
· ULTRIX

Guide to Languages and Programming

Order Number: AA-ML94B- TE

Guide to Languages and Programming

Order Number: AA-ML94B-TE

June 1990

Product Version:

digital equipment corporation
maynard, massachusetts

UL TRIX Version 4.0 or higher

ULTRIX

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1989, 1990
All rights reserved.

The information in this document is subject to change without notice and shouls! not 1!e construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the tenns of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

IDmaama
CDA
DDIF
DDIS
DEC
DEC net
DECstation

DECUS
DEC windows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

X/Open is a trademark of X/OPEN Company Ltd.

ULTRIX Worksystem Software
UNIBUS
VAX
VAXstation
VMS
VMS/ULTRIX Connection
VT
XUI

Contents

About This Manual

Audience xi

Organization xi

New and Changed Infonnation

Related Documents

Conventions

1 Introduction to the Compiler System

1.1 Compiler System Drivers

1.1.1 Driver Commands .. .
1.1.2 RISC Driver Input and Output Files
1.1.3 VAX Driver Input and Output Files .. .
1.1.4 Compiler System Components
1.1.S Compiling Multilanguage Programs .. .
1.1.6 Linking Objects
1.1. 7 Including Common Definition Files
1.1.8 Setting Up Shareable Include Files in Programs (RISC Only)

1.2 Link Editor

1.2.1 Running the Link Editor
1.2.2 Specifying Libraries

1.3 Object File Information

xii

xii

xiii

1-1

1-1
1-2
1-3
1-3
1-4
1-4
1-4
l-S

I-S

l-S
1-6

1-6

1.3.1 Determining a File's Type 1-6
1.3.2 Listing Symbol Table Information 1-7
1.3.3 Dumping Selected Parts of Files (RISC Only) 1-7
1.3.4 Determining a File's Section Sizes 1-7

1.4 Archive Libraries 1-7

2 Storage Mapping (RISC)

,----- 2.1 C Storage Mapping 2-1

2.1.1 C Alignment, Size, and Value Ranges .. 2-1
2.1.2 C Arrays, Structures, and Unions .. 2-2
2.1.3 C Storage Classes .. 2-3

2.2 Pascal Storage Mapping 2-4

2.2.1 Pascal Alignment, Size, and Value Ranges 2-4
2.2.2 Pascal Arrays and Records ... 2-8
2.2.3 Rules for Set Sizes .. 2-8

3 Storage Mapping (VAX)

3.1 C Storage Mapping

3.1.1 C Alignment, Size, and Value Ranges
3.1.2 C Arrays, Structures, and Unions
3.1.3 C Storage Classes

4 Language Interfaces (RISC)

3-1

3-1
3-2
3-3

4.1 General Considerations ... 4-1

4.1.1 Single-Precision Floating Point ... 4-1
4.1.2 Procedure and Function Parameters ... 4-1
4.1.3 Pascal By-Value Arrays ... 4-2
4.1.4 File Variables 4-2
4.1.5 Passing String Data Between C and Pascal ... 4-2
4.1.6 Passing a Variable Number of Arguments .. 4-2
4.1.7 Type Checking 4-3

4.2 Calling Pascal from C 4-3

4.2.1 C Return Values 4-3
4.2.2 C-to-Pascal Arguments 4-3
4.2.3 Calling C from Pascal .. 4-5

5 Language Interfaces (VAX)

5.1 General Considerations .. ;.. 5-1

5.1.1 Single-Precision Floating Point ... 5-1
5.1.2 Passing String Data Between C and Pascal... 5-1
5.1.3 Passing a Variable Number of Arguments .. 5-2
5.1.4 Type Checking .. 5-2

5.2 Calling Pascal from C 5-2

;vContents

5.2.1 C Return Values 5-2
5.2.2 C-to-Pascal Arguments 5-2
5.2.3 Calling C from Pascal .. 5-4

6 Improving Program Performance (RiSe)

~ 6.1 Profiling Code

6.1.1 Basic Block Counting
6.1.2 Averaging prof Results
6.1.3 PC Sampling
6.1.4 Creating Multiple Profile Data Files .. .
6.1.5 Running the prof Profiler

--6.2 Optimizing Code

6-1

6-4
6-5
6-6
6-7
6-7

6-7

6.2.1 Overview of the Optimizer 6-7
6.2.2 General Considerations .. 6-9
6.2.3 Optimizing Separate Compilation Units ... 6-10
6.2.4 Types of Optimization 6-11

6.2.4.1 Full Optimization 6-11
6.2.4.2 Optimizing Large Programs 6-13
6.2.4.3 Optimizing Frequently Used Modules 6-14

6.2.5 Building a ucode Object Library... 6-15
6.2.6 Using ucode Object Libraries .. 6-16
6.2.7 Improving FORTRAN Program Optimization 6-16
6.2.8 Improving C Program Optimization ... 6-16
6.2.9 Improving Pascal Program Optimization .. 6-20

6.3 Controlling the Size of Global Pointer Data 6-21

6.3.1 Limiting the Size of Global Pointer Data 6-22
6.3.2 Obtaining Optimal Global Data Size 6-22

6.3.2.1 Examples (Excluding Libraries)
6.3.2.2 Example (Including Libraries)

7 Improving Program Performance (VAX)

6-23
6-23

7.1 Profiling Code 7-1

7.1.1 PC Sampling .. 7-4
7.1.2 Running the prof Profiler .. 7-5

7.2 Optimizing Code

7.2.1 General Considerations
7.2.2 Improving C Program Optimization .. .

7-5

7-5
7-5

Contents v

8 Debugging

8.1 ctrace

8.1.1 Description .. .
8.1.2 Example
8.1.3 Details

8.1.3.1 Tracing Only Certain Functions
8.1.3.2 Tracing Only Certain Sections of Code

8.2 dbx

8.2.1 Description .. .
8.2.2 Example
8.2.3 Details .. .

8.3 error .. .

8.3.1 Description
8.3.2 Example
8.3.3 Details .. .

8.4 gcore

8.4.1 Description .. .
8.4.2 Example
8.4.3 Details .. .

8.5 lint .. .

8.5.1 Description .. .
8.5.2 Example
8.5.3 Details .. .

8.6 trace .. .

8.6.1 Description .. .
8.6.2 Example
8.6.3 Details .. .

8.7 RISC Kernel Debugging

System Memory Map

Stacks

Address Space

8.7.1 Using nm .. .
8.7.2 Debugging a RISe Kernel with dbx
8.7.3 Examining Any Process in the System
8.7.4 Examining the Exception Frame
8.7.5 Examining Stack Frames

vi Contents

8-4

8-4
8-4
8-4

8-4
8-5

8-7

8-7
8-7

8-10

8-11

8-11
8-11
8-11

8-12

8-12
8-12
8-12

8-13

8-13
8-13
8-13

8-14

8-14
8-14
8-15

8-16

8-16

8-16

8-17

8-17
8-18
8-19
8-22
8-25

8.7.6 Debugging Hung Systems .. 8-29
8.7.7 Forcing a Panic on a System that is Not Hung 8-32
8.7.8 Console Commands ... 8-34
8.7.9 Forcing a Memory Dump on a DS2100 or DS3100 8-38
8.7.10 Forcing a Memory Dump on a DS5000 .. 8-39
8.7.11 Forcing a Memory bump on a DS5400 or DS5800 8-40
8.7.12 Further Information ... 8-41

8.8 VAX Kernel Debugging

8.8.1 Common Crash Types

8-43

8-43

8.8.1.1 Hardware Trap ... 8-43
8.8.1.2 Hardware Machine Check .. 8-43
8.8.1.3 Software Panic ... 8-43

8.8.2 Using nm 8-43
8.8.3 Forcing a Crash Dump ... 8-43
8.8.4 Getting a Stack Trace of any Process ... 8-44
8.8.5 adb Command Summary 8-45
8.8.6 adb Scripts 8-46
8.8.7 Examining Stack Frames with adb 8-47
8.8.8 Further Information 8-48

----- 9 Programming in a POSIX Environment

9.1 Choosing the System V Shell .. 9-1

9.1.1 Using the chsh Command ... 9-2
9.1.2 Modifying Shell Scripts 9-2

9.2 Using POSIX Conformant Header Files

9.3 Using the Standard Conformant Function Library

9.4 Compiling in the POSIX Environment .. .

9.5 Correcting Errors in the POSIX Environment Setup

~ 10 Security Guidelines for Programmers

10.1 Passing Open File Descriptors .. .

10.2 Responding to Signals

10.3 Specifying a Secure Search Path

10.4 Protecting Permanent and Temporary Files

10.5 Handling Errors .. .

10.6 Using Privileged Processes

10.6.1 Use Minimum Privileges

9-3

9-3

9-4

9-5

10-1

10-1

10-2

10-2

10-3

10-3

10-4

Contents vii

10.6.2 Allocate System Resources with Care 10-4
10.6.3 Know the Process's Real UID ... 10-4
10.6.4 Auditing Security-Relevant Events ... 10-4
10.6.5 Creating Daemons as Privileged Programs 10-6

10.7 SUID and SGID Programs 10-7

10.8 Authenticating Users 10-7

10.8.1 Authenticating a User With Previous Versions of ULTRIX 10-7
10.8.2 Authenticating a User With the Current Version of ULTRIX 10-8

10.9 Shell Scripts and Compiled Programs

10.1 0 Programming in a DECwindows Environment

10.10.1 Restrict Access Control
10.10.2 Protect Keyboard Input .. .
10.10.3 Block Keyboard and Mouse Events
10.10.4 Protect Device-Related Events .. .

10.11 Security Summary

11 System Calls and Library Routines with Security Implications

--- 11.1 System Calls

11.2 Library Routines

11.3 Security Summary

A C Implementation

Specifying the varargs.h Macros

Deviations

Extensions

Translation Limits

Examples

10-9

10-10

10-10
10-11
10-11
10-11

10-12

11-1

11-5

11-7

A-I

A-2

A-2

A-2

10-1: Using the audcntl Call to Tum off Auditing .. 10-5

10-2: Using the audgen Call to Generate an Audit Record 10-5

10-3: Using the audcntl Call to Change the Process Event Mask 10-6

viii Contents

Tables

1-1: Compilers Available for RISC and V AX Processors 1-1

1-2: Driver Commands for Specific Languages .. 1-1

1-3: RISC Driver Input and Output File Suffixes .. 1-2

1-4: VAX Driver Input and Output File Suffixes .. 1-3

2-1: C Data Type Size, Alignment, and Value Ranges (RISe) 2-1

2-2: C Storage Classes (RISC) 2-3

2-3: Value Ranges for Pascal Scalar Types (RISC) 2-4

2-4: Size and Alignment of Pascal Packed Arrays (RISC) 2-5

2-5: Size and Alignment of Pascal Unpacked Records or Arrays (RISC) 2--6

2-6: Size and Alignment of Pascal Packed Records (RISC) 2-7

2-7: Example Sets (RISC) ... 2-9

3-1: C Data Type Size, Alignment, and Value Ranges (V AX) 3-1

3-2: C Storage Classes (VAX) ... 3-3

9-1: POSIX Library Functions that Differ from C Library Functions 9-3

10-1: Xlib Library Function Calls That Maintain the Access Control List 10-10

11-1: Security-Relevant System Calls ... 11-7

11-2: Security-Relevant Library Routines 11-8

A-I: C Compiler Limitations ... A-2

Contents ix

About This Manual

This guide describes the compilers and high-level languages that are part of the
UL TRIX compiler system. It also provides an overview of the UL TRIX driver
commands and system tools that are provided for this programming environment.

Although this guide discusses the implementation details for the supported languages,
it does not list the syntax and definition of the elements of each language. This guide
does not attempt to teach programmers how to write an application, nor does it
attempt to teach C programming concepts.

Audience
The audience for this manual is the application programmer or system engineer who
is already familiar with C programming and the programming development tools
provided with the UL TRIX system.

Organization
This guide contains the following:

Chapter 1 Introduction to the Compiler System

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Provides an overview of each component of this compiler system and
lists the options provided by each compiler driver.

Storage Mapping (RISC)

Describes how the compiler groups C and Pascal structures in storage
for the RISC architecture.

Storage Mapping (V AX)

Describes how the compiler groups C structures in storage for the
V AX architecture.

Language Interfaces (RISe)

Describes the coding interfaces between C and Pascal and provides
information for calling and passing arguments between those
languages for the RISC architecture.

Language Interfaces (V AX)

Describes the coding interfaces between C and Pascal and provides
information for calling and passing arguments between those
languages for the V AX architecture.

Chapter 6

Chapter 7

Chapter 8

Improving Program Performance (RISC)

Describes the profiling and optimization facilities that are available as
part of the UL TRIX compiler system for the RISC architecture and
that can be used to increase the efficiency of your programs.

Improving Program Performance (VAX)

Describes the profiling and optimization facilities that are available as
part of the UL TRIX compiler system for the VAX architecture and
that can be used to increase the efficiency of your programs.

Debugging

Describes the debugging tools that are available as part of the
ULTRIX programming environment.

Chapter 9 Programming in a POSIX Environment

Describes the UL TRIX programming environment that lets you write
programs that conform to specific standards.

Chapter 10 Security Guidelines for Programmers

Provides security guidelines for designing and writing programs.

Chapter 11 System Calls and Library Routines with Security Implications

Discusses the ULTRIX system calls and library routines that have
security implications for programmers.

Appendix A C Implementation

Describes the extensions and modifications that are supported by this
cc compiler and that differ from other C implementations.

New and Changed Information
This version of the guide contains information applicable to the V AX architecture in
addition to updated information applicable to the RISC architecture. The chapter on
debugging has been considerably expanded.

The guide contains a new chapter that describes how to program in a POSIX
environment. It also contains two new chapters on security considerations for
programmers.

Related Documents
ULTRIX Reference Pages

Contains many of the reference pages for the commands and tools that are
described in this manual.

See the User's Guides for the individual programming languages for descriptions of
each language. See the Guide to Developing International Software if your are
writing programs for an international environment.

xii About This Manual

Conventions

»>
CPUnn»

user input

The console subsystem prompt is two right angle brackets on
RISC systems, or three right angle brackets on V AX systems.
On a system with more than one central processing unit (CPU),
the prompt displays two numbers: the number of the CPU, and
the number of the processor slot containing the board for that
CPU.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in interactive examples to indicate system
output and also in code examples and other screen displays. In
text, this typeface is used to indicate the exact name of a
command, option, partition, pathname, directory, or file.

UPPERCASE
lowercase

cat(1)

Mbyte

The UL TRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat(l) indicates that you can find the material on the
cat command in Section 1 of the reference pages.

Throughout the text, the abbreviation Mbyte is used for
megabyte. One megabyte equals 1,048,576 bytes.

About This Manual xiii

Introduction to the Compiler System 1

This chapter describes the components of the compiler system and how to use them.
The components are:

• Compiler system drivers

• Link editor

• Object file tools

• Archive libraries

1.1 Compiler System Drivers
The compiler system drivers are the programs that invoke the following compiler
phases:

• The macro preprocessor (epp)

• The compilers (ee, f77, fort, and pc)

• The assembler (as)

• The link editor (1 d)

Table 1-1 shows the compilers for the RISC and V AX architectures and the type of
availability for each.

Table 1-1: Compilers Available for RiSe and VAX Processors

Compiler Included with Layered
ULTRIX Kit for: Product for:

as RISe, VAX
cc RIse, VAX
f77 RIse
fort VAX
pc VAX RISe

A separate driver exists for each language. This section provides an overview of each
driver.

1.1.1 Driver Commands
Table 1-2 lists the languages available and the commands that invoke their respective
drivers.

Table 1-2: Driver Commands for Specific Languages

Language Driver Command

Assembler as

FORTRAN 77 (RISC) f77

FORTRAN (VAX) fort

C cc

Pascal pc

The cc, pc, f77, fort, and as commands invoke the drivers that compile,
optimize, assemble, and link edit your programs. Each command knows the
appropriate libraries associated with the main program and passes only those libraries
to the link editor.

1.1.2 RiSe Driver Input and Output Files

Most drivers recognize the contents of an input file by its suffix. Table 1-3 lists the
valid suffixes for languages available for the RISe architecture.

Table 1-3: RISC Driver Input and Output File Suffixes

Suffix

. a

. b

. c

. e

.f

.i

. 0

. p

. r

• S

. u

Description

Object library .

ucode object library .

C source file .

e f 1 source file .

FORTRAN 77 source file .

Source is assumed to be that of the
processing driver. For example:

pc -c source.i

In this case, source.i is assumed to
contain Pascal source (pc).

Object file .

Pascal source file .

ra t for source file .

Assembly source file .

ucode object file .

The a s assembly driver assumes that any file, regardless of the suffix, contains
assembly language statements and accepts only one input source file.

1-2 Introduction to the Compiler System

1.1.3 VAX Driver Input and Output Files

Most drivers recognize the contents of an input file by its suffix. Table 1-4 lists the
valid suffixes for languages available for the VAX architecture.

Table 1-4: VAX Driver Input and Output File Suffixes

Suffix Description

. a Object library .

. c C source file .

. e e f 1 source file .

.f fort source file.

. 0 Object file .

. p Pascal source file .

. r rat for source file .

. s Assembly source file .

The as assembly driver assumes that any file, regardless of the suffix, contains
assembly language statements and accepts only one input source file.

1.1.4 Compiler System Components
When you compile a program, you usually select one or more options that affect a
variety of program development functions, such as debugging, optimization, and
profiling facilities, as well as the names assigned to output files.

Figure 1-1 illustrates the relationship between the major components of the compiler
system and their primary inputs and outputs for the RISe driver.

Introduction to the Compiler System 1-3

Figure 1-1: Compiler Phases Used by the RiSe Driver

~

Assembler ~

~ -02 ...
~ -
"

-01 ..
,.

Run-time~
library. .a

FORTRAN
Preprocessors

I~

Macro
P rep,rocessor

(cpp)
I

Front Ends
(C, Pascal, FORTRAN

~-030r
Ucode Link

(uld)

I

Procedure Merge
(umerge)

r
Global Optimizer

(uopt)

I

Code Generator

I

Assemble

I

Link Editor

Source files.

I

Ucode library.

-s

~ Q Assembler file,

.-/
~c ~ Assembled
. ~ ~ object file.

.-/ ~ Linked
~ ~ Object file.

ZK-0061 U-R

Figure 1-2 illustrates the relationship between the major components of the compiler
system and their primary inputs and outputs for the VAX driver.

1-4 Introduction to the Compiler System

Figure 1-2: Compiler Phases Used by the VAX Driver

FORTRAN
Preprocessors --

Macro
Prep,rocessor

(c:>p) Assembler

,~

Front Ends
(C, Pascal)

-0

Peephole
Optimizer

(c2)

... - ~

...
Assemble

Link Edit

Source files.

-S
~ ~ Assembler file.

-S
~ ~OPtimiZed

~ L.:.J Assembler file .

-c
Assembled
object file.

~ ~ Linked
~ ~ Object file.

ZK-0177U-R

Note that FORTRAN uses preprocessors that the other languages do not use. Figure
1-3 illustrates the relationship of the FORTRAN preprocessors.

Introduction to the Compiler System 1-5

Figure 1-3: The FORTRAN Preprocessors

Source file.

~
-cpp driver option ~

........ C~M-a·cro-.. ~
Preprocessor

(cpp)

FORTRAN
Front End

ZK-0062U-R

Some options have defaults. For example, the default name for object files is:

filename.O

The specified filename is the base name of the source file. The default name for
executable program objects is a. out.

The following example shows compilation of two C source files, faa. c and bar. c,
that generates object files with default names and a default executable program
object. The following command invokes the compiler:

% cc foo.c bar.c

Following the flow illustrated in Figures 1-1 and 1-2, the C compiler compiles the
source files (faa. c and bar. c), creates their respective object modules faa. a
and bar. 0, and their single executable program a. out.

1-6 Introduction to the Compiler System

1.1.5 Compiling Multilanguage Programs

When the source language of the main program differs from that of a subprogram,
you should compile each program module separately with the appropriate driver and
then link them in a separate step. You can create objects suitable for link editing by
specifying the -c option, which stops the driver immediately after the assembler
phase. For example:

% cc -c main.c more.c
% pc -c rest.p

Figure 1-4 illustrates the compilation control flow for these commands.

Figure 1-4: Compiling Multilanguage Programs

D U
main. C more.c

U
rest.p

D D D
main.o more.o rest. 0

ZK-0063U-R

1.1.6 Linking Objects

You can use a driver command to link-edit separate objects into one executable
program. The driver recognizes the. 0 suffix as the name of a file that contains
object code suitable for link editing and immediately invokes the link editor. You
could link edit the objects created in the last example using the pc Pascal driver, as
follows:

% pc -0 all main.o more.o rest.o

This command produces the executable program object of the specified name, all.
You could achieve the same results using the cc C driver, as follows:

% cc -0 all main.o more.o rest.o -lp -1m

Figure 1-5 illustrates the control flow for the pc and cc commands used in these
examples.

Introduction to the Compiler System 1-7

Figure 1-5: pc and cc Driver Control Flow

UUU
main.o rest.o

U
all Link Libraries

ZK-0064U-R

Note that to link the appropriate libraries with the cc driver, you must specify two
additional options that the pc driver uses by default: the -lp option, which specifies
the Pascal link library, and the -1m option, which specifies the math link library.
Both pc and cc use the e link library by default.

For information on the link editor and on specifying link libraries, see Section 1.2.

For information about the default libraries used by each RISe driver, see cc(l) and
as (1) in the ULTRIX Reference Pages and f7 7(1) and pc(l) in the Reference Pages
for the FORTRAN and Pascal layered products.

For information about the default libraries used by each VAX driver, see cc(1),
pc(l), and as(1) in the ULTRIX Reference Pages and fort(1) in the Reference
Pages for the FORTRAN layered product.

1.1.7 Including Common Definition Files
When you write programs, you often have common definition files that you share
among a program's modules. These files usually define known constants or the
parameters for system calls (for example, the files that define the object file formats).
Definition files, called #include or header files in the e programming language, let
you share common information between files in a program. These header files
typically have a . h suffix.

Each of the supported languages handles these files in the same way, and you specify
these files in your program's source code.

If you intend to debug your program using the dbx debugger, do not place
executable code in an include file. The debugger recognizes an include file as one
line of source code; none of the source lines in the file appears during the debugging
session.

To specify an include file in your program, you can use one of two methods.
Whichever method you use, you should list all your include files in column 1 of your
source file, as follows:

#include "filel"

1-1 Introduction to the Compiler System

#include "file2"
#include <.file3>
#include <.file4>

Each file name listed in this manner indicates the name of the include file. Because
the names of the first two include files are in double quotation marks, the e macro
preprocessor searches for them in the current directory and the default directory,
/usr/include, in that order. Because the names of the next two include files are
enclosed in angle brackets, the e macro preprocessor searches for them only in the
default directory, /usr / incl ude.

1.1.8 Setting Up Shareable Include Files in Programs (RiSe Only)

For the RISe architecture, e, Pascal, FORTRAN 77, and assembly code can reside in
the same include files and then can be conditionally included in programs as
required. To set up a shareable include file, create a . h file and conditionalize the
respective code as follows:

#ifdef LANGUAGE C

#endif
#ifdef LANGUAGE_PASCAL

#endif
#ifdef LANGUAGE FORTRAN

#endif
#ifdef LANGUAGE ASSEMBLY

#endif

1.2 Link Editor
The link editor (ld) combines one or more object files (in the order specified) into
one program object file, performing relocation, external symbol resolutions, and all
other processing required to make object files ready for execution. Unless you
specify otherwise, the link editor names the program object file a . au t. You can
execute the program object file or use it as input for another link editor operation.

The link editor supports all the standard command line features of other UNIX
system link editors (except System V command language files, which contain a
description of a load module).

For further information about the link editor, see ld(1) in the ULTRIX Reference
Pages.

Introduction to the Compiler System 1-9

1.2.1 Running the Link Editor
To execute the link editor, use the following syntax:

Id options object ...

Note that the as assembler does not automatically invoke the link editor. To link
edit a program written in assembly language, do either of the following:

• Assemble and link-edit by using one of the other drivers (for example, cc).
The. s suffix of the assembly language source file automatically causes the
driver to invoke the assembler procedures.

• Assemble by using as; then link-edit the resulting object file by using ld.

For further information about the options and libraries that affect the link editing
process, see ld(l) in the ULTRIX Reference Pages.

1.2.2 Specifying Libraries
If you compile multilanguage programs, be sure to explicitly load any required run
time libraries. For example, if you write your main program in C and some
procedures in Pascal, you must explicitly load the 1 ibp . a Pascal library and the
libm. a main library by specifying the -lp and -1m options.

To find the Pascal library, ld replaces the -1 with lib and adds the . a suffix.
Then, it searches the /lib, /usr /lib, and /usr / local/lib directories for this
library. For a list of the libraries that each language uses, see ce(l) in the ULTRIX
Reference Pages and f77(1) and pe(l) in the Reference Pages for the FORTRAN
and Pascal layered products.

You may need to specify libraries when you use UNIX system packages that are not
part of a particular language. Most of the reference pages for these packages list the
required libraries. For example, the plotting subroutines require the libraries listed in
the plot reference page.

To specify a library created with the archiver, include the pathname of the library as
part of the command syntax specified. For example, the following specifies that
libfft . a is to be included along with the Pascal library:

% cc main.o more.o rest.o lihfft.a -lp

The link editor searches libraries in the order you specify. Therefore, if you have a
library (for example, libfft . a) that uses data or procedures from the Pascal
library, you must specify it on the command line before you specify the Pascal
library.

1.3 Object File Information
This section discusses the following commands that provide information on object
files:

file

nm

Provides descriptive information on the general properties of the
specified file (for example, the programming language used).

Lists symbol table information.

1-10 Introduction to the Compiler System

odump Lists the contents (including the symbol table and header information)
of an object file.

size Prints the size of the code and data sections.

1.3.1 Determining a File's Type
The file command lists the properties of program source, text, object, and other
files. Note that it often erroneously recognizes command files as e programs, and it
does not recognize Pascal or LISP programs. To execute the file command, use
the following syntax:

file file ...

For further information, see file(1) in the ULTRIX Reference Pages.

1.3.2 Listing Symbol Table Information
The nm command prints symbol table information for object files and archive files.
To execute the nm command, use the following syntax:

nm options file ...

If you do not specify a file name, nm uses the default output file, a. out.

For further information, see nm(1) in the ULTRIX Reference Pages.

1.3.3 Dumping Selected Parts of Files (RiSe Only)
For the RISe architecture, the odump command lists headers, tables, and other
selected parts of an object or archive file. To execute the odump command, use the
following syntax:

odump options file ...

For further information, see odump(1) in the ULTRIX Reference Pages.

1.3.4 Determining a File's Section Sizes
The s i z e command prints information about the code and data sections of the
specified object or archive files. To execute the size command, use the following
syntax:

size options [file ...]

If you do not specify a file on the command line, size uses the default file, a. out.

For further information, see size(1) in the ULTRIX Reference Pages.

Introduction to the Compiler System 1-11

1.4 Arch ive Libraries
An archive library is a file that contains one or more routines in object (.0) file
format. Here, the term object refers to an . 0 file that is part of an archive library file.
When a program calls an object not explicitly included in the program, the link editor
looks for that object in an archive library, then loads only that object (not the whole
library), and links it with the calling program.

The ar archiver creates and maintains archive libraries by performing the following
tasks:

• Copies new objects into the archive library.

• Replaces existing objects in the library.

• Moves objects within the library.

• Copies individual objects from the library into individual object files.

To execute the ar command, use the following syntax:

ar keys [posname] afile name ...

The specified posname is the name of an object within an archive library. It specifies
the relative placement (either before or after posname) of an object that is to be
copied into the library or moved within the library.

For further information, see ar(1) in the ULTRIX Reference Pages.

1-12 Introduction to the Compiler System

Storage Mapping (RiSe) 2

This chapter describes the alignment, size, and value ranges for e and Pascal
structures and how the compiler groups these records in storage for the RISe
architecture.

2.1 C Storage Mapping
The following sections describe how the compiler maps e variables into storage and
discusses the following:

• Alignment, size, and value ranges

• e arrays, structures, and unions

• Storage classes

2.1.1 C Alignment, Size, and Value Ranges

Table 2-1 describes how the e compiler implements size, alignment, and value
ranges for each data type for the RISe architecture.

Table 2-1: C Data Type Size, Alignment, and Value Ranges (RISC)

Type Size Alignment Signed Unsigned

int 32 bits Word 1 _2 31 to 231 -1 o to 232 -1

long 32 bits Word 1 _2 31 to 231 -1 Ot0232 _1

enum 32 bits Word 1 _2 31 to 231 -1

short 16 bits Halfword 2 -32,768 to 32,767 o to 65,535

char 3 8 bits Byte -128 to 127 o to 255

float 4 32 bits Word 1 See next page

double 5 64 bits Doubleword6 See next page

pointer 32 bits Word 1 o to 232 -1

1. Byte boundary divisible by 4.

2. Byte boundary divisible by 2.

3. Unless the unsigned attribute is used, char is assumed to be signed.

4. IEEE single precision.

5. IEEE double precision.

6. Byte boundary divisible by 8.

The approximate valid ranges for the data types float and double for RISe processors
are:

Type Maximum Value

float 3.40282356 * 1038

double 1.7976931348623158 * 10308

Minimum Value
Normalized

1.17549429 * 10-38

2.2250738585072012 * 10-308

Denormalized

1.40129846 * 10"-46

4.9406564584124654 * 10-324

The limi ts. h and float. h header files, which are usually found in
/usr / inc 1 ude, contain e macros that define minimum and maximum values for
the various data types. For information about the macro names and values, see the
appropriate header file.

2.1.2 C Arrays, Structures, and Unions
An array has the same boundary requirements as the data type specified for the array.
The size of an array is the size of the data type multiplied by the number of elements.
For example:
double x[2] [3]

The size of the resulting array would be 48 (that is, 2*3*8, where 8 is the size in
bytes of the double floating-point type).

Each member of a structure begins at an offset from the structure base. The offset
corresponds to the order in which a member is declared; the first member is at offset
O.
The size of a structure in the object file is the size of its combined members plus
padding added, where necessary, by the compiler. The following rules apply to
structures:

• Structures must align on the same boundary as that required by the member
with the most restrictive boundary requirement. The boundary requirements, by
increasing degree of restrictiveness, are byte, halfword, word, and doubleword.

• The compiler ends the structure on the same alignment boundary on which it
begins. For example, if a structure begins on an even-byte boundary, it also
ends on an even-byte boundary.

For example:

struct S {
int Vi
char n [10];

The following figure illustrates how this structure would exist when mapped out in
storage:

2-2 Storage Mapping (RISe)

Big Endian
-, v--W--/ v.....,'l"""""v.....,/~v /l"""""n"""'O ,-n--r11-n2--rI-n"""'31

Byte 0 1 2 3 4 S S 7

, n4f nsf nsl n71 nal n91 I
Byte a 9 1 0 11 12 13 14 1S

Little Endian (Digital products)

I I t n91 nat n71 nst nsl n41
Byte 1 S 14 1 3 12 11 1 0 9 a

I n31 n2/ n 1 t nO I v / v I v I v /
Byte 7 S S 4 3 2 1 0

D Padded bytes

ZK-0065U-R

Even though the byte count defined by the int v and char n components is 14, the
length of the structure is 16 bytes. Because int has a stricter boundary requirement
(word boundary) than char (byte boundary), the structure must end on a word
boundary (a byte offset divisible by 4). Therefore, the compiler adds two bytes of
padding to meet this requirement.

An array of data structures illustrates the reason for this requirement. For example, if
the structure in the previous figure were the element-type of an array, some of the
int v components would not be aligned properly without the 2-byte pad.

Alignment requirements may cause padding to appear in the middle of a structure.
For example:
struct S {

char n[lO];
int V;

The following figure illustrates how this structure would exist when mapped out in
storage:

Storage Mapping (RiSe) 2-3

Big Endian
~ln-o~ln~11~n~21~n~31~n~41~n~51-n6~I-n~71

Byte 0 1 2 3 4 5 6 7

I nal n91 I I v I v I v I v I
Byte a 9 1 0 11 1 2 1 3 1 4 1 5

Little Endian (Digital products)

I v I v I v I v I I I n91 nal
Byte 15 1 4 1 3 12 11 1 0 9 a

In71n61 n51 n41 n31n21n11nol
B~ 7 6 5 4 3 2 1 0

D Padded bytes

ZK-0066U-R

Note that the size of the structure remains 16 bytes, but two bytes of padding follow
the n component to align v on a word boundary.

Bit fields are packed from the most-significant bit to least-significant bit in a word,
cannot exceed 32 bits, and can be signed or unsigned. For example:
struct S {

unsigned offset :12;
unsigned page :10;
unsigned segment :9;
unsigned supervisor :1;

}virtual_address;

The following figure illustrates how this structure would exist when mapped out in
storage:

Big Endian

B~e~0 ______________ ~ ______ ~ ____ ~~3
I offset page I segment I I

Bit f 30 22 12 0

supervisor

ZK-0067U-R

Note that the compiler moves the fields that overlap a word boundary to the next
word.

The compiler aligns a nonbit field that follows a bit-field declaration to the next
boundary appropriate for its type. For example:

2-4 Storage Mapping (RiSe)

struct S {
unsigned a :3;
char b;
short c;

}x;

The following figure illustrates how this structure would exist when mapped out in
storage:

Big Endian

lal b c
31 28 23 16 o

Little Endian (Digital products)

c b a
31 15 7 3

o Padded bits

ZK-0068U-R

Note that five bits of padding are added after unsigned a so that char b aligns on
a byte boundary, as required.

A union must align on the same boundary as the member with the most restrictive
boundary requirement. The boundary requirements, by increasing degree of
restrictiveness, are: byte, halfword, word, and doubleword. For example, a union
containing char, int, and double ~ata types must align on a doubleword boundary, as
is required by the double data type.

2.1.3 C Storage Classes
Table 2-2 lists the e storage classes for the RISe architecture.

Table 2-2: C Storage Classes (RISC)

Class

auto

static

register

extern

Description

Indicates that storage is allocated at execution and exists dhly for the
duration of that block activation.

Indicates that the compiler allocates storage, which remains fixed for
the duration of the program, at compile time. Static variables reside
in the program's bss section if they are not initialized; otHerwise, they
are placed in the data section.

Indicates that the compiler allocates variables with the register storage
class to registers. For programs compiled with the -O,option, the
optimization phase of the compiler tries to assign all variables to
registers, regardless of the storage class specified.

Indicates that the variable refers to storage defined ~lsewhere in an
external data definition. The compiler does not allocate storage to
extern variable declarations; it uses the following logic in defining and
referencing them:

Storage Mapping (RiSe) 2-5

Table 2-2: (continued)

Class Description

volatile

• Extern is omitted
If an initializer is present, a definition for the symbol is emitted.
Having two or more such definitions among all the files that fonn a
program results in an error at link time or before. If no initializer is
present, a common definition is emitted. Any number of common
definitions of the same identifier can coexist.

• Extern is present
The compiler assumes that declaration refers to a name defined
elsewhere. A declaration having an initializer is illegal. If a
declared identifier is never used, the compiler does not issue an
external reference to the linker.

Specified for variables that may be modified in ways unknown to the
compiler. For example, volatile might be specified for an object
corresponding to a memory mapped input/output port or an object
accessed by an asynchronously interrupting function. Except for
expression evaluation, no phase of the compiler optimizes any of the
code dealing with volatile objects.

Note that if a pointer specified as volatile is assigned to another pointer without the
volatile specification, the compiler treats the other pointer as nonvolatile. For
example:
volatile int *i;
int *j;

(volatile*)j i;

The compiler treats j as a nonvolatile pointer and the object it points to as
nonvolatile (the compiler may optimize it). Note that the -volatile compiler
option causes all objects to be compiled as volatile.

2.2 Pascal Storage Mapping
The following sections describe how the compiler maps Pascal variables into storage
and discuss the following:

• Alignment, size, and value ranges

• Pascal arrays and records

2.2.1 Pascal Alignment, Size, and Value Ranges
This section describes how the Pascal compiler implements size, alignment, and
value ranges for the various data types. Table 2-3 describes the value ranges for the
Pascal scalar types.

2-6 Storage Mapping (RiSe)

Table 2-3: Value Ranges for Pascal Scalar Types (RISC)

Scalar Types Value Ranges

boolean o or 1

char o to 127

integer, integer32 _2 31 to 231 -1

integer16 -32768 to 32767

cardinal o to 232 _1

real See Note.

double See Note.

Note

The approximate valid ranges for the data types real and double for RISe
processors are:

Type Maximum Value

real 3.40282356 * 1038

double 1.7976931348623158 * 10308

Minimum Value
Normalized

1.17549429 * 10-38

2.2250738585072012 * 10-308

Denormalized

1.40129846 * 10-46

4.9406564584124654 * 10-324

Note that the enumerated types with n elements are treated the same as the
integer subrange O ... n-I.

Table 2-4 describes the size and alignment of Pascal packed arrays.

Table 2-4: Size and Alignment of Pascal Packed Arrays (RISC)

Scalar Type Size (Bits) Alignment

boolean 8 Byte

char 8 Byte

integer, integer32 32 Word

integer16 16 Halfword

cardinal 32 Word

pointer 32 Word

file 32 Word

real 32 Word

double 64 Doubleword

o .. 1 or -1 .. 0 1 Bit

o .. 3 or -2 .. 1 2 2-bit

o .. 15 or -8 .. 7 4 4-bit

0 .. 255 8 Byte
or
-128 .. 127

Storage Mapping (RISe) 2-7

Table 2-4: (continued)

Scalar Type Size (Bits) Alignment

b .. 65535 16 Halfword
or
-32768 .. 32767

o .. 232 -1 32 Word
or
_231 •• _2 31 -1

set of char 128 Word
set of char subrange

set of a to b See Note

Note
The set of a to b is aligned on an n-bit boundary where n is
computed as follows:
n = [log (size)]

For example, the set of 0 to 2 has a size of 3 bits and aligns on a 4-
bit boundary.

(The notation [x] indicates the ceiling of x, that is, the smallest integer
not less than x.)

The number of bits for set 0 f a to b is calculated using the
following formula:

if b-[a/32] * 32 + 1 <= 32 then
size = b-[a/32] * 32 + 1 bits

else
size =([b/32]-[a/32] + 1)*32 bits

Table 2-5 describes the size and alignment of Pascal unpacked records or arrays
(variables or fields).

Table 2-5: Size and Alignment of Pascal Unpacked Records or Arrays
(RiSe)

Scalar Type Size (Bits) Alignment

boolean 8 Byte

char 8 Byte

integer, integer 32 32 Word

integer16 16 Halfword

cardinal 32 Word

pointer 32 Word

file 32 Word

real 32 Word

double 64 Doubleword

2-8 Storage Mapping (RiSe)

Table 2-5: (continued)

Scalar Type Size (Bits) Alignment

0 .. 255 8 Byte
or
-128 .. 127

0 .. 65535 16 Halfword
or
-32768 .. 32767
0 .. 232-1 32 Word
or
_231 .. _2 31 -1

set of char 128 Word
set of char subrange

set of a to b See Note Word

Note
The compiler uses the following formula for determining the size of the
set of a to b:

size = [b/32] - [a/32] + 1 words

(The notation [x] indicates the floor of x, that is, the largest integer not
greater than x.)

Table 2-6 describes the size and alignment of Pascal packed records.

Table 2-6: Size and Alignment of Pascal Packed Records (RiSe)

Scalar Type Size (Bits) Alignment

boolean 1 Bit

char 8 Bit

integer, integer 32 32 Word

integer16 16 Halfword

cardinal 32 Word

pointer 32 Word

file 32 Word

real 32 Word

double 64 Doubleword

subrange of See Note Bit/Word

Note
The compiler uses the minimum number of bits possible in creating a
subrange field in a packed record. It uses the following formula:
If a >= 0 then size = [log2(b+l)]bits
If a=< 0 then size = max([log2(b+l) 1, [lOg2 (-a)]) +1 bits

To avoid crossing a word boundary, the compiler moves data types

Storage Mapping (RiSe) 2-9

aligned to bit boundaries in a packed record to the next word. This
implies that any subrange appearing in a packed record causes the whole
record to be word-aligned. This allows the compiler to always load
words when extracting any field in the record and also implies that a
subrange within a packed record corresponds to a bitfield declared with
the long int base type in C.

The 0 f extension is available for users who want the subrange to
correspond to a bitfield in C with a base type other than long int:

type
test = packed record

a: o .. 127 of char;
b: 0 .. 7 of char;

end;

This example specifies that the subranges have a character base type
rather than an integer base type, which is the default. Therefore, the
resulting record has byte alignment. The compiler then loads bytes when
extracting any field in the record. In allocating the field, the compiler
moves the field to the next byte whenever the field would overlap a byte
boundary.

The user can also specify integer and integer16 data type using
the of extension. If the of clause is not present, integer base type
is assumed.

The record definition shown in the a f extension example corresponds to
the following structure definition in C:
struct test2 {

unsigned char a:7;
unsigned char b:7;

} : s;

2.2.2 Pascal Arrays and Records
The compiler maps Pascal arrays and records into storage exactly as it maps C arrays
and structures.

2.2.3 Rules for Set Sizes
The maximum number of elements permitted in a set ranges between 481 and 512.
This variance is due to the way Pascal implements sets. For efficient accessing of set
elements, Pascal expects the lower-bound of a set to be a mUltiple of 32. For
example, if you specify the following:

set of a to b

If a is not a multiple of 32, Pascal adds elements to the set from a down to the next
multiple of 32 less than a. For example, if you specify the following:

set of 5 .. 31

Pascal would add internal padding elements 0 . .4. These padding elements are
inaccessible to the program. This implementation sacrifices some space for a fast,
consistent method of accessing set elements.

The padding elements required to pad the lower bound down to a multiple of 32
varies between 0 and 31 elements.

The following condition must be met for set of a to b to be a valid set in
Pascal:
size=(b-32[a/32]+1)<=512

2-10 Storage Mapping (RiSe)

Table 2-7 shows several sample sets and whether or not they are valid in Pascal.

Table 2-7: Example Sets (RiSe)

Specification Lower Upper Set Size Valid Size

set of 1 to 511 01 511 512 Yes

set of 0 to 511 0 511 512 Yes

set of 1 to 512 01 512 513 No

set of 31 to 512 01 512 513 No

set of 32 to 512 32 512 481 Yes

set of 32 to 543 32 543 512 Yes

1. As adjusted by Pascal

Storage Mapping (RiSe) 2-11

Storage Mapping (VAX) 3

This chapter describes the alignment, size, and value ranges for C structures and how
the compiler groups these records in storage for the V AX architecture.

3.1 C Storage Mapping
The following sections describe how the compiler maps C variables into storage and
discusses the following:

• Alignment, size, and value ranges

• C arrays, structures, and unions

• Storage classes

3.1.1 C Alignment, Size, and Value Ranges

Table 3-1 describes how the C compiler implements size, alignment, and value
ranges for each data type for the V AX architecture.

Table 3-1: C Data Type Size, Alignment, and Value Ranges (VAX)

Type Size Alignment Signed Unsigned

int 32 bits Word 1 _2 31 to 2 31 -1 o to 2 32 -1

long 32 bits Word 1 _2 31 to 2 31 -1 o to 2 32 -1

enum 32 bits Word 1 _2 31 to 2 31 -1

short 16 bits Halfword 2 -32,768 to 32,767 o to 65,535

char 3 8 bits Byte -128 to 127 o to 255

float 32 bits Word 1 See next page

double 64 bits Doubleword4 See next page

pointer 32 bits Word 1 o to 232-1

1. Byte boundary divisible by 4.

2. Byte boundary divisible by 2.

3. Unless the unsigned attribute is used, char is assumed to be signed.

4. Byte boundary divisible by 8.

The approximate valid ranges for the data types float and double for V AX processors
are:

Type

float
double (D-float)
double (G-float)

Maximum Value

1. 7014118 * 1038

1.701411834604692291 * 1038

8.988465674311579 * 10307

Minimum Value

2.9387359 * 10-39

2.93873587705571880 * 10-39

5.5626846462680035 * 10-309

The 1 irni t s . hand f 1 oa t . h header files, which are usually found in
/usr / incl ude, contain C macros that define minimum and maximum values for
the various data types. For information about the macro names and values, see the
appropriate header file.

3.1.2 C Arrays, Structures, and Unions
An array has the same boundary requirements as the data type specified for the array.
The size of an array is the size of the data type multiplied by the number of elements.
For example:

double x[2J [3J

The size of the resulting array would be 48 (that is, 2*3*8, where 8 is the size in
bytes of the double floating-point type).

Each member of a structure begins at an offset from the structure base. The offset
corresponds to the order in which a member is declared; the first member is at offset
O.
The size of a structure in the object file is the size of its combined members plus
padding added, where necessary, by the compiler. The following rules apply to
structures:

• Structures must align on the same boundary as that required by the member
with the most restrictive boundary requirement. The boundary requirements, by
increasing degree of restrictiveness, are byte, halfword, word, and doubleword.

• The compiler ends the structure on the same alignment boundary on which it
begins. For example, if a structure begins on an even-byte boundary, it also
ends on an even-byte boundary.

For example:

struct S {
int v;
char n[lO);

The following figure illustrates how this structure would exist when mapped out in
storage:

3-2 Storage Mapping (VAX) .

Byte 1 S 1 4 1 3 1 2 11 1 0 9 a
I n3\ n2\ n11 nO I v I v I v I v I

Byte 7 6 S 4 3 2 1 0

D Padded bytes

ZK-0065U1-R

Even though the byte count defined by the int v and char n components is 14, the
length of the structure is 16 bytes. Because int has a stricter boundary requirement
(word boundary) than char (byte boundary), the structure must end on a word
boundary (a byte offset divisible by 4). Therefore, the compiler adds two bytes of
padding to meet this requirement.

An array of data structures illustrates the reason for this requirement. For example, if
the structure in the previous figure were the element-type of an array, some of the
in t v components would not be aligned properly without the 2-byte pad.

Alignment requirements may cause padding to appear in the middle of a structure.
For example:
struct S {

char n[10];
int V;

The following figure illustrates how this structure would exist when mapped out in
storage:

I v I v I v I v I I n91 nal
Byte 1 S 1 4 13 1 2 11 1 0 9 a

I n71 n61 nsl n41 n31 n21 n11 nO I
Byte 7 6 S 4 3 2 1 0

D Padded bytes

ZK-0066U1-R

Note that the size of the structure remains 16 bytes, but two bytes of padding follow
the n component to align v on a word boundary.

Bit fields are packed from the most-significant bit to least-significant bit in a word,
cannot exceed 32 bits, and can be signed or unsigned. For example:
struct S {

unsigned offset :12;
unsigned page :10;
unsigned segment :9;
unsigned supervisor :1;

}virtual_address;

The following figure illustrates how this structure would exist when mapped out in
storage:

Storage Mapping (VAX) 3-3

B~e~1~ ____________________________ ~3

I I segment I page I offset I
Bit t 30 22 12 0

supervisor

ZK-0067U1-R

Note that the compiler moves the fields that overlap a word boundary to the next
word.

The compiler aligns a nonbit field that follows a bit-field declaration to the next
boundary appropriate for its type. For example:
struct S {

unsigned a :3;
char b;
short c;

} x;

The following figure illustrates how this structure would exist when mapped out in
storage:

c b I a
31 15 7 3

D Padded bits

ZK-0068U1-R

Note that five bits of padding are added after unsigned a so that char b aligns on
a byte boundary, as required.

A union must align on the same boundary as the member with the most restrictive
boundary requirement. The boundary requirements, by increasing degree of
restrictiveness, are: byte, halfword, word, and doubleword. For example, a union
containing char, int, and double data types must align on a doubleword boundary, as
is required by the double data type.

3.1 .3 C Storage Classes
Table 3-2 lists the C storage classes for the VAX architecture:

Table 3-2: C Storage Classes (VAX)

Class

auto

static

3-4 Storage Mapping (VAX)

Description

Indicates that storage is allocated at execution and exists only for the
duration of that block activation.

Indicates that the compiler allocates storage, which remains fixed for
the duration of the program, at compile time. Static variables reside
in the program's bss section if they are not initialized; otherwise, they
are placed in the data section.

Table 3-2: (continued)

Class Description

register Indicates that the compiler allocates variables with the register storage
class to registers. For programs compiled with the -0 option, the
optimization phase of the compiler tries to assign all variables to
registers, regardless of the storage class specified.

extern Indicates that the variable refers to storage defined elsewhere in an
external data definition. The compiler does not allocate storage to
extern variable declarations; it uses the following logic in defining and
referencing them:

const

• Extern is omitted
If an initializer is present, a definition for the symbol is emitted.
Having two or more such definitions among all the files that form a
program results in an error at link time or before. If no initializer is
present, a common definition is emitted. Any number of common
definitions of the same identifier can coexist.

• Extern is present
The compiler assumes that declaration refers to a name defined
elsewhere. A declaration having an initializer is illegal. If a
declared identifier is never used, the compiler does not issue an
external reference to the linker.

The program is not permitted to alter the variable. The compiler may
not detect all possible alterations (for example, by another function or
by pointers).

Storage Mapping (V AX) 3-5

Language Interfaces (RiSe) 4

This chapter describes the coding interfaces between C and Pascal and gives rules
and examples for calling and passing arguments between these languages for the
RISC architecture.

This chapter discusses the following topics:

• General considerations

• Calling Pascal from C

• Calling C from Pascal

For detailed information on how the variables of the various languages appear in
storage, see Chapter 2.

4.1 General Considerations
In general, calling C from Pascal and Pascal from C is fairly simple. Both Pascal
and C allow only one main routine in a program, which can be written in either
Pascal or C. Most data types in each language have natural counterparts in the other
language. However, differences do exist in the following areas:

• Single-precision floating point

• Procedure and function parameters

• Pascal by-value arrays

• File variables

• Passing string data between C and Pascal

• Passing a variable number of arguments

• Type checking

4.1.1 Single-Precision Floating Point

In function calls, C automatically converts single-precision floating point values to
double precision. By contrast, Pascal passes single-precision floating by-value
arguments directly.

When passing double-precision values between C and Pascal routines, follow these
guidelines:

• If possible, write the Pascal routine so that it receives and returns double
precision values.

• If the Pascal routine cannot receive a double-precision value, write a Pascal
routine to accept double-precision values from C and then have that routine call
the single-precision Pascal routine.

Passing single-precision values by reference between C and Pascal does not pose a
problem.

4.1.2 Procedure and Function Parameters
C function variables and parameters consist of a single pointer to machine code. By
contrast, Pascal procedure and function parameters consist of a pointer to machine
code and a pointer to the stack frame of the lexical parent of the function. Such
values can be declared as structures in C. To create such a structure, put the C
function pointer in the first word and zero in the second. C functions cannot be
nested and, thus, have no lexical parent. Therefore, the second word is irrelevant.

Note that you cannot call a C function with a function parameter from Pascal.

4.1.3 Pascal By-Value Arrays
C never passes arrays by value. In C, an array is actually a pointer. Therefore,
passing an array actually passes its address, which corresponds to Pascal by-reference
(VAR) array passing. In practice, this difference is not a serious problem because
passing Pascal arrays by value is not very efficient. Therefore, most Pascal array
parameters are V ARs. When it is necessary to call a Pascal routine with a by-value
array parameter from C, pass a C structure containing the corresponding array
declaration.

4.1.4 File Variables
The Pascal text type and the C stdio package's declaration FILE* are compatible.
However, Pascal passes file variables only by reference; a Pascal routine cannot pass
a file variable by value to a C function. C functions that pass files to Pascal routines
should, as with any reference parameter, pass the address of the FILE * variable.

4.1.5 Passing String Data Between C and Pascal
The C and Pascal languages handle strings differently. Pascal handles string data as
fixed-length arrays of characters. String parameters are typically declared as follows:

VAR S: PACKED ARRAY[1 .. 100] OF CHAR;

The upper bound (100 in this case) is large enough to handle most processing
requirements efficiently. In passing an array, Pascal passes the entire array, as
specified, and pads to the end of the array with spaces. Most C functions treat strings
as pointers to a single character and use pointer arithmetic to step through the string.
A null character (\0 in C) terminates a string in C. Therefore, when passing a string
from Pascal to C, terminate the string with a null character (chr(O) in Pascal).

The following example shows a Pascal program that calls the atoi C function and
passes the string s. Note that the program ensures that the string terminates with a
null character.

type
astrindex = 1 .. 20;
astring = packed array [astrindex] of char;
function atoi(var c: astring): integer; external;

program ptest(output);
var

s: astring;
i: astrindex;

4-2 Language Interfaces (RiSe)

begin
argv(l, s); { This predefined Pascal function

is an extension }
writeln(output, s);
{ Guarantee that the string is null-terminated

(but may eliminate the last character if the argument
is too long). "lbound" and "hbound" are extensions. }

s[hbound(s)] :== chr(O);
for i :== lbound(s) to hbound(s) do

if s[i] == ' , then
begin
s[i] :== chr(O);
break;
end;

writeln(output, atoi(s));
end.

For more information on atoi, see atof(3) in the ULTRIX Reference Pages.

4.1.6 Passing a Variable Number of Arguments

C functions can be defined that take a variable number of arguments (for example,
pr int f and its variants). Such functions can be called from Pascal, but they must
be defined with a specific number of parameters in your Pascal program.

4.1.7 Type Checking
Pascal checks certain variables for errors at execution time; by contrast, C does not.
For example, when a reference to an array exceeds its bounds in a Pascal program,
the error is flagged (if run-time checks are not suppressed). You should not expect a
C function to detect similar errors when you pass data to it from a Pascal program.

4.2 Calling Pascal from C
To call a Pascal function from C, write a C extern declaration to describe the
return value type of the Pascal routine. Then, write the call with the return value
type and argument types as required by the Pascal routine. The next sections discuss
the following:

• C return values

• C-to-Pascal arguments

4.2.1 C Return Values
The following table provides guidelines for declaring a return value type:

Pascal Return
Value Type

integer 1

cardina!2

char

boolean

enumeration

CType
Declaration

int

unsigned int

char

char

unsigned or corresponding enum (signed in C)

Language Interfaces (RiSe) 4-3

Pascal Return
Value Type

real

double

pointer type

record type

array type

CType
Declaration

None

double

Corresponding pointer type

Corresponding structure or union type

Corresponding array type

1. Applies also to subranges with lower bounds <0.

2. Applies also to subranges with lower bounds >=0.

To call a Pascal procedure from C, write a C extern declaration in the following
form:
extern void name()i

Then call it with actual arguments that have appropriate types.

4.2.2 C-to-Pascal Arguments
The following table lists the C argument types that match those expected by the
called Pascal routine. Note that C does not permit declaration of the formal
parameter types. Instead, it infers them from the types of the actual arguments
passed.

Pascal Type
Expected

integer

cardinal

subrange

char

boolean

enumeration

real

double

procedure

function

pointer t}lpes

Reference
parameter

record types

by-reference
arra y parameters

by-reference
text

by-value
array parameters

4-4 Language Interfaces (RiSe)

CType

integer or char value -231 •• 231 -1

integer or char value 0 .. 232 -1

integer or char value in subrange

integer or unsigned char (0 to 127)

integer or char (0 or 1)

integer or char (0 .. N-l)

None

float or double

struct (void *p(); int */}

struct (function-type *f(); int *l}

pointer type
und <0. := Ibound(s)

Pointer to the appropriate type

Structure or union type

Corresponding array type

FILE * *

Structure that contains the corresponding array

To pass a pointer to a function in a call from C to Pascal, you must pass a structure
by value. The first word of the structure must contain the function pointer, and the
second word must contain a zero. Pascal requires this format because it expects an
environment specification in the second word.

The following is an example of a C function calling a Pascal function:

function bah(
var f: text;
i: integer
): double:

begin

end {bah}:
C declaration of bah:
extern double bah();
C call:
int i: double d:
FILE *f:
d = bah(&f, i):

The following is an example of a C function calling a Pascal procedure:

type
int array = array[1 .. 100] of integer:

procedure zero (
var a: int_array:
n: integer
): integer:

begin

end {zero}:
C declaration:
extern void zero():
C call:
int a[100]: int ni
zero (a, n);

The following is an example of a C function that passes strings to a Pascal procedure,
which then prints them. Note the following:

• The Pascal procedure must check for the null [chrCO)] character, which indicates
the end of the string passed by the C routine.

• The Pascal procedure must not write to output; instead, it uses the stdout file
stream descriptor passed by the C routine.

C call:
/* Send the last command-line argument to Pascal routine */
#include <stdio.h>
main(argc, argv)

int argc; char **argv:
{
FILE *temp = stdout:
if (argc != 0)

p_routine(&temp, argv[argc - 1]):
}

Pascal procedure:
{ We assume the string passed to us by the routine

will not exceed 100 bytes in length }
type

astring = packed array [1 .. 100] of char:
procedure p_routine(var f: text: var c: astring):

var
i: integer:

begin

Language Interfaces (RiSe) 4-5

i := lbound(c);
while (i < hbound(c)) and (c[i] <> chr(O)) do

begin
write(f, c[i]);
i := i + 1;
end;

writeln(f);
end;

4.2.3 Calling C from Pascal
To call a C function from Pascal, write a Pascal declaration that describes the C
function. Write a procedure declaration or, if the C function returns a value, write a
function declaration. Write parameter and return value declarations that correspond
to the C parameter types. '

:'

The followE. pg table describes the Pascal argument types that match those expected by
the called ~' function:

Type E~pected
By C Fuhction

int 1

unsigned int 2

short 3

unsigned short

unsigned char

char4

float

double

enum type

FILE *
FILE **

struct type

union type

array type

Pascal Type

integer

cardinal

integer (or -32768 .. 32767)

cardinal (or 0 .. 65535)

char

integer (or -128 " 127)

double

double

Corresponding enumeration type

text (passed by reference - VAR)

Corresponding pointer type or
corresponding type passed by reference (V AR)

Corresponding record type

Corresponding record type

Corresponding array type passed by reference (V AR)

1. Same as types signed int, long, signed long, signed.

2. Same as types unsigned, unsigned long.

3. Same as type signed short.

4. Same as type signed char.

Note that a Pascal routine cannot pass a function pointer to a C function.

The following is an example of a Pascal program calling a C procedure:
C function:
void bah(i, f, s)

int i;
float f;
char *s;

4-6 Language Interfaces (RISe)

Pascal declaration:
procedure bah(

i: integer;
f: double;
var s: packed array[l .. 100] of char)

external;
Pascal call:
str := "abc\O"
bah(i, 1.0, str)

The following is an example of a Pascal program calling a C function:
C function:
float humbug(f, x)

FILE **f;
struct scrooge *x;

}
Pascal declaration:
type

scrooge-ptr = Ascrooge;
function humbug (

var f: text;
x: scroogeytr
): double;

external;
Pascal call:
x := humbug (input, sp);

The following is an example of a Pascal program calling a C function:
C function:
int sum (a, n)

int a [] ;
unsigned n;

}

Pascal declaration:
type

int array = array[0 .. 100] of integer;
functIon sum(

var a: int array;
n: cardinal
): integer;

external;
avg := sum (samples,hbound (samples) +1) /

(hbound(samples) +1);

Language Interfaces (RiSe) 4-7

Language Interfaces (VAX) 5

This chapter describes the coding interfaces between C and Pascal and gives rules
and examples for calling and passing arguments between these languages for the
V AX architecture.

This chapter discusses the following topics:

• General considerations

• Calling Pascal from C

• Calling C from Pascal

For detailed information on how the variables in C appear in storage, see Chapter 3.

5.1 General Considerations
In general, calling C from Pascal and Pascal from C is fairly simple. Both Pascal
and C allow only one main routine in a program, which can be written in either
Pascal or C. Most data types in each language have natural counterparts in the other
language. However, differences do exist in the following areas:

5.1.1 Single-Precision Floating Point
In function calls, C automatically converts single-precision floating point values to
double precision. By contrast, Pascal always uses double-precision and passes
floating by-value arguments directly.

5.1.2 Passing String Data Between C and Pascal
The C and Pascal languages handle strings differently. Pascal handles string data as
fixed-length arrays of characters. String parameters are typically declared as follows:

VAR $: PACKED ARRAY[1 .. 100] OF CHARi

The upper bound (100 in this case) is large enough to handle most processing
requirements efficiently. In passing an array, Pascal passes the entire array, as
specified, and pads to the end of the array with spaces. Most C functions treat strings
as pointers to a single character and use pointer arithmetic to step through the string.
A null character (\0 in C) terminates a string in C. Therefore, when passing a string
from Pascal to C, terminate the string with a null character (cbr(O) in Pascal).

The following example shows a Pascal program that calls the at 0 i C function and
passes the string s. Note that the program ensures that the string terminates with a
null character.

program example(output);
type

examplestr = packed array [1 .. 10] of chari

var
s : examplestr;
i : integer;

function atoi(var s
begin

end.

s := '100';
s [4] : = chr (0) ;
i :=atoi(s);
writeln(i) ;

examplestr) integer; external;

For more information on atoi, see atof(3) in the ULTRIX Reference Pages.

5.1.3 Passing a Variable Number of Arguments
C functions can be defined that take a variable number of arguments (for example,
printf and its variants). Such functions can be called from Pascal, but they must
be defined with a specific number of parameters in your Pascal program.

5.1.4 Type Checking
Pascal checks certain variables for errors at execution time; by contrast, C does not.
For example, when a reference to an array exceeds its bounds in a Pascal program,
the error is flagged (if run-time checks are not suppressed). You should not expect a
C function to detect similar errors when you pass data to it from a Pascal program.

5.2 Calling Pascal from C
To call a Pascal function from C, write a C extern declaration to describe the
return value type of the Pascal routine. Then, write the call with the return value
type and argument types as required by the Pascal routine. The next sections discuss
the following:

• C return values

• C-to-Pascal arguments

5.2.1 C Return Values

The following table provides guidelines for declaring a return value type:

Pascal Return
Value Type

integer!

None

char

boolean

enumeration

real

pointer type

5-2 Language Interfaces (VAX)

CType
Declaration

int

unsigned int

char

char

unsigned or corresponding enum (signed in C)

double

Corresponding pointer type

Pascal Return
Value Type

record type

array type

CType
Declaration

Corresponding structure or union type

Corresponding array type

1. Applies also to subranges with lower bounds <0.

To call a Pascal procedure from C, write a C extern declaration in the following
fonn:
extern void name();

Then call it with actual arguments that have appropriate types.

5.2.2 C-to-Pascal Arguments
The following table lists the C argument types that match those expected by the
called Pascal routine. Note that C does not permit declaration of the formal
parameter types. Instead, it infers them from the types of the actual arguments
passed.

Pascal Type
Expected

integer

subrange

char

boolean

enumeration

real

pointer types

Reference
parameter

record types

by -reference
arra y parameters

by-value
array parameters

CType

integer or char value _2 31 •• 231 -1

integer or char value in subrange

integer or unsigned char (0 to 127)

integer or char (0 or 1)

integer or char (0 .. N-1)

double

pointer type
und <0. := lbound(s)

Pointer to the appropriate type

Structure or union type

Corresponding array type

Structure that contains the corresponding array

The following is an example of a C function that passes strings to a Pascal procedure,
which then prints them. Note the following:

• The Pascal procedure must check for the null [chr(O)] character, which indicates
the end of the string passed by the C routine.

• The Pascal procedure must not write to output; instead, it uses the stdout file
stream descriptor passed by the C routine.

C call:
1* Send the last command-line argument to Pascal routine */
#include <stdio.h>
main (argc, argv)

Language Interfaces (VAX) 5-3

int argc; char **argv;
{
if (argc != 0)

p_routine(argv[argc - 1]);

Pascal procedure:
{ We assume the string passed to us by the routine

will not exceed 100 bytes in length }
type

astring = packed array [1 .. 100] of char;
procedure p_routine(var c: astring);

var
i: integer;

begin
i : = 1;
while (i < 100) and (c[i] <> chr(O)) do

begin
write (c [i]) ;
i := i + 1;
end;

writeln;
end;

5.2.3 Calling C from Pascal
To call a C function from Pascal, write a Pascal declaration that describes the C
function. Write a procedure declaration or, if the C function returns a value, write a
function declaration. Write parameter and return value declarations that correspond
to the C parameter types.

The following table describes the Pascal argument types that match those expected by
the called C function:

Type Expected
By C Function

int 1

unsigned int 2

short 3

unsigned short

unsigned char

char4

double

enum type

struct type

union type

array type

Pascal Type

integer

None

integer (or -32768 .. 32767)

0 .. 65535

char

integer (or -128 .. 127)

real

Corresponding enumeration type

Corresponding record type

Corresponding record type

Corresponding array type passed by reference (V AR)

1. Same as types signed int, long, signed long, signed.

2. Same as types unsigned, unsigned long.

3. Same as type signed short.

4. Same as type signed char.

Note that a Pascal routine cannot pass a function pointer to a C function.

5-4 Language Interfaces (VAX)

Improving Program Performance (RiSe) 6

This chapter describes facilities that can help reduce the execution time of your
programs on RISC processors. It discusses the following topics:

• Profiling code

• Optimizing code

• Controlling the size of global pointer data

The best way to produce efficient code is to follow good programming practices:

• Choose good algorithms and leave the details to the compiler.

• A void tailoring your work for any particular release or quirk of the compiler
system.

6.1 Profiling Code
The profiler isolates those portions of your code where execution is concentrated and
provides reports that indicate where you should devote your time and effort for
coding improvements. This section describes the advantages of the pro filer and how
to use it.

In a typical program, execution time is confined to a relatively few sections of code,
and it is profitable to concentrate on improving coding efficiency in only those
sections. The compiler system provides the following profile information:

• Program counter (pc) sampling

• Invocation counting

• Basic block counting

The program counter highlights the execution time spent in various parts of the
program. You can obtain pc sampling information by link -editing the desired source
modules with the -p option and then executing the resulting program object, which
generates profile data in raw format. Your program must exit normally for the profile
data to be created.

Invocation counting gives the number of times each procedure in the program is
invoked. Basic block counting measures the execution of basic blocks (a basic block
is a sequence of instructions that is entered only at the beginning and which exits
only at the end). This option provides statistics on individual lines.

You can obtain invocation counting and basic block counting information by using
the pixie command, which uses your source program to create an equivalent
program that contains additional code that counts the execution of each basic block.
Executing pixie and the equivalent program generate the profile data in raw format.

For more information, see pixie(1) in the ULTRIX Reference Pages.

In addition, by using the prof command, you can create a formatted listing of the
raw profile data. You can use this listing to determine if your program exercised all
portions of your code, to determine where to correct inefficient code, or to determine
where to substitute better algorithms or assembly code.

For further information, see prof(l) in the ULTRIX Reference Pages.

The following is an example of a pc sampling listing that was produced from a
program compiled with the -p compiler option. The program was then executed.
The prof command produced the listing from the raw profile data generated during
execution. The output is sorted in descending order by the total time spent in each
procedure; unexecuted procedures are excluded.

Each sample covers 8.00
%time seconds cum %

byte(s) for 4.2% of 0.2400 seconds

25.0 0.0600 25.0
16.7 0.0400 41.7
12.5 0.0300 54.2
12.5 0.0300 66.7

8.3 0.0200 75.0
4.2 0.0100 79.2
4.2 0.0100 83.3
4.2 0.0100 87.5
4.2 0.0100 91.7
4.2 0.0100 95.8
4.2 0.0100 100.0

cum sec
0.06
0.10
0.13
0.16
0.18
0.19
0.20
0.21
0.22
0.23
0.24

procedure (file)
main (fixfont.p)
write_string (.. /textoutput.c)
write_char (.. /textoutput.c)
write_integer (.. /textoutput.c)
write (.. /write.s)
writeln (.. /textoutput.c)
write chars (.. /textoutput.c)
read (.. /read. s)
open (.. /open.s)
rewrite (.. /rewrite.c)
eoln (.. /textinput.c)

The next three examples are prof command listings generated from raw data
produced by the pixie command.

In the first example, the prof -i option was specified. The procedures are sorted in
descending order by the number of calls. A question mark (?) in the #calls and line
columns indicates that data is unavailable because part of the program was compiled
without profiling.

called procedure
eoln

write char

read char

write_integer

eof

writeln

#calls
4017

453
428

30
4014

453
442

1
4017

428
1382

906
0
0
0

453
453
453
453

30
0

453
453
453

30
1
1

453

6-2 Improving Program Performance (RiSe)

%calls
81. 51

9.19
8.69
0.61

81. 75
9.23
9.00
0.02

90.37
9.63

60.40
39.60

0.00
0.00
0.00

24.59
24.59
24.59
24.59

1. 63
0.00

50.00
50.00
93.40

6.19
0.21
0.21

93.60

from line, calling procedure (file) :
37 main (pix.p)
35 main (pix.p)
19 main (pix.p)
17 main (pix.p)
43 main (pix.p)
45 main (pix.p)
42 main (pix.p)
47 main (pix.p)
36 main (pix.p)
18 main (pix.p)

160 write _string (.. /textoutput.c)
225 write _integer (.. /textoutput.c)
257 write - cardinal (.. /textoutput.c)
284 write real(.. /textoutput.c) -
286 write real (.. /textoutput.c)

31 main (pix.p)
29 main (pix.p)
31 main (pix.p)
31 main (pix.p)
23 main (pix.p)

189 write enum (.. /textoutput.c)
31 main (pix.p)
31 main (pix.p)
45 main (pix.p)
23 main (pix.p)
28 main (pix.p)
14 main (pix.p)
29 main (pix.p)

30 6.20 23 main (pix.p)
1 0.21 47 main (pix.p)

readln 453 93.79 39 main (pix.p)
30 6.21 21 main (pix.p)

sbrk 4 66.67 207 morecore (.. /malloc.c)
1 16.67 110 malloc (.. /malloc.c)
1 16.67 115 malloc (.. /malloc.c)

close 4 100.00 108 fclose (.. /flsbuf. c)
fflush- 4 100.00 107 fclose (_ . /flsbuf. c)

0 0.00 49 filbuf (.. /filbuf.c)

In the second example, the prof -p option was specified. The output is sorted in
descending order by the number of cycles executed in each procedure; unexecuted
procedures are excluded.

148137751 cycles
cycles %cycles cum % cycles bytes procedure (file)

/call /line
48071708 32.45 32.45 34 32 write char (.. /textoutput.c)
42443503 28.65 61.10 42443503 26 main (fixfont _p)
26457936 17.86 78.96 30 44 eoln (.. /textinput.c)
20662326 13.95 92.91 23 27 read char (.. /textinput.c)

4307932 2.91 95.82 62 8 write chars (.. /textoutput.c)
3678408 2.48 98.30 133 14 write _integer (.. /textoutput.c)
1573858 1. 06 99.36 29 16 write _string (.. /textoutput.c)

362700 0.24 99.61 26 67 readln (.. /textinput.c)
279002 0.19 99.80 20 30 writeln (.. /textoutput.c)
251152 0.17 99.97 19 44 eof (.. /textinput.c)

30283 0.02 99.99 63 11 flsbuf (.. /flsbuf. c) -
13391 0.01 100.00 60 13 refill (.. /refill.c)

2923 0.00 100.00 6 6 write (.. /write.s)
1356 0.00 100.00 6 6 read (.. /read. s)

735 0.00 100.00 368 11 more core (.. /malloc.c)
116 0.00 100.00 58 10 malloc (.. /malloc.c)
105 0.00 100.00 15 9 pad (.. /textoutput.c)

90 0.00 100.00 45 15 reset (.. /reset. c)
82 0.00 100.00 82 13 fopen (.. /fopen. c)
55 0.00 100.00 11 5 sbrk (.. /sbrk.s)
35 0.00 100.00 35 15 rewrite (.. /rewrite. c)
15 0.00 100.00 5 5 fstat (.. /fstat.s)
13 0.00 100.00 13 12 isatty (.. /isatty.c)
11 0.00 100.00 11 11 gtty (.. /gtty. c)

6 0.00 100.00 6 5 ioctl (.. /simple.s)
5 0.00 100.00 5 5 creat (.. /stringarg1.s)
5 0.00 100.00 5 5 creat (.. /stringarg1.s)

In the third example, the prof -1 option was specified. The output is grouped by
procedure and sorted by the number of cycles executed per procedure. A question
mark (?) indicates that data is unavailable because part of the program was compiled
without profiling.

procedure (file) line bytes cycles %cycles
write_char (.. /textoutput.c) 105 20 7069725 4.77

106 8 2827890 1. 91
111 8 2827890 1. 91
106 4 1413945 0.95
112 16 1413945 0.95
113 72 0 0.00
115 12 4241835 2.86
116 64 0 0.00
117 28 0 0.00
120 88 28276478 19.09

main (fixfont.p) 11 60 15 0.00
12 32 8 0.00

Improving Program Performance (RiSe) 1-3

13 24 6 0.00
14 24 6 0.00
15 4 1 0.00
16 40 8490 0.01
17 24 166 0.00
48 48 12 0.00

eoln (.. /textinput.c) 27 12 2736936 1. 85
28 4 912312 0.62
31 116 22808688 15.40

read char (.. /textinput.c) 58 8 1796724 1.21
59 56 9881982 6.67
60 28 5390172 3.64
61 16 3593448 2.43

write chars (.. /textoutput.c) 18 20 348150 0.24
19 8 139260 0.09
25 12 208890 0.14
28 4 139 0.00

6.1 .1 Basic Block Counting

Figure 6-1 illustrates the steps to follow in obtaining basic block counts.

Figure 6-1: Basic Block Counting
Step 1 ..--_____ ---,

~_c_om_Pi_le_a_n_d_lin_k~1 ~
A program

Step 2 ""--1 ------'1· ~ 1
_ Execute pixie _ ~ t

Step 3 ...--_____ .---,

Execute
program _pixie

Execute prof

BB
program. pixie program.Addrs

I

program.Counts
I

j
prof ~~tion: II

-p,.,e L----J prof options: F====1
-pixie -feedback ~

For the programmer:

A formatted lisiting
of profile statistics.

For the compiler:

A feedback file that aids
the procedure merger
and global optimization
phases.

ZK-0069U-R

To obtain basic block counts, follow this procedure:

6-4 Improving Program Performance (RiSe)

1. Compile and link-edit your program. Do not use the -p option. For example:

% cc -c myprog.c
% cc -0 myprog myprog.o

2. Run the pixie profiling command on your compiled output. For example:

%.pixie -0 myprog.pixie myprog

The pixie command creates an equivalent program containing additional code
that counts the execution of each basic block. It also generates another output
file (myprog. Addrs) that contains the address of each of the basic blocks.
For more information, see pixie(1) in the ULTRIX Reference Pages.

3. Execute the pixie-generated output program, myprog. pixie, which in tum
generates another output file (myprog. Counts), which contains the basic
block counts.

4. Run the prof profile formatting command, which extracts and formats
information from the secondary output files, myprog. Addr and
myprog. Counts. For example:

% prof -pixie myprog myprog.Addrs myprog.Counts

Note that specifying myprog. Addrs and myprog . Counts is optional; by
default, pixie automatically searches the current directory for files with the
specified program name and the. Addrs and. Counts suffixes.

Also note that you can run the program several times, altering the input data,
and create multiple profile data files. For further information, see Section 6.1.2.

You can include or exclude information on specific procedures within your program
by using prof with the -only or -exclude option.

6.1.2 Averaging prof Results
A single run of a program may not produce the typical results you require. You can
repeatedly run the version of your program created with the pixie command and
vary the input with each run. Then, you can use each resulting. Counts file to
produce a consolidated report. For example, the following would create four
. Counts files from which one consolidated report can be generated.

1. Compile and link-edit your program. Do not use the -p option. For example:

% cc -c myprog.c
% cc -0 myprog myprog.o

2. Run the pixie profiling command on the resulting program. For example:

% pixie -0 myprog.pixie myprog

This step produces the modified program myprog. pixie and the additional
myprog. Addrs output file that is to be used later.

3. Run the profiled program as many times as needed for the different input. A
. Counts file is generated each time that you run the profiled program. You
should rename this file before executing the next sample run. For example:

% myprog.pixie < inputl > outputl
% mv myprog.Counts myprogl.Counts
% myprog.pixie < input2 > output2

Improving Program Performance (RiSe) 6-5

% mv myproq.Counts myproq2.Counts
% myproq.pixie < input3 > output3
% mv myproq.Counts myproq3.Counts

4. Create the consolidated report by including all of the generated. Counts files
on the command line. For example:

% prof -pixie myproq myproq.Addrs myproq[123].Counts

The prof command takes an average of the basic block data in the named
. Counts files to produce one consolidated profile report.

6.1.3 PC Sampling
To obtain pc sampling information, follow this procedure:

1. Compile and link-edit your program with the -p option. For example:

% cc -c myprog.c
% cc -p -0 myproq myproq.o

Note that you must specify the -p profiling option during the link-editing step
to obtain pc sampling information.

2. Execute the profiled program. During its execution, profiling data is saved in
the profile data file. The default is man. out.

You can run the program several times, alter the input data, and create multiple
profile data files. For further information, see Section 6.1.4.

3. Run the prof profile formatter, which extracts information from each profile
data file and formats it in an easily readable form. For example:

% prof -procedure myproq mon.out

You can include or exclude information on specific procedures within your program
by using the -only or -excl ude profiler option.

For further information, see prof(l) in the ULTRIX Reference Pages.

Figure 6-2 illustrates the procedure for obtaining pc sampling information.

6-0 Improving Program Performance (RiSe)

Figure 6-2: PC Sampling

Step 1 r----------,
Compiler
-p option. Compile and link

Step 2 r-------"'------,

prof format
option (s)

Execute program
(collect data)

Step 3 ;0----.......... -----,

Run prof
(forma data)

For the compiler: For the programmer.

A formatted listing
of profile statistics

A feedback file that aids
the procedure merger
and global optimization
phases.

ZK-0070U-R

6.1.4 Creating Multiple Profile Data Files
When you run a program using pc sampling, raw data is colle;cted and saved in the
profile data file mon. out. To collect profile data in several files or ib s~ecify a
different name for the profile data file, set the PROFDIR envir()nment variable by
using one of the following shell commands:

C Shell:
setenv PROFDIR directory

Bourne Shell:
PROFDIR = directory; export PROFDIR

Once you set your PROFDIR environment variable, the profiling results are then
saved in directory/pid .progname, where directory is that specified by the PROFDIR
environment variable; pid is the process ID of the executing program, and progname
is the program's name as it appears in argv[O]. pidis the processID of the executing
program, and progname is the program's name as it appears in ~rgv[O]. Note that
you must create the PROFDIR directory before you run the program.

Improving Program Performance (RiSe) 6-7

6.1.5 Running the prof Profiler

The prof profiler converts the raw profiling information into either a printed listing
or an output file that can be used by the compiler. To execute the pro filer, use the
following syntax:

prof [options] [file] [program.Addrs program.Counts]

If you do not specify a profile data file, prof looks for man. out in the current
directory. If man . out does not exist, prof looks for the profile data file in the
directory specified by the PROFDIR environment variable.

If you do not specify a profile data file but you do specify the -pixie option, prof
looks for the specified program.Addrs and program.Counts files and provides basic
block count information if they are present. You can merge the data from multiple
profile files into one new file.

For further information, see prof(1) in the ULTRIX Reference Pages.

6.2 Optimizing Code
The following sections provide an overview of the compiler optimization facilities
and describes their benefits, the implications of optimizing and debugging, and the
major optimizing techniques. They also give examples showing optimization
techniques.

6.2.1 Overview of the Optimizer
The global optimizer improves the performance of object programs by transforming
existing code into more efficient coding sequences. Although the same optimizer
processes all compiler optimizations, it does distinguish between the various
languages supported by the compiler system programs to take advantage of the
different language semantics involved.

Most compilers perform certain code optimizations, although the extent to which they
perform these optimizations varies widely. This compiler system performs more
extensive optimizations compared with the average compiler available. These
advanced optimizations are the results of the latest research into better and more
powerful compiler techniques.

The compiler system performs both machine-independent and machine-dependent
optimizations. Machines with RISe architectures provide a better target for
machine-dependent optimizations, because the low-level instructions of RISe
machines provide more optimization opportunities than the high-level instructions in
other machines. Even optimizations that are machine independent have been found
to be effective on machines with RISe architectures. Although most of the
optimizations performed by the global optimizer are machine independent, they have
been specifically tailored to this RISe environment.

The RISe architecture emphasizes the use of registers. Therefore, register use has
significant impact on program performance. For example, fetching a value from a
register is significantly faster than fetching a value from storage. Thus, the optimizer
makes the best possible use of registers.

In allocating registers, the optimizer selects those data items most suited for registers,
taking into account their frequency of use and their location in the program structure.
In addition, the optimizer assigns values to registers so that their contents move

6-8 Improving Program Performance (RiSe)

minimally within loops and during procedure invocations.

The primary benefits of optimization, of course, are faster running programs and
smaller object code size. However, the optimizer can also speed up development
time. For example, your coding time can be reduced if you let the optimizer relate
programming details to execution time efficiency. This lets you focus on the more
crucial global structure of your program. Moreover, programs often yield code
sequences that can be optimized regardless of how well you write your source
program.

6.2.2 General Considerations
When optimizing your program, consider the following:

• Optimize your programs only when they are fully developed and debugged.
Although the optimizer does not alter the flow of control within a program, it
may move operations so that the object code does not correspond to the source
code. These changed sequences of code may create confusion when you use the
debugger.

• The -C option of the Pascal compiler, which performs bounds checking in
Pascal programs, inhibits some optimizations. Therefore, unless bounds
checking is crucial, you should not specify the -c option when you optimize a
Pascal program.

• Optimizations are most useful in program areas that contain loops. The
optimizer moves loop-invariant code sequences outside loops so that they are
performed only once instead of multiple times. Apart from loop-invariant code,
loops often contain loop-induction expressions that can be replaced with simple
increments. In programs composed of mostly loops, global optimization can
often reduce the running time by half.

The following examples illustrate the results of loop optimization on source code that
is compiled both with and without the -0 compiler option. The source code is
shown first, followed by the two outputs.

Source Code

void
left(a, distance)

char a[];
int distance;
{

int j, length;
length strlen(a) - distance;
for (j 0; j < length; j++)

a[j] = a[j + distance];

Unoptimized Code Output

8 for (j=O; j<length; j++)

$32:
9

sw
ble

$0, 36($sp) # j = 0
$24, 0, $33 # length >= j

a[j] = a[j+distance];

Improving Program Performance (RiSe) 6-9

lw
lw
addu
lw
addu
lb
addu
sb
lw
addu
sw
lw
blt

$33:

Optimized Code Output

8

$32:
9

$33:

move
ble
move
addu

lb
sb
addu
addu
addu
blt

$25, 36($sp) # j
$8, 44 ($sp) # distance
$ 9, $25, $8 # j+distance
$10, 40($sp) # address of a
$11, $10, $9 # address of a[j+
$12, 0($11) # a[j+distance]
$13, $10, $25 # address of a[j]
$12, 0($13) # a [j]
$14, 36($sp) # j
$15, $14, 1 # j+1
$15, 36($sp) # j++
$3, 32($sp) # length
$15, $3, $32 # j < length

for (j=O; j<length; j++)
$5, $0 # j = 0
$4, 0, $33 # length >= j
$2, $16 # address of a[j]
$6, $16, $17 # address of a[j+distance]

a[j] = a [j+distance];
$3, 0($6) # a[j+distance]
$3, 0($2) # a[j]
$5, $5, 1 # j++
$2, $2, 1 # address of next a[j]
$6, $6, 1 # address of next a[j+distance]
$5, $4, $32 # j < length

The optimized version contains fewer total instructions and fewer instructions that
reference memory. Wherever possible, the optimizer replaces load and store
instructions (which reference memory) with the faster computational instructions that
perform operations only in registers.

6.2.3 Optimizing Separate Compilation Units

The optimizer processes one procedure at a time. Large procedures offer more
opportunities for optimization, because more interrelationships are exposed in terms
of constructs and regions. However, large procedures require more time to optimize
than smaller ones.

The uload and umerge phases of the compilation permit global optimization
among separate units in the same compilation. Often, programs are divided into
separate files, called modules or compilation units, which are compiled separately.
This saves compile time during program development because a change requires
recompilation of only one compilation unit rather than the entire program.

Traditionally, program modularity restricted the optimization of code to a single
compilation unit at a time rather than over the full breadth of the program. For
example, calls to procedures that reside in other modules could not be fully optimized
together with the code that called them.

The uld and umerge phases of the compiler system overcome this deficiency. The
uld phase links multicompilation units into a single compilation unit. Then,
umerge orders the procedures for optimal processing by the global optimizer
(uopt).

6-10 Improving Program Performance (RiSe)

6.2.4 Types of Optimization

The following sections describe these types of optimization:

• Full optimization

• Optimizing large programs

• Optimizing frequently used modules

For information about specific optimizing options, see cc(1), in the ULTRIX
Reference Pages and f77(1) and pc(1) in the Reference Pages for the FORTRAN
and Pascal layered products.

Figure 6-3 illustrates the major processing phases of the compiler and the way the -0
compiler option determines the execution sequence.

6.2.4.1 Full Optimization - This section provides examples using the -03 compiler option.
The examples provided in this section assume that the program rnyprogram consists
of three files: a. c, b. c, and c. c.

To perform procedure merging optimizations (-03) on all three files, you would
type the following:

% cc -03 -0 foo a.c h.c c.c

If you normally use the -c option to compile the object file, follow these steps:

1. Compile each file separately using the - j option. For example:

% cc -j a.c
% cc -j h.c
% cc -j C.c

The - j option causes the compiler driver to produce a . u file (the standard
compiler front-end output, which is made up of ucode, an intemallanguage
used by the compiler). None of the remaining compiling phases are executed,
as is illustrated by the following:

DDD
a.c b.c c.c

t_
"'--- C Compiler ~

DDD
a.u b.u c.u

ZK-0073U-R

Figure 6-3 illustrates the optimization phases of the compiler.

Improving Program Performance (RiSe) 6-11

Figure 6-3: Optimization Phases of the Compiler

Compilation

Ucode Link
(uloader)

Procedure Merge
(umerge)

D=~erfi,e .
...----.~

Assembler

Link Editor

6-12 Improving Program Performance (RISe)

~

~
D Assembled

object file.

~
D Linked

object file.

ZK-0071 U-R

2. To perfonn optimization and complete the compilation process, enter the
following:

% cc -03 -0 foo a.u b.u c.U

Figure 6-4 illustrates the results of executing this command.

Figure 6-4: -03 Optimization

LJLJLJ
a.u b.u c.u

~-O3

~ Ucode Link
(uld)

I
Procedure Merge

(umerge)

I
Global Optimizer

(uopt)

I
Code Generator

I
Assembler

I
Link Edit ~

LJ
foo

ZK-0072U-R

6.2.4.2 Optimizing Large Programs - To ensure that all program modules are optimized
regardless of their size, specify the -Olirni t option at compilation.

Because compilation time increases by the square of the program size, the compiler
system enforces a top limit on the size of a program that can be optimized. This
limit was set for the convenience of users who place a higher priority on the
compilation turnaround time than on optimizing an entire program. The -Olimi t
option removes the top limit and lets those users who do not mind a long compilation
to fully optimize their programs.

Improving Program Performance (RiSe) 6-13

6.2.4.3 Optimizing Frequently Used Modules - You may want to compile and optimize
modules that will be frequently called from programs written at a later time. This
can reduce the compile and optimization time required when the modules are needed.

In the examples that follow, b . c and c . c represent two frequently used modules
that are to be compiled and optimized, retaining all the necessary information to link
them with later programs; future. c represents one such program.

1. Compile b . c and c . c separately. For example:

% cc -j b.c
% cc -j c.c

The - j option causes the front end (first phase) of the compiler to produce two
ucode files, b . u and c . u.

2. Create a file that contains the external symbols in b . c and c . c to which
fut ure . c will refer. Each symbolic name must be separated by at least one
blank. The next figure provides the skeletal contents of b . c and c . c.

b.e foo ()
{
• •
)

bar ()
{
• •

zot ()
{
• •
)

struct

• •
} work;

C.C x ()
{
• •

help ()
{
• •

strutt
{
• •
) ddata;

y ()
{
• •

ZK-0074U-R

The future. c program will call or reference only faa, bar, x, ddata, and
y in the b . c and c . c procedures.

3. Create a file (named extern for this example) that contains the symbolic
names faa bar x ddata y. (The structure (work) and the help and
zot procedures are used internally only by b. c and c. c. Therefore, they are
not included in extern.)

If you omit an external symbolic name, an error message is generated (see step
5).

4. Optimize the b . u and c . u modules using the extern file. For example:

% cc -c -03 -kp extern b.u c.u -0 keep.o

In the - kp option, the k designates that the p link editor option is to be passed
to the ucode loader. The following figure illustrates this step.

6-14 Improving Program Performance (RiSe)

UU"-" ~u
b.u. c.u. ""---------..... extern

(hand-created
symbol list file)

Assembler

\u
keep.o

ZK-0075LJ-R

5. Create a ucode file and an optimized object code file for future. c. For
example:

% cc -03 future.u keep.o -0 foo

You may receive the following message, which indicates that the code in
fut ure . c is using a symbol from the code in b. c or c. c that was not
specified in the extern file:

zot: multiply defined hidden external (should have been preserved)

If you receive this message, proceed to step 6.

6. Include zot, which the message indicates is missing, in the extern file and
recompile. For example:

% cc -03 -c -kp extern b.u c.U -0 keep.o
% cc -03 future.u keep.o -0 foo

6.2.5 Building a ucode Object Library
Building a ucode object library is similar to building a Common Object File Fonnat
(coff) library. First, compile the source files into ucode object files using the -j
compiler option and the archiver just as you would for coff object libraries. For
example:

% cc -j a.c
% cc -j b.c
% cc -j C.c
% ar crs libfoo.b a.u b.u c.U

Improving Program Performance (RiSe) 6-15

Conventional names exist for ucode object libraries (1 ibx . b), just as they do for
co f f object libraries (1 ibx . a).

6.2.6 Using ucode Object libraries
Using ucode object libraries is similar to using coff object libraries. To load from
a ucode library, specify a - klx compiler or ucode loader option. The following
example loads the file created in the previous example from the ucode library:

% cc -03 filel.u file2.u -klfoo -0 output

Because the libraries are searched as they are encountered on the command line, the
order in which you specify them is important. If a library is made from both
assembly and high-level language routines, the ucode object library contains code
only for the high-level language routines and not all the routines as the co f f object
library. In this case, you must specify to the ucode loader both the ucode object
library and the coff object library, in that order, to ensure that all modules are
loaded from the proper library.

If the compiler driver is to perform both a ucode load step and a final load step, the
object file created after the ucode load step is placed in the position of the first
ucode file specified or created on the command line in the final load step.

6.2.7 Improving FORTRAN Program Optimization

The following recommendation can help increase optimizing opportunities for the
global optimizer (uopt):

• A void indirect calls (calls that use routines or pointers to functions as
arguments).

Indirect calls cause unknown side effects (that is, change global variables) that
can reduce the amount of optimization.

The global optimizer processes programs only when you· explicitly specify the -02
or -03 compiler option. However, the code generator and assembler phases of the
compiler always perform certain optimizations (certain assembler optimizations are
bypassed when you specify the -00 compiler option).

The following recommendations can help increase optimizing opportunities for the
other passes of the compiler:

• As an optimizing technique, the compiler puts the first four parameters of a
parameter list into registers, where they remain during execution of the called
routine. Therefore, always declare as the first four parameters those variables
that are most frequently manipulated in the called routine with floating-point
parameters preceding nonfloating-point parameters.

• Use word-size variables instead of smaller ones if enough space is available.
This may take more space, but it is more efficient.

6.2.8 Improving C Program Optimization

The following recommendations can help increase optimizing opportunities for the
global optimizer (uopt):

6-16 Improving Program Performance (RiSe)

• A void indirect calls (calls that use routines or pointers to functions as
arguments).

Indirect calls cause unknown side effects (that is, change global variables) that
can reduce the amount of optimization.

• Function return values

Use function return values instead of reference parameters.

• Do, while, and repeat

Use do while instead of while or for when possible. Then, the optimizer
does not have to duplicate the loop condition to move code from within the
loop to outside the loop.

• Unions and variant records

A void unions that cause overlap between integer and floating point data types.
This keeps the optimizer from assigning the fields to registers.

• Use local variables

A void using global variables. Minimizing the use of global variables increases
optimization opportunities for the compiler. Declare any variable outside of a
function as static, unless that variable is referenced by another source file.

• Value parameters

Use value parameters instead of reference parameters or global variables.
Reference parameters have the same degrading effects as the use of pointers.

• Pointers and aliasing

A void using aliases by introducing local variables to store dereferenced results.
(A dereferenced result is the value obtained from a specified address.)
Dereferenced values are affected by indirect operations and calls, whereas local
variables are not. Therefore, they can be kept in registers. The following
example shows how the proper placement of pointers and the elimination of
aliasing lets the compiler produce better code:

Source code:
int len = 10;
char a[lO)i
void
zero ()

{

char *Pi
for (p =a; p != a +len;) *p++ = 0;
}

Generated assembly code:
8 for (p a; p != a + len; *p++

move $2, $4 # p = a
lw $ 3, len
addu $24, $4, $3
beq $24, $4, $33 # a + len

$32:
sb $0, 0($2) # *p = 0
addu $2, $2, 1 # p++
lw $25, len
addu $ 8, $4, $25
bne $8, $2, $32 # len + a

$33:

0;

!= a

!= p

Improving Program Performance (RiSe) 6-17

To increase the efficiency of this example, you can use one of two methods:

Use subscripts instead of pointers

Use local variables to store unchanging values

• Use subscripts instead of pointers.

•

The use of subscripting in the procedure azero eliminates aliasing; the
compiler keeps the value of len in a register, which saves two instructions, and
still uses a pointer to access a efficiently, even though a pointer is not specified
in the source code. For example:

Source code:
void
azero ()

{

int i;
for (i = 0; i != len; i++) ali] = 0;
}

Generated assembly code:
14 for (i = 0; i !=

move $2, $0
beq $~, 0, $35
la $14, a
move $2, $14
addu $4, $3, $14

$34:
sb $0, 0($2)
addu $2, $2, 1
bne $2, $4, $34

$35:

Use local variables .

len; i++) ali] = 0;
i = 0
len != 0

allen]

*a = 0
a++
a != allen]

Specifying 1 en as a local variable or formal argument ensures that aliasing can
Qat take place and permits the compiler to place len in a register. For example:

Source code:
char a[10];
void
lpzero(len)

int len;
{

char *p;
for (p = a; p != a + len;
}

Generated assembly code:
8 for (p = a; p !=

move $2, $6
addu $5, $6, $4
beq $5, $6, $33

$32:
sb $0, 0($2)
addu $2, $2, 1
bne $5, $2, $32

$33:

*p++ = 0;

a + len; *p++ = 0;
p = a

a + len != a

*p = 0
p++
a + len != p

In the previous example, the compiler generates slightly mpre efficient code for
the second method.

• Write straightforward code.

6-18 Improving Program Performance (RiSe)

For example, do not use autoincrement (++) and autodecrement (--) operators
within an expression. When you use these operators for their values, rather than
for their side effects, you often get bad code. For example:

Bad:
while (n--) {

Good:
while (n != 0) {

n--;

• Use register declarations liberally.

The compiler automatically assigns variables to registers. However, specifically
declaring a register type lets the compiler make more aggressive assumptions
when assigning register variables.

• Avoid taking and passing addresses. This can create aliases, make the optimizer
store variables from registers to their home storage locations, and significantly
reduce optimization opportunities that would otherwise be perfonned by the
compiler.

• VARARGs

A void functions that take a variable number of arguments. This causes the
optimizer to unnecessarily save all parameter registers on entry.

The global optimizer processes programs only when you explicitly specify the -02
or -03 compiler option. However, the code generator and assembler phases of the
compiler always perform certain optimizations (certain assembler optimizations are
bypassed when you specify the -00 compiler option).

The following recommendations can help increase optimizing opportunities for the
other passes of the compiler:

• Use tables rather than if-then-else or switch statements. For example:

Good:
if (i == 1) c = '1';
else c = '0';

More efficient:
c = "Ol"[i];

• As an optimizing technique, the compiler puts the first four parameters of a
parameter list into registers, where they remain during execution of the called
routine. Therefore, always declare as the first four parameters those variables
that are most frequently manipulated in the called routine with fioating-point
parameters preceding nonfioating-point parameters.

• Use word-size variables instead of smaller ones if enough space is available.
This may take more space, but it is more efficient.

• Rely on libc functions (for example, strcpy, strlen, strcmp, bcopy,
bzero, memset, and memcpy). These functions were hand-coded for
efficiency.

Improving Program Performance (RiSe) 6-19

• Use the unsigned data type for variables wherever possible for the following
reasons:

Because it knows the variable will always be greater than or equal to zero
(>=0), the compiler can perform optimizations that would not otherwise be
possible.

The compiler generates fewer instructions for multiply and divide
operations that use a power of 2.

For example:

int i;
unsigned j;

return i/2 + j/2;

The compiler generates four instructions for the signed i/2 operations:

000000 bgez
000004 move
000008 addiu
OOOOOe sra

r14, axe
rl, r14
rl, rl, 1
r15, rl, 1

By contrast, the compiler generates only one instruction for the unsigned
j/2 operation:

000010 srI r24,r5,1 # j / 2

In this example, i/2 is an expensive expression, and j/2 is an inexpensive
one.

6.2.9 Improving Pascal Program Optimization

The following recommendations can help increase optimizing opportunities for the
global optimizer (uopt):

• A void indirect calls (calls that use routines or pointers to functions as
arguments) .

Indirect calls cause unknown side effects (that is, change global variables)
that can reduce the amount of optimization.

• Function return values

Use function return values instead of reference parameters.

• Do, while, and repeat

Use repeat instead of while or for when possible. Then, the
optimizer does not have to duplicate the loop condition to move code from
within the loop to outside the loop.

• Variant records

A void variant records that cause overlap between integer and floating point
data types. This keeps the optimizer from assigning the fields to registers.

• Use local variables

6-20 Improving Program Performance (RiSe)

A void using global variables. Minimizing the use of global variables
increases optimization opportunities for the compiler.

• Value parameters

Use value parameters instead of reference parameters or global variables.
Reference parameters have the same degrading effects as the use of
pointers.

• Use packed arrays only when space is crucial. Packed arrays prevent
moving induction expressions from within a loop to outside the loop.

The global optimizer processes programs only when you explicitly specify the -02
or -03 compiler option. However, the code generator and assembler phases of the
compiler always perfonn certain optimizations (certain assembler optimizations are
bypassed when you specify the -00 compiler option).

The following recommendations can help increase optimizing opportunities for the
other passes of the compiler:

• As an optimizing technique, the compiler puts the first four parameters of a
parameter list into registers, where they remain during execution of the called
routine. Therefore, always declare as the first four parameters those variables
that are most frequently manipulated in the called routine with floating-point
parameters preceding non floating-point parameters.

• Use word-size variables instead of smaller ones if enough space is available.
This may take more space, but it is more efficient.

• Use predefined functions as much as possible. For example:

max and min rather than if-then-else

Shift and bitwise and instead of di v and mod

6.3 Controlling the Size of Global Pointer Data
This section describes the global pointer area and how, by controlling the size of
variables and constants that the compiler places in this area, you can improve
program performance.

Global pointer data are constants and variables that the compiler places in the
. s da t a and . sb s s portions of the data and b s s segments shown in the
following figure. This area is referred to as th~ global pointer area.

Improving Program Performance (RISe) 6-21

] text segment

] data segment

..... -------...] bsssegment

D Global pointer area

ZK-0076U-R

(The .rdata, . data, and. sdata sections contain initialized data, and the
. sbs sand. bs s sections reserve space for uninitialized data that is created by the
kemelloader for the program before execution and filled with zeros.)

In general, the compiler system emits two machine instructions to access a global
value. However, by using a register as a global pointer (called $gp), the compiler
creates the 65,536-byte global pointer area where a program can access any value
with a single machine instruction - only half the number of instructions required
without a global pointer.

To maximize the number of individual variables and constants that a program can
access in the global pointer area, the compiler first places those variables and
constants that take the fewest bytes of memory. By default, the variables and
constants occupying eight or fewer bytes are placed in the global pointer area, and
those occupying more than eight bytes are placed in the. data and. bss sections.

6.3.1 Limiting the Size of Global Pointer Data
The more data that the compiler places in the global pointer area, the faster a
program executes. However, if the data to be placed in the global pointer area
exceeds 65,536 bytes, the link editor prints an error message and does not create an
executable object file. In this case, you need to use the -G option to reduce the use
of global data.

For most programs, the 8-byte default produces optimal results. However, the
compiler provides the -G option to let you change the default size. For example:

-G 12

This causes the compiler to place only those variables and constants that occupy 12
or fewer bytes in the global pointer area.

6.3.2 Obtaining Optimal Global Data Size
The compiler places some variables in the global pointer area regardless of the setting
of the -G option. For example, a program written in assembly language may contain
. s da t a directives that cause variables and constants to be placed into the global
pointer area regardless of size. Moreover, the -G option does not affect variables and
constants in libraries and objects compiled beforehand.

6-22 Improving Program Performance (RiSe)

To alter the allocation size for the global pointer area for data from these objects, you
must recompile them and specify the -G option and the desired value.

Thus, two potential problems exist in specifying a maximum size in the -G option:

• Using a value that is too small can reduce the speed of the program.

• Using a value that is too large can cause more than the maximum of 65,536
bytes to be placed in the data area, which creates an error condition and
produces an unexecutable object module.

The -bestGnum link editor option helps overcome these problems by predicting an
optimal value to specify for the -G option. The following sections provide examples
of using the -bestGnum option and the related -nocount and -count options.

6.3.2.1 Examples (Excluding Libraries) - When you use the -bestGnum option
exclusive of -no count and -count, the compiler assumes that you cannot
recompile any libraries to which it would link automatically and causes the link
editor not to consider these libraries when predicting the optimal maximum size.
However, if you link to other system-supplied libraries, you must specify -no count
before the library. For example:

% cc -bestGnum foo.c -nocount -1m
% pc -bestGnum foo.p

In the second command, the compiler produces a message that provides the best
value for -G. If all program data fits into the global pointer area, a message similar
to the following indicates this fact:

All data will fit into the global pointer area
Best -G num value to compile with is 80 (or greater)

Because all data fits into the global pointer area, no recompilation is necessary.
Consider the following example, which specifies 70000 as the maximum size of a
data item to be placed in the global pointer area:

% pc ersatz.p -G 70000 -bestGnum

This example produces the following messages:

gp relocation out-of-range errors have occurred and bad object file
produced (corrective action must be taken)
Best -G num value to compile with is 1024

In this example, the link editor does not produce an executable load module and
recommends a recompilation as follows:

% pc real.p -G 1024

6.3.2.2 Example (Including Libraries) - You can explicitly specify that the link editor
either include or exclude specific libraries in predicting the -G value. For example:

% cc -0 plotter -bestGnum plotter.o -nocount libieee.a \
-count liblaser.a

In this example, the link editor assumes that libieee. a cannot be recompiled and
will continue to occupy the same space in the global pointer area. It assumes that
plotter.o and liblaser. a can be recompiled and produces a recommended
-G value to use on recompilation.

Improving Program Performance (RiSe) 6-23

Improving Program Performance (VAX) 7

This chapter describes facilities that can help reduce the execution time of your
programs on VAX processors. It discusses the following topics:

• Profiling code

• Optimizing code

The best way to produce efficient code is to follow good programming practices:

• Choose good algorithms and leave the details to the compiler.

• A void tailoring your work for any particular release or quirk of the compiler
system.

7.1 Profiling Code
The pro filer isolates those portions of your code where execution is concentrated and
provides reports that indicate where you should devote your time and effort for
coding improvements. This section describes the advantages of the pro filer and how
to use it.

In a typical program, execution time is confined to a relatively few sections of code,
and it is profitable to concentrate on improving coding efficiency in only those
sections. The compiler system provides the following profile information:

• Program counter (pc) sampling

• Invocation counting

The program counter highlights the execution time spent in various parts of the
program. You can obtain pc sampling information by compiling the desired source
modules with the -p option and then executing the resulting program object, which
generates profile data in raw format. Your program must exit normally for the profile
data to be created.

Invocation counting gives the number of times each procedure in the program is
invoked. You can obtain invocation counting information by compiling the desired
source modules using the -pg option, which uses your source program to create an
equivalent program that contains additional code that counts the execution of each
function. Executing the equivalent program generates the profile data in raw format.

In addition, by using the prof and gprof commands, you can create a formatted
listing of the raw profile data. You can use this listing to determine if your program
exercised all portions of your code, to determine where to correct inefficient code, or
to determine where to substitute better algorithms or assembly code.

The following is an example of a pc sampling listing that was produced from a
program compiled with the -p compiler option. The program was then executed.
The prof command produced the listing from the raw profile data generated during

execution. The output is sorted in descending order by the total time spent in each
procedure; unexecuted procedures ~re excluded. For further information, see
prof(1) in the ULTRIX Reference Pages.

Each sample covers 8.00 byte(s) for 4.2% of 0.2400 seconds
%time cumsecs #call ms/call name

40.6 0.22 73 2.97 _write
15.6 0.30 1 83.34 _yyparse
12.5 0.37 mcount

6.3 0.40 105 0.32 _doprnt
6.3 0.43 access
6.3 0.47 617 0.05 _yylook
3.1 0,48 2376 0.01 flsbuf -
3.1 0.50 _fprintf
3.1 0.52 771 0.02 _malloc
3.1 0.53 2 8.33 read -
0.0 9~53 2 0.00 filbuf
0.0 0.53 2 0.00 _getstdiobuf
0.0 0.53 173 0.00 cat -
0.0 0.53 9 0.00 docast -
0.0 0:53 6 0.00 _docexplain
0.0 0:53 9 0.00 doqeclare -O.q Q.;i3 9 0.00 _dodexplain
0.0 0.53 1 0.00 _dohelp
0.0 0.53 39 0.00 _doprompt
0.0 0.53 + 0.00 _doset
0.0 0.53 1 0.00 dostdin
0.0 0.53 596 0.00 ds -
0.0 0.53 1 0.00 fflush -
0.0 0.53 696 0.00 free -
0.0 0.53 2 0.00 fstat -
0.0 0.53 1 0.00 _get opt
0.0 0.53 2 0.00 ioctl -
0.0 0.53 2 0.00 _isatty
0.0 0.53 :). 0.00 _main
0.0 0.53 60 0.00 mbcheck
0.0 0.53 105 0.00 yrintf
0.0 0.53 1 0.00 yrofil
0.0 0.53 39 0.00 yrompt
0.0 0.53 1 0.00 rindex -
0.0 0.53 14 0.00 sbrk -
0.0 0 . .?3 1 0.00 _setprogname
0.0 0.53 615 0.00 strcat -
0.0 0.53 62 0.00 _strcmp
0.0 0.53 596 0.00 _strcpy
0.0 0·153 1314 0.00 strlen
0.0 0.53 64 0.00 _strncmp
0.0 0.53 404 0.00 _yylex
0.0 0.53 1 0.00 _yywrap

The next example shows gprof command listings.

granularity: each sample hit covers 4 byte (s) for 2.17% of 0.46 seconds
%time cumsecs seconds calls name
39.i 0.18 0.18 73 write
15.2 0.25 0.07 mcount
13.0 0.31 0.06 617 _yylook
10.9 0.36 0.05 1 _yyparse

6.5 0.39 0.03 596 ds -
4.3 0.41 0.02 2376 flsbuf -
4.3 0.43 0.02 105 _doprnt
2.2 0.44 0.01 771 malloc
2.2 0.45 0.01 615 strcat -
2.2 0.46 0.01 596 _strcpy
0.0 0.46 0.00 1314 strlen -

7-2 Improving Program Performance (VAX)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

696
404
173
105

64
62
60
39
39
15

9
9
9

free
_yylex

cat
yrintf
_strncmp
_strcmp
_mbcheck
_doprompt
yrompt
_sbrk
_docast

dodeclare
_dodexplain

7 _morecore
6 _docexplain
2 filbuf
2
2

_getstdiobuf
_fstat

2 ioctl
2 _isatty
2 read
1 _dohelp
1 _doset
1 dostdin
1 _fflush
1 _getopt
1 main
1 _profil
1 _rindex
1 _setprogname
1 _yywrap

granularity: each sample hit covers 4 byte(s) for 2.56% of 0.39 seconds

index %time

[1] 100.0

(2] 100.0

[3] 100.0

[4] 100.0

called/total parents
self descendents called+self name index

0.00
0.00

0.00
0.00
0.05
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.05
0.05
0.00
0.00
0.00
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.39
0.39

0.39
0.39
0.34
0.00

0.39
0.39
0.39
0.00
0.00
0.00

0.34
0.34
0.07
0.06
0.05
0.01
0.04
0.03
0.03
0.02
0.01
0.00
0.00
0.00

called/total children

1/1

1/1
1
1/1
1/2

1/1
1
1/1
1/1
1/62
1/1

1/1
1

404/404
9/9
1/1

480/596
9/9
1/1
6/6
9/9

173/173
79/1314
64/64
60/60

<spontaneous>
start [1]

main (3]

_main [3]
_dostdin (2]

_yyparse [4]
_isatty [39]

start [1]
main [3]

- _dostdin [2]
_setprogname [45]
_strcmp [31]
_getopt [42]

_dostdin [2]
_yyparse [4]

_yylex [9]
_dodexplain [11]
_dohelp [12]
_ds [13]
_dodeclare [14]
_doset [15]
_docexplain [16]
_docast [17]
_cat [18]
_strlen [28]
_strncmp [30]
_mbcheck [32]

Improving Program Performance (VAX) 7-3

[5] 56.4

0.00
0.00
0.00

0.02
0.02
0.02

0.00
0.00
0.00

0.20
0.20
0.18

39/39
39/39
32/62

105/105
105

2376/2376

... many additional lines deleted ...

7.1.1 PC Sampling

To obtain pc sampling information, follow this procedure:

yrompt [34J
_ doprompt [33 J
_strcmp [31]

yrintf [6J
_doprnt [5]

_flsbuf [7J

1. Compile and link-edit your program with the -p option. For example:

% cc -c -p myprog.c
% cc -p -0 myproq myproq.o

Note that you must specify the -p profiling option during both the compilation
and link-editing steps to obtain pc sampling information.

2. Execute the profiled program. During its execution, profiling data is saved in
the profile data file. The default is man. out.

3. Run the prof profile formatter, which extracts information from each profile
data file and formats it in an easily readable form. For example:

% prof -procedure myproq mon.out

For further information, see prof(1) in the ULTRIX Reference Pages.

Figure 7-1 illustrates the procedure for obtaining pc sampling information.

Figure 7-1: PC Sampling
Step 1-_____ --.

Compiler
-p option.

Step 2----'------.

prof format
option (5)

Step 3....----'-----...

For the programmer:

A formatted listing
of profile statistics

7-4 Improving Program Performance (VAX)

ZK-0176U-R

7.1.2 Running the prof Profiler
The prof protHer converts the raw profiling information into either a printed listing
or an output file that can be used by the compiler. To execute the profiler, use the
following syntax:

prof [options] [file]

If you do not specify a profile data file, prof looks for mon. out in the current
directory. For further information, see prof(1) in the ULTRIX Reference Pages.

7.2 Optimizing Code
The following sections provide an overview of the major optimizing techniques.
They also give examples showing optimization techniques.

7.2.1 General Considerations
When optimizing your program, consider the following:

• Optimize your programs only when they are fully developed and debugged.
Although the optimizer does not alter the flow of control within a program, it
may move operations so that the object code does not correspond to the source
code. These changed sequences of code may create confusion when you use the
debugger.

• The - C option of the Pascal compiler, which performs bounds checking in
Pascal programs, inhibits some optimizations. Therefore, unless bounds
checking is crucial, you should not specify the -C option when you optimize a
Pascal program.

7.2.2 Improving C Program Optimization
The following recommendations can help increase optimizing opportunities for the
optimizer (c2).

• Avoid indirect calls (calls that use routines or pointers to functions as
arguments).

Indirect calls cause unknown side effects (that is, change global variables) that
can reduce the amount of optimization.

• Function return values

Use function return values instead of reference parameters.

• Unions

A void unions that cause overlap between integer and floating point data types.
This keeps the optimizer from assigning the fields to registers.

• Use local variables

A void using global variables. Minimizing the use of global variables increases
optimization opportunities for the compiler. Declare any variable outside of a
function as static, unless that variable is referenced by another source file.

• Value parameters

Improving Program Performance (VAX) 7-5

Use value parameters instead of reference parameters or global variables.
Reference parameters have the same degrading effects as the use of pointers.

• Pointers and aliasing

Avoid using aliases by introducing local variables to store dereferenced results.
(A dereferenced result is the value obtained from a specified address.)
Dereferenced values are affected by indirect operations and calls, whereas local
variables are not. Therefore, they can be kept in registers. The following
example shows how the proper placement of pointers and the elimination of
aliasing lets the compiler produce better code:

Source code:
int len = 10;
char a[10];
void
zero ()

{

register char *p;
for (p =a; p != a +len;) *p++ 0;
}

Generated assembly code:
for (p = ai p != a+leni

moval _a,r11
jbr L20

L2000001:

*p++ = 0;
p = a

L20:
clrb
add13
cmpl
jneq

(r11) +
_len,S_a,rO
r11,rO
L2000001

*p++ = 0
a+len
p != a+len

To increase the efficiency of this example, you can use one of two methods:

Use subscripts instead of pointers

Use local variables to store unchanging values

• Use subscripts instead of pointers.

The use of subscripting in the procedure azero eliminates aliasing; the
compiler keeps the value of len in a register, which saves two instructions, and
still uses a pointer to access a efficiently, even though a pointer is not specified
in the source code. For example:

Source code:
void
azero ()

{

register int i;
for (i = 0; i != len; i++) a[i] 0;
}

Generated assembly code:
for (i = 0; i != len; i++) a[i] 0;

clrl rl1 # i =
jbr L20

L2000001:
clrb a[rl1] # a[i]
incl rl1 # i++

L20: cmpl rl1, len # i !=
jneq L200000

• Use local variables.

7--5 Improving Program Performance (VAX)

0

= 0

len

Specifying len as a local variable or formal argument ensures that aliasing can
not take place and permits the compiler to place len in a register. For ex~mple:

Source code:
char arlO];
void
lpzero(len)

register int len;
{
register char *p;
for (p = a; p != a + len;) *p++ 0;
}

Generated assembly code:
for (p = a; p != a+len;

movl 4(ap),rll
moval a,rlO
jbr L19

L2000001:

L19:
clrb
add13
cmpl
jneq

(rlO)+
rll,$_a,rO
rlO,rO
L2000001

*p++ = 0;
p = a
register p

*p++ = 0
a+len
p != a+len

In the previous example, the compiler generates slightly more efficient code for
the second method.

• Write straightforward code.

For example, do not use autoincrement (++) ;:lnd autodecrement (--) operators
within an expression. When you use these operators for their values, rather than
for their siqe effects, you often get bad code. For example:

Bad:
while (n--) {

}

Good:
while (n != 0) {

n--;

• Use register declarations liberally.

The compiler will not place a variable in a register unless directed to do so.

The optimizer processes programs only when you explicitly specify the -0 option.
However, the code generator phase of the compiler always performs certain
optimizations. The following recommendations can help increase these optimizing
opportunities.

• Use tables rather than if-then-else or switch statements. For example:

Good:
if (i == 1) c = ' l' ;
else c = '0';

More efficient:
c = "Ol"(i];

Improving Program Performance (VAX) 7-7

• Rely on libc functions (for example, strcpy, strlen, strcmp, bcopy,
bzero, memset, and memcpy). These functions were hand-coded for
efficiency.

7-8 Improving Program Performance (VAX)

Debugging 8

The UL TRIX programming environment provides many debugging tools. This
chapter shows typical uses for these tools, taking you through a session with each as
the tool is used on a sample program. The following tools are shown:

• ctrace: allows you to watch program flow and observe changes to variables

• dbx: invokes an interactive debugger

• error: inserts error messages from a compiler or language processor into a
source file at the point of error

• gcore: creates a core image file of a running process

• lint: checks e source files for waste, errors, and nonportable code

• trace: traces the system calls made by a command

Each tool is discussed in its own section, organized as follows:

• Description

• Example

• Details

In addition, two other sections deal with kernel debugging; one section for RISe
systems, one for V AX systems.

UL TRIX also provides an interactive debugger with a window interface, dxdb. For
information on the dxdb debugger, see the Guide to the dxdb Debugger, in the
ULTRIX Worksystem Software documentation.

The sample program used in this chapter is a simple editor that reads a line from
stdin, performs some changes, and writes the modified line to stdout. This program
is unimportant; you need not understand it to follow the examples. It is shown here
for completeness:

/* This program is a crude editor that can make very simple changes
/* to lines of text.
*/

#include <stdio.h>
#define MAX 80

char *stredit (source, edit)
char source[];
int edit;

char i, j;

if ((edit - 16) >= 0)
{ edit -= 16;

for (i=O; i<=MAX; i++)
{

if ((source[i]==' ') && (source[i+1]==' '))

for(j=i; j<=MAX; j++)
source[j]=source[j+l];
--i;

if «edit - 8) >= 0)
{

edit -= 8;
for(i=O; i<=MAX; i++)
{

if (source[i]==' ')
{

for(j=i; j<=MAX; j++)
source[j]=source[j+l];
--i;

if «edit - 4) >= 0)
{

edit -= 4;
if «source[O] >= 'a')&&(source[O] <= 'z'))

source[O] -= ('a' - 'A');
for(i=O; i<=MAX; i++)

if «source[i]==' ')&&(source[i+l] >= 'a')&&(source[i+l] <= 'z'))
source[i+l] -= ('a' - 'A');

if «edit - 2) >= 0)
{

edit -= 2;
for(i=O; i<=MAX; i++)

if «source[i] >= 'A')&&(source[i] <= 'Z'»)
source [i] += (' a' - , A');

if «edit - 1) >= 0)
{

edit -= 1;
for(i=O; i<=MAX; i++)

if «source[i] >= 'a')&&(source[i] <= 'z'»
source[i] -= ('a' - 'A');

return (source) ;

getline (st)
char *st;
{

8-2 Debugging

char c;
int i;

for(i=O; i<=MAX ; i++)
{

st[i]=getchar();
if (st [iJ ==' \n')

break;

st[++i]='\O' ;

main ()
{

char str [MAX] ;
int choice;

printf("%s", "Enter a text line: ");
getline(str); printf("\n\n");

"Choose an editing change or combination of changes,");
"by entering a number or a sum of numbers.");

printf ("%s\n",
printf("%s\n",
printf("%s\n",
printf ("%s\n",
printf("%s\n",
printf("\n");
printf ("%s",
printf("%s\n", "
printf("%s\n", "
printf("%s\n", "
printf("%s\n", "
printf("%s",
printf("%s\n", "
printf("\n") ;

"In the case of conflicting changes--for example, ");
"\"3\" (UPPERCASE and lowercase)--the change with ");
"the lower number will prevail.");

1 UPPERCASE") ;
(highest priority)");

2 lowercase");
4 Initial Capital On All Words");
8 No_blanks");
16 No excess blanks");

(lowest priority)");

printf("%s", "Enter your choice: ");
scanf("%d", &choice); printf("\n");

printf("\n%s\n", stredit(str, choice));

Debugging 1-3

8.1 ctrace
ctrace [options] [input_file [> output_file]]

8.1.1 Description
The ctrace command allows you to watch program flow and observe changes to
variables, looking for unexpected behavior. Running ctrace on a source file places
additional code into the file; this code causes executable statements and referenced or
modified variables and their values to be written to stdout during the program's
execution. Your source file must compile without errors before you use ctrace on
it.

8.1.2 Example

% ctrace crude_editor.c > temp.c
% cc temp.c
% a.out

85 main ()
90 printf("%s", "Enter a text
91 getline(str);

/* str == 2147475548 */
70 getline (st)
76 for(i=O; i<=MAX ; i++)

/* i == 0 */
/* MAX == 80 or 'P' */

77 {
78 st[i]=getchar();

/* i == 0 */

Direct the expanded code to a file.
Compile the expanded code.
Run it.

line: ");Enter a text line:

The numbers to the left of the preceding source lines are the line numbers relative to
the file crude editor. c. Code lines displayed without numbers are lines added
by ctrace; notice that these lines look like comments but actually display
information about the contents of the variable referenced in the preceding line. The
output pauses after line 78 while getchar() waits for input.

Loops are detected by ctrace, which displays the looping code only once but tells
how many repetitions occur, as shown in the following portion of the display taken
from later in the program's execution:

62 for(i=O; i<=MAX; i++)
/* i == 23 */
/* MAX == 80 or 'P' */

63 if «source[i] >= 'a')&&(source[i] <= 'z'))
/* i == 23 */
/* source[iJ == 0 */

/* repeating */
/* repeated 57 times */

8.1.3 Details
Complete information on ctrace's options can be found in the ULTRIX Reference
Pages

8-4 Debugging

8.1.3.1 Tracing Only Certain Functions - Sifting through the trace of a large program is
tedious. Moreover, many times you can isolate a problem to certain functions or
certain sections of code. To discriminate among functions, use the -f and -v options
on the ctrace command line:

-f functions
-v functions

For example:

Trace only these functions
Trace all functions except these

% ctrace -f getline main crude_editor.c > traced.c

The preceding command line creates the file traced. c, which (when compiled and
run) shows a trace of the functions getline() and main(). The following command
line produces the file traced. c, which (when compiled and run) shows a trace of
the entire program except the functions getline() and main():

% ctrace -v getline main crude_editor.c > traced.c

8.1.3.2 Tracing Only Certain Sections of Code - To trace only certain sections of code,
insert the ctroff() and ctron() functions around code you do not want to trace. The
ctroff() and ctron() functions tum ctrace off and on, respectively; for example:

main ()
{

char str [MAX] ;
int choice;

printf("%s", "Enter a text line: ");
getline(str); printf("\n\n");

ctroff(); 1***** Turn off tracing *****1

"Choose an editing change or combination of changes,");
"by entering a number or a sum of numbers.");

printf("%s\n",
printf ("%s\n",
printf ("%s\n",
printf("%s\n",
printf("%s\n",
printf("\n");
printf ("%s",
printf("%s\n", "
printf("%s\n", "
printf("%s\n", "
printf("%s\n", "
printf("%s",
printf("%s\n", "
printf ("\n");

"In the case of conflicting changes--for example, It);

"\"3\" \ (UPPERCASE and lowercase\)--the change with ");
"the lower number will prevail.");

1 UPPERCASE");
\ (highest priority\)");

2 lowercase");
4 Initial Capital On All Words");
8 No_blanks");
16 No excess blanks");

\(lowest priority\)");

printf("%s", "Enter your choice: It);

scanf("%d", &choice); printf("\n");

ctron(); 1***** Turn tracing back on *****1

printf("\n%s\n", stredit(str, choice»;

When run through ctrace, compiled, and executed, the preceding code fragment
produces:

Debugging 8-5

93 ctroff();
/* trace off */

Choose an editing change or combination of changes,
by entering a number or a sum of numbers.
In the case of conflicting changes--for example,
"3" (UPPERCASE and lowercase)--the change with
the lower number will prevail.

1 UPPERCASE (highest priority)
2 lowercase
4 Initial Capital On All Words
8 No_blanks
16 No excess blanks (lowest priority)

Enter your choice: 20

/* trace on */
114 printf("\n%s\n", stredit(str, choice));

Notice that all the code between the ctroff() and ctron() function calls still executes
(producing the output in the example), but the code itself does not appear.

~ Debugging

8.2 dbx
dbx [options] [object_file [core_dump]]

8.2.1 Description
The dbx command invokes the dbx debugger, which can:

• Display source code with line numbers

• Execute code conditionally

• Execute code one line at a time

• Execute code one machine instruction at a time

• Set and remove breakpoints

• Trace a line, a routine, or an entire program

• Trap signals sent to your program

• Call routines outside of nonnal program flow

• Examine a variable's content

• Assign a value to a variable

• Create command aliases

• Debug the ULTRIX kernel, /vrnunix.

8.2.2 Example
The example file was compiled with cc's -g option (whicli provides symbol tabie
infonnation needed by dbx), and the object file's name was left the default, a. out.
Type dbx at the shell command prompt:

% dbx
dbx version 2.0 of 5/2/89 0:29.
Type 'help' for help.
enter object file name (default is 'a.out'):
reading symbolic information ...
(dbx)

To load a file other than a. out, type the file name on the dbx command line. If
the program takes arguments, do not type them on the dbx command line; type them
after the dbx command.

The example program object file (Cl.. out) is now loaded, and commands can be
entered at the dbx prompt, (dbx):

(dbx) stop in getline if (st[O]=='q')
[1] stop if st+O*l = 'q' in getline
(dbx) trace edit in stredit
[2] trace edit in stredit
(dbx) status
[1] stop if st+O*l = 'q' in getline
[2] trace edit in stredit
(dbx)

In the preceding example, dbx is instructed to stop program execution when st[O] is
'q' when getline() is called. The dbx debugger echoes the command, assigning it
the number 1. The next instruction traces the value of the variable edit in the

Debugging 8-7

function stredit(). The command is echoed and assigned the number 2. The status
command prints the current stop and trace commands and their numbers. The run
command starts program execution:

(dbx) run
Enter a text line: q w e r t y
stopped in getline at line 79

79 if (st [i) ==' \n')
(dbx) list 70,83

70 getline (st)
71 char *st;
72
73 char c;
74 int i;
75
76 for(i=O; i<=MAX ; i++)
77 {
78 st[i]=getchar();
79 if (st [i) ==' \n')
80 break;
81
82 st[++i]=' ';
83

(dbx)

The characters "q w e r t y" are supplied and execution stops after line 78 because
line 78 assigns 'q' to st[Oj. The list command shows source lines and their numbers,
in this case lines 70 through 83, which provide context.

The delete command deletes any current stop or trace command:

(dbx) status
[1] stop if st+O*l = 'q' in getline
[2] trace edit in stredit
(dbx) delete 1
(dbx) status
[2] trace edit in stredit
(dbx)

To resume running, use the cont (continue) command:

8-8 Debugging

(dbx) cont

Choose an editing change or combination of changes,
by entering a number or a sum of numbers.
In the case of conflicting changes--for example,
"3" (UPPERCASE and lowercase)--the change with
the lower number will prevail.

1 UPPERCASE (highest priority)
2 lowercase
4 Initial Capital On All Words
8 No blanks
16 No excess blanks (lowest priority)

Enter your choice: 9

initially (at line 14 in "crude_editor.c"):
after line 29 in "crude editor. c": edit
after line 61 in "crude editor.c": edit

QWERTY

execution completed
(dbx)

edit
1
o

9

The only command in effect during this run is the trace of the variable edit; its initial
value is displayed, followed by each change in value. "QWERTY" is the program's
output.

In the next example, the trace is removed, a stop is added, and execution is
examined source line by source line with the step and next commands.

The difference between step and next is that if the next line contains a subroutine
call, step stops at the beginning of that block, allowing you to step through the
subroutine; next continues execution until the subroutine returns. To eliminate some
typing, aliases are made for both commands:

(dbx) status
[2] trace edit in stredit
(dbx) delete 2
(dbx) list 88, 92

88 int choice;
89
90 printf ("%8", "Enter a text line: ");
91 getline(str); printf("\n\n");
92

(dbx) stop at 91
[3] stop at 91
(dbx) run
[3] stopped in main at line 91

91 getline(str); printf("\n\n");
(dbx) alias s step
(dbx) alias n next
(dbx) n
Enter a text line: 1962 studebaker hawk

stopped in main at line 93
93 printf("%s\n", "Choose an editing change or combination of changes,"

) ;
(dbx) n
Choose an editing change or combination of changes,
stopped in main at line 94

Debugging 8-9

94 printf("%s\n", "by entering a number or a sum of numbers.");
(dbx) cont
by entering a number or a sum of numbers.
In the case of conflicting changes--for example,
"3" tUPPERCASE and lowercase)--the change with
the lower number will prevail.

1 UPPERCASE
2 iowercase
4 Initial Capital
8 No blanks
16 No excess blanks

Enter your choice: 20

1962 Studebaker Hawk

execution completed
(dbx)

(highest priority)

On All Words

(lowest priority)

The return command stops execution when program flow returns to the current
procedure, or to the procedure supplied as an argument.

In the next example, a stop command is used to stop execution immediately so that a
return command can be issued; a return command cannot be issued for a routine
until that routine is entered:

(dbx) return
process is not active
(dbx) stop if (1==1)
[1] stop if 1 = 1
(dbx) run
stopped in main at line 86

86 {
(dbx) return
Enter a text line: 1953 hudson

stopped in at Ox38
00000038 pushl rO
(dbx) cont
stopped in exit at Ox1e1d
OOOOleld push14(ap)
(dbx) <RETURN>
program exited
(dbx) <RETURN>
can't continue execution
(dbx) <RETURN>
can't continue execution
(dbx)

hornet

The example above shows execution stopping after getline() returns to main(), and
after exit() returns to main(). The example also shows that pressing RETURN with
no command executes the last command given.

The call command (found only on VAX systems) executes a routine regardless of
program flow:

8-10 Debugging

(dbx) stop if (1==1)
[2] stop if 1 = 1
(dbx) run
stopped in main at line 86

86 {
(dbx) call getline ("TEST")
stopped in getline at line 76

76 for(i=O; i<=MAX ; i++)
(dbx) delete 2
(dbx) cont

getline returns successfully
(dbx)

8.2.3 Details

The dbx debugger has several other commands, all documented in the ULTRIX
Reference Pages The stepi and nexti commands work like step and next, but they
execute a single machine instruction. The help command provides a terse list of
commands that omits many command options; better online information exists in
dbx's reference page. The quit command quits the debugger and returns the shell.

The dbx debugger has an optional initialization file, . dbxini t, which contains
dbx commands that are read each time dbx is invoked. If there are dbx commands
that you issue at the start of every dbx session, place them in . dbxini t and they
will be issued automatically.

Debugging 8-11

8.3 error
[languageyrocessor 1&] error [options]

8.3.1 Description
The error command takes error messages from a compiler or language processor
(such as lint) and inserts those error messages into the source file at the point the
error occurred, thus pennitting error messages and source code to be viewed
simultaneously without using multiple windows.

The error command is usually run with its standard input connected through a pipe
to the error message source. Some language processors put error messages on
standard output; some put them on standard error. Hence, both should be piped into
error. The error command can handle the error messages produced by the
following: as, cc, ccom, cpp, f77, ld, lint, make, pc, and pi. If an error
message refers to more than one line in a source file, error duplicates the message
and inserts it before each line.

8.3.2 Example
Apply lint to crude_editor. c and send the output to error:

% lint crude_editor.c 1& error

2 non specific errors follow
[lint] printf returns value which is always ignored
[lint] scanf returns value which is always ignored
1 file contains errors "crude_editor.c" (1)

File "crude editor.c" has 1 error.
1 of these errors can be inserted into the file.

You touched file(s): "crude_editor.c"

Editing crude_editor. c and searching for "/*###" reveals the error:

getline (st)
char *st;

{

/*###73 [lint] warning c unused in function getline%%%*/
char Ci
int ii

for(i=O; i<=MAX ; i++)
{

st [iJ =getchar () i

if (st [i] ==' 0)
break;

st[++i]=' 'i

8.3.3 Details
Complete infonnation on error's options can be found in the ULTRIX Reference
Pages

8-12 Debugging

8.4 gcore
gcore pid [, ...]

8.4.1 Description

The gcore command can help you debug any process on a system. The gcore
command creates a core image (a "snapshot") of each process whose pid (process
identification) is supplied. The core image can then be supplied to the adb or dbx
debuggers.

8.4.2 Example
In the following example, ps is used to get the pid of a. out. This pid is then
supplied to gcore:

% ps
PID TT STAT

10389 p2 S
26297 p2 S
26373 p2 I
10393 q7 R
% gcore 10389

TIME COMMAND
0:00 a.out
0:00 -sh (csh)
0:57 emacs
0:00 ps

10389: core.10389 dumped

The file produced by gcore is then used by adb:

% adb core.l0389

8.4.3 Details
The process should be stopped before running gcore to prevent the process's paging
from causing problems. The gcore command has no options.

Debugging 8-13

8.5 lint
lint [options] file ...

8.5.1 Description
The lint command checks C source files for code that is wasteful, nonportable, or
likely to cause bugs. Run your source files through 1 int before compiling because
lint is stricter and quicker than most compilers. The lint command writes
messages to stdout for every error or questionable usage.

8.5.2 Example
The following command runs lint on the example program:

% lint crude_editor.c
crude editor.c:
crude_editor.c(73): warning: c unused in function getline
printf returns value which is always ignored
scanf returns value which is always ignored

In the preceding example, lint displayed three messages. The first message, C

unused in function getline, calls attention to line 73:

getline (st)
char *sti

char Ci

int ii
/* This is line 73 */

for(i=O; i<=MAX i i++)
{

st[i]=getchar() i

if (s t [i) ==' \ n')
break;

st[++i]='\O' ;

The variable c, declared in the function getline(), is never used; this declaration
should be deleted.

Although the grammar is incorrect, messages two and three in the example correctly
mention that the return values from printf() and scanf() are never used. The return
values need not be used, but checking the value returned from every function call is
considered good programming practice by many, including the creator of lint.

8.5.3 Details
The lint command has several options to control the types of errors it announces.
Some options suppress certain messages, while other options enable certain
messages. Complete information on lint's options can be found in the ULTRIX
Reference Pages

8-14 Debugging

8.6 trace
trace [options] command arguments ...

8.6.1 Description
The trace command traces the system calls made by command, and prints the time,
pid, call and/or return values and arguments, and puts its output in trace. dump.

The trace command can help isolate bugs by showing the system calls and their
return values immediately before and after a program failure. The trace command
is also useful for analyzing programs that spend much of their time calling system
routines because prof, the program that analyzes programs, does not provide system
call information.

8.6.2 Example
The following example traces the 1 s command and displays its output:

% trace 18 -F
#crude_editor.c# core.10389

core.26373
crude editor*

ctr.c
find.libexc
temp

a.out*
cc errors
cond.c
core

crude_editor.c temp.c
crude_editor_original.c trace.dump

A portion of the output from trace written to trace. dump follows:

096.215546 4728 C execve ("/bin/ls", Ox100019aO, Ox10001e84

096.313196
096.317102
096.317102
096.317102
096.317102
096.317102
096.317102
096.317102
096.321008
096.321008

096.336632
096.336632
096.403034
096.403034

096.406940
096.406940
096.406940
096.406940
096.406940

8.6.3 Details

4728 C getdirentries (5, Ox10013000, 8192/0x2000, Ox1001200c
4728 R getdirentries 512/0x200
4728 C lstat ("#crude_editor.c#", Ox7fffe6fc
4728 R lstat 0
4728 C lstat ("core.10389", Ox7fffe6fc
4728 R lstat 0
4728 Cold sbreak (Ox10017ffc)
4728 R old sbreak 0
4728 C lstat ("core.26373", Ox7fffe6fc
4728 R lstat 0

4728 C write (1, "#crude_editor.c# core.10389 ct", 35
4728 R write 35
4728 C write (1, "a.out* core.26373 find.libex", 33
4728 R write 33

4728 C close (1)
4728 R close 0
4728 C close (2
4728 R close 0
4728 C exit (0)

The trace command has options that allow it to trace groups of processes or certain
system calls. Complete information on trace's options can be found in the
ULTRIX Reference Pages

Debugging 8-15

8.7 Rise Kernel Debugging
This section shows how to debug the ULTRIX kernel, /vrnunix, on a RISe using
various UL TRIX programs. The following subsections show the layouts of the
kernel's memory, stacks, and address space; this information should help you
understand the debugging procedures.

System Memory Map

Physical
Address KSEGI Use

OxOOO30000 Oxa0030000 upward UL TRIX kernel text, data, and bss

OxOOO2ffff OxaOO2ffff
to Additional PROM space (64K)

OxOOO20000 OxaOO20000

OxOOOlffff OxaOOlffff
to IK netblock (host and client network

OxOOOlfcOO 'OxaOOlfcOO boot information)

OxOOOlfbff OxaOOlfbff
to lK ULTRIX save state area

OxOOOlf800 OxaOOlf800

OxOOOlf7ff OxaOOlf7ff downward
to lK ULTRIX temporary startup stack

OxOOOlf400 OxaOOlf400

OxOOOlf3ff OxaOOlf3ff downward dbgmon stack (a few K less than 64K)
OxOOO1OOOO Oxa0010000 upward dbgmon text, data, and bss

OxOOOOffff OxaOOOffff downward PROM monitor stack
OxOOOOO500 Oxa0000500 upward PROM monitor bss

OxOOOOO4ff OxaOOOO4ff
to Restart block

OxOOOOO400 OxaOOOO400

OxOOOOO3ff OxaOOOO3ff
to General exception code

OxOOOOOO80 OxaOOOOO80 (note CPU addresses as Ox80000080)

OxOOOOOO7f OxaOOOOO7f
to utlbmiss exception code

OxOOOOOOOO OxaOOOOOOO (note CPU addresses as Ox80000000)

8-16 Debugging

Stacks
The kernel has no interrupt stack; only kernel and user stacks. There is an idle stack
in ULTRIX V4.0.

Stack

Startup stack

Kernel stack

User struct

Per-CPU data base

User stack

Description

Starts at Ox8001 f7ff, growing downward, and is
used during system startup until a kernel stack is
available

Starts at Oxffff eOOO (KSEG2 space) and grows down

Starts at Oxffff cOOO (KSEG2 space) and goes up

Starts at Oxffff 8000 (KSEG2 space) and goes up

Starts at Ox7fff fOOO (KUSEG space, one guard page
Ox7fff fOOO to 7fff ffff) and grows down

Address Space
The system is always in virtual address mode; there is no physical address mode.

Address Space

KSEGO

KSEG1

KSEG2

KUSEG

8.7.1 Using nm

Description

Not mapped, cached-for kernel text
Virtual address: 8000 0000 -) 9fff ffff (512 MB)

Not mapped, not cached-for I/O space
Virtual address: aOOO 0000 -) bfff ffff (512 MB)

Mapped, cached-for stacks and kernel mallocs
Virtual address: cOOO 0000 -) ffff ffff (l GB)

Mapped, cached-for user space
Virtual address: a -) 7fff ffff (2 GB)

For a system crash that gives an EPC (exception PC) on the console, you can use the
nm command to determine which routine was executing:

% nm -n /vmunix

The preceding command displays the name list (symbol table) of the vmunix image
in numerical order. Find the address that is closest to--but less than-the EPC from
the crash; this address is the starting address of the routine executing when the
system crashed. Subtract the start address of this routine from the EPC to get the
offset from the beginning of the routine in which the error occurred. Then, dbx can
help you find the offending instruction.

Example of nm output:

First Kernel text address: 8003,0000 (192k bytes above 8000,0000)
80030000 T start

Debugging 8-17

80030000 T eprol
800300ac T putstr
80030148 T lputc
8003018c T cn_reset

First Kernel data address: is approximately 8011,0000
80112030 D Sysmap
8011c830 0 Usrptmap
80+1f920 D camap
8011f930 D kmempt
8011f930 D ecamap
80123930 D Forkmap

8.7.2 Debugging a RiSe Kernel with dbx

To debug a nonrunning kernel, issue the following command:

% dbx -k vrnunix.n vmcore.n

If the system reported an EPC of Ox8000dead when it crashed, dbx can be used to
determine where in the kernel that PC is located. The following command decodes
nine instructions (and shows line numbers) starting at Ox8000dead. Note that code
that is conditioned out (with #ifdef statements) does not count in dbx's line
numbering.

(dbx) Ox8000dead/9i
8000dead bleq 8000deaf
8000deaf cvtfd *-18074(rO),$0.5
8000deb4 movl (r9) , (r6)
8000deb7 decl 8015fe28
8000debd movl r7,r1
8000decO mfpr $12,rO
8000dec3 mtpr r1,$12
8000dec6 ret
8000dec7 halt
(dbx)

The following PN dbx commands are useful in kernel debugging:

print gnode[n]

print text[n]

set $pid = n

print *up

print *up.u_procp

Print the gnode struct n in the gnode table

Print the text struct n in the text table

Set process context to process ID n (Then you can
issue trace, print *up, print *up.u_procp, etc. on
that process)

Print the u_area of the current process

Print the process struct of the current process ID
($pid)

To debug a running kernel, issue the following command:

% dbx -k /vrnunix

8-18 Debugging

8.7.3 Examining Any Process in the System

Issue the following command at the shell to get the pids (process identifications) for
every process on the system:

% ps -klax vrnunix.n vrncore.n

The ps flags have the following meanings:

·k Use kernel file (vrncore . n instead of / dev /krnern and / dev /rnem)

·1 Display in long format, giving more information

-a Show all processes (not just your own) associated with a terminal

-x Show processes not associated with a terminal

See the ps command in the ULTRIX Reference Pages for complete information.

Invoke dbx and set $pid to the pid of the process you wish to examine; for example,
1125:

(dbx) set $pid = 1125

Now you can execute trace, print *up, print *up.u_procp, and other commands on
process 1125.

The process's stored registers in the u_area are in exception frame format and can be
obtained by issuing the following dbx command:

(dbx) px up.u_arO[n]

8.7.4 Examining the Exception Frame

All error traps and interrupts (except cache parity errors) generate an exception
condition. Exception conditions trap to VECTOR(exception) in locore . s. The
exception routine saves state in the exception frame (on the stack).

For interrupts, VECTOR(VEC_int) is called, which saves additional state on the
exception frame, and calls intr() (in t rap. c). The intr() routine calls the specific
interrupt handler through cOvec_tb1.

For traps, the individual trap routines are called through the causevec. These routines
(VEC_addrerr, VEC_ibe, VEC_dbe) in turn ca11 VECTOR(VEC_trap), which saves
additional state on the exception frame, and calls trap() (in trap. c).

A pointer to the exception frame (ep) is passed as an argument to the fo11owing
routines: trap(), intr(), tlbmod(), tlbmiss(), and syscall(). Therefore, by using dbx
to get a trace, you can find the address of the exception frame (the ep argument).
You can then display the exception frame with a dbx command such as:

(dbx) Oxffffnnnn/41X

The offsets within the exception frame are defined as fo11ows (see
/ sys/machine/rnips/reg. h):

#define EF _ARGSA YEO
#define EF _ARGSAVE1
#define EF _ARGSA VE2
#define EF _ARGSA VE3
#define EF _AT
#define EF _ VO

o /* arg save for c ca11ing seq * /
1 /* arg save for c calling seq * /
2 /* arg save for c calling seq */
3 /* arg save for c ca11ing seq * /
4 /* r1: assembler temporary * /
5 /* r2: return value 0 */

Debugging 8-19

#define EF _ VI
#define EF _AO
#define EF _A 1
#define EF _A2
#define EF _A3
#define EF _ TO
#define EF _Tl
#define EF _ T2
#define EF _ T3
#define EF _ T4
#define EF _ T5
#define EF _ T6
#define EF _ T7
#define EF _SO
#define EF _Sl
#define EF _S2
#define EF _S3
#define EF _S4
#define EF _S5
#define EF _S6
#define EF _S7
#define EF _ T8
#define EF _ T9
#define EF _KO
#define EF _Kl
#define EF _ GP
#define EF _SP
#define EF _S8
#define EF _RA
#define EF _SR
#define EF _MDLO
#define EF _MDHI
#define EF _BADV ADDR
#define EF_CAUSE
#define EF _EPC

6 /* r3: return value 1 */
7 /* r4: argument 0 */
8 /* r5: argument 1 * /
9 /* r6: argument 2 * /

10 /* r7: argument 3 */
11 /* r8: caller saved 0 */
12 /* r9: caller saved 1 */
13 /* rIO: caller saved 2 */
14 /* rIl: caller saved 3 * /
15 /* rI2: caller saved 4 */
16 /* rI3: caller saved 5 */
17 /* rI4: caller saved 6 */
18 /* rI5: caller saved 7 */
19 /* r16: callee saved 0 */
20 /* rI7: callee saved 1 */
21 /* rI8: callee saved 2 */
22 /* rI9: callee saved 3 */
23 /* r20: callee saved 4 */
24 /* r21: callee saved 5 */
25 /* r22: callee saved 6 */
26 /* r23: callee saved 7 */
27 /* r24: code generator 0 */
28 /* r25: code generator 1 * /
29 /* r26: kernel temporary 0 */
30 /* r27: kernel temporary 1 *1
31 /* r28: global pointer */
32 /* r29: stack pointer */
33 /* r30: callee saved 8 */
34 /* r31: return address */
35 /* status register */
36 /* low mult result * /
37 /* high mult result */
38 /* bad virtual address */
39 /* cause register * /
40 /* program counter */

8.7.5 Examining Stack Frames
The odurnp utility can be used to create a symbol table dump of vrnunix. n:

% odump -P /vmunix.n > vmunix.syms

(See lusr I incl udel syrn. h, struct runtime_pdr, for the format of the run-time
procedure descriptor created by the loader.)

The fpoff field as shown by odurnp is the frame size for the particular procedure
entry. Figure 8-1 illustrates the general format of the stack (stack frames):

8-20 Debugging

Figure 8-1: Stack Frame Layout

Kernel stack: Oxffff,eOOO ,..--__,

t
User struct: Oxffff,cOOO

higher addresses

8K bytes for kernel stack
and user struct in KSEG2 space
(see param.h)

lower addresses

ZK-0192U-R

Using the symbol table dump, you should be able to work your way back up the call
history on the stack. Examples of usage are in 1 ibexc: unwind. c,
exception. c, and exception. h.

It may be equally productive to start at the top of the kernel stack (high memory) and
look for the return address of VEC_syscall on the stack. This return address is where
VEC_syscall calls syscall(), and where the stack frame for entry into syscall() has
the return address of VEC_syscall saved on the stack.

The following dbx command shows the instructions in VEC_syscall, in particular
where syscall() was called, allowing you to see the return address on the stack:

(dbx) VEC_syscall/30i
[VEC_syscall, OxBOOc3B68]
[VEC_syscall:590, OxBOOc3B6c]
[VEC_syscall:591, OxBOOc3870]
[VEC_syscall:592, OxBOOc3874]
[VEC_syscall:593, OxBOOc387B]
[VEC_syscall:594, OxBOOc3B7c]
[VEC_syscall:595, OxBOOc3880]
[VEC_syscall:595, OxBOOc3884]
[VEC_syscall:596, OxBOOc388B]
[VEC_syscall:596, Ox800c388c]

ori r5,r16,Oxl
mtcO r5,sr
sw r2,20(sp)
sw r3,24(sp)
move r5,r2
move r6,r16
jal syscall
nop
bne r2,rO,Ox800c3810
nop

The return address is Ox800c3888. Using dbx and the dump of the kernel stack, you
can examine the stack to determine what happened to the system.

8.7.6 Debugging Hung Systems
Debugging a hung system means finding the real kernel stack. When you force a
dump from a hung system, the standard back trace performed by dbx is not useful
for the currently active process because dbx gets the process context out of the
u_area, which is old. That is, the u_area contains the process context for the last
time the process was context switched. '

The kernel stack for each process in the system is located at virtual address
OxffffeOOO in KSEG2 space. The system has an array of NPROC u_areas that are 8K
bytes each. Each u_area contains the user struct and kernel stack for the process.
Even though each user process has its u_area at the same virtual address in KSEG2
space, each u_area is mapped to a unique physical address. When the context

Debugging 8-21

switches, the first two entries in the TLB (safe entries) are established for mapping
the u_area for that user process, as illustrated in Figure 8-2.

Figure 8-2: u_area

Stack Frame:

33222
10987

SPA 11 1 01

i
Local Stack Variables

1 1
6 5

0

Reg Mask <27:16> I
savedAP

saved FP

saved PC

saved RO

•
•
•

saved R11

saved PSW <15:5>

Immediately above stack frame:

(0 to 3 bytes stack pointer alignment, as per SPA)

N (number of args passed)

i
N longwords (the argument list)

Low

5 4 o

FP,SP

1 0

AP

High

ZK-0193U-R

Within dbx, you can display the kernel stack with a command such as:

(dbx) OxffffdOOO/102SX

The preceding command dumps the kernel stack from low to high memory (most
recent events to oldest events).

8-22 Debugging

8.7.7 Forcing a Panic on a System That Is Not Hung

As root, issue the following command:

dbx -k /vmunix /dev/mem

The following dbx command forces a panic on the next network interrupt, even in
single-user mode (do not issue this command on diskless systems because it will not
dump):

(dbx) assign In_softc=O

The following command also panics the system:

(dbx) assign gnodeops=O

Note

Do not overwrite the process structure because dbx will not be able to
work on the image. Do not overwrite the console structures because you
will not see the panic messages.

8.7.8 Console Commands

The following console commands are useful for debugging a RISe kernel:

dump »> dump -w -x address#count
Dump the contents of memory, starting at address and displaying count
locations of longwords in hex fonnat.

»> dump -w -x address} :address2
Dump the contents of memory, starting at address}, ending at address2,
displaying longwords in hex fonnat.

»> dump -w -x Ox8001f400:0x8001f800
Dump the startup stack.

examine »> e [-bl-hl-w] address
Examine a byte, halfword, or word at virtual address address (To
examine physica~ location 0, use Ox8000 0000.)

go »> go [pc]
Transfer control to given entry point.

help »> help [command]
If no command is given, the command menu is displayed.

»> ? [command]
Same as above.

printenv »> print en v [var]
Display current value of environment variable var, or all environment
variables.

setenv »> setenv var string
Set the environment variable var to be string.

unsetenv »> unsetenv var
Delete the environment variable var.

Debugging 8-23

test

booting

»> t a
Test all components and subsystems.

»> auto
Use environment variable bootpath to boot to multiuser (DS2100 and
DS3100 only).

»> boot
Use environment variable bootpath to boot single-user on DS2100 and
DS3100; boots to multiuser on other systems.

»> boot -s
Boot to single-user(the -s option is not available on DS2100 and
DS3100).

»> boot -f rz(etrl, unit,part) vmunix
Boot the specified image to single user.

»> boot -f mop()
Boot from the network to single user.

> > > boot memlimit=bytes
Constrain memory size to bytes.

8.7.9 Forcing a Memory Dump on a OS21 00 or OS31 00

Pressing the restart button halts the machine and clears memory, unless the bootmode
is first set to r (restart):

»> setenv bootmode r

With the bootmode set to r, pressing the restart button dumps memory and reboots
the machine. The dump may be silent and take several minutes.

8.7.10 Forcing a Memory Dump on a OS5000

Pressing the restart button halts the machine and clears memory, unless the haItaction
is first set to r (restart):

»> setenv haltaction r

With the haltaction set to r, pressing the restart button dumps memory and reboots
the machine. The dump may be silent and take several minutes.

8.7.11 Forcing a Memory Dump on a OS5400 or OS5800

The .. break enable switch must be up (pointing to the dot in the circle).

1. Press the break key to get the console prompt.

2. Run the memory dump routine by issuing the go command with the kernel start
address + 8. In ULTRIX version 3.0 and version 3.1, the kernel start address is
Ox80030000; therefore, the command is:

»> go Ox80030008

8-24 Debugging

8.7.12 Further Information

More infonnation about debugging an UL TRIX kernel on a RISe system can be
found in the following header files:

/sys/h/proc.h
/sys/h/user.h
/sys/machine/mips/entrypt.h
/sys/machine/mips/frame.h
/sys/machine/mips/pcb.h
/sys/machine/mips/pte.h
/sys/machine/mips/reg.h

The era s h System V program might also be useful.

Debugging 8-25

8.8 VAX Kernel Debugging
This section shows how to debug the ULTRIX kernel, /vmunix, on a VAX
computer using various UL TRIX programs.

8.8.1 Common Crash Types
This following subsections mention three common crashes and the actions the system
takes.

8.8.1.1 Hardware Trap - The system pushes the PSL, PC, code, and trap type onto the
interrupt stack. Depending on the trap type, the code is often the last virtual address
that was accessed, and is therefore the code that caused the trap (see
/ sys/vax/trap. h for an explanation of trap types). The ULTRIX Trap routine,
/ sys/vax/trap. c, is called through the SCB. Trap in tum calls the panic
routine.

An example of a trap is a process that accesses an address outside the process's
address space, which causes trap type 8, a segmentation fault.

8.8.1.2 liardware Machine Check - The system pushes a processor dependent machine
check frame onto the interrupt stack. The UL TRIX machine check routine,
/ s.yq Ivax/machdep. c, is called through the SCB. If unrecoverable, the machine
check calls the panic routine.

An example of a machine check is a parity memory error.

8.8.1.3 Softw~re Panic - The kernel software detects an internal inconsistency while the
system is running on the kernel stack. The kernel routine that detects the
inconsistency calls the panic routine (see the V AX Architecture Handbook for more
ipformation).

8.8.2 Using nm
For a system crash that gives a PC on the console, you can use nm to determine
w~ich rOlltine was executing:

% ~ -p Ivrnunix

The precedjng command displays the name list (symbol table) of the vmunix image
in numerical order. Find the address that is closest to-but less than-the PC from
the crash; this address is the starting address of the routine executing when the
system craShed. Subtract the start address of this routine from the faulting PC to get
the offset from the beginning of the routine in which the error occurred. Then, adb
can help YOQ find "the offending instruction.

8.8.3 Forcing f1 Crash Dump
If the system is hung, you can force a crash dump. First, halt the processor and enter
console mode. Then, issue the following command to get the address of the crash
dump routjne:

»> E/P/L 4 ! Get address of dump routine
P 00000004 OOOOlCOO

8-26 Debugging

The console's response is the address of the crash dump routine, which can then be
run by typing:

»> D PSL 041FOOOO
»> S 80001COO

Set PSL to interrupt stack and IPL to 31
Run the dump routine

If the interrupt stack is invalid, the crash dump routine is not called. (The interrupt
stack is in kernel address space, starting just below the address of the crash dump
routine [doadump], and growing down in memory. The interrupt stack has a fixed
size of several pages.)

There is another way to force a crash dump. But first, examine the PC and stack
pointers, noting their values, because they will be changed by the commands to force
a dump:

»> EIG F Examine general register F (PC)
G OOOOOOOF 80001EAD

»> E PSL Examine the PSL
M 00000000 04C10004

»> E SP Examine the stack pointer
G OOOOOOOE 000393E8

»> Ell 0 Examine internal register 0 (KSP)
I 00000000 7FFFFDAC

»> Ell 3 Examine internal register 3 (USP)
I 00000003 7FFFE2F4

»> Ell 4 Examine internal register 4 (ISP)
I 00000004 80000COO

Now set the PC to -1, and continue:

»> DIG F FFFFFFFF Deposit -1 in PC
»> D PSL OOlFOOOO Set IPL at 31 to block interrupts
»> C Continue processing

The preceding commands force a segmentation fault, causing a crash dump.
Unfortunately, some machine state is changed using this method. However, all disk
writes are completed (as if sync had been executed).

If neither of the prior methods work, you may still be able to get a crash dump by
initializing the processor before starting the crash dump routine. Initializing sets the
processor to a known state, which includes setting the PSL to run on the interrupt
stack, setting the IPL to 31, and disabling memory mapping. Unfortunately, even
more machine state is changed; depending on the processor, the initialization may
corrupt the ISP, KSP, POBR, POLR, PlBR, and P1LR.

»> E/p/L 4
P 00000004 00001COO

»> I
»> S 80001COO

Get address of dump routine

Initialize the processor
Run dump routine

8.8.4 Getting a Stack Trace of any Process

First, get the pid (process identification) of the process to be traced by issuing the ps
command from the shell:

% ps -klax vmunix.n vmcore.n

The ps flags have the following meanings:

-k Use kernel file (vmcore . n instead of / dev /kmem and / dev /mem)

Debugging 8-27

-I Display in long fonnat, giving more infonnation

-a Show all processes (not just your own) associated with a tenninal

-x Show processes not associated with a tenninal

See the ULTRIX Reference Pages for complete infonnation.

The preceding ps command will display the pids of every process on the system.
NoteOP the pid of the process you are interested in. Now issue the / etc/pstat
command with the -p, -a, and -k options:

% pstat -pak vmunix.n vmcore.n

The pstat flags have the following meanings:

-p Print process table for active processes

-a Describe all process slots

-k Required option when a core file is specified

See the ULTRIX Reference Pages for complete infonnation.

Example pstat output:

195/1044 processes
LOC S F POIP PRI SIG UID SLP TIM CPU NI PGRP PID PPID

ADDR RSS SRSS SIZE WCHAN LINK TEXTP CLKT TTYP
801e5f70 1 3 0 0 0 0 o 127 0 20 0 0

c96 0 0 0 15f936 1ea170 0 0
801e6030 1 1 0 30 0 0 87 127 0 20 0 1

96df lc6 0 IfO 1e6030 le9f30 218e80 0
801e60fO 1 3 0 1 0 0 127 127 0 20 0 2

96bf 0 0 2000 1e60fO 0 0 0

Locate the pid you want in the PID field, second from right. The process's location
(the memory location of the process structure) is in the LOC field, the leftmost field.
(In the preceding example, the location of process 0 is 80te5f70.) Check the
process's state and flag codes, second and third fields, labeled Sand F.

Invoke adb with the following command:

% adb -k vmunix.n vmcore.n

The following adb commands yield the address of the u_area of process 0 (from the
preceding example):

801e5f70/X ! Show contents of process structure's first field
801e5f70: 8000feff

<RETURN> ! Show contents of process structure's second field
801e5f74: 80f03aOO

<RETURN> ! Show contents of process structure's third field
801e5f7c: 81000fff

<RETURN> ! Show contents of process structure's fourth field
801e5f80: 801ee3eO

<RETURN> ! Show contents of process structure's fifth field
801e5f88: 80a20fff

The fifth field in the process structure contains the address that maps the u_area (see
proc . h: proc struct and p_addr field); the following adb commands set a stack
trace for the process:

80a20fff$p
$c

Set process context for adb
! Trace stack of process in question

8-28 Debugging

0

0

0

8.8.5 adb Command Summary
Either of the following two commands invoke adb:

adb ·k vmunix vmcore Invoke adb on a crash image

adb ·k ·w /vmunix /dev/mem Invoke adb on a running system

The following commands are issued within adb:

Command

?[address] !

/[address] !

=!

*(scb-4)$c

address$c

routine-name+ 2[/ ?]i

address[/ ?]i

<RETURN>

Description

Print, in format J, values in the disk image
starting at address. Formats for the first three
commands:

d, Signed decimal word
D, Signed decimal longword
U, Unsigned decimal word
U, Unsigned decimallongword
q, Signed octal word
Q, Signed octal longword
0, Unsigned octal word
0, Unsigned octallongword
f, Floating point longword
F, Floating point double
x, Hexadecimal word
X, Hexadecimallongword
s, String starting at given address

Print, in format!, values in the core file starting at
address. See ?[address]!for a list of formats.

Print, in format!, the virtual address of a symbol.
See ?[address] ! for a list of formats.

Trace stack of whichever stack was currently
active (interrupt or kernel) in this format:

func 3 (args) from addr 3 (newest)
func_2 (args) from addr_2
func_l (args) from addr_l (oldest)

func_l calls func_2 from addr_l in func_l.
Therefore, the stack frame with the saved PC of
addr_l (return address), is the stack frame of
func_2

Trace stack starting from address-

Print assembly instructions starting at the
beginning of the named routine (+2 skips over
the register save mask)

Print assembly instructions starting at address

Examine the location after the last examined
location

Debugging 8-29

Command

"
[I?]w value

$R

range$S

8.8.6 adb Scripts

Description

Examine the location before the last examined
location

Write value to the last addressed location

Show register contents

Extend range of symbolic names

The directory /usr / lib/ adb/ contains adb scripts that format kernel data
structures. Some sample uses within adb follow:

address$<script Apply script at address

u_block$<u Apply the user structure script at symbolic address
u _block (the current u block; that is, the user
structure of the current process)

address$<proc Apply the proc script at address, obtained from the
user structure

address$<pcb Apply the pcb script at address

8.8.7 Examining Stack Frames with adb
Using adb to examine stack frames is useful for seeing values of local variables.
The following are adb commands:

(scb-4)/X scb-4 contains the address of the current stack. If
the address is 800nnnnn, the system was using the
interrupt stack when it crashed; if 7ffnnnnn, the
system was using the kernel stack

intstack/20X Starting at the address of intstack, print 20
longwords in hex format

u$<u Show the first item in the user structure, which is
the kernel stack pointer (KSP)

KSP /20X Starting at the address of the kernel stack pointer
(KSP), print 20 longwords in hex format

To find a stack frame (a call frame for a procedure call), look for a 0 longword
(condition handler) followed by a longword with bit 29 set, which indicates a call
(for example, 2eOOOOOO). Figure 8-3 illustrates a stack frame in memory.

8-30 Debugging

Figure 8-3: Stack Frame in Memory

High memory

Virtual frame pointer --.

Stack pointer --.
(frame register)

Low memory

arg n

•
•
·

arg 1

local vars

saved R31 (ret)

.-.- -._ ... ---. --- -. _ ---
more saved regs

16-23,30

arg passing
area

•
•
·

Space for all args,
even though first 4
args passed in registers

1 t Frame offset

j~e~e

ZK-0194U-R

The calls instruction pushes the argument count onto the stack, then aligns the stack
and creates the stack frame (call frame), which is the saved register through the
condition handler. (For more information, see the VAX -11 Architecture Reference
Manual.)

8.8.8 Further Information
The following documents might be useful in debugging an ULTRIX kernel on a
V AX computer:

• Bourne, S.R. and Maranzano, J.P. A Tutorial Introduction to ADB. In the
ULTRIX Supplementary Documents Volume 2,' Programmer

More information about kernel debugging can be found in the following header files:

/sys/h/proc.h
/sys/h/user.h
/sys/vax/pcb.h
/sys/vax/trap.h

The crash System V program might also be useful.

Debugging 8-31

Programming in a POSIX Environment 9

The UL TRIX system provides a programming environment that allows you to write
programs that conform to the following standards:

• IEEE 1003.1-1988 (POSIX) standard

• POSIX Federal Information Processing Standard (FIPS 151-1)

• ISO DIS 9944-1

This chapter refers to all of these standards using the word "POSIX." Y our program
conforms to the POSIX standard when it includes symbol definitions and library
functions that conform to that standard.

The advantage of writing programs that conform to the POSIX standard is that they
are easier to port to other platforms. If you write a POSIX-conformant program on
another vendor's UNIX-based system, you can move that program to an ULTRIX
system with little modification. This ease of porting exists between most systems
that supply POSIX-conformant programming environments.

The POSIX environment on ULTRIX consists of the System V shell, PO SIX
conformant header files, and a POSIX-conformant function library. You should use
the System V shell to write PO SIX conformant programs because it contains no
extensions to the PO SIX standard. Other shells contain features that are extensions to
the standard, and you might mistakenly make your program dependent on an
extended feature.

To write a POSIX-confonnant program, you must use only the PO SIX header
information and POSIX function library. If you use other header information or
1 ibc functions instead of standard functions, your program does not confonn to the
standard.

To include POSIX header information and the POSIX function library, you must
compile your program in the POSIX programming environment. This chapter
describes how you use the POSIX environment by addressing the following topics:

• Choosing the System V shell

• Using POSIX-conformant header files

• Using the POSIX-conformant function library

• Compiling your program in the POSIX environment

• Correcting errors in the POSIX environment

9.1 Choosing the System V Shell
When you are writing programs that are POSIX-conformant, use the System V shell
(sh5). This shell's features are implemented to follow the standard.

This section explains how to change your login shell to shS and how to modify shell
scripts so that they run independently of your login shell.

9.1.1 Using the chsh Command

To change your login shell to the System V shell, use the chsh command. For
example, to change the login shell for the login name "Smith," issue the following
command:

% chsh smith
Changing login shell for smith
shell [/bin/csh]: sh5
%

The chsh command modifies your entry in the system password file by changing the
login shell field to shS. (If your system is in a distributed environment, your
password file may be distributed from another system. The chsh command does not
change distributed password files. Your system administrator must change your entry
in the distributed password database. For a description of modifying or adding users
to the distributed password database, see the Guide to System and Network Setup.)

You must log out and log in again to begin using shS. The system changes your
shell to s h 5 when it reads your entry in the password file.

9.1.2 Modifying Shell Scripts

To ensure that your shell scripts run after you change your shell to shS, add a
comment to the first line of each shell script. In the comment, specify what shell the
system should use to run that script. For example, in a shell script that runs under
c s h, add the following comment:

#! Ibin/csh

date +DATE: %m/%d/%y%nTIME: %H:%M:%S

The comment must be the first line in the shell script.

When the system encounters the comment shown in the preceding example, it
executes the command specified in the comment. In this case, the system executes
csh. The shell receives the commands in the script as csh command arguments;
that is, the shell script runs using csh, even though your login shell is shS.

You should also identify shell scripts that use sh5. The following shows the
comment you use to identify shell scripts you write for s h 5:

#! Ibin/sh5

date +DATE: %m/%d/%y%nTIME: %H:%M:%S

If you move a shell script you wrote on an ULTRIX system to another UNIX-based
system, you might need to modify the comment in the script's first line. Some
systems store the System V shell in a file other than /bin/ sh5. On those systems,
you must modify the comment to name the file that contains the System V shell.

9-2 Programming in a POSIX Environment

Alternatively, you can create a link to the file that contains the System V shell. For
example, suppose a system stores the System V shell in a file named /bin/ sh.
Issue the following command to create a link between that file and / bin / s h 5 :

% In Ibin/sh Ibin/sh5

This 1 n command creates a link that causes the system to execute the / bin / s h file
when it encounters the /bin/ sh5 pathname.

9.2 Using POSIX Conformant Header Files
The ULTRIX header files contain POSIX-conformant header information. The
definitions in the UL TRIX header files are conditional and depend on the definition
of the _POSIX_SOURCE preprocessor symbol. When that symbol is defined,
POSIX-conformant header information is included in your program. Otherwise, the
default UL TRIX header information is included.

You can define the _POSIX_SOURCE symbol in one of three ways: in your program
source code, in a local header file, or on the c c command line.

To define the symbol in a local header file, create a header file that contains the
following line:

#define _POSIX_SOURCE

Then include the local header file in your source program. For example, if you name
the local header file standard_head, use the following directive in your source
program:

include "standard_head"

Be sure to include the local header file in each source file for your program.

You must compile your program in the POSIX programming environment for it to
include the POSIX header information. For information on compiling your program
in the POSIX environment, see Section 9 A, which also describes how to use a c c
command line option to define the _POSIX_SOURCE symbol.

9.3 Using the Standard Conformant Function Library
ULTRIX provides a function library that conforms to the POSIX standard. The
library is named 1 ibcP. To use the POSIX library, you must link with that library,
in addition to the Berkeley Software Distribution (BSD) libc. For a description of
linking with the POSIX library, see Section 904.

You should be aware of differences between the standard-conformant functions in
1 ibcP and the functions in BSD 1 ibc. Table 9-1 lists the functions that differ and
explains how the libcP functions differ from libc functions.

Table 9-1: POSIX Library Functions That Differ from C Library
Functions

IibcP Function

abort

Difference from the
BSD libc Function

Closes open files before aborting the
process with a SIGABRT signal.

Reference Page

abort(3)

Programming in a POSIX Environment 9-3

Table 9-1: (continued)

IibcP Function
Difference from the

Reference Page
BSD libc Function

ctermid Returns a null string if the program has ctermid(3s)
no controlling terminal.

cuserid Uses the effective user ID, instead of the cuserid(3s)
login user ID.

fclose Seeks to the byte following the last one fclose(3s)
your program read or wrote before
closing the file.

fflush Writes buffers even if the file is a read- fclose(3s)
only file.

fopen Causes the "a" and "a+" mode strings fopen(3s)
fdopen to append with no overwrite.
freopen

nice Returns the new priority value minus nice(3)
NZERO. NZERO is the default process
priority as defined in 1 imi t s . h. On
ULTRIX systems, NZERO is 20.

opendir Sets the FD _ CLOSEXEC flag on the directory(3)
type DIR.

printf On success, returns the number of printf(3s)
fprintf characters printed.

scanf Treats the E, G, and X conversion codes scanf(3s)
the same as the e, g, and x conversion
codes.

sleep Can be interupted by signals. sleep(3)

sprintf Returns the number of characters printf(3s)
formatted. This return value difference
affects the syntax of the function call.
(See the ULTRIX Reference Pages for
more information.)

tzset Defines the time zone and daylight ctime(3)
global variables, which you must
declare as long and int, respectively.

ungetc Clears the EOF indicator for the stream. ungetc(3)

9.4 Compiling in the POSIX Environment
For your program to include POSIX header information and the POSIX function
library, you must compile your program in the POSIX environment.

To set your programming environment to POSIX, define the PROG_ENV
environment variable, as shown in the following example:

% PROG_ENV=POSIX; export PROG_ENV

Compile your program using the cc command. For example, if your program
consists of three modules named stand main. c, stand func add. c, and
stand_func_ffiult. c, and you have defined the _POSIx=.SOURCE symbol and

9-4 Programming in a POSIX Environment

the PROG_ENV variable, you would issue the following command:

% cc stand_main.c stand_func_add.c stand_func_mult.c

When you compile a program in the POSIX environment and the _POSIX_SOURCE
symbol is defined, the cpp preprocessor includes POSIX -conformant header
information in your program object. The 1 d linker includes POSIX -conformant
functions in your program image.

You can define the _POSIX_SOURCE symbol and the PROG_ENV variable on the
cc command line by using the cc command options -D.and -Yo These options
allow you to avoid modifying source code to define the _POSIX_SOURCE symbol
and issuing commands to define the PROG_ENV variable. The following example
uses cc command options to define _POSIX_SOURCE and PROG_ENV:

% cc -D_POSIX_SOURCE -YPOSIX stand_main.c stand_func_add.c standJunc_mult.c

In this example, the - D option defines the _POSIX_SOURCE symbol to the value 1.
The - Y option sets the programming environment to POSIX. These definitions are in
effect only during the execution of the cc command. (For more information on the
cc command, see Chapter 1.)

9.5 Correcting Errors in the POSIX Environment Setup

If your POSIX-conformant programs fail to compile, the problem might be in the
setup of your programming environment, instead of in your program code. The
problem might be that the POSIX function library is not installed on your system.
For information on what is installed on your system and on installing optional
software, see your system administrator and the Advanced Installation Guide.

Programming in a POSIX Environment 9-5

Security Guidelines for Programmers 10

Programmers must exercise all the security precautions of a regular user, plus the
additional precautions specific to the programming discipline. For example, you must
guard passwords, understand the implications of using set user ID (SUID) and set
group ID (SOlD) programs, and protect your files. Beyond these basic tasks, you also
perfonn the specialized task of designing and writing software programs that others
will use repeatedly to handle a variety of tasks.

This chapter presents some general security guidelines for programmers to follow
when perfonning these tasks:

• Passing open file descriptors

• Responding to signals

• Specifying a secure search path

• Protecting pennanent and temporary files

• Handling errors

• Writing privileged programs

• Writing SUID and SOlD programs

• Authenticating users

• Comparing shell scripts and compiled programs

• Programming in a DECwindows environment

10.1 Passing Open File Descriptors
A child process inherits all the open file descriptors of the parent process.

Passing open file descriptors from one process to another is a security concern
because the child has the same type of access to the files that the parent has. You
might write an SUID program, for example, that allows users to write data to a
sensitive, privileged file. The SUID program could call subprocesses that run in a
nonprivileged state. But if the parent SUlD process opens a fi,le f6r writing, the child
(or any user running the child process) can write to that sensitive file. Therefore,
before creating a subprocess, secure programs close all file descriptors that are not
needed by the subprocess.

An efficient way to close file descriptors before executing a new program is to use
the fcntl call to set the close-an-exec flag on the file after you open it. File
descriptors that have this flag set are automatically closed each time the program
executes a new program. For more infonnation, see the fcntl(2) system call in the
ULTRIX Reference Pages.

10.2 Responding to Signals
The ULTRIX operating system generates signals in response to certain events. The
event could be initiated by a user at a terminal (such as quit, interrupt, or stop), by a
program error (such as a bus error), or by another program (such as kill).

By default, most signals terminate the receiving process; however, some signals only
stop the receiving process. Many signals, such as SIGQUIT or SIGTRAP, write the
core image to a file for debugging purposes. A core dump might contain sensitive
infonnation, such as passwords.

The signal routine, which calls sigvec, enables a process to change its response
to a signal. This routine enables a process to ignore a signal or call a subroutine when
the signal is delivered. However, the SIGKILL and SIGSTOP signals cannot be
caught, ignored, or blocked. They are always passed to the receiving process. For
more information, see the sigvec(2) system call and the signal(3) routine in the
ULTRIX Reference Pages.

Child processes inherit the signal mask that the parent process sets before calling
fork. The execve system call resets all caught signals to the default action;
ignored signals remain ignored. Therefore, each process should examine the way it
handles signals before executing an execve call.

For security reasons, write programs that ignore signals such as quit, interrupt, or
stop. A program that implements a background process, for example, should specify
S I G I GN for some signals to ignore keystrokes that a user types at the terminal.
For more information on the fork(2) and execve(2) system calls, see the ULTRIX
Reference Pages.

10.3 Specifying a Secure Search Path
If you use the popen, system, or exec*p routines, which execute Ibinl sh, be
careful when specifying a pathname or defining the shell path variable. The path
variable is a security-sensitive variable because it specifies the search path for
executing commands and scripts on your system. For more information on
environment variables, see environ(7). For more information on the popen(3)
and system(3) routines, see the ULTRIX Reference Pages. To specify a secure
search path, do the following:

• Specify absolute path names for the path variable.

• Do not include public or temporary directories, other users' directories, or the
current working directory in your search path. Including these directories
increases the possibility of either inadvertently executing the wrong program or
with being trapped by a malicious program.

• Make sure that system directories appear before user directories in the list. This
prevents you from mistakenly executing a program that might have the same
name as a system program.

• Analyze your path syntax. A null entry in a path list specifies the current
working directory. In the Bourne and C shells, for example, the colon (:)
separates entries in the search list; it should follow (not precede) each entry. For
this reason, the· first entry following the equal sign (=) should never begin with
a colon. Also, no double colons should appear anywhere in the list.

You might want to use the execve system call rather than any of thr exec*p
routines because execve requires that you specify the pathname. For more
information, see the execve(2) system call in the ULTRIX Reference Pages.

10-2 Security Guidelines for Programmers

10.4 Protecting Permanent and Temporary Files
If your program uses any permanent files (for example, a database), make sure these
files have restrictive permissions and provide controlled access only through your
program. These precautions also apply to shared memory segments, semaphores, and
IPe mechanisms; set restrictive permissions on all of these objects.

Programs sometimes create temporary files to store data while the program is
running. A program should delete these files before it exits. Some security tips for
using temporary files follow:

• Programs should not store sensitive information in temporary files, unless the
information has been encrypted. Because files are named locations, it is safer to
store data in memory than in temporary files.

• Only the owner of the temporary files should have read and write permission on
them. It is a good idea to call umask (077) at the beginning of the program.

• Temporary files should be created in private directories that are writable only by
the owner. If you must use / tmp, ask your security administrator to set the
sticky bit on the directory (mode 1777), so that files in it can be deleted only by
the file owner, the owner of the directory, or the superuser.

A common practice is to create a temporary file, then unlink the file while it is still
open. This limits access to any processes that had the file open before the unlink;
when the processes exit, the inode is released.

Note that this use of unlink on an NFS-mounted file system takes a slightly different
action. The client kernel renames the file and the unlink is sent to NFS only when the
process exits. You cannot guarantee that the file will be inaccessible to someone else
(although the probability of that happening is minimal), but you can be reasonably
sure that the file will be inaccessible when the process exits. In any case, you should
always explicitly ensure that no temporary files remain after the process exits.

10.5 Handling Errors
Most system calls and library routines return an integer return code, which indicates
the success or failure of the call. Always check the return code to make sure that a
routine succeeded. If the call fails, test the global variable e r rno to find out why it
failed.

The errno variable is set when an error occurs in a system call. You can use this
value to obtain a more detailed description of the error condition. This information
can help the program decide how to respond, or produce a more helpful diagnostic
message. This error code corresponds to an error name in <ermo.h>. For more
information, see the errno(2) system call in the ULTRIX Reference Pages. Some
errno values that indicate a possible security breach are:

EPERM Indicates an attempt by someone other than the owner to modify a file in
a way reserved to the file owner or superuser. It can also mean that a
user attempted to do something that is reserved for a superuser.

EACCES Indicates an attempt to access a file for which the user does not have
permission.

Security Guidelines for Programmers 10-3

EROFS Indicates an attempt to access a file on a mounted file system when that
permission has been revoked.

If your program makes a privileged system call, but the resulting executable program
does not have superuser privilege, the program will be compiled, but will fail when it
tries to execute the privileged system call. If the security administrator has set up the
audit system to log failed attempts to execute privileged system calls, the failure will
be audited.

If your program detects a possible security breach, it should" not display a diagnostic
message that would help an attacker defeat the program. For instance, do not display
a message that indicates the program is about to exit because the attacker's real UID
did not match a UID in an access file, or even worse, go on to provide the name of
the access file. In addition, you could program a small delay before issuing a
message to prevent programmed attempts to penetrate your program by
systematically trying various inputs.

10.6 Using Privileged Processes
Any process that runs with an effective UID=O is a privileged process. A program
runs with an effective UID=O if:

• The process executing the program is a superuser process

• The program is SUID root

Some system calls and library routines act differently when called by a privileged
process. For example, the set uid routine sets both the real and effective UIDs, and
the setg id routine sets both the real and effective GIDs. A nonprivileged process
can set these values to only the current real or effective values. A privileged process
is not restricted in this fashion and can set these values as it chooses. For more
information, see the set uid(3) and setgid(3) routines in the ULTRIX Reference
Pages.

Some system calls can only be called from a privileged process. For example, only a
privileged process can call sethostid or chroot. For more information, see the
sethostid(2) and chroot(2) system calls in the ULTRIX Reference Pages.

Any calls that use file-system pathnames bypass file protections when called from a
privileged process. The following list provides some examples of system calls that
act differently for (or can only be called from) a privileged process:

Restricted to root

Different for root

acct,adjtirne, audcntl,audgen, chroot,
exportfs,setdornainnarne, sethostid,
sethostnarne, settirneofday, plock, reboot,
setgroups, setquota, stirne, swapon, and
vhangup.

bind,chown,setpriority, setrlirnit,kill,
killpg, link,rnknod,rnount,quota, setpgrp,
setregid, setreuid, setsysinfo, socket, and
ulirni t.

Bypass permissions rnsgctl, rnsgsnd, rnsgrcv, sernctl, sernop,
shrnctl, shrnat, and any calls that use file-system
pathnames.

Check the ULTRIX Reference Pages Section 2: System Calls for specific information
on any calls or routines you plan to use. Make sure that your compile environment

10-4 Security Guidelines for Programmers

(BSD, SYSTEM_FIVE, or POSIX) does not change the behavior that you expect
from a system call or library routine.

10.6.1 Use Minimum Privileges

Because a privileged process has extraordinary powers, create a program that runs as
a privileged process only if there is no other way to accomplish the task, and remove
superuser privileges (setuid not equal to 0) when the process no longer requires them.

Once a privileged process uses the setreuid system call to change its real and
effective UIDs to something other than 0, it cannot regain superuser privileges. If you
write a program that performs both privileged and nonprivileged operations and plan
to use setreuid to reduce the amount of time the process spends in a privileged
state, remember to perform all privileged operations before calling setreuid. For
more information, see the setreuid(2) system call in the ULTRIX Reference
Pages.

Another approach is to have the program retain superuser privileges and create child
processes for nonprivileged operations. Each child process would call setreuid to
give up its privileged status. This separates privileged from nonprivileged operations
within the program, reducing the potential for error or compromise while in a
privileged state.

10.6.2 Allocate System Resources with Care

Privileged programs can deliberately or accidentally have a negative effect on the
services available to users. For example, privileged programs can call ulimi t and
nice to increase file-size limits and set higher priorities for themselves. These
changes might have the side effect of denying services to users. Therefore, be careful
when you allocate system resources or change system parameters; check for side
effects to avoid monopolizing system resources. For more information, see the
ulimi t(2) system call and the nice(1) command in the ULTRIX Reference Pages.

10.6.3 Know the Process's Real UID

Before performing certain privileged operations, you might want to know who is
actually running the program. Use the get uid system call to determine the real DID
associated with the process. To decide whether or not to allow access to a file, use
the access system call to determine if the real UID (the user) could access the file
in question without the power of a privileged process. You can use this call to decide
when to limit the inherent access privileges associated with an effective UID=O. For
more information, see the get uid(2) and acces s(2) system calls in the ULTRIX
Reference Pages.

10.6.4 Auditing Security-Relevant Events
If your security administrator has enabled security auditing, the audit daemon,
audi td, reads data from / dev / audi t and stores that data in the
/usr / adm/ audi tlog file. The audit subsystem can record a wide range of
system events. The security administrator can choose events to be logged. For more
information on the audi td(8) daemon, see the ULTRIX Reference Pages. For a
complete description of the audit subsystem, see the ULTRIX Security Guide for
Administrators.

Security Guidelines for Programmers 10-5

You might want to write a program that generates an audit record for process events.
You might also want to change the events that are audited or the items that are
recorded in an audit record for a process. Two privileged system calls that enable
you to interact with the audit subsystem are:

audgen

audcntl

Generates an audit record for a specified operation or event and stores
it in the auditlog. For more information, see the audgen(2)
system call in the ULTRIX Reference Pages.

Provides control over options offered by the audit subsystem. For
more information, see the audcntl(2) system call in the ULTRIX
Reference Pages.

Audit record generation depends on a combination of the system audit mask and the
process audit mask. Each process has an audit mask and an audit control flag, both
of which originate in / etc/ auth. Each event that can be audited is represented in
both masks. Whether the event is audited depends on the audit control flag, as
described in the following list:

• If the process audit control flag is set to AND, both masks must indicate that
the event should be audited.

• If the process audit control flag is set to OR, at least one of the masks must
indicate that the event should be audited.

• If the process audit control flag is set to OFF, no events for the process are
audited.

In Example 10-1, a privileged program uses the audcntl system call to tum off
auditing for the current process only.

Example 10-1: Using the audcntl Call to Turn off Auditing
/* Turns off aUditing for this process */
include <sys/audit.h>
audcntl (SET_PROC_ACNTL, (char *) 0, 0, AUDIT_OFF, 0);

In Example 10-2, a privileged program uses the audgen system call to generate an
audit record. The audgen call takes three arguments: event, tokenp, and argv. (You
can find the lists of event types and token types in a udi t . h.)

The argv argument is a pointer to an argument vector. Each entry in the token type
array describes the corresponding entry in the argument vector. In this example,
T_CHARP is a token type describing the "Anything you want to put in the record"
string. T _ERROR is a token type associated with the error value of -1. You can
create an audit record containing up to eight token types and values.

Example 10-2: Using the audgen Call to Generate an Audit Record
/* Generates a sample audit record */
include <sys/audit.h>

char tmask[AUD_NPARAM];
struct {

char *a;
int b;
aud_arg;
int i;

/* Build token mask */
tmask[O] = T_CHARP;

10-6 Security Guidelines for Programmers

Example 1 0-2: (continued)
tmask[l] = T_ERROR;
tmask[2] = '\0';
/* Fill in values to be recorded */
aud_arg.a = "Anything you want to put in the record";
aud arg.b = -1;

/* Generate audit record for AUTH EVENT event */
if (audgen (AUTH_EVENT, tmask, &aud_arg) == -1

perror ("audgen");

In Example 10-3, a privileged program uses the audcntl system call to change the
events that are audited for this process. This example shows how to adjust the
process audcntl flag.

The A_PROCMASK_SET macro from audit. h takes the following four parameters:

• but is the buffer into which the mask is being built.

• The next parameter is the event name, from syscall. h for system calls and
a udi t . h for events.

• The next parameter is an integer, which indicates whether a successful
occurrence of the event should be audited (1 = yes, 0 = no).

• The last parameter is an integer, which indicates if a failed occurrence of the
event should be audited (1 = yes, 0 = no).

Example 10-3: Using the audcntl Call to Change the Process Event
Mask

/* Change the events that are audited for this process */
include <syscall.h>
include <sys/audit.h>
define LEN (SYSCALL_MASK_LEN+TRUSTED MASK LEN)

char buf [LEN] ;
/* Change process mask to specify auditing for login and failed
* setgroups (note that 'buf' is initially set to zero). The set
* process mask is AND'ed with the system mask. This results
* in only LOGIN and SYS_setgroups being audited for this process
* (and only if the system mask also specifies LOGIN and/or
* SYS_setgroups).
*/

if (audcntl (SET_PROC_ACNTL, (char *) 0, 0, AUDIT AND, 0) -1)
perror ("audcntl");

A_PROCMASK_SET (buf, SYS_setgroups, 0, 1);
A_PROCMASK_SET (buf, LOGIN, 1, 1);
if (audcntl (SET_PROC_AMASK, buf, LEN, 0, ° -1)

perror ("audcntl");

1 0.6.5 Creating Daemons as Privileged Programs
Daemons are long-lived, background processes that provide system-related services.
Some standard daemons are the swapper, pagedaemon, cron, elcsd, and lpd
daemons. For more information, see cron(8), elcsd(8), and lpd(8) in the ULTRIX
Reference Pages. Daemons do not necessarily have to be privileged programs;
however, most daemons require privileged access to carry out their tasks. If you
create a daemon as a privileged program, take the same care as with any other
privileged program.

Security Guidelines for Programmers 10-7

• Check who is actually requesting the service. Note that this can be a problem if
the connection is through a socket, because the information about who is
requesting the service is not available from a socket.

The best approach for safely using sockets in privileged daemons is as follows:

Use INET-domain sockets.

Have the daemon check that the other side of the connection is a
privileged port. A socket can be marked privileged only if the superuser
created it. Only privileged sockets can send broadcast packets or bind
addresses in privileged portions of an address space. The daemon can
determine whether the other side of the connection is a privileged port
through the accept or getpeernamesystem calls. For more
information, see the accept(2) and getpeername(2) system calls in
the ULTRIX Reference Pages.

Write an auxiliary privileged program that connects to the daemon using a
privileged port. The auxiliary program can use the rresvport routine,
for example, to get a privileged port. This requires superuser access. For
more information, see the rresvport(3) routine in the ULTRIX
Reference Pages.

The auxiliary program can perform checks on the user, because it knows who
invoked it (either from the audit UID or the real UID). The auxiliary program
can then communicate this information to the daemon. The daemon refuses to
accept any connection that is not from the auxiliary program.

• Remove the controlling tty using the ioctl (fd, TIOCNOTTY) function call.

• Create separate processes for nonprivileged tasks, and remove privileges at the
beginning of the routines. If you have separate programs that work with the
daemon, in the same way that Ipr works with Ipd, make sure that the
interaction between the programs cannot be exploited to create a security
breach. Put proper protections on both programs. For more information, see
Ipr(l) in the ULTRIX Reference Pages.

• Put proper ownership and protections on any permanent or temporary files.
Clean up any temporary files before exiting. You might want to use a directory
other than / tmp depending on the number of files and security issues. Make
sure that only the daemon can write to any important directories (or that the
sticky bit is set). You might want to create a separate account for the daemon
in order to control file ownership and access.

10.7 SUID and SGID Programs
Set user ID (SUID) and set group ID (SOlD) programs change the effective UID or
OlD of a process to the UID or OlD of the program. They are a solution to the
problem of providing controlled access to system-level files and directories, because
they grant a process the access rights of the files' owner.

The potential for security abuse is higher for programs that are either SUID root or
SOlD to any groups that provide write access to system-level files. Simply stated, do
not make a program SUID root unless there is no other way to accomplish the task.
If you must make a program SUID root, read the section on privileged processes.

The chown system call automatically removes any SUID or SOlD bits on a file.
This prevents the accidental creation of SUIDjSOID programs owned by the root

10-8 Security Guidelines for Programmers

account. For more information, see the chown(2) system call in the ULTRIX
Reference Pages.

The following list provides suggestions for creating more secure SUID/SGID
programs:

• Verify all user-provided pathnames with the access system call.

• Trap all relevant signals to prevent core dumps.

• Test for all error conditions, such as system call return values and buffer
overflow.

When possible you should create SOlD programs rather than SUID programs. One
reason is that file access is generally more restrictive for a group than for a user. If
your program is compromised, this reduces the range of actions available to the
attacker. Another reason is that it is easier to access files owned by the user executing
the SOlD program because, when a user executes an SUID program, the original
effective UID is no longer available for use for file access. However, when a user
executes an SOlD program, the user's primary OlD is still available as part of the
group access list. Therefore, the SGID process still has group access to the files that
the primary OlD could access.

10.8 Authenticating Users
You need the following to authenticate a user on an ULTRIX system:

• Username

• Password

• /etc/passwd file

• /etc/svc.conf file

If the system is running with enhanced security features enabled, you also must have
access to the aut h database.

10.8.1 Authenticating a User with Previous Versions of UL TRIX

The method of authenticating a user with previous versions of ULTRIX consisted of
the following steps:

1. Use the getpwnam library function to get the passwd database entry
corresponding to the username. For information about getpwnam(3), see the
ULTRIX Reference Pages.

2. Encrypt the password supplied with the crypt function, using the first two
characters of the pw_passwd entry in the user's passwd database entry as
the salt argument. For information about encrypting passwords and using
sal t, see crypt(3) in the ULTRIX Reference Pages.

3. Compare the output of the crypt function against the string stored in
pwyasswd.

If the two encrypted password strings match, the password is valid for the given
username. If the username was not found in the pa s s wd database, or if the two
encrypted passwords did not match, the authentication fails.

Security Guidelines for Programmers 10-9

10.8.2 Authenticating a User with the Current Version of UL TRIX

With the current release of ULTRIX, the system administrator may optionally
configure the system to store the passwords for each account in a separate database,
auth, which is not accessible to unprivileged users. In addition to the password,
this database contains much additional information about the user, including
password expiration information. The contents of the file / etc/ svc. canf
determines if this database is to be used.

The method of authenticating a user now consists of the following steps:

1. Use the getpwnam library function to get the pas swd database entry
corresponding to the usemame. For information about getpwnam(3), see the
ULTRIX Reference Pages.

2. Use the get svc library function to get security inforrrtation from the
/ etc/ svc. canf file. For information about getsvc(3), see the ULTRIX
Reference Pages.

3. Look at the value of the seclevel field in the / etc/ svc. canf file to
determine where the password is stored and whether password expiration
information is used.

• If the security level is SEC _ BSD, the authentication algorithm is the
same as that of earlier releases of ULTRIX.

• If the security level is SEC_UPGRADE, password expiration information
is used, but the password is taken from the passwd database entry
unless that password is exactly equal to the string "*". In that case the
password is taken from the auth database.

• If the security level is SEC ENHANCED, password expiration
information is used and the password is always taken from the auth
database.

4. Encrypt the password supplied using the first two characters of the old
encrypted password as the salt argument.

• If the pasword came from the passwd database, use the crypt
function. For information about encrypting passwords and using salt,
see crypt(3), in the ULTRIX Reference Pages.

• If the password came from the auth database, use the crypt 16
function. For information about encrypting passwords with the
crypt16 function and using salt, see crypt(3), in the ULTRIX
Reference Pages.

If the two encrypted passwords match, then the password has been verified. However,
authentication is not complete until the password expiration information (if
applicable) is tested.

This test is performed by checking the password modification time stored in the auth
database record against the maximum password lifetime information which is also
stored there, using the current system time as a reference. If modification time plus
maximum lifetime is less than the current system time, the password has expired and
the account is not valid. An additional time factor, called the soft expiration time,
may also be used in the calculation to provide a grace period during which users can
log into the system provided they change their passwords immediately.

10-10 Security Guidelines for Programmers

Depending on your application, you may also want to check the A_LOG IN flag in
the auth database record for the user.

Note
Although the getpwnam(3) and getauthuid(3) library functions
transparently retrieve entries served from remote hosts, you must get a
Kerberos ticket-granting ticket before you can obtain auth database
entries for hosts served through BIND/Hesiod. See the Guide to
Network Programming for information about using Kerberos.

The code to implement user authentication for Version 4.0 of ULTRIX is as follows:

/*
* authenticate - a routine to verify a user's password.
*/

#include <pwd.h>
#include <sys/svcinfo.h>
#include <auth.h>
int authenticate (username, passwd)
char *username, *passwd;
{

struct passwd *pwd, *getpwnam();
AUTHORIZATION *auth, *getauthuid();
char *pp, *crypt(), *crypt16(), *(*fp) ();
struct svcinfo *svcinfo;
auth = (AUTHORIZATION *) 0;
if(! (pwd=getpwnam(usernarne»)

return 0; /* no account */
if(! (svcinfo=getsvc(»)

return 0; /* should never happen */
switch (svcinfo->svcauth.seclevel) {
case SEC BSD:

pp = pwd->pw-passwd;
fp = crypt;
break;

case SEC UPGRADE:
if(! (auth=getauthuid(pwd->pw_uid»)

return 0; /* no auth entry */
if (! strcmp (pwd->pw-passwd, "*"» {

pp = auth->a_password;
fp = crypt16;

else {
pp
fp

break;

pwd->pw-passwd;
crypt;

case SEC ENHANCED:
if(! (auth=getauthuid(pwd->pw_uid»)

return 0; /* no auth entry */
pp = auth->a-password;
fp = crypt16i
break;

default:
return 0; /* bad seclevel in /etc/svc.conf */

if(!*pp && *passwd)
return 0; /* bad password */

if (strcmp ((*fp) (passwd, pp), pp»
return 0; /* bad password */

if (auth) {
long expiration, time();
if (auth->a-pw_maxexp) {

Security Guidelines for Programmers 10-11

expiration = auth->a-pass_mod + auth->a-pw_maxexp;
if(time((long *) 0) > expiration)

return 0; /* password expired */

if(! (auth->a_authmask & A_LOGIN))
return 0; /* account disabled */

return 1;

10.9 Shell Scripts and Compiled Programs
A shell script is a file containing shell commands. Shell scripts can include variables
and flow control constructions. If you must use a shell script to handle sensitive data,
set and export path before writing the body of the script. Do not make shell scripts
SUID or SGID.

Compiled programs enjoy a measure of security that shell scripts do not. You can
allow users to execute compiled programs while restricting those users from reading
the source files. Because users need both read and execute permission to run a shell
script, they have a much better chance of deciphering and compromising the script.
For this reason, any program whose compromise represents a security risk should be
compiled and made available to the general user only as an executable file.

You should deny access to any source files. Remove read permission for group and
other on the executable file to deny users the opportunity to use a debugger on the
file.

10.10 Programming in a OECwindows Environment
This section discusses four ways to increase security in a DECwindows programming
environment:

• Restrict access control

• Protect keyboard input

• Block keyboard and mouse events

• Protect device-related events

For a detailed description of Xl ib library calls, see the Guide to the Xlib Library: C
Language Binding. For a detailed description of the X Window System Protocol, see
the X Window System Protocol: X Version 11.

10.10.1 Restrict Access Control

The access control list is the key to security in the DEC windows environment. This
list names the hosts on the network that can access a workstation display. Users
logged in to hosts listed in the access control list can read from, write to, and copy
the contents of any window by specifying the window ID. Unlike files, windows
cannot be protected from authorized users by setting permissions on them.

When a system is installed, the only host listed in the access control list is the local
host. The local host is the system on which the window system is running. For
example, when workstation rook is booted for the first time, rook is the only host
listed in its access control list.

10-12 Security Guidelines for Programmers

The system access control list is stored in a privileged file called / etc/X* . hosts.
The asterisk specifies the number of the workstation display. When a system is
installed, this file is either empty or does not exist. The security administrator
maintains this file, usually by leaving it empty to protect the workstations on the
network from security attacks. If a user does does not add any hosts to the
workstation access control list, using the Security option from the Customize menu,
the / etc/X* . Hosts file determines the access control list for that workstation.

Table 10-1 lists the Xlib library function calls that maintain the access control list:

Table 10-1: Xlib Library Function Calls That Maintain the Access
Control List

Call Purpose

XAddHost Add a single host to the access control list for a specified
workstation display.

XAddHosts Add the specified hosts to the access control list for a
specified workstation display.

XListHosts List the hosts on the access control list. This call enables a
program to find out which hosts can connect to a workstation
display.

XRemoveHost Remove the specified host from the access control list for a
specified workstation display.

XE-emoveHosts Remove the specified hosts from the access control list for a
specified workstation display.

XEnableAccessControl Enable the use of the access control list at each workstation.

XDisableAccessControl Disable the use of the access control list at each workstation.

10.10.2 Protect Keyboard Input
Users logged in to hosts listed in the access control list can call the
XGrabKeyboard function to take control of the keyboard. When a client has called
this function; the X server directs all keyboard events only to that client. Using this
call, an attacker could easily grab the input stream from a window and direct it to
another window. The attacker could return simulated keystrokes to the window to
fool the user running the window. Thus, the user might not realize that anything was
wrong.

The ability of an attacker to capture a user's keystrokes threatens the confidentiality
of the data stored on the workstation.

DECterm windows provide a secure keyboard mode that directs everything a user
types at the workstation keyboard to a single, secure window. Users can set this
mode by selecting the Secure Keyboard item from the Commands menu in a
DECterm window.

Programs that deal with sensitive data should include a secure keyboard mode. This
is especially important if your program prompts a user for a password.

Some guidelines for implementing secure keyboard mode follow:

Security Guidelines for Programmers 10-13

• Use the XGrabKeyboard call to the Xlib library.

• Use a visual cue to let the user know that secure keyboard mode has been set,
for example, reverse video on the screen.

• Use the XUngrabKeyboard function to release the keyboard grab when the
user reduces the window to an icon. Releasing the keyboard frees the user to
direct keystrokes to another window.

10.10.3 Block Keyboard and Mouse Events

Hosts listed in the access control list can send events to any window if they know its
ID. The XSendEvent call enables the calling application to send keyboard or
mouse events to the specified window. An attacker could use this call to send
potentially destructive data to a window. For example, this data could execute the
rm - r f * command or use a text editor to change the contents of a sensitive file.
If the terminal was idle, a user might not notice these commands being executed.

The ability of an attacker to send potentially destructive data to a workstation
window threatens the integrity of the data stored on the workstation.

DEC term windows block keyboard and mouse events sent from another client if the
allowSendEvents resource is set to false in the.Xdefaults file.

You can write programs that block events sent from other clients. The
XSendEvent call sends an event to the specified window and sets the
send event flag in the event structure to true. Test this flag for each keyboard
and mouse event that your program accepts. If the flag is set to fa 1 s e, the event
was initiated by the keyboard and is safe to accept.

10.10.4 Protect Device-Related Events
Device-related events, such as keyboard and mouse events, propagate upward from
the source window to ancestor windows until one of the following conditions is met:

• A client selects the event for a window by setting its event mask.

• A client rejects the event by including that event in the do-not-propagate
mask.

A programmer can use the XReparentWindow function to change the parent of a
window. This call changes a window's parent to another window on the same screen.
All you need to know to change a window's parent is the window ID. With the
window ID of the child, you can easily discover the window ID of its parent.

The misuse of the XReparentWindow call can threaten security in a windowing
system. The new parent window can select any event that the child window does not
select.

Take these precautions to protect against this type of abuse:

• A child window should select the events that it needs. This prevents the new
parent from intercepting events that propagated upward from the child. Parent
windows that centralize event handling for child windows are at greater security
risk. An attacker can change the parent and intercept the events intended for the
children. Therefore, it is safer for each child window to handle its own events.
Events that the child explicitly selects never propagate.

• A child window can specify that events will not propagate further in the
window hierarchy. This prevents any event from propagating to the parent

10-14 Security Guidelines for Programmers

window, regardless of whether the child requested the event.

• A child window can ask to be notified when its parent window is changed by
setting the StructureNotify or SubstructureNotify bit in its event
mask. For more information on setting these event masks, see the Guide to the
Xlib Library: C Language Binding.

10.11 Security Summary
You can increase the security of the programs you write by putting yourself in the
place of a potential attacker. The attacker is always looking for a weak link in a
system. This chapter points out some weak links a program might create. Be on the
lookout for them in the programs that you write.

Here is a quick review:

• Take the following actions after a fork call but before an execve call:

Close all file descriptors, except those needed by the new process.

Tum off SUIGjSGID attributes.

Specify S I G _ I GN to ignore signals, such as quit. The quit signal
generates a core dump, which might include sensitive information, like
passwords.

If you invoke a shell, check the syntax of your path variable. Use
absolute path names and put system directories before user directories.
Never specify a public directory. Never include your current working
directory or another user's directory in your path.

• A void storing sensitive files in / trnp. If you must use / trnp, make sure the
sticky bit is set on that directory.

• Check return codes from system calls for attempted security break-ins. If you
detect such an attempt, take appropriate action.

• Use the minimum privileges for the minimum amount of time required to do the
job.

• In a DECwindows environment, restrict hosts from the access control list.
Access control is the key to the security of a workstation's display. Use the
XListHosts call to Xlib to list the hosts that can connect to a workstation
display. Use the XRernoveHost call to remove a host from that access control
list.

Security Guidelines for Programmers 10-15

System Calls and Library Routines with
Security Implications 11

This chapter discusses the ULTRIX system calls and library routines that have
security implications for programmers. These calls and routines are listed in
alphabetical order. The chapter briefly describes the security relevance of each call
and routine, and offers suggestions for enhancing security, where appropriate.

UL TRIX C programs can be compiled for BSD, SYSTEM_FIVE, or POSIX
environments. This chapter describes the security relevance of system calls and
library routines in the default BSD environment. If you compile a program that
executes these calls or routines in either the SYSTEM_FIVE or POSIX environment,
there might be some differences. For detailed information, see the ULTRIX
Reference Pages Section 2: System Calls and the ULTRIX Reference Pages Section
3: Library Routines.

Some system calls and library routines that are not covered in this chapter might have
implicit security concerns. Also, the misuse of a system call or library routine that
does not seem to have any security concerns could threaten the security of a
computer system. Ultimately, programmers are responsible for the security
implications of their programs.

11 .1 System Calls
The following UL TRIX system calls have security relevance for programmers:

access execve read sigsetmask
audcntl* fcntl setgroups* sigvec
audgen* fork setpgrp* stat
chmod* getgid setregid* syscall
chown* getuid setreuid* urnask
chroot* mknod* sigblock write
creat open sigpause

* Can only be called by, or acts differently when called by,
a privileged process. Also, any calls that use file-system
pathnames bypass access permissions when called by a
privileged process.

access This call checks file access based on the real UID and GID. That is,
it tells you if the user could have gained access to a specified object
without the privileges gained from your program. For example, a
program might need to open files in a directory that the typical user
has no permission to read. You need to give the user access to these
files under the control of the program, so the program is given the set
user ID (SUID) and set group ID (SGID) attributes. However, the
user may specify other files, and you need to prevent the user from
taking advantage of the program's SUID/SGID powers. The

audcntl

audgen

access system call confirms that the user has independent
permission to access a specified file.

This call takes two arguments: the file name and the type of access.
If the access is allowed, the access call returns a 0; if the access is
not allowed, the call returns a-I.

If your security administrator has enabled security auditing, this
privileged call enables you to control these options offered by the
audit subsystem:

• Get or set the system audit mask, which determines the system
calls that are audited.

• Get or set the trusted event mask, which determines the trusted
events that are audited.

• Get or set the current process's audit mask, which determines
(in conjunction with the system audit mask) the system calls
that are audited for the current process.

• Get the current process's audit control flags. (See audi t . h.)
The process audit control flag indicates how the process audit
mask is applied to the system audit mask to determine the
events logged for the process in the audi tlog file.

• Set the current process's audit control flags. (See audi t . h.)

• Get or set the system audit switch.

• Flush out the kernel audit buffer to / dev / audi t, making
audit data available to the audit daemon. Data is not normally
flushed until the buffer is full. This is useful for making
auditing data available immediately.

• Return the audit ID of the calling process, if the process has
appropriate privilege.

• Set the audit ID of the calling process. You can pass this
option to the audit subsystem only if the audit ID of the calling
process is greater than zero, the calling process has appropriate
privileges, and the audit ID is not set already.

If your security administrator has enabled security auditing, this
privileged call generates an audit record for a specified operation or
event that is being audited by the current process. The call stores the
audit record in the a udi t log file. The audit record includes
standard audit event information, such as identification and
timestamp information. For a complete description of the audit
subsystem, see the ULTRIX Security Guide for Administrators.

The audgen call takes three arguments: an integer, indicating the
event type of the operation to be audited; a character token type,
specifying the category of the auditing information to be stored in the
audit record; and a character argument, specifying the information to
be stored in the audit record.

You cannot change the values for audit_id, uid, ruid, pid,
ppid, device, IP address, or hostid (secondary tokens for
these values are available).

11-2 System Calls and Library Routines with Security Implications

chmod

chown

chroot

creat

execve

This call changes access permissions for a specified file. The chmod
call has no effect on a process that has already opened a file for
reading or writing. This call takes two arguments: the file name and
the mode. The following example changes the mode on the file
facts to 644.

chmod("/usr/facts", 0644)

This call changes the owner and group of a specified file (unlike the
chown(8) command, which changes only the file owner). The
chown call takes three arguments: file name, owner, and group.
Only the superuser can change the owner of a file; however, a group
member can change the OlD associated with a file. For security
reasons, this call clears the SUID and SOlD permission bits on the
file. Clearing these bits prevents accidental creation of SUID/SOID
programs that are owned by root.

This privileged call changes the root directory for an ULTRIX file
system. It takes one argument, the address of the pathname of a
directory. The chroot call sets this directory as the root directory,
the starting point for pathnames beginning with slash (/).

The chroot call is restricted to a privileged
process because a user could gain superuser privileges if it were not.
For example, a user could create a whole duplicate file system in
/tmp with hard links to the real files. The only difference is that
/tmp/etc/passwd would not be linked to /etc/passwd. The
user then copies /etc/passwd to /tmp/etc/passwd, changes
the root password, uses chroot to set root to / tmp, and runs
/bin/ suo The /bin/ su command (really /tmp/bin/ su) reads
/etc/passwd (really /tmp/etc/passwd) and the user gains
superuser privileges.

This call creates a new file or overwrites an existing one. The creat
call takes two arguments: file name and access permission. The
calling process must have write and execute permission on the
directory containing the file.

The file's owner is determined by the effective UID. The file's group
is determined by the group of its containing directory. The access
permission argument sets the file's permissions. The access
permission argument is modified by the file creation mask set by the
uma s k shell command or the uma s k system call.

This call replaces the calling process with the new program.

Note

A group of library routines provide interfaces to the
execve system call. Each of these routines overlays the
calling process with the named file: execl, execv,
execle, execlp, execvp, and exect.

The execve call passes security-relevant information from the
calling process to the newly executed program:

• Real and effective UIDs and OIDs

System Calls and Library Routines with Security Implications 11-3

fcntl

fork

getgid

getuid

mknod

open

If the file containing the program to be executed has the SUID
or SGID bits set, the effective UID is set to the owner of the
new program; the effective GID is set to the group of the new
program.

• Open file descriptors (except those with the close-an-exec
flag set)

Opening files enables a calling program to communicate with
the programs it creates with the execve call. However, for
security reasons, programs should close all files that are not
needed by the new program before calling execve. An
alternative to closing unneeded files is to use the fcntl call to
set the close-an-exec bits.

• File mode creation mask (uma s k) of the calling process

• Shared memory allocation

• Arguments

• Environment variables

This call enables you to control file and socket descriptors. The
fcntl call has security relevance because it can lock file regions to
prevent more than one process from accessing the same file at the
same time. Note that these locks, like flock, are only advisory
locks; they depend on cooperating processes issuing fcntl calls to
check lock status before opening files.

File locks are not checked by either the open or access calls.
When used by cooperating processes, fcntl protects the integrity of
data in the file. In addition, the fcntl call can set the close-on
exec flag.

A process can set this flag for a file descriptor to close the file before
executing a new program with the execve system call. A process
should close any file that the newly executed program does not need
before calling execve.

This call creates a child process that is a copy of the calling process.
The child process inherits all security-relevant information from the
parent.

This call returns the real GID of the current process.

The getegid call returns the effective group ID of the current
process.

This call returns the real UID of the current process.

The geteuid call returns the effective UID of the current process.

This privileged call creates special files. Nonprivileged users use the
mknod call to create named pipes. The new file's owner ID is set to
the process's effective UID. The new file's group ID is set to the
parent directory's GID.

This call opens files. It takes three arguments:

• The file name

11-4 System Calls and Library Routines with Security Implications

• A flag specifying whether the file is to be opened for reading,
writing, or both

• If the second argument includes the 0 CREAT flag, the access
file permission in octal formal -

The open call returns a valid file descriptor, or -1 if the open fails
(for example, if you try to open a file for reading and the process
does not have read permission on the file).

Once a process opens a file, changing permissions on that file and its
path does not affect the access of the process.

read This call reads a file opened for reading by the open call. The read
call can get information from a file, even if the file's permissions are
changed after the file is opened.

setgroups This privileged call sets the group access list of the current process.
It takes two arguments: the number of groups and a pointer to an
array of integers specifying numeric OIDs.

setpgrp This call determines whether a process receives signals from a
terminal. In order for a process to receive a signal from a terminal,
the process must have the terminal as its controlling tty and be a
member of the terminal's process group. In a BSD environment, only
a privileged process can set pgrp=O, which blocks all signals from a
terminal. Note that you use set pg rp to set a process group from
the process end, and ioctl to set a process group from the terminal
end.

setregid This call sets the real OlD of a process, the effective OlD, or both.
Only a superuser can modify the real OlD associated with a process.
Nonprivileged processes can set the effective UID to the real UID. In
a BSD environment, nonprivileged processes can set the real OlD to
either the real or the effective OlD.

setreuid This call sets the real UID of a process, the effective UID, or both.
Only a superuser can modify the real UID associated with a process.
Nonprivileged processes can set the effective UID to the real UID. In
a BSD environment, nonprivileged processes can set the real UID to
either the real or the effective UID.

s igblock This call adds the specified signals to the set of masked signals.

sigpause This call is similar to the sleep(3) routine in that it enables a
process to wait for the arrival of a signal.

sigsetmask This call replaces the current signal mask with a new one.

sigvec This call specifies how a process will handle exceptions or interrupts.
It takes two arguments: the number (or name) of a signal, and the
routine to call when that signal occurs. Some values for the second
argument and their resulting actions follow:

• S I G _ I GN ignores the signal.

• S I G _ DFL handles the signal in the default manner.

• rout ine name calls the named routine.

System Calls and Library Routines with Security Implications 11-5

stat

Many security-related programs disable terminal interrupts (such as
quit and interrupt) to prevent a user from killing a program from the
terminal. For example, the lock program that locks a user's terminal
uses the sigvec call to prevent someone from killing the program
by pressing the interrupt or quit key. Many programs trap interrupts
so they can delete temporary files before exiting.

Child processes inherit the signals set before the parent process calls
tor k. Therefore, each process should examine the way it handles
signals. (The signal. h header file lists the system signals.) A
process that implements background activities often explicitly
specifies S I G _ I GN for some signals, so that it will not respond to
events such as keystrokes.

Privileged processes can send a signal to any existing process. For
example, they can use kill to kill a process. However, killing a
process should be a last resort for removing runaway processes.

This call returns information about the file path. It takes two
arguments: the file name and the address of stat, a data structure
containing the status information. You do not need read, write, or
execute permission of the named file, but you must have search
permission on the file path. This status structure is defined in
<sys/stat.h>.

syscall This call performs the system call whose assembly language interface
has the specified number, register arguments, and other arguments. It
returns the register 0 value of the system call.

urnask

write

This call sets the process's file mode creation mask and returns the
previous value of the mask. The file mode creation mask of a process
is inherited by its children. The urna s k call works like the urna s k
command. The following example sets the urnask to 027, which
means that only the file owner can write to text files, and only the file
owner and group can read those files:

umask (027)

This call writes data to a file previously opened for writing by the
open call. Like the read call, it is unaffected by changes to the
permissions on the file once the file is opened for writing. The
SUID/SGID permission bit is turned off after any write to a file,
except by root.

11.2 Libtary _Routines
Library routines are system services that programs can call. Many library routines
use system calls. The following ULTRIX library routines have security implications:

crypt
cuserid
encrypt
system

getauthent
getgrent
get login
topen

getpass
getpwent
popen

11-6 System Calls and Library Routines with Security Implications

putpwent
setuid
signal

crypt

cuserid

This routine encrypts a password, usually obtained from getpass.
The crypt routine takes two arguments: a character pointer to the
typed password (the key), and a two-character string used to jumble
the encryption algorithm in encrypt (the salt). The salt string can
be longer, but only the first two characters are relevant.

One of the advantages of crypt is that it uses a significant amount
of computer time to encrypt a password. Thus, a cryptanalyst trying
to break ULTRIX passwords can spend a lot of time calling crypt
looking for a match in / etc / pa s s wd . However, the encryption
method is not tamper proof, and you should not rely on this method
alone to protect sensitive files. You must still carefully protect files
by setting appropriate protections.

The cuserid routine is not a secure or reliable way to learn the
indentity of a user because it calls the get login routine. Instead,
use the following routines to return the identity of a user:

getpwuid(getuid())

encrypt This password encryption routine encrypts or decrypts a 64-byte
character array of ones and zeroes specified as the first argument (8
bytes of text), depending upon the value of the second argument. If
the second argum,ent is zero, the encrypt routine encrypts the text
in the first argument. If the second argument is one, the encrypt
routine decrypts the text in the first argument.

f open This routine opens a file; it creates a file, if needed. The f open
routine opens a file for reading, writing, or both. This routine has the
same security considerations as the open system call: once a
process opens a file, changing permissions on that file and its
containing directories does not affect the original access pennissions.

getauthent This group of related library routines gets and sets an entry in the
authorization database:

The getauthent routine returns a pointer to an object containing
the fields of a entry in the authorization database.

The getauthuid routine looks up the authorization entry for the
specified user ID and returns it just as the getauthent routine
does.

The storeauthent routine puts the specified authorization entry
in the authorization database, overwriting any existing entry with the
same a uid field.

The setauthent routine rewinds the authorization database file for
subsequent accesses by the getauthent. routine. It does not affect
the operation of the getauthuid function, since there is never
more than one record per user ID.

The setauthfile routine sets the pathname of the file used as the
authorization database in all subsequent operations.

The endauthent routine closes the authorization database file.
Subsequent calls to the getauthent, getauthuid, and
storeauthent functions reopen it.

System Calls and Library Routines with Security Implications 11-7

getgrent

get login

getpwent

popen

putpwent

setuid

Only a superuser, security administrator, and members of the group
authread can read information from the authorization database.
Only a superuser or the security administrator can modify the
authorization database.

This routine reads the next entry in the group file.

The getgrgid routine takes a GID as its argument. The routine
searches the /etc/group file for a matching GID, and returns a
pointer to th'!f entry.

The getgrnam routine takes a group name as its argument. The
routine searches the / etc/ group file for a matching group name,
~nd returns a pointer to that entry.

The setgr~nt routine resets the group file to its first entry. This
has the effect of rewinding the / etc/ group file.

The endgrent routine closes the / etc/ group file.

This routine does not reliably return the name of the calling user
because it can be fooled by I/O redirection to another terminal. The
use of getlogin is not recommended.

This routine reads the next entry from the / etc/pas swd file. It
opens the file if necessary and then returns the following entry.

The getpwuid routine takes a DID as its argument and returns a
pointer to the corresponding password file entry. The most reliable
way to find out who is running a program is to use the get uid
routine with getpwuid. The getuid routine returns the real UID,
which is pa&seq to thegetpwuid, which uses it to look up the
user's login nal11e.

The getpwnam routine returns a pointer to a pas swd structure
filled with the corre~ponding password file entry. This structure is
defined in <pwd. h>.

Th~ setpwent routine rewinds the password file.

The endpwent routine closes the password file.
, . . -

This routine invokes fork and execve calls, passing as its
argument the command specified. It then creates a pipe to the new
process using the pipe call. Never call this routine from inside a
SDID program ~wned by root because the resulting shell would
have the superuserprivileges. Always specify a complete pathname
for the command. Otherwise, another user could alter the pathname
to execute a bogus command.

This routine adds or changes an entry in the /etc/passwd file.

This routine sets both real and effective DID of the current process to
the DID specified. The superuser can set real and effective DIDs to
any value; other users can set the effective DID to the real DID or the
real UID to the effective DID. This means that for nonprivileged
users, setuid is only useful for SUID programs that toggle between
the effective and real DID.

The setegid routine sets the effective OlD of the current process to
the specified OlD. The superuser can set the effective OlD to any
vahle; other users can s~t the effective OlD only to the real GID.

11-8 System Calls and Library R~utines with Security Implications

signal

system

The seteuid routine sets the effective UID of the current process to
the specified UID. The superuser can set the effective UID to any
value; other users can set the effective UID only to the real UID.

The setgid routine sets both the real and the effective GIDs of the
current process to the specified GID. The superuser can set the real
and effective GID to any value; other users can set the real GID to
the effective GID or the effective GID to the real GID.

The setrgid routine sets the real GID for the current process to the
specified GID. The superuser can set the real GID to any value;
other users can set the real GID only to the effective GID.

The setruid routine sets the real UID of the current process to the
specified UID. The superuser can set the real UID to any value;
other users can set the real UID only to the effective UID.

This routine is a simplified interface to the sigvecO system call,
which specifies how a process will handle exceptions or interrupts.

This routine issues a shell command. The s y stem call runs
Ibinl sh to execute the command specified as its argument. Never
call this routine from inside a SUID program owned by root
because the resulting shell would have the superuser privileges.
Always specify a complete pathname for the command. Otherwise,
another user could alter the pathname to execute a bogus command.

11.3 Security Summary
The system calls and library routines covered in this chapter can be grouped by
category, as shown in the Table 11-1 and Table 11-2.

Table 11-1: Security-Relevant System Calls

Category

File Control

Process Control

File Attributes

User and Group ID

System Calls

creat
fcntl
mknod

fork
execve
setpgrp
sigblock

access
chmod
chown

getegid
getgid
geteuid

open
read
write

sigpause
sigsetmask
sigvec

chroot
stat
umask

getuid
setgroups
setreuid

System Calls and Library Routines with Security Implications 11-9

Table 11-1 : (continued)

Category System Calls

Auditing audcntl audgen

General syscall

Table 11-2: Security-Relevant Library Routines

Category Library Routines

File Control fopen popen

Password Handling getpass putpwent
getpwnam setpwent
getpwent endpwent
getpwuid

Process Control signal

Group Processing getgrent setgrent
getgrnam endgrent
getgrgid

Identifying the User cuserid getpwuid
get login

Password Encryption crypt encrypt

User and Group ID setuid setgid
setegid setrgid
seteuid setruid

Authorization getauthent setauthent
getauthuid setauthfile
storeauthent endauthent

11-10 System Calls and Library Routines with Security Implications

C Implementation A

The C language supported by the UL TRIX compiler is an implementation of the
language defined in The C Programming Language by Kernighan and Ritchie
(Prentice Hall, 1978). This appendix discusses the following:

• Specifying vararg macros, a requirement for all functions that take a variable
number of arguments

• Deviations and extensions to the C language, as defined in The C Programming
Language

• Translation limits

Specifying the varargs.h Macros
If a function takes a variable number of arguments (for example, the C library
functions printf and scanf), you must use the macros defined in the
varargs . h header file.

The va_del macro declares the formal parameter va_alist, which is either the
format descriptor for the remaining parameters or a parameter itself.

The va_start macro must be called within the body of the function whose
argument list is to be traversed. The function then can transverse the list or pass its
va _1 i s t pointer to other functions to transverse the list. The type of the
va_start argument is va_list, which is defined in varargs. h.

The va _ arg macro accesses the value of an argument rather than obtaining its
address. This macro handles those type names that can be transformed into the
appropriate pointer type by appending an asterisk (*), which handles most simple
cases.

The argument type in a variable argument list must never be an integer type smaller
than int and must never be float.

For more information, see varargs(5) in the ULTRIX Reference Pages.

The following example illustrates using varargs macros:

#include <varargs.h>
#include <stdio.h>
enum operations {load, store, add, sub};
main () {

void emit () ;
emit (load, 'I', 0, 4);
emit (load, 'I', 4, 4);
emit (add, 'I');
emit(store,'I', 0, 4);

void
emit (op, va_alist)
1* emit takes a variable number of arguments and prints

/* them according to the operational format. */
enum operations op;
va_dcl {
va_list argytr;
register int length, offset;
register char type;
va_start(argytr);
switch (op) {

}
}

case add: /* print operation and length */
type = va_arg(argytr, int);
printf("add %c\n", type);
break;

case sub: /* print operation and length */
type = va_arg(argytr, int);
printf ("sub %c\n", type);
break;

case load: /* print operation, offset, and length */
type = va_arg(arg_ptr, int);
offset = va_arg(argytr, int);
length = va_arg(argytr, int);
printf("load %c %d %d\n", type, offset, length);
break;

case store:
type = va_arg(arg_ptr, int);
offset = va_arg(argytr, int);
length = va_arg(argytr, int);
printf("store %c %d %d\n", type, offset, length);

The expected output from this code is as follows:

load I 0 4
load I 4 4
add I
store I 0 4

Deviations
C does not support the entry keyword, which has no defined use. Additionally, on
the RISC architecture C does not support the asm keyword as implemented by some
C compilers to allow for the inclusion of assembly language instructions.

Extensions
Extensions to C include the following:

• The enumeration type, which is a set of values represented by identifiers
called enumeration constants; enumeration constants are specified when the type
is defined. For information on the alignment, size, and value ranges of the
enumeration type, see Chapters 2 and 3.

• The void type, which allows you to specify that no value be returned from a
function.

• For the RISC architecture, the volatile type modifier, which is used when
programming I/O devices, and the signed type. In addition, the const
keyword has been reserved for future use. For more information on the
volatile modifier, see Chapter 2.

A-2 C Implementation

• For the VAX architecture, the canst type modifier. For more infonnation on
the canst modifier, see Chapter 3.

Translation Limits
Table A-I lists the maximum limits imposed on certain items by the C compiler for
the RISC and VAX architectures. ..

Table A-1: C Compiler Limitations

C Specifications

Nesting Levels
Compound statements
Iterations
Selections
Conditional compilations

Maximum

<=30

Maximum number of type 9
modifiers (array, pointers, function,
volatile)

Case labels 500

Function call parameters 150

C Implementation A-3

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

* Internal

Call

800-DIGITAL

809-754-7575

800-26'7-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02j2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO!E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Guide to Languages and Programming

AA-ML94B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) D D D D
Completeness (enough information) D D D D
Clarity (easy to understand) D 0 0 D
Organization (structure of subject matter) D D D D
Figures (useful) D D D D
Examples (useful) D 0 0 D
Index (ability to find topic) D 0 D D
Page layout (easy to find information) D D D D

What would you like to see more/less of?

What do you like best about this manual? _____________________ _

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

_______________________ Dept. Nameffitle

Company

Mailing Address

Date

_____________ Email ________________ Phone

- - - - - - . Do Not Tear - Fold Here and Tape

III~aDmDTM
-----------------------------I-l---~----------::~:::::---

NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

111111111111 1111111111 1111 h 1111 II II h I hhllill h II
-------. Do Not Tear- Fold Here

Cut
Along
Dotted
Line

Reader's Comments ULTRIX
Guide to Languages and Programming

AA-ML94B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair
Accuracy (software works as manual says) 0 0 0
Completeness (enough information) 0 0 0
Clarity (easy to understand) D D D
Organization (structure of subject matter) 0 D D
Figures (useful) 0 0 0
Examples (useful) D 0 0
Index (ability to find topic) 0 D D
Page layout (easy to find information) D 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

_______________________ Dept. Nameffitle

Company

Mailing Address

Date

_____________ Email _______________ Phone

Poor

0
0
D
D
0
0
0
D

I
I
I
I
I
I

- - - - - - . Do Not Tear - Fold Here and Tape

IJD~DDmDTM
-----------------------------111-111----------::::::A~:---I

NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

11111111111 1111111 II 11111111 II I II IlIlnhllll hllill

-------. Do Not Tear - Fold Here .---__________ J

Cut
Along
Dotted
Line

