
ULTRIX
Worksystem Software

•

Guide to the dxdb Debugger

Order Number: AA-MA93B-TE

UL TRIX Worksystem Software

Guide to the dxdb Debugger

Order Number: AA-MA93B-TE

Product Version: UL TRIX Worksystem Software, Version 2.2
Operating System and Version: ULTRIX-32, Version 3.1 or higher

digital equipment corporation
maynard, massachusetts

Restricted'Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of
DFARS 252.227-7013.

© Digital Equipment Corporation 1988, 1989
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

CDA
DEC
DECUS
DECnet
DEC station
DECwindows
DDIF
DDIS

DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection
UL TRIX Worksystem Software
VAX

VAXstation
VMS
VMS/UL TRIX Connection
VT
XUI

mD~DD~D

UNIX is a registered trademark of AT&T in the USA and other countries.

This manual was written and produced by the Open Software Publications group.

Contents

About This Manual

Audience v

Organization v

Related Documents .. VI

Conventions vii

Guide to the dxdb Debugger

1.1 Introduction 2

1.2 Starting the dxdb Debugger .. 4

1.3 Viewing a Source File ... 6

1.3.1 Opening and Closing Files ... 6
1.3.2 Browsing Through Source Files .. 7

1.4 Running a Program ... 7

1.5 Setting Breakpoints and Conditional Breakpoints 9

1.6

1.5.1 Setting Breakpoints 9
1.5.2 Deleting Breakpoints 10
1.5.3 Setting Conditional Breakpoints 11

Setting Tracepoints and Conditional Tracepoints

1.6.1
1.6.2
1.6.3

Setting Tracepoints .. .
Deleting a Tracepoint
Setting Conditional Tracepoints

11

12
12
13

1.6.4 Setting Function Breakpoints or Tracepoints 13

1. 7 Methods for Selecting Text 14

1.7.1 Printing Variables 14
1.7.2 Examining Variables ... 15
1.7.3 Deleting Variables from the Examine Window 16

1.8 Controlling Program Execution ... 16

1.9 Assigning a Value to a Variable .. 17

1.10 Exiting from dxdb ... 18

1.11 Additional Tasks

1.11.1
1.11.2
1.11.3
1.11.4

Supplying Arguments to a Program
Viewing the Program Execution Stack
Viewing Variables .. .
Getting Information About Variables

1.11.4.1
1.11.4.2
1.11.4.3

Whatis
Which
Whereis

1.11.5
1.11.6

Editing Files
Restarting the Debugger

Figures

18

19
19
20
21

21
21
22

22
22

1: The dxdb Debugger Windows and Commands 1

2: The Control Window ... 4

3: The Source Area with Source File Window...................................... 6

4: The Control Menu 7

5: The fuputlOutput Window .. 8

6: The Breakpoints Window with Breakpoints Menu 9

7: The Breakpoint Menu with Conditional Submenu 11

8: The Breakpoints Window with Trace Menu 12

9: The Tracepoint Menu ... 13

ivContents

10: The Examine Menu

11: The Examine Window

14

15

18

19

20

20

22

12: The Assign Window

13: The Run Window

14: The Stack Window

15: The Dump Window

16: The Make Window

Tables

1: Control Window Area Summary 5

Contents v

About This Manual

The Guide to the dxdb Debugger describes how to use the various features of
the dxdb debugger.

Audience
This guide is written for programmers with both a working knowledge of
general debugging techniques and a basic knowledge of the DECwindows
interface.

Organization
The Guide to the dxdb Debugger contains the following sections:

Introduction
Illustrates the various dxdb windows and commands and
describes the routines diroll.e and didisp.e.

Starting dxdb
Describes how to invoke the debugger.

Viewing a Source File
Describes how to open and display a file in the dxdb Source
window.

Running a Program
Describes how to run a program in dxdb and shows the
Input/Output Window.

Setting Breakpoints and Conditional Breakpoints
Describes how to set and delete a breakpoint and a conditional
breakpoint in the Breakpoint window.

Setting Tracepoints and Conditional Breakpoints
Describes how to set and delete a tracepoint and a conditional
tracepoint in the Breakpoint window.

Methods for Selecting Text
Describes how to print, examine, and delete the value of program
variables.

Controlling Program Execution
Shows how to use the Step and Skip windows to execute a
program in single- or multiple-line increments.

Assigning a Value to a Variable
Explains how to assign a value to a specific program variable.

Exiting From dxdb
Describes how to exit from dxdb.

Supplying Arguments to a Program
Describes how to use the Run window to supply an argument to
a program.

Viewing the Program Execution Stack
Shows how to use the Stack window to view elements on the
program execution stack.

Viewing Variables
Shows how to use the Dump window to view the values of all
currently active local variables.

Getting Information About Variables
Describes how to use the Whatis, Which, and Whereis functions
to obtain the data type, scope, and location of a particular
variable.

Editing Files
Describes how to edit the file you are currently displaying.

Restarting the Debugger
Describes how to rebuild an executable program and restart the
debugging session.

Related Documents
Introduction to the ULTRIX Worksystem Software User Environment

Provides an overview to UL TRIX W orksystem Software utilities.

DECwindows User's Guide

viii About This Manual

Provides a discussion on basic DECwindows functions and
provides information on customizing DECwindows applications.

Conventions
The following conventions are used in this manual:

%

user input

The default user prompt is your system name followed by
a right angle bracket. In this manual, a percent sign (%)
is used to represent this prompt.

This bold typeface is used in interactive examples to
indicate typed user input.

system output This typeface is used in interactive examples to indicate
system output, and also in code examples and other
screen displays. In text, this typeface is used to indicate
the exact name of a command, option, partition,
pathname, directory, or file.

UPPERCASE
lowercase

rlogin

filename

cat(1)

The system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
example, syntax descriptions, and function definitions
must be typed exactly as shown.

In syntax descriptions and function definitions, this
typeface is used to indicate terms that you must type
exactly as shown.

In syntax descriptions and function definitions, italics are
used to indicate variable values; and in text, to introduce
new terms or give references to other documents.

Cross-references to the ULTRIX Reference Pages include
the appropriate section number in parentheses. For
example, a reference to cat(l) indicates that you can
find the material on the cat command in Section 1 of the
reference pages.

<KEYNAME> This symbol is used in examples to indicate that you
must press the named key on the keyboard.

MBl,MB2,MB3 Unless the mouse buttons have been redefined, MBI
indicates the left mouse button, MB2 indicates the middle
mouse button, and MB3 indicates the right mouse button.

About This Manual ix

Guide to the dxdb Debugger

The dxdb debugger is a DECwindows utility that provides you with a
versatile environment in which to debug programs. The windows and menus
of dxdb contain all the commands that you will need during a typical
debugging session. Figure 1 shows the windows and commands available in
dxdb.

Figure 1: The dxdb Debugger Windows and Commands

Quit

Stop at Line
Stop in Func
Stop Global
Random Fun
Random Une
DeleteBP

Trace Global
Trace at Line
Trace in Func
Delete Trace

L
Run
Step
Skip
Continue
Stop
Return

Print
Print*
Examine
Examine*
Delete Examine
Stop in Func
Trace in Func

ZK-0039U-R

1.1 Introduction
This guide introduces basic dxdb operations by showing a dxdb debugging
session on a sample C program, diroll, and by focusing on specific dxdb
operations.

Diroll is a simple dice-rolling program that consists of two routines: diroll.c
and didisp.c. The main routine, diroll,c, determines the values of dice
variables die1 and die2. Diroll obtains these values from the C random
number generator (random) and then passes them to the external routine
didisp.c. The uncorrected version of diroll consists of the following code:

/*** diroll.c ***/

char roll = , ';

int die1, die2;

maine)
{

/*Dice roll example program*/

char s[512];

srandom (getpid(}); /*Set random seed using the return
from standard c function getpid() .*1

printf("Press <CR> to roll ... ");
gets(s);

for (; ;) {

die1 = random() %7;
die2 = random() %7;

didisp(die1,die2);

/*Get random numbers*/

/*Draw dice*/

printf("Press <CR> to roll ... "); /*Begin the game*/
gets(s);

Didisp.c uses two matrices to define the dots and the faces of each die.
Didisp uses the values of die1 and die2 as offsets into these matrices to
display each die. The uncorrected version of didisp.c consists of the
following code:

2 Guide to the dxdb Debugger

/*** didisp.c ***/

char *dots[6] =

"I 0 I",
" 10 I " ,
"I 01",
"10 01",
"I I",
,,+ - - +"

} ;

int faces[6] [5] = {

{5, 4, 0, 4, 5} ,
{5, 1, 4, 2, 5},
{5, 1, 0, 2, 5} ,
{5, 3, 4, 3, 5} ,
{5, 3, 0, 3, 5} ,
{5, 3, 3, 3, 5}

} ;

int diel, die2;

didisp (diel, die2)
{

int i, j, k;

for (i = 0; i < 5; i++)
j = faces [diel] [i];
k = faces [die2] [i];

/*Define dot cornbinations*/

/*Define dice faces*/

/*Function that draws dice.*/

/*Index into arrays and draw dice*/

printf("%s %sO, dots [j], dots [k]) ;

return;

When you run diro", the program should generate output similar to the
following:
Press <CR> to roll ...
+ - - + + - - +
10 I I I
I 0 I I 0 I
I 01 I I
+ - - + + - - +
Press <CR> to roll again.
+ - - + + - - +
10 I 10 01
1 0 1 1 0 1
1 01 10 01
+ - - + + - - +
Press <CR> to roll again.

Guide to the dxdb Debugger 3

1.2 Starting the dxdb Debugger
You invoke the dxdb debugger using the following syntax:

dxdbfile

The file argument must be an executable C file that was compiled with the -g
option of the C compiler command (cc). For example, to run dxdb on diroll
you must have first compiled diroll.c and didisp.c using a cc command
similar to the one that follows:
% cc -q diroll.c didisp.c -0 diroll

You invoke the dxdb debugger as follows:
% dxdb diroll

When invoked, dxdb displays the Control window. Figure 2 shows the
Control window.

Figure 2: The Control Window

I~I dxdb IiIiil
File Control Options Windows Functions HeIp-- Menu Bar

~--------~----------------------------~~ readY ... ~

Text~
AIea

Status Bar ~~~ ______________________________________ ~QI

£ile: diroll.c Une: 11 Func: main

T #ifndef lint "
static char *sccsid=''%W% ULTRIX %GOk ;
#endif 1* Ont/*

#include<stdio.h>
#define TRUE 1
char roll=";
int die 1 , die 2;
~~~~~---=-----~-----~~-----~====~-EXooOO~~TI~ I mainO I*Roll the dice example program*1 II II~ 

Margi~ { 
AIea 

char s[1 l8); 

1* srandom (getpidO);*II*Set random see using the retum from 
standard c function getpidO!t 1 _ SoArea,uroe 

/ 
printr("Press <CR>to roll ..... ); 
gets(s): 

Next Func __ Prev FuncJ I Quit -.:- Button Bar 

~--.. ----~--------------~--.. ZK-0106U-R 

4 Guide to the dxdb Debugger 



By default, dxdb displays only the Control window. However, you can 
change this default (and display several windows on startup) by modifying 
the .Xdefaults file (see X(lX) in the ULTRIX Worksystem Software 
Reference Pages). 

You can use the Control window to access all other dxdb windows and 
commands. Table 1 describes the Control window areas. 

Table 1: Control Window Area Summary 

Window Area Description 

Menu Bar Contains menus of items that let you run and debug programs. 
To choose an item, point to the menu, press and hold MB 1, and 
drag the pointer through the menu. Release MB 1 on the desired 
item. 

Text Area Read-only area that dxdb uses to display run-time and error 
messages. You can scroll through the contents of this area using 
the scroll bar. 

Source Area Read-only area that displays the source code being executed. 
You can use this area to display other source files of interest. 

Status Bar Displays the current file, line, and function of execution. 

Margin Area Shows breakpoints and tracepoints. Provides menus for setting 
and deleting breakpoints and tracepoints. 

Button Bar Contains command buttons that you can use to manipulate the 
Source Area. 

?opup Menus Contains the Conrol, Examie, Breakpoints, and Tracepoints 
menus. You can invoke these menus by pressing MB2 or 
(shift-MB2) in the Source Area or the Margin Area. 

~urrent Execution Line Contains the current line of execution and is signified by 
placing a box around the text. 

Guide to the dxdb Debugger 5 



1.3 Viewing a Source File 
At the top of the Source Area, is the Status Bar, which indicates the file that 
is currently displayed in the window, the current line the debugger is on, and 
the name of the function in which that line resides. 

1.3.1 Opening and Closing Files 
To open and display a file in the Source Area, choose Open from the File 
menu of the Control window. The debugger then displays the File Selection 
window. Figure 3 shows the File Selection window. 

Figure 3: The Source Area with Source File Window 

File Filter 

11*·c 

Source File: /usr/users/mary/xdb/srcs/diroll/ 

II/didisp.c 

u ........ _"".I/diroll.c 

[] C> 0 

Selection 

users/mary /xdb/srcs/diroll/didisp.~ 

for(::) { 
diel = randomO %7: /*Cet random numbers*/ 
die2 = randomO %7; 

didisp(diel,die2); /*Draw dice*/ 

printf(IIPress <CR> to roll ... II); /*Begin the ame*/ 

6 Guide to the dxdb Debugger 



The text area of the File Selection window contains a listing of all C files in 
your current directory . You can use the scroll bar to scroll the listing up or 
down. 

Directly above the text area is a message that indicates the current working 
directory. To open a file in this directory, click on the Selection area and type 
the file name, followed by a carriage return. The debugger displays the file in 
the Source Area. To remove the File Selection window, click on the Cancel 
button. Figure 3 shows the selection of the file didisp.e. 

You can also open a file by clicking on the file in the text area (this file is 
automatically inserted at the Selection prompt) and then clicking on the OK 
button. 

To open a file located in another directory, enter the appropriate directory and 
file at the Selection area. For example, if you enter xdir/t.c, the file t.e 
located in the xdir directory is opened. 

If you want to display the entire contents of directory xdir in the text area of 
the window, click on the File filter prompt (at the top of window), enter the 
directory, and click on the Filter button. You can then choose a file using one 
of the methods previously described. To cancel a current file selection, click 
on the Cancel button. 

1.3.2 Browsing Through Source Files 
The Button Bar allows you to perform two browsing operations (Next Func 
and Prev Func) on any file displayed in the text area of the Source Area. 
Next Func causes dxdb to advance to the next function defined in the source 
code. Prev Func causes dxdb to return to a previous function. 

1.4 Running a Program 
Because the program direll is known to contain bugs, you will need to run 
the program under dxdb control to uncover where the code is failing. The 
debugger allows you to run a program conditionally (passing parameters to 
the routine) or unconditionally (no parameters passed to the routine). 

Because there are no parameters to pass to direll, you must run the program 
unconditionally. You can do this in two ways: 

1. Choose the Run option from the Control option in the Menu Bar. 

2. Click MB2 in the Source Area and choose the Run option from the 
Control menu. Figure 4 shows the Control menu. 

Guide to the dxdb Debugger 7 



Figure 4: The Control Menu 

I Run 
Step 
Skip 

Continue 
Stop 
Return 

ZK-0107U-R 

When you run direll, dxdb creates an Input/Output window. The debugger 
uses this window to read any user input and to display the appropriate output 
generated by the program you are debugging. 

Figure 5 shows the Input/Output window that dxdb displays when you run 
direl!. 

Figure 5: The Input/Output Window 

I~U DECtenn 1 Ib!j Iii] 
Commands Edit Customize Help 

.0-
Press < CB.> to roll. .. _ c 
+ - - + + - - + 
1 1 10 01 
1 0 1 1 1 
1 1 1° °1 
+ - - + + - - + 

c 
Q 

¢q IJI) 

ZK-0108U-R 

8 Guide to the dxdb Debugger 



1.5 Setting Breakpoints and Conditional Breakpoints 
You can set breakpoints in your code to pause the execution of the source 
program. This allows you to examine values. By using a conditional 
breakpoint, you can specify a condition that will execute at a particular 
breakpoint. 

Breakpoints are represented by a filled-in circle in the Margin Area at the line 
where you set the breakpoint; the circle also appears in the Breakpoints 
window. 

1.5.1 Setting Breakpoints 
When you run diroll, dxdb issues the following error in the Text Area: 
Bus error in didisp.didisp at line 28 in file "didisp.c" 

This error indicates a possible indexing problem in the matrices used to build 
the die in didisp.c. One of several debugging strategies that you can pursue 
is to set breakpoints at specific areas in the diroll code and then examine the 
values of specific key variables. These values may provide a lead to the 
source of the problem. 

A good location for the breakpoints is before the call to didisp in diroll.c, 
and at the printf statement in didisp.c. Setting breakpoints at these positions 
allows you to observe the values diroll is sending to the function didisp and 
the effect of those values on the for-loop variables i, j, and k. 

You can set breakpoints globally, by line, or by function. In this example, 
you are setting a breakpoint by line. To set a breakpoint in diroll.c. perform 
the following steps: 

1. Display diroll.c in the Source Area. 

2. Move the pointer to the Margin Area at the line containing the call to 
didisp and press MB2. 

3. Move the pointer to the Set at Line option in the Breakpoints menu and 
release MB2. 

4. Repeat this procedure on the printf statement in didisp.c. 

Figure 6 shows the Breakpoints window, including the Breakpoints menu and 
two breakpoints set in the Margin Area. 

You can set a random line or random function breakpoint at a line of code 
not currently displayed in the Source Area by following these steps: 

1. Click on the breakpoint symbol using MB2 and choose the Random 
Function or Random Line option. 

Guide to the dxdb Debugger 9 



Figure 6: The Breakpoints Window with Breakpoints Menu 

• dxdb: Breakpoints IhI:lI\;l ~I dxdb 

0 
File Control Options Windows Functions 

1) stop at ndiroll.t":ll 

~ 
Ready ... 

2) stop in main Breakpoint set - In file diroll.c at line 11 
Breakpoint set -In function main 
I 

Q 

8 I Delete I File: diroll.c Line: 4 Func: main 

lchar roll = ' '; 
int die 1, die2; 

main!! Z'lI:olI {fie alce eKam~le I!rogram~l 

'I { char 5[512]; 

srandom (netpidO); "Set random seed usinn the return from 
standard c function getpidO.*' 

II printfr'Press <CR> to roll ... "); 

I Set at Line 
--~';-I; 

Set in Func H 
= randomO %6; '"Get random numbers" 

Global a randomO %6; 

Random Func 
didisp(die1,die2); "Oraw dice'" 

Random Line 

Delete BP f(nPress <CR:> to roll ... "); "Begin the game'l 

I l~eK{ tunc I Prey Func I 

2. A dialog box appears which prompts you for information about the 
breakpoint to be set. 

3. Click on the OK button. 

To cancel a random line or random function breakpoint, click on the Cancel 
button. 

1.5.2 Deleting Breakpoints 
There are two ways to delete a breakpoint: 

1. Click on the breakpoint symbol using MB2 and choose the Delete BP 
option of the Breakpoints menu. 

2. In the Breakpoints window, click on the breakpoint to be deleted and 
click on the Delete button. You must use this method to delete global 
breakpoints that do not have symbols in the Margin Area. 

10 Guide to the dxdb Debugger 

1Ql151 
Help 

0 

~ 
Q 

.r 

I 

I"., 

[ Quit 



1.5.3 Setting Conditional Breakpoints 
You can specify a program condition in which dxdb will execute a particular 
breakpoint. To set a conditional breakpoint at a line, follow these steps: 

1. Move the pointer to the Margin Area at the line where you want to set 
the breakpoint. 

2. Click MB2. 

3. 

4. 
5. 

6. 
7. 

Move the pointer to the arrow at the right of the Set at Line option in 
the Breakpoints menu. 

Press MB2. 

Move the pointer to the right and release MB2 with the pointer in the 
Conditional button. The Condition submenu appears. 

Enter the condition in the Condition field. 

Click on the OK button. 

To cancel a conditional breakpoint, click on the Cancel button. Figure 7 
shows the Breakpoint menu with the Conditional button displayed. 

Figure 7: The Breakpoint Menu with Conditional Submenu 

Set at Une [+ 

Set in Fune I:! I Conditional 

Global 

Random Func 

Random Une 

Delete BP 

ZK-0109U-R 

1.6 Setting Tracepoints and Conditional Tracepoints 
You can also use tracepoints to debug programs. Tracepoints can be set to 
print the value of a variable at a certain line of code without pausing the 
execution of your program. Tracepoint information is printed in the Text 
Area of the Control window. By using a conditional tracepoint, you can 
specify a condition that will execute at a particular tracepoint. 

Tracepoints are represented by a hollow circle in the Margin Area at the line 
where you set the tracepoint; the circle also appears in the Breakpoints 
window. 

Guide to the dxdb Debugger 11 



1.6.1 Setting Tracepoints 
You can set tracepoints globally, by line, or by function. A good location for 
a tracepoint in the diroll program is immediately after die1 is set. To set 
a tracepoint in diroll.c. perform the following steps: 

1. Display diroll.c in the Text window. 

2. Move the pointer to the Margin Area at the line after die1 is set and 
press shift-MB2. 

3. Choose the Trace at Line option. 

4. Type die1 into the Trace command field in the Trace box. 

5. Click on the OK button. 

To cancel a tracepoint, click on the Cancel button. Figure 8 shows the 
Breakpoints window with the Trace menu. 

Figure 8: The Breakpoints Window with Trace Menu 

• dxdb: Breakpoints 

1) stop at "diroll.c":l 5 

2) ifchanged at "diroll.c":l G 

I6!lIIiiI ~I dxdb 

6 
File Control Options Windows Functions 

~ 
Ready .•. 
Breakpoint set - In file diroll.c at line 15 
Tracepoint set - In file diroll.c at line 1 G 
j 

File: diroll.c Line: 4 Func: main 

lchar roll == • '; 

int diel, die2; 

hlainO I-Roll the dice example program*1 

char .[51 Z); 

.random (getpidO>; '*Set random seed u.ing the return from 
standard c function getpidO. *' 

printf("Pre •• <CR> to roll ... "); 
gets(.); 

fore;;) { 
diel = randomO %7; 
dle2 = randomO %7; 

'T-ra-c""'e G:::Llo-b-al--' 

I Trace at Line I 
didi.p(diel,die2); 

'*Get random numbers*, 

'*Draw dice-' 

16!l11iiI 
Help 

Trace in Func intf("Pres. <CR> to roll ... "); rEegin the game*! Q 

Delete Trace c I Prey Func .1 l Quit 

1.6.2 Deleting a Tracepoint 
To delete a tracepoint, first select the Trace at Line option. There are two 
ways to delete a tracepoint: 

1. Press the shift-MB2 on the tracepoint symbol in the Margin Area and 
choose the Delete Trace option of the Tracepoint menu. 

12 Guide to the dxdb Debugger 



2. In the Breakpoints window, click on the tracepoint to be deleted and 
click on the Delete button. You must use this method to delete global 
tracepoints that do not have symbols in the Margin Area. 

1.6.3 Setting Conditional Tracepoints 
You can specify a program condition in which dxdb will execute a particular 
tracepoint. Perform the following steps: 

1. Move the pointer in the Margin Window to the line where you want to 
set the tracepoint and press shift-MB2. 

2. Enter the variable name in the Trace Command field. 

3. Enter the condition in the Condition field. 

4. Click on the OK button. 

Figure 9 shows the Tracepoint menu. 

Figure 9: The Tracepoint Menu 

Trace Global 

I Trace at Une 

Trace in Func 

Delete Trace 

ZK-0110U-R 

1.6.4 Setting Function Breakpoints or Tracepoints 
You can set breakpoints if the function appears in the Source Window by 
selecting the Stop in Func option in the Examine Window (see Figure 10). 

You can set tracepoiilts if the function appears in the Source window by 
selecting the Trace in Func option in the Tracepoints menu (see Figure 9), or 
the Examine window (see Figure 10). 

Guide to the dxdb Debugger 13 



1.7 Methods for Selecting Text 
There are two methods for selecting text to be used with the Print, Examine, 
Stop in Func, and Trace in Func options. 

1. Move the pointer to the text you want to operate on and press shift
MB2. 

2. Highlight the text you want to operate on. 

The option you chose from the Windows menu in the Control window 
operates on whatever text is under the pointer when the menu is invoked. If 
there is no text under the cursor, dxdb uses any text that is highlighted. 

After you select text, you can print or examine variables. The Print, Print *, 
Examine, and Examine * options are described in the following sections. 
Figure 10 shows the Examine menu. 

Figure 10: The Examine Menu 

1.7.1 Printing Variables 

Print 
Print * 
Examine ~ 

Examine * 
Delete Examine 
Stop in Func 
Trace in Func 

ZK-0111 U-R 

To print the value of a variable in the Text Area of the Control window, 
follow these steps: 

1. Either move the pointer to the text you want to operate on or highlight 
the text. 

2. Select the variable to be displayed. (See the section on Methods for 
Selecting Text.) 

3. Press shift-MB2. 

4. Choose the Print option from the Examine menu. 

14 Guide to the dxdb Debugger 



1.7.2 Examining Variables 
The debugger provides a separate window for examining the values of 
various variables (see Figure 11). In the diroll example, you will want to 
examine the variables die1 , die2, i, j, and k. 

To examine the value of a variable in the Text Area of the Control window, 
follow these steps: 

1. Select the variable to be examined by either moving the pointer to the 
text or by highlighting the text. 

2. Select the Examine option of the Examine menu (see Figure 10). The 
debugger will display the variable in the Examine window. 

3. Repeat steps 1 and 2 on variables die2, i, j, and k. 

4. Run the program (see the section on Running a Program earlier in this 
guide). The debugger displays the current values of all the variables 
listed in the Examine window each time you stop the program. 

Figure 11: The Examine Window 

l dxdb: Variable Examine H:;! IiiJ II dxdb 

die1 = 1 () File Control Options Windows Functions 
dle2 = 0 
1=0 Execution paused at line 22 in file didisp.c 
j = 7056 in function didisp.didisp 
k=l 
! Execution paused at line 25 in file didisp.c 

in function didlsp.didisp 
Q 

¢ I) Execution paused at line 26 in file didisp.c 

Examine: \1 
in function didisp.didisp 

[!!!] I Delete I ~ File: didisp.t line: 26 Func: didisp 

{5. 1. O. 2. S}. 
{5. 3. 4. 3. 51. 
{5. 3. O. 3. SI, 
{5, 3, 3, 2, SI 

I; 

int die1, die2; 

didisp (diel, die2) '·Function that draws dice.·' 
{ 

int i, j, k; 

for (i = 0: i < 5: i++) { "Index into arrays and draw dice·' 
I I - facesliheJ 1111' 

k = faces[die2][i]: 
printf("%s %s\n", dots[j], dots[k]); 

I 
return; 
I 

Next Func I Prey FUllc I 

When you follow these steps, note that if die 1 and die2 contain a value 
equal to 6, the assignment statements in the for-loop d = faces [die1 ][i]; or k 
= faces [die2][i];) attempts to reference the seventh index in the matrix 
faces. Because there are only six indices in faces, the assignment statement 
initializes j or k with unpredictable values. 

Guide to the dxdb Debugger 15 

IIi:IlIiiJ 
Help 

() 

Q 

Ie 

1 

1<;: 
l Quit 



If the value for j or k is unpredictable, then the printf statement also attempts 
to access an invalid index in the matrix dots. Hence, the printf statement fails 
and C issues the run-time error. 

To correct this error, you would have to edit diroll.c and change the mod 
values of the random statements from 7 to 6 (%7 to %6). This ensures that 
random does not generate any numbers greater than 5. (Because C begins a 
matrix index at zero, zero through 5 provides six indices to a matrix.) 

The Examine * option treats the variable selected as a pointer. To examine 
the displayed values in Hex format, choose the Examine * option and pull 
right on the arrow and release. Figure 10 shows the Examine menu with the 
Examine option and the Hex pullright button. 

1.7.3 Deleting Variables from the Examine Window 
You can delete variables from the Examine window by doing the following: 

1. Select the variable to be deleted by either moving the pointer to the text 
or by highlighting the text. 

2. Press shift-MB2. 

3. Choose the Delete Examine option. 

1.8 Controlling Program Execution 
You can examine the values of the variables you listed in the Examine 
window by executing diroll in single- or multiple-line increments. You set 
these increments using the Step or Skip window. Display these windows by 
selecting the Step or Skip options of the Control menu. Figure 4 shows the 
Control menu. 

When dxdb executes a step count, it includes a subroutine call, and the next 
few lines of that subroutine, as part of the count. When dxdb executes a skip 
count, it executes the entire routine and resumes the skip count on return 
from the call. For example, if the step count is 5 and a subroutine call 
happens to be the second line in the program sequence, dxdb executes the 
first three lines of the subroutine before pausing. 

However, if dxdb performs the same example scenario with a skip count of 
5, the debugger executes the entire routine and the next three lines of code 
immediately following the routine call. 

The procedure that follows describes how you use the Step window to set a 
step count. Note that you use the Skip window to set a skip count in a 
similar way. 

16 Guide to the dxdb Debugger 



1. Stop the execution of the program by clicking on the Stop menu item in 
the Control menu (or by setting a breakpoint). Figure 4 shows the 
Control menu. 

2. Click on the Step option. 

3. Set the step count to the desired increment. For example, to set the step 
count to 3, click on the plus (+) accelerator twice and click on the Step 
Count button. 

4. Click on the Step command in the Control menu to step through the 
code. 

As you step or skip through dire/!, dxdb updates the Examine Window each 
time the program changes the variables you have displayed in the examine 
window. You can then verify that the values of these variables are 
appropriate for the matrices in didisp.c. 

Note that dxdb executes the specified number of lines of code each time you 
choose the Step or Skip option in the Control menu. If you want to execute a 
single line at a time, you must return to the appropriate Step or Skip window 
and either change the count to 1 or click on the Step (or Skip) Once box. 

The Continue option runs the program being debugged until a breakpoint is 
reached or execution ends. The Stop option pauses execution wherever the 
program is currently running. The Return option finishes execution of the 
current function and pauses program execution in the line after the function 
call. 

1.9 Assigning a Value to a Variable 
At times, you may find it convenient to assign a value to a specific variable. 
For example, now that you have uncovered the first bug in dire/!, you may 
have noticed that face 6 of the die is slightly deformed. Currently, when 
didisp.c generates a 6 it displays the following die: 

+ - - - + 
I 0 0 I 
I 0 0 I 
I 0 I 
+ - - - + 

The error is caused by the improper organization of values at index 6 of the 
matrix faces. You can correct this error by editing didisp.c and changing the 
last row of faces to read {5, 3, 3, 3, 5}. 

To verify that your change produces the correct sequence of dots for face 6 of 
the die, you can assign die1 or die2 the value 5, which will cause didisp.c 
to index the sixth row of the faces matrix. To assign 5 to die 1 , perform the 
following steps: 

Guide to the dxdb Debugger 17 



1. Stop the execution of diroll in didisp.c, before the for statement (by 
either stepping or setting a breakpoint). 

2. Choose Assign from the Windows menu. Figure 12 shows the Assign 
window. 

3. Click on the Variable box of the Assign window and enter die1. 

4. Click on the Value box and enter 5. 

5. Click on the Assign button. 

Figure 12: The Assign Window 

OJ dxdb: Variable Assignment 11-rt1111il11 

Variable: L-I _di_e_,::;:...! ______ _ 

Value: 

AsSign I Cose I 
ZK-0112U-R 

When you have completed these steps, continue running the program. The 
correct number of dots is displayed for face 6. 

1.10 Exiting from dxdb 
To end the dxdb session, click on the-Quit menu item in the Control 
Window. When you end a debugger session, dxdb closes all opened files and 
erases all display windows. 

1.11 Additional Tasks 
The following sections describe several additional dxdb functions that can 
facilitate your debugging tasks. These functions allow you to pass parameters 
to a program to be tested, view the program execution stack, examine all 
active variables, and get information about variables. 

18 Guide to the dxdb Debugger 



1.11.1 Supplying Arguments to a Program 
You use the Run window to supply an argument to a program you are 
testing. To run a program with an argument, perform the following steps: 

1. Choose Run from the Options menu. Figure 13 shows the Run window. 

2. Enter the argument you want to pass to the program in the Run 
Arguments field. 

3. Click on the Run with Arguments button. 

4. Return to the Control window and run the program. 

Figure 13: The Run Window 

Run Arguments: I argl arg~ 
o Run with Argum~e-n-::-t-s---------I. 

[II Run 

Close I 

For example, assume you modified the shell command cat and wanted to test 
the new version on a file called test.cat. To run this test, you would enter 
test.cat at the Run Arguments prompt, click on the Run With Arguments 
button, and return to the Control window to run the program. 

To run the cat command without arguments, return to the Run window and 
click on the Run button. When you run cat again, dxdb ignores all the 
specified arguments. 

To close the Run window, click on the Close button. 

1.11.2 Viewing the Program Execution Stack 
The Stack window allows you to view elements of the program execution 
stack. The program that dxdb is running places an entry on this stack each 
time the program executes one of its routines. Each stack entry contains the 
routine name and the parameters passed to that routine. 

Using the Stack window, you can trace the exact sequence in which the 
program called its routines and the parameters the program passed to those 
routines. This information may help you to uncover any program errors 
caused by bad parameter passing. 

Guide to the dxdb Debugger 19 



To display the Stack window, choose Stack from the Windows menu. The 
debugger updates this window (with the current contents of the program 
execution stack) each time you halt the program. Figure 14 shows the typical 
format in which dxdb displays this information in the Stack window. 

Figure 14: The Stack Window 

) 0 didisp.didisp(diel = 2, die2 = 0) [Jl didisp.c":25, Ox400280] 
1 mainO ["diroll.c ll:18, Ox400230] 

1.11.3 Viewing Variables 
The Dump window allows you to view the values of all currently active, 
local variables. To view all active variables, choose Dump from the 
Windows menu. Figure 15 shows the Dump window. The debugger updates 
the contents of this window each time you stop the execution of the program 
(using the Step, Skip, or Stop function, or by setting a breakpoint). 

The Dump window in Figure 15 shows the values of the variables in diroll 
after the program was stopped in the routine didisp. 

Figure 15: The Dump Window 

(nullldidisp.didisp(diel = 2, die2 = 0) [lldidisp.c ll:25, Ox400280] 
k = 70 
i = 4194788 
j = 2147478294 

20 Guide to the dxdb Debugger 



1.11.4 Getting Information About Variables 
Using the dxdb functions Whatis, Which, and Whereis, you can find out the 
data type, scope, and location of a variable. The following sections describe 
each function. 

1.11.4.1 Whatis - The Whatis function returns the data type of a variable 
argument. To find the data type of a variable, chose a variable from the 
Source window and then choose Whatis from the Functions menu. 

The debugger returns the data type of the variable (in the text area of the 
Control window) in the following format: 
variable - file.datatype variable; 

file The file in which the variable is located 

datatype The data type of the variable 

variable The variable in question 

For example, the following message returned by Whatis indicates that the 
variable 9 is declared an integer in the local routine tt: 
g - tt.int g; 

1.11.4.2 Which - The Which function returns the scope of the variable (local or 
global) that is currently active. To use Which, first choose a variable from the 
Source Window and then choose Which from the Functions menu. Which 
returns a message in the following format: 
variable - file.function ... variable 

file The file in which the variable is declared 

function The function or functions in the routine that use the variable 

variable The variable in question 

For example, the following Which message indicates that variable 9 is used 
by the function f 00 , which is defined in the file t t . c : 
g - tt.foo.g 

Guide to the dxdb Debugger 21 



1.11.4.3 Whereis - The Whereis function returns a list of routines in which a 
variable appears. To use Whereis, choose a variable from the Source Window 
and then choose Whereis from the Functions menu. Whereis returns a 
message in the following format: 
routine.variable routine.variable ... 

For example, the following Whereis message indicates that die 1 is used in 
the routines didisp and diroll: 
didisp.diel diroll.diel 

1.11.5 Editing Files 
You can edit the file currently displayed in the Source window. Select the 
Edit option of the File menu. A vi editor session will be started in a 
DECterm window with the cursor at the current line of execution. 

1.11.6 Restarting the Debugger 
You can rebuild the executable program you are debugging and restart the 
debugger using the MakeIRestart option· of the File menu. This executes the 
Restart Command that is displayed in the Make window. 

To do this, choose the Make Window from the Windows menu. When the 
MakeIRestart command is issued, dxdb executes the text in the Restart 
command. The default is Make; however, you can change this field to suit 
the program being debugged. Output from the Restart command appears in 
the Make Output text window. Figure 16 shows the Make window. 

The debugger is restored to its original state. Therefore, you lose any 
breakpoints or tracepoints you had previously set. You are now running 
updated source files that are ready to be executed. 

22 Guide to the dxdb Debugger 



Figure 16: The Make Window 

Icc -c -Q diroll.c 
cc -g -0 diroll diroll.o didisp.o 

Restart Command: I~Jm_a_k_e __________ _ 

Guide to the dxdb Debugger 23 





A 

Assign window, 17 

B 
Breakpoint, 9 

conditional, 11 

deleting, 10 

setting, 9 

c 
Compiling program, 4 

Control window, 5 

D 
Debugger 

exiting, 18 

starting, 4 

DECterm window, 22 

Dump window, 20 

E 

Examine window, 15 

Executing program, 4 

M 
Make window, 22 

Menu 

Breakpoints, 9 

Condition, 11 

Control, 7, 17 

Examine, 14 

list of, 1 

p 

Make, 22 

Tracepoint, 12 

Program 

comiling,4 

debugging, 1 

executing, 4 

running, 7 

stopping execution, 17 

testing, 18 

Program execution stack, 19 

R 
Run window, 19 

Index 



s 
Skip window, 16 
Source Area, 6 
Stack window, 20 
Status Bar, 6 
Step count, 16 
Step window, 16 

T 
Tracepoint 

conditional, 13 

deleting, 12 

setting, 12 

v 
Value 

assigning, 17 

examining, 15 

Variables 

assigning a value to, 17 

w 
Whatis function, 21 

Whereis function, 22 

Which function, 21 

Window 

Assign, 17 

Breakpoints, 9 

Control, 4 

DECterm,22 

Dump, 20 

Examine, 15 

1/0,8 

list of, 1 

Make, 22 

Run, 19 

Index-2 

Window (cont.) 

Skip, 16 

Source, 13 

Stack,19 

Step, 16 

Text, 12 



How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 
before placing your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial800-DEC-DEMO (800-332-3366) using a 
1200- or 2400-baud modem. If you need assistance using the Electronic Store, call 
8oo-DIGIT AL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 

Continental USA, 
Alaska, or Hawaii 

Puerto Rico 

Canada 

International 

Internal! 

Call 

800-DIGITAL 

809-754-7575 

800~267-6215 

Contact 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local Digital Subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02j2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local Digital subsidiary or 
approved distributor 

SSB Order Processing - WMOlE15 
or 
Software Supply Business 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 
before placing your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 
1200- or 2400-baud modem. If you need assistance using the Electronic Store, call 
800-DIGIT AL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 

Continental USA, 
Alaska, or Hawaii 

Puerto Rico 

Canada 

International 

Internal 1 

Call 

800-DIGITAL 

809-754-7575 

800-267-6215 

Contact 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local Digital Subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02j2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local Digital subsidiary or 
approved distributor 

SSB Order Processing - WMO/E15 
or 
Software Supply Business 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





Reader's Comments UL TRIX Worksystem Software 
Guide to the dxdb Debugger 

AA-MA93B-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

Please rate this manual: 
Accuracy (software works as manual says) 
Completeness (enough information) 
Clarity (easy to understand) 
Organization (structure of subject matter) 
Figures (useful) 
Examples (useful) 
Index (ability to find topic) 
Page layout (easy to find information) 

What would you like to see more/less of? 

Excellent 
D 
D 
D 
D 
D 
D 
D 
D 

Good 
D 
D 
o 
o 
D 
o 
o 
D 

Fair 
D 
D 
D 
o 
o 
o 
o 
o 

Poor 
o 
o 
o 
o 
o 
o 
o 
o 

What do you like best about this manual? _________________ _ 

What do you like least about this manual? 

Please list errors you have found in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

What version of the software described by this manual are you using? 

Nameffitle Dept. 
Company _______________________ Dme ___ ~---

Mailing Address 
__ -'--________ Email __________ Phone 



I . __ P~1ioJ_~e~=F~~_~~~~g!!e~ ______________________________________________ l 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Digital Equipment Corporation 
Publications Manager 
Open Software Publications Group 
ZK03-2/Z04 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

III1111111111111111111111111111111111111111111111111 

Do Not Tear - Fold Here and Tape 

No Postage 
Necessary 

if Mailed in the 
United States 

Cut 
Along 
Dotted 
Line 


