
ULTRIX
Worksystem Software

•

X Window System Protocol:
X Version 11

Order Number: AA-MA98A- TE

ULTRIX Worksystem Software
X Window System Protocol:
X Version 11

Order No. AA-MA98A-TE

UL TRIX Worksystem Software, Version 2.0

Digital Equipment Corporation

Copyright © 1988 Digital Equipment Corporation
All rights reserved.

Copyright © 1984, 1985, 1986, 1988 Massachusetts Institute of Technology, Cambridge,
Massachusetts.

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC ULTRIX VMS
DECnet ULTRIX-ll VT
DECUS ULTRIX-32 XUI
DECwindows VAX ULTRIX W orksystem Software
MicroVAX VAXstation ~DmDamD

UNIX is a registered trademark of AT&T in the USA and other countries.

X Window System is a trademark of MIT.

This manual is derived from MIT documentation, which contains the following permission
notice: Permission to use, copy, modify, and distribute this documentation for any purpose
and without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of MIT or DIGITAL not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior persmission.
MIT and DIGITAL make no representations about the suitability of the software described
herein for any purpose. It is provided" as is," without express or implied warranty.

This manual was written and produced by the ULTRIX Documentation Group in Nashua,

New Hampshire.

Contents

About This Manual

X Window System Protocol

1 Terminology ... 1

2 Protocol Formats 12

3 Syntactic Conventions ... 14

4 Common Types 14

5 Errors .. 17

6 Keyboards .. 20

7 Pointers 21

8 Predefined Atoms ... 21

9 Connection Setup ... 22

10 Requests .. 28

11 Connection Close .. 102

12 Events ... 103

13 Flow Control and Concurrency

A KEYSYM Encoding

Latin-1
Latin-2

117

A-4
A-9

Latin-3 .. A-II
Latin-4 .. A-12
Kana .. A-13
Arabic .. A-15
Cyrillic .. A-17
Greek .. A-20
Technical ... A-22
Special.. A-24
Publish .. A-25
APL ... A-28
Hebrew .. A-29
Keyboard ... A-30

B Protocol Encoding

Syntactic Conventions .. B-1
Common Types B-4
Errors ... B-7
Keyboards ... B-ll
Pointers .. B-ll
Predefined Atoms .. B-ll
Connection Setup .. B-12
Requests ... B-15
Events B-55

Index

iv Contents

About This Manual

The X Window System Protocol: X Version 11 describes the precise
semantics of the Xll protocol specification. As such, the information
provided is independent of any programming language but is the basis for
any language-specific implemetation (for example, the C implementation
described in the Guide to the Xlib Library).

Audience
The audience for this manual is the application programmer or system
engineer who needs further clarification about the X Window System or
who plans another language implementation.

This manual does not attempt to teach how to write an X application, how
to program in C, or how to implement the X Window System in another
language.

Organization
The X Window System Protocol contains the following sections:

Section 1

Section 2

Section 3

Section 4

Section 5

Terminology

Defines the terms that are used throughout this manual.

Protocol Formats

Discusses the various formats (for example, request, reply,
and error formats) that are defined by the protocol.

Syntactic Conventions

Describes the syntactic conventions used throughout the
remainder of the manual.

Common Types

Describes the common type defined by the protocol.

Errors

Describes the error codes that are defined by the protocol.

Section 6

Section 7

Section 8

Section 9

Section 10

Section 11

Section 12

Section 13

Keyboards

Discusses the keyboard-related issues.

Pointers

Discusses the pointer-related issues.

Predefined Atoms

Lists the names that have predefined atoms within the core
protocol.

Connection Setup

Discusses what occurs at connection setup.

Requests

Describes each request defined by the core protocol.

Connection Close

Discusses what occurs at connection close.

Events

Describes each event that can be generated.

Flow Control and Concurrency

Discusses server control flow issues.

Appendix A KEYSYM Encoding

Lists the predefined keyboard symbol (KEYSYM) values.

Appendix B Protocol Encoding

Lists the bit and byte descriptions of the X protocol.

Related Documents
Guide to the Xlib Library: C Language Binding.

Describes the low-level C functions that you can use to write an
application that interfaces with the X Window System.

Conventions
The following conventions are used in this manual:

special In text, each mention of a specific request, event, error,
symbolic name, or pathname is presented in this type.

UPPERCASE Although the ULTRIX system differentiates between
lowercase and uppercase characters, uppercase is used
intentionally in this manual where the core protocol defines
the term or symbol to be in uppercase.

vi About This Manual

boldface The primary occurrence for a given index entry is in this
type.

About This Manual vii

1 Terminology
Access control list

X Window System Protocol

X maintains a list of hosts from which client programs can be run.
By default, only programs on the local host and hosts specified in an
initial list read by the server can use the display. Clients on the local
host can change this access control list. Some server implementations
can also implement other authorization mechanisms in addition to or
in place of this mechanism. The action of this mechanism can be
conditional based on the authorization protocol name and data received
by the server at connection setup.

Active grab

A grab is active when the pointer or keyboard is actually owned by
the single grabbing client.

Ancestors

If W is an inferior of A, then A is an ancestor of W.

Atom

An atom is a unique ID corresponding to a string name. Atoms are
used to identify properties, types, and selections.

Background

An InputOutput window can have a background, which is defined as a
pixmap. When regions of the window have their contents lost or
invalidated, the server will automatically tile those regions with the
background.

Backing store

When a server maintains the contents of a window, the pixels saved
off screen are known as a backing store.

Bit gravity

When a window is resized, the contents of the window are not
necessarily discarded. It is possible to request that the server
relocate the previous contents to some region of the window (though

no guarantees are made). This attraction of window contents for
some location of a window is known as bit gravity.

Bit plane

When a pixmap or window is thought of as a stack of bitmaps, each
bitmap is called a bit plane or plane.

Bitmap

A bitmap is a pixmap of depth one.

Border

An InputOutput window can have a border of equal thickness on all
four sides of the window. A pixmap defines the contents of the
border, and the server automatically maintains the contents of the
border. Exposure events are never generated for border regions.

Button grabbing

Buttons on the pointer may be passively grabbed by a client. When
the button is pressed, the pointer is then actively grabbed by the
client.

Byte order

For image (pixmap/bitmap) data, the server defines the byte order,
and clients with different native byte ordering must swap bytes as
necessary. For all other parts of the protocol, the client defines the
byte order, and the server swaps bytes as necessary.

Children

The children of a window are its first-level subwindows.

Client

An application program connects to the window system server by
some interprocess communication (IPC) path, such as a TCP
connection or a shared memory buffer. This program is referred to
as a client of the window system server. More precisely, the client is
the IPC path itself; a program with multiple paths open to the server
is viewed as multiple clients by the protocol. Resource lifetimes are
controlled by connection lifetimes, not by program lifetimes.

Clipping region

In a graphics context, a bitmap or list of rectangles can be specified
to restrict output to a particular region of the window. The image
defined by the bitmap or rectangles is called a clipping region.

Colormap

A colormap consists of a set of entries defining color values. The
colormap associated with a window is used to display the contents of
the window; each pixel value indexes the colormap to produce RGB

2 Protocol

values that drive the guns of a monitor. Depending on hardware
limitations, one or more colormaps may be installed at one time, so
that windows associated with those maps display with correct colors.

Connection

The IPC path between the server and client program is known as a
connection. A client program typically (but not necessarily) has one
connection to the server over which requests and events are sent.

Containment

A window "contains" the pointer if the window is viewable and the
hotspot of the cursor is within a visible region of the window or a
visible region of one of its inferiors. The border of the window is
included as part of the window for containment. The pointer is "in"
a window if the window contains the pointer but no inferior contains
the pointer.

Coordinate system

The coordinate system has X horizontal and Y vertical, with the
origin [0, 0] at the upper left. Coordinates are discrete and are in
terms of pixels. Each window and pixmap has its own coordinate
system. For a window, the origin is inside the border at the inside
upper left.

Cursor

A cursor is the visible shape of the pointer on a screen. It consists
of a hot spot, a source bitmap, a shape bitmap, and a pair of colors.
The cursor defined for a window controls the visible appearance when
the pointer is in that window.

Depth

The depth of a window or pixmap is the number of bits per pixel
that it has. The depth of a graphics context is the depth of the
drawables it can be used in conjunction with for graphics output.

Device

Keyboards, mice, tablets, track-balls, button boxes, and so on are all
collectively known as input devices. The core protocol only deals with
two devices, "the keyboard" and "the pointer."

Direct Color

DirectColor is a class of colormap in which a pixel value is
decomposed into three separate subfields for indexing. The first
subfield indexes an array to produce red intensity values. The second
subfield indexes a second array to produce blue intensity values. The
third subfield indexes a third array to produce green intensity values.
The RGB values can be changed dynamically.

Protocol 3

Display

A server, together with its screens and input devices, is called a
display.

Drawable

Both windows and pixmaps can be used as sources and destinations in
graphics operations. These windows and pixmaps are collectively
known as drawables. However, an InputOnly window cannot be used
as a source or destination in a graphics operation.

Event

Clients are informed of information asynchronously by means of
events. These events can be generated either asynchronously from
devices or as side effects of client requests. Events are grouped into
types. The server never sends events to a client unless the client has
specificially asked to be informed of that type of event. However,
other clients can force events to be sent to other clients. Events are
typically reported relative to a window.

Event mask

Events are requested relative to a window. The set of event types
that a client requests relative to a window is described by using an
event mask.

Event synchronization

There are certain race conditions possible when demultiplexing device
events to clients (in particular deciding where pointer and keyboard
events should be sent when in the middle of window management
operations) . The event synchronization mechanism allows synchronous
processing of device events.

Event propagation

Device-related events propagate from the source window to ancestor
windows until some client has expressed interest in handling that type
of event or until the event is discarded explicitly.

Event source

The window the pointer is in is the source of a device-related event.

Exposure event

Servers do not guarantee to preserve the contents of windows when
windows are obscured or reconfigured. Exposure events are sent to
clients to inform them when contents of regions of windows have been
lost.

4 Protocol

Extension

Named extensions to the core protocol can be defined to extend the
system. Extension to output requests, resources, and event types are
all possible and are expected.

Focus window

Font

The focus window is another term for the input focus.

A font is a matrix of glyphs (typically characters). The protocol does
no translation or interpretation of character sets. The client simply
indicates values used to index the glyph array. A font contains
additional metric information to determine interglyph and interline
spacing.

GC, GContext

GC and gcontext are ~bbreviations for graphics context.

Glyph

Grab

A glyph is an image, typically of a character, in a font.

Keyboard keys, the keyboard, pointer buttons, the pointer, and the
server can be grabbed for exclusive use by a client. In general, these
facilities are not intended to be used by normal applications but are
intended for various input and window managers to implement various
styles of user interfaces.

Graphics context

Various information for graphics output is stored in a graphics context
such as foreground pixel, background pixel, line width, clipping region,
and so on. A graphics context can only be used with drawables that
have the same root and the same depth as the graphics context.

Gravity

See bit gravity and window gravity.

GrayScale

GrayScale can be viewed as a degenerate case of PseudoColor, in
which the red, green, and blue values in any given colormap entry are
equal, thus producing shades of gray. The gray values can be
changed dynamically.

Hotspot

A cursor has an associated hotspot that defines the point in the
cursor corresponding to the coordinates reported for the pointer.

Protocol 5

Identifier

An identifier is a unique value associated with a resource that clients
use to name that resource. The identifier can be used over any
connection.

Inferiors

The inferiors of a window are all of the subwindows nested below it:
the children, the children's children, and so on.

Input focus

The input focus is normally a window defining the scope for
processing of keyboard input. If a generated keyboard event would
normally be reported to this window or one of its inferiors, the event
is reported normally. Otherwise, the event is reported with respect to
the focus window. The input focus also can be set such that all
keyboard events are discarded and such that the focus window is
dynamically taken to be the root window of whatever screen the
pointer is on at each keyboard event.

Input manager

Control over keyboard input is typically provided by an input manager
client.

InputOnly window

An InputOnly window is a window that cannot be used for graphics
requests. InputOnly windows are invisible and can be used to control
such things as cursors, input event generation, and grabbing.
InputOnly windows cannot have InputOutput windows as inferiors.

InputOutput window

An InputOutput window is the normal kind of opaque window, used for
both input and output. InputOutput windows can have both
InputOutput and InputOnly windows as inferiors.

Key grabbing

Keys on the keyboard can be passively grabbed by a client. When
the key is pressed, the keyboard is then actively grabbed by the
client.

Keyboard grabbing

A client can actively grab control of the keyboard, and key events will
be sent to that client rather than the client the events would
normally have been sent to.

Keysym

An encoding of a symbol on a keycap on a keyboard.

6 Protocol

Mapped

A window is said to be mapped if a map call has been performed on
it. Unmapped windows and their inferiors are never viewable or
visible.

Modifier keys

Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple, CapsLock,
ShiftLock, and similar keys are called modifier keys.

Monochrome

Monochrome is a special case of StaticGray in which there are only
two colormap entries.

Obscure

A window is obscured if some other window obscures it. Window A
obscures window B if both are viewable InputOutput windows, A is
higher in the global stacking or<ler, and the rectangle defined by the
outside edges of A intersects the· rectangle defined by the outside
edges of B. Note the distinction between obscure and occludes. Also
note that window borders are included in the calculation and that a
window can be obscured and yet still have visible regions.

Occlude

A window is occluded if some other window occludes it. Window A
occludes window B if both are mapped, A is higher in the global
stacking order, and the rectangle defined by the outside edges of A
intersects the rectangle defined by the outside edges of B. Note the
distinction between occludes and obscures. Also note that window
borders are included in the calculation.

Padding

S orne padding bytes are inserted in the data stream to maintain
alignment of the protocol requests on natural boundaries. This
increases ease of portability to some machine architectures.

Parent window

If C is a child of P, then P is the parent of C.

Passive grab

Grabbing a key or button is a passive grab. The grab activates when
the key or button is actually pressed.

Pixel value

A pixel is an N -bit value, where N is the number of bit planes used
in a particular window or pixmap (that is, N is the depth of the
window or pixmap). For a window, a pixel value indexes a colormap
to derive an actual color to be displayed.

Protocol 7

Pixmap

A pixmap is a three-dimensional array of bits. A pixmap is normally
thought of as a two-dimensional array of pixels, where each pixel can
be a value from 0 to (2" N) -1 and where N is the depth (z axis) of
the pixmap. A pixmap can also be thought of as a stack of N
bitmaps.

Plane

When a pixmap or window is thought of as a stack of bitmaps, each
bitmap is called a plane or bit plane.

Plane mask

Graphics operations can be restricted to only affect a subset of bit
planes of a destination. A plane mask is a bit mask describing which
planes are to be modified. The plane mask is stored in a graphics
context.

Pointer

The pointer is the pointing device attached to the cursor and tracked
on the screens.

Pointer grabbing

A client can actively grab control of the pointer. Then button and
motion events will be sent to that client rather than the client the
events would normally have been sent to.

Pointing device

A pointing device is typically a mouse, tablet, or some other device
with effective dimensional motion. There is only one visible cursor
defined by the core protocol, and it tracks whatever pointing device is
attached as the pointer.

Property

Windows may have associated properties, which consist of a name, a
type, a data format, and some data. The protocol places no
interpretation on properties. They are intended as a general-purpose
naming mechanism for clients. For example, clients might use
properties to share information such as resize hints, program names,
and icon formats with a window manager.

Property list

The property list of a window is the list of properties that have been
defined for the window.

PseudoColor

PseudoColor is a class of colormap in which a pixel value indexes the
colormap to produce independent red, green, and blue values; that is,

8 Protocol

the colormap is viewed as an array of triples (RGB values). The
RGB values can be changed dynamically.

Redirecting control

Window managers (or client programs) may want to enforce window
layout policy in various ways. When a client attempts to change the
size or position of a window, the operation may be redirected to a
specified client rather than the operation actually being performed.

Reply

Information requested by a client program is sent back to the client
with a reply. Both events and replies are multiplexed on the same
connection. Most requests do not generate replies, although some
requests generate multiple replies.

Request

A command to the server is called a request. It is a single block of
data sent over a connection.

Resource

Windows, pixmaps, cursors, fonts, graphics contexts, and colormaps are
known as resources. They all have unique identifiers associated with
them for naming purposes. The lifetime of a resource usually is
bounded by the lifetime of the connection over which the resource was
created.

RGB values

Root

Red, green, and blue (RGB) intensity values are used to define color.
These values are always represented as 16-bit unsigned numbers, with
o being the minimum intensity and 65535 being the maximum
intensity. The server scales the values to match the display
hardware.

The root
whatever
created.

of a pixmap or graphics context is the same as the root of
drawable was used when the pixmap or graphics context was
The root of a window is the root window under which the

window was created.

Root window

Each screen has a root window covering it. It cannot be reconfigured
or unmapped, but it otherwise acts as a full-fledged window. A root
window has no parent.

Save set

The save set of a client is a list of other clients' windows that, if
they are inferiors of one of the client's windows at connection close,

Protocol 9

should not be destroyed and that should be remapped if currently
unmapped. S ave sets are typically used by window managers to avoid
lost windows if the manager terminates abnormally.

Scanline

A scanline is a list of pixel or bit values viewed as a horizontal row
(all values having the same y coordinate) of an image, with the
values ordered by increasing x coordinate.

Scanline order

An image represented in scanline order contains scanlines ordered by
increasing y coordinate.

Screen

A server can provide several independent screens, which typically have
physically independent monitors. This would be the expected
configuration when there is only a single keyboard and pointer shared
among the screens.

Selection

A selection can be thought of as an indirect property with dynamic
type; that is, rather than having the property stored in the server, it
is maintained by some client (the "owner"). A selection is global in
nature and is thought of as belonging to the user (although
maintained by clients), rather than as being private to a particular
window subhierarchy or a particular set of clients. When a client
asks for the contents of a selection, it specifies a selection "target
type". This target type can be used to control the transmitted
representation of the contents. For example, if the selection is "the
last thing the user clicked on" and that is currently an image, then
the target type might specify whether the contents of the image
should be sent in XY format or Z format. The target type can also
be used to control the class of contents transmitted; for example,
asking for the "looks" (fonts, line spacing, indentation, and so on) of
a paragraph selection rather than the text of the paragraph. The
target type can also be used for other purposes. The protocol does
not constrain the semantics.

Server

The server provides the basic windowing mechanism. It handles IPC
connections from clients, demultiplexes graphics requests onto the
screens, and multiplexes input back to the appropriate clients.

Server grabbing

The server can be grabbed by a single client for exclusive use. This
prevents processing of any requests from other client connections until
the grab is completed. This is typically only a transient state for

10 Protocol

such things as rubber-banding, pop-up menus, or to execute requests
indivisibly.

Sibling

Children of the same parent window are known as sibling windows.

Stacking order

Sibling windows may stack on top of each other. Windows above
other windows both obscure and occlude those lower windows. This is
similar to paper on a desk. The relationship between sibling windows
is known as the stacking order.

StaticColor

StaticColor can be viewed as a degenerate case of PseudoColor in
which the RGB values are predefined and read-only.

StaticGray

StaticGray can be viewed as a degenerate case of GrayScale in which
the gray values are predefined and read-only. The values are typically
linear or near-linear increasing ramps.

Stipple

Tile

A stipple pattern is a bitmap that is used to tile a region that will
serve as an additional clip mask for a fill operation with the
foreground color.

A pixmap can be replicated in two dimensions to tile a region. The
pixmap itself is also known as a tile.

Timestamp

A timestamp is a time value, expressed in milliseconds. It typically is
the time since the last server reset. Timestamp values wrap around
(after about 49.7 days). The server, given its current time is
represented by timestamp T, always interprets timestamps from clients
by treating half of the timestamp space as being earlier in time than
T and half of the timestamp space as being later in time than T.
One timestamp value (named CurrentTime) is never generated by the
server. This value is reserved for use in requests to represent the
current server time.

TrueColor

TrueColor can be viewed as a degenerate case of DirectColor in which
the subfields in the pixel value directly encode the corresponding RGB
values; that is, the colormap has predefined read-only RGB values.
The values are typically linear or near-linear increasing ramps.

Protocol 11

Type

A type is an arbitrary atom used to identify the interpretation of
property data. Types are completely uninterpreted by the server and
are solely for the benefit of clients.

Viewable

A window is viewable if it and all of its ancestors are mapped. This
does not imply that any portion of the window is actually visible.
Graphics requests can be performed on a window when it is not
viewable, but output will not be retained unless the server is
maintaining backing store.

Visible

A region of a window is visible if someone looking at the screen can
actually see it; that is, the window is viewable and the region is not
occluded by any other window.

Window gravity

When windows are resized, subwindows may be repositioned
automatically relative to some position in the window. This attraction
of a subwindow to some part of its parent is known as window
gravity.

Window manager

Manipulation of windows on the screen and much of the user interface
(policy) is typically provided by a window manager client.

XYFormat

The data for a pixmap is said to be in XY format if it is organized
as a set of bitmaps representing individual bit planes, with the planes
appearing from most-significant to least-significant in bit order.

ZFormat

The data for a pixmap is said to be in Z format if it is organized as
a set of pixel values in scanline order.

2 Protocol Formats
Request Format

Every request contains an 8-bit major opcode and a 16-bit length field
expressed in units of four bytes. Every request consists of four bytes
of a header (containing the major opcode, the length field, and a data
byte) followed by zero or more additional bytes of data. The length
field defines the total length of the request, including the header.
The length field in a request must equal the minimum length required
to contain the request. If the specified length is smaller or larger

12 Protocol

than the required length, an error is generated. Unused bytes in a
request are not required to be zero. Major opcodes 128 through 255
are reserved for extensions. Extensions are intended to contain
multiple requests, so extension requests typically have an additional
minor opcode encoded in the "spare" data byte in the request header.
However, the placement and interpretation of this minor opcode and
of all other fields in extension requests are not defined by the core
protocol. Every request on a given connection is implicitly assigned a
sequence number, starting with one, that is used in replies, errors,
and events.

Reply Format

Every reply contains a 32-bit length field expressed in units of four
bytes. Every reply consists of 32 bytes followed by zero or more
additional bytes of data, as specified in the length field. Unused
bytes within a reply are not guaranteed to be zero. Every reply also
contains the least-significant 16 bits of the sequence number of the
corresponding request.

Error Format

Error reports are 32 bytes long. Every error includes an 8-bit error
code. Error codes 128 through 255 are reserved for extensions.
Every error also includes the major and minor opcodes of the failed
request and the least-significant 16 bits of the sequence number of the
request. For the following errors (see section 5), the failing resource
ID is also returned: Colormap, Cursor, Drawable, Font, GContext,
IDChoice, Pixmap, and Window. For Atom errors, the failing atom is
returned. For Value errors, the failing value is returned. Other core
errors return no additional data. Unused bytes within an error are
not guaranteed to be zero.

Event Format

Events are 32 bytes long. Unused bytes within an event are not
guaranteed to be zero. Every event contains an 8-bit type code. The
most-significant bit in this code is set if the event was generated from
a SendEvent request. Event codes 64 through 127 are reserved for
extensions, although the core protocol does not define a mechanism
for selecting interest in such events. Every core event (with the
exception of KeymapNotify) also contains the least-significant 16 bits of
the sequence number of the last request issued by the client that was
(or is currently being) processed by the server.

Protocol 13

3 Syntactic Conventions
The rest of this document uses the following syntactic conventions.

• The syntax {oo.} encloses a set of alternatives.

• The syntax [oo.] encloses a set of structure components.

• In general, TYPEs are in uppercase and AlternativeValues are
capitalized.

• Requests in section 10 are described in the following format:

RequestName
argl: type1

argN: typeN
=>

result1: type1

resultM: typeM

Errors: kind 1 , oo., kindK

Description.

If no = > is present in the description, then the request has no reply
(it is asynchronous), although errors may still be reported. If = >+
is used, then one or more replies can be generated for a single
request.

• Events in section 12 are described in the following format:

EventName
valuel: type1

valueN: typeN

Description.

4 Common Types
LISTofFOO

A type name of the form LISTofFOO means a counted list of
elements of type FOO. The size of the length field may vary (it is
not necessarily the same size as a FOO), and in some cases, it may
be implicit. It is fully specified in Appendix B. Except where
explicitly noted, zero-length lists are legal.

14 Protocol

BITMASK
LIS TofVALUE

The types BITMASK and LISTofV AL UE are somewhat special.
Various requests contain arguments of the form:

value-mask: BITMASK
value-list: LISTofVALUE

These are used to allow the client to specify a subset of a
heterogeneous collection of optional arguments. The value-mask
specifies which arguments are to be provided; each such argument is
assigned a unique bit position. The representation of the BITMASK
will typically contain more bits than there are defined arguments.
The unused bits in the value-mask must be zero (or the server
generates a Value error). The value-list contains one value for each
bit set to 1 in the mask, from least-significant to most-significant bit
in the mask. Each value is represented with four bytes, but the
actual value occupies only the least-significant bytes as required. The
values of the unused bytes do not matter.

OR

A type of the form "TI or ... or Tn" means the union of the
indicated types. A single-element type is given as the element
without enclosing braces.

WINDOW: 32-bit value (top three bits guaranteed to be zero)

PIXMAP: 32-bit value (top three bits guaranteed to be zero)

CURSOR: 32-bit value (top three bits guaranteed to be zero)

FONT: 32-bit value (top three bits guaranteed to be zero)

GCONTEXT: 32-bit value (top three bits guaranteed to be zero)

COLORMAP: 32-bit value (top three bits guaranteed to be zero)

DRAWABLE: WINDOW or PIXMAP

FONT ABLE: FONT or GCONTEXT

ATOM: 32-bit value (top three bits guaranteed to be zero)

VlSUALID: 32-bit value (top three bits guaranteed to be zero)

VALUE: 32-bit quantity (used only in LISTofVALUE)

BYTE: 8-bit value

INT8: 8-bit signed integer

INTI6: I6-bit signed integer

INT32: 32-bit signed integer

Protocol 15

CARD8: 8-bit unsigned integer

CARDI6: I6-bit unsigned integer

CARD32: 32-bit unsigned integer

TIMESTAMP: CARD32

BITGRA VITY: { Forget, Static, NorthWest, North, NorthEast, West, Center,
East, SouthWest, South, SouthEast}

WINGRA VITY: { Unmap, Static, NorthWest, North, NorthEast, West, Center,
East, SouthWest, South, SouthEast}

BOOL: {True, False}

EVENT: { KeyPress, KeyRelease, OwnerGrabButton, ButtonPress,
ButtonRelease, EnterWindow, LeaveWindow, PointerMotion,
PointerMotionHint, Button1 Motion, Button2Motion, Button3Motion,
Button4Motion, Button5Motion, ButtonMotion, Exposure,
VisibilityChange, StructureNotify, ResizeRedirect, SubstructureNotify,
SubstructureRedirect, FocusChange, PropertyChange,
ColormapChange, KeymapState}

POINTEREVENT: { ButtonPress, ButtonRelease, EnterWindow, LeaveWindow:
POinterMotion, PointerMotionHint, Button1 Motion,
Button2Motion, Button3Motion, Button4Motion,
Button5Motion, ButtonMotion, KeymapState}

DEVICEEVENT: { KeyPress, KeyRelease, ButtonPress, ButtonRelease,
POinterMotion, Button1 Motion, Button2Motion,
Button3Motion, Button4Motion, Button5Motion,
ButtonMotion}

KEYSYM: 32-bit value (top three bits guaranteed to be zero)

KEYCODE: CARD8

BUTTON: CARD8

KEYMASK: {Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, Mod5}

BUTMASK: {Button1, Button2, Button3, Button4, Button5}

KEYBUTMASK: KEYMASK or BUTMASK

16 Protocol

STRINGS: LISTofCARDS

STRING 16: LISTofCHAR2B

CHAR2B: [byte 1 , byte2: CARDS]

POINT: [x, y: INTI6]

RECTANGLE: [x, y: INTI6,
width, height: CARDI6]

ARC: [x, y: INTI6,
width, height: CARDI6,
angle 1 , angle2: INTI6]

HOST: [family: {Internet, DECnet, Chaos}
address: LIS ToffiYTE]

The [x,y] coordinates of a RECTANGLE specify the upper-left corner.

The primary interpretation of large characters in a STRINGI6 is that
they are composed of two bytes used to index a 2-D matrix; hence,
the use of CHAR2B rather than CARDI6. This corresponds to the
JISIISO method of indexing 2-byte characters. It is expected that
most large fonts will be defined with 2-byte matrix indexing. For
large fonts constructed with linear indexing, a CHAR2B can be
interpreted as a I6-bit number by treating byteI as the most
significant byte. This means that clients should always transmit such
I6-bit character values most-significant byte first, as the server will
never byte-swap CHAR2B quantities.

The length, format, and interpretation of a HOST address are specific
to the family (see ChangeHosts request).

5 Errors
In general, when a request terminates with an error, the request has no
side effects (that is, there is no partial execution). The only requests for
which this is not true are ChangeWindowAttributes, ChangeGC, PolyText8,
PolyText16, FreeColors, StoreColors, and ChangeKeyboardControl.

The following error codes result from various requests as follows:

Protocol 17

Error

Access

Alloe

Atom

Colormap

Cursor

Drawable

Font

18 Protocol

Description

An attempt is made to grab a key/button
combination already grabbed by another client.

An attempt is made to free a colormap entry not
allocated by the client.

An attempt is made to store into a read-only or
an unallocated colormap entry.

An attempt is made to modify the access control
list from other than the local host (or otherwise
authorized client).

An attempt is made to select an event type that
only one client can select at a time when
another client has already selected it.

The server failed to allocate the requested
resource. Note that the explicit listing of Alloe
errors in request only covers allocation errors at
a very coarse level and is not intended to cover
all cases of a server running out of allocation
space in the middle of service. The semantics
when a server runs out of allocation space are
left unspecified, but a server may generate an
Alloe error on any request for this reason, and
clients should be prepared to receive such errors
and handle or discard them.

A value for an ATOM argument does not name
a defined ATOM.

A value for a COLORMAP argument does not
name a defined COLORMAP.

A value for a CURSOR argument does not name
a defined CURSOR.

A value for a DRAWABLE argument does not
name a defined WINDOW or PIXMAP.

A value for a FONT argument does not name a
defined FONT.

A value for a FONT ABLE argument does not
name a defined FONT or a defined GCONTEXT.

Error

GContext

IDChoice

Implementation

Length

Match

Name

Pixmap

Request

Value

Description

A value for a GCONTEXT argument does not
name a defined GCONTEXT.

The value chosen for a resource identifier either
is not included in the range assigned to the
client or is already in use.

The server does not implement some aspect of
the request. A server that generates this error
for a core request is deficient. As such, this
error is not listed for any of the requests, but
clients should be prepared to receive such errors
and handle or discard them.

The length of a request is shorter or longer than
that required to minimally contain the arguments.

The length of a request exceeds the maximum
length accepted by the server.

An InputOnly window is used as a DRAW ABLE.

In a graphics request, the GCONTEXT argument
does not have the same root and depth as the
destination DRAW ABLE argument.

Some argument (or pair of arguments) has the
correct type and range, but it fails to match in
some other way required by the request.

A font or color of the specified name does not
exist.

A value for a PIXMAP argument does not name
a defined PIXMAP.

The major or minor opcode does not specify a
valid request.

Some numeric value falls outside the range of
values accepted by the request. Unless a specific
range is specified for an argument, the full range
defined by the argument's type is accepted. Any
argument defined as a set of alternatives
typically can generate this error (due to the
encoding) .

Protocol 19

Error Description

Window A value for a WINDOW argument does not
name a defined WINDOW.

Note

The Atom, Colormap, Cursor, Drawable, Font, GContext, Pixmap,
and Window errors are also used when the argument type is
extended by union with a set of fixed alternatives, for example,
<WINDOW or PointerRoot or None >.

6 Keyboards
A KEYCODE represents a physical (or logical) key. Keycodes lie in the
inclusive range [8,255]. A keycode value carries no intrinsic information,
although server implementors may attempt to encode geometry information
(for example, matrix) to be interpreted in a server-dependent fashion. The
mapping between keys and keycodes cannot be changed using the protocol.

A KEYSYM is an encoding of a symbol on the cap of a key. The set of
defined KEYSYMs include the character sets Latin 1, Latin 2, Latin 3,
Latin 4, Kana, Arabic, Cryllic, Greek, Tech, Special, Publish, APL, and
Hebrew as well as a set of symbols common on keyboards (Return, Help,
Tab, and so on). KEYSYMs with the most-significant bit (of the 29 bits)
set are reserved as vendor-specific.

A list of KEYSYMs is associated with each KEYCODE, and the length of
the list can vary with each KEYCODE. The list is intended to convey the
set of symbols on the corresponding key. By convention, if the list
contains a single KE YS YM and that KE YS YM is alphabetic and case
distinction is relevant for it, then it should be treated as equivalent to a
two-element list of the lowercase and uppercase KEYSYMs. For example,
if the list contains the single KEYSYM for uppercase A, then the client
should treat it as if it were instead a pair with lowercase a as the first
KEYSYM and uppercase A as the second KEYSYM.

For any KEYCODE, the first KEYSYM in the list normally should be
chosen as the interpretation of a KeyPress when no modifier keys are
down. The second KEYSYM in the list normally should be chosen when
the Shift modifier is on or when the Lock modifier is on and Lock is
interpreted as ShiftLock. When the Lock modifier is on and is interpreted
as CapsLock, it is suggested that the Shift modifier first be applied to
choose a KEYSYM. However, if that KEYSYM is lowercase alphabetic,

20 Protocol

the corresponding uppercase KEYSYM should be used instead. Other
interpretations of CapsLock are possible. For example, it may be viewed
as equivalent to ShiftLock, applying only when the first KEYSYM is
lowercase alphabetic and the second KEYSYM is the corresponding
uppercase alphabetic. No interpretation of KEYSYMs beyond the first two
in a list is suggested here. No spatial geometry of the symbols on the
key is defined by their order in the KEYS YM list, although a geometry
might be defined on a vendor-specific basis.

The mapping between KEYCODEs and KEYSYMs is not used directly by
the server; it is merely stored for reading and writing by clients.

The KEYMASK modifier named Lock is intended to be mapped to either a
CapsLock or a ShiftLock key, but which one is left as application-specific
and/or user-specific. However, it is suggested that the determination be
made according to the associated KEYSYM(s) of the corresponding
KEYCODE.

7 Pointers
Buttons are always numbered starting with one.

8 Predefined Atoms
Predefined atoms are not strictly necessary and may not be useful in all
environments, but they will eliminate many InternAtom requests in most
applications. Note that they are predefined only in the sense of having
numeric values, not in the sense of having required semantics. The core
protocol imposes no semantics on these names, except as they are used in
FONTPROP structures (see QueryFont request).

The following names have predefined atom values. Note that uppercase
and lowercase matter.

ARC
ATOM
BITMAP
CAP_HEIGHT
CARDINAL
COLORMAP
COPYRIGHT
CURSOR
CUT_BUFFERO
CUT_BUFFERl
CUT_BUFFER2
CUT_BUFFER3
CUT_BUFFER4

ITALIC_ANGLE
MAX_SPACE
MIN_SPACE
NORM_SPACE
NOTICE
PIXMAP
POINT
POINT_SIZE
PRIMARY
QUAD_WIDTH
RECTANGLE
RESOLUTION
RESOURCE_MANAGER

STRING
SUBSCRIPT_X
SUBSCRIPT_Y
SUPERSCRIPT_X
SUPERSCRIPT_Y
UNDERLINE_POSITION
UNDERLINE_THICKNESS
VISUALID
WEIGHT
WINDOW
WM_CLASS
WM_CLIENT_MACHINE
WM_COMMAND

Protocol 21

CUT_BUFFER5
CUT_BUFFER6
CUT_BUFFER7
DRAWABLE
END_SPACE
FAMILY_NAME
FONT
FONT_NAME
FULL_NAME
INTEGER

RGB_BEST_MAP
RGB_BLUE_MAP
RGB_COLOR_MAP
RGB_DEFAULT_MAP
RGB_GRAY_MAP
RGB_GREEN_MAP
RGB~ED_MAP

SECONDARY
STRIKEOUT_ASCENT

WM_HINTS
WM_ICON~AME

WM_ICON_SIZE
WM~AME
WM~ORMAL_HINTS
WM_SIZE_HINTS
WM_TRANSIENTJOR
WM~OOM_HINTS
X_HEIGHT
STRIKEOUT_DESCENT

To avoid conflicts with possible future names for which semantics might be
imposed (either at the protocol level or in terms of higher level user
interface models), names beginning with an underscore should be used for
atoms that are private to a particular vendor or organization. To
guarantee no conflicts between vendors and organizations, additional prefixes
need to be used. However, the protocol does not define the mechanism for
choosing such prefixes. For names private to a single application or end
user but stored in globally accessible locations, it is suggested that two
leading underscores be used to avoid conflicts with other names.

9 Connection Setup
For remote clients, the X protocol can be built on top of any reliable byte
stream.

The client must send an initial byte of data to identify the byte order to
be employed. The value of the byte must be octal 102 or 154. The value
102 (ASCII uppercase B) means values are transmitted most-significant
byte first, and value 154 (ASCII lowercase 1) means values are transmitted
least-significant byte first. Except where explicitly noted in the protocol,
all l6-bit and 32-bit quantities sent by the client must be transmitted with
this byte order, and all l6-bit and 32-bit quantities returned by the server
will be transmitted with this byte order.

Following the byte-order byte, the client sends the following information at
connection setup:

protocol-major-version: CARD16
protocol-minor-version: CARD16
authorization-protocol-name: STRING8
authorization-protocol-data: S TRING8

The version numbers indicate what version of the protocol the client
expects the server to implement.

22 Protocol

The authorization name indicates what authorization protocol the client
expects the server to use, and the data is specific to that protocol.
Specification of valid authorization mechanisms is not part of the core
X protocol. It is hoped that eventually one authorization protocol will
be agreed upon. In the meantime, a server that implements a
different protocol than the client expects or that only implements the
host-based mechanism may simply ignore this information. If both
name and data strings are empty, this is to be interpreted as "no
explicit authorization."

The client receives the following information at connection setup:

success: BOOL
protocol-major-version: CARD16
protocol-minor-version: CARD16
length: CARD16

Length is the amount of additional data to follow, in units of four
bytes. The version numbers are an escape hatch in case future
revisions of the protocol are necessary. In general, the major version
would increment for incompatible changes, and the minor version
would increment for small upward compatible changes. Barring
changes, the major version will be 11, and the minor version will be
O. The protocol version numbers returned indicate the protocol the
server actually supports. This might not equal the version sent by
the client. The server can (but need not) refuse connections from
clients that offer a different version than the server supports. A
server can (but need not) support more than one version
simultaneously.

The client receives the following additional data if authorization fails:

reason: STRING8

The client receives the following additional data if authorization is accepted:

vendor: STRING8
release-number: CARD32
resource-id-base, resource-id-mask: CARD32
image-byte-order: { LSBFirst, MSBFirst}
bitmap-scanline-unit: {8, 16, 32}
bitmap-scanline-pad: {8, 16, 32}
bitmap-bit-order: {LeastSignificant, MostSignificant}
pixmap-formats: LISTofFORMAT
roots: LISTofSCREEN
motion-buffer-size: CARD32
maximum-request-Iength: CARD16
min-keycode, max-keycode: KEYCODE

Protocol 23

where:

FORMAT:

SCREEN:

DEPTH:

[depth: CARD8,
bits-per-pixel: {I, 4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]

[root: WINDOW
width-in-pixels, height-in-pixels: CARD16
width-in-millimeters, height-in-millimeters: CARD16
allowed-depths: LIS ToIDEPTH
root-depth: CARD8
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
min-installed-maps, max-installed-maps: CARD16
backing-stores: { Never, WhenMapped, Always}
save-unders: BOOL
current-input-masks: SETofEVENT]

[depth: CARD8
visuals: LISToMSUALTYPE]

VISUALTYPE: [visual-id: VISUALID
class: { StaticGray, StaticColor, TrueColor, GrayScale,

PseudoColor, DirectColor}
red-mask, green-mask, blue-mask: CARD32
bits-per-rgb-value: CARD8
colormap-entries: CARDI6]

The information that is global to the server is:

The vendor string gives some identification of the owner of the server
implementation. The vendor controls the semantics of the release
number.

The resource-id-mask contains a single contiguous set of bits (at least
18) . The client allocates resource IDs for types WINDOW, PIXMAP,
CURSOR, FONT, GCONTEXT, and COLORMAP by choosing a value
with only some subset of these bits set and ORing it with resource
id-base. Only values constructed in this way can be used to name
newly created resources over this connection. Resource IDs never
have the top three bits set. The client is not restricted to linear or
contiguous allocation of resource IDs. Once an ID has been freed, it
can be reused, but this should not be necessary. An ID must be
unique with respect to the IDs of all other resources, not just other

24 Protocol

resources of the same type. However, note that the value spaces of
resource identifiers, atoms, visualids, and keysyms are distinguished by
context, and as such, are not required to be disjoint; for example, a
given numeric value might be both a valid window ID, a valid atom,
and a valid keysym.

Although the server is in general responsible for byte-swapping data to
match the client, images are always transmitted and received in
formats (including byte order) specified by the server. The byte order
for images is given by image-byte-order and applies to each scanline
unit in XY format (bitmap format) and to each pixel value in Z
format.

A bitmap is represented in scanline order. Each scanline is padded to
a multiple of bits as given by bitmap-scanline-pad. The pad bits are
of arbitrary value. The scanline is quantized in multiples of bits as
given by bitmap-scanline-unit. The bitmap-scanline-unit is always less
than or equal to the bitmap-scanline-pad. Within each unit, the
leftmost bit in the bitmap is either the least-significant or most
significant bit in the unit, as given by bitmap-bit-order. If a pixmap
is represented in XY format, each plane is represented as a bitmap,
and the planes appear from most-significant to least-significant in bit
order with no padding between planes.

Pixmap-formats contains one entry for each depth value. The entry
describes the Z format used to represent images of that depth. An
entry for a depth is included if any screen supports that depth, and
all screens supporting that depth must support only that Z format for
that depth. In Z format, the pixels are in scanline order, left to
right within a scanline. The number of bits used to hold each pixel
is given by bits-per-pixel. Bits-per-pixel may be larger than strictly
required by the depth, in which case the least-significant bits are used
to hold the pixmap data, and the values of the unused high-order bits
are undefined. When the bits-per-pixel is 4, the order of nibbles in
the byte is the same as the image byte-order. When the bits-per-pixel
is 1, the format is identical for bitmap format. Each scanline is
padded to a multiple of bits as given by scanline-pad. When bits-per
pixel is 1, this will be identical to bitmap-scanline-pad.

How a pointing device roams the screens is up to the server
implementation and is transparent to the protocol. No geometry is
defined among screens.

The server may retain the recent history of pointer motion and do so
to a finer granularity than is reported by MotionNotify events. The
GetMotionEvents request makes such history available. The motion
buffer-size gives the approximate size of the history buffer.

Protocol 25

Maximum-request-Iength specifies the maximum length of a request
accepted by the server, in 4-byte units. That is, length is the
maximum value that can appear in the length field of a request.
Requests larger than this maximum generate a Length error, and the
server will read and simply discard the entire request. Maximum
request-length will always be at least 4096 (that is, requests of length
up to and including 16384 bytes will be accepted by all servers).

Min-keycode and max-keycode specify the smallest and largest keycode
values transmitted by the server. Min-keycode is never less than 8,
and max-keycode is never greater than 255. Not all keycodes in this
range are required to have corresponding keys.

The information that applies per screen is:

The allowed-depths specifies what pixmap and window depths are
supported. Pixmaps are supported for each depth listed, and windows
of that depth are supported if at least one visual type is listed for
the depth. A pixmap depth of one is always supported and listed,
but windows of depth one might not be supported. A depth of zero
is never listed, but zero-depth InputOnly windows are always supported.

Root-depth and root-visual specify the depth and visual type of the
root window. Width-in-pixels and height-in-pixels specify the size of
the root window (which cannot be changed). The class of the root
window is always InputOutput. Width-in-millimeters and height-in
millimeters can be used to determine the physical size and the aspect
ratio.

The default-colormap is the one initially associated with the root
window. Clients with minimal color requirements creating windows of
the same depth as the root may want to allocate from this map by
default.

Black-pixel and white-pixel can be used in implementing a monochrome
application. These pixel values are for permanently allocated entries
in the default-colormap. The actual RGB values may be settable on
some screens and, in any case, may not actually be black and white.
The names are intended to convey the expected relative intensity of
the colors.

The border of the root window is initially a pixmap filled with the
black-pixel. The initial background of the root window is a pixmap
filled With some unspecified two-color pattern using black-pixel and
white-pixel.

Min-installed-maps specifies the number of maps that can be
guaranteed to be installed simultaneously (with InstaIIColormap),
regardless of the number of entries allocated in each map. Max
installed-maps specifies the maximum number of maps that might

26 Protocol

possibly be installed simultaneously, depending on their allocations.
Multiple static-visual colormaps with identical contents but differing in
resource ID should be considered as a single map for the purposes of
this number. For the typical case of a single hardware colormap,
both values will be 1.

Backing-stores indicates when the server supports backing stores for
this screen, although it may be storage limited in the number of
windows it can support at once. If save-unders is True, the server
can support the save-under mode in CreateWindow and
ChangeWindowAttributes, although again it may be storage limited.

The current-input-events is what GetWindowAttributes would return for
the all-event-masks for the root window.

The information that applies per visual-type is:

A given visual type might be listed for more than one depth or for
more than one screen.

For PseudoColor, a pixel value indexes a colormap to produce
independent RGB values; the RGB values can be changed dynamically.
GrayScale is treated in the same way as PseudoColor except which
primary drives the screen is undefined; thus, the client should always
store the same value for red, green, and blue in colormaps. For
DirectColor, a pixel value is decomposed into separate RGB subfields,
and each subfield separately indexes the colormap for the
corresponding value. The RGB values can be changed dynamically.
TrueColor is treated in the same way as DirectColor except the
colormap has predefined read-only RGB values. These values are
server-dependent but provide linear or near-linear increasing ramps in
each primary. StaticColor is treated in the same way as PseudoColor
except the colormap has predefined read-only RGB values, which are
server-dependent. StaticGray is treated in the same way as
StaticColor except the red, green, and blue values are equal for any
single pixel value, resulting in shades of gray. StaticGray with a two
entry colormap can be thought of as monochrome.

The red-mask, green-mask, and blue-mask are only defined for
DirectColor and TrueColor. Each has one contiguous set of bits set to
1 with no intersections. Usually each mask has the same number of
bits set to 1.

The bits-per-rgb-value specifies the log base 2 of the number of
distinct color intensity values (individually) of red, green, and blue.
This number need not bear any relation to the number of colormap
entries. Actual RGB values are always passed in the protocol within
a 16-bit spectrum, with 0 being minimum intensity and 65535 being
the maximum intensity. On hardware that provides a linear zero-

Protocol 27

based intensity ramp, the following relationship exists:

hw-intensity = protocol-intensity I (65536 I total-hw-intensities)

Colormap entries are indexed from O. The colormap-entries defines
the number of available colormap entries in a newly created colormap.
For DirectColor and TrueColor, this will usually be 2 to the power of
the maximum number of bits set to 1 in red-mask, green-mask, and
blue-mask.

10 Requests
CreateWindow

wid, parent: WINDOW
class: {lnputOutput, InputOnly, CopyFromParent}
depth: CARDS
visual: VISUALID or CopyFromParent
x, y: INT16
width, height, border-width: CARD16
value-mask: BITMASK
value-list: LISTofV AL DE

Errors: IDChoice, Window, Pixmap, Colormap, Cursor, Match, Value,
Alloc

This request creates an unmapped window and assigns the identifier
wid to it.

A class of CopyFromParent means the class is taken from the parent.
A depth of zero for class InputOutput or CopyFromParent means the
depth is taken from the parent. A visual of CopyFromParent means
the visual type is taken from the parent. For class InputOutput, the
visual type and depth must be a combination supported for the screen
(or a Match error results). The depth need not be the same as the
parent, but the parent must not be of class InputOnly (or a Match
error results). For class InputOnly, the depth must be zero (or a
Match error results), and the visual must be one supported for the
screen (or a Match error results). However, the parent can have any
depth and class.

The server essentially acts as if InputOnly windows do not exist for
the purposes of graphics requests, exposure processing, and
VisibilityNotify events. An InputOnly window cannot be used as a
drawable (as a source or destination for graphics requests). InputOnly
and InputOutput windows act identically in other respects-properties,
grabs, input control, and so on.

28 Protocol

The window is placed on top in the stacking order with respect to
siblings. The x and y coordinates are relative to the parent's origin
and specify the position of the upper-left outer corner of the window
(not the origin). The width and height specify the inside size (not
including the border) and must be nonzero (or a Value error results).
The border-width for an InputOnly window must be zero (or a Match
error results).

The value-mask and value-list specify attributes of the window that are
to be explicitly initialized. The possible values are:

Attribute

background-pixmap
background-pixel
border-pix map
border-pixel
bit-gravity
win-gravity
backing-store
backing-planes
backing-pixel
save-under
event-mask
do-not-prop agate-mask
override-redirect
colormap
cursor

Type

PIXMAP or None or ParentRelative
CARD32
PIXMAP or CopyFromParent
CARD32
BITGRAVITY
WINGRAVITY
{ NotUseful, WhenMapped, Always}
CARD32
CARD32
BOOL
SETofEVENT
SEToIDEVICEEVENT
BOOL
COLORMAP or CopyFromParent
CURSOR or None

The default values when attributes are not explicitly initialized are:

Attribute

background -pixmap
border-pixmap
bit-gravity
win-gravity
backing-store
backing-planes
backing-pixel
save-under
event-mask

Default

None
CopyFromParent
Forget
NorthWest
NotUseful
all ones
zero
False
{} (empty set)

Protocol 29

Attribute

do-not-propagate-mask
override-redirect
colormap
cursor

Default

{} (empty set)
False
CopyFromParent
None

Only the following attributes are defined for InputOnly windows:

• win-gravity

• event-mask

• do-not-prop agate-mask

• override-redirect

• cursor

It is a Match error to specify any other attributes for InputOnly
windows.

If background-pix map is given, it overrides the default background
pixmap. The background pixmap and the window must have the
same root and the same depth (or a Match error results). Any size
pixmap can be used, although some sizes may be faster than others.
If background None is specified, the window has no defined
background. If background ParentRelative is specified, the parent's
background is used, but the window must have the same depth as the
parent (or a Match error results). If the parent has background
None, then the window will also have background None. A copy of
the parent's background is not made. The parent's background is
reexamined each time the window background is required. If
background-pixel is given, it overrides the default background-pixmap
and any background-pixmap given explicitly, and a pixmap of
undefined size filled with background-pixel is used for the background.
Range checking is not performed on the background-pixel value; it is
simply truncated to the appropriate number of bits. For a
ParentRelative background, the background tile origin always aligns
with the parent's background tile origin. Otherwise, the background
tile origin is always the window origin.

When no valid contents are available for regions of a window and the
regions are either visible or the server is maintaining backing store,
the server automatically tiles the regions with the window's
background unless the window has a background of None. If the
background is None, the previous screen contents from other windows
of the same depth as the window are simply left in place if the

30 Protocol

contents come from the parent of the window or an inferior of the
parent; otherwise, the initial contents of the exposed regions are
undefined. Exposure events are then generated for the regions, even
if the background is None.

The border tile origin is always the same as the background tile
orIgIn. If border-pixmap is given, it overrides the default border
pixmap. The border pixmap and the window must have the same
root and the same depth (or a Match error results). Any size
pixmap can be used, although some sizes may be faster than others.
If CopyFromParent is given, the parent's border pixmap is copied
(subsequent changes to the parent's border attribute do not affect the
child), but the window must have the same depth as the parent (or a
Match error results). The pixmap might be copied by sharing the
same pixmap object between the child and parent or by making a
complete copy of the pixmap contents. If border-pixel is given, it
overrides the default border-pix map and any border-pixmap given
explicitly, and a pixmap of undefined size filled with border-pixel is
used for the border. Range checking is not performed on the border
pixel value; it is simply truncated to the appropriate number of bits.

Output to a window is always clipped to the inside of the window, so
that the border is never affected.

The bit-gravity defines which region of the window should be retained
if the window is resized, and win-gravity defines how the window
should be repositioned if the parent is resized (see ConfigureWindow
request) .

A backing-store of When Mapped advises the server that maintaining
contents of obscured regions when the window is mapped would be
beneficial. A backing-store of Always advises the server that
maintaining contents even when the window is unmapped would be
beneficial. In this case, the server may generate an exposure event
when the window is created. A value of NotUseful advises the server
that maintaining contents is unnecessary, although a server may still
choose to maintain contents while the window is mapped. Note that
if the server maintains contents, then the server should maintain
complete contents not just the region within the parent boundaries,
even if the window is larger than its parent. While the server
maintains contents, exposure events will not normally be generated,
but the server may stop maintaining contents at any time.

If save-under is True, the server is advised that when this window is
mapped, saving the contents of windows it obscures would be
beneficial.

Protocol 31

When the contents of obscured regions of a window are being
maintained, regions obscured by noninferior windows are included in
the destination (and source, when the window is the source) of
graphics requests, but regions obscured by inferior windows are not
included.

The backing-planes indicates (with bits set to 1) which bit planes of
the window hold dynamic data that must be preserved in backing
stores and during save-unders. The backing-pixel specifies what value
to use in planes not covered by backing-planes. The server is free to
save only the specified bit planes in the backing-store or save-under
and regenerate the remaining planes with the specified pixel value.
Any bits beyond the specified depth of the window in these values are
simply ignored.

The event-mask defines which events the client is interested in for
this window (or for some event types, inferiors of the window). The
do-not-propagate-mask defines which events should not be propagated
to ancestor windows when no client has the event type selected in
this window.

The override-redirect specifies whether map and configure requests on
this window should override a SubstructureRedirect on the parent,
typically to inform a window manager not to tamper with the window.

The colormap specifies the colormap that best reflects the true colors
of the window. Servers capable of supporting multiple hardware
colormaps may use this information, and window managers may use it
for InstaliColormap requests. The colormap must have the same
visual type as the window (or a Match error results). If
CopyFromParent is specified, the parent's colormap is copied
(subsequent changes to the parent's colormap attribute do not affect
the child). However, the window must have the same visual type as
the parent (or a Match error results), and the parent must not have
a colormap of None (or a Match error results). For an explanation of
None, see FreeColormap request. The colormap is copied by sharing
the colormap object between the child and the parent, not by making
a complete copy of the colormap contents.

If a cursor is specified, it will be used whenever the pointer is in the
window. If None is specified, the parent's cursor will be used when
the pointer is in the window, and any change in the parent's cursor
will cause an immediate change in the displayed cursor.

This request generates a CreateNotify event.

The background and border pixmaps and the cursor may be freed
immediately if no further explicit references to them are to be made.

32 Protocol

Subsequent drawing into the background or border pixmap has an
undefined effect on the window state. The server might or might not
make a copy of the pixmap.

ChangeWindowAttributes

window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Window, Pixmap, Colormap, Cursor, Match, Value, Access

The value-mask and value-list specify which attributes are to be
changed. The values and restrictions are the same as for
CreateWindow.

Setting a new background, whether by background-pixmap or
background-pixel, overrides any previous background. Setting a new
border, whether by border-pixel or border-pixmap, overrides any
previous border.

Changing the background does not cause the window contents to be
changed. Setting the border or changing the background such that
the border tile origin changes causes the border to be repainted.
Changing the background of a root window to None or ParentRelative
restores the default background pixmap. Changing the border of a
root window to CopyFromParent restores the default border pixmap.

Changing the win-gravity does not affect the current position of the
window.

Changing the backing-store of an obscured window to When Mapped or
Always or changing the backing-planes, backing-pixel, or save-under of
a mapped window may have no immediate effect.

Multiple clients can select input on the same window; their event
masks are disjoint. When an event is generated, it will be reported
to all interested clients. However, only one client at a time can
select for SubstructureRedirect, only one client at a time can select for
ResizeRedirect, and only one client at a time can select for
ButtonPress. An attempt to violate these restrictions results in an
Access error.

There is only one do-not-propagate-mask for a window, not one per
client.

Changing the colormap of a window (by defining a new map, not by
changing the contents of the existing map) generates a ColormapNotify
event. Changing the colormap of a visible window might have no
immediate effect on the screen (see InstaliColormap request).

Changing the cursor of a root window to None restores the default
cursor.

Protocol 33

The order in which attributes are verified and altered is server
dependent. If an error is generated, a subset of the attributes may
have been altered.

GetWindowAttributes

window: WINDOW

=>
visual: VISUALID
class: {lnputOutput, InputOnly}
bit-gravity: BITGRA VITY
win-gravity: WINGRA VITY
backing-store: { NotUseful, WhenMapped, Always}
backing-planes: CARD32
backing-pixel: CARD32
save-under: BOOL
colormap: COLORMAP or None
map-is-installed: BOOL
map-state: { Unmapped, Unviewable, Viewable}
all-event-masks, your-event-mask:. SETofEVENT
do-not-propagate-mask: SEToIDEVICEEVENT
override-redirect: BOOL

Errors: Window

This request returns the current attributes of the window. A window
is Unviewable if it is mapped but some ancestor is unmapped. All
event-masks is the inclusive-OR of all event masks selected on the
window by clients. Your-event-mask is the event mask selected by
the querying client.

DestroyWindow

window: WINDOW

Errors: Window

If the argument window is mapped, an UnmapWindow request is
performed automatically. The window and all inferiors are then
destroyed, and a DestroyNotify event is generated for each window.
The ordering of the DestroyNotify events is such that for any given
window, DestroyNotify is generated on all inferiors of the window
before being generated on the window itself. The ordering among
siblings and across subhierarchies is not otherwise constrained.

Normal exposure processing on formerly obscured windows is
performed.

If the window is a root window, this request has no effect.

34 Protocol

DestroySubwindows

window: WINDOW

Errors: Window

This request performs a DestroyWindow request on all children of the
window, in bottom-to-top stacking order.

C hangeSaveSet

window: WINDOW
rrwde: { Insert, Delete}

Errors: Window, Match, Value

This request adds or removes the specified window from the client's
save-set. The window must have been created by some other client
(or a Match error results). For further information about the use of
the save-set, see section 11.

When windows are destroyed, the server automatically removes them
from the save-set.

ReparentWindow

window, parent: WINDOW
x, y: INT16

Errors: Window, Match

If the window is mapped, an UnmapWindow request is performed
automatically first. The window is then removed from its current
position in the hierarchy and is inserted as a child of the specified
parent. The x and y coordinates are relative to the parent's origin
and specify the new position of the upper-left outer corner of the
window. The window is placed on top in the stacking order with
respect to siblings. A ReparentNotify event is then generated. The
override-redirect attribute of the window is passed on in this event; a
value of True indicates that a window manager should not tamper
with this window. Finally, if the window was originally mapped, a
MapWindow request is performed automatically.

Normal exposure processing on formerly obscured windows is
performed. The server might not generate exposure events for regions
from the initial unmap that are immediately obscured by the final
map.

A Match error is generated if:

• The new parent is not on the same screen as the old parent.

• The new parent is the window itself or an inferior of the
window.

Protocol 35

• The window has a ParentRelative background, and the new parent
is not the same depth as the window.

MapWindow

window: WINDOW

Errors: Window

If the window is already mapped, this request has no effect.

If the override-redirect attribute of the window is False and some
other client has selected SubstructureRedirect on the parent, then a
MapRequest event is generated, but the window remains unmapped.
Otherwise, the window is mapped, and a MapNotify event is generated.

If the window is now viewable and its contents have been discarded,
the window is tiled with its background (if no background is defined,
the existing screen contents are not altered), and zero or more
exposure events are generated. If a backing-store has been maintained
while the window was unmapped, no exposure events are generated.
If a backing-store will now be maintained, a full-window exposure is
always generated. Otherwise, only visible regions may be reported.
Similar tiling and exposure take place for any newly viewable inferiors.

MapSubwindows

window: WINDOW

Errors: Window

This request performs a MapWindow request on all unmapped children
of the window, in top-to-bottom stacking order.

UnmapWindow

window: WINDOW

Errors: Window

If the window is already unmapped, this request has no effect.
Otherwise, the window is unmapped, and an UnmapNotify event is
generated. Normal exposure processing on formerly obscured windows
is performed.

UnmapSubwindows

window: WINDOW

Errors: Window

This request performs an UnmapWindow request on all mapped
children of the window, in bottom-to-top stacking order.

ConfigureWindow

window: WINDOW
value-mask: BITMASK

36 Protocol

value-list: LISTofVALUE

Errors: Window, Match, Value

This request changes the configuration of the window. The value
mask and value-list specify which values are to be given. The
possible values are:

Attribute

x
y
width
height
border-width
sibling
stack-mode

Type

INTI6
INTI6
CARDI6
CARDI6
CARDI6
WINDOW
{Above, Below, Toplf, Bottomlf, Opposite}

The x and y coordinates are relative to the parent's Origin and specify
the position of the upper-left outer corner of the window. The width
and height specify the inside size, not including the border, and must
be nonzero (or a Value error results). Those values not specified are
taken from the existing geometry of the window. Note that changing
just the border-width leaves the outer-left corner of the window in a
fixed position but moves the absolute position of the window's origin.
It is a Match error to attempt to make the border-width of an
InputOnly window nonzero.

If the override-redirect attribute of the window is False and some
other client has selected SubstructureRedirect on the parent, a
ConfigureRequest event is generated, and no further processing is
performed. Otherwise, the following is performed:

If some other client has selected ResizeRedirect on the window and
the inside width or height of the window is being changed, a
ResizeRequest event is generated, and the current inside width and
height are used instead. Note that the override-redirect attribute of
the window has no effect on ResizeRedirect and that
SubstructureRedirect on the parent has precedence over ResizeRedirect
on the window.

The geometry of the window is changed as specified, the window is
restacked among siblings, and a Configure Notify event is generated if
the state of the window actually changes. If the inside width or
height of the window has actually changed, then children of the
window are affected, according to their win-gravity. Exposure

Protocol 37

processing is performed on formerly obscured windows (including the
window itself and its inferiors if regions of them were obscured but
now are not). Exposure processing is also performed on any new
regions of the window (as a result of increasing the width or height)
and on any regions where window contents are lost.

If the inside width or height of a window is not changed but the
window is moved or its border is changed, then the contents of the
window are not lost but move with the window. Changing the inside
width or height of the window causes its contents to be moved or
lost, depending on the bit-gravity of the window. It also causes
children to be reconfigured, depending on their win-gravity. For a
change of width and height of Wand H, we define the [x, y] pairs
as:

Direction

NorthWest
North
NorthEast
West
Center
East
SouthWest
South
SouthEast

Deltas

[0, 0]
[W/2, 0]
[W, 0]
[0, H/2]
[W/2, H/2]
[W, H/2]
[0, HJ
[W/2, H]
[W, H]

When a window with one of these bit-gravities is resized, the
corresponding pair defines the change in position of each pixel in the
window. When a window with one of these win-gravities has its
parent window resized, the corresponding pair defines the change in
position of the window within the parent. This repositioning generates
a GravityNotify event. GravityNotify events are generated after the
ConfigureNotify event is generated.

A gravity of Static indicates that the contents or origin should not
move relative to the origin of the root window. If the change in size
of the window is coupled with a change in position of [X, Y], then for
bit-gravity the change in position of each pixel is [- X, - YJ and for
win-gravity the change in position of a child when its parent is so
resized is [- X, - YJ. Note that Static gravity still only takes effect
when the width or height of the window is changed, not when the
window is simply moved.

38 Protocol

A bit-gravity of Forget indicates that the window contents are always
discarded after a size change, even if backing-store or save-under has
been requested. The window is tiled with its background (except, if
no background is defined, the existing screen contents are not altered)
and zero or more exposure events are generated. A server may also
ignore the specified bit-gravity and use Forget instead.

A win-gravity of Unmap is like NorthWest, but the child is also
unmapped when the parent is resized, and an UnmapNotify event is
generated. UnmapNotify events are generated after the ConfigureNotify
event is generated.

If a sibling and a stack-mode are specified, the window is restacked as
follows:

Above

Below

Toplf

Bottomlf

Opposite

The window is placed just above the sibling.

The Window is placed just below the sibling.

If the sibling occludes the window, then the window
is placed at the top of the stack.

If the window occludes the sibling, then the window
is placed at the bottom of the stack.

If the sibling occludes the window, then the window
is placed at the top of the stack. Otherwise, if the
window occludes the sibling, then the window is
placed at the bottom of the stack.

If a stack-mode is specified but no sibling is specified, the window is
restacked as follows:

Above

Below

Toplf

Bottomlf

Opposite

The window is placed at the top of the stack.

The window is placed at the bottom of the stack.

If any sibling occludes the window, then the window
is placed at the top of the stack.

If the window occludes any sibling, then the window
is placed at the bottom of the stack.

If any sibling occludes the window, then the window
is placed at the top of the stack. Otherwise, if the
window occludes any sibling, then the window is
placed at the bottom of the stack.

Protocol 39

It is a Match error if a sibling is specified without a stack-mode or if
the window is not actually a sibling.

Note that the computations for BoUomlf, Toplf, and Opposite are
performed with respect to the window's final geometry (as controlled
by the other arguments to the request), not to its initial geometry.

Attempts to configure a root window have no effect.

CirculateWindow

window: WINDOW
direction: {RaiseLowest, LowerHighest}

Errors: Window, Value

If some other client has selected SubstructureRedirect on the window,
then a CirculateRequest event is generated, and no further processing
is performed. Otherwise, the following is performed, and then a
CirculateNotify event is generated if the window is actually restacked.

For RaiseLowest, CirculateWindow raises the lowest mapped child (if
any) that is occluded by another child to the top of the stack. For
LowerHighest, CirculateWindow lowers the highest mapped child (if
any) that occludes another child to the bottom of the stack.
Exposure processing is performed on formerly obscured windows.

GetGeometry

drawable: DRAWABLE

=>
root: WINDOW
depth: CARD8
x, y: INTI6
width, height, border-width: CARDI6

Errors: Drawable

This request returns the root and current geometry of the drawable.
The depth is the number of bits per pixel for the object. The x, y,
and border-width will always be zero for pixmaps. For a window, the
x and y coordinates specify the upper-left outer corner of the window
relative to its parent's origin, and the width and height specify the
inside size, not including the border.

It is legal to pass an InputOnly window as a drawable to this request.

QueryTree

window: WINDOW

=>
root: WINDOW
parent: WINDOW or None

40 Protocol

children: LISTofWINDOW

Errors: Window

This request returns the root, the parent, and the children of the
window. The children are listed in bottom-to-top stacking order.

InternAtom

name: STRING8
only-if-exists: BOOL

=>
atom: ATOM or None

Errors: Value, Alloc

This request returns the atom for the given name. If only-if-exists is
False, then the atom is created if it does not exist. The string
should use the ISO Latin-l encoding. Uppercase and lowercase matter.

The lifetime of an atom is not tied to the interning client. Atoms
remained defined until server reset (see section 11).

GetAtomName

atom: ATOM

=>
name: STRING8

Errors: Atom

This request returns the name for the given atom.

ChangeProperty

window: WINDOW
property, type: ATOM
format: {8, 16, 32}
mode: {Replace, Prepend, Append}
data: LISToflNT8 or LISToflNT16 or LISToflNT32

Errors: Window, Atom, Value, Match, Alloc

This request alters the property for the specified window. The type is
uninterpreted by the server. The format specifies whether the data
should be viewed as a list of 8-bit, 16-bit, or 32-bit quantities so that
the server can correctly byte-swap as necessary.

If the mode is Replace, the previous property value is discarded. If
the mode is Prepend or Append, then the type and format must
match the existing property value (or a Match error results). If the
property is undefined, it is treated as defined with the correct type
and format with zero-length data. For Prepend, the data is tacked on
to the beginning of the existing data, and for Append, it is tacked on

Protocol 41

to the end of the existing data.

This request generates a PropertyNotify event on the window.

The lifetime of a property is not tied to the storing client. Properties
remain until explicitly deleted, until the window is destroyed, or until
server reset (see section 11).

The maximum size of a property is server-dependent and may vary
dynamically.

DeleteProperty

window: WINDOW
property: ATOM

Errors: Window, Atom

This request deletes the property from the specified window if the
property exists and generates a PropertyNotify event on the window
unless the property does not exist.

GetProperty

window: WINDOW
property: ATOM
type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL

=>
type: ATOM or None
format: {a, 8, 16, 32}
bytes-after: CARD32
value: LISToflNT8 or LISToflNT16 or LISToflNT32

Errors: Window, Atom, Value

If the specified property does not exist for the specified window, then
the return type is None, the format and bytes-after are zero, and the
value is empty. The delete argument is ignored in this case. If the
specified property exists but its type does not match the specified
type, then the return type is the actual type of the property, the
format is the actual format of the property (never zero), the bytes
after is the length of the property in bytes (even if the format is 16
or 32), and the value is empty. The delete argument is ignored in
this case. If the specified property exists and either AnyPropertyType
is specified or the specified type matches the actual type of the
property, then the return type is the actual type of the property, the
format is the actual format of the property (never zero), and the
bytes-after and value are as follows, given:

42 Protocol

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

I = 4 * long-offset
T N - I
L = MINIMUM(T, 4 * long-length)
A = N - (I + L)

The returned value starts at byte index I in the property (indexing
from 0), and its length in bytes is L. However, it is a Value error if
long-offset is given such that L is negative. The value of bytes-after
is A, giving the number of trailing unread bytes in the stored
property. If delete is True and the bytes-after is zero, the property is
also deleted from the window, and a PropertyNotify event is generated
on the window.

RotateProperties

window: WINDOW
delta: INT16
properties: LISTofATOM

Errors: Window, Atom, Match

If the property names in the list are viewed as being numbered
starting from zero, and there are N property names in the list, then
the value associated with property name I becomes the value
associated with property name (I + delta) mod N, for all I from zero
to N - 1. The effect is to rotate the states by delta places around
the virtual ring of property names (right for positive delta, left for
negative delta).

If delta mod N is nonzero, a PropertyNotify event is generated for
each property in the order listed.

If an atom occurs more than once in the list or no property
name is defined for the window, a Match error is generated.
Atom or Match error is generated, no properties are changed.

ListProperties

window: WINDOW

=>
atoms: LISTofATOM

Errors: Window

with that
If an

This request returns the atoms of properties currently defined on the
window.

Protocol 43

SetSelectionOwner
selection: ATOM
owner: WINDOW or None
time: TIMESTAMP or CurrentTime

Errors: Atom, Window

This request changes the owner, owner window, and last-change time
of the specified selection. This request has no effect if the specified
time is earlier than the current last-change time of the specified
selection or is later than the current server time. Otherwise, the
last-change time is set to the specified time with CurrentTime replaced
by the current server time. If the owner window is specified as
None, then the owner of the selection becomes None (that is, no
owner). Otherwise, the owner of the selection becomes the client
executing the request. If the new owner (whether a client or None)
is not the same as the current owner and the current owner is not
None, then the current owner is sent a SelectionClear event.

If the client that is the owner of a selection is later terminated (that
is, its connection is closed) or if the owner window it has specified in
the request is later destroyed, then the owner of the selection
automatically reverts to None, but the last-change time is not affected.

The selection atom is uninterpreted by the server. The owner window
is returned by the GetSelectionOwner request and is reported in
SelectionRequest and SelectionClear events.

Selections are global to the server.

GetSelectionOwner

selection: ATOM

=>
owner: WINDOW or None

Errors: Atom

This request returns the current owner window of the specified
selection, if any. If None is returned, then there is no owner for the
selection.

ConvertSelection

selection, target: ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime

Errors: Atom, Window

If the specified selection has an owner, the server sends a
SelectionRequest event to that owner. If no owner for the specified
selection exists, the server generates a Selection Notify event to the

44 Protocol

requestor with property None. The arguments are passed on
unchanged in either event.

SendEvent

destination: WINDOW or PointerWindow or InputFocus
propagate: BOOL
event-mask: SETofEVENT
event: <normal-event-format>

Errors: Window, Value

If PointerWindow is specified, destination is replaced with the window
that the pointer is in. If InputFocus is specified and the focus
window contains the pointer, destination is replaced with the window
that the pointer is in. Otherwise, destination is replaced with the
focus window.

If the event-mask is the empty set, then the event is sent to the
client that created the destination window. If that client no longer
exists, no event is sent.

If propagate is False, then the event is sent to every client selecting
on destination any of the event types in event-mask.

If propagate is True and no clients have selected on destination any
of the event types in event-mask, then destination is replaced with
the closest ancestor of destination for which some client has selected
a type in event-mask and no intervening window has that type in its
do-not-propagate-mask. If no such window exists or if the window is
an ancestor of the focus window and InputFocus was originally
specified as the destination, then the event is not sent to any clients.
Otherwise, the event is reported to every client selecting on the final
destination any of the types specified in event-mask.

The event code must be one of the core events or one of the events
defined by an extension (or a Value error results) so that the server
can correctly byte-swap the contents as necessary. The contents of
the event are otherwise unahered and unchecked by the server except
to force on the most-significant bit of the event code and to set the
sequence number in the event correctly.

Active grabs are ignored for this request.

GrabPointer

grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-rrwde, keyboard-mode: {Synchronous, Asynchronous}
confine-to: WINDOW or None
cursor: CURSOR or None

Protocol 45

time: TIMESTAMP or CurrentTime

=>
status: {Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable}

Errors: Cursor, Window, Value

This request actively grabs control of the pointer. Further pointer
events are only reported to the grabbing client. The request overrides
any active pointer grab by this client.

If owner-events is False, all generated pointer events are reported with
respect to grab-window and are only reported if selected by event
mask. If owner-events is True and a generated pointer event would
normally be reported to this client, it is reported normally.
Otherwise, the event is reported with respect to the grab-window and
is only reported if selected by event-mask. For either value of
owner-events, unreported events are simply discarded.

If pointer-mode is Asynchronous, pointer event processing continues
normally. If the pointer is currently frozen by this client, then
processing of pointer events is resumed. If pointer-mode is
Synchronous, the state of the pointer (as seen by means of the
protocol) appears to freeze, and no further pointer events are
generated by the server until the grabbing client issues a releasing
AliowEvents request or until the pointer grab is released. Actual
pointer changes are not lost while the pointer is frozen. They are
simply queued for later processing.

If keyboard-mode is Asynchronous, keyboard event processing is
unaffected by activation of the grab. If keyboard-mode is
Synchronous, the state of the keyboard (as seen by means of the
protocol) appears to freeze, and no further keyboard events are
generated by the server until the grabbing client issues a releasing
AliowEvents request or until the pointer grab is released. Actual
keyboard changes are not lost while the keyboard is frozen. They are
simply queued for later processing.

If a cursor is specified, then it is displayed regardless of what window
the pointer is in. If no cursor is specified, then when the pointer is
in grab-window or one of its subwindows, the normal cursor for that
window is displayed. Otherwise, the cursor for grab-window is
displayed.

If a confine-to window is specified, then the pointer will be restricted
to stay contained in that window. The confine-to window need have
no relationship to the grab-window. If the pointer is not initially in
the confine-to window, then it is warped automatically to the closest
edge (and enter/leave events are generated normally) just before the
grab activates. If the confine-to window is subsequently reconfigured,

46 Protocol

the pointer will be warped automatically as necessary to keep it
contained in the window.

This request generates EnterNotify and LeaveNotify events.

The request fails with status AlreadyGrabbed if the pointer is actively
grabbed by some other client. The request fails with status Frozen if
the pointer is frozen by an active grab of another client. The request
fails with status NotViewable if grab-window or confine-to window is
not viewable or if the confine-to window lies completely outside the
boundaries of the root window. The request fails with status
InvalidTime if the specified time is earlier than the last-po inter-grab
time or later than the current server time. Otherwise, the last
pointer-grab time is set to the specified time, with CurrentTime
replaced by the current server time.

UngrabPointer

time: TIMESTAMP or CurrentTime

This request releases the pointer if this client has it actively grabbed
(from either GrabPointer or GrabButton or from a normal button
press) and releases any queued events. The request has no effect if
the specified time is earlier than the last-pointer-grab time or is later
than the current server time.

This request generates EnterNotify and LeaveNotify events.

An UngrabPointer request is performed automatically if the event
window or confine-to window for an active pointer grab becomes not
viewable or if window reconfiguration causes the confine-to window to
lie completely outside the boundaries of the root window.

GrabButton

rrwdifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-rrwde, key board-rrw de : { Synchronous, Asynchronous}
confine-to: WINDOW or None
cursor: CURSOR or None

Errors: Cursor,Window, Value, Access

This request establishes a passive grab. In the future, the pointer is
actively grabbed as described in GrabPointer, the last-pointer-grab time
is set to the time at which the button was pressed (as transmitted in
the ButtonPress event), and the ButtonPress event is reported if all of
the following conditions are true:

Protocol 47

• The pointer is not grabbed and the specified button is logically
pressed when the specified modifier keys are logically down, ,and
no other buttons or modifier keys are logically down.

• The grab-window contains the pointer.

• The confine-to window (if any) is viewable.

• A passive grab on the same button/key combination does not
exist on any ancestor of grab-window.

The interpretation of the remaining arguments is the same as for
GrabPointer. The active grab is terminated automatically when the
logical state of the pointer has all buttons released, independent of the
logical state of modifier keys. Note that the logical state of a device
(as seen by means of the protocol) may lag the physical state if
device event processing is frozen.

This request overrides all previous passive grabs by the same client
on the same button/key combinations on the same window. A
modifier of AnyModifier is equivalent to issuing the request for all
possible modifier combinations (including the combination of no
modifiers). It is not required that all specified modifiers have
currently assigned keycodes. A button of AnyButton is equivalent to
issuing the request for all possible buttons. Otherwise, it is not
required that the button specified currently be assigned to a physical
button.

An Access error is generated if some other client has already issued a
GrabButton request with the same button/key combination on the same
window. When using AnyModifier or AnyButton, the request fails
completely (no grabs are established), and an Access error is
generated if there is a conflicting grab for any combination. The
request has no effect on an active grab.

UngrabButton

rrwdifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW

Errors: Window, Value

This request releases the passive button/key combination on the
specified window if it was grabbed by this client. A modifiers
argument of AnyModifier is equivalent to issuing the request for all
possible modifier combinations (including the combination of no
modifiers) . A button of AnyButton is equivalent to issuing the' request
for all possible buttons. The request has no effect on an active grab.

48 Protocol

ChangeActivePointerGrab

event-mask: SETofPOINTEREVENT
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime

Errors: Cursor, Value

This request changes the specified dynamic parameters if the pointer
is actively grabbed by the client and the specified time is no earlier
than the last-pointer-grab time and no later than the current server
time. The interpretation of event-mask and cursor are the same as in
GrabPointer. This request has no effect on the parameters of any
passive grabs established with GrabButton.

GrabKeyboard

grab-window: WINDOW
owner-events: BOOL
pointer-rrwde, keyboard-rrwde: {Synchronous, Asynchronous}
time: TIMESTAMP or CurrentTime

=>
status: { Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable}

Errors: Window, Value

This request actively grabs control of the keyboard. Further key
events are reported only to the grabbing client. This request
overrides any active keyboard grab by this client.

If owner-events is False, all generated key events are reported with
respect to grab-window. If owner-events is True and if a generated
key event would normally be reported to this client, it is reported
normally. Otherwise, the event is reported with respect to the grab
window. Both KeyPress and KeyRelease events are always reported,
independent of any event selection made by the client.

If keyboard-mode is Asynchronous, keyboard event processing continues
normally. If the keyboard is currently frozen by this client, then
processing of keyboard events is resumed. If keyboard-mode is
Synchronous, the state of the keyboard (as seen by means of the
protocol) appears to freeze. No further keyboard events are generated
by the server until the grabbing client issues a releasing AllowEvents
request or until the keyboard grab is released. Actual keyboard
changes are not lost while the keyboard is frozen. They are simply
queued for later processing.

If pointer-mode is Asynchronous, pointer event processing is unaffected
by activation of the grab. If pointer-mode is Synchronous, the state
of the pointer (as seen by means of the protocol) appears to freeze.
No further pointer events are generated by the server until the
grabbing client issues a releasing AllowEvents request or until the

Protocol 49

keyboard grab is released. Actual pointer changes are not lost while
the pointer is frozen. They are simply queued for later processing.

This request generates Focusln and FocusOut events.

The request fails with status AlreadyGrabbed if the keyboard is
actively grabbed by some other client. The request fails with status
Frozen if the keyboard is frozen by an active grab of another client.
The request fails with status NotViewable if grab-window is not
viewable. The request fails with status InvalidTime if the specified
time is earlier than the last-keyboard-grab time or later than the
current server time. Otherwise, the last-keyboard-grab time is set to
the specified time with CurrentTime replaced by the current server
time.

U ng rabKeyboard

time: TIMESTAMP or CurrentTime

This request releases the keyboard if this client has it actively
grabbed (as a result of either GrabKeyboard or GrabKey) and releases
any queued events. The request has no effect if the specified time is
earlier than the last-keyboard-grab time or is later than the current
server time.

This request generates Focusln and FocusOut events.

An UngrabKeyboard is performed automatically if the event window for
an active keyboard grab becomes not viewable.

GrabKey

key: KEYCODE or AnyKey
rrwdifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW
owner-events: BOOL
pointer-rrwde, key bo ard-rrw de : { Synchronous, Asynchronous}

Errors: Window, Value, Access

This request establishes a passive grab on the keyboard. In the
future, the keyboard is actively grabbed as described in GrabKeyboard,
the last-keyboard-grab time is set to the time at which the key was
pressed (as transmitted in the KeyPress event), and the KeyPress
event is reported if all of the following conditions are true:

• The keyboard is not grabbed and the specified key (which can
itself be a modifier key) is logically pressed when the specified
modifier keys are logically down, and no other modifier keys are
logically down.

• Either the grab-window is an ancestor of (or is) the focus
window, or the grab-window is a descendent of the focus window
and contains the pointer.

50 Protocol

• A passive grab on the same key combination does not exist on
any ancestor of grab-window.

The interpretation of the remaining arguments is the same as for
GrabKeyboard. The active grab is terminated automatically when the
logical state of the keyboard has the specified key released,
independent of the logical state of modifier keys. Note that the
logical state of a device (as seen by means of the protocol) may lag
the physical state if device event processing is frozen.

This request overrides all previous passive grabs by the same client
on the same key combinations on the same window. A modifier of
AnyModifier is equivalent to issuing the request for all possible
modifier combinations (including the combination of no modifiers). It
is not required that all modifiers specified have currently assigned
keycodes. A key of AnyKey is equivalent to issuing the request for all
possible keycodes. Otherwise, the key must be in the range specified
by min-keycode and max-keycode in the connection setup (or a Value
error results).

An Access error is generated if some other client has issued a
GrabKey with the same key combination on the same window. When
using AnyModifier or AnyKey, the request fails completely (no grabs are
established), and an Access error is generated if there is a conflicting
grab for any combination.

UngrabKey

key: KEYCODE or AnyKey
rrwdifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW

Errors: Window, Value

This request releases the key combination on the specified window if
it was grabbed by this client. A modifiers argument of AnyModifier is
equivalent to issuing the request for all possible modifier combinations
(including the combination of no modifiers). A key of AnyKey is
equivalent to issuing the request for all possible keycodes. This
request has no effect on an active grab.

AllowEvents

rrwde: {AsyncPointer, SyncPointer, ReplayPointer, AsyncKeyboard,
SyncKeyboard, ReplayKeyboard, AsyncBoth, Sync Both }

time: TIMESTAMP or CurrentTime

Errors: Value

This request releases some queued events if the client has caused a
device to freeze. The request has no effect if the specified time is

Protocol 51

earlier than the last-grab time of the most recent active grab for the
client or if the specified time is later than the current server time.

For AsyncPointer, if the pointer is frozen by the client, pointer event
processing continues normally. If the pointer is frozen twice by the
client on behalf of two separate grabs, AsyncPointer thaws for both.
AsyncPointer has no effect if the pointer is not frozen by the client,
but the pointer need not be grabbed by the client.

For SyncPointer, if the pointer is frozen and actively grabbed by the
client, pointer event processing continues normally until the next
ButtonPress or ButtonRelease event is reported to the client, at which
time the pointer again appears to freeze. However, if the reported
event causes the pointer grab to be released, then the pointer does
not freeze. SyncPointer has no effect if the pointer is not frozen by
the client or if the pointer is not grabbed by the client.

For ReplayPointer, if the pointer is actively grabbed by the client and
is frozen as the result of an event having been sent to the client
(either from the activation of a GrabButton or from a previous
AliowEvents with mode SyncPointer but not from a GrabPointer), then
the pointer grab is released and that event is completely reprocessed,
this time ignoring any passive grabs at or above (towards the root)
the grab-window of the grab just released. The request has no effect
if the pointer is not grabbed by the client or if the pointer is not
frozen as the result of an event.

For AsyncKeyboard, if the keyboard is frozen by the client, keyboard
event processing continues normally. If the keyboard is frozen twice
by the client on behalf of two separate grabs, AsyncKeyboard thaws
for both. AsyncKeyboard has no effect if the keyboard is not frozen
by the client, but the keyboard need not be grabbed by the client.

For SyncKeyboard, if the keyboard is frozen and actively grabbed by
the client, keyboard event processing continues normally until the next
KeyPress or KeyRelease event is reported to the client, at which time
the keyboard again appears to freeze. However, if the reported event
causes the keyboard grab to be released, then the keyboard does not
freeze. SyncKeyboard has no effect if the keyboard is not frozen by
the client or if the keyboard is not grabbed by the client.

For ReplayKeyboard, if the keyboard is actively grabbed by the client
and is frozen as the result of an event having been sent to the client
(either from the activation of a GrabKey or from a previous
AliowEvents with mode SyncKeyboard but not from a GrabKeyboard),
then the keyboard grab is released and that event is completely
reprocessed, this time ignoring any passive grabs at or above (towards
the root) the grab-window of the grab just released. The request has

52 Protocol

no effect if the keyboard is not grabbed by the client or if the
keyboard is not frozen as the result of an event.

For SyncBoth, if both pointer and keyboard are frozen by the client,
event processing (for both devices) continues normally until the next
ButtonPress, ButtonRelease, KeyPress, or KeyRelease event is reported
to the client for a grabbed device (button event for the pointer, key
event for the keyboard), at which time the devices again appear to
freeze. However, if the reported event causes the grab to be released,
then the devices do not freeze (but if the other device is still
grabbed, then a subsequent event for it will still cause both devices to
freeze). Sync Both has no effect unless both pointer and keyboard are
frozen by the client. If the pointer or keyboard is frozen twice by
the client on behalf of two separate grabs, SyncBoth thaws for both
(but a subsequent freeze for Sync Both will only freeze each device
once) .

For AsyncBoth, if the pointer and the keyboard are frozen by the
client, event processing for both devices continues normally. If a
device is frozen twice by the client on behalf of two separate grabs,
AsyncBoth thaws for both. AsyncBoth has no effect unless both
pointer and keyboard are frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on
processing of keyboard events. AsyncKeyboard, SyncKeyboard, and
ReplayKeyboard have no effect on processing of pointer events.

It is possible for both a pointer grab and a keyboard grab to be
active simultaneously (by the same or different clients). When a
device is frozen on behalf of either grab, no event processing is
performed for the device. It is possible for a single device to be
frozen because of both grabs. In this case, the freeze must be
released on behalf of both grabs before events can again be processed.

GrabServer

This request disables processing of requests and close-downs on all
connections other than the one this request arrived on.

UngrabServer

This request restarts processing of requests and close-downs on other
connections.

QueryPointer

window: WINDOW

=>
root: WINDOW
child: WINDOW or None
same-screen: BOOL

Protocol 53

root-x, root-y, win-x, win-y: INTI6
mask: SETofKEYBUTMASK

Errors: Window

The root window the pointer is logically on and the pointer
coordinates relative to the root's origin are returned. If same-screen
is False, then the pointer is not on the same screen as the argument
window, child is None, and win-x and win-yare zero. If same-screen
is True, then win-x and win-yare the pointer coordinates relative to
the argument window's origin, and child is the child containing the
pointer, if any. The current logical state of the modifier keys and the
buttons are also returned. Note that the logical state of a device (as
seen by means of the protocol) may lag the physical state if device
event processing is frozen.

GetMotionEvents

start, stop: TIMESTAMP or CurrentTime
window: WINDOW

=>
events: LISTofTIMECOORD

where:

TIMECOORD: [x, y: INTI6
time: TIMESTAMP]

Errors: Window

This request returns all events in the motion history buffer that fall
between the specified start and stop times (inclusive) and that have
coordinates that lie within (including borders) the specified window at
its present placement. The x and y coordinates are reported relative
to the origin of the window.

If the start time is later than the stop time or if the start time is in
the future, no events are returned. If the stop time is in the future,
it is equivalent to specifying CurrentTime.

TranslateCoord inates

src-window, dst-window: WINDOW
src-x, src-y: INTI6

=>
same-screen: BOOL
child: WINDOW or None
dst-x, dst-y: INTI6

54 Protocol

Errors: Window

The src-x and src-y coordinates are taken relative to src-window's
origin and are returned as dst-x and dst-y coordinates relative to dst
window's origin. If same-screen is False, then src-window and dst
window are on different screens, and dst-x and dst-y are zero. If the
coordinates are contained in a mapped child of dst-window, then that
child is returned.

Warp Pointer

src-window: WINDOW or None
dst-window: WINDOW or None
src-x, src-y: INTI6
src-width, src-height: CARDI6
dst-x, dst-y: INTI6

Errors: Window

If dst-window is None, this request moves the pointer by offsets [dst
x, dst-y] relative to the current position of the pointer. If dst-window
is a window, this request moves the pointer to [dst-x, dst-y] relative
to dst-window's origin. However, if src-window is not None, the move
only takes place if src-window contains the pointer and the pointer is
contained in the specified rectangle of src-window.

The src-x and src-y coordinates are relative to src-window's OrigIn. If
src-height is zero, it is replaced with the current height of src-window
minus src-y. If src-width is zero, it is replaced with the current width
of src-window minus src-x.

This request cannot be used to move the pointer outside the confine
to window of an active pointer grab. An attempt will only move the
pointer as far as the closest edge of the confine-to window.

This request will generate events just as if the user had
instantaneously moved the pointer.

SetinputFocus

focus: WINDOW or PointerRoot or None
revert-to: { Parent, POinterRoot, None}
time: TIMESTAMP or CurrentTime

Errors: Window, Value, Match

This request changes the input focus and the last-focus-change time.
The request has no effect if the specified time is earlier than the
current last-focus-change time or is later than the current server time.
Otherwise, the last-focus-change time is set to the specified time with
CurrentTime replaced by the current server time.

Protocol 55

If None is specified as the focus, all keyboard events are discarded
until a new focus window is set. In this case, the revert-to argument
is ignored.

If a window is specified as the focus, it becomes the keyboard's focus
window. If a generated keyboard event would normally be reported to
this window or one of its inferiors, the event is reported normally.
Otherwise, the event is reported with respect to the focus window.

If PointerRoot is specified as the focus, the focus window is
dynamically taken to be the root window of whatever screen the
pointer is on at each keyboard event. In this case, the revert-to
argument is ignored.

This request generates Focusln and FocusOut events.

The specified focus window must be viewable at the time of the
request (or a Match error results). If the focus window later becomes
not viewable, the new focus window depends on the revert-to
argument. If revert-to is Parent, the focus reverts to the parent (or
the closest viewable ancestor) and the new revert-to value is taken to
be None. If revert-to is PointerRoot or None, the focus reverts to
that value. When the focus reverts, Focusln and FocusOut events are
generated, but the last-focus-change time is not affected.

GetlnputFocus

=>
focus: WINDOW or PointerRoot or None
revert-to: { Parent, PointerRoot, None}

This request returns the current focus state.

QueryKeymap

=>
keys: LISTofCARD8

This request returns a bit vector for the logical state of the keyboard.
Each bit set to 1 indicates that the corresponding key is currently
pressed. The vector is represented as 32 bytes. Byte N (from 0)
contains the bits for keys 8N to 8N + 7 with the least-significant bit
in the byte representing key 8N. Note that the logical state of a
device (as seen by means of the protocol) may lag the physical state
if device event processing is frozen.

OpenFont

fid: FONT
name: STRING8

Errors: IDChoice, Name, Alloc

56 Protocol

This request loads the specified font, if necessary, and associates
identifier fid with it. The font name should use the ISO Latin-l
encoding, and uppercase and lowercase do not matter.

Fonts are not associated with a particular screen and can be stored as
a component of any graphics context.

CloseFont

font: FONT

Errors: Font

This request deletes the association between the resource ID and the
font. The font itself will be freed when no other resource references
it.

QueryFont

font: FONT ABLE

=>
font-info: FONTINFO
char-infos: LISTofCHARINFO

where:

FONTINFO: [draw-direction: {LeftToRight, RightToLeft}
min-char-or-byte2, max-char-or-byte2: CARDl6
min-byte I , max-by tel: CARD8
all-chars-exist: BOOL
default-char: CARDl6
min-bounds: CHARINFO
max-bounds: CHARINFO
font-ascent: INTl6
font-descent: INTl6
properties: LISTofFONTPROP]

FONTPROP: [name: ATOM
value: <32-bit-value >]

CHARINFO: [left-side-bearing: INTl6
right-side-bearing: INTl6
character-width: INTl6
ascent: INTl6

Errors: Font

descent: INTl6
attributes: CARDI6]

This request returns logical information about a font. If a gcontext is
given for font, the currently contained font is used.

Protocol 57

The draw-direction is just a hint and indicates whether most char-infos
have a positive, LeftToRight, or a negative, RightToLeft, character-width
metric. The core protocol defines no support for vertical text.

If min-by tel and max-by tel are both zero, then min-char-or-byte2
specifies the linear character index corresponding to the first element
of char-infos, and max-char-or-byte2 specifies the linear character index
of the last element. If either min-by tel or max-by tel are nonzero,
then both min-char-or-byte2 and max-char-or-byte2 will be less than
256, and the 2-byte character index values corresponding to char-infos
element N (counting from 0) are:

where:

byte1
byte2

= N/D + min-byte1
N ~ + min-char-or-byte2

D = max-char-or-byte2 - min-char-or-byte2 + 1
I = integer division
" = integer modulus

If char-infos has length zero, then min-bounds and max-bounds will be
identical, and the effective char-infos is one filled with this char-info,
of length:

L = D * (max-byte1 - min-byte1 + 1)

That is, all glyphs in the specified linear or matrix range have the
same information, as given by min-bounds (and max-bounds). If all
chars-exist is True, then all characters in char-infos have nonzero
bounding boxes.

The default-char specifies the character that will be used when an
undefined or nonexistent character is used. Note that default-char is
a CARDl6, not CHAR2B. For a font using 2-byte matrix format, the
default-char has by tel in the most-significant byte and byte2 in the
least-significant byte. If the default-char itself specifies an undefined
or nonexistent character, then no printing is performed for an
undefined or nonexistent character.

The min-bounds and max-bounds contain the minimum and maximum
values of each individual CHARINFO component over all char-infos
(ignoring nonexistent characters). The bounding box of the font (that
is, the smallest rectangle enclosing the shape obtained by
superimposing all characters at the same origin [x,y]) has its upper-left
coordinate at:

58 Protocol

[x + min-bounds.left-side-bearing, y - max-bounds.ascent]

with a width of:

max-bounds.right-side-bearing - min-bounds.left-side-bearing

and a height of:

max-bounds.ascent + max-bounds.descent

The font-ascent is the logical extent of the font above the baseline
and is used for determining line spacing. Specific characters may
extend beyond this. The font-descent is the logical extent of the font
at or below the baseline and is used for determining line spacing.
Specific characters may extend beyond this. If the baseline is at Y
coordinate y, then the logical extent of the font is inclusive between
the Y-coordinate values (y - font-ascent) and (y + font-descent - 1).

A font is not guaranteed to have any properties. The interpretation
of the property value (for example, INT32, CARD32) must be derived
from a priori knowledge of the property. When possible, fonts should
have at least the following properties (note that uppercase and
lowercase matter).

Property

SUPERSCRIPT_X
SUPERSCRIPT_ Y

Type Description

CARD32 The minimum interword spacing, in
pixels.

CARD32 The normal interword spacing, in
pixels.

CARD32 The maximum interword spacing, in
pixels.

CARD32 The additional spacing at the end of
sentences, in pixels.

INT32 Offsets from the character origin
where superscripts should begin, in
pixels. If the origin is at [x,y], then
superscripts should begin at
[x + SUPERSCRIPT_X, y -

SUPERSCRIPT_ Yl.

Protocol 59

Property Type Description

SUBSCRIPT_X INT32 Offsets from the character OrlgIn
SUBSCRIPT_Y where subscripts should begin, in

pixels. If the origin is at [x,y], then
subscripts should begin at
[x + SUBSCRIPT_X, y + SUBSCRIPT_ YJ.

UNDERLINE_POSITION INT32 Y offset from the baseline to the top
of an underline, in pixels. If the
baseline is Y -coordinate y, then the
top of the underline is at
(y + UNDERLINE_POSITION).

UNDERLINE_ THICKNESS CARD32 Thickness of the underline, in pixels.

STRIKEOUT_ASCENT INT32 Vertical extents for boxing or voiding
STRIKEOUT_DESCENT characters, in pixels. If the baseline

is at Y -coordinate y, then the top of
the strikeout box is at
(y - STRIKEOUT_ASCENT)
and the height of the box is
(STRIKEOUT_ASCENT +
STRIKEOUT_DESCENT) .

ITALIC_ANGLE INT32 The angle of the dominant staffs of
characters in the font, in degrees
scaled by 64, relative to the three
o'clock position from the character
origin, with positive indicating
counterclockwise motion (as in Arc
requests) .

X_HEIGHT INT32 1 ex as in TeX, but expressed in
units of pixels. Often the height of
lowercase x.

QUAD_WIDTH INT32 1 em as in TeX, but expressed in
units of pixels. Often the width of
the digits 0-9.

CAP_HEIGHT INT32 Y offset from the baseline to the top
of the capital letters, ignoring accents
in pixels. If the baseline is at Y
coordinate y, then the top of the
capitals is at (y - CAP _HEIGHT) .

60 Protocol

Property Type Description

WEIGHT CARD32 The weight or boldness of the font,
expressed as a value between ° and
1000.

POINT_SIZE CARD32 The point size, expressed in 1110, of
this font at the ideal resolution.

RESOLUTION CARD32 The number of pixels per point,
expressed in 11100, at which this font
was created.

For a character OrIgIn at [x,y], the bounding box of a character (that
is, the smallest rectangle enclosing the character's shape), described in
terms of CHARINFO components, is a rectangle with its upper-left
corner at:

[x + left-side-bearing, y - ascent]

with a width of:

right-side-bearing - left-side-bearing

and a height of:

ascent + descent

and the origin for the next character is defined to be:

[x + character-width, y]

Note that the baseline is logically viewed as being just below
nondescending characters (when descent is zero, only pixels with Y
coordinates less than y are drawn) and that the origin is logically
viewed as being coincident with the left edge of a nonkerned character
(when left-side-bearing is zero, no pixels with X-coordinate less than x
are drawn).

Note that CHARINFO metric values can be negative.

A nonexistent character is represented with all CHARINFO
components zero.

The interpretation of the per-character attributes field is server
dependent.

Protocol 61

QueryTextExtents

font: FONTABLE
string: STRING 16

=>
draw-direction: {LeftToRight, RightToLeft}
font-ascent: INT16
font-descent: INT16
overall-ascent: INT16
overall-descent: INT16
overall-width: INT32
overall-left: INT32
overall-right: INT32

Errors: Font

This request returns the logical extents of the specified string of
characters in the specified font. If a gcontext is given for font, the
currently contained font is used. The draw-direction, font-ascent, and
font-descent are the same as described in QueryFont. The overall
ascent is the maximum of the ascent metrics of all characters in the
string, and the overall-descent is the maximum of the descent metrics.
The overall-width is the sum of the character-width metrics of all
characters in the string. For each character in the string, let W be
the sum of the character-width metrics of all characters preceding it
in the string, let L be the left-side-bearing metric of the character
plus W, and let R be the right-side-bearing metric of the character
plus W. The overall-left is the minimum L of all characters in the
string, and the overall-right is the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix
indexing, the server will interpret each CHAR2B as a 16-bit number
that has been transmitted most-significant byte first (that is, bytel of
the CHAR2B is taken as the most-significant byte).

If the font has no defined default-char, then undefined characters in
the string are taken to have all zero metrics.

ListFonts

pattern: STRING8
max-names: CARD16

=>
names: LISTofSTRING8

This request returns a list of available font names (as controlled by
the font search path; see SetFontPath request) that match the
pattern. At most, max-names names will be returned. The pattern
should use the ISO Latin-l encoding, and uppercase and lowercase do

62 Protocol

not matter. In the pattern, the "?" character (octal value 77) will
match any single character, and the "*,, character (octal value 52)
will match any number of characters. The returned names are in
lowercase.

ListFontsWith Info

pattern: STRING8
max-names: CARD16

=>+
name: STRING8
info: FONTINFO
replies-hint: CARD32

where:

FONTINFO: <same type definition as in QueryFont>

This request is similar to ListFonts, but it also returns information
about each font. The information returned for each font is identical
to what QueryFont would return except that the per-character metrics
are not returned. Note that this request can generate multiple
replies. With each reply, replies-hint may provide an indication of
how many more fonts will be returned. This number is a hint only
and may be larger or smaller than the number of fonts actually
returned. A zero value does not guarantee that no more fonts will be
returned. After the font replies, a reply with a zero-length name is
sent to indicate the end of the reply sequence.

SetFontPath

path: LISTofSTRING8

Errors: Value

This request defines the search path for font lookup. There is only
one search path per server, not one per client. The interpretation of
the strings is operating-system-dependent, but the strings are intended
to specify directories to be searched in the order listed.

Setting the path to the empty list restores the default path defined
for the server.

As a side effect of executing this request, the server is guaranteed to
flush all cached information about fonts for which there currently are
no explicit resource IDs allocated.

The meaning of an error from this request is system specific.

Protocol 63

GetFontPath

=>
path: LISTofSTRING8

This request returns the current search path for fonts.

CreatePixmap

pid: PIXMAP
drawable: DRAWABLE
depth: CARD8
width, height: CARD16

Errors: IDChoiee, Drawable, Value, Alloe

This request creates a pixmap and assigns the identifier pid to it.
The width and height must be nonzero (or a Value error results).
The depth must be one of the depths supported by the root of the
specified drawable (or a Value error results). The initial contents of
the pixmap are undefined.

It is legal to pass an InputOnly window as a drawable to this request.

FreePixmap

pixmap: PIXMAP

Errors: Pixmap

This request deletes the association between the resource ID and the
pixmap. The pixmap storage will be freed when no other resource
references it.

CreateGC

cid: GCONTEXT
drawable: DRAWABLE
value-mask: BITMASK
value-list: LISTofVALUE

Errors: IDChoiee, Drawable, Pixmap, Font, Match, Value, Alloe

This request creates a graphics context and assigns the identifier cid
to it. The gcontext can be used with any destination drawable having
the same root and depth as the specified drawable; use with other
drawables results in a Match error.

The value-mask and value-list specify which components are to be
explicitly initialized. The context components are:

64 Protocol

Component

function

plane-mask
foreground
background
line-width
line-style
cap-style
join-style
fill-style
fill-rule
arc-mode
tile
stipple
tile-stipple-x-origin
tile-stipple-y-origin
font
subwindow-mode
graphics-exposures
clip-x-origin
clip-y-origin
clip-mask
dash-offset
dashes

Type

{ Clear, And, AndReverse, Copy, Andlnverted,
NoOp, Xor, Or, Nor, Equiv, Invert, OrReverse,
Copylnverted, Orlnverted, Nand, Set}

CARD32
CARD32
CARD32
CARDI6
{ Solid, OnOffDash, DoubleDash}
{ NotLast, Butt, Round, Projecting}
{Miter, Round, Bevel}
{Solid, Tiled, OpaqueStippled, Stippled}
{ EvenOdd, Winding}
{Chord, PieSlice}
PIXMAP
PIXMAP
INTI6
INTI6
FONT
{ClipByChildren, Includelnferiors}
BaaL
INTI6
INTI6
PIXMAP or None
CARDI6
CARD8

In graphics operations, given a source and destination pixel, the result
is computed bitwise on corresponding bits of the pixels; that is, a
Boolean operation is performed in each bit plane. The plane-mask
restricts the operation to a subset of planes, so the result is:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask»

Range checking is not performed on the values for foreground,
background, or plane-mask. They are simply truncated to the
appropriate number of bits.

The meanings of the functions are:

Protocol 65

Function

Clear
And
And Reverse
Copy
Andlnverted
NoOp
Xor
Or
Nor
Equiv
Invert
OrReverse
Copylnverted
Orlnverted
Nand
Set

Operation

o
src AND dst
src AND (NOT dst)
src
(NOT src) AND dst
dst
src XOR dst
src OR dst
(NOT src) AND (NOT dst)
(NOT src) XOR dst
NOT dst
src OR (NOT dst)
NOT src
(NOT src) OR dst
(NOT src) OR (NOT dst)
1

The line-width is measured in pixels and can be greater than or equal
to one, a wide line, or the special value zero, a thin line.

Wide lines are drawn centered on the path described by the graphics
request. Unless otherwise specified by the join or cap style, the
bounding box of a wide line with endpoints [xl, yll, [x2, y2] and
width w is a rectangle with vertices at the following real coordinates:

[x1-(w*sn/2), y1 + (w*cs/2)), [x1 +(w*sn/2), y1-(w*cs/2)],
[x2- (w* sn/2), y2 + (w* cs/2)), [x2 + (w* sn/2), y2- (w* cs/2)]

The sn is the sine of the angle of the line and cs is the cosine of
the angle of the line. A pixel is part of the line (and hence drawn)
if the center of the pixel is fully inside the bounding box, which is
viewed as having infinitely thin edges. If the center of the pixel is
exactly on the bounding box, it is part of the line if and only if the
interior is immediately to its right (x increasing direction). Pixels
with centers on a horizontal edge are a special case and are part of
the line if and only if the interior or the boundary is immediately
below (y increasing direction) and if the interior or the boundary is
immediately to the right (x increasing direction). Note that this
description is a mathematical model describing the pixels that are
drawn for a wide line and does not imply that trigonometry is
required to implement such a model. Real or fixed point arithmetic is

66 Protocol

recommended for computing the corners of the line endpoints for lines
greater than one pixel in width.

Thin lines (zero line-width) are "one pixel wide" lines drawn using an
unspecified, device-dependent algorithm. There are only two
constraints on this algorithm. First, if a line is drawn unclipped from
[xl,yl] to [x2,y2] and another line is drawn unclipped from
[xl+dx,yl+dy] to Ix2+dx,y2+dy], then a point [x,y] is touched by
drawing the first line if and only if the point [x+ dx,y+ dy] is touched
by drawing the second line. Second, the effective set of points
comprising a line cannot be affected by clipping. Thus, a point is
touched in a clipped line if and only if the point lies inside the
clipping region and the point would be touched by the line when
drawn unclipped.

Note that a wide line drawn from [xl,yl] to [x2,y2] always draws the
same pixels as a wide line drawn from [x2,y2] to [xl,yl], not counting
cap-style and join-style. Implementors are encouraged to make this
property true for thin lines, but it is not required. A line-width of
zero may differ from a line-width of one in which pixels are drawn.
In general, drawing a thin line will be faster than drawing a wide line
of width one, but thin lines may not mix well aesthetically with wide
lines because of the different drawing algorithms. If it is desirable to
obtain precise and uniform results across all displays, a client should
always use a line-width of one, rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

Solid The full path of the line is drawn.

DoubleDash The full path of the line is drawn, but the even
dashes are filled differently than the odd dashes
(see fill-style), with Butt cap-style used where
even and odd dashes meet.

OnOffDash Only the even dashes are drawn, and cap-style
applies to all internal ends of the individual
dashes (except NotLast is treated as Butt).

The cap-style defines how the endpoints of a path are drawn:

NotLast The result is equivalent to Butt, except that for
a line-width of zero the final endpoint is not
drawn.

Protocol 67

Butt

Round

Projecting

The result is square at the endpoint
(perpendicular to the slope of the line) with no
projection beyond.

The result is a circular arc with its diameter
equal to the line-width, centered on the endpoint;
it is equivalent to Butt for line-width zero.

The result is square at the end, but the path
continues beyond the endpoint for a distance
equal to half the line-width; it is equivalent to
Butt for line-width zero.

The join-style defines how corners are drawn for wide lines:

Miter

Round

Bevel

The outer edges of the two lines extend to meet
at an angle. However, if the angle is less than
11 degrees, a Bevel join-style is used instead.

The result is a circular arc with a diameter equal
to the line-width, centered on the joinpoint.

The result is Butt endpoint styles, and then the
triangular "notch" is filled.

For a line with coincident endpoints (xl=x2, yl=y2), when the cap
style is applied to both endpoints, the semantics depends on the line
width and the cap-style:

NotLast thin

Butt thin

Round thin

Projecting thin

Butt wide

Round wide

68 Protocol

This is device-dependent, but the desired
effect is that nothing is drawn.

This is device-dependent, but the desired
effect is that a single pixel is drawn.

This is the same as Butt/thin.

This is the same as Butt/thin.

Nothing is drawn.

The closed path is a circle, centered at
the endpoint and with a diameter equal to
the line-width.

Projecting wide The closed path is a square, aligned with
the coordinate axes, centered at the
endpoint and with sides equal to the line
width.

For a line with coincident endpoints (xl = x2, yl = y2), when the join
style is applied at one or both endpoints, the effect is as if the line
was removed from the overall path. However, if the total path
consists of (or is reduced to) a single point joined with itself, the
effect is the same as when the cap-style is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of
whatever destination drawable is specified in a graphics request.

The tile pixmap must have the same root and depth as the gcontext
(or a Match error results)'. The stipple pixmap must have depth one
and must have the same root as the gcontext (or a Match error
results). For fill-style Stippled (but not fill-style OpaqueStippled), the
stipple pattern is tiled in a single plane and acts as an additional clip
mask to be ANDed with the clip-mask. Any size pixmap can be used
for tiling or stippling, although some sizes may be faster to use than
others.

The fill-style defines the contents of the source for line, text, and fill
requests. For all text and fill requests (for example, PolyText8,
PolyText16, PolyFiliRectangle, FiliPoly, and PolyFiIIArc) as well as for
line requests with line-style Solid, (for example, Polyline, PolySegment,
PolyRectangle, PolyArc) and for the even dashes for line requests with
line-style OnOffDash or DoubleDash:

Solid

Tiled

OpaqueStippled

Stippled

Foreground

Tile

A tile with the same width and height as
stipple but with background everywhere
stipple has a zero and with foreground
everywhere stipple has a one

Foreground masked by stipple

For the odd dashes for line requests with line-style DoubleDash:

Solid

Tiled

Background

Same as for even dashes

Protocol 69

OpaqueStippled

Stippled

S arne as for even dashes

Background masked by stipple

The dashes value allowed here is actually a simplified form of the
more general patterns that can be set with SetDashes. Specifying a
value of N here is equivalent to specifying the two element list [N, N]
in SetDashes. The value must be nonzero (or a Value error results).
The meaning of dash-offset and dashes are explained in the SetDashes
request.

The clip-mask restricts writes to the destination drawable. Only pixels
where the clip-mask has bits set to 1 are drawn. Pixels are not drawn
outside the area covered by the clip-mask or where the clip-mask has
bits set to O. The clip-mask affects all graphics requests, but it does
not clip sources. The clip-mask origin is interpreted relative to the
origin of whatever destination drawable is specified in a graphics
request. If a pixmap is specified as the clip-mask, it must have
depth 1 and have the same root as the gcontext (or a Match error
results). If clip-mask is None, then pixels are always drawn,
regardless of the clip origin. The clip-mask can also be set with the
SetClipRectangles request.

For ClipByChildren, both source and destination windows are
additionally clipped by all viewable InputOutput children. For
Includelnferiors, neither source nor destination window is clipped by
inferiors. This will result in including subwindow contents in the
source and drawing through subwindow boundaries of the destination.
The use of Includelnferiors with a source or destination window of one
depth with mapped inferiors of differing depth is not illegal, but the
semantics is undefined by the core protocol.

The fill-rule defines what pixels are inside (that is, are drawn) for
paths given in FiliPoly requests. EvenOdd means a point is inside if
an infinite ray with the point as origin crosses the path an odd
number of times. For Winding, a point is inside if an infinite ray
with the point as origin crosses an unequal number of. clockwise and
counterclockwise directed path segments. A clockwise directed path
segment is one that crosses the ray from left to right as observed
from the point. A counter-clockwise segment is one that crosses the
ray from right to left as observed from the point. The case where a
directed line segment is coincident with the ray is uninteresting
because one can simply choose a different ray that is not coincident
with a segment.

For both fill rules, a point is infinitely small and the path is an
infinitely thin line. A pixel is inside if the center point of the pixel

70 Protocol

is inside and the center point is not on the boundary. If the center
point is on the boundary, the pixel is inside if and only if the polygon
interior is immediately to its right (x increasing direction). Pixels
with centers along a horizontal edge are a special case and are inside
if and only if the polygon interior is immediately below (y increasing
direction) .

The arc-mode controls filling in the PolyFiliArc request.

The graphics-exposures flag controls GraphicsExposure event generation
for CopyArea and CopyPlane requests (and any similar requests
defined by extensions).

The default component values are:

Component

function
plane-mask
foreground

. background
line-width
line-style
cap-style
join-style
fill-style
fill-rule
arc-mode
tile

stipple
tile-stipp le-x -origin
tile-stipple-y-origin
font
subwindow-mode
graphics-exposures
clip-x-origin
clip-y-origin
clip-mask
dash-offset
dashes

Default

Copy
all ones
o
1
o
Solid
Butt
Miter
Solid
EvenOdd
PieSlice
Pixmap of unspecified size filled with foreground
pixel (that is, client specified pixel if any, else
0)
(subsequent changes to foreground do not affect
this pixmap)
Pixmap of unspecified size filled with ones
o
o
<server-dependent-font>
ClipByChiidren
True
o
o
None
o
4 (that is, the list [4, 4])

Protocol 71

Storing a pixmap in a gcontext might or might not result in a copy
being made. If the pixmap is later used as the destination for a
graphics request, the change might or might not be reflected in the
gcontext. If the pixmap is used simultaneously in a graphics request
as both a destination and as a tile or stipple, the results are not
defined.

It is quite likely that some amount of gcontext information will be
cached in display hardware and that such hardware can only cache a
small number of gcontexts. Given the number and complexity of
components, clients should view switching between gcontexts with
nearly identical state as significantly more expensive than making
minor changes to a single gcontext.

ChangeGC

gc: GCONTEXT
value-mask: BITMASK
value-list: LISTofVALUE

Errors: GContext, Pixmap, Font, Match, Value, Alloc

This request changes components in gc. The value-mask and value-list
specify which components are to be changed. The values and
restrictions are the same as for CreateGC.

Changing the clip-mask also overrides any previous SetClipRectangles
request on the context. Changing dash-offset or dashes overrides any
previous SetDashes request on the context.

The order in which components are verified and altered is server
dependent. If an error is generated, a subset of the components may
have been altered.

CopyGC

src-gc, dst-gc: GCONTEXT
value-mask: BITMASK

Errors: GContext, Value, Match, Alloc

This request copies components from src-gc to dst-gc. The value-mask
specifies which components to copy, as for CreateGC. The two
gcontexts must have the same root and the same depth (or a Match
error results).

SetDashes

gc: GCONTEXT
dash-offset: CARD16
dashes: LISTofCARD8

Errors: GContext, Value, Alloc

72 Protocol

This request sets dash-offset and dashes in gc for dashed line styles.
Dashes cannot be empty (or a Value error results). Specifying an
odd-length list is equivalent to specifying the same list concatenated
with itself to produce an even-length list. The initial and alternating
elements of dashes are the even dashes; the others are the odd
dashes. Each element specifies a dash length in pixels. All of the
elements must be nonzero (or a Value error results). The dash-offset
defines the phase of the pattern, specifying how many pixels into
dashes the pattern should actually begin in any single graphics
request. Dashing is continuous through path elements combined with
a join-style, but it is reset to the dash-offset each time a cap-style is
applied at a line endpoint.

The unit of measure for dashes is the same as in the ordinary
coordinate system. Ideally, a dash length is measured along the slope
of the line, but implementations are only required to match this ideal
for horizontal and vertical lines. Failing the ideal semantics, it is
suggested that the length be measured along the major axis of the
line. The major axis is defined as the x axis for lines drawn at an
angle of between - 45 and + 45 degrees or between 315 and 225
degrees from the x axis. For all other lines, the major axis is the y
axis.

SetClipRectangles

gc: GCONTEXT
clip-x-origin, clip-y-origin: INT16
rectangles: LISTofRECTANGLE
ordering: {UnSorted, YSorted, YXSorted, YXBanded}

Errors: GContext, Value, Alloc, Match

This request changes clip-mask in gc to the specified list of rectangles
and sets the clip origin. Output will be clipped to remain contained
within the rectangles. The clip origin is interpreted relative to the
origin of whatever destination drawable is specified in a graphics
request. The rectangle coordinates are interpreted relative to the clip
orIgIn. The rectangles should be nonintersecting, or graphics results
will be undefined. Note that the list of rectangles can be empty,
which effectively disables output. This is the opposite of passing
None as the clip-mask in CreateGC and ChangeGC.

If known by the client, ordering relations on the rectangles can be
specified with the ordering argument. This may provide faster
operation by the server. If an incorrect ordering is specified, the
server may generate a Match error, but it is not required to do so.
If no error is generated, the graphics results are undefined. UnSorted
means that the rectangles are in arbitrary order. YSorted means that

Protocol 73

the rectangles are nondecreasing in their Y orIgIn. YXSorted
additionally constrains YSorted order in that all rectangles with an
equal Y origin are nondecreasing in their X origin. YXBanded
additionally constrains YXSorted by requiring that, for every possible Y
scanline, all rectangles that include that scanline have identical Y
origins and Y extents.

FreeGC

gc: GCONTEXT

Errors: GContext

This request deletes the association between the resource ID and the
gcontext and destroys the gcontext.

ClearArea

window: WINDOW
x, y: INTI6
width, height: CARDI6
exposures: BOOL

Errors: Window, Value, Match

The x and y coordinates are relative to the window's origin and
specify the upper-left corner of the rectangle. If width is zero, it is
replaced with the current width of the window minus x. If height is
zero, it is replaced with the current height of the window minus y.
If the window has a defined background tile, the rectangle is tiled
with a plane-mask of all ones and function of Copy and a subwindow
mode of ClipByChildren. If the window has background None, the
contents of the window are not changed. In either case, if exposures
is True, then one or more exposure events are generated for regions
of the rectangle that are either visible or are being retained in a
backing store.

It is a Match error to use an InputOnly window in this request.

CopyArea

src-drawable, dst-drawable : DRAWABLE
gc: GCONTEXT
src-x, src-y: INTI6
width, height: CARDI6
dst-x, dst-y: INTI6

Errors: Drawable, GContext, Match

This request combines the specified rectangle of src-drawable with the
specified rectangle of dst-drawable. The src-x and src-y coordinates
are relative to src-drawable's origin. The dst-x and dst-y are relative
to dst-drawable's origin, each pair specifying the upper-left corner of

74 Protocol

the rectangle. The src-drawable must have the same root and the
same depth as dst-drawable (or a Match error results).

If regions of the source rectangle are obscured and have not been
retained in backing store or if regions outside the boundaries of the
source drawable are specified, then those regions are not copied, but
the following occurs on all corresponding destination regions that are
either visible or are retained in backing-store. If the dst-drawable is a
window with a background other than None, these corresponding
destination regions are tiled (with plane-mask of all ones and function
Copy) with that background. Regardless of tiling and whether the
destination is a window or a pix map , if graphics-exposures in gc is
True, then GraphicsExposure events for all corresponding destination
regions are generated.

If graphics-exposures is True but no GraphicsExposure events are
generated, then a NoExposure event is generated.

GC components: function, plane-mask, subwindow-mode, graphics
exposures, clip-x-origin, clip-y-origin, clip-mask

CopyPlane

src-drawable, dst-drawable : DRAWABLE
gc: GCONTEXT
src-x, src-y: INTI6
width, height: CARDI6
dst-x, dst-y: INTI6
bit-plane: CARD32

Errors: Drawable, GContext, Value, Match

The src-drawable must have the same root as dst-drawable (or a
Match error results), but it need not have the same depth. The bit
plane must have exactly one bit set to 1 and the value of bit-plane
must be less than 2

n where n is the depth of src-drawable (or a
Value error results). Effectively, a pixmap of the same depth as dst
drawable and with size specified by the source region is formed using
the foregroundlbackground pixels in gc (foreground everywhere the bit
plane in src-drawable contains a bit set to 1, background everywhere
the bit-plane contains a bit set to 0), and the equivalent of a
CopyArea is performed, with all the same exposure semantics. This
can also be thought of as using the specified region of the source bit
plane as a stipple with a fill-style of OpaqueStippled for filling a
rectangular area of the destination.

GC components: function, plane-mask, foreground, background,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, clip-mask

Protocol 75

PolyPoint

drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: { Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Value, Match

This request combines the foreground pixel in gc with the pixel at
each point in the drawable. The points are drawn in the order listed.

The first point is always relative to the drawable's origin. The rest
are relative either to that origin or the previous point, depending on
the coordinate-mode.

GC components: function, plane-mask, foreground, subwindow-mode,
clip-x-origin, clip-y-origin, clip-mask

Polyline

drawable : DRAWABLE
gc: GCONTEXT
coordinate-mode: { Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Value, Match

This request draws lines between each pair of points (point[i],
point[i+ 1]). The lines are drawn in the order listed. The lines join
correctly at all intermediate points, and if the first and last points
coincide, the first and last lines also join correctly.

For any given line, no pixel is drawn more than once. If thin (zero
line-width) lines intersect, the intersecting pixels are drawn multiple
times. If wide lines intersect, the intersecting pixels are drawn only
once, as though the entire Polyline were a single filled shape.

The first point is always relative to the drawable's origin. The rest
are relative either to that origin or the previous point, depending on
the coordinate-mode.

GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, dashes

PolySegment

drawable : DRAWABLE
gc: GCONTEXT
segments: LISTofSEGMENT

76 Protocol

where:

SEGMENT: [xl, yl, x2, y2: INTI6]

Errors: Drawable, GContext, Match

For each segment, this request draws a line between [xl, yl] and [x2,
y2]. The lines are drawn in the order listed. No joining is performed
at coincident endpoints. For any given line, no pixel is drawn more
than once. If lines intersect, the intersecting pixels are drawn
multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style,
fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, dashes

PolyRectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE

Errors: Drawable, GContext, Match

This request draws the outlines of the specified rectangles, as if a
five-point Polyline were specified for each rectangle:

[x,y] [x + width,y] [x + width,y + height] [x,y + height] [x,y]

The x and y coordinates of each rectangle are relative to the
drawable's origin and define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given
rectangle, no pixel is drawn more than once. If rectangles intersect,
the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, line-width, line-style, join-style,
fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, dashes

PolyArc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC

Errors: Drawable, GContext, Match

This request draws circular or elliptical arcs. Each arc is specified by
a rectangle and two angles. The angles are signed integers in degrees
scaled by 64, with positive indicating counterclockwise motion and
negative indicating clockwise motion. The start of the arc is specified
by anglel relative to the three-o'clock position from the center of the

Protocol 77

rectangle, and the path and extent of the arc is specified by angle2
relative to the start of the arc. If the magnitude of angle2 is greater
than 360 degrees, it is truncated to 360 degrees. The x and y
coordinates of the rectangle are relative to the origin of the drawable.
For an arc specified as [x,y,w,h,al,a2], the origin of the major and
minor axes is at [x + (w/2) ,y+ (h12)], and the infinitely thin path
describing the entire circle/ellipse intersects the horizontal axis at
[x,y+ (h12)] and [x + w,y+ (h12)] and intersects the vertical axis at
[x + (w/2) ,y] and [x + (w/2) ,y+ h]. These coordinates can be fractional;
that is, they are not truncated to discrete coordinates. The path
should be defined by the ideal mathematical path. For a wide line
with line-width lw, the bounding outlines for filling are given by the
two infinitely thin paths consisting of all points whose perpendicular
distance from the path of the circle/ellipse is equal to Iw/2 (which
may be a fractional value). The cap-style and join-style are applied
the same as for a line corresponding to the tangent of the
circle/ellipse at the endpoint.

For an arc specified as [x,y,w,h,al,a2], the angles must be specified in
the effectively skewed coordinate system of the ellipse (for a circle,
the angles and coordinate systems are identical). The relationship
between these angles and angles expressed in the normal coordinate
system of the screen (as measured with a protractor) is as follows:

skewed-angle = atan(tan(normal-angle) * w/h) + adjust

The skewed-angle and normal-angle are expressed in radians (rather
than in degrees scaled by 64) in the range [O,2*PI). The atan
returns a value in the range [- PII2,PII2]. The adjust is:

o for normal-angle in the range [O,PII2)
PI for normal-angle in the range [PI/2,(3*PI)/2)
2*PI for normal-angle in the range [(3*PI)/2,2*PI)

The arcs are drawn in the order listed. If the last point in one arc
coincides with the first point in the following arc, the two arcs will
join correctly. If the first point in the first arc coincides with the
last point in the last arc, the two arcs will join correctly. For any
given arc, no pixel is drawn more than once. If two arcs join
correctly and the line-width is greater than zero and the arcs
intersect, no pixel is drawn more than once. Otherwise, the
intersecting pixels of intersecting arcs are drawn multiple times.
Specifying an arc with one endpoint and a clockwise extent draws the
same pixels as specifying the other endpoint and an equivalent
counterclockwise extent, except as it affects joins.

78 Protocol

By specifying one axis to be zero, a horizontal or vertical line can be
drawn.

Angles are computed based solely on the coordinate system, ignoring
the aspect ratio.

GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, dashes

FiliPoly

drawable: DRAWABLE
gc: GCONTEXT
shape: { Complex, Nonconvex, Convex}
coordinate-rrwde: {Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request fills the region closed by the specified path. The path is
closed automatically if the last point in the list does not coincide with
the first point. No pixel of the region is drawn more than once.

The first point is always relative to the drawable's origin. The rest
are relative either to that origin or the previous point, depending on
the coordinate-mode.

The shape parameter may be used by the server to improve
performance. Complex means the path may self-intersect.

Nonconvex means the path does not self-intersect, but the shape is
not wholly convex. If known by the client, specifying Nonconvex over
Complex may improve performance. If Nonconvex is specified for a
self-intersecting path, the graphics results are undefined.

Convex means the path is wholly convex. If known by the client,
specifying Convex can improve performance. If Convex is specified for
a path that is not convex, the graphics results are undefined.

GC components: function, plane-mask, fill-style, fill-rule, subwindow
mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipp le-x -origin, tile-stipple-y -origin

PolyFiIIRectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE

Protocol 79

Errors: Drawable, GContext, Match

This request fills the specified rectangles, as if a four-point FiliPoly
were specified for each rectangle:

[x,y] [x + width,y] [x + width,y + height] [x,y + height]

The x and y coordinates of each rectangle are relative to the
drawable's origin and define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given
rectangle, no pixel is drawn more than once. If rectangles intersect,
the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, fill-style, subwindow-mode, clip
x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin

PolyFiliArc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC

Errors: Drawable, GContext, Match

For each arc, this request fills the region closed by the infinitely thin
path described by the specified arc and one or two line segments,
depending on the arc-mode. For Chord, the single line segment
joining the endpoints of the arc is used. For PieSlice, the two line
segments joining the endpoints of the arc with the center point are
used. The arcs are as specified in the PolyArc request.

The arcs are filled in the order listed. For any given arc, no pixel is
drawn more than once. If regions intersect, the intersecting pixels are
drawn multiple times.

GC components: function, plane-mask, fill-style, arc-mode, subwindow
mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin

Putlmage

drawable: DRAWABLE
gc: GCONTEXT
depth: CARD8
width, height: CARD16
dst-x, dst-y: INT16
left-pad: CARD8
format: { Bitmap, XYPixmap, ZPixmap}

80 Protocol

data: LISTofBYTE

Errors: Drawable, GContext, Match, Value

This request combines an image with a rectangle of the drawable.
The dst-x and dst-y coordinates are relative to the drawable's origin.

If Bitmap format is used, then depth must be one (or a Match error
results), and the image must be in XY format. The foreground pixel
in gc defines the source for bits set to 1 in the image, and the
background pixel defines the source for the bits set to O.

For XYPixmap and ZPixmap, the depth must match the depth of the
drawable (or a Match error results). For XYPixmap, the image must
be sent in XY format. For ZPixmap, the image must be sent in the
Z format defined for the given depth.

The left-pad must be zero for ZPixmap format (or a Match error
results) . For Bitmap and XYPixmap format, left-pad must be less
than bitmap-scanline-pad as given in the server connection setup
information (or a Match error results). The first left-pad bits in
every scanline are to be ignored by the server. The actual image
begins that many bits into the data. The width argument defines the
width of the actual image and does not include left-pad.

GC components: function, plane-mask, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

GC mode-dependent components: foreground, background

Getlmage

drawable: DRAWABLE
x, y: INTI6
width, height: CARDI6
plane-mask: CARD32
format: {XYPixmap, ZPixmap}

=>
depth: CARD8
visual: VISUALID or None
data: LISTofBYTE

Errors: Drawable, Value, Match

This request returns the contents of the given rectangle of the
drawable in the given format. The x and y coordinates are relative
to the drawable's origin and define the upper-left corner of the
rectangle. If XYPixmap is specified, only the bit planes specified in
plane-mask are transmitted, with the planes appearing from most
significant to least-significant in bit order. If ZPixmap is specified,
then bits in all planes not specified in plane-mask are transmitted as

Protocol 81

zero. Range checking is not performed on plane-mask; extraneous bits
are simply ignored. The returned depth is as specified when the
drawable was created and is the same as a depth component in a
FORMAT structure (in the connection setup), not a bits-per-pixel
component. If the drflwable is a window, its visual type is returned.
If the drawable is a pix map , the visual is None.

If the drawable is a pix map , then the given rectangle must be wholly
contained within the pixmap (or a Match error results). If the
drawable is a window, the window must be viewable, and it must be
the case that, if there were no inferiors or overlapping windows, the
specified rectangle of the window would be fully visible on the screen
and wholly contained within the outside edges of the window (or a
Match error results). Note that the borders of the window can be
included and read with this request. If the window has a backing
store, then the backing-store contents are returned for regions of the
window that are obscured by noninferior windows; otherwise, the
returned contents of such obscured regions are undefined. Also
undefined are the returned contents of visible regions of inferiors of
different depth than the specified window. The pointer cursor image
is not included in the contents returned.

This request is not general-purpose in the same sense as other
graphics-related requests. It is intended specifically for rudimentary
hardcopy support.

PolyText8

drawable: DRAWABLE
gc: GCONTEXT
x, y: INTI6
items: LISTofTEXTITEM8

where:

TEXTITEM8:
TEXTELT8:

TEXTELT8 or FONT
[delta: INT8
string: STRING8]

Errors: Drawable, GContext, Match, Font

The x and y coordinates are relative to the drawable's orIgIn and
specify the baseline starting position (the initial character origin).
Each text item is processed in turn. A font item causes the font to
be stored in gc and to be used for subsequent text. Switching among
fonts does not affect the next character origin. A text element delta
specifies an additional change in the position along the x axis before
the string is drawn; the delta is always added to the character origin.

82 Protocol

Each character image, as defined by the font in gc, is treated as an
additional mask for a fill operation on the drawable.

All contained FONTs are always transmitted most-significant byte first.

If a Font error is generated for an item, the previous items may have
been drawn.

For fonts defined with 2-byte matrix indexing, each STRING8 byte is
interpreted as a byte2 value of a CHAR2B with a bytel value of
zero.

GC components: function, plane-mask, fill-style, font, subwindow-mode,
clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x -origin, tile-stipple-y -origin

PolyText16

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
items: LISTofTEXTITEM16

where:

TEXTITEMI6:
TEXTELTI6:

TEXTELT16 or FONT
[delta: INT8
string: STRING 16]

Errors: Drawable, GContext, Match, Font

This request is similar to PolyTextS, except 2-byte (or 16-bit)
characters are used. For fonts defined with linear indexing rather
than 2-byte matrix indexing, the server will interpret each CHAR2B
as a 16-bit number that has been transmitted most-significant byte
first (that is, bytel of the CHAR2B is taken as the most-significant
byte) .

ImageTextS

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
string: STRING8

Errors: Drawable, GContext, Match

The x and y coordinates are relative to the drawable's orIgIn and
specify the baseline starting position (the initial character origin).
The effect is first to fill a destination rectangle with the background
pixel defined in gc and then to paint the text with the foreground

Protocol 83

pixel. The upper-left corner of the filled rectangle is at:

[x, y - font-ascent]

the width is:

overall-width

and the height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as they would be
returned by a QueryTextExtents call using gc and string.

The function and fill-style defined in gc are ignored for this request.
The effective function is Copy, and the effective fill-style Solid.

For fonts defined with 2-byte matrix indexing, each STRING8 byte is
interpreted as a byte2 value of a CHAR2B with a bytel value of
zero.

GC components: plane-mask, foreground, background, font, subwindow
mode, clip-x-origin, clip-y-origin, clip-mask

ImageText16

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
string: STRING 16

Errors: Drawable, GContext, Match

This request is similar to ImageText8, except 2-byte (or 16-bit)
characters are used. For fonts defined with linear indexing rather
than 2-byte matrix indexing, the server will interpret each CHAR2B
as a 16-bit number that has been transmitted most-significant byte
first (that is, bytel of the CHAR2B is taken as the most-significant
byte) .

C reateColormap

mid: COLORMAP
visual: VISUALID
window: WINDOW
alloc: { None, All}

Errors: IDChoice, Window, Value, Match, Alloc

This request creates a colormap of the specified visual type for the
screen on which the window resides and associates the identifier mid
with it. The visual type must be one supported by the screen (or a

84 Protocol

Match error results). The initial values of the colormap entries are
undefined for classes GrayScale, PseudoColor, and DirectColor. For
StaticGray, StaticColor, and TrueColor, the entries will have defined
values, but those values are specific to the visual and are not defined
by the core protocol. For StaticGray, StaticColor, and TrueColor, alloc
must be specified as None (or a Match error results). For the other
classes, if alloc is None, the colormap initially has no allocated entries,
and clients can allocate entries.

If alloc is All, then the entire colormap is "allocated" writable. The
initial values of all allocated entries are undefined. For GrayScale and
PseudoColor, the effect is as if an AliocColorCelis request returned all
pixel values from zero to N - 1, where N is the colormap-entries
value in the specified visual. For DirectColor, the effect is as if an
AliocColorPlanes request returned a pixel value of zero and red-mask,
green-mask, and blue-mask values containing the same bits as the
corresponding masks in the specified visual. However, in all cases,
none of these entries can be freed with FreeColors.

FreeColormap

cmap: COLORMAP

Errors: Colormap

This request deletes the association between the resource ID and the
colormap and frees the colormap storage. If the colormap is an
installed map for a screen, it is uninstalled (see UninstaliColormap
request) . If the colormap is defined as the colormap for a window
(by means of CreateWindow or ChangeWindowAttributes), the colormap
for the window is changed to None, and a ColormapNotify event is
generated. The protocol does not define the colors displayed for a
window with a colormap of None.

This request has no effect on a default colormap for a screen.

CopyColormapAnd Free

mid, src-cmap: COLORMAP

Errors: IDChoice, Colormap, Alloc

This request creates a colormap of the same visual type and for the
same screen as src-cmap, and it associates identifier mid with it. It
also moves all of the client's existing allocations from src-cmap to the
new colormap with their color values intact and their read-only or
writable characteristics intact, and it frees those entries in src-cmap.
Color values in other entries in the new colormap are undefined. If
src-cmap was created by the client with alloc All (see CreateColormap
request), then the new colormap is also created with alloc All, all color
values for all entries are copied from src-cmap, and then all entries in

Protocol 85

src-cmap are freed. If src-cmap was not created by the client with
alloc All, then the allocations to be moved are all those pixels and
planes that have been allocated by the client using either AliocColor,
AliocNamedColor, AliocColorCells, or AliocColorPlanes and that have
not been freed since they were allocated.

I nstallColormap

cmap: COLORMAP

Errors: Colormap

This request makes this colormap an installed map for its screen. All
windows associated with this colormap immediately display with true
colors. As a side effect, additional colormaps might be implicitly
installed or uninstalled by the server. Which other colormaps get
installed or uninstalled is server-dependent except that the required
list must remain installed.

If cmap is not already an installed map, a ColormapNotify event is
generated on every window having cmap as an attribute. In addition,
for every other colormap that is installed or uninstalled as a result of
the request, a ColormapNotify event is generated on every window
having that colormap as an attribute.

At any time, there is a subset of the installed maps that are viewed
as an ordered list and are called the required list. The length of the
required list is at most M, where M is the min-installed-maps
specified for the screen in the connection setup. The required list is
maintained as follows. When a colormap is an explicit argument to
InstaliColormap, it is added to the head of the list; the list is
truncated at the tail, if necessary, to keep the length of the list to at
most M. When a colormap is an explicit argument to
UninstaliColormap and it is in the required list, it is removed from
the list. A colormap is not added to the required list when it is
installed implicitly by the server, and the server cannot implicitly
uninstall a colormap that is in the required list.

Initially the default colormap for a screen is installed (but is not in
the required list).

UninstaliColormap

cmap: COLORMAP

Errors: Colormap

If cmap is on the required list for its screen (see InstaliColormap
request), it is removed from the list. As a side effect, cmap might
be uninstalled, and additional colormaps might be implicitly installed or
uninstalled. Which colormaps get installed or uninstalled is server
dependent except that the required list must remain installed.

86 Protocol

If cmap becomes uninstalled, a ColormapNotify event is generated on
every window having cmap as an attribute. In addition, for every
other colormap that is installed or uninstalled as a result of the
request, a ColormapNotify event is generated on every window having
that colormap as an attribute.

ListlnstalledColormaps

window: WINDOW

=>
cmaps: LISTofCOLORMAP

Errors: Window

This request returns a list of the currently installed colormaps for the
screen of the specified window. The order of colormaps is not
significant, and there is no explicit indication of the required list (see
InstallColormap request).

AllocColor

cmap: COLORMAP
red, green, blue: CARD16

=>
pixel: CARD32
red, green, blue: CARD16

Errors: Colormap, Alloc

This request allocates a read-only colormap entry corresponding to the
closest RGB values provided by the hardware. It also returns the
pixel and the RGB values actually used.

AllocNamedColor

cmap: COLORMAP
name: STRING8

=>
pixel: CARD32
exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16

Errors: Colormap, Name, Alloc

This request looks up the named color with respect to the screen
associated with the colormap. Then, it does an AllocColor on cmap.
The name should use the ISO Latin-l encoding, and uppercase and
lowercase do not matter. The exact RGB values specify the true
values for the color, and the visual values specify the values actually
used in the colormap.

Protocol 87

AliocColorCelis

cmap: COLORMAP
colors, planes: CARD16
contiguous: BOOL

=>
pixels, masks: LISTofCARD32

Errors: Colormap, Value, Alloc

The number of colors must be positive, and the number of planes
must be nonnegative (or a Value error results). If C colors and P
planes are requested, then C pixels and P masks are returned. No
mask will have any bits in common with any other mask or with any
of the pixels. By ORing together masks and pixels, C*2P distinct
pixels can be produced; all of these are allocated writable by the
request. For GrayScale or PseudoColor, each mask will have exactly
one bit set to 1; for DirectColor, each will have exactly three bits set
to 1. If contiguous is True and if all masks are ORed together, a
single contiguous set of bits will be formed for GrayScale or
PseudoColor, and three contiguous sets of bits (one within each pixel
subfield) for DirectColor. The RGB values of the allocated entries are
undefined.

AliocColorPlanes

cmap: COLORMAP
colors, reds, greens, blues: CARD16
contiguous: BOOL

=>
pixels: LISTofCARD32
red-mask, green-mask, blue-mask: CARD32

Errors: Colormap, Value, Alloc

The number of colors must be positive, and the reds, greens, and
blues must be nonnegative (or a Value error results). If C colors, R
reds, G greens, and B blues are requested, then C pixels are returned,
and the masks have R, G, and B bits set, respectively. If contiguous
is True, then each mask will have a contiguous set of bits. No mask
will have any bits in common with any other mask or with any of
the pixels. For DirectColor, each mask will lie within the
corresponding pixel stWfield. By ORing together subsets of masks
with pixels, C*2R +G + distinct pixels can be produced; all of these
are allocated by the request. The initial RG B values of the allocated
entries are undefined. In th~ colormap, there are only C*2

R

independent red entries, C*2 independent green entries, and C*2
B

independent blue entries. This is true even for PseudoColor. When

88 Protocol

the colormap entry for a pixel value is changed using StoreColors or
StoreNamedColor, the pixel is decomposed according to the masks and
the corresponding independent entries are updated.

FreeColors

cmap: COLORMAP
pixels: LISTofCARD32
plane-mask: CARD32

Errors: Colormap, Access, Value

The plane-mask should not have any bits in common with any of the
pixels. The set of all pixels is produced by ~Ring together subsets of
plane-mask with the pixels. The request frees all of these pixels that
were allocated by the client (using AliocColor, AliocNamedColor,
AliocColorCells, and AliocColorPlanes). Note that freeing an individual
pixel obtained from AliocColorPlanes may not actually allow it to be
reused until all of its related pixels are also freed.

All specified pixels that are allocated by the client in cmap are freed,
even if one or more pixels produce an error. A Value error is
generated if a specified pixel is not a valid index into cmap, and an
Access error is generated if a specified pixel is not allocated by the
client (that is, is unallocated or is only allocated by another client).
If more than one pixel is in error, it is arbitrary as to which pixel is
reported.

StoreColors

cmap: COLORMAP
items: LISTofCOLORITEM

where:

COLORITEM: [pixel: CARD32
do-red, do-green, do-blue: BOOL
red, green, blue: CARD16]

Errors: Colormap, Access, Value

This request changes the colormap entries of the specified pixels. The
do-red, do-green, and do-blue fields indicate which components should
actually be changed. If the colormap is an installed map for its
screen, the changes are visible immediately.

All specified pixels that are allocated writable in cmap (by any client)
are changed, even if one or more pixels produce an error. A Value
error is generated if a specified pixel is not a valid index into cmap,
and an Access error is generated if a specified pixel is unallocated or
is allocated read-only. If more than one pixel is in error, it is
arbitrary as to which pixel is reported.

Protocol 89

StoreNamedColor

cmap: COLORMAP
pixel: CARD32
name: STRING8
do-red, do-green, do-blue: BOOL

Errors: Colormap, Name, Access, Value

This request looks up the named color with respect to the screen
associated with cmap and then does a StoreColors in cmap. The
name should use the ISO Latin-l encoding, and uppercase and
lowercase do not matter. The Access and Value errors are the same
as in StoreColors.

QueryColors

cmap: COLORMAP
pixels: LISTofCARD32

=>
colors: LISTofRGB

where:

RGB: [red, green, blue: CARD16]

Errors: Colormap, Value

This request returns the color values stored in cmap for the specified
pixels. The values returned for an unallocated entry are undefined.
A Value error is generated if a pixel is not a valid index into cmap.
If more than one pixel is in error, it is arbitrary as to which pixel is
reported.

LookupColor

cmap: COLORMAP
name: STRING8

=>
exact-red, exact-green, exact-blue: CARDl6
visual-red, visual-green, visual-blue: CARDl6

Errors: Colormap, Name

This request looks up the string name of a color with respect to the
screen associated with cmap and returns both the exact color values
and the closest values provided by the hardware with respect to the
visual type of cmap. The name should use the ISO Latin-l encoding,
and uppercase and lowercase do not matter.

90 Protocol

CreateCursor

cid: CURSOR
so urce: PIXMAP
mask: PIXMAP or None
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
x, y: CARD16

Errors: IDChoice, Pixmap, Match, Alloc

This request creates a cursor and associates identifier cid with it.
The foreground and background RGB values must be specified, even if
the server only has a StaticGray or GrayScale screen. The foreground
is used for the bits set to 1 in the source, and the background is
used for the bits set to O. Both source and mask (if specified) must
have depth one (or a Match error results), but they can have any
root. The mask pixmap defines the shape of the cursor. That is,
the bits set to 1 in the mask define which source pixels will be
displayed, and where the mask has bits set to 0, the corresponding
bits of the source pixmap are ignored. If no mask is given, all pixels
of the source are displayed. The mask, if present, must be the same
size as the source (or a Match error results). The x and y
coordinates define the hotspot relative to the source's origin and must
be a point within the source (or a Match error results).

The components of the cursor may be transformed arbitrarily to meet
display limitations.

The pixmaps can be freed immediately if no further explicit references
to them are to be made.

Subsequent drawing in the source or mask pixmap has an undefined
effect on the cursor. The server might or might not make a copy of
the pixmap.

CreateGlyphCursor

cid: CURSOR
source-font: FONT
mask-font: FONT or None
source-char, mask-char: CARD16
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16

Errors: IDChoice, Font, Value, Alloc

This request is similar to CreateCursor, except the source and mask
bitmaps are obtained from the specified font glyphs. The source-char
must be a defined glyph in source-font, and if mask-font is given,
mask-char must be a defined glyph in mask-font (or a Value error

Protocol 91

results) . The mask font and character are optional. The orIgInS of
the source and mask (if it is defined) glyphs are positioned
coincidently and define the hotspot. The source and mask need not
have the same bounding box metrics, and there is no restriction on
the placement of the hotspot relative to the bounding boxes. If no
mask is given, all pixels of the source are displayed. Note that
source-char and mask-char are CARD16, not CHAR2B. For 2-byte
matrix fonts, the 16-bit value should be formed with by tel in the
most-significant byte and byte2 in the least-significant byte.

The components of the cursor may be transformed arbitrarily to meet
display limitations.

The fonts can be freed immediately if no further explicit references to
them are to be made.

FreeCursor

cursor: CURSOR

Errors: Cursor

This request deletes the association between the resource ID and the
cursor. The cursor storage will be freed when no other resource
references it.

RecolorCursor

cursor: CURSOR
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16

Errors: Cursor

This request changes the color of a cursor. If the cursor is being
displayed on a screen, the change is visible immediately.

QueryBestSize

class: {Cursor, Tile, Stipple}
drawable: DRAWABLE
width, height: CARD16

=>
width, height: CARD16

Errors: Drawable, Value, Match

This request returns the best size that is closest to the argument
size. For Cursor, this is the largest size that can be fully displayed.
For Tile, this is the size that can be tiled fastest. For Stipple, this
is the size that can be stippled fastest.

For Cursor, the drawable indicates the desired screen. For Tile and
Stipple, the drawable indicates the screen and also possibly the window

92 Protocol

class and depth.
drawable for Tile

An InputOnly window cannot be used as the
or Stipple (or a Match error results).

QueryExtension

name: STRING8

=>
present: BOOL
major-opcode: CARD8
first-event: CARD8
first-error: CARD8

This request determines if the named extension is present. If so, the
major opcode for the extension is returned, if it has one. Otherwise,
zero is returned. Any minor opcode and the request formats are
specific to the extension. If the extension involves additional event
types, the base event type code is returned. Otherwise, zero is
returned. The format of the events is specific to the extension. If
the extension involves additional error codes, the base error code is
returned. Otherwise, zero is returned. The format of additional data
in the errors is specific to the extension.

The extension name should use the ISO Latin-l encoding, and
uppercase and lowercase matter.

ListExtensions

=>
names: LISTofSTRING8

This request returns a list of all extensions supported by the server.

SetModifierMapping

keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

=>
status: {Success, Busy, Failed}

Errors: Value, Alloc

This request specifies the keycodes (if any) of the keys to be used as
modifiers. The number of keycodes in the list must be 8*keycodes
per-modifier (or a Length error results). The keycodes are divided
into eight sets, with each set containing keycodes-per-modifier
elements. The sets are assigned to the modifiers I Shift, Lock, Control,
Mod1, Mod2, Mod3, Mod4, and Mod5, in order. Only nonzero keycode
values are used within each set; zero values are ignored. All of the
nonzero keycodes must be in the range specified by min-keycode and
max-keycode in the connection setup (or a Value error results). The

Protocol 93

order of keycodes within a set does not matter. If no nonzero values
are specified in a set, the use of the corresponding modifier is
disabled, and the modifier bit will always be zero. Otherwise, the
modifier bit will be one whenever at least one of the keys in the
corresponding set is in the down position.

A server can impose restrictions on how modifiers can be changed
(for example, if certain keys do not generate up transitions in
hardware, if auto-repeat cannot be disabled on certain keys, or if
multiple keys per modifier are not supported). The status reply is
Failed if some such restriction is violated, and none of the modifiers
are changed.

If the new nonzero keycodes specified for a modifier differ from those
currently defined and any (current or new) keys for that modifier are
logically in the down state, then the status reply is Busy, and none of
the modifiers is changed.

This request generates a MappingNotify event on a Success status.

GetModifierMapping

=>
keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

This request returns the keycodes of the keys being used as modifiers.
The number of keycodes in the list is 8*keycodes-per-modifier. The
keycodes are divided into eight sets, with each set containing
keycodes-per-modifier elements. The sets are assigned to the modifiers
Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, and ModS, in order.
The keycodes-per-modifier value is chosen arbitrarily by the server;
zeroes are used to fill in unused elements within each set. If only
zero values are given in a set, the use of the corresponding modifier
has been disabled. The order of keycodes within each set is chosen
arbitrarily by the server.

ChangeKeyboardMapping

firs t-key co de : KEYCODE
key sy ms-per-keycode: CARD8
keysyms: LISTofKEYSYM

Errors: Value, Alloc

This request defines the symbols for the specified number of keycodes,
starting with the specified keycode. The symbols for keycodes outside
this range remained unchanged. The number of elements in the
keysyms list must be a multiple of keysyms-per-keycode (or a Length
error results). The first-keycode must be greater than or equal to
min-keycode as returned in the connection setup (or a Value error

94 Protocol

results) and:

first-keycode + (keysyms-Iength I keysyms-per-keycode) - 1

must be less than or equal to max-keycode as returned in the
connection setup (or a Value error results). KEYSYM number N
(counting from zero) for keycode K has an index (counting from zero)
of:

(K - first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode can be chosen arbitrarily by
the client to be large enough to hold all desired symbols. A special
KEYSYM value of NoSymbol should be used to fill in unused
elements for individual keycodes. It is legal for NoSymbol to appear
in nontrailing positions of the effective list for a keycode.

This request generates a MappingNotify event.

There is no requirement that the server interpret this mapping; it is
merely stored for reading and writing by clients (see section 6).

GetKeyboard Mapping

firs t-key co de : KEYCODE
count: CARDS

=>
keysyms-per-keycode: CARDS
keysyms: LISTofKEYSYM

Errors: Value

This request returns the symbols for the specified number of keycodes,
starting with the specified keycode. The first-keycode must be greater
than or equal to min-keycode as returned in the connection setup (or
a Value error results), and:

first-keycode + count - 1

must be less than or equal to max-keycode as returned in the
connection setup (or a Value error results). The number of elements
in the keysyms list is:

count * keysyms-per-keycode

and KEYSYM number N (counting from zero) for keycode K has an
index (counting from zero) of:

(K - first-keycode) * keysyms-per-keycode + N

Protocol 95

in keysyms. The keysyms-per-keycode value is chosen arbitrarily by
the server to be large enough to report all requested symbols. A
special KEYSYM value of NoSymbol is used to fill in unused elements
for individual keycodes.

ChangeKeyboardControl

value-mask: BITMASK
value-list: LISTofVALUE

Errors: Match, Value

This request controls various aspects of the keyboard. The value
mask and value-list specify which controls are to be changed. The
possible values are:

Control

key -click -percent
bell-percent
bell-pitch
bell-duration
led
led-mode
key
auto-repeat-mode

Type

INT8
INT8
INT16
INT16
CARD8
{On, Off}
KEYCODE
{On, Off, Default}

The key-click-percent sets the volume for key clicks between 0 (off)
and 100 (loud) inclusive, if possible. Setting to -1 restores the
default. Other negative values generate a Value error.

The bell-percent sets the base volume for the bell between 0 (off) and
100 (loud) inclusive, if possible. Setting to -1 restores the default.
Other negative values generate a Value error.

The bell-pitch sets the pitch (specified in Hz) of the bell, if possible.
Setting to -1 restores the default. Other negative values generate a
Value error.

The bell-duration sets the duration of the bell (specified in
milliseconds), if possible. Setting to -1 restores the default. Other
negative values generate a Value error.

If both led-mode and led are specified, then the state of that LED is
changed, if possible. If only led-mode is specified, then the state of
all LEDs are changed, if possible. At most 32 LEDs, numbered from
one, are supported. No standard interpretation of LEDs is defined.
It is a Match error if an led is specified without an led-mode.

96 Protocol

If both auto-repeat-mode and key are specified, then the auto-repeat
mode of that key is changed, if possible. If only auto-repeat-mode is
specified, then the global auto-repeat mode for the entire keyboard is
changed, if possible, without affecting the per-key settings. It is a
Match error if a key is specified without an auto-repeat-mode. Each
key has an individual mode of whether or not it should auto-repeat
and a default setting for that mode. In addition, there is a global
mode of whether auto-repeat should be enabled or not and a default
setting for that mode. When the global mode is On, keys should
obey their individual auto-repeat modes. When the global mode is Off,
no keys should auto-repeat. An auto-repeating key generates
alternating KeyPress and KeyRelease events. When a key is used as
a modifier, it is desirable for the key not to auto-repeat, regardless of
the auto-repeat setting for that key.

A bell generator connected with the console but not directly on the
keyboard is treated as if it were part of the keyboard.

The order in which controls are verified and altered is server
dependent. If an error is generated, a subset of the controls may
have been altered.

GetKeyboardControl

Bell

=>
key-click-percent: CARD8
bell-percent: CARD8
bell-pitch: CARD16
bell-duration: CARD16
led-mask: CARD32
global-auto-repeat: {On, Off}
auto-repeats: LISTofCARD8

This request returns the current control values for the keyboard. For
the LEOs, the least-significant bit of led-mask corresponds to LED
one, and each one bit in led-mask indicates an LED that is lit. The
auto-repeats is a bit vector; each one bit indicates that auto-repeat is
enabled for the corresponding key. The vector is represented as 32
bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7,
with the least-significant bit in the byte representing key 8N.

percent: INT8

Errors: Value

This request rings the bell on the keyboard at a volume relative to
the base volume for the keyboard, if possible. Percent can range
from -100 to 100 inclusive (or a Value error results). The volume at

Protocol 97

which the bell is rung when percent is nonnegative is:

base - [(base * percent) I 100] + percent

When percent is negative, it is:

base + [(base * percent) I 100]

SetPointerMapping

map: LISTofCARD8

=>
status: {Success , Busy}

Errors: Value

This request sets the mapping of the pointer. Elements of the list
are indexed starting from one. The length of the list must be the
same as GetPointerMapping would return (or a Value error results).
The index is a core button number, and the element of the list
defines the effective number.

A zero element disables a button. Elements are not restricted in value
by the number of physical buttons, but no two elements can have the
same nonzero value (or a Value error results).

If any of the buttons to be altered are logically in the down state,
the status reply is Busy, and the mapping is not changed.

This request generates a MappingNotify event on a Success status.

GetPointerMapping

=>
map: LISTofCARD8

This request returns the current mapping of the pointer. Elements of
the list are indexed starting from one. The length of the list
indicates the number of physical buttons.

The nominal mapping for a pointer is the identity mapping: map[i]= i.

ChangePointerControl

do-acceleration, do-threshold: BOOL
acce leratio n-nume rato r, acce le ratio n-de no minato r: INT 16
threshold: INT16

Errors: Value

This request defines how the pointer moves. The acceleration is a
multiplier for movement expressed as a fraction. For example,
specifying 3/1 means the pointer moves three times as fast as normal.
The fraction can be rounded arbitrarily by the server. Acceleration

98 Protocol

only takes effect if the pointer moves more than threshold number of
pixels at once and only applies to the amount beyond the threshold.
Setting a value to -1 restores the default. Other negative values
generate a Value error, as does a zero value for acceleration
denominator.

GetPointerControl

=>
acceleration-numerator, acceleration-denominator: CARD 16
threshold: CARD16

This request returns the current acceleration and threshold for the
pointer.

SetScreenSaver

timeout, interval: INT16
prefer-blanking: {Yes, No, Default}
allow-exposures: {Yes, No, Default}

Errors: Value

The timeout and interval are specified in seconds; setting a value to
-1 restores the default. Other negative values generate a Value error.
If the timeout value is zero, screen-saver is disabled. If the timeout
value is nonzero, screen-saver is enabled. Once screen-saver is
enabled, if no input from the keyboard or pointer is generated for
timeout seconds, screen-saver is activated. For each screen, if
blanking is preferred and the hardware supports video blanking, the
screen will simply go blank. Otherwise, if either exposures are
allowed or the screen can be regenerated without sending exposure
events to clients, the screen is changed in a server-dependent fashion
to avoid phosphor burn. Otherwise, the state of the screens does not
change, and screen-saver is not activated. At the next keyboard or
pointer input or at the next ForceScreenSaver with mode Reset,
screen-saver is deactivated, and all screen states are restored.

If the server-dependent screen-saver method is amenable to periodic
change, interval serves as a hint about how long the change period
should be, with zero hinting that no periodic change should be make.
Examples of ways to change the screen include scrambling the color
map periodically, moving an icon image about the screen periodically,
or tiling the screen with the root window background tile, randomly
reorigined periodically.

GetScreenSaver

=>
timeout, interval: CARD16
prefer-blanking: {Yes, No}

Protocol 99

allow-exposures: {Yes, No}

This request returns the current screen-saver control values.

ForceScreenSaver

mode: {Activate, Reset}

Errors: Value

If the mode is Activate and screen-saver is currently deactivated, then
screen-saver is activated (even if screen-saver has been disabled with a
timeout value of zero). If the mode is Reset and screen-saver is
currently enabled, then screen-saver is deactivated (if it was
activated), and the activation timer is reset to its initial state as if
device input had just been received.

ChangeHosts

mode: {Insert, Delete}
host: HOST

Errors: Access, Value

This request adds or removes the specified host from the access
control list. When the access control mechanism is enabled and a
host attempts to establish a connection to the server, the host must
be in this list, or the server will refuse the connection.

The client must reside on the same host as the server and/or have
been granted permission by a server-dependent method to execute this
request (or an Access error results).

An initial access control list can usually be specified, typically by
naming a file that the server reads at startup and reset.

The following address families are defined. A server is not required
to support these families and may support families not listed here.
Use of an unsupported family, an improper address format, or an
improper address length within a supported family results in a Value
error.

For the Internet family, the address must be four bytes long. The
address bytes are in standard IP order; the server performs no
automatic swapping on the address bytes. For a Class A address, the
network number is the first byte in the address, and the host number
is the remaining three bytes, most-significant byte first. For a Class
B address, the network number is the first two bytes and the host
number is the last two bytes, each most-significant byte first. For a
Class C address, the network number is the first three bytes, most
significant byte first, and the last byte is the host number.

For the DECnet family, the server performs no automatic swapping on
the address bytes. A Phase IV address is two bytes long: the first

100 Protocol

byte contains the least-significant eight bits of the node number, and
the second byte contains the most-significant two bits of the node
number in the least-significant two bits of the byte and the area in
the most significant six bits of the byte.

For the Chaos family, the address must be two bytes long. The host
number is always the first byte in the address, and the subnet
number is always the second byte. The server performs no automatic
swapping on the address bytes.

ListHosts

=>
mode: {Enabled, Disabled}
hosts: LISTofHOST

This request returns the hosts on the access control list and whether
use of the list at connection setup is currently enabled or disabled.

Each HOST is padded to a multiple of four bytes.

SetAccessControl

rrwde: {Enable, Disable}

Errors: Value, Access

This request enables or disables the use of the access control list at
connection setups.

The client must reside on the same host as the server and/or have
been granted permission by a server-dependent method to execute this
request (or an Access error results).

SetCloseDownMode

rrwde: {Destroy, RetainPermanent, RetainTemporary}

Errors: Value

This request defines what will happen to the client's resources at
connection close. A connection starts in Destroy mode. The meaning
of the close-down mode is described in section 11.

KiliClient

resource: CARD32 or AIiTemporary

Errors: Value

If a valid resource is specified, KiliClient forces a close-down of the
client that created the resource. If the client has already terminated
in either RetainPermanent or RetainTemporary mode, all of the client's
resources are destroyed (see section 11). If AIiTemporary is specified,
then the resources of all clients that have terminated in
RetainTemporary are destroyed.

Protocol 101

NoOperation

This request has no arguments and no results, but the request length
field can be nonzero, which allows the request to be any multiple of
four bytes in length. The bytes contained in the request are
uninterpreted by the server.

This request can be used in its minimum four byte form as padding
where necessary by client libraries that find it convenient to force
requests to begin on 64-bit boundaries.

11 Connection Close
At connection close, all event selections made by the client are discarded.
If the client has the pointer actively grabbed, an UngrabPointer is
performed. If the client has the keyboard actively grabbed, an
UngrabKeyboard is performed. All passive grabs by the client are released.
If the client has the server grabbed, an UngrabServer is performed. All
selections (see SetSelectionOwner request) owned by the client are
disowned. If close-down mode (see SetCloseDownMode request) is
RetainPermanent or RetainTemporary, then all resources (including colormap
entries) allocated by the client are marked as permanent or temporary,
respectively (but this does not prevent other clients from explicitly
destroying them). If the mode is Destroy, all of the client's resources are
destroyed.

When a client's resources are destroyed, for each window in the client's
save-set, if the window is an inferior of a window created by the client, the
save-set window is reparented to the closest ancestor such that the save-set
window is not an inferior of a window created by the client. If the save
set window is unmapped, a MapWindow request is performed on it (even if
it was not an inferior of a window created by the client). The reparenting
leaves unchanged the absolute coordinates (with respect to the root
window) of the upper-left outer corner of the save-set window. After save
set processing, all windows created by the client are destroyed. For each
nonwindow resource created by the client, the appropriate Free request is
performed. All colors and colormap entries allocated by the client are
freed.

A server goes through a cycle of having no connections and having some
connections. At every transition to the state of having no connections as
a result of a connection closing with a Destroy close-down mode, the server
resets its state as if it had just been started. This starts by destroying
all lingering resources from clients that have terminated in RetainPermanent
or RetainTemporary mode. It additionally includes deleting all but the
predefined atom identifiers, deleting all properties on all root windows,
resetting all device maps and attributes (key click, bell volume,

102 Protocol

acceleration), resetting the access control list, restoring the standard root
tiles and cursors, restoring the default font path, and restoring the input
focus to state PointerRoot.

Note that closing a connection with a close-down mode of RetainPermanent
or RetainTemporary will not cause the server to reset.

12 Events
When a button press is processed with the pointer in some window Wand
no active pointer grab is in progress, the ancestors of W are searched from
the root down, looking for a passive grab to activate. If no matching
passive grab on the button exists, then an active grab is started
automatically for the client receiving the event, and the last-po inter-grab
time is set to the current server time. The effect is essentially equivalent
to a GrabButton with arguments:

Argument

event-window

event-mask

pointer-mode
keyboard-mode

owner-events

confine-to

cursor

Value

Event window

Client's selected pointer events on the event window

Asynchronous

True if the client has OwnerGrabButton selected on
the event window, otherwise False

None

None

The grab is terminated automatically when the logical state of the pointer
has all buttons released. UngrabPointer and ChangeActivePointerGrab can
both be used to modify the active grab.

KeyPress
KeyRelease
ButtonPress
Button Release
MotionNotify

root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, roo t-y , event-x, event-y: INT16

Protocol 103

detail: <see below>
state: SETofKEYBUTMASK
time: TIMESTAMP

These events are generated either when a key or button logically
changes state or when the pointer logically moves. The generation of
these logical changes may lag the physical changes if device event
processing is frozen. Note that KeyPress and KeyRelease are
generated for all keys, even those mapped to modifier bits. The
source of the event is the window the pointer is in. The window the
event is reported with respect to is called the event window. The
event window is found by starting with the source window and looking
up the hierarchy for the first window on which any client has selected
interest in the event (provided no intervening window prohibits event
generation by including the event type in its do-not-propagate-mask).
The actual window used for reporting can be modified by active grabs
and, in the case of keyboard events, can be modified by the focus
window.

The root is the root window of the source window, and root-x and
root-yare the pointer coordinates relative to root's origin at the time
of the event. Event is the event window. If the event window is on
the same screen as root, then event-x and event-yare the pointer
coordinates relative to the event window's origin. Otherwise, event-x
and event-yare zero. If the source window is an inferior of the
event window, then child is set to the child of the event window that
is an ancestor of (or is) the source window. Otherwise, it is set to
None. The state component gives the logical state of the buttons and
modifier keys just before the event. The detail component type varies
with the event type:

Event Component

KeyPress KEYCODE
KeyRelease

ButtonPress BUTTON
Button Release

MotionNotify {Normal, Hint}

MotionNotify events are only generated when the motion begins and
ends in the window. The granularity of motion events is not
guaranteed, but a client selecting for motion events is guaranteed to
get at least one event when the pointer moves and comes to rest.

104 Protocol

Selecting PointerMotion receives events independent of the state of the
pointer buttons. By selecting some subset of Button[1-5]Motion
instead, MotionNotify events will only be received when one or more of
the specified buttons are pressed. By selecting ButtonMotion,
MotionNotify events will be received only when at least one button is
pressed. The events are always of type MotionNotify, independent of
the selection. If PointerMotionHint is selected, the server is free to
send only one MotionNotify event (with detail Hint) to the client for
the event window until either the key or button state changes, the
pointer leaves the event window, or the client issues a QueryPointer or
GetMotionEvents request.

EnterNotify
LeaveNotify

root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, roo t-y , event-x, event-y: INT16
rrwde: {Normal, Grab, Ungrab}
detail: {Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual}
focus: BOOL
state: SETofKEYBUTMASK
time: TIMESTAMP

If pointer motion or window hierarchy change causes the pointer to be
in a different window than before, EnterNotify and LeaveNotify events
are generated instead of a MotionNotify event. Only clients selecting
EnterWindow on a window receive EnterNotify events, and only clients
selecting LeaveNotify receive LeaveNotify events. The pointer position
reported in the event is always the final position, not the initial
position of the pointer. The root is the root window for this position,
and root-x and root-yare the pointer coordinates relative to root's
origin at the time of the event. Event is the event window. If the
event window is on the same screen as root, then event-x and event-y
are the pointer coordinates relative to the event window's origin.
Otherwise, event-x and event-yare zero. In a LeaveNotify event, if a
child of the event window contains the initial position of the pointer,
then the child component is set to that child. Otherwise, it is None.
For an EnterNotify event, if a child of the event window contains the
final pointer position, then the child component is set to that child.
Otherwise, it is None. If the event window is the focus window or
an inferior of the focus window, then focus is True. Otherwise, focus
is False.

Normal pointer motion events have mode Normal. Pseudo-motion
events when a grab activates have mode Grab, and pseudo-motion

Protocol 105

events when a grab deactivates have mode Ungrab.

All EnterNotify and LeaveNotify events caused by a hierarchy change
are generated after any hierarchy event caused by that change (that
is, UnmapNotify, MapNotify, ConfigureNotify, GravityNotify,
CirculateNotify), but the ordering of EnterNotify and LeaveNotify events
with respect to FocusOut, VisibilityNotify, and Expose events is not
constrained.

Normal events are generated as follows:

When the pointer moves from window A to window B and A is an
inferior of B:

• LeaveNotify with detail Ancestor is generated on A.

• LeaveNotify with detail Virtual is generated on each window
between A and B exclusive (in that order).

• EnterNotify with detail Inferior is generated on B.

When the pointer moves from window A to window Band B is an
inferior of A:

• LeaveNotify with detail Inferior is generated on A.

• EnterNotify with detail Virtual is generated on each window
between A and B exclusive (in that order).

• EnterNotify with detail Ancestor is generated on B.

When the pointer moves from window A to window B and window C
is their least common ancestor:

• LeaveNotify with detail Nonlinear is generated on A.

• LeaveNotify with detail NonlinearVirtual is generated on each
window between A and C exclusive (in that order).

• EnterNotify with detail NonlinearVirtual is generated on each
window between C and B exclusive (in that order).

• EnterNotify with detail Nonlinear is generated on B.

When the pointer moves from window A to window B on different
screens:

• LeaveNotify with detail Nonlinear is generated on A.

• If A is not a root window, LeaveNotify with detail NonlinearVirtual
is generated on each window above A up to and including its
root (in order).

• If B is not a root window, EnterNotify with detail NonlinearVirtual
is generated on each window from B' s root down to but not
including B (in order).

106 Protocol

• EnterNotify with detail Nonlinear is generated on B.

When a pointer grab activates (but after any initial warp into a
confine-to window and before generating any actual ButtonPress event
that activates the grab), G is the grab-window for the grab, and P is
the window the pointer is in:

• EnterNotify and LeaveNotify events with mode Grab are generated
(as for Normal above) as if the pointer were to suddenly warp
from its current position in P to some position in G. However,
the pointer does not warp, and the pointer position is used as
both the initial and final positions for the events.

When a pointer grab deactivates (but after generating any actual
ButtonRelease event that deactivates the grab), G is the grab-window
for the grab, and P is the window the pointer is in:

• EnterNotify and LeaveNotify events with mode Ungrab are
generated (as for Normal above) as if the pointer were to
suddenly warp from some position in G to its current position in
P. However, the pointer does not warp, and the current pointer
position is used as both the initial and final positions for the
events.

Focusln
FocusOut

event: WINDOW
rrwde: { Normal, WhileGrabbed, Grab, Ungrab}
detail: {Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual, Pointer,

PointerRoot, None}

These events are generated when the input focus changes and are
reported to clients selecting FocusChange on the window. Events
generated by SetinputFocus when the keyboard is not grabbed have
mode Normal. Events generated by SetlnputFocus when the keyboard
is grabbed have mode WhileGrabbed. Events generated when a
keyboard grab activates have mode Grab, and events generated when
a keyboard grab deactivates have mode Ungrab.

All FocusOut events caused by a window unmap are generated after
any UnmapNotify event, but the ordering of FocusOut with respect to
generated EnterNotify, LeaveNotify, VisibilityNotify, and Expose events is
not constrained.

Normal and WhileGrabbed events are generated as follows:

When the focus moves from window A to window B, A is an inferior
of B, and the pointer is in window P:

Protocol 107

• FocusOut with detail Ancestor is generated on A.

• FocusOut with detail Virtual is generated on each window between
A and B exclusive (in order).

• Focusln with detail Inferior is generated on B.

• If P is an inferior of B but P is not A or an inferior of A or
an ancestor of A, Focusln with detail Pointer is generated on
each window below B down to and including P (in order).

When the focus moves from window A to window B, B is an inferior
of A, and the pointer is in window P:

• If P is an inferior of A but P is not an inferior of B or an
ancestor of B, FocusOut with detail Pointer is generated on each
window from P up to but not including A (in order).

• FocusOut with detail Inferior is generated on A.

• Focusln with detail Virtual is generated on each window between
A and B exclusive (in order).

• Focusln with detail Ancestor is generated on B.

When the focus moves from window A to window B, window C is
their least common ancestor, and the pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is
generated on each window from P up to but not including A (in
order) .

• FocusOut with detail Nonlinear is generated on A.

• FocusOut with detail NonlinearVirtual is generated on each window
between A and C exclusive (in order).

• Focusln with detail NonlinearVirtual is generated on each window
between C and B exclusive (in order).

• Focusln with detail Nonlinear is generated on B.

• If P is an inferior of B, Focusln with detail Pointer is generated
on each window below B down to and including P (in order).

When the focus moves from window A to window B on different
screens and the pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is
generated on each window from P up to but not including A (in
order) .

• FocusOut with detail Nonlinear is generated on A.

• If A is not a root window, FocusOut with detail NonlinearVirtual
is generated on each window above A up to and including its
root (in order).

108 Protocol

• If B is not a root window, Focusln with detail NonlinearVirtual is
generated on each window from B' s root down to but not
including B (in order).

• Focusln with detail Nonlinear is generated on B.

• If P is an inferior of B, Focusln with detail Pointer is generated
on each window below B down to and including P (in order).

When the focus moves from window A to PointerRoot (or None) and
the pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is
generated on each window from P up to but not including A (in
order) .

• FocusOut with detail Nonlinear is generated on A.

• If A is not a root window, FocusOut with detail NonlinearVirtual
is generated on each window above A up to and including its
root (in order).

• Focusln with detail PointerRoot (or None) is generated on all
root windows.

• If the new focus is PointerRoot, Focusln with detail Pointer is
generated on each window from P's root down to and including P
(in order).

When the focus moves from PointerRoot (or None) to window A and
the pointer is in window P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is
generated on each window from P up to and including P's root
(in order).

• FocusOut with detail PointerRoot (or None) is generated on all
root windows.

• If A is not a root window, Focusln with detail NonlinearVirtual is
generated on each window from A's root down to but not
including A (in order).

• Focusln with detail Nonlinear is generated on A.

• If P is an inferior of A, Focusln with detail Pointer is generated
on each window below A down to and including P (in order).

When the focus moves from PointerRoot to None (or vice versa) and
the pointer is in window P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is
generated on each window from P up to and including P's root
(in order).

Protocol 109

• FocusOut with detail PointerRoot (or None) is generated on all
root windows.

• Focusln with detail None (or PointerRoot) is generated on all
root windows.

• If the new focus is PointerRoot, Focusln with detail Pointer is
generated on each window from P's root down to and including P
(in order).

When a keyboard grab activates (but before generating any actual
KeyPress event that activates the grab), G is the grab-window for the
grab, and F is the current focus:

• Focusln and FocusOut events with mode Grab are generated (as
for Normal above) as if the focus were to change from F to G.

When a keyboard grab deactivates (but after generating any actual
KeyRelease event that deactivates the grab), G is the grab-window for
the grab, and F is the current focus:

• Focusln and FocusOut events with mode Ungrab are generated
(as for Normal above) as if the focus were to change from G to
F.

KeymapNotify

key s: LIS TofCARD8

The value is a bit vector as described in QueryKeymap. This event is
reported to clients selecting KeymapState on a window and is
generated immediately after every EnterNotify and Focusln.

Expose

window: WINDOW
x, y, width, height: CARD16
count: CARD16

This event is reported to clients selecting Exposure on the window.
It is generated when no valid contents are available for regions of a
window, and either the regions are visible, the regions are viewable
and the server is (perhaps newly) maintaining backing store on the
window, or the window is not viewable but the server is (perhaps
newly) honoring window's backing-store attribute of Always or
WhenMapped. The regions are decomposed into an arbitrary set of
rectangles, and an Expose event is generated for each rectangle.

For a given action causing exposure events, the set of events for a
given window are guaranteed to be reported contiguously. If count is
zero, then no more Expose events for this window follow. If count is
nonzero, then at least that many more Expose events for this window
follow (and possibly more).

110 Protocol

The x and y coordinates are relative to window's OrIgm and specify
the upper-left corner of a rectangle. The width and height specify the
extent of the rectangle.

Expose events are never generated on InputOnly windows.

All Expose events caused by a hierarchy change are generated after
any hierarchy event caused by that change (for example, UnmapNotify,
MapNotify, ConfigureNotify, GravityNotify, CirculateNotify). All Expose
events on a given window are generated after any VisibilityNotify event
on that window, but it is not required that all Expose events on all
windows be generated after all Visibilitity events on all windows. The
ordering of Expose events with respect to FocusOut, EnterNotify, and
LeaveNotify events is not constrained.

GraphicsExposure

drawable: DRAWABLE
x, y, width, height: CARD16
count: CARD16
major-opcode: CARD8
minor-opcode: CARD16

This event is reported to clients selecting graphics-exposures in a
graphics context and is generated when a destination region could not
be computed due to an obscured or out-of-bounds source region. All
of the regions exposed by a given graphics request are guaranteed to
be reported contiguously. If count is zero then no more
GraphicsExposure events for this window follow. If count is nonzero,
then at least that many more GraphicsExposure events for this
window follow (and possibly more).

The x and y coordinates are relative to drawable's origin and specify
the upper-left corner of a rectangle. The width and height specify the
extent of the rectangle.

The major and minor opcodes identify the graphics request used. For
the core protocol, major-opcode is always CopyArea or CopyPlane, and
minor-opcode is always zero.

NoExposure

drawable: DRAWABLE
major-opcode: CARD8
mino r-opco de: CARD16

This event is reported to clients selecting graphics-exposures in a
graphics context and is generated when a graphics request that might
produce GraphicsExposure events does not produce any. The drawable
specifies the destination used for the graphics request.

Protocol 111

The major and minor opcodes identify the graphics request used. For
the core protocol, major-opcode is always CopyArea or CopyPlane, and
the minor-opcode is always zero.

Visib ilrtyNotify

window: WINDOW
state: {Unobscured, PartiallyObscured, FullyObscured}

This event is reported to clients selecting VisibilityChange on the
window. In the following, the state of the window is calculated
ignoring all of the window's subwindows. When a window changes
state from partially or fully obscured or not viewable to viewable and
completely unobscured, an event with Unobscured is generated. When
a window changes state from viewable and completely unobscured or
not viewable, to viewable and partially obscured, an event with
PartiallyObscured is generated. When a window changes state from
viewable and completely unobscured, from viewable and partially
obscured, or from not viewable to viewable and fully obscured, an
event with FullyObscured is generated.

VisibilityNotify events are never generated on InputOnly windows.

All VisibilityNotify events caused by a hierarchy change are generated
after any hierarchy event caused by that change (for example,
UnmapNotify, MapNotify, ConfigureNotify, GravityNotify, CirculateNotify).
Any VisibilityNotify event on a given window is generated before any
Expose events on that window, but it is not required that all
VisibilityNotify events on all windows be generated before all Expose
events on all windows. The ordering of VisibilityNotify events with
respect to FocusOut, EnterNotify, and LeaveNotify events is not
constrained.

CreateNotify

parent, window: WINDOW
x, y: INTI6
width, height, border-width: CARDI6
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on the
parent and is generated when the window is created. The arguments
are as in the CreateWindow request.

DestroyNotify

event, window: WINDOW

This event is reported to clients selecting Structure Notify on the
window and to clients selecting SubstructureNotify on the parent. It is
generated when the window is destroyed. The event is the window on
which the event was generated, and the window is the window that is
destroyed.

112 Protocol

The ordering of the DestroyNotify events is such that for any given
window, DestroyNotify is generated on all inferiors of the window
before being generated on the window itself. The ordering among
siblings and across subhierarchies is not otherwise constrained.

UnmapNotify

event, window: WINDOW
from-configure: BOOL

This event is reported to clients selecting StructureNotify on the
window and to clients selecting Substructure Notify on the parent. It is
generated when the window changes state from mapped to unmapped.
The event is the window on which the event was generated, and the
window is the window that is unmapped. The from-configure flag is
True if the event was generated as a result of the window's parent
being resized when the window itself had a win-gravity of Unmap.

MapNotify

event, window: WINDOW
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the
window and to clients selecting SubstructureNotify on the parent. It is
generated when the window changes state from unmapped to mapped.
The event is the window on which the event was generated, and the
window is the window that is mapped. The override-redirect flag is
from the window's attribute.

MapRequest

parent, window: WINDOW

This event is reported to the client selecting SubstructureRedirect on
the parent and is generated when a MapWindow request is issued on
an unmapped window with an override-redirect attribute of False.

ReparentNotify

event, window, parent: WINDOW
x, y: INT16
override-redirect: BOOL

This event is reported to clients selecting Substructure Notify on either
the old or the new parent and to clients selecting StructureNotify on
the window. It is generated when the window is reparented. The
event is the window on which the event was generated. The window
is the window that has been rerooted. The parent specifies the new
parent. The x and y coordinates are relative to the new parent's
origin and specify the position of the upper-left outer corner of the
window. The override-redirect flag is from the window's attribute.

Protocol 113

ConfigureNotify

event, window: WINDOW
x, y: INTI6
width, height, border-width: CARDI6
above-sibling: WINDOW or None
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the
window and to clients selecting Substructure Notify on the parent. It is
generated when a ConfigureWindow request actually changes the state
of the window. The event is the window on which the event was
generated, and the window is the window that is changed. The x and
y coordinates are relative to the new parent's origin and specify the
position of the upper-left outer corner of the window. The width and
height specify the inside size, not including the border. If above
sibling is None, then the window is on the bottom of the stack with
respect to siblings. Otherwise, the window is immediately on top of
the specified sibling. The override-redirect flag is from the window's
attribute.

GravityNotify

event, window: WINDOW
x, y: INTI6

This event is reported to clients selecting SubstructureNotify on the
parent and to clients selecting StructureNotify on the window. It is
generated when a window is moved because of a change in size of the
parent. The event is the window on which the event was generated,
and the window is the window that is moved. The x and y
coordinates are relative to the new parent's origin and specify the
position of the upper-left outer corner of the window.

ResizeRequest

window: WINDOW
width, height: CARDI6

This event is reported to the client selecting ResizeRedirect on the
window and is generated when a ConfigureWindow request by some
other client on the window attempts to change the size of the
window. The width and height are the inside size, not including the
border.

ConfigureRequest

parent, window: WINDOW
x, y: INTI6
width, height, border-width: CARDI6

114 Protocol

sibling: WINDOW or None
stack-rrwde: {Above, Below, Toplf, Bottom If, Opposite}
value-mask: BITMASK

This event is reported to the client selecting SubstructureRedirect on
the parent and is generated when a ConfigureWindow request is issued
on the window by some other client. The value-mask indicates which
components were specified in the request. The value-mask and the
corresponding values are reported as given in the request. The
remaining values are filled in from the current geometry of the
window, except in the case of sibling and stack-mode, which are
reported as None and Above (respectively) if not given in the request.

CirculateNotify

event, window: WINDOW
place: {Top, Bottom}

This event is reported to clients selecting StructureNotify on the
window and to clients selecting Substructure Notify on the parent. It is
generated when the window is actually restacked from a
CirculateWindow request. The event is the window on which the
event was generated, and the window is the window that is restacked.
If place is Top, the window is now on top of all siblings. Otherwise,
it is below all siblings.

CirculateRequest

parent, window: WINDOW
place: {Top, Bottom}

This event is reported to the client selecting SubstructureRedirect on
the parent and is generated when a CirculateWindow request is issued
on the parent and a window actually needs. to be restacked. The
window specifies the window to be restacked, and the place specifies
what the new position in the stacking order should be.

PropertyNotify

window: WINDOW
atom: ATOM
state: {NewValue, Deleted}
time: TIMESTAMP

This event is reported to clients selecting PropertyChange on the
window and is generated with state NewValue when a property of the
window is changed using ChangeProperty or RotateProperties, even
when adding zero-length data using ChangeProperty and when replacing
all or part of a property with identical data using ChangeProperty or
RotateProperties. It is generated with state Deleted when a property
of the window is deleted using request DeleteProperty or GetProperty.

Protocol 115

The timestamp indicates the server time when the property was
changed.

SelectionClear

owner: WINDOW
selection: ATOM
time: TIMESTAMP

This event is reported to the current owner of a selection and is
generated when a new owner is being defined by means of
SetSelectionOwner. The timestamp is the last-change time recorded
for the selection. The owner argument is the window that was
specified by the current owner in its SetSelectionOwner request.

SelectionRequest

owner: WINDOW
selection: ATOM
target: ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime

This event is reported to the owner of a selection and is generated
when a client issues a ConvertSelection request. The owner argument
is the window that was specified in the SetSelectionOwner request.
The remaining arguments are as in the ConvertSelection request.

The owner should convert the selection based on the specified target
type. If a property is specified, the owner should store the result as
that property on the requestor window and then send a SelectionNotify
event to the requestor using SendEvent with an empty event-mask
(that is, the event should be sent to the creator of the requestor
window). If None is specified as the property, the owner should
choose a property name, store the result as that property on the
requestor window, and then send a SelectionNotify giving that actual
property name. If the selection cannot be converted as requested, the
owner should send a SelectionNotify with the property set to None.

Selection Notify

requestor: WINDOW
selection, target: ATOM
property: ATOM or None
time: TIMESTAMP or CurrentTime

This event is generated by the server in response to a
ConvertSelection request when there is no owner for the selection.
When there is an owner, it should be generated by the owner using
SendEvent. The owner of a selection should send this event to a

116 Protocol

requestor either when a selection has been converted and stored as a
property or when a selection conversion could not be performed
(indicated with property None).

ColormapNotify

window: WINDOW
colormap: COLORMAP or None
new: BOOL
state: {Installed, Uninstalled}

This event is reported to clients selecting ColormapChange on the
window. It is generated with value True for new when the colormap
attribute of the window is changed and is generated with value False
for new when the colormap of a window is installed or uninstalled.
In either case, the state indicates whether the colormap is currently
installed.

MappingNotify

request: {Modifier, Keyboard, POinter}
first-keycode, count: CARD8

This event is sent to all clients. There is no mechanism to express
disinterest in this event. The detail indicates the kind of change that
occurred: Modifiers for a successful SetModifierMapping, Keyboard for a
successful ChangeKeyboardMapping, and Pointer for a successful
SetPointerMapping. If the detail is Keyboard, then first-keycode and
count indicate the range of altered keycodes.

ClientMessage

window: WINDOW
type: ATOM
format: {8, 16, 32}
data: LISToflNT8 or LISToflNT16 or LISToflNT32

This event is only generated by clients using SendEvent. The type
specifies how the data is to be interpreted by the receiving client; the
server places no interpretation on the type or the data. The format
specifies whether the data should be viewed as a list of 8-bit, 16-bit,
or 32-bit quantities, so that the server can correctly byte-swap, as
necessary. The data always consists of either 20 8-bit values or 10
16-bit values or 5 32-bit values, although particular message types
might not make use of all of these values.

13 Flow Control and Concurrency
Whenever the server is writing to a given connection, it is permissible for
the server to stop reading from that connection (but if the writing would
block, it must continue to service other connections). The server is not

Protocol 117

required to buffer more than a single request per connection at one time.
For a given connection to the server, a client can block while reading from
the connection but should undertake to read (events and errors) when
writing would block. Failure on the part of a client to obey this rule could
result in a deadlocked connection, although deadlock is probably unlikely
unless either the transport layer has very little buffering or the client
attempts to send large numbers of requests without ever reading replies or
checking for errors and events.

If a server is implemented with internal concurrency, the overall effect
must be as if individual requests are executed to completion in some serial
order, and requests from a given connection must be executed in delivery
order (that is, the total execution order is a shuffle of the individual
streams). The execution of a request includes validating all arguments,
collecting all data for any reply, and generating and queueing all required
events. However, it does not include the actual transmission of the reply
and the events. In addition, the effect of any other cause that can
generate multiple events (for example, activation of a grab or pointer
motion) must effectively generate and queue all required events indivisibly
with respect to all other causes and requests. For a request from a given
client, any events destined for that client that are caused by executing the
request must be 'sent to the client before any reply or error is sent.

118 Protocol

KEYSYM Encoding A

For convenience, KEYSYM values are viewed as split into four bytes:

• Byte 1 (for the purposes of this encoding) is the most-significant 5
bits (because of the 29-bit effective values)

• Byte 2 is the next most-significant 8 bits

• Byte 3 is the next most-significant 8 bits

• Byte 4 is the least-significant 8 bits

The standard KEYSYM values all have the zero values for bytes 1 and 2.
Byte 3 indicates a character code set, and byte 4 indicates a particular
character within that set.

Byte 3 Byte 4

0 Latin 1
1 Latin 2
2 Latin 3
3 Latin 4
4 Kana
5 Arabic
6 Cyrillic
7 Greek
8 Technical
9 Special
10 Publishing
11 APL
12 Hebrew
255 Keyboard

Each character set contains gaps where codes have been removed that were
duplicates with codes in previous character sets (that is, character sets
with lesser byte 3 value).

The 94 and 96 character code sets have been moved to occupy the right
hand quadrant (decimal 129 through 256), so the ASCII subset has a

unique encoding across byte 4, which corresponds to the ASCII character
code. However, this cannot be guaranteed with future registrations and
does not apply to all of the Keyboard set.

To the best of our knowledge, the Latin, Kana, Arabic, Cyrillic, Greek,
APL, and Hebrew sets are from the appropriate ISO and/or ECMA
international standards. There are no Technical, Special, or Publishing
international standards, so these sets are based on Digital Equipment
Corporation standards.

The ordering between the sets (byte 3) is essentially arbitrary. Although
the national and international standards bodies are commencing deliberations
regarding international 2-byte and 4-byte character sets, we do not know of
any proposed layouts.

The order may be arbitrary, but it is important in dealing with duplicate
coding. As far as possible, KEYSYM values are the same as the character
code. In the Latin-1 to Latin-4 sets, all duplicate glyphs occupy the same
code position. However, duplicates between Greek and Technical do not
occupy the same code position. Thus, applications wishing to use the
technical character set must transform the keysym by means of an array.

There is a difference between European and US usage of the names
Pilcrow, Paragraph, and Section, as follows:

US Name

Section sign
Paragraph sign

European Name

Paragraph sign
Pilcrow sign

Code Position in Latin-1

10/07
11/06

We have adopted the names used by both the ISO and ECMA standards.
Thus, 11/06 is the Pilcrow sign, and 10/07 is the Paragraph sign (Section
sign) . This favors the European usage.

The Keyboard set is a miscellaneous collection of commonly occurring keys
on keyboards. Within this set, the keypad symbols are generally duplicates
of symbols found on keys on the main part of the keyboard, but they are
distinguished here because they often have a distinguishable semantics
associated with them.

Keyboards tend to be comparatively standard with respect to the
alphanumeric keys, but they differ radically on the miscellaneous function
keys. Many function keys are left over from early timesharing days or are
designed for a specific application. Keyboard layouts from large
manufacturers tend to have lots of keys for every conceivable purpose,
whereas small workstation manufacturers often add keys that are solely for
support of some of their unique functionality. There are two ways of

A-2 KEYSYM Encod ing

thinking about how to define keysyms for such a world:

• The Engraving approach

• The Common approach

The Engraving approach is to create a keysym for every unique key
engraving. This is effectively taking the union of all key engravings on all
keyboards. For example, some keyboards label function keys across the
top as F 1 through Fn, and others label them as PF 1 through PFn. These
would be different keys under the Engraving approach. Likewise, Lock
would differ from Shift Lock, which is different from the up-arrow symbol
that has the effect of changing lowercase to uppercase. There are lots of
other aliases such as Del, DEL, Delete, Remove, and so forth. The
Engraving approach makes it easy to decide if a new entry should be
added to the keysym set: if it does not exactly match an existing one,
then a new one is created. One estimate is that there would be on the
order of 300- 500 Keyboard keysyms using this approach, without counting
foreign translations and variations.

The Common approach tries to capture all of the keys present on an
interesting number of keyboards, folding likely aliases into the same
keysym. For example, Del, DEL, and Delete are all merged into a single
keysym. Vendors would be expected to augment the keysym set (using
the vendor-specific encoding space) to include all of their unique keys that
were not included in the standard set. Each vendor decides which of its
keys map into the standard keysyms, which presumably can be overridden
by a user. It is more difficult to implement this approach, because
judgement is required about when a sufficient set of keyboards implement
an engraving to justify making it a keysym in the standard set and about
which engravings should be merged into a single keysym. Under this
scheme there are an estimated 100-150 keysyms.

Although neither scheme is perfect or elegant, the Common approach has
been selected because it makes it easier to write a portable application.
Having the Delete functionality merged into a single keysym allows an
application to implement a deletion function and expect reasonable bindings
on a wide set of workstations. Under the Common approach, application
writers are still free to look for and interpret vendor-specific keysyms, but
because they are in the extended set, the application developer is more
conscious that they are writing the application in a nonportable fashion.

In the listings below, Code Pos is a representation of byte 4 of the
KEYSYM value, expressed as most-significant/least-significant 4-bit values.
The Code Pos numbers are for reference only and do not affect the
KEYSYM value. In all cases, the KEYSYM value is:

byte3 * 256 + byte4

KEYSYM Encoding A-3

Latin-1

Byte Byte Code Name
3 4 Pos

000 032 02/00 SPACE
000 033 02/01 EXCLAMATION POINT
000 034 02/02 QUOTATION MARK
000 035 02/03 NUMBER SIGN
000 036 02/04 DOLLAR SIGN
000 037 02/05 PERCENT SIGN
000 038 02/06 AMPERSAND
000 039 02/07 APOSTROPHE
000 040 02/08 LEFT PARENTHESIS
000 041 02/09 RIGHT PARENTHESIS
000 042 02/10 ASTERISK
000 043 02/11 PLUS SIGN
000 044 02/12 COMMA
000 045 02/13 HYPHEN, MINUS SIGN
000 046 02/14 FULL STOP
000 047 02/15 SOLIDUS
000 048 03/00 DIGIT ZERO
000 049 03/01 DIGIT ONE
000 050 03/02 DIGIT TWO
000 051 03/03 DIGIT THREE
000 052 03/04 DIGIT FOUR
000 053 03/05 DIGIT FIVE
000 054 03/06 DIGIT SIX
000 055 03/07 DIGIT SEVEN
000 056 03/08 DIGIT EIGHT
000 057 03/09 DIGIT NINE
000 058 03/10 COLON
000 059 03/11 SEMICOLON
000 060 03/12 LESS THAN SIGN
000 061 03/13 EQUALS SIGN
000 062 03/14 GREATER THAN SIGN
000 063 03/15 QUESTION MARK
000 064 04/00 COMMERCIAL AT
000 065 04/01 LATIN CAPITAL LETTER A
000 066 04/02 LATIN CAPITAL LETTER B
000 067 04/03 LATIN CAPITAL LETTER C
000 068 04/04 LATIN CAPITAL LETTER D
000 069 04/05 LATIN CAPITAL LETTER E
000 070 04/06 LATIN CAPITAL LETTER F

A·4 KEYSYM Encoding

Byte Byte Code Name
3 4 Pos

000 071 04/07 LATIN CAPITAL LETTER G
000 072 04/08 LATIN CAPITAL LETTER H
000 073 04/09 LATIN CAPITAL LETTER I

000 074 04/10 LATIN CAPITAL LETTER J

000 075 04/11 LATIN CAPITAL LETTER K
000 076 04/12 LATIN CAPITAL LETTER L
000 077 04/13 LATIN CAPITAL LETTER M
000 078 04/14 LATIN CAPITAL LETTER N
000 079 04/15 LATIN CAPITAL LETTER 0

000 080 05/00 LATIN CAPITAL LETTER P
000 081 05/01 LATIN CAPITAL LETTER Q

000 082 05/02 LATIN CAPITAL LETTER R
000 083 05/03 LATIN CAPITAL LETTER S
000 084 05/04 LATIN CAPITAL LETTER T
000 085 05/05 LATIN CAPITAL LETTER U
000 086 05/06 LATIN CAPITAL LETTER V

000 087 05/07 LATIN CAPITAL LETTER W
000 088 05/08 LATIN CAPITAL LETTER X

000 089 05/09 LATIN CAPITAL LETTER Y
000 090 05/10 LATIN CAPITAL LETTER Z
000 091 05/11 LEFT SQUARE BRACKET
000 092 05/12 REVERSE SOLIDUS
000 093 05/13 RIGHT SQUARE BRACKET
000 094 05/14 CIRCUMFLEX ACCENT
000 095 05/15 LOW LINE
000 096 06/00 GRAVE ACCENT
000 097 06/01 LATIN SMALL LETTER a

000 098 06/02 LATIN SMALL LETTER b
000 099 06/03 LATIN SMALL LETTER c

000 100 06/04 LATIN SMALL LETTER d
000 101 06/05 LATIN SMALL LETTER e

000 102 06/06 LATIN SMALL LETTER f

000 103 06/07 LATIN SMALL LETTER g

000 104 06/08 LATIN SMALL LETTER h
000 105 06/09 LATIN SMALL LETTER i

000 106 06/10 LATIN SMALL LETTER j

000 107 06/11 LATIN SMALL LETTER k
000 108 06/12 LATIN SMALL LETTER 1
000 109 06/13 LATIN SMALL LETTER m

000 110 06/14 LATIN SMALL LETTER n

KEYSYM Encoding A·5

Byte Byte Code Name
3 4 Pos

000 111 06/15 LATIN SMALL LETTER 0

000 112 07/00 LATIN SMALL LETTER p

000 113 07/01 LATIN SMALL LETTER q

000 114 07/02 LATIN SMALL LETTER r

000 115 07/03 LATIN SMALL LETTER s
000 116 07/04 LATIN SMALL LETTER t
000 117 07/05 LATIN SMALL LETTER u

000 118 07/06 LATIN SMALL LETTER v

000 119 07/07 LATIN SMALL LETTER w

000 120 07/08 LATIN SMALL LETTER x
000 121 07/09 LATIN SMALL LETTER y

000 122 07/10 LATIN SMALL LETTER z

000 123 07/11 LEFT CURLY BRACKET

000 124 07/12 VERTICAL LINE
000 125 07/13 RIGHT CURLY BRACKET

000 126 07/14 TILDE

000 160 10100 NO-BREAK SPACE

000 161 10101 INVERTED EXCLAMATION MARK

000 162 10102 CENT SIGN
000 163 10103 POUND SIGN
000 164 10104 CURRENCY SIGN
000 165 10105 YEN SIGN

000 166 10106 BROKEN VERTICAL BAR
000 167 10107 PARAGRAPH SIGN, SECTION SIGN
000 168 10108 DIAERESIS
000 169 10109 COPYRIGHT SIGN
000 170 10/10 FEMININE ORDINAL INDICATOR
000 171 10/11 LEFT ANGLE QUOTATION MARK

000 172 10/12 NOT SIGN
000 174 10/14 REGISTERED TRADEMARK SIGN

000 175 10/15 MACRON
000 176 11100 DEGREE SIGN, RING ABOVE
000 177 11101 PLUS-MINUS SIGN

000 178 11102 SUPERSCRIPT TWO
000 179 11103 SUPERSCRIPT THREE

000 180 11104 ACUTE ACCENT

000 181 11105 MICRO SIGN
000 182 11106 PILCROW SIGN
000 183 11107 MIDDLE DOT
000 184 11108 CEDILLA

A-6 KEYSYM Encoding

Byte Byte Code Name
3 4 Pos

000 185 11109 SUPERSCRIPT ONE
000 186 11110 MASCULINE ORDINAL INDICATOR
000 187 11111 RIGHT ANGLE QUOTATION MARK
000 188 11112 VULGAR FRACTION ONE QUARTER
000 189 11113 VULGAR FRACTION ONE HALF
000 190 11114 VULGAR FRACTION THREE QUARTERS
000 191 11115 INVERTED QUESTION MARK
000 192 12/00 LATIN CAPITAL LETTER A WITH GRAVE ACCENT
000 193 12/01 LATIN CAPITAL LETTER A WITH ACUTE ACCENT
000 194 12/02 LATIN CAPITAL LETTER A WITH CIRCUMFLEX ACCENT
000 195 12/03 LATIN CAPITAL LETTER A WITH TILDE
000 196 12/04 LATIN CAPITAL LETTER A WITH DIAERESIS
000 197 12/05 LATIN CAPITAL LETTER A WITH RING ABOVE
000 198 12/06 LATIN CAPITAL DIPHTHONG AE
000 199 12/07 LATIN CAPITAL LETTER C WITH CEDILLA
000 200 12/08 LATIN CAPITAL LETTER E WITH GRAVE ACCENT
000 201 12/09 LATIN CAPITAL LETTER E WITH ACUTE ACCENT
000 202 12/10 LATIN CAPITAL LETTER E WITH CIRCUMFLEX ACCENT
000 203 12/11 LATIN CAPITAL LETTER E WITH DIAERESIS
000 204 12/12 LATIN CAPITAL LETTER I WITH GRAVE ACCENT
000 205 12/13 LATIN CAPITAL LETTER I WITH ACUTE ACCENT
000 206 12/14 LATIN CAPITAL LETTER I WITH CIRCUMFLEX ACCENT
000 207 12/15 LATIN CAPITAL LETTER I WITH DIAERESIS
000 208 13/00 ICELANDIC CAPITAL LETTER ETH
000 209 13/01 LATIN CAPITAL LETTER N WITH TILDE
000 210 13/02 LATIN CAPITAL LETTER 0 WITH GRAVE ACCENT
000 211 13/03 LATIN CAPITAL LETTER 0 WITH ACUTE ACCENT
000 212 13/04 LATIN CAPITAL LETTER 0 WITH CIRCUMFLEX ACCENT
000 213 13/05 LATIN CAPITAL LETTER 0 WITH TILDE
000 214 13/06 LATIN CAPITAL LETTER 0 WITH DIAERESIS
000 215 13/07 MULTIPLICATION SIGN
000 216 13/08 LATIN CAPITAL LETTER 0 WITH OBLIQUE STROKE
000 217 13/09 LATIN CAPITAL LETTER U WITH GRAVE ACCENT
000 218 13/10 LATIN CAPITAL LETTER U WITH ACUTE ACCENT
000 219 13/11 LATIN CAPITAL LETTER U WITH CIRCUMFLEX ACCENT
000 220 13/12 LATIN CAPITAL LETTER U WITH DIAERESIS
000 221 13/13 LATIN CAPITAL LETTER Y WITH ACUTE ACCENT
000 222 13/14 ICELANDIC CAPITAL LETTER THORN
000 223 13/15 GERMAN SMALL LETTER SHARP s

000 224 14/00 LATIN SMALL LETTER a WITH GRAVE ACCENT

KEYSYM Encoding A-7

Byte Byte Code Name
3 4 Pos

000 225 14/01 LATIN SMALL LETTER a WITH ACUTE ACCENT
000 226 14/02 LATIN SMALL LETTER a WITH CIRCUMFLEX ACCENT
000 227 14/03 LATIN SMALL LETTER a WITH TILDE
000 228 14/04 LATIN SMALL LETTER a WITH DIAERESIS
000 229 14/05 LATIN SMALL LETTER a WITH RING ABOVE
000 230 14/06 LATIN SMALL DIPHTHONG ae

000 231 14/07 LATIN SMALL LETTER c WITH CEDILLA
000 232 14/08 LATIN SMALL LETTER e WITH GRAVE ACCENT
000 233 14/09 LATIN SMALL LETTER e WITH ACUTE ACCENT
000 234 14/10 LATIN SMALL LETTER e WITH CIRCUMFLEX ACCENT
000 235 14/11 LATIN SMALL LETTER e WITH DIAERESIS
000 236 14/12 LATIN SMALL LETTER i WITH GRAVE ACCENT
000 237 14/13 LATIN SMALL LETTER i WITH ACUTE ACCENT
000 238 14/14 LATIN SMALL LETTER i WITH CIRCUMFLEX ACCENT
000 239 14/15 LATIN SMALL LETTER i WITH DIAERESIS
000 240 15/00 ICELANDIC SMALL LETTER ETH
000 241 15/01 LATIN SMALL LETTER n WITH TILDE
000 242 15/02 LATIN SMALL LETTER 0 WITH GRAVE ACCENT
000 243 15/03 LATIN SMALL LETTER 0 WITH ACUTE ACCENT
000 244 15/04 LATIN SMALL LETTER 0 WITH CIRCUMFLEX ACCENT
000 245 15/05 LATIN SMALL LETTER 0 WITH TILDE
000 246 15/06 LATIN SMALL LETTER 0 WITH DIAERESIS
000 247 15/07 DIVISION SIGN
000 248 15/08 LATIN SMALL LETTER 0 WITH OBLIQUE STROKE
000 249 15/09 LATIN SMALL LETTER u WITH GRAVE ACCENT
000 250 15/10 LATIN SMALL LETTER u WITH ACUTE ACCENT
000 251 15/11 LATIN SMALL LETTER u WITH CIRCUMFLEX ACCENT
000 252 15/12 LATIN SMALL LETTER u WITH DIAERESIS
000 253 15/13 LATIN SMALL LETTER y WITH ACUTE ACCENT
000 254 15/14 ICELANDIC SMALL LETTER THORN
000 255 15/15 LATIN SMALL LETTER y WITH DIAERESIS

A-8 KEYSYM Encoding

Latin-2

Byte Byte Code Name
3 4 Pos

001 161 10/01 LATIN CAPITAL LETTER A WITH OGONEK

001 162 10/02 BREVE
001 163 10/03 LATIN CAPITAL LETTER L WITH STROKE
001 165 10/05 LATIN CAPITAL LETTER L WITH CARON

001 166 10/06 LATIN CAPITAL LETTER S WITH ACUTE ACCENT
001 169 10/09 LATIN CAPITAL LETTER S WITH CARON
001 170 10/10 LATIN CAPITAL LETTER S WITH CEDILLA

001 171 10/11 LATIN CAPITAL LETTER T WITH CARON
001 172 10/12 LATIN CAPITAL LETTER Z WITH ACUTE ACCENT

001 174 10/14 LATIN CAPITAL LETTER Z WITH CARON
001 175 10/15 LATIN CAPITAL LETTER Z WITH DOT ABOVE

001 177 11101 LATIN SMALL LETTER a WITH OGONEK
001 178 11102 OGONEK
001 179 11103 LATIN SMALL LETTER 1 WITH STROKE

001 181 11105 LATIN SMALL LETTER 1 WITH CARON
001 182 11106 LATIN SMALL LETTER s WITH ACUTE ACCENT
001 183 11107 CARON
001 185 11109 LATIN SMALL LETTER s WITH CARON
001 186 11110 LATIN SMALL LETTER s WITH CEDILLA
001 187 11111 LATIN SMALL LETTER t WITH CARON
001 188 11112 LATIN SMALL LETTER z WITH ACUTE ACCENT
001 189 11113 DOUBLE ACUTE ACCENT
001 190 11114 LATIN SMALL LETTER z WITH CARON
001 191 11115 LATIN SMALL LETTER z WITH DOT ABOVE
001 192 12/00 LATIN CAPITAL LETTER R WITH ACUTE ACCENT
001 195 12/03 LATIN CAPITAL LETTER A WITH BREVE

001 197 12/05 LATIN CAPITAL LETTER L WITH ACUTE ACCENT
001 198 12/06 LATIN CAPITAL LETTER C WITH ACUTE ACCENT
001 200 12/08 LATIN CAPITAL LETTER C WITH CARON
001 202 12/10 LATIN CAPITAL LETTER E WITH OGONEK
001 204 12/12 LATIN CAPITAL LETTER E WITH CARON
001 207 12/15 LATIN CAPITAL LETTER D WITH CARON
001 208 13/00 LATIN CAPITAL LETTER D WITH STROKE
001 209 13/01 LATIN CAPITAL LETTER N WITH ACUTE ACCENT
001 210 13/02 LATIN CAPITAL LETTER N WITH CARON
001 213 13/05 LATIN CAPITAL LETTER 0 WITH DOUBLE ACUTE ACCENT
001 216 13/08 LATIN CAPITAL LETTER R WITH CARON
001 217 13/09 LATIN CAPITAL LETTER U WITH RING ABOVE
001 219 13/11 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE ACCENT

KEYSYM Encoding A-9

Byte Byte Code Name
3 4 Pos

001 222 13/14 LATIN CAPITAL LETTER T WITH CEDILLA
001 224 14/00 LATIN SMALL LETTER r WITH ACUTE ACCENT
001 227 14/03 LATIN SMALL LETTER a WITH BREVE
001 229 14/05 LATIN SMALL LETTER 1 WITH ACUTE ACCENT
001 230 14/06 LATIN SMALL LETTER c WITH ACUTE ACCENT
001 232 14/08 LATIN SMALL LETTER c WITH CARON
001 234 14/10 LATIN SMALL LETTER e WITH OGONEK
001 236 14/12 LATIN SMALL LETTER e WITH CARON
001 239 14/15 LATIN SMALL LETTER d WITH CARON
001 240 15/00 LATIN SMALL LETTER d WITH STROKE
001 241 15/01 LATIN SMALL LETTER n WITH ACUTE ACCENT
001 242 15/02 LATIN SMALL LETTER n WITH CARON
001 245 15/05 LATIN SMALL LETTER 0 WITH DOUBLE ACUTE ACCENT
001 248 15/08 LATIN SMALL LETTER r WITH CARON
001 249 15/09 LATIN SMALL LETTER u WITH RING ABOVE
001 251 15/11 LATIN SMALL LETTER u WITH DOUBLE ACUTE ACCENT
001 254 15/14 LATIN SMALL LETTER t WITH CEDILLA
001 255 15/15 DOT ABOVE

A-10 KEYSYM Encoding

Latin-3

Byte Byte Code Name
3 4 Pos

002 161 10101 LATIN CAPITAL LETTER H WITH STROKE
002 166 10106 LATIN CAPITAL LETTER H WITH CIRCUMFLEX ACCENT
002 169 10109 LATIN CAPITAL LETTER I WITH DOT ABOVE
002 171 10/11 LATIN CAPITAL LETTER G WITH BREVE
002 172 10/12 LATIN CAPITAL LETTER J WITH CIRCUMFLEX ACCENT
002 177 11101 LATIN SMALL LETTER h WITH STROKE
002 182 11106 LATIN SMALL LETTER h WITH CIRCUMFLEX ACCENT
002 185 11109 SMALL DOTLESS LETTER i
002 187 11111 LATIN SMALL LETTER g WITH BREVE
002 188 11112 LATIN SMALL LETTER j WITH CIRCUMFLEX ACCENT
002 197 12/05 LATIN CAPITAL LETTER C WITH DOT ABOVE
002 198 12/06 LATIN CAPITAL LETTER C WITH CIRCUMFLEX ACCENT
002 213 13/05 LATIN CAPITAL LETTER G WITH DOT ABOVE
002 216 13/08 LATIN CAPITAL LETTER G WITH CIRCUMFLEX ACCENT
002 221 13/13 LATIN CAPITAL LETTER U WITH BREVE
002 222 13/14 LATIN CAPITAL LETTER S WITH CIRCUMFLEX ACCENT
002 229 14/05 LATIN SMALL LETTER c WITH DOT ABOVE
002 230 14/06 LATIN SMALL LETTER c WITH CIRCUMFLEX ACCENT
002 245 15/05 LATIN SMALL LETTER g WITH DOT ABOVE
002 248 15/08 LATIN SMALL LETTER g WITH CIRCUMFLEX ACCENT
002 253 15/13 LATIN SMALL LETTER u WITH BREVE
002 254 15/14 LATIN SMALL LETTER s WITH CIRCUMFLEX ACCENT

KEYSYM Encoding A-11

Latin-4

Byte Byte Code Name
3 4 Pos

003 162 10102 LATIN SMALL LETTER KAPPA
003 163 10103 LATIN CAPITAL LETTER R WITH CEDILLA
003 165 10105 LATIN CAPITAL LETTER I WITH TILDE
003 166 10106 LATIN CAPITAL LETTER L WITH CEDILLA
003 170 10/10 LATIN CAPITAL LETTER E WITH MACRON
003 171 10/11 LATIN CAPITAL LETTER G WITH CEDILLA
003 172 10/12 LATIN CAPITAL LETTER T WITH OBLIQUE STROKE
003 179 11103 LATIN SMALL LETTER r WITH CEDILLA
003 181 11105 LATIN SMALL LETTER i WITH TILDE
003 182 11106 LATIN SMALL LETTER I WITH CEDILLA
003 186 11110 LATIN SMALL LETTER e WITH MACRON
003 187 11111 LATIN SMALL LETTER g WITH ACUTE ACCENT
003 188 11112 LATIN SMALL LETTER t WITH OBLIQUE STROKE
003 189 11113 LAPPISH CAPITAL LETTER ENG
003 191 11115 LAPPISH SMALL LETTER ENG
003 192 12/00 LATIN CAPITAL LETTER A WITH MACRON
003 199 12/07 LATIN CAPITAL LETTER I WITH OGONEK
003 204 12/12 LATIN CAPITAL LETTER E WITH DOT ABOVE
003 207 12/15 LATIN CAPITAL LETTER I WITH MACRON
003 209 13/01 LATIN CAPITAL LETTER N WITH CEDILLA
003 210 13/02 LATIN CAPITAL LETTER 0 WITH MACRON
003 211 13/03 LATIN CAPITAL LETTER K WITH CEDILLA
003 217 13/09 LATIN CAPITAL LETTER U WITH OGONEK
003 221 13/13 LATIN CAPITAL LETTER U WITH TILDE
003 222 13/14 LATIN CAPITAL LETTER U WITH MACRON
003 224 14/00 LATIN SMALL LETTER a WITH MACRON
003 231 14/07 LATIN SMALL LETTER i WITH OGONEK
003 236 14/12 LATIN SMALL LETTER e WITH DOT ABOVE
003 239 14/15 LATIN SMALL LETTER i WITH MACRON
003 241 15/01 LATIN SMALL LETTER n WITH CEDILLA
003 242 15/02 LATIN SMALL LETTER 0 WITH MACRON
003 243 15/03 LATIN SMALL LETTER k WITH CEDILLA
003 249 15/09 LATIN SMALL LETTER u WITH OGONEK
003 253 15/13 LATIN SMALL LETTER u WITH TILDE
003 254 15/14 LATIN SMALL LETTER u WITH MACRON

A-12 KEYSYM Encoding

Kana

Byte Byte Code Name
3 4 Pos

004 126 07/14 OVERLINE
004 161 10/01 KANA FULL STOP
004 162 10/02 KANA OPENING BRACKET
004 163 10/03 KANA CLOSING BRACKET
004 164 10/04 KANA COMMA
004 165 10/05 KANA MIDDLE DOT
004 166 10/06 KANA LETTER WO
004 167 10/07 KANA LETTER SMALL A
004 168 10/08 KANA LETTER SMALL I
004 169 10/09 KANA LETTER SMALL U
004 170 10/10 KANA LETTER SMALL E
004 171 10/11 KANA LETTER SMALL 0
004 172 10/12 KANA LETTER SMALL YA
004 173 10/13 KANA LETTER SMALL YU
004 174 10/14 KANA LETTER SMALL YO
004 175 10/15 KANA LETTER SMALL TU
004 176 11100 PROLONGED SOUND SYMBOL
004 177 11101 KANA LETTER A
004 178 11102 KANA LETTER I
004 179 11103 KANA LETTER U
004 180 11104 KANA LETTER E
004 181 11105 KANA LETTER 0
004 182 11106 KANA LETTER KA
004 183 11107 KANA LETTER KI
004 184 11108 KANA LETTER KU
004 185 11109 KANA LETTER KE
004 186 11110 KANA LETTER KO
004 187 11111 KANA LETTER SA
004 188 11112 KANA LETTER SHI
004 189 11113 KANA LETTER SU
004 190 11114 KANA LETTER SE
004 191 11115 KANA LETTER SO
004 192 12/00 KANA LETTER TA
004 193 12/01 KANA LETTER TI
004 194 12/02 KANA LETTER TU
004 195 12/03 KANA LETTER TE
004 196 12/04 KANA LETTER TO
004 197 12/05 KANA LETTER NA
004 198 12/06 KANA LETTER NI

KEYSYM Encoding A-13

Byte Byte Code Name
3 4 Pos

004 199 12/07 KANA LETTER NU
004 200 12/08 KANA LETTER NE
004 201 12/09 KANA LETTER NO
004 202 12/10 KANA LETTER HA
004 203 12/11 KANA LETTER HI
004 204 12/12 KANA LETTER HU
004 205 12/13 KANA LETTER HE
004 206 12/14 KANA LETTER HO
004 207 12/15 KANA LETTER MA
004 208 13/00 KANA LETTER MI
004 209 13/01 KANA LETTER MU
004 210 13/02 KANA LETTER ME
004 211 13/03 KANA LETTER MO
004 212 13/04 KANA LETTER YA
004 213 13/05 KANA LETTER YU
004 214 13/06 KANA LETTER YO
004 215 13/07 KANA LETTER RA
004 216 13/08 KANA LETTER RI
004 217 13/09 KANA LETTER RU
004 218 13/10 KANA LETTER RE
004 219 13/11 KANA LETTER RO
004 220 13/12 KANA LETTER W A
004 221 13/13 KANA LETTER N
004 222 13/14 VOICED SOUND SYMBOL
004 223 13/15 SEMIVOICED SOUND SYMBOL

A·14 KEYSYM Encoding

Arabic

Byte Byte Code Name
3 4 Pos

005 172 10/12 ARABIC COMMA
005 187 11111 ARABIC SEMICOLON
005 191 11115 ARABIC QUESTION MARK
005 193 12/01 ARABIC LETTER HAMZA
005 194 12/02 ARABIC LETTER MADDA ON ALEF
005 195 12/03 ARABIC LETTER HAMZA ON ALEF
005 196 12/04 ARABIC LETTER HAMZA ON W AW
005 197 12/05 ARABIC LETTER HAMZA UNDER ALEF
005 198 12/06 ARABIC LETTER HAMZA ON YEH
005 199 12/07 ARABIC LETTER ALEF
005 200 12/08 ARABIC LETTER BEH
005 201 12/09 ARABIC LETTER TEH MARBUTA
005 202 12/10 ARABIC LETTER TEH
005 203 12/11 ARABIC LETTER THEH
005 204 12/12 ARABIC LETTER JEEM
005 205 12/13 ARABIC LETTER HAH
005 206 12/14 ARABIC LETTER KHAH
005 207 12/15 ARABIC LETTER DAL
005 208 13/00 ARABIC LETTER THAL
005 209 13/01 ARABIC LETTER RA
005 210 13/02 ARABIC LETTER ZAIN
005 211 13/03 ARABIC LETTER SEEN
005 212 13/04 ARABIC LETTER SHEEN
005 213 13/05 ARABIC LETTER SAD
005 214 13/06 ARABIC LETTER DAD
005 215 13/07 ARABIC LETTER TAH
005 216 13/08 ARABIC LETTER ZAH
005 217 13/09 ARABIC LETTER AIN
005 218 13/10 ARABIC LETTER GHAIN
005 224 14/00 ARABIC LETTER TATWEEL
005 225 14/01 ARABIC LETTER FEH
005 226 14/02 ARABIC LETTER QAF
005 227 14/03 ARABIC LETTER KAF
005 228 14/04 ARABIC LETTER LAM
005 229 14/05 ARABIC LETTER MEEM
005 230 14/06 ARABIC LETTER NOON
005 231 14/07 ARABIC LETTER HEH
005 232 14/08 ARABIC LETTER WAW
005 233 14/09 ARABIC LETTER ALEF MAKSURA

KEYSYM Encoding A-15

Byte Byte Code Name
3 4 Pos

005 234 14/10 ARABIC LETTER YEH
005 235 14/11 ARABIC LETTER FATHATAN
005 236 14/12 ARABIC LETTER DAMMATAN
005 237 14/13 ARABIC LETTER KASRATAN
005 238 14/14 ARABIC LETTER F ATHA
005 239 14/15 ARABIC LETTER DAMMA
005 240 15/00 ARABIC LETTER KASRA
005 241 15/01 ARABIC LETTER SHADDA
005 242 15/02 ARABIC LETTER SUKUN

A-16 KEYSYM Encoding

Cyrillic

Byte Byte Code Name
3 4 Pos

006 161 10101 SERBIAN SMALL LETTER DJE
006 162 10102 MACEDONIA SMALL LETTER GJE
006 163 10103 CYRILLIC SMALL LETTER 10
006 164 10104 UKRAINIAN SMALL LETTER JE
006 165 10105 MACEDONIA SMALL LETTER DSE
006 166 10106 UKRAINIAN SMALL LETTER I
006 167 10107 UKRAINIAN SMALL LETTER YI
006 168 10108 SERBIAN SMALL LETTER JE
006 169 10109 SERBIAN SMALL LETTER LJE
006 170 10/10 SERBIAN SMALL LETTER NJE
006 171 10/11 SERBIAN SMALL LETTER TSHE
006 172 10/12 MACEDONIA SMALL LETTER KJE
006 174 10/14 BYELORUSSIAN SMALL LETTER SHORT U
006 175 10/15 SERBIAN SMALL LETTER DZE
006 176 11100 NUMERO SIGN
006 177 11101 SERBIAN CAPITAL LETTER DJE
006 178 11102 MACEDONIA CAPITAL LETTER GJE
006 179 11103 CYRILLIC CAPITAL LETTER 10
006 180 11104 UKRAINIAN CAPITAL LETTER JE
006 181 11105 MACEDONIA CAPITAL LETTER DSE
006 182 11106 UKRAINIAN CAPITAL LETTER I
006 183 11107 UKRAINIAN CAPITAL LETTER YI
006 184 11108 SERBIAN CAPITAL LETTER JE
006 185 11109 SERBIAN CAPITAL LETTER LJE
006 186 11110 SERBIAN CAPITAL LETTER NJE
006 187 11111 SERBIAN CAPITAL LETTER TSHE
006 188 11112 MACEDONIA CAPITAL LETTER KJE
006 190 11114 BYELORUSSIAN CAPITAL LETTER SHORT U
006 191 11115 SERBIAN CAPITAL LETTER DZE
006 192 12/00 CYRILLIC SMALL LETTER YU
006 193 12/01 CYRILLIC SMALL LETTER A
006 194 12/02 CYRILLIC SMALL LETTER BE
006 195 12/03 CYRILLIC SMALL LETTER TSE
006 196 12/04 CYRILLIC SMALL LETTER DE
006 197 12/05 CYRILLIC SMALL LETTER IE
006 198 12/06 CYRILLIC SMALL LETTER EF
006 199 12/07 CYRILLIC SMALL LETTER GHE
006 200 12/08 CYRILLIC SMALL LETTER HA
006 201 12/09 CYRILLIC SMALL LETTER I

KEYSYM Encoding A-17

Byte Byte Code Name
3 4 Pos

006 202 12/10 CYRILLIC SMALL LETTER SHORT I
006 203 12/11 CYRILLIC SMALL LETTER KA
006 204 12/12 CYRILLIC SMALL LETTER EL
006 205 12/13 CYRILLIC SMALL LETTER EM
006 206 12/14 CYRILLIC SMALL LETTER EN
006 207 12/15 CYRILLIC SMALL LETTER 0
006 208 13/00 CYRILLIC SMALL LETTER PE
006 209 13/01 CYRILLIC SMALL LETTER YA
006 210 13/02 CYRILLIC SMALL LETTER ER
006 211 13/03 CYRILLIC SMALL LETTER ES
006 212 13/04 CYRILLIC SMALL LETTER TE
006 213 13/05 CYRILLIC SMALL LETTER U
006 214 13/06 CYRILLIC SMALL LETTER ZHE
006 215 13/07 CYRILLIC SMALL LETTER VE
006 216 13/08 CYRILLIC SMALL SOFT SIGN
006 217 13/09 CYRILLIC SMALL LETTER YERU
006 218 13/10 CYRILLIC SMALL LETTER ZE
006 219 13/11 CYRILLIC SMALL LETTER SHA
006 220 13/12 CYRILLIC SMALL LETTER E
006 221 13/13 CYRILLIC SMALL LETTER SHCHA
006 222 13/14 CYRILLIC SMALL LETTER CHE
006 223 13/15 CYRILLIC SMALL HARD SIGN
006 224 14/00 CYRILLIC CAPITAL LETTER YU
006 225 14/01 CYRILLIC CAPITAL LETTER A
006 226 14/02 CYRILLIC CAPITAL LETTER BE
006 227 14/03 CYRILLIC CAPITAL LETTER TSE
006 228 14/04 CYRILLIC CAPITAL LETTER DE
006 229 14/05 CYRILLIC CAPITAL LETTER IE
006 230 14/06 CYRILLIC CAPITAL LETTER EF
006 231 14/07 CYRILLIC CAPITAL LETTER GHE
006 232 14/08 CYRILLIC CAPITAL LETTER HA
006 233 14/09 CYRILLIC CAPITAL LETTER I
006 234 14/10 CYRILLIC CAPITAL LETTER SHORT I
006 ,235 14/11 CYRILLIC CAPITAL LETTER KA
006 236 14/12 CYRILLIC CAPITAL LETTER EL
006 237 14/13 CYRILLIC CAPITAL LETTER EM
006 238 14/14 CYRILLIC CAPITAL LETTER EN
006 239 14/15 CYRILLIC CAPITAL LETTER 0
006 240 15/00 CYRILLIC CAPITAL LETTER PE
006 241 15/01 CYRILLIC CAPITAL LETTER YA

A-18 KEYSYM Encoding

Byte Byte Code Name
3 4 Pos

006 242 15/02 CYRILLIC CAPITAL LETTER ER
006 243 15/03 CYRILLIC CAPITAL LETTER ES
006 244 15/04 CYRILLIC CAPITAL LETTER TE
006 245 15/05 CYRILLIC CAPITAL LETTER U
006 246 15/06 CYRILLIC CAPITAL LETTER ZHE
006 247 15/07 CYRILLIC CAPITAL LETTER VE
006 248 15/08 CYRILLIC CAPITAL SOFT SIGN
006 249 15/09 CYRILLIC CAPITAL LETTER YERU
006 250 15/10 CYRILLIC CAPITAL LETTER ZE
006 251 15/11 CYRILLIC CAPITAL LETTER SHA
006 252 15/12 CYRILLIC CAPITAL LETTER E
006 253 15/13 CYRILLIC CAPITAL LETTER SHCHA
006 254 15/14 CYRILLIC CAPITAL LETTER CHE
006 255 15/15 CYRILLIC CAPITAL HARD SIGN

KEYSYM Encoding A-19

Greek

Byte Byte Code Name
3 4 Pos

007 161 10101 GREEK CAPITAL LETTER ALPHA WITH ACCENT
007 162 10102 GREEK CAPITAL LETTER EPSILON WITH ACCENT
007 163 10103 GREEK CAPITAL LETTER ETA WITH ACCENT
007 164 10104 GREEK CAPITAL LETTER IOTA WITH ACCENT
007 165 10105 GREEK CAPITAL LETTER IOTA WITH DIAERESIS
007 166 10106 GREEK CAPITAL LETTER IOTA WITH

ACCENT+ DIAERESIS
007 167 10107 GREEK CAPITAL LETTER OMICRON WITH ACCENT
007 168 10108 GREEK CAPITAL LETTER UPSILON WITH ACCENT
007 169 10109 GREEK CAPITAL LETTER UPSILON WITH DIAERESIS
007 170 10/10 GREEK CAPITAL LETTER UPSILON WITH

ACCENT+ DIAERESIS
007 171 10/11 GREEK CAPITAL LETTER OMEGA WITH ACCENT
007 177 11101 GREEK SMALL LETTER ALPHA WITH ACCENT
007 178 11102 GREEK SMALL LETTER EPSILON WITH ACCENT
007 179 11103 GREEK SMALL LETTER ETA WITH ACCENT
007 180 11104 GREEK SMALL LETTER IOTA WITH ACCENT
007 181 11105 GREEK SMALL LETTER IOTA WITH DIAERESIS
007 182 11106 GREEK SMALL LETTER IOTA WITH ACCENT+ DIAERESIS
007 183 11107 GREEK SMALL LETTER OMICRON WITH ACCENT
007 184 11108 GREEK SMALL LETTER UPSILON WITH ACCENT
007 185 11109 GREEK SMALL LETTER UPSILON WITH DIAERESIS
007 186 11110 GREEK SMALL LETTER UPSILON WITH

ACCENT+ DIAERESIS
007 187 11111 GREEK SMALL LETTER OMEGA WITH ACCENT
007 193 12/01 GREEK CAPITAL LETTER ALPHA
007 194 12/02 GREEK CAPITAL LETTER BETA
007 195 12/03 GREEK CAPITAL LETTER GAMMA
007 196 12/04 GREEK CAPITAL LETTER DELTA
007 197 12/05 GREEK CAPITAL LETTER EPSILON
007 198 12/06 GREEK CAPITAL LETTER ZETA
007 199 12/07 GREEK CAPITAL LETTER ETA
007 200 12/08 GREEK CAPITAL LETTER THETA
007 201 12/09 GREEK CAPITAL LETTER IOTA
007 202 12/10 GREEK CAPITAL LETTER KAPPA
007 203 12/11 GREEK CAPITAL LETTER LAMBDA
007 204 12/12 GREEK CAPITAL LETTER MU
007 205 12/13 GREEK CAPITAL LETTER NU
007 206 12/14 GREEK CAPITAL LETTER XI

A-20 KEYSYM Encoding

Byte Byte Code Name
3 4 Pos

007 207 12/15 GREEK CAPITAL LETTER OMICRON
007 208 13/00 GREEK CAPITAL LETTER PI
007 209 13/01 GREEK CAPITAL LETTER RHO
007 210 13/02 GREEK CAPITAL LETTER SIGMA
007 212 13/04 GREEK CAPITAL LETTER TAU
007 213 13/05 GREEK CAPITAL LETTER UPSILON
007 214 13/06 GREEK CAPITAL LETTER PHI
007 215 13/07 GREEK CAPITAL LETTER CHI
007 216 13/08 GREEK CAPITAL LETTER PSI

007 217 13/09 GREEK CAPITAL LETTER OMEGA
007 225 14/01 GREEK SMALL LETTER ALPHA
007 226 14/02 GREEK SMALL LETTER BETA
007 227 14/03 GREEK SMALL LETTER GAMMA
007 228 14/04 GREEK SMALL LETTER DELTA
007 229 14/05 GREEK SMALL LETTER EPSILON
007 230 14/06 GREEK SMALL LETTER ZETA
007 231 14/07 GREEK SMALL LETTER ETA
007 232 14/08 GREEK SMALL LETTER THETA
007 233 14/09 GREEK SMALL LETTER IOTA
007 234 14/10 GREEK SMALL LETTER KAPPA
007 235 14/11 GREEK SMALL LETTER LAMBDA
007 236 14/12 GREEK SMALL LETTER MU
007 237 14/13 GREEK SMALL LETTER NU
007 238 14/14 GREEK SMALL LETTER XI
007 239 14/15 GREEK SMALL LETTER OMICRON
007 240 15/00 GREEK SMALL LETTER PI
007 241 15/01 GREEK SMALL LETTER RHO
007 242 15/02 GREEK SMALL LETTER SIGMA
007 243 15/03 GREEK SMALL LETTER FINAL SMALL SIGMA
007 244 15/04 GREEK SMALL LETTER TAU
007 245 15/05 GREEK SMALL LETTER UPSILON
007 246 15/06 GREEK SMALL LETTER PHI
007 247 15/07 GREEK SMALL LETTER CHI
007 248 15/08 GREEK SMALL LETTER PSI
007 249 15/09 GREEK SMALL LETTER OMEGA

KEYSYM Encoding A-21

Technical

Byte Byte Code Name
3 4 Pos

008 161 10/01 LEFT RADICAL
008 162 10/02 TOP LEFT RADICAL
008 163 10/03 HORIZONTAL CONNECTOR
008 164 10/04 TOP INTEGRAL
008 165 10/05 BOTTOM INTEGRAL
008 166 10/06 VERTICAL CONNECTOR
008 167 10/07 TOP LEFT SQUARE BRACKET
008 168 10/08 BOTTOM LEFT SQUARE BRACKET
008 169 10109 TOP RIGHT SQUARE BRACKET
008 170 10/10 BOTTOM RIGHT SQUARE BRACKET
008 171 10/11 TOP LEFT PARENTHESIS
008 172 10/12 BOTTOM LEFT PARENTHESIS
008 173 10/13 TOP RIGHT PARENTHESIS
008 174 10/14 BOTTOM RIGHT PARENTHESIS
008 175 10115 LEFT MIDDLE CURLY BRACE
008 176 11100 RIGHT MIDDLE CURLY BRACE
008 177 11101 TOP LEFT SUMMATION
008 178 11102 BOTTOM LEFT SUMMATION
008 179 11103 TOP VERTICAL SUMMATION CONNECTOR
008 180 11104 BOTTOM VERTICAL SUMMATION CONNECTOR
008 181 11105 TOP RIGHT SUMMATION
008 182 11106 BOTTOM RIGHT SUMMATION
008 183 11107 RIGHT MIDDLE SUMMATION
008 188 11112 LESS THAN OR EQUAL SIGN
008 189 11113 NOT EQUAL SIGN
008 190 11114 GREATER THAN OR EQUAL SIGN
008 191 11115 INTEGRAL
008 192 12/00 THEREFORE
008 193 12/01 VARIATION, PROPORTIONAL TO
008 194 12/02 INFINITY
008 197 12/05 NABLA, DEL
008 200 12/08 IS APPROXIMATE TO
008 201 12/09 SIMILAR OR EQUAL TO
008 205 12/13 IF AND ONLY IF
008 206 12/14 IMPLIES
008 207 12/15 IDENTICAL TO
008 214 13/06 RADICAL
008 218 13/10 IS INCLUDED IN
008 219 13111 INCLUDES

A-22 KEYSYM Encoding

Byte Byte Code Name
3 4 Pos

008 220 13/12 INTERSECTION
008 221 13/13 UNION
008 222 13/14 LOGICAL AND
008 223 13/15 LOGICAL OR
008 239 14/15 PARTIAL DERIVATIVE
008 246 15/06 FUNCTION
008 251 15/11 LEFT ARROW
008 252 15/12 UPWARD ARROW
008 253 15/13 RIGHT ARROW
008 254 15/14 DOWNWARD ARROW

KEYSYM Encoding A-23

Special

Byte Byte Code Name
3 4 Pos

009 223 13/15 BLANK
009 224 14/00 SOLID DIAMOND
009 225 14/01 CHECKERBOARD
009 226 14/02 "HT"
009 227 14/03 "FF"
009 228 14/04 "CR"
009 229 14/05 "LF"
009 232 14/08 "NL"
009 233 14/09 "VT"
009 234 14/10 LOWER-RIGHT CORNER
009 235 14/11 UPPER-RIGHT CORNER
009 236 14/12 UPPER-LEFT CORNER
009 237 14/13 LOWER-LEFT CORNER
009 238 14/12 CROSSING-LINES
009 239 14/15 HORIZONTAL LINE, SCAN 1
009 240 15/00 HORIZONTAL LINE, SCAN 3
009 241 15/01 HORIZONTAL LINE, SCAN 5
009 242 15/02 HORIZONTAL LINE, SCAN 7
009 243 15/03 HORIZONTAL LINE, SCAN 9
009 244 15/04 LEFT "T"
009 245 15/05 RIGHT "T"
009 246 15/06 BOTTOM "T"
009 247 15/07 TOP "T"
009 248 15/08 VERTICAL BAR

A-24 KEYSYM Encod ing

Publish

Byte Byte Code Name
3 4 Pos

010 161 10/01 EM SPACE
010 162 10/02 EN SPACE
010 163 10/03 3/EM SPACE
010 164 10/04 4/EM SPACE
010 165 10/05 DIGIT SPACE
010 166 10/06 PUNCTUATION SPACE
010 167 10/07 THIN SPACE
010 168 10/08 HAIR SPACE
010 169 10/09 EM DASH
010 170 10/10 EN DASH
010 172 10/12 SIGNIFICANT BLANK SYMBOL
010 174 10/14 ELLIPSIS
010 175 10/15 DOUBLE BASELINE DOT
010 176 11100 VULGAR FRACTION ONE THIRD
010 177 11101 VULGAR FRACTION TWO THIRDS
010 178 11102 VULGAR FRACTION ONE FIFTH
010 179 11103 VULGAR FRACTION TWO FIFTHS
010 180 11104 VULGAR FRACTION THREE FIFTHS
010 181 11105 VULGAR FRACTION FOUR FIFTHS
010 182 11106 VULGAR FRACTION ONE SIXTH
010 183 11107 VULGAR FRACTION FIVE SIXTHS
010 184 11108 CARE OF
010 187 11111 FIGURE DASH
010 188 11112 LEFT ANGLE BRACKET
010 189 11113 DECIMAL POINT
010 190 11114 RIGHT ANGLE BRACKET
010 191 11115 MARKER
010 195 12/03 VULGAR FRACTION ONE EIGHTH
010 196 12/04 VULGAR FRACTION THREE EIGHTHS
010 197 12/05 VULGAR FRACTION FIVE EIGHTHS
010 198 12/06 VULGAR FRACTION SEVEN EIGHTHS
010 201 12/09 TRADEMARK SIGN
010 202 12/10 SIGNATURE MARK
010 203 12/11 TRADEMARK SIGN IN CIRCLE
010 204 12/12 LEFT OPEN TRIANGLE
010 205 12/13 RIGHT OPEN TRIANGLE
010 206 12/14 EM OPEN CIRCLE
010 207 12/15 EM OPEN RECTANGLE
010 208 13/00 LEFT SINGLE QUOTATION MARK

KEYSYM Encoding A-25

Byte Byte Code Name
3 4 Pos

010 209 13/01 RIGHT SINGLE QUOTATION MARK
010 210 13/02 LEFT DOUBLE QUOTATION MARK
010 211 13/03 RIGHT DOUBLE QUOTATION MARK
010 212 13/04 PRESCRIPTION, TAKE, RECIPE
010 214 13/06 MINUTES
010 215 13/07 SECONDS
010 217 13/09 LATIN CROSS
010 218 13/10 HEXAGRAM
010 219 13/11 FILLED RECTANGLE BULLET
010 220 13/12 FILLED LEFT TRIANGLE BULLET
010 221 13/13 FILLED RIGHT TRIANGLE BULLET
010 222 13/14 EM FILLED CIRCLE
010 223 13/15 EM FILLED RECTANGLE
010 224 14/00 EN OPEN CIRCLE BULLET
010 225 14/01 EN OPEN SQUARE BULLET
010 226 14/02 OPEN RECTANGULAR BULLET
010 227 14/03 OPEN TRIANGULAR BULLET UP
010 228 14/04 OPEN TRIANGULAR BULLET DOWN
010 229 14/05 OPEN STAR
010 230 14/06 EN FILLED CIRCLE BULLET
010 231 14/07 EN FILLED SQUARE BULLET
010 232 14/08 FILLED TRIANGULAR BULLET UP
010 233 14/09 FILLED TRIANGULAR BULLET DOWN
010 234 14/10 LEFT POINTER
010 235 14/11 RIGHT POINTER
010 236 14/12 CLUB
010 237 14/13 DIAMOND
010 238 14/14 HEART
010 240 15/00 MALTESE CROSS
010 241 15/01 DAGGER
010 242 15/02 DOUBLE DAGGER
010 243 15/03 CHECK MARK, TICK
010 244 15/04 BALLOT CROSS
010 245 15/05 MUSICAL SHARP
010 246 15/06 MUSICAL FLAT
010 247 15/07 MALE SYMBOL
010 248 15/08 FEMALE SYMBOL
010 249 15/09 TELEPHONE SYMBOL
010 250 15/10 TELEPHONE RECORDER SYMBOL
010 251 15/11 PHONOGRAPH COPYRIGHT SIGN

A-26 KEYSYM Encoding

Byte Byte Code Name
3 4 Pos

010 252 15/12 CARET
010 253 15/13 SINGLE LOW QUOTATION MARK
010 254 15/14 DOUBLE LOW QUOTATION MARK
010 255 15/15 CURSOR

KEYSYM Encoding A·27

APL

Byte Byte Code Name
3 4 Pos

011 163 10103 LEFT CARET
011 166 10106 RIGHT CARET
011 168 10108 DOWN CARET
011 169 10109 UP CARET
011 192 12/00 OVERBAR
011 194 12/02 DOWN TACK
011 195 12/03 UP SHOE (CAP)
011 196 12/04 DOWN STILE
011 198 12/06 UNDERBAR
011 202 12/10 JOT
011 204 12/12 QUAD
011 206 12/14 UP TACK
011 207 12/15 CIRCLE
011 211 13/03 UP STILE
011 214 13/06 DOWN SHOE (CUP)
011 216 13/08 RIGHT SHOE
011 218 13/10 LEFT SHOE
011 220 13/12 LEFT TACK
011 252 15/12 RIGHT TACK

A-28 KEYSYM Encoding

Hebrew

Byte Byte Code Name
3 4 Pos

012 224 14/00 HEBREW LETTER ALEPH
012 225 14/01 HEBREW LETTER BETH
012 226 14/02 HEBREW LETTER GIMMEL
012 227 14/03 HEBREW LETTER DALETH
012 228 14/04 HEBREW LETTER HE
012 229 14/05 HEBREW LETTER WAW
012 230 14/06 HEBREW LETTER ZA YIN
012 231 14/07 HEBREW LETTER HET
012 232 14/08 HEBREW LETTER TETH
012 233 14/09 HEBREW LETTER YOD
012 234 14/10 HEBREW LETTER FINAL KAPH
012 235 14/11 HEBREW LETTER KAPH
012 236 14/12 HEBREW LETTER LAMED
012 237 14/13 HEBREW LETTER FINAL MEM
012 238 14/14 HEBREW LETTER MEM
012 239 14/15 HEBREW LETTER FINAL NUN
012 240 15/00 HEBREW LETTER NUN
012 241 15/01 HEBREW LETTER SAMEKH
012 242 15/02 HEBREW LETTER A'YIN
012 243 15/03 HEBREW LETTER FINAL PE
012 244 15/04 HEBREW LETTER PE
012 245 15/05 HEBREW LETTER FINAL ZADI
012 246 15/06 HEBREW LETTER ZADI
012 247 15/07 HEBREW KUF
012 248 15/08 HEBREW RESH
012 249 15/09 HEBREW SHIN
012 250 15/10 HEBREW TAF

KEYSYM Encoding A-29

Keyboard

Byte Byte Code Name
3 4 Pos

255 008 00108 BACKSPACE, BACK SPACE, BACK CHAR
255 009 00109 TAB
255 010 00/10 LINEFEED, LF
255 011 00/11 CLEAR
255 013 00/13 RETURN, ENTER
255 019 01103 PAUSE, HOLD, SCROLL LOCK
255 027 01111 ESCAPE
255 032 02/00 MULTI-KEY CHARACTER PREFACE
255 033 02/01 KANJI, KANJI CONVERT
255 080 05/00 HOME
255 081 05/01 LEFT, MOVE LEFT, LEFT ARROW
255 082 05/02 uP, MOVE UP, UP ARROW
255 083 05/03 RIGHT, MOVE RIGHT, RIGHT ARROW
255 084 05/04 DOWN, MOVE DOWN, DOWN ARROW
255 085 05/05 PRIOR, PREVIOUS
255 086 05/06 NEXT
255 087 05/07 END, EOL
255 088 05/08 BEGIN, BOL
255 096 06/00 SELECT, MARK
255 097 06/01 PRINT
255 098 06/02 EXECUTE, RUN, DO
255 099 06/03 INSERT, INSERT HERE
255 101 06/05 UNDO, OOPS
255 102 06/06 REDO, AGAIN
255 103 06/07 MENU
255 104 06/08 FIND, SEARCH
255 105 06/09 CANCEL, STOP, ABORT, EXIT
255 106 06/10 HELP, QUESTION MARK
255 107 06/11 BREAK
255 126 07/14 MODE SWITCH, SCRIPT SWITCH, CHARACTER SET SWITCF
255 127 07/15 NUM LOCK
255 128 08/00 KEYPAD SPACE
255 137 08/09 KEYPAD TAB
255 141 08/13 KEYPAD ENTER
255 145 09/01 KEYPAD Fl, PFl, A
255 146 09/02 KEYPAD F2, PF2, B
255 147 09/03 KEYPAD F3, PF3, C
255 148 09/04 KEYPAD F4, PF4, D
255 170 10/10 KEYPAD MULTIPLICATION SIGN, ASTERISK

A-30 KEYSYM Encoding

Byte Byte Code Name
3 4 Pos

255 171 10/11 KEYPAD PLUS SIGN
255 172 10/12 KEYPAD SEPARATOR, COMMA
255 173 10/13 KEYPAD MINUS SIGN, HYPHEN
255 174 10/14 KEYPAD DECIMAL POINT, FULL STOP
255 175 10/15 KEYPAD DIVISION SIGN, SOLIDUS
255 176 11100 KEYPAD DIGIT ZERO
255 177 11101 KEYPAD DIGIT ONE
255 178 11102 KEYPAD DIGIT TWO
255 179 11103 KEYPAD DIGIT THREE
255 180 11104 KEYPAD DIGIT FOUR
255 181 11105 KEYPAD DIGIT FIVE
255 182 11106 KEYPAD DIGIT SIX
255 183 11107 KEYPAD DIGIT SEVEN
255 184 11108 KEYPAD DIGIT EIGHT
255 185 11109 KEYPAD DIGIT NINE
255 189 11113 KEYPAD EQUALS SIGN
255 190 11114 F1
255 191 11115 F2
255 192 12/00 F3
255 193 12/01 F4
255 194 12/02 F5
255 195 12/03 F6
255 196 12/04 F7
255 197 12/05 F8
255 198 12/06 F9
255 199 12/07 FlO
255 200 12/08 Fll, L1
255 201 12/09 F12, L2
255 202 12/10 F13, L3
255 203 12/11 F14, L4
255 204 12/12 F15, L5
255 205 12/13 F16, L6
255 206 12/14 F17, L7
255 207 12/15 F18, L8
255 208 13/00 F19, L9
255 209 13/01 F20, L10
255 210 13/02 F21, R1
255 211 13/03 F22, R2
255 212 13/04 F23, R3
255 213 13/05 F24, R4

KEYSYM Encoding A-31

Byte Byte Code Name
3 4 Pos

255 214 13/06 F25, R5
255 215 13/07 F26, R6
255 216 13/08 F27, R7
255 217 13/09 F28, R8
255 218 13/10 F29, R9
255 219 13/11 F30, RlO
255 220 13/12 F3l, Rll
255 221 13/13 F32, Rl2
255 222 13/14 F33, Rl3
255 223 13/15 F34, Rl4
255 224 14/00 F35, Rl5
255 225 14/01 LEFT SHIFT
255 226 14/02 RIGHT SHIFT
255 227 14/03 LEFT CONTROL
255 228 14/04 RIGHT CONTROL
255 229 14/05 CAPS LOCK
255 230 14/06 SHIFT LOCK
255 231 14/07 LEFT META
255 232 14/08 RIGHT META
255 233 14/09 LEFT ALT
255 234 14/10 RIGHT ALT
255 235 14/11 LEFT SUPER
255 236 14/12 RIGHT SUPER
255 237 14/13 LEFT HYPER
255 238 14/14 RIGHT HYPER
255 255 15/15 DELETE, RUB OUT

A-32 KEYSYM Encoding

Protocol Encoding B

Syntactic Conventions
All numbers are in decimal, unless prefixed with lx, in which case they
are in hexadecimal (base 16).

The general syntax used to describe requests, replies, errors, events, and
compound types is:

NameofThing
encode-form

encode-form

Each encode-form describes a single component.

For components described in the protocol as:

name: TYPE

the encode-form is:

N TYPE name

N is the number of bytes occupied in the data stream, and TYPE is the
interpretation of those bytes. For example,

depth: CARD8

becomes:

1 CARD8 depth

For components with a static numeric value the encode-form is:

N value name

The value is always interpreted as an N-byte unsigned integer. For
example, the first two bytes of a Window error are always zero (indicating
an error in general) and three (indicating the Window error in particular):

1
1

o
3

Error
code

For components described in the protocol as:

name: {Name1 , ... , Namel}

the encode-form is:

N name
valuel Namel

valueI N ameI

The value is always interpreted as an N -byte unsigned integer. Note that
the size of N is sometimes larger than that strictly required to encode the
values. For example:

class: {lnputOutput, InputOnly, CopyFromParent}

becomes:

2
o
1
2

class
CopyFromParent
InputOutput
Inp ut Only

For components described in the protocol as:

NAME: TYPE or Alternative1 ... or Alternativel

the encode-form is:

N TYPE NAME
valuel Alternativel

valueI AlternativeI

The alternative values are guaranteed not to conflict with the encoding of
TYPE. For example:

destination: WINDOW or PointerWindowor InputFocus

becomes:

4 WINDOW destination
o PointerWindow
1 InputFocus

For components described in the protocol as:

value-mask: BITMASK

the encode-form is:

B-2 Protocol Encoding

N BITMASK value-mask
maskl mask-namel

maskI mask-nameI

The individual bits in the mask are specified and named, and N is 2 or 4.
The most-significant bit in a BITMASK is reserved for use in defining
chained (multiword) bitmasks, as extensions augment existing core requests.
The precise interpretation of this bit is not yet defined here, although a
probable mechanism is that a l-bit indicates that another N bytes of
bitmask follows, with bits within the overall mask still interpreted from
least-significant to most-significant with an N-byte unit, with N-byte units
interpreted in stream order, and with the overall mask being byte-swapped
in individual N-byte units.

For LISTofVALUE encodings, the request is followed by a section of the
form:

VALUEs
encode-form

encode-form

listing an encode-form for each VALUE. The NAME in each encode-form
keys to the corresponding BITMASK bit. The encoding of a VALUE
always occupies four bytes, but the number of bytes specified in the
encoding-form indicates how many of the least-significant bytes are actually
used; the remaining bytes are unused and their values do not matter.

In various cases, the number of bytes occupied by a component will be
specified by a lowercase single-letter variable name instead of a specific
numeric value, and often some other component will have its value
specified as a simple numeric expression involving these variables.
Components specified with such expressions are always interpreted as
unsigned integers. The scope of such variables is always just the enclosing
request, reply, error, event, or compound type structure. For example:

2
4n

3+n
LIS TofPOINT

request length
points

For unused bytes (the values of the bytes are undefined and do no
matter), the encode-form is:

N unused

If the number of unused bytes is variable, the encode-form typically is:

p unused, p=pad(E)

Protocol Encod ing 8-3

where E is some expression, and pad(E) is the number of bytes needed to
round E up to a multiple of four.

pad(E) = (4 - (E mod 4» mod 4

Common Types
LISTofFOO

In this document the LISTof notation strictly means some number of
repetitions of the FOO encoding; the actual length of the list is
encoded elsewhere.

SETofFOO

A set is always represented by a bitmask, with a I-bit indicating
presence in the set.

BITMASK: CARD32

WINDOW: CARD32

PIXMAP: CARD32

CURSOR: CARD32

FONT: CARD32

GCONTEXT: CARD32

COLORMAP: CARD32

DRAWABLE: CARD32

FONTABLE: CARD32

ATOM: CARD32

VISUALID: CARD32

BYTE: 8-bit value

INT8: 8-bit signed integer

INTI6: 16-bit signed integer

INT32: 32-bit signed integer

CARD8: 8-bit unsigned integer

CARDI6: 16-bit unsigned integer

CARD32: 32-bit unsigned integer

TIMESTAMP: CARD32

BITGRAVITY
o
I
2

8-4 Protocol Encoding

Forget
NorthWest
North

3
4
5
6
7
8
9
10

WINGRAVITY
o

BOOL

1
2
3
4
5
6
7
8
9
10

o
1

SETofEVENT
#x00000001
#x00000002
#x00000004
#x00000008
#x00000010
#x00000020
#x00000040
#x00000080
#x00000100
#x00000200
#x00000400
#x00000800
#x00001000
#x00002000
#x00004000
#x00008000
#x00010000
#x00020000

NorthEast
West
Center
East
SouthWest
South
SouthEast
Static

Unmap
NorthWest
North
NorthEast
West
Center
East
SouthWest
South
SouthEast
Static

False
True

KeyPress
KeyRelease
B uttonPress
ButtonRelease
EnterWindow
Leave Window
PointerMotion
PointerMotionHint
B utton1Motion
B utton2Motion
B utton3Motion
B utton4Motion
B utton5Motion
ButtonMotion
KeymapState
Exposure
VisibilityChange
StructureN otify

Protocol Encoding 8·5

#x00040000
#x00080000
#x00100000
#x00200000
#x00400000
#x00800000
#x01000000
#xfeOOOOOO

SETofPOINTEREVENT

ResizeRedirect
S ubstructureN otify
S ubstructureRedirect
FocusChange
PropertyChange
ColormapChange
OwnerGrabButton
unused but must be zero

encodings are the same as for SETofEVENT, except with
#xffffB003 unused but must be zero

SETofDEVICEEVENT
encodings are the same as for SETofEVENT, except with
#xffffcObO unused but must be zero

KEYSYM: CARD32

KEYCODE: CARD8

BUTTON: CARD8

SETofKEYBUTMASK
#x0001
#x0002
#x0004
#x0008
#x0010
#x0020
#x0040
#x0080
#x0100
#x0200
#x0400
#x0800
#x1000
#xeOOO

SETofKEYMASK

Shift
Lock
Control
Mod1
Mod2
Mod3
Mod4
Mod5
Button1
Button2
Button3
Button4
Button5
unused but must be zero

encodings are the same as for SETofKEYBUTMASK, except with
#xffOO unused but must be zero

STRING8: LISTofCARD8

STRING 16: LISTofCHAR2B

CHAR2B
1 CARD8 byte1

8·6 Protocol Encoding

1 CARD8

POINT
2 INT16
2 INT16

RECTANGLE
2 INT16
2 INT16
2 CARD16
2 CARD16

ARC
2 INT16
2 INT16
2 CARD16
2 CARD16
2 INT16
2 INT16

HOST
1

0
1
2

1
2 n
n LIS TofBYTE
p

STR
1 n
n STRING8

Errors
Request

1 0
1 1
2 CARD16
4
2 CARD16
1 CARD8
21

byte2

x

Y

x
y
width
height

x
y
width
height
angle 1
angle2

Internet
DECnet
Chaos

family

unused
length of address
address
unused, p = pad(n)

length of name in bytes
name

Error
code
sequence number
unused
minor opcode
major opcode
unused

Protocol Encod ing 8-7

Value
1 0 Error
1 2 code
2 CARD16 sequence number
4 <32-bits> bad value
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

Window
1 0 Error
1 3 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

Pixmap
1 0 Error
1 4 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

Atom
1 0 Error
1 5 code
2 CARD16 sequence number
4 CARD32 bad atom id
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

Cursor
1 0 Error
1 6 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

8-8 Protocol Encoding

Font
1 0 Error
1 7 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CAROB major opcode
21 unused

Match
1 0 Error
1 B code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CAROB major opcode
21 unused

Drawable
1 0 Error
1 9 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CAROB major opcode
21 unused

Access
1 0 Error
1 10 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CAROB major opcode
21 unused

Alloc
1 0 Error
1 11 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CAROB major opcode
21 unused

Protocol Encoding 8-9

Colormap
1 0 Error
1 12 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

GContext
1 0 Error
1 13 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

IDChoice
1 0 Error
1 14 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

Name
1 0 Error
1 15 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

Length
1 0 Error
1 16 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

B-10 Protocol Encoding

Implementation
1 0
1 17
2 CARD16
4
2 CARD16
1 CARD8
21

Keyboards

Error
code
sequence number
unused
minor opcode
major opcode
unused

KEYCODE values are always greater than 7 (and less than 256).

KEYSYM values with the bit #xl0000000 set are reserved as vendor
specific.

The names and encodings of the standard KEYSYM values are contained
in appendix F.

Pointers
BUTTON values are numbered starting with one.

Predefined Atoms
PRIMARY 1 WM_NORMAL_HINTS 40
SECONDARY 2 WM_SIZE_HINTS 41
ARC 3 WM_ZOOM_HINTS 42
ATOM 4 MIN_SPACE 43
BITMAP 5 NORM_SPACE 44
CARDINAL 6 MAX_SPACE 45
COLORMAP 7 END_SPACE 46
CURSOR 8 SUPERSCRIPT_X 47
CUT_BUFFERO 9 SUPERSCRIPT_ Y 48
CUT_BUFFER! 10 SUBSCRIPT_X 49
CUT_BUFFER2 11 SUBSCRIPT_ Y 50
CUT_BUFFER3 12 UNDERLINE_POSITION 51
CUT_BUFFER4 13 UNDERLINE_ THICKNESS 52
CUT_BUFFER5 14 STRIKEOUT_ASCENT 53
CUT_BUFFER6 15 STRIKEOUT_DESCENT 54
CUT_BUFFER7 16 ITALIC_ANGLE 55
DRAWABLE 17 X_HEIGHT 56
FONT 18 QUAD_WIDTH 57
INTEGER 19 WEIGHT 58
PIXMAP 20 POINT_SIZE 59
POINT 21 RESOLUTION 60

Protocol Encoding 8-11

RECTANGLE 22 COPYRIGHT 61
RESOURCE_MANGER 23 NOTICE 62
RGB_COLOR_MAP 24 FONT_NAME 63
RGB_BEST_MAP 25 F AMIL Y_NAME 64
RGB_BLUE_MAP 26 FULL_NAME 65
RGB_DEF AULT_MAP 27 CAP_HEIGHT 66
RGB_GRAY_MAP 28 WM_CLASS 67
RGB_GREEN_MAP 29 WM_TRANSIENT_FOR 68
RGB_RED_MAP 30
STRING 31
VISUALID 32
WINDOW 33
WM_COMMAND 34
WM_HINTS 35
WM_CLIENT_MACHINE 36
WM_ICON_NAME 37
WM_ICON_SIZE 38
WM_NAME 39

Connection Setup
For TCP connections, displays on a given host are numbered starting from
0, and the server for display N listens and accepts connections on port
6000 + N. For DECnet connections, displays on a given host are
numbered starting from 0, and the server for display N listens and accepts
connections on the object name obtained by concatenating "X$X" with the
decimal representation of N, for example, X$XO and X$Xl.

Information sent by the client at connection setup:

1
#x42
#x6C

1
2 CARD16
2 CARD16
2 n
2 d
2
n STRING8
p
d STRING8
q

MSB first
LSB first

byte-order

unused
protocol-maj or-version
protocol-minor-version
length of authorization-protocol-name
length of authorization-protocol-data
unused
authorization-protocol-name
unused, p = pad(n)
authorization-protocol-data
unused, q = pad(d)

Except where explicitly noted in the protocol, all 16-bit and 32-bit
quantities sent by the client must be transmitted with the specified byte

8-12 Protocol Encoding

order, and all 16-bit and 32-bit quantities returned by the server will be
transmitted with this byte order.

Information received by the

1 0
1 n
2 CARD16
2 CARD16
2 (n+p)/4
n STRINGS
p

Information received by the

1 1
1
2
2
2
4
4
4
4

CARD16
CARD16
S+2n+(v+p+m)/4
CARD32
CARD32
CARD32
CARD32

2 v
2 CARD16
1 CARDS
1 n
1

client if authorization fails:

failed
length of reason in bytes
protocol-major-version
protocol-minor-version
length in 4-byte units of "additional data"
reason
unused, p = pad(n)

client if authorization is accepted:

success
unused
protocol-major-version
protocol-minor-version
length in 4-byte units of "additional data"
release-number
resource-id -base
resource-id-mask
motion-buffer-size
length of vendor
maximum-request-Iength
number of SCREENs in roots
number for FORMATs in pixmap-formats
image-byte-order

o
1

LSBFirst
MSBFirst

1
o
1

bitmap-format-bit-order
LeastS ignificant
MostS ignificant

1 CARDS
1 CARDS
1 KEYCODE
1 KEYCODE
4
v STRINGS
p
Sn LISTofFORMAT
m LISTofSCREEN

FORMAT
1 CARDS
1 CARDS

bitmap-format-scanline-unit
bitmap-format-scanline-pad
min-keycode
max-keycode
unused
vendor
unused, p=pad(v)
pixmap-formats
roots (m is always a multiple of 4)

depth
bits-per-pixel

Protocol Encoding 8-13

1 CARD8
5

SCREEN
4 WINDOW
4 COLORMAP
4 CARD32
4 CARD32
4 SETofEVENT
2 CARD16
2 CARD16
2 CARD16
'1
~

2
2
4
1

1
1
1
n

rtA'Dn1a
'-'~".LJ.LV

CARD16
CARD16
VISUALID

o
1
2
BOOL
CARD8
CARD8
LISToIDEPTH

DEPTH
1 CARD8
1
2 n
4

Never
WhenMapped
Always

24n LISTofVISUALTYPE

VISUALTYPE
4 VISUALID
1

o
1
2
3
4
5

1 CARD8
2 CARD16
4 CARD32
4 CARD32

8-14 Protocol Encoding

StaticGray
GrayScale
StaticColor
PseudoColor
TrueColor
DirectColor

scanline-pad
unused

root
default-colormap
white-pixel
black-pixel
current-input-masks
width-in-pixels
height-in-pixels
width-in-millimeters
1..~:,..1..,," : __ :11:_~,,"~_,..
.L.L'O.L5.L'u,-.L.L.L - .L.L.L.L.L.L.L.L.L.L~ "~.L '"

min-installed-maps
max-installed-maps
root-visual
backing-stores

save-unders
root-depth
number of DEPTHs in allowed-depths
allowed -depths (n is always
a multiple of 4)

depth
unused
number of VISUALTYPES in visuals
unused
visuals

visual-id
class

bits-per-rgb-value
colormap-entries
red-mask
green-mask

4 CARD32
4

Requests
CreateWindow

blue-mask
unused

1 1 opcode
1 CARD8 depth
2 8 + n request length
4 WINDOW wid
4 WINDOW parent
2 INTI6 x
2 INTI6 y
2 CARDI6 width
2 CARDI6 height
2 CARDI6 border-width
2 class

o CopyFromParent
1 Inp ut Output
2 InputOnly

4 VISUALID visual
o CopyFromParent

4 BITMASK value-mask (has n bits set to 1)
#x00000001 background-pixmap
#x00000002 background-pixel
#x00000004 border-pix map
#x00000008 border-pixel
#x00000010 bit-gravity
#x00000020 win-gravity
#x00000040 backing-store
#x00000080 backing-planes
#x00000100 backing-pixel
#x 00000200 override-redirect
#x00000400 save-under
#x00000800 event-mask
#x00001000 do-not-propagate-mask
#x00002000 colormap
#x00004000 cursor

4n LISTofVALUE value-list

VALUEs
4 PIXMAP

o
1

None
ParentRelative

background-pixmap

Protocol Encoding 8-15

4 CARD32 background-pixel
4 PIXMAP border-pix map

o Copy FromParent
4 CARD32 border-pixel
1 BITGRA VITY bit-gravity
1 WINGRA VITY win-gravity
1 backing-store

o NotUseful
1 WhenMapped
2 Always

4 CARD32 backing-planes
4 CARD32 backing-pixel
1 BOOL override-redirect
1 BOOL save-under
4 SETofEVENT event-mask
4 SETofDEVICEEVENT do-not-propagate-mask
4 COLORMAP colormap

o CopyFromParent
4 CURSOR cursor

o None

C hangeWindowAttributes
1 2 opcode
1 unused
2 3+n request length
4 WINDOW window
4 BITMASK value-mask (has n bits set to 1)

encodings are the same as for CreateWindow
4n LISTofVALUE value-list

encodings are the same as for CreateWindow

GetWindowAttributes
1 3 opcode
1 unused
2 2 request length
4 WINDOW window

=>
1 1 Reply
1 backing-store

0 NotUseful
1 WhenMapped
2 Always

2 CARD16 sequence number
4 3 reply length

8-16 Protocol Encoding

4
2

VISUALID

1 InputOutput
2 InputOnly

1
1
4
4
1
1
1

1
4

BITGRAVITY
WINGRAVITY
CARD32
CARD32
BOOL
BOOL

o
1
2
BOOL
COLORMAP

Unmapped
Unviewable
Viewable

o None
4
4
2
2

SETofEVENT
SETofEVENT
SEToIDEVICEEVENT

DestroyWindow
1 4
1
2 2
4 WINDOW

DestroySubwindows
1 5
1
2 2
4 WINDOW

C hangeSaveSet
1 6
1

o
1

2 2
4 WINDOW

ReparentWindow
1 7
1

Insert
Delete

visual
class

bit-gravity
win-gravity
backing-planes
backing-pixel
save-Under
map-is-installed
map-state

override-redirect
colormap

all-event-masks
your-event-mask
do-not-prop agate-mask
unused

opcode
unused
request length
window

opcode
unused
request length
window

opcode
mode

request length
window

opcode
unused

Protocol Encoding 8-17

2 4 request length
4 WINDOW window
4 WINDOW parent
2 INT16 x
2 INT16 y

MapWindow
1 8 opcode
1 unused
2 2 request length
4 WINDOW window

MapSubwindows
1 9 opcode
1 unused
2 2 request length
4 WINDOW window

UnmapWindow
1 10 opcode
1 unused
2 2 request length
4 WINDOW window

UnmapSubwindow5
1 11 opcode
1 unused
2 2 request length
4 WINDOW window

ConfigureWindow
1 12 opcode
1 unused
2 3+n request length
4 WINDOW window
2 BITMASK value-mask (has n bits set to 1)

#xOOOl x
#xOO02 y
#xOO04 width
#xOO08 height
#xOOl0 border-width
#x0020 sibling
#x0040 stack-mode

2 unused
4n LIS TofVALUE value-list

8-18 Protocol Encoding

VALUEs
2 INT16
2 INT16
2 CARD16
2 CARD16
2 CARD16
4 WINDOW
1

o
1
2
3
4

CirculateWindow
1 13
1

o
1

2 2
4 WINDOW

GetGeometry
1 14
1
2 2
4 DRAWABLE

=>
1 1
1 CARD8
2 CARD16
4 0
4 WINDOW
2 INT16
2 INT16
2 CARD16
2 CARD16
2 CARD16
10

QueryTree
1 15
1
2 2

Above
Below
Top If
BottomIf
Opposite

RaiseLowest
Lower Highest

x
y
width
height
border-width
sibling
stack-mode

opcode
direction

request length
window

opcode
unused
request length
drawable

Reply
depth
sequence number
reply length
root
x
y
width
height
border-width
unused

opcode
unused
request length

Protocol Encoding 8-19

4 WINDOW window

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 n reply length
4 WINDOW root
4 WINDOW parent

0 None
2 n number of WINDOWs in children
14 unused
4n LIS TofWINDOW children

InternAtom
1 16 opcode
1 BOOL only-if-exists
2 2+(n+p)/4 request length
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 ATOM atom

0 None
20 unused

GetAtom Name
1 17 opcode
1 unused
2 2 request length
4 ATOM atom

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 (n+ p)/4 reply length
2 n length of name
22 unused
n STRING8 name

8-20 Protocol Encoding

p

C hangeProperty
1 18
1

2
4
4
4
1
3
4

n

p

o
1
2
6+(n+p)/4
WINDOW
ATOM
ATOM
CARD8

CARD32

LIS TofBYTE

DeleteProperty
1 19
1
2 3
4 WINDOW
4 ATOM

GetProperty
1 20
1 BOOL
2 6
4 WINDOW
4 ATOM
4 ATOM

o
4 CARD32
4 CARD32

=>
1 1
1 CARD8
2 CARD16

Replace
Prep end
Append

unused, p = pad(n)

opcode
mode

request length
window
property
type
format
unused
length of data in format units
(= n for format = 8)
(= nl2 for format 16)
(= nl4 for format = 32)
data
(n is a multiple of 2 for format
(n is a multiple of 4 for format
unused, p = pad(n)

opcode
unused
request length
window
property

opcode
delete
request length
window
property
type

Any PropertyType
long-offset
long-length

Reply
format
sequence number

16)
32)

Protocol Encoding 8-21

4 (n+ p)/4 reply length
4 ATOM type

0 None
4 CARD32 bytes-after
4 CARD32 length of value in format units

(= 0 for format = 0)
(= n for format = 8)
(= n/2 for format 16)
(= nl4 for format = 32)

12 unused
n LISTofBYTE value

(n is zero for format = 0)
(n is a multiple of 2 for format 16)
(n is a multiple of 4 for format 32)

p unused, p= pad(n)

ListProperties
1 21 opcode
1 unused
2 2 request length
4 WINDOW window

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 n reply length
2 n number of ATOMs in atoms
22 unused
4n LIS TofATOM atoms

SetSelectionOwner
1 22 opcode
1 unused
2 4 request length
4 WINDOW owner

0 None
4 ATOM selection
4 TIMESTAMP time

0 CurrentTime

GetSelectionOwner
1 23 opcode
1 unused
2 2 request length

8-22 Protocol Encoding

4 ATOM

=>
1 1
1
2 CARD16
4 0
4 WINDOW

0
20

ConvertSelection
1 24
1
2
4
4
4
4

6
WINDOW
ATOM
ATOM
ATOM

None

o None
4 TIMESTAMP

o CurrentTime

Send Event

selection

Reply
unused
sequence number
reply length
owner

unused

opcode
unused
request length
requestor
selection
target
property

time

1 25 opcode
1 BOOL propagate
2 11 request length
4 WINDOW destination

o PointerWindow
1 InputFocus

4 SETofEVENT event-mask
32 event

standard event format (see the Events section)

GrabPointer
1 26
1 BOOL
2 6
4 WINDOW
2 SETofPOINTEREVENT
1

1

o
1

o

Synchronous
Asynchronous

Synchronous

opcode
owner-events
request length
grab-window
event-mask
pointer-mode

keyboard-mode

Protocol Encoding 8-23

1 Asynchronous
4 WINDOW confine-to

0 None
4 CURSOR cursor

0 None
4 TIMESTAMP time

0 CurrentTime

=>
1 1 Reply
1 status

0 Success
1 AlreadyGrabbed
2 InvalidTime
3 Not Viewable
4 Frozen

2 CARD16 sequence number
4 0 reply length
24 unused

UngrabPointer
1 27 opcode
1 unused
2 2 request length
4 TIMESTAMP time

0 CurrentTime

GrabButton
1 28 opcode
1 BOOL owner-events
2 6 request length
4 WINDOW grab-window
2 SETofPOINTEREVENT event-mask
1 pointer-mode

0 Synchronous
1 Asynchronous

1 keyboard-mode
0 Synchronous
1 Asynchronous

4 WINDOW confine-to
0 None

4 CURSOR cursor
0 None

1 BUTTON button
0 AnyButton

8-24 Protocol Encoding

1
2 SETofKEYMASK

#x8000 Any Modifier

UngrabButton
1 29
1 BUTTON

0 AnyButton
2 3
4 WINDOW
2 SETofKEYMASK

#x8000 Any Modifier
2

ChangeActivePointerGrab
1 30
1
2 4
4 CURSOR

0 None
4 TIMESTAMP

0 CurrentTime
2 SETofPOINTEREVENT
2

GrabKeyboard
1 31
1 BOOL
2 4
4 WINDOW
4 TIMESTAMP

o CurrentTime
1

1

2

=>

o
1

o
1

1 1
1

Synchronous
Asynchronous

Synchronous
Asynchronous

unused
modifiers

opcode
button

request length
grab-window
modifiers

unused

opcode
unused
request length
cursor

time

event-mask
unused

opcode
owner-events
request length
grab-window
time

pointer-mode

keyboard-mode

unused

Reply
status

o
1

Success
AlreadyGrabbed

Protocol Encoding 8-25

2 InvalidTirne
3 Not Viewable
4 Frozen

2 CARD16
4 0
24

U ng rabKeyboard
1 32
1
2 2
4 TIMESTAMP

0 CurrentTirne

GrabKey
1 33
1 BOOL
2 4
4 WINDOW
2 SETofKEYMASK

#x8000 Any Modifier
1 KEYCODE

o AnyKey
1

0
1

1
0
1

3

UngrabKey
1 34
1 KEYCODE

Synchronous
Asynchronous

Synchronous
Asynchronous

o AnyKey
2 3
4 WINDOW
2 SETofKEYMASK

#x8000 Any Modifier
2

AliowEvents
1 35
1

o

8·26 Protocol Encoding

AsyncPointer

sequence number
reply length
unused

opcode
unused
request length
time

opcode
owner-events
request length
grab-window
modifiers

key

pointer-mode

keyboard-mode

unused

opcode
key

request length
grab-window
modifiers

unused

opcode
mode

2
4

1
2
3
4
5
6
7
2
TIMESTAMP
o

GrabServer
1 36
1
2 1

UngrabServer
1 37
1
2 1

QueryPointer
1 38
1
2 2
4 WINDOW

=>
1 1
1 BOOL
2 CARD16
4 0
4 WINDOW
4 WINDOW

SyncPointer
Replay Pointer
AsyncKeyboard
SyncKeyboard
ReplayKeyboard
AsyncBoth
SyncBoth

CurrentTime

request length
time

opcode
unused
request length

opcode
unused
request length

opcode
unused
request length
window

Reply
same-screen
sequence number
reply length
root
child

o None
2 INT16
2 INT16
2 INT16
2 INT16
2 SETofKEYBUTMASK
6

GetMotionEvents
1 39
1
2 4

root-x
root-y
win-x
win-y
mask
unused

opcode
unused
request length

Protocol Encoding 8-27

4 WINDOW
4 TIMESTAMP

0 CurrentTime
4 TIMESTAMP

0 CurrentTime

=>
1 1
1
2 CARD16
4 2n
4 n
20
8n LISTofTIMECOORD

TIMECOORD
4 TIMESTAMP
2 CARD16
2 CARD16

TranslateCoordinates
1 40
1
2
4
4
2
2

=>

4
WINDOW
WINDOW
INT16
INT16

1 1
1 BOOL
2 CARD16
4 0
4 WINDOW

o
2 INT16
2 INT16
16

Warp Pointer
1 41
1
2 6
4 WINDOW

o

8·28 Protocol Encod ing

None

None

window
start

stop

Reply
unused
sequence number
reply length
number of TIMECOORDs in events
unused
events

time
x
y

opcode
unused
request length
src-window
dst-window
src-x
src-y

Reply
same-screen
sequence number
reply length
child

dst-x
dst-y
unused

opcode
unused
request length
src-window

4 WINDOW dst-window
0 None

2 INT16 src-x
2 INT16 src-y
2 CARD16 src-width
2 CARD16 src-height
2 INT16 dst-x
2 INT16 dst-y

SetinputFocus
1 42 opcode
1 revert-to

0 None
1 PointerRoot
2 Parent

2 3 request length
4 WINDOW focus

0 None
1 PointerRoot

4 TIMESTAMP time
0 CurrentTime

GetinputFocus
1 43 opcode
1 unused
2 1 request length

=>
1 1 Reply
1 revert-to

0 None
1 PointerRoot
2 Parent

2 CARD16 sequence number
4 0 reply length
4 WINDOW focus

0 None
1 PointerRoot

20 unused

QueryKeymap
1 44 opcode
1 unused
2 1 request length

=>

Protocol Encoding 8-29

1 1 Reply
1 unused
2 CARD16 sequence number
4 2 reply length
32 LISTofCARD8 keys

OpenFont
1 45 opcode
1 unused
2 3+(n+p)/4 request length
4 FONT fid
2 n length of name
2 unused
n STRING8 name
p unused, p = pad(n)

CloseFont
1 46 opcode
1 unused
2 2 request length
4 FONT font

QueryFont
1 47 opcode
1 unused
2 2 request length
4 FONT ABLE font

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 7+2n+3m reply length
12 CHARINFO min-bounds
4 unused
12 CHARINFO max-bounds
4 unused
2 CARD16 min-char-or-byte2
2 CARD16 max -char-or-byte2
2 CARD16 default-char
2 n number of FONTPROPs in properties
1 draw-direction

0 LeftToRight
1 RightToLeft

1 CARD8 min-byte 1

8-30 Protocol Encoding

1 CARD8
1 BOOL
2 INT16
2 INT16
4 m
8n LISTofFONTPROP
12m LIS TofCHARINFO

FONTPROP
4 ATOM
4 <32-bits>

CHARINFO
2 INT16
2 INT16
2 INT16
2 INT16
2 INT16
2 CARD16

QueryTextExtents
1 48
1 BOOL
2 2+(2n+p)/4
4 FONT ABLE
2n STRING16
p

=>
1 1
1

o
1

2 CARD16
4 0
2 INT16
2 INT16
2 INT16
2 INT16
4 INT32
4 INT32
4 INT32
4

ListFonts
1 49

LeftToRight
RightToLeft

max-byte 1
all-chars-exist
font-ascent
font-descent
number of CHARINFOs in char-infos
properties
char-infos

name
value

left-side-bearing
right-side-bearing
character-width
ascent
descent
attributes

opcode
odd length, True if p
request length
font
string
unused, p = pad(2n)

Reply
draw-direction

sequence number
reply length
font-ascent
font-descent
overall-ascent
overall-descent
overall-width
overall-left
overall-right
unused

opcode

2

Protocol Encoding 8-31

1
2 2+(n+p)/4
2 CARD16
2 n
n STRINGS
p

=>
1 1
1
2 CARD16
4 (n+p)/4
2 CARD16
22
n LISTofSTR
p

ListFontsWithlnfo
1 50
1
2 2+(n+p)/4
2 CARD16
2 n
n STRINGS
p

= > (except for last in series)
1 1
1 n
2 CARD16
4 7+2m+(n+p)/4
12 CHARINFO
4
12 CHARINFO
4
2 CARD16
2 CARD16
2 CARD16
2 m
1

o
1

1 CARDS
1 CARDS
1 BOOL

8-32 Protocol Encod ing

LeftToRight
R ightToL eft

unused
request length
max-names
length of pattern
pattern
unused, p = pad(n)

Reply
unused
sequence number
reply length
number of STRs in names
unused
names
unused, p = pad(n)

opcode
unused
request length
max-names
length of pattern
pattern
unused, p = pad(n)

Reply
length of name in bytes
sequence number
reply length
min-bounds
unused
max-bounds
unused
min-char-or-byte2
max -char-or-byte2
default-char
number of FONTPROPs in properties
draw-direction

min-byte 1
max-byte 1
all-chars-exist

2 INT16
2 INT16
4 CARD32
8m LISTofFONTPROP
n STRING8
p

FONTPROP

font-ascent
font-descent
replies-hint
properties
name
unused, p = pad(n)

encodings are the same as for QueryFont

CHARINFO
encodings are the

= > (last in series)
1 1
1 0
2 CARD16
4 7
52

SetFontPath
1 51
1
2 2+(n+p)/4
2 CARD16
2
n LISTofSTR
p

GetFontPath
1 52
1
2 1

=>
1 1
1
2 CARD16
4 (n+p)/4
2 CARD16
22
n LISTofSTR
p

CreatePixmap
1 53

same as for QueryFont

Reply
last-reply indicator
sequence number
reply length
unused

opcode
unused
request length
number of STRs in path
unused
path
unused, p = pad(n)

opcode
unused
request list

Reply
unused
sequence number
reply length
number of S TRs in path
unused
path
unused, p = pad(n)

opcode

Protocol Encoding 8-33

1 CARD8
2 4
4 PIXMAP
4 DRAWABLE
2 CARD16
2 CARD16

FreePixmap
1 54
1
2 2
4 PIXMAP

CreateGC
1 55
1
2
4
4
4

4+n
GCONTEXT
DRAWABLE
BITMASK
#xOOOOOOOl function
#x00000002 plane-mask
#x00000004 foreground
#x00000008 background
#xOOOOOOl0 line-width
#x00000020 line-style
#x00000040 cap-style
#x00000080 join-style
#xOOOOOl00 fill-style
#x00000200 fill-rule
#x00000400 tile

depth
request length
pid
drawable
width
height

opcode
unused
request length
pix map

ope ode
unused
request length
cid
drawable
value-mask (has n bits set to 1)

#x00000800 stipple
#xOOOOl000 tile-stipple-x-origin
#x00002000 tile-stipple-y-origin
#x00004000 font
#x00008000 subwindow-mode
#xOOOl0000 graphics-exposures
#x00020000 clip-x-origin
#x00040000 clip-y-origin
#x00080000 clip-mask
#xOOl00000 dash-offset
#x00200000 dashes
#x00400000 arc-mode

4n LISTofVALUE value-list

8-34 Protocol Encod ing

VALUEs
1 function

0 Clear
1 And
2 AndReverse
3 Copy
4 AndInverted
5 NoOp
6 Xor
7 Or
8 Nor
9 Equiv
10 Invert
11 OrReverse
12 Copy Inverted
13 OrInverted
14 Nand
15 Set

4 CARD32 plane-mask
4 CARD32 foreground
4 CARD32 background
2 CARD16 line-width
1 line-style

0 Solid
1 OnOfIDash
2 D oubleD ash

1 cap-style
0 NotLast
1 Butt
2 Round
3 Projecting

1 join-style
0 Miter
1 Round
2 Bevel

1 fill-style
0 Solid
1 Tiled
2 Stippled
3 OpaqueS tippled

1 fill-rule
0 EvenOdd
1 Winding

4 PIXMAP tile

Protocol Encoding 8-35

4 PIXMAP stipple
2 INT16 tile-stipple-x -origin
2 INT16 tile-stipple-y -origin
4 FONT font
1 subwindow-mode

0 ClipByChildren
1 IncludeInferiors

1 BOOL graphics-exposures
2 INT16
2 INT16
4 PIXMAP

0
2 CARD16
1 CARDS
1

0
1

ChangeGC
1 56
1
2 3+n
4 GCONTEXT
4 BITMASK

None

Chord
PieS lice

encodings are the same as
4n LISTofVALUE

encodings are the same as

CopyGC
1 57
1

clip-x-origin
clip-y-origin
clip-mask

dash-offset
dashes
arc-mode

opcode
unused
request length
gc
value-mask (has

for CreateGC
value-list

for CreateGC

opcode
unused

2
4
4
4

4 request length
GCONTEXT src-gc
GCONTEXT dst-gc
BITMASK value-mask
encodings are the same as for CreateGC

Set Dashes
1 58
1
2 3+(n+p)/4
4 GCONTEXT
2 CARD16
2 n
n LISTofCARDS

8-36 Protocol Encoding

opcode
unused
request length
gc
dash-offset
length of dashes
dashes

n bits set to 1)

p

SetClipRectangles
1 59
1

o
1
2
3

2 3+2n
4 GCONTEXT
2 INT16
2 INT16

UnSorted
YSorted
YXSorted
YXBanded

8n LISTofRECTANGLE

FreeGC
1 60
1
2 2
4 GCONTEXT

ClearArea
1 61
1 BOOL
2 4
4 WINDOW
2 INT16
2 INT16
2 CARD16
2 CARD16

CopyArea
1 62
1
2
4
4
4
2
2
2
2
2
2

7
DRAWABLE
DRAWABLE
GCONTEXT
INT16
INT16
INT16
INT16
CARD16
CARD16

unused, p = pad(n)

opeode
ordering

request length
ge
elip-x-origin
elip-y-origin
rectangles

opeode
unused
request length
gc

opcode
exposures
request length
window
x
y
width
height

ope ode
unused
request length
src-drawable
dst-drawable
ge
src-x
src-y
dst-x
dst-y
width
height

Protocol Encoding 8·37

CopyPlane
1 63 opcode
1 unused
2 8 request length
4 DRAWABLE src-drawable
4 DRAWABLE dst-drawable
4 GCONTEXT gc
2 INT16 src-x
2 INT16 src-y
2 INT16 dst-x
2 INT16 dst-y
2 CARD16 width
2 CARD16 height
4 CARD32 bit-plane

PolyPoint
1 64 opcode
1 coordinate-mode

0 Origin
1 Previous

2 3+n request length
4 DRAWABLE drawable
4 GCONTEXT gc
4n LISTofPOINT points

Polyline
1 65 opcode
1 coordinate-mode

0 Origin
1 Previous

2 3+n request length
4 DRAWABLE drawable
4 GCONTEXT gc
4n LIS TofPOINT points

PolySegment
1 66 opcode
1 unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofSEGMENT segments

SEGMENT
2 INT16 xl

8·38 Protocol Encoding

2 INT16 y1
2 INT16 x2
2 INT16 y2

PolyReetangle
1 67 opcode
1 unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LIS TofRECTANGLE rectangles

Po I yAre
1 68 opcode
1 unused
2 3+3n request length
4 DRAWABLE drawable
4 GCONTEXT gc
12n LISTofARC arcs

Fill Poly
1 69 opcode
1 unused
2 4+n request length
4 DRAWABLE drawable
4 GCONTEXT gc
1 shape

0 Complex
1 Nonconvex
2 Convex

1 coordinate-mode
0 Origin
1 Previous

2 unused
4n LIS TofPOINT points

PolyFiliReetangle
1 70 opcode
1 unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LIS TofRE CTANGLE rectangles

Protocol Encoding 8-39

PolyFiliArc
1 71 opcode
1 unused
2 3+3n request length
4 DRAWABLE drawable
4 GCONTEXT gc
12n LISTofARC arcs

Putlmage
1 72 opcode
1 format

0 Bitmap
1 XYPixmap
2 ZPixmap

2 6+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 CARD16 width
2 CARD16 height
2 INT16 dst-x
2 INT16 dst-y
1 CARD8 left-pad
1 CARD8 depth
2 unused
n LISTofBYTE data
p unused, p = pad(n)

Getlmage
1 73 opcode
1 format

1 XYPixmap
2 ZPixmap

2 5 request length
4 DRAWABLE drawable
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
4 CARD32 plane-mask

=>
1 1 Reply
1 CARD8 depth
2 CARD16 sequence number
4 (n+ p)/4 reply length

8-40 Protocol Encoding

4 VISUALID
o

20
n LISTofB YTE
p

PolyText8
1 74
1

4+(n+p)/4
DRAWABLE
GCONTEXT
INT16

None

2
4
4
2
2
n

INT16
LISTofTEXTITEM8

P

TEXTITEM8
1 n
1 INT8
n STRING8

or
1 255
1
1
1
1

PolyText16
1 75
1
2
4
4
2
2
n

4+(n+p)/4
DRAWABLE
GCONTEXT
INT16
INT16
LISTofTEXTITEM16

P

TEXTITEM16
1 n

1 INT8
n STRING16

or
1 255
1

visual

unused
data
unused, p = pad(n)

opcode
unused
request length
drawable
gc
x
y
items
unused, p = pad(n) (p is always 0 or 1)

length of string (cannot be 255)
delta
string

font-shift indicator
font byte 3 (most-significant)
font byte 2
font byte 1
font byte 0 (least-significant)

opcode
unused
request length
drawable
gc
x
y
items
unused, p = pad(n) (p is always 0 or 1)

number of CHAR2Bs in string (cannot be
255)
delta
string

font-shift indicator
font byte 3 (most-significant)

Protocol Encoding 8-41

1 font byte 2
1 font byte 1
1 font byte 0 (least-significant)

ImageText8
1 76 opcode
1 n length of string
2 4+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INTI6 x
2 INTI6 y
n STRING8 string
p unused, p = pad(n)

ImageText16
1 77 opcode
1 n number of CHAR2Bs in string
2 4+(2n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INTI6 x
2 INTI6 y
2n STRINGI6 string
p unused, p = pad(2n)

C reateColormap
1 78 opcode
1 alloc

0 None
1 All

2 4 request length
4 COLORMAP mid
4 WINDOW window
4 VISUALID visual

FreeColormap
1 79 opcode
1 unused
2 2 request length
4 COLORMAP cmap

CopyColormapAndFree
1 80 ope ode
1 unused

8-42 Protocol Encoding

2 3
4 COLORMAP
4 COLORMAP

I nstallColormap
1 81
1
2 2
4 COLORMAP

UninstallColormap
1 82
1
2 2
4 COLORMAP

ListlnitalledColormaps
1 83
1
2 2
4 WINDOW

=>
1 1
1
2 CARD16
4 n
2 n
22
4n LISTofCOLORMAP

AllocColor
1 84
1
2
4
2
2
2
2

=>

4
COLORMAP
CARD16
CARD16
CARD16

1 1
1
2 CARD16
4 0

request length
mid
src-cmap

opcode
unused
request length
cmap

opcode
unused
request length
cmap

opcode
unused
request length
window

Reply
unused
sequence number
reply length
number of COLORMAPs in cmaps
unused
cmaps

opcode
unused
request length
cmap
red
green
blue
unused

Reply
unused
sequence number
reply length

Protocol Encoding 8-43

2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused
4 CARD32 pixel
12 unused

A1locNamedColor
1 85 opcode
1 unused
2 3+(n+p)/4 request length
4 COLORMAP cmap
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 CARD32 pixel
2 CARD16 exact-red
2 CARD16 exact-green
2 CARD16 exact-blue
2 CARD16 visual-red
2 CARD16 visual-green
2 CARD16 visual-blue
8 unused

AliocColorCelis
1 86 opcode
1 BOOL contiguous
2 3 request length
4 COLORMAP cmap
2 CARD16 colors
2 CARD16 planes

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 n+m reply length
2 n number of CARD32s in pixels
2 m number of CARD32s in masks

8-44 Protocol Encoding

20 unused
4n LISTofCARD32 pixels
4m LISTofCARD32 masks

A1locColorPlanes
1 87 opcode
1 BOOL contiguous
2 4 request length
4 COLORMAP cmap
2 CARD16 colors
2 CARD16 reds
2 CARD16 greens
2 CARD16 blues

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 n reply length
2 n number of CARD32s in pixels
2 unused
4 CARD32 red-mask
4 CARD32 green-mask
4 CARD32 blue-mask
8 unused
4n LISTofCARD32 pixels

FreeColors
1 88 opcode
1 unused
2 3+n request length
4 COLORMAP cmap
4 CARD32 plane-mask
4n LISTofCARD32 pixels

StoreColors
1 89 opcode
1 unused
2 2+3n request length
4 COLORMAP cmap
12n LISTofCOLORITEM items

COLORITEM
4 CARD32 pixel
2 CARD16 red
2 CARD16 green

Protocol Encoding 8-45

2 CARD16
1

1

#x01
#x02
#x04
#xfB

StoreNamedColor
1 90
1

#x01
#x02
#x04
#xf8

2 4+(n+p)/4
4 COLORMAP
4 CARD32
2 n
2
n STRING8
p

QueryColors
1 91
1
2 2+n
4 COLORMAP

blue
do-red, do-green, do-blue

do-red (1 is True, 0 is False)
do-green (1 is True, 0 is False)
do-blue (1 is True, 0 is False)
unused

unused

opcode
do-red, do-green, do-blue

do-red (1 is True, 0 is False)
do-green (1 is True, 0 is False)
do-blue (1 is True, 0 is False)
unused

request length
cmap
pixel
length of name
unused
name
unused, p = pad(n)

opcode
unused
request length
cmap

4n LISTofCARD32 pixels

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 2n reply length
2 n number of RGBs in colors
22 unused
8n LISTofRGB colors

RGB
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused

8-46 Protocol Encod ing

LookupColor
1 92 opcode
1 unused
2 3+(n+p)/4 request length
4 COLORMAP cmap
2 n length of name
2 unused
n STRING8 name
p unused, p = pad(n)

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 exact-red
2 CARD16 exact-green
2 CARD16 exact-blue
2 CARD16 visual-red
2 CARD16 visual-green
2 CARD16 visual-blue
12 unused

CreateCursor
1 93 opcode
1 unused
2 8 request length
4 CURSOR cid
4 PIXMAP source
4 PIXMAP mask

0 None
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue
2 CARD16 x
2 CARD16 y

CreateGlyphCursor
1 94 CreateG lyphCursor
1 unused
2 8 request length
4 CURSOR cid

Protocol Encoding 8-47

4 FONT source-font
4 FONT mask-font

0 None
2 CARD16 source-char
2 CARD16 mask-char
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue

FreeCursor
1 95 opcode
1 unused
2 2 request length
4 CURSOR cursor

RecolorCursor
1 96 opcode
1 unused
2 5 request length
4 CURSOR cursor
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue

QueryBestSize
1 97 opcode
1 class

0 Cursor
1 Tile
2 Stipple

2 3 request length
4 DRAWABLE drawable
2 CARD16 width
2 CARD16 height

=>
1 1 Reply
1 unused
2 CARD16 sequence number

8-48 Protocol Encoding

4 0 reply length
2 CARD16 width
2 CARD16 height
20 unused

QueryExtension
1 98 opcode
1 unused
2 2+(n+p)/4 request length
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
1 BOOL present
1 CARD8 major-opcode
1 CARD8 first-event
1 CARD8 first-error
20 unused

ListExtensions
1 99 opcode
1 unused
2 1 request length

=>
1 1 Reply
1 CARD8 number of STRs in names
2 CARD16 sequence number
4 (n+ p)/4 reply length
24 unused
n LISTofSTR names
p unused, p=pad(n)

C hangeKeyboard Mapping
1 100 opcode
1 n keycode-count
2 2+nm request length
1 KEYCODE first-keycode
1 m keysyms-per-keycode
2 unused

Protocol Encoding 8-49

4nmLISTofKEYSYM

GetKeyboardMapping
1 101
1
2 2
1 KEYCODE
1 CARD8
2

=>
1 1
1 n
2 CARD16
4 nm

24
4nmLISTofKEYSYM

C hangeKeyboardControl

keysyms

opcode
unused
request length
first-keycode
count
unused

Reply
keysyms-per-keycode
sequence number
reply length (m = count field
from the request)
unused
keysyms

1 102 opcode
1 unused
2 2 + n request length
4 BITMASK value-mask (has n bits set to 1)

#xOOOl key-elick-percent
#x0002 bell-percent
#x0004 bell-pitch
#x0008 bell-duration
#x0010 led
#x0020 led-mode
#x0040 key
#x0080 auto-repeat-mode

4n LISTofVALUE value-list

VALUEs
1 INT8
1 INT8
2 INT16
2 INT16
1 CARD8
1

o Off
1 On

1 KEYCODE
1

o Off

8-50 Protocol Encoding

key-elick-percent
bell-percent
bell-pitch
bell-duration
led
led-mode

key
auto-repeat-mode

1
2

GetKeyboardControl
1 103
1
2 1

=>
1 1
1

0
1

2 CARD16
4 5
4 CARD32
1 CARD8
1 CARD8
2 CARD16
2 CARD16
2
32 LIS TofCARD8

Bell
1 104
1 INT8
2 1

ChangePointerControl
1 105
1
2 3
2 INT16
2 INT16
2 INT16
1 BOOL
1 BOOL

GetPointerControl
1 106
1
2 1

=>
1 1
1

On
Default

Off
On

opcode
unused
request length

Reply
global-auto-repeat

sequence number
reply length
led-mask
key -click -percent
bell-percent
bell-pitch
bell-duration
unused
auto-repeats

opcode
percent
request length

opcode
unused
request length
acceleration-numerator
acceleration-denominator
threshold
do-acceleration
do-threshold

opcode
unused
request length

Reply
unused

Protocol Encoding 8-51

2 CARD16 sequence number
4 0 reply length
2 CARD16 acceleration-numerator
2 CARD16 acceleration-denominator
2 CARD16 threshold
18 unused

SetSc reenSaver
1 107 opcode
1 unused
2 3 request length
2 INT16 timeout
2 INT16 interval
1 prefer-blanking

0 No
1 Yes
2 Default

1 allow-exposures
0 No
1 Yes
2 Default

2 unused

GetScreenSaver
1 108 opcode
1 unused
2 1 request length

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 timeout
2 CARD16 interval
1 prefer-blanking

0 No
1 Yes

1 allow-exposures
0 No
1 Yes

18 unused

ChangeHosts
1 109 opcode

8-52 Protocol Encoding

1 mode
0 Insert
1 Delete

2 2+(n+p)/4 request length
1 family

0 Internet
1 DECnet
2 Chaos

1 unused
2 CARD16 length of address
n LISTofCARD8 address
p unused, p=pad(n)

List Hosts
1 110 opcode
1 unused
2 1 request length

=>
1 1 Reply
1 mode

0 Disabled
1 Enabled

2 CARD16 sequence number
4 n14 reply length
2 CARD16 number of HOSTs in hosts
22 unused
n LISTofHOST hosts (n always a multiple of 4)

SetAccessControl
1 111 opcode
1 mode

0 Disable
1 Enable

2 1 request length

SetCloseDownMode
1 112 opcode
1 mode

0 Destroy
1 RetainPermanent
2 RetainTemporary

2 1 request length

KiIIClient
1 113 opcode

Protocol Encoding B-53

1 unused
2 2 request length
4 CARD32 resource

0 AllTemporary

RotateProperties
1 114 opcode
1 unused
2 3+n request length
4 WINDOW window
2 n number of properties
2 INT16 delta
4n LIS TofATOM properties

ForceScreenSaver
1 115 opcode
1 mode

0 Reset
1 Activate

2 1 request length

SetPointerMapping
1 116 opcode
1 n length of map
2 1+(n+p)/4 request length
n LISTofCARD8 map
p unused, p=pad(n)

=>
1 1 Reply
1 status

0 Success
1 Busy

2 CARD16 sequence number
4 0 reply length
24 unused

GetPointerMapping
1 117 opcode
1 unused
2 1 request length

=>
1 1 Reply
1 n length of map
2 CARD16 sequence number

8-54 Protocol Encoding

4 (n+p)/4
24
n LIS TofCARD8
p

SetModifierMapping
1 118
1 n
2 1+2n
8n LISTofKEYCODE

=>
1 1
1

o
1
2

2 CARD16
4 0
24

GetModifierMapping
1 119
1
2 1

=>
1 1
1 n
2 CARD16
4 2n
24

Success
Busy
Failed

8n LISTofKEYCODE

NoOperation
1 127
1
2 ·1

Events
KeyPress

1 2
1 KEYCODE
2 CARD16
4 TIMESTAMP

reply length
unused
map
unused, p = pad(n)

opcode
keycodes-per-modifier
request length
keycodes

Reply
status

sequence number
reply length
unused

ope ode
unused
request length

Reply
keycodes-per-modifier
sequence number
reply length
unused
keycodes

opcode
unused
request length

code
detail
sequence number
time

Protocol Encoding 8-55

4 WINDOW
4 WINDOW
4 WINDOW

o None
2 INT16
2 INT16
2 INT16
2 INT16
2 SETofKEYBUTMASK
1 BOOL
1

KeyRelease
1 3
1 KEYCODE
2 CARD16
4 TIMESTAMP
4 WINDOW
4 WINDOW
4 WINDOW

o None
2 INT16
2 INT16
2 INT16
2 INT16
2 SETofKEYBUTMASK
1 BOOL
1

Button Press
1 4
1 BUTTON
2 CARD16
4 TIMESTAMP
4 WINDOW
4 WINDOW
4 WINDOW

o None
2 INT16
2 INT16
2 INT16
2 INT16
2 SETofKEYBUTMASK
1 BOOL
1

8-56 Protocol Encoding

root
event
child

root-x
root-y
event-x
event-y
state
same-screen
unused

code
detail
sequence number
time
root
event
child

root-x
root-y
event-x
event-y
state
same-screen
unused

code
detail
sequence number
time
root
event
child

root-x
root-y
event-x
event-y
state
same-screen
unused

ButtonRelease
1 5 code
1 BUTTON detail
2 CARDI6 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INTI6 root-x
2 INTI6 root-y
2 INTI6 event-x
2 INTI6 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

MotionNotify
1 6 code
1 detail

0 Normal
1 Hint

2 CARDI6 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INTI6 root-x
2 INTI6 root-y
2 INTI6 event-x
2 INTI6 event-y
2 SETofKEYBUTMASK state
1 BOOL
1

EnterNotify
1 7
1

o
1
2
3
4

2 CARDI6

Ancestor
Virtual

same-screen
unused

code
detail

Inferior
Nonlinear
Nonlinear Virtual

sequence number

Protocol Encoding 8-57

4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INTI6 root-x
2 INTI6 root-y
2 INTI6 event-x
2 INTI6 event-y
2 SETofKEYBUTMASK state
I

I

o
I
2

#xOI
#x02
#xfc

LeaveNotify
I 8
I

0
I
2
3
4

2 CARDI6
4 TIMESTAMP
4 WINDOW
4 WINDOW
4 WINDOW

0
2 INT16
2 INTI6
2 INT16
2 INTI6

Normal
Grab
Ungrab

mode

same-screen, focus
focus (I is True, 0 is False)
same-screen (I is True, 0 is False)
unused

Ancestor
Virtual
Inferior
Nonlinear

code
detail

N o nlinearVirtual
sequence
time
root
event
child

None
root-x
root-y
event-x
event-y

number

2 SETofKEYBUTMASK state
I mode

0 Normal
I Grab
2 Ungrab

I same-screen, focus
#xOI focus (I is True, 0 is False)

8-58 Protocol Encoding

#x02 same-screen (1 is True, 0 is False)
#xfc unused

Focusln
1 9 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 N onlinearVirtual
5 Pointer
6 PointerRoot
7 None

2 CARD16 sequence number
4 WINDOW event
1 mode

0 Normal
1 Grab
2 Ungrab
3 While Grabbed

23 unused

FocusOut
1 10 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 Nonlinear Virtual
5 Pointer
6 PointerRoot
7 None

2 CARD16 sequence number
4 WINDOW event
1 mode

0 Normal
1 Grab
2 Ungrab
3 While Grabbed

23 unused

KeymapNotify
1 11 code

Protocol Encoding B-59

31 LISTofCARD8

Expose
1 12
1
2
4
2
2
2
2
2
14

CARD16
WINDOW
CARD16
CARD16
CARD16
CARD16
CARD16

GraphicsExposure
1 13
1
2
4
2
2
2
2
2
2
1
11

CARD16
DRAWABLE
CARD16
CARD16
CARD16
CARD16
CARD16
CARD16
CARD8

NoExposure
1 14
1
2
4
2
1
21

CARD16
DRAWABLE
CARD16
CARD8

VisibilityNotify
1 15
1
2 CARD16
4 WINDOW
1

o
1

8-60 Protocol Encoding

keys (byte for keycodes 0- 7 is omitted)

code
unused
sequence number
window
x
y
width
height
count
unused

code
unused
sequence number
drawable
x
y
width
height
minor-opcode
count
major-opcode
unused

code
unused
sequence number
drawable
minor-opcode
major-opcode
unused

code
unused
sequence number
window
state

Unobscured
PartiallyObscured

2
23

Create Notify
1 16
1
2
4
4
2
2
2
2
2
1
9

CARD16
WINDOW
WINDOW
INT16
INT16
CARD16
CARD16
CARD16
BOOL

DestroyNotify
1 17
1
2 CARD16
4 WINDOW
4 WINDOW
20

UnmapNotify
1 18
1
2
4
4
1
19

CARD16
WINDOW
WINDOW
BOOL

MapNotify
1 19
1
2
4
4
1
19

CARD16
WINDOW
WINDOW
BOOL

MapRequest
1 20

FullyObscured
unused

code
unused
sequence number
parent
window
x
y
width
height
border-width
override-redirect
unused

code
unused
sequence number
event
window
unused

code
unused
sequence number
event
window
from -configure
unused

code
unused
sequence number
event
window
override-redirect
unused

code

Protocol Encoding 8-61

1 unused
2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
20 unused

ReparentNotify
1 21 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
4 WINDOW parent
2 INT16 x
2 INT16 y
1 BOOL override-redirect
11 unused

ConfigureNotify
1 22 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
4 WINDOW above-sibling

0 None
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
1 BOOL override-redirect
5 unused

ConfigureRequest
1 23 code
1 stack-mode

0 Above
1 Below
2 TopIf
3 BottomIf
4 Opposite

2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window

8-62 Protocol Encod ing

4 WINDOW sibling
0 None

2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
2 BITMASK value-mask

#xOOOl x
#xOO02 y
#xOO04 width
#xOO08 height
#xOOl0 border-width
#x0020 sibling
#x0040 stack-mode

4 unused

GravityNotify
1 24 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
2 INT16 x
2 INT16 y
16 unused

ResizeRequest
1 25 code
1 unused
2 CARD16 sequence number
4 WINDOW window
2 CARD16 width
2 CARD16 height
20 unused

CirculateNotify
1 26 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
4 WINDOW unused
1 place

0 Top

Protocol Encoding 8-63

1 Bottom
15 unused

CirculateRequest
1 27 code
1 unused
2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
4 unused
1 place

0 Top
1 Bottom

15 unused

PropertyNotify
1 28 code
1 unused
2 CARD16 sequence number
4 WINDOW window
4 ATOM atom
4 TIMESTAMP time
1 state

0 NewValue
1 Deleted

15 unused

SelectionClear
1 29 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW owner
4 ATOM selection
16 unused

SelectionRequest
1 30 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time

0 CurrentTime
4 WINDOW owner
4 WINDOW requestor
4 ATOM selection

8-64 Protocol Encod ing

4 ATOM target
4 ATOM property

0 None
4 unused

Selection Notify
1 31 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time

0 CurrentTime
4 WINDOW requestor
4 ATOM selection
4 ATOM target
4 ATOM property

0 None
8 unused

ColormapNotify
1 32 code
1 unused
2 CARD16 sequence number
4 WINDOW window
4 COLORMAP colormap

0 None
1 BOOL new
1 state

0 U ninstalled
1 Installed

18 unused

ClientMessage
1 33 code
1 CARD8 format
2 CARD16 sequence number
4 WINDOW window
4 ATOM type
20 data

MappingNotify
1 34 code
1 unused
2 CARD16 sequence number
1 request

0 Modifier

Protocol Encoding 8-65

1
2

1 KEYCODE
1 CARDS
25

8-66 Protocol Encoding

Keyboard
Pointer

first-keycode
count
unused

A

Above, 37, 39, 115
Access control list, 1
Access, 18, 33, 47, 48, 50, 51, 89,
90, 100, 101, B-9
Activate, 100
Active grab, 1
All, 84, 85, 86
Alloc, 18, 28, 41, 56, 64, 72, 73,
84, 85, 87, 88, 91, 93, 94, B-9
AliocColor, 86, 87, 89, B-43
AliocColorCells, 85, 86, 88, 89,
B-44
AliocColorPlanes, 85, 86, 88, 89,
B-45
AliocNamedColor, 86, 87, 89, B-44
AliowEvents, 46, 49, 51, 52, B-26
AliTemporary, 101
AlreadyGrabbed, 46, 47, 49, 50
Alternative 1 , B-2
AlternativeI, B-2
AlternativeValues, 14
Always, 24, 29, 31, 33, 34, 110
Ancestor, 105, 106, 107, 108
Ancestors, 1
And, 65, 66
AndInverted, 65, 66
AndReverse, 65, 66
AnyButton, 47, 48
AnyKey, 50, 51
AnyModifier, 47, 48, 50, 51
AnyPropertyType, 42

Append, 41
AsyncBoth, 51, 53

Index

Asynchronous, 45, 46, 47, 49, 50,
103
AsyncKeyboard, 51, 52, 53
AsyncPointer, 51, 52, 53
Atom, 1, 13, 18, 20, 41, 42, 43,
44, B-8

B

Background, 1
Backing store, 1
Bell, 97, B-51
Below, 37, 39, 115
Bevel, 65, 68
Bit:

gravity, 1
plane, 2

Bitmap, 2, 80, 81
Border, 2
Bottom, 115
BottomIf, 37, 39, 40, 115
Busy, 93, 94, 98
Butt, 65, 67, 68, 71
Button:

grabbing, 2
Button1, 16
Button1Motion, 16
Button2, 16
Button2Motion, 16
Button3, 16
Button3Motion, 16

Button4, 16
Button4Motion, 16
Button5, 16
Button5Motion, 16
Button[1-5]Motion, 105
ButtonMotion, 16, 105
ButtonPress, 16, 33, 47, 52, 53,
103, 104, 107, B-56
ButtonRelease, 16, 52, 53, 103,
104, 107, B-57
Byte order, 2

c

Center, 16, 38
ChangeActivePointerGrab, 48, 103,
B-25
ChangeGC, 17, 72, 73, B-36
ChangeHosts, 17, 100, B-52
ChangeKeyboardControl, 17, 96,
B-50
ChangeKeyboardMapping, 94, 117,
B-49
ChangePointerControl, 98, B-51
ChangeProperty, 41, 115, B-21
ChangeSaveSet, 35, B-17
ChangeWindowAttributes, 17, 27,
33, 85, B-16
Chaos, 17
Children, 2
Chord, 65, 80
CirculateNotify, 40, 106, 111, 112,
115, B-63
CirculateRequest, 40, 115, B-64
CirculateWindow, 40, 115, B-19
Clear, 65, 66
Clear Area, 74, B-37
Client, 2
ClientMessage, 117, B-65
ClipByChildren, 65, 70, 71, 74
Clipping region, 2
CloseFont, 57, B-30
Colormap, 2, 13, 18, 20, 28, 33,
85, 86, 87, 88, 89, 90, B-10

2 Index

ColormapChange, 16, 117
ColormapNotify, 33, 85, 86, 87,
117, B-65
Complex, 79
ConfigureNotify, 37, 38, 39, 106,
111, 112, 114, B-62
ConfigureRequest, 37, 114, B-62
ConfigureWindow, 31, 36, 114, 115,
B-18
Connection, 3
Containment, 3
Control, 16, 93, 94
ConvertS election, 44, 116, B-23
Convex, 79
Coordinate system, 3
Copy, 65, 66, 71, 74, 75, 84
CopyArea, 71, 74, 75, 111, 112,
B-37
CopyColormapAndFree, 85, B-42
CopyFromParent, 28, 29, 31, 32,
33, B-2
CopyGC, 72, B-36
Copy Inverted, 65, 66
CopyPlane, 71, 75, 111, 112, B-38
CreateColormap, 84, 85, B-42
CreateCursor, 91, B-47
CreateGC, 64, 72, 73, B-34
CreateGlyphCursor, 91, B-47
CreateNotify, 32, 112, B-61
CreatePixmap, 64, B-33
CreateWindow, 27, 28, 33, 85, 112,
B-15
CurrentTime, 11, 44, 46, 47, 49,
50, 51, 54, 55, 116
Cursor, 3, 13, 18, 20, 28, 33, 46,
47, 49, 92, B-8

o

DECnet, 17
Default, 96, 99
Delete, 35, 100
Deleted, 115
DeleteProperty, 42, 116, B-21

Depth, 3
Destroy, 101, 102
DestroyNotify, 34, 112, 113, B-61
DestroyS ubwindows , 35, B-17
DestroyWindow, 34, 35, B-17
Device, 3
DirectColor, 3, 11, 24, 27, 28, 85,
88
Disable, 101
Disabled, 101
Display, 4
DoubleDash, 65, 67, 69
Drawable, 4, 13, 18, 20, 40, 64,
74, 75, 76, 77, 79, 80, 81, 82, 83,
84, 92, B-9

E

East, 16, 38
Enable, 101
Enabled, 101
EnterNotify, 47, 105, 106, 107,
110, 111, 112, B-57
EnterWindow, 16, 105
Equiv, 65, 66
Error Codes:

Access, 17
Alloc, 17
Atom, 17
Colormap, 17
Cursor, 17
Drawable, 17
Font, 17
GContext, 17
IDChoice, 17
Implementation, 17
Length, 20
Match, 20
Name, 20
Pix map , 20
Request, 20
Value, 20
Window, 20

EvenOdd, 65, 70, 71

Event, 4
Exposure, 4
mask, 4
propagation, 4
source, 4
synchronization, 4

EventN ame, 14
Expose, 106, 107, 110, 111, 112,
B-60
Exposure, 16, 110
Extension, 4

F

Failed, 93, 94
False, 16, 29, 36, 37, 41, 45, 46,
49, 54, 55, 103, 105, 113, 117
FillPoly, 69, 70, 79, 80, B-39
Focus window, 5
FocusChange, 16, 107
FocusIn, 50, 56, 107, 108, 109,
110, B-59
FocusOut, 50, 56, 106, 107, 108,
109, 110, 111, 112, B-59
Font, 5, 13, 18, 20, 57, 62, 64,
72, 82, 83, 91, B-9
ForceScreenSaver, 99, 100, B-54
Forget, 16, 29, 39
Free, 102
FreeColormap, 32, 85, B-42
FreeColors, 17, 85, 89, B-45
FreeCursor, 92, B-48
FreeGC, 74, B-37
FreePixmap, 64, B-34
Frozen, 46, 47, 49, 50
FullyObscured, 112

G

GC, 5
GContext, 5, 13, 18, 20, 72, 73,
74, 75, 76, 77, 79, 80, 81, 82, 83,
84, B-10
GetAtomName, 41, B-20

Index 3

GetFontPath, 63, B-33
GetGeometry, 40, B-19
GetImage, 81, B-40
GetInputFocus, 56, B-29
GetKeyboardControl, 97, B-51
GetKeyboardMapping, 95, B-50
GetModifierMapping, 94, B-55
GetMotionEvents, 25, 54, 105,
B-27
GetPointerControl, 99, B-51
GetPointerMapping, 98, B-54
GetProperty, 42, 116, B-21
GetScreenSaver, 99, B-52
GetSelectionOwner, 44, B-22
GetWindowAttributes, 27, 34, B-16
Glyph, 5
Grab, 5, 105, 107, 110
GrabButton, 47, 48, 49, 52, 103,
B-24
GrabKey, 50, 51, 52, B-26
GrabKeyboard, 49, 50, 51, 52,
B-25
GrabPointer, 45, 47, 48, 49, 52,
B-23
GrabServer, 53, B-27
Graphics context, 5
GraphicsExposure, 71, 75, 111,
B-60
Gravity, 5
GravityNotify, 38, 106, 111, 112,
114, B-63
GrayScale, 5, 11, 24, 27, 85, 88,
91

H

Hint, 104, 105
Hotspot, 5

IDChoice, 13, 18, 28, 56, 64, 84,
85, 91, B-10
Identifier, 5

4 Index

ImageText16 , 84, B-42
ImageText8, 83, 84, B-42
Implementation, 18, B-11
IncludeInferiors, 65, 70
Inferior, 105, 106, 107, 108
Inferiors, 6
Input focus, 6
Input manager, 6
InputFocus, 45, B-2
InputOnly, 4, 6, 18, 26, 28, 29,
30, 34, 37, 40, 64, 74, 93, 111,
112, B-2
InputOutput, 1, 2, 6, 7, 26, 28,
34, 70, B-2
Insert, 35, 100
InstallColormap, 26, 32, 33, 86,
87, B-43
Installed, 11 7
InternAtom, 21, 41, B-20
Internet, 1 7
InvalidTime, 46, 47, 49, 50
Invert, 65, 66

K

Key:
grabbing, 6

Keyboard, 117
grabbing, 6

KeymapNotify, 13, 110, B-59
KeymapState, 16, 110
KeyPress, 16, 20, 49, 50, 52, 53,
97, 103, 104, 110, B-55
KeyRelease, 16, 49, 52, 53, 97,
103, 104, 110, B-56
Keysym, 6
KillClient, 101, B-53

L

LeastSignificant, 23
LeaveNotify, 47, 105, 106, 107,
111, 112, B-58
LeaveWindow, 16

LeftToRight, 57, 58, 62
Length, 18, 26, 93, 94, B-10
ListExtensions, 93, B-49
ListFonts, 62, 63, B-31
ListFontsWithInfo, 63, B-32
ListHosts, 101, B-53
ListInstalledColormaps, 87, B-43
ListProperties, 43, B-22
Lock, 16, 93, 94
LookupColor, 90, B-47
LowerHighest, 40
LSBFirst, 23

M

MapNotify, 36, 106, 111, 112, 113,
B-61
Mapped window, 6
MappingNotify, 94, 95, 98, 117,
B-65
MapRequest, 36, 113, B-61
MapS ubwindows , 36, B-18
MapWindow, 35, 36, 102, 113,
B-18
Match, 18, 28, 29, 30, 31, 32, 33,
35, 37, 40, 41, 43, 55, 56, 64, 69,
70, 72, 73, 74, 75, 76, 77, 79, 80,
81, 82, 83, 84, 85, 91, 92, 93, 96,
97, B-9
Miter, 65, 68, 71
ModI, 16, 93, 94
Mod2, 16, 93, 94
Mod3, 16, 93, 94
Mod4, 16, 93, 94
Mod5, 16, 93, 94
Modifier keys, 7
Modifier, 117
Modifiers, 117
Monochrome, 7
MostSignificant, 23
MotionNotify, 25, 103, 104, 105,
B-57

MSBFirst, 23

N

Name, 18, 56, 87, 90, B-10
Name1, B-2
NameI, B-2
N ameofThing, B-1
Nand, 65, 66
Never, 24
NewValue, 115
No, 99
NoExposure, 75, 111, B-60
Nonconvex, 79
None, 20, 29, 30, 31, 32, 33, 34,
40, 41, 42, 44, 45, 46, 47, 49, 53,
54, 55, 56, 65, 70, 71, 73, 74, 75,
81, 82, 84, 85, 91, 103, 104, 105,
107, 109, 110, 114, 115, 116, 117
Nonlinear, 105, 106, 107, 108, 109
NonlinearVirtual, 105, 106, 107,
108, 109
NoOp, 65, 66
NoOperation, 102, B-55
Nor, 65, 66
Normal, 104, 105, 107, 110
North, 16, 38
NorthEast, 16, 38
NorthWest, 16, 29, 38, 39
NoSymbol, 95, 96
NotLast, 65, 67, 68
NotUseful, 29, 31, 34
NotViewable, 46, 47, 49, 50

o

Obscure, 7
Occlude, 7
Off, 96, 97
On, 96, 97
OnOffDash, 65, 67, 69
OpaqueStippled, 65, 69, 75
OpenFont, 56, B-30
Opposite, 37, 39, 40, 115

Index 5

Or, 65, 66
Origin, 76, 79
Or Inverted, 65, 66
OrReverse, 65, 66
OwnerGrabButton, 16, 103

p

Padding, 7
Parent, 55, 56
ParentRelative, 29, 30, 33, 36
PartiallyObscured, 112
Passive grab, 7
PieS lice, 65, 71, 80
Pixel value, 7
Pix map , 8, 13, 18, 20, 28, 33, 64,
72, 91, B-8
Plane, 8

mask, 8
Pointer, 8, 107, 108, 109, 110, 117

grabbing, 8
PointerMotion, 16, 105
PointerMotionHint, 16, 105
PointerRoot, 20, 55, 56, 103, 107,
109, 110
PointerWindow, 45, B-2
Pointing device, 8
Poly Arc , 69, 77, 80, B-39
PolyFillArc, 69, 71, 80, B-40
PolyF illR ect angle , 9, 69, 79, B-39
PolyLine, 69, 76, 77, B-38
PolyPoint, 75, B-38
PolyRectangle, 69, 77, B-39
PolySegment, 69, 76, B-38
PolyText16, 17, 69, 83, B-41
PolyText8, 17, 69, 82, 83, B-41
Prepend, 41
Previous, 76, 79
Projecting, 65, 67, 68
Property list, 8
Property, 8
PropertyChange, 16, 115
PropertyNotify, 42, 43, 115, B-64
PseudoColor, 5, 8, 11, 24, 27, 85, 88

6 Index

PutImage, 80, B-40

Q

QueryBestSize, 92, B-48
QueryColors, 90, B-46
QueryExtension, 93, B-49
QueryFont, 21, 57, 62, 63, B-30
QueryKeymap, 56, 110, B-29
QueryPointer, 53, 105, B-27
QueryTextExtents, 62, 84, B-31
QueryTree, 40, B-19

R

RaiseLowest, 40
RecolorCursor, 92, B-48
Redirecting control, 9
ReparentNotify, 35, 113, B-62
ReparentWindow, 35, B-17
Replace, 41
ReplayKeyboard, 51, 52, 53
ReplayPointer, 51, 52, 53
Reply, 9
Request, 9, 18, B-7
RequestName, 14
Reset, 99, 100
ResizeRedirect, 16, 33, 37, 114
ResizeRequest, 37, 114, B-63
Resource, 9
RetainPermanent, 101, 102, 103
RetainTemporary, 101, 102, 103
RGB values, 9
RightToLeft, 57, 58, 62
Root, 9
RotateProperties, 43, 115, B-54
Round, 65, 67, 68

s

Save set, 9
Scanline, 10
Scanline order, 10

Screen, 10
Selection, 10
SelectionClear, 44, 116, B-64
SelectionNotify, 45, 116, B-65
SelectionRequest, 44, 116, B-64
SendEvent, 13, 45, 116, 117, B-23
Server, 10

grabbing, 10
Set, 65, 66
SetAccessControl, 101, B-53
SetClipRectangles, 70, 72, 73, B-37
SetCloseDownMode, 101, 102, B-53
SetDashes, 70, 72, B-36
SetFontPath, 62, 63, B-33
SetInputFocus, 55, 107, B-29
SetModifierMapping, 93, 117, B-55
SetPointerMapping, 98, 117, B-54
SetScreenSaver, 99, B-52
SetSelectionOwner, 43, 102, 116,
B-22
Shift, 16, 93, 94
Sibling, 11
Solid, 65, 67, 69, 71, 84
South, 16, 38
SouthEast, 16, 38
SouthWest, 16, 38
Stacking order, 11
Static, 16, 38
StaticColor, 11, 24, 27, 85
StaticGray, 7, 11, 24, 27, 85, 91
Stipple, 11, 92, 93
Stippled, 65, 69
StoreColors, 17, 89, 90, B-45
StoreNamedColor, 89, 90, B-46
StructureNotify, 16, 112, 113, 114,
115
SubstructureNotify, 16, 112, 113,
114, 115
SubstructureRedirect, 16, 32, 33,
36, 37, 40, 113, 115
Success, 46, 49, 93, 94, 98
SyncBoth, 51, 53
Synchronous, 45, 46, 47, 49, 50
SyncKeyboard, 51, 52, 53

SyncPointer, 51, 52, 53

T

Tile, 11, 92, 93
Tiled, 65, 69
Timestamp, 11
Top, 115
TopIf, 37, 39, 40, 115
TranslateCoordinates, 54, B-28
True, 16, 27, 31, 35, 43, 45, 46,
49, 54, 58, 71, 74, 75, 88, 103,
105, 113, 117
TrueColor, 11, 24, 27, 28, 85
Type, 12
Types:

ARC, 17
ATOM, 15
BITGRA VITY, 16
BITMASK, 14
BOOL, 16
BUTMASK, 16
BUTTON, 16
BYTE, 15
CARD8, 15
CARD16, 15
CARD32, 16
CHAR2B, 16
COLORMAP, 15
CURSOR, 15
DEVICEEVENT, 16
DRAWABLE, 15
EVENT, 16
FONT, 15
FONTABLE, 15
GCONTEXT, 15
HOST, 17
INT8, 15
INT16, 15
INT32, 15
KEYBUTMASK, 16
KEYCODE, 16
KEYMASK,16
KEYSYM, 16

Index 7

u

LISTofFOO, 14
LIS TofVALUE, 14
OR, 15
PIXMAP, 15
POINT, 17
POINTEREVENT, 16
RECTANGLE, 17
STRING8, 16
STRING16, 16
TIMESTAMP, 16
VALUE, 15
VISUALID, 15
WINDOW, 15
WINGRA VITY, 16

Ungrab, 105, 106, 107, 110
UngrabButton, 48, B-25
UngrabKey, 51, B-26
UngrabKeyboard, 50, 102, B-26
UngrabPointer, 47, 102, 103, B-24
UngrabServer, 53, 102, B-27
UninstallColormap, 85, 86, B-43
Uninstalled, 117
Unmap, 16, 39, 113
UnmapNotify, 36, 39, 106, 107,
111, 112, 113, B-61
Unmapped, 34
UnmapSubwindows, 36, B-18
Unmap Window, 34, 35, 36, B-18
Unobscured, 112
U nS orted, 73
Unviewable, 34

v

Value, 3, 15, 18, 28, 29, 33, 35,
37, 40, 41, 42, 43, 45, 46, 47, 48,
49, 50, 51, 55, 63, 64, 70, 72, 73,
74, 75, 76, 79, 81, 84, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 101, B-8
Viewable, 12, 34

8 Index

Virtual, 105, 106, 107, 108
Vis ibilitity , 111
Vis ibilityChange, 16, 112
VisibilityNotify, 28, 106, 107, 111,
112, B-60
Visible, 12

w

WarpPointer, 55, B-28
West, 16, 38
WhenMapped, 24, 29, 31, 33, 34,
110
WhileGrabbed, 107
Winding, 65, 70
Window, 13, 18, 20, 28, 33, 34,
35, 36, 37, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 54, 55, 74,
84, 87, B-8

x

gravity, 12
InputOnly, 6
InputOutput, 6
manager, 12
parent, 7
root, 9

Xor, 65, 66
XYFormat, 12
XYPixmap, 80, 81

y

Yes, 99
YSorted, 73, 74
YXBanded, 73, 74
YXSorted, 73, 74

z
ZFormat, 12
ZPixmap, 80, 81

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and New Hampshire,
Alaska or Hawaii
call SOO-DIGITAL

In Canada
call 800-267 -621 5

DIRECT MAIL ORDERS (U.S. and Puerto RIco·)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.

100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

I INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION

PSG Business Manager
c/o Digital's local subsidiary

or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC). Digital
Equipment Corporation, Westminster, Massachusetts 01473

* Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575

Reader's Comments

ULTRIX
Worksystem Software

X Protocol

AA-MA98A-TE

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a writ
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please
make suggestions for improvement. _________________ _

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
o Higher-level language programmer
D Occasional programmer (experienced)

o User with little programming experience
D Student programmer
D Other (please specify) _________________ _

Name Date ___________ _

Organization __________________________ _

Street _____________________________ __

City ________________ State ___ Zipofode ____ _

Country

-----Do Not Tear· Fold Here and Tape -------------------------------------

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation
Documentation Manager
UL TRIX Documentation Group
ZK03-3/X18
Spit Brook Road
Nashua, N.H.

03063

No Postage

Necessary
if Mailed in the

United States

-----Do Not Tear . Fold Here and Tape -------------------------------------

Reader's Comments

ULTRIX
W orksystem Software

X Protocol
AA-MA98A-TE

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a writ
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please
make suggestions for improvement. _________________ _

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer
o Occasional programmer (experienced)

o User with little programming experience
o Student programmer
o Other (please specify) _________________ _

Name Date ___________ _

Organization __________________________ _

Street _________________________________ __

City ___________________ State ___ Zipofode ____ _

Country

·-----Do Not Tear· Fold Here and Tape -------------------------------------

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation
Documentation Manager
Ul TRIX Documentation Group
ZK03·3/X18
Spit Brook Road
Nashua, N.H.

03063

No Postage

Necessary
if Mailed In the

United States

,- - - - - Do Not Tear· Fold Here and Tape - - - - - - - - - - - - -- --

