
UL TRIX W orksystem Software

Extensions for the
Display PostScript® System

Order Number: AA- PAN9A- TE

Extensions
for the
DISPLAY POSTSCRIPT®
System

Order No. AA-PAN9A-TE

ADOBE SYSTEMS
INCORPORATED

POSTSCRIPT Language Extensions for the
DISPLAY POSTSCRIPT System

October 25, 1989

Copyright © 1988, 1989 Adobe Systems Incorporated.
All rights reserved.

POSTSCRIPT and DISPLAY POSTSCRIPT are registered
trademarks of Adobe Systems Incorporated.

Helvetica· , Palatino·, and Times· are trademarks of Linotype AG
and/or its subsidiaries.
UNIX is a registered trademark of AT&T Information Systems.

The information in this document is furnished for informational use
only, is subject to change without notice, and should not be construed
as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document. The software described
in this document is furnished under license and may only be used or
copied in accordance with the terms of such license.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated.

This document replaces the previous version dated May 30, 1989.

Introduction 1

2 Alternative Language Encodings 3

3 Structured Output 20

4 Memory Management 22

5 Multiple Execution Contexts 29

6 User Objects 36

7 Graphics State Objects 37

8 User Paths 38

9 Rectangles 46

10 Font-Related Extensions 47

11 Halftone Definition 52

12 Scan Conversion Details 59

13 View Clips 62

14 Window System Support 63

15 Miscellaneous Changes 65

16 Operators 73

A Changes Since Last Publication Of This Document 133

8 POSTSCRIPT Language Changes 135

C System Name Encodings 143

INDEX 147

iii

1 INTRODUCTION

This manual describes a number of extensions to the
POSTSCRIPT@ language. These extensions are initially imple­
mented in the DISPLAY POSTSCRIPT@ system. However, the
utility of most of the extensions is not limited to display applica­
tions; we anticipate that those extensions will eventually be
incorporated into printer products as well.

As a matter of policy, we do not refer to a 'DISPLAY POSTSCRIPT

language'. There is only one POSTSCRIPT language, which
evolves over time to encompass a wider variety of device tech­
nologies, environments, and applications. The new facilities
described in this manual constitute a set of extensions to the ex­
isting POSTSCRIPT language. Considerable effort has gone into
making these extensions upward-compatible from the existing
language and integrating them with the POSTSCRIPT language
and imaging models in a harmonious way. We intend that a
majority of these extensions will ultimately become a standard
part of the language.

Most of the extensions fall into a few major categories:

• The language model is enhanced in several ways. Memory
management is more flexible to accommodate applications
whose resource requirements are dynamic and unpredict­
able. Multiple POSTSCRIPT execution contexts can execute
simultaneously on behalf of separate applications sharing a
single display system. There are alternative external encod­
ings of the language for greater efficiency of generation
and interpretation.

• The set of built-in imaging operations is considerably ex­
panded, though the basic imaging model is unchanged.
Operations that are performed frequently by most applica­
tions are streamlined to provide convenient generation and
highly optimized execution. Although these extensions are
motivated by the needs of display based applications, their
utility is not limited to those applications.

• Additional extensions are included to serve the special
needs of computer display systems. These extensions adapt
the POSTSCRIPT imaging model to the interactive, dynamic
display environment presented by an underlying window

system. Some extensions are generic and apply to all en­
vironments; those are described in this manual. Others are
specialized to a particular environment or a particular in­
tegration of the DISPLA Y POSTSCRIPT system with a win­
dow system; those are described in documentation provided
by the window system developer.

Conceptual and descriptive information regarding the various
types of extensions is presented in Sections 2 through 15,
roughly in the above order. Individual operator descriptions are
listed alphabetically in Section 16. Although we attempt to give
a rationale for each extension individually, appreciating the full
purpose of the extensions as a whole requires an overall under­
standing of the DISPLA Y POSTSCRIPT system and the environ­
ments in which it is designed to operate. This topic is discussed
in Perspective for Software Developers.

A majority of the extensions can be implemented in terms of the
existing POSTSCRIPT language, though not necessarily with great
efficiency. Through such emulation, we can provide backward
compatibility between applications that use the extensions and
existing POSTSCRIPT language implementations that do not sup­
port them directly. A few extensions are unique to display appli­
cations and are not relevant to printing applications; those, ob­
viously, cannot be emulated.

Other extensions

The POSTSCRIPT language has already received one major exten­
sion, which has appeared in all printers with POSTSCRIPT inter­
preter versions 25.0 and greater. This extension was not docu­
mented in the original edition of POSTSCRIPT Language Refer­
ence Manual, but it is in editions copyright 1986 or later, as well
as in Appendix B of this manual.

In order to deal with color output devices, several new operators
have been defined. Most of these operators provide control over
various aspects of the color rendering process, including color
half toning and undercolor removal. (The halftone dictionary ex­
tension, described in this manual, encompasses the functions of
some of those operators.) Additionally, there is a colorimage
operator for rendering color sampled images. See PostScript
Language Color Extensions for detailed information.

2 Extensions for the DISPLAY POSTSCRIPT System

2 ALTERNATIVE LANGUAGE ENCODINGS

The standard POSTSCRIPT language is based on the printable
subset of the ASCII character set, as described in Section 3.3 of
the POSTSCRIPT Language Reference Manual. This representa­
tion is highly portable; it is easy to transmit and to store in a
wide variety of operating system and communications environ­
ments. We refer to this representation as the ASCII encoding of
the POSTSCRIPT language.

Although it is portable, the ASCII encoding of the language is not
particularly compact, nor is it efficient to generate and to inter­
pret. In environments served by the DISPLAY POSTSCRIPT sys­
tem, there is a much closer coupling between the producer and
the consumer of POSTSCRIPT language programs than is typical
when sending page descriptions to a printer. The application
program and the POSTSCRIPT interpreter communicate in real
time; usually they are either in the same machine or are con­
nected by a high-performance communication system. In such
environments, compactness or efficiency are more important
than maximum portability.

Binary encodings

The DISPLAY POSTSCRIPT system supports two additional en­
codings of the POSTSCRIPT language: the binary token encoding
and the binary object sequence encoding. These encodings are
extensions to the syntax of the language; that is, they provide
different ways to express programs, but they introduce no new
semantics. The POSTSCRIPT language scanner (see POSTSCRIPT

Language Reference Manual, Section 3.3) has been extended to
recognize the binary encodings in addition to the existing ASCII
encoding.

The ASCII and binary encodings can be freely intermixed in any
program; the scanner produces the same sequence of objects for
a given program, regardless of how the program is encoded. It
should be straightforward to translate from one encoding of the
language to another.

The binary encodings are intended exclusively for machine
generation; it is unreasonable for a human programmer to deal

1 INTRODUCTION 3

with them. Furthermore, applications using the DISPLAY

POSTSCRIPT system are encouraged to make use of the Client
Library, a procedural interface to capabilities of the POSTSCRIPT

language, and pswrap, a translator for POSTSCRIPT language
program fragments. The design of the binary encodings is based
primarily on the needs of those facilities. Most applications,
therefore, need not be concerned with the details of these encod­
ings.

The binary token encoding represents elements of the
POSTSCRIPT language as individual syntactic entities. This en­
coding emphasizes compactness over efficiency of generation or
interpretation. Most elements of the language, such as integers,
reals, and operator names, are represented by fewer characters in
the binary encoding than in the ASCII encoding. This encoding is
most suitable for environments in which communication
bandwidth or storage space is the scarce resource.

The binary object sequence encoding represents a sequence of
one or more POSTSCRIPT objects as a single syntactic entity. This
encoding is not compact, but it can be generated and interpreted
very efficiently. Most elements of the language are in a natural
machine representation or something very close to one. Ad­
ditionally, this encoding is oriented toward sending fully or par­
tially precompiled sequences of objects as opposed to ones
generated on the fly. This organization matches that of the Client
Library, which is the principal interface between applications
and the DISPLAY POSTSCRIPT system. It is most suitable for en­
vironments in which execution costs dominate communication
costs.

Use of the binary encodings requires that the communication
channel between the application and the POSTSCRIPT interpreter
be fully transparent. That is, it must be capable of carrying an
arbitrary sequence of arbitrary 8-bit character codes, with no
characters reserved for communication functions, no 'line' or
'record' length restrictions, etc. If the communication channel is
not transparent, the ASCII encoding must be used.

Remember that the various language encodings apply only to
characters consumed by the POSTSCRIPT language scanner. Ap­
plying exec to an executable file or string object invokes the

4 Extensions for the DISPLAY POSTSCRIPT System

scanner, as does the token operator. File operators such as read
and readstring, however, simply read the incoming sequence of
characters as data, not as encoded POSTSCRIPT language
programs.

The first character of each token detennines what encoding is to
be used for that token. If it is in the range 128 to 159 inclusive
(that is, one of the first 32 codes with the high-order bit set), one
of the binary encodings is used; 1 For binary encodings, the char­
acter code is treated as a token type: it determines which encod­
ing is used and sometimes also specifies the type and represen­
tation of the token.

Note that the deterrtlination of encoding occurs only on the first
character of each token (ignoring any white space that precedes
the token). Subsequent characters are interpreted according to
that encoding until the end of the token is reached, regardless of
character codes. For example, a character code in the range 128
to 159 can appear within an ASCII string literal or a comment
(however, a binary token type character does tenninate a preced­
ing ASCII name or number token). Similarly, a character code
outside the range 128 to 159 can appear within a multiple-byte
binary encoding.

Token type 159 is reserved for introducing tokens whose syntax
and semantics are specific to a particular implementation of the
POSTSCRIPT interpreter (or a particular integration with a win­
dow system). The standard language does not specify anything
about such tokens, even to say how long they are.

Number representations

Binary tokens and binary object sequences use various represen­
tations for numbers. Some numbers are the values of
POSTSCRIPT number objects (integers and reals); others provide
structural information, such as lengths and offsets within binary
object sequences.

IThese codes are considered to be 'control characters' in most standard char­
acter sets, such as ISO and JlS; they do not have glyphs assigned to them and
are therefore unlikely to be used to construct names in POSTSCRIPT language
programs. A means exists to disable interpretation of binary encodings; see the
setobjectformat operator in Section 3.

2 ALTERNATIVE LANGUAGE ENCODINGS 5

Different machine architectures use different representations for
numbers. The two most common variations are the byte order
within multiple-byte integers and the format of real (floating
point) numbers.

Rather than specify a single convention for representing num­
bers, the language provides a choice of representations. The ap­
plication program chooses whichever convention is most ap­
propriate for the machine on which it is running. The
POSTSCRIPT language scanner accepts numbers conforming to
any of the conventions, translating to its own internal represen­
tation when necessary. This translation is needed only when the
application and the POSTSCRIPT interpreter are running on
machines with different architectures.

The number representation to be used is specified as part of the
token type (the initial character of the binary token or binary
object sequence). There are two independent choices, one for
byte order and one for real format. The byte order choices are:

• High-order byte first (,big-endian')-in a multiple-byte in­
teger or fixed point number, the high-order byte comes
first, followed by successively lower-order bytes.

• Low-order byte first ('little-endian')-in a multiple-byte
integer or fixed point number, the low-order byte comes
first, followed by successively higher-order bytes.

The real format choices are:

• IEEE standard-a real number is represented in IEEE 32-
bit floating point format. 2 The order of the bytes is the
same as the integer byte order, as specified above. For ex­
ample, if the high-order byte of an integer comes first, then
the sign and first 7 exponent bits of an IEEE standard real
come first.

• Native-a real is represented in the native format for the
machine on which the POSTSCRIPT interpreter is running.
This may be a standard format or something completely
different; the choice of byte order is not relevant. The ap­
plication program is responsible for finding out what the
correct format is. In general, this is useful only in environ-

2IEEE 754: Standard/or Binary Floating-Point Arithmetic, 1985.

6 Extensions for the DISPLAY POSTSCRIPT System

ments where it is known that the application and the
POSTSCRIPT interpreter are running on the same machine or
on machines with compatible architectures. Obviously,
POSTSCRIPT language programs that use this real number
representation are not portable.

Since each binary token and binary object sequence defines its
own number representation, binary encoded programs with dif­
ferent number representations can be freely intermixed. This is a
convenience for applications that obtain portions of POSTSCRIPT
language programs from different sources.

Binary tokens

Binary tokens are variable-length binary encodings of certain
types of POSTSCRIPT objects. A binary token represents an ob­
ject that can also be represented in the ASCII encoding, but
usually with fewer characters. Thus, the binary encoding is
usually the most compact representation of a program, though
not necessarily the most efficient to execute.

Semantically, a binary token is equivalent to some corresponding
ASCII token. When the scanner encounters the binary encoding
for the integer 123, it produces the same result as when it en­
counters an ASCII token consisting of the characters '123'. That
is, it produces an integer object whose value is 123; the object is
the same (and occupies the same amount of space if stored in
VM) whether it came from a binary or an ASCII token.

Unlike the ASCII and binary object sequence encodings, the bi­
nary token encoding is incomplete: not everything in the lan­
guage can be expressed as binary tokens. For example, it makes
no sense to have binary token encodings of '{' and '}', since their
ASCII encodings are already compact. Similarly, it makes no
sense to have binary encodings for the names of operators that
are rarely used, since their contribution to the overall length of a
POSTSCRIPT language program is negligible. The incompleteness
of the binary token encoding is not a problem, since ASCII and
binary tokens can be freely intermixed.

The binary token encoding is summarized in the following table.
A binary token begins with a token type character, as discussed

2 ALTERNATIVE LANGUAGE ENCODINGS 7

Token
type(s)

128 - 131

132

133

134

135

136

137

138

139

140

141

142

143

144

Additional
characters

4

4

2

2

3 or 5

4

4

4

1+n

2+n

2+n

earlier. A majority of the token types (128 to 159) are used for
binary tokens; the remainder are used for binary object se­
quences or are unassigned. The token type detennines how many
additional characters comprise the token and how the token is
interpreted.

Interpretation

binary object sequence; this encoding is described in the next section.

32-bit integer, high-order byte first.

32-bit integer, low-order byte first.

16-bit integer, high-order byte first.

16-bit integer, low-order byte first.

8-bit integer, treating the character after the token type as a signed number n;
-128:5 n:5 127.

16- or 32-bit fixed point number. The number representation (size, byte order,
and scale) is encoded in the character immediately following the token type;
the remaining two or four characters are the number itself. The representation
parameter is treated as an unsigned integer r in the range 0 to 255:

o :5 r :5 31 32-bit fixed point number, high-order byte first; the scale

parameter (number of bits of fraction) is equal to r.
32:5 r:5 47 16-bit fixed point number, high-order byte first; scale = r - 32.
r ~ 128 same as r - 128 except that all numbers are given low-order byte

first.

32-bit IEEE standard real, high-order byte first.

32-bit IEEE standard real, low-order byte first.

32-bit native real.

boolean. The character following the token type gives the value: 0 for false, 1
for true.

string· of length n. The parameter n is contained in the character after the token
type; 0:5 n:5 255. The n characters of the string follow the parameter.

long string of length n. The 16-bit parameter n is contained in the two charac­
ters after the token type, represented high-order byte first; 0:5 n :5 65535. The n
characters of the string follow the parameter.

long string of length n. The 16-bit parameter n is contained in the two charac­
ters after the token type, represented low-order byte first; 0:5 n :5 65535. The n
characters of the string follow the parameter.

8 Extensions for the DISPLAY POSTSCRIPT System

145

146

147

148

149

150 -158

159

3 + data

unspecified

literal name from system name table indexed by index. The index parameter is
contained in the character after the token type; 0::; index::; 255.

executable name from system name table indexed by index. The index
parameter is contained in the character after the token type; 0 ::; index::; 255.

literal name from user name table indexed by index. The r,dex parameter is
contained in the character after the token type; 0 ::; index::; 255.

executable name from user name table indexed by index. The index parameter
is contained in the character after the token type; 0 :5 index::; 255.

homogeneous number array. This consists of a four-character header (including
the token type) followed by a variable length array of numbers whose size and
representation are specified in the header. This is described in detail below.

unassigned; occurrence of a token with these types will cause a syntaxerror.

reserved for token types that are implementation or window system specific.

The encodings for integers, reals, and booleans are straightfor­
ward and require no further explanation. The other token types
require additional discussion.

A fixed point number is a binary number having integer and
fractional parts; the position of the binary point is specified by a
separate scale value. In a fixed point number of n bits, the high­
order bit is the sign, the next n - scale - 1 bits are the integer
part, and the low-order scale bits are the fractional part. For ex­
ample, if the number is 16 bits wide and scale is 5, it is inter­
preted as a sign, a lO-bit integer part, and a 5-bit fractional part.
A negative number is represented in two's complement form.

There are both 16- and 32-bit fixed point numbers, allowing an
application to make a tradeoff between compactness and preci­
sion. Regardless of the token's length, the object produced by the
scanner for a fixed point number is an integer if scale is zero;
otherwise it is a real. Note that a 32-bit fixed point number ac­
tually takes more characters to represent than a 32-bit real; it is
useful only if the application already represents numbers that
way. (Using this representation makes somewhat more sense in
homogeneous number arrays, described below.)

A string token specifies the string's length as a one- or two­
character unsigned integer. The specified number of characters
of the string follow immediately. Note that all the characters are

2 ALTERNATIVE LANGUAGE ENCODINGS 9

treated literally; there is no special treatment of '\' or other
characters. The main purpose of the binary token encoding of
strings is to allow arbitrary binary data to be represented
straightforwardly, not to save space.

The name encodings specify a system name index or a user name
index that selects a name object from the system or user name
table and uses it as either a literal or an executable name. This
mechanism is described below. Note that only the first 256 ele­
ments of each array can be accessed by this means.

A homogeneous number array is a single binary token that
represents a POSTSCRIPT literal array object whose elements are
all numbers. The token consists of a four-character header
(including the token type) followed by a variable-length se­
quence of numbers. All of the numbers are represented in one
way, which is specified in the header.

The header consists of the token type character (149, denoting a
homogeneous number array), a character that describes the num­
ber representation, and two characters that specify the array
length (number of elements). The number representation is
treated as an unsigned integer r in the range 0 to 255 and is
interpreted as follows:

o ::;; r::;; 31 32-bit fixed point number, high-order byte first; the scale parameter (number of
bits of fraction) is equal to r.

32 ::;; r::;; 47 16-bit fixed point number, high-order byte first; scale = r - 32.

48 32-bit IEEE standard real, high-order byte first.

49 32-bit native real.

128 ::;; r ::;; 177 same as r - 128 except that all numbers are given low-order byte first.

Note that this interpretation is similar to that of the represen­
tation parameter r in individual fixed point number tokens.

The array's length is given by the last two characters of the
header, treated as an unsigned 16-bit number. The byte order in
this field is as specified by the number representation: r < 128
indicates high-order byte first; r ;;::: 128 indicates low-order byte
first.

10 Extensions for the DISPLAY POSTSCRIPT System

Following the header are 2 x length or 4 x length characters,
depending on representation, that encode successive numbers of
the array.

When this class of token is consumed by the POSTSCRIPT lan­
guage scanner, it produces a literal array object. The elements of
this array are all integers if the representation parameter r is 0,
32, 128, or 160 (specifying fixed point numbers with a scale of
zero); otherwise they are all reals. Once scanned, such an array is
indistinguishable from an array produced by other means (and
occupies the same amount of space).

Although the homogeneous number array representation is useful
in its own right, it is particularly useful in conjunction with
operators that take an encoded number string as an operand. This
is described later in this section.

Binary object sequences

A binary object sequence is a single token that describes an
executable array of objects, each of which may be a simple ob­
ject, a string, or another array nested to arbitrary depth. The en­
tire sequence can be constructed, transmitted, and scanned as a
single self-contained syntactic entity.

Semantically, a binary object sequence is an ordinary executable
array, as if the objects in the sequence had been surrounded by
'{' and '}', but with one important difference: its execution is
immediate instead of deferred. That is, when a binary object se­
quence is encountered in a file being executed directly by the
POSTSCRIPT interpreter, the interpreter performs an implicit exec
instead of pushing the array on the operand stack as it would
ordinarily. (This special treatment does not apply when a binary
object sequence appears in a context where execution is already
deferred, e.g., nested in ASCII-encoded '{' and '}' or consumed by
the token operator.)

Since a binary object sequence is syntactically a single token, it
is completely processed by the scanner before any of it is ex­
ecuted by the interpreter. The entire array and all its subsidiary
composite objects are allocated in private or shared VM accord­
ing to the VM allocation mode in effect at the time the binary

2 ALTERNATIVE LANGUAGE ENCODINGS 11

object sequence is scanned (see Section 4). Similarly, encoded
name bindings are those in effect at scan time (see below).

The encoding emphasizes ease of construction and interpretation
over compactness. Each object is represented by eight successive
characters. In the case of simple objects, these eight characters
describe the entire object (type, attributes, and value). In the case
of composite objects, the eight characters include a reference to
some other part of the binary object sequence where the value of
the object resides. The entire structure is easy to describe using
the data type definition facilities of implementation languages
such as C and Pascal.

A binary object sequence consists of four parts in the following
order:

• header-four or eight characters of information about the
binary object sequence as a whole;

• top-level array-a sequence of objects, eight characters
each, which constitute the value of the main array object;

• subsidiary arrays-more eight-character objects, which
constitute the values of nested array objects;

• string values - an unstructured sequence of characters,
which constitute the values of string objects and the text of
name objects.

The first character of the header is the token type, mentioned
earlier. Four token types denote a binary object sequence and
select a number representation for all integers and reals em­
bedded within it:

128 high-order byte first; IEEE standard real format
129 low-order byte first; IEEE standard real format
130 high-order byte first; native real format
131 low-order byte first; native real format

At this point, the header can take one of two forms, depending
upon the number of elements in the top level array and the over­
all length of the object sequence. If there are 255 top-level ele­
ments or less and the overall length of the object sequence is
65535 characters or less, the second character specifies the num­
ber of elements in the top-level array and the third and fourth

12 Extensions for the DISPLAY POSTSCRIPT System

characters, taken together as a 16-bit unsigned integer, specify
the size in characters of the entire binary object sequence, in­
cluding header, top-level, and subsidiary arrays, and string
values. (The order of characters that constitute this size field is
according to the number representation specified by the token
type. This is true of all multi-character numbers in the binary
object sequence.) If there are greater than 255 top-level objects
or the overall length of the object sequence is greater than 65535
characters, the second character is set to zero. The next two bytes
are the number of top-level elements and the next four bytes are
the overall length of the object sequence (again, the order of
characters that constitute these size fields is according to the
number representation specified by the token type).

Following the header is an uninterrupted sequence of eight­
character objects that constitute both the top-level array and sub­
sidiary arrays. The length of this sequence is not given explicitly;
it continues until the earliest string value referenced from an ob­
ject in the sequence, or until the end of the entire token.

The first character of each object in the sequence gives the
object's literal/executable attribute in the high-order bit and its
type in the low-order 7 bits.3 The attribute values are:

o literal
1 executable

The meaning of the object type field is given below.

The second character of an object is unused; its value must be
zero. The third and fourth characters constitute a 16-bit integer,
referred to as the length. The fifth through eighth characters con­
stitute the value. The interpretation of the length and value fields
depends on the object's type. (Once again, the character order
within these fields is according to the number representation for
the binary object sequence overall.)

The object types and the interpretation of the length and value
fields are:

3Note that the positions of these fields within the character are not influenced
by the prevailing number representation. To describe these as distinct fields in a
C 'struct' requires different type definitions for big-endian and little-endian
machines.

2 ALTERNATIVE LANGUAGE ENCODINGS 13

o null: length and value are unused
1 integer: length is unused; value is a signed 32-bit in-

teger
2 real: length is unused; value is a real
3 name: see below
4 boolean: length is unused; value is 0 for false, 1 for

true
5 string: see below
6 immediately evaluated name: see below
9 array: see below

10 mark: length and value are unused

For types string and array, the length field specifies the number
of elements (characters in a string or objects in an array); it is
treated as an unsigned 16-bit integer. The value field specifies
the offset, in characters, of the start of the object's value relative
to the first character of the first object in the top-level array. An
array offset must refer somewhere within the top-level or sub­
sidiary arrays; it must be a mUltiple of 8. A string offset must
refer somewhere within the string values; the strings have no
alignment requirement and need not be null-terminated or other­
wise delimited. (If the length of a string or array object is zero,
its value is disregarded.)

For the name type, the length field is treated as a signed 16-bit
integer that selects one of three interpretations of the value field:

n > 0 value is an offset to the text of the name, just the same
as for a string; n is the name's length (which must be
within the implementation limit for names)

o value is a user name index (see below)
-1 value is a system name index (see below)

An immediately evaluated name object is analogous to the
'//name' syntax of the ASCII encoding. (See Appendix B.) This
object is treated just the same as a name, as described above.
However, the scanner then immediately looks up the name in the
context of the current dictionary stack and substitutes the cor­
responding value for that name. If the name is not found, an
undefined error occurs.

For the composite objects, there are no enforced restrictions
against multiple references to the same value or recursive or self­
referential arrays. However, such structures cannot be expressed

14 Extensions for the DISPLAY POSTSCRIPT System

directly in the ASCII or binary token encodings of the language;
their use violates the interchangeability of the encodings. There­
fore, the recommended structure of a binary object sequence is
for each composite object to refer to a distinct value. There is
one exception: references from multiple name objects to the
same string value are specifically encouraged, since name ob­
jects are unique by definition.

The scanner will generate a syntaxerror upon encountering a
binary object sequence that is malformed in any way. Possible
causes include:

• an object type that is undefined;

• an 'unused' field that is not zero;

• lengths and offsets that, in combination, would refer out­
side the bounds of the binary object sequence;

• an array offset that is not a multiple of 8 or that refers
beyond the earliest string offset.

As is true for all errors, when a syntaxerror occurs, the
POSTSCRIPT interpreter pushes onto the operand stack the object
that caused the error. For an error detected by the scanner,
however, there is not actually such an object, since the error oc­
curred before the scanner had finished creating one. Instead, the
scanner fabricates a string object consisting of the characters en­
countered so far in the current token. If a binary token or binary
object sequence was being scanned, the string object produced is
a description of the token rather than the literal characters (which
would be gibberish if printed as part of an error message). For
example:

(bin obi seq, type=128, elements=23, size=234,
array out of bounds)

System and user name encodings

Both the binary token and binary object sequence encodings
provide optional means for representing names as small integers
instead of as full text strings. Such an integer is either a system
name index or a user name index. Careful use of encoded names
can result in substantial space savings and execution perfor­
mance improvement.

2 ALTERNATIVE LANGUAGE ENCODINGS 15

A name index is a reference to an element of a name table al­
ready known to the POSTSCRIPT interpreter. When the scanner
encounters a name token that specifies a name index (rather than
a text name), it immediately substitutes the corresponding ele­
ment of the appropriate table. This substitution occurs at scan
time, not at execution time; the result of the substitution is an
ordinary POSTSCRIPT name object.

A system name index is an index into the system name table,
which is built-in and has a standard value. The elements of this
table are standard operator names, font names, character names,
and other names that are a standard part of the POSTSCRIPT VM.
The contents of this table are documented in appendix C; they
are also available as a machine-readable file for use by pswrap,
translators, and other programs that deal with binary encodings.

A user name index is an index into the user name table, whose
contents may be defined by a POSTSCRIPT language program by
means of the defineusername operator. This provides efficient
encodings of non-system names that are used frequently.
However, there are various restrictions on user name encodings;
additions to the user name table must be made in a stylized way
to ensure correct behavior.

If there is no name associated with a system or user name index,
the scanner generates an undefined error; the offending com­
mand is 'systemn' or 'usern', where n is the decimal represen­
tation of the index.

An encoded binary name specifies (as part of the encoding)
whether the name is to be literal or executable; this overrides the
corresponding attribute of the replacement name object. Thus, a
given element of the system or user name table can be treated as
either literal or executable when referenced from a binary token
or object sequence. In the binary object sequence encoding, one
can also specify an immediately evaluated name object,
analogous to '//name'. When such an object specifies a name
index, note that there are two substitutions: the first obtains a
name object from the appropriate table; the second looks up that
name object in the current dictionary context.

One should be aware that the binary token encoding provides
means to reference only the first 256 elements of either of the

16 Extensions for the DISPLAY POSTSCRIPT System

name tables. (The binary object sequence encoding does not
have this limitation.) Maximum program compactness can be
achieved by organizing the user name table in such a way that
the most commonly used names are in the first 256 elements.

Like everything else having to do with binary encodings, en­
coded names are intended for machine generation only. The
pswrap and Client Library facilities are the preferred means for
application programs to generate binary encoded programs. In
particular, those facilities maintain the user name table automati­
cally and encode names using both the system and user name
tables. An application should not attempt to alter the user name
table itself, since that would interfere with the activity of the
Client Library.

A program can depend on a given system name index represent­
ing a particular name object. Applications that generate binary
encoded POSTSCRIPT language programs are encouraged to take
advantage of system name index encodings, since they save both
space and time.

The meaning of a given user name index is local to a specific
POSTSCRIPT execution context-more precisely, to a context's
private VM or space (see Sections 4 and 5). If several contexts
are associated with the same space, a user name index defined in
one context may be used in another context. (It is the client's
responsibility to synchronize execution of the contexts so that
definition and use occur in the correct order.)

The user name index facility is intended for use only during in­
teractive sessions with a DISPLAY POSTSCRIPT system. It should
not be used in a POSTSCRIPT language program that must stand
by itself, such as one sent to a printer or written to a file for later
use. If a program contains user name index encodings, it cannot
be composed with or embedded in other POSTSCRIPT language
programs and it cannot easily be translated to the ASCII encoding.
POSTSCRIPT printers may not support user definition of name
encodings. The Client Library has an option to disable use of
user name encodings and produce text encoded names always;
this option may be invoked dynamically by an application
program to produce a POSTSCRIPT language program that is to
be captured in a file or diverted to a printer.

2 ALTERNATIVE LANGUAGE ENCODINGS 17

Encoded number strings

Several of the new operators require as operands an indefinitely
long sequence of numbers to be used as coordinate values (either
absolute or relative). The operators include those dealing with
user paths, rectangles, and explicitly positioned text, all of which
are described in other parts of this manual. In the most common
use of these operators, all the numbers are provided as literal
values by the application as opposed to being computed by the
POSTSCRIPT language program.

In order to facilitate this common use and to streamline both the
generation and the interpretation of numeric operand sequences,
we have defined a standard facility for presenting such operands
to an operator. A number sequence may be represented either as
an ordinary POSTSCRIPT array object (whose elements are to be
used successively) or as an encoded number string.

An encoded number string is a POSTSCRIPT string object that
consists of a single homogeneous number array according to the
binary token encoding described above. That is, the first four
characters are treated as a header; the remaining characters are
treated as a sequence of numbers encoded as described in the
header.

The attractive feature of an encoded number string is that it is a
compact representation of a number sequence both in its external
form and in VM. Syntactically, it is simply a string object; it
remains in that form after being scanned and placed in VM. It is
interpreted as a sequence of numbers only when it is actually
used as an operand of an operator that is expecting a number
array. Furthermore, even then it is neither processed by the scan­
ner nor expanded into a POSTSCRIPT array object; instead, the
numbers are consumed directly by the operator. This arrange­
ment is both compact and efficient.

The following are equivalent ways of invoking rectfill, which is
one of the new operators that expect number sequences as
operands:

[ASCII-encoded numbers] rectfill
homogeneous number array rectfill
string rectfill

18 Extensions for the DISPLAY POSTSCRIPT System

The first line constructs an ordinary POSTSCRIPT array object
containing the numbers and passes it to rectfill. (This is actually
the most general form, since the '[' and ']' could enclose an ar­
bitrary computation that produces the numbers and pushes them
on the stack.)

On the second line, a binary token representing a homogeneous
number array appears directly in the program. In this instance,
the scanner produces an array object, which is then consumed by
rectfill. From rectfill' s point of view, this case is indistinguish­
able from the first one.

On the third line, a string object appears in the program. This
string object is most likely encoded as a binary token or an ele­
ment of a binary object sequence, but conceivably it could be an
ASCII-encoded hexadecimal string enclosed in '<' and '>' or a
string value read by readstring. (An ordinary ASCII string
enclosed in '(' and ')' is less suitable because of the need to
quote special characters.) When rectfill notices that it has been
given a string object, it interprets the value of the string, expect­
ing to find the binary token encoding of a homogeneous number
array. Indeed, the result produced is equivalent to:

string cvx exec rectfill

Here, exec interprets string as a POSTSCRIPT language program.
The scanner, finding that the first (and only) token in string is a
binary token encoding of a homogeneous number array,
produces that array and pushes it on the operand stack. The
rectfill now sees an array operand, as in one of the first two lines
in the earlier example. However, although the end result is the
same, passing string directly to rectfill is much more efficient
(in both time and space), since it bypasses creating the array ob­
ject in VM.

The operators that use encoded number strings include rectfill,
rectstroke, rectclip, rectviewclip, xshow, yshow, and xyshow.
Additionally, an encoded user path represents its numeric
operands as an encoded number string; the relevant operators are
ufill, ueofill, uappend, inufill, inueofill, and inustroke.

2 ALTERNATIVE LANGUAGE ENCODINGS 19

3 STRUCTURED OUTPUT

The DISPLAY POSTSCRIPT system provides a means for a
program to send various kinds of information back to the appli­
cation (via the Client Library). This information includes the
values of objects produced by queries, error messages, unstruc­
tured text generated by print, and perhaps window system
specific events. A POSTSCRIPT context writes all of this data to
its standard output file. The Client Library requires a way to dis­
tinguish among these different kinds of information received
from a context.

To serve this need, we have defined a structured output format
and provided means for a POSTSCRIPT language program to
generate output conforming to it. The format is basically the
same as the binary object sequence representation for input,
described in Section 2.

A program that writes structured output should be judicious in its
use of unstructured output primitives such as print and '='. In
particular, since the start of a binary object sequence is indicated
by a character whose code is in the range 128 to 159 inclusive,
unstructured output should consist only of character codes out­
side that range; otherwise, confusion will ensue in the Client
Library or the application. (Of course, this is only a convention;
by prior arrangement, a program may send arbitrary unstructured
data to the application.)

The new operator printobject writes an object to the standard
output file as a binary object sequence. A similar operator,
writeobject, writes to an arbitrary file. The binary object se­
quence contains a top-level array consisting of one element
which is the object being written; see the description of binary
object sequences in Section 2. That object, however, can be com­
posite, so the binary object sequence may include subsidiary ar­
rays and strings.

In the binary object sequences produced by printobject and
writeobject, the number representation is controlled by the
setobjectformat operator. The binary object sequence has a
token type that identifies the representation used.

20 Extensions for the DISPLAY POSTSCRIPT System

Accompanying the top-level object in the object sequence is a
one-character tag, which is specified as an operand of
printobject. This tag is carried in the second character of the
object, which is otherwise unused (see Section 2). Only the top­
level object receives a tag; the second byte of subsidiary objects
is zero. In spite of its physical position, the tag is logically asso­
ciated with the object sequence as a whole.

The purpose of the tag is to enable the POSTSCRIPT language
program to specify the intended disposition of the object se­
quence. A few tag values are reserved for reporting errors (see
below); the remaining tag values may be used arbitrarily. The
client library uses tags when it issues a query to the POSTSCRIPT
context. The query consists of a POSTSCRIPT language program
that includes one or more instances of printobject to send
responses back to the Client Library. A different tag is specified
for each printobject so that the Client Library can distinguish
among the responses as they arrive.

Tag values 0 through 249 are available for general use. Tag
values 250 through 255 are reserved to identify object sequences
that have special significance. Of these, only tag value 250 is
presently defined: it is used to report errors.

Errors are initiated as described in Sections 3.6 and 3.8 of the
POSTSCRIPT Language Reference Manual. Normally when an er­
ror occurs, control automatically passes from the POSTSCRIPT
language program to an error-handling procedure in the root con­
trol program of the context. If binary encoding is disabled (see
setobjectformat), the error handler generates a text message
similar to an error message on a POSTSCRIPT printer. Otherwise
it writes a binary object sequence with a tag value of 250.

The binary object sequence that reports an error contains a four­
element array as its top-level object. The array elements, ordered
as they appear, are:

• The name 'Error' (indicates an ordinary error detected by
the POSTSCRIPT interpreter; a different name could indicate
another class of errors, in which case the meanings of the
other array elements might be different) .

• The name that identifies the specific error (e.g.,
typecheck).

3 STRUCTURED OUTPUT 21

• The object that was being executed when the error oc­
curred; if the object that raised the error is not printable,
some suitable substitute is provided - for example, an
operator name in place of an operator object.

• An error-handler flag (a boolean object whose value is true
if the program expects to resynchronize with the client and
false otherwise).

The normal error handler, handleerror, sets the flag tofalse. An
alternate error handler, resynchhandleerror, sets the flag to
true; it should be used when the program expects to
resynchronize with the client. See the section on handling errors
in the Client Library Reference Manual for more information on
handleerror and resynchandleerror.

In addition to binary object sequences and unstructured text, a
program may need to send special tokens whose syntax and
semantics are implementation or environment dependent. For ex­
ample, if a POSTSCRIPT language program is able to intercept
window system events, it may need to send some of those events
to the application. Binary token type 159 is reserved for this pur­
pose (see Section 2).

4 MEMORY MANAGEMENT

The POSTSCRIPT interpreter used in printers has a very simple
approach to management of virtual memory (VM) resources.
Memory consumed by creating new composite objects is simply
not reclaimed until a restore is executed; the VM then reverts to
the state it was in at the time of the matching save.

This approach works well for POSTSCRIPT printers. Execution of
a POSTSCRIPT page description should ordinarily have no lasting
side effects. A page description is divided into pages; individual
pages should have no lasting side effects that would influence
the execution of subsequent pages. The strict nesting of VM
states imposed by the save/restore facility matches this structure
well. To ensure portability, POSTSCRIPT language programs that
are page descriptions should assume that VM is managed in this
way.

22 Extensions for the DISPLAY POSTSCRIPT System

Interactive display applications, on the other hand, perfonn
operations in a much less structured fashion. The stream of
POSTSCRIPT language text generated by an application is typi­
cally not divided into 'pages' and may have no obvious overall
structure. Furthennore, an interactive session may never ter­
minate; there is no opportunity to reclaim VM resources con­
sumed during the session. Thus, save and restore are much less
suitable for overall memory management, though they can still
be useful for encapsulating isolated computations.

Garbage collection

A more sophisticated approach to memory management is
clearly required. The DISPLAY POSTSCRIPT system includes an
automatic VM reclamation facility, popularly known as a
'garbage collector'. This facility automatically reclaims the
memory occupied by composite objects that are no longer acces­
sible to the POSTSCRIPT language program (Le., do not appear on
any of the stacks or as elements of other composite objects).

Garbage collection is not a language feature per se, since it nor­
mally takes place without explicit action on the part of the
POSTSCRIPT language program being executed. However, the
presence of a garbage collector strongly influences the style of
programming that is pennissible. A program that endlessly con­
sumes VM and never executes save and restore will eventually
encounter a VMerror if executed by a POSTSCRIPT interpreter
that does not have garbage collection.

Of course, garbage collection is not entirely free. There is a cer­
tain cost associated with creating and destroying composite ob­
jects in VM. The most common case is that of literal objects
(strings, user path procedures, etc.) that are immediately con­
sumed by operators such as show and ufill and then never used
again. The garbage collector is engineered to deal with this case
inexpensively, so application programs should not hesitate to
take advantage of it. However, the cost of garbage collection is
greater for objects that have longer lifetimes or that are allocated
explicitly. Programs that frequently require temporary objects
are encouraged to create them once and reuse them instead of
creating new ones on every use.

4 MEMORY MANAGEMENT 23

Even with garbage collection, the save and restore operators still
have their standard behavior. That is, restore still resets all ob­
jects visible to the POSTSCRIPT language program to their state at
the time of the matching save. It still reclaims all composite ob­
jects created since the matching save (and does so very cheaply).
Thus, a DISPLAY POSTSCRIPT application may continue to use
the save/restore facility in cases where its semantics are useful.

In an environment with garbage collection, the semantics of
vrnstatus are not as well defined as they are in an environment
with explicit memory management. The garbage collection
process operates intermittently, not continously; some inacces­
sible objects cannot immediately be recognized as such. Thus,
the used value returned by this operator is only meaningful im­
mediately after a garbage collection has taken place. This can be
invoked explicitly by the vrnreclairn operator. The
setvrnthreshold operator provides additional control over the
behavior of the garbage collector.

Deliberate discard and undef

With garbage collection comes the opportunity to deliberately
discard composite objects that are no longer needed and to do so
in an order unrelated to the time of creation of those objects.
This is particularly valuable for very large objects such as font
definitions. In order for this to be done effectively, certain pro­
gramming considerations must be observed; these considerations
arise mainly from interactions with save and restore.

As explained above, the VM occupied by a composite object can
be reclaimed by the garbage collector as soon as it becomes in­
accessible to the POSTSCRIPT language program. For example, if
the only reference to a particular composite object consists of an
element of some array or dictionary, replacing that element with
a null object (say, using put) renders the former object's value
inaccessible and reclaimable.

In the case of a dictionary, it is useful to be able to remove an
entry entirely, that is, to remove both the key and the value of a
key-value pair, as opposed to replacing the value with some
other value. This action is performed by the new operator under,
which is described below. Removing an entry from the

24 Extensions for the DISPLAY POSTSCRIPT System

FontDirectory dictionary requires another new operator,
undefinefont, since FontDirectory is read-only except by font
specific operators.

Regardless of the means used to remove references to a com­
posite object, the action will be undone by a subsequent restore
if the reference existed at the time of the matching save. This is
true even for undef: restore reinstates the deleted dictionary
entry. In this situation, the referenced object has never become
truly inaccessible, since access to it can be reinstated by execut­
ing restore. Consequently, the VM occupied by that object is not
reclaimed.

As a practical matter, this means that a POSTSCRIPT language
program can successfully discard a composite object only while
executing at the same depth of save/restore nesting as was in
effect when the object was created. Fonts are typically defined at
the outermost level of save/restore nesting (or in shared VM, as
described below). To discard a font definition and reclaim the
VM that it occupies, one must execute undefinefont at the same
level of save/restore nesting.

Shared VM

The existing model of VM is that of a uniform, unstructured
store of composite objects. This model has been extended to sup­
port multiple VMs whose contents have different lifetime and
visibility and whose behavior with respect to save and restore is
decoupled.

The motivation for introducing multiple VMs is the need to sup­
port multiple, concurrent execution contexts in the DISPLAY
POSTSCRIPT system. The facilities that deal with multiple con­
texts are described in Section 5. However, most of the semantics
of the multiple VM facility can be described independently of
contexts and are therefore presented here.

Each POSTSCRIPT execution context has a private VM that is
visible only within that context. Additionally, there is a single
shared VM that is visible to all contexts and that can be updated

4 MEMORY MANAGEMENT 25

by any context under suitable conditions.4

Of all the objects visible to a POSTSCRIPT language program,
some are in private VM and some are in shared VM. New com­
posite objects, whether created implicitly by the POSTSCRIPT

language scanner or explicitly by operators, are normally al­
located in private VM. A program can read and alter the values
of objects in private VM in the usual way, subject only to the
access attributes of the objects involved. A program can also
read the values of objects in shared VM without any unusual
restrictions. Thus, for most purposes, the behavior of the two­
part VM is virtually indistinguishable from the behavior of the
conventional one-part VM.

The ability to alter the values of objects in shared VM is
restricted in one important way.S It is illegal to store a private
object as an element of a shared object. More precisely, a com­
posite object whose value was created by ordinary means (and is
therefore in private VM) cannot be stored as an element of an
existing composite object whose value is in shared VM. An at­
tempt to do so will result in an invalidaccess error. On the other
hand, there are no restrictions on storing simple objects, such as
integers and names, as elements of shared objects; nor are there
restrictions on storing shared objects as elements of private ob­
jects. In this connection, name objects are always treated as if
they were shared. The scheck operator inquires whether an ob­
ject is private or shared.

In order to create a new composite object in shared VM, a
program must explicitly enter shared VM allocation mode. This
is done by executing the setshared operator, which switches be­
tween private and shared VM allocation modes. This mode con­
trols the VM region in which the values of new composite ob-

4Even if a POSTSCRIPT interpreter supports only one context, as in a printer,
having a 'shared' VM is still useful. The shared VM holds objects whose
lifetime is independent of the lifetime of objects in the (single) private VM.
Such objects may include font defmitions that are to persist through execution
of multiple print jobs. In this respect, shared VM is a replacement for the
cumbersome and less general exitserver mechanism.
5The ability to alter the shared VM may be further restricted in some environ­
ments. For example, a POSTSCRIPT printer may require a program to present a
password to some statusdict operator before attempting to alter the shared VM.
Such restrictions do not ordinarily make sense in environments served by the
DISPLAY POSTSCRIPT system.

26 Extensions for the DISPLAY POSTSCRIPT System

jects are subsequently allocated; it affects both objects created
implicitly by the scanner and ones created explicitly by
operators. Such objects can be stored as elements of other ob­
jects (both shared and private) without restriction. The allocation
mode also has certain other effects that are explained below.

The modifications made to the shared VM, including creation of
new shared objects while in shared VM allocation mode, are not
affected by subsequent execution of restore. That is, a restore
does not undo the modifications to the shared VM, even if the
matching save preceded the modificatons. It does, however,
undo changes made to the private VM. Objects in shared VM are
reclaimed only by the garbage collector; this occurs when those
objects are no longer accessible from any context.

Certain standard dictionaries are located in shared VM and
others in private VM. Storing a shared object into a shared dic­
tionary is the normal way of making that object visible to other
contexts. The standard shared dictionaries are:

systemdict the standard system dictionary, which is always read-only.

shareddict a new standard shared dictionary, which is writable by any context. This
dictionary is stored as shareddict in system diet. It is permanently on the
dictionary stack, below userdict and above system diet.

SharedFontDirectory a dictionary consisting of fonts installed by executing definefont while in
shared VM allocation mode. This dictionary is stored as SharedFontDireetory
in system diet. The findfont procedure looks first in the private FontDireetory,
then in SharedFontDireetory. This is also the case for the new seleetfont
operator (see Section 10).

The standard private dictionaries are:6

userdict the standard user dictionary. This dictionary is stored as userdict in
systemdict; however, as viewed by each context, the value of userdict is the
one located in that context's private VM.

errordict the standard error dictionary (stored as errordict in system diet the same way
as userdiet).

6 Although logically there is a separate instance of each of these dictionaries in
each context's private VM, they are implemented in such a way that a separate
instance is created only if the dictionary is modified. This optimization is
invisible to a POSTSCRIPT language program.

4 MEMORY MANAGEMENT 27

statusdict the standard dictionary for product specific operators, procedures, and
parameters (stored as statusdict in systemdict the same way as userdict).7

FontDirectory a dictionary consisting of fonts installed by executing definefont while in
private VM allocation mode. Fonts so defined are private to the context that
defined them. The findfont procedure looks first in FontDirectory, then in
SharedFontDirectory. This dictionary is stored as FontDirectory in
systemdict the same way as userdict. However, when shared VM allocation
mode is in effect, the name FontDirectory is temporarily rebound to the value
of SharedFontDirectory so that only shared fonts are visible; this ensures
correct behavior of fonts that are defined in terms of other fonts.

$error a dictionary accessed by the built-in error handler procedures (stored as $error
in userdict).

This organization is designed to pennit font definitions to be ex­
ecuted in either private or shared VM allocation mode. In the
latter case, the font dictionary is created in shared VM and the
definefont enters it into SharedFontDirectory, where it is
available to all contexts.

Although the principal intended use of shared VM is to hold font
definitions, it is not limited to such use. Any definitions that are
needed by several contexts may be placed in shared VM, saving
both space and time. Additionally, shared VM can be used for
active communication among contexts. However, several
guidelines on use of shared VM must be observed in order to
avoid unexpected behavior:

• If a shared program defines a dictionary (or other data
structure) to hold temporary data during execution of the
program, it should create the dictionary in private VM upon
first use of the program in a given execution context. Using
a shared dictionary for this purpose could result in inter­
ference between multiple contexts executing the same
program.

• For the reason just given, the prologues for most existing
POSTSCRIPT language applications may not work correctly
if loaded into shared VM. Such prologues need to be
restructured to segregate the constant infonnation, such as
procedure definitions, from the variable infonnation.

7statusdict is private instead of shared for compatibility with POSTSCRIPT
printers, in which certain device specific parameters are set by storing into
statusdict.

28 Extensions for the DISPLAY POSTSCRIPT System

• Programs that deliberately modify shared VM in order to
accomplish inter-context communication may wish to take
advantage of the mutual exclusion and synchronization
primitives described in Section 5.

5 MULTIPLE EXECUTION CONTEXTS

The DISPLAY POSTSCRIPT system is able to support the execu­
tion of multiple POSTSCRIPT language programs concurrently.
This capability is required when multiple application programs
share a single display system and window system. Additionally,
it is sometimes advantageous for a single application to be struc­
tured as multiple concurrent processes. In this section, we
describe the language extensions for managing the interactions
between multiple execution contexts.

Applications normally access the DISPLAY POSTSCRIPT system
through the Client Library, which provides access to the
POSTSCRIPT imaging capabilities via procedures that can be
called from an implementation language such as C or Pascal.
The Client Library includes procedures for creating, communi­
cating with, and destroying POSTSCRIPT execution contexts.
Strictly speaking, the Client Library facilities are not part of the
POSTSCRIPT language definition; they are described in the Client
Library Reference Manual.

Terminology and execution model

A POSTSCRIPT execution context (hereafter called simply a
'context') consists of all the state that is visible to a running
POSTSCRIPT language program. This state includes:

• an independent thread of control. Multiple threads can be in
progress concurrently.

• a set of stacks: operand stack, dictionary stack, execution
stack, and graphics state stack. Starting from these stacks,
one can access all state visible to a POSTSCRIPT language
program, such as dictionaries, paths, devices, etc.

• a private VM or space, discussed below.

• a shared VM, which is uniformly visible to all contexts (see
Section 4).

4 MEMORY MANAGEMENT 29

• standard input and output files. In the DISPLAY
POSTSCRIPT system, these provide a means for communi­
cating with an application program .

• miscellaneous state variables, such as the current view clip
(see Section 13), garbage collector control parameter
(Section 4), object output format parameter (Section 3), and
array packing mode (Appendix B). Unless otherwise docu­
mented, any parameter that is not part of VM is private to
each context. When a new context is created, all such
parameters are initialized to their default state.

A space is what we have called a private VM in Section 4. It
includes userdict and all new composite objects created during
normal execution of a context (except when the context invokes
setshared and alters shared VM).

In the usual case of multiple independent contexts serving mul­
tiple independent applications, each context has its own space.
Thus, the behavior of the contexts is decoupled to the maximum
extent possible. Contexts can interact only by deliberately alter­
ing shared VM; this is normally done only for the purpose of
installing shared definitions such as fonts. At all other times, one
can think of each context as a self-contained 'virtual printer'.

However, it is also possible for two or more contexts to use the
same space. This implies a much closer degree of coupling
among the contexts, since they must cooperate clos~ly to main­
tain their common space in a consistent state. This arrangement
makes sense when mUltiple contexts are serving a single appli­
cation program. For example, an application may manage mul­
tiple instances of itself, as in a text editor with multiple windows.
Or an application may itself be organized as several concurrent
activities, such as tracking user interactions in the foreground
while updating the displayed image in the background.

An application program can call Client Library procedures, not
described here, to create multiple contexts that use the same
space. Additionally, an executing POSTSCRIPT language program
can create a new context sharing the current context's space by
executing the fork operator. It can also await completion of a
previously forked context by executing the join operator.

When multiple contexts share a single space, they require a

30 Extensions for the DISPLAY POSTSCRIPT System

means to synchronize their activities. To facilitate' this, the lan­
guage has been extended to include two new types of objects and
several new operators for manipulating them.

A lock is a mutual exclusion semaphore that can be used by
cooperating contexts to guard against concurrent access to data
that they are sharing. A context acquires a lock before accessing
the data and releases it afterward. During that time, other con­
texts are prevented from acquiring the lock, thus preventing them
from accessing the data when it is in a possibly inconsistent
state. The association between a lock object and the data
protected by the lock is entirely a matter of programming con­
vention.

A condition is a binary semaphore that can be used by
cooperating contexts to synchronize their activity. One or more
contexts can wait on a condition, i.e., suspend execution for an
arbitrary length of time until notified by another context that the
condition has been satisfied. Once again, the association between
the condition object and the actual event or state that it
represents is a matter of programming convention.

Although the synchronization primitives are primarily intended
for use by multiple contexts that share a single space, they can
also be used by any contexts to synchronize access to data in
shared VM. Of course, this requires prearrangement among all
contexts involved; the lock and condition objects used for this
purpose must themselves be in shared VM.

Programming considerations

In any environment that supports concurrent execution of inde­
pendent threads of control, there is always the possibility of
deadlock. The most familiar form of deadlock arises among two
or more contexts when each waits for a notification from the
other or each attempts to acquire a lock already held by the
other. Another deadlock situation arises when all available com­
munication buffers become filled with data for a context that is
waiting for notification from some other context, but the other
context cannot proceed because it has no way to communicate.
Such deadlocks can be avoided only through careful system and
application design.

5 MULTIPLE EXECUTION CONTEXTS 31

A program should not make any assumptions regarding the
scheduling of contexts. In some environments, the POSTSCRIPT
interpreter may switch control among contexts at arbitrary times
(i.e., preemptively); therefore, program execution in different
contexts may be interleaved arbitrarily. Preemption may occur
even within a single operator, such as one that causes a
POSTSCRIPT language procedure' to be executed or that reads or
writes a file. Therefore, to ensure predictable behavior, contexts
should use the synchronization primitives to control access to
shared data.

Locks and conditions are ordinarily used together in a fairly styl­
ized way; the language primitives are organized with this way of
using them in mind. The monitor operator acquires a lock
(waiting if necessary), executes an arbitrary POSTSCRIPT lan­
guage procedure, then releases the lock. The wait operator is
executed within a procedure invoked by monitor; it releases the
lock, waits for the condition to be satisfied, and reacquires the
lock. The notify operator indicates that a condition has been
satisfied and resumes any contexts waiting on that condition.

The recommended style of use of wait and notify is based on the
notion that a context first waits for a shared data structure to
reach some desired state, then perfonns some computation based
on that state, and finally alerts other contexts of any changes it
has made to the data. A lock and a condition are used to imple­
ment this protocol. The lock protects against concurrent access to
the data; the condition is used to notify other contexts that some
potentially interesting change has taken place.8

This protocol is illustrated by the following two program frag­
ments; note that they are likely to be executed by different con­
texts.

8Locks and conditions are treated separately because one may want to have
several conditions that represent distinct states of the same shared data.

32 Extensions for the DISPLAY POSTSCRIPT System

lock1
{

... boolean expression testing monitored data ...
{exit} {lock1 cond1 wait} ifelse

} loop
... computation involving monitored data ...

} monitor

lock1
{

... computation that changes monitored data ...
cond1 notify

} monitor

The first program executes monitor to acquire the lock lockl; it
must do so to safely access the shared data associated with it.
The program then checks whether the boolean expression has
become true; it waits on the condition condl (repeatedly if
necessary) until the expression evaluates to true. Now, while still
holding the lock, it performs some computation based on this
state of the shared data; note that it might alter the data in such a
way that the boolean expression would evaluate false. Finally, it
releases lockl by leaving the procedure invoked by monitor.

The second program acquires lockl and then performs some
computation that alters the data in a way that might favorably
affect the outcome of the boolean expression. It then notifies
condl and releases lockl. Any other context that is suspended at
the wait in the first program now resumes and gets a chance to
re-evaluate the boolean expression.

Note that it is unsafe to assume that the state tested by the
boolean expression is true immediately after resumption from a
wait. Even if it was true at the moment of the notify, it might
have become false due to intervening execution by some other
context. Notifying condl does not necessarily certify that the
value of the boolean expression is true, only that it might be true.
Programs that conform to this protocol are immune from dead­
locks due to 'lost notifies' or malfunctions due to 'extra notifies' .

5 MULTIPLE EXECUTION CONTEXTS 33

Restrictions

Each context has its own private pair of standard input and out­
put files. That is, different contexts obtain different file objects
as a result of executing currentfile or applying the file operator
to the names '%stdin' and '%stdout'. A context should not at­
tempt to make its standard input and output files available for
use by other contexts; doing so will cause unpredictable be­
havior.

The standard input file carries data addressed to this context by
the application; the standard output file carries data identified as
coming from the current context to the application. Obviously, a
program that executes fork must transmit the identity of the new
context to the application in order for the application to address
data to that context. (However, doing so is not always required,
since some forked contexts have no need to communicate over
their standard input and output files.)

If multiple contexts share the same space, the semantics of save
and restore become somewhat problematical. The operation per­
formed by restore is logically to restore the entire space (i.e., the
private VM) to its state as of the matching save. If one context
does this, another context sharing the same space might observe
the effect of the restore at some totally unpredictable time
during its own execution; that is, its recent computations would
be undone unexpectedly. This behavior is clearly not useful.

Therefore, if any context executes a save, all other contexts shar­
ing the same space are suspended until the original context ex­
ecutes the matching restore. This ensures that the restore does
not disrupt the activities of those other contexts. This restriction
applies only to contexts sharing the same space; contexts associ­
ated with other spaces proceed unhindered.9

Additionally, there are some restrictions on the synchronization
operators that a context may execute while it has an unmatched
save pending. For example, attempting to acquire a lock that is
already held by another context sharing the same space is not
allowed since it would surely lead to deadlock.

9Note that save and restore do not affect shared VM; therefore, contexts with
separate spaces cannot interfere with each other by executing save and restore.

34 Extensions for the DISPLAY POSTSCRIPT System

If a context terminates when it has an unmatched save pending,
an automatic restore is executed, thereby allowing other con­
texts to proceed.

As a practical matter, save and restore are not of much use when
a space is shared among multiple contexts. Programs that are
organized in this way should avoid using save and restore. On
the other hand, programs that are organized as one space per
context can use save and restore without restriction. This is
especially important to maintain compatibility with existing
printing applications, font products, etc.

Operators

For the context operators, a context is an integer that identifies a
POSTSCRIPT execution context. Each context has a unique iden­
tifier, whether it is created by calling a client library procedure or
by executing the POSTSCRIPT fork operator. This integer iden­
tifies the context during communication between the application
and the DISPLA Y POSTSCRIPT system as well as during execution
of the join and detach operators. Identifiers for contexts that
have terminated become invalid and are not reused during the
lifetime of any currently active session. The currentcontext
operator returns the identifier for the context that is executing.

A context can suspend its own execution by any of a variety of
means: execute the wait, monitor, or yield operators or return
from its top-level procedure to await a join. The context retains
all the state it had at the moment of suspension and can or­
dinarily be resumed from the point of suspension.

A context can terminate by executing the quit operator or as a
result of an explicit termination request from the Client Library.
Termination also occurs if an error occurs that is not caught by
an explicit use of stopped. When a context terminates, its stacks
are destroyed, its standard input and output files are closed, and
its context identifier becomes invalid.

There is no hierarchical relationship among contexts. Termina­
tion of a context has no effect on other contexts that it may have
created. An integer that identifies a context has the same mean­
ing in every context; it may be referenced in a context different
from the one that created it.

5 MULTIPLE EXECUTION CONTEXTS 35

The objects lock and condition are distinct types of POSTSCRIPT
object. They are composite objects in the sense that their values
occupy space in VM separate from the objects themselves; when
a lock or condition object is stored in multiple places, all the
instances share the same value. However, the values of locks and
conditions are not directly accessible; they are accessed im­
plicitly by the synchronization operators described below.

An invalidcontext error occurs if an invalid context identifier is
presented to any of the context operators or if any of the pro­
gramming restrictions are violated.

6 USER OBJECTS

Some applications require a convenient and efficient way to refer
to POSTSCRIPT language objects previously constructed in VM.
Some types of objects, such as dictionaries and gstates, are not
visible as data outside the POSTSCRIPT interpreter; that is, they
cannot be represented or referenced directly in any encoding of
the language, even binary object sequences. Instead, the appli­
cation must refer to such objects by means of surrogate objects,
such as names or integers, whose values can be encoded and
communicated easily.

The traditional way to accomplish this is to store such objects as
elements of dictionaries or arrays and later to refer to them with
their dictionary keys or array indices. In a POSTSCRIPT language
program written by a programmer, this approach is natural and
straightforward. When the program is generated mechanically by
another program, however, managing the space of surrogate ob­
jects (names or integers) requires additional bookkeeping. This is
true particularly when the set of objects being managed is
dynamically varying and when the responsibility for creating and
referencing them is distributed among multiple libraries or pack­
ages.

pswrap provides a way for an application program to refer to
user objects conveniently. This facility is described in the
pswrap Reference Manual.

To support user objects, the DISPLAY POSTSCRIPT system

36 Extensions for the DISPLAY POSTSCRIPT System

provides three new operations: defineuserobject,
undefineuserobject, and execuserobject, which manipulate an
array named UserObjects. These operations introduce no fun­
damentally new capabilities; their behavior can be described en­
tirely in the POSTSCRIPT language and they can be implemented
as procedures rather than as operators. 1 Orrhey have been made a
standard part of the language so that pswrap can depend on their
being available.

The following example illustrates the intended use of user ob­
jects.

!Times-Roman findfont 12 scalefont
17 exch defineuserobject

The first line of the example creates an arbitrary object (in this
case, a font dictionary). The second line associates the user ob­
ject 17 with this dictionary. Subsequently,

17 execuserobject setfont

pushes the font dictionary on the operand stack, from which it is
taken by setfont. execuserobject performs an implicit 'exec' of
this object; however, since the object in this example is not ex­
ecutable, the result of the implicit 'exec' is to push the object
onto the operand stack.

7 GRAPHICS STATE OBJECTS

The POSTSCRIPT graphics state consists of a large collection of
parameters that are accessed implicitly by the imaging operators.
These parameters can be read and altered individually; the entire
graphics state can be saved by pushing it on a stack (gsave) and
restored by popping it from the stack (grestore).

This organization serves the needs of printing applications very
well, assuming that the documents to be printed are reasonably
structured. However, in interactive applications to be served by
the DISPLAY POSTSCRIPT system, a program needs to switch its

lOUser objects are entirely different from user names, described in Section 2.
User names are part of the binary encoding extensions of the POSTSCRIPT
language syntax.

6 USER OBJECTS 37

attention among multiple, more-or-Iess independent imaging
contexts in an unpredictable order. Switching entire graphics
states by altering its components individually is cumbersome and
inefficient.

To address this need, we have introduced a new type of object,
the gstate, that is capable of representing an entire graphics state.
A gstate is a composite object that occupies VM and that con­
forms to the normal save/restore discipline; it is created by the
gstate operator. The operators setgstate, currentgstate, and
copy read and alter a gstate' s value as a whole by copying it to
or from the current graphics state or another gstate object. There
is no way to select individual elements of a gstate' s value
directly; however, this can be accomplished by copying the
gstate to the current graphics state temporarily and then access­
ing it using the regular graphics state operators.

Note that a gstate object captures every element of a graphics
state, including such things as the current path and current clip
path. For example, if a non-empty current path exists at the time
gstate or currentgstate is executed, that path will be reinstated
by the corresponding setgstate. Unless this effect is specifically
desired, it is best to snapshot a graphics state only when the cur­
rent path is empty and the current clip path is in its default state.

8 USER PATHS

A user path is a POSTSCRIPT language procedure consisting
entirely of path construction operators and their coordinate
operands expressed as literal numbers. In other words, it is a
completely self-contained description of a path in user space.
There exist several new operators that combine execution of a
user path description with rendering the resulting path (i.e., using
it for filling or stroking).

The construction and use of a user path are best illustrated by an
example:

38 Extensions for the DISPLAY POSTSCRIPT System

{
ucache % this is optional
100 200 400 500 setbbox % this is required
150 200 moveto
250 200 400 390 400 460 curveto
400 480 350 500 250 500 curveto
100 400 lineto
closepath
}
ufill

The tokens enclosed in '{' and '}' constitute a user path defini­
tion. The setbbox operator, with its four numeric operands
(integers or reals), . must appear first, or immediately after the
optional ucache; the setbbox and ucache operators are described
below. The remainder of the user path consists of path construc­
tion operators and their operands, in any sensible order. The path
is assumed to start out empty, so the first operator after the
setbbox must be an absolute positioning operator (moveto, arc,
or arcn).

ufill is one of the new combined path construction and rendering
operators. Its effect is to interpret the user path as if it were an
ordinary POSTSCRIPT language procedure (in the context of
systemdict), then to perform a fill. Moreover, it performs a
newpath prior to interpreting the user path and it encloses the
entire operation with a gsave and a grestore. Thus, the overall
effect of the above example is to define a path and to paint its
interior with the current color; it leaves no side effects in the
graphics state (or anywhere else except in raster memory).

The user path rendering operators can be fully described in terms
of the existing POSTSCRIPT language facilities; they introduce no
fundamentally new capability. There are several motivations for
having an integrated user path facility as a standard part of the
language:

• It closely matches the needs of many application programs.
In particular, it fits very well with the DISPLAY
POSTSCRIPT Client Library organization. If the language
did not provide a user path facility, most applications
would have to invent one .

• A user path consists of path construction operators and

8 USER PATHS 39

numeric operands, not arbitrary computations. Thus, the
user path is self-contained; its semantics are guaranteed not
to depend on an unpredictable execution environment. Ad­
ditionally, the information provided by setbbox assures that
the coordinates of the path will be within predictable
bounds. As a result, interpretation of a user path may be
much more efficient than execution of an arbitrary
POSTSCRIPT procedure. I I

• Because a user path is represented as a procedure object
and is self-contained, the POSTSCRIPT interpreter can save
the results of executing it in a cache. This may eliminate
redundant interpretation of the same path definition, which
is important in some DISPLA Y POSTSCRIPT applications
that update the display frequently.

User path construction

A user path is an array or packed array object consisting of the
following sequences of elements:

ucache
/Ix /ly Ufx Ufy setbbox
xy moveto
dx dy rmoveto
x y lineto
dx dy rlineto
x1 Y1 x2 Y2 x3 Y3 curveto
dX1 dY1 dX2 dY2 dX3 dY3 rcurveto
x y f ang1 ang2 arc
x y fang 1 ang2 arcn
x1 Y1 x2 Y2 f arct
closepath

The permitted operators are all the standard POSTSCRIPT

operators that append to the current path, with the exception of
arcto and charpath, which are not allowed. Additionally, there
are three new user path construction operators: llcache, setbbox,
and arct, which are described below. The permitted operands are

lIThe user path rendering operators that are defined not to alter the current path
may not create an explicit path at all. Indeed, if the bounding box lies com­
pletely outside the current clipping path, execution of the path definition and
the rendering operation may be bypassed altogether. This behavior is, however,
completely invisible to the POSTSCRIPT language program.

40 Extensions for the DISPLAY POSTSCRIPT System

POSTSCRIPT number literals, i.e., integers and reals. The correct
number of operands must be supplied to each operator. Any
deviation from these rules will result in a typecheck error when
the user path is interpreted.

The user path begins with an optional ucache, whose purpose is
described below. Immediately following this must be a setbbox
sequence, which establishes a bounding box (in user space)
enclosing the entire path. All coordinates specified as operands
to the subsequent path construction operators must fall within
these bounds; if they don't, a rangecheck error will occur when
the user path is interpreted.

The path construction operators in a user path may appear either
as executable name objects, such as 'moveto', or as actual
POSTSCRIPT operator objects, such as the value of 'moveto' in
systemdict. An application program constructing a user path
specifies name objects; however, applying bind to the user path
(or to a procedure containing it) ordinarily causes the names to
be replaced by the operator objects themselves.

The user path rendering operators interpret a user path as if
systemdict were the current dictionary (see the definition of
uappend); thus, the path construction operators contained in the
user path are guaranteed to have their standard meanings. It is
illegal for a user path to contain names other than the standard
path construction operator names. Aliases are prohibited so as to
ensure that the user path definition is self-contained and its
meaning is entirely independent of its execution environment.

Encoded user paths

An encoded user path is a very compact representation of a user
path. It is an array consisting of two POSTSCRIPT string objects
(or an array and a string). The strings effectively encode the
operands and operators of an equivalent user path procedure,
using a compact binary encoding.

The encoded user path representation is accepted and understood
by the user path rendering operators such as utili. Those
operators interpret the data structure and perform the encoded
operations; it does not make sense to think of 'executing' the

8 USER PATHS 41

encoded user path directly.12 When we say that an encoded value
represents an operation such as moveto, we mean the standard
moveto operation; as with unencoded user paths, there is no op­
portunity to redefine the meanings of operators represented in an
encoded user path.

The first element of an encoded user path is a data string or data
array containing numeric operands; the second is an operator
string containing encoded operators. This two-part organization
is for the convenience of application programs that generate en­
coded user paths; in particular, operands always fallon natural
addressing boundaries. All the characters in both strings are in­
terpreted as binary numbers, not as ASCII character codes.

If the first element is a string, it is interpreted as an encoded
number string, whose representation is described in Section 2. If
it is an array, its elements are simply used in sequence; they must
all be numbers.

The operator string is interpreted as a sequence of encoded path
construction operators, one operation code (opcode) per charac­
ter. The allowed opcode values are as follows:

o setbbox
1 moveto
2 rmoveto
3 lineto
4 rlineto
5 curveto
6 rcurveto
7 arc
8 arcn
9 arct

10 c10sepath
11 ucache

n > 32 repetition count: repeat next opcode n - 32 times

Associated with each opcode in the operator string are zero or
more operands in the data string or data array. The order of the

12In principle, one could write a POSTSCRIPT language program to perform this
interpretation; this is analogous to writing an emulator for another language.
Note that the operator encoding is specialized to user path defmitions; it has
nothing to do with the alternative external encodings of the POSTSCRIPT lan­
guage, which are described in Section 2.

42 Extensions for the DISPLAY POSTSCRIPT System

operands is the same as in an ordinary user path. For example,
execution of a Iineto (opcode 3) consumes an x operand and a y
operand from the data sequence.

If the encoded user path does not conform to the rules described
above, a typecheck error will occur when the path is interpreted.
Possible errors include invalid opcodes in the operator string or
premature end of the data sequence.

User path cache

Interactive applications using the DISPLAY POSTSCRIPT system
typically define certain paths that must be redisplayed frequently
or that are repeated many times. To optimize interpretation of
such paths, the DISPLAY POSTSCRIPT system provides a facility
called the user path cache. This cache, analogous to the font
cache, retains the results of interpreting user path definitions.
When the POSTSCRIPT interpreter encounters a user path that is
already in the cache, it substitutes the cached results instead of
reinterpreting the path definition.

There is a non-trivial cost associated with placing a user path in
the cache: extra computation is required and existing paths may
be displaced from the cache. Since most user paths are used once
and immediately thrown away, it does not make sense to place
every user path in the cache. Instead, the application program
must explicitly identify the user paths that are to be cached. It
does so by including the ucache operator as the first element of
the user path definition (before the setbbox sequence), as shown
in the following example:

ICircle1 {ucache -1 -1 1 1 setbbox 0 0 1 0 360 arc}
cvlit def

Circle1 ufill

The ucache operator notifies the POSTSCRIPT interpreter that the
enclosing user path should be placed in the cache if it is not
already there or obtained from the cache if it is. This cache
management is not performed directly by ucache; instead, it is
performed by the user path rendering operator that interprets the
user path (ufill in this example). This is because the results

8 USER PATHS 43

retained in the cache differ according to what rendering opera­
tion is perfonned.13 The utili produces the same effects on the
current page whether or not the cache is accessed.

Caching is based on the value of a user path object. That is, two
user paths are considered the same for caching purposes if all
elements of one are equal to the corresponding elements of the
other, even if the objects themselves are not equal. Thus, a user
path placed in the cache need not be explicitly retained in VM;
an equivalent user path appearing literally later in the program
can take advantage of the cached infonnation. (Of course, if it is
known that a given user path will be used many times, defming it
explicitly in VM avoids creating it multiple times.)

User path caching, like font caching, is effective across trans­
lations of the user coordinate system, but not across other trans­
fonnations such as scaling or rotation. In other words, multiple
instances of a given user path rendered at different places on the
page take advantage of the user path cache when the CTM is
altered only by translate. If the CTM is altered by scale or
rotate, the instances will be treated as if they were described by
different user paths.

Two other features of the above example should be noted. First,
the user path object is explicitly saved for later use (as the value
of 'Circle1' in this example). This is done in anticipation of
rendering the same path multiple times (in this case, a one-unit
circle). Second, the cvlit operator is applied to the user path ob­
ject in order to remove its executable attribute. This is to ensure
that the subsequent reference to 'Circle1' simply pushes the ob­
ject on the operand stack rather than inappropriately executing it
as a procedure. (It is unnecessary to do this if the user path isn't
saved for later use but is simply consumed immediately by a user
path rendering operator.)

Operators

There are four categories of user path operators:

• New path construction operators, intended for inclusion in

13Por this reason, it does not make sense to invoke llcache outside a user path;
doing so has no effect.

44 Extensions for the DISPLAY POSTSCRIPT System

user path definitions (but not limited to such use), i.e.,
setbbox, arct.

• User path rendering operators, combining interpretation of
a user path with a rendering operation (fill or stroke), i.e.,
ufill, ueofill, ustroke .

• User path cache operators, providing the ability to control
and query the operation of the user path cache, i.e., ucache,
ucachestatus, setucacheparams.

• miscellaneous operators that involve user paths, i.e.,
uappend, upath, ustrokepath, inufill, inueofill,
inustroke

A userpath is one of the following:

• an ordinary user path: an array (which need not be
executable) whose length is at least 5;

• an encoded user path: an array of two elements. The first
element must be either an array whose elements are all
numbers or a string that can be interpreted as an encoded
number string (see Section 2). The second must be a string
that encodes a sequence of operators, as described above.

In either case, the value of the object must conform to the rules
for constructing user paths, as detailed in preceding sections; that
is, the operands and operators must appear in the correct se­
quence. If the user path is malformed, a typecheck error will
occur.

Several of the operators take an optional matrix as their topmost
operand. This is a six-element array of numbers that describe a
transformation matrix, as described in Section 4.4 of the
POSTSCRIPT Language Reference Manual. A matrix is distin­
guished from a user path (which is also an array) by the number
and types of its elements.

In several of the descriptions of user path operators, the seman­
tics of an operator are described as being 'equivalent' to a
POSTSCRIPT language program making use of lower-level
operators. This does not necessarily mean that the implemen­
tation executes those lower-level operators explicitly; in par­
ticular, redefining those operator names will not affect the be­
havior of the high-level operator. The effect is as if the

8 USER PATHS 45

'equivalent' POSTSCRIPT language program has had bind ap­
plied to it with system diet as the current dictionary. Further­
more, the 'equivalent' program cannot take advantage of the user
path cache.

Most of the user path rendering operators have no effect on the
graphics state. The absence of side effects is a significant reason
for the efficiency of the operations; in particular, there is no need
to build up an explicit current path only to discard it after one
use. Although the behavior of the operators can be described as
if the path were built up, rendered, and discarded in the usual
way, the actual implementation of the operators is optimized to
avoid unnecessary work. Note that there is no user path clip
operation. Since the whole purpose of the clip operation is to
alter the current clipping path, there is no way to avoid actually
building the path. The best way to clip with a user path is:

newpath userpath uappend clip newpath

This operation can still take advantage of information in the user
path cache under favorable conditions.

The uappend operator and the rendering operators defined in
terms of uappend, such as utili, perform a temporary adjustment
to the current transformation matrix as part of their execution.
This adjustment consists of rounding the tx and ty components of
the CTM to the nearest integer values. The purpose of this is to
ensure that scan conversion of the user path produces uniform
results when it is placed at different positions on the page
through translation; it is especially important if the user path is
cached. This adjustment is not ordinarily visible to a
POSTSCRIPT language program; it is not mentioned in the
descriptions of the individual operators.

9 RECTANGLES

Rectangles are used very frequently, especially in display appli­
cations. Thus, it is useful to have a few primitives to render rec­
tangles directly. This is a convenience to application programs;
additionally, the foreknowledge that the figure will be a rec­
tangle results in significantly optimized execution.

46 Extensions for the DISPLAY POSTSCRIPT System

A rectangle is defined in the user coordinate system. The result
produced is identical to that of a rectangle defined as an ordinary
path. The rectangle operators are rectfill, rectstroke, rectclip,
and rectviewclip.

The rectangle operators accept three different fonns of operands.
The first fonn is simply four numbers: x, y, width, and height,
which describe a single rectangle. The rectangle's sides are
parallel to the user space axes; it has comers located at (x, y),
ex + width, y), ex + width, y + height), and ex, y + height). Note
that width and height can be negative.

The other two fonns are an indefinitely long sequence of num­
bers, represented either as an array or as an encoded number
string; this representation is described in Section 2. The sequence
must contain a multiple of four numbers; each group of four con­
secutive numbers is interpreted as the x, y, width, and height
values defining a single rectangle. The effect produced is equiv­
alent to specifying all the rectangles as separate subpaths of a
single combined path, which is then rendered by a single fill,
stroke, or clip operator.

All rectangles are drawn in a counterclockwise direction in user
space, regardless of the signs of the width and height operands.
This ensures that when multiple rectangles overlap, all of their
interiors are treated as 'inside' the path according to the non-zero
winding number rule. In the operator descriptions in Section 16,
the programs stated to be 'equivalent' to the operators are valid
only for positive width and height values; more complex
programs are required to deal with negative values.

10 FONT-RELATED EXTENSIONS

Explicit character positioning

The standard operators for setting text (show and its variants) are
designed according to the assumption that characters are or­
dinarily shown with their standard metrics. Means are provided
to vary the metrics in certain limited ways: the ashow operator
systematically adjusts the widths of all characters of a string
during one show operation; the optional Metrics entry of a font

9 RECTANGLES 47

dictionary adjusts the widths of all instances of particular charac­
ters of a font.

Certain applications that set text require very precise control over
the positioning of each character. Although it is possible to posi­
tion characters individually by executing a moveto and a single
character show for each one, this approach is too cumbersome
and expensive for setting more than small amounts of text. When
an application has gone to the trouble of computing the positions
of individual characters, it should have a reasonable way to ex­
press those positions directly.

Three new variants of the show operator have been defined to
streamline the setting of individually positioned characters:
xyshow, xshow, and yshow. Each operator is given a string of
text to be shown, just the same as show. Additionally, it expects
a second operand, which is either an array composed of numbers
or a string that can be interpreted as an encoded number string as
described in Section 2. The numbers are used in sequence to con­
trol the widths of the characters being shown, i.e., the spacing
between each character and the next. They completely override
the standard widths of the characters.

Each number (or, for xyshow, each pair of consecutive numbers)
is associated with the corresponding character of the text string
being shown. For a basic POSTSCRIPT font, this is the entire
story. For a composite font, which may have a complex mapping
from characters in the show string to glyphs rendered on the
page, successive elements of the number array or the encoded
number string are associated with successively rendered glyphs.

Font selection

Applications that frequently switch fonts require a streamlined
means for doing so. The canonical sequence findfont, scalefont
(or makefont), and setfont appears so frequently that most ap­
plications define a procedure to perform it. The cost of this pro­
cedure, as well as findfont (which is itself a procedure) and
scalefont (which performs rather extensive computations), can
have a serious impact on efficiency.

To better support the needs of applications, we have introduced a

48 Extensions for the DISPLAY POSTSCRIPT System

new operator, selectfont, that combines the actions of the above
three operators. This operator takes advantage of information in
the font cache in order to avoid calling findfont or performing
the scalefont or makefont computations unnecessarily. Thus, in
the common case of selecting a font and size combination that
has been used recently, selectfont works with great efficiency.

Outline and bitmap font coordination

In display systems, the resolution of the device is typically quite
low; resolutions in the range of 60 to 100 pixels per inch are
common. When characters are produced algorithmically from
outlines in typical sizes (10 to 12 points), the results are often not
as legible as they need to be for most comfortable reading. The
usual way to deal with this problem is to use screen fonts con­
sisting of bitmap characters that have been tuned manually. The
hand tuning increases legibility, possibly at the expense of
fidelity to the original character shapes.

The DISPLAY POSTSCRIPT system includes the ability to take ad­
vantage of hand tuned bitmap fonts when they are available. This
facility is fully integrated with the standard POSTSCRIPT font
machinery; its operation is almost totally invisible to a
POSTSCRIPT language program.

When a program sets text by executing an operator such as
show, the POSTSCRIPT interpreter first consults the font cache in
the usual way. If the character is not there, it next consults the
current device, requesting it to provide a bitmap form of the
character at the required size. If the device can provide such a
bitmap, it does so; the POSTSCRIPT interpreter places the bitmap
in the font cache for subsequent use. If there is no such character,
the interpreter executes the character description in the usual
way, placing the scan converted result in the font cache.

The mechanism by which bitmap characters are provided by a
device is not part of the language and is entirely hidden from a
POSTSCRIPT language program. In an integration of the DISPLAY

POSTSCRIPT system with a window system, the implementation
of the device is the responsibility of the window system. Thus,
the conventions for locating and representing bitmap characters
are environment dependent. (Re-encoding a font preserves the

10 FONT-RELATED EXTENSIONS 49

association with bitmap characters; most other modifications to a
font dictionary destroy the association.)

Bitmap fonts are typically provided in one orientation and a
range of sizes from 10 to 24 points. (Beyond 24 points, charac­
ters scan converted from outlines are perfectly acceptable.) The
POSTSCRIPT interpreter can usually choose a bitmap character
whose size is sufficiently close to the one requested and render it
directly.

Associated with each hand tuned bitmap is a width, i.e., displace­
ment from the origin of the character to the origin of the next
character. This width is also hand tuned for maximum legibility;
it is an integer interpreted in device space (i.e., in character
space, since pixels are pixels). It is usually different from the
width produced when the same character is scan converted from
the font definition, since that width (the scaleable width) is
defined by real numbers that are scaled according to the re­
quested font size.14

To achieve true fidelity between displays and printers when
rendering characters, an application must use the scaleable
widths to position characters on the display. Unfortunately, this
leads to uneven letter spacing due to the need to round character
positions to device pixel boundaries; at display resolution, this
unevenness is objectionable. On the other hand, using the integer
bitmap widths to produce evenly spaced text on the display leads
to incorrect results on the printer. The only reasonable solution is
to use bitmap widths on the display and scaleable widths on the
printer and to compensate for the positioning discrepancies in
some other way.

Many word processing and page layout programs already use the
following technique when rendering text on the display:

• Set the characters according to their integer bitmap widths,
but keep track of the accumulated difference between the
bitmap widths and the true scaleable widths .

• Adjust the spaces between words to compensate for the ac-

14Hand tuned bitmaps are carefully designed so that the bitmap widths and
scaleable widths are as similar as possible when averaged over large amounts
of text.

50 Extensions for the DISPLAY POSTSCRIPT System

cumulated error. The most accurate way to do this is first to
compute the error for an entire line and then to distribute
the accumulated error among all the spaces in that line.

This technique maintains fidelity between display and printer on
a line-by-line basis.

An application can control whether bitmap widths or scaleable
widths are to be used on a per-font basis by adding a new entry,
BitmapWidths, to the top-level font dictionary. If this entry is
present, it must have a boolean value: true indicates that bitmap
widths are to be used when the device provides bitmaps for this
font; false indicates that scaleable widths are to be used. If the
entry is not present or if the device does not provide bitmaps for
this font, the normal scaleable widths are used always.

A device implementation ordinarily uses hand-tuned bitmaps
only when the following conditions are met:

• The coordinate system axes are perpendicular (that is, the
transformations are not skewed).

• The scale is uniform (reflections about axes are allowed).

• The angle of rotation is an even multiple of 90 degrees (0,
90, 180, or 270).

The appearance of the hand-tuned bitmaps is usually preferable
to that of scan-converted outlines for a given character at a given
point size.

Hand-tuned bitmaps are provided in a range of discrete sizes.
When a requested size falls between two discrete sizes, the
closest discrete size can be used and the widths are scaled ac­
cordingly. In all other cases, the default is to use scan-converted
outlines. In certain cases a developer may deem it preferable to
produce transformations of the bitmaps rather than scan­
converting the transformed outlines.

Three keys can be added to the top-level font dictionary to con­
trol these transformations:

ExactSize Refers to cases where there is an exact match
between the requested size and a hand-tuned bit­
map when the coordinate system axes are per-

10 FONT-RELATED EXTENSIONS 51

Key

BitmapWidths

ExactSize

InBetweenSize

TransformedChar

pendicular, the scale is unifonn, and the angle of
rotation is an even multiple of 90 degrees.

InBetweenSize Refers to cases where the requested size falls be­
tween discrete hand-tuned bitmap sizes under
the same conditions as ExactSize.

TransformedChar
Refers to cases where the transfonnation is other
than those mentioned under ExactSize con­
ditions.

Each of these keys (ExactSize, InBetweenSize, and
TransformedChar) can take one of the following values to con­
trol the use of hand-tuned bitmaps:

o
1

2

Use outline

Use closest hand-tuned bitmap size

Use transfonned hand-tuned bitmap

Not all implementations are able to transfonn hand-tuned bit­
maps. The default values for the additional keys are specified
below:

Default Value

false

1 (closest hand-tuned bitmap)

1 (closest hand-tuned bitmap)

o (outline)

11 HALFTONE DEFINITION

Half toning is the process by which continuous gray tones are
approximated by a pattern of pixels that can achieve only a
limited number of discrete gray tones. The most familiar case of
this is rendering of gray tones with black and white pixels. In the
original POSTSCRIPT language, program control of the half toning
process is provided by means of the setscreen operator,

52 Extensions for the DISPLAY POSTSCRIPT System

described in Section 4.8 of the POSTSCRIPT Language Reference
Manual.

As POSTSCRIPT interpreters are integrated with a wider assort­
ment of printing and display technologies, the language must be
extended to provide more control over details of the halftoning
process. For example, in color printing, one must specify inde­
pendent halftone screens for each of three or four color separa­
tions. In imaging on low-resolution displays, one must have fmer
control over the half toning process in order to achieve the best
approximations of gray levels or colors and to minimize artifacts.

In recognition of the need to provide new half toning processes
with new printing and display technologies, we have introduced
an extensible mechanism for defining halftones. This
mechanism, called the halftone dictionary, provides means to
define any of several types of halftones. The setscreen style of
halftone is one of these types; new types (or new variations on
those types) do not require fundamental language changes.

Remember that everything relating to halftones is, by definition,
device dependent. In general, when an application defines its
own halftones, it sacrifices portability. Associated with every
device is a default halftone definition that is appropriate for most
applications. Only relatively sophisticated applications need to
define their own halftones to achieve special effects.

Halftone dictionaries

A halftone dictionary is an ordinary POSTSCRIPT dictionary
object, certain of whose key-value pairs have special meanings.
Some of the contents of a halftone dictionary are optional and
user-definable, while other key-value pairs must be present and
have the correct semantics for the POSTSCRIPT halftone
machinery to operate properly. In this respect (as in several
others), a halftone dictionary is analogous to a font dictionary.

The graphics state includes a current halftone dictionary, which
specifies the half toning process to be used by the painting
operators. The operator currenthaiftone returns the current
halftone dictionary; sethaiftone establishes a different halftone
dictionary as the current one.

11 HALFTONE DEFINITION 53

A halftone dictionary is a self-contained description of a half ton­
ing process. Painting operations, such as fill, stroke, and show,
consult the current halftone dictionary when they require infor­
mation about the half toning process. Some of the entries in the
dictionary are procedures that are called to compute the required
information.

The POSTSCRIPT interpreter consults the halftone dictionary at
unpredictable times. Furthermore, it can cache the results inter­
nally for later use; such caching may persist through switches of
halftone dictionaries caused by sethalftone, gsave, and grestore.
For these reasons, once a halftone dictionary has been passed to
sethalftone, its contents should be considered read-only.
Procedures in the halftone dictionary must compute results that
depend only on information in the halftone dictionary, not on
outside information, and they must not have side-effects.15

Every halftone dictionary must have a HalftoneType entry
whose value is an integer. This specifies the major type of
halftoning process; the remaining entries in the dictionary are
interpreted according to the type. The halftone types currently
defined are:

1 The halftone is defined by frequency, angle, and spot func­
tion (corresponding to the existing setscreen facility).

2 The halftone is defined by four separate frequency, angle,
and spot functions: one for each of the three primary colors
(red, green, and blue) plus gray.

3 The halftone is defined directly by a threshold array at
device resolution.

4 The halftone is defined by four threshold arrays: one for
each of the three primary colors plus gray.

If the current halftone has been defined by sethalftone instead of
by setscreen, a subsequent Cllrrentscreen will return a fre­
quency of 60, an angle of 0, and the halftone dictionary as the
spot function. If setscreen receives a dictionary as a spot func­
tion, it will ignore the frequency and angle parameters and per-

15This rules out certain 'tricks', such as the pattern fill example in the
POSTSCRIPT Language Tutorial and Cookbook, that depend on the spot function
being executed at predictable times. Such tricks continue to work for halftones
defined by setscreen, but not for halftones defined by halftone dictionaries.

54 Extensions for the DISPLAY POSTSCRIPT System

Key Type

HalftoneType integer

Frequency number

Angle number

SpotFunction procedure

fonn the equivalent of sethalftone on the dictionary. This be­
havior is for compatibility with existing applications that attempt
to alter the screen frequency or angle without providing a new
spot function. Such applications cannot produce the intended ef­
fect but still run to completion.

Spot functions

A type 1 halftone dictionary defines a halftone in terms of its
frequency, angle, and spot function. These parameters have the
same meanings as the operands given to setscreen, but they are
provided as entries in a halftone dictionary. The entries are as
follows:

Semantics

must be 1.

screen frequency, measured in halftone cells per inch in device space.

screen angle: number of degrees by which the screen is to be rotated with
respect to the device coordinate system.

procedure that defines the order in which device pixels within a screen cell are
adjusted for different gray levels.

A halftone defmed in this way produces results identical to a
halftone defined by setscreen. However, the dictionary form of
this halftone definition can work more efficiently since the
POSTSCRIPT interpreter can retain information about it in a
cache, which it is not pennitted to do for a halftone specified by
setscreen. See the previous section for a discussion of this mat­
ter.

A type 2 halftone dictionary defines a halftone as four screens in
the same manner as setcolorscreen. Instead of a single
Frequency entry, there are entries for RedFrequency,
GreenFrequency, BlueFrequency, and GrayFrequency;
likewise for Angle and SpotFunction. Color screens are not fur­
ther discussed here; see POSTSCRIPT Language Color Extensions
for more infonnation.

11 HALFTONE DEFINITION 55

Threshold arrays

A type 3 halftone dictionary defines a halftone as an array of
threshold values that directly control individual device pixels in
a halftone cell. This provides a finer degree of control over
halftone rendering; also, it pennits halftone cells to be rectan­
gular, whereas halftone cells defined by a spot function are al­
ways square. Both of these capabilities are important for low­
resolution display applications.

A threshold array is much like a sampled image: it is a
rectangular array of pixel values. However, it is defined entirely
in device space and the sample values always occupy.8 bits each.
The pixel values nominally represent gray levels in the usual
way, where 0 is black and 255 is white. The threshold array is
replicated to tile the entire device space; thus, each pixel of
device space is mapped to a particular sample of the threshold
array.

On a bilevel device (each pixel is either black or white), the
half toning algorithm is as follows. For each device pixel that is
to be painted with some gray level, the corresponding pixel of
the threshold array is consulted. If the desired gray level is less
than the pixel value in the threshold array, the device pixel is
painted black; otherwise it is painted white. For the purpose of
this comparison, gray values in the range 0 to 1 (inclusive) cor­
respond to pixel values 0 to 255 in the threshold array.

This scheme easily generalizes to monochrome devices with
multiple bits per pixel. For example, if there are 2 bits per pixel,
then each pixel can directly represent one of four different gray
levels: black, dark gray, light gray, and white, encoded as 0, 1,2,
and 3 respectively. For each device pixel that is to be painted
with some in-between gray level, the corresponding pixel of the
threshold array is consulted to detennine whether to use the next
lower or next higher representable gray level. In this situation,
the samples in the threshold array do not represent absolute gray
values but gradations between two adjacent representable gray
levels.

With this approach, it is reasonable to use the same threshold
array for monochrome displays having different numbers of gray

56 Extensions for the DISPLAY POSTSCRIPT System

Key Type

HalftoneType integer

Width integer

Height integer

Thresholds string

levels. This works because the threshold values are effectively
scaled to span the distance between adjacent representable gray
values, regardless of how many distinct gray values there are.
(Indeed, the halftone rendering algorithm for a single bit per
pixel device is simply a special case of the one for multiple bits
per pixel.)

A type 3 halftone dictionary must contain the following entries:

Semantics

must be 3.

width of threshold array, in pixels.

height of threshold array, in pixels.

threshold values. This string must be width x height characters long. The
individual characters represent threshold values as described above. The order
of pixels is the same as for a sampled image mapped directly onto device space,
with the flrst sample at the lower left corner16 and x coordinates changing faster
than y coordinates.

A halftone defined in this way can also be used with color
(RGB) displays. The red, green, and blue values are simply
treated independently as gray levels; the same threshold array
applies to each color.

However, some devices, particularly color printers, require
separate halftones for each primary color (and sometimes also
for gray). A type 4 halftone dictionary defines four separate
threshold arrays. Instead of a single Width entry, there are
entries for RedWidth, Green Width, Blue Width, and
GrayWidth; likewise for Height and Thresholds.

16that is, the corner corresponding to the minimum x and y coordinates in
device space; mathematically, this is the 'lower left' corner in a normal,
right-handed Cartesian coordinate system. Display devices typically have a
left-handed coordinate system in which y coordinates increase downward on
the screen. For such devices, the mathematical 'lower left' corner is the upper
left corner on the physical screen.

11 HALFTONE DEFINITION 57

Halftone phase

In a printer, the gray pattern tiles device space starting at the
device space origin. That is, the halftone grid is aligned such that
the lower left comer of the lower left halftone cell is positioned
at (0, 0) in device space, independent of the value of the current
transformation matrix. This ensures that adjacent gray areas will
be painted with halftones having the same phase, thereby avoid­
ing 'seams' or other artifacts.

On a display, the phase relationship between the halftone grid
and device space needs to be more flexible. This need arises be­
cause most window systems provide a scrolling operation in
which the existing contents of raster memory are copied from
one place to another in device space. This operation can alter the
phase of halftones that have already been scan converted. It is
necessary to alter the phase of the halftone generation algorithm
correspondingly so that newly painted halftones will align with
the existing ones.

The graphics state includes a pair of halftone phase parameters,
one for x and one for y. These integers define an offset from the
device space origin to the halftone grid origin. Of course, the
halftone grid does not actually have an origin, so the offset
values are actually interpreted modulo the width and height of
the halftone cell. Effectively, they ensure that some halftone cell
will have its lower left comer at (x, y) in device space.

The intended use of the halftone phase operators
(sethalftonephase and currenthalftonephase) is in conjunction
with window system operations that perform scrolling. If the ap­
plication scrolls the displayed image by (dx, dy) pixels in device
space, it should simply add dx and dy to the halftone phase
parameters; it should not worry about computing them modulo
the size of the halftone cell. This has the correct effect even if the
displayed image is composed of several different halftone
screens.

Note that the halftone phase is defined to be part of the graphics
state, not part of the device. This is because an application may
subdivide device space into multiple regions that it scrolls in­
dependently. A recommended technique is to associate a

58 Extensions for the DISPLAY POSTSCRIPT System

separate gstate (graphics state) object with each such region; this
object carries all the parameters required to image within that
region, including the halftone phase.

12 SCAN CONVERSION DETAILS

As discussed in Section 2.3 of the POSTSCRIPT Language Refer­
ence Manual, the POSTSCRIPT interpreter executes a scan
conversion algorithm to render abstract graphical shapes in the
raster memory of the output device. The details of this algorithm
have not been specified until now, since they are of little concern
to a POSTSCRIPT language program that purports to be device
independent. However, at the low resolutions typical of com­
puter displays, one must pay some attention to scan conversion
details, since variations of even one pixel's width can have a
noticeable effect on appearance.

To ensure consistent and predictable results, the scan conversion
algorithm is now specified more rigorously. This is not a lan­
guage change per se; it is a more precise description of the scan
conversion process, whose former definition was rather vague.
Additionally, the POSTSCRIPT imaging model has been extended
to include a device independent means for obtaining consistent
line widths during stroke operations.

Scan conversion rules

The rules below enable one to determine precisely which device
pixels will be affected by a painting operation. These rules apply
to the DISPLAY POSTSCRIPT system and to future Adobe
POSTSCRIPT products based on the same software technology;
they do not necessarily apply to older products.

In the following descriptions, all references to coordinates and
pixels are in device space. A 'shape' is a path to be painted with
the current color or with an image; its coordinates are mapped
into device space but not rounded to device pixel boundaries. At
this level, curves have been flattened to sequences of straight
lines and all 'insideness' computations have been performed.

Pixel boundaries fall on integer coordinates in device space. A

11 HALFTONE DEFINITION 59

pixel is a square region identified by the coordinates of its min­
imum x, minimum y comer. A pixel is a half-open region, mean­
ing that it includes half of its boundary points. More precisely,
for any point whose real number coordinate is (x, y), let
i = floor(x) and j = floor(y). The pixel that contains this point is
the one identified as (i, j). The region belonging to that pixel is
defined to be the set of points (x', y') such that i :::;; x' < i+ 1 and
j:::;; y' <j+l.

Like pixels, shapes to be filled are also treated as half-open
regions that include the boundaries along their 'floor' sides but
not along their 'ceiling' sides.

A shape is scan converted by painting any pixel whose square
region intersects the shape, no matter how small the intersection
is. This ensures that no shape ever disappears as a result of un­
favorable placement relative to the device pixel grid (as might
happen with other possible scan conversion rules). The area
covered by painted pixels is always at least as large as the area of
the original shape.

This scan conversion rule applies to both fill operations and to
strokes with non-zero width. Zero width strokes are done in a
device dependent manner that may include fewer pixels than this
rule specifies.

The region of device space to be painted by a sampled image is
determined similarly, though not identically. The image source
rectangle is transformed into device space and defines a half­
open region, just as for fill operations. However, only those
pixels whose centers lie within the region are painted. Further­
more, the position of the center of such a pixel (i.e., coordinate
values whose fractional part is one-half) is mapped back into
source space to determine how to color the pixel. There is no
averaging over the pixel area; if the resolution of the source
image is higher than that of device space, some source samples
are not be used.

For clipping, the clip region consists of the set of pixels that
would be included by a fill. A subsequent painting operation af­
fects a region that is the intersection of the set of pixels defined
by the clip region with the set of pixels for the region to be
painted.

60 Extensions for the DISPLAY POSTSCRIPT System

Automatic stroke adjustment

When a stroke is drawn along a path, the scan conversion
process may produce lines of non-uniform thickness due to ras­
terization effects. This is because in general the line width and
the coordinates of the end points, translated into device space,
are arbitrary real numbers, not quantized to device pixels. Thus,
a line of a given width can intersect with a different number of
device pixels depending on where it is positioned.

For best results, it is important to compensate for the rasteriza­
tion effects so as to produce strokes of uniform thickness; this is
especially important in low-resolution display applications.
While this can be· done explicitly by a POSTSCRIPT language
program (as discussed in the documentation for itransform in
the POSTSCRIPT Language Reference Manual), doing so is cum­
bersome and inefficient. The newly introduced user path render­
ing operators, such as ustroke, provide no opportunity for a
program to intervene in order to adjust the coordinates and line
width. Furthermore, a more sophisticated adjustment algorithm
is required to produce the most accurate results.

To meet this need, a stroke adjustment mechanism has been
introduced as a standard part of the POSTSCRIPT imaging model.
When it is in effect, the line width and the coordinates of a stroke
are autOlnatically adjusted as necessary to produce lines of
uniform thickness; furthermore, the thickness is as near as pos­
sible to the requested line width (Le., no more than half a pixel
different). 17

Because automatic stroke adjustment can have a substantial ef­
fect on the appearance of lines, an application must be able to
control whether or not it is performed. The operator
setstrokeadjust alters a boolean value in the graphics state that
determines whether or not stroke adjustment will be performed
during subsequent stroke and related operators. This allows
compatibility with existing POSTSCRIPT language programs.

When a character description is executed (e.g., the BuildChar

17If the reql,lested line width, transfonned into device space, is less than half a
pixel, the stroke is rendered as a single-pixel line. This is the thinnest line that
can be rendered at device resolution; it is equivalent to the effect produced by
setting the line width to zero.

12 SCAN CONVERSION DETAILS 61

procedure of a user-defined font), stroke adjustment is initially
disabled instead of being inherited from the context of the show
operation. This is necessary because character descriptions are
executed at unpredictable times due to font caching. A
BuildChar procedure can enable stroke adjustment if it wants to.

13 VIEW CLIPS

Interactive applications frequently make incremental updates to
the displayed image. Such updates arise both from changes to the
displayed graphical objects themselves and from window system
manipulations that cause formerly obscured objects to become
visible. For efficiency's sake, it is desirable for the application to
redraw only those graphical objects that are affected by the
change.

One approach to accomplishing this is to define a path that
encloses the changed areas of the display, then redraw only those
graphical objects that are enclosed (or partially enclosed) within
the path. To produce correct results, it is necessary to impose this
path as a clipping path while redrawing. If this were not done,
portions of objects that are redrawn might incorrectly obscure
objects that are not redrawn.

This clipping could be accomplished by adjusting the clipping
path in the graphics state in the normal way. However, this is not
particularly convenient, since the program that imposes the clip­
ping and the program that is executed to redraw objects on the
display may have different ideas about what the clipping path
should be. This problem becomes particularly acute given the
ability to switch entire graphics states arbitrarily.

To alleviate this, we have extended the POSTSCRIPT imaging
model to introduce another level of clipping, the view clip, that is
entirely independent of the graphics state. Objects are rendered
on the device only in areas that are enclosed by both the current
clipping path and the current view clipping path.

The view clipping path is actually part of the POSTSCRIPT execu­
tion context, not the graphics state. Its initial value is a path that
encloses the entire imageable area of the output device (see

62 Extensions for the DISPLAY POSTSCRIPT System

initviewclip). The operators that alter the view clipping path do
not affect the clipping path in the graphics state or vice versa.
The view clipping path is not affected by gsave and grestore;
however, a restore will reinstate the view clipping path that was
in effect at the time of the matching save.18 The following
operators manipulate view clips: viewclip, eoviewclip,
rectviewclip, viewclippath, and initviewclip.

14 WINDOW SYSTEM SUPPORT

For each integration of the DISPLAY POSTSCRIPT system with a
window system, there is a collection of operators for doing such
things as specifying the window that is to be affected by sub­
sequent painting operators. These operators are window system
specific because their syntax and semantics vary according to the
properties and capabilities of the underlying window system.
They are not documented in this manual.

In addition to the window system specific operators, there are
several operators that are window related but have a consistent
meaning across all window systems. They are needed to enable
an application to associate input events (e.g., mouse clicks) with
graphical objects in POSTSCRIPT user space. These operators
(Le., infill, ineofill, inufill, inueofill, instroke, and inustroke)
can be used freely by display based applications.

If a window system specific extension provides a way for a
POSTSCRIPT language program to receive input events directly,
the program can perform operations such as mouse tracking and
hit detection itself. With some window systems, however, input
events are always received by the application. In that case, the
application must either perform such computations itself or issue
queries to the DISPLAY POSTSCRIPT system. This decision in­
volves a tradeoff between performance and application com­
plexity. One possible approach is for the application to perform
hit detection itself for simple shapes but to query the DISPLAY

POSTSCRIPT system for more complex shapes.

A program may require information about certain properties of

18View clipping is temporarily disabled when the current output device is a
mask device, such as the one installed by setcachedevice.

13 VIEW CLIPS 63

Key Type

Colors integer

GrayValues integer

RedValues integer

GreenValues integer

BlueValues integer

ColorValues integer

the raster output device, such as whether or not it supports color
and how many distinguishable color or gray values it can
reproduce. A POSTSCRIPT language program that is a page
description should not need such information; using it com­
promises device independence. However, an interactive applica­
tion using the DISPLAY POSTSCRIPT system may desire to vary
its behavior according to the available display technology. For
example, a CAD application may use stipple patterns on a binary
black-and-white display but separate colors on a color display.

The deviceinfo operator returns a dictionary whose entries
describe static information about the device. (Dynamic informa­
tion must be read from the graphics state or obtained through
operators such as wtransiation.) Some of the entries in this dic­
tionary have standard names that are described in the table
below; others may have meanings that are device dependent.
Most entries are optional and are present only if they are relevant
for that type of device.

Semantics

number of independent color components: 1 indicates black-and-white or gray
scale only; 3 indicates red, green, blue; 4 indicates red, green, blue, gray (or
their complements: cyan, magenta, yellow, black, as typically used in printers).

number of different gray values that individual pixels can reproduce (without
halftoning). For example, 2 indicates a binary black-and-white device; 256
indicates an 8 bits-per-pixel gray scale device.

number of different red values that individual pixels can reproduce, inde­
pendent of other colors.

analogous to RedValues.

analogous to RedValues.

total number of different color values that each pixel can reproduce. If this
entry is present and the entries for gray, red, green, and blue are absent, this
means that the color components cannot be varied independently but only in
combination.

64 Extensions for the DISPLAY POSTSCRIPT System

Key

buildtime

byteorder

realformat

15 MISCELLANEOUS CHANGES

Type

integer

boolean

string

This section contains miscellaneous language changes that have
not been documented in earlier sections.

Additions to statusdict

As described in the POSTSCRIPT Language Reference Manual,
the standard dictionary statusdict is the repository for infonna­
tion and facilities that are specific to individual products. The set
of keys and values contained in statusdict is product dependent.
However, every product's statusdict contains a product
(product name string) and revision (product revision number).

In the DISPLAY POSTSCRIPT system, the standard set of
statusdict entries is extended to include the following:

Semantics

uniquely identifies a specific generation of this product. Its main purpose is to
distinguish among various alpha- and beta-test versions of a product prior to its
fonnal release; the value of revision is changed only for fonnal releases. (The
integer value of buildtime actually represents a date and time in the fonnat
used in the machine on which the POSTSCRIPT interpreter was constructed; this
meaning, however, is not of any use to a POSTSCRIPT language program.)

describes the native (preferred) order of bytes in multiple-byte numbers appear­
ing in binary tokens and binary object sequences (see Section 2). The value
false indicates high-order byte first; true indicates low-order byte first. Al­
though the interpreter will accept numbers in either order, it will process
numbers in native order somewhat more efficiently.

identifies the native fonnat for real (floating point) numbers appearing in
binary tokens and binary object sequences (see Section 2). If the native fonnat
is IEEE standard, the value of this string is 'IEEE'; otherwise, the value
describes a specific native fonnat, e.g., 'VAX'. The interpreter will always
accept real numbers in IEEE fonnat, but it may process numbers in native
fonnat more efficiently. An application program can query realformat to
detennine whether the interpreter's native fomIat is the same as the
application's; if so, translation to and from IEEE fonnat can be avoided.

14 WINDOW SYSTEM SUPPORT 65

Syntax and scanner changes

As described in Section 2, the POSTSCRIPT language syntax has
been augmented to introduce binary tokens and binary object se­
quences. In the course of altering the POSTSCRIPT interpreter's
input scanner to accept the augmented language, we have taken
the opportunity to eliminate several anomalies in the existing
scanner. These anomalies are obscure; for some, the POSTSCRIPT

Language Reference Manual does not give a clear specification
of what the correct behavior should be.

The principal change has to do with execution of string objects.
A program to be executed by the POSTSCRIPT interpreter can
come from either a file object or a string object. In the normal
case, the interpreter reads from a file object, such as the one for
the standard input file. However, as described in Section 3.6 of
the POSTSCRIPT Language Reference Manual, the interpreter can
also read from an executable string object; this is accomplished
by applying exec (or other execution operators) to the string. The
token operator, which invokes the POSTSCRIPT language scanner
only, also accepts a string operand.

The syntax and semantics of a program should be the same
whether the program is read from a file or from a string.
However, in previous versions of the POSTSCRIPT interpreter,
there has been one difference in the treatment of string literals,
enclosed in '(' and ')', which appear in the program being ex­
ecuted. If the program is read from a file, '\' (back-slash) escape
sequences have special meanings (see POSTSCRIPT Language
Reference Manual, Section 3.3); if the program is read from a
string, '\' escape sequences are not recognized and the characters
are treated literally.

In the DISPLA Y POSTSCRIPT system and in future products based
on the same software technology, this distinction between file
and string execution semantics is eliminated. '\' escape se­
quences are now recognized in string literals always, regardless
of whether the program is being read from a file or a string.

This change is relatively obscure and is unlikely to affect real
programs. A contrived example illustrates the effect of the
change:

66 Extensions for the DISPLAY POSTSCRIPT System

(fa (\\n) def) cvx exec

When the outer string is scanned, the '\\' is treated as an escape
sequence and replaced by a single '\'; this is true under both old
and new conventions. The difference lies in what happens when
the outer string is executed - specifically, in the contents of the
inner string that is defined to be the value of 'a'. Under the old
convention, the '\' in this string is not recognized as an escape;
consequently, the string consists of the two characters '\' and 'n'.
Under the new convention, the '\' is recognized as an escape; the
resulting string consists of a single new line character produced
from the escape sequence '\n'.

Note that escape sequences apply only in ASCII encoded string
literals. A string appearing in a binary token or binary object
sequence is always treated literally (see Section 2). The inter­
preter can consume a binary encoded program from a string just
the same as from a file; the syntax accepted by the interpreter
does not depend on the source of the characters being inter­
preted.

Apart from the change in string execution, there are several other
differences between the scanner in the DISPLAY POSTSCRIPT
system and that of previous interpreters:

• Outside of a string literal, the old scanner sometimes treats
'\' as a self-delimiting special character, depending on con­
text. The new scanner always treats '\' as a regular char­
acter except within a string literal. This is consistent with
the language specification.

• The characters FF (ASCII \014) and NUL (ASCII \000) are
treated as white space characters. Of these, FF will ter­
minate a comment; NUL will not. This is a documentation
change; the old and new scanners behave the same in this
regard.

• Certain tokens that are syntactically legal numbers but that
exceed implementation limits are converted to name ob­
jects by the old scanner; the new scanner generates a
limitcheck error in such cases.

• With the old scanner, all erroneous radix numbers of the
form base#number are treated as names. With the new
scanner, a base value not in the range 2 to 36 inclusive or a

15 MISCELLANEOUS CHANGES 67

number digit not valid for the base causes the token to be
treated as a name. However, if the number is syntactically
valid but is simply too large to represent, a limitcheck oc­
curs.

File system extensions

The DISPLAY POSTSCRIPT system optionally provides access to
named files in secondary storage. The file access capabilities are
provided as part of the integration of the DISPLAY POSTSCRIPT
system with an underlying operating system; there are variations
from one such integration to another. Not all the file system ca­
pabilities of the underlying operating system are necessarily
made available at the POSTSCRIPT language level.

The POSTSCRIPT language provides a standard set of operators
for accessing files. These consist of file, originally described in
the POSTSCRIPT Language Reference Manual, and several new
operators: deletefile, renamefile, filenameforall,
setfileposition, and fileposition. Although the language defines
a standard framework for dealing with files, the detailed seman­
tics of the file system operators (particularly file naming
conventions) are operating system dependent.

Files are contained within one or more 'secondary storage
devices', hereafter referred to simply as devices (but not to be
confused with the 'current device', which is a display device in
the graphics state). The POSTSCRIPT language defines a uniform
convention for naming devices, but it says nothing about how
files in a given device are named. Different devices have dif­
ferent properties, and not all devices support all operations.

A complete file name is in the form 'o/odevice"lofile', where
device identifies the secondary storage device and file is the
name of the file within the device. When a complete file name is
presented to a file system operator, the device portion selects the
device; the file portion is in turn presented to the implementation
of that device, which is operating system and environment de­
pendent.

When a file name is presented without a 'O/odevice"lo' prefix, a
search rule determines which device is selected. The available

68 Extensions for the DISPLAY POSTSCRIPT System

storage devices are consulted in order; the requested operation is
perfonned for each device until it succeeds. The number of
available devices, their names, and the order in which they are
searched is environment dependent. Not all devices necessarily
participate in such searches; some devices can be accessed only
by naming them explicitly.

Nonnally, there is a device that represents the complete file sys­
tem provided by the underlying operating system.19 If so, by
convention that device's name is 'os'; thus, complete file names
are in the fonn '%os%file', where file confonns to underlying
file system conventions. This device always participates in
searches, as described above; thus, a program can access or­
dinary files without specifying the '%050/0' prefix. There may be
more than one device that behaves in this way.

Additionally, there is nonnally a device that represents font
definitions that can be loaded dynamically by the findfont
operator. If so, by convention that device's name is 'font'; thus,
complete file names are in the fonn '%font%file', where file is a
specific font name such as 'Palatino-Boldltalic'. Note that this
naming convention does not necessarily have anything to do
with how font files are actually named in the underlying operat­
ing system; the 'font' device is logically decoupled from the 'as'
device. This device never participates in searches; accessing font
files requires specifying the '%font%' prefix. If a 'font' device
exists, the built-in definition of findfont will attempt to run the
named font from that device; the program in the font file should
create a font dictionary and execute a definefont with the same
name.

For the operators file, deletefile, renamefile, status, and
filenameforall, a filename is a string object that identifies a file.
The file name can be in one of three fonns:

% de vice%file identifies a file on a specific device, as described
above.

0/0 de vice identifies one of the special files '%stdin',

19However, this device may impose some restrictions on the set of files that can
be accessed. The need for restrictions arises when the POSTSCRIPT interpreter
executes with a user identity different from that of the user running the appli­
cation program.

15 MISCELLANEOUS CHANGES 69

file

'%stdout', '%lineedit' , or '%statementedit' ,
described in Section 3.8 of the POSTSCRIPT Lan­
guage Reference Manual.

(ftrst character not '%') identifies a ftle on an
unspecified device; the device is selected by an
environment specific search rule, as described
above.

An access is a string object that specifies how a file is to be
accessed. File access conventions are operating system specific.
The following access specifications are typical of the UNIX®
operating system and are supported by many others. The access
string always begins with 'r', 'w', or 'a', possibly followed by
, +'; any additional characters supply operating system specific
information.

r open for reading only; error if file doesn't already ex­
ist.

w open for writing only; create file if it doesn't already
exists; truncate it if it does.

a open for writing only; create ftle if it doesn't already
exist; append to it if it does.

r+ open for reading and writing; error if file doesn't al­
ready exist.

w+ open for reading and writing; create file if it doesn't
already exist; truncate it if it does.

a+ open for reading and writing; create file if it doesn't
already exist; append to it if it does.

Timekeeping

The usertime operator, which is specified as returning execution
time of the POSTSCRIPT interpreter, now reports interpretation
time on behalf of the current context only. The ability to perform
per-context timekeeping accurately depends on the underlying
operating system; in some environments, it may not be possible
to separate execution time of the POSTSCRIPT interpreter from
that of other programs executing concurrently.

A new standard operator, realtime, returns elapsed real time, in­
dependent of the activities of the POSTSCRIPT interpreter or other
programs.

70 Extensions for the DISPLAY POSTSCRIPT System

Standard Error Handlers

As described in Section 3.6 of the POSTSCRIPT Language Refer­
ence Manual, when an error occurs, the POSTSCRIPT interpreter
looks up the error's name in errordict and executes the associ­
ated procedure. That procedure is expected to handle the error in
some appropriate way.

The errordict present in the initial state of the VM provides
standard handlers for all errors. However, errordict is a writable
dictionary; a program can therefore replace individual error­
handlers selectively. Since errordict is in the private VM, such
changes are visible only to the context that made them (or to
other contexts sharing the same space).

The standard error handlers in the DISPLAY POSTSCRIPT system
behave slightly differently from the ones described in the
POSTSCRIPT Language Reference Manual, Section 3.8. They
operate as follows:

• execute false setshared, thereby reverting to private VM
allocation mode

• record information about the error in the special dictionary,
$error; in the DISPLAY POSTSCRIPT system, $error is lo­
cated in private VM

• execute stop, thereby exiting the innermost enclosing con­
text established by stopped.

The information recorded in the $error dictionary is shown in
the table in Section 3.8 of the POSTSCRIPT Language Reference
Manual. In particular, the entries newerror, errorname, and
command are always stored. However, the ostack, estack, and
dstack arrays, which record snapshots of the operand, execution,
and dictionary stacks, are generated only if the entry
recordstacks has been previously set to the boolean value true;
its normal value is false. 20

The procedure handleerror is invoked if a program loses control
due to an error. In the DISPLAY POSTSCRIPT system, the standard

20The error handler for VMerror never snapshots the stacks, regardless of the
value of recordstacks. This prevents an attempt to allocate more VM at a time
when VM is already exhausted.

15 MISCELLANEOUS CHANGES 71

definition of handleerror generates a special type of binary ob­
ject sequence, not a text message. This is described in Section 3.

Font Cache Size

The total size of the font cache can be adjusted dynamically.
This enables one to tune the amount of memory consumed by the
font cache according to the needs of applications and output
devices. With undemanding applications and low-resolution
devices, a relatively small font cache suffices. When applications
use many fonts in many sizes or output to high-resolution
devices, a large font cache is required for good performance.

Adjusting the font cache size is accomplished by an extension to
the existing setcacheparams operator, which takes a variable
number of operands. currentcacheparams returns the font
cache parameters as described in the POSTSCRIPT Language Ref­
erence Manual, with the addition of the result size. See the
operator description in Section 16.

Permanent Entries on Dictionary Stack

There are three permanent entries on the dictionary stack for the
DISPLA Y POSTSCRIPT system. In order, starting from the bottom,
they are: systemdict, shareddict, and userdict. A new operator,
cieardictstack, has been added so that a program may clear all
nonpermanent entries from the dictionary stack without having
to know how many permanent entries there are.

72 Extensions for the DISPLAY POSTSCRIPT System

16 OPERATORS

Conventions

This chapter contains detailed descriptions of all the extensions
to the POSTSCRIPT language that implement the DISPLAY

POSTSCRIPT system. The operators are organized alphabetically
by operator name. Each operator description is presented in the
following format:

operator operand1 operand2 ... operand n operator result1 ... resultm

Detailed explanation of the operator

EXAMPLE:
An example of the use of this operator. The symbol '=>'
designates values left on the operand stack by the example.

ERRORS:

A list of the errors that this operator might execute.

At the head of an operator description, operandI through
operandn are the operands that the operator requires, with
operandn being the topmost element on the operand stack. The
operator pops these objects from the operand stack and con­
sumes them. After executing, the operator leaves the objects
result 1 through resultm on the stack, with resultm being the top­
most element.

Normally the operand and result names suggest their types. The
following table lists most of the operand and result names and
their use.

16 OPERATORS 73

name

filename

font

halftone

int

matrix

num

numstring

proc

user path

see section description

15 is a file name string.

5.3 of POSTSCRIPT Language Reference Manual
is a dictionary constructed according to the rule for font dictionaries.

11 is a dictionary constructed according to the rule for halftone dictionaries.

3.4 of POSTSCRIPT Language Reference Manual
indicates an integer number.

4.4 of POSTSCRIPT Language Reference Manual
is an array of six numbers describing a transformation matrix.

3.4 of POSTSCRIPT Language Reference Manual
indicates that the operand or result is a number (integer or real).

2 is an encoded number string.

3.4 of POSTSCRIPT Language Reference Manual

8

indicates a POSTSCRIPT procedure (Le., an executable array ('lr executable
packed array).

is an array of path construction operators and their operands or an array of two
strings comprising an encoded user path.

The notation '-' in the operand posltlon indicates that the
operator expects no operands, and a '-' in the result position
indicates that the operator returns no results.

The documented effects on the operand stack and the possible
errors are those produced directly by the operator itself. Many
operators cause arbitrary POSTSCRIPT procedures to be invoked.
Obviously, such procedures can have arbitrary effects that are
not mentioned in the operator description.

74 Extensions for the DISPLAY POSTSCRIPT System

Operator Summary

Structured Output Operators

currentobjectformat

obj int prlntobject

int setobjectformat

file obj int writeobject

Memory Management Operators

any

bool

int

dict key

key

currentshared bool

scheck bool

setshared

setvmthreshold

undef

undefinefont

int return binary object format 82

write binary object to standard output file,
using int as tag 99

set binary object format (O=disable, 1 =IEEE
high, 2=low, 3=native high, 4=low) 111

write binary object to file, using int as
tag 129

return current VM allocation mode 82

true if any is simple or in shared VM, false
otherwise 105

set VM allocation mode (false=private,
true=shared 113

set the allocation threshold for garbage
collection 115

remove key and its value from dict 120

remove font definition 121

int vmreclaim control garbage collector 127

vrnstatus level used maximum report VM status 128

Multiple Execution Context Operators

context

mark obj1 .. objn proc

context

lock proc

condition

lock condition

condition condition

currentcontext context

detach

fork context

join mark obj1 .. objn

lock lock

monitor

notify

quit

wait

yield

create condition object 80

return current context identifier 81

enable context to terminate immediately
when done 85

create context executing proc with obj1 ..
objn as operands 90

await context termination and return its
results 96

create lock object 97

execute proc while holding lock 97

resume contexts waiting for condition 98

terminates the context 100

release lock, wait for condition, reacquire
lock 129

suspend current context momentarily 131

16 OPERATORS 75

User Object Operators

UserObjects array

index any defineuserobJect

index execuserobject

index undefineuserobJect

Graphics State Object Operators

gstate currentgstate gstate

gstate gstate

gstate setgstate

User Path Operators

x1 Y1 x2 Y2 r

"x IIy urx ury

mark blimit

userpath

arct

setbbox

setucacheparams

uappend

return UserObjects array in userdict 123

associate index with any in UserObJects
array 84

execute index element in UserObJects
array 86

remove index element from UserObJects
array 121

read current graphics state into gstate 81

create graphics state object 91

set graphics state from gstate 110

append tangent arc 80

set bounding box for current path 107

set user path cache parameters 114

interpret user path and append to current
path 118

ucache declare that user path is to be cached 119

ucachestatus mark bsize bmax rsize rmax blimit

userpath

userpath

bool

userpath

userpath matrix

userpath

userpath matrix

ueofill

ufill

upath userpath

ustroke

ustroke

ustrokepath

ustrokepath

Rectangle Operators

x y width height

numarraylnumstring

x y width height

numarraylnumstring

x y width height

rectcllp

rectcllp

rectflll

rectfill

rectstroke

76 Extensions for the DISPLAY POSTSCRIPT System

return user path cache status and
parameters 119

fill using even-odd rule 119

interpret and fill userpath 120

create userpath for current path; include
ucache if bool is true 122

interpret and stroke user path 124

interpret userpath, concatenate matrix, and
stroke 124

compute outline of stroked userpath 125

compute outline of stroked user path 125

clip with rectangular path 101

clip with rectangular paths 101

fill rectangular path 102

fill rectangular paths 102

stroke rectangular path 103

x Y width height matrix

numarraylnumstring

numarraylnumstring matrix

rectstroke

rectstroke

rectstroke

Font Operators

font matrix

key scalelmatrix

text numarraylnumstring

text numarraylnumstring

text numarraylnumstring

makefont font'

selectfont

xshow

xyshow

yshow

Halftone Definition Operators

currenthalftone dict

currenthalftonephase x y

stroke rectangular path 103

stroke rectangular paths 103

stroke rectangular paths 103

produces new font 97

set font dictionary given name and
transform 106

print characters of text using x widths in
numarrayjnumstring 130

print characters of text using x and y
widths in numarrayjnumstring 131

print characters of text using y widths in
numarrayjnumstring 132

return current halftone dictionary 82

return current halftone phase 82

currentscreen frequency angle proc

dict

xy

frequency angle proc

num1 num2 halftone

currentscreen 60 a halftone

sethalftone

sethalftonephase

setscreen

setscreen

Scan Conversion Operators

currentstrokeadjust bool

bool setstrokeadjust

View Clip Operators

x Y width height

numarraylnumstring

eoviewclip

initviewclip

rectviewclip

rectviewclip

viewclip

viewclippath

return current halftone screen 82

return current halftone dictionary
(sethalftone was used) 82

set halftone dictionary 110

set halftone phase 111

set halftone screen 112

set halftone screen using halftone
dictionary 112

return current stroke adjust 83

set stroke adjust (fa/se=disable,
true=enable) 114

view clip using even-odd rule 85

reset view clip 92

set rectangular view clipping path 104

set rectangular view clipping paths 104

set view clip from current path 126

set current path from view clip 126

16 OPERATORS 77

Window System Support Operators

deviceinfo dict

xy infill bool

userpath infill boo I

xy ineofill bool

userpath ineofill bool

x y userpath Inueoflll bool

userpath1 I userpath2 inueofill bool

x y userpath inufill bool

userpath1 userpath2 inufill boo I

x y userpath inustroke bool

x y userpath matrix Inustroke bool

userpath1 userpath2 inustroke bool

userpath1 userpath2 matrix Inustroke boo I

wtranslation xy

File System Operators

string

pattern proc scratch

file

string1 string2

file int

deletefile

filenameforall

fileposltion int

renamefile

setfileposition

return dictionary containing information
about current device 85

test whether point (x, y) would be painted
by fiII 92

test whether pixels in userpath would be
painted by fiII 92

test whether point (x, y) would be painted
byeoflll 91

test whether pixels in user path would be
painted by eofill 91

test whether point (x, y) would be painted
by ueofill 93

test whether pixels in user path t would be
painted by ueofill of userpath2 93

test whether point (x, y) would be painted
by ufill 94

test whether pixels in userpath t would be
painted by ufill of userpath2 94

test whether point (x, y) would be painted
by ustroke 95

test whether point (x, y) would be painted
by ustroke 95

test whether pixels in userpath t would be
painted by ustroke of userpath2 95

test whether pixels in userpath t would be
painted by ustroke of userpath2 95

return translation from window origin to
device space origin 130

delete named file 84

execute proc for each file name matching
pattern 88

return current position in file 89

rename file string1 to string2 104

set file to specified position 110

string status pages bytes referenced created true
or false return information about named file 116

78 Extensions for the DISPLAY POSTSCRIPT System

Miscellaneous Operators

index name

mark size lower upper

Errors

cleardlctstack pop all nonpermanent dictionaries off dic­
tionary stack 80

currentcacheparams mark size lower upper

deflneusername

realtime int

setcacheparams

usertime int

invalldcontext

invalldid

return current characteristics of font
cache 81

define encoded name index 83

return real time in milliseconds 100

change characteristics of font cache 109

return context execution time in
milliseconds 123

improper use of context operation 95

invalid identifier for window-system-specific
operator 96

16 OPERATORS 79

arct X1 Y1 X2 Y2 r arct

appends an arc of a circle, defined by two tangent lines, to the current
path. This operator is identical to arcto except that it does not push any
results on the operand ·stack, whereas arcto pushes four numbers. That
is, arct is equivalent to:

arcto pop pop pop pop

arct can be used as an element of a user path definition, whereas arcto
. is not allowed.

ERRORS:

limitcheck, nocurrentpoint, stackunderfiow, type check,
undefinedresult

cleardictstack - cleardictstack -

pops all dictionaries off the dictionary stack except for the three per­
manent entries, systemdict, shareddict, and userdict.

ERRORS:

(none)

condition - condition condition

creates a new condition object, unequal to any condition object already
in existence, and pushes it on the operand stack. The condition initially
has no contexts waiting on it.

Since a condition is a composite object, creating one consumes VM.
The condition's value is allocated either in the current context's space
(private VM) or in shared VM according to the current VM allocation
mode (see setshared).

ERRORS:

stackoverflow, VMerror

80 Extensions for the DISPLAY POSTSCRIPT System

copy gstate1 gstate2 copy gstate2

copies the value of gstate l to gstate2, entirely replacing gstate2's
fonner value, then pushes gstate2 back on the operand stack. (The copy
operator is thus extended to operate on gstate objects in addition to the
types it already deals with.)

ERRORS:

invalidaccess, stackunderflow, typecbeck

currentcacheparams - currentcacheparams mark size lower upper

pushes a mark object followed by the current cache parameters on the
operand stack. The number of cache parameters returned is variable
(see setcacheparams).

ERRORS:

stackoverflow

currentcontext - currentcontext context

returns an integer that identifies the current context.

ERRORS:

stackoverflow

currentgstate gstate currentgstate gstate

replaces the value of the gstate object by a copy of the current graphics
state and pushes gstate back on the operand stack.

If gstate is in shared VM (see Section 4), currentgstate will generate
an invalidaccess error if any of the composite objects in the current
graphics state are in private VM. Such objects might include the current
font, screen function, halftone dictionary, transfer function, or dash
pattern. In general, allocating gstate objects in shared VM is risky and
should be avoided.

ERRORS:

invalid access, stackunderflow, typecheck

16 OPERATORS 81

currenthalftone - currenthalftone halftone

returns the current halftone dictionary in the graphics state. If the cur­
rent halftone was defined by setscreen instead of by sethalftone,
currenthalftone returns a null object.

ERRORS:

stackoverflow

currenthalftonephase - currenthalftonephase x y

returns the current values of the halftone phase parameters in the
graphics state. If sethalftonephase has not been executed, zero is
returned for both values.

ERRORS:

stackoverflow

currentobjectformat - currentobjectformat int

returns the current object format parameter (see setobjectformat).

ERRORS:

stackoverflow

currentscreen - currentscreen frequency angle proc
- currentscreen 60 a halftone

returns the current halftone screen parameters (frequency, angle, and
proc) in the graphics state if the current halftone screen was established
by setscreen. If sethalftone was executed, currentscreen returns a
frequency of 60, an angle of 0, and the halftone dictionary. (See Sec­
tion 11.)

ERRORS:

stackoverflow

currentshared - currentshared bool

returns the current value of the VM allocation mode (see setshared).

ERRORS:

stackoverflow

82 Extensions for the DISPLAY POSTSCRIPT System

currentstrokeadjust - currentstrokeadjust boo I

returns the current stroke adjust parameter in the graphics state.

ERRORS:

stackoverflow

definefont key font definefont font

has its normal effects on FontDirectory and on the font machinery, as
documented in the POSTSCRIPT Language Reference Manual.

Note that FontDirectory normally refers to the font directory in private
VM; definefont operates only on that directory and not on
SharedFontDirectory. However, when shared VM allocation mode is
in effect, the name FontDirectory refers to the font directory in shared
VM; definefont operates on it. In the latter case, the value of font must
itself be allocated in shared VM.

ERRORS:

dictfull, invalidaccess, invalidfont, stackunderflow, typecheck

defineusername index name defineusername -

establishes an association between the non-negative integer index and
the name object name in the user name table. Subsequently, the scanner
will substitute name when it encounters any binary encoded name
token or object that refers to the specified user name index. (Since
binary encoded names specify their own literal or executable attributes,
it does not matter whether name is literal or executable.)

The user name table is an adjunct to the current context's private VM
or space (see Section 5). The effect of adding an entry to the table is
immediately visible to all contexts that share the same space. Additions
to the table are not affected by save and restore; the association be­
tween index and name persists for the remaining lifetime of the space.

The specified index must previously be unused in the name table or
must already be associated with the same name; changing an existing
association is not permitted (an invalid access error will occur). There
may be an implementation limit on index values; assigning index
values sequentially starting at zero is strongly recommended.

ERRORS:

invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

16 OPERATORS 83

defineuserobject index any defineuserobject -

establishes an association between the non-negative integer index and
the object any in the UserObjects array. First, it creates a UserObjects
array in userdict if one is not already present; it extend~ an existing
UserObjects array if necessary. It then executes:

userdict /UserObjects get
3 -1 roll put

In other words, it simply stores any into the array at the position
specified by index.

If defineuserobject creates or extends the UserObjects array, it al­
locates the array in private VM regardless of the current VM allocation
mode. (See Section 6.)

The behavior of defineuserobject obeys normal POSTSCRIPT language
semantics in all respects. In particular, the modification to the
UserObjects array (and to userdict, if any) is immediately visible to
all contexts that share the same space. It can be undone by a subsequent
restore according to the usual VM rules. index values must be within
the range permitted for arrays; a large index value may cause allocation
of an array that would exhaust VM resources. Assigning index values
sequentially starting at zero is strongly recommended.

ERRORS:
limitcheck, rangecheck, stackunderflow, typecheck, VMerror

deletefile filename deletefile -

removes the specified file from the device. If no such file exists, an
undefinedfilename error occurs. If this operation is not allowed by the
device, an invalidfileaccess error occurs. If an environment dependent
error is detected, an ioerror occurs.

ERRORS:
invalidfileaccess, ioerror, stackunderflow, typecheck,
undefinedfilename

84 Extensions for the DISPLAY POSTSCRIPT System

detach context detach -

specifies that the context identified by the integer context is to ter­
minate immediately when it finishes executing its top-level procedure
proc, whereas ordinarily it would wait for a join. (If the context is
already waiting for ajoin, detach causes it to terminate immediately.)

detach executes an invalidcontext error if context is not a valid con­
text identifier or if the context has already been joined or detached. It is
permissible for context to identify the current context.

ERRORS:

invalid context, stackunderflow, typecheck

deviceinfo - deviceinfo dict

returns a read-only dictionary containing static information about the
current device. The composition of this dictionary varies according to
the properties of the device; typical entries are given in the table in
section 14.

The use of deviceinfo after a setcachedevice operation within the
scope of a BuildChar procedure is not permitted (an undefined error
results).

ERRORS:

stackoverflow

eoviewclip - eoviewclip

is similar to viewclip except that it uses the even-odd rule to determine
the inside of the current path.

ERRORS:

limitcheck

16 OPERATORS 85

execuserobject index execuserobject -

executes the object associated with the non-negative integer index in
the UserObjects array. execuserobject is equivalent to:

userdict /UserObjects get
exch get exec

execuserobject's semantics are similar to those of exec or other ex­
plicit execution operators. That is, if the object is executable, it is
executed; otherwise, it is pushed on the operand stack. See Section 3.6
of the POSTSCRIPT Language Reference Manual.

If UserObjects is not defined in userdict (because defineuserobject
has never been executed), an undefined error occurs. If index is not a
valid index for the existing UserObjects array, a rangecheck error
occurs. If index is a valid index but defineuserobject has not been
executed previously for that index, a null object is returned. (See Sec­
tion 6.)

ERRORS:

invalid access, rangecheck, stackunderflow, typecheck, undefined

86 Extensions for the DISPLAY POSTSCRIPT System

file filename access file file

creates a file object for the file identified by filename, accessing it as
specified by access. The interpretation of the two string operands is
described in Section 15. See the POSTSCRIPT Language Reference
Manual for a description of file objects in general and the file operator
in particular.

Once opened, the file object remains valid until closed or invalidated. It
can be closed explicitly by closefile or implicitly by reading to end of
file. It can be invalidated by a restore, by garbage collection, or by
termination of the current context.

The lifetime of a file object is based on the VM allocation mode in
effect at the time the file operator is executed. A restore can destroy a
file object in private VM but not one in shared VM.

If the specified filename is malformed or if the file doesn't exist and
access does not permit creating a new file, file executes an
undefinedfilename error. If access is malformed or the requested ac­
cess is not permitted by the device, an invalidfileaccess error occurs. If
the number of files opened by the current context exceeds an im­
plementation limit, a limitcheck error occurs. If an environment de­
pendent error is detected, an ioerror occurs.

ERRORS:

invalidfileaccess, ioerror, limitcheck, stackunderflow, typecheck,
undefinedfilename

16 OPERATORS 87

filenameforall pattern proc scratch filenameforall -

enumerates all files whose names match the specified pattern string.
For each matching file, filenameforall copies the file's name into the
supplied scratch string, pushes a string object designating ~he substring
of scratch actually used, and calls proc. filenameforall does not return
any results of its own, but proc may do so.

The details of pattern matching are device dependent, but the following
convention is typical. All characters in the pattern are treated literally
(and are case sensitive), except the following special characters:

matches zero or more consecutive characters.
? matches exactly one character.

causes the next character of the pattern to be treated
literally, even ifit is '*', '?', or '\'.

If pattern does not begin with '%', it is matched against device relative
file names of all devices in the search order (see the description above).
When a match occurs, the file name passed to proc is likewise device
relative, i.e., it does not have a '%device%' prefix.

If pattern does begin with '%', it is matched against complete file
names in the form '%device%fi/e'; pattern matching can be performed
on the device, the file, or both parts of the name. When a match occurs,
the file name passed to proc is likewise in the complete form
'%device%file' .

The order of enumeration is unspecified and device dependent. There
are no restrictions on what proc can do. However, if proc causes new
files to be created, it is unspecified whether or not those files will be
encountered later in the same enumeration. Likewise, the set of file
names considered for pattern matching is device dependent. For ex­
ample, the 'font' device might consider all font names whereas the 'os'
general file system device might consider only names in the current
working directory.

ERRORS:

ioerror, range check, stack overflow, stackunderflow, typecheck

88 Extensions for the DISPLAY POSTSCRIPT System

fileposition file fileposition position

returns the current position in an existing open file. The result is a
non-negative integer interpreted as number of bytes from the beginning
of the file. If the file object is not valid or the underlying file is not
positionable, an ioerror occurs.

ERRORS:

ioerror, stackunderflow, typecheck, undefinedfilename

findfont key findfont font

obtains a font dictionary, as documented in the POSTSCRIPT Language
Reference Manual. It looks for key first in FontDirectory, then in
SharedFontDirectory; thus, fonts defined in private VM take
precedence over ones defined in shared VM. Only if key is not present
in either dictionary does findfont perform its environment dependent
action to locate the font elsewhere.

Note that when shared VM allocation mode is in effect, the name
FontDirectory refers to the font directory in shared VM. In this situa­
tion, findfont looks for key only in the shared font directory. Addition­
ally, any action that findfont takes to obtain a font definition from the
external environment must cause that definition to be created in shared
VM.

In the DISPLAY POSTSCRIPT system, when the font being sought is not
already present in FontDirectory or SharedFontDirectory, findfont
attempts to obtain a font definition from the execution environment. If
this succeeds, the font is loaded into shared VM and defined in
SharedFontDirectory, regardless of the current VM allocation mode.
This portion of findfont is approximately equivalent to:

currentshared
true setshared
(%font%name) run
setshared

% load font into shared VM
% restore old shared mode

where name is the text of the requested font name (without leading '/').
Since the font definition is shared, it is immediately visible to all con­
texts and it persists until explicitly removed by undefinefont.

ERRORS:

invalidfont, stackoverflow, typecheck

16 OPERATORS 89

fork mark obj 1 ... obj n proc fork context

creates a new context using the same space (private VM) as the current
context. The new context begins execution concurrent with continued
execution of the current context; which context executes first is unpre­
dictable.

The new context's environment is formed by copying the dictionary
and graphics state stacks of the current context. The initial operand
stack consists of obj} through objn' pushed in the same order (obj}
through objn are objects of any type other than mark). fork consumes
all operands down to and including the topmost mark. It then pushes an
integer that uniquely identifies the new context. The forked context
inherits its object format from the current context; all other miscel­
laneous state variables for the context (see Section 5) are initialized to
default values.

When the new context begins execution, it executes the procedure proc.
If proc runs to completion and returns, the context ordinarily will
suspend until some other context executes a join on context; however,
if the context has been detached, it will terminate immediately (see join
and detach).

If proc executes a stop that causes the execution of proc to end prema­
turely, the context will terminate immediately. proc is effectively called
as follows:

proc stopped {handleerror quit} if
% wait for join or detach
quit

In other words, if proc stops due to an error, the context invokes the
error handler in the usual way to report the error; then it terminates,
regardless of whether or not it has been detached.

It is illegal to execute fork if there has been any previous save not yet
matched by a restore; attempting to do so will cause an invalidcontext
error.

ERRORS:
invalid access, invalid context, limitcheck, stackunderflow,
typecheck, unmatchedmark

90 Extensions for the DISPLAY POSTSCRIPT System

gstate - gstate gstate

creates a new graphics state object and pushes it on the operand stack.
Its initial value is a copy of the current graphics state.

This operator consumes VM; it is the only graphics state operator that
does so. The gstate is allocated in either private or shared VM accord­
ing to the current VM allocation mode (see Section 4). Allocating a
gstate in shared VM is risky, for reasons described under
currentgstate.

ERRORS:

invalidaccess, stack overflow, VMerror

ineofill x y ineofill boo I
userpath ineofill bool

is similar to infill, but its 'insideness' test is based on eofill instead of
fill.

ERRORS:

stackunderflow, typecbeck

16 OPERATORS 91

infill x y infill bool
userpath infill bool

The first form returns true if the device pixel containing the point (x, y)
in user space would be painted by a fill of the current path in the
graphics state; otherwise, it retumsfalse.

In the second form, the device pixels that would be painted by filling
the userpath become an 'aperture.' This form of the operator returns
true if any of the pixels in the aperture would be painted by a fill of the
current path in the graphics state; otherwise, it returns false.

Both forms of this operator ignore the current clipping path and current
view clip; that is, they detect a 'hit' anywhere within the current path,
even if filling that path would not mark the current page due to clip­
ping. They do not actually place any marks on the current page, nor do
they disturb the current path. The following program fragment takes the
current clipping path into account:

gsave clippath x y infill grestore
x y infill and

ERRORS:
stackunderflow, typecbeck

initviewclip - initviewclip -

replaces the current view clipping path by one that encloses the entire
imageable area of the output device. (It can enclose a larger area than
that; the actual size and shape of the initial view clip is device
dependent.)

ERRORS: (none)

92 Extensions for the DISPLAY POSTSCRIPT System

instroke x y instroke bool
userpath instroke bool

returns true if the device pixel containing the point (x, y) in user space
would be painted by a stroke of the current path in the graphics state;
otherwise, it returns false. It does not actually place any marks on the
current page, nor does it disturb the current path.

In the second form of the operator, the device pixels that would be
painted by filling the userpath become an 'aperture.' instroke returns
true if any of the pixels in the aperture would be painted by a stroke of
the current path in the graphics state; otherwise, it returns false. It does
not actually place any marks on the current page, not does it disturb the
current path.

As with infill, this operator ignores the current clip path and current
view clip; that is, it detects a 'hie on any pixel that lies beneath a stroke
drawn along the current path, even if stroking that path would not mark
the current page due to clipping.

The shape against which the point (x, y) or the aperture, userpath, is
tested is computed according to the current stroke-related parameters in
the graphics state: line width, line cap, line join, miter limit, and dash
pattern. It is also affected by the stroke adjust parameter (see Section
12). If the current line width is zero, the set of pixels considered to be
part of the stroke is device dependent.

ERRORS:

stackunderflow, typecheck

inueofill x y userpath inueofill bool
userpath1 userpath2 inueofill bool

is similar to inufill, but its 'insideness' test is based on ueofill instead
ofufill.

ERRORS:

invalid access, limitcheck, rangecheck, stackunderflow, typecheck

16 OPERATORS 93

inufill x y userpath inufill boo I
userpath1 userpath2 inufill boo I

returns true if the device pixel containing the point (x, y) in user space
would be painted by a utilI of the specified user path (see Section 8);
otherwise, it returnsfalse.

In the second fonn, the device pixels that would be painted by filling
user path 1 become an 'aperture.' inutill returns true if any of the pixels
in the aperture would be painted by a utilI of userpath2; otherwise, it
returns false.

This operator does not actually place any marks on the current page,
nor does it disturb the current path in the graphics state. Except for the
manner in which the path is specified, inutill behaves the same as
intill.

By itself, this operator is seemingly a trivial composition of several
other operators:

gsave
newpath uappend
infill
grestore

However, when used in conjunction with ucache, it can access the user
path cache, potentially resulting in improved perfonnance.

ERRORS:

invalid access, limitcheck, rangecheck, stackunderflow, typecheck

94 Extensions for the DISPLAY POSTSCRIPT System

inustroke x y userpath inustroke bool
x y userpath matrix inustroke bool

userpath1 userpath2 inustroke bool
userpath1 userpath2 matrix inustroke bool

returns true if the device pixel containing the point (x, y) in user space
would be painted by a ustroke applied to the same operands (see Sec­
tion 8); otherwise it returns false.

In the second form, inustroke concatenates matrix to the CTM before
executing ustroke (see ustroke operator).

In the third and fourth forms, the device pixels that would be painted by
filling userpath 1 become an 'aperture.' inustroke returns true if any of
the pixels in the aperture would be painted by a ustroke of userpath2;

otherwise it returns false.

This operator does not actually place any marks on the current page,
nor does it disturb the current path in the graphics state. Except for the
manner in which the path is specified, inustroke behaves the same as
instroke.

As with inufill, if userpath is already present in the user path cache,
inustroke can take advantage of the cached information to optimize
execution.

ERRORS:

invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

invalidcontext (error)

indicates that an invalid use of the context synchronization facilities has
been detected. Possible causes include:

• presenting an invalid context identifier to join or detach;

• executing monitor on a lock already held by the current context;

• executing wait on a lock not held by the current context;

• executing any of several synchronization operators when an un-
matched save is pending if the result would be a deadlock.

The POSTSCRIPT interpreter detects only the simplest types of deadlock.
It is possible to encounter deadlocks for which no invalid context error
is generated.

16 OPERATORS 95

invalidid (error)

indicates that an invalid identifier has been presented to a window­
system-specific operator. In each integration of the DISPLAY

POSTSCRIPT system with a window system, there exists a collection of
window-system-specific operators. The operands of such operators are
usually integers that identify windows and other objects that exist out­
side the POSTSCRIPT language. This error occurs when the operand
does not identify a valid object. It is generated only by window-system­
specific operators and not by any standard operator.

join context join mark obj1 ... objn

waits for the context identified by the integer context to finish execut­
ing its top-level procedure proc. It then pushes a mark followed by the
entire contents of that context's operand stack onto the current
context's operand stack. Finally, it causes the other context to ter­
minate.

The objects obj 1 through obj n are those left on the operand stack by the
context that is terminating. Ordinarily there should not be a mark
among those objects, since its presence might cause confusion in the
context that executes the join.

If context is not a valid context identifier, perhaps because the context
has terminated prematurely due to an error, join executes an
invalidcontext error. This also occurs if the context has already been
joined or detached, if context identifies the current context, or if the
context does not share the current context's space.

It is illegal to execute join if there has been any previous save not yet
matched by a restore; attempting to do so will cause an invalidcontext
error.

ERRORS:

invalid context, stackunderflow, stackoverflow, typecheck

96 Extensions for the DISPLAY POSTSCRIPT System

lock - lock lock

creates a new lock object, unequal to any lock object already in exist­
ence, and pushes it on the operand stack. The state of the lock is
initially free.

Since a lock is a composite object, creating one consumes VM. The
lock's value is allocated either in the current context's space (private
VM) or in shared VM according to the current VM allocation mode
(see setshared).

ERRORS:

stackoverflow, VMerror

makefont font matrix makefont font'

applies matrix to font producing a new font' whose characters are trans­
fanned by matrix when they are printed as described in the POSTSCRIPT

Language Reference Manual. The makefont, scalefont, and selectfont
operators produce a font dictionary derived from an original font dic­
tionary but with the FontMatrix entry altered. The derived font dic­
tionary is allocated in private or shared VM according to whether the
original font dictionary is in private or shared VM; this is independent
of the current VM allocation mode.

ERRORS:

stackunderflow, typecheck, VMerror

monitor lock proc monitor -

acquires lock, first waiting if necessary for it to become free, then
executes proc, and finally releases lock again. The release of lock oc­
curs whether proc runs to completion or tenninates prematurely for any
reason.

If lock is already held by the current context, monitor executes an
invalid context error without disturbing the lock. If the current context
has previously executed a save not yet matched by a restore and lock is
already held by another context sharing the same space as the current
context, an invalidcontext error results. These restrictions prevent the
most straightforward cases of a context deadlocking with itself.

ERRORS:

invalid context, stackunderflow, typecheck

16 OPERATORS 97

notify condition notify -

resumes execution of all contexts (if any) that are suspended in a wait
for condition.

Ordinarily, notify should be invoked only within the execution of a
monitor that references the same lock used in the wait for condition.
This ensures that notifications cannot be lost due to a race between a
context executing notify and one executing wait. However, this recom­
mendation is not enforced by the language.

ERRORS:

stackunderflow, typecbeck

98 Extensions for the DISPLAY POSTSCRIPT System

printobject obj tag printobject -

writes a binary object sequence to the standard output file. The binary
object sequence contains a top-level array whose length is one; its
single element is an encoding of obj. If obj is composite, the binary
object sequence also includes subsidiary array and string values for the
components of obj.

The tag operand, which must be an integer in the range 0 to 255, is
used to tag the top-level object; it is used as the second character of the
object's representation. As discussed in Section 3, tag values 0 through
249 are available for general use; tag values 250 through 255 are
reserved for special purposes such as reporting errors.

The binary object sequence uses the number representation established
by the most recent execution of setobjectformat. The token type given
as the first character of the binary object sequence reflects the number
representation that was used. If the object format parameter has been
set to zero, printobject executes an undefined error.

The object obj and its components must be of type null, integer, real,
name, boolean, string, array, or mark (see Section 2); appearance of an
object of any other type (including packed array) will result in a
typecheck error.

printobject always encodes a name object as a reference to a text name
in the string value portion of the binary object sequence, never as a
system or user name index.

As is the case for all operators that write to files, the output produced
by printobject may accumulate in a buffer instead of being transmitted
immediately. To ensure immediate transmission, a flush is required.
This is particularly important in situations where the output produced
by printobject is the response to a query from the application.

ERRORS:

invalid access, ioerror, limitcheck, rangecheck, stackunderflow,
typecheck,undefined

16 OPERATORS 99

quit - quit -

causes termination of the execution context that issued the quit
operator. A snaphot VM file is not produced, even on computers with
operating systems and file systems. (This differs from the description in
the POSTSCRIPT Language Reference Manual, where the quit operator
terminates the POSTSCRIPT interpreter.)

Instead of waiting for the join operator to be executed, the context
terminates immediately as if the detach operator had been executed.
Any context attempting to join a context that has executed quit will
receive an invalid context error.

ERRORS:
(none)

realtime - realtime int

returns the value of a clock that counts in real time, independent of the
execution of the POSTSCRIPT interpreter. The clock's starting value is
arbitrary; it has no defined meaning in terms of calendar time. The unit
of time represented by the realtime value is one millisecond; however,
the rate at which it actually changes is implementation dependent.

ERRORS:

stackoverflow

100 Extensions for the DISPLAY POSTSCRIPT System

rectclip x y width height rectclip
numarray rectclip -
numstring rectclip -

intersects the inside of the current clipping path with a path described
by the operands. In the first fonn, the operands are four numbers that
describe a single rectangle. In the other two fonns, the operand is an
array or an encoded number string that describes an arbitrary number of
rectangles. After computing the new clipping path, rectclip resets the
current path to empty, as if by newpath.

In the first fonn, assuming width and height are positive, rectclip is
equivalent to:

newpath
x y moveto
width 0 rlineto
o height rlineto
width neg 0 rlineto
closepath
clip
newpath

Note that if the second or third fonn is used to specify mUltiple rec­
tangles, the rectangles are treated together as a single path and used for
a single clip operation. Thus, the 'inside' of this combined path is the
union of all the rectangular subpaths, since the paths are all drawn in
the same direction and the non-zero winding number rule is used.

ERRORS:

limitcheck, stackunderfiow, typecbeck

16 OPERATORS 101

rectfill x y width height rectfill
numarray rectfill -
numstring rectfill

fills a path consisting of one or more rectangles described by the
operands. In the first form, the operands are four numbers that describe
a single rectangle. In the other two forms, the operand is an array or an
encoded number string that describes an arbitrary number of rectangles.
rectfill neither reads nor alters the current path in the graphics state.

In the first form, assuming width and height are positive, rectfill is
equivalent to:

gsave
newpath
x y moveto
width 0 rlineto
o height rlineto
width neg 0 rlineto
closepath
fill
grestore

ERRORS:

stackunderflow, typecheck

102 Extensions for the DISPLAY POSTSCRIPT System

rectstroke x y width height rectstroke -
x y width height matrix rectstroke -

numarray rectstroke -
numarray matrix rectstroke -

numstring rectstroke -
numstring matrix rectstroke -

strokes a path consisting of one or more rectangles described by the
operands. In the first two forms, the operands are four numbers that
describe a single rectangle. In the remaining forms, the operand is an
array or an encoded number string that describes an arbitrary number of
rectangles. In any event, if the matrix operand is present, rectstroke
appends it to the CTM before stroking the path. Thus the matrix applies
to the line width and dash pattern (if any), but not to the path itself.
rectstroke neither reads nor alters the current path in the graphics state.

The following example of rectstroke, using x y width height and
matrix, is equivalent to:

gsave
newpath
xy moveto
width 0 rlineto
o height rlineto
width neg 0 rlineto
closepath
matrix concat
stroke
grestore

ERRORS:

stackunderflow, typecbeck

% only if matrix operand is present

16 OPERATORS 103

rectviewclip x y width height rectviewclip
numarray rectviewclip
numstring rectviewclip

replaces the current view clip by a rectangular path described by the
operands (see Section 9). In the first form, the operands are four num­
bers that describe a single rectangle. In the other two forms, the
operand is an array or an encoded number string that describes an
arbitrary number of rectangles. After computing the new view clipping
path, rectviewclip resets the current path to empty, as if by newpath.

Except for the manner in which the path is defined, rectviewclip be­
haves the same as viewclip.

Note that if the second or third form is used to specify multiple rec­
tangles, the rectangles are treated together as a single path and used for
a single viewclip operation. Thus, the 'inside' of this combined path is
the union of all the rectangular subpaths, since the paths are all drawn
in the same direction and the non-zero winding number rule is used.

ERRORS:

stackunderflow, typecheck

renamefile old new renamefile -

changes the name of a file from old to new, where old and new are
strings that specify file names on the same device. If a file named old
does not exist, an undefinedfilename error occurs. If a renaming
operation is not allowed by the device, an invalidfileaccess error oc­
curs. If an environment dependent error is detected, an ioerror occurs.
Whether or not an error occurs if a file named new already exists is
environment dependent.

ERRORS:
invalidfileaccess, ioerror, stackunderflow, typecheck,
undefined filename

104 Extensions for the DISPLAY POSTSCRIPT System

scheck any scheck bool

returns true if the operand is simple or if its value is located in shared
VM, false otherwise. In other words, scheck returns true if one could
legally store its operand as an element of a shared object.

ERRORS:

stackunderflow

16 OPERATORS 105

selectfont key scale selectfont -
key matrix selectfont -

obtains a font whose name is key, transforms it according to scale or
matrix, and establishes it as the current font dictionary in the graphics
state. selectfont is equivalent to one of the following, according to
whether the second operand is a number or a matrix:

exch findfont exch scalefont setfont
exch findfont exch makefont setfont

If key is present in FontDirectory, selectfont obtains the font diction­
ary directly and does not call the findfont procedure. However, if key is
not present, selectfont invokes findfont in the normal way. In the latter
case, it actually executes the name object 'findfont', so it uses the cur­
rent definition of that name in the context of the dictionary stack. (On
the other hand, redefining exch, scalefont, makefont, or setfont would
not alter the behavior of selectfont.)

In the DISPLAY POSTSCRIPT system, fonts can be defined in either
FontDirectory or SharedFontDirectory (see Section 4). selectfont
looks in both of those places before calling findfont.

selectfont can give rise to any of the errors possible for the component
operations, including arbitrary errors from a user-defined findfont pro­
cedure.

EXAMPLE:
IHelvetica 10 selectfont
IHelvetica findfont 10 scalefont setfont

The two lines of the example have the same effect, but the first one is
almost always more efficient.

In a program represented using the binary token or binary object se­
quence encoding (see Section 2), it may be advantageous to predefine
key in the user name table so that it can be referenced by a user name
index instead of a name string.

ERRORS:

invalidfont, rangecheck, stackunderflow, typecheck

106 Extensions for the DISPLAY POSTSCRIPT System

setbbox IIx lIy urx ury setbbox -

establishes an explicit bounding box for the current path. The bounding
box established by setbbox is the smallest rectangle that contains both
the existing bounding box, if any, and the bounding box requested by
the setbbox arguments. These arguments define a rectangle expressed
as two pairs of coordinates in user space, oriented with the user-space
coordinate-system axes: llx and lly specify the lower left comer; urx and
ury specify the upper right comer. The upper right coordinate values
must be greater than or equal to the lower left values; otherwise a
rangecheck error will occur.

The coordinates of all subsequent path construction operators must fall
within the resulting bounding box. This bounding box remains in effect
for the lifetime of the current path - that is, until the next newpath or
operator that resets the path implicitly, such as stroke, is executed -
or until it is enlarged by a subsequent setbbox.

Once setbbox is executed, an attempt to append a path element with a
coordinate lying outside the bounding box will give rise to a
rangecheck error.21 Bounds checking applies only to the path itself,
not to the result of rendering the path. For example, stroking the path
may place marks outside the bounding box; this does not cause an
error.

Although the setbbox operator can be used when defining any path, its
main use is in the definition of a user path, where it is mandatory. That
is, a user path passed to one of the user-path-rendering operators, such
as utilI, must begin with a setbbox (optionally preceded by a ucache).
The information passed to setbbox enables the user-path-rendering
operator to optimize execution. The user path may contain only one
setbbox. However, mUltiple executions of uappend during the con­
struction of a current path will result in multiple executions of the
setbbox operator. In this case, each execution of setbbox has the
potential to enlarge the bounding box.

When a path is constructed without an explicit setbbox request, an
implicit bounding box for the path is maintained dynamically. Each
path construction operator (moveto, lineto, curveto, and so on) en­
larges the bounding box as necessary to enclose the elements being
appended to the path. In this case the rangecheck error is not raised
because the implicit bounding box is automatically adjusted to accom­
modate the growing path. If setbbox is executed when such a path

21 Note that arcs are converted to sequences of curveto operations. The coordi­
nates computed as control points for those curvetos must also fall within the
bounding box. Effectively, this means that the figure of the arc must be entirely
enclosed by the bounding box.

16 OPERATORS 107

exists, the resulting bounding box is enlarged if necessary to enclose
the implicit bounding box of the path.
If a bounding box has been established by setbbox, execution of
pathbbox returns a result derived from that bounding box instead of
from the implicit bounding box of the path.

ERRORS:
rangecheck, stackunderflow, typecheck

108 Extensions for the DISPLAY POSTSCRIPT System

setcacheparams mark size lower upper setcacheparams -

sets cache parameters as specified by the integer objects above the
topmost mark on the stack, then removes all operands and the mark
object as if by cleartomark.

The number of cache parameters is variable.22 If more operands are
supplied to setcacheparams than are needed, the topmost ones are
used and the remainder ignored; if fewer are supplied than are needed,
setcacheparams implicitly inserts default values between the mark and
the first supplied operand.

The upper operand specifies the maximum number of bytes that may
be occupied by the pixel array of a single cached character, as deter­
mined from the information presented by the setcachedevice operator.
This is the same parameter as is set by setcachelimit; see the descrip­
tion of that operator in the POSTSCRIPT Language Reference Manual.

The lower operand specifies the threshold at which characters may be
stored in compressed form rather than as full pixel arrays. If a
character's pixel array requires more than lower bytes to represent, it
may be compressed in the cache and reconstituted from the compressed
representation each time it is needed. Some devices do not support
compression of characters.

Setting lower to zero forces all characters to be compressed, permitting
more characters to be stored in the cache but increasing the work re­
quired to print them. Setting lower to a value greater than or equal to
upper disables compression altogether.

The size operand specifies the new size of the font cache in bytes (the
bsize value returned by cachestatus). If size is not specified, the font
cache size is unchanged. If size lies outside the range of font cache
sizes permitted by the implementation, the nearest permissible size is
substituted, with no error indication. Reducing the font cache size can
cause some existing cached characters to be discarded, increasing ex­
ecution time when those characters are next shown.

ERRORS:

range check, unmatchedmark

22In future versions of the POSTSCRIPT interpreter there may be more than three
cache parameters defined.

16 OPERATORS 109

setfileposition file position setfileposition -

repositions an existing open file to a new position, such that the next
read or write operation will commence at that position. The position
operand is a non-negative integer interpreted as number of bytes from
the beginning of the file. For an output file, setfileposition first per­
forms an implicit flushfile.

Positioning beyond the existing end-of-file will lengthen the file if it is
open for writing and the file's access permits; the storage appended to
the file has unspecified contents. Otherwise, an ioerror occurs. Pos­
sible causes of an ioerror are: the file object is not valid; the under­
lying file is not positionable; the specified position is invalid for the
file; a device dependent error condition is detected.

ERRORS:
ioerror, stack underflow , typecheck, undefinedfilename

setgstate gstate setgstate -

replaces the current graphics state by the value of the gstate object.
This is a copying operation, so subsequent modifications to the value of
gstate will not affect the current graphics state or vice versa. Note that
this is a wholesale replacement of all components of the graphics state;
in particular, the current clipping path is replaced by the value in gstate,
not intersected with it.

ERRORS:

invalid access, stackunderflow, typecheck

set halftone halftone sethalftone -

establishes halftone as the current halftone dictionary in the graphics
state. This must be a dictionary constructed according to the rules in
Section 11. If halftone is a null object instead of a dictionary,
sethalftone substitutes the default halftone definition for the current
device (however it was defined). If the halftone dictionary's
HalftoneType value is out of bounds or is not supported by the
POSTSCRIPT interpreter, a rangecheck error occurs. If a required entry
is missing or its value is of the wrong type, a typecheck error occurs.

ERRORS:
Iimitcheck, rangecheck, stackunderflow, typecheck

110 Extensions for the DISPLAY POSTSCRIPT System

sethalftonephase x y sethalftonephase -

sets the current halftone phase parameters in the graphics state. x and y
are integers specifying the new halftone phase, interpreted in device
space.

ERRORS:

stackunderflow, typecheck

setobjectformat int setobjectformat -

establishes the number representation to be used in object sequences
written by subsequent execution of printobject and writeobject. Out­
put produced by those operators will have a token type that identifies
the representation used. The int operand is one of the following (see
Section 2):

o disable binary encodings (see below)
1 high-order byte first; IEEE standard real format
2 low-order byte first; IEEE standard real format
3 high-order byte first; native real format
4 low-order byte first; native real format

Note that any of the latter four values specifies the number represen­
tation only for output. Incoming binary encoded numbers use a repre­
sentation that is specified as part of each token (in the initial token type
character).

The value 0 disables all binary encodings for both input and output.
That is, the POSTSCRIPT language scanner treats all incoming characters
as part of the ASCII encoding, even if a token starts with a character
code in the range 128 to 159. The printobject and writeobject
operators are disabled; executing them will cause an undefined error.
This mode is provided for compatibility with certain existing
POSTSCRIPT language programs.

Each POSTSCRIPT execution context has its own object format
parameter; modifications to this parameter obey the normal
save/restore discipline. When a context is created by fork, the new
context inherits its object format from the current context. For other
contexts, the initial value of of the object format parameter is im­
plementation dependent; the program must execute setobjectformat in
order to generate output with a predictable number representation.

ERRORS:

rangecheck, stackunderflow, typecheck

16 OPERATORS 111

setscreen frequency angle proc setscreen -
num1 num2 halftone setscreen -

sets the current halftone screen definition in the graphics state, as
described in the POSTSCRIPT Language Reference Manual.

For compatibility with existing applications, setscreen has been ex­
tended to take a halftone dictionary instead of the proc defining the
spot function (see Section 11). In this case, the numj and num2
operands are ignored.

ERRORS:
limitcheck, rangecheck, stackunderflow, typecheck

112 Extensions for the DISPLAY POSTSCRIPT System

setshared bool setshared -

changes the VM allocation mode. The value false denotes private VM
allocation; true denotes shared VM allocation.

In the normal private VM allocation mode, the values of new com­
posite objects are allocated in the execution context's private VM. This
applies both to objects created implicitly by the scanner and ones
created explicitly by POSTSCRIPT operators. Private objects cannot be
stored as components of shared objects.

In shared VM allocation mode, the values of new composite objects are
allocated in shared VM. Such objects may be stored as components of
other shared objects (e.g., shareddict, SharedFontDirectory), thereby
becoming visible to all contexts.

Creation and modification of shared objects is unaffected by the
save/restore facility, whose actions are confined to the private VM of
the context that executes them. Note that this selective disabling of
save/restore semantics is based on where each object's value is lo­
cated; it has nothing to do with the VM allocation mode in effect at the
time of the save or the restore.

While shared VM allocation mode is in effect, the name
FontDirectory refers to the value of SharedFontDirectory, located in
shared VM, instead of to the normal private font directory. This affects
the behavior of the definefont and undefinefont operators and the
findfont procedure.

The standard error handlers in errordict execute 'false setshared', thus
reverting to private allocation mode if an error occurs.

ERRORS:

stackunderflow, typecheck

16 OPERATORS 113

setstrokeadjust bool setstrokeadjust -

sets the stroke adjust parameter in the current graphics state to bool. If
bool is true, automatic stroke adjustment will be performed during
subsequent execution of stroke and related operators (including
strokepath; see Section 12). If bool isfalse, stroke adjustment will not
be performed.

The initial value of the stroke adjustment parameter is device depend­
ent; typically it is true for displays and false for printers. It is not
altered by initgraphics.

ERRORS:
stackunderflow, typecheck

setucacheparams mark blimit setucacheparams -

sets user path cache parameters as specified by the integer objects
above the topmost mark on the stack, then removes all operands and
the mark object as if by cleartomark. The number of cache parameters
is variable and may increase in future versions of the POSTSCRIPT inter­
preter. If more operands are supplied to setucacheparams than are
needed, the topmost ones are used and the remainder ignored; if too
few are supplied, setucacheparams implicitly inserts default values
between the mark and the first supplied operand.

blimit specifies the maximum number of bytes that can be occupied by
the reduced representation of a single path in the user path cache. Any
reduced path larger than this is not saved in the cache. Changing blimit
does not disturb any paths that are already in the cache. (A blimit value
that is too large is automatically reduced to the maximum permissible
value without error indication.)

ERRORS:
rangecheck, typecheck, unmatched mark

114 Extensions for the DISPLAY POSTSCRIPT System

setvmthreshold int setvmthreshold -

sets the allocation threshold to the specified value. The allocation
threshold for a VM is the amount of memory use that will trigger
automatic garbage collection for that VM (if automatic garbage collec­
tion is enabled; see vmreclaim). The system keeps a separate account­
ing of memory used by each VM.

The allocation threshold for a VM defaults to a system-specific value.
The value for a private VM can be changed; the new value must fall
within the limits of a system-defined minimum and maximum (see
example below). The value for the shared VM cannot be changed.
When the allocation threshold for a private VM is exceeded, automatic
garbage collection is triggered for that VM. When the allocation
threshold for shared VM is exceeded, automatic garbage collection is
triggered for the shared VM.

This operation applies only to the VM of the current context. If the
specified value is less than the implementation-dependent minimum
value, the threshold is set to that minimum value. If the specified value
is greater than the implementation-dependent maximum value, the
threshold is set to that maximum value. If the value specified is -1,
then the threshold is set to the implementation dependent default value.
All the other negative values result in a rangecheck error.

setvmthreshold never affects the allocation threshold associated with
shared VM.

Example: Assuming a default threshold of 40,000, a minimum allow­
able value of 10,000, and a maximum allowable value of 500,000, the
operation in the first column below produces the result shown in the
second column.

20000 setvmthreshold

-1 setvmthreshold

20 setvmthreshold

1000000 setvmthreshold

-5 setvmthreshold

ERRORS:

rangecheck

Threshold set to 20,000.

Threshold set to 40,000.

Threshold set to 10,000.

Threshold set to 500,000.

rangecheck error.

16 OPERATORS 115

status file status bool
string status if found: pages bytes referenced created true

if not found: false

If the operand is a file object, status returns true if it is still valid (i.e.,
is associated with an open file),false otherwise. This behavior of status
is as described in the POSTSCRIPT Language Reference Manual.

If the operand is a string, status treats it as a file name according to the
conventions described above. If there exists a file by that name, status
pushes four integers of status information followed by the value true;
otherwise it pushesfalse. The four integer values are:

pages

bytes

referenced

created

ERRORS:

storage space actually occupied by the file, in im­
plementation dependent units.

length of file in characters.

date and time at which the file was last referenced for
either reading or writing. The interpretation of the
value is according to the conventions of the under­
lying operating system; the only assumption that a
program can make is that larger values indicate later
times.

date and time at which the information in the file was
created.

stackoverflow, stackunderflow, typecbeck

116 Extensions for the DISPLAY POSTSCRIPT System

type any type name

returns a name object that identifies the type of the object any, as
documented in the POSTSCRIPT Language Reference Manual. The type
operator is extended to operate on gstate, lock, and condition objects in
addition to the types it already deals with. The possible names that type
can return are now as follows

arraytype
booleantype
conditiontype
dicttype
filetype
fonttype
gstatetype
integertype
locktype

ERRORS:
stackunderflow

marktype
nametype
nulltype
operatortype
packedarraytype
realtype
savetype
stringtype

16 OPERATORS 117

uappend userpath uappend -

interprets a user path definition and appends the result to the current
path in the graphics state. If user path is an ordinary user path (i.e., an
array or packed array whose length is at least 5), uappend is equivalent
to:

systemdict begin
cvx exec
end

% ensure standard operator meanings
% interpret userpath

If user path is an encoded user path, uappend interprets it and performs
the encoded operations. It does not matter whether the userpath object
is literal or executable.

Note that uappend uses the standard definitions of all operator names
mentioned in the user path, unaffected by any name redefinition that
may have occurred.

A ucache appearing in userpath mayor may not have an effect,
depending on the context in which uappend is executed. If the current
path is initially empty and no path construction operators are executed
after uappend, a subsequent rendering operator may access the user
path cache; otherwise it definitely will not. This is particularly useful in
the case of clip and viewclip.

uappend performs a temporary adjustment to the current transfor­
mation matrix as part of its execution. This adjustment consists of
rounding the tx and ty components of the CTM to the nearest integer
values. The reason for this is discussed in Section 8.

ERRORS:

invalid access, limitcheck, range check, stackunderflow, typecheck

118 Extensions for the DISPLAY POSTSCRIPT System

ucache - ucache -

notifies the POSTSCRIPT interpreter that the enclosing user path is to be
retained in the cache if it is not already there. If present, this operator
must appear as the first element of a user path definition (before the
mandatory setbbox).

The ucache operator has no effect of its own when executed; if ex­
ecuted outside a user path definition, it does nothing. It is useful only in
conjunction with a user path rendering operator, such as utill or
ustroke, that takes the user path as an operand. If the user path is not
already in the cache, the rendering operator performs the path construc­
tion operations specified in the user path and places the results (referred
to as the reduced path) in the cache. If the user path is already present
in the cache, the rendering operator does not interpret the user path but
obtains the reduced path from the cache.

ERRORS: (none)

ucachestatus - ucachestatus mark bsize bmax rsize rmax blimit

reports the current consumption and limit for two user path cache
resources: bytes of reduced path storage (bsize and bmax) and total
number of cached reduced paths (rsize and rmax). Additionally, it
reports the limit on the number of bytes occupied by a'single reduced
path (blimit)-reduced paths that are larger than this are not cached.
All ucachestatus results except blimit are for information only; a
POSTSCRIPT language program can change blimit (see
setucacheparams).

The number of values pushed on the operand stack is variable; future
versions of the POSTSCRIPT interpreter can push additional values be­
tween mark and bsize. The purpose of the mark is to delimit the values
returned by ucachestatus; this enables a program to determine how
many values were returned (by counttomark) and to discard any
unused ones (by cleartomark).

ERRORS:

stackoverflow

ueofill userpath ueofill -

is similar to ufill, but does eofill instead of fill.

ERRORS:

invalid access, limitcheck, rangecheck, stackunderflow, typecheck

16 OPERATORS 119

ufill userpath ufill -

interprets a user path definition and fills the resulting path as if by fill.
The entire operation is effectively enclosed by gsave and grestore, so
ufill has no lasting effect on the graphics state. ufill is equivalent to:

gsave
newpath
uappend
fill
grestore

ERRORS:
invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

undef diet key undef -

removes key and its associated value from the dictionary diet. diet does
not need to be on the dictionary stack.

Note that the effect of undef can be undone by a subsequent restore.
That is, if key was present in diet at the time of the matching save,
restore will reinstate key and its fonner value. (Remember, however,
that restore has no effect if diet is in shared VM; in that case, the effect
of undef is pennanent.)

An undef on a dictionary inside a 'forall' on that dictionary will give
undefined results. The following example does not delete all keys in the
dictionary:

mydiet { pop mydiet exeh undef } forall

The dictionary must first be enumerated into another object and that
object must be enumerated to remove the keys:

[mydiet { pop} forall] { mydiet exeh undef } forall

Note that this technique is more memory-efficient than assigning a new
dictionary to 'mydiet'.

ERRORS:

invalid access, stackunderflow, typecheck, undefined

120 Extensions for the DISPLAY POSTSCRIPT System

undefinefont key undefinefont -

removes key and its associated value (a font dictionary) from the
FontDirectory dictionary. The effect of this is similar to undef; a
special operator is needed because FontDirectory is read-only.

Note that FontDirectory normally refers to the font directory in private
VM; undefinefont operates only on that directory and not on
SharedFontDirectory. However, when shared VM allocation mode is
in effect, the name FontDirectory refers to the font directory in shared
VM; undefinefont operates on it.

ERRORS:

stackunderflow, typecheck, undefined

undefineuserobject index undefineuserobject -

breaks the association between the non-negative integer index and an
object established by some previous execution of defineuserobject. It
does so simply by replacing the specified UserObjects array element
by the null object; this is equivalent to:

userdict /UserObjects get
exch null put

undefineuserobject does not take any other actions such as shrinking
the UserObjects array. If index is not a valid index for the existing
UserObjects array, a range check error occurs.

There is no need to execute undefineuserobject prior to executing a
defineuserobject that reuses the same index. The purpose of
undefineuserobject is to eliminate references to objects that are no
longer needed. This may enable such objects to be reclaimed by the
garbage collector.

ERRORS:

rangecheck, stackunderflow, typecheck

16 OPERATORS 121

upath bool upath userpath

creates a new user path object that is equivalent to the current path in
the graphics state. upath creates a new executable array object of the
appropriate length and fills it with the operands and operators needed to
describe the current path. upath produces only an ordinary user path
procedure, not an encoded user path. It does not disturb the current path
in the graphics state.

The bool operand detennines whether or not the resulting user path is
to include ucache as its first element.

Since the current path's coordinates are maintained in device space,
upath transfonns them to user space using the inverse of the CTM
while constructing the user path. Applying uappend to the reSUlting
user path will reproduce the same current path in the graphics state, but
only if the same CTM is in effect at that time.

upath is equivalent to:23

[
exch {/ucache cvx} if
pathbbox /setbbox cvx
{/moveto cvx} {/Iineto cvx} {/curveto cvx}

{/c1osepath cvx} pathforall
] cvx

If charpath was used to construct any portion of the current path,
upath is not allowed; its execution will produce an invalid access error.

ERRORS:
invalid access, stackoverflow, VMerror

23 A perfect emulation of upath may need to be more complex than this in
order to avoid exceeding the implementation limit on depth of the operand
stack.

122 Extensions for the DISPLAY POSTSCRIPT System

UserObjects -- UserObjects array

returns the current UserObjects array defined in userdict.
UserObjects is not an operator; it is simply a name associated with an
array in userdict. This array is created and managed by the operators
defineuserobject, undefineuserobjects, and execuserobject. It
defines a mapping from small integers (used as array indices) to ar­
bitrary objects (the elements of the array).

The UserObjects entry in userdict is present only if defineuserobject
has been executed at least once by the current context (or a context that
shares the same space). The length of the array depends on the index
operands of all previous executions of defineuserobject.

Note that defineuserobject, undefineuserobjects, and execuserobject
operate on the value of UserObjects in userdict, without regard to the
dictionaries currently on the dictionary stack. Defining UserObjects in
some other dictionary on the dictionary stack changes the value
returned by executing the name object UserObjects but does not alter
the behavior of the user object operators.

Although UserObjects is an ordinary array object, it should be
manipulated only by the user object operators. Improper direct altera­
tion of UserObjects can subsequently cause the user object operators
to malfunction.

ERRORS:

stackoverflow, undefined

usertime - usertime int

returns POSTSCRIPT interpreter execution time, as described in the
POSTSCRIPT Language Reference Manual. In a DISPLAY POSTSCRIPT

system that supports multiple execution contexts, the value returned by
usertime reports execution time on behalf of the current context
only.24 As before, the value has no defined starting point, so usertime
is useful only for interval timing.

ERRORS:

stackoverflow

24 A context that executes usertime can subsequently execute with reduced
efficiency, because in order to perfonn user time accounting, the POSTSCRIPT
interpreter must perfonn an operating system call whenever it switches control
to and from that context. Therefore, one should not execute usertime
gratuitously.

16 OPERATORS 123

ustroke userpath ustroke
userpath matrix ustroke

interprets a user path definition and strokes the resulting path as if by
stroke. The entire operation is effectively enclosed by gsave and
grestore, so ustroke has no lasting effect on the graphics state.

In the first form (with no matrix operand), ustroke is equivalent to:

gsave
newpath
uappend
stroke
grestore

In the second form, ustroke concatenates matrix to the CTM before
executing stroke. Thus the matrix applies to the line width and the dash
pattern (if any) but not to the path itself. This form of ustroke is
equivalent to:

gsave
newpath
exch uappend
concat
stroke
grestore

% interpret userpath
% concat matrix to CTM

The main use of this operation is to compensate for variations in line
width and dash pattern that occur if the CTM has been scaled by dif­
ferent amounts in x and y. This is accomplished by defining matrix to
be the inverse of the unequal scaling transformation.

ERRORS:
invalid access, limitcheck, range check, stackunderflow, typecheck

124 Extensions for the DISPLAY POSTSCRIPT System

ustrokepath userpath ustrokepath -
userpath matrix ustrokepath -

replaces the current path with one enclosing the shape that would result
if the ustroke operator were applied to the same operands. The path
resulting from ustrokepath is suitable as the implicit operand to a
subsequent fill, clip, or pathbbox. In general, this path is not suitable
for stroke, as it may contain interior segments or disconnected sub­
paths produced by ustrokepath's stroke to outline conversion process.

In the first form, ustrokepath is equivalent to:

newpath
uappend
strokepath

In the second form, ustrokepath is equivalent to:25

newpath
exch uappend
matrix currentmatrix
exch concat
strokepath
setmatrix

ERRORS:

% interpret userpath
% save CTM
% concat matrix to CTM

% restore original CTM

invalid access, limitcheck, range check, stackunderflow, typecheck

25 A more satisfactory emulation of llstrokepath would not create a new matrix
each time but would define one temporary matrix that it reuses.

16 OPERATORS 125

viewclip - viewclip -

replaces the current view clipping path by a copy of the current path in
the graphics state. The inside of the current path is determined by the
normal POSTSCRIPT non-zero winding number rule. viewclip implicitly
closes any open subpaths of the view clipping path. After setting the
view clip, viewclip resets the current path to empty, as if by newpath.

viewclip is similar to clip in that it causes subsequent painting opera­
tions to affect only those areas of the current page that lie inside the
new view clip path. However, it differs from clip in three important
respects:

• The view clipping path is independent of the current clipping
path. The current clipping path is unaffected; a subsequent
clippath returns the current clipping path, uninfluenced by the
additional clipping imposed by the view clip.

• viewclip entirely replaces the current view clipping path, whereas
clip computes the intersection of the current and new clipping
paths.

• viewclip performs an implicit newpath at the end of its execu­
tion, whereas clip leaves the current path unchanged.

The view clipping path can be described by a user path (see Section 8);
this is accomplished by:

newpath userpath uappend viewclip

If user path specifies ucache, this operation may take advantage of
information in the user path cache.

ERRORS:

limitcheck

viewclippath - viewclippath -

replaces the current path by a copy of the current view clip path. If no
view clipping path has been set, viewclippath replaces the current path
by one that encloses the entire imageable area of the output device (see
initviewclip).

ERRORS: (none)

126 Extensions for the DISPLAY POSTSCRIPT System

vmreclaim int vmreclaim -

controls the garbage collection machinery as specified by int:

-2 disable automatic collection in both private and shared VM.
-1 disable automatic collection in private VM.
o enable automatic collection.
1 perfonn immediate collection in private VM.
2 perfonn immediate collection in both private and shared

VM. This can take a long time, since it must consult the
private VMs of all contexts.

Garbage collection causes the memory occupied by the values of in­
accessible objects to be reclaimed and made available for re-use. It
does not have any effects that are visible to the POSTSCRIPT language
program. There is nonnally no need to execute the vrnreclairn
operator, since garbage collection is invoked automatically when
necessary. However, there are a few situations in which this operator
may be useful:

• In an interactive application that is temporarily idle, the idle time
can be put to good use by invoking an immediate garbage collec­
tion; this defers the need to perfonn an automatic collection sub­
sequently.

• When monitoring the VM consumption of a program, one must
invoke garbage collection before executing vrnstatus in order to
obtain meaningful results.

• When measuring the execution time of a program, one must dis­
able automatic garbage collection in order to obtain repeatable
results.

The negative values that disable garbage collection apply only to the
current context; that is, they do not prevent collection from occurring
during execution of other contexts. Note that disabling garbage collec­
tion for too long may eventually cause a program to run out of memory
and fail with a VMerror.

ERRORS:

rangecheck, stackunderflow, typecheck

16 OPERATORS 127

vmstatus - vmstatus level used maximum

returns infonnation about the state of the VM, as described in the
POSTSCRIPT Language Reference Manual. However, in the DISPLAY

POSTSCRIPT system, the returned values have more complex interpreta­
tions.

VM consumption is monitored separately for private and shared VM.
The used and maximum values apply to either private or shared VM
according to the current VM allocation mode (see setshared). Ad­
ditionally, since save and restore do not have any effect on shared VM,
the level value is meaningless if the current VM allocation mode is
shared.

The used value is meaningful only immediately after a garbage collec­
tion has taken place (see vmreclaim). At other times, it may be too
large because it includes memory occupied by objects that have be­
come inaccessible but have not yet been reclaimed.

The maximum value reflects the maximum past memory consumption
by the VM region in question. It is not necessarily a limit, since the
DISPLAY POSTSCRIPT system can usually obtain more memory dynami­
cally from the underlying operating system. Additionally, in an en­
vironment that supports multiple POSTSCRIPT execution contexts, avail­
able memory can be reallocated from one context's VM to another.

ERRORS:

stackoverflow

128 Extensions for the DISPLAY POSTSCRIPT System

wait lock condition wait -

releases lock, waits for condition to be notified (by some other context),
and finally reacquires lock. The lock must originally have been ac­
quired by the current context, which means that wait can be invoked
only within the execution of a monitor that references the same lock.

If lock is initially held by some other context or is not held by any
context, wait executes an invalidcontext error. On the other hand,
during the wait for condition, the lock can be acquired by some other
context. After condition is notified, wait will wait arbitrarily long to
reacquire lock.

If the current context has previously executed a save not yet matched
by a restore, wait executes invalidcontext unless both lock and
condition are in shared VM. The latter case is permitted under the
assumption that the wait is synchronizing with some context whose
space is different from that of the current context.

ERRORS:

invalid context, stackunderflow, typecheck

writeobject file obj tag writeobject -

writes a binary object sequence to file. Except for taking an explicit file
operand, writeobject is identical to printobject in all respects.

As is the case for all operators that write to files, the output produced
by writeobject may accumulate in a buffer instead of being transmitted
immediately. To ensure immediate transmission, a flushfile is required.

ERRORS:

invalid access, ioerror, limitcheck, rangecheck, stackunderflow,
typecheck,undefined

16 OPERATORS 129

wtranslation - wtranslation x y

returns the translation from the window origin to the POSTSCRIPT

device space origin. The integers x and y are the amounts that need to
be added to a window system coordinate to produce the POSTSCRIPT

device space coordinate for the same position. That coordinate may in
tum be transformed to user space by the itransform operator.

Window system and device space coordinates always correspond in
resolution and orientation; they differ only in the positions of their
origins. The translation from one origin to the other may change as
windows are moved and resized; the precise behavior is window sys­
tem specific.

ERRORS:

stackoverflow

xshow text numarray xshow -
text numstring xshow -

is similar to xyshow. However, for each character shown, xshow ex­
tracts only one number from numarray or numstring; it uses that num­
ber as the x displacement and the value zero as the y displacement. In
all other repects, xshow behaves the same as xyshow.

ERRORS:

invalid access, invalidfont, nocurrentpoint, rangecheck,
stackunderflow, typecbeck

130 Extensions for the DISPLAY POSTSCRIPT System

xyshow text numarray xyshow
text numstring xyshow

prints successive characters of text in a manner similar to show. After
rendering each character, it extracts two successive numbers from the
array numarray or the encoded number string numstring. These two
numbers, interpreted in user space, determine the position of the origin
of the next character relative to the origin of the character just shown.
The first number is the x displacement and the second number is the y
displacement. In other words, the two numbers override the character's
normal width.

If numarray or numstring is exhausted before all the characters of text
have been shown, a rangecheck error will occur.

ERRORS:

invalid access, invalidfont, nocurrentpoint, rangecheck,
stackunderflow, typecheck

yield - yield -

suspends the current context until all other contexts sharing the same
space have had a chance to execute. This should not be used as a
synchronization primitive, since there is no way to predict how much
execution the other contexts will be able to accomplish. The purpose of
yield is to break up long-running computations that might lock out
other contexts.

ERRORS:

(none)

16 OPERATORS 131

yshow text numarray yshow -
text numstring yshow -

is similar to xyshow. However, for each character shown, yshow ex­
tracts only one number from numarray or numstring; it uses that num­
ber as the y displacement and the value zero as the x displacement. In
all repects, it behaves the same as xyshow.

text is the string that specifies what characters are to be shown (as in
show). numarry is an array whose elements are all numbers. numstring
is an encoded number string, constructed as described in Section 2.

ERRORS:

invalid access, invalidfont, nocurrentpoint, rangecheck,
stackunderflow, typecheck

132 Extensions for the DISPLAY POSTSCRIPT System

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT

The changes to POSTSCRIPT Language Extensions for the
DISPLAY POSTSCRIPT System from the document dated May 30,
1989, are noted in the paragraphs below.

The quit operator has been added to Section 16, and differences
from its description in the POSTSCRIPT Language Reference
Manual have been provided.

The detach and vrnstatus operators, which were missing from
the Operator Summary, have been added.

The setbbox operator description has been amplified.

16 OPERATORS 133

134 Extensions for the DISPLAY POSTSCRIPT System

B POSTSCRIPT LANGUAGE CHANGES

Several additions have been made to the standard POSTSCRIPT
language. These additions are upward-compatible and do not af­
fect the function of any existing POSTSCRIPT language programs.
The changes are included in all POSTSCRIPT language implemen­
tations with version number 25.0 or higher; they are documented
in editions of the POSTSCRIPT Language Reference Manual
copyright 1986 or later.

In general, POSTSCRIPT language programs that are intended to
be compatible with all POSTSCRIPT printers should not make use
of the new features. However, it is possible for a program to
determine whether or not the new features are present and to
invoke them conditionally. The descriptions below suggest how
to determine whether a particular feature is present or absent.

Packed arrays

POSTSCRIPT language procedures are represented as executable
arrays which, until now, have been stored in the same fashion as
literal data arrays. This representation, while offering maximum
flexibility, is very costly in space (8 bytes per element). Large
POSTSCRIPT language programs, such as the built-in server
program and downloaded preambles, consume considerable
amounts of VM.

Since most programs do not require the ability to be treated as
data but only the ability to be executed, a more compact repre­
sentation has been introduced: the packed array. Programs
represented as packed arrays are typically 50 to 75 percent
smaller than the same programs represented as ordinary arrays.

A packed array object has a type different from an ordinary array
object ('packedarraytype' versus 'arraytype'); but in most
respects it behaves the same as an ordinary array. You can ex­
ecute a packed array; you can extract elements (using get) or
subarrays (using getinterval); you can enumerate it (using
forall); and so forth. Individual elements extracted from a
packed array are ordinary POSTSCRIPT objects; a sub array of a
packed array is also a packed array.

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 135

The differences between packed arrays and ordinary arrays are:

• Packed arrays are always read-only: you can't use put,
putintervai, etc., to store into one.

• Packed arrays are created differently from ordinary arrays
(see below).

• Accessing arbitrary elements of a packed array can be quite
slow; however, accessing the elements sequentially (as is
done by the POSTSCRIPT interpreter and by the forall
operator) is approximately as efficient as accessing an or­
dinary array.

• The copy operator cannot copy into a packed array (since it
is read-only); however, it can copy the value of a packed
array to an ordinary array of at least the packed array's
length.

There are two ways in which packed arrays come into existence.
The first and more common way is for the POSTSCRIPT input
scanner to create packed arrays automatically for all executable
arrays that it reads. That is, whenever the scanner encounters a
'{' while reading a file or string, it accumulates all tokens up to
the matching '}' and turns them into a packed array instead of an
ordinary array.

The choice of array type is controlled by a mode setting, manipu­
lated by the new operators setpacking and currentpacking
(described at the end of this section). If the array packing mode
is true, POSTSCRIPT language procedures encountered sub­
sequently by the scanner are created as packed arrays; if the
mode is false, procedures are created as ordinary arrays. The
default value is false (i.e., create ordinary arrays), for com­
patibility with existing programs.

The other way to create a packed array is to build it explicitly by
invoking the packedarray operator with a list of operands to be
incorporated into a new packed array.

Immediately evaluated names

The language syntax has been extended to include a new kind of
name token, the immediately evaluated name. When the scanner
encounters the token '//name' (a name preceded by two slashes

136 Extensions for the DISPLAY POSTSCRIPT System

with no intervening spaces), it immediately looks up the name in
the context of the current dictionary stack and substitutes the cor­
responding value for the name. If the name is not found, an
undefined error occurs.

The substitution occurs immediately, regardless of whether or not
the token appears inside an executable array delimited by '{ ... }'.
Note that this process is a substitution and not an execution; that
is, the name's value is not executed but rather is substituted for
the name itself, just as if the load operator had been applied to
the name. This action is related to the action perfonned by the
bind operator (see the POSTSCRIPT Language Reference
Manual); but whereas bind perfonns substitution only for names
whose values are operators, each occurrence of the '/lname' syn­
tax is replaced by the value associated with name regardless of
the value's type. The following examples illustrate this:

la 3 def
Ib {(test) print} def
Iia ~ 3
lIb ~ {(test) print}
{ila lib a Ib} ~ {3 {(test) print} alb}

The purpose of using immediately evaluated names is similar to
that of using the bind operator: to cause names in procedures to
become 'tightly bound' to their values. However, a word of cau­
tion is in order: indiscriminate use of immediately evaluated
names may change the semantics of a program. In particular,
recall that when the interpreter encounters a procedure object
directly it simply pushes it on the operand stack; but when it
encounters a procedure object indirectly (by looking up an ex­
ecutable name) it executes the procedure. (See Section 3.6 of the
POSTSCRIPT Language Reference Manual.) Therefore, execution
of the program fragments:

{ ... b ... }
{ ... lIb ... }

may have different effects if the value of the name 'b' is a proce­
dure.

The immediately evaluated name facility is present in all ver­
sions of the POSTSCRIPT interpreter since version 25.0 (as

B POSTSCRIPT LANGUAGE CHANGES 137

reported by the version operator). Earlier versions of the inter­
preter will scan '//name' as two distinct tokens: '/" a literal name
with no text at all, and '/name', a literal name whose text .is
name.

138 Extensions for the DISPLAY POSTSCRIPT System

New Operators

setpacklng bool setpacking -

sets the array packing mode to the specified boolean value. This deter­
mines the type of executable arrays subsequently created by the
POSTSCRIPT scanner. The value true selects packed arrays; false selects
ordinary arrays.

The packing mode affects only the creation of procedures by the scan­
ner when it encounters program text bracketed by '{' and '}' during
interpretation of an executable file or string object or during execution
of the token operator. It does not affect the creation of literal arrays by
the '[' and ']' operators or by the array operator.

The array packing mode setting persists until overridden by another
execution of setpacking or until undone by a restore.

EXAMPLE:
systemdict /setpacking known

{/savepacking currentpacking def
true setpacking

} if

... arbitrary procedure definitions ...

systemdict /setpacking known {savepacking setpacking} if

If the packed array facility is available, the procedures represented by
'arbitrary procedure definitions' are defined as packed arrays; other­
wise they are defined as ordinary arrays. This example is careful to
preserve the array packing mode in effect before its execution.

ERRORS:

stackunderflow, typecbeck

currentpacking - currentpacking boo I

returns the array packing mode currently in effect.

STANDARD VALUE: false

ERRORS:
stackoverflow

B POSTSCRIPT LANGUAGE CHANGES 139

packedarray anyo ... anYn_1 n packedarray packed array

creates a packed array object of length n containing the objects anyo
through any n-l as elements. packedarray first removes the non­
negative integer n from the operand stack. It then removes that number
of objects from the operand stack, creates a packed array containing
those objects as elements, and finally pushes the resulting packed array
object on the operand stack.

The resulting object has a type of 'packedarraytype', a literal attribute,
and read-only access. In all other respects, its behavior is identical to
that of an ordinary array object.

STANDARD VALUE: false

ERRORS:
rangecheck, stackunderflow, typecheck, VMerror

140 Extensions for the DISPLAY POSTSCRIPT System

showpage and copypage

The correct use of showpage versus copypage is a matter requir­
ing some clarification. Inappropriate use of copypage can result
in significant performance degradation in new POSTSCRIPT
printers.

showpage is the normal operator for causing pages to be output.
It has three effects: it prints the current page, it erases the current
page, and it reinitializes the graphics state.

copypage is a somewhat more specialized operator that just
prints the current page but does not erase it or reset the graphics
state. Its main intended use is to permit adding new marks to an
existing page, e.g., when building up a page incrementally.

showpage is logically equivalent to the sequence:

copypage erasepage initgraphics

However, use of copypage for printing pages can degrade page
throughput significantly. One reason for this is that showpage
performs the printing and the erasing in parallel whereas the
copypage erasepage method performs them serially; there are
other reasons as well.

copypage should also not be used to defeat the automatic
initgraphics of showpage. 1 That is, to print and erase the cur­
rent page but leave the graphics state unchanged, you should not
say:

copypage erasepage

Instead you should say:

gsave showpage grestore

Please also note that the correct way to print multiple copies of a
page is to associate the desired number of copies with the name
#copies prior to invoking showpage, as discussed under
showpage in the POSTSCRIPT Language Reference Manual. The
#copies convention now applies uniformly to both showpage
and copypage, whereas formerly it applied only to showpage.

1 Unfortunately, the current POSTSCRIPT Language Tutorial and Cookbook in­
cludes an example that uses this technique.

B POSTSCRIPT LANGUAGE CHANGES 141

142 Extensions for the DISPLAY POSTSCRIPT System

C SYSTEM NAME ENCODINGS

index name index name index name

0 abs 41 currentrgbcolor 82 idiv
add 42 currentshared 83 idtransfonn

2 aload 43 curveto 84 if
3 anchorsearch 44 cvi 85 ifelse
4 and 45 cvlit 86 image

5 arc 46 cvn 87 imagemask
6 arcn 47 cvr 88 index

7 arct 48 cvrs 89 ineofill
8 arcto 49 cvs 90 infIll

9 array 50 cvx 91 initviewclip
10 ashow 51 def 92 inueofill
11 as tore 52 defineusemame 93 inufill
12 awidthshow 53 dict 94 invertmatrix
13 begin 54 div 95 itransfonn
14 bind 55 dtransfonn 96 known
15 bitshift 56 dup 97 Ie
16 ceiling 57 end 98 length
17 charpath 58 eoclip 99 line to
18 clear 59 eofill 100 load
19 cleartomark 60 eoviewclip 101 loop
20 clip 61 eq 102 It
21 clippath 62 exch 103 makefont
22 closepath 63 exec 104 matrix
23 concat 64 exit 105 maxlength
24 concatmatrix 65 fIle 106 mod
25 copy 66 fill 107 moveto
26 count 67 findfont 108 mul
27 counttomark 68 flattenpath 109 ne
28 currentcmykcolor 69 floor 110 neg
29 currentdash 70 flush 111 newpath

30 currentdict 71 flushfIle 112 not

31 currentfile 72 for 113 null
32 currentfont 73 forall 114 or
33 currentgray 74 ge 115 pathbbox

34 currentgstate 75 get 116 pathforall

35 currenthsbcolor 76 getinterval 117 pop
36 currentlinecap 77 grestore 118 print

37 currentlinejoin 78 gsave 119 printobject

38 currentlinewidth 79 gstate 120 put

39 currentmatrix 80 gt 121 putinterval
40 currentpoint 81 identmatrix 122 rcurveto

B POSTSCRIPT LANGUAGE CHANGES 143

123 read 167 stroke 211 Times-Roman
124 readhexstring 168 strokepath 212 execuserobject
125 readline 169 sub 256 =
126 readstring 170 systemdict 257
127 rectclip 171 token 258 ISOLatinlEncoding
128 rectfill 172 transform 259 StandardEncoding
129 rectstroke 173 translate 260 [
130 rectviewclip 174 truncate 261]
131 repeat 175 type 262 atan
132 restore 176 uappend 263 banddevice
133 rlineto 177 ucache 264 bytesavailable
134 rmoveto 178 ueofill 265 cachestatus
135 roll 179 ufill 266 closefile
136 rotate 180 undef 267 colorimage
137 round 181 upath 268 condition
138 save 182 userdict 269 copypage
139 scale 183 ustroke 270 cos
140 scalefont 184 viewclip 271 countdictstack
141 search 185 viewclippath 272 countexecstack
142 selectfont 186 where 273 cshow
143 setbbox 187 widthshow 274 currentblackgeneration
144 setcachedevice 188 write 275 currentcacheparams
145 setcachedevice2 189 writehexstring 276 currentcolorscreen
146 setcharwidth 190 writeobject 277 currentcolortransfer
147 setcmykcolor 191 write string 278 currentcontext
148 setdash 192 wtranslation 279 currentflat
149 setfont 193 xor 280 currenthalftone
150 setgray 194 xshow 281 currenthalftonephase
151 setgstate 195 xyshow 282 currentmiterlimit
152 sethsbcolor 196 yshow 283 currentobjectformat
153 setlinecap 197 FontDirectory 284 currentpacking
154 setlinejoin 198 SharedFontDirectory 285 currentscreen
155 setlinewidth 199 Courier 286 currentstrokeadjust
156 setmatrix 200 Courier-Bold 287 current transfer
157 setrgbcolor 201 Courier-BoldOblique 288 currentundercolorremoval
158 setshared 202 Courier-Oblique 289 defaul tmatrix
159 shareddict 203 Helvetica 290 define font
160 show 204 Helvetica-Bold 291 deletefile
161 showpage 205 Helvetica-BoldOblique 292 detach
162 stop 206 Helvetica-Oblique 293 deviceinfo
163 stopped 207 Symbol 294 dictstack
164 store 208 Times-Bold 295 echo
165 string 209 Times-BoldItalic 296 erasepage
166 stringwidth 210 Times-Italic 297 errordict

144 Extensions for the DISPLAY POSTSCRIPT System

298 execs tack 342 setftleposition 386 K
299 executeonly 343 setflat 387 L
300 exp 344 sethalftone 388 M
301 false 345 sethalftonephase 389 N
302 filenameforall 346 setmiterlimit 390 0
303 fileposition 347 setobjectformat 391 P
304 fork 348 setpacking 392 Q
305 framedevice 349 setscreen 393 R
306 grestoreall 350 setstrokeadjust 394 S
307 handleerror 351 settransfer 395 T
308 initclip 352 setucacheparams 396 U
309 initgraphics 353 setundercolorremoval 397 V
310 initmatrix 354 sin 398 W
311 in stroke 355 sqrt 399 X
312 inustroke 356 srand 400 Y
313 join 357 stack 401 Z
314 kshow 358 status 402 a
315 In 359 statusdict 403 b
316 lock 360 true 404 c
317 log 361 ucachestatus 405 d
318 mark 362 undefinefont 406 e
319 monitor 363 usertime 407 f
320 noaccess 364 ustrokepath 408 g
321 notify 365 version 409 h
322 nulldevice 366 vmrec1aim 410
323 packedarray 367 vmstatus 411 j
324 quit 368 wait 412 k
325 rand 369 wcheck 413 I
326 rcheck 370 xcheck 414 m
327 readonly 371 yield 415 n
328 realtime 372 defineuserobject 416 0

329 renamefile 373 undefineuserobject 417 p
330 renderbands 374 UserObjects 418 q
331 resetfile 375 c1eardictstack 419 r
332 reversepath 376 A 420 s
333 rootfont 377 B 421
334 rrand 378 C 422 u

335 run 379 D 423 v
336 scheck 380 E 424 w
337 setblackgeneration 381 F 425 x
338 setcachelimi t 382 G 426 Y
339 setcachepararns 383 H 427 z
340 setcolorscreen 384 I 428 setvrnthreshold
341 setcolortransfer 385 J

C SYSTEM NAME ENCODINGS 145

#copies 141

II immediately evaluated name syntax 136

allocation threshold 114
arct 76,80
array 139
Array 135, 139
ASCII encoding 3

binary encoding 3
binary object sequence 4, 11
binary token 4
bind 137
Bitmap Widths 51
build time 65
byte order 5, 65
byteorder 65

cleardictstack 79, 80
cleartomark 109
Client Library 4
Compressed character 109
condition 75,80
condition 31
context 29
copy 81, 136
copypage 141
currentcacheparams 79, 81
currentcontext 75,81
currentgstate 76, 81
currenthalftone 77, 82
currenthalftonephase 77,82
currentobjectformat 75,82
current packing 136, 139
currentscreen 77, 82
currentshared 75,82
currentstrokeadjust 77, 83

definefont 83
defineusername 79,83

defineuserobject 76,84
deletefile 78, 84
detach 75, 85, 99
deviceinfo 78, 85

encoded number string 18
encoded user path 41
eoviewclip 77, 85
erasepage 141
execuserobject 76,86
Executable array 135
execution context 29

file 68,87
file system 68
filenameforall 78, 88
fileposition 78, 89
findfont 69,89
fixed point number 9
floating point format 5,65
Font cache 109
Font cache size 72
font storage device 69
FontDirectory 27
forall 135, 136
fork 75,90

garbage collection 23, 114
get 135
getinterval 135
graphics state object 38
gstate 76, 91
gstate 38

halftone dictionary 53
halftone phase 58
homogeneous number array 10

immediately evaluated name 14, 136
ineofill 78, 91
infill 78, 92

ex

147

initgraphics 141
initviewclip 77, 92
in stroke 93
inueoflll 78, 93
inuflII 78, 94
inustroke 78, 95
invalidcontext 79, 95
invalidid 79,96

join 75,96

load 137
lock 75,97
lock 31

makefont 77, 97
miscellaneous state variable 30, 89
monitor 75,97

Name 136
name index 10, 15
notify 75, 98

operator 73

Packed array 135, 139
packedarray 136, 140
pathbbox 108
POSTSCRIPT scanner 136
printobject 75,99
private VM 25, 30
Procedure 135, 139
product 65
pswrap 4
put 136
putinterval 136

quit 75,100

real format 5,65
realformat 65
realtime 79,100
rectangle 46
rectclip 76, 101
rectfiII 76, 102
rectstroke 76,77,103
rectviewclip 77,104
renamefile 78, 104

148 INDEX

revision 65

scan conversion 59
Scanner 136
scheck 75,105
scrolling 58
secondary storage device 68
selectfont 77, 106
setbbox 76, 107
setcachedevice 109
setcachelimit 109
setcacheparams 79,109
setfileposition 78, 110
setgstate 76, 110
sethalftone 77, 110
sethalftonephase 77, 111
setobjectformat 75, 111
setpacking 136,139
setscreen 77, 112
setshared 75,113
setstrokeadjust 77, 114
setucacheparams 76, 114
setvmthreshold 75,115
shared VM 25
shared VM allocation mode 26
shareddict 27
SharedFontDirectory 27
showpage 141
space 30
Standard error handlers 71
state variable 30, 89
status 78, 116
statusdict 65
string execution semantics 66
stroke adjustment 61
structured output 20
system name index 10, 15

tag 21
threshold array 56
timekeeping 70
token 139
token type 5
type 117

uappend 76, 118
ucache 76, 119
ucachestatus 76, 119

ueofill 76, 119
ufill 76, 120
undef 75, 120
undefined 137
undefinefont 75, 121
undefineuserobject 76,121
unstructured output 20
u path 76, 122
user name index 10, 15
user objects 36
user path 38
user path cache 43
UserObjects 76, 123
usertime 79, 123
ustroke 76,124
ustrokepath 76, 125

version 137
view clip 62
viewclip 77,126
viewclippath 77,126
Virtual memory 135
vmreclaim 75,127
vmstatus 75,128

wait 75,129
writeobject 75, 129
wtranslation 78,130

xshow 77, 130
xyshow 77,131

yield 75, 131
yshow 77, 132

149

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call SOO-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial SOO-DEC-DEMO (SOO-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call SOO-DIGITAL (SOO-344-4S25).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal l

Call

SOO-DIGITAL

S09-754-7575

SOO-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS200S
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02j2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SOC Order Processing - WMO jE 15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 01473

1 For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

