for date intervals consist of one or more of the
following units, starting with the largest unit and ending with the smallest unit:

yy yrs mm mos dd days

Note

The input format for yrs and mos can be spelled out in full or specified
as singular or plural abbreviations (for example, years, yr, and yrs are
all valid input formats).

Ranges for date interval components are shown below:

Date Interval Component

years (yr, yrs)

months (mo, mos)

days

Examples:

'5 years'
'8 months'
'14 days'
'5 yrs 8 mos 14 days'
'5 years 8 months'
'5 years 14 days'
'8 months 14 days'

Range

-800 to +800

-9611 to +9611

-8388608 to +8388607

Time intervals-Valid formats for time intervals consist of one or more of the
following units, starting with the largest unit and ending with the smallest unit:

hh hrs mm mins ss sees

Note

The input format for hrs, mins and sees can be spelled out in full or
specified as singular or plural abbreviations (for example, hours, hr, and
hrs are all valid input formats).

Ranges for time interval components are as follows:

Time Interval Range

hours (hr, hrs) -596 to +596

ULTRIXlSQL Syntax 1-7

Time Interval

minutes (min, mins)

seconds (sec, sees)

Examples:

'23 hours'
, 38 minutes'
, 53 seconds'

Range

-35791 to +35791

-2147483 to +2147483

'23 hrs 38 mins 53 secs'
'23 hrs 53 seconds'
'28 hrs 38 mins'
'38 mins 53 secs'
'23:38 hours'
'23:38:53 hours'

1.3.5.3 International Date Formats

1.3.6

The database may be set to one of five date formats (modes) for the interpretation
of dates. This mode is set on a session basis. The II_DATE_FORMAT environment
variable described in the ULTRIX/SQL Operations Guide can be used to change the
date format conventions to accommodate the international date conventions shown
below. The modes are:

MODE Input Interpreted as

US default (as above)

MULTINATIONAL mmlddlyyyy ddimmlyyyy

ISO (Multinational) mmddyy yymmdd

SWEDEN/FINLAND mm-dd-yyyy yyyy-mm-dd

GERMAN dmmyy dmmyy

ddmmyy ddmmyy

dmmyyyy dmmyyyy

ddmmyyyy ddmmyyyy

Money

ULTRIX/SQL stores money values as their actual money amount, significant to
exactly two decimal places. Thus, ULTRIX/SQL rounds all money values to their
amounts in dollars and cents on input and output. Arithmetic operations on the
money data type retain two-decimal-place precision.

ULTRIX/SQL supports the following range of money values:

$-99999999999999.99 <= m <= $99999999999999.99

1-8 ULTRIXlSQL Syntax

ULTRIX/SQL displays money values as strings of 20 characters. The display
format is:

$sdddddddddddddd.dd

where s is the sign (- for negative and no sign for positive) and d is a digit from 0
to 9.

ULTRIX/SQL accepts money values on input either as character strings or as
numbers, as follows:

• Character-string input

'$sdddddddddddddd.dd'

The dollar sign ($) is optional. The sign defaults to plus (+) if not specified. A
cents value of zero (.00) need not be specified.

• Numeric input

ULTRIX/SQL accepts any valid integer or floating-point number on input as a
money value and converts it to the money data type automatically.

Note that several environment variables described in the ULTRIX/SQL Operations
Guide affect the display of money values. The II_MONEY _FORMAT environment
variable can be used to set the currency symbol. As indicated above, the default
currency symbol is the dollar sign ($). The II_MONEY _PREC environment
variable sets the precision with which money values are displayed. The default
precision is two decimal digits.

The II_DECIMAL environment variable sets the character used to indicate the
decimal point, by default a period (.).

1.3.7 Storage Formats for Data Types

Every data item in an ULTRIX/SQL database is stored in one of the following
storage formats:

Notation Type Range

char(l) - char(2000) character a string of 1 to 2000 characters

cl- c2000 character a string of 1 to 2000 characters

varchar(l) - character a string of 1 to 2000 characters
varchar(2000)

text(l) - text(2000) character a string of 1 to 2000 characters

integerl I-byte integer -128 to +127

smallint 2-byte integer -32,768 to +32,767

integer 4-byte integer -2,147,483,648 to +2,147,483,647

ULTRIXlSQL Syntax 1-9

Notation Type Range

float4 4-byte floating-point -1.0e+ 38 to + 1.0e+ 38 (7 digit precision)

float 8-byte floating-point -1.0e+ 38 to + 1.0e+ 38 (16 digit precision)

date date (12 bytes) 1-jan-1582 to 31-dec-2382 (for absolute dates)
and -800 years to 800 years (for time intervals)

money money (8 bytes) $-99999999999999.99 to $99999999999999.99

Note 1

Char and varchar are preferred to c and text.

Note 2

The RISC implementation of ULTRIX supports the IEEE standard for
floating-point numbers. The float type is accurate to 15 decimal
precision and the money type is accurate to 14 decimal precision (that is,
-$dddddddddddd.dd to +$dddddddddddd.dd). Also, floating-point
numbers range from -10**256 to +10**256.

Note 3

The following are valid synonyms for the data types in the preceding
table: character is equivalent to char; integer2 is equivalent to
smallint; int and integer4 are equivalent to integer; real is equivalent to
float4; double precision and floatS are equivalent to float.

1.4 Constants

There are two basic types of constants: string and numeric. In addition, there is a
special constant, null. ULTRIX/SQL also provides system constants to provide data
that can help improve query performance. Constants are also known as literals.

Each type of constant is assigned a default data type, but you can assign them
another data type if you wish.

1.4.1 String Constants

String constants are represented by a sequence of characters enclosed in
apostrophes. Printing characters are represented literally. To represent a
non-printing character you must use the hex constant. (The hex constant is only
necessary in the Terminal Monitor; in embedded ULTRIX/SQL, any sequence of
characters that can be assigned to a host program variable may be assigned to a
character string.)

A hex constant is a special kind of string constant. It is represented by an "X"
followed by a string enclosed by apostrophes that contains an even number of
characters from the set {[A-F], [a-f), [O-9]}.

1-10 ULTRIXlSQL Syntax

For example, the following represents the ASCII string "ABC<carriage return>."

X'4142430D'

SQL string constants do not support the \ octal representation of ASCII.

The default data type for string constants is varchar, but they may be assigned
without explicit conversion to any of the character data types or the money data
type.

1.4.2 Numeric Constants

Numeric constants are represented by a sequence of digits, an optional decimal
point, and an optional exponent representation. If no decimal point is specified and
if the value of the constant is within the legal range, the default is integer.
Otherwise the default is float. Numeric constants may be assigned without explicit
conversion to any of the numeric data types or the money data type.

1.4.3 The null Constant

The null constant may be assigned to any null able data type.

1.5 Structured Data

This section discusses ULTRIX/SQL tables, columns, rows, correlation names, and
groups. It also introduces the sample database used in examples throughout this
manual.

1.5.1 Tables

1.5.2

All data in ULTRIX/SQL is stored as tables. A table is a named array of values.
The array is composed of columns (sometimes called fields or attributes) and rows
(sometimes called records or tuples). Table names may not begin with "ii." An
example of a table appears in the following figure.

Figure 1-1: "Candidates" Table

NAME PARTY AGE FUNDING

Robbins Republican 42 1250000
Capetti Democrat 52 946000
Greenberg Citizens 48 766000
Hernandez Democrat 38 987000
Johnson Independent 46 854000
Chang Republican 55 1540000

Columns

Each column of a table has a name, which must be a legal ULTRIX/SQL name. All
values in any given column have the same storage format (that is, data type and
defined width in bytes). The maximum number of columns in a table is 127.

ULTRIX/SQL Syntax 1-11

1.5.3 Rows

A row represents an individual record in a table. All rows in a table are of the same
width in bytes and they each maintain the same column types. The maximum
length of a row is 2000 bytes.

1.5.4 A Sample Database

A sample database is used for examples throughout this reference manual. The
name of the database is "empdata," and its description appears in the following
table.

Table Name Column Name Data Type

employee eno smallint

ename char(lO)

age integer!

job smallint

salary l1oat4

dept smallint

dept dno smallint

dname char(lO)

mgr smallint

floor integer!

job jid smallint

jtitle char(10)

lowsal l1oat4

highsal l1oat4

1.5.5 Correlation Names

Consider the following select statement (Example 1):

select employee.eno, employee.ename
from employee
where employee.dept = 23;

This statement will retrieve employee numbers and names for all employees in
department 23. Its select - from - where structure is typical of retrieval statements
in SQL.

1-12 UL TRIXlSQL Syntax

Now consider the following alternative fonnulation of the same query (Example 2):

select e. eno, e. ename
from employee e
where e . dept = 23;

In this second example, "e" is a correlation name. A correlation name is also
known as a range variable because it is used in an SQL statement to "range over"
some table. A correlation name is specified, as shown, by its appearance following
the table name in a from clause (or an update clause, in the case of an update
statement). At any particular point during execution of the statement in question,
the correlation name serves to mark a particular row of the specified table as the
current row for processing. Statement execution completes when every row of the
table has been marked and processed in this way. Thus in the example above, "e"
marks each employee record in tum, and the query is complete when all employee
records have been processed.

It is not always necessary to introduce a correlation name explicitly; the
fonnulation shown in Example 1 is perfectly legal SQL. However, the correlation
name is still present implicitly, even in Example 1. The symbol "employee" in that
version is actually being used to play two roles: (1) it serves to identify the
employee table; (2) it also serves as a correlation name ranging over that table.
Note that it is never wrong, and sometimes it is necessary, to introduce correlation
names explicitly.

A correlation name can be any sequence of alphanumeric characters acceptable as a
name (see the section entitled "Names" earlier in this chapter).

Finally, it is not always necessary to qualify column names explicitly with the
correlation name. An unqualified column name (appearing in, for example, a select
or a where clause) is assumed to be implicitly qualified by a table or correlation
name appearing in the from clause (or update clause) on the same syntactic level
as that unqualified reference (see the discussion on subqueries in the section
entitled "Search Conditions" later in this chapter). Thus, for example, Example 1 of
the query above could be simplified to the following:

se lect eno, ename
from employee
where dept = 23;

"Eno," "ename" and "dept" are all implicitly qualified by "employee." Likewise,
Example 2 could be simplified to the following:

se lect eno, ename
from employee e
where dept = 23 j

"Eno," "ename" and "dept" are now all implicitly qualified by "e."

Note that, in order to prevent ambiguity, column names must be qualified explicitly
when it isn't clear which table the column comes from.

The maximum number of correlation and table names that can be referenced in a
single statement is 30 names. Under certain circumstances, the maximum number
may be less than 30.

UL TRIXlSQL Syntax 1-13

1.5.6 Groups

It is sometimes convenient to think of the rows of a table as being divided up into
groups or partitions by the values of some columns of that table. For example, the
candidates table presented in the "Tables" section might be grouped by party, to
yield the result shown in the following figure.

Figure 1-2 "Candidates" Table, Grouped by Party

NAME PARTY AGE FUNDING

Greenberg Citizens 48 766000
Capetti Democrat 52 946000
Hernandez Democrat 38 987000
Johnson Independent 46 854000
Chang Republican 55 1540000
Robbins Republican 42 1250000

Note that such grouping is purely conceptual-the table is not really rearranged in
the database. The grouping is specified dynamically by means of a group by
clause, as follows:

select
from
group by

candidates
party;

The purpose of such grouping is generally to allow some set function to be
computed for each group. For example, the statement

select
from
group by

party, avg (funding)
candidates
party;

will retrieve each party name, together with the average funding for that party, from
the candidates table.

1.6 Expressions

Expressions are used in ULTRIX/SQL in many contexts-for example, to denote
values to be retrieved (in a select clause) or compared (in a where or having
clause). ULTRIX/SQL expressions fall into two broad classes: those that involve
set functions and those that do not. Most of the rules for forming expressions apply
equally to each of the two classes, with the following exceptions:

• The argument to a set function is an expression, but that expression cannot in
tum involve any set functions. In other words, no nesting of set functions is
permitted.

Q Expressions involving set functions can appear only in certain specific
contexts.

1-14 ULTRIXlSQL Syntax

Note that constants are considered expressions. The sections titled "Scalar
Functions" and "Set Functions" provide more information about functions and
expressions.

1.6.1 Columns

A column name, explicitly or implicitly qualified, is an expression. Some
examples are:

ernployee.enarne

e.enarne

enarne

1.6.2 Parentheses

An expression can be enclosed in parentheses, such as C'J. J. Jones'), without
affecting its meaning except with respect to precedence, as discussed below.

1.6.3 Arithmetic Operations

1.6.3.1 Operators

Expressions of numeric types can be combined arithmetically to produce other
expressions. ULTRIX/SQL supports the following arithmetic operators (in
descending order of precedence):

+, - plus, minus (unary)

** exponentiation

*,/ multiplication, division

+, - addition, subtraction (binary)

Unary operators group from right to left, and binary operators group from left to
right.

Parentheses can force the desired order of precedence. For example,

(job.lowsal + 1000) * 12

is an expression in which the plus (+) operator is forced to take precedence over the
asterisk (*) operator.

A variety of arithmetic checks, such as integer overflow, integer divide by zero,
floating-point underflow, floating-point overflow and floating-point divide by zero,
can be enabled by specifying the -x flag on the sqI command line. Refer to the sqI
command in Chapter 5.

The plus (+) operator can also be used to concatenate strings. For example,

'This' + 'is' + 'a ' + 'test.'

UL TRIX/SQL Syntax 1-15

gives the value:

'This is a test.'

When used in this fashion, the plus (+) operator behaves exactly like the concat
function, described in "Arithmetic Operations on Dates."

1.6.3.2 Arithmetic Operations on Dates

ULTRIX/SQL supports a limited set of arithmetic operations on items of the date
data type:

Addition:

intelVal + intelVal -> intelVal

intelVal + absolute -> absolute

Subtraction:

intelVal - interval -> intelVal

absolute - absolute -> intelVal

absolute - interval -> absolute

ULTRIX/SQL does not support multiplication or division of date values.

ULTRIX/SQL also enables you to convert date constants into numbers of days
relative to an absolute date. For example, to convert today's date to the number of
days since January 1, 1900, use the expression:

num_days = int4(interval('days', 'today' - date('1/1/00'»)

To convert back, use the following:

(date('1/1/00') + concat(char(num_days), , days'»

where "num_days" is the number of days added to the date constant.

Note that for comparisons, a blank (default) date is less than any interval date. All
interval dates are less than all absolute dates. Intervals are converted to comparable
units before they are compared. For instance, date('5 hours') is greater than
date(,200 minutes'). Note also that dates are stored internally in an absolute
format. For this reason, "5:00 pm pst" compares as equal to "8:00 pm est."

Note also that the expression

date('1-feb-89') + '1 month'

yields March 1. Adding a month always yields the same date in the next month
unless there are fewer days in the next month, in which case it yields the last day of
the next month. For instance, adding a month to May 31 yields June 30. Similar
rules hold for subtraction. Moreover, similar rules apply for adding and subtracting
years.

1-16 ULTRIX/SQL Syntax

When adding intervals, each of the units is added. For example,

date('6 days') + date('5 hours')

yields "6 days 5 hrs," while

date('4 years 20 minutes') + date('6 months 80 minutes')

yields "4 yrs 6 mos 1 hr 40 mins."

When adding or subtracting intervals, or when subtracting absolute dates, overflow
or underflow are propagated upward, except that neither will pass from hours to
days. ULTRIX/SQL performs operations on the date component (yrs, mos, days)
independently of operations on the time component (hrs, mins, sees) of a date
interval.

1.6.4 Type Conversion

This section explains how ULTRIX/SQL converts data types when combining
expressions.

1.6.4.1 Default Numeric Type Conversion

When two numeric expressions are combined, ULTRIX/SQL converts as necessary
to make the storage formats (that is, data types and widths) identical. Thus, the two
parts of the resulting expression have the same storage format.

When ULTRIX/SQL operates on an integer and a floating-point number, the integer
is converted to a floating-point number before the operation. When ULTRIX/SQL
operates on two integers of different sizes, the smaller is converted to the size of
the larger. When operating on two floating-point numbers of different sizes,
ULTRIX/SQL converts the larger to the size of the smaller number.

When mUltiplying or dividing a money data item by a non-money item (that is,
integer or floating-point), ULTRIX/SQL converts the non-money multiplier or
divisor to the money type prior to calculation.

The following table summarizes the possible results of numeric combinations.

Integer! Smallint Integer Float4 Float Money

Integer! integer! smallint integer float4 float money

Smallint smallint smallint integer float4 float money

Integer integer integer integer float4 float money

Float4 float4 float4 float4 float4 float4 money

Float float float float float4 float money

Money money money money money money money

ULTRIX/SQL Syntax 1-17

For example, for the expression

(job. low sal + 1000) * 12

the first operator (+) combines a float4 expression (job.lowsal) with a smallint
constant (1000) that is converted to a float4 number. The result is a float4
expression. The second operator (*) combines this float4 expression with a
smallint constant (12) that is converted to a float4 number, resulting in a float4
expression.

Note that while

(job .lowsal + 1000) * 12

produces a float4 expression, the expression

float8«job.lowsal+1000)*12)

produces a float (floatS) expression. ULTRIX/SQL also provides specific type
conversion functions. These are discussed in the section, "Explicit Type
Conversion Functions."

1.6.4.2 Numeric Overflow

Numeric overflow can occur when the results of a computation are larger than can
be held by the data type in which the computation is performed. For example, in the
following statement the calculation on the right-hand side is done in integer2
arithmetic. If the integer2 arithmetic results in a value greater than 32767, the
largest possible integer2 value, then overflow will occur.

update ernp
set integer4col = integer2col * integer2col;

You can avoid many common types of overflow by using a function to convert
values to a higher precision before performing the calculation. For example,

update ernp
set integer4col=int4(integer2col) * int4(integer2col);

(For more information on the int4 function, see "Explicit Type Conversion
Functions. ")

Numeric overflow, underflow (for floating-point calculations) and division by zero
are controlled by the -x command line flag for the isqI and sqI commands. (The -x
flag is also valid in embedded SQL for the connect statement.) ULTRIX/SQL will
either continue as if no error occurred, signal an error and abort the query, or signal
a warning and continue, depending on how the -x flag is set. See the isqI or sqI
command in Chapter 5 for more information on this flag.

1.6.4.3 Default Character Type Conversion

Whenever a string of type c or char is put into a column defined as type text or
varchar, all the string's trailing blanks are removed. Conversely, whenever a string
of type text or varchar is put into a column defined as type c or char, the string is
padded with blanks to fill out the column's defined width, if necessary.

1-18 UL TRIXlSQL Syntax

1.6.4.4 Explicit Type Conversion Functions

In addition to ULTRIX/SQL default type conversions, many explicit type
conversion functions are available. The following explicit type conversion
functions can be used:

Name Operand Type Result Description
(Format)

c(expr) any c Converts any value to c string.

char(expr) any char Converts any value to char string.

date (expr) c, text, date Converts c, char, varchar or text string
char, varchar to internal date representation.

dow(expr) date c Converts absolute date into its day of
week (for example, 'Mon,' 'Tue')

float4(expr) any except date float4 Converts non-date expression to float4.

float8(expr) any except date float Converts non-date expression to float.

hex(expr) varchar, char, c, varchar Returns the hex representation of the
text argument string. The result length is 2

times the input string length, as for
example, hex(' A') - '61' (ASCII) or 'Cl'
(EBCDIC).

int1(expr) any except date integer 1 Converts non-date expression to
integer1.

int2(expr) any except date smallint Converts non-date expression to
smallint.

int4(expr) any except date integer Converts non-date expression to integer.

money(expr) any except date money Converts non-date expression to internal
money representation.

text(expr) any text Converts any value to a text string. This
function removes trailing blanks, if any,
from c or char string expressions.

varchar(expr) any varchar Converts any value to a varchar string.
This function also removes trailing
blanks, if any, in c or char string
expressions.

1.6.5 Scalar Functions

Two kinds of functions are provided: scalar functions and setfunctions. Scalar
functions take as their argument a single-valued expression (or, in some cases, two
such expressions). Set functions take as their argument an entire set of scalar
values. The present section is concerned only with scalar functions; set functions
are described in a following section.

Ul TRIXlSQl Syntax 1-19

A scalar function reference consists of the function name, followed by a
parenthetical expression (or pair of expressions) representing the function
arguments. A scalar function reference is an expression. Scalar function references
can be nested to any level.

The explicit type conversion functions discussed earlier are scalar functions; the
other available scalar functions are described below.

1.6.5.1 Numeric Functions

In addition to the type conversion functions described above, the following numeric
functions are available:

Name Format (Operand and Result) Description

abs(n) all numeric types and money absolute value of n

atan(n) float arctangent of n

cos(n) float cosine of n

exp(n) float exponent of n

log(n) float naturaIlogarithm of n

mod(n,b) integer, smallint, integer! n, modulo b, where n and b are
integers

sin(n) float sine ofn

sqrt(n) float square root of n

For instance, the following example gives the exponential of "job.lowsal" as a float
expression:

exp (job .lowsal)

1.6.5.2 String Functions

The following functions operate on c, char, text, or varchar data. The expressions
eland c2 represent arguments for the various functions. They can represent any of
the string types, except where noted. The expressions len and nshift represent
integer arguments.

Name Format (Operand and
Result)

charextract(c1 ,n) any character data type

1-20 ULTRIXlSQL Syntax

Description

Returns the nth byte of c1. If n is larger than the
length of the string, the result is a blank
character.

Name Format (Operand and Description
Result)

concat(cl ,c2) c, text, varchar Concatenates one string to another. The result
size is the sum of the sizes of the two
arguments. If the result is a c or char string, it
is padded to achieve the proper length. To
determine the characteristics of concatenating
one string to another, see the following chart on
string concatenation.

_date(s) any character data type Returns a 9-character string giving the date s
seconds after January 1, 1970. The output
format is "dd-mmm-yy".

left(cl ,len) any character data type Returns the leftmost len characters of cl. If the
result is a fixed-length c or char string, it is the
same length as cl, padded with blanks. The
result format is the same as cl.

length(cl) smallint If cl is a fixed-length c or char string, returns
the length of cl without trailing blanks. If cl is
a variable-length string, returns the number of
characters actually in cl.

locate(cl ,c2) smallint Returns the location of the first occurrence of
c2 within cl, including trailing blanks from c2.
The location is in the range 1 to size(cl). If c2
is not found, the function returns size(cl) + 1.

lowercase(cl) any character data type Converts all uppercase characters in cl to
lowercase.

pad(cl) text or varchar Returns cl with trailing blanks appended to cl .
For instance, if cl is a varchar string that could
hold 50 characters but only has two characters,
pad(cl) appends 48 trailing blanks to d to
form the result.

righted ,len) any character data type Returns the rightmost len characters of cl.
Trailing blanks are not removed frrst. If cl is a
fixed-length character string, the result is
padded to the same length as d. If d is a
variable-length character string, no padding
occurs. The result format is the same as d.

shifted ,nshift) any character data type Shifts the string nshift places to the right if
nshift> 0 and to the left if nshift < O. If cl is a
fixed-length character string, the result is
padded with blanks to the length of cl. If cl is
a variable-length character string, no padding
occurs. The result format is the same as d.

size(cl) smallint Returns the declared size of d without
removal of trailing blanks.

ULTRIXlSQL Syntax 1-21

Name

squeeze(c1)

_time(s)

trim(c1)

uppercase(cJ)

Format (Operand and
Result)

text or varchar

any character data type

text or varchar

any character data type

Description

Compresses white space. White space is
defined as any sequence of blanks, null
characters, newlines (line feeds), carriage
returns, horizontal tabs and form feeds (vertical
tabs). Trims white space from the beginning
and end of the string and replaces all other
white space with single blanks. This function is
useful for comparisons. The value for c1 must
be a string of variable-length character string
data type (not fixed-length character data type).
The result is the same length as the argument.

Returns a 5-character string giving the time s
seconds after January 1, 1970. The output
format is "hh:mm" (seconds are truncated).

Returns c1 without trailing blanks. The result
has the same length as c1.

Converts all lowercase characters in c1 to
uppercase.

The following table indicates the effects of concatenating one string to another,
depending on the particular combination of data types of the two strings.

1st String 2nd String Trim Blanks Trim Blanks Result Type
from 1st? from 2nd?

c c Yes c

c text Yes c

c char Yes c

c varchar Yes c

text c No c

char c Yes c

varchar c No c

text text No No text

text char No Yes text

text varchar No No text

char text Yes No text

varchar text No No text

char char No char

char varchar No char

1-22 UL TRIXlSQL Syntax

1st String 2nd String

varchar char

varchar varchar

Trim Blanks
from 1st?

No

No

Trim Blanks
from 2nd?

No

Result Type

char

varchar

The string functions can be arbitrarily nested to achieve other string functions. For
example,

left(right(x.name, size(x.name) - 1), 3)

returns the substring of "x.name" from character positions 2 through 4.

You can also nest string functions within themselves. For example,

concat (concat (x.lastname, ','), x.firstname)

concatenates "x.lastname" with a comma and then concatenates "x.firstname" with
the first concatenation result. Note, however, that the same result can be achieved
with the + operator:

x.lastname + ',' + x.firstname

1.6.5.3 Date Functions

ULTRIX/SQL supports two functions that derive values from absolute dates and
one function that derives a value from interval dates. These functions operate on
rows that contain date values. The unit expression is a quoted string that represents
the part of the date to use in the calculation. Legal values are:

Unit Expression

Second seconds, sec, sees

Minute minutes, min, mins

Hour hours, hr, hrs

Day days

Week weeks, wk, wks

Month months, mo, mos

Quarter quarters, qtr ,qtrs

Year years, yr, yrs

For date _ trunc and date _part, the date expression must be an absolute date. The
interval function accepts only intervals for date_interval.

ULTRIXlSQL Syntax 1-23

Name

date_gmt(date)

date _part(unit,date)

date _ trunc(unit,date)

1-24 ULTRIXlSQL Syntax

Format
(Result)

any
character
data type

integer

date

Description

Converts an absolute date into the GMT character
equivalent with the fonnat "yyyy rrun dd hh:mm:ss
GMT." - -

Returns an integer representing one component of the
input date. The unit parameter represents the desired
component. This function is useful in set functions and
in assuring correct ordering in complex date
manipulation. For example, suppose date Jield
contains the value "23-oct-I985." Then

date_part ('month' ,date(date_field))

returns a value of 10, and

date_part ('day' ,date (date field))

returns a value of 23.

Months are ordered with January set to month 1.
Hours are set to a 24-hour clock. Quarters are
numbered 1 through 4. Weeks return a number
representing the number of the week since the
beginning of the year in which the input date falls.
Week 1 begins on the fIrst Monday of the year. Dates
before the fIrst Monday of the year are considered to
be in weekO.

Returns a date value that represents the input date
truncated to the level of granularity expressed in the
unit. By using the date _ trune function you can group
all the dates within the same month or year, and so
forth. A value of "I-oct-I985" is returned by:

date _ trunc (' month' , date (' 23-act-1985 12: 33'))

A value of " l-jan-I985" is returned by:

date_trunc('year' ,date('23-act-1985'))

All truncation takes place in tenns of calendar years
and quarters ("I-jan," "I-apr," "I-jun" and "I-oct"). If
you need to truncate in terms of a fIscal year, simply
offset the calendar date by the number of months
between the beginning of your fIscal year and the
beginning of the next calendar year ('6 mos' for a
fIscal year beginning July 1, or '4 mos' for a fIscal
year beginning September 1):

date _ trunc (' year' , date+' 4 mas') - mas

Monday constitutes the starting day for weeks. Note
the beginning of a week for an early January date may
fall into the previous year.

Name

interval(unit,
date _interval)

1.6.5.4 The Ifnull Function

Format
(Result)

float

Description

Converts a date interval into a floating-point constant
expressed in the unit of measurement specified by unit.
The interval function assumes that there are
30.436875 days per month and 362.2425 days per year
when using the mos, qtrs and yrs specifications.

The ifnull function allows users to return a fixed value instead of a null value,
when a null is encountered. The ifnull function is defined as ifnull(v 1, v2). The
function takes two character or two numeric input arguments, v 1 and v2. If the
value of v 1 is not null, v 1 is returned. If the value of v 1 is null, v2 is returned.

The data type and length of the result are determined by a comparison of the input
argument data types and lengths. The data type of the result is the "larger" of the
data types of the input arguments, defined as follows:

floatS> float4 > integer4 > integer2 > integerl

varchar > text> char> c

The length of the result is taken from the longest of the two input values.

In the following examples, i2 and i4 represent variables with data types of smallint
and integer, respectively. Regardless of whether the first argument is null or not
null, both examples return a value with integer data type, because i4 has the larger
data type.

ifnull (i2, i4)

ifnull (i4, i2)

In the following example, varchar(5) and c(10) represent variables of the named
data types. This example returns a result with the larger data type, varchar, and a
length of 10:

ifnull (varchar(5), c(lO))

The result is nullable if either argument is nullable. The v1 value is not required to
be nullable, though in most applications it would be nullable.

1.6.6 Dbmsinfo() Function

The dbmsinfo() function is used to request information from a database. This
function queries the database from SQL.

The dbmsinfo() function takes the place of _ username. This function has the
syntax:

dbmsinfo ('request_name')

The following request names can be used with dbmsinfo().

UL TRIXlSQL Syntax 1-25

Request Name

transaction_state

bin tim

et sec

dio cnt

bio cnt

dba

username

version

database

terminal

query Janguage

Response Description

'1' means in a transaction; '0' means not in a transaction.

Returns the current time and date in an internal fonnat,
represented as the number of seconds since January 1, 1970
00:00:00 GMT.

cpu time for session, in milliseconds

elapsed time for session, in seconds

direct I/O requests for session

buffered I/O requests for session

page faults for server

ULTRIX/SQL username of the database owner

ULTRIX/SQL username of the user currently running
ULTRIX/SQL

ULTRIX/SQL version number

database name

terminal address

'sql'

These request names are case insensitive, and dbmsinfo() will always return a
varchar(24) as the result. If dbmsinfo is given a request name it does not
recognize, it will return an empty string.

The query,

select x=dbmsinfo('transaction state')

returns a variable-length string containing the answer (for instance, "I").

1.6.7 Set Functions

A set function is a function that operates on an entire column of values, not just a
single value. Consider the following example:

select sum (employee.salary)
from employee
where employee. dept = 23;

This statement will retrieve the total salary for employees in department 23. The
argument to the function is the set (column) of employee salary values where the
employee department is equal to 23.

The following set functions are supported:

1-26 ULTRIXlSQL Syntax

Name Input Datatype Format(Result) Description

count (any) integer Count of occurrences

sum integer integer Summation
float float
money money

avg integer float Average (sum/count)
float float
money money

max (any) same as argument Maximum value

min (any) same as argument Minimum value

The general syntax of a set function reference takes the fonn:

setJun ([distinct I all] expr)

where set Jun denotes a set function, expr denotes any expression that does not
itself include a set function reference (at any level of nesting), and the optional key
word distinct indicates that duplicate values are to be eliminated from the
argument before the set function is perfonned. The key word all indicates the
default condition, in which duplicate values are not eliminated. Note that it makes
no sense to use distinct in conjunction with the functions min and max.

1.6.7.1 The count Function

The count function includes a special case. The set function reference count(*)
may be used to count the number of rows in the result table. For example, the
statement:

select count (*)

from employee
where dept = 23;

counts the number of employees in department 23. The argument "*,, cannot be
qualified by all or distinct.

Null values are ignored by the set function. Here again, count(*) is the exception,
since it counts rows rather than columns. Consider the following table:

Name Exemptions

Smith 0

Jones 2

Tanghetti 4

Fong null

Stevens null

Running count(cl) will return the value 3, whereas count(*) will return 5.

ULTRIXlSQL Syntax 1-27

1.6.7.2 Restrictions on the Use of Set Functions

The following restrictions apply to the use of set functions:

• First, as already mentioned, they cannot be nested.

• Second, set function references, or expressions
that include such a reference, such as

sum (employee.salary) / 25

are permitted only in the context of a select or having clause. Furthermore,
any column names appearing outside such a set function reference (in such a
select or having clause) must have been specified as one of the operands in a
group by clause at the same syntactic level as that select or having clause.

If the argument to a set function evaluates to an empty set, then the value returned
is as follows:

Set Function Value Returned

count zero

sum, avg null

max, min null

The group by clause allows set functions to be performed on groups of rows,
according to the values in specified columns of the rows. See the discussion on
"Groups" in the section "Structured Data" for an example of how grouping is used
in conjunction with set functions.

1.6.7.3 ifnull and Set Functions

As stated above, the sum, avg, max and min set functions can return a null value,
when the argument to a set function evaluates to an empty set. This can occur even
when the column the set function is operating on is not null(able). To assure that a
set function will never return a null, use the ifnull function. The ifnull function
returns the normal set function result unless that result is null, in which case it
returns the second argument to the ifnull function.

The following returns -1 if sum(employee.salary)/25 is null:

ifnull (sum(employee.salary)/25, -1)

The following returns 0 if max(s.empno) is null:

ifnull (max(s.empno), 0)

1-28 ULTRIXlSQL Syntax

1.7 Search Conditions

Search conditions are used in where and having clauses to qualify the selection of
data. Search conditions are composed of predicates of various kinds, optionally
combined together by means of parentheses and the logical operators and, or and
not. Thus, any of the following is a legal search condition, where search_condition
stands for an arbitrary search condition:

predicate
not search condition
search condition or search condition
search - condition and search condition - -
(search_condition)

Of the three logical operators, not has the highest precedence, followed by and,
with or having the lowest precedence. They group from left to right. The
parentheses may be used to control grouping.

There are seven kinds of predicates, each described in its own section below:

comparison predicate
like predicate
between predicate
in predicate
any-or-all predicate
exists predicate
is null predicate

Predicates evaluate to "true," "false" or "unknown." They evaluate to "unknown" if
one or both operands are null (the is null predicate is the exception). When
predicates are combined using logical operators (and, or, not) to form a search
condition, the search condition evaluates to "true," "false" or "unknown," as
determined by the following tables.

AND true false unknown

true true false unknown

false false false false

unknown unknown false unknown

OR true false unknown

true true true true

false true false unknown

unknown true unknown unknown

Not(true) is "false," not(false) is "true," not(unknown) is "unknown."

UL TRIXfSQL Syntax 1-29

After all search conditions are evaluated, the value of the where or having clause
is determined. The where or having clause can be "true" or "false" only;
"unknown" values are considered "false."

1.7.1 Subqueries

Nesting of queries is accomplished in ULTRIX/SQL by means of a search
condition feature known as the subquery. A subquery is a subselect used in a
predicate of a search condition. (See the Section called "Select" in this chapter for
more information about subselects.) The search condition containing the subquery
can be part of another subquery, or of any data manipulation statement permitting
search conditions. Multiple levels of nesting are permitted. Here is an example of a
subquery:

select ename
from employee
where dept in

(select dno
from dept
where floor = 3);

The expression in parentheses is the subquery; it evaluates to the set of department
numbers for departments on the third floor. The outer query then retrieves the
names of employees whose department number is in that set (that is, names of
employees who work on the third floor).

Subqueries often take the place of expressions in predicates. Note that subqueries
can be used in place of expressions only in the specific instances outlined in the
sections on predicate types below.

The preceding example serves to illustrate the concept of syntactic level. Briefly,
the select, from, and where clauses in the subquery are considered to be at a
different syntactic level from the select, from, and where clauses in the outer
subselect. More generally, two syntactic units within the same statement are
considered to be at the same syntactic level if and only if there exists a subselect
within that statement such that the two syntactic units are both immediately
contained within that subselect (that is, neither one is contained within a subquery
nested within that subselect).

The syntax of the subquery is identical to that of the subs elect, except for one
restriction-expressions in the select clause cannot be assigned result column
names.

A subquery may include references to correlation names defined (explicitly or
implicitly) outside the subquery. For example, the following statement selects
names of employees with a salary greater than the average for their department:

select ename
from employee empx
where salary

(select avg (salary)
from employee empy
where empy.dept = empx.dept);

1-30 ULTRIXlSQL Syntax

Here the subquery includes a reference to the correlation name "empx" defined in
an outer query-that is, at a different syntactic level. Note that the reference
"empx.dept" must be explicitly qualified here; otherwise it would be assumed to be
implicitly qualified by "empy." The overall query is evaluated by letting "empx"
take each of its permitted values in tum (that is, letting it range over the employee
table), and for each such value of "empx," evaluating the subquery. Note that at
least one of the correlation names must be explicit in this example (either "empx"
or "empy," but not both, could be allowed to default to simply "employee").

1.7.2 Comparison Predicate

A comparison predicate takes the form:

expression_l comparison_operator expression_2

where comparison_operator is one of the following:

= equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

Note that the comparison operator "not equal to" may also be indicated by the <>
or A= character combinations. All comparison operators are of equal precedence.

Note

If a subquery is in the right-hand argument of a comparison predicate,
the subquery may return at most one row. If the subquery returns zero
rows, the comparison predicate evaluates to "false."

If there is a null on either or both sides of any comparison operator, the expression
will evaluate to "false."

1.7.3 like Predicate

The like predicate provides the only pattern-matching capability in ULTRIX/SQL
for the character data types (char, varchar, c, and text). It takes the following
form:

columnname [not] like pattern [escape escape_character]

where pattern is a string constant, not a column. The pattern-match characters are
the percent sign (%) to denote 0 or more arbitrary characters, and the underscore
(_) to denote exactly one arbitrary character.

If the escape clause is specified, entering an escape character changes the meaning
of the character immediately following the escape character. The escape character
may be used with the following characters:

UL TRIXlSQL Syntax 1-31

• Pattern matching characters percent (%) and underscore (_). To enter the
percent sign (%) or underscore CJ literally, precede it with the escape
character.

• The escape character itself. To enter the escape character literally, type it
twice.

o Square brackets ([D. When preceded by an escape character, square brackets
provide special pattern matching capabilities. You can specify a series of
individual characters or a range of characters separated by a hyphen (-).

The following examples illustrate some uses of the like predicate's pattern
matching capabilities.

.. To match any string starting with "a":

name LIKE' a%'

e To match any string starting with A through Z:

name LIKE'\ [A-Z\]%' ESCAPE '\'

o To match any two characters followed by "25%":

name LIKE' 25\%' ESCAPE '\'

o To match a string starting with a backslash:

name LIKE' \%'

Because there is no escape clause, the backslash is taken literally.

o To match a string starting with a backslash and ending with a percent
character:

name LIKE' \ \%\%' ESCAPE' \'

o To match any string starting with 0 through 4, followed by an uppercase letter,
then a left bracket ([), any two characters and a right bracket (]):

name LIKE '\[01234\]\[A-Z\] []' ESCAPE '\'

1.7.4 between Predicate

The operators between and not between have the following meanings:

Operator Meaning

y between x and z x<=y, y<=z

y not between x and z not (y between x and z)

1-32 UL TRIXlSQL Syntax

In the foregoing, x, y and z are expressions. Subqueries may not be substituted for
any of the expressions.

1.7.5 in Predicate

The operators in and not in (followed by a parenthesized list of expressions) are
defined as follows:

Operator Meaning

y in (XII ... , z) y = X or ... or y = z

y not in (x" ... , z) not (y in (x" ... , z»

In the preceding table, x, y and z are expressions and may not be subqueries. If
there is only one expression in the list, the parentheses are optional.

Another version of the in predicate takes the form:

expression [not] in (subquery)

The subquery must contain a reference to exactly one column in its select clause.

1.7.6 any-or-all Predicate

An any-or-all predicate takes the form:

any-or-all_operator (subquery)

The subquery must have exactly one expression in its select clause (so that it
evaluates to a set of scalar values, not a set of rows). The any-or-all operator is one
of the following:

=any =all
!=any l=all
<any <all
<=any <=all
>any >ull
>=any >=all

It is permissible to include a space between the comparison operator and the key
word any or all.

Let a dollar sign ($) denote anyone of the comparison operators =, !=, < , <=, >,
>=. Then the predicate x $any (subquery) evaluates to "trueH if, and only if, the
comparison predicate x $ y is true for at least one value y in the set of values
represented by subquery. If the subquery is empty, the $any comparison fails
(evaluates to "falseH

).

Likewise, the predicate x $all (subquery) is true if, and only if, the comparison
predicate x $ y is true for all values y in the set of values represented by subquery.
If the subquery is empty, the $all comparison succeeds (evaluates to "true").

The operator =any is equivalent to the operator in. For example:

ULTRIX/SQL Syntax 1-33

select ename
from employee
where dept in

(select dna
from dept
where floor 3);

may be rewritten as:

select ename
from employee
where dept = any

(select dna
from dept
where floor = 3);

The operator some is a synonym for the operator any and would appear as:

select ename
fromemployee
where dept = some

(select dna
from dept
where floor 3) ;

1.7.7 exists Predicate

An exists predicate takes the form:

[not] exists (subquery)

It evaluates to "true" if, and only if, the set represented by subquery is not empty.
For example, the following statement selects names of employees who work on the
third floor:

select ename
from employee
where exists

(select *
from
where
and

dept
dna = employee.dept
floor = 3);

It is typical, but not required, for the subquery argument to exists to be of the form,
select * ...

1.7.8 is null Predicate

The is null predicate takes the form:

is [not] null

The statement x is null is true if, and only if, x is the null value. Because you can't
use the equal sign (=) comparison operator to test for a null result, you must use the
is null predicate to find out whether an expression is null.

1-34 UL TRIXlSQL Syntax

1.8 Data Manipulation Statements

The ULTRIX/SQL data manipulation statements are select, update, delete and
insert.

1.8.1 Select

The general syntax of select is:

subselect
{union [all] subselect}
[order by result column [asc I desc] {, result column [asc I desc]}] - -

where:

• Each subselect has the syntax shown following this list.

• The clause subselect union all subselect yields all results that either subselect
would yield if run individually. If all is not specified in the union, duplicate
rows are removed from the result.

8 Corresponding data types across subs elects must be coercible into a common
data type-that is, they must be either all character types or all numeric types.

o All subselects in a select have the same number of columns in their result
table.

• Each result_column in the order by clause consists of either a result column
name or an integer constant in the range 1 - n, where n is the number of
columns in the result table of each of the subselects. If the statement contains
a single subselect, the column must be one of the columns of the result table.
If the statement contains more than one subselect, the result column name is
derived from the first subselect. Because the column name in an order by
clause refers to a column in the result table, it may not be qualified by a table
or correlation name.

• The optional key words asc and desc specify ascending and descending sort
sequence, respectively. If neither is specified for a particular column, asc is
assumed by default.

The syntax for subselect is as follows:

select [alii distinct] expression [as result_column] {, expression [as result_column]}
from table [corr name] {, table [corr name]}
[where search_condition] -
[group by column {, column}]
[having search_condition]

The key word distinct indicates that duplicate rows are to be eliminated. The key
word all, the default condition, causes duplicate rows to remain.

The expressions in the select clause can be any expressions constructed in
accordance with the rules for expressions (refer to the section titled "Expressions"
in this chapter). They may also take one of the following forms:

UL TRIX/SQL Syntax 1-35

correlation name. *

table.*

*

All the columns of the table denoted by correlation_name

All the columns of table

All the columns of all the tables named in the from clause.
This cannot be part of a comma-separated list; it must be
the onI y element in the select list.

A result_column may be assigned to any expression that denotes a single column in
the result table (that is, where expression does not use the "*,, syntax).
Result_column appears as the column name for the column in the result table
resulting from the expression. If result_column is not specified and the expression
is simply one column from the source table, then the result column name is the
same as the source table column name used in the expression. If the expression is a
scalar or aggregate function or involves more than one column, and the
result_column is not specified, then ULTRIX/SQL provides a default result column
name ("colI," "coI2," ...). The result column, whether default or explicit, is also
used in the order by clause.

The columns in the group by clause are names of columns from the tables
identified in the from clause. They may be qualified by a having clause.

From a conceptual standpoint, the subs elect is evaluated in the following manner.
First, the Cartesian product of all tables identified in the from clause is formed.
(Cartesian products are defined in the section titled "Cartesian Product.") From that
product, rows not satisfying the search condition specified in the where clause are
eliminated. Next, the remaining rows are grouped in accordance with the
specifications of the group by clause. Groups not satisfying the search condition in
the having clause are then eliminated. Finally, the expressions specified in the
select clause are evaluated. If the key word distinct has been specified, any
duplicate rows are eliminated from the result table.

Note

Bear in mind that the foregoing explanation is purely conceptual in
nature. Actual evaluation normally does not proceed in precisely the
manner described, but instead uses some more efficient method, as
determined by the ULTRIX/SQL optimizer.

If the subselect includes a group by clause, each expression in the select clause
must be single-valued per group. That is, the only data items permitted in such an
expression are the following:

o constants

• grouping columns

e set function references

As usual, however, such terms can be combined using arithmetic operations, can be
the arguments to scalar functions, and so forth.

1-36 ULTRIXlSQL Syntax

If the subs elect includes a having clause, each expression in that clause must also
be single-valued per group. If the group by clause is omitted in a subselect with a
having clause, the entire table is considered to be a single group.

The result of a select statement is the union of the results of all subselects in that
statement, ordered in accordance with the specifications of the optional order by
clause. Duplicate rows are always eliminated if either union or distinct is
specified. If order by is not specified, the rows of the result appear in
unpredictable order.

The following is an example of a select statement:

select eno
from employee
where age > 45
union
select mgr
from dept
where floor 3
order by 1;

1.8.2 Update

The general syntax of update is as follows:

update table [corr _name]
set column = expression {, column = expression}
[where search_condition]

Example:

update employee
set job = 27,

salary = salary * 1.1
where job = 25;

1.8.3 Delete

The general syntax of delete is:

delete
from table [corr _name]
[where search_condition]

Example:

delete from employee
where job = 0;

1.8.4 Insert

The general syntax of insert is:

insert
into table [(column {, column})]
source

UL TRIXlSQL Syntax 1-37

where source either is a subselect or takes the form:

values (expression {, expression})

Expressions used in the values clause can be only constants, scalar functions on
constants, or arithmetic operations on constants.

Examples:

insert
into dept (dno, dname, mgr)
values (38, 'Purchasing', 21458);

insert
into employee (eno)

select mgr
from dept
whe re dname = , newdept' ;

1.9 Relational Concepts

1.9.1 Expressing Relational Operators in SQl

One of the first query languages proposed for use in relational systems was based
on the relational algebra. Even though no purely algebraic language is in current
use, some of the algebraic operators have become a standard part of the
terminology of relational systems. The most familiar of these are:

o Projection

• Restriction

• Cartesian product

• Join

This section shows how these operators are expressed in ULTRIX SQL. For
illustration, this section uses the tables "employee," "dept" and "job" defined in the
earlier section, "A Sample Database."

1.9.1.1 Projection

Projection is an operator that constructs a "vertical section" of an existing table by
taking a subset of its columns. For example, the theoretical statement,

project employee on (ename, age)

specifies a table consisting of the "ename" and "age" columns of the "employee"
table.

The select clause in SQL corresponds to projection. For example, the statement
"project employee on (ename, age)" is expressed in SQL as:

select ename, age
from employee;

1-38 UL TRIXlSQL Syntax

1.9.1.2 Restriction

Restriction constructs a "horizontal section" of a table by taking those rows that
satisfy a specified condition. For example, the theoretical statement,

restrict employee on (age> 40)

defines a table consisting of all rows in "employee" for which the value in "age" is
greater than 40.

The where clause of an SQL statement corresponds to restriction. For example,
"restrict employee on (age> 40)" is expressed in SQL as:

select *
from employee
where age > 40;

1.9.1.3 Cartesian Product

The Cartesian product of two tables (for instance, A and B) is a table (denoted by
A *B) consisting of all concatenations of rows from A with rows from B. That is,
each row t in A *B is of the form:

t=ab

where a is a row from A, and b a row from B, and every distinct pair (a,b) produces
a row in A*B.

For example, "employee*job" is a table consisting of all concatenations ej, where e
is a row from "employee" and j is a row from "job."

The Cartesian product is easily expressed in SQL with the select statement. For
example, the theoretical "employee*job" is expressed in SQL as:

select *
from employee, job;

1.9.1.4 Join

The join operator constructs a table out of two existing tables by collecting all pairs
of rows such that each pair satisfies some condition. When the condition is equality
between columns from the rows, the operator is called an equijoin. For example,
the following theoretical statement would be an equijoin:

join employee with job on (job of employee = jid of job)

By contrast, the following theoretical statement is a join, but not an equijoin:

join employee with job on (lOO*(age of employee) > lowsal of job)

A join is equivalent to a combination of Cartesian product followed by a restriction.
For example, the second join in the previous paragraph is equivalent to a theoretical
formulation:

restrict (employee*job) on (lOO*(age of employee) > lowsal of job)

ULTRIXlSQL Syntax 1-39

Because SQL allows Cartesian product and restriction to be combined in a single
query, joins are easily expressed. The two theoretical examples of joins given
above are expressed in SQL as follows:

select employee. *, job. *
from employee, job
where employee. job == job. j id;

select employee. *, job. *
from employee, job
where lOO*employee.age > job.lowsal;

1.9.2 Nulls and Defaults

Null represents an unknown or absent value. ULTRIX/SQL gives you the option of
having null assigned automatically in a given column when no value is specifically
assigned. Null is not a value such as zero, a blank, or an empty string.

Nulls are useful if you want to take an aggregate on a column, but don't want
unknown or inapplicable values to affect the aggregate. For example, if there is a
column "age" in the "employee" table, and if you want to run an aggregate on that
column to determine the average age of the employees, you want to make sure that
any ages that have not been entered do not count as zeros. If ages that have not
been entered are given the value null rather than zero, they will not be counted
when the aggregate is run.

If you choose not to allow a column to contain the null value, ULTRIX/SQL also
lets you choose whether you want a default value (zero, blank, or empty) assigned
to that column. If you do not allow either a null or a default value to be assigned,
then the user will be forced to enter a value in the column to avoid an error
message. Disallowing nulls and defaults is a good way to make sure that all
columns are filled in, in cases where this is appropriate.

Set functions, with the exception of countO, return null for an aggregate over an
empty set, even when the aggregate includes columns which are not nullable. (Note
that co untO returns 0.) In the following example, select returns null, since there are
no rows in tbl.

create table tbl (colI integer NOT NULL);
select max (colI) as x from tbl;

To eliminate this condition, you could use the ifnull function. For example,

select IFNULL(max(coll),O) as x from tbl;

will return zero (0).

You determine whether to allow nulls and defaults in a column at the time you
create the table with the create table command.

1-40 ULTRIXlSQL Syntax

1.10 Transactions

A transaction in ULTRIX/SQL is defined as one or more SQL statements that are
to be processed as a single, indivisible database action. Transactions are atomic
units of consistency and concurrency in the ULTRIX/SQL multi-user database
environment. None of the effects on a database of one user's transaction is visible
to other users' transactions until the transaction is committed. When the transaction
is committed, all of its effects are written permanently to the database, and the
effects become available to the transactions of other users.

Concurrency control in ULTRIX/SQL insures that simultaneously executing
transactions do not interfere with each other in ways that could compromise the
atomic status of a transaction. Deadlock is a possible consequence of transaction
concurrency control, and deadlock is handled by the ULTRIX/SQL transaction
processing system. (For a definition of deadlock, see the discussion titled
"Transaction Rollback" later in this section.)

Transactions are committed or rolled back under user control. Transactions can also
be rolled back under system control in cases of deadlock. Single statements, both
inside and outside a transaction, can be rolled back under system control in cases of
deadlock, timeout or error conditions (for instance, a replace operation that
generates a duplicate key in a table that has unique keys). Single statements can be
rolled back under user control in the case of interrupts.

1.10.1 Transaction Control Statements

The following transaction-controlling statements are available:

o The commit statement ends a transaction block and commits the transaction's
effects to the database.

o The rollback statement terminates a transaction in progress and undoes the
effects of all processed statements.

1.10.2 Committing Transactions

A transaction is committed when its updates to the database are written.
Committing a transaction occurs at the end of the transaction. Before ULTRIX/SQL
commits a transaction, none of its updates to the database are available to other
users, and the transaction can be rolled back without causing inconsistency or
propagating undesirable rollbacks of other transactions. After the transaction is
committed, however, its effects in the database are considered permanent and are
visible to other transactions.

A transaction is committed explicitly with the commit statement. If a user rollback
command or system-generated rollback on deadlock terminates the transaction
before a commit command is processed, then the transaction is rolled back, and all
its effects on the database are backed out.

UL TRIXlSQL Syntax 1-41

1.10.3 Transaction Rollback

At any time before a rollback statement commits a transaction, the transaction can
be rolled back under user or system control. All effects of the transaction on the
database are undone, and no other transactions in progress are adversely affected.

Transactions can be rolled back in either of the foliowing ways:

• User rollback-The statement rollback causes immediate termination of a
transaction in progress.

• System abort-Deadlock is a situation that may arise during concurrent
execution of transactions, when each of two transactions is attempting to
update a part of the database that the other transaction is currently using. Each
transaction must wait for the other to release a part of the database (for
instance, a table or a data page) before it can perform its own updates. Each
transaction requires what the other transaction owns, and neither transaction
will release the part of the database it currently has until it gets the other part
it needs. Because of this standoff, neither transaction can proceed.

ULTRIX/SQL detects this situation when it occurs and chooses one
transaction to roll back in order to end the deadlock. An error number or status
code (4700) is returned to the user to indicate rollback on deadlock. The user
may then restart the transaction, if desired.

1.10.4 Interrupt and Timeout Handling in Transactions

The transaction processing system in ULTRIX/SQL recognizes the interrupt signal
Control-C. This has a distinci effect on transaction processing.

A Control-C received by the Terminal Monitor during multi-statement transaction
processing causes ULTRIX/SQL to abort automatically the latest statement of the
transaction, The transaction remains uncommitted and can be continued in nonnal
fashion. This action can take place only once for a given transaction; subsequent
Control-C characters are ignored unless a new statement is added to the
multi-statement transaction since the last Control-C. The transaction must
eventually be terminated in normal fashion, either with a commit or rollback.

A timeout condition detected while waiting for a lock (see set lockmode command)
causes an error status (4702) to be returned to the user, and otherwise behaves as if
a Control-C had been received from the application.

1.10.5 SQl Transaction Semantics

Every SQL database query either begins or is added to an existing multi-query
transaction. An SQL transaction is started at the execution of the first SQL
statement. Subsequent statements (for instance, select, insert, update, delete)
accumulate as part of that transaction. The transaction is not committed until a
commit statement is issued. Statements which cannot be issued within a
transaction, such as the set lockmode statement, can be executed if no other SQL
statements have been executed since the last commit.

1-42 UL TRIXlSQL Syntax

Queries issued between commits will accumulate as part of the transaction and
locks on data touched by each query will be held until the next commit statement.
Even read locks, associated with select statements, will accumulate and be held
until commit time.

1.11 Database Procedures

Database procedures are a collection of statements managed as objects by
ULTRIX/SQL as part of the database definition. Procedures provide strong benefits
for the user. They enhance performance by reducing the amount of communication
between the application and the database management system. They provide the
Database Administrator (DBA) with an extra level of control over data access and
modification. Also, one procedure can be used in many applications in a database,
which reduces coding time.

1.11.1 Using Database Procedures

Procedures can be created or dropped in the ULTRIX/SQL Terminal Monitor or
within embedded ULTRIX/SQL. Procedures can only be executed from within
embedded ULTRIX/SQL.

A procedure may include data manipulation statements (such as select or insert) as
well as control flow statements (such as if and while) and the status statements,
message and return.

When you create and use database procedures, there are several considerations to
remember:

• Within a database procedure, all object references are resolved when a
procedure is created. This means that if a procedure references a public table
when it is created, the procedure will always use that table, even if executed
by a user having a private table with an identical name.

• All referenced objects must exist at the time the procedure is created and
when it is executed. Between the time of creation and the time of execution,
you can modify, reorder, or drop and recreate objects such as tables and
columns without affecting the procedure definition. However, if an object is
redefined in a way that invalidates the procedure definition, then the
definition must be dropped and recreated. An example of this is a column
whose data type is changed from numeric to string.

• The procedure's query execution plan is created when the procedure is
created. If the procedure is modified in a way that invalidates the plan, then
the plan is recreated at the next invocation of the procedure.

The following is an example of a database procedure called "move_emp." This
example accepts an employee ID number as input. The employee matching that ID
is moved from the "employee" table and added to the "emptrans" table. Both tables
are inaccessible to users except through the procedure. When the procedure is
invoked, the executing application passes a single integer parameter.

UL TRIX/SQL Syntax 1-43

CREATE PROCEDURE move_emp (id INTEGER NOT NULL) AS
BEGIN

END;

INSERT INTO emptrans
SELECT *

FROM employee
WHERE id = :id;

DELETE FROM employee
WHERE id = :id;

1.11.1.1 Permissions on Procedures

A procedure is owned by the person who creates it. If the creator is the Database
Administrator (DBA), then the procedure is public and available to any user having
the DBA's permission. A procedure created by any other user is private to that user.
If the DBA and a user have identically named procedures, the user has access only
to the private procedure.

Procedures provide the DBA with greater control over database access. The DBA
can grant a user permission to execute a procedure even if the user has no direct
access to the underlying tables. In this way, the DBA controls exactly what
operations a user can perform on a database.

The DBA uses the following statement to grant permissions to users:

grant execute
on procedure procedure_name to user_list

1.11.1.2 Error Handling

Unless the procedure programmer provides explicit error handling mechanisms,
either within the procedure itself or within the calling application, the default action
is to continue to the next statement when an error occurs.

Database procedures make use of the control flow statements, if and while, and two
built-in variables, iirowcount and iierrornumber, to process errors. An application
that invokes a database procedure must use the SQL Communications Area
(SQLCA) to process errors occurring inside the database procedure. The variables
iirowcount and iierrornumber are only available within the database procedure.
(Refer to the ULTRIX/SQL Reference Guide to Embedded SQL for information
about using the SQLCA.)

The variable iirowcount is an integer that indicates the number of rows affected by
the last executed SQL statement. If the statement was not a statement that affects
rows or if an error occurred, then iirowcount is set to -1. If the statement was a
row-affecting statement, but no rows were affected, then the value of iirowcount is
set to O. The initial value of iirowcount is O.

The variable iierrornumber is an integer that holds the error number associated
with an error occurring during the execution of a statement. If no error occurs, the
value of iierrornumber is set to O. The error number is a positive number and its
initial value is O.

1-44 UL TRIXlSQL Syntax

The execution of each statement sets the value of iierrornumber either to zero (no
errors) or an error number. In order to check the execution status of any particular
statement, iierrornumber must be examined immediately after the statement's
execution.

Errors occurring in if, while, message, and return statements do not set
iierrornumber. However, any errors that occur during the evaluation of the
condition of an if or while statement terminate the procedure and return control to
the calling application.

1.11.1.3 Message Handling

Database procedures use the message statement to display text on the screen while
executing. It is possible to provide alternative instructions for message processing
using the whenever statement within embedded SQL. Refer to the ULTRIX/SQL
Reference Guide to Embedded SQL for information about using the whenever
statement and processing procedure messages.

1.11.2 Creating and Executing a Procedure

1.11.2.1 Creating a Procedure

A database procedure can be created within embedded ULTRIX/SQL. The syntax
for the statement is:

[create] procedure proc_name
[(param_name [=] param_type { ,param_name [=] param_type})]

=Ias
[declare section]

begin -
statement list

end; -

The parameters in this syntax have the following definitions:

o proc _name is the name of the procedure to be created

• param _name is the name of the procedure parameter

• param_type is the procedure parameter's type

Procedure parameters are treated as local variables in the procedure body, although
they have an initial value assigned when the procedure is invoked. You can also
assign values to procedure parameters within the body of the procedure. (Local
variables are discussed below.)

All parameter types may have the null or default clauses. For example, the
following procedure fragment accepts three parameters: a non-null integer, a
varying-length string and a date:

CREATE PROCEDURE eval_emp (id INTEGER NOT NULL,
comment VARCHAR(lOO),
meeting DATE NOT NULL) AS

ULTRIX/SQL Syntax 1-45

The declare section declares a list of local variables that can be referenced within
the procedure. The syntax for this statement is:

declare
var _name { , var _name} [=] var _type;
{var _name { ,var _name} [=] var _type;}

The parameters in this syntax have the following definitions:

• var name is the name of the local variable.

var _type is the type of the variable.

Variable names must be unique within the procedure. If a variable is nullable, it is
initialized to null. If a variable is not nullable, it is initialized to the default value.

You can substitute local variables and procedure parameters for any constant value
in statements in the procedure body. A preceding colon (:) is only necessary if the
referenced name could be misinterpreted as an SQL column name. For example, if
a procedure parameter and a referenced column (in a procedure statement) have the
same name, the parameter must be preceded by a colon. The following example
illustrates this rule.

In this example, the procedure retrieves the name of an employee who matches an
employee ID. Both the employee ID column and the procedure parameter are
named "id." The colon in the where clause distinguishes the column from the
parameter.

CREATE PROCEDURE name of emp (id INTEGER NOT NULL) AS
DECLARE

name CHAR(50) NOT NULL;
BEGIN

SELECT fname + ' , + lname
INTO :name
FROM employee
WHERE id = :id;

MESSAGE :name;
END;

The statement _list may include local variable assignments and any of the following
statements:

insert
delete
update
commit

rollback
select
if

while
return
message

You cannot issue any data definition statements, such as create table, from inside a
database procedure.

Refer to the statement summary in Chapter 2 for detailed information about the
syntax of the create procedure statement.

1-46 UL TRIX/SQL Syntax

1.11.2.2 Executing a Procedure

Procedures are invoked from within an embedded ULTRIX/SQL application. The
statement that invokes a procedure is execute procedure. You can execute a
procedure dynamically by specifying the using clause in an execute procedure
statement. However, you cannot use either of the dynamic ULTRIX/SQL
statements, execute or execute immediate, to execute a database procedure. Nor
can you invoke a procedure interactively or from inside another procedure. Refer to
the ULTRIX/SQL Reference Guide to Embedded SQL for information about
executing a database procedure.

1.11.3 Dropping a Procedure

Dropping a procedure removes the procedure's definition from the database. You
must be the owner of a procedure to drop a procedure. Procedures may be dropped
within an embedded ULTRIX/SQL application. You cannot drop a procedure from
inside another procedure.

The syntax of the statement is:

drop procedure proc _name

The parameter proc _name is the name of the procedure you want to drop.

The statement takes effect immediately. Executions of the procedure in progress,
invoked by other users, continue until they are completed. However, no additional
references to the procedure are allowed.

1.12 Mu Iti-File System Databases

In order to accommodate large databases within a finite computer system,
ULTRIX/SQL enables users to locate the user tables of a single database on more
than one file system. Merely by establishing names for discrete areas of a given
disk, an ULTRIX/SQL system administrator can preserve the usefulness of an
ULTRIX/SQL database, even when it becomes extremely large.

1.12.1 ULTRIX/SQL Locationnames and Areas

A locationname is a label that denotes an ULTRIX/SQL directory. These labels are
independent of the directory structure. In the ULTRIX operating system, an area
would be defined as a directory or sub-directory (for instance, /usr/cormac/new
or ... /mydb/other).

Each locationname maps to exactly one area; however, many different
locationnames can map to the same area. Locationnames follow the ULTRIX/SQL
naming convention: they must begin with a letter or an underscore (_), and the
maximum length is 32 characters. The area designation can be up to 255 characters
and must follow the ULTRIX syntax for directory names. Areas and locationnames
are specified with the access db command, described in the ULTRIX/SQL
Operations Guide.

ULTRIXlSQL Syntax 1-47

You can use location names in the createdb and finddbs utilities, as well as in the
create table, create index and modify commands. If a locationname is not
specified in a utility or SQL command, then the appropriate default is used. Host
language programs using SQL can be written in a manner independent of the
system configuration, because all references to database directories can be
locationnames. Each installation has a set of default locationnames. These are
ii_database, ii.JournaI and ii_checkpoint. These locationnames map to the
environment variables II_DATABASE, II_JOURNAL and II_CHECKPOINT,
respectively.

1.12.2 Assigning Database Tables to Single Areas

As mentioned above, ULTRIX/SQL assigns a table or index in a database to a
default locationname unless it is otherwise specified on the create table or create
index statement. However, if disk space on the default file system that stores the
database becomes too full, the table can be relocated to another file system.

1.12.2.1 Relocating the Database User Tables

The process of relocating a database's user tables to a different device requires
four steps:

1. Make sure a valid ULTRIX directory exists for the new database locations.

2. The second step is executed by the ULTRIX/SQL System Administrator. The
System Administrator uses the accessdb command (described in the
ULTRIX/SQL Operations Guide and ULTRIX/SQL Database Administrator's
Guide) to create the new locationnames, creating the mapping to directories
within or outside the ULTRIX/SQL installation area.

3. The ULTRIX/SQL System Administrator uses the accessdb command to
extend the database to the additional directories by assigning the requisite
locationnames to tables and indexes.

4. The fourth step is executed by the ULTRIX/SQL user who is the table's
owner. Use the following form of the modify command (described in
Chapter 2) to relocate the user table to a new location:

modify table name to reorganize with
location = (locationname {, locationname})

1.12.2.2 Multi-Location Tables

Tables and indexes may also be physically partitioned across multiple areas. A table
may be assigned to multiple locations when it is created (using the create table or
create index statement) by way of the with location = (location-list) clause. For
example:

create table large (wide varchar (2000))
with location = (locationl, location2, location3);

The specified locations must already exist and be mapped to directories. (See the
access db description in the ULTRIX/SQL Operations Guide.)

1-48 UL TRIX/SQL Syntax

Alternatively, a table may be spread over several locations, using the modify to
reorganize the statement:

modify large to reorganize with location = (locationl, location2,
location3);

A table, or part of a table, may be relocated to a corresponding location or set of
locations by using either of the following modify to relocate statements:

modify large to relocate
with oldlocation = (locationl, location2, location3),

newlocation = (location4, locationS, location6);

modify small to relocate
with oldlocation (locationl),

newlocation = (location2);

The difference between modify ... to relocate and modify ... to reorganize is
that with the relocate option, the data from each area in the old location list is
moved "as is" to the corresponding location in the newlocation list. For example:

modify medium to relocate with
oldlocation = (locationl, location2),
newlocation = (location3, location4);

The data for table medium in locationl is moved to location3, and the data in
location2 is moved to location4. The number of locations in the oldlocation list
must be equal to the number of locations in the newlocation list.

A portion of a table may be relocated by specifying only certain locations in the
location lists. For the following example, assume that table "large" is currently
assigned to locationl, location2 and location3. Then,

modify large to relocate with
oldlocation (location3) ,
newlocation = (locationS);

will only relocate the table data that resides in location3, leaving locationl and
location2 unchanged.

Modify .•• to relocate with only one location named in the location lists is
analogous to the relocate statement.

With the reorganize option, the table is not only moved, but is also reorganized.
That is, a table that is spread across three locations can be reorganized to be spread
across only two or five locations. You do not need to specify the old locations for
the reorganize form of modify. The entire table is reorganized. The only parameter
in the with clause that is accepted is the location = (locationname
[,locationname ...]) clause.

The algorithm for spreading a table or index across multiple locations is very
simple (that is, efficient) from an internal standpoint, but may be a bit confusing
from an external point of view.

UL TRIX/SQL Syntax 1-49

If a table is to be spread over three locations, as in the following example,

create table large (wide varchar(2000),
with location = (locationl, location2, location3);

then as rows are added to the table, they will be added to each location in 16-page
(approximately 32-Kilobyte) chunks. When the first 16 blocks are filled in
location 1 , the following 16 pages of data are put in 10cation2 and the next 16 pages
are put in location3. Then the pattern starts over again with location1.

If it is not possible to allocate 16 full pages in an location when it is that location's
tum to be filled, the table is determined to be out of space, even if there is plenty of
room in the table's other locations.

1-50 ULTRIX/SQL Syntax

ULTRIXlSQL Statements 2

2.1 Introduction

The ULTRIX/SQL structured query language (SQL) consists of statements that
perform a range of functions for data definition, data manipulation and database
administration. This chapter presents these statements individually, describing each
statement's purpose, syntax and use.

This and other chapters of the ULTRIX/SQL Reference Manual provide the
definitive description of ULTRIX/SQL functions for those readers who have been
referred from another manual. Chapter 3 describes how to use these functions in
interactive mode, using the ULTRIX/SQL Terminal Monitor. For complete
information about the use of ULTRIX/SQL within a host language program, consult
the documentation for your ULTRIX/SQL preprocessor.

UL TRIXlSQL Statements 2-1

2.2 commit

2.2.1 Purpose

Commit the current transaction.

2.2.2 Syntax

commit [work]

2.2.3 Description

This statement commits the current transaction. Once committed, the transaction
cannot be aborted, and all changes to the database become visible to other users
through use of the select statement. Once executed, the current transaction is
terminated; a new one is automatically started on execution of the next SQL
statement. Any open cursors are closed and all locks are released.

The optional word work has no effect. It is included for compatibility with other
implementations of SQL.

2-2 UL TRIXlSQL Statements

2.3 copy

2.3.1 Pu rpose

Copy data into/from a table from/into a file.

2.3.2 Syntax

copy [table] tablename (columnname = format [with null [(value)]]
{, columnname =format [with null[(value)]]}) into I from 'filename'
[with with_options_list]

The with_options _list consists a comma-separated list of any of the following items:

on error = terminate I continue
error count = n
rollback = enabled I disabled
[log = 'filename']

2.3.3 Description

The copy statement moves data between ULTRIX/SQL tables and standard files.
Table is a key word and must be typed as shown when used. Tablename is the name
of an existing table. In general, columnname identifies a column in the table.
Format indicates the storage format for the column's values in the file.

The file specified by filename does not accept a null as valid data. The with null
clause is provided so that you can specify a substitute value for nulls when copying
a table that contains nulls. ULTRIX/SQL substitutes the specified value in the file
whenever it encounters a null in the table. In reverse, if you are copying from a file
to a table, ULTRIX/SQL substitutes a null in the table whenever it encounters the
specified value in the file. (Be careful to choose a value for null that does not occur
as part of the data in your table or file.)

The value specified as the substitute for null must be compatible with the format of
the field in the file. Character formats require quoted values and numeric formats
require unquoted numeric values. Do not use a null character, quoted or unquoted,
for a numeric format. For a numeric field, the file does not accept an actual null
character, nor will it accept the "null" character string.

If you specify with null but do not specify a value, you get an ULTRIX/SQL
binary data value. It will have non-printable characters as part of the data
representation because every data value has a trailing byte specifying whether the
value is null. Therefore, you must specify the value in a with null clause when
using the cO, text(O), char(O), and varchar(O) format specifications.

If you do specify (value) in the with null clause, null values are represented by the
value specified and there is no byte to represent the null.

UL TRIXlSQL Statements 2-3

To write a file, use the into filename form of the copy statement. To copy data from
a file to an ULTRIX/SQL table, use the fromfilename form of the statement.
Filename must be enclosed in single quotation marks. Unless the full pathname is
specified, filename will be assumed to be in the current directory of the process
running the ULTRIX/SQL utility or embedded SQL program.

The with on_error clause lets you specify that copy should not be terminated due
to an error processing a row. If continue is set, ULTRIX/SQL does not terminate
the copy if it encounters errors converting between row and file format. However,
the copy will be terminated on errors that occur when reading or writing the copy
file and on errors that signify a problem with copy processing in general rather than
a problem confined to a single row. If terminate is set, copy terminates at the first
conversion error. Terminate is the default.

If an error is encountered while on error is set to continue, a warning message
corresponding to the type of error is printed and that row is skipped. When the
copy is finished, the following message is displayed:

COPY: Warning: Copy completed with %d warnings. %d rows
successfully copied.

The error count = n clause instructs copy to terminate after n errors instead of just
one. This Clause is meaningful only if on error = terminate is set. It is an error to
specify an error_count if on_error = continue is specified. The default
error count is 1.

The with rollback clause lets you specify whether rows appended to the database
during a copy should be backed out if the copy is terminated due to an error. This
option is meaningful only with copy from, because rows are never backed out of
the copy file if copy into is terminated.

If rollback = enabled is specified, all rows added to the database during a copy
statement are backed out if the copy is terminated abnormally. This is the default
setting.

The rollback=disabled option does not mean that a transaction cannot be rolled
back. Data manager internal errors that may indicate data corruption will still cause
back out, and rows are still not committed until the transaction is complete. This
option means only that rows will not automatically be backed out if an error occurs.

There are two error messages that indicate that copy has been interrupted
abnormally due to an error or interrupt. If you are running copy from and either
rollback = enabled is set or the termination is due to a data manager error, you will
get the following error message:

COPY: Copy has been aborted

Any other abnormal termination will produce the following error message:

COPY: Copy terminated abnormally, %d rows successfully copied.

The with log = 'filename' clause lets you send rows that copy cannot process to the
file specified. In a copy from, rows written to the log file will be exactly the same
as they were in the copy file. In a copy into, they will be in the format of the rows
in the database.

2-4 UL TRIXlSQL Statements

The with log option is especially useful in a copy from statement when the
on_error = continue option is set. In this case, the copy will continue to
completion even though there may be rows in the copy file which cannot be
processed. Warnings are given for each row that cannot be appended to the
database, and those rows are written to the log file. You can then edit the log file
and fix up the rows in order to load them into the database.

If an error occurs opening the log file, the copy will halt. The log file will be
opened prior to the start of data transfer, so the copy will halt immediately.

If an error occurs writing to the log file, a warning is given and the copy continues.

If the specified log file already exists, it is overwritten with the new values or
truncated if the new copy statement produces no bad rows.

On a copy from a file to a table, the table can have an index, but performance will
be much slower than for the same table without an index. Before you can copy into
a table, "all to all" permission must be defined on that table. Updates must be
allowed on the table; it cannot be an index or system table. You cannot use the copy
statement to add data through a view. If you copy to add rows to a table that has
integrity constraints, the integrity constraints are ignored.

To execute a copy into a file, either you must be the owner of the table, or the table
must have retrieve permission for all users (or all permissions for all users).

The syntax formats for copy from are:

Format of Fields in Data File

integerl, smallint, integer

l1oat4, float

cl, ... ,2000
char(l), ... ,char(2000)

text(l), ... ,text(2000)
varchar(l), ... ,varchar(2000)

cO, charCO)

text(O), varchar(O)

dO,dl, ... ,d255

date

money

Storage Format in Table

Values are stored as integers of I-byte, 2-byte
or 4-byte length in the file.

Values are stored as floating point numbers
(either single or double precision) in the file.

Values are stored as fixed-length strings of type
c or char.

Values are stored as fixed-length strings of type
text or varchar.

The value is a variable-length character string
(any data type).

The value is a variable-length text string (any
data type).

The value is a dummy column of variable (dO)
or fixed (dI, ... ,d255) length (contains no data).

Values are stored as internal ULlRIX/SQL
dates.

Values are stored as internal ULlRIX/SQL
money values.

UL TRIXlSQL Statements 2-5

Corresponding columns in the table and their entries in the file need not be of the
same type or length. For example, most applications read and write numeric data
from files stored in character format and therefore primarily use the c or text type
format. The copy statement converts as necessary. When converting anything
except character to character, copy mode checks for overflow. When converting
from character to character, the copy statement pads character strings with blanks
or truncates strings on the right, as necessary.

The column names should be ordered according to how they are to appear in the
file. Columns are matched according to name. Thus the order of the columns in the
table and the file need not be the same.

The copy statement provides for variable-length strings and dummy columns. The
action taken depends on whether it is a copy into or a copy from statement.
Delimiters for variable-length strings and dummy columns can be selected from the
following list:

Delimiter

nl

tab

sp

nul or null

comma

colon

dash

lparen

rparen

x

Description

newline character

tab character

space

null character

comma

colon

dash

left parenthesis

right parenthesis

any single character x (excluding digits-that is, 0, 1,2,3,4,5,
6,7,8,or9)

In the file, the special meaning of any delimiter can be suspended by preceding the
delimiter with a backslash (\) unless the field format is text(O)delim, where delim
stands for a delimiter.

2.3.4 Copying from a File into a Table

When copying data from a file into a table, ULTRIX/SQL assigns either a null or a
default value to any columns in the ULTRIX/SQL table that are not assigned values
from the file. If the column was created as a nullable column, ULTRIX/SQL
assigns a null. Otherwise, ULTRIX/SQL assigns a default value of zero for a
numeric column or blanks for a character column. If the column was created not
null not default, and no value is assigned from the file, ULTRIX/SQL returns an
error. When copying data from a file into a table, the following special meanings
apply:

2-6 UL TRIX/SQL Statements

Field Format

cOde lim, text(O)delim
or char(O)delim

Description

Values in the file are variable-length character strings tenninated by the
delim delimiter. If delim is not specified, the first comma, tab or newline
«nl» encountered tenninates the string. The delimiter is not copied.
For example:

pnum=cO

pnum=text(O)nl

pnum=cOnI

pnum=cOsp

pnum='cOZ'

pnum=text(O) 'Z'

pnum='cO%'

String ending in comma, tab or <nl>.

String ending in <n1>.

String ending in <nl>.

String ending in a space.

String ending in the "Z" character.

String ending in the "Z" character.

String ending in the "%" character. A string in
the file can contain the delimiter by preceding it
with a backslash character (\), but only if the
fonnat is cOdeJim. For example, when using
name = cO, the string "Blow\ Joe" is
accepted into the column as "Blow, Joe."

dOdelim Values in the file are variable-length character strings delimited by
delim. Each string is read and discarded. The delimiter rules are identical
for cO and dO. The column name is ignored.

dl,d2,. •. ,d255 Values in the file are fixed-length byte strings. The specified number of
bytes is read and discarded. The column name is ignored.

text(1), ••• ,text(2000) Values in the file are fixed-length text strings. The fields must be padded
with null characters to the given length.

varchar(O) Values in the file are variable-length varchar strings preceded by a
two-byte length specifier.

When copying from a fixed format file, be sure to take into account the newline
«nl» characters at the end of each line because there is no requirement that the
rows you read from the file correspond to the records in the file. For example,
suppose you have a table called "employee" containing the columns "name," "age"
and "department," and a text file containing employee data in a fixed format, as
follows, where a caret (") is a blank space:

Jones,J.AAAAA32AAAAnytown,USAAAAtoy
Smith,P.AAAAA41AAANew York,NyAAAadmin

A valid copy statement for the preceding file would be something like the
following:

copy table employee (name=c12, age=c3, xxx=d17,
department=cOnl) from ... ;

UL TRIXlSQL Statements 2-7

Note that the dummy column name "xxx," which is not in the table, is an arbitrary
name for the skipped field from the file. The name itself has no particular meaning.
The last field in the fixed field file, in this case "department," is most conveniently
specified as cOnI. This instructs ULTRIX/SQL to read the remainder of the line into
the "department" column of the table.

Note that the format indicators in the copy from statement should describe how
values are represented in the file. This is not necessarily the same format as the
corresponding table column. For example, the file record might contain a numeric
field holding a string of ASCII characters, such as 1927.63, which would be
converted on input and stored in the ULTRIX/SQL table in a column of type float.
In this case, the copy statement should describe the field as a c format item, not
float.

Finally, note that copying from a file into an empty, non-joumaled table without
indexes runs significantly faster than copying into a table that contains one or more
rows, is joumaled, or has indexes. The copy is fastest when the table is in the heap
storage structure.

2.3.5 Copying Data from a Table into a File

When the direction is into, copy transfers data into the file from the table. If the
file already exists, it is overwritten, if allowed by the ULTRIX permissions. When
copying in this direction, the following special meanings apply:

Field Format

cO, char(O)

varchar(O)

cOde lim, char(O)delim

text(O)delim

2-8 UL TRIXlSQL Statements

Description

The column is converted to a fixed-length character string and
written into the file. For character columns, the length is the
same as the column length. For numeric columns, the standard
ULlRIX/SQL conversions take place as specified by the -i, -f
and -c flags. (See the sql command in Chapter 4.)

The column is converted to varchar and written as a
variable-length string preceded by a two-byte length specifier.

The column is converted according to the rules for cO above.
The one-character delimiter is inserted immediately after the
column. (Note that for numeric columns, cOsp and char(O)sp
are not meaningful and will result in input errors because the
data is converted by right justification and blankfill.)

The column is converted to a text string and written into the file.
The one-character delimiter is inserted immediately after the
column. For c and char columns, the length is the same as the
column length. For text and varchar columns, the length varies
according to the number of characters in each text value. For
numeric columns, the standard ULlRIX/SQL conversions take
place as specified by the -i and -f flags. (See the sql command in
Chapter 4.) Note that for numeric columns, text(O)sp is not
meaningful and will result in input errors because the data is
converted by right justification and blankfill.

Field Format

text(1), ... ,text(2000)

dl,d2, ... ,d255

dO

dOdelim

varchar(O)

Description

The column is converted to a text string and written into the file,
according to the rules for text(O) delim above. No delimiter is
used. If necessary, the column is padded with null characters to
the given length.

The column name is taken to be the name of the delimiter. It is
written into the file once for dl, twice for d2, etc.

This fonnat is ignored on a copy into statement.

The delim is written into the file. The column name is ignored.

The variable-length-only specifier and data are written to the
file.

Note that arbitrary delimiters can be specified independently of columns on a copy
into statement. If you want to specify a newline character at the end of a line,
include nl=d 1 at the end of the list of columns, where nl ("n" followed by
lowercase L) stands for newline, and dl ("d" followed by the number one) instructs
ULTRIX/SQL to add one (dl) newline (nl) character. Do not confuse "I"
(lowercase L) and "I" (number one).

If no columns appear in the copy statement (that is, copy table tablename 0
intolfromfilename), then the copy statement automatically performs a bulk copy of
all columns, using the order and formats of the columns in the table. This is
provided as a convenient shorthand notation for copying and restoring entire tables.

2.3.6 Performance Issues in Copying from a File into a Table

Copying from a file into a non-journaled heap table without secondary indexes
runs significantly faster than copying into a btree, isam or hash table, or a table
that is journaled or has secondary indexes.

For example, consider the following two queries. The first will run more slowly
because the table's btree index must be dynamically maintained as data is copied
from the external file into the table:

CREATE TABLE employee (name text(12), age integer2,
departmen t te xt (8)) ;

MODIFY employee TO btree ON name ;
COpy TABLE employee (name=c12, age=c3, xxx=d17,

department=cOnl) FROM ... ;

The following query, on the other hand, will run more quickly because the
"employee" table is a heap while data is copied and ULTRIX, therefore, does not
need to maintain an index structure for the table during the copy operation. After
the copy statement is complete, the table is modified to btree:

CREATE TABLE employee (name text(12), age integer2,
department text(8)) ;

COpy TABLE employee (name=c12, age=c3, xxx=d17,
department=cOnl) FROM ... ;

MODIFY employee TO btree ON name ;

UL TRIXlSQL Statements 2-9

Depending on the initial size of the database table and the amount of data to be
copied from the external file, it may be faster to modify the database table to heap
before copying data into it. For example, if "departments" is an existing table that
is btree on the "department" column, it may be faster to copy with the first of the
following two scripts:

MODIFY departments TO heap ;
COpy TABLE departments (department=c8, ...) FROM ... ;
MODIFY departments TO btree ON department; /* restore original

structure */

This second copy script, below, may run more slowly because it requires
ULTRIX/SQL to maintain the index structure on the "departments" table during the
copy operation:

COPY TABLE departments (department=c8, ...) FROM ... ;

As a general rule, if the external file contains more rows than the database table,
then you may get better performance by modifying to heap before doing the copy
and then modifying to the correct structure when the copy is complete. Note that if
the database table is empty, it is nearly always better to modify to heap before
doing the copy.

For more information, see the Ultrix/SQL Database Administrator's Guide.

2.3.7 Effect of Table Structure on copy from Performance

lsam Avoid copying large amounts of data into a database table that has an isam
structure. You should modify the table to heap first, as described above. It
is particularly inefficient, from a perfonnance standpoint, to copy into an
empty isam table.

The index structure of an isam table is fixed (as opposed to btree, whose
index structure grows dynamically as data is added to the table) a..Tld
therefore will not grow as you add data. The net result will be overflow
chains that can significantly degrade database management system
performance.

Hash You can get good perfonnance copying data into a hash structure if the
hash structure has been pre-allocated with enough space for the new data
and if many rows do not hash to the same page and produce overflow. The
minpages parameter is used to pre-allocate space in hash tables.

Copying into a heap structure gives the best performance. Use of the btree
structure will not be as fast as heap because the index structure must be
maintained, but should be faster than isam because of the lack of long overflow
chains. Hash will be fast if the table has enough empty space to hold the new data.

2-10 UL TRIXlSQL Statements

2.3.8 Examples

The first two examples in this section illustrate different ways of representing
numeric data in a file. In the first example, several fields are represented in 2-byte
integer fonnat, and "sal" is represented as a 4-byte floating point item. These items
would not be readable as characters with the text editor. The copy statement loads
them into ULTRIX/SQL table columns, which mayor may not have the same
fonnat as the file data.

The second example copies some of the same data out of the "employee" table into
a file. This time, all items are written as character data. This means, for instance,
that "sal" would be converted from its fonnat in the ULTRIX/SQL table (say,
float4 or float) to ASCII characters in the result file.

Copy data into the "employee" table.

copy table employee (eno=integer2, ename=clO, age=integer2,
job=integer2, sal=float4, dept=integer2, xxx=dl)
from '/usr/mydir/files/myfile.in';

Copy employee names, numbers and salaries into a file, inserting commas and
newline characters so that the file can be printed or edited (either of the following
statements).

copy table employee (ename=cO, comma=dl, eno=cO, comma=dl,
sal=cO, nl=dl)
into '/usr/mydir/files/mfile.out';

copy table employee (ename=cOcomma, eno=cOcomma, sal= cOnI)
into '/usr/mydir/files/mfile.out';

Bulk copy the "employee" table into a file.

copy table employee ()
into '/usr/mydir/files/ourfile.dat';

Bulk copy the "employee" table from a file.

copy table employee ()
from '/usr/mydir/another.fil';

UL TRIXlSQL Statements 2-11

2.4 create index

2.4.1 Pu rpose

Create an index on an existing base table.

2.4.2 Syntax

create [unique] index indexname on tablename
(eolumnname {,eolumnname})

[with with_options _list]

The with_options _list consists a comma-separated list of any of the following items:

fillfactor = n
key = (eolumnlist)
leaffill = n
location = (loeationname ...)
maxpages = n
minpages = n
nonleaffill = n
structure = cbtree I btree I cisam I isam I chash I hash

2.4.3 Description

The create index statement creates an index on an existing base table. The index
key is constructed of columns from the specified table in the order given. A
maximum of 32 columnnames may be specified per index, but you can build any
number of indexes for a table. Only the owner of a table is allowed to create
indexes on that table.

Rows are returned in ascending order, by default.

The key=(eolumnlist) option enables you to create an index with more attributes
(columns) than you want the key to contain. This can improve performance, since
ULTRIX/SQL does not have to return to the base table if the information needed to
satisfy a query is in the index. If you use this option, the columns in eolumnlist
must be an ordered subset of the columns specified in the index definition. In
addition, they must be the leading columns in the index definition. For example, an
index defined on columns a, b, e and d may be keyed on a, or ab, or abc or abed.
(The default is abed if the key clause is omitted.)

Fillfactor specifies the percentage (from 1 to 100) of each primary data page that
should be filled with rows, under ideal conditions. Fillfactor may be used with
isam, cisam, hash, chash, btree and cbtree. When creating a table with storage
structure btree or cbtree, nonleaffill determines the percentage of each index page
to fill. Care should be taken when specifying large fillfactors because a
non-uniform distribution of key values could later result in overflow pages and thus
degrade access performance for the table.

2-12 UL TRIXlSQL Statements

Minpages specifies the minimum number of primary pages a hash or chash table
must have. Maxpages specifies the maximum number of primary pages a hash or
chash table may have. Minpages and maxpages must be at least one. If both
minpages and maxpages are specified in a create index statement, minpages
cannot exceed maxpages.

The default values for tillfactor, minpages and maxpages are as follows:

Structure Fillfactor Minpages Maxpages

hash 50 16 no limit

chash 75 1 no limit

isam 80

cisam 100

btree 80

cbtree 100

The leaf till parameter of the create index statement applies only to tables stored in
btree and cbtree structures. The leaffill parameter specifies percentages to fill each
index page for a btree or cbtree table.

The leaffill specifies a percentage n, where n ranges from 1 to 100, and its
percentage specifies how much each index page should be filled at the time the
table is modified to btree or cbtree. This parameter contrasts with the tillfactor
parameter, which specifies the percentage occupancy of data pages (not index
pages) when a table is converted to btree or cbtree.

The leaf till parameter allows you to control locking contention in btree and cbtree
index pages. By retaining a percentage of open space on these index pages, more
concurrent users can access the btree without contention while their queries
descend the index tree. Note, however, that you must strike a balance between
preserving space in index pages and creating a greater number of index pages;
more levels of index pages require more I/O to locate a data row.

The default value for leaf till is 70 (percent). This default applies to both btree and
cbtree indexes.

The parameter locationname refers to the location(s) on which the new index will
be created. The location name must be defined on the system and the database must
have been extended to the corresponding location. If no locationname is specified,
the default location for the database is assumed. If multiple location names are
specified, the index is physically partitioned across the locations. (See Chapter 1
for more information about ULTRIX/SQL locationnames, locations and
multi-location tables.)

ULTRIXlSQL Statements 2-13

In order to maintain the integrity of the index, users are not permitted to update
indexes directly. However, whenever a table is changed, its indexes are
automatically updated by the system. Indexes may be modified to increase even
further the access efficiency of the table. When an index is first created, it is
automatically modified to an isam storage structure on all its columns. If this
structure is undesirable, you may override the default structure with the -n flag (see
the sql command in Chapter 4) by entering a modify statement directly, or by
specifying the modify parameters in the with clause of the create index statement.

Once created, an index improves query processing "silently." That is, if you
retrieve data from a table based on an indexed column, you need not indicate to
ULTRIX/SQL that it should consult the index. ULTRIX/SQL automatically uses
indexes to accelerate query processing once the indexes are created.

If a modify or drop statement is used on a table, all indexes on that table are
destroyed. Note also that the modify and drop statements can be executed directly
on an index.

You are not allowed to create indexes on system tables.

2.4.4 Examples

Create an index called "x" for the columns "ename" and "age" on table "employee."

create index x on employee (ename, age);

Create an index called "ename" and have it located on the location referred to by
the locationname "remote."

create index ename on employee (ename, age)
with location = (remote);

2.4.5 Usage Notes

No more than 32 columns may appear in the index key.

2-14 UL TRIXlSQL Statements

2.5 create i nteg rity

2.5.1 Pu rpose

Define integrity constraints on a base table.

2.5.2 Syntax

create integrity on tablename [corr _name] is search_condition

2.5.3 Description

The create integrity statement creates an integrity constraint for the specified base
table. After the constraint is defined, all updates to the table must satisfy the
specified search condition. The search condition must be true for every existing
row in the table when the create integrity statement is issued; if it is not true, a
diagnostic is issued, and the integrity constraint is rejected. Note that the column
may contain null values; ULTRIX/SQL ignores null values when evaluating a
column at the time a create integrity is issued against the column.

In the current implementation, integrity constraints that are violated are not
specifically flagged. Updates that violate any integrity constraints are simply not
performed.

The search condition must not involve any tables (or their correlation names) other
than the one specified in the on clause. The search condition must also not contain
a subselect.

The create integrity statement may be issued only by the table owner.

2.5.4 Examples

Make sure that all employee salaries are equal to or greater than 6000.

create integrity on employee is salary >= 6000;

UL TRIXlSQL Statements 2-15

2.6 create procedure

2.6.1 Purpose

Create a named database procedure definition.

2.6.2 Syntax

[create] procedure proc_name
[(param _name [=] param _type {, param _ name [=] param _type})]
= I as

[declare _section]
begin

statement {; statement} [;]
end

2.6.3 Description

The create procedure statement creates a named database procedure definition that
is managed as a named object by ULTRIX/SQL as part of a database. Database
procedures are executed by an execute procedure statement that you embed in a
host language program (see the ULTRIX/SQL Reference Guide to Embedded SQL
for details).

The parameter proc _name is the name of the procedure. The name must be a legal
ULTRIX/SQL name (see Chapter 1).

The parameter param _name is the formal name of the procedure parameter.

The parameter param_type is the procedure parameter's type. It can be any of the
ULTRIX/SQL types (see Chapter 1). All types may have the null or default clauses.

The declare _section declares a list of local variables that you can reference in the
procedure body. The syntax for this section is:

declare
var _name { , var _name} [=] var _type;
{var name { ,var name} [=] var type;} - - -

Refer to the summary of the declare statement in this manual for full information
about this syntax.

The parameter statement may include local variable assignments and any of the
following:

commit
delete
if

insert
message
return

rollback
select
update

while

Some of the statements in the above list (for instance, if, while, message and
return) can be coded only in the procedure definition, but are discussed in separate
statement sections within this chapter.

2-16 UL TRIXlSQL Statements

A procedure cannot contain any data definition statements, such as create table,
nor may it create, drop, or execute another procedure. Additionally, unlike the
embedded ULTRIX/SQL versions of some of these statements, you cannot use the
repeat clause in a statement in the procedure body. (Using the procedure itself
provides the same performance benefits as the repeat clause.)

Select statements inside a procedure must assign their results to local variables.
Also, they can return only a single row of data. If more rows are returned, no error
is issued, but only the first row retrieved is in the result variables.

Both procedure parameters and local variables can be used in place of any constant
value in statements in the procedure body. Procedure parameters are treated as local
variables inside the procedure body, although they have an initial value assigned
when the procedure is invoked. Preceding colons (:) are only necessary if the
referenced name could be interpreted to refer to more than one object.

Local variable assignments use the equal sign (=) or colon and equal sign (:=) as
the assignment operator.

All statements, except a statement preceding an end, endif, or endwhile, must be
terminated by a semicolon.

You can replace the keywords begin and end with braces ({ }) but the terminating
semicolon must follow the closing brace if another statement is entered in
interactive mode after the create procedure statement and before committing the
transactions.

2.6.4 Examples

In this example, the "mark_emp" database procedure accepts as input an employee
ID number and a label string. The employee matching that ID is labeled and an
indication is returned.

CREATE PROCEDURE mark emp
(id INTEGER NOT NULL, label VARCHAR(100» AS

BEGIN
UPDATE employee

SET comment = :label
WHERE id = :id;

IF iirowcount =1 THEN

ELSE

MESSAGE 'Employee was marked';
COMMIT;
RETURN 1;

MESSAGE 'Employee was not marked - record error';
ROLLBACK;
RETURN 0;

ENDIF;
END;

ULTRIXlSQL Statements 2-17

In this example, the "add_n_rows" database procedure accepts as input a label, a
base number, and a number of rows. The procedure inserts the specified number of
rows into the table "blocks," starting from the base number. If an error occurs, then
the procedure terminates and the current row number is returned.

CREATE PROCEDURE add n rows
(base INTEGER, n INTEGER, label VARCHAR(100» AS

DECLARE
limit INTEGER;
err INTEGER;

BEGIN

END;

limit = base + n;
err = 0;
WHILE (base < limit) AND (err = 0) DO

insert into blocks VALUES (: label, : base) ;
IF iierornumber > 0 THEN

err = 1;
ELSE

base = base + 1;
ENDIF;

ENDWHILE;
RETURN :base;

2-18 ULTRIXlSQL Statements

2.7 create table

2.7.1 Purpose

Create a new base table.

2.7.2 Syntax

create table tablename
(columnname format {, columnname format})
[with-clause];

create table tablename
[(columnname {, columnname})]
as subselect
[with with_options _list];

A with_options _list consists of a comma-separated list of any number of the
following items:

location = (locationname {, locationname})
[no]j ournaling
[no]duplicates
structure = storage_structure [, key = (columnname)]

For the syntax of subselect, see the select section later in this chapter.

2.7.3 Description

The create table statement creates a new base table owned by the user who issues
the statement. The parameter table name specifies the name of the table. The name
and data type of each column in the new table are specified by the columnname and
format arguments. If these arguments are not included in the create table
statement, then you must include the as clause. The new table will then take its
column names and formats from the results of the select clause of the subselect in
the as clause.

When the create table statement includes an as clause, specifying column names is
optional unless two or more columns of the table would otherwise have the same
name. If that is the case, you must specify the column names.

You cannot specify a column format if your create table statement includes an as
clause. ULTRIX/SQL derives the column format from the source table in the
following manner:

• The result column data type is the same as the source column data type.

• If a column in the source table was created with null, the format of the result
column in the new table will also be with null.

• If a column in the source table was created not null with default, or not null
not default, or not null, the format of the result column in the new table will
be not null not default.

ULTRIXlSQL Statements 2-19

The parameter columnname can be any valid ULTRIX/SQL name.

The parameter format has the following syntax:

datatype [not null [with default I not default] I with null]

The parameter datatype can be any valid ULTRIX/SQL data type and length. See
Chapter 1 for a discussion of valid data types and formats.

The with null I not null clause determines what happens during an insert to a field
for which no value is specified. There are three possible settings for this clause:

with null
not null with default
not null not default

The clause with null means that a field into which no data has been inserted is
marked as baving no value. The clause not null with default means the default
value (0 for numeric formats and spaces for character formats) is stored in the
column on insert when no value is supplied by the insert statement. The clause not
null not default means an error condition is created when the insert is attempted
without a value.

If no with null I not null clause is specified, with null is assumed. If not null
alone is specified, not null not default is assumed.

A table can have a maximum of 127 columns and can be a maximum of 2000 bytes
wide. Note that a varchar or text column requires two more bytes than the value
specified in the format to indicate the precise length of the stored value. For
example, varchar(20) stores values up to 20 characters long, but requires 22 bytes
in storage. A nullable column requires one more byte than the value specified in the
format. A table cannot be defined to have a name beginning with "ii."

Tables are created with no expiration date. If you want to impose an expiration date
on a table, use the save statement.

If an as clause is specified, the table is populated with the set of rows resulting
from execution of the specified subs elect; otherwise the table is created empty. If
as is specified, the new table is created with the storage structure defined by the
most recent set result structure statement within the session (see the modify
statement); the defaultis compressed heap. If as is not specified, the new table is
created as heap.

The parameter locationname refers to the location(s) (see Chapter 1) on which the
new table will be created. The locationname(s) must be defined on the system and
the database must have been extended to the corresponding location(s). If no
locationname is specified, the default location for the database is assumed. If
multiple locationnames are specified, the table is physically partitioned across the
locations, as described in the section of Chapter 1 titled "Multiple-Location
Tables." (Please see the chapter on access db in the ULTRIX/SQL Operations
Guide.)

2-20 ULTRIXlSQL Statements

If with journaling is set, journaling will occur for the table only if journaling is
enabled for the database as a whole using the ckpdb statement (see Chapter 5).
Enabling journaling causes ULTRIX/SQL to keep a record of all changes to the
table (inserts, updates and deletes) in the journal for the containing database, and
thus allows the ULTRIX/SQL recovery system to reconstruct the table after a disk
crash. Journaling also allows an audit trail to be built for the table, which is useful
for monitoring updates or for maintaining change histories.

It is not necessary to enable journaling to recover from operating system or
ULTRIX/SQL failures. Recovery from such a failure is a standard function of
transaction processing.

The with duplicates I no duplicates option does not affect a table created as a
heap. This type of storage structure allows duplicate rows regardless of the setting
of this option. The with duplicates I no duplicates setting affects only those tables
created as or later modified to be structures other than heap. Additionally, this
setting can be overridden by specifying a unique key for a table using the modify
statement. (See the modify statement for more information about table structures
with unique keys.)

2.7.4 Examples

Create the "employee" table with columns "eno," "ename," "age," "job," "salary"
and "dept," with journaling enabled.

create table employee
(eno smallint,
ename varchar(20) not null with default,
age
job
salary
dept
with

integerl,
smallint,
float4,
smallint)
journaling;

Create a table with some other data types.

create table debts
(acct
owes
due

varchar(20) not null not default,
money,
date not null with default);

Create a table listing employee numbers for employees who make more than the
average salary.

create table highincome
as select eno
from employee
where salary all

(select avg (salary)
from employee);

Create a table which will span two locations.

create table emp as
select eno from employee

where location = (locationl, location2);

UL TRIXlSQL Statements 2-21

2.8 create view

2.8.1 Pu rpose

Define a virtual table.

2.8.2 Syntax

create view viewname [(columnname (, columnname})] as subs elect
[with check option]

The syntax of subselect is described in the select statement summary in this chapter.

2.8.3 Description

The syntax of the create view statement is very similar to that of the as form of
create table. However, data is not retrieved when a view is created. Instead, the
definition is stored. When viewname is later used in an ULTRIX/SQL statement,
the statement operates on the associated base tables, which are tables that store data.

All selects on views are fully supported. Simply use a viewname in place of a
tablename in any selects. However, updates, inserts, and deletes on views are
subject to the following rules:

• Updates, inserts and deletes are not allowed if the view was created from
more than one table or from a non-updatable view.

• The ability to update a view or insert a new row depends on whether the
with check option is specified, as explained below.

If you specify the with check option, you cannot update that view if the result of
the statement removes a row from the view. Nor can you update columns that are
part of the view's qualification or whose source is not a simple column (that is,
columns that result from an expression or set function).

If you do not specify the with check option, you can update any row in the view,
even if the update results in a row that is no longer a part of the view.

For example, consider the following two statements:

create view
as select
from
where

v

v
*
t
c > 10

update
set c = 5

Once c is set to the value 5, then when t is updated, the updated rows are no longer
in the view. If the view had been created with check option, the update would not
be allowed.

2-22 UL TRIXlSQL Statements

Inserts are only allowed if you do not specify the with check option. In addition,
all columns in the underlying table that were declared as not null not default must
be present in the view. If they are not, then the insert operation is not allowed.

By default, with check option is not set.

Although a person who defines a view need not own all tables upon which a view is
based, use of the view is restricted to those who have all necessary permissions to
the base tables. Permissions on the base tables or on views owned by the Database
Administrator (DBA) may be granted by the DBA using the grant statement.

When a table used in the definition of a view is dropped, the view is also dropped.

2.8.4 Example

Define a view of employee data including names, salaries and managers' names.

create view
as select

from
where

empdpt (ename, sal, dname)
employee.name, employee.salary,

dept.name
employee, dept
employee.mgr = dept.mgr;

UL TRIXlSQL Statements 2-23

2.9 declare

2.9.1 Purpose

Declare a list of local variables for use in a database procedure.

2.9.2 Syntax

declare
var _ name {, var _ name} [=] var _ type [not null [with default I not default] I with null];
{ var _name {, var _name} [=] var _ type [not null [with default I not default] I with nUll] ; }

2.9.3 Description

This statement is used only in a database procedure definition, to declare a list of
local variables for use in the procedure. The statement is optional and, if used, is
placed before the begin clause.

The parameter var _name is the name of the local variable. Variable names must be
unique within the procedure body.

The parameter var _type is the type of the variable. A local variable type may be any
of the ULTRIX/SQL data types. Nullable variables are initialized to null;
non-null able variables are initialized to the default value. For example, a
non-nullable floating point variable is initialized to 0.0 by default. Any
non-nullable variables declared without an explicit default value are initialized to
the ULTRIX/SQL default value.

2.9.4 Example

This procedure fragment demonstrates some declarations and uses of local
variables. Note that some of these statements will cause an error.

CREATE PROCEDURE variables (vrnny MONEY NOT NULL) AS
DECLARE

vi4 INTEGER NOT NULL;
vf8 FLOAT;
vc11 CHAR(ll) NOT NULL;
vdt DATE;

BEGIN

END;

vi4 = 1234;
vf8 = NULL;
vc11 = '26-jun-1957';
SELECT DATE(:vc11) INTO :vdt;
RETURN :vi4;

2-24 UL TRIXlSQL Statements

2.10 delete

2.10.1 Purpose

Delete rows from a table.

2.10.2 Syntax

delete from tablename [corr _name]
[where search_condition]

2.10.3 Description

The delete statement removes rows that satisfy search_condition from the specified
table. If the where clause is omitted, the statement deletes all rows in the table. The
result is a valid but empty table.

Note that delete does not automatically recover the space in a table left by the
deleted rows. However, if you add new rows later, the empty space may be reused.
If you delete many rows from a table, you may want to run the modify to merge
statement to recover the lost space. You can specify any storage structure and still
recover the empty space. In particular, if you want to delete all rows from a table,
you can use the special modify tablename to truncated to delete all rows and
recover the space at one time. (See the modify statement in this chapter for more
information.)

To delete rows from a table, you must either be its owner or have select and delete
permission on the table.

2.10.4 Example

Remove all employees who make over $35,000.

delete from employee where salary> 35000;

UL TRIXlSQL Statements 2-25

2.11 drop

2.11.1 Purpose

Destroy (remove) one or more tables, indexes or views.

2.11.2 Syntax

drop tablename I indexname I viewname {, tablename I indexname I viewname}

Alternate forms:

drop table tablename {,table name}
drop index indexname {,indexname}
drop view viewname {,viewname}

2.11.3 Description

The drop statement removes the specified table(s), indexes and views from the
database. Only the owner of a view or table is allowed to drop it. Likewise, only
the owner of an indexed table is allowed to drop an index.

If a table is dropped, any indexes and views defined on that table are automatically
dropped too.

If drop table, drop view, or drop index is used, the object name is checked to be
sure it is the correct type. For instance, drop table viewname is not permitted.
Similarly, drop table tablename, viewname will drop the table and not the view.

If a drop statement is used without any of the keywords table, index or view, the
object names can be any mixture of the three types, since object names must be
unique within the database.

2.11.4 Example

Drop the "employee" and "dept" tables.

drop employee, dept;

2-26 UL TRIXlSQL Statements

2.12 drop integrity

2.12.1 Pu rpose

Destroy (remove) one or more integrity constraints.

2.12.2 Syntax

drop integrity on table name integer {, integer}

The key word all can appear in place of the list of integers.

2.12.3 Description

The drop integrity statement removes the specified integrity constraints from the
database. The constraints are specified by integers whose values can be obtained
using the help integrity statement. Alternatively, the key word all can be specified,
meaning all integrity constraints currently defined for the table in question.

Only the owner of the table to which a given constraint applies is allowed to drop
that constraint.

2.12.4 Example

Drop integrity constraints 0, 4, and 5 on "job."

drop integrity on job 0, 4, 5;

UL TRIXlSQL Statements 2-27

2.13 drop permit

2.13.1 Purpose

Destroy (remove) one or more permissions.

2.13.2 Syntax

For tables and views:

drop permit on tablename integer {, integer}

For procedures:

drop permit on procedure proc _name
integer I all

2.13.3 Description

The drop permit statement removes specified permissions from the table, view or
procedure. The permissions are specified by integers whose values can be obtained
using the help permit statement. Alternatively, the key word all can be specified,
meaning all permissions currently defined for the table, view or procedure in
question.

Only the owner of the table to which a given permission applies is allowed to drop
that permission.

2.13.4 Examples

Drop all permissions on "job."

drop permit on job all;

Drop the second permission on procedure "AddEmp."

drop permit on procedure AddEmp 2;

2-28 UL TRIXlSQL Statements

2.14 drop procedure

2.14.1 Purpose

Remove a procedure definition from the database.

2.14.2 Syntax

drop procedure proc _name

2.14.3 Description

This statement removes a database procedure definition from the database. When
executed, it takes effect immediately. Executions in progress, invoked by other
users, are allowed to continue until they are completed. A procedure can only be
dropped by its owner.

The parameter proc _name is the name of the procedure to be removed.

2.14.4 Example

This statement removes the procedure named "salupdt."

drop procedure salupdt

UL TRIXlSQL Statements 2-29

2.15 grant

2.15.1 Pu rpose

Grant privileges on a table, view, or procedure.

2.15.2 Syntax

grant all [privileges] on [table] tablename {, tablename} to public

grant all [privileges] on [table] tablename {, tablename}
to username {, username}

grant priv {, priv} on [table] tablename {, tablename} to public

grant priv {, priv} on [table] tablename {, tablename} to username {, username}

grant priv on procedure proc name { ,proc name} - -
to public I username {, username}

2.15.3 Description

The parameter priv represents one of the following privileges:

• select

• insert

o delete

• update (columnname {, columnname})

• execute

The grant statement grants one or more of these privileges to any set of users on
the tables, views, or procedures specified. The privileges select, insert, update,
and delete can only be granted on tables or views. The privilege execute can only
be granted on procedures.

A grant statement must be issued by the Database Administrator (DBA) of the
current database, who must own all the tables, views and procedures specified. If a
non-DBA issues a grant statement, an error is returned. If the DBA issues a grant
statement that includes tables, views or procedures that the DBA does not own,
processing will continue on all the tables, views or procedures that the DBA
does own.

If the DBA issues a grant statement to allow a user to use a view or procedure,
then the user can do so without permission(s) on the underlying tables or views.

The optional words privileges and table have no effect. They are included for
compatibility with other versions of SQL.

2-30 UL TRIXlSQL Statements

2.16 help

2.16.1 Purpose

Get information about SQL, or about tables in the database.

2.16.2 Syntax

help [*]

help tablename I viewname I indexname
{, table name I viewname I indexname}

help table tablename {, table name }

help view viewname {, viewname}

help index indexname {, indexname}

help permitlintegrity table name {, table name }

help procedure procedure_name {, procedure _name}

help help

help sql

help sql_statement

2.16.3 Description

The help statement may be used to display information about ULTRIX/SQL
features, definitions of views, protections or pennissions, or information about the
contents of the database and specific tables in the database. In addition, help may
be used at the Terminal Monitor to obtain information regarding ULTRIX/SQL,
including such features as the syntax of ULTRIX/SQL statements and the available
data types. The legal forms are as follows:

help

help *

help tablename
{, table name}

help viewname
{, viewname}

Lists all user (not system) tables, views, and indexes that
exist in the current database.

Gives information about the makeup of all user-defmed
(not system) tables, views, and indexes in the database.

Provides the name, owner, creation date and time, and the
database management system version under which the
table was created. It also provides the following
infonnation for each column in the table: name, data type,
length, whether nullable or not, whether a default value
will be provided, and the key sequence.

Provides infonnation for views similar to that provided for
tables by help table.

UL TRIXlSQL SJatements 2-31

help indexname
{, indexname}

help table tablename
{, tablename}

help view viewname
{, viewname}

help index indexname
{ , indexname}

help permit tablename
{, table name}

help integrity tablename
{, tablename}

help procedure
procedure name
{, procedure name}

help help

help sql

help sql_statement

Provides infonnation for indexes similar to that provided
for tables by help table.

Gives the same infonnation as help tablename and
additional infonnation such as the number of pages in the
table, whether journaling is on, any optimizer statistics,
pennissions, secondary indexes, location, row width, and
number of columns.

Displays the text of the view, the view name, owner, and
the state of the check option.

Displays the name, owner, creation date and time,
database management system version under which it was
created, and, for each column, the index name and sort
direction.

Prints the pennission text for the specified tables. You
may also use help permit to display the pennission text
for indexes. Help permit will not, however, provide help
for pennissions on procedures.

Prints current integrity constraints on the specified tables.
You can also use this statement to print current integrity
constraints on indexes.

Displays the procedure name, definition, and the creation
date and time. Note that if you are not the procedure's
creator, then the definition is not shown. If pennissions
are defined on the procedure, help procedure lists them
also.

Prints a list of ULTRIX/SQL features for which help is
available.

Prints general infonnation about ULTRIX/SQL.

Prints infonnation on the specified sql_statement.

You can use the asterisk (*) as a pattern-matching character when specifying an
object name. For example, if you type "help table emp*" you receive help on all
tables in the database whose names begin with "emp." If you put the asterisk in
front of "emp" (as in "help table *emp"), you would receive help on all the tables
whose names ended with "emp."

When you are using the asterisk as a pattern matching character, do not use the
percent sign (%) or, in particular, the underscore (~ at the same time in the object
name.

When the asterisk is used by itself with help (that is, help *) it is the equivalent of
the word all.

2-32 UL TRIXlSQL Statements

The permit and integrity forms of the help statement print out unique integer
identifiers for each constraint. The drop permit and drop integrity statements use
these identifiers to remove individual constraints. (See the sections in this chapter
on drop integrity and drop permit.)

2.16.4 Examples

Retrieve a list of all tables in the database.

help;

Retrieve help about the "employee" table.

help employee;

Retrieve help about the "employee" and "dept" tables.

help employee, dept;

Retrieve the definition of the "highpay" view.

help view highpay;

List all permits issued on the "job" and "employee" tables.

help permit job, employee;

List all integrity constraints issued on the "dept" and "employee" tables.

help integrity dept, employee;

List infonnation on the select statement.

help select;

UL TRIXlSQL Statements 2-33

2.17 if-then-else

2.17.1 Purpose

Choose between alternative paths of execution inside a database procedure.

2.17.2 Syntax

if boolean_expr then statement; {statement;}
{elseif boolean_expr then statement; {statement;} }
[else statement; {statement; }]

endif

2.17.3 Description

In ULTRIX/SQL, this statement can only be specified as part of a database
procedure. (See the create procedure statement for details about issuing
statements within procedures.)

A boolean expression (boolean_expr) must always evaluate to "true" or "false." As
discussed in Chapter 1, a boolean expression can include comparison operators
(=, >, and so on) and the logical operators and, or and not. Boolean expressions
processing null values frequently evaluate to "unknown." Any boolean expression
whose result is "unknown" will behave exactly as if it evaluated to "false."

The simplest variant of the if statement performs an action only if the boolean
expression evaluates to "true." The syntax for this variant is as follows:

if boolean _ expr then
statement; {statement;}

endif

If the boolean expression evaluates to "true," the Ust of statements is executed. If
the expression evaluates to "false" (or "unknown"), the statement list is not
executed, and control passes directly to the statement following the endif
terminator.

The second variant of the if statement includes the else construct. Its simplest form
is as follows:

if boolean_expr then
statement; {statement;}

else
statement; {statement;}

endif

In this variant, if the boolean expression is true, the statements immediately
following the key word then are executed. If the expression is false (or
"unknown"), the statements following the key word else are executed. In either
case, after the appropriate statement list is executed, control passes to the statement
immediately following endif.

2-34 UL TRIXlSQL Statements

The third if variant involves the elseif construct. The elseif construct allows the
running application to test a series of conditions in a prescribed order. The
statement list corresponding to the first true condition found is executed; all other
statement lists connected to conditions are skipped. The elseif construct can be
used with or without an else construct, which must follow all the elseif constructs.
If an else construct is included, one statement list is guaranteed to be executed,
because the statement list connected to the else is executed if all the specified
conditions evaluate to "false."

The simplest form of this variant is the following:

if boolean expr then
statement; {statement;}

elseif boolean_expr then
statement; {statement;}

endif

If the first boolean expression evaluates to "true," the statements immediately
following the first then key word are executed. In such a case, the value of the
second boolean expression is irrelevant. If the first boolean expression proves false,
however, the next boolean expression is tested. If the second expression is true, the
statements following the second then key word are executed. If both boolean
expressions test false, neither statement list is executed.

A more complex example of the elseif construct is as follows:

if boolean expr then
statement; {statement;}

elseif boolean _ expr then
statement; {statement;}

elseif boolean _ expr then
statement; {statement;}

else
statement; {statement;}

endif

In this case, the first statement list is executed if the first boolean expression
evaluates to "true." The second statement list is executed if the first boolean
expression is false and the second true. The third statement list is executed only if
the first and second boolean expressions are false and the third evaluates to "true."
Finally, if none of the boolean expressions is true, then the fourth statement list is
executed. After any of the statement lists is executed, control passes to the
statement following the endif.

Two or more if statements can be nested. In such cases, each if statement must be
closed with its own endif.

If an error occurs during the evaluation of an if statement condition, the database
procedure terminates and control returns to the calling application. This is true even
if the statement is nested.

UL TRIXlSQL Statements 2-35

2.17.4 Example

This if statement performs a delete or an insert and checks to make sure the
statement succeeded.

IF (id > 0) AND (id <= maxid) THEN
DELETE FROM emp WHERE id = :id;
IF iierrornumber > 0 THEN

MESSAGE 'Error deleting specified row';
RETURN 1;

ELSEIF iirowcount = 0 THEN
MESSAGE 'Specified row does not exist';
RETURN 2;

ENDIF;
ELSEIF (id < maxid) THEN

ELSE

INSERT INTO emp VALUES (:name, :id, :status);
IF iierrornumber > 0 THEN

MESSAGE 'Error inserting specified row';
RETURN 3;

ENDIF;

MESSAGE 'Invalid row specification';
RETURN 4;

ENDIF;

2-36 UL TRIXlSQL Statements

2.18 insert

2.18.1 Purpose

Insert rows into a table.

2.18.2 Syntax

insert into tablename [(column (, column })]
[values (expr{, expr})] I [subselect]

Either the values clause or the subselect must appear. See the select statement
description for the subs elect syntax.

2.18.3 Description

The insert statement inserts new rows into the specified table. In the values form, a
single row is inserted; in the subselect form, all rows that result from evaluating the
subselect are inserted.

The nth expression in the values list, or the nth expression in the select clause of
the subselect, corresponds to the nth column in the list of column names. That is,
the values list must have a value for each column explicitly or implicitly specified
by the into clause. The values must be listed in an order corresponding to the order
of the columns in the table which the value is being stored. Omitting the list of
column names is allowed when a subselect is used and the column names in the
subselect match column names in the table, or if the values list corresponds exactly
to the columns in the table.

What happens in columns not specified in the column list depends on the format
used when the table was created with create table. If the column was set with null,
null is assigned. If the column is set not null with default, the appropriate default
value (0 for numeric fonnats and spaces for character fonnats) is assigned.
Otherwise, an error code is returned and the insert is not executed.

Expressions used in the values clause can only be constants (including the null
constant), scalar functions on constants or arithmetic operations on constants.

An insert statement may be issued only by the owner of the table or by a user with
insert permission on the table.

Inserted data must be appropriate (valid) given the data type of the target column.
For example, both must be numeric types or both must be character types.

Some common errors to watch for are:

• Use of a numeric expression to set the value of a string column or use of a
string expression to set the value of a numeric column.

• Failure to specify a value for a column that is set to not null not default.

• An attempt to insert the null constant into a non-null able column.

UL TRIXlSQL Statements 2-37

2.18.4 Examples

Add a row to an existing table, "emp."

insert into emp (name, sal, bdate)
values ('Jones, Bill', 10000, 1944);

Insert into the "job" table all rows from the "newjob" table where the job title is
not "J ani tor. "

insert into job (jid, jtitle, lowsal, highsal)
select job no, title, lowsal, highsal
from newjob
where title!= 'Janitor';

Add a row to an existing table, using the default columns.

insert into emp
values ('Jones, Bill', 10000, 1944)

2-38 ULTRIXlSQL Statements

2.19 message

2.19.1 Purpose

Return a message number, message text, or both to the executing application from a
database procedure.

2.19.2 Syntax

message message _text I message_number I message_number message _text

2.19.3 Description

This statement can only be specified as part of a database procedure. (See the
create procedure statement for details about issuing statements within procedures.)

The parameter message _text can be a string literal or a non-null local character
variable or parameter. The parameter message_number can be an integer or a
non-null local integer variable or parameter. Neither message_text nor
message_number can be an expression. Both the message _text and the
message_number are supplied by the database procedure programmer; they do not
correspond in any way to the ULTRIX/SQL error codes and associated messages.

When a message statement is issued, the default behavior is to display the
arguments (message_number, message_text) on the screen, which is similar to
using a printf C language statement. However, if a message statement is issued
without any message _text and the message_number is zero (either a literal 0 or a
local variable whose value is 0), a blank line is displayed.

An application may override the default behavior by using the embedded SQL
whenever statement. If you are using a forms system or forms interface with your
embedded SQL program (for example, "Curses"), you will need to override the
default behavior. Consult the ULTRIX/SQL Reference Guide to Embedded SQL for
more details about the whenever statement and processing procedure messages.

2.19.4 Examples

This fragment returns trace text to the application.

MESSAGE 'Inserting new row';
INSERT INTO tab VALUES (:val);
MESSAGE 'About to commit change';
COMMIT;
MESSAGE 'Deleting newly inserted row';
DELETE FROM tab WHERE tabval = :val;
MESSAGE 'Returning with pending change';
RETURN;

UL TRIXlSQL Statements 2-39

This example returns a message number to the application. The application can
then extract the international message text out of a message file.

IF iierrornumber > 0 THEN
MESSAGE 58001;

ELSEIF iirowcount 1= 1 THEN
MESSAGE 58002;

ENDIF;

2-40 UL TRIXlSQL Statements

2.20 modify

2.20.1 Purpose

Convert the storage structure of a table or index. Also used to relocate and
reorganize data in locations.

2.20.2 Syntax

modify tablename I indexname to storage_structure I verb [unique]
[on columnname [asc I descH, columnname [asc I desc]}]
[with with_options _list]

A with_options _list consists of a comma-separated list of any number of the
following items:

fillfactor=n
minpages=n
maxpages=n
leaffill=n
nonleaffill=n
newlocation=(locl[, loc2[, loc3 ...]]),
oldlocation=(locl[, loc2[, loc3 ...]]),
location=(locl [, loc2[, loc3 ...]]),

2.20.3 Description

The modify statement changes tablename or indexname to the specified storage
structure, reorganizes a btree index, or moves a table to two or more different
locations. (See the section entitled "Multi-File System Databases" in Chapter 1 for
information on the to reorganize and to relocate options of the modify statement.)
This statement is used to accelerate performance of queries that access the table,
particularly when the table is large or frequently referenced. Only the owner of a
table can modify that table.

Any modify statement that involves sorting requires additional temporary disk
space to execute. For instance, modify to btree can require up to three times the
space occupied by the original table or index while executing.

The parameter storage _structure can be any of the following:

isam

cisam

hash

Indexed sequential access method structure. Duplicate rows are
allowed unless the with noduplicates clause is specified when the
table is created.

Compressed isam. Duplicate rows are allowed unless the with
noduplicates clause is specified when the table is created.

Random hash storage structure. Duplicate rows are allowed unless the
with noduplicates clause is specified when the table is created.

UL TRIXlSQL Statements 2-41

chash

heap

cheap

heapsort

cheap sort

btree

cbtree

Compressed hash. Duplicate rows are allowed unless the with
noduplicates clause is specified when the table is created.

Unkeyed and unstructured. Duplicate rows are allowed, even if the
with noduplicates clause is specified when the table is created.

Compressed heap. Duplicate rows are allowed, even if the with
noduplicates clause is specified when the table is created.

Heap with rows sorted. Duplicate rows are allowed unless the with
noduplicates clause is specified when the table is created. (The sort
order is not retained if rows are added or replaced.)

Compressed heap sort. Duplicate rows are allowed unless the with
no duplicates clause is specified when the table is created. (The sort
order is not retained if rows are added or replaced.)

Dynamic tree-structured organization. Duplicate rows are allowed
unless the with noduplicates clause is specified when the table is
created.

Compressed btree. Duplicate rows are allowed unless the with
no duplicates clause is specified when the table is created.

Verb can be any of the following:

merge

relocate

reorganize

truncated

Special fonn of modify for btree and cbtree storage structures.
Modifies the tree structure only, merging adjacent pages whenever
possible and deleting empty pages.

Moves a table or portion of a table from the locationss listed in the
oldlocation list to the locations specified in the newlocation list.

Spreads the contents of the table over the locations in the location list.

Special fonn to delete all rows quickly and release all file space back
to the operating system. Automatically converts structure to heap.

The current compression algorithm suppresses trailing blanks in columns of the c
data type.

The key word unique may be used with the following storage structures:

isam
cisam

hash
chash

btree
cbtree

The unique key word has the effect of requiring each key value in the table to be
unique. (A key value is the concatenation of all key columns in a row.) If you try to
use the unique key word for a table containing non-unique keys, ULTRIX/SQL
returns an error message and does not change the storage structure.

2-42 UL TRIXlSQL Statements

Keys, whether unique or not, may be defined on nullable columns. For determining
"uniqueness" on a key, on a column or on a whole row, null values are considered
equal to other null values. Therefore, if you define keys on nullable columns, use
btree, since the duplicate null values will create overflow chains in isam and hash
tables, making them very inefficient.

For determining the ordering of values in a column, null values are considered
"greater than" all non-null values.

If the on phrase is omitted when modifying to isam, cisam, hash, chash, btree or
cbtree, the table will automatically be keyed on the first column. When modifying
to heap or cheap, the on phrase is meaningless and must be omitted. When
modifying to heapsort or cheapsort, the on phrase is optional.

When a table is sorted (isam, cisam, heapsort, cheapsort, btree and cbtree) the
primary sort keys are those specified in the on phrase (if any). The first key
(columnname) after the on phrase is the most significant sort key, and each
successive columnname specified is the next most significant sort key. Any
columns not specified in the on phrase will be used as least significant sort keys in
column number sequence.

When a table is modified to heapsort or cheapsort, the sort order can be specified
as asc (ascending) or desc (descending). The default sort order is ascending.

Fillfactor specifies the percentage (from 1 to 100) of each primary data page that
should be filled with rows, under ideal conditions. Fillfactor may be used with
isam, cisam, hash, chash, btree and cbtree. When modifying to btree or cbtree,
nonleaffill determines the percentage of each index page to fill. Care should be
taken when specifying large fill percentages for primary data pages, because a
non-uniform distribution of key values could later result in overflow pages and thus
degrade access performance for the table.

Minpages specifies the minimum number of primary pages a hash or chash table
must have. Maxpages specifies the maximum number of primary pages a hash or
chash table may have. Minpages and maxpages must be at least one. If both
minpages and maxpages are specified in a modify statement, minpages cannot
exceed maxpages.

Default values for fillfactor, minpages and maxpages are as follows:

Structure Fillfactor Minpages Maxpages

hash 50 16 no limit

chash 75 1 no limit

isam 80

cisam 100

btree 80

cbtree 100

UL TRIXlSQL Statements 2-43

The leaffill parameter of the modify statement applies only to tables stored in
btree and cbtree structures. The leaffill parameter specifies the percentage to fill
each index page for a btree or cbtree table.

The leaffill specifies a percentage n, where n ranges from 1 to 100, and its
percentage specifies how much each index page should be filled at the time the
table is modified to btree or cbtree. This parameter contrasts with the fillfactor
parameter, which specifies the percentage occupancy of primary data pages (not
index pages) when a table is converted to btree or cbtree.

The leaffill parameter allows you to control locking contention in btree and cbtree
index pages. By retaining a percentage of open space on these index pages, more
concurrent users can access the btree without contention while their queries
descend the index tree. Note, however, that you must strike a balance between
preserving space in index pages and creating a greater number of index pages;
more levels of index pages require more I/O to locate a data row.

The default value for leaffill is 70 (percent). This default applies to both btree and
cbtree indexes.

Newlocation and oldlocation are used only when the relocate verb is used. If you
use reorganize, you must use the location option. Chapter 1 discusses the
reorganize and relocate verbs in the section "Multi-Location Tables." Refer to that
section for more information about these verbs and with clause options.

ULTRIX/SQL storage structures use existing data to build the index (for isam and
cisam), the hash function (for hash and chash) or for sorting (heapsort and
cheapsort). Therefore, it is pointless to modify a table to any of these six structures
before adding data to the tables. You are strongly encouraged to add all data to a
table as a heap before modifying a table to these structures. Then, after the table
contains its data, run modify to optimize storage for retrievals. If you add, delete or
change the data in the table significantly (affecting, for instance, 20% of the data),
run modify again to re-optimize storage. If the table is dynamically used as part of
an ongoing application, periodically re-optimize it with the modify statement. If
the table is merely a static repository for data, this maintenance procedure is not
needed.

When data is added to a table stored as a btree or cbtree, the btree index
automatically expands, so there should be no need to remodify a growing btree
index. (See the ULTRIX/SQL Database Administrator's Guide for more information
on automatic expansion.) However, a btree index does not shrink when rows are
deleted from the btree table.

A special form of modify-modify table name to merge--can be used to shrink a
btree index after you have deleted a significant number of rows from the btree
table. Because this form of modify affects only the index, it usually runs a good
deal faster than a normal modify statement. This form of modify does not require
any temporary disk space to execute.

When modify is run on a table, any indexes created for the table are destroyed and
must be recreated (except for modify to merge). For more information on indexes,
refer to the create index statement description.

2-44 UL TRIXlSQL Statements

2.20.4 Examples

Modify the "employee" table to an indexed sequential storage structure with "eno"
as the keyed column.

modify employee to isam on eno;

If "eno" is the first column of the "employee" table, the same result can be
achieved by the following statement.

modify employee to isam;

Perform the same modify statement, but request a 60% occupancy on all primary
pages.

modify employee to isam on eno with fill factor = 60;

Modify the "job" table to compressed hash storage structure with "jid" and "salary"
as keyed columns.

modify job to chash on jid, salary;

Perform the same modify statement, but also request 75% occupancy on all
primary pages, a minimum of seven primary pages and a maximum of 43 primary
pages.

modify job to chash on jid, salary with fillfactor = 75,
minpages = 7, maxpages = 43;

Perform the same modify statement again, but only request a minimum of 16
primary pages.

modify job to chash on jid, salary with fillfactor = 75,
minpages = 16;

Modify the "dept" table to a heap storage structure and move it to a new location.

modify dept to heap;
modify to relocate

with oldlocation = (loc_l),
newlocation = (loc_2);

Modify the "dept" table to a heap again, but have rows sorted on the "dno" column.

modify dept to heapsort on dno;

Modify the "employee" table to heapsort in ascending order by "ename,"
descending order by "age," and have any duplicate rows removed.

modify employee to heapsort on ename, age desc;

Modify the "employee" table to btree on "ename" so that data pages are 50% full
and index pages are initially 40% full.

modify employee to btree on ename
with fillfactor = 50, leaffill 40;

UL TRIXlSQL Statements 2-45

Modify to reorganize the "employee" table from a single-location table to a
multi-location table, spread over three locations.

modify dept to reorganize
with location = (loc_2, loc_3, loc_4);

2-46 UL TRIXlSQL Statements

2.21 return

2.21.1 Purpose

Tenninate a currently executing database procedure and return control to the
calling application, and optionally, return a value.

2.21.2 Syntax

return [return_status]

2.21.3 Description

This statement can only be specified as part of a database procedure. (See the
create procedure statement for details about issuing statements within
procedures.) In a database procedure, the return statement tenninates the
procedure and returns control to the application. The calling application resumes
execution at the statement following execute procedure.

The return statement can return a value to the application that executed the
procedure using the return_status. The return _status must be a non-null integer
constant, variable or parameter, whose data type is compatible with the data type of
the field to which its value will be assigned upon the return. If the return _status is
not specified or if a return statement is not executed, then the 0 value is returned to
the calling application.

The into clause of the execute procedure statement allows the calling application
to retrieve the return _status once the procedure has finished executing. Consult the
ULTRIX/SQL Reference Guide to Embedded SQL for information about the execute
procedure statement.

2.21.4 Example

This fragment of a database procedure returns a passed parameter to the calling
application.

CREATE PROCEDURE CHECK (okval INTEGER, failval INTEGER) AS
BEGIN

END;

IF (iierrornumber = 0) THEN
COMMIT:
RETURN :okval:

ELSE
ROLLBACK:
RETURN :failval:

ENDIF:

UL TRIXlSQL Statements 2-47

2.22 rollback

2.22.1 P'-l rpose

Roll back the current transaction.

2.22.2 Syntax

rollback [work]

2.22.3 Descrip~i()n

This statement erases all of the current transaction. The optional word work has no
effect. It is included for compatibility with other versions of SQL.

2-48 UL TRIXlSQL Statements

2.23 save

2.23.1 Purpose

Indicate an expiration date for a base table.

2.23.2 Syntax

save tablename [until month day year]

2.23.3 Description

The save statement is used to indicate an expiration date for a table. Only the
owner of a table can specify an expiration date for a table. User tables, when
created, default to "no expiration date."

The month parameter can be an integer from 1 through 12, or the name of the
month, either abbreviated or spelled out. The day parameter is simply the day of the
month, and the year parameter is the fully specified year (that is, 1982 or 1999).

If the optional until clause is omitted, the expiration date is set to "no expiration
date," which is the same as the default for table creation.

Tables are not automatically destroyed after their expiration date, and are still
accessible. At this time there is no means by which expired tables can be destroyed
automatically as a group. However, they can be destroyed individually with the
drop statement.

System tables have no expiration dates.

2.23.4 Example

Specify February 28, 1991 as the expiration date for the "employee" table.

save employee until feb 28 1989;

UL TRIXlSQL Statements 2-49

2.24 select

2.24.1 Purpose

Retrieve values from one or more tables.

2.24.2 Syntax

subselect
{union [all] (subselect)}
[order by order column [asc I desc] {, order column [asc I desc]}] - -

The subselect clause has the syntax:

select [alii distinct] expression [as result_column]
{, expression [as result_column]}

[from table [corr _name] {, table [corr _name]}]
[where search condition]
[group by column {, column}]
[having search_condition]

2.24.3 Description

The result of a select statement is the union of the results of all subselects in that
statement, ordered in accordance with the specifications of the optional order by
clause.

Duplicate rows are always eliminated if union is specified. But if you say union
all, duplicates are not removed. If you say union all once, you must say it for all
unions within one statement. If order by is not specified, the rows of the result
table appear in unpredictable order.

Note that all subselects in a select statement with union must have the same
number of columns in their result tables. Also, columns of numeric type cannot be
matched with columns of character type.

Each order _column in the order by clause must consist of either a result column
name or an integer constant in the range I - n, where n is the number of columns in
the result table of each of the subselects. The order _column designations are taken
only from the first subselect in a set of subs elects that are affected by union. The
optional key words asc and desc specify ascending and descending sort sequence,
respectively. If neither is specified for a particular column, asc is assumed by
default.

The key word distinct, used in a subselect, indicates that duplicate rows are to be
eliminated. If distinct is not specified, the subselect defaults to all, in which case
duplicate rows are not eliminated.

The expressions in the select clause of the subselect can be any expressions
constructed in accordance with the rules set forth in Chapter 1. They may also take
one of the following forms:

2-50 UL TRIXlSQL Statements

correlation name. * All the columns of the table denoted by correlation_name

table.* All the columns of table

Note that the asterisk (*) is considered a wild card character.

Additionally, you can specify select * from tablenames, which will return all the
columns from all the tables named in the from clause.

A result_column may be assigned to any expression that denotes a single column in
the result table (that is, where expression does not use the "*,, syntax for specifying
columns). The specified result column will then appear in the result table as the
column heading for the expression. The ability to assign a result column name to an
expression is of particular benefit when the expression is not simply a column from
a database table. If the expression is such a column, the column heading in the
result table will be by default the name of that column. However, when the
expression is, for example, a scalar or set function or involves a computation,
ULTRIX/SQL will return blanks for the column heading. To override this default,
assign the expression an appropriate result column name. The result column name,
whether default or explicit, may also be used in the order by clause.

The from clause is used to specify the tables from which rows are to be selected.
An optional correlation name (corr _name) may be chosen for each table specified
(see Chapter 1 for information about correlation names). If the from clause
includes more than one table and a column name in the select list appears in more
than one of the tables in the from clause, column names in the select statement
must be qualified explicitly by a table name or a correlation name. This eliminates
ambiguity as to which table a column belongs.

The from clause may be omitted if the statement consists only of a select clause of
a constant expression (see the "Examples" section following this description).

The where clause qualifies the selection of rows. Only those rows that satisfy the
search condition are selected.

The columns in the group by clause of the subselect are names of columns from
the tables identified in the from clause. The groups may be qualified by a having
clause.

From a conceptual standpoint, the subs elect is evaluated in the following manner.
First, the Cartesian product of all tables identified in the from clause is formed.
From that product, rows not satisfying the search condition specified in the where
clause are eliminated. Next, the remaining rows are grouped in accordance with the
specifications of the group by clause. Groups not satisfying the search condition in
the having clause are then eliminated. Finally, the expressions specified in the
select clause are evaluated. If the key word distinct has been specified, any
duplicate rows are eliminated from the result table.

If the subselect includes a group by clause, each expression in the select clause
must be single-valued per group. That is, the only data items permitted in such an
expression are the following:

UL TRIXlSQL Statements 2-51

• grouping columns

• set function references

As usual, however, such terms can be combined using arithmetic operations, or
they can be the arguments to scalar functions, and so forth.

If the subs elect includes a having clause, each expression in that clause must also
be single-valued per group. If the group by clause is omitted in a subselect with a
having clause, the entire table is considered to be a single group.

Note

When select is used to display varying-length character columns, two
features should be noted. First, the select statement pads unused bytes
with blanks. Second, nonprinting characters and control characters are
displayed as blanks. Select assumes that each varying-length character
column will require a width of n characters on the screen, where n is the
width specified when the column was created.

Only the table's owner or a user with select permission on the table may issue a
select statement on that table.

2.24.4 Examples

Find all employees who make more than their managers.

select e. ename
from employee e, dept, employee m
where e.dept = dept.dno
and dept.mgr m.eno
and e.salary > m.salarYi

Retrieve all columns for those employees who make more than the average salarj.

select *
from employee
where salary

(select avg (salary)
from employee);

Retrieve employee information sorted, with duplicate rows removed.

select distinct e.ename, d.dname
from employee e, dept d
where e.dept = d.dno
order by dname desc, enamei

Select lab samples from production and archive tables that were analyzed by lab
#12.

select *
from samples s
where s.lab 12
union
select *
from archive samples a
where a.lab = 12 ;

2-52 UL TRIXlSQL Statements

Select the current user name.

select dbmsinfo (username)i

Select a data conversion operation.

select dow(date('today') + date('3 days'»;

Ul TRIXlSQl Statements 2-53

2.25 set

2.25.1 Purpose

Set an ULTRIX/SQL session option.

2.25.2 Syntax

set journaling I nojournaling [on tablename]

set result structure
'heap I cheap I heapsort I cheapsort I hash I chash I isam I cisam I btree I cbtree'

set lockmode session I on table name
where [level = page I table I session I system]
[, readlock = nolock I shared I exclusive I session I system]
[, maxlocks = n I session I system]
[, timeout = n I session I system]

set [no]printqry

set [no]qep

set joinop [no]timeout

2.25.3 Description

The set statement specifies an ULTRIX/SQL run-time option for a single
ULTRIX/SQL session. The selected run-time option remains in effect until the end
of the ULTRIX/SQL session, using either the ULTRIX/SQL Terminal Monitor or a
database invocation within an embedded ULTRIX/SQL program. Alternatively,
another set statement can change the value of a current run-time option established
by a previous set statement.

Note

See your ULTRIX/SQL Operations Guide for information about changing
environment variables.

2.25.4 set journaling I nojournaling

The set journaling statement causes all tables created within a session to be logged
with the ULTRIX/SQLjournaling system. Note, however, thatjournaling does not
take effect until journaling is enabled for the entire database with the ckpdb
statement. (Refer to Chapter 5 for information about ckpdb.)

2-54 ULTRIXlSQL Statements

When you issue the set journaling statement, it is not necessary to explicitly
specify the with journaling clause in the create table statement. Also, tables
created using the as clause of the create table statement are logged to the journal.
If the set nojournaling statement (which is the default) is set, tables are created
without logging to the journal, unless the explicit with journaling clause appears
in the create table statement. The set journaling statement, when used with an
optional table name, causes journaling to begin at the next checkpoint for the
named table.

2.25.5 set result_structure

The set result_structure statement sets the default storage structure for tables
created with the as clause of the create table statement. If the value of heap or
cheap is selected as the default, tables are created exactly as specified in the select
statement, which may result in duplicate rows. However, performance of the create
table as statement is best with the heap or cheap option specified. You can
optionally set the default structure of tables created by create table as to any of the
structures described in the modify statement-that is, heap, cheap, heapsort,
cheapsort, hash, chash, btree, cbtree, isam or cisam. For instance, the following
two sets of statements do the same thing:

set result structure hash;
create temp as select id
insert into temp ... ;

create temp as select id
insert into temp ... ;
modify temp to hash;

Both sequences result in the "temp" table being stored in a hash structure, hashed
on the first column (in this case, "id"); however, the second sequence is much
preferred to provide best performance for both creating and loading the table. For
hash, chash, isam and cisam the newly created table is automatically indexed on
the first column.

If you do not execute a set result_structure statement, the default storage structure
for a table created by the create table as statement is cheap.

2.25.6 set lockmode

You can use the set lockmode statement to determine how the ULTRIX/SQL
locking system will operate when ULTRIX/SQL accesses data in a table. The set
lockmode statement allows you to establish a number of different types and levels
of locks.

ULTRIX/SQL provides a default strategy for locking in statement processing. (See
the ULTRIX/SQL Database Administrator's Guide for a more detailed discussion of
locking.) If you have no interest in overriding this default, you need not make use
of the set lockmode statement. The set lockmode statement is provided to allow
you to optimize performance or enforce stricter validation and/or concurrency
controls.

UL TRIXlSQL Statements 2-55

The set lockmode statement acknowledges three basic types of locking:

• Locking provided by default by the ULTRIX/SQL system

• Locking instituted for an ULTRIX/SQL session

• Locking specified in an individual instance for a particular purpose

You can switch among any of these three types of locking at any time in your
ULTRIX/SQL session, except where specifically disallowed.

The set lockmode statement provides four different parameters to govern the
nature of locking in an ULTRIX/SQL session:

• level

o readlock

• maxlocks

• timeout

The level parameter refers to the level of granularity desired when the table is
accessed. You can specify any of the following locking levels:

page

table

session

system

Specifies locking at the level of the data page (subject to escalation
criteria, discussed below under maxlocks).

Specifies table-level locking in the database.

Specifies the current default for your ULTRIX/SQL session.

Specifies that ULTRIX/SQL will start with page level locking, unless it
estimates that more than maxlocks pages will be referenced, in which
case table-level locking will be used.

The readlock parameter refers to locking in situations where table access is for
reading of data only (as opposed to updates of data). You can specify any of the
following readlock modes:

nolock

shared

exclusive

session

system

Specifies no locking when reading data.

Specifies the default mode of locking when reading data.

Specifies exclusive locking when reading data (useful in
"select-for-update" processing within a transaction).

Specifies the current readlock default for your ULTRIX/SQL session.

Specifies the general readlock default for the ULTRIX/SQL system.

2-56 UL TRIXlSQL Statements

The maxIocks parameter refers to an escalation factor; that is, the number of locks
on data pages at which locking escalates from page level to table level. The number
of locks available to you is dependent upon your system configuration. You can
specify the following maxlocks escalation factors:

n

session

system

Specifies a specific (integer) number of page locks to allow before
escalating to table level locking. The default is 10. The n specified must
be greater than O.

Specifies the current maxlocks default for your ULTRIX/SQL session.

Specifies the general maxlocks default for the ULTRIX/SQL system.
Note that if you specify page level locking and the number of locks
granted during a query exceeds the system-wide lock limit, or if the
operating system's locking resources are depleted, locking escalates to
table level. This escalation occurs automatically and is independent of the
user.

The timeout parameter refers to a time limit, expressed in seconds, for which a
lock request should remain pending. If ULTRIX/SQL cannot grant the lock request
within the specified time, then the query that requested the lock aborts. You can
specify the following timeout characteristics:

n

session

system

Specifies a specific (integer) number of seconds to wait for a lock (setting
n to 0 requires ULTRIX/SQL to wait indefinitely for the lock).

Specifies the current timeout default for your ULTRIX/SQL session
(which is also the ULTRIX/SQL default).

Specifies the general timeout default for the ULTRIX/SQL system.

Against the backdrop of these set Iockmode parameters and options are the
following ULTRIX/SQL system defaults for each of the parameters:

Parameter Default

level dynamically detennined by ULlRIX/SQL

readlock shared

maxlocks 10

timeout o (no timeout)

If you select the system option for any of the set lockmode parameters, the values
in the preceding table are automatically supplied. When you begin your
ULTRIX/SQL session, the ULTRIX/SQL system defaults are in effect. If you
override them with other values using the set Iockmode statement, you can revert
back to the system defaults easily by specifying another set Iockmode statement
that uses the system option.

UL TRIXlSQL Statements 2-57

Similarly, if you set session parameters (that is, locking behavior for all user tables
accessed by queries in your ULTRIX/SQL session), you can later override those
parameters temporarily for individual tables for a specific purpose. After setting the
locking behavior for an individual table, you can return the parameters to either the
session defaults or the ULTRIX/SQL system defaults.

2.25.7 set [no]printqry

The set printqry statement displays each query and its parameters as it is passed to
the ULTRIX/SQL database management system for processing. The set
noprintqry statement disables this feature.

2.25.8 set [no]qep

The set qep statement displays a summary of the query execution plan chosen for
each query by the optimizer. To disable this option, use set noqep.

2.25.9 set joinop [no]timeout

This statement turns the optimizer's timeout feature on and off. With set joinop
[no]timeout in effect, when the optimizer is checking query execution plans, it
stops when it believes that the best plan that it has found would take less time to
execute than the amount of time already spent searching for a plan. If you issue a
set joinop notimeout statement, the optimizer will continue searching query plans,
no matter how long it takes. This statement is often used with the set qep statement
to ensure that the optimizer is picking the best possible query plan.

To return to the default behavior, issue a set joinop timeout statement.

2.25.10 Examples

Within an ULTRIX/SQL session, create three tables with joumallogging enabled
and one without.

set journaling;
create table withlog1
create table withlog2
set nojournaling;
create table withlog3
create nolog1 (...);

) ;
) ;

) with journaling;

Create a few tables with different structures.

create table a as ... , /* heap */
set result structure 'hash';
create table b as select id ... , /* hash on ' id'
set result structure ' heap' ;
create table d as select id ... , /* heap */

*/

Set lockmode parameters for your ULTRIX/SQL session to the desired values.
Tables accessed after executing this statement are governed by these locking
behavior characteristics.

set lockmode session where level = page, readlock = nolock,
maxlocks = 50, timeout = 10;

2-58 UL TRIXlSQL Statements

Set the lockmode parameters explicitly for a particular table.

set lockmode on employee
where level = table, readlock = exclusive,
maxlocks = session, timeout = 0:

Reset your ULTRIX/SQL session default locking characteristics to the
ULTRIX/SQL system defaults.

set lockmode session where level = system, readlock
maxlocks = system, timeout = system;

system,

UL TRIXlSQL Statements 2-59

2.26 update

2.26.1 Purpose

Update values of columns in a table.

2.26.2 Syntax

update tablename [corr _name]
set columnname = expression {, columnname = expression}
[where search_condition]

2.26.3 Description

The update statement replaces the values of the specified columns by the values of
the specified expressions for all rows of the table that satisfy the search_condition.
The expressions in the set clause may only use constants or columns from the table
specified by table name.

Only the owner of the table or a user with update permission on the table is
allowed to update a table. If a given row update would violate an integrity
constraint on the table, that row remains unchanged.

Numeric columns may be updated by values of any numeric type. Update values
are converted to the data type of the columns being updated. Character-string
columns may be updated by values of any character-string data type. You cannot
use a string expression to set the value of a numeric column, nor a numeric
expression to set the value of a character-string column. Nullable columns may be
set to null by using the null constant.

Note

If the table was created with no duplicates allowed, be careful not to
issue an update statement that creates duplicate rows. ULTRIX/SQL
returns an error in such cases.

2.26.4 Examples

Give all employees who work for Smith a 10% raise.

update emp
set salary = 1.1 * salary
where dept in

(select dno
from dept
where mgr in

(select eno
from emp
where ename

2-60 UL TRIXlSQL Statements

, *Smith'»;

Set all salaried for people who work for Smith to null.

update emp
set salary = null
where dept in

(select dno
from dept
where mgr in

(select eno
from emp
where ename , * Smi t h')) ;

UL TRIXlSQL Statements 2-61

2.27 while - endwhile

2.27.1 Purpose

Repeat a series of statements while a specified condition is true.

2.27.2 Syntax

[label:] while boolean_expr do
statement; {statement;}

endwhiIe

2.27.3 Description

This statement can be specified only as part of a database procedure. (See the
create procedure statement for details about issuing statements within procedures.)

A boolean expression (boolean_expr) must always evaluate to "true" or "false." A
boolean expression can include comparison operators (=, >, and so on) and the
logical operators and, or and not.

The statement list may include any series of legal database procedure statements,
including another while statement.

As long as the condition represented by the boolean expression remains true, the
series of statements between do and endwhile is executed. The condition is tested
only at the start of each loop. If values change inside the body of the loop so as to
make the condition false, execution will still continue through the current iteration
of the statement list, unless an endloop statement is encountered, as shown by the
following fonnats.

The endloop statement may be used to break out of a while loop before the
endwhile statement is encountered. When endloop is executed, the loop is
immediately closed, and procedure execution continues with the first statement
following endwhile.

while condition 1 do
statement list 1
if condition 2 then

endloop;
endif;
statement list 2

endwhile; - -

In this case, if condition_2 is true, statement_list_2 is not executed in that pass
through the loop, and the entire loop is closed. Execution resumes at the statement
following the endwhile statement.

A while statement may also be labeled to allow an endloop to break out of a nested
series of while statements to a specified level. The label precedes while and is
specified by a unique alphanumeric identifier followed by a colon, as in:

A: while

2-62 UL TRIXlSQL Statements

The label must be a legal ULTRIX/SQL name (see Chapter 1). The endloop
statement uses the label to indicate which level of nesting to break out of. One
possible way to use labels in nested while statements is:

label 1: while condition 1 do
statement list 1

label 2: while condition 2 do
statement list 2
if condition 3-then

endloop label_l;
elseif condition 4 then

endloop label 2;
endif;
statement list 3

endwhile; --
statement list 4

endwhile; - -

In this example, there are two possible breaks out of the inner loop. If condition_3
is true, both loops are closed, and control resumes at the statement following the
outer loop. If condition _3 is false but condition _ 4 is true, the inner loop is exited
and control resumes at statement list 4.

If no label is specified after an endloop, only the innermost loop that is currently
active will be closed.

If an error occurs during the evaluation of a while statement, the database
procedure terminates and control returns to the calling application.

2.27.4 Example

The "delete_n_rows" database procedure accepts as input a base number and a
number of rows. The specified rows are deleted from the table "tab," starting from
the base number. If an error occurs, then the loop terminates.

CREATE PROCEDURE delete n rows
(base INTEGER, n INTEGER) AS

DECLARE
limit INTEGER;
err INTEGER;

BEGIN

END;

limit = base + n;
err = 0;
WHILE (base < limit) DO

DELETE FROM tab WHERE val
IF iierrornumber > 0 THEN

err = 1;
ENDLOOP;

ENDIF;
base = base + 1;

ENDWHILE;
RETURN :err;

:base;

UL TRIXlSQL Statements 2-63

Terminal Monitor Command Line Interface 3
to ULTRIX/SQL

3.1 Introduction

There are two versions of the Terminal Monitor user interface to interactive
ULTRIX/SQL-a command line interface (sqI) and a forms-based interface (isqI).
This chapter discusses primarily the command line interface, while Chapter 4
discusses the forms-based interface. In this and other chapters, assume that a
discussion of Terminal Monitor capabilities applies both to the sqI and isql
interface systems. The interface implementation differs in the two environments,
but the database operations are the same.

The sql command line interface allows you to create, store, print, edit, and execute
a query by entering special commands preceded by a backslash (\) on the sql
command line. After executing the query, you can either enter a new query or edit
the existing query with a text editor if minor changes are to be made. You can also
read or write files containing statements and execute operating system level
commands from within the Terminal Monitor environment.

The command line interface to ULTRIX/SQL is invoked by typing the system level
command sqI at your terminal. (See the sqI command description in Chapter 5 for
details). You can then type a single query, type \g (for go) to process the query, and
see the results of the query at your terminal. By typing additional queries, followed
by \g, any of the capabilities of ULTRIX/SQL can be invoked. To exit the
ULTRIX/SQL command line interface, type \q (for quit).

3.2 Messages, Prompts and Diagnostics

The Terminal Monitor gives a variety of messages, prompts and diagnostics to keep
the user informed of the status of the monitor and the query buffer, as summarized
below.

Message

10 gin message

go

Description

Typically provides the version number and login time
when a user logs onto the Terminal Monitor. This is
followed by the contents of the dayfile, which provides
other pertinent information.

The Terminal Monitor is empty and ready to accept input.
(You may begin a new query.)

Terminal Monitor Command Line Interface to ULTRIXlSQL 3-1

Message

continue

*

Executing ...

>editor

Non-printing character nnn
converted to blank

Description

The previous query is finished and you are back in the
monitor.

An asterisk is printed at the beginning of each line as the
prompt character.

The query is being processed by ULTRIX/SQL.

You have entered the text editor.

ULTRIX/SQL maps non-printing ASCII characters into
blanks. This message indicates that one such conversion
has been made.

When the Terminal Monitor query buffer is empty and ready to accept input, the
message go is printed. The message continue means there is something in the
query buffer. After a \go command the query buffer is cleared if another query is
typed in, unless a command that affects the query buffer is typed first. Commands
that retain the query buffer contents are:

\a or \append
\e or \edit
\p or \print
\bell
\nobell

For example,

help parts
\go
print parts

results in the query buffer containing:

print parts

However,

help parts
\go
\print
print parts

results in the query buffer containing:

help parts
print parts

3.3 Terminal Monitor Commands

A number of commands may be entered by the user to manipulate either the
contents of the query buffer or the user's environment. They are all preceded by a
backslash (\) and all are executed immediately (rather than at query execution time).

3-2 Terminal Monitor Command Line Interface to UL TRIXlSQL

Some commands may take a file name. In such commands, the file name is
designated by a string beginning with the first significant character following the
command, and ending at the end of the line. No other commands may be entered on
a line with a command that contains a file name. Commands that do not take a file
name may be concatenated on a single line. The following example, for instance,
returns the time both before and after execution of the current query buffer.

\date\go\date

The following table provides a summary of the Terminal Monitor commands:

Command

\a or \append

\bell and \nobell

\cd or \chdir dir name

\date or \time

\e or \ed or \edit
or \editor [filename]

\g or\go

\i or \include
or \read filename

\p or\print

\q or \quit

\r or \reset

\s or \sh or \shell

Description

Append to the query buffer. Typing \append after
completion of a query overrides the auto-clear feature and
guarantees that the query buffer will not be reset until
executed again.

Tell the Terminal Monitor to include or not to include a
bell (that is, Control-G) with the continue or go prompt.
The default is \nobell.

Change the working directory of the monitor to the named
directory.

Display the current date and time.

Enter the operating system's text editor (designated by the
ULTRIX/SQL startup file). Use the appropriate editor
command to return to the ULTRIX/SQL monitor. If no file
name is given, the current contents of the query buffer are
sent to the editor, and upon return, the query buffer is
replaced with the edited query. If a file name is given, the
query buffer is written to that file. On exit from the editor,
the file contains the edited query, but the query buffer
remains unchanged.

Process the current query. The contents of the buffer are
transmitted to ULTRIX/SQL and the query is executed.

Read the named file into the query buffer. Backslash
characters in the file are processed as they are read.

Print the current query. The contents of the buffer are
displayed on the user's terminal.

Exit the ULTRIX/SQL Terminal Monitor.

Erase the entire query (reset the query buffer). The former
contents of the buffer are lost and cannot be retrieved.

Access the shell (ULTRIX command line interpreter).
Pressing Control-D causes you to exit the shell and return
to the Terminal Monitor command line.

Terminal Monitor Command Line Interface to UL TRIXlSQL 3-3

Command

\script ffilename]

Description

Write or stop writing the subsequent SQL statements and
their results to the specified file. If no file name is supplied
with the \script command, output is logged to a file called
"script.ing" in the current directory. The \script command
toggles between logging and not logging your
ULTRIX/SQL session to a file. If you supply afilename on
the \script command that terminates logging to a file, the
filename is ignored. You can use this command to save
result tables from SQL statements for output. The \script
command in no way impedes the terminal output of your
session.

\w or \write filename Write the contents of the query buffer to the named file.

\any-other-c haracter Ignore any possible special meaning of a character
following the backs lash (\). This command allows the
backslash itself to be inserted as a literal character. (See
also Chapter 1 on character strings).

3.4 Flags

Certain flags may be included on the sql command line. These flags affect the
operation of the Terminal Monitor. Among the most useful of these flags are:

Flag

-a

-d

-s

Description

Disables the autoclear function. This means that the query buffer is never
automatically cleared; it is as though the \append command were inserted
after every \go. Note that this flag requires the user to clear the query
buffer explicitly

Turns off printing the dayfile.

Turns off printing of all messages (except errors) from the monitor,
including the login and logout messages, as well as the dayfile and
prompts. It is used for executing "canned queries"-that is, queries
redirected from files.

For a complete list of flags available with the sql command, consult Chapter 5.

3-4 Terminal Monitor Command Line Interface to UL TRIX/SQL

Forms-Based Interface to ULTRIXlSQL 4

4.1 Overview

There are two versions of the Terminal Monitor user interface to interactive
ULTRIXlSQL-a command line interface (sql) and a forms-based interface (isql).
This chapter discusses the forms-based interface. (See Chapter 3 for a discussion of
the sql command line interface.)

The isql forms-based interface allows you to enter, edit, save and execute queries
by selecting menu options and entering text on a form displayed on the screen. You
enter the database query in the displayed form, using ULTRIX/SQL statements, and
then press a function key or make a choice from a menu on the form to execute
the query.

The ULTRIX/SQL forms-based interface includes a fullscreen editor for entering
and editing ULTRIX/SQL statements. When you execute a statement,
ULTRIXlSQL immediately displays the result on the screen. If the statement
cannot be executed, a detailed error message appears. Context-sensitive Help
screens are also available.

To access ULTRIX/SQL using the forms-based interface, you enter the isql
command at the operating system prompt. (For details about command syntax, see
Chapter 5.)

Before you can use the forms-based interface to interactive ULTRIX/SQL, you
must define your terminal to ULTRIX/SQL. For information on how to do this,
refer to Appendix D, "Defining Your Terminal."

4.2 Entering ULTRIX/SQL Statements

The interactive ULTRIX/SQL (lSQL) forms system frame (Figure 4-1) consists of
a blank window and a menu of operations. You enter and edit SQL commands in
the window, which is your "work space." The cursor is initially positioned in the
window, ready for you to begin typing an SQL statement, when the isql display
frame first appears.

Forms-Based Interface to UL TRIXlSQL 4-1

Figure 4-1 The isql Display Frame

Enler SQL StaleMenls Database: personnel

Go ReSUMe COMplete Blank Edit OnError InserlLine >

4.2.1 isql Menu Items

The isql operations menu contains more menu items than can be shown on the
display frame at one time. The complete list of isql menu operations is shown
below. For details on how to use menus and other features of a forms-based utility,
refer to Appendix C.

Operation

Go

Resume

Complete

Blank

Edit

File

OnError

InsertLine

DeleteLine

Function

Executes the SQL statements and immediately begins displaying the
results.

Resumes the display of your current statements at your last work
position.

Executes the statements in the work space, but does not display the
results until all processing is completed. This command displays the end
of the query's output.

Clears the work space of any statements you have entered.

Edits the statements in the work space with the standard system editor.

Calls the submenu of file operations either to write the information that
is on the screen to a file or to read information from an existing file.

Indicates whether SQL statement processing continues or terminates on
errors, and lets you change the setting.

Inserts a blank line above the current cursor position in the input screen.

Deletes the line at the current cursor position in the input screen. If there
is no current line or only one line, no line is deleted.

4-2 Forms-Based Interface to UL TRIX/SQL

Operation

Help

Quit

4.2.2 Help

Function

Gets help about this frame, including help about the syntax and usage of
the interactive query language.

Leaves interactive SQL.

The Help operation includes complete summaries of how to use SQL statements.
After selecting Help, you can search for database language key words to find
helpful hints on syntax and usage. For information on searching for text in a help
screen, see Appendix C, "Using Forms-Based Applications."

4.3 Input/Output Screens

When you start up the forms-based interface to interactive ULTRIX/SQL, the
interactive database environment gets its instructions from an input screen. When
you execute SQL statements, isql displays the results on an output screen. Each of
these screens is described below.

4.3.1 Input Screen

The input screen is for entering SQL statements. When cursor appears in the upper
left comer of the work space, you can begin typing SQL statements. Because the
work space is a single-column table field, all the cursor movement key strokes and
forms-based operations and functions are available here.

You can enter statements directly into the work space. The input screen retains all
the statements you enter in the work space unless you explicitly edit or clear them.
You can also use the default editor on your computer system by selecting the Edit
operation from the main menu.

The Edit operation writes the work space contents to a temporary file and invokes
your text editor on that temporary file. When you finish editing the temporary file
and exit from the editor, the newly edited work space is restored to isql. You can
then execute the SQL statements or continue typing additional ones.

You are not limited to SQL statements that you enter directly into the work space
by typing. You can also enter SQL statements from text files.

• If you have written a series of statements into a file that you wish to load into
the work space, select the File operation and then select the Read operation.

• To save the script you have written in the work space, select the File operation
and then select the Write operation.

Forms-Based Interface to UL TRIXlSQL 4-3

4.3.1.1 Loading a File (Read)

To load a file:

1. Select the Read operation.

Then isqI prompts you for the filename:

Enter name of file to read:

2. Type the filename. If the file to be read is not in the current working directory,
you must include the full pathname designation.

Isql reads in the contents of the file you specified. If you have already entered
database language commands into the work space, the file you read in is added at
the bottom of the current work space contents.

4.3.1.2 Writing to a File (Write)

To write the contents of your work space into a file:

1. Select the Write operation.

A prompt appears:

Enter name of file to be written:

2. Type the name of the file to which you want your work saved.

IsqI writes the work space contents to the specified file while preserving the work
space contents.

4.3.1.3 Clearing the Work Space (Blank)

You can clear Lhe work space of its contents by selecting the Blank operation. The
table field is erased and you can enter new requests or leave the interactive
database language environment.

4.3.2 Output Screen

After specifying SQL statements in the work space, you can execute them.
Requests that are executed result in output.

Assume that your SQL statement retrieves all the rows from the "emp" table in the
"personnel" database. The SQL statement would be:

select * from emp

When you enter the preceding statement in the work space of the input screen and
select the Go or Complete command, isql displays the message:

Run the request

Then the output screen is displayed, as in Figure 4-2.

4-4 Forms-Based Interface to UL TRIXlSQL

4.3.2.1

Figure 4-2 isql Output Mode

Start of Output ColuMn 1~8B Line 1

1) select M froM eMp

Alcott. Scott
Applegate. Donald
Bee. Charles
Belter. Krls
Beringer. TOM
Beveridge. Fern
Bluff. Clarence
Bridges. Debra
Chung. Arthur
DOllnlng. Susan
Fielding. Uallace
Fine. Laurence
HII ton. Connie
Jones. As:hle!:l
Jones. Bett!:l
King. Richard

title

Sr PrograMMer
Anal!:lst
Sr PrograMMer
PrograMMer
PrograMMer
Project Leader
PrograMMer
Sr PrograMMer
PrograMMer
PrograMMer
Project Leader
Sr PrograMMer
PrograMMer
Sr PrograMMer
Project Leader
Sr PrograMMer

Top BottoM File Help End

Output Frame

Manager

$5B. BB UoIre. Heal
$51. BB Uol£e. Heal
$43.BB Fielding. Uallace
$33.BB Alcott. Scott
$41.BB King. Richard
$57.BB Uolre. Heal
$24.BB Jones. Ashle!:l
$48.BB Parsons. Carol
$21.BB Ortega. Julio
$29.BB Bee. Charles
$47.BB Jones. Bett!:l
$42.BB Jones. Bett!:l
$37.BB Bridges. Debra
$49.BB Turner. Russell
$66.BB
$39.BB Beveridge. Fern

The following line appears at the top of the output frame:

Start of Output Column 1/80 Line 1

The phrase "Start of Output" indicates that the output extends over more than one
screen.

The column indicator shows the width of the output, not the number of columns in
the table.

IsqJ may not know how many lines of text are returned when it begins to process
the request. Thus, it does not display a range of lines, but rather, the current line
("Line I" in the above example).

When in the output screen, you can scroll the rows of output up and down or left
and right using the terminal-specific keystrokes described in Appendix E.

Forms-Based Interface to UL TRIXlSQL 4-5

You reach the end of the output by choosing the Bottom operation. The resulting
frame is shown in Figure 4-3:

Figure 4-3 The End of Output Frame

End or Output
King, Richard
Lorenzo, Sue
Hoore, Holly
Hoonan, Brad
0' Foote, Suzanne
Ortega, Julio
Parsons, Carol
Peterson, Jean
Randall, David
Rolls, Richard
SMith, Chester
SMith, Peggy
Stein, Frank
ThoMpson, Houard
Turner, Russe 11
Ual ters, Ll ndsay
Uolre, Heal

(32 rous)
End or Request

Sr PrograMMer
Consul tant
PrograMMer
PrograMMer
PrograMMer
Sr PrograMMer
Project Leader
Analyst
PrograMMer
PrograMMer
PrograMMer
Consultant
PrograMMer
Sr PrograMMer
Project Leader
Analyst
Project Leader

Top BottOM File Help End

ColUMn 1/88 Line 22/41
$39.88 Beveridge, Fern
$52.88 Parsons, Carol
$36.88 ThOMpson, Houard
$25.88 Jones, Ashley
$48.88 Bridges, Debra
$58.88 Uolre, Heal
$55.88 Uolre, Heal
$32.88 Alcott, Scott
$34.88 Alcott, Scott
$28.88 King, Richard
$22.88 Bee, Charles
$32.88 ThOMpson, Houard
$27.88 ThOMpson, Houard
$45.88 Jones, Betty
$53.88 Jones, Betty
$44.88 Fine, Laurence
$65.88

The "End of Output" message also appears when you:

• Execute the Go operation for a request whose output can be displayed in a
single screen

• Execute the Complete operation, which runs the request to completion and
displays the last portion of the output

If the query runs to completion, the output displays the current position of the
cursor and the total number of lines in the output in the upper right comer of the
screen. For example, in Figure 4-3 "Line 22/41" indicates that the cursor is on line
22 and that there are 41 lines of output including trim, blank lines, and explanatory
text. The output screen also indicates that 32 rows were returned.

The output itself contains:

• The SQL statements, with each line preceded with a number and a "greater
than" sign (». In Figure 4-2, the SQL statement is preceded by "1>."

• The data and messages returned by the request.

You can also invoke the File command with any key you have assigned to the
printscreen function (described in Appendix E). If you select this function by
pressing its key, the printscreen function takes effect. However, when you use the
printscreen function, the entire query results are written to a file, not just the
displayed form. As in the File command, ULTRIX/SQL prompts you for a filename
into which the screen's contents can be written for later output on a suitable device.

4-6 Forms-Based Interface to UL TRIXlSQL

4.3.2.2 Returning to the Input Frame

When you return to the input screen (with the End command), your original query
is displayed as shown in Figure 4-4.

Figure 4-4 Return to Input Mode Frame

Enter SQL StateMents Database: personnel

Go Resu"e Co"plete Blank Edit OnError InsertLine >

You can edit the current request or execute it again with the Go or Complete
commands.

You can also return to the point at which you last inspected the current output with
the Resume command.

Alternatively, you can clear the work space with the Blank command and enter a
new request.

4.3.3 Error Messages

If an SQL statement contains errors, isql displays an error message. The error
message includes information on statement syntax. The erroneous part of the
statement may be pointed out as shown in Figure 4-5.

Forms-Based Interface to ULTRIXlSQL 4-7

Figure 4-5 Input Error Message

End of Output Line 1/7

1) sleet M froM eMp
E_US89C4 Syntax error on line 1. Last sYMbol read uas: 'sleet'.

(28-AUG-1988 18: 87: 15)

End of Request

Top BOltOM FlIe Help End

In Figure 4-5, the message indicates that the select statement in line one was typed
incorrectly.

If the OnError setting was set to Continue, then processing of the remaining
statements in the query continues after the error message appears. If the OnError
setting was set to Terminate, then statement processing will halt when the error
message appears, and none of the remaining statements in the query will be
processed. (You can change the OnError setting, as described below.) Choose End
to return to the input screen and edit your erroneous entry, or clear (Blank) the
frame and correctly retype your request.

The default setting for OnError is Terminate. You can change this default setting
as follows:

1. Select the OnError operation from the isql main menu.

A pop-up window offers the following choices and indicates through
highlighting whether Continue or Terminate is the current setting:

Go

Terminate

Continue

Help
End

Set options as selected via the highlighted
row, and return to the ISQL input
screen.
Set option to terminate and return to the
ISQL input screen.
Set option to continue and return to the
ISQL input screen.
Gives Help on this option.
Return to the ISQL input screen withQ_ut
changing the option.

2. Select Continue if you want queries to continue after an error message appears.

Select Terminate if you want queries to terminate when an error message
appears.

4-8 Forms-Based Interface to UL TRIXlSQL

You can also set the environment variable II_TM_ON_ERROR to specify the
OnError setting. For example, in the C shell, you can type either of the following
commands at the system prompt (or include one of the commands in your .cshrc
file) :

setenv II TM ON ERROR "continue" - - -

setenv II TM ON ERROR "terminate"

Forms-Based Interface to UL TRIX/SQL 4-9

UL TRIX/SQL Operating System Commands 5

5.1 Introduction

A number of ULTRIX/SQL commands are entered at the level of the computer's
operating system. These "utility" commands control the overall database
organization, its creation, backup, maintenance and the like. Unlike the SQL
statements or the Tenninal Monitor commands, these commands do not affect the
data in the database, but rather act on the database as a whole.

Parameter name conventions in the syntax of these commands are:

dbname

flags

tablename

username

The ULTRIXlSQL database name, which must begin with an
alphabetic character and be a maximum of 24 alphanumeric
characters, including the underscore (J.

The set of flags used to select special options to the command. Flags
are one letter names, preceded by a sign (+ or -) and optionally
followed by a parameter value. If the flag name is preceded by both a
plus sign (+) and a minus sign (-), as shown below, the option has two
settings. The plus sign (+) means to tum the option on; the minus sign
(-) means to tum it off.

+ I-x

or

[+x I-x]

If only a minus sign (-) is shown before the flag name, then
specification of the minus sign (-) will tum the option on. For
example, if a flag is described as -x, specifying -x invokes the option.

The name of a table in the database.

The login user name for a valid ULTRIX/SQL user.

No command tenninator is required by ULTRIX. For this reason, no semicolon is
included in the syntax description for ULTRIX/SQL operating system commands.

UL TRIX/SQL Operating System Commands 5-1

5.2 accessdb

5.2.1 Purpose

Authorize access to a database and modify database locations, extensions and user
authorization.

5.2.2 Syntax

accessdb

5.2.3 Description

The access db utility allows ULTRIX/SQL superusers to list and modify
information about a database, the locationnames known to the system, the
extensions allowed for databases, and user authorization. It is a full-screen,
forms-based, menu-driven utility.

The initial display is a main menu of operations. When you select an operation
from the main menu, one of the following appears:

• A form with a submenu

• Another menu with menu items appropriate to the selected operation

To continue, you fill in the form or select another operation. The Quit operation
exits the utility and returns you to the shell. The End operation returns you to the
main menu screen. Other operations may also return you to the main menu when
the initiated task has been completed. All menus within accessdb contain a Help
operation that provides a brief description of each currently available menu item.

5.2.4 Restrictions

The accessdb utility uses a forms-based interface and must be run on a supported
video terminal or in a window emulating a supported terminal. The terminal type is
made known to ULTRIX/SQL by way of the environmental variable TERM or
TERM_INGRES, which must be set to one of the terminal types defined in the
$I1_SYSTEM/sql/files/termcap file.

The access db utility can only be used by the ULTRIX/SQL System Administrator
or an ULTRIX/SQL superuser. Other ULTRIX/SQL users cannot use accessdb, but
may obtain similar read-only information by using the catalogdb command.

See the ULTRIX/SQL Operations Guide and the ULTRIX/SQL Database
Administrator's Guide for a more complete description of this utility.

5-2 UL TRIXlSQL Operating System Commands

5.3 auditdb

5.3.1 Pu rpose

Audit a database.

5.3.2 Syntax

auditdb [-bdd-mmm-yyyy :hh:mm:ss] [-edd-mmm-yyyy :hh:mm:ss] [-f] [-iusername]
[-s] [-ttablename] [-uusername](dbname}

5.3.3 Description

The auditdb command allows the user to print selected portions of the journal for a
database or to create an ULTRIX/SQL readable audit trail of the changes made to a
particular table. The auditdb command operates on all journal entries that have
been moved to the journal files. The flags are interpreted as follows:

Flag Description

-b Print journal entries for ULTRIX/SQL transactions committed after the time
specified with the -b flag.

-e Print journal entries for ULTRIX/SQL transactions committed before the time
specified with the -e flag.

-f Create a file named audit.ttl in your current directory. (Note that you can only
use this flag if your table has less than 120 columns and less than 1948 bytes per
row.) For more information see the discussion on audit.trl following this table.

-i Print journal entries for actions taken by the specified user only.

-s Invoke ULTRIX/SQL superuser status for system-wide access to any database.

-t Print the journal entries for the table specified with the -t flag.

-u Print the journal, with specified options, for databases owned by the specified
user.

The audit.trl file is in binary (bulk copy) format and contains rows appended to,
deleted from, or copied into the table specified with the -t flag. You can copy this
file into a database table that has been created as follows, with not null specified in
the audit table's seven control columns.

create table auditrel
(date date not null with default,
usrname char(24) not null with default,
operation char(8) not null with default,
tranidl integer not null with default,
tranid2 integer not null with default,
table idl integer - not null with default,
table id2 integer not - null with default,
{ columns of tablename})

ULTRIX/SQL Operating System Commands 5-3

To copy the file audit.trl into the table "auditrel," use the following command:

copy table auditrel () from '/usr/dir/audit.trl'

When the copy is finished, "auditrel" will have a row for each operation against the
specified table. The values in each row, corresponding to the columns in the table,
are:

date

usemame

operation

transaction ID

table ID

The date and time of the beginning of the mUlti-query transaction
that contained the operation.

The ULTRIX usemame of the user who performed the operation.

One of the following: insert, update, delete.

An 8-byte value composed of two 4-byte integers concatenated
together that uniquely identifies the transaction. The column
"tranid I " holds the high order 4 bytes and the column "tranid2"
holds the low order 4 bytes of the transaction id.

The identifiers for the table. Table_id 1 and table_id2 are two
4-byte integers whose values correspond to the values in the
columns "table_reltid" and "table_reltidx," respectively, from the
iitables standard catalog for the table specified.

Only the Database Administrator who created the database or the ULTRIX/SQL
System Administrator (if the -s flag is specified) may run the auditdb command on
a database.

Note that auditdb does not necessarily give you a complete list of all transactions
since the last checkpoint. There are two reasons for this:

• Since auditdb does not exclusively lock the database, other users may
complete a transaction while auditdb is running.

o In some cases, a completed transaction might not yet have been moved to the
journal files.

If you need an absolutely accurate list of transactions since the last checkpoint,
make sure all users exit the database before you run auditdb.

Some possible diagnostic messages you may receive and their causes are:

5-4 UL TRIXlSQL Operating System Commands

Message

You are not a valid ULTRIX/SQL user

You may not use the -s flag

You are not the dba for dbname

Cannot enter dbname

5.3.4 Examples

Audit the "empdata" database.

auditdb empdata

Description

The current username is not entered in the
ULTRIXlSQL users file.

You have tried to use the -s flag, but you do not
have ULTRIX/SQL System Administrator or
superuser privileges.

You have tried to audit a database for which
you are not the Database Administrator.

The database does not exist.

Audit "empdata," creating an ULTRIX/SQL-readable audit trail for the "employee"
table; then copy this into the sql monitor environment.

%auditdb -temployee -f empdata
%sql empdata

create table empaudit (date date,
usrname c24, oper c8, tranidl i4, tranid2 i4,
tbl_base i4, tbl_index i4, eno i2,
ename clO, age il, job i2, salary money, dept i2) i

copy table empaudit () from '/usr/directory/audit.trl'

UL TRIX/SQL Operating System Commands 5-5

5.4 catalogdb

5.4.1 Pu rpose

List databases that you own.

5.4.2 Syntax

catalogdb [-uusername]

5.4.3 Description

The catalogdb utility allows you to list your databases, the databases that you may
access, the location names known to the system, and the extensions made to your
databases. You may also use catalogdb to view your user capabilities. For
information on how to modify these attributes, see the discussion on accessdb in
this chapter and in the ULTRIX/SQL Operations Guide.

The optional flag for catalogdb and its purpose is:

Flag Description

-u Allows the System Administrator to use catalogdb as the user specified by username.

The catalogdb utility uses a forms-based interface and must be run on a supported
video terminal or in a window emulating a supported terminal. The terminal type is
made known to ULTRIX/SQL by way of the environmental variable TERM or
TERM_INGRES, which must be set to one of the terminal types defined in the
$II_SYSTEM/sqVfiles/termcap file (see Appendix D, "Defining Your Terminal,"
for more information).

When you invoke the catalogdb command, the main menu appears, offering the
following options:

Catalog Database User Help Quit :

You can use the Help operation to obtain a full description of the main menu items.
In summary, these are:

Menu Item Function

Catalog Submenu of additional operations (see below)

Database Detailed information on one database

User Summary information about your ULTRIX/SQL status

Help Help information

Quit Exit tile catalogdb program

5-6 UL TRIXlSQL Operating System Commands

After you select one of these operations, the screen clears and a new display
appears. Each menu item evokes a different display. Each display includes its own
menu, including a Help operation, which provides help information, and an End
operation, which returns you to the main menu.

You can only browse through the catalogdb displays; you cannot change the data.
To change any values displayed, you must run the accessdb utility, described
earlier in this chapter, and in the ULTRIX/SQL Database Administrator's Guide and
ULTRIX/SQL Operations Guide. (You must be the ULTRIX/SQL System
Administrator or an ULTRIX/SQL superuser to run the accessdb utility.)

The Catalog operation calls a submenu offering the following options:

Databases DbExtensions LocationNames Help End

In summary, these options perform the following functions:

Menu Item Function

Databases Table of all your databases

DbExtensions Table of all your database extensions

LocationNames Table of alliocationname/area mappings on the system

Help Help information

End Return to catalogdb menu

The Database operation on the catalogdb main menu prompts you for the name of
one of the databases that you own. Enter the full name of the database to invoke the
display with information about that database.

The User operation on the catalogdb main menu displays a summary of
information about your username. It lists the permissions accorded to your account,
the databases that you own and the private databases to which you have access. The
two database lists (the databases you own and others you may access) may contain
more entries than can be shown at one time. You can scroll among the entries using
the techniques described in Appendix C, "Using Forms-Based Applications."

To leave the display invoked by the User operation, type e or end to select the End
operation. You will be returned to the main menu for catalogdb. You may then
select another main menu item.

5.4.4 Examples

Browse through data on your own account and databases.

catalogdb

As System Administrator, browse the data for another user.

catalogdb -uPeter

ULTRIXlSQL Operating System Commands 5-7

5.5 ckpdb

5.5.1 Purpose

Checkpoint a database.

5.5.2 Syntax

ckpdb [-d] [+j I-j] [-mdevice] [-uusername] [-s] [+w I-w] {dbname}

5.5.3 Description

The ckpdb command creates a new checkpoint for the named databases and marks
all journal entries up to this checkpoint as expired. Because there is a new
checkpoint, previous journal entries are no longer needed. Command line flags
have the following interpretations:

Flag

-d

+j I-j

-m

-s

-u

+wl-w

Description

Destroy the most recently expired checkpoint and journal files.

Enable/disable journaling for a database. When this flag is not specified, the
current journaling status of the database is maintained.

Place the new checkpoint onto the specified tape device rather than on disk.

Invoke ULTRIXlSQL superuser (System Administrator) status for system-wide
access to any database. You must be the System Administrator.

Execute the ckpdb command on specified or all databases owned by the
indicated user.

Wait/do not wait for the database to be "free." Note that this flag can be used
only in interactive sessions and not in batch mode. The default is -w.

Only the Database Administrator who created the database or the ULTRIX/SQL
System Administrator (if the -s flag is specified) may run the ckpdb command on a
database. If neither +j nor -j is specified, the current status of journaling for the
database as a whole is maintained.

If you wish, you can write the checkpoint to a specified tape device instead of to
disk. Note that you can write only one checkpoint per tape.

If no databases are specified, all databases for which you are the Database
Administrator are affected. All databases can have new Checkpoints created if the
ULTRIX/SQL System Administrator uses the -s flag.

The ckpdb command locks the database because errors can occur if the database is
active while the ckpdb command is running. If a database is busy, the ckpdb
command reports this and proceeds to the next database, if any. If the -w flag is
specified, the ckpdb command does not wait, regardless of standard input. The +w
flag ensures that the ckpdb command waits.

5-8 UL TRIXlSQL Operating System Commands

5.5.4 Examples

Checkpoint "empdata" and initiate joumaling on "empdata."

ckpdb +j empdata

Checkpoint all databases for which you are DBA, retaining only the newest
checkpoints.

ckpdb -d

Checkpoint "empdata" to tape.

ckpdb -m/dev/rmtO empdata

UL TRIXlSQL Operating System Commands 5-9

5.6 copydb

5.6.1 Pu rpose

Creates command files to copy a database and restore it.

5.6.2 Syntax

copydb [-uusername] [-c] [-dpathname] dbname {tablename}

5.6.3 Description

The copydb command creates two ULTRIX/SQL command files in the current
directory.

• The copy.out file contains ULTRIX/SQL instructions to copy all tables owned
by the user into files in the named directory.

• The copy.in file contains ULTRIX/SQL instructions to copy the files into
tables, create indexes and perform modifications.

The copy db command does not copy the database but creates ULTRIX/SQL
commands that do the copying. You must run sql using the commands in the
copy.in and copy.out files to copy the database (see the examples).

The name of a file created by copy.out consists of the table name, truncated to
eight characters if necessary, followed by an extension made up of the first three
letters of the owner's login name. If the filename already exists, a unique digit
replaces the last character of the table name segment. The directory must not be the
same as the database's actual directory, nor should it be an ULTRIX/SQL
installation directory.

The optional flags have the following purposes:

Flag Description

-u Runs copydb with the user identification specified by username. This flag may
only be used by the Database Administrator or an ULTRIX/SQL superuser. The
fact that the copydb command creates the copy files does not necessarily mean
that the user can access the specified table in the copy.out script. If table names
are specified, only those tables are included in the copy files.

-c Causes the copy commands in the generated command files to use a portable
format. That is, all data is copied in and out as ASCII characters. This is useful
for transporting databases between VAX and RISC systems, where internal
representations of non-ASCII data differ. (Note that the copy command
automatically converts data stored in this format back to the appropriate
ULTRIX/SQL data type for the corresponding table column.)

-d Stores the copy.in and copy.out files in the directory specified by pathname
instead of the default current directory. The specification may be either a full or
relative pathname. .

5·10 UL TRIXlSQL Operating System Commands

After executing the commands in the copy.out file, you create the new database
using the createdb command. Be sure to execute the commands in the copy.in file
before doing any work (for instance, creating tables) in the new database.

You should also run sysmod after creating the new database in order to reinstitute
the optimizing effects of storage structures.

Note that system catalogs cannot be copied using copydb. Use unIoaddb to copy a
complete database, including System Catalogs.

5.6.4 Examples

Copy "mydb" to tape.

cd /usr/mydir/backup /* Or whatever directory you wish */
copydb mydb /usr/mydir/backup
sql mydb < copy.out
tar c .
rm *

Copy tape to "mydb."

cd /usr/mydir/backup
tar xrpf /dev/rmtO
sql mydb < copy.in
sysmod my db

/* Again, your choice */

UL TRIXlSQL Operating System Commands 5-11

5.7 createdb

5.7.1 Purpose

Create a database.

5.7.2 Syntax

createdb [-uusername] [-p] dbname [-clocationname] [-dlocationname]
[-jlocationname]

5.7.3 Description

The createdb command creates a new ULTRIX/SQL database. The person who
executes this command becomes the Database Administrator (DBA) for the
database. The DBA has special powers not granted to ordinary users.

The variable dbname is the name of the database to be created and must be unique
among all ULTRIX/SQL database names in your installation. It must begin with an
alphabetic character, and it can have a maximum of 24 characters.

The optional flags and their purposes are:

Flag

-u

-p

-c

-d

-j

Description

Allows the System Administrator to create a database as the user
specified by username.

Restricts access to the database to only the DBA and other users
specifically named in the accessdb command. (By default, the database
is created with access permitted to all ULTRIX/SQL users, although
access to any tables in the database must be explicitly granted.)

Stores the checkpoint files at the location specified by locationname.
The default location is ii_checkpoint.

Stores the database files at the location specified by locationname. The
default location is ii_database.

Stores the journaling files at the location specified by locationname. The
default location is ii~ournal.

If create db fails for any reason, the partially created database should be destroyed
using destroydb.

Note that before you can specify any of the locationnames mentioned above, the
locationnames must be created by the ULTRIX/SQL System Administrator using
accessdb. The procedures for creating locationnames are described in the
ULTRIX/SQL Operations Guide. If you do not specify one of the flags, the files
will be placed on the area corresponding to the default locationname for the
relevant aspect of the database (that is, checkpoint, database and journai).
Databases and their associated journal files should not reside on the same device.

5-12 UL TRIXlSQL Operating System Commands

There are two ways to use the -c, -d and -j flags to place database components in
directories other than the default. This capability is particularly designed to enable
you to locate various database (as well as checkpoints and journals) on different
file systems in your installation, and thus on different disks.

One alternative is to name a directory after the flag by the end of its pathname. For
example, the following command creates the "newdb" database in the
$II_DATABASE/ingres/data/altdir location instead of in the
$II_DATABASE/ingres/data/default location.

createdb -daltdir newdb

Because altdir could be mounted as a file system, this technique provides the
capability of placing different databases on different disks. Please note that you
must create such an alternate directory in 777 mode (that is, the ULTRIX/SQL
System Administrator must be the owner and must have read, write and execute
permission) before using the directory name in a create db command.

The same is true for checkpoints and journals. The following command creates a
database and locates its checkpoints in $II_CHECKPOINT/ingres/ckp/altdir instead
of the $II_CHECKPOINT/ingres/ckp/default directory.

createdb -caltdir newdb

The second way to use the -c, -d and -j flags is to supply a prefix of the directory
pathname, beginning with a forward slash (/) character. Consider the following
command:

createdb -d/other newdb

In this case a new database is created in a directory named
/other/ingres/data/default as opposed to the default location. The directories at all
these levels must already exist prior to executing the particular createdb command.

The first part of the pathname (in the previous example, /other) can be whatever
you choose, including additional directory levels. Thus, faa/other would also work.
(However, note the limit on the number of characters, specified below.) The lower
level directories, starting with "ingres," must have the same names as shown in this
example.

The ownership and permissions for the sample directories should be as follows:

/other/ingres
/other/ingres/data
/other/ingres/data/default

-rwxr-xr-x
-rwx------
-rwxrwxrwx

Note that whichever alternative you use, the part of the directory name supplied
after the -c, -d or -j flags may be no more than 12 characters.

UL TRIX/SQL Operating System Commands 5-13

5.7.4 Examples

Create a private database on the default device(s).

createdb -p mydb

Create public databases under different user names.

createdb -ueric ericsdb

Create a database with files for the database, checkpoints and journal on different
devices.

createdb bigdb -ddb_sql -cnewdev_sql -jotherdev_sql

The files for the preceding example are:

$II_SYSTEM/sql/files/dbtmplt/*

$II_DATABASE/ingres/data/db_sql

$11 CHECKPOINT/ingres/ckp/newdev_sql

$11 JOURNAL/ingres/jnl/otherdev_sql

5-14 UL TRIXlSQL Operating System Commands

5.8 destroydb

5.8.1 Purpose

Destroy an existing database.

5.8.2 Syntax

destroy db [-s] [-p] [-uusername] dbname

5.8.3 Description

The destroydb command removes all references to an existing database. The
directory of the database and all files in that directory are removed.

To execute this command you must either be the Database Administrator for
dbname, or you must be the ULTRIX/SQL System Administrator and the -s flag
must be specified.

The optional flags have the following meanings:

Flag Description

-s Indicates that you are the ULlRlX/SQL System Administrator.

-p Requires ULlRIX/SQL to ask if you are sure that you want to destroy the
database.

-u Allows the System Administrator to use destroydb as the user specified by
username.

5.8.4 Examples

Destroy the "empdata" database, if you are the Database Administrator.
destroydb empdata

Destroy the "empdata" database, if you are the System Administrator.
destroydb -s empdata

Allow the System Administrator to impersonate user "brad" when using the
destroy db command.
destroydb -ubrad empdata

The files affected by the command are:

$II_DATABASE/ingres/data/default/empdata/*

UL TRIX/SQL Operating System Commands 5-15

5.9 finddbs

5.9.1 Purpose

Recover databases when the ULTRIX/SQL system database (master database) is
corrupted or when an entry in a database is missing.

5.9.2 Syntax

tinddbs [-al-r] [-p]

5.9.3 Description

The tinddbs command is used to recover ULTRIX/SQL when the master database
(iidbdb) has been corrupted. Only the ULTRIX/SQL System Administrator can use
tinddbs. See the ULTRIX/SQL Operations Guide for a complete description of this
utility. The flags have the following meanings:

Flag Description

-a Run finddbs in analyze mode (the default), infonning you of possible errors in
the database table.

-r Run finddbs in replace mode, rebuilding the iidbdb database table by scanning
a list of directories for databases.

-p Cause all databases rebuilt in replace mode to be made private, except for the
iidbdb. By default, replace mode makes all databases globally accessible.

5-16 ULTRIXlSQL Operating System Commands

5.10 isql

5.10.1 Purpose

Initiate the forms-based, interative version of the ULTRIX/SQL Terminal Monitor.

5.10.2 Syntax

isql [+U I -U] [-uusername] [-eN] [-tN] [-ikN] [-fkxM.N] [-vX] [-nM] [+a I -a] [-I]
[+w I -w] [-xk] dbname

5.10.3 Description

This command invokes the isql utility, a forms-based interface to interactive
ULTRIX/SQL. This interface allows you to enter queries on a special form rather
than on the Terminal Monitor command line (as the sqJ command does).

The initial isql display is a main menu of operations and a form for entering
ULTRIX/SQL queries. You enter a query in the form on the input screen, then
select an operation from the main menu. To execute the query you select the Go
menu item. The results of the query are displayed on an output screen that has
another set of menu items. The Quit operation exits the utility and returns you to
the shell. The End operation returns you to the query entry screen.

All menus within isql contain a Help operation that provides a brief description of
each currently available menu item.

The optional flags have the following meanings:

Flag Description

+ U / -U Enable or disable user updating of the system catalog tables and secondary
indexes. You must have the "update system tables" privilege obtained through
accessdb. This option is provided for system debugging and is strongly
discouraged for normal use. The default is -U. Note that this flag causes an
exclusive lock of the database during the session for which it is specified.

-u username Allow you to act as the user with login name username (found in the users file).
This may only be used by the Database Administrator for the specified database
or by the UL1RIX/SQL System Administrator.

- cN Set the minimum field width for printing character columns to N. The default
is 6.

- t N Set the minimum field width for printing text columns to N. The default is 6.

- i kN Set integer output column width to N. The integer type k may be 1,2 or 4 for
integer!, integer2 or integer4, respectively. The default for N is 6 for integer!
and integer2 fields, and 13 for integer4 fields.

Ul TR/X/SOl Operating System Commands 5-17

Flag

-fkxM.N

-vX

-nM

+a I-a

-I

+wl-w

-xk

Description

Set floating point output column width to M characters (total), including N
decimal places and (if warranted) e+-xx and the decimal indicator character
itself. The float type k may be 4 or 8, to apply to float4 or floatS respectively.
The format type x may be E, F, G or N (uppercase or lowercase) to specify an
output format. For a number to be displayed in E (that is, exponential) format,
either E must be specified in the flag or the number must be too large for the
format indicated in the flag. E is exponential format, F is floating -point format
and G and N are identical to F, unless the number is too large to fit in that field
when it is output in E format. G format guarantees decimal point alignment; N
does not. The default display format for both float4 and float8 is n10.3 for VAX
and n11.3 for RISC.

Set the column separator for retrievals to the terminal and print commands to
be X. The default is a vertical bar (I).

Set modify mode on the index command to M, which can be any of the storage
structures described in the modify command in Chapter 2 (heap, cheap,
heapsort, cheap sort, isam, cisam, btree, cbtree, hash and chash). The default
is isam.

Set or clear the autoclear option in the Terminal Monitor. The default is +a.

Lock the database for your exclusive use. When you specify this flag, no one
else can open the database while you are using it. If you attempt to use this flag
on a database that is already opened, the system informs you that the database is
temporarily unavailable.

Wait or do not wait for the database. If the +w flag is present, ULTRIXjSQL
waits, provided that certain processes (sql-I, sql-V, verifydb, rollforwarddb
and/or sysmod) are running on the given database. Upon completion of those
processes, ULTRIXjSQL proceeds. When the -w flag is specified, a message is
returned and execution is stopped if the database is not available. If the +wl-w
flag is omitted and the database is unavailable, an error message is returned if
ULTRIX/SQL is running in foreground (more precisely, if the standard input is
from a tenninal). Otherwise the wait option is invoked. Note that this flag can be
used only in interactive sessions and not in batch mode. The default is -w.

Set arithmetic handling mode for query processing. The variable k may be for w.
An f indicates that all arithmetic exceptions (floating overflow and underflow,
integer overflow and division by zero) should be treated as fatal errors. In
warning mode, the detection of an arithmetic exception terminates query
processing. A w indicates that warning messages should be generated for
arithmetic exceptions. In warning mode, the query is run to completion, and a
summary of detected exceptions is generated. The default is to ignore exceptions.

This utility uses a forms-based interface and must be run on a supported video
terminal or in a window emulating a supported terminal. The terminal type is made
known to ULTRIX/SQL by way of the environmental variable TERM or
TERM_INGRES, which must be set to one of the terminal types defined in the
$II_SYSTEM/sql/files/termcap file.

The user must be a valid ULTRIX/SQL user.

See Chapter 4 for more information on the isql command.

5-18 ULTRIXlSQL Operating System Commands

5.10.4 Example

Invoke isql on the "employee" database.

isql employee

UL TRIX/SQL Operating System Commands 5-19

5.11 optimizedb

5.11.1 Purpose

Generate statistics for use by the optimizer.

5.11.2 Syntax

optimizedb [-zfjilename] [-zv] [-zh] [-zk] [-zx] [-zu#] [-zr#] [-i/i/ename]
[-zp] [-zs[s]#] [-zc] [-zf#] [ULTRIX/SQLf/ags]
dbname [{-rtablename {-acolumnname} }]

5.11.3 Description

The optimize db command retrieves values from the specified tables and columns.
These values are used to generate statistics, which are stored in system catalogs and
can be viewed in the Standard Catalogs iistats and iihistograms. These statistics
are used by the query optimizer to select an efficient query processing strategy.
Such statistics should be generated for all columns that may appear in the
qualification of a query statement. Statistics for columns named in the target list of
a query or a query's sort list are not used. After running optimizedb, you should
run sysmod. This is especially true the first time optimizedb is run on a database.

More complete and accurate statistics in the system catalogs generally result in
more efficient query execution strategies, and hence faster system performance.
The process of generating such complete and accurate statistics may require some
time, but a compromise between accurate statistics and the time to generate them
can be achieved by specifying the -zx or -zs flag, described below. Another
compromise relies on how often you regenerate the statistics. The statistics need
only infrequent regeneration, usually when a significant change has occurred in the
distribution of a column's values.

There need be no statistics for any columns whatsoever, and any statistics may be
incorrect. The only effect is on the speed of query processing, not whether the
query will execute or not.

The statistics generated by the optimize db command for any column consist of two
basic elements:

• The number of unique values in a column

• A histogram with a variable number of variable-width cells

The accuracy of the histograms can be controlled by the -zu# and -zr# flags
described below. Increasing the number of cells in the histograms increases the
amount of space required for the iihistograms table and thus increases somewhat
the amount of space and time used by the query optimizer. However, the increased
accuracy of the statistics will generally result in more efficient query execution
strategies.

5-20 UL TRIXlSQL Operating System Commands

Note

While optimize db is running, ULTRIX/SQL does not lock either the
database or individual tables.

The optimizedb command line flags have the following functions:

Flag

-zfJilename

-zv

-zh

-zk

-zx

-zu#

-zr#

Description

Directs optimizedb to read filename for all other command line flags, database
names, and any other command line arguments. This file must contain only one
flag per line (see the examples below). If this flag is specified, no other flags or
arguments can appear on the command line; they must, instead, appear in the
specified file.

Displays information about each column as it is being processed.

Displays the histogram that was generated for each column. This flag also
implies the -zv flag.

Generates statistics for columns that are keys on the table or are indexed, in
addition to columns specified on the command line.

Directs optimizedb to determine only the minimum and maximum values for
each column rather than full statistics. Because minimum and maximum values
for columns from the same table can be determined by a single scan through the
table, this flag provides a quick way to generate a minimal set of statistics.
Minimal statistics cannot be created on columns holding only null values.

Specifies the maximum number of cells an exact histogram can contain. In an
exact histogram, each cell represents a single, unique value. The default is 100.
If the number of unique values exceeds either the default or the number specified
with this flag, optimizedb creates an inexact histogram. (You can use the -zr
flag to control the number of cells in an inexact histogram.) Note that
optimizedb always attempts to create an exact histogram first, but if this is not
possible, will then create an inexact histogram.

Specifies the maximum number of cells that the histogram can contain if
optimizedb creates an inexact histogram. In an inexact histogram, each cell
represents a range of values. The default number of cells is 15.

ULTRIXISQL Automatically passes ULTRIX/SQL flags on the optimizedb command line to
flags ULTRIX/SQL. Consult the sql command summary in this chapter for a complete

description of all ULTRIX/SQL flags.

-ijilename Directs optimizedb to read statistics fromjilename instead of operating directly
on the database. The filename is the name of a file that has been generated by the
statdump command using the -0 flag. This file is in ASCII format and can be
edited. However, only two types of changes are acceptable: a) you can modify
values, and b) you can add rows describing cells.

Do not change the format of the file-that is, do not change the order in which
data appears or add an incomplete new row.

When the -r and -a flags are used in conjunction with -i, they act as filters.
Optimizedb will only read in from the file those statistics that belong to the
specified table or column.

UL TRIXlSQL Operating System Commands 5-21

Flag Description

Optimizedb does not use the row and page count values in the file unless the
-zp flag is also specified. Note that these values are vital for correct operation
of the database management system. Be very careful if you use the -zp flag
to put new values for row and page counts in iitables.

-zp Directs optimizedb to read the row and page count values in the file specified
with the -i flag and to store those values in the appropriate System Catalog. (The
values can be viewed in iitables.)

-zs[s]# Creates statistics based on sample data. The percentage of table rows sampled is
determined by the value of #. This number must be a floating point number in
the range of 0 to 100. The optional s directs ULTRIXjSQL to sort the tuple
identifiers (rIDs), which are used to retrieve the sample rows, before the rows
are retrieved. This decreases retrieval time but increases the amount of memory
used by optimizedb.

-zc Directs optimizedb to optimize the system catalogs in addition to the base
tables. If you want to optimize selected system catalogs, rather than all of them,
use this flag and specify the individual tables with the -r flag. The -zc flag is
operational only if the user issuing the command is the Database Administrator
for the specified database.

-zf# Directs optimizedb to read floating point numbers using the precision level
specified by #. Use this flag in conjunction with the -ifilename flag.

-rtablename Directs optimizedb to generate statistics only for the specified table. All
columns for all tables in the database are processed. Otherwise only columns for
the specified table are processed. You can include this flag more than once on the
command line to generate statistics for two or more specified tables in a single
optimizedb command.

-acolumnname If the -rtablename flag is specified, then you can specify individual columns for
the generation of statistics. When tables and columns are specified, statistics
processing occurs only for the specified columns unless the -zk flag is included.
(See the -zk flag description for details.)

Some possible diagnostic messages you may receive using optimizedb and their
causes are:

Message

More than 1 ()()() arguments

Bad unique cells value

Bad regcells value

5-22 ULTRIX/SQL Operating System Commands

Description

There are too many lines in the argument file specified
with the -zf flag.

The value specified in the -zu# flag was not a number, or
was less than 1 or greater than 249.

The value specified in the -zr# flag was not a number,
was less than 2 or greater than 499.

5.11.4 Examples

Generate full statistics for all columns in all tables in the "empdata" database.

optimizedb empdata

Generate statistics for key or indexed columns in the "employee" and "dept" tables,
and additionally generate statistics for the "dno" column in the "dept" table.

optimizedb -zk empdata -remployee -rdept -adno

Do the same as the second example, but from a file.

optimizedb -zf flagfile

The parameter flagfile in the preceding example contains:

-zk
empdata
-remployee
-rdept
-adno

Generate statistics for all key or indexed columns in "employee," "dept" and
"salhist." Also process the "eno" column in "employee," whether or not "eno" is a
key or indexed column. Generate statistics with only minimum and maximum
values from the columns. Print status information as each column is processed.

optimizedb -zk -zv -zx empdata -remployee -aeno -rdept
-rsalhist

Allow up to 100 unique values from each column in the "employee" table before
merging adjacent values into the same histogram cell.

optimizedb -zulOO empdata -remployee

UL TRIXlSQL Operating System Commands 5-23

5.12 rollforwarddb

5.12.1 Purpose

Recover the database from the last checkpoint and the current journal.

5.12.2 Syntax

rollforwarddb [+cl-c] [+jl-j] [-mdevice:] [-s] [-uusername]
[-v] [+wl-w] {dbname}

5.12.3 Description

The rollforwarddb command recovers the named databases from the last
checkpoint and the current journal. The recommended procedure is to recover the
last checkpoint, then recover from the journal (see "Examples" below).

The command line flags have the following interpretations:

Flag Description

+c I -c Recover or do not recover the database from the last checkpoint. The default
is +c.

+ j I -j Recover or do not recover the database from the journal. The default is + j.

-mdevice Recover the checkpoint from the specified tape device rather than from disk.

-s Invoke ULTRIX/SQL superuser (System Administrator) status for system-wide
access to any database. You must be the ULTRIX/SQL System Administrator.

-uusername Allows you to act as the user with login name username. This may only be used
by the Database Administrator for the specified database or by the ULTRIX/SQL
System Administrator.

-v Recover the database from the journal in verbose mode, which provides
diagnostic information detailing all operations executed during the recovery
process.

+w I-w Wait or do not wait for the database to be "free." The default is -w.

If you have written to tape the checkpoint from which you want to restore the
journal, you can use the -m flag to read in the checkpoint from a tape device.

Only the Database Administrator who created the database or the ULTRIX/SQL
System Administrator (if the -u flag is specified) may run the rollforwarddb
command on a database.

If no databases are specified, all databases for which you are the DBA are affected.
All databases can be purged if the ULTRIX/SQL System Administrator uses the -s
flag.

5-24 ULTRIXlSQL Operating System Commands

The rollforwarddb command locks the database because errors can occur if the
database is active while the rollforwarddb command is running. If a database is
busy, the rollforwarddb command reports this and proceeds to the next database, if
any. By default, or if the -w flag is specified, the rollforwarddb command does not
wait, regardless of standard input. The +w flag always causes the rollforwarddb
command to wait.

Some possible diagnostic messages you may receive and their causes are:

Message

You are not a valid ULTRIX/SQL user

You may not use the -s flag

You are not the dba for dbname

Cannot enter dbname

5.12.4 Examples

Description

The current login name is not entered in the
ULTRIX/SQL users file.

You have tried to use the -s flag, but you do not
have ULTRIX/SQL System Administrator
privileges.

You have tried to recover a database for which
you are not the Database Administrator.

The specified database does not exist.

Recover the "empdata" database in verbose mode from the last checkpoint and
journal. This assumes that both the journal and the checkpoint are currently on-line.
If not, they should be placed on-line before executing these commands.

rollforwarddb -v empdata

Recover all databases in verbose mode for which you are the Database
Administrator.

rollforwarddb -v

Recover "empdata" from tape, and then apply the journals.

rollforwarddb +c +j -m/dev/rmtO empdata

UL TRIXlSQL Operating System Commands 5-25

5.13 sql

5.13.1 Purpose

Invoke the Terminal Monitor command line interface to interactive ULTRIX/SQL.

5.13.2 Syntax

sql [+U I -U] [-uusername] [-eN] [-tN] [-ikN] [-fkxM.N] [-vX] [-nM] [+a I -a] [-I]
[+d I-d] [+s I-s] [+w I-w] [-xk] [<altin] [>altout] dbname

5.13.3 Description

This command invokes the ULTRIX/SQL Terminal Monitor command line
interface (sql). The variable dbname is the name of an existing database. The
optional flags have the following meanings:

Flag Description

+ U I -U Enable or disable user updating of the system catalog tables and secondary
indexes. You must have the "update system tables" privilege obtained through
accessdb. This option is provided for system debugging and is strongly
discouraged for normal use. The default is -U. Note that this flag causes an
exclusive lock of the database during the session for which it is specified.

-uusername Allows you to act as the user with login name username (found in the users file).
This flag can only be used by the Database Administrator for the specified
database or by the ULTRIX/SQL System Administrator.

- c N Set the minimum field width for printing character columns to N. The default
is 6.

- t N Set the minimum field width for printing text columns to N. The default is 6.

- i kN Set integer output column width to N. The integer type k may be 1,2 or 4 for
integerl, integer2 or integer4, respectively. The default for N is 6 for integer 1
and integer2 fields, and 13 for integer4 fields.

-f k x M.N Set floating point output column width to M characters (total), including N
decimal places and (if warranted) e+-xx and the decimal indicator character
itself. The float type k may be 4 or 8, to apply to float4 or floatS respectively.
The format type x may be E, F, G or N (uppercase or lowercase) to specify an
output format. For a number to be displayed in E (that is, exponential) format,
either E must be specified in the flag or the number must be too large for the
format indicated in the flag. E is exponential format, F is floating-point format
and G and N are identical to F, unless the number is too large to fit in that field
when it is output in E format. G format guarantees decimal point alignment; N
does not. The default display format for both float4 and floatS is nl0.3 for VAX
or n11.3 for RISC.

-v X Set the column separator for retrievals to the terminal and print commands to be
X. The default is a vertical bar (I).

5-26 ULTRIX/SQL Operating System Commands

Flag Description

-nM Set modify mode on the index command to M, which can be any of the storage
structures described in the modify command in Chapter 2 (heap, cheap,
heapsort, cheapsort, isam, cisam, btree, cbtree, hash and chash). The default
is isam.

+a I -a Set or clear the autoclear option in the Terminal Monitor. The default is +a.

-I Lock the database for your exclusive use. When you specify this flag, no one
else can open the database while you are using it. If you attempt to use this flag
on a database that is already opened, the system informs you that the database is
temporarily unavailable.

+d I -d Print or do not print the dayfile. The default is +d.

+s I -s Print or do not print any of the monitor messages, including prompts. This flag is
normally set. If cleared, it also clears the -d flag. The default is +s.

+w I -w Wait or do not wait for the database. If the +w flag is specified, UL1RIX/SQL
waits, provided that certain processes (sql-I, sql-V, verifydb, rollforwarddb
and/or sysmod) are running on the given database. Upon completion of those
processes, UL1RIX/SQL proceeds. When the -w flag is present, a message is
returned and execution is stopped if the database is not available. If the +wl-w
flag is omitted and the database is unavailable, an error message is returned if
UL1RIX/SQL is running in foreground (more precisely, if the standard input is
from a terminal). Otherwise the wait option is invoked. Note that this flag can be
used only in interactive sessions and not in batch mode. The default is -w.

-xk Set arithmetic handling mode. The variable k may be for w. An f indicates that
all arithmetic exceptions (floating overflow and underflow, integer overflow and
division by zero) should be treated as fatal errors. In this mode, the detection of
an arithmetic exception terminates query processing. A w indicates that warning
messages should be generated for arithmetic exceptions. In warning mode, the
query is run to completion, and a summary of detected exceptions is generated.
The default is to ignore exceptions.

Optional Description
Arguments

<a/tin Use an alternate file to input Terminal Monitor commands to UL1RIX/SQL. The
file a/tin should contain all the Terminal Monitor commands needed to run an
UL1RIX/SQL session. This can be used to run UL1RIX/SQL interactive
procedures, such as processing the output of the copydb command.

>altout Use an alternate file for all output from the Terminal Monitor. This option can
capture the output of a terminal session for later reference. Note that you do not
see any output from UL1RIX/SQL if you use this option.

Some possible diagnostic messages you may receive and their causes are:

Message

Bad flag format

Database name does not exist

Description

You have specified a flag in an unintelligible
format, or an invalid flag.

The specified database does not exist.

UL TRIXlSQL Operating System Commands 5-27

Message

Database temporarily unavailable

Error starting up ULTRIX/SQL
Request for lock failed

Improper database name

No database name specified

Too many options to ULTRIX/SQL

Too many parameters

You are not a valid ULTRIX/SQL user

You are not authorized to use the flag

You may not access database name

5.13.4 Examples

Open the "empdata" database.

sql empdata

Description

Someone else is currently perfonning some
operation on the database; you cannot start
ULTRIX/SQL now.

The database you tried to access is currently
exclusively reserved for another user.

The database name is not legal.

You did not specify the database name.

You have included too many flags on the sql
command line.

You have specified a database name and
something else that UL1RIX/SQL cannot
decipher.

You are not entered into the user's file; you
may not use ULTRIX/SQL at all.

The specified flag requires some special
authorization, which you do not have.

You do not have access permission for this
database.

Open "empdata," suppressing the dayfile message.

sql -d empdata

Open "empdata," suppressing the dayfile message and the Terminal Monitor
prompts and messages; read into the workspace the contents of the batchfile file.

sql -s empdata < batchfile

Open "empdata," display f4 columns in G format with two decimal places and it
columns with three spaces.

sql -f4g12.2 -i13 empdata

The files that are affected are:

$11 SYSTEM/sql/files/users
$II=DATABASE/ingres/data/default/dbname/*

5-28 UL TRIXlSQL Operating System Commands

5.14 statdump

5.14.1 Pu rpose

Print statistics contained in the iistats and iihistograms catalogs of the Standard
Catalog Interface.

5.14.2 Syntax

statdump [-zq] [-zdl] [-ofilename] [-zc] [-zf#]
[ULTRIX/SQLflags] db name [{ -rtablename {-acolumnname}}]

5.14.3 Description

The statdump command allows you to inspect the iistats and iihistograms
catalogs in the Standard Catalog Interface. These views contain statistical
information about columns used by the query optimizer as it selects an efficient
query processing strategy. The statistical information is usually generated by
issuing the optimizedb command.

The command line flags have the following meanings:

Flag

-zq

-zdl

-ofilename

-zc

-zf#

[ULTRIXISQL
flags]

-rtablename

Description

Prints only the infonnation contained in the iistats catalog and not the
histogram infonnation contained in iihistograms. (Quiet mode.)

Deletes statistics from the System Catalogs. When this flag is included, the
statistics for the specified tables and columns (if any are specified) are
deleted rather than displayed.

Directs the output of statdump to the file specified by filename. The
resulting file is an ASCn file whose content is identical to the infonnation
nonnally sent to the tenninal screen. It is possible to edit the contents of this
file; however, only two types of changes are acceptable if this file will be
used as input for the optimizedb command. (See the -i flag description in the
optimizedb command description for a discussion of using filename with the
optimizedb command.)

Directs statdump to display statistics on the system catalogs as well as the
base tables. If you want statistics for selected system catalogs, use this flag
and specify the individual tables with the -r flag. You must be the Database
Administrator of the specified database to use this flag.

Directs statdump to output floating point values in scientific notation (for
example, 9.9999+e9) and sets the precision to the level specified by #. The
total width of the displayed number will be equal to the value of the precision
level + 7.

Automatically passes any ULTRIX/SQL flags on the statdump command
line to ULTRIX/SQL. For infonnation about the ULTRIX/SQL flags, refer to
the sql command description in this chapter.

Produce statistics for all columns in the specified table. If no table is
specified, statistics for all columns in all tables are produced.

UL TRIXlSQL Operating System Commands 5-29

Flag

-acolumnname

Description

Produce statistics for the specified columns only. Note that to specify
individual columns you must frrst specify a table name with the -r flag, as the
syntax summary indicates.

Note

If a table or column cannot be found, a warning message is printed and
processing of other statements in the query continues.

5.14.4 Examples

Print the statistical information for all columns in the "employee" table in the
"empdata" database.

statdump ernpdata -remployee

For all columns in all tables of the "empdata" database, print only the information
in the iistats system table.

statdump -zq empdata

Delete statistics for all columns in the "employee" table.

statdump -zdl empdata -remployee

5-30 UL TRIXlSQL Operating System Commands

5.15 sysmod

5.15.1 Purpose

Modify system tables to predetermined storage structures.

5.15.2 Syntax

sysmod [-s] [+w I -w] dbname [tablename { , tablename}]

5.15.3 Description

The sysmod command modifies a database's system tables to the most appropriate
storage structure, usually hash, for accelerating query processing. You can run
sysmod on the whole database or on specified tables. The user must be either the
Database Administrator for the specified database or the ULTRIX/SQL System
Administrator, in which case the -s flag must be specified.

The flags have the following meanings:

Flag

-s

+wl-w

Description

Allows the UL1RIX/SQL System Administrator to use sysmod on another
user's database.

Causes UL1RIX/SQL to wait or not wait until the database is free before
executing sysmod. This can only be used in interactive sessions, not in batch
mode. The sysmod command locks the database while it modifies the system
tables, in order to prevent errors. If the database is in use, sysmod reports that
the database is not free, and sysmod does not execute. If standard input is not a
tennina!, sysmod waits for the database to be free. By default, or if the -w flag is
specified, sysmod does not wait, regardless of standard input. The +w flag
causes sysmod to wait until the database is no longer in use, regardless of
standard input.

The sysmod command should be run on a database periodically to maintain peak
performance. Whenever many tables and secondary indexes are created and/or
destroyed, sysmod should be run even more often.

5.15.4 Examples

Optimize the system tables in "empdata."

sysmod empdata

Optimize the iirelation and iiindexes system tables in "empdata," but only if the
database is not currently busy.

sysmod -w empdata iirelation iiindexes

UL TRIXlSQL Operating System Commands 5-31

5.16 unloaddb

5.16.1 Purpose

Create command files for complete unloading and reloading of a database.

5.16.2 Syntax

unloaddb [-uusername] [-c] [-dpathname] dbname

5.16.3 Description

The unloaddb command creates a set of command files that can be run by the DBA
for an ULTRIX/SQL database to unload completely all tables in the specified
database. The unloaddb utility works in the same way as the copy db command
except that the unloaddb command files also unload all views, integrity constraints
and permissions in the database. Also, unlike the copydb command, unloaddb
command files unload all user-defined tables, views and so forth in the database of
which you are the Database Administrator, not merely those items that you own.
This utility can be used when a database must be totally rebuilt or for
checkpointing the database.

The unloaddb utility creates two command files in the current directory that can
then be executed by the Database Administrator:

• The unload.ing file contains commands to read sequentially through the
database, copying every user table into its own file in the named directory.

• The reload.ing file contains commands to reload the database with the
information contained in the files created by the unload.ing command file.

Note that the unloaddb command does not actually do the unloading or reloading
of the database. The command files created by unloaddb must be executed by the
Database Administrator to accomplish these tasks. The directory specified in the
unload db command must not be the actual database directory,
$II_DATABASE{mgres/data/default/dbname, because the files created by unloaddb
may have the same names as the tables in the database.

The optional flags and their purposes are:

Flag Description

-u Allows you to run unloaddb as the user specified by username. This flag can
only be used by the ULlRIX/SQL System Administrator.

-c Causes the commands in the generated command files to use a portable format.
That is, all data is copied in and out as ASCII characters. This is useful for
transporting databases between computer systems whose internal representations
of non-ASCII data differ.

-d Stores the unload.ing and reload.ing files in the location specified by pathname
instead of the default current directory. The pathname can be either a full or
relative directory specification.

5-32 ULTRIXlSQL Operating System Commands

The new database is created with the create db command. It is important that the
Database Administrator reload the new database using the reload.jng file before
any work (for instance, creating tables) is done in the database. You should also be
sure to run the sysmod command in order to optimize performance after recreating
and reloading the database.

The unloaddb command uses a version of the copy db utility to generate the copy
commands in the unload.jng and reload.ing files. Thus all limitations of the
copydb command apply to the unloaddb command.

5.16.4 Example

Unload and reload the "empdata" database.

cd /mydir/backup
unloaddb empdata
unload.ing
destroydb empdata
createdb empdata
reload.ing sysmod empdata

ULTRIXfSQL Operating System Commands 5-33

KeyWords A

A.1 ULTRIX/SQL

The following identifiers are key words in ULTRIX/SQL and are therefore
reserved:

abort count endwhile is privileges then
all create execute like procedure to
and current exists max public union
any cursor for message relocate unique
as declare from min return until
asc delete grant modify revoke update
alter desc group not rollback user
at describe having null save using
avg distinct if of savepoint values
between do immediate on select where
by drop in open set while
check else index or some with
close elseif insert order sql work
commit endif integrity permit sum
copy endloop into prepare table

A.2 Embedded ULTRIX/SQL

The following list contains the key words specific to embedded ULTRIX/SQL.
Note that all the ULTRIX/SQL key words listed above are also reserved in
embedded ULTRIX/SQL.

Key Words A-1

activate deleterow getform insertrow repeated
addform disconnect getoper loadtable resume
breakdisplay display getrow menuitem screen
call down go message scroll
clear enddata goto next scroll down
c1earrow enddisplay help notrim scrollup
close endforms helpfile open sleep
column endloop identified out stop
command endselect include print submenu
connect fetch indicator prompt tabledata
continue field initialize putform unloadtable
current finalize inittable putrow up
cursor formdata inquire _ frs redisplay validate
declare forminit inquire ingres register validrow
descriptor forms inquire = sql remove whenever

Double reserved words. The following words are reserved when they appear
together on the same line with only spaces separating them.

begin declare
begin transaction
create link
direct connect

A.3 ANSI SQl

direct disconnect
direct execute
drop link
end transaction

The list below comprises the proposed ANSI standard key words that are not
currently reserved in ULTRIX/SQL or embedded ULTRIX/SQL. You may wish to
treat these as reserved words to ensure compatibility with other implementations of
SQL.

authorization
char
character
cobol
constraints
dec
decimal

double
float
fortran
found
int
integer
language

A.4 Host language Key Words

module
numeric
option
pascal
pli
precision
procedure

public
ieal
schema
smallint
sqlcode
sqlerror

You cannot use host language key words, including language-defined data types, as
objects in embedded ULTRIX/SQL statements.

A-2 Key Words

Standards Compliance and Compatibility B
Information

B.1 Conventions

The following tables compare ULTRIX/SQL to ANSI/lSO, X/Open, and VAX
RdbNMS SQL. Entries in the columns listed below have the following meanings:

• ULTRIX/SQL column

Entries are key words, statements or statement options that are included in the
ULTRIX/SQL implementation of the SQL language (SQL statements that
apply only to utility environments, such as the ULTRIX/SQL help statement,
have been omitted).

• ANSI/ISO column

Indicates whether the ULTRIX/SQL language component complies with the
ANSI/ISO SQL-89 standard, published as the ANSI X3.135-1989 Database
Language SQL standard and as the ISO 9075:1989 Database Language SQL
standard.

• X/Open column

Indicates whether the ULTRIX/SQL language component is included in the
X/Open XPG3 standard. An asterisk (*) in this column indicates that the
component is not currently included, but planned for XPG4.

• RdbNMS SQL column

Indicates whether the ULTRIX/SQL language component in included in the
RdbNMS implementation of the SQL language, or if included, whether the
ULTRIX/SQL component is compatible with the RdbNMS component.

Standards Compliance and Compatibility Information 8-1

B.2 Data Types

ULTRIXlSQL ANSIIISO XlOpen RdblYMSSQL

c1- c2000 No No No

char[(n)] Yes, except n must Yes, except Yes, except
n<=2000 be specified n<=240 n <= 16383

character [(n)] Yes, except n must No Yes, except
n<=2000 be specified n <= 16383

text(n) No No No

varchar(n) Yes, except n is not Yes, except n is not Yes
n<=2000 specified specified

integer! No No No

integer2 No No No

smallint (2-byte) Yes Yes Yes

int (4-byte) Yes No Yes

integer4 No No No

integer (4-byte) Yes Yes Yes

real Yes No Yes

00at4 Yes No Equivalent to real
and float(x), where
x <=7

double precision Yes No Yes

floatS Yes Yes Equivalent to
double precision
and float(x), where x
>7

float Yes Yes Equivalent to
double precision
and float(x), where x
>7

date No No Fonnat differs

money No No No

8-2 Standards Compliance and Compatibility Information

B.3 Statements

ULTRIXfSQL Command ANSI!ISO XfOpen RdblVMS SQL

commit No No Yes

commit work Yes Yes Yes

copy No No No

create index No Yes Yes

asc/desc clauses No Yes Yes

unique clause No Yes Yes

with

fillfactor = n No No No

key = (columnlist) No No Implementation
differs

leaffill = n No No No

location = (locationname ...) No No SYntax differs

maxpages=n No No No

minpages = n No No No

nonleaffill = n No No No

structure = btree I cbtree I hash I No No Syntax and
chash I isam I cisam structure types

differ

create integrity Implementation No implementation
differs differs

create procedure No No No

create table Yes Yes Yes

as subselect No No No

with [no] duplicates No No No

with [no]journaling No No No

with location = (locationname ...) No No No

create view Yes Yes Yes

as subselect Yes Yes Yes

with check option Yes No Syntax differs

declare variable No No No

Standards Compliance and Compatibility Information 8-3

ULTRIXlSQL Command ANSI!ISO X10pen Rdb/VMS SQL

not null [with default I not default]
I with null No No No

delete Yes Yes Yes

where search condition Yes Yes Yes

drop indexname I tablename I viewname No No No

drop index No Yes Yes

drop integrity No No Some forms of;
implementation
differs

drop permit No No Some forms of;
implementation
differs

drop procedure No No No

drop table No Yes Yes

drop view No Yes Yes

grant Yes Yes Syntax differs

all No Yes Yes

all privileges Yes No Yes

on procedure No No No

privileges
where privileges are:

delete Yes Yes Yes

execute No No No

insert Yes Yes Yes

select Yes Yes Yes

update (columnname {, columnname}) Yes Yes Yes

to public Yes Yes Yes

to username Yes Yes Syntax differs

if-then-else No No No

insert Yes Yes Yes

message No No No

8-4 Standards Compliance and Compatibility Information

ULTRIXlSQL Command ANSI/ISO XlOpen Rdb!VMS SQL

modify No No Some forms of;
implementation
differs

return No No No

rollback No No Yes

rollback work Yes Yes Yes

save No No No

select (interactive) Yes Yes Yes

all Yes Yes Yes

distinct Yes Yes Yes

from clause Yes Yes Yes

group by clause Yes Yes Yes

having clause Yes Yes Yes

order by clause Yes Yes Yes

asc I desc Yes Yes Yes

union Yes Yes Yes

union all Yes No Yes

where clause Yes Yes Yes

set No No Some forms of;
implementation
differs

update Yes Yes Yes

where clause Yes Yes Yes

while-endwhile No No No

Standards Compliance and Compatibility Information 8-5

Using Forms-Based Applications C

C.1 Overview

This appendix explains how to use various features of the ULTRIX/SQL
forms-based utilities: accessdb, catalogdb, and isql.

C.2 Accessing Databases

Using ULTRIX/SQL you can access:

o ULTRIX/SQL databases on your own computer or local node

o ULTRIX/SQL databases on remote nodes on your network

• RdbNMS databases through Remote Access to RdbNMS

The general syntax for accessing a database is:

command [v _node::]dbname[/server _type]

Table C-1 Access Syntax

Parameter

command

v node::

dbname

Function

Any command used to invoke an ULTRIX/SQL software tool, such as sql
or isql.

The virtual node name of the remote node on which the database is located
(note the two colons). The v node name implies the actual network node
address and the network protocol. They are identified when the node name
is defined with the netu utility.

The name of the database containing the relevant data.

The name of the type of server being accessed at the local or remote site,
(the default is ingres, which is the server_type designated for the database
management system server). See the following table for other server types.

Using Forms-Based Applications C-1

Table C-2 ULTRIX/SQL Server Types

ULTRIXlSQL Server Description

ingres ULTRIX/SQL database management system

rdb ULTRIX/SQL Remote Access to RDBNMS

Not all the parameters have to be specified in all cases. For example, when
accessing a database on your own computer, your local node, you do not need to
specify the v _node name.

C.3 Menus

An ULTRIX/SQL menu is displayed at the bottom of each ULTRIX/SQL frame.
You can cycle through the display of all of a menu's selections by pressing the
Menu key. (See the next section.)

On any given frame, ULTRIX/SQL displays the cursor in the window or at the end
of the menu. To choose an operation from the menu:

• Press the function key mapped to the operation.

• Move the cursor to the menu with the Menu key and type the name of the
operation. See the section "Selecting an Operation from the Menu" for details.

C.3.1 Menu Key

To move the cursor from the window to the menu, press the Menu key. To return to
the window, press the Return key.

The key on your keyboard that acts as the Menu key depends on your terminal and
the individual key mappings you have chosen. For example, on a VT100 keyboard,
the Menu key is normally mapped to the PFI key. In some instances the Menu key
may be mapped to the Escape key or the Fl key. See Appendixes D through F for
further information on defining and customizing your terminal keyboard.

C.3.2 Long Menus

Some menus contain more items than will fit across the bottom of the frame. The
presence of additional menu items is indicated by either a "greater than" character
(» at the right end of the menu, a "less than'" character «) at the left end, or both.

C-2 Using Forms-Based Applications

Figure C-1 Long Menu

Enter SQL StateMents Database: personnel

Go Resu"e Co"plete Blank Edit OnError InsertLine >

In this case, you can cycle through the entire set of menu options by pressing the
Menu key repeatedly.

The example frames in this manual normally show the full set of operations
available on the menu. The key mappings specific to different terminals indicated
in parentheses after each operation are normally omitted in the manual, although
they are displayed on your terminal.

C.4 Selecting an Operation from the Menu

In ULTRIX/SQL, you can select an operation from the menu by either function key
or operation name.

C.4.1 Selection by Function Key

If the operation has a function key (or key combination) mapped to it, you can
simply press that key. This invokes the operation regardless of where the cursor is
when you press the key. The function key that is mapped to an operation is shown
in parentheses after the operation. For example, Quit(PF4) means that pressing the
PF4 key will invoke the Quit operation. If "F is shown in parentheses, you hold
down the Control key and type f.

The operation you select begins immediately. You do not have to press Return. See
Appendix E for information about defining and customizing your terminal
keyboard.

If you want to see all the available operations or if you need to use the menu, press
the Menu key to put the cursor on the menu line. You can then select an operation
by using the name of the operation or by using the number that appears in
parentheses after the operation.

Using Forms-Based Applications C-3

C.4.2 Selection by Name

If your terminal does not have the correct mapping of function keys or if for some
other reason the function keys do not work, to select an operation from the menu:

1. Move the cursor to the menu by pressing the Menu key (see above).

2. Type as many letters as necessary to make the operation name unique. For
example, if both the end and edit operations appear on a menu, you need to
type ed to use the edit operation or en to use the end operation.

3. Press Return.

C.4.3 Moving Between Menus

When you choose an operation from a menu, you are often presented with another
ULTRIX/SQL frame containing a submenu of operations. An operation chosen
from that submenu may in turn present another frame with a further set of
operations.

When you leave a submenu with the End operation, you always return to the next
higher level menu.

When you leave a submenu with the Quit operation, you will return to the main
menu. When you quit from the isql main menu, you quit interactive ULTRIX/SQL
and return to the operating system prompt.

c.s Standard ULTRIX/SQL Operations

Certain operations appear frequently on ULTRIX/SQL frames. Table C-3lists the
standard ULTRIX/SQL menu operations.

Table C-3 Standard ULTRIX/SQL Operations

Operation

Blank

Bottom

End

Find

Forget

Go

Help

Insert

Function

Clears the screen of all entries.

Moves the cursor to the bottom of a table field.

Ends operations on the current screen and returns to the previous screen.

Searches for a specified string of characters within text or a list (table field) on
the screen.

Returns to a previous screen without saving changes entered on the current
screen.

Follows the specified request.

Displays Help screens relevant to the current action.

Puts a blank line at the cursor location.

C-4 Using Forms-Based Applications

Operation

Quit

Shell

Top

Undo

Function

Exits the module and returns to the operating system.

Escapes to the operating system without ending the ULTRIX/SQL session.
Enter "exit" to resume the ULTRIX/SQL session.

Moves the cursor to the top of a table field.

"Undoes" or cancels the previous operation.

e.G ULTRIX/SQL Keys

Through the use of key mapping, you can attain a high degree of flexibility in your
keyboard interaction with ULTRIX/SQL.

C.6.1 Function Keys

The way the different keys on your keyboard function in ULTRIX/SQL depends
almost entirely on your terminal and the specific choices you make for individual
keys on your terminal keyboard. Different terminals support function keys in
different ways. See Appendixes D and E.

To review the way the keys on your keyboard are assigned, use ULTRIX/SQL
online help. Place the cursor on the operations menu line and type h for Help. If
you already know which key is assigned this function, press the Help key. For
information on how to use Help, see "On-Screen Help" below.

C.6.2 Cursor Movement and Editing Keys

Some keys facilitate moving the cursor within forms on the screen. Although this is
terminal-dependent, you can often use keys in the numeric keypad on the right of
your keyboard to control scrolling and other movements of the cursor on the screen.

The way the different control keys on your keyboard function in ULTRIX/SQL
again depends entirely on your terminal and the specific choices you make. See
Appendix E. For example, some terminals do not support arrow key cursor
movement. You can see the current mappings for your terminal by choosing Help
from an operations menu and then choosing Keys from the Help submenu.

Certain keys operate consistently throughout ULTRIX/SQL. These are the Tab key,
the combination of Control and P, and the Return key. They all move the cursor
from field to field but with the following differences:

• The Tab key moves the cursor to the next field or next column in a table field.
If the cursor is in the last field, Tab moves the cursor to the first field of the
same form.

It The Control-P combination moves the cursor back to the previous field or
previous column in a table field. Use Tab or Return to move forward again.

Using Forms-Based Applications C-5

• The Return key moves the cursor to the next field and clears data to the end
of the field at the same time (unless the form or the table field is read only). In
a table field, Return moves the cursor to the next column. If the cursor is in
the last column, Return moves the cursor to the first column of the next row.

If you do not want the Return key to clear the data to the end of the field, you can
map the Return key so that it works like the Tab key. See Appendix E for
information on how to do this. Instead of clearing to the end of the field or
modifying any field item, the cursor simply moves to the next item. If the cursor is
in a simple field or any table field column but the last, Return moves the cursor to
the next field or column. If the cursor is in the last column of a table field, Return
moves the cursor to the first column of the next table field row.

C.6.3 Insert and Overstrike

Insert and overstrike modes allow you to work in either overstrike or insert mode.
In overstrike mode, each character typed replaces the existing character beneath it.
In insert mode, characters are moved to the right as you enter new characters.

The default mode is overstrike. The Control-E key combination is a toggle that
enables you to change between modes.

C.7 On-Screen Help

ULTRIX/SQL provides context-sensitive help. This means that the assistance is
based on the current task you are attempting to accomplish and the current field
you are attempting to complete. You can obtain help by placing the cursor on the
operations menu line and typing h for Help. You can also press the Help key to get
help at any time. For the VT100, the Help key is normally PF2; for the VT220 it is
the Help key itself. Sometimes, help is provided on several screens. Table C-4
describes the Help screen menu option.

Table C-4 Help Screen Menu Options

Operation

Wbattodo

Keys

Field

Help

End

Function

Describes the current screen and the operations menu.

Describes the function and control keys and their current definition.

Displays a list of valid values for a field or the display format, data type,
and validation check, if any, for a field.

Displays the type of Help available.

Exits from any Help screen to the previous screen.

To make a selection on a Help screen, type the first few unique characters of the
operation at'1d press Return, or press one of the keys in parentheses after the
operation. To move through the Help screens, use the cursor movement keys
specific to your terminal. You can see a list of the keys available by selecting the
Keys operation from the Help menu.

e-G Using Forms-Based Applications

c.s Error Messages

ULTRIX/SQL provides context-sensitive error messages in a pop-up window that
appears along the bottom of your screen. The error message you receive indicates
both the error type and the error code.

ULTRIX/SQL also provides explanations for many of the errors. For messages
without an explanation, ULTRIX/SQL displays a single-line message with a prompt
that tells you to press Return after reading the message. When you press Return,
ULTRIX/SQL removes the message and returns you to your work in progress.

For messages with explanations, ULTRIX/SQL displays the first line in the pop-up
window with a prompt that tells you to press either the designated End key or the
designated More key. To exit the message without reading the explanation, press
the End key. To read the explanation, press the More key.

When you press the More key, ULTRIX/SQL displays the error message
explanation. After reading the explanation, press Return to return to your work in
progress.

Using Forms-Based Applications C-7

Defining Your Terminal D

D.1 Overview

Before you use the ULTRIX/SQL forms-based commands, accessdb, catalogdb, or
isql, you must define your terminal to ULTRIX/SQL to make the features of the
forms system available to you. Your computer system can probably support a wide
variety of terminals, each with its own particular characteristics. If you do not
define your terminal to ULTRIX/SQL, ULTRIX/SQL will not permit you to use
any of its forms-based utilities.

This appendix describes defining your terminal to ULTRIX/SQL and lists the
names for various commercially available terminals on which you can run
ULTRIX/SQL. It also includes information on additional features of terminal use.

D.2 Defining Your Terminal

To define your terminal, select the appropriate command for your shell. Note that
once the ULTRIX/SQL forms system has started, the environment variable
TERM_INGRES cannot be reset until the session has ended. It is a good idea to
include the command that defines TERM_INGRES in the automatic login
procedures on your individual account on the computer.

For the C shell:

set en v TERM INGRES termname

For the Bourne shell:

TERM_INGRES=termname export TERM_INGRES

where termname is the designation for your terminal type (see "Terminal Names
for ULTRIX/SQL" below).

For instance, if you have a VT100 terminal and you want to be able to use the
arrow keys as cursor movement keys and the keypad keys as definable function
keys, consulting "Terminal Names for ULTRIX/SQL" tells you that "vtl00i" is the
proper designation. To define your terminal accordingly to ULTRIX/SQL, enter
one of the following commands:

C shell:

setenv TERM INGRES vt100i

Defining Your Terminal 0-1

Bourne shell:

TERM INGRES=vtlOOi
export TERM_INGRES

Thereafter, you may use the default assignment of key strokes to cursor motion and
forms commands with ULTRIX/SQL.

The "vtlOOnk" is another terminal designation available for VT100 terminals. This
terminal designation is particularly suited to applications that require use of the
keypad for numeric input. The designation gives the user access to the arrow keys
and the top four function keys on the numeric keypad. The other keys on the
keypad are available for numeric input.

Note

VT220 and VT320 series terminals are fully supported by ULTRIX, and
you may use the VT220 and VT320 keystrokes. However, you should
use the generic definitions, "vt200" for the VT220 terminal and "vt300"
for the VT320 terminal.

0.3 Additional Features of Terminal Use

In addition to the capabilities of the ULTRIX/SQL Forms Run-Time System
described in Appendix E, ULTRIX/SQL provides the ability to:

• Print the screen

• Redraw the screen

0.3.1 Printing the Screen

If you have defined your terminal to use function keys (by setting TERM_INGRES
to vt100i, for example), you can print the contents of the currently displayed screen.

This may be useful for preparing documents in which the status of the terminal
screen must be depicted. To print the current screen, press the key assigned to that
function. On a VT100, press Control-G, and on a VT200 series or VT300 series,
press F8. This function assignment may vary from terminal to terminal.

A prompt appears:

Enter file name:

ULTRIX/SQL appends an image of the current form, including all displayed data
values, to the specified file. The entire form is included, even if it is longer and
wider than the terminal screen.

If you enter the special name printer as the filename, the image is sent to the
printer.

You may also set the environment variable II_PRINTSCREEN_FILE to specify a
filename to which the results of the printscreen function are automatically written.
See the ULTRIX/SQL Operations Guide for more information on this variable.

0-2 Defining Your Terminal

0.3.2 Redrawing the Screen

You can also redraw the current screen, including any data you have entered into its
field. This is useful if you receive messages on the screen or if disruptions in
communication with the computer occur. This redrawing function is assigned by
default to Control-W, regardless of the terminal.

0.4 Terminal Names for ULTRIX/SQL

Digital Equipment Corporation has every reason to believe that ULTRIX/SQL
forms-based operations should function correctly on the terminals listed here.
However, not all these terminals have been tested to determine the functionality of
the ULTRIX/SQL forms run-time system. If you have any problems with the
terminal designations, please submit an SPR (Software Performance Report).

Table 0-1 Terminal Names for ULTRIX/SQL

Terminal Type Menu Key Name

ADDRINFO ESC addrinfo

ADDS CONSUL 980 ESC a980

ADDS REGENT 100 ESC regentlOO

ADDS REGENT 20 ESC regent20

ADDS REGENT 25 ESC regent25

ADDS REGENT 40 ESC regent40

ADDS REGENT 60 ESC regent60

REGENT 60 wino arrow keys ESC regent60na

ADDS REGENT SERIES ESC regent

AMPEX DIALOGUE 80 ESC ampex

ANN ARBOR ESC aa

ANN ARBOR AMBASSADOR 48 with ESC aaadb
destructive backspace

ANN ARBOR AMBASSADOR/48 lines ESC aaa

BEEHIVE SUPER BEE ESC sb1

FIXED SUPERBEE ESC sb2

BEEHIVE HIm ESC bh3m

CONCEPT 100 ESC c100

CONCEPT 100 slow ESC c100s

Defining Your Terminal 0-3

Terminal Type Menu Key Name

CONCEPf 100 slow reverse video ESC c100rvs

C 100 reverse video ESC c100rv

C100 with 4 pages ESC c1004p

C 100 reverse video with 4 pages ESC c100rv4p

C100 with no arrows, reverse video, 4 pages ESC c100rv4pna

C100 with printer port, reverse video, 4 ESC c100rv4ppp
pages

CDC ESC cdc456

CDC456tst ESC cdc456tst

CDI1203 ESC cdi

COMPUCOLORII ESC compucolor

CYBERNEX mdl-110 ESC mdl110

DATAMEDIA 1520 ESC dm1520

DATAMEDIA 1521 ESC dm1521

DATAMEDIA 2500 ESC dm2500

DATAMEDIA 3025a ESC dm3025

DATAMEDIA 3045a ESC dm3045

DATAMEDIA dt80/l ESC dt80

DATAMEDIA dt80j1 in 132 character mode ESC dt80132

DATAPOINT 3360 ESC datapoint

DELTA DATA 5000 ESC delta

DIGILOO333 ESC digilog

ENVISION PF1 envision

ENVISION with color PF1 envisionc

GENERAL TERMINAL 100A (formerly ESC i100
INFOTON 1(0)

HAZELTINE 1500 ESC h1500

HAZELTINE 1510 ESC h1510

HAZELTINE 1520 ESC h1520

HAZELTINE 1552 ESC h1552

0-4 Defining Your Terminal

Terminal Type Menu Key Name

HAZELTINE 1552 reverse video ESC h1552rv

HAZELTINE 2000 ESC h2000

HEATHKIT h19 ESC h19

HEATHKIT h 19 ansi mode ESC h19A

HEATHKIT with keypad shifted ESC h19bs

HEATHKIT with keypad shifted, underscore ESC h19us
cursor

HEATHKIT with underscore cursor ESC h19u

HEWLETT PACKARD 2621 ESC 2621

HEWLETT PACKARD 2621 with 45 ESC 2621k45
keyboard

HEWLETT PACKARD 2621 with labels ESC 2621wl

HEWLETT PACKARD 2621 with no labels ESC 2621nl

HEWLETT PACKARD 2621 48 lines ESC big2621

HEWLETT PACKARD 2626 ESC hp2626

HEWLETT PACKARD 2640a ESC 2640

HEWLETT PACKARD 2648a graphics ESC hp2648
terminal

HEWLETT PACKARD 264x series ESC 2640b

HEWLETT PACKARD 264x series ESC hp

IBM 3101·10 ESC ibm

INFOTON400 ESC i400

INFOTONKAS ESC infotonKAS

ISC modified owl 1200 ESC in text

ISC8001 ESC 8001

LSI adm2 ESC adm2

LSIadm3 ESC adm3

LSladm3a+ ESC adm3a+

LSIadm31 ESC adm31

LSIadm3a ESC adm3a

Defining Your Terminal D-5

Terminal Type Menu Key Name

LSIadm42 ESC adm42

MICRO BEE SERIES ESC microb

MICROTERM ACT IV ESC microtenn

MICROTERM ACT V ESC microtenn5

MICROTERM MIME 1 ESC mime

FULL BRIGHT MIME 1 ESC mimetb

HALF BRIGHT MIME 1 ESC mimehb

MICROTERM MIME2A (emulating an ESC mime2as
enhanced SOROC iq120)

MICROTERM MIME2A (emulating an ESC mime2a
enhanced VT52)

MIMEI emulating 3A ESC mime3a

MIMEI emulating enhanced 3A ESC mime3ax

NE1RONICS ESC netx

PERKIN ELMER 1100 ESC fox

PERKIN ELMER 1200 ESC owl

SOL ESC sol

SOROC 120 ESC soroc

SO~STTEC~CALPRODUCTS ESC swtp
CT82

SUPER BEE with insert character ESC superbeeic

TEK1RONIX 4105 PFI tk4105

TEKTRONIX 4105 with color PFI tk4105c

TELERAY 1061 ESC tl061

TELERAY 1061 with fast PROMs ESC tl06lf

DUMB TELERAY 3700 ESC t3700

TELERAY 3800 series ESC t3800

TELETEC DATASCREEN ESC teletec

NEW TELEVIDEO 912 ESC 912b

NEW TELEVIDEO 920 ESC 920b

0-6 Defining Your Terminal

Terminal Type

OLD 1ELEVIDEO 912

OLD 1ELEVIDEO 920

VISUAL 200 no function keys

VISUAL 200 reverse video

VISUAL 200 reverse video using insert
character

VISUAL 200 using insert character

VISUAL 200 with function keys

VT100 with function keys activated

VT100 with function keys activated (3.0
version)

Menu Key

ESC

ESC

ESC

ESC

ESC

ESC

ESC

PFI

PFI

VT100 with numeric keypad PFI

VT100 without function keys activated ESC

VT100 in 132-column mode with function PFI
keys activated

VT100 in 132-column mode with function PFI
keys activated (3.0 version)

VT100 in 132-column mode with numeric PFI
keypad

VT100 with function keys activated and PFI
Return key mapped to Nextitem instead of
Clearrest (works like vt100f, but Return
does not clear to end of field)

VT100 in 132-column mode with function PFI
keys activated and Return key mapped to
Nextitem instead of Clearrest (works like
vt100fw, but Return does not clear to end of
field)

VT100 in 132-column mode without
function keys activated

VT100 with no initialization

VT125

VT220

VT220 with Return key mapped to
Nextitem instead of Clearrest

VT220 in 132-column mode

PFI

ESC

ESC

PFI

PFI

PFI

Name

tvi912

tvi920

vi200f

vi200rv

vi200rvic

vi200ic

vi200

vt100f

vt100k

vt100nk

vt100

vt100fw

vt100kw

vt100nkw

vt100i

vt100iw

vt100w

vt100n

vtl25

vt220

vt220i

vt220w

Defining Your Terminal 0-7

Terminal Type Menu Key Name

VT220 in 132-column mode with Return PFI vt220iw
mapped to Nextitem instead of Clearrest

VT241 PFI vt241

VT300 series PFI vt300

VT50 ESC vtSO

VT50h ESC vtSOh

VT52 ESC vtS2

VT132 ESC vt132

XEROX 1720 ESC x1720

XITEX set-IOO ESC xitex

ZENTEC30 ESC zen30

0-8 Defining Your Terminal

Defining Function and Control Keys E

E.1 Overview

The ULTRIX/SQL forms run-time system (FRS) is a built-in screen management
system that is a common interface to the ULTRIX/SQL forms-based utilities
accessdb, catalogdb and isql. The forms system enables you or the ULTRIX/SQL
System Administrator to redefine the function and control keysKeyboard
keys;Mapping!B to be used in the preceding forms-based utilities. The
ULTRIX/SQL System Administrator is usually responsible for implementing such
customization of the terminal user's environment.

All operations-menu item operations, cursor movement, and so forth-can be
mapped to function or control keys on a terminal. Once the mapping has been
specified, you can execute the operation by simply pressing the specified key. If the
terminals at your installation do not support function keys, you can still map
operations to control keys, so that entering a control character will execute the
operation.

The ULTRIX/SQL forms system allows you to define control and function key
mappings on three levels:

o Installation

• Terminal type

• User

This allows you to tailor key definitions to the specific requirements of the
environment and the user.

Note

The text and examples in this appendix refer mostly to the VT100 and
VT200 series terminals. Most of what applies to the VT200 series also
applies to the VT300 series terminals.

E.2 The Purpose of the ULTRIX/SQL Termcap File

Before you can take advantage of the function key feature, the terminal must be
defined to ULTRIX/SQL so that physical keys on the terminal become associated
with logical ULTRIX/SQL functions. Through this mapping, the physical keys can
execute various operations that are built into the ULTRIX/SQL forms system.

Defining Function and Control Keys E-1

The locations and availability of function (PF) and control keys are unique to the
type of terminal you are using. Control keys are available on all ASCII terminals,
but only certain types of terminals also support function keys. The specific function
keys and the escape sequences they generate are documented by the terminal
vendor.

The ULTRIX/SQL termcap file contains a description of all terminals supported by
ULTRIX/SQL, including their available function and control keys. Each supported
terminal has a tenncap entry that is based on the vendor's specifications for that
device. Appendix D lists supported terminals. For unsupported terminals, you must
write your own termcap entries (see Appendix F).

When you start up one of the ULTRIX/SQL forms-based utilities, the forms
run-time system uses the TERM_INGRES logical to determine the user's terminal
type and verifies basic terminal attributes. The terminal type tells the forms system
which entry to read from the ULTRIX/SQL termcap file. The type is checked only
once for each session, so the user must exit the current session in order to change
terminal types. However, logical key definitions can be changed dynamically by the
application.

Note that fundamental changes to the forms system's interpretation of keystrokes
for a particular terminal would require modification of that terminal's term cap
entry. For example, if you want the forms system to permanently interpret a Down
Arrow key as Nextfield for the VT100i, you must change the ULTRIX/SQL
termcap entry for VT100i. Key map files cannot accomplish such changes directly.

As noted in the termcap entry comments, some term cap entries allow you to define
the terminal to recognize function keys (see Appendix D). For example, to use
function keys with a VT100 or VT100-like terminal, the terminal should be defined
as vt100i. The vt100i definition turns the terminal's keypad into a set of 18 function
keys, as shown in Figure E-l.

Figure E-1 VT100i Function Keys on Keypad

PF1 PF2 PF3 PF4

(PF1) (PF2) (PF3) (PF4)

7 8 9 -

(PF5) (PF6) (PF7) (PF8)

4 5 6

(PF9) (PF10) (PFll) (PF12)

1 2 3 ENTER

(PF13) (PF14) (PF15)

0

(PF16) I (PF17) I (PF18)

E-2 Defining Function and Control Keys

In the figure, the numbers correspond to the numbers that appear on the physical
keys, while those in parentheses correspond to the function key represented by the
physical key (for example, key #7 represents the fifth function key (PF5)).

By default, a VT220 terminal uses function keys; therefore this terminal should be
defined as vt220i. A VT220 can also emulate a VT100 terminal. If the terminal
itself is set this way, it is appropriately defined to ULTRIX/SQL as vt100i. Other
types of terminals with function keys can be defined to accept function key
mappings by editing the termcap file entries for the terminal types, as described in
Appendix F.

Users of terminals defined as vt100i or vt220i can, in addition, use arrow keys to
move the cursor. The use of arrow keys on any other terminal type may require the
editing of its termcap file entry.

Note that no special terminal definition is required for control keys. Certain control
keys, however, are reserved by the operating system for its own use and should not
be mapped to any operations. These may include, but are not limited to:

• Control-C

0 Control-O

0 Control-Q

• Control-S

0 Control-T

0 Control-X

• Control-Y

Also, if your terminal uses escape sequences to define function keys (the case for
terminals defined as vt100i and vt220i and most other terminals), you must also
consider Escape as reserved.

E.3 Defining Function and Control Key Mappings

Typically, entries within mapping files define a connection between physical
function and control key mappings and logical objects that can then be accessed by
the forms system.

The mapping file uses a simple yet powerful syntax. The following example of a
mapping file illustrates the full range of statements available to specify any sort of
mapping:

Defining Function and Control Keys E-3

/* This is an example of a mapping file */
menuitem2 = pf3 (Key 3)
menuitem3 = controlE (AE)
frskey7 = pf8
previous field = controlP
rubout = controlDEL
controlA = off
/* this turns control-A off */
pf7 = off

The first line of this sample file is a comment. Comments can appear anywhere in a
mapping file. Their purpose is to provide information to someone looking at the
file; they are ignored by the forms system.

The next five lines are examples of mapping statements. All mapping statements
follow the same basic syntax. To the left of the equal sign is a mapping object,
which specifies the operation or function to which the key is being mapped. To the
right of the equal sign is the physical control or function key that maps to and will
activate the mapping object. For instance, the following statement specifies that
function key 3, or PF3, maps to the second item on each menu line ("menuitem2"):

menuitem2 = pf3

A user may perform the operation specified by the second item on any menu simply
by pressing PF3.

The next statement enables the user to move the cursor to the previous field on a
form by pressing Control-P:

previousfield = controlP

A few of the mapping statements in the long example above contain labels within
parentheses to the right of the function or control key. These labels serve the
purpose of providing information to the user, as described later, and do not affect
the actual mapping between object and key.

The last two statements in the example are known as disabling statements. A
disabling statement is used to disable a control or function key. For example, the
following statement turns PF7 off:

pf7 = off

This means that the key has no effect in a forms-based application governed by this
map file and merely produces a beep when pressed.

E.4 Types of Mapping Objects

You can map function and control keys to several types of objects. These mappings
allow the keys to be used to perform menu item operations, cursor movement, and
virtually any other functions available in the ULTRIX/SQL forms-based utilities.

The three types of mapping objects are:

• FRS commands

o Menu items

E-4 Defining Function and Control Keys

• FRS keys

Each of these types of mapping objects is described in its own section below.

E.4.1 FRS Commands

FRS commands are built-in functions of the forms system, which enable the user to
view and edit the data on a form. Through key mapping, you can link such
capabilities as deleting a character, moving to the menu line, or scrolling within a
table field, to specific function or control keys. For example, the following
statement maps a physical key, Control-P, to an FRS command, Previousfield:

previousfield = controlP

Any function or control key may be mapped to any FRS command. The following
table lists the FRS commands and their definitions.

Table E-1 FRS Commands

FRS Command

menu

nextfield

previousfield

nextword

previousword

mode

redraw

deletechar

rubout

editor

leftchar

rightchar

downline

upline

newrow

clear

Meaning

Goes to the menu line (the Menu key).

Goes to the next field on the form.

Goes to the previous field on the form.

Moves forward one word within a field.

Moves backward one word within a field.

Switches between insert and overstrike editing mode.

Redraws the frame.

Deletes the character at the current cursor position.

Deletes the character immediately to the left of the cursor.

Starts the text editor on the current field.

Moves left one character within the current field.

Moves right one character within the current field.

Moves down one line in the current field or next row in the table
field.

Moves up one line in the current field or previous row in the table
field.

Moves to the first column of the next row in the table field.

Clears the current field or menu input.

Defining Function and Control Keys E·5

FRS Command

c1earrest

scrollup

scrolldown

scrollleft

scrollright

duplicate

printscreen

Nextitem

Meaning

Clears the rest of the field, beginning from the current cursor
position. Then moves the cursor to the next field if the cursor is not
in a table field, to the next column if the cursor is not in the last
column of a table field, or to the first column of the next row if the
cursor is in the last column of a table field.

Scrolls up in the current table field or fonn, leaving the cursor on the
same field.

Scrolls down in the current table field or fonn, leaving the cursor on
the same field.

Scrolls the fonn to the left, leaving the cursor on the same field.

Scrolls the fonn to the right, leaving the cursor on the same field.

Auto-duplicates a simple field value.

Sends a copy of the fonn currently displayed to a file or the printer.

Moves to the next field if the cursor is not in a table field, to the next
column if the cursor is not in the last column of the table field, or to
the first column of the next row if the cursor is in the last column of
the table field. Unlike Clearrest, Nextitem does not clear the rest of
the current field.

ULTRIX/SQL provides a default installation-wide mapping file, along with default
mapping files for terminals. These mapping files assign keys to some or all of the
FRS commands in $II_SYSTEM/sql/files. Check online for the listing of mapping
files to see whether your terminal has one, or see your ULTRIX/SQL System
Administrator.

The section "Levels of Mapping" below provides the text of the default mapping
files. The section "Default Settings for FRS Commands" lists the results of those
mappings, the default keys for the various FRS commands.

When used as mapping objects, FRS commands should be typed as shown in the
table above.

Note

FRS commands cannot be executed directly in program code; they are
only available to the user through mapping to terminal keys.

E.4.2 Menu Items

You can also map a function or control key to any of the items appearing on a menu
line. This mapping occurs by position within the menu line.

The syntax for a menu item is:

menuitemN

E-6 Defining Function and Control Keys

where N is in the range 1 to 25, indicating the position of the menu item in the line.
Alternatively, you can also designate menuitemN as men oN in a mapping
statement.

For example, the following statement maps PF3 to the second item on the menu
line:

menuitem2 = pf3

This statement causes PF3 to perform the operation indicated by the second menu
item. As the user moves to a new frame and the menu changes, PF3 continues to
correspond to the item in the second position on the new menu line.

By default, the menu line automatically displays the current mappings between
menu items and function/control keys. It uses either the label provided in the map
file or a default label, if none has been specified. For example, assuming such
mappings have been specified, a menu may appear like this:

Help(PF2) Add(PF3) Editor (control-E) End(PF4)

In this example, pressing PF2 is equivalent to moving to the menu line and typing
Help. Similarly, PF3 selects the Add option, Control-E selects the Editor option
and PF4 selects the End option.

The text that shows the corresponding function or control key, such as PF2 is
known as a label. The label appears on the menu as specified in the mapping file
(see "Mapping File Syntax").

E.4.3 FRS Keys

FRS keys enable you to invoke specific operations in ULTRIX/SQL forms-based
utilities using standardized function or control keys, regardless of which
function/control key is mapped to its current menu item position. These utilities
consistently equate standard operations with certain FRS keys. For example, the
Help operation is always associated with frskeyl. If frskeyl is mapped to the
ASCII character controlH, you can always get help by pressing Control-H,
regardless of its current menu item key designation. These standard operations are
often located at the end of the menu line, allowing those operations that are unique
to a particular frame to appear first.

Because terminals vary with respect to available function keys, ULTRIX/SQL
forms-based operations are not mapped directly to physical function or control
keys. To achieve the needed flexibility, these operations have been equated with
logical FRS keys. You can map these logical FRS keys to actual function or control
keys on your terminal at any of the three mapping levels.

If an operation is associated with both a menu item and an FRS key, you can
activate the operation either with the key that is mapped to the menu item's position
or with the key that is mapped to the FRS key. Whenever an operation has been
associated with both a menu item and an FRS key, the label for the menu item
indicates the function/control key that maps to the corresponding FRS key, not the
function/control key that maps to the item's position on the line.

Table E-2lists the FRS keys and their meanings.

Defining Function and Control Keys E-7

Table E-2 Predefined FRS Keys

FRS Key Menu Item

frskeyl Help

frskey2 Quit

frskey3 End

frskey4 GolNext

frskeyS Top

frskey6 Bottom

frskey7 Find

frskey8 Save

frskey9 Undo/Forget

Meaning

Accesses the ULTRIX/SQL help facility.

Exits from ULTRIX/SQL.

Exits the frame, returning to the previous frame.

Executes the current function.

Moves to the top of the table field.

Moves to the bottom of the table field.

Searches the table field for the specified string.

Saves the object in the database.

Undoes the last action or rolls back the changes
made in the frame.

Mapping the FRS key to a function/control key is handled identically to mapping a
menu item or FRS command. An FRS key is designated by the key word frskey,
followed by an integer in the range 1 to 40. For example, the following statement
maps FRS key 7 to PF2:

frskey7 = pf2

By pressing PF2, the user invokes whatever operation FRS key 7 has been defined
as within the current frame.

E.4.4 Mapping File Syntax

Mapping files are the main method for mapping function or control keys to menu
items, FRS commands, and FRS keys. These files can be created for each of three
levels of mapping: installation, terminal type and user. The syntax for the mapping
files is the same across all levels of mapping; the only way that the FRS
distinguishes one level from another is by the way the mapping file is defined to it.
See the section "Levels of Mapping" below for information on how to do this.

As mentioned earlier, a mapping file may consist of three components:

• Mapping statements to designate the actual mappings. These are the most
commonly used. The mapping statements may also designate nonstandard
labels for menu items.

• Disabling statements to disable the use of function/control keys.

• Comments to provide explanatory text.

E-8 Defining Function and Control Keys

The statements in a m,apping file can appear in any order. However, each statement
must fit entirely on one line. Alphabetic characters within a mapping file may
appear in either upper- or lowercase with no difference in meaning. Blank lines are
ignored.

E.4.4.1 Mapping Statements

A mapping statement has the following syntax:

mapping_object = pfNlcontrolX[(label)]

Parameter

mapping_object

pfN

controlX

label

Description

Specifies a menu item, FRS command, or FRS key, designated
through mapping.

Designates a function key. N must be in the range 1 to 40. (Note the
maximum number of definable keys set in the termcap file for your
terminal may be less than 40. You may need to raise this limit in
order to set additional keys.)

Designates a control key sequence. X may be any single letter, or the
designations del to indicate the Delete key or esc to indicate the
Escape key (for instance, controldel or controlesc). Control may
be abbreviated ctrl. (Note that on most terminals Control-M is
equivalent to the Return key and Control-I is equivalent to the Tab
key.)

Specifies an alphanumeric string identifying the key to press. It
appears in place of the default label for a menu item. It also appears
in the Keys operation of the ULTRIX/SQL help facility.

Each mapping object can map to only a single control or function key at a time.
While you can map more than one mapping object to the same physical key, one
mapping will override the others based on the precedence described in the "Levels
of Mapping" section.

The exception to this rule might appear to occur when a menu item can be called
either by a function/control key mapped to it by the item's position or by a
function/control key mapped to an FRS key which is equivalent to the menu item.
However, this is not really an exception at all, because two mapping objects, the
menu item and the FRS key, are mapped to two different function/control keys.

Conversely, within a file, each control or function key can map to only a single
mapping object at a time. If any conflicting mappings occur in the file, the first
mapping takes precedence.

The following example illustrates mapping statements:

frskey8 = pf16 (0)
menuitem1 = pf13 (1)
menuitem2 = pf3 (PF3)
menuitem3 = controlE (AE)
previousfield = controlP
menuitem4 = pf9 (4)
rubout = controlDEL

Defining Function and Control Keys E-9

In this example, PF16 ("0" on a VT100 keypad) maps to the operation associated
with FRS key 8, PF13 ("1" on a VT100 keypad) activates the first item on the
menu line, PF3 activates the second, Control-E activates the third menu item,
Control-P moves the cursor to the previous field on the form, PF9 activates the
fourth item on the menu line, and Control-Delete deletes the character
immediately to the left of the cursor. Any previous mappings that do not conflict
with these statements remain in effect.

Notice the effect that including an explicit label has on the appearance of a menu
line. Assume a frame's menu includes the following operations:

Help Add Editor End

Assume, also, that the frame containing these menu items also specifies that the
Help operation be invoked either by selecting the Help menu item or by pressing
the key mapped to FRS key 8. The mapping file above, with its labels, would cause
the menu to appear as follows:

Help(O) Add(PF3) Editor("E) End(4)

Two different labels from the map file could be used for the Help menu item: "I"
(the label for the first menu item) or "0" (the label for FRS key 8). In a case like
this, the label for the FRS key takes precedence. All other labels on the menu are
those associated with the menu item's position in the menu line.

E.4.4.2 Disabling Statements

Any of the function/control keys can be disabled. Once disabled, a key remains so
until used within a mapping statement of higher priority.

A disabling statement has the following syntax:

pfNlcontrolX = off

The following two statements disable Contro!-A and PF7:

controlA = off
pf7 = off

While these statements are in effect, typing Control-A or PF7 will only produce a
beep from the terminal.

To disable an FRS command, map the FRS command to a control or function key
and then disable that key.

E.4.4.3 Comments

Comments are delimited by 1* and *1. They may appear anywhere, including on the
same line as a statement. The whole comment must appear within a single line.
Below are two examples of comments:

/* This is a comment */
controlA = off /*this turns Control-A off*/

E-10 Defining Function and Control Keys

E.4.4.4 Mapping File Errors

As described in detail in the following sections, when the FRS starts up, the
mapping files for the various levels of mapping are merged, and conflicts between
files are resolved based on a specific precedence. When the FRS detects errors in a
mapping file, you may find detailed error messages in a file called ingkey.err in
the user's current directory. After exiting the utility, the user can look at the error
file to determine the nature of the errors.

E.5 Levels of Mapping

Function and control key mappings may be defined on three separate levels:

• installation

o terminal type

It user (environment)

The user-level mapping has the highest precedence. This mapping allows each
individual user a good degree of latitude in the use of function/control keys.
Through terminal type-level mapping, a default can exist for all terminals of a
given type, such as VT100s or VT200s. This default is overridden by any
conflicting user mappings. The installation-level mapping is overridden by all
other mappings.

When the FRS starts up, the three levels of mapping are merged, and conflicts are
resolved based on the precedence outlined above. While the three levels of
mappings may coexist, any of the levels can be omitted. Since it is possible that a
function/control key will be defined at more than one of the three levels, the FRS
always honors the most recent reference to any mappable key from a higher-level
precedence file.

E.S.1 Installation-Level Mapping

As mentioned in the preceding section, installation-level mapping has the lowest
precedence. It provides an underlying default, common to all terminal types, which
can be overlaid with mappings for specific terminal types, as well as mappings for
individual users and applications.

A default installation-level mapping file is shipped with ULTRIX/SQL. Since this
default file references only control keys and not function keys, it should be usable
for all ULTRIX/SQL terminal types.

The complete file specification for this mapping file is:
$11_SYSTEM/sql/files/frs.map

It contains the following statements:

/* Move cursor to next field */
nextfield = control I (Tab)

/* Move cursor to previous field */
previousfield = controlP (AP)

Defining Function and Control Keys E-11

/* Move up one word within field */
nextword controlB (AB)

/* Move back one word within field */
previousword = controlR (AR)

/* Switch between insert and */
/* overstrike mode*/

mode = controlE (AE)

/* Redraw the screen */
redraw = controlW (AW)

/* Delete character under the cursor */
deletechar = controlD (AD)

/* Delete character to left of cursor */
rubout = controlDEL (Delete)

/* Start default text editor on field */
editor = controlV (AV)

/* Move left one space within a field
leftchar = controlH (AH)

/* Move right one space within
rightchar = controlL (AL)

/* Move down one line */
downline controlJ (AJ)

/* Move up one line */
upline = controlK (AK)

a field

/* Move to first column of next row */
/* in table field */

newrow = controlN (AN)

/* Clear the field */
clear = controlX (AX)

/* Clear out rest of field */
/* and move to next field */

clearrest = controlM (Return)

/* Scroll up on the form */
scrollup controlF (AF)

/* Scroll down on the form */
scrolldown = controlG (AG)

/* Scroll left on a form */
scrollleft = controlO (AO)

/* Scroll right on a form */
scrollright controlU (AU)

*/

*/

/* Auto-duplicate value while in fill mode*/
duplicate = controlA (AA)

E-12 Defining Function and Control Keys

While you can edit this file to customize your installation's default mappings, you
should not change the name of this file. The forms run-time system automatically
looks for the file when starting up. If you do modify this file, be sure to map only
those keys that are available for all terminal types at your installation.

Notice that the file does not specify a Menu key. This is because the FRS command
menu automatically defaults to Escape.

E.S.2 Terminal-Type Level Mapping

The next higher level of mapping is terminal type. Each terminal type used at your
installation may need its own mapping file because function key support varies
from terminal to terminal. Combined with the installation mapping, the terminal
mapping files provide common terminal defaults, which can be altered by
mappings at higher levels to fit the needs of individual users.

The terminal-type mapping file must be placed in the following directory:
$II_SYSTEM/sql/files

You can specify the filename with the mf capability in the termcap file entry for
each terminal type in use at an installation. (The term cap file is discussed in
Appendix E) You can also point to a termcap file by using the II_TERMCAP _FILE
environmental variable.

Default mapping files for VT100 and VT220 terminals are shipped with
ULTRIX/SQL. You may edit these files if desired. (The termcap file entries for the
vt100i and vt220i terminal definitions discussed earlier already have the names of
their mapping files specified; therefore, there is no need to edit those term cap
entries.)

E.S.2.1 VT100 Terminals

For VT100 terminals defined as the vt100i terminal type, the mapping file location
is:
$II_SYSTEM/sql/files/vtlimap.unx

It contains the following statements:

/* Menu Key */
menu = pfl (PFl)

/* Help facility */
frskeyl = pf2 (PF2)

/* Quit from program */
frskey2 = pf4 (PF4)

/* End current screen and return */
/* to previous screen */

frskey3 = pf3 (PF3)

/* Go or execute function */
frskey4 = pf18 (Enter)

/* Put cursor on top of form or */
/* table field*/

frskeyS = controlK (~K)

Defining Function and Control Keys E·13

/* Put cursor on bottom of form or */
/* table field*/

frskey6 = controlJ (AJ)

/* Find next occurrence of string*/
/* in this column of table field */

frskey7 = controlF (AF)

/* Save object in database */
frskey8 = pf16 (0)

/* Forget and undo */
frskey9 = pf17 (.)

/* Scroll page or form left */
scrolileft = controlL (AL)

/* Scroll page or form right */
scrollright = controlH (AH)

/* Previous screen or set of rows */
/* in table field */

scrolldown = pf8 (-)

/* Next screen or set of rows in */
/* table field */

scrollup = pf12 (,)

/* Print contents of current screen
/* to file or printer */

print screen = controlG (AG)

/* Select first menu item */
menuiteml = pf13 (1)

/* Select second menu item */
menuitem2 = pf14 (2)

/* Select third menu item */
menuitem3 = pf15 (3)

/* Select fourth menu item */
menuitem4 = pf9 (4)

/* Select fifth menu item */
menuitem5 = pflO (5)

/* Select sixth menu item */
menuitem6 = pfll (6)

/* Select seventh menu item */
menuitem7 = pf5 (7)

/* Select eighth menu item */
menuitem8 = pf6 (8)

/* Select ninth menu item */
menuitem9 = pf7 (9)

/* Move cursor to next field */
/* defined to controlI in frs.map */

/* Move cursor to previous field */
/* defined to controlP in frs.map */

E-14 Defining Function and Control Keys

*/

/* Move up one word within field */
nextword controlU (AU)

/* Move back one word within field */
/* defined to controlR in frs.map */

/* Switch between insert and overstrike */
/* mode defined to controlE in frs.map */

/* Redraw the screen defined to controlW */ /* in frs.map */

/* Delete the character under the cursor */
/* defined to controlD in frs.map */

/* Delete character immediately to left */
/* of cursor--defined to controlDEL */
/* in frs.map */

/* Start default text editor on field */
/* defined to controlV in frs.map */

/* Move to first column of next row */
/* in table field defined to controlN */
/* in frs.map */

/* Clear out the field */
clear = controlX (AX)

/* Move to nextitem in form. If on */
/* regular field, move to next field. */
/* If in table field, move to next column */
/* if NOT in last accessible column.*/
/* Move to next row if in last accessible */
/* column of table field. */

nextitem = controlM (Return)

/* Auto-duplicate value while in */
/* fill mode defined to controlA */
/* in frs.map */

E.S.2.2 VT220 Terminals

The default files for VT220 terminals are located in:
$II SYSTEM/sql/vt2imap.unx

$II SYSTEM/sql/vt220map.unx

The VT220 mapping file vt2imap.unx, which is the same as vt220map.unx with the
addition of the Nextitem command, contains these statements:

/* Menu Key */
menu = pfl (PF 1)

/* Help facility */
frskeyl = pf15 (Help)

/* Quit from program */
frskey2 = pf4 (PF4)

/* End current screen and */
/* return to previous screen */

frskey3 = pf3 (PF3)

Defining Function and Control Keys E-15

/* Go or execute function */
frskey4 = pf16 (Do)

/* Put cursor on top of form or */
/* table field */

frskey5 = controlK (AK)

/* Put cursor on bottom of form or */
/* table field */

frskey6 = controlJ (AJ)

/* Find next occurrence of string */
/* in this column of table field */

frskey7 = pf21 (Find)

/* Save function */
frskey8 = pflO (PFIO)

/* Undo and forget */
frskey9 = pf2 (PF2)

/* Scroll page or form left */
scrollleft = controlL (AL)

/* Scroll page or form right */
scroll right = controlH (AH)

/* Previous screen or set of rows */
/* in table field */

scrolldown = pf25 (Prev Screen)

/* Next screen or set of rows */
/* in table field */

scrollup = pf26 (Next Screen)

/* Print contents of current screen */
/* to file or printer */

printscreen = pf8 (PF8)

/* Select first menu item */
menuiteml = pfll (PFll)

/* Select second menu item */
menuitem2 = pf12 (PF12)

/* Select third menu item */
menuitem3 = pf13 (PF13)

/* Select fourth menu item */
menuitem4 = pf14 (PF14)

/* Select fifth menu item */
menuitem5 = pf17 (PF17)

/* Select sixth menu item */
menuitem6 = pf18 (PF18)

/* Select seventh menu item */
menuitem7 = pf19 (PF19)

/* Select eighth menu item */
menuitem8 = pf20 (PF20)

E-16 Defining Function and Control Keys

/* Remove character under cursor */
deletechar = pf23 (Remove)

/* Switch between insert and overstrike */
mode = pf22 (Insert Here)

/* Move cursor to next field defined */
/* to controlI in frs.map */

/* Move cursor to previous field */
/* defined to controlP in frs.map */

/* Move up one word within field */
nextword controlU (AU)

/* Move back one word within field */
/* defined to controlR in frs.map */

/* Redraw the screen defined to */
/* controlW in frs.map */

/* Delete character immediately to left */
/* of cursor defined to controlDEL */

/* in frs.map */

/* Start default text editor on field */
/* defined to controlV in frs.map */

/* Move to first column of next row in */
/* table field defined to controlN */
/* in frs.map */

/* Clear the field */
clear = controlX (AX)

/* Move to nextitem in form. If on */
/* regular field, move to next field. */
/* If in table field, move to next column */
/* if NOT in last accessible column.*/
/* Move to next row if in last accessible */
/* column of table field. */

nextitem = controlM (Return)

/* Auto-duplicate value while in fill */
/* mode defined to controlA in frs.map */

E.S.3 User-Level Mapping

Highest in precedence are the individual user's mappings.

To make the user-level mapping file known to the FRS, the user must execute a
command at the operating system level. The syntax for the command is:

For the C shell:

setenv IN G RES KEYS full-pathnamelfile name - -

For the Bourne shell:

INGRES KEYS=full-pathnamelfile name
export INGRES KEYS -

Defining Function and Control Keys E-17

where fUll-pathnamelfile _name is the full pathname and filename for the mapping
file. To eliminate the need to invoke this command for each terminal session, you
can include this command in the file .login (C shell) or .profile (Bourne shell).

Of the three levels, user-level mapping is probably the least frequently used; the
combination of mappings at the other two levels suffices for most users.

E.G Obtaining Information on Mappings

Within the ULTRIX/SQL forms-based system, you can invoke the Help menu item
to find out the current settings for function and control keys. See Appendix C for
more information on this.

E.7 FRS Command Defaults

ULTRIX/SQL provides several default mapping files. The first is an
installation-level mapping file, valid for all terminal types. The other two are
default mapping files for the VT100 and VT220 terminals. These mapping files
assign default control or function keys to the FRS commands. The installation file
assigns control keys to most of the FRS commands. The terminal-type files expand
and, in certain instances, override the installation mappings.

The following table lists the FRS commands and their default assignments. If you
define your terminal as vt100i, the defaults for the VT100 terminal pertain to you.
If your terminal is defined as vt220i, the defaults for the VT220 terminal pertain to
you. Check the files directory for other mapping files.

Note

The ULTRIX/SQL System Administrator has the ability to modify the
default mapping files provided with ULTRIX/SQL. If the files have been
modified, the mappings for the FRS commands may have been altered.
In addition, the System Administrator can create mapping files for other
terminal types besides vt100i and vt220i. These terminal-type files
would then override the installation-level file.

Consult your ULTRIX/SQL System Administrator to determine whether the
defaults listed in the table are valid for your installation and terminal type. In
addition, mapping files for VT100 and VT220 terminals have been optimized so
functions designated in the frs.map file are not remapped. Be careful when you
modify the frs.map file to ensure the reliability of the mapping files for VT100 and
VT220 terminals.

Table E-4 Default Settings for FRS Commands

FRS Command Installation VT100i VT220i

Menu Escape PFI PFI

Nextfield Tab Tab Tab

E-18 Defining Function and Control Keys

FRS Command Installation VT100i VT220i

Previousfield Control-P Control-P Control-P

Nextword Control-B Control-U Control-U

Previousword Control-R Control-R Control-R

Mode Control-E Control-E Insert Here

Redraw Control-W Control-W Control-W

Deletechar Control-D Control-D Remove

Rubout Delete Delete Delete

Editor Control-V Control-V Control-V

Leftchar Control-H left_arrow lefcarrow

Rightchar Control-L righcarrow righcarrow

Downline Control-J down_arrow down_arrow

Upline Control-K up_arrow up_arrow

Newrow Control-N Control-N Control-N

Clear Control-X Control-B Control-B

Clearrest Return N/A N/A

Scrollup Control-F PF12 Next Scr

Scrolldown Control-G PF8 Prev Scr

Scrollleft Control-O Control-L Control-L

Scrollright Control-U Control-H Control-H

Duplicate Control-A Control-A Control-A

Printscreen (no default) Control-G PF8

Nextitem (no default) Return Return

E.8 Mapping Restrictions and Troubleshooting

This section describes some of the problems you may encounter when defining
function and control keys, and provides general hints about how to solve them.
Please note, however, these are only general guidelines; this section is by no means
comprehensive.

Defining Function and Control Keys E-19

E.8.1 Restrictions and Limitations

When defining function and control keys, note the following restrictions and
limitations of the forms run-time system (FRS) and of your hardware.

• The FRS has the following internal limitations: 40 function keys (PFn or Fn),
40 FRS keys, and 25 menu items.

• The FRS imposes no restrictions on which function and control keys can be
mapped or remapped; however, certain control keys may be captured by the
operating system before they reach the FRS (for example, Control-Q and
Control-S).

o FRS commands cannot be mapped to an FRS key. This is syntactically illegal
because FRS commands and FRS keys both appear on the left side of the
equals sign in the mapping statement.

• TERM_INGRES cannot be reset dynamically by the application once the
forms run-time system has been initialized.

o Positional menu item mapping cannot be turned off. On the vt100i termcap
description, the application key pad is assigned by default to positional menu
items. "I" on the key pad is assigned to the first menu item. You can see this
if you look at the mapping file, for example:

menuiteml = pf13

• Currently, map files are the only way to tum off a function or control key (for
example, controlV = off). Keys cannot be turned off by the embedded SQL set
command.

• Review of keyboard definitions for the VT* series:

TERM INGRES Top Row Keys Alternate Keypad Menu key

vt100 disabled disabled Escape

vtlook disabled disabled PFI

vt100nk disabled numerics PFI

vt100i disabled Functions (pFn) PFI

vt200i Functions (Fn) numerics PFI

vt220 Functions (Fn) numerics PFI

• Escape is considered reserved for vt100, vt220, and all other terminals that
use Escape sequences to define function keys.

E-20 Defining Function and Control Keys

E.8.2 Troubleshooting Checklist

I. Have you checked the contents of the map error files in the working directory
(ingkey.err or app _ingkey.err)?

The error messages written to these files indicate map file problems. For
example, if the same key is referenced twice, a warning error message will be
written to this file. If this file is empty, an error occurred before the map file
was parsed, and an error message was sent to the terminal screen.

2. Are the terminal's physical setup or emulation characteristics compatible with
the current TERM_INGRES and key map definitions?

For example, you will have a problem if a VT220 terminal is setup as a
VT220 but TERM_INGRES is set to vt100i, whose map file references
PF keys).

3. Is the user's TERM_INGRES terminal type compatible with the active key
definitions?

If not, mapping may seem to be "broken" when an ULTRIX/SQL subsystem
starts up. For example, ifTERM_INGRES is set to vt100nk but
INGRES_KEYS points to vt220ak.map, an error occurs.

4. Is the environment variable INGRES_KEYS set unintentionally?

This often happens when applications are moved to a new machine where
INGRES_KEYS is defined, unlike the previous environment.

5. Have any of the key map file path names become invalid?

For example, when the file system was moved to a new device, the file
pathnames referred to by INGRES_KEYS or set mapfile are now invalid or
perhaps file permissions were changed and the FRS cannot open the map files.

6. Are lower-level key definitions showing through on the user's menu line?

This is the result of the key map merging by the FRS. This most often occurs
when you forget to remap or tum off an intended key in the application map
file or do not realize that INGRES_KEYS is also pointing to a map
fileKeyboard keys;Mapping!E.

Defining Function and Control Keys E-21

How to Write ULTRIX/SQL Termcap F
Descriptions

F.1 Overview

To use the ULTRIX/SQL forms system on a specific terminal, ULTRIX/SQL needs
information about the terminal's characteristics. The following read-only file
supplies this information:
$II_SYSTEM/sql/files/termcap

If you wish to write termcap descriptions for terminals not described in the
standard ULTRIX/SQL termcap file or modify an existing term cap entry, you may
do so by following the guidelines described in this appendix. See Appendix D for a
list of terminals currently in the supported termcap file. You may use terminals that
are on this list without having to do any of the special programming described here.

The ULTRIX/SQL termcap file is based closely on the standard ULTRIX termcap
file. The ULTRIX/SQL termcap descriptions, however, contain extra commands for
use with the ULTRIX/SQL forms-based utilities. These extra commands fall into
three categories:

• Video attributes such as inverse video, blinking cursors and color

• Boxing characters

• Commands to set up ULTRIX/SQL function keys

Note

A correctly written ULTRIX term cap entry should allow the
ULTRIX/SQL forms-based utilities to work with that terminal. It may
not support all of the advanced features that the terminal provides, such
as function keys and video attributes. See the section "Optional Termcap
Entries for Advanced Features" for information about using those
advanced features.

To use this chapter, you should have already read through the terminal
manufacturer's user guide. This chapter describes only the format of the termcap
description. You must learn what strings and numbers to put after each command
from the programmer's guide for the terminal. You should also have the terminal in
front of you so that you can check the operation of the terminal as you are working
on the term cap description.

How to Write ULTRIX/SQL Termcap Descriptions F-1

Note

ULTRIX/SQL users not familiar with programming or lacking general
knowledge about terminals may find creating new terminal descriptions
difficult. Terminal programmer's guides are difficult to decipher, so you
may want to get help from an experienced programmer to create new
term cap entries.

F.2 Writing the Description

You can set the II_TERMCAP _FILE environmental variable to point to a working
copy of the termcap file. This allows you to edit a new termcap file in any directory
that you wish, without interfering with other users or the distribution copy of the
termcap file. Use the command appropriate to your system to use an alternate
term cap file. The syntax is as follows:

For the C shell:

setenv II _ TERM CAP_FILE = full-pathnamelfile _name

For the Bourne shell:

II_TERMCAP _FILE =full-pathnamelfile_name
export II _ TERM CAP _FILE

If this variable is defined, any ULTRIX/SQL forms-based utility will start up with
that file instead of the standard distribution file.

F.2.1 Preparing the Description

Consider the following sample description:

QljqxzlOOjdec fictitious terminal:\
:co#132:1i#25:\
:am:bs:\
:is=\E[Om:cm=\Ej%2;%2:

This fictitious terminal is designed to illustrate some of the features of term cap.
The name of this terminal is "qxzlOO." It has an abbreviated name "Ql" and a long
name "qxz fictitious terminal." (In order to use this with the ULTRIX/SQL forms
system you would set the TERM_INGRES environment variable to "qxzl00.") The
qxz 1 00 screen is 132 columns wide and 25 lines high. It has automatic margins
(am) and uses Control-H for the backspace character (bs). The description
contains an initialization string (is) and a cursor positioning string (em).

F.2.2 General Format

As shown in the previous example, the first line is the list of names. All names
must be separated by vertical bars (I). There must be a colon between the last
name and the first capability.

F-2 How to Write ULTRIXlSQL Termcap Descriptions

If the termcap description is more than one line (as it should be for clarity), then
each line except the last must have a backslash (\) at the end of it to signify
continuation. Capabilities, which may be presented in any order, must be separated
by a colon (:).

The last line must have a colon (:) at the end of it to signify that it is the end of the
description. You may place a tab at the beginning of each line after the first one for
readability.

F.2.3 Special Characters

The following table describes special symbols used in the termcap description:

Table F-1 Special Symbols in the Termcap Description

Symbol Function

Separates capabilities.

Separates names.

\ Indicates that the definition continues on the next line (when specified at the end
of a line).

\E Specifies the escape character.

100 Causes the tenninal to pause for 100 milliseconds (when specified before a
command).

Indicates that capability is a number which immediately follows.

= Sets the capability to a string that follows.

"X Stands for Control-X, where X is any appropriate letter. Thus, "g is Control-G,
"h is Control-H, etc.

'n Indicates the Newline character.

\r Indicates the Return character.

\t Indicates the Tab character.

'J> Indicates the Backspace character.

\f Indicates the Fonnfeed character.

\{)72 Indicates the colon character. (The octal value for ":" is 072.) In general, any
character can be specified as the three-digit octal value of the ASCII character by
preceding it with a backslash.

@ When placed after a command, means "do not apply this command." It is used in
descriptions that have the tc command. (Refer to the section "The Eleven Basic
Commands" later in this appendix for infonnation on the tc command.) .

How to Write ULTRIX/SQL Termcap Descriptions F-3

F.2.4 Names

Names have a special format that you must follow. The first name must be two
letters long. The second name is the common name to which you will set
TERM_INGRES. The last name may be a concise description of the terminal's
brand and model number. The last name may contain blanks, though the other
names cannot have blanks.

All names must be separated by a vertical bar (I). Additional names may be placed
between the second name and the last name. The additional names may be used as
alternative names for TERM_INGRES.

Note

Names must always be checked for uniqueness. You should check
through the termcap file before writing a new description to make sure
that the names you wish to use have not already been selected. A
duplicated name will not be recognized; only the first one will be used.

F.2.5 Capabilities

Capabilities are designated by commands, which must be separated by colons. All
commands are two letters long. String and numeric commands are followed by
additional information that is read by the ULTRIX/SQL forms system. The three
types of commands are:

o String

o Numeric

• Boolean

Strings contain sequences of characterso The command must be followed by an
equal sign (=). For example, "up=\EA" says that the command up (which stands for
the sequence to move the cursor up) is set to the sequence Escape-A.

Some string commands have to be preceded by a time delay, which is referred to as
padding. Padding is required in situations where the terminal may be reading
characters at a slower rate than they are being transmitted. Padding ensures that the
terminal has time to execute commands, such as moving the cursor, without losing
characters.

The two types of padding are nonproportional (or straight) padding, and
proportional padding (to the number of lines affected). To specify straight padding,
put the time (in milliseconds) of delay needed before the command. To specify
proportional padding, place an asterisk (*) after the amount of time. For example,
on the "concept 100" terminal, the ta command (tab character) takes a straight time
delay of 8 milliseconds and the cd command (clear display) takes a proportional
delay of 16 milliseconds. The termcap entries look like this:

Straight padding:

ta=8\t

F-4 How to Write ULTRIXlSQL Termcap Descriptions

Proportional padding:

cd=16*\EarC

Numeric commands are followed by a number sign (#). For example, "co#80" says
that there are 80 columns on the screen. (co is the command which specifies the
number of columns on the screen.)

Boolean commands signify the existence of a capability by their presence. They are
not followed by any sequence or other symbols.

F.2.6 Suggested Approach to Getting Started

To create a term cap definition, start by reading through the technical manual on the
terminal to find the information for the 11 basic capabilities described under "The
Eleven Basic Commands." When you have included these 11 capabilities in the
description, try the terminal to see if it works. Once you get it working, you can try
adding additional features listed under "Optional Termcap Entries for Advanced
Features. "

If you have problems, first check to make sure that you entered the sequences from
the manual correctly and that the format of the termcap entry is correct. If it still
does not work, check to see if there are some additional capabilities that need to be
added to make it work. Also, certain terminals require special initialization
commands. Check the technical manual to see which additional sequences you
should add to the initialization string.

One excellent way of preparing term cap descriptions is to examine the termcap
entries for similar terminals. If you are trying to write a description for a terminal
that is similar to one in termcap, you can use the tc command to indicate that all
attributes for the new terminal are to be taken from the description of a terminal
already in termcap. Then, you only need to specify the few differences.

Alternatively, you can manually copy the capabilities from a similar terminal and
see if it works. Most terminals conform to a system of specifying escape sequences
that is ANSI standard. Thus, if you have an ANSI standard terminal, you should be
able to get about 90 percent of the capabilities by copying them from another ANSI
standard terminal. The VT100 is an example of an ANSI terminal that has
capabilities similar to many different terminals. For this reason, this document
contains numerous references to the VT100 sequences in its examples.

Finally, if your terminal has a VT100 emulation mode, you can save time by using
VT100 emulation mode and using the VT100 termcap description. In most cases it
will not be necessary to make a termcap description. In other cases, the terminal
will work with a termcap description that is identical to the VT100 except that it
contains the VT100 emulation sequence in its initialization string. If your terminal
has VT100 emulation mode, try it, as a VT100 supports the most advanced features
of the ULTRIX/SQL forms system.

How to Write ULTRIX/SQL Termcap Descriptions F-5

F.3 The Eleven Basic Commands

There are 11 commands that all terminals must have in order to work properly with
ULTRIX/SQL. Termcap descriptions that have only these 11 basic descriptions
usually work, although they lack extra features such as function keys and video
attributes. These 11 descriptions form the core of the termcap description.

Table F-2 The Eleven Basic Commands

Command

co

Ii

bs

be

cd

ee

cI

em

nd

Description

Specifies the number of columns on the screen. Without this command
ULTRIX/SQL does not know how wide to make a form. This command is
numeric and should always be followed by a number.
VT100 Example: eo#80

Specifies the number of rows down the screen. This command is numeric
and should always be followed by a number.
VT100 Example: 1i#24

Indicates that this terminal can backspace using Control·H. This is a
boolean command. Include it if your terminal can backspace using
Control·H. VT100 terminals use Control·H for backspacing.

Indicates that the terminal does not use Control·H for backspacing. Note
that you cannot use be and bs together.

Clears everything from the cursor to the end of the display.
VT100 Example: ed=\E[J

Clears everything from the cursor to the end of the line.
VT100 Example: ee=\E[K

Clears the entire screen.
VT100 Example: c1=\E[;H\E[2J

Sends the cursor motion string (called the "cursor position string" in some
manuals) to the terminal when ULTRIX/SQL needs to move the cursor
from one location to another. As such, the string must accept two
parameters: an x-coordinate and a y-coordinate, whose values are obtained
by counting the number of rows/spaces from the top-left comer of the
screen. Because these values must be sent along with the string at run time,
special place markers must be left in the string to tell the forms system
where to place the x and y coordinates.

To implement this, find the cursor-addressing scheme described in the
manual for your terminal. Then substitute the special place marker
characters in the spot where numbers are expected. Also, be sure to include
any special modifiers in the description if they are needed. For detailed
information on cursor place markers and special modifiers, refer to the
discussion of the cursor motion command which follows this table.

Indicates a nondestructive space. This string specifies the command for
moving the cursor right one space without overwriting the contents of the
screen at that point.
VT100 Example: nd=\E[C

F·6 How to Write ULTRIXlSQL Termcap Descriptions

Command

is

tc

Description

Specifies a terminal initialization string. This string includes any sequences
needed to set up the terminal prior to running an ULlRIX/SQL forms
program. VT100 Example:

is=\E> \E[?31\E[?41\E[?71\E[?8h

The preceding terminal initialization string does five things:

Puts the terminal in keypad numeric mode \E>
Puts terminal into 80-column mode \E[?31
Puts terminal into jump mode \E[?41
Turns wraparound off \E[?71
Turns on autorepeat \E[?8h

The is command is not always needed, but for most terminals it is
necessary for tailoring the setup to your needs.

Allows you to use all the capabilities listed for another terminal without
rewriting them. This command is actually optional, but is so useful that it
has been listed as one of the basic commands. This capability must always
be the last capability in the description. This rule, which exists so that
duplicated commands can be unambiguously defined, is the only exception
to the general rule that commands can be presented in any order.

(tek411S):
dk/tk411S/tek-411S/tektronix4115:\
:ld@:tc=vtlOOf:

In this example, the "tek4115" is given all the commands from the
"vtlOOf' description, except the Id command to initialize the boxing
characters.

The following table lists cursor place markers and cursor-addressing options for the
em command:

Table F-3 Place Markers

Place Marker Description

%d Place marker for a decimal integer that prints out as many digits as necessary
without leading zeros.

%2 Place marker for a decimal integer of two places.

%3 Place marker for a decimal integer of three places.

%. Place marker for a binary value character.

%+N Place marker for a binary value character, with the value of the character N
added to it.

% % Place marker that gives a single %.

How to Write ULTRIXlSQL Termcap Descriptions F-7

Table F-4 Common Modifiers

Modifier

%i

%r

Description

Increments line/column. Include this in your cm string if the terminal uses "I"
as the coordinate origin.

Reverses the usual order of the x and y cursor position coordinates. Usually the
terminal cursor positioning string expects the column to be substituted for the
ftrst coordinate place marker. If your terminal cursor positioning string expects
the row ftrst, include the characters % r before the ftrst place marker in the
cursor motion sequence.

Table F-5 Modifiers Needed Only for Special Terminals

Modifier

%xy

%B

%n

%D

Description

If the value for the place marker is greater than x, add y to the value before
generating the output string.

BCD (I6*(xfIO» + (x mod 10) : the value of the parameters are transformed
according to this formula.

Do an exclusive OR on the row and column values with the octal value 0140
before generating the string for cursor motion. (This is used only for the
Datamedia 2500 terminal.)

Reverse coding (x-2*(x mod 16»: the values of the parameters are transformed
according to this formula. (This is used only for Delta Data terminals.)

The following table and examples show the cursor motion string, usage, and
term cap entry for four different tenninals.

Table F-6 Terminals and Termcap Descriptions

Terminal Entry Listed in Example Usage on Example of the Termcap
Manual Terminal Mode Description

qxzIOO ESClx;y ESCI07;I6 cm=\E1%2;%2

vt100 ESC[x;yH ESC[08;I7H cm=5\E[%i%2;%2H

dm3045 ESCYyx ESCY2* cm=\EY%r%+ %+

delta Ctrl-Oxy Ctrl-ORS cm="O%D%+9%
D%+9

F-8 How to Write ULTRIXlSQL Termcap Descriptions

Example 1: (qxz100--fictitious terminal)

The cursor motion string listed in the user's manual for the qxz100 (a fictitious
terminal) is ESClx;y where x and yare two-digit integers specifying the column
and the row, respectively. The qxzl00 is an example of a terminal that uses a (0,0)
origin, so x and y must be one less than the whole number that represents the
position on the screen. Thus, to move the cursor to column 8 row 17 on the qxzl00,
you would enter ESCI07;16. The termcap entry is:

cm=\EI%2i%2

where \E maps to ESC and % 2 is the place marker that maps to a decimal integer
of two places.

Example 2: (vt100)

The cursor motion string for the VT100 is ESC[x;yH where x and yare two-digit
integers specifying the column and row, respectively. The VT100, as opposed to
Example 1 above, positions the cursor relative to a origin of (1,1). Thus, to move
the cursor to column 8 row 17 on the VT100, you would enter ESC[08;17H. The
termcap entry is:

cm=\E[%i%2i%2H

where \E maps to ESC, %2 maps to a decimal integer of two places, and the %i
signifies that the VT100 uses a (1,1) origin. The default setting for the em string is
for a. (0,0) origin. If your terminal uses a (1,1), origin you must explicitly state that
by placing a % i somewhere inside the em string.

Example 3: (Datamedia 3045)

The cursor motion string for Datamedia 3045 is ESCYyx; where y and x are
characters whose binary values are offset by 20 hex. (Note that for this terminal the
row must be given before the column.)

To move the cursor to the position (19,11) on this terminal, you must include the
sequence ESCY2*. The ESCY is the first part of the sequence. The "2" is the
ASCII character with hexadecimal value 32, which is the same as 12 hex plus the
20 hex offset. Note that 12 hex corresponds to column 19 on the screen. The "*,, is
the ASCII character with a hexadecimal value of 2A, which equals OA hex plus the
20 hex offset. Again, note that OA hex corresponds to row 11 on the screen.

The em string for this terminal is em=\EY%r%+ %+ , where \E maps to ESC,
% r is a modifier that tells the forms system that the row and column parameters
are reversed, and %+ is the place marker for a character offset by a blank (which
has the ASCII value of 20 hex).

Example 4: (Delta Data 5000)

The cursor motion string for the Delta Data 5000 is Ctrl-Oxy, where x and yare
characters whose binary values must be offset by 3A hex, and converted according
to the reverse coding formula:

(x-2* (x mod 16))

How to Write ULTRIX/SQL Termcap Descriptions F-9

The em string for this terminal is em=AO%D%+9%D%+9, where AO stands for
Ctrl-O, % D indicates that the parameters must be transformed according to the
reverse coding formula, and % +9 is the place marker for a character offset by 3A
hex (ASCII character "9").

F.4 Optional Termcap Entries for Advanced Features

These are features that will improve the appearance of screen displays and make
the terminal easier to use, but are not essential for the basic functions of
ULTRIX/SQL.

F.4.1 Commands Used to Program Video Attributes

The four basic modes are: underscore, blinking, reverse video, and high intensity.
All the commands below are combinations of the four basic modes.

Table F-7 Video Attribute Commands

Command Description VT100 Example

rv Turns on reverse video. rv=1\E[7m

bl Turns on blinking mode. bl=l\E[Sm

bo Turns on high intensity mode. bo=l\E[lm

us Turns on underscore mode. us=2\E[4m

ea Turns off all special display ea=l\E[m
characteristics.

za Turns on reverse video, blinking, high za=1\E[1;4;S;7m
intensity, and underscore modes.

zb Turns on high intensity and underscore zb=1\E[1;4m
modes.

zc Turns on high intensity and blinking zc=l\E[l;Sm
modes.

zd Turns on high intensity and reverse zd=1\E[1;7m
video modes.

ze Turns on underscore and blinking ze=1\E[4;Sm
modes.

zf Turns on underscore and reverse video zf= l\E[4;7m
modes.

zg Turns on blinking and reverse video zg= l\E[S;7m
modes.

zh Turns on high intensity, blinking, and zh=1\E[1;4;Sm
underscore modes.

F-10 How to Write ULTRIXlSQL Termcap Descriptions

Command Description VT100 Example

zi Turns on blinking, underscore, and zi= l\E[4;5;7m
reverse video modes.

zj Turns on high intensity, blinking, and zj=1\E[1;5;7m
reverse video modes.

zk Turns on high intensity, underscore, zk=1\E[1;4;7m
and reverse video modes.

F.4.2 Commands Needed for Boxing Characters

Not all terminals have special boxing characters. If your terminal does not have
them, ULTRIX/SQL uses dashes (-) and vertical bars (I) instead. Using boxing
characters, however, greatly improves the appearance of forms that display table
column values and rows.

Table F-8 Commands for Boxing Characters

Command Description VT100 Example

Id Initializes tenninal to draw solid lines. Id=\E)O

Is Interprets subsequent characters for 1s=\OI6
drawing solid lines.

Ie Interprets subsequent characters as regular le=\OI7
characters.

qa through Indicates the boxing characters. See the
qk table below.

The next table describes the boxing characters qa through qk mentioned above.

Table F-9 Boxing Characters

Command Description VT100 Example

qa Lower right comer of a box qa=j

qb Upper right comer of a box qb=k

qc Upper left comer of a box qc=l

qd Lower left comer of a box qd=m

qe Crossing lines qe=n

qf Horizontal line qf=q

qg Left T (stem points right) qg=t

How to Write ULTRIXlSQL Termcap Descriptions F-11

Command Description VT100 Example

qb Right T (stem points left) qh=u

qi BottomT qi=v
(upside down 1)

qj Top T (right side up 1) qj=w

qk Vertical line qk=x

F.4.3 Commands Needed for Function Keys

To activate function keys, the termcap file uses the following commands:

Table F-10 Commands for Function Keys

Command

ke

ks

kn

ky

kO through KD

Description

Takes the tenninal out of "keypad transmit" mode.

Puts the tenninal in "keypad transmit" mode.

Specifies the number of function keys available. For example, "kn#18"
indicates that you can use 18 functions keys on the VT100. You can have a
maximum value of 40 for the number of function keys.

Indicates that the terminal has cursor and function keys. This is a boolean
command. It must be present if you wish to use function keys. Using it
disables the ~ape key and sets the first function key PFI to the menu
function.

Specifies strings sent by function keys.

The following table describes the commands that you can set to send strings by
using function keys.

Table F-11 Function Key Commands for Sending Strings

Command Function Key Number VT100 Example

kO function key 1 kO=\EOP

kl function key 2 kl=\EOQ

k2 function key 3 k2=\EOR

k3 function key 4 k3=\EOS

k4 function key 5 k4=\EOw

k5 function key 6 k5=\EOx

F·12 How to Write UL TRIXlSQL Termcap Descriptions

Command Function Key Number VT100 Example

k6 function key 7 k6=\EOy

k7 function key 8 k7=\EOm

k8 function key 9 k8=\EOt

k9 function key 10 k9=\EOu

kA function key 11 kA=\EOv

kB function key 12 kB=\EOI

kC function key 13 kC=\EOq

kD function key 14 kD=\EOr

kE function key 15 kE=\EOs

kF function key 16 kF=\EOp

kG function key 17 kG=\EOn

kH function key 18 kH=\EOM

kI function key 19 none

kJ function key 20 none

kK function key 21 none

kL function key 22 none

kM function key 23 none

kN function key 24 none

kO function key 25 none

kP function key 26 none

kQ function key 27 none

kR function key 28 none

kS function key 29 none

kT function key 30 none

kV function key 31 none

kV function key 32 none

kW function key 33 none

kX function key 34 none

kV function key 35 none

How to Write ULTRIXlSQL Termcap Descriptions F-13

Command Function Key Number VT100 Example

kZ function key 36 none

KA function key 37 none

KB function key 38 none

KC function key 39 none

KD function key 40 none

F.S Commands Needed for Arrow Keys

The arrow key commands are all strings.

Table F-12 Commands for Arrow Keys

Command Description VT100 Example

ku Sent by the tenninal up arrow key ku=\EOA

kd Sent by the tenninal down arrow key kd=\EOB

kr Sent by the tenninal right arrow key kr=\EOC

kl Sent by the tenninalleft arrow key kl=\EOD

F.S.1 Commands Used for Color

You can use these commands to turn on color in terminals that support color. These
are mapped to the color codes, from 0 to 7, as defined for your terminal. All the
commands are strings and may have optional padding. The commands are
described in the following table.

Table F-13 Commands for Color

Command Description Envision Example

ya Default foreground color (0) 2\Ea7

yb Alternate foreground color #1 2\Eal

yc Alternate foreground color #2 2\Ea2

yd Alternate foreground color #3 2\Ea3

ye Alternate foreground color #4 2\Ea4

yf Alternate foreground color #5 2\Ea5

F-14 How to Write ULTRIXlSQL Termcap Descriptions

Command Description Envision Example

yg Alternate foreground color #6 2\Ea6

yb Alternate foreground color #7 2\Ea7

Envision Example:

E31envisionclenvision230lthis has the color definitions:\
:ya=2\Ea7:yb=2\Eal:yc=2\Ea2:yd=2\Ea3:\
:ye=2\Ea4:\:yf=2\Ea5:yg=2\Ea6:\
:yh=2\Ea7:tc=vtlOOk:

F.S.2 Command to Specify FRS Mapping File for Terminal

You can use the mr command to specify a default fonns run-time system (FRS) key
mapping file for a terminal. You must include the name of a file in the
ULTRIX/SQL files directory without an extension (not the full directory
specification or path name of the file). This file should contain the default FRS key
mapping for the terminal.

vt100i Example:

:rnf=vtlirnap:

F.S.3 Commands to Optimize Cursor Movement

These commands generally improve the way the ULTRIX/SQL forms system
moves the cursor around the form. They are usually optional.

Table F-14 Commands to Optimize Cursor Movement

Command

am

es

do

sr

Description

Automatic margins. This boolean command is important on forms that run
to the edge of the screen.

Change scrolling region. This command improves the appearance of the
cursor movements when scrolling on a long form. The forms system will
still work if this is not defined; it just may not look as nice. This command
is very similar in form to the em command; however, the es command's
parameters are the upper and lower limits of scrolling instead of the
position on the screen. Otherwise, all the place markers and modifiers are
the same. If you use the es command, you must also include the sr
command.

Down one line. Inclusion of this command helps the forms system move
the cursor faster.

Scroll reverse. This command makes the form scroll backwards instead of
jumping if you are moving up on a long form.

How to Write Ul TRIXlSQl Termcap Descriptions F-15

vt100 Example:

cs=5\E[%2;%2r

F.G Commands for Special Situations

As mentioned in the introduction, the ULTRIX/SQL termcap is based upon the
ULTRIX termcap file. Below is a list of ULTRIX termcap entries that are included
in the ULTRIX/SQL termcap but are usually not needed. For additional
information, refer to the ULTRIX termcap(5) reference page.

F.6.1 Commands from the ULTRIX Termcap File

Table F-15 ULTRIX Termcap File Commands

Name Type

bt str

ho str

II str

ms bool

pc str

sf str

ta str

te str

ti str

ve str

vs str

Description

Back Tab. Padding may be required on this command.

Sequence to move the cursor to the home position. This command
should be used if and only if the terminal does not possess a cursor
positioning string (cm).

Last line, ftrst column (if no cm).

Safe to move while in standout and underline mode.

Pad character (rather than null).

Scroll forward. Padding may be required on this command.

Tab, other than Control-lor with padding. Padding may be required
on this command.

String to end programs that use cm.

String to begin programs that use cm.

Sequence to end open/visual mode.

Sequence to start open/visual mode.

F.6.2 Commands for Specific Terminals

Table F-16 Commands for Specific Terminals

Name Type Description

hz str Hazeltine; cannot print apostrophes.

nc bool No correctly working carriage return (DM2500

F-16 How to Write ULTRIXlSQL Termcap Descriptions

Name Type Description

xb bool Beehive (f1=ESC, f2=Ctrl-C)

xn bool A newline is ignored after a wrap (Concept).

xr bool Return acts like ce \r 'n (Delta Data).

xs bool Standout not erased by writing over it (lIP 2640 series).

xt bool Tabs are destructive, magic so character (Teleray 1061).

F.7 Examples of Termcap Descriptions

This section includes several examples of termcap entries. They illustrate the
format of ULTRIX/SQL termcap entries. The example includes commentary on
each of the descriptions. If you want to learn more about the termcap process,
compare these descriptions with manuals for the particular terminals.

F.7.1 VT100 (All-Inclusive)

This description contains all the features described above. The example is longer
than most termcap descriptions.

d7lvtlOOklvt-100klptlOOklvtlOO with everything:\
:co#80:1i#24:cl=20\E[iH\E[2J:bs:cm=5\E[%i%2i%2H:\
:nd=2\E[C:\
:up=2\E[A:ce=3\E[KiCd=50\E[J:us=2\E[4m:ue=2\E[m:\
:is=\E>\E[?31\E[?41\E[?71\E[?8h:ks=\E[?lh\E=:\
:ke=\E[?ll\E>:ku=\EOA:kd=\EOB:kr=\EOC:kl=\EOD:\
:ld=\E)O:\
:qa=j:qb=k:qc=l:qd=m:qe=n:qf=q:qg=t:qh=u:qi=v:\
:qj=w:qk=x:\
:ls=\016:1e=\017:\
:cs=5\E[%2i%2r:bl=1\E[5m:be=1\E[m:\
:bo=1\E[lm:eb=1\E[m:rv=1\E[7m:re=1\E[m:ea=1\E[m:\
:za=1\E[li4i5i7m:zb=1\E[li4m:zc=1\E[li5m:\
:zd=1\E[li7m:\
:ze=1\E[4i5m:zf=1\E[4i7m:zg=1\E[5i7m:\
:zh=1\E[li4i5m:\
:zi=1\E[4i5i 7m:zj=1\E[li5i7m:zk=1\E[li4i 7m:\
:kh=\E[H:ky:kO=\EOP:kl=\EOQ:k2=\EOR:k3=\EOS:pt:\
:sr=5\EM:\
:k4=\EOw:k5=\EOx:k6=\EOy:k7=\EOm:\
:k8=\EOt:k9=\EOu:kA=\EOv:\
:kB=\E01:kC=\EOq:kD=\EOr:kE=\EOs:kF=\EOp:\
:kG=\EOn:kH=\EOM:\
:kn#18:mf=vtlimap:

F.7.2 VT100 (Simple)

Here is the VT100 using only basic features. This description lacks many of the
niceties found in the longer description above, but it illustrates that minimal
descriptions that provide basic functioning with ULTRIX/SQL are not too hard
to write.

How to Write ULTRIXlSQL Termcap Descriptions F-17

d81vt100slsimple vt100 entry:\
:co#80:1i#24:cl=20\E[;H\E[2J:bs:\
:cm=5\E[%i%2;%2H:nd=2\E[C:\
:is=\E>\E[?31\E[?41\E[?71\E[?8h:\
:up=2\E[A:ce=3\E[K:cd=50\E[J:

F.7.3 Envision 230

This term cap description illustrates the use of the tc command. This description
contains all the features of the VT100 except that it does not employ the VT100
initialization string. Also note the large number of names; this example covers three
different varieties of Envision terminal. If you need to write descriptions for
terminals similar to known terminals, you may find this example particularly
pertinent.

E1Ienvisionlenvision230Ienvision220:\
:is@:tc=vtlOOk:

F-18 How to Write ULTRIXlSQL Termcap Descriptions

The ULTRIX/SQL Standard Catalog G
Interface

G.1 Introduction

This appendix describes the Standard Catalog Interface views and lists the System
Catalogs for the database management system (DBMS System Catalogs).

The Standard Catalog Interface is implemented as a group of views defined on the
System Catalogs. These views are the supported catalogs. Users who need to query
the System Catalogs should use these views. System catalogs are tables, just like
user tables in a database. Each system catalog has a distinct set of columns
(attributes), each of which has a distinct database management function.

Note

The information in this appendix about the DBMS System Catalogs is
provided for the convenience of ULTRIX/SQL users. However, the base
table catalogs are subject to change at any time. Therefore, user-defined
programs, tools, or other user-defined interfaces to ULTRIX/SQL should
access the System Catalogs only through the supported views (Standard
Catalog Interface). Digital Equipment Corporation does not support any
program, tool, or interface that uses the System Catalogs directly rather
than through the Standard Catalog Interface.

The following conventions apply with respect to the columns in the system
catalogs:

• All values are left justified in a column unless otherwise noted.

• All columns are uppercase unless otherwise noted.

• Columns are assumed to be non-nullable except where explicitly noted.

The column definitions in the following tables list all possible column values.

Many columns that are char(32) names are valid ULTRIX/SQL names.
ULTRIX/SQL names are described in Chapter 1.

Allowable values for those columns described as ULTRIX/SQL usemames are
determined by ULTRIX in general, but should be drawn from the list of values in
the iidbconstants catalog, which contains the current username and current
dbaname.

The UL TRIX/SQL Standard Catalog Interface G-1

All char(25) fields described as ULTRIX/SQL standard dates have the following
format:

yyyy_mm_dd hh:mm:ss GMT

In the preceding syntax:

is the year (for instance, 1987)
is the month (for instance, 11)

yyyy
mm
dd
hh
mm
ss
GMT

is the day of month (for instance, 21)
is the military hour (for instance, 14)
is the minute (for instance, 43)
is the second (for instance, 32)
indicates Greenwich Mean Time

The underscores and colons are required between the parts of the date, and a space
is required between ss and GMT.

G.2 Standard Catalog Interface

All database users can read the Standard Catalog Interface views, but the views
may be updated only by a privileged ULTRIX/SQL user who specifies the +u flag
when the database is accessed.

G.2.1 The iidbcapabilities Catalog

The iidbcapabilities table contains information about the capabilities the database
management system (DBMS) provides. This is the only real table in the Standard
Catalog Interface.

The following table describes the columns in the iidbcapabilities catalog:

Column Name Data Type

char(32)

char(32)

Description

Contains one of the values listed in the
following table. If the cap_capability has a
value, it will be activated by the value in the
"cap_value" column.

Most capabilities are binary, and will be set to
the string "Y" or "N ," depending on whether or
not the DBMS supports them. Some, however,
have values. For these, this field contains the
value of the capability.

The "cap_capability" column in the iidbcapabilities catalog contains one or more
of the following values:

G-2 The ULTRIXlSQL Standard Catalog Interface

Capability

INGRES

INGRES/SQL_LEVEL

SAVEPOINTS

Value

The type of case sensitivity the database has with respect to
database objects. It takes on the value of "LOWER," "UPPER,"
or "MIXED." If not present, this capability defaults to
"LOWER." Database objects may be specified in programs and
queries in either mixed, lower, or upper case if the value is
"LOWER" or "UPPER." If the value is "MIXED," be careful to
preserve the case specified by the user for database objects.
Database objects are stored in the system catalogs, as specified
by DB_NAME_CASE.

Database and user names are stored in upper case if the value of
DB_NAME_CASE is "UPPER" or "MIXED." If the value is
"LOWER," they are stored in lower case in the system catalogs.

Set to "Y" if the DBMS supports, in all respects, 100% of the
current UL1RIX/SQL release. Otherwise "N." Defaults to "Y."

Version of UL1RIX/SQL support provided by the DBMS.
Examples:
00602 DBMS supports UL1RIX/SQL version 1.0 (based on

INGRES 6.2)
00000 DBMS does not support ULTRIX/SQL.
Default is 00602.

For internal use by UL1RIX/SQL

The type of DBMS the application is communicating with.
Valid values are "INGRES" and "Rdb." The default value is
"INGRES. "

Indicates whether the physical table description in iitables is
correct or if iiphysical tables must be checked for the correct
physical table description. Due to base catalog normalization, it
is possible for the physical description infonnation in iitables to
be defaulted, while the actual infonnation is present in
iiphysical tables. Values for this column are either "T," which
indicates that both iitables and iiphysical tables contain the
physical infonnation, or "P," which indicates that the physical
infonnation is only in iiphysical_tables.

G.2.2 The iidbconstants Catalog

The iidbconstants view contains a list of values that must be known by the
ULTRIX/SQL application.

The following table describes the columns in the iidbconstants catalog:

Column Name Data Type Description

char(32) The name of the current user.

dbaname char(32) The name of the database's owner.

The ULTRIX/SQL Standard Catalog Interface G-3

G.2.3 The iitables Catalog

The iitables view contains an entry for each queryable object in the database. In
ULTRIX/SQL these objects are tables, views, and indexes. The iitables catalog
contains basic system-independent logical information. User programs can query
this catalog to find out what tables, views, and indexes exist in a database.

In ULTRIX/SQL, this view is keyed on table_name and table_owner, so the best
way to query this view is with a query such as:

select *
from iitables
where (table_name = (anyname»
and (table_owner = (myname) or table_owner = (dbaname»

The following table describes the columns in the iitables catalog:

Column Name Data Type

char(32)

char(32)

char(2S)

char(2S)

char(8)

char(8)

G-4 The UL TRIXlSQL Standard Catalog Interface

Description

The object's name. This is an ULTRIX/SQL name.

The object's owner, expressed as an ULTRIX/SQL
usemame. Generally the creator of the object.

The object's creation date, expressed as an
ULTRIX/SQL standard date. This will be blank if
unknown.

The last time this table was altered, expressed as an
ULTRIX/SQL standard date. The alter_date is the
same as the create_date until the logical structure of
the table is changed. The alter_date is updated
whenever the logical structure of the table changes,
either through changes to the columns in the table or
changes in the primary key itself. Physical changes
to the table, such as changes to data, indexes, or
physical keys, do not change this date. This is blank
if unknown.

The type of the query object. The possible values
are:
"T' Object is a table
"V" Object is a view
"I" Object is an index
Further information about tables can be found in
iiphysicattables and about views in iiviews.

This describes the type of table or view that this is.
Possible values are:
"N" (native) for standard ULTRIX/SQL

databases
"I" (imported tables) for Remote Access to

RdbNMS
Blank (" ") if unknown.

Column Name Data Type

cbar(8)

cbar(8)

Description

This is the version of the object, which allows the
application to detennine where additional
information about this particular object is stored.
This reflects the database type, as well as the
version of an object within a given database. For
ULTRIX/SQL tables, the value for this field is
"ING6.0."

Specifies whether the object is a system object or a
user object The "system_use" field is used by the
application in order to screen lists of tables in
catalog displays. Values are "s" (for system) and
"U" (if unknown). The distinction between "s" and
"U" is used in utilities to know which tables need
reloading. If the value is unknown, the utilities will
use the naming convention of "ii" for tables in order
to distinguish between system and user catalogs.
Also, ULTRIX/SQL assumes any table beginning
with ii is a front end object, rather than a DBMS
system-object The standard system catalogs
themselves must be included in the iitabIes catalog
and are considered system tables.

The following columns in iitables have values only if the table_type is "T" or "I."
The columns are set to the default values, "-1" for numeric data types and a blank
for character data types, if this information is not available through the Remote
Access to RdbNMS interface and you are accessing an RdbNMS database.

This information may also be present in the iiphysical tables catalog, whether or
not it is present in the iitables catalog. -

The columns are described as follows:

Column Name Data Type

cbar(8)

cbar(8)

Description

"y" if this object has entries in the iistats table, or
"N' if this object does not have entries. Whether
this is blank or not is not a detenninant of "Y" or
"N." If the field is blank, then a probe of the iistats
table should be done in order to detennine if entries
exist there. This column is used only for
optimization of ULTRIX/SQL databases.

"Y" if this object has entries in the iiindexes table
that refer to this as a base table, or "N" if this object
does not have entries. Whether this is blank or not is
not a detenninant of "Y" or "N." If the field is
blank, a probe of the iiindexes table on the
base table column should be done in order to
determine if entries exist there. This field is used
only for optimization of ULTRIX/SQL databases.

The UL TRIX/SQL Standard Catalog Interface G-5

Column Name Data Type Description

is_readonly char(8) "N" if updates are physically allowed, or "Y" if no
updates are allowed. This will be blank if it is
unknown. This is used for tables which are defined
to the Remote Access to RdbNMS only for
retrieval. If this field is set to "Y," no updates will
work, independent of what permissions might be
set. If it is set to "N ," updates may be allowed,
depending on whether or not the permissions allow
it.

num_rows integer The estimated number of rows in the table. The
value is set to -1 if the number is unknown.

storage_structure char(16) The storage structure for the table. It is one of the
following:
"lIEAP" If table is a heap structure
"HASH" If table is a hash structure
"IS AM" If table is an isam structure
"BlREE" If table is a btree structure
Blank ("") If table structure is unknown

is_compressed char(8) Set to "Y" if the table is stored in compressed
format, or "N" if the table is uncompressed. The
field is blank if this information is unknown.

duplicate_rows char (8) "D" if the table, as created, allows duplicate rows or
"U" if it does not. The table storage structure (as
defined by the "unique_rule" column, which
specifies unique or non-unique keys) can override
this setting. This column is blank if this information
is unknown.

unique_rule char(8) "U," "D," or a blank. If the value is "U" and the
object is an ULlRIX/SQL object, it indicates that
the object has a unique storage structure key(s).
Refer to the "key _sequence" column of the
iicolumns catalog for the key(s). If the value is "U"
and the object is not an ULTRIX/SQL object, it
indicates that the object has a unique key, described
in either the iicolumns or iialt_columns catalogs. If
the value is "D," it indicates that duplicate physical
storage structure keys are allowed. (A unique
alternate key may exist in the iialt _columns
catalog, and any storage structure keys may be
listed in the iicolumns catalog.)

number_pages integer The estimated number of physical pages in the
table. This value is set to -1 if unknown.

overflow_pages integer The estimated number of overflow pages in the
table. This value is set to -1 if unknown.

row_width integer The size, in bytes, of the uncompressed binary value
for a row of this query object.

G-6 The UL TRIXlSQL Standard Catalog Interface

The following columns are used by the ULTRIX/SQL DBMS. If you are accessing
an RdbNMS database and this information is not available through the Remote
Access to RdbNMS interface, the columns are set to the default values, "-I" for
numeric data types and a blank for character data types.

The information in this section is not contained in iiphysicaI_tables.

Column Name Data Type

integer

char(25)

char(24)

cbar(8)

char(8)

char(8)

char(8)

isjoumalled char(8)

char(8)

char(8)

smallint

Description

Expiration date of table. This is an ULTRIX/SQL
_bintime date.

The date on which the last physical modification to
the storage structure of the table occurred. This is an
ULTRIX/SQL standard date. This column will be
blank if unknown or inapplicable.

The first location of the table. If there are additional
locations for a table, they will be shown in the
iimulti locations table, and multi_locations will be
set to "Y."

"Y" if this object has ULTRlX/SQL style integrities.
If the value is blank, a probe of the iiintegrities
table will determine if integrities exist or not.

"Y" if this object has ULTRlX/SQL style
permissions. A value of blank is not determinant on
entries in the iipermits table.

"Y" if this object has the ULTRIXlSQL permission
"all to all," or "N" if not.

"Y" if this object has the ULTRlX/SQL permission
"retrieve to all," or "N" if not.

"Y" if ULTRIXlSQL joumaling is enabled on this
object, or "N' if it is not. This value is set to "e" if
journaling will be enabled at the next checkpoint.
This information will be omitted if ULTRIX/SQL
joumaling does not apply.

"Y" if this is a base for a view definition, "N" if it is
not, or blank if the information is unknown.

"Y" if the table is located in multiple areas, "N" if
not.

The fill factor for the index pages used on the last
modify command in the nonleaflill clause,
expressed as a percentage from 0 to 100. This is
used for ULTRIXlSQL btree structures in order to
rerun the last modify command.

The UL TRIX/SQL Standard Catalog Interface G-7

Column Name Data Type

smallint

smallint

table_minpages integer

integer

integer

integer

integer

integer

G.2.4 The iicolumns Catalog

Description

The fill factor for the data pages used on the last
modify command in the fillfactor clauset expressed
as a percentage from 0 to 100. This is used for
ULTRIX/SQL btreet hasht and isam structures in
order to rerun the last modify command.

The fill factor for the leaf pages used on the last
modify command in the leatlill clauset expressed as
a percentage from 0 to 100. This is used for
ULTRIX/SQL btree structures in order to rerun the
last modify command.

The min pages parameter from the last execution of
the modify command. This is used for
ULTRIX/SQL hash structures only.

The maxpages parameter from the last execution of
the modify command. This is used for
ULTRIX/SQL hash structures only.

The high part of the last create or modify
timestamp for the table.

The low part of the last create or modify
timestamp for the table.

The first part of the internal relation ID. This is used
to derive the file name for the table.

The second part of the internal relation ill. This is
used to derive the file name for the table.

For each object in iitablest there are one or more entries in iicolumns. Each row in
the iicolumns view contains the information on a column of the queryable object.
This view is used by the user programs to perform dictionary operations and
dynamic queries.

Column Name Data Type Description

table_name char(32) The name of the table. This is an ULTRIX/SQL
name.

table_owner char(32) The owner of the table. This is an ULTRIX/SQL
username.

column_name char(32) The column ts name. This is an ULTRIX/SQL name.

column_datatype char(32) The column ts data type name. Valid type names are:
integer, smallint, int, float, real, double precision,
char, character, varchar, c, text, date and money.

G-8 The UL TRIXlSQL Standard Catalog Interface

Column Name Data Type

integer

integer

char(8)

column_defaults char(8)

column_sequence integer

integer

sort_direction char(8)

column_ingdatatype smallint

Description

The length of the column as specified by the user. If
a data type contains two length specifiers, this
column uses the fIrst length. For the data types
which are specifIed without length (money and
date), this will be set to zero. Note that this length is
not the actual length of the column's internal
storage.

The second number in a two-part user length
specification. For example, for typename(lenl, len2)
it will be len2.

Tells whether the column can be null. It will be "N"
if the column cannot be null. It will be "Y" if the
column can be null.

Tells whether the column is given a default value. It
will be "N" if the column is not given a default
value on insert. It will be "Y" if the column is given
a default value on insert.

The number of this column in the corresponding
table's create statement, numbered from 1.

The order of this column in the primary key,
numbered from 1. For an UL1RIX/SQL table, this
indicates the column's order in the primary storage
structure key. If the value is 0, this column is not
part of the primary key. This is unique if the
"unique_rule" column for the table's corresponding
entry in iitables is set to "U."

Set to "A" for ascending when the key_sequence is
greater than (» O. Otherwise, this value is a blank.

The ULTRIX/SQL data type of the column. If the
value is positive, the column is not nullable; if the
value is negative, the column is nullable. The data
types and their corresponding values are:

integer -30/30
float -31/31
c -32/32
text -37/37
date -3/3
money -5/5
char -20/20
varchar -21/21

The UL TRIX/SQL Standard Catalog Interface G-9

G.2.5 The iiphysical_tables Catalog

The information in the iiphysical tables view is the same as that in a portion of
iitables. The capability, PHYSICAL_SOURCE, in iidbcapabilities can be used to
determine whether iiphysical_tables must be used. If you do not want to check the
iidbcapabilities PHYSICAL_SOURCE capability, you should always use
iiphysical_tables to be sure of getting the correct information.

If a queryable object is type "T," signifying a table, it is a physical table and may
have an entry in iiphysical_tables as well as iitables.

Column Name Data Type

cbar(32)

cbar(32)

cbar(8)

cbar(8)

cbar(8)

integer

cbar(8)

cbar(8)

cbar(8)

cbar(8)

G-10 The UL TRIX/SQL Standard Catalog Interface

Description

The table name. This is an ULTRIX/SQL name.

The table's owner. This is an ULTRIX/SQL
username.

"Y" if the object has entries in iistats or "N" if it
does not. If the field is blank, it is undetennined if
the object has entries in iistats, and you should
check iistats directly. This column is used only for
optimization of ULTRIX/SQL databases.

"Y" if this object has entries in the iiindexes table
that refer to this as a base table, and "N" if not. If
this is blank, it is undetennined if the object has
entries in the iiindexes table that refer to it as a base
table; you must check the iiindexes table directly.
This field is used only for optimization for
ULTRIX/SQL databases.

"N" if updates are physically allowed on this object
and "Y" if not. The fietd is blank if this is unknown.
This field is always set to "N" for ULTRIX/SQL
and Rdb/YMS tables.

The estimated number of rows in the table. This
value is set it -1 if this is unknown.

The storage structure of the table. Possible values
are:
"HEAP" If the table is a beap structure
"HASH" If the table is a basb structure
"IS AM" If the table is a isam structure
"BTREE" If the table is a btree structure
Blank (" '') If the structure is unknown

"Y" if the table is stored in compressed fonnat, "N"
if it is not compressed, or blank if this is unknown.

"D" if duplicate rows are allowed in the table, "U"
if the rows are unique, or blank if this is unknown.

"0" if the storage structure is unique, "D" if
duplicates are allowed in the physical storage
structure key, or blank if this is unknown or does
not apply.

Column Name Data Type

integer

overflow -pages integer

integer

G.2.6 The iiviews Catalog

Description

The estimated number of physical pages in the
table. This value is set to -1 if this is unknown.

The estimated number of overflow pages in the
table. This value is set to -1 if unknown.

The size, in bytes, of the uncompressed binary value
for a row in the object for ULTRIX/SQL. This value
is set to -1 if this is unknown.

The iiviews view contains one or more entries for each view in the database.
(Views are represented in iitables by table_type = "V.") Because the
"text_segment" column is limited to 240 characters per row, a single view may
require more than one entry to represent all its text. There will be as many entries
in this table as needed to represent all the text of a view.

The text may be broken in mid-word across the sequenced rows. The text column is
pure text. Also, the text mayor may not contain newline characters.

Column Name

table_name

table_owner

view_dml

check_option

texcsequence

texcsegment

Data Type

cbar(32)

char(32)

char(8)

char(8)

Description

The view name. This is an ULTRIX/SQL name.

The view's owner. This is an ULTRIX/SQL
usemame.

The language the view was created in. "S" (for
ULTRIX/SQL).

"Y" if the check option was specified in the create
view statement, "N" if not. This will be blank if
unknown.

integer The sequence number for the text field, numbered
from 1. ' .

varchar(256) The text of the view definition.

G.2.7 The iiindexes Catalog

Each queryable object with a table_type of "I" in iitables has an entry in the
iiindexes view. In ULTRIX/SQL, all indexes also have an entry in
ii pbysical_ ta b lese

Column Name Data Type

char(32)

char(32)

Description

The index name. This is an ULTRIX/SQL name.

The index owner. This is an ULTRIX/SQL
usemame.

The UL TRIX/SQL Standard Catalog Interface G-11

Column Name Data Type

char(2S)

char(32)

char(32)

char(16)

char(8)

char(8)

G.2.8 The iiindex_columns Catalog

Description

Creation date of the index. This is an ULTRIX/SQL
standard date.

The base table name. This is an ULTRIX/SQL name.

The base table owner. This is an ULTRIX/SQL
name.

The storage structure for the index. It is one of the
following:
"HEAP" If the table is a heap
"HASH" If the table is a hash structure
"IS AM" If the table is an isam structure
"BTREE" If the table is a btree
Blank ("") If the table structure is unknown

Set to "Y" if the table is stored in compressed
format, or "N" if the table is uncompressed. This
will be blank if this is unknown.

"U" if the index is unique, "D" if duplicate key
values are allowed, or blank if unknown.

For indexes, any ULTRIX/SQL columns that are defined as part of the primary
index key will have an entry in the iiindex _columns view. For a fuHlist of all
columns in the index, use the iicolumns view.

Column Name Data Type Description

index_name char(32) The index containing column -"arne. This is an
lJLTRIX/SQL name.

index_owner char(32) The index owner. This is an ULTRIX/SQL
usemame.

column_name char(32) The name of the column. This is an ULTRIX/SQL
name.

key_sequence integer The sequence of the column within the key,
numbered from 1.

sort_direction char(8) Set to "A" for ascending.

G-12 The UL TRIXlSQL Standard Catalog Interface

G.2.9 The iialt_columns Catalog

For each alternate key, any columns which are defined as part of the key will have
an entry in the iialt _columns view.

Column Name Data Type Description

table_name char(32) The table that column_name belongs to.

table_owner char(32) The table owner.

key_id integer The number of the alternate key for this table.

column_name char(32) The name of the column.

key_sequence smallint The sequence of the column within the key,
numbered from 1.

G.2.10 The iistats Catalog

If a column has statistics, it has a row in the iistats view.

Column Name Data Type

table_name char(32)

table_owner char(32)

column_name char(32)

create_date char(2S)

num_unique floatS

repcfactor floatS

char(8)

pccnulls floatS

integer

Description

The name of the table. This is an ULTRIX/SQL
name.

The owner of the table. This is an
ULTRIX/SQL usemame.

The column name to which the statistics apply.
This is an ULTRIX/SQL name.

The date when statistics were gathered. This is
an UL1RIX/SQL standard date.

The number of unique values in the column.

The repetition factor, or the inverse of the
number of unique values (number of
rows/number of unique values).

"Y" if the column has unique values, "N"
otherwise.

The percentage (fraction of 1.0) of the table
which contains NULL for the column.

The number of cells in the histogram.

The UL TRIX/SQL Standard Catalog Interface G-13

G.2.11 The iihistograms Catalog

The iihistograms view contains histogram information used by the optimizer.

Column Name Data Type

table_name char(32)

table_owner char(32)

column_name char(32)

texcsequence integer

texcsegment char(228)

G.2.12 The iipermits Catalog

Description

The table for the histogram. This is an
ULTRIX/SQL name.

The table owner. This is an ULTRIXlSQL usemame.

The name of the column. This is an ULTRIX/SQL
name.

The sequence number for the histogram, numbered
from I. There may be several rows in this table,
used to order the "optdata" data when the histogram
is read into contiguous memory.

The histogram data, created by optimizedb. This is
encoded.

The iipermits view contains one or more entries for each permission defined.
Because the text of the permission definition may contain more than 240
characters, iipermits may contain more than one entry for a single permission. The
text mayor may not contain newlines and may be broken mid-word across rows.

This view is keyed on object_name and object_owner.

Column Name Data Type Description

objeccname char(32) The table, view, or procedure name. This is an
ULTRIX/SQL name.

objeccowner char(32) The owner of the table, view, or procedure. This is
an ULTRIX/SQL usemame.

objecCtype char(8) The type of the object: "T" for a table or view, "P"
for a database procedure.

create_date char(25) The permission's creation date. This is an
ULTRIX/SQL standard date.

permicuser char(32) The usemame to which this permission applies.

permicnumber smallint The number of this permission.

texCsequence smallint The sequence number for the text, numbered from 1.

text-segment varchar(240) The text of the permission definition.

G-14 The UL TRIX/SQL Standard Catalog Interface

G.2.13 The iiintegrities Catalog

The iiintegrities view contains one or more entries for each integrity defined on a
table. Because the text of the integrity definition may contain more than 240
characters, iiintegrities may contain more than one entry for a single integrity. The
text mayor may not contain newlines and may be broken mid-word across rows.

This view is keyed on table_name and table_owner.

Column Name Data Type Description

table_name char(32) The table name. This is an ULTRIX/SQL name.

table_owner char(32) The table's owner. This is an ULTRIX/SQL
username.

create_date char(2S) The integrity's creation date. This is an
ULTRIXjSQL standard date.

integrity_number smallint The number of this integrity.

texCsequence smallint The sequence number for the text, numbered from 1.

texCsegment varchar(240) The text of the integrity definition.

G.2.14 The iimulti_locations Catalog

Because a table, due to size or space constraints, may be located on multiple
volumes, the iimulti locations view contains an entry for each additional location
on which a table resides. The first location for a table can be found in the iitables
catalog.

This view is keyed on table_name and table_owner.

Column Name Data Type

char(32)

char(32)

sequence integer

char(32)

Description

The table name. This is an ULTRIX/SQL name.

The table's owner. This is an ULTRIX/SQL
username.

The sequence of this location in the list of locations,
as specified in the modify command. This is
numbered from 1.

The name of the location.

The UL TRIX/SQL Standard Catalog Interface G-1S

G.2.15 The iiprocedures Catalog

The iiprocedures view contains one or more entries for each database procedure
defined on a database. Because the text of the procedure definition may contain
more than 240 characters, iiprocedures may contain more than one entry for a
single procedure. The text mayor may not contain new lines and may be broken
mid-word across rows.

This view is keyed on procedure_name and procedure_owner.

Column Name Data Type Description

procedure_name char(32) The database procedure name, as specified in the
create procedure statement.

procedure_owner char(32) The procedure's owner. This is an ULTRIX/SQL
usemame.

create_date char(2S) The procedure's creation date. This is an
ULTRIX/SQL standard date.

proc_subtype char(8) The subtype of this procedure. For standard
ULTRIX/SQL procedures, this will be "N" (native).

procedure_type char(8) "L" if the procedure is a link, "N" if it is a native
procedure.

texcsequence smallint The sequence number for the tescsegment.

texcsegment varchar(240) The text of the procedure definition.

G.2.16 The iiregistrations Catalog

The iiregistrations view contains the text of register statements.

Column Name Data Type

table_name char(32)

table_owner char(32)

Table_dml char(8)

table_type char(8)

table_subtype char(8)

texcsequence integer

texcsegment varchar(240)

G-16 The UL TRIXlSQL Standard Catalog Interface

Description

The name of the registered table, view, or index.

The name of the owner of the table, view, or
index.

The language used in the registration statement.
Will be "S" for ULTRIX/SQL.

"T" if the object type is a table, "V" if it is a
view, or "I" if it is an index.

The type of table or view created by the
register statement. For Remote Access to
RdbNMS, this will be "I" for an imported
object.

The sequence number of the text field,
numbered from 1.

The text of the register statement.

G.3 The DBMS System Catalogs

The section provides a list of the System Catalogs for the database management
system (DBMS System Catalogs) with a short description of each. The table names
of the DBMS System Catalogs may be used as arguments to the sysmod command
(see Chapter 4). These catalogs are not supported for any other use.

DBMS System Catalog

iirelation

iirel idx

iiattribute

iiindex

iidevices

iiintegrities

iiprotect

iitree

iiqrytext

iidbdepends

iixdbdepends

iiprocedure

iihistogram

iistatistics

iidatabase

iidbidJdx

iidbaccess

iiextend

iilocations

Description

Describes each table in the database.

Indexes the iirelation table by table name and owner. This
catalog is an index table.

Describes the properties of each column of a table.

Describes all the indexes for a table.

Describes additional locations when a user table spans more
than one ULlRIX/SQL location.

Contains information about the integrities applied to tables.

Contains information about the protections applied to tables.

Contains the DBMS internal representation of the query text for
views, protections, and integrities.

Contains the actual query text for views, protections, and
integrities.

Describes the dependencies between views or protections and
their base tables.

Locates the rows that reference a dependent object in the
iidbdepends catalog. This catalog is an index table.

Contains information about database procedures.

Contains database histograms that are collected by the
optimizedb program.

Contains database statistics that are collected by the optimizedb
program.

Describes various attributes of each database in an installation.

Provides a secondary index built on a column in the iidatabase
catalog.

Describes which users have access to private databases.

Defines the extended data locations of a database.

Maps locations to physical areas and indicates what that
location can be used for.

The ULTRIX/SQL Standard Catalog Interface G-17

DBMS System Catalog

iirelation

iiuser

Description

Describes each table in the database.

Qefines valid users and their privileges in an ULTRIX/SQL
installation.

G-18 The ULTRIXlSQL Standard Catalog Interface

Index

Characters

! (exclamation point)

as comparison operator, 1-31, 1-33

; (semicolon)

as statement separator, 1-2

(number sign)

in object names, 1-2

in termcap descriptions, F-3 to F-5

$ (dollar sign)

in currency displays, 1-8 to 1-9

in object names, 1-2

% (percent sign)

as pattern match character, 1-31

in termcap descriptions, F-7

() (parentheses)

and precedence of arithmetic operations, 1-15

for expressions, 1-15

for logical operator grouping, 1-29

for subqueries, 1-30

in predicates, 1-33

* (asterisk)

as Terminal Monitor prompt character, 3-2

count function and, 1-27

exponentiation and, 1-15

in termcap descriptions, F-4

: (colon)

in termcap descriptions, F-2 to F-4

in where clause, 1-46

preceding a variable, 1-46

<> (greater/less than symbol)

as comparison operator, 1-31, 1-33

= (equal sign)

as comparison operator, 1-31, 1-33 to 1-34

in termcap descriptions, F-4

@ (at sign)

in object names, 1-2

[] (square brackets)

in pattern matching, 1-32

\ (backs lash)

as dereference character, 2-6, 3-4

in termcap descriptions, F-3

Terminal Monitor commands and, 3-1

A (caret)

as comparison operator, 1-31

_ (underscore)

in object names, 1-2, 1-47

in pattern matching, 1-31

I (vertical bar)

in termcap descriptions, F-2, F-4, F-l1

multiplication and, 1-15 A
+ (plus sign)

addition and, 1-15 \a (Terminal Monitor command), 3-3

- (minus sign) Aborting

subtraction and, 1-15 see also Rollback

. (period) transactions, 1-42 to 1-47

as decimal indicator, 1-5, 1-9 Absolute

/ (slash) value, 1-20

as comment indicator (with asterisk), 1-2, E-I0 Accessdb (command), 5-2

division and, 1-15 Accessing databases, C-l

Index-1

Aggregate functions

see Set functions

Aggregates

nulls in, 1-40

All clause, 1-33

And (Boolean operator), 1-29

ANSI format

standard key words in, A-2

Any-or-All (predicate), 1-33

\append (Terminal Monitor command), 3-3

Arctangent function, 1-20

Arithmetic

dates and, 1-16

expressions, 1-15

operators, 1-15

Arrow keys

in termcap descriptions, F-14

As clause, 1-35, 2-20

ASCII characters

allowable, 1-4

conversion to blanks, 3-2

Asterisk (*)

see character list at front of index

At sign (@)

see character list at front of index

Audit trails

for tables, 2-21

Auditdb (command), 5-3

Avg function, 1-27

8

Base tables, 2-22

\bell (Terminal Monitor command), 3-3

Between (predicate), 1-32

Binary format

see Bulk copying

Binary operators, 1-15

Blank operation, C-4

Interactive SQL frame, 4-2

Blanks

in character data type, 1-3

padding with, 1-21, F-4

trailing, 1-21 to 1-22

boolean expressions

Index-2

If-Then-Else (statement), 2-34 to 2-36

While (statement), 2-62

Boolean operators

SQL,I-29

Bottom operation, 4-6, C-4, E-8

Boxes (around objects), F-ll

Btree (storage structure), 2-42, 2-55

Bulk copying, 2-9, 5-3

c
C data type, 1-3

Caret (1\)

see character list at front of index

Cartesian product operator, 1-39

Case

lowercase function, 1-21

uppercase function, 1-22

Catalogdb (command), 5-6

Catalogs (DBMS system), G-l, G-17 to G-18

Catalogs (system)

dates in, G-2

described, G-l to G-16

iialt_columns, G-13

iicolumns, G-8

iidbcapabilities, G-2

iidbconstants, G-3

iihistograms, G-14

iiindex_columns, G-12

iiindexes, G-ll

iiintegrities, G-15

iimulti_Iocations, G-15

iipermits, G-14

iiphysical_tables, G-I0

iiprocedures, G-16

iire gistrations, G-16

iistats, G-13

iitables, G-4

iiviews, G-ll

printing statistics from, 5-29

updating, G-2

Cbtree (storage structure), 2-42, 2-55

\cd (Terminal Monitor command), 3-3

Character data

comparing, 1-3

converting, 1-18

in SQL, 1-3, 1-18, 1-20 to 1-23

Chash (storage structure), 2-42, 2-55

\chdir (Terminal Monitor command), 3-3

Cheap (storage structure), 2-42, 2-55

Cheapsort (storage structure), 2-42, 2-55

Checkpoints

establishing, 5-8

Cisam (storage structure), 2-41, 2-55

Ckpdb (command), 5-8

Clauses, 1-29

escape, 1-31

Colon (:)

see character list at front of index

Colors

termcap description for, F-14

Columns (in tables)

as expressions, 1-15

defaults for, 1-40

formats of, 2-19

handling by sets of, 1-26 to 1-28, 1-38 to 1-40

in subselects, 1-36

maximum number of, 1-11, 2-20

naming, 2-20

nullability of, 1-40

selecting, 2-50

sorting, 2-43

updating, 2-60

Columns (Terminal Monitor screen)

in termcap descriptions, F-6

Command

defined, C-l

Comments

in mapping files, E-4, E-I0

in SQL, 1-2

Commit (statement), 1-41, 2-2

Comparison operators

predicates in SQL, 1-29

Comparison predicate, 1-31

Complete (command), 4-4

Compression, 2-41 to 2-45

Computation

logarithms and, 1-20

mantissa and, 1-4

Concat function, 1-21

Concurrency, 1-41

Constants

hex, 1-10

null, 1-11

numeric, 1-11

string, 1-10

Constraints

integrity, 2-15

Continue (Terminal Monitor message), 3-2

Control key

for transaction interrupt (Control-C), 1-42

Conversion

of numeric data, 1-17, 1-20

of string/character data, 1-18

Copying

bulk copy for, 2-9

Copy (statement) for, 2-3 to 2-11

Copy from (statement) for, 2-5

Copydb (command) for, 5-10

databases, 5-10

error detection in, 2-4

files to/from tables, 2-3 to 2-11

performance hints for, 2-8

Correlation names, 1-12 to 1-13

Cosine function, 1-20

Count function, 1-27

Create index (statement), 2-12 to 2-14

Create integrity (statement), 2-15

Create procedure (statement), 2-16

Create table (statement), 2-19

Create view (statement), 2-22

Createdb (command), 5-12

CTRLkey

see Control key

Cursor

activating on terminals, F-15

in termcap descriptions, F-6, F-8 to F-I0

moving within forms, C-2, C-4 to C-5, C-5 to C-6

D

Data

copying, 2-3 to 2-11

deleting, 1-37

inserting, 1-37

manipulating, 1-35 to 1-38

Index-3

Data types

see also Conversion, Numeric data type

c, 1-3

char, 1-3, 1-18

character, 1-3

date, 1-5 to 1-8

described, 1-2 to 1-10

floating-point, 1-4, 1-17

formats for storage of, 1-9

integer, 1-4

money, 1-8, 1-17

text, 1-4, 1-18

varchar, 1-4,1-18

Database Administrator (DBA)

establishing, 5-12

Database procedures, 1-43 to 1-47

Databases

accessing/terminating access to, 5-2,5-12, C-l

audit trail creation for, 5-3

checkpointing of, 5-8

copying, 5-10

creating, 5-12

default locations for, 5-12

destroying, 5-15

example of, 1-12

listing names of, 5-6

moving, 1-48

naming, 5-12

private, 5-12

relocating, 1-48

syntax for access, C-l

transactions in, 1-41 to 1-47

unloading, 5-32

Dates

see also Time

\date (Terminal Monitor command), 3-3

arithmetic operations upon, 1-16

Date_part function, 1-24

Date_trunc function, 1-24

formats of, 1-5 to 1-8

functions for, 1-23 to 1-25

German format, 1-8

in catalogs (system), G-2

interval function, 1-25

ISO (Multinational) format, 1-8

Multinational format, 1-8

Index-4

selecting current/system, 1-26

Sweden/Finland format, 1-8

unit expressions of, 1-23

US format, 1-8

Dayfile, 3-1

DBA

see Database Administrator (DBA)

Dbmsinfo (command), 1-25

Dbname, C-l

Deadlock

causes of, 1-42

definition of, 1-41

Decimal point, 1-5

Declarations

see also Variable declarations

Declare (statement), 2-24

Defaults

for directory subpaths, 1-48

for field nullability, 1-40

for FRS commands, E-18

for mapping files, E-ll

for menu item mapping, E-7

for storage structures, 2-43, 2-55

for terminal-type mapping, E-13, E-18

Delete (statement), 1-37,2-25

Deleting

data, 1-37

Delete (statement), 1-37, 2-25

rows, 2-25

table space recovery and, 2-25

Destroying

Destroydb (command) for, 5-15

Drop (statement) for, 2-26 to 2-28

Directories

locationnames for, 1-47

Distinct clause, 2-50

Dollar sign ($)

see character list at front of index

Drop (statement), 2-26 to 2-28

Drop integrity (statement), 2-27

Drop permit (statement), 2-28

Drop procedure (statement), 2-29

Duplicates

of table rows, 2-21

E

\e (Terminal Monitor command), 3-3

\ed (Terminal Monitor command), 3-3

Edit (command), 4-3

\edit (Terminal Monitor command), 3-3

\editor (Terminal Monitor command), 3-3

Elseif (statement), 2-35

Embedded SQL

see also SQL

key words and, A-I to A-2

End operation, C-4, E-8

Equijoin, 1-39

Error messages, C-7

in SQL, 4-7

Errors

Database procedures and, 1-44

finding during copy operations, 2-4

iierrornumber, 1-44

iirowcount, 1-44

Escape clauses

in like (predicate), 1-31

Exists (predicate), 1-34

Expiration date (tables), 2-20, 2-49

Exponential functions, 1-20

Exponential notation, 1-4, 1-20

Expressions

classes of, 1-14 to 1-28

F

Field key

in help, C-6

Files

copying to/from, 2-3 to 2-11

Fillfactor, 2-12 to 2-13, 2-43

Find key

in help, C-6

Find operation, C-4, E-8

Finddbs (command), 5-16

see also Recovery

Floating-point

conversion to, 1-17

data type, 1-4

Forget operation, C-4, E-8

Forms

see also FRS (Forms Run-Time System)

cursor movement optimization in, F-15

Interactive SQL user interface and, 4-1 to 4-9

Isql (command) and, 5-17 to 5-19

key mapping for, E-1 to E-21

using forms-based applications, C-1 to C-7

Forms-based applications, C-1 to C-7

From clause, 1-35, 2-51

FRS (Forms Run-Time System)

commands for, E-5, F-15

defined, E-1

FRS keys and, E-7 to E-8

key definition in, E-1 to E-21

Function keys, C-5, E-1

see also Mapping

activating on terminals, F-12

and menu operations, C-3

Functions

avg, 1-27

G

date, 1-23, 1-23 to 1-25

max, 1-27

min, 1-27

numeric, 1-20

scalar, 1-19

set, 1-26 to 1-28

string, 1-20 to 1-23

sum, 1-27

\g (Terminal Monitor command), 3-3

Go (command), 4-4

\go (Terminal Monitor command), 3-2 to 3-3

Go operation, C-4, E-8

Grant (statement), 2-30

Granularity, 1-24, 2-56

Graphics

boxes and, F-l1

Greater/less than symbol «»
see character list at front of index

Group by clause, 1-14, 1-28, 1-35 to 1-36, 2-50

Index-5

H

Hash (s torage structure), 2-41, 2-55

Having clause, 1-29, 1-35, 1-37, 2-50

Heap (storage structure), 2-42, 2-55

Heapsort (storage structure), 2-42, 2-55

Help (statement), 2-31

Help operation, C-4, C-6, E-8

Interactive SQL frame, 4-3

Help Screens, C-6

\i (Terminal Monitor command), 3-3

If-Then-Else (statement), 2-34 to 2-36

II_CHECKPOINT, 1-48

II_DATABASE, 1-48

II_DECIMAL, 1-5

II_JOURNAL, 1-48

II_MONEY_FORMAT,I-9

II_MONEY_PREC, 1-9

II_PRINTSCREEN_FILE, D-2

II_TERMCAP _FILE, F-2

iialt_columns catalog, 0-13

iicolumns catalog, 0-8

iidbcapabilities catalog, 0-2

iidbconstants catalog, 0-3

iierrornumber, 1-44

iihistograms catalog, 5-20,5-29, 0-14

iiindex_columns catalog, 0-12

iiindexes catalog, 0-11

iiintegrities catalog, 0-15

iimulti_Iocations catalog, 0-15

iipermits catalog, 0-14

iiphysicaCtables catalog, 0-10

iiprocedures catalog, 0-16

iiregistrations catalog, 0-16

iirowcount, 1-44

iistats catalog, 5-20, 5-29, 0-13

iitables catalog, 0-4

iiviews catalog, 0-11

In (predicate), 1-33

\include (Terminal Monitor command), 3-3

Indexes

Create index (statement) and, 2-12 to 2-14

Index-6

destroying, 2-14, 2-26

sorting, 2-12

storage structure of, 2-41 to 2-45

Input screen, 4-3

Insert (statement), 1-37, 2-37

Insert editing mode, C-6, E-5

Insert operation, C-4

Integers

as constants, 1-4

range of, 1-4

Integrity

constraints, 2-15

Create integrity (statement), 2-15

destroying, 2-27

printing, 2-32

unloading, 5-32

Interactive SQL

command line interface, 3-1 to 3-4, 5-26 to 5-28

forms-based interface, 4-1 to 4-9, 5-17 to 5-19

Isql (command), 5-17 to 5-19

Sql (command), 5-26 to 5-28, 5-28

Interactive SQL frame, 4-1 to 4-2

Interrupts, 1-42

Interval function, 1-25

Isam (storage structure), 2-41, 2-55

Isql (command), 4-1, 5-17 to 5-19

ISQL (Interactive SQL)

see Interactive SQL

J

Join operator, 1-39

Journal entries, 5-3

Journaling

Auditdb (command) and, 5-3

Ckpdb (command) and, 5-8

described, 2-54

invoking of, 2-21, 2-54

recovery and, 2-21

table creation with, 2-21

K

Key words

ANSI, A-2

asc, 1-35

desc, 1-35

distinct, 1-35

embedded SQL and, A-I to A-2

SQL and, A-I to A-2

Keyboard keys, C-5, D-2

arrow, F-14

Ctrl key, 1-42

help, C-6

terminal considerations for, D-2

Keys operation, C-6

L

Labels

in mapping files, E-4, E-7

Leaffill, 2-13, 2-44

Left function, 1-21

Length function, 1-21

Level Mapping

user, E-17

Levels

of table access, 2-56

Like (predicate), 1-31

escape clauses in, 1-31

Literals

see Constants

Locate function, 1-21

Locationnames, 1-47 to 1-48, 2-20

Locking

level of, 2-55

Set lockmode (statement) and, 2-55

timeout, 2-57

Lowercase function, 1-21

M

Mapping

described, E-l

disabling of, E-4, E-I0

file errors, E-ll

files for, E-3, E-ll

getting information about, E-18

levels of, E-ll

of FRS commands, E-5

of FRS keys, E-3, E-7 to E-8

of menu items, E-6

querying settings of, E-18

statements, E-9

syntax of statements for, E-8, E-I0

Max function, 1-27

Maxlocks, 2-57

Maxpages, 2-13, 2-43

Menus, C-2

keys for, C-2, E-6

menu item and, E-7

menuitem and, E-6

standard operations in, E-8

Message (statement)

in Database procedures, 1-45, 2-39

Min function, 1-27

Minpages, 2-13, 2-43

Mode

insert, C-6

overstrike, C-6

Mode (FRS command), E-5

Modify (statement), 1-48, 2-41 to 2-45

Modulo arithmetic, 1-20

Money data type, 1-8

N

Naming

columns, 2-20

conventions for, 1-2

correlation names and, 1-12 to 1-13

in termcap descriptions, F-4

Nesting

of function calls, 1-23

of if statements, 2-35

Index-7

of queries, 1-30

Next operation, E-8

\nobell (Terminal Monitor command), 3-3

Not (Boolean operator), 1-29

Not null column format, 2-20

Null values

in set functions, 1-27

in SQL, 1-34, 1-40

Nullability

aggregates and, 1-40

for data types, 1-11

for table columns, 1-40

Ifnull function and, 1-25

Isnull (predicate) and, 1-29, 1-34

Number sign (#)

see character list at front of index

Numeric data type

o

functions of, 1-20

ranges/precision of, 1-4

On Error (command), 4-8

Operations

aborting, E-8

menus, C-2

standard, C-4

undoing, E-8

Operators

arithmetic, 1-15

logical, 1-29

relational, 1-38 to 1-40

Optimizedb (command), 5-20 to 5-23

Or (Boolean operator), 1-29

Order by clause, 1-35, 2-50

Output frame, 4-5

Output screen, 4-4

Overstrike editing mode, C-6, E-5

Ownership

see also Permissions

of tables, 2-19, 2-30

of views, 2-30

Index-8

p

\p (Terminal Monitor command), 3-3

Pad function, 1-21

Padding

see Blanks

Parentheses ()

see character list at front of index

Patterns

matching, 1-31

Percent sign (%)

see character list at front of index

Permissions

creating, 5-12

dropping, 2-28

on Database procedures, 1-44, 2-28, 2-30

printing, 2-32

unloading, 5-32

Predicates

any-or-all, 1-33

between, 1-32

comparison, 1-31

exists, 1-34

in, 1-33

isnull, 1-34

like, 1-31

search conditions and, 1-29 to 1-34

Printing

\print (Terminal Monitor command), 3-3

Print screen (statement) and, D-2

screen contents, D-2

Privileges, 2-30

Projection operator, 1-38

Q

\q (Terminal Monitor command), 3-3

Qualifications

see Search conditions

Queries

nested, 1-30

optimizing, 5-20 to 5-23, 5-29

subqueries and, 1-30

\quit (Terminal Monitor command), 3-3

Quit operation, C-5, E-8

R

\r (Terminal Monitor command), 3-3

Range variables, 1-13

\read (Terminal Monitor command), 3-3

Readlock, 2-56

Recovery

checkpoints and, 5-8, 5-24 to 5-25

Finddbs (command) and, 5-16

journaling and, 2-21

Rollforwarddb (command) and, 5-24 to 5-25

Redrawing the screen, D-3

Relational algebra, 1-38

Relational operators, 1-38 to 1-40

Reserved words

see key words

\reset (Terminal Monitor command), 3-3

Restriction operator, 1-39

Result

column, 1-36

structure, 2-54

Retrieving

Select (statement) and, 2-50 to 2-53

values, 2-50 to 2-53

Return (statement)

in Database procedures, 2-47

Right function, 1-21

Rollback, 1-41, 1-42 to 1-47,2-4,2-48

Rollforwarddb (command), 5-24 to 5-25

Rows (in tables)

counting, 1-27

deleting, 2-25

duplicates of, 1-37,2-21,2-41 to 2-45

grouping, 1-14, 1-39 to 1-40

inserting, 2-37

maximum length of, 1-12, 2-20

selecting, 2-50

sorting, 2-43

Rows (Terminal Monitor screen)

in termcap descriptions, F-6

s
\s (Terminal Monitor command), 3-3

Save operation, E-8

Saving

Save (statement) and, 2-49

table updates, 2-49

Scalar functions, 1-19

Screen

boxing characters on, F-ll

clearing, F-6

input, 4-3

output, 4-4

printing contents of, D-2

printing messages on, 2-39

redrawing, D-3

video attributes of, F-I0

\script (Terminal Monitor command), 3-4

Scrolling, C-5

direction of, F-15

Search conditions

in SQL, 1-29 to 1-34

Select (statement)

described, 1-35 to 1-37, 2-50 to 2-53

in Database procedures, 2-17

Semicolon (;)

see character list at front of index

Server type, C-1 to C-2

Set (statement)

described, 2-54 to 2-59

set lockmode, 1-42

Set clause, 1-37

Set functions, 1-26 to 1-28

\sh (Terminal Monitor command), 3-3

\shell (Terminal Monitor command), 3-3

Shell operation, C-5

Shift function, 1-21

Sine function, 1-20

Size function, 1-21

Index-9

Slash (I)

see character list at front of index

Sorting

columns, 2-43

indexes, 2-12

rows, 2-43

SQL

comments in, 1-2

data types in, 1-2 to 1-10

error messages, 4-7

invoking command line interface to, 5-26 to 5-28

invoking forms-based interface to, 5-17 to 5-19

Isql (operating system command), 5-17 to 5-19

key words and, A-I to A-2

names in, 1-2

Sql (operating system command), 5-26 to 5-28

statement placement in, 1-41 to 1-47

statements/commands in, 2-1 to 2-61

syntax overview, 1-1 to 1-50

Square brackets ([])

see character list at front of index

Square root function, 1-20

Squeeze function, 1-22

Standard Catalog Interface, G-l to G-16

Statdump (command), 5-29

Statistics

for optimizer, 5-20

Storage structures

default keys for, 2-43

modifying, 2-41 to 2-45, 5-31

sort order for, 2-43

Strings

c function, 1-3, 1-20 to 1-23

char function, 1-3, 1-20 to 1-23

concat function, 1-21

find operation for, E-8

functions, 1-20 to 1-23

in SQL, 1-3

left function, 1-21

length function, 1-21

locate function, 1-21

lowercase function, 1-21

padding, 1-21

right function, 1-21

shift function, 1-21

size function, 1-21

Index-10

squeeze function, 1-22

text function, 1-4, 1-20 to 1-23

trim function, 1-22

uppercase function, 1-22

varchar function, 1-20 to 1-23

varying length, 1-3

Subselects, 1-35

Sum function, 1-27

Superuser (System Administrator) status, 5-8,

5-24

Syntax

for database access, C-l

syntactic level in, 1-30

Sysmod (command), 5-31

System catalogs

see Catalogs (system)

Systems

T

administrator, 1-47,5-8,5-24, E-18

operating system commands, 5-1 to 5-33

returning information about, 5-29

tables for, 1-11, 5 -31

ULTRIX/SQL settings for, 2-54 to 2-59

Tables

see also Columns, Rows, Views

base, 2-22

combining subsets of, 1-38 to 1-40

copying data from/to, 2-3 to 2-11

creating, 2-19

defined, 1-11

destroying, 2-26

examples of, 1-11

expiration of, 2-20

granting privileges on, 2-30

naming, 1-11

obtaining information about, 2-31

ownership of, 2-19

retrieving into/from, 2-50 to 2-53

saving, 2-49

size of, 2-20

storage structure of, 2-41 to 2-45,5-31

system, 1-11

virtual, 2-22

Tape devices

checkpoint writing to, 5-8

Tcrmcap descriptions

see also Terminals

examples of, F-17

for specified terminals, F-8, F-16

getting advanced features in, F-I0

getting basic features in, F-6 to F-7

how to write, F-l, F-5

list of commands for, F-6

need for, F-l

special characters in, F-3

Termcap file

purpose of, E-l

Terminal Monitor

commands for, 3-2 to 3-4

flags for, 3-4

messages on, 3-1

stacking of commands for, 3-3

ULTRIX/SQL command line interface, 3-1 to 3-4

ULTRIX/SQL forms-based interface, 4-1 to 4-9

use of, 3-1, 4-1

Terminals

see also Termcap descriptions

activating cursor on, F-15

defining, D-l

Digital VT100, F-17

Envision 230, F-18

initializing, F-7

mapping files for, E-13, E-17 to E-18

that support color, F-14

types functional with ULTRIX/SQL, D-3 to D-8

video attributes on, F-I0

VT, E-2, E-13, E-17, F-17

Text data type, 1-4

Time

\time (Terminal Monitor command), 3-3

formats for, 1-5

functions for, 1-23 to 1-25

interval function, 1-25

selecting current/system, 1-26

Timeouts, 1-42, 2-57

Top operation, C-5, E-8

Transactions

aborting, 1-42 to 1-47

Commit (statement) for, 1-41, 2-2

control statements for, 1-41

management of. 1-41 to 1-47

rolling back. 1-42. 2-48

Trim function. 1-22

Truncation

of dates. 1-24

Truth functions. 1-29

Tuple

defined. 1-11

u
ULTRIX

see also Systems

Termcap file for. F-l. F-16

ULTRIX/SQL

error messages. C-7

help. C-6

keys. C-5

standard menu item operations in. C-4

Unary operators. 1-15

Underlining

termcap descriptions for. F-I0

Underscore C)
see character list at front of index

Undo operation. C-5. E-8

Union

in select statements. 1-35. 2-50

Unique clause. 2-12. 2-42

Unit expression. 1-23

Unloaddb (command). 5-32

Updating

Update (statement) for, 1-37. 2-60

Up line (FRS command), E-5

Uppercase function, 1-22

User

listing databases accessible to. 5-7

mapping customized for, E-17

Index-11

v
V_node, C-l

Values

retrieving, 2-50 to 2-53

transferring from procedures, 2-47

Values clause, 1-38

Varchar data type, 1-4

Variable declarations

in Database procedures, 1-46, 2-24

Variables

dbname, C-l

range, 1-13

server_type, C-l

v_node, C-l

Vertical bar (I)

see character list at front of index

Video attributes

in Termcap descriptions, F-IO

Views

creating, 2-22

destroying, 2-26

granting privileges on, 2-30

ownership of, 2-23

printing of, 2-32

unloading, 5-32

updating, 2-22

VT terminals, E-2, E-13, E-17, F-17

w
\w (Terminal Monitor command), 3-4

Where clause, 1-29, 1-35,2-50

While (statement), 2-62

With clause

Copy (statement), 2-3

Create index (statement), 2-12

Create table (statement), 2-19

Create view (statement), 2-22

Modify (statement), 2-41

\write (Terminal Monitor command), 3-4

Index-12

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal *

Call

800-DIGIT AL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DEC direct Operations KA02/2
P.O. Box 13000
100 Herzberg Road .
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation

. Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
UL TRIXlSQL Reference Manual

AA-PBZ6A-TE

Please use this postage-paid fonn to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of!

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? _____ _

Nameffitle _____________________ _ Dept. ______ _
Company __________________________ _ Date _____ _

Mailing Address
____________ Email _______________ Phone ______ ____

- - - - -. Do Not Tear - Fold Here and Tape

IlilDDIOlM -----------------------------rr]-rll----------:::::::::---

NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

Ilh IIllIhlh 11111111111111111 hllllllil h II h 11111

------. Do Not Tear- Fold Here

Cut
Along
Dotted
line

Reader's Comments ULTRIX
UL TRIXlSQL Reference Manual

AA-PBZ6A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Perfonnance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Namerritle ______________________ Dept.
_______________________________________ Dare _______ _

Company

Mailing Address
_______________ Email _____________ Phone ________ _

-----. Do Not Tear-Fold Here and Tape

ID~DDmaTM
-----------------------------[[l-[ll----------:::::::G~----

NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1111111 IIh 1IIIIIIIIIIIhlllllih 1IIIIIIIhllh 11111

. - - - - - . Do Not Tear - Fold Here . --l

Cut
Along
Dotted
Line

